

12
121

88
101

Using the DML in FORTRAN Programs

DRMS

FYND FIRST CUSTOMEReRECORD RECORD OF MARKETING-AREA AREA,

DRMS

FYND LAST QTR-SALES=RECORD RECORD OF SALES~=SET SET
SUPPRESS AREA CURRENCY UPDATES, -(8)

DRMS

GFT, (9)

DRMS

FYND CWNER CUSTOMEReSET, -(10)
SUPPRESS AREA CURRENCY UPOATES,

DRMS

FYND LAST PERFORMANCE-RECORD RECORD OF PERFORMANCE~SET SET,
SUPPRESS AREA CURRENCTY UPDATES,

IF (ERSTAT ,GT, 0) GO TO 88

CALL NUMER& (PERFOR, CONVRT (PERFOR) + CONVRT (SALES))

DRMS

MODIFY,

IF (EKSTAT ,GT, 0) GO TO 88 -(11)
NRMS

FIND OwWNEK OF SALFS-SET SET,

ORM4S

FIND NEXT CUSTOMER<RECORD RECORD OF MARKETING=AREA AREA,
IF (ERSTAT ,EQ, 0) GO TO 121

DRMS

FYND FIRST SALES"ANeRECORD RFCORD OF PERSUNNEL-AREA AREA,
1F (ERSTAT ,GT, 0) GO TO 88 -(12)

CALL SURPF -(13)

TVPE 101 ERSTAT

FORMAT (°?ERROR=STATUS:’,14)

DRMS

CI1.OSE ALL, -(14)

DRM4S

END EXAMPL,

SUBROUTINE SUBPR

SUBPROGRAM TC PERFURM THE CALCULATIONS FOR THE

COMMISSINONS FOR THE SALESMEN,

RFAL TSALES, TCOMM, TBONUS

DRMS

ACCESS SUB=SCHENA=1] OF SCHEMA BARHEX o(15)
PRIVACY KEY COMPILE SALEX,

DRMS

FYND NEXT RECORD OF FIELO=SET SET, (16)

DRAMS

FIND LAST PERFORMANCE=RECGRD RECORD OF PERFORMANCESET SET,

IF (ERSTAT ,GT, 0) GO TO 88

DRMS

GFT,

TSALES s CONVRT (PERFOR)

TCOMM s TSALES # 0,12

TRONUS s 0

TFEMP s CONVRT (PREDIC) « CONVRT (PERFOR)

IF(TEMP ,GT, 0) GO TO 131

TRONUS = TEMP # ,08

59

131

88
103

(1)
(2)

(3)

(4)

(5)

(6)

(N

Using the DML in FORTRAN Programs

CALL NUMER6 (COMMIS, TCOMM)

CALL NUMER6 (BONUS, TBONUS)

DAMS

FYND LAST QTReCOMMISSION RECORD RECORD OF COMMISSION=SET SET
SUPPRESS AREA CURRENCY UPDATES, (17)

IF (ERSTAT ,GT,0) GO TO 88

DRMS

MODIFY,

DRAMS

FIND OWNER COMMISSIONeSET SET,

DRMS

FYND NEXT SALESMANRECORD RECCOPD OF PERSONNELeAREA AREA,

IF (ERSTAT ,EQ, 0) GO TO 13 (7)

TVPE 101, ERSTAT

(*?ERROR=STATUSE®,14)

RFTURN

DRMS

END SUBPR,

A line containing « DBMS must precede each OmL statement in the
program,

The INVOKE statement must precede the first executable statement
in the program,

PROTECTED UPDATE permits other runeynits to concurrently open
the two areag to retrieve data, but not to update, until the
CLOSE statement is executed in this program,

Tf the execution of the OPEN statement fails, continuation of
rthe run is not desired,

The opject of MODIFY {s the current record of the runeunit, A
RET statement s unnecessary here because the MODIFY explicity
names the only field it affects, Note that tnis is probably
more care than necessary because the "prediction program” should
have set all new PERFORS to 0,

You can always search tor the first (last) occurrence of a
record type in an area, and then continue the search in the
forvward (reverse) direction (e,9,,» FIND PRIOR RECORD oF
Area=name AREA) FIND PRIOR shoulda not be used, nowever, to
search for records in sets unless the number records are linked
fo PRIOR,

tince ERSTAT s set tO zero upon a successtul FIND, this
provides the test for continuation of looping using FINDsS, The
first nonzero ERSTAT will occur when no record is found, A more
definitive check would include testing for an ERSTAT value of
n3oy,

5-10

(¢

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

17

Using the DML in FORTRAN Programs

Area currency updating is suppressed gso that the DBCS will not
lose its .place on subgeguent NEXT OF AREA searches for
CUSTOMER*REOCRD,

The object of GET is the current record of the run=uynit, The
GET moves the data=item fields within the current record into
rhe appropriate UWA locations,

SALESFIELD=-RECORD record is the owner.

Tt the FIND fails, execution should be terminated,

Tf no salesman can be found, execution should pe terminated,

A call is made to a subprogram to compute the commissions, The
rall need not pass arguments pbecause the data from the data base
And SYSCUM are in COMMON,

Close al)l open areas before terminating the program, Fajlure to
fssue a CLOSE statement might cause some update activity for
this program not to be retlecred in the data base,

An ACCESS statement is included in the subprogram so that the
gubprogqram can reference dacd in the subeschema invoked in the
main program,

NEXT RECORD OF FIELD=SET SET qgives the sales territory belonging
*ro the current salesman,

ATR=COMMISSION*RECORD must pe mMmade the currert of runeunit in
nrder to MODIFY {t,

5411

APPENDIX A

RESERVED WORDS AND
USER REFERENCABLE DBCS NAMES

This appendix lists DBMS reserved words and routine names. You cannot use these terms to name your own rou-
tines or other items in your programs.

A.1 RESERVED WORDS

The following words are reserved in DBMS, along with their abbreviations, which are enclosed in parentheses.

You cannot use these words as user-created names in any DML statements. Refer to the DECsystem-10 COBOL Pro-
grammer’s Reference Manual for COBOL reserved words. Those words preceded with an asterisk refer to COBOL
only; those preceded by two asterisks refer to FORTRAN only.

-A- D- FIRST
FIXED
ACCESS DATABASE-KEY (DBKEY) FLOAT
AFTER DECIMAL (DEC) FOR
ALIAS DELETE | FROM
ALL DESCENDPING (DESC)
ALLOWED DIRECT* -G-
ALWAYS DISPLAY
ARE DUPLICATE GET
AREA DUPLICATES
AREA-ID DYNAMIC -
*AREA-NAME
**ARNAM -E- IF
ASCENDING IMAGES
AUTOMATIC ELSE IN
_ EMPTY INDEX
-B- ENCODING INDEXED
**END INSERT
BACKUP **ERAREA INTO
BEFORE **ERCNT INVOKE
BINARY (BIN) **ERREC IS
BIT *ERROR-AREA
BY *ERROR-COUNT K-
*ERROR-RECORD
C- *ERROR-SET KEY
*ERROR-STATUS
CALC **ERSER -L-
CALL **ERSTAT
CHAIN EXCLUSIVE LAST
CLOSE LINKED
COMPILE -F- LOCATION
COMPLEX LOCK
CURRENT FIND

M-

MANDATORY
MANUAL
MEMBER
MEMBERS
MODE
MODIFY
MOVE

.N-

NEXT
NOT

.0-

OCCURRENCE
OCCURS

OF

ON

ONLY

OPEN
OPTIONAL
ORDER
OWNER

P

PICTURE (PIC)

PRIOR

PRIVACY

PROTECTED
-R-

RANGE

Reserved Words and User-Referencable DBCS Names

REAL
**RECNNAM
RECORD
*RECORD-NAME
REMOVE
RETRIEVAL
RUN-UNIT

-S-

SCHEMA
SEARCH
SELECTION
SELECTIVE
*SENTENCE
SET
SETS
SORTED
STATUS
STORE
SUB-SCHEMA
SUPPRESS

-T-

TEMPORARY
THRU

TIMES

TO

.U-

**UNDEF
UPDATE
UPDATES
USAGE
USAGE-MODE

USE
USING

VIA

WITHIN

W

A.2 USER-REFERENCABLE DBCS NAMES

This section identifies the DBCS routine-names you can use in explicit calls and informs you which names you can-
not use as names in your own programs. Table A-1 lists the DBMS keywords and numerical values each has been as-
signed. Use these values instead of the keywords themselves in your explicit calls to DBCS entry points.

Table A-1 DBMS Keywords and Assigned Values

Keyword Value
ONLY -10
SELECTIVE -11
FIRST -12
LAST -13
PRIOR -14
NEXT -15
DUPLICATES -16
ALL -17
AREA -18
RECORD -19
SET -20

Reserved Words and User-Referencable DBCS Names

Table A-1 (Cont.) DBMS Keywords and Assigned Values

Keyword Value
UPDATE -21
RETRIEVAL -22
RUNUNIT -23
PROTECTED -24
EXCLUSIVE -25
RESERVED -26
RESERVED -27
JOURNAL -28

Table A-2 lists the DBCS entry points and shows the arguments you can use when accessing them, The asterisks iden-
tify a synonym for the name immediately preceding. You can replace the keywords in the argument list with the nega-
tive values shown in Table A-1. Using this facility allows you to replace DML statements that you would otherwise
redundantly code throughout your program with a single generic call. You can then provide different values for the
variable (in your argument list) at run-time (for example, using the ACCEPT/DISPLAY commands).

You may, for example, want to find the next record of each of five sets. The generic call in FORTRAN would look this

way:

CALLFIND3 (-15, 0, CURSET, -20)

The generic call in COBOL would look this way:

ENTER MACRO FIND3 USING -15,0, CURSET, -20.

Table A-2 DBCS Entry Points and Arguments

CLOSED
CLOSED
DELETR
FINDI
FIND2
FIND3

FINDO
FIND4
FINDS
GETS
*GET
INSERT
*INSRT
MODIF
*MODIFY
MOVEC
OPEND

REMOVE
*REMOV

(ALL)

(AREA, area-list)

(0 or SELECT or ALL or ONLY)

(record or 0, USING-value)

(set or 0, currency, currency-keyword)

(relative, record or 0, area or set, AREA or SET)

(integer, record or 0, area or set, AREA or SET)
(set)

(DUPLICATES or 0, record)

(record [,data-list]) or (0)

(record or 0, set-list)

(same-as-GET)

(currency, currency-keyword, result)

(RETR or UPDATE, 0 or PROT or EXCL, privacy-

key, ALL or area-list)
(same-as-INSERT)

Reserved Words and User-Referencable DBCS Names

Table A-2 (Cont.) DBCS Entry Points and Arguments

STORE (record)

*STORED

SBIND (schema, edit, subschema, ss-mask, SYSCOM-address)
BIND (record,data-address-list)

EBIND (0,DBMS-NULL)

In addition, the FINDs and STOREs can have appended a SUPPRESS list as follows:
ALL
AREA
SUPPRESS RECORD } CURRENCY UPDATES

SET
set-name-1 ...

The remaining DBCS user-referencable routines are listed below.

SETDB
JMAFT
JBTRAN
EMPTY
OWNER
STATS

UNSET
JMBEF
JSTRAN
*SETCON
*RECOWN

A4

SAVESS
JMBOTH
JETRAN
MEMBER
TENANT

JMNAME
JMNONE
JRSYNC
*RECMEM
*RECMO

APPENDIX B
EXCEPTION CONDITION CODES AND ERROR MESSAGES

This appendix lists and discusses DBMS exception condition codes. It also lists (1) the DBCS run-time messages (2)
the COBOL compiler error messages that can occur during compilation of your COBOL-DML program, and (3) the
FORDML preprocessor error messages that can occur during preprocessing of your FORTRAN-DML program.

B.1 EXCEPTION CONDITION CODES

Exception handling in DBMS has been discussed in Section 3.2. Table B-1, which is a duplicate of Table 3-1, is re-
peated here so that you can easily associate the statement-function codes with the exception condition codes
listed and described in Table B-2.

Table B-1
DML-Statement-Associated Functions and Codes
Code Statement
00 HOST
01 CLOSE
02 DELETE
03 FIND
05 GET
07 INSERT
08 MODIFY
09 OPEN
11 REMOVE
12 STORE
15 BIND
16 CALL
Table B-2
Exception Condition Codes
Code Condition
00 A warning. Compile-time and run-time versions of schema file differ. If a “real” exception occurs during

binding, however, DBCS always returns the code of that exception. To indicate that exception 00 has
occurred as well, DBCS types the %DBSCED message. Generally, the “real” exception does not persist
after the program-unit is recompiled with the up-to-date schema file.

01 Area not open.

02 Data base key inconsistent with area-name. Can also indicate that a referenced page number is in an area
that is not in the sub-schema invoked.

03 Record affected (deleted or removed) by concurrent application.
04 Data-name invalid or inconsistent. This can occur during GET or MODIFY with a data-name list.
05 Violation of DUPLICATES NOT ALLOWED clause.

B-1

Exception Condition Codes and Error Messages

Table B-2 (Cont.)
Exception Condition Codes
Code Condition
06 Current of set, area, or record-name not known.
07 End of set, area, or record.
08 Referenced area, record, or set-name not in sub-schema. This may occur for a number of reasons:

10

11

13

15

16

17

20

22

23

24

25

1. DBCS encounters a record type not in the sub-schema when traversing a set.

2. Set type owned by the object record type is not in the sub-schema. This is during a STORE or DELETE.
3. The VIA set is not in sub-schema — during set selection occurrence.

4. All subkeys are not in the sub-schema — during CALC processing or searching a sorted set.

5. The sort key of a set not in the sub-schema is modified — during a MODIFY.

The solution to this is to place the required name in the sub-schema.

Update usage mode required. This is an attempt to use an updating verb when the specified area is open
for RETRIEVAL.

Privacy breach attempted.

Physical space not available. No room remains for storing records. This can also occur while DBCS is try-
ing to store an internal record type — namely the index blocks in a sorted set.

No current record of run-unit.
Object record is MANDATORY AUTOMATIC member in named set.

Object record is MANDATORY type or not member type at all in named set. This is an attempt to
REMOVE a record which is either a MANDATORY member or not a member type of named set.

Record is already a member of named set.

Record has been deleted. This can occur during a FIND CURRENT of RECORD, SET, AREA, or RUN-
UNIT, or during a FIND NEXT of SET or AREA.

Current record of run-unit not of correct record type.

Record not currently member of named or implied set.

Illegal area-name passed in area identification.

Temporary and permanent areas referenced in same DML verb.

No set occurrence satisfies argument values. This can mean, for example, that CALC value in the UWA
matched no owner record.

B-2

Exception Condition Codes and Error Messages

Table B-2 (Cont.)
Exception Condition Codes
Code Condition

26 No record satisfies rse specified. This is a catch-all exception for the FIND statement.

28 Area already open,

30 Unqualified DELETE attempted on non-empty set.

Non-CODASYL Exception Codes
31 Unable to open the schema file.
32 Insufficient space allocated for the data-name. The SIZE clause in the data-name entry specifies less space
than the compiler needs.
33 None of the areas a record type can be within are in the sub-schema.
34 A set is in the sub-schema, but its owner record type is not.
35 Dynamic use-vector is full (FORTRAN only).
36 Attempt to invoke too many sub-schemas (currently more than 8); or an attempt to use UNSET
with an empty sub-schema stack or SETDB with a full sub-schema stack.
37 Sub-schema passed to SETDB is not already invoked.
38 Duplicate operation attempted on a resource. This can occur because (1) you attempt to open
the journal file twice (you have opened it in EXCLUSIVE UPDATE usage-mode and are now
opening a data area in UPDATE usage-mode) or (2) you call JSTRAN while a transaction is al-
ready active, or (3) you have multiple INVOKE statements and attempt to open the same arca
twice.
39 Data base file not found.
40 Requested access conflicts with existing access; that is, resource is not available. This can result
from an attempt to
1. open an area in a USAGE-MODE incompatible with that of another run-unit using the
same area (for example, trying to open an area for EXCLUSIVE RETRIEVAL while it
is already open for PROTECTED UPDATE).

2. open the journal in 2 way that results in a USAGE-MODE conflict.

3. DELETE a record retained by another run-unit.

4, attempt to open an area or the journal and the file system signals a file-protection error.

41 No JFNs available. An attempt to open too many areas.

42 Area in undefined state (for example, after crash). DBMEND should be used to force open the area and
return it to a valid state,

43 Area in creation state. This can happen to the system area only. This will occur if run-unit execution

aborts at just the right time during the first OPEN of the system area. Should this occur, either rerun
SCHEMA or create a O-length file with one of the text editors.

B-3

Exception Condition Codes and Error Messages

Table B-2 (Cont.)
Exception Condition Codes

Code Condition

44 Attempt to call a journal-processing entry point before the journaling system has been initialized
(by the first OPEN that requires journaling).

45 Attempt to backup the data base with JBTRAN (1) while DBCS’s Cannot-Backup-Updates (CBUU)
bit is set, or (2) when the journal is shared and commands are the interleaving unit, or (3) when the
journal is shared, transactions are the interleaving unit, and the argument given to JBTRAN is
greater than 0.

46 Magnetic tape service is not available. DAEMDB has returned a failure code.

System Exception Codes

55 Pseudo-exception. DBCS types message that no sub-schema yet initialized.

56 Inconsistent data in the database file, DBMEND should be used to restore the data base to a valid
state. If the problem can be reproduced, it probably indicates the presence of a DBCS software
error,

57 Probably a DBCS software error. If this recurs, report it

58 Illegal argument passed by programmer or setup by host interface; for example passing a set-name
with the STORE command.

59 No more memory available.

60 Unable to access a database file. The operating system reported an 1/O error, cither in normal opera-
tion or in trying to open a journal for appending.

61 Unable to append to journal (that is, the journal is in an aborted state but has not been designated
as being done-with).

62 Attempt to enter DBCS at other than JBTRAN, SBIND, SETDB, or UNSET while the system-in-
undefined-state (SUS) bit is on.

63 Unable to complete restoration of the proper data base state. This occurs either during JBTRAN or
during initialization of a run-unit at the start of a command or a transaction.

64 Internal use only.

65 Monitor space for ENQUEUE entries exhausted, or ENQUEUE quota exceeded.

66 ENQUEUE/DEQUEUE failure (for example, you do not have ENQUEUE capabilities, or an unacceptable
argument block has been created by DBCS).

67 Unable to initialize magnetic tape service because, for example, the IPCF block is bad; the IPCF

message is too long; or DAEMDB is not running.

Exception Condition Codes and Error Messages

B.2 DBCS RUN-TIME MESSAGES
The following is a list of DBCS run-time messages. Those beginning with a left bracket ([) are for your information.
If a response is required, it will be apparent to you. Those beginning with a percent sign (%) are warnings. Those be-
ginning with a question mark (?) signal DBCS is entering an undefined state. You must then report the condition and
follow procedures instituted at your facility for such occasions.

TYPE CONTINUE TO RESUME

JOURNAL CHARACTERISTICS ARE:

This is followed by a listing of the journal characteristics. Refer also to Section 2.3 for a more
detailed example of this message.

%DBSCED COMPILED/EXECUTED VERSIONS OF SCHEMA DIFFER

%DBSJDM JOURNAL DEVICE MUST BE DISK OR MTA — TRY AGAIN

%DBSROA “JM” CALL REFERENCES OPEN AREA

?DBSSNI SUB-SCHEMA NOT INITIALIZED YET

IDBSUCR UNABLE TO COMPLETE RESTORATION TO PROPER DATA BASE STATE

?DBSXWX EXCEPTION WHILE PROCESSING AN EXCEPTION

B.3 COBOL COMPILER ERROR MESSAGES
The following list contains error messages from the COBOL compiler regarding DBMS syntax errors in your program.
These messages can occur during compilation. Should any occur, compilation will stop.
‘ALL’ OR SET-NAME EXPECTED
‘ALL’, ‘RECORD’, ‘AREA’, ‘SET’, OR SET-NAME EXPECTED
AMBIGUOUS OR INCORRECT RSE SPECIFICATION
‘AREA’ OR ‘SET’ EXPECTED
AREA-NAME EXPECTED
‘COMPILE’ EXPECTED
‘CURRENT’ EXPECTED
DECLARATIVES MUST IMMEDIATELY FOLLOW PROCEDURE DIVISION
DUPLICATE SCHEMA SECTION
‘ERROR-STATUS’ EXPECTED
‘EXCLUSIVE’, ‘PROTECTED’, OR ‘RETRIEVAL’ EXPECTED
‘FOR’ EXPECTED

ILLEGAL COMBINATION OF ERROR-STATUS USE PROCEDURE

B-5

Exception Condition Codes and Error Messages

INCORRECT PRIVACY KEY

‘INTO’ EXPECTED

‘INVALID’, ‘ONLY’, ‘SELECTIVE’, OR ‘ALL’ EXPECTED

INVOKE STATEMENT MUST FOLLOW SCHEMA SECTION

NO MORE THAN 10 AREA-NAMES ALLOWED PER OPEN STATEMENT

‘OF' SCHEMA OR SCHEMA NAME EXPECTED

‘OR’ OR ‘INTO’ EXPECTED

‘RECORD’ EXPECTED

‘RECORD’ OR RECORD-NAME EXPECTED

RECORD-NAME, SET-NAME, AREA-NAME, OR ‘RUN-UNIT’ EXPECTED

‘SELECTIVE’, ‘ONLY’, ‘ALL’, OR RECORD-NAME EXPECTED

‘SET’ EXPECTED

SET-NAME EXPECTED

SET-NAME OR ‘ANY’ EXPECTED

SET-NAME OR AREA-NAME EXPECTED

‘STATUS’ EXPECTED

‘SUB-SCHEMA’ OR SUB-SCHEMA NAME EXPECTED

THIS SECTION IS OUT OF ORDER

‘UPDATE’ EXPECTED

VARIABLE IN THIS CONTEXT MUST BE DEFINED IN SUB-SCHEMA
B.4 FORDML PREPROCESSOR ERROR MESSAGES
The following is a list of FORDML preprocessor error messages. Those beginning with a percent sign (%) are warnings.

Those beginning with a question mark are fatal errors; and those beginning with a left bracket are for your information.
Where appropriate, FORDML will type the line number and the line in error.

%DMLXIS. EXTRA INPUT SPECS ARE IGNORED.
%DMLXOS. EXTRA OUTPUT SPECS ARE IGNORED.
?DMLFSU. SYMBOL AFTER “FIND” IS UNRECOGNIZABLE.
?DMLELW. ENCOUNTERED ... WHILE ...

%DMLASI. ALL MEANINGLESS SWITCHES ARE IGNORED.

B-6

Exception Condition Codes and Error Messages

7DMLWCD. WILD CARDING IN OUTPUT DIRECTORY.

7DMLPAU. PHRASE AFTER “FIND IDENTIFIER” UNRECOGNIZABLE.
[DMLSUM. string, n, ERRORS AND, n, WARNINGS] .

%DMLNIS. NO INVOKE SEEN BEFORE FIRST DML STATEMENT.
7DMLOIA. ONLY ONE INVOKE ALLOWED PER PROGRAM.UNIT.
7DMLSTL. STATEMENT TOO LONG OR “.” MISSING.

%DMLLSN. STATEMENT NUMBER GREATER THAN 99999 — TRUNCATED.
%DMLLTL. LINE, n, TOO LONG.

%DMLLSE. LINE SEQUENCE NUMBER, n, NOT FOLLOWED BY “TAB”,
7DMLOPF. OPEN FAILURE FOR “ file,”.

IDMLWNI. WILD-SPEC=NON-WILD SPEC IS UNDEFINED.

%DMLCFE. DBMS COMMENT FOLLOWED BY IMMEDIATE EOF.
%DMLESP. EXTRA SYMBOLS AFTER “*DBMS”.

%DMLICI. ILLEGAL CHARACTER IN INPUT ON LINE, n.

DMLSIE. SOURCE FILE INPUT ERROR - TRY AGAIN.

7DMLCOS. CANNOT OPEN/LOOKUP SCHEMA FILE, name;.

7DMLNSB. NO SCHEMA BLOCK IN .SCH FILE — REBUILD IT.
?DMLB_SF. BAD SCHEMA FILE — REFERENCE IS, name, .

7DMLSSI. SUB-SCHEMA SPECIFIED NOT IN SCHEMA.

9DMLBDK. BAD PRIVACY KEY GIVEN,

%DMLINP. REFERENCED NON-DATA-BASE ITEM, name, HAS NO PSEUDONYM.
1DMLDUP. DATA BASE NAME, name, MULTIPLY DEFINED.

APPENDIX C

SCHEMA DATA DECLARATIONS:
FORTRAN AND COBOL CONVERSIONS

The DBA uses the DATA ENTRY within the Schema DDL to name a data-item or data-aggregate. A date entry names
and describes an alphanumeric or numeric data item, or allocates space for a data aggregate.

This appendix presents the possible Schema declarations the DBA can use and shows the FORTRAN and COBOL
mappings (that is, conversions) for each. For further information, refer to Chapter 4 of the Data Base Administrator’s
Procedures Manual.

C.1 ALPHANUMERIC DATA

The USAGE phrase can be used to describe the usage mode of alphanumeric data (either data-items or data aggre-
gates). The modes are: SIXBIT, ASCII, and EBCDIC. The corresponding schema declaration for each is: DISPLAY

or DISPLAY-6; DISPLAY-7; and DISPLAY-9. Table C-1 shows the possible keyword declarations the DBA can use
and the FORTRAN and COBOL conversions for each usage mode. When, for example, the schema USAGE declara-
tion is DISPLAY-6 (PIC X(N), the FORTRAN preprocessor converts to INTEGER (N/5) for FORTRAN use. COBOL
converts to DISPLAY-6 PIC X(N).

Table C-1
Alphanumeric Data: Schema Declarations;
FORTRAN and COBOL Usage-Mode Conversions

FORTRAN COBOL
Schema Declaration Usage-Mode Usage-Mode
DISPLAY PIC X(N) INTEGER(N/S) DISPLAY PIC X(N)
DISPLAY-6 PIC X(N) INTEGER(N/S) DISPLAY-6 PIC X(N)
DISPLAY-? PIC X(N) INTEGER(N/S) DISPLAY-7 PIC X(N)
DISPLAY-9 PIC X(N) INTEGER(N/4) DISPLAY9 PIC X(N)

NOTE: FORTRAN rounds off to the next higher whole number if the result is not a whole number.

C.2 NUMERIC DATA
The TYPE clause can be used to describe numeric data anddatabase keys. The types of numeric data allowed are

shown in Table C-2. Table C-2 also shows the way in which each schema type declaration is treated by the host
languages, FORTRAN and COBOL. If the DBA has not specified one of the numeric keywords shown in the left-
hand column of Table C-2, the default is FIXED, BINARY, and REAL. The DBA can also specify the precision of
each data-item. The precision is then treated as binary or decimal depending on the keyword the DBA specifies.

C-1

Schema Data Declarations: FORTRAN and COBOI, Conversions

Table C-2
Numeric Data: Schema Declarations;
FORTRAN and COBOL Data-Type Conversions

Precision Default FORTRAN COBOL
‘Schema Keywords Range Precision Data Type Data Type
FIXED BIN REAL <36 35 INTEGER COMP PIC S9 (1-10)
FIXED BIN REAL 36-70 — INTEGER(2) COMP PIC S9 (11-18)
FLOAT BIN REAL <28 27 REAL COMP-1
FLOAT BIN REAL 28-62 - REAL*8 COMP PIC S9 (18)
FLOAT BIN COMPLEX | <28 27 'COMPLEX COMP PIC S9 (18)
FIXED DEC REAL <19 10 INTEGER (prec/4) COMP-3 PIC S9 (prec)

C.2.1 Schema Precision Declaration and COBOL Conversion

If you use DBMS with COBOL, you should be aware of the rules applying to legal moves and to precision when
transferring numeric data within the data base. Refer to the MOVE statement specifications in the COBOL Pro-
grammer’s Reference Manual.

The DBA can use integer-3 of the DATA ENTRY to specify precision for each numeric data-item. (Refer also to
Table C-2.) Table C-3 shows decimal precision implied by each possible Schema DDL binary precision declaration.
If full-word precision has not been consistently specified, left-most truncation may occur if the data-item is moved
or used in computations.

Refer to Table C-3, therefore, to understand the relation between the binary precision declared in the schema and
the decimal precision that results in COBOL.

Table C-3
Schema Binary Precision;
Corresponding COBOL Decimal Precision
Schema COBOL
Precision Declaration Precision Conversion

(Binary) (Decimal)

14 PIC S9 (1)

57 PIC S9 (2)

8-10 PIC 89 (3)
11-14 PIC S9 (4)
15-17 PIC S9 (5)
18-20 PIC S9 (6)
21-24 PIC S9 (7)
25-27 PIC S9 (8)
28-30 PIC S9 (9)

Schema Data Declarations: FORTRAN and COBOL Conversions

Table C-3 (Cont.)
Schema Binary Precision;
Corresponding COBOL Decimal Precision
Schema , COBOL
Precision Declaration Precision Conversion

(Binary) (Decimal)
31-35 Default PIC S9 (10)
36-38 PIC S9 (11)
3941 PIC S9 (12)
4244 PIC S9 (13)
4548 PIC S9 (14)
49-51 PIC S9 (15)
52-54 PIC S9 (16)
55-58 PIC S9 (17)
59.70 PIC S9 (18)

C.3

APPENDIX D
PASSING STRING ARGUMENTS TO DBCS

This appendix is intended mainly for the FORTRAN programmer who wants to pass variable-length string arguments
to the DBCS subprograms discussed in Section 2.3. Because FORTRAN does not have the facility to handle string data
that COBOL has, the arguments to these DBCS subprograms are generally treated as literals (constants). To use vari-
ables, it is important to understand the relation between standard FORTRAN data types and their treatment by
DBCS. Table D-1 shows this relation.

Table D-1

FORTRAN Data Types; DBCS Interpretations
FORTRAN DBCS
Data Type Interpretation
LOGICAL data-varying
INTEGER S characters
REAL 5 characters
REAL*8 10 characters
COMPLEX string pointer

The string arguments you use will be treated as data-varying strings, string pointers, or groups of characters — depend-
ing on the FORTRAN data type you specify. (Refer also to the STRLIB documentation, which discusses FORTRAN-
oriented string manipulation.)

The following cdnventions apply for data-ty ping variable-length string arguments:
1. A string argument typed LOGICAL is treated as a data-varying string whose length is stored in the
word preceding the string. You must provide a dimensioning statement and allocate room for the

character count.

2. A string argument typed INTEGER or REAL is treated as a S-character length string — regardless
of dimensioning,.

3. Astring argument typed REAL*8 is treated as a 10-character length string — regardless of dimen-
sioning.

4. A string argument typed COMPLEX is treated as a string pointer. A string pointer contains two

elements: a byte pointer as its first word and the number of characters in the string as its second word.
Define the byte pointer such that it points to the address of the first character of the actual string.

D-1

APPENDIX E
GLOSSARY

Area
A named subdivision of the addressable storage space in the data base.

AUTOMATIC set membership
A form of set membership (declared by the DBA using the Schema DDL) in which membership is established
by DBMS when the record occurrence is stored.

Chain

A method of linking records within sets. It comprises using embedded pointers within the owner and member
records that make up a set occurrence.

Currency status indicators
Single-word registers that record the data-base key of the record that is current-of-run-unit, current-of-record,
current-of-set, and current of area.

Data base
A collection of interrelated records processable by one or more applications without regard to physncal stor-
age, and defined by one schema,

Data Base Administrator
The person or group that organizes, defines, and monitors the data base.

Data Base Control System (DBCS)
The run-time system that acts as the interface between the run-unit and the data base.

Data-base key
A unique identifier assigned by DBMS to each record occurrence in the data base. It remains the permanent
identifier of a record occurrence until the record occurrence is deleted.

Data-item
The smallest unit of named data in the data base.

Data Manipulation Language (DML)
The language used by the programmer to cause data to be transferred between his program and the data base.
This is not a complete language by itself; it requires a host language.

Host language
A language into which the Data Manipulation Language has been integrated to perform actions on the data
base. ‘

Integrity of data
The safeguarding of data from any untoward interaction of programs.

Interleaving unit
The duration for which a run-unit retains the data base exclusively.

E-1

Glossary

Location mode
The method used for determining record storage. The location mode can be DIRECT using the unique iden-
tifier assigned by DBMS, CALC based on the CALC keys in each record, or VIA SET; i.e., according to the
relationships established for the records in the set declaration.

MANDATORY set membership '
The specification of set membership (in the schema) such that once the membership of a record occurrence
in a set is established, the membership is permanent. It cannot be removed from the set unless it is deleted
from the data base.

MANUAL set membership
A form of set membership in which membership is established by a run-unit by means of the INSERT com-
mand. MANUAL membership of the record occurrence in a set is declared by the Data Base Administrator
when the schema is set up.

Member record
A record, other than the owner record, that is included in a set. There may be zero or more member record
occurrences in a set.

Network structure
A general form of data structure in which any given element may be related to any other element in the
structure. Networks are used to show interset relationships.

OPTIONAL set membership
The specification of set membership such that the membership of a record occurrence in a set is not neces-

sarily permanent.

Owner record
The head of a group of records that make up a set. There must be one and only one record type as the owner
for each set.

Privacy key
A value that must be provided by a run-unit seeking to access or alter data protected by a privacy lock. The
key must match the lock.

Privacy lock
A value that is specified in the schema to ensure protection of the data.

Privacy of data
The protection of data from unauthorized access.

Protected update
A specified usage mode. It gives a run-unit the capability to make changes to an area of the data base while
other run-units concurrently retrieve data.

Record
A named collection of zero, one, or more data-items.

Record occurrence
The actual representation of a single record. It is not the definition of a record, which is the record type.

Record-selection-expression
The search arguments used for selecting a record from a data base.

Record type
A specific named record defined in the DDL. It is the definition of a collection of records that have identical

characteristics.
E-2

Glossary

Resource
A named entity that processes can use either shared or exclusive. A resource can be the data base, a record,
a device, or a function.

Run-unit
An executable program. A program consists of one or more program-units,

Schema
A complete description of a data base.

Schema Data Description Language (DDL)
The language used to describe a schema.

Sequential structure
A data structure in which each element in the structure is related to the element preceding it and to the ele-
ment following it. A form of sequential structure is used to show intraset reiationships in DBMS.

Set mode
Denotes the method of accessing the data in a set. DBMS supports CHAIN mode.

Set occurrence
A collection of one or more logically related record occurrences. This is the actual data in the set and not
its definition, which is the set type.

Set order
The declaration of the logical order of the member record occurrences to be maintained within each set
occurrence.

Set type
A named collection of record types having one owner record type and one or more member record types.

Simultaneous-update
The capability to update or retrieve data while another run-unit updates or retrieves data in the same
area,

Sub-schema
A description of those parts of the schema known to one or more specific programs.

Sub-schema Data Description Language (DDL)
The language used to describe a sub-schema.

System communication locations
Locations in core provided by DBMS for run-unit/DBCS interaction.

Temporary area
An area not shared among concurrent run-units. A run-unit that references a temporary area is allocated a

private, unique occurrence of that area. Any changes made to a temporary area are lost when the area is
closed.

Tree structure
A hierarchical structure in which each element may be related to any number of elements at any level below
it, but to only one element above it in the hierarchy. Tree structures are used to show interset relation-

ships.

E-3

Glossary

User Working Area (UWA)
An area of core where all data provided by the DBCS in response to a call for data is delivered and where all
data to be picked up by DBCS must be placed. \

E4

INDEX

ACCESS statement, 2-7, 3-5 Data (Cont.),
COBOL placement of, 4-2 integration, 1-1
FORTRAN placement of, 5-4 integrity of, 1-8
Accessing a sub-schema, 2-7, 3-5 privacy of, 1-8
AFTER images, 2-13 retrieving, 2-11, 3.7
Application, typical, 1-10 walking through structured, 2-10
Area, 1.2, E-1 . Data aggregate, 1-2
closing, 2-12 Data areas,
current of, 2-12 closing, 2-12, 3-6
opening, 2-8 opening, 2-8, 3-26
temporary, 1-2, 2.8 Data base, 1-1, E-1
AREA-NAME, 2-11, 4-1 administrator, 1-1
ARNAM, 2-11,5-3 control system, 1-1,1-8
AUTOMATIC set membership, 2-4, 2-12, E-1 elements, 1-1
protection, 1-8,2.13
BACKUP clause, 2-1,2-13 recovery, 2-13
Backup and recovery, 2-1,2-13,2-18 using, 2-1
BEFORE images, 2-13 Data Description Language, 1-1,1-3
BIND statement, 2.7, 3-3, 3-31, 3-32 Data Manipulation Language, 1-1,1-3, 3-1, E-1
Binding, 1-1,2-7 conventions, 3-1
statements,
CALC location mode, 2-4,2-20 ACCESS, 2-7,3-5
CHAIN set mode, 1-6,2-4, E-1 CLOSE, 2-12, 36
Checkpointing a journal file, 2-15,2-18 DELETE, 2-12, 3.7
Classes of statements/exceptions, 3-3 END, 39
CLOSE statement, 2-12, 3-6 FIND, 2-10, 3-10
COBOL, _ GET, 2-11, 3-17
calls to DBCS subprograms, 2-5 IF, 3-18
compiler error messages, B-1 INSERT, 2-12, 3-20
examples, 4-3 INVOKE, 2.6, 3-22
placing DML statements, 2-5, 4-1 MODIFY, 2-12, 3-23
ACCESS, 4.2 MOVE STATUS, 2-12, 3-25
INVOKE, 4-1 OPEN, 2.8, 3-26
precision, C-2 REMOVE, 2-12, 3-28
RETAIN, 2-10 STORE, 2-12, 3-29
Usage-modes, C-1 USE, 3-31, 3-32
USE statement, 3-1 use in COBOL, 4-1
CODASYL, vii use in FORTRAN, 4-1
Codes, exception-condition, B-1 writing, 2-1
Currency indicators, 2-11, 2-12, 3-25, E-1 Data structures, 1-7
CURRENT OF AREA, 2-12 network, 1-7
CURRENT OF RECORD, 2-12 sequential, 1.7
CURRENT OF RUN-UNIT, 2-12 tree, 1.7,1-10
CURRENT OF SET, 2-12 Data types, FORTRAN, D-1
Data-item, 1-2, E-1
DAEMDRB utility, 2-16 DBCS, 1-1,1-8
Data, DBMEND, 2-13,2-19
conversions, C-1 DDLs, 1-1,1.3
declarations, schema, C-1 DELETE statement, 2-12, 3-7

Index-1

Deleting record occurrences, 2-12, 3-7
DIRECT Location Mode, 2-3,2-5
DML, 1-1,1-3, 3-1

Efficiency considerations, 2-13, 2-19
Embedded pointers, 1-6, 2-4
EMPTY function, 3-34
Empty set,

testing for, 3-18, 3-34
END statement, 3-9
Error messages, B-1
Error registers, 3-2
Examples,

COBOL, 4-3

FORTRAN, 5-5
Exceptions,

classes of, 3-3

codes, B-1

handling, 3-1

EXCLUSIVE RETRIEVAL usage mode, 19, 2-8,

3-26

EXCLUSIVE UPDATE usage mode, 1-9,2-8, 2-15, 3-26

FIND statement, 2-10, 3-10
rse 1, 2-10, 3-11
rse 2, 2-10, 3-12
rse 3, 2-10, 3-13
rse 4, 2-10, 3-15
rse 5, 2-10, 3-16
FIRST set order, 2-4
FORDML, 2-6, 5-4
error messages, B-1
FORTRAN,
data types, D-1
example, §-5
functions, 3-33
EMPTY, 3-34
MEMBER, 3-35
OWNER, 3-36
TENANT, 3-37
placement of statements,
ACCESS, 5-4
INVOKE, 5-3
preprocessor, 2-6, 54
programs,
ending, 39
using DML in, 5-1
pseudonyms, 5-3
string arguments, D-1
USE statement for, 3-32

INDEX (Cont.)

GET statement, 2-11, 3-17
Host language, 1-3, 3-1, E-1

IF statement, 3-18
Images,
AFTER, 2-13
BEFORE, 2-13
IMAGES BY COMMAND, 2-10, 2-13
IMAGES clause, 2.9, 2-13,2-15
INSERT statement, 2-12, 3-20
Inserting record occurrences, 2-12
Integrity of data, 1-8, E-1
INTERCEPT clause, 3-1
Interleaving unit, 29
Interset relationships, 1-7
Intraset relationships, 1-7
INVOKE statement, 2-6, 3-22
COBOL placement, 4-1
FORTRAN placement, 5-3
Invoking a sub-schema, 2-6, 3-22

JBTRAN subprogram, 2-10, 2-13,2-20
JETRAN subprogram, 2-10, 2-13
JMAFT subprogram, 2-15
JMBEF subprogram, 2-15
JMBOTH subprogram, 2-15
JMNAME subprogram, 2-16
JMNONE subprogram, 2-15
Journal file, 2-13

adding checkpoints, 2-18

adding comments, 2-17

adding data, 2-17

adding headers — trailers, 2-16

assigning to devices, 2-16

closing, 3-6

contents, 2-13,2-16

creating, 2-13

overwriting, 2-14

Journaling and simultaneous update, 29, 2-14

Journaling by command, 29,2-13
Journaling by transaction, 29, 2-13
JRDATA subprogram, 2-17
JRTEXT subprogram, 2-17
JSTRAN subprogram, 2-16

Language,
Data Description, 1-3
Data Manipulation, 1-3, 3-1
host, 1-3

Index-2

INDEX (Cont.)

LAST set order, 2-4 Preprocessor, FORTRAN, 2.6, 5-4
LINKED TO OWNER clause, 1-6,1-8 PRIOR pointers, 1-6,1-8,2-4
Location Mode, 2-2, 2-3, E-2 PRIOR set order, 24
CALC, 24,25 Privacy, 1-8
DIRECT, 2-4,2-5 key, 1.8, 2-6, 3-22, E-2
VIA, 24,2-5 lock, 1.8, 2-6, 3-22, E-2
Program unit, 1-8, 2-6
MANDATORY set membership,, 2-5, 2-12, E-2 / ending FORTRAN, 3-8
MANUAL set membership, 2-4,2-12, E-2 PROTECTED RETRIEVAL usage mode, 1-9, 2.8,
MEMBER function, 3-35 326
Member record, 1-2, 1-4, E-1 PROTECTED UPDATE usage mode, 1-9, 2-8,
Membership set, 3.26,E-2
testing for, 3-18, 3-35 Protection of data, 1-8, E-2
MODIFY statement, 2-12, 323
MOVE STATUS statement, 2-11, 3-25 Record, 1-2
characteristics of, 1-7
Network structures, 1-7, E-2 current of, 2-12
NEXT pointers, 1-6, 2-4 member, 1-3
NEXT set order, 2-4 owner, 1-3
NOTE clause, 3-1 Record occurrence, 1-3,1-5, E-2
deleting, 2-12, 3.7
Occurrences, finding, 2-10, 3-10
deleting record, 2-12, 3.7 inserting, 2-12, 3-20
finding record, 29, 2-10, 3-10 modifying, 2-12, 3-23
inserting record, 2-12, 3-20 removing, 2-12, 3-28
modifying record, 2-12, 3-23 storing, 2-12, 3-29
record, 1-2, 1-5 Record type, 1-4,E-3
removing record, 2-12, 3-28 Record selection expressions, 2-10, 3-10, E-2
set, 1-2,1-5 Recovery of data bases, 2-13
storing record, 2-12, 3-29 Relationships,
OPEN statement, 2-8, 3-26 interset, 1-7
Opening data areas, 2-8, 3-26 intraset, 1-7
Operational environment, 1-8 REMOVE statement, 2-12, 3-28
OPTIONAL set membership, 2-5, 2-12, E-2 Reserved words, A-1
OWNER function, 3-36 RETRIEVAL usage mode, 19, 2.8, 3-26
OWNER IS SYSTEM clause, 1-7,2-8 Retrieving data, 2-11
OWNER pointers, 1-6, 1-8, 24 Rse, 2-10, 3-10
Owner record, 1-2,1-4, E-2 Run-unit, 1-8, 2-5
Ownership, current of, 2-12
testing for, 3-18, 3-36 RUN-UNIT ID, 2-14
Placing the ACCESS statement, Schema, 1-3,2-1, E-3
COBOL, 4-2 Schema DDL, 1-3, E-3
FORTRAN, 5-4 SCHEMA SECTION, 4-1
Placing the INVOKE statement, Schema temporary area, 2-8
COBOL, 4-1 Sequential structures, 1-7, E-3
FORTRAN, 5-3 Set, 1-2
Pointers, 1-6,1-8 characteristics, 1-7
NEXT, 1-6,24 membership, 2-4
OWNER, 1-6,24 AUTOMATIC, 2-5,2-12
PRIOR, 1-6, 2-4 MANDATORY, 2-5,2-12

Index-3

Set (Cont.),

membership (Cont.),
MANUAL, 2.5, 2-12
OPTIONAL, 2-5, 2-12

mode, 2-4, E-3

occurrence, 1-3,1.5

occurrence selection, 2-5, E-3
CURRENT OF SET, 2-5

LOCATION MODE OF OWNER, 24, 2-5

order, E-3
FIRST, 24
LAST, 24
NEXT, 24
PRIOR, 24
SORTED, 24
relationships, 1-7
representation, 2-3
singular, 1.7, 2-8
structure,
network, 1-7
sequential, 1.7
tree, 1-7, 1-10
testing for an empty, 3.-18, 3-34
type, 1-4, E-3
SETDB subprogram, 2-6
Simultaneous Update, 2-8,2-13
Singular sets, 1-7,2-8
SORTED set order, 2-4
Statement codes, 3-3, B-1
Status registers, 4-1,5-3
STORE statement, 2-12, 3-29
Storing record occurrences, 2-12, 3-29
Structure,
network, 1-7
sequential, 1-7
tree, 1-7,1-10
Structured data,
walking through, 2-10
Sub-schema, 1-3, E-3
accessing, 2-7, 3-5
invoking, 2-6, 3-22
reading, 2-1
setting, 2-6
Sub-schema DDL, 1-3
Subprograms, DBCS,
JBTRAN, 2-10, 2-14, 2-20
JETRAN, 2-10, 2-13
JMAFT, 2-15
JMBEF, 2-15
JMBOTH, 2-15
JMNAME, 2-16

INDEX (Cont.)

Subprograms, DBCS (Cont.),
JMNONE, 2-15
JRDATA, 2-18
JRTEXT, 2-18
JSTRAN, 2-10, 2-13
SYSCOM, 5-3
System communications area, 2-5

Temporary area, 1-2, 2-8, E-3

schema, 2-8

sub-schema, 2-8
Tenancy,

testing for, 3-18, 3-37
TENANT function, 3-37
Testing for an empty set, 3-18, 3-34
Testing for membership, 3-18, 3-35
Testing for ownership, 3-18, 3-36
Testing for tenancy, 3-18, 3-37
Transaction, 2-14

defining, 2-14

journaling by, 2-14

within simultaneous update, 2-10
Tree structure, 1-7,1-10, E-3
Type,

record, 1-4

set, 1-4

UNSET subprogram, 2-7
UPDATE class of exceptions, 3-3
UPDATE usage mode, 1-9,2-7, 3-26
Updates, performing, 2-10
Updating verbs, 2-10, 3-3, 3-26
Usage-modes, 1-2,19, 2-8, 3-26
EXCLUSIVE RETRIEVAL, 3-26
EXCLUSIVE UPDATE, 3-26
PROTECTED RETRIEVAL, 3-26
PROTECTED UPDATE, 3-26
RETRIEVAL, 3-26
UPDATE, 3-26
USE statement,
COBOL, 3-31
FORTRAN, 3.32

User working area, 1-8, 2-6, 4-1, 5-3, E-3

Using DML in COBOL programs, 4-1
Using DML in FORTRAN programs, 5-1
Using the data base, 2.1

VIA location mode, 2-4, 2-5,2-20

Walking through structured data, 2-10
Writing DML statements, 2-6

Index-4

Please cut along this line.

Data Base Management System
Programmer’s Procedures Manual
AA-0901C-TB

READER’S COMMENTS
NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. Problems with software should be reported on a Software Performance Report

(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
0 Occasional programmer (experienced)
O User with little programming experience
{3 Student programmer
0O Non-programmer interested in computer concepts and capabilities
Name Date
Organization
Street
City State Zip Code

or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 152
MARLBOROUGH, MA.

BUSINESS REPLY MAIL

R
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES L=
S
Postage will be paid by:
A
R
A
T
R
Software Documentation R—
200 Forest Ave. -]

Marlborough, MA 01752

