RSTS/E SOFTWARE SUPPORT NOTES

Contributions by:

M. Bramhall, J. Miller, J. Wooldridge ,M.Smith,
J. Jurgens, M. Duda, P. Goyétte, G. Alles,

D. Pavlock, G. Wolfendale, M. Minnow,T. Sarbiﬁ,
J. Barclay, J. Berman, and'S. Johnson

Please direct any comments or requests for
further copies to,.... K

Gary alles

PK3-1/s544

X4954

CT3 500 AND RSTS-11 VERSION 4
OBSOLETE PRODUCTS

John Sudduth
x3551 MA

15-500 and RSTS-11 Version 4 are cbsclete products and

have been removed from the DEC Standard Price List. No
orders will be accepted for this software by the Corpora-
tion. TIhe recently announced DATASYSTEM S35 provides a d-yaax
~TS~500/E (RSTS/E) system on al 11/40 with 98K bytes, LAsE
zonsole, an® t o RKOS disks at a rackaced orice that will

neet the n=zecs of the market for s low cost, entuvy-ieval
system.

CONFIDENT IAL

o TR T G Y TE v SR

CONTENTS

TABLES
BLOCKS

SPECIAL MONITOR INFO

WORDS

DIRECTORY STRUCTURE

CIL AP

DIAGRANS

JOB STRUCTURE

CORE MAF OF MONITBR

MONITOR ROUTINE NARAATION
PROGRAL, OPTIMIZATION

DEVICE DRIVER INFO

ERROR LOGGING AND CRASH ANALYSIS
2780

Y250/Vr05 Info

DH1l INFO

HARDWARE

oDT
BASIC = PLUS FILE PROCESSING

TABLES

[l ¥

ERLNERAEINT

Job Statistics Buffer Conditionally Assembled

At Location 2348 (156.) is'a three-word table of pointers

DSTATB Disk statistics bufferr
JSTATRB Job statistics bufter
OSTATB Queue statistics buffeor

At cach clock tick, the system checks the switch register
for the proper action:

Contents

177777 Collect statistics

uxxxx Freeze‘ statistics

OxXXXXX Clear statictics

The job statistics area contains the following entrics:

Entry size Usage

1 word Yumhber of ticks per second

2 Uptime:

1 Shallést number of free small buffers

2 Level J accounted

2 Lost time '

2 Level 3 unaccounted

2 Null job time

2 Fip needed

2 In system mode

2 Fip waiting

2 for code

2 for disk information

2 for disk storege aliocation

2 for something else
12 One two-word entry for each processor prio::
2 Nﬁmber of lockouts

1 wuamber c¢f KW11P clock cveriuns

)~

DFUNIT:

DKUNIT:

L.

3
A OPUNTT:

al .

UNTCNT: UNTCLU: SATSIZ: SATCTL+SATCTM SAT. TL.: SATE o
Pack status | [BError Count & |Maximum vaiue | # of free irst sector#, LCurrent logica
&"OPEN" Pac: Cluster+ |of SAT ptr sectors on refererced by | SAT ptxr-FUN{Z
Count for size for FUN@ | for FUN@ FUN@ SAT-FUNY/ ‘
FUNJ
Pack status Error Counté& Maximum value | # of free First sector Current logicml
&"OPEN"count Pack Cluster- | of SAT ptr sectors on #referenced SAT ptr-FUN1
for FUN1 size for FUN1 | for FUNI1 FUN1 by SAT-FUN1
Pack status Error count& | | Maximum value | # of free Fivst sector| [[Current —
&"OPEN"count pack cluster+ | of SAT ptr sectors on #re“erenced logical SAT
for FUN2 size for FUN2 | for FUN2 FUN2 by SAT-FUN2 ptr-FUN2
Etc. ,ﬂ*"EEE:__,/’ Ete. Etc. ",’——EES:___,/’ Etc.
- = =
ST e Etc, " e | [e | I ma—| | Etct~"””
Pack status Error Count&| || Maximum value { # of free First sector Current logic
&"OPEN"count Pack Clustert § of SAT ptr sectors on #referenced SAT ptr-FUN
for FUN size for FUN for FUNq FUN q by SAT-FUN ﬁ q
te. A4 | —Ete. - Bte.” EEc. Etc. 9 Etc.
e S e e . '“"___4/ ‘/“_____._/
e — M i P] — 1 //H—“- M
- Etéf'-"’d Etc. Ete. Bt Etc. Etc.
Pack Status Error Counts Maximum value | # of free First sector Current
&"OPEN"count Pack Cluster~ | of SAT ptr sectors on #referenced logical SAT
for FUN__, size for FUN for FUN__ FUN . 4 by SAT-FUN__ ptr-FUN_ _,
Pack Status Error Counts Maximum value | # of free First sector Current
&"OPEN"count Pack Cluster-~ | of SAT ptr sectors on #referenced logical SAT
for FUNp, size for FUNp for FUNn | FUNn by SAT—FUNn ptr-FUNh
High Byte: (When SAT ptr Logical SAT
disk error reaches its ptrs begin
count maximum value, at and
Low Byte: it is reset are altered
o Pack Cluster- to zero.) dynamically.

size

The proper entry in these tables is indexed by 2*FUN.

DEVNAM: DEVCNT:
" DF ﬂ |
(1] DK g."]
" DP g7
" KB g >16
" DT g -7
" LP g-31
" PR g
” PP g
" CR g
" MT g’7
XX n
g2
2 byte Maximum unit
ASCII # for each
names device (if
of all entry is -1,
devices then that

device does
not exist.)

DEVPTR:

SIZTBL:

—
512lo

12810

128

510lo

10

128lo

1128

10

8210

51210

DFUNIT (in

UNICNT Tbl)

DKUNIT (in

UNTCNT Tbl) SERTBL:
DPUNIT (in T
UNTCNT Tbl) FILSER
TTYDEV (in

DEVTBL Tbl) TTYSER
DTADEV (in

DEVTBE Tbl) DTASER .
LPTDEV (in

DEVTBE Tbl) LPTSER
PTRDEV (in

DEVTBE Tbl) {1 PTRSER
PTPDEV {(in

DEVTBE Tbl) PTPSER
|CDRDEV {in]

DEVTBE Tbl)| { CDRSER
MTADEV (in '
DEVTBE Tbl) MTASER
XXXDEV- XXXSER

Pointers to

slots in

UNTCNT

priate

each device

or

. DEVTBL appro-

to

addresses of
service rou-
tines used by
USERIO for
read/write

requests

| S

n

Ls (o] CORTBL:
CwW IU
xP NT
L []
1
i
% ,Job# X2 for first 1K words of core
L Job# X2 for 2nd 1K words of core
i
; ! Job# X2 for 3rd 1K words of core
i' Job# X2 for 4th 1K words of core
a‘-‘ ! -
| ,}

1R
I : —_——
b 3" l-TT.'
k—--.—‘-— - w—
Iy
31"' Ir
E AN RN R R
1
|
i
i
Job# X2 for nth 1K words of corxe
-1 end of CORTBL indicator
ICK = This entry to ke locked in core
SWP = This entry to he swapped zz soon as possibie
IN = Swap direction = IN
OUT = Swap direction = QUT

LEVEL 3 QUEUE TABLE

MODULE

FIP
MON
DSK
DTA
DTA
DSK

DTA

DTA

MTA
MTA
MON
MON
MON

MON

entries are defined with the macro "L3QENT"

FIPRET-file processor return

SWPRET-swap completions

FILRET-1/0 completed

DTSYM~-reads or writes a block of DECtape'for FIP

BUFQ-big buffer pool starter

BUFSMQ-small buffer pool starter

DTQCON-dispatches to appropriate driver completion
address, unqueues next driver request

DTWCON-return after block allocate

CDRL3Q-card reader service

MTACON-process a request

MTADNE-process finished request

BRINGQ-bring a job into core

SCHED-scheduler

FORCEQ-force a job to dump himself

TIMERS-once a second timer service

L3QTBL:
+0

+2

+4

+6

+10
+12
+14

+16

+20
+22
+24
+26
+30
+32
+34

+36

EMTS (added to 184 060)

Identifier Value EMTTBL:
CALFIP] » § |FIPEMT FIP entry point for user
.READ 2= » 2 |USERIO: I/0 interface for direct
.WRITE b ;& USERIO access READ/WRITE.
.CORE 6 » 6 |CORE. Expand/shrink the job
. SLEEP 1¢ »18 |SLEEP. Sleep job for n seconds
.PEEK 12 »12 | PEEK. Peek at an address for user
. SPEC 14 > 14 |SPEC. Special functions
. TTAPE 16 >»16 | TTAPE. Enable tape mode
. TTECH 20 »?20 | TTECH. Enable echo/disable tape
mode
.TTNCH 22 » 22 | TTNCH. Disable echo
.TTDDT 24 » 24 | TTDDT. Enable DDT submode
. TTRST 26 » 26 | TTRST. Restore programmed output :
.TIME 30 > 30 |TIME. Give job timing info.
.POSTN 32 —» 32 {POSTN. Get current position on line f
.DATE 34 s 34 ' DATE. Get date infor. for job
.PRIOR 36 > 36 |PRIOR. Set/clear special run
priority
. STAT 49 » 4@ |STAT. Get jobs current statistics
.RUN 42 > 42 [RUN. Run job (via channel #15)
.NAME Ly su44 | NAME. Put names of job in NAMTBL
LEXIT 46 » 465 |EXIT. Return to default RTS
.RTS 58 558 |RTS. Change RTS to named RTS
.ERLOG 52 -» 52 {ERLOG. Log the error called
. LOGA 54 » 54 | LOGS. Check for logical errors

1Ts and EMTTBL dispatch table

FIPTBL - ADDR TO ROUTINES

Possible values for FQFUN (high order bute of word 2 in FIRQB)

+0
+2
+4
+6
+10
+12
+14
+16
+20
+22
+24
+26
+30
+32
+34
&

+36
+140
+42
+hl
+16
+50
+52
+54
+56
+60
+62
+64
+66
+70
+72
+74
+76
+100
+102
+104

+106-

+110
+112
+114
+116
+120
+122
+124

CLOSE - close an open channel

OPEN - open a channel

CREATE - create/extend/open a channel
DELNAM - delete a file by name

RENAME - rename a file

DIRECT - directory information

UUOF - process UUO

ERRFIL - get error message text

RESET - reset (close) all channels except 8
LOOKUP - file lookup

ASSIGN - assign a device

DEASPP - deassign a device

DEALL - deassign all devices

CRTMP - create a .TMP file

CRE8BP - create an image file

WINDOW - window turner for disk files
EXTCRE - extend a closed disk file
OPENCR - open a newly created/extended file
LOGIN - login a user

PASSWD -~ create user account

DLUF - delete user account

RADF - read or read/reset accounting data
CHUF - change password/kill job

CLEAN - clean up a disk pack

ZUSF - zero things

ATTEF - attach to a detached job

DETF - detach from a terminal

MOUNT - mount/dismount/lock/unlock disks
MTAOPN - magtape opener

MTACLS -~ magtape closer

MTAUTL - magtape utility

DTALOC - dectape allocator

DTSERR -~ dectape error processor

DTLIST - dectape directory information
DTKILL - dectape file deleter

RUNJOB - run some program for a user
DTNAME - dectape renamer

DTRF - dectape directory reader

DETCLOS - dectape closer

DTOPEN - dectape opener

DTZERO - dectape zeroer

BACKUP - change file date/time for backup
HANGUP - hangup a dataset

OPN
OPN
ORN
DLN
OPN
DIR

Uuo

OPN
OPN
OPN
ZER
ZER
OPN
OPN
OPN

WIN
EXT
OPN
LIN
ZER
DLN
DIR
DLN
DLN
DLN
LIN
DIR
OVRUTL
MTU
MTU
MTU
DTU

- DTU

DTU
DTU
OPN
DTU
DTU
DTU
DTU
DTU
uuo
uuo

* Functions above this line are the only functions the run-
time system may issue.

/=7

+126
+130 |
+132
+13Y
+136
+140
+142
+14Y
+1L46
+150
+152
“154

CREAT?
DTCNTG
PRIORT

OPENDV
YESLOG
TERMIN
MTAZER
MTALST
EXTEND
LOGOUT

"FILES - file statistics

- 2nd part of file creator
- dectape contig. file creator
- set priority, etc, for job

- open devices in general

- enable further logins

- set terminal characteristics
- magtape zero function

- magtape catalog tunction

- extend an open disk file

- logout a user

uuo
uuo
DTN
ZER
uuo
CPN
LIN
TRM
MTU
MTU
EXT
OPN
ZER

Module names containing various functions are included on

the right.

e,

-5

BLOCKS

DIGITAL EQUIPMENT CORPORATION

JOB DATA BLOCK

JDIOB - pointer to IOB

JDFLG - job status flags

gD Post - post to RTS 'JDIOST -IO status

JDWORK - pointer to job work block

JDRTS - pointer to RTS block

JDRESB - L3QUE bits to set on residency

JDUFDR - RIB entry of UFD for user

JDKCTM - MSB of KCT used JDFLG2 - monitor jobflg

JDSIZ@ - Size now [JDSIZl - Size next

{JIDCPU - CPU in lengths of sec

JDCON ~ Connect time in min
JDKCT - KCT used . e
JDDEV - Device time in min
JDPPN - Jobs PPN
JDCORM - jobs core max JDPRI - jobs priority
| JDBRST - jobs burst JDSWAP - jobs swap param

BITS In JDSWaP

g-3 Bit in Bit Map Word
5=4 Selects 1 of 4 map words
7-6 Selects Map Word

[3 - SR -~

1g

14
16

28

22
24
26

38

32
34
36

RUN-TIME SYSTEM DESCRIPTION BLOCK

R. LINK Link to More Descriptions

R. NAME 2 wd Rad 50 name of pure code
R.CNT Count of active users

R.USIZ Max size in K for user
R.MSIZ Min size in K for user
R.DISK CILUS Disk Block #

N TAAN™
o AN

P . PP [— P, I I
LIVW UL UL L TdAdd CliVLE Y ANWLTOO

R.BACK Pointer to NR of RTS i

R.BYTE Byte Count of Image

R.XMEM Hiorder real memory address L

R.1SIZ Initiai size ink for user B

R.RDSK Double word RSTS Disk .
Address '

R.CPTR PTR to last «core table enbuy +2

R.1KCT Size of RTE in X

_ R.REDO

Full 4K cesciipl.on paciean

AN DN b e el
€ O B B Y B NI BN W

ey Lo a2 Lo N B
«

™

FIRQB

FQQQ Queue in link set by FIP g

FQJOB Issuing Job #X2 2

FQFUN Function requested 3

FQFIL Channel Slot in IOB of issﬁing job 4

FQERNO Error message code and text start

FQPPN Project/programmer no. 6

F636M3 Internal data

FONAM1 2 word file name 1g
. in RADIXS50

FQEXT Extension in RADIX50 14

F%ﬁ;z No sectors in file or sectors to extend 16

FQCOM2 Internal réturn addr (DECtape)

FQNAMZ 3 word new file name EXT in RADIX50 , 20

FQSWIT Open for output switch

FQBUFL Default buffer length

FOMODE Mode Indicator 22

FQFLAG File's flag 24

FQCOM1 Internal Return (DECtape) 26

FQPROT New protection code (-1 if passed) 27

FODEV 2 byte ASCII device name] 30

FQDEVN 1 byte unit number 32

FQCLUS File cluster size for file creation 34

FéEbM DDB link addr (DECtape)

FQFUN1 Chaining function FQONENT no of directory 36

entries
FQFUN2 Internal extra function 37

File request queue block (FIRQB) (pronounced "Furk-be")

All requests for file processing are made by setting the neces-
sary parameters in the FIRQB, and calling the Monitor with
"CALFIP".

Only relevant parameters need be supplied. When FIP exits, the
returned values come back in the FIRQB along with an error code.

FIRQB entries include' the following:

Multiple entries are for differant FIP functions

File RKeguest Quene! Jlock

Symobeol Offscty

o]
L
O
N O

byte
byte

=
—=
=
W

i
1)

FOPPN

MART AT
A GWAVAIL L

FQLXT
FOST7Z 16
FQSWIT . 20
FOMODE - 22
FOFLAG 24
FQCOM1 26
FQODEV >0
FQODEVN 32
FQCLUS 34
FQI'UN1 36
FQFUN2 37

b
D D

>

byte

byte
byte

Alternate entries {f«

Symbol Offsetg

internal

Frron - Used by FIP

Usaae

Quauc word, set by file processor

zxjob vowber of request issucr

function number

1

2 channcl numier
Proicct/progranmery number

tuo—ward £ilo name

in Rad:x<=50
Extension in Radix-50

Segments in file or segmenta Lo
Open for ocutput switth

Mode indicator
File“s flag
Internal return dispatch

2-byte Ascil Jovice nane

T=hots it samzor fhigh-bests o= -

rilte 2luster size

Chaining Lunction

Interna. =xbra funcl.acn

gpecial situations)
Usage

FOERNO 4
FQCOM3 6
FQCOM2 16
FONAM2 20
FQBUI'L 20
FQCOM 34
FQNENT 36
FOPROT

Error message code and toxt

Interacl data

TUOYARSS

Interne! return

3-word new fils mame.ext wan adixe

PDefault wpoifer longth

addyeso

oy

DA

XRB TRANSFER CONTROL BLOCK

XRLEN length of IO buffer in bytes

0
XRBC byte count of transfer 5
XRLOC pointer to buffer start for Xfer 1 a
XRCI channel number for Xfer 6
XRBLK starting device block no for Xfer 1 10
XRTIME | wait time for TTY input B I
UNUSED - 14
XRBSIZ reserve 7 words for XRB e 16
| ~ 20
22
24
26
30
32
) 34
36

Used by User to initiate an I/O request and for Monitor/user
data requests.

Values in 'XRLEN' and 'XRLOC' and 'XRCI' must be even!
Value in 'XRLEN' must be > = the default value

Value in 'XRBC' must be < = value in '"XRLEN'

2=

-

Input
Control

Area

Output
Contrel

Area

LINE PRINTER DDBR

and
control

device handler

index

unit

ouner doh index

Cl: ck time at which device was assigned

Vertical position

Horizontal pesiticn

i
Qutput fill buffer pointer
Output fill count ‘ T
Output empty buifer ;;:;;;r
Output empty count ‘ ,ﬂi
Output buffer count

lines per page i

e

. R AR o Serm S

+0

+2

~o

[oes

~

Devica Data Block,

continucd

Offsets into the Input/Output conﬁrol groups (reclative to
DDINP and DDOUT respectivelvy).

Fill pointer =

#ill count (-37 to -1)

Empty pointef

Empty count (=37 to -1)

Symbol Offset Usage
FP 0
FC 2
EP 4
EC 6
" BC 10

Buffer count (as a byte)

Bit assignments for the DDB status words are as follows:

Internal status, cleared bv "close"
Write-lock for device if et
Read-lock for device if set

Devicc is not filcwgt;uctured

bevice assigned through command

Device assigned for utility scquence

DDSTS

Syinbol Value Usage
DDSTAT 100000

DDWLO 2000

DDRLO 1000

DDNFS 400

DDCNT »

Symbol Value Usage
DDASN 100000

DDUTL 40000

DDCONS 20000

Device is the console device

Sy

S

vice Data Block DDB

o

Eoon time & dovice is initialized, the it count in DUOPT ig

rernented; when the device is clos~d, the coant is docvraont.od

1. ihe count goes to zero, and the dovice WwAas net assigned, then
‘v ois returned tc the system; otherwice i: is retained by the

Jjob.
Th2 non-devico-dependent entries in the PRB ares:

Symhol Offset8 Usage ,

DDINDX

IS8 TS
PRPIWER SN }

byte Handler incex /ivdex into DUyvism ave,

by te Status and acoees control o

byte Owner fob drdas {wovny 5F Cre JebFE X 2
byte Device/Disk unit rorier

NN = O

DDJIBNO
DDUNT
DDTIME
DDHORZ byte Horizerntat rosition
DDVERT 7 byte Verticae wusaiios

Time asciored or iniiiz jvod

[*A TN N O3 |

DDINP 10 Input cconcorol crea
np2uT 22 Cutput contrci arca
"DHORC 34 byte Characters per line -+ .
NDVERC 35 byte Lines per page

OCNT 36 Init count for device, hiih byvte has
assignment status.

1y LB Definitions . Sys

Unique offsets within RDB

Symbol Offsct Usage

TTSTS1 DDSTS
TTLINE DDUNT
TTSTS2 DDVERT
TTSTS3 DDVERC 3

Status 1

Keyboard number times 2
" Status 2

Status 3

.
.

D N W e

TTY Status 1 values (Word values)

Symbol Value _ Usage

NOOUTP 100000 Junk programmed output
HAFDUF 40000 Local echo tty

NOECHO 20300 Don”t echo on tty

TAPE 10000 Tape. mode

Tr2741 4000 . Terminal is an IBM 2741
TTODT 400 Into DDT-submode

TTY Status 2 values (Byte values)

Symbol Value Usage

TT33 200 Model 33 tty (no hardwarc tab)

TT35 100 Model 35 tty (hardwafe VT and FTF')

TTESC 40 Terminal has Ascii-68 escape (£SC = 338)
TTXON 20 Terminal has XON/XOFF .feature

TTRUB 10 Special rubouts

TTBIN 4 Binary input mode

TTTECO : 2 Teco special mod.

TTSTAL 1 Terminal may send XON/XOFF to R&'TS

"TY DDB Derinitions, continued

TTY Status 3 values (Byte values)

symbol Value Usage

TTLA30 200 Terminal needs computed fill

TTPRTY - 100 Terminal wants' parvity added

TP 40 rerminal wante. odd parity

TTUC 20 franslate to ﬁpper—case on input

TUPAR 10 Den”t print control characters with uparrows
JAFILL F Fill amount (0 to 7)

Y,

TTILS':

TV oLET:

¥]— " kL2l Ju*&;‘f’
v 177568 (k::t :(rf:esa-} e KES "’bq 177564 ¢ e “mcr:)J
: « KLJL e wt { " P /(-11 Oul‘Pﬁf }
+ 2 A?"b‘ c‘Radc}rfisj b e e e KB, o +2_L_b 7b3¢4 ‘C..oﬂ ad\f““ g
. ERCIY nput L 1- . (KLit outfed
+4 1THELT e «1 "[;;“31 e K3 4| 176514 cs5R accrcsq‘

PR N E N a. o (Kt eulpat
M "3; ‘-7755"__2 sk ddaress l K83: “‘3 ~ _-_9__:’345 CSR Marzxs)}
i/" : 44 '.C S, ‘ I i 1 o ; ;
— L TR ' (?fﬂ ol
K&\‘\\“‘ﬁy » el lone ‘ﬂ*'y c’dt’h ;:.‘:-:-‘-'“
g crer F per K-.1i) g

L

561 inpet
C$R &dﬂ*fd.afl
(peil waut

174950 ¢

(74010 Cia mimmggy| —— KBgti—
174028 5L gt | KBpr2i—e

(ocu vu. Faat

. ""‘!4—&9'4‘ CHuR adct - ("\:))'
i , (DC1L ocutpwT
| 174014 “cgr diress

Y o
L 174024 \Dgé'itz ou‘Iru .

..LIL

ef{'c. : : - e{’g : ! 'v efc,
T . loae edivy ueﬁ S
s’ per DLAL)
»]
: 2%
Il < . R o
TTXLST . A Ul ASK’BJ emﬂ-’ LAMS 2300k
el A wora suby “;5' bn"’f fi‘em 1s be ‘ona'ed .: r 1¢1 ﬂ B 4 31 B
' ¥or Fiest 814 in 2 5 B (A 5|
; . _ &')‘-pd“!‘ﬂrn fo b I.a»wc’ i 4 !’ EYOR !
; i ~ y ‘.zyf) 0“*»-}7 CER TR k i 8 3
”oi‘q""“"}” en\!}'ry SN m’«‘?rn for [BiF-p2a’Tva Por b J I " ‘,) 4E
Vosc;t:cm&‘ : . +4 pEB TINVIE » n)e TsTsd : ¥ 244‘3 :"6 3! ¢ .
::_.—...;‘....K \,‘ v 5t pm‘h‘rn forﬂ 54}‘ A i 28 5 21 Lo :
420, £wned iy ; \ DOB DdYRCE | DUL TrsTsg L ! 11&!; s «,2 3
Fm th ' o ‘ ‘ ' €=- T
sl DCJ;{ ,r_- .,‘,_'____-_,__ . | f .
. . i 1
43¢>*4 ~word eatey | v 7:::;; ;“&r’»«— e I ; }- i, 2 1 ¢ ;
| i B i Al A e £ 2 e . |
;"'"““"""““’ I AN RN RN
: --—-(Soae s P T Y ¥ bt hrmin:h’«.’a«)-
1-4“) &l : !) 4 gy g - e j
e ' R ! _ [l btsctear & 110 BAUD
S i o : 1.;53 = 134 5 smb‘
b ’ t K“"‘;’ 3*5” Bm”‘
! ¢ H .‘ﬂ et l‘l\‘“‘.‘l’.‘ w® \.ﬂ‘dlhue *
' : g it clep v B-bit claraclens
{u«‘f - ‘7(-?. &%ude‘;s <
l) g

g EI A N A

{
;
L

P

tadg < 1. mp ;m,

- reguest 3 send
3l bebs ofear = ILO BALY
--—-.- LD L "3“5 | F-9 19
Lt
{Jﬁ = g
“‘Mb«\" cleer = g

. BALO
s TIVR

sfos W ts :

o
Co

TTY DDB

status DDSTS device handler

index DDIX +0

deyice DDUNT _ DDJBNO +2
unit num owner job index

Clock time at which device was +4
assigned or inited, DDTIME

DDVERT . DDHORZ +6
Input £ill buffer pointer DDINP +10
Input fill count +12
Input empty buffer pointer +14
Input empty count +16
Input buffer count +20
Output fill buffer pointer DDOUT +22
'Output fill count) o +24
Output empty buffer pointer +26
Output empty count i ‘ +30
Output buffer count +32
Status DDVERC 'horizontal max DDHORC | +34

: (# characters/line)+/

Assignment ini? count for +36
Status device DDCNT

DEVICE DATA BLOCK (DDB)

These 16 word blocks are permanently assigned to each device and
teletype in the system. The device table (DEVTBL) contains pointers
to each DDB.

1f a device is assigned to a job, then the entry in "DDJBNO" contains
the number of the owner job. If 0, the device is available.

Each time a device is init'ed, the init count in "DDCNT" is incremented.
‘When the device is closed, the count is decremented. If the count

goes to 0, and the device was not "assigned" then it is returned to

the system; otherwise it is retained by the job.

The non-device-dependent entries in the DDB are labeled.

-l

FIFIF|FIFIFF
clelelelelel el @.
| N|JFL|N|U W‘R c -
; g g 2 g!?gi g . I/0 Handler Index
? P4 Disk File Handler=0
:.cs'rs | miplelxlrizinle () FCIDX O
Segment Count for
3 FCUNT : File Unit Number Current Transfer FCBC 2
Number of Segments in File FCSIZ 4
Next Logical Block to Read/Write FCNLB 6
First Logical Block in Window FCFLB 10
Name Block Offset File Cluster Size
FCANB Divided by 2 Minus 1 FCLUS 12 .
Physical Segment Number of
LSB _Name Block : FCDNB 14
MSB Set by User to Relative CMA
for XFER FCETC 16
UFD Address of Next Retrieval
‘rieval Window , FCWND 20
lock \ ‘
~ \ Physical Address of Segment 2 of Cl.N 7 cluster pointer
— ‘ N+ 1
N + 2
N + 3
N + 4
N+ 5
_ N + 6|

FCB _and RETRIEVAL BLOCK DEFINITIONS

FCSTS DEFINITIONS

FCNLBB = 100000 If 1, the 'FCNLB' is backed up

FCFUFD = 40000 'If 1, the open file is a UFD

FCLOCK = 20000 If 1, the current buffer is locked
FCNOEX = 10000 If 1, the file may not be extended
FCUPDT = 4000 If 1, the file is open for update
FCWRIT = 2000 If 1, user may not write file

FCREAD = 1000 If 1, user may nct read file

FCUSE = 400 If 1, this user got lst write priviledge

File Control Block

DDSTS Status =~ ¢DDIDX Handler Index
FCUNT File Unit # | FCBC _# Blks in Buffer
FCSIZ # Segments in File
FCNLB Next Logical Blk to Read/Write
FCFLB First Logical Blk in Window
| FCANP Name Blk Offset/2 [FCLUS File Cluster Size
FCDNBL Phys Seg # of name blk
FCDNBM Extended Seq #
FCWN%K UFD Address of next RB
Window
e
DDSTS
5114 [13[12]11]10 8]

L—DDNFS 1l if non file structured

rg“giéfé

DDRLO 1 if no read access

DDWLO 1 if no write access

FCUPDT 1 if open for update

FCNDEX 1 if file may not be extended
FCLOCK 1 if buffer locked

FCFUFD 1 if file is UFD

FCUSE 1 if user has lst write privileges

(NP~ NI~

10

14
le
20
22
24
26
30
32
34
36

DSQ

Disk Request Queue Entry Block

DSQ fueue Link

DSQERF Retrycnt & Error Flag | DSQJOB Job**2

DSQL3Q

L3QUE Bit to Set at completion

DSQXDA

Ext. Disk Address

DSQDMA

Disk Segment #

DSQXMA

Ext Core address of transfer

DSQCMA

Core address of transfer

DSQUNT

Unit # | DSQCNT Seg CNT of Xfer

DSQFAR Que Fairness or Priority | DSQFUN Op. Function Code

DSQMSG

FCB Ptr

DSQTOT

Total Transfer Counter

DSQPDA

Phys. Disk Address

DSQOPT

Disk Optimization Word

DSQ SAV Saved Function | DSQDUN Unit # * 2

DSQPUN

Unit # | DSQTFN Temp Disk Function

DSQTMP

Temp Storage or Drivers

This block of 16 words is passed to and from the disk drivers
to initiate disk data transfers and to signal that a transfer
has been completed. If the transfer was not done the block
is passed back with a zero count in DSQERR.

DSGFUN
read - 105
write - 103

2 -5

IMPORTANT INFORMATION
IN MCNITOR

DIGITAL EQUIPMENT CORPORATION

I.OWCOR

Virtual 000000 to 000776 is for vectors

DATE Current date
~ TIME Current time
~ TIMSEC SECS to next min
—TIMCLK Interrupts to next sec
JOB Current job *2
NEXT Next job to run *2
JOBDA PTR to current job
JOBE PTR to current flags (JDFLG)
IOSTS "PTR to current IO status (JDIOST)
JOBWRK PTR to job work block
JOBTIM Run time in tics this run
[JOBQNT Used residency quantum in ticks

-/

1000
1002
1004
1005
1006
1007
1010
1012

1014
1016

102C
1022

rlative) O
2
4
6

10 -

12
14
16
20
22
24

-~

£0
30
32
34
36
40
42
44
47
50
52
54
56
60
62
64
66

HHNIEY o WA WY A EANSSD 4Rk N

IDENT CONTENTS
.HOLD Start of Holding Chain
End of Holding Chain
ODT'ARS ODr Saved Addr Register
" O0TDRS ODT Saved Description Reg
WAIT2T 2 Tick Delay L3Q Bits
WAITNT Next Tick L3Q Bits
L3QUE Level 3 Queue Bit Pattern
FREES Pointer to lst Free Small Buffer
Count of Free Small Buffers
FREEB Pointer to lst Free Big Buffer
Count of Free Big Buffers
SHMLF LG Non=zero 1r out ot Small Buffers)
QUANT Running Job's Quantum
BIGFLG Non-zero if out of Big Buffers
MAPHI Extended Address Bits 4 + 5
MAPLOW Low Order Address
| SWAPF/NXTRES
CORPTR Pointer for Next Spot to Sub-schedule
JOBPTR Round-Robin Job Numbers (3 bytes)
CORFOR Round-Robin Job Number to Force Out
FPPFLG/FPPPEC FPPInterrant Flag/FPP Exception Code
FPP FEA goes here on error
RTSLNK Link to RTS Description Blocks
RTSLOD Non-zero if Ptr to RTS Desc. Block to Load
RTSLOW Cortbl Ptr to start of load (or @)
RTSHGH Cortbl Ptr to End + 2 of load (or #)
RTSJOB Job #X2 to signal on land done

T e —— e e .

Monitor Core Map /4.1

(Part of MONCTL area)

S =2

(Relative)
e St
of MercTe

A re

IDENT CONTENTS
664 SWPMAX
70| SWDONQ
72| SWPDSQ Swapping Parameter (DSQ) Block
' Job Slot in DSQ
Start Swap Completion Routine
Fill - up to 16 wds
132| SWBASE Swap @ Sys f@,lf File Base
136 SWAP 1 sys(@ 1]lFile Base
142 SWAP 2 Sys[@, 1]File Base
146 SWAP 3, Sys(@, 1] File Base
152|swpcwur # of Active Bytes in "SWPMAP"
154 | SWPMAP SWAPZ Bit Map
lo4 SWAP 1 Bit Map
174 SWAP 2 Bit Map
204 SWAP 3 Bit Map

Monitor Core Map //.2
(Part of MONCTL area)

3-3

DSk Py pr
FoARQ4E :
76 SRT
DEVNAM: two byte name table for device types
~ (RF, RK...XX, YY, 2Z)
] DEVNKB:
DKSIZL: disk sizes in sectors (least signi-
ficant) et e
DKSIZM: disk sizes (most significant)
DEVCNT: Device unit number maximums
DEVPTR: Device unit list (disks, Y's...ZZZ).
Pointers to DDB pointer table.
TTXLST: terminal characteristics list (modems’
only DCll, DH1ll, etc.) Address of
CSR's status bits.
TTILST: table of I/0 CSR's for terminals
(INPUT)
TTOLST: table of I/0 CSR's for terminals
(ouTPUT)
: xcrs
XXCRAS
AR SEX
5 KCR SEG
Hch ST >
%EVEMS) 1

12,0

S ' . .‘.
= /em@m"}"s &

1
w®
;

<y

Ww0RDS

DIGITAL EQUIPMENT CORPORATION

LEVEL 3 QUEUE

15 /141131211109 8 7§ 6! 5141312110

[Spare (2780)

QFIP FIP to be ruw

l | lQsWwAP run the swappel

QFILE file T/0 driver {1
be run

: QDTSYM Dectape symbiont t
| f be run

QBUF "big buffer available"
: alerter
QBUFSM "small buffer available'
alerter
QDDCON Dectape I/0 driver complete

-
Tt T R AY. . A e AR SR T s ® B

QDACON Dectape block allocator comple

QUECDR Cardreader IO done

QMTACM Magtape bring into core complete

LS et i e T il

: i QMTADN Magtape I/O done

QBRIDG Schedule Core Manager

, QSCHED Scheduler to be run

QFORCE Force a jobout core task

QTIMER Timer service to be run

14

JOB FLAG ASSIGNMEMNTS

JDFLG

12]11 9l g 65 3] 2

| [ol
; i -
| . | ! b JFPOST cher My v
! Voo [- JF LOST rost the 1400 ir
f i l ~— JTKEY post keyword con .
! ol e ST CONTERL & tupes by L.
i ;! . !
! [N § 2 14 8, 2 quisk sontoel ofe oo
. T e - SFIRST Lirst time in for s
{ i v | S &' forcairg job (ne /0 RE-DC
E i o i . N ™ . IS
H e e TELADE =FIEy che [N SRR N SN
] JFSWRD EWAD €rYor for ot
L. ™opn srmaw e T L L - 1 . Ve
- 4 L A R P S U o) : LS
T e e e TR ,e_ v perrarent rrivilsgos
——— “TF37 Lespol 22Xy provyi sge:
e e s e . . o~ a ¥ —— 4 = =
J_'VOP'(377 Nas MO acLaant
STEYTRY Tobown o oritizan asanl
| ez JFLOCK job is to scay in coare
e JROOON Seb. Lo cunsd BLORXIAND Lo
JDELG2
3 5 Iz a
¥ T
R,
T s -
3 Lm,-.,. - SRITN .
f b TTOASTAR ppidats soz PN
i g h-—»--v.pm-..m...m...g‘_\rp:_? ;.::it;y t‘. "y *.'
i Lw---’-v-~-~~~=~-'«-m-A-fT=‘RW‘! rTan cptyy AIELIRO)
JEETAT
VI, o 11 L
wrsen (TR A
! R LA ,
- e TR P ILL Nall

15

JBSTAT AND JBWAIT

14

12

11

I7-----JSDSK disk wait
—— JSKEY KB input wait
Ai—JSDTA DECtape wait
~——JSLPT line print wait
. e JSPTR paper tape reader wait
| JSPTP paper tape punch wait
e J SCDR card reader wait :
JSMTA Magtape I/0 completion
‘JSXXX XX WAIT
JSYYY YY wait

[

S JS 227 27 wait

-JSTEL teleprinter wait

JSALL=64172

-JSFIP file processor wait
JSTIM sleep wait ,
JSMUL small buffer wait condition

JSRES in-swap required

4~3

DIRECTORY STRUCTURL

DIGITAL EQUIPMENT CORPORATION

Disk File Optimization

l. Optimize the Pack Cluster Size for each disk.

The pack cluster size is optimum when the entire SAT
(Storage Allocation Table, stored as (0,1) SATT.SYS)
can fit into the 256-word buffer in core beginning
at SATBUF. To effect this, each RK disk should have
a minimum pack cluster size of 2, and each RP03-disk
should have a minimum pack cluster size of 2 gnd
preferably of 4,RF disk units with less than 5
platters can have a pack cluster size of 1, but RF
units with more than 4 platters should have a pack
cluster size of 2. RP{Q4-disks have a minimum of 4
and should use 8?

2. Use private packs for production files rather than

the public structure.

Whenever a file is opened on the public structure,
the directories on every public disk have to be
searched, either to verify the file's existence or to
ensure its non-existence. This overhead of searching
more than one disk can be avoided by placing the file

on a private pack.
3. Dedicate complete structures to large production files.

If possible, dedicate an entire private pack to a
single large production file. This will ensure

S -/

Disk File Optimization (Cont'd)

efficient directory organization and will mininmize
disk "seek" time for dsta processing/accessing.

When it is necessary to put more than one Iile on

the same pack, dedicate a whole account to each

large production file. This will minimize directory-
search overhead. When it is necessarv to put more
than one file under the same account on the sama
disk, then create the large files before the small
ones. This ensures better organization cf the

directory structures.

4. When possible, keep distinct files accessed by *he

same program on distinct disks.

£ ax

I
jae
o

If a program accesses more than one f£ile and
of these files are on the same disk pack, then disk
head movement will be required every time the program's
current reference to a file is different from its
preceding file reference: thus a large percentage

of execution time will be spent in moving the disk
head back and forth. On the other hand, if each file
referenced by the program exits on a distinct disk,
then no head movemen® is required when changing from
one file reference to another in the program; the

heads will simply mcve croe when trne locatisu of the

data itself requires it.

Disk File Optimization (Cont'd)

Pre-extend files to their maximum length.

Creating a file at execution time by sequential
printing of data, by sequential writing of a virtual
core array, or by sequential putting of records entails
a high overhead of repeated calls to non-resident parts
of the File Processor in order to extend the file

each time another sector is required. This

needless overhead can be avoided if the file is

already in existence at its maximum length or if it

is created at its maximum anticipated length before

any significant data is written upon it. Thus at the
beginning of any program which is to create a long
file, the highest record number should be put or the
highest element of the virtual array should be

written (even with meaningless data) before any

other writing is done. This applies also to scratch
files. The FILSIZ option can also be used to pre-

extend files.

Use Record I/O disk accesses wherever possible.

Formatted ASCII is the slowest RSTS I/0. It examines
each character one by one for delimiters, line
terminators, etc. and executes conversions between
internal binary forms and external ASCII representations
for all numerical data. Virtual core I/O is fast

for a given individual array, but it is not record-

oriented. When a logical record includes more than

Disk File Optimization (Cont'd)

one item, virtual core 1/0 will scatter the elements

of the same logical record into different area

Gi
G
§-?

the disk, grouping them by their array type and rare
rather than by any relevance to the same record.
This may multiply disk accesses in a programn.

Record I/0 as its name implies has been designed

for processing records, in either sequential or
randon-access mode. It packs data efficiently zrd
groups data by record organization. This minimizes

the disk accesses needed for processing any reccrd.
7. Optimize files' cluster sizes.

Since at any given moment the current retrieval inicriat.io:n
for a file is stored in core in the "window" of ths

file's File Control Block, rstrieval overhead carn

be reduced to a minimum if the file's cluster size

is such that the file does not need more than 7 totz!?

clusters.
8. Re-start from cleaned structures whenever possitle.

When an account is first created and the firast file
is created under the new account, the linkages in
the directory structures wili be in the optimum
order for fast and efficient directory nawdling.

-

After a nurber of deletionsg,

e N S TR TR | e s e e g e
creaticns, howa e, <hic wo, o Yonoor Ut e Sevaavuzo

- F
Ly

Disk File Optimization (Cont'd)

linkages may then point forward and backward in
whatever fashiaon was necessary to update the directory.
Consequently, to ensure that directory structures
exist in a form optimized for fast access, it is best
that disk pack periodically be re-structured. This
can be done by using the DSINT program to prepare a
fresh pack and then transferring to that pack all
files which are to be accessed on it. Likewise an
account should periodically be re-structured by first
"zeroing" the account and then transferring to that
account all files which are to be accessed under it.

" (Save files elsewhere before zeroing the account).
9. Optimize record size if possible.

If a file has a cluster size larger than 1 and if the
size of the logical records to be processed exceeds

512 bytes, then an explicit RECORDSIZE of 1024 or
greater will speed execution. This is true because
RECORDSIZE defines the size of the user's buffer area
and when the cluster size of the file allows it, the
system will fill/empty the buffer in one disk access
rather than in multiple accesses. If, however, the
logical records to be processed are less than 512

bytes in length, then little is to be gained by departing

from the default record size of 512 bytes.

Disk File Optimization (Cont'd)

10.

Keep production accounts distinct from development

accounts.

Because extensive file deletions, modifications, and
creations can leave directory structures in an order

fficient disk processing
and because development work should always be «one
under accounts distinct from thoge under which

production files are kept.

The DSKINT option will initialize a disk to the minimum
RSTS file structure. A single or multi-platter RF disk,
a single RK@5 cartridge, or single RP@3 disk pack may

be initialized as a public, private, or system disk. In
addition to writing the minimal file structure, DSKINT

checks the whole disk for bad blocks by performing write
and write-check operations over the total disk area. In
checking for bad blocks, DSKINT will use from 1-8, test

patterns as specified by the user during the DSKINT dialog,

The minimal RSTS file structure includes the master file
directory (MFD) and the UFD for the system file account
[#,1]1. In the system file account, two files are created
during the DSKINT process. The file BADB.SYS contains
all bad blocks detected during the bad block checking
phase of DSKINT. Bad blocks are permanently allocated

to this file and may not be used during normal Time-
Sharing operations. The second file is SATT.SYS which
contains the storage allocation table (SAT) for the disk.
The SAT contains one bit for each cluster on the disk.
The size of SATT.SYS is therefore dépendent on the size
of the disk and the pack cluster size specified in the
DSKINT dialog, the size of BADB.SYS depends on the

number of bad blocks detected. Public and private disks
contain only this minimal structure. The only difference
between public and private disks is a "private" bit is
set in the MED for private disks. 1In initializing a

system disk, DSKINT will also write, in addition to

—

5-7

the minimal file structure, the MED entries required for
the system library account [1,2], the library UFD and all

library files are created under normal time-sharing operaticns.

When a new system is created by the system generation

"Core Image Library" cr "CIL" is written somewhere on

zero. 1If the CIL is written on a blank disk (i.e. freshly
formatted disk). the disk should be booted as explained

in Syétem Manager's Guide and then the DSKINT option must be
used to write the minimal file structure. DSKINT will not
destroy the CIL which was written during SYSGEN. In this
case, DSKINT will also create the file RSTS.CIL under
account [#.1] to map the CIL. The refresh option should

be used to create the other system files under [#,1].

Bootstraping is the mechanism by which the CIL area is
defined. Hence, initializing a disk as a system disk
will only preserve the CIL if it was boated. It is howeve:

possible to initialize a disk as a system disk and write

the CIL later with SYSGEN. The procedure in this case is

to mount any RSTS system disk on unit # (RK or RP) or to
load a RSTS system onto an RF disk, boct this system disk,
mount the disk to be initialized on any other disk drive,
request the DSKINT option, and answer the DSKINT dialogue
questions for the disk to be initialized. This procadur:
merely writes the minimal file structure plus the librazy

-

account. It does not prassrve anything ou the disk

&)

L T
128

(55531

e h QN A S| PR
EATY SR ‘:;;f',. “rté%‘.é C‘ﬁ‘a’ leT -

; -7
except CIL

g

™
<

If a new CIL is written on an old RSTS system disk

J
(containing RSTS files), the DSKINT option should not

be used since it will destroy everything except the CIL.

In this later case, the refresh option should be used
to map the new CIL into the file RSTS.CIL and to

verify that the file structure has not been corrupted.

Disk terminology

sector the number of words transferred:

256. words for RK and RF, 1074. words “sr RP

paysical disk address the hardware-oriented address
nunoer an 1ndex to a sector relative to a know:

physical address.

logical number an index to a sector of a tile relative

to the beginning of the file.

cluster a ceontigucus group of file secters.
cluster size the nuater ¢f sectors in a cluses;

Disk file structure

RSTS disk files exist in clusters of 256. (1024.) wcrd sectors.
The sectors within a cluster are always physically contiguous.
The clusters themselves may be physically contigucus to each
other; however, they may be scattered randorly across the

surface of the disk.

Directory files

MFD (Master file directory)

The MFD on any file unit 18 a sinzle file whisn

» R I T . I | ua e e oy mgme i m e w @fy*’qnagi e i e f"‘ji-'-! unlﬁ-

Er O

Directory files (cont'd)

(b)
(c)

(a)

maintains accounting information for those accounts, and
contains pointers~to the beginnings of their respective
UFDs.

The MFD also contains all needed information for

accessing any part of itself.

UFD (User file directory)

There is one UFD for each user account on a file unit which

(a)

(b)

(c)

(a)

catalogs all program and data files under that
account on that file unit,

maintains accounting and access information for those
files, and

contains all needed retrieval information for those
files.

The UFD also contains all needed information for

accessing any part of itself.

Program and data files exist on the disk as pure data clusters.

They contain no retrieval information (i.e., no link-words) and

no structural information.

Allocation mapping (the storage allocation table SAT)

A bit-map table (in file SATT.SYS) is used to record

which disk clusters are allocated and which are free.

Each bit in the SAT corresponds to one pack-cluster.

When a cluster is allocated, the corresponding bit is

S -/

Allocation mapping (cont'd)

is cleared. Note that the SAT records pack-clusters,

and that one file-cluster may represent several {up tc

256.) pack-clusters.

The SAT is manipulated in core.

It is read from SATT.SYS

into a 256. word buffer called SATBUF.

Directory structures and retrieval linkage

Each 256. word sector of a directory is logically subdivided

into 32. block(ette)s of 9. words each. The following

blockette-types exist:

label only in sector 0 of cluster 0 of the UTD nr MII.

FDCM file directory cluster map.
NB name block.
AB accounting bloek.

&

retrieval block (only in UFDs}.

HO hole (blockette which is not in use)

The first sector cof an MFD on any file unit is always

located at sector 1.

The sector number of the first sector of each UFD is

contained in a pointer within

for that account.

The £first name biockethte Ccons

*-!; /c"?’

Lo

£

o
&

-

the MFD name bHlockoete

Directory structures and retrieval linkage (cont'd)

threaded lists of NBs (NBs and RBs in the UFDO0 chained

together by link words.

Cataloging limits

The maximum number of user accounts that can be catalogued

in an MFD is 1735.

The maximum number of user files that'can be catalogued

in a UFD is 1157.

Directory Structures and Retrieval Linkage

1) Directory Structures.
1 The MFD is always located at sector #l1 on RK05's and at
sector #2 on RP03's

2 Each 256-word segment of a file directory is logically

subdivided into 32 blocks of 8 words each.

3 The first block of the MFD is a label block
4 The last block of every segment of a directory is the
FDCM (File Directory Cluster Map). Every copy of it
throughout a given directory is identically the same.
5 Any of the other blocks in a directory segment can be
used as:
NB --- Name Block (in MFD or in UFDs).

AB --- Accounting Block (in MFD or in UFDs).

RB --- Retrieval Block (only in UFDs).

Any block never used or returned to free status is

§-/3

T T SRl e bt NmAAE AVEe Wk % W LA et M AW\l Ny

classified as a
HO --- Hole (in MFD or in UFDs).
2) Retrieval Linkage.

The first segment of an MFD on an RPO3 is always located
at sector #2 and at sector #1 on on RK@5

The segment # of the first segment of each UFD is contain=d
in a pointer within +he MPD Name Block for that
account.

The first word of a MFD or UFD contains a pointer to the
first Name Block in that MFD or UFD.

That first Name Block contains the beginnings of
threaded lists (of NBs in the MFD, of NBs and RBs
in the UFDs) chained together by link words.

The linking directs the access forward to any desirers
part of the directory. The linkage, howeve:i, is
forward only. To regress, it is necessary to sterrt
once again from the beginning.

3) Addressing modes.

Two modes of addressing are used in the directories.

Some "address" entries are pointers containing ﬁhe segmant#

(relative to the beginning of the disk) where some de-

1

sired information begins. E.g. UAR entry in MFC's NB,
and entries in FDCMs and RBs.

Other "address" entriesz are link-words, structured as
indicated in the illustration.

4) Cataloguing limits.

o1

The structure of the direcztories imposes certain maxicum

limits on the number cf amnounts and files whisn

5 -4

Directory Structures and Retrieval Linkage (Cont'd)

can be catalogued.
Maximum number of user accounts that can be catalogued
in MFD is 1735.
Calculated thus: [(7 clusters/MFD) * (l€ sectors/cluster) *
(31 blockettes/sector)- (1 label blockette)],/.
(2 blockettes/account). M
Overhead for cataloguing 1735 accéunts is
11% for RF system disk with one platter,
2.5% for RC/RK system disk, and
#.3% for RC/RP system dis.
Maximum number of user files that can be catalogued
in a UFD is 1157.
Calculated thus: [(7 clusters/UFD) * (16 sectors/cluster) *
(31 blockettes/Sector - 1 label blockette)l/

UFD
(3 blockettes/file).

Clustersize

Advantages of large cluster sizes:
Reduces size of directories.
Reduces required number of disk-accesses to directories.
Reduces fragmentation of files on disk surface and fewer
"seeks" will consequently be required to access a
data record. But seek time may increase for
individual seeks.
Advantages of small cluster sizes:
Avoids wasting disk space.

Lessens risk of being unable to create or extend a file =--

5-75

Clustersize (cont'd)

Clnetarci va

. - - —————

i.e. after
a disk may
accomodate

contiguous

-ack (for non-

system disk,

public and

private)

Directory (both

for MFD and UFD)

many creations, extensions, and deletions,

still have sufficient free space to

small clusters but lack sufficient

space to accomcdate large clusters.

1 16.
2 for

RPO3

onlv
Pack 16.
Pack £e.

At initialization time
via DSKINT opticn

(or REFRESH for RSTS v4)

At creation of the
directory via either
DSKINT, REACT. or whe SYS

function.

At creation of the Ifile
via either OFEN or

CPEN FOR QUTPUT

File unit designation

(a)

(b)

General unit designation:
DF:, DK:, DP:, or the null unit deéignation>refer

to all "public" file units.

When a file is to be created under this designation,
the system will select the public file unit containing'

the most free space.

When a file is to be retrieved under this designation,
the system will scan all public file unit directories

until it finds the designated file.

Explicit unit designation:
DF@:, DK@:, DKl:, DP3:, etc. refer to specific and
distinct file units, which may be either "public"

or "private".

Access to files

(a)

Protection codes and privileges: -
The protection code byte designates
1 read-protect against owner
2 write-protect against owner

4 read-protect against group

o

write-protect against group
16 read-protect against others

32 write-protect against others

5-/7

Access to files (cont'd)

64 compiled Basic program (only RSTS V5)
128 privileged program status for compiled

program

If a user is logged in under a [1l,x] account, cr is
running a nrivileged proagram. the program is allowsd
to bypass all protection-code limitations -- 1i.e., 3

privileged program may read a file irrespective of the

€]

file's status.

If neither the user ncr the progrem is running “priviieved",
the restricticns imposed by a file's protection code

e

—l
b

apply. In such cases, no one cap read, write, oy del

Py
[d

any file protected against him, and the system will nc¢

Sy -

a1

allow renaming or modifying .RAT files {(RSTE V4) ¢
whose extension is .BAC and/or havae a nrotectinn code
indicating that they are compiled (RSTE& V5). 1In such
cases, only the system editcr is able to creates °r

transfer .BAC files.

Normal and Update accessing.

Normal accessing of cdisk files.
When a user attempts to open a file in normal wmodg, &hs

system will issue a "protection vinlation" sryror

(which may be processed usiny tha 2V TRPOP 0070
statement) 1! the file rrz zilraady resn oronesd 9

Normal and Update accessing. (cont'd)

someone else in update mode.

Then system then determines the user's read and write
privileges as based on his account number and the
file's protection code. The result may be read

privileges, write privileges, both or neither.

The system then determines whether the job is running in
privileged status, either because it is a privileged
program (bit 128 set) or because it is under a system-
manager type account [l,x]. If such be the case,

priﬁeleges are changed to read-write.

A check is then made to determine whether someone else
has already obtained write-access to the file.
If so, any write-privileges are taken away from
the current petitioner.

If, as a result of the preceding, the job has neither
read nor write privileges, the system issues
"protection violation"; otherwise, it proceeds to

open the file.

Update accessing of disk files.

If a user attempts to open a file in update mode which

515

Normal and Update accessing {(cont'd)

The above outlines the process undar RSTS V4. REIZ Yo @iy

have some subtle differences [especially regarding priv

is already open in normal mode, the system

issues "protection violation"

The system then determines the user's privileges as

outlinecd above.

If the job has, as a result cf the preceding, both

read and write privileges, it is allowed to pro

else the system issues "protection vicliaticn™.

pr
ot
——t

users). The privileged user or program under RSTS Ve ig

allowed tc open dis!

mode.

-

GET and PUT thus refer “o physiczl hlecks. oD @ om

OPEN "DKg:" AS FILE l%

opens DK@ in non-file-structured mode.

Pointer values in the Booistrap Block

Offsete,gganing

160

162

ih
o

ogh

¥y
4
T
)

The absolute starting logical klocx o
CIL core image
The load address o tne ficet Cil

The size in hite 1 e L.0sc SIL mnra dTuas

£

- - - 3 4 > & s PR |
znd DECtape units ip non-file-styacturss

A
Ty

£

2

Pointer values in the Bootstrap Block (cont'd)

166 The transfer address of the first CIL core image
170 The CIL logical block size in words per block
172 The first address (Pseudo load éddress) of the
Vbootstrap (I.e., where bootstrap relocates to).
174 The external page address of the system device

176 The absolute starting logical block of the CIL

Bootstrap operation:
After relocating itself to high-core (using the address set
in location 172), the bootstrap sets up a transfer from the

disk using the following parameters:

disk address word 160
word count word 164
memory address word 162

If the transfer was successful, the program is started

using the address stored in word 166.
The bootstrap normally relocates itself to XXX250 where

'xXX' refers to the highest 4K bank of core available

tup to 28K, of course).

S5-2/

LABREL N3

M3

~NB NGB
Dimo. FILEL,
123 DAT™

LABEL.

&~

ot ——— ke

kY
Pl

\
D
X
X
.

/ A\ I
‘E.. ‘m’:— ; ;) A -

rw‘l-,
e
1
G
LY
el
1
r
BN

—— i e —

701,104

AG

+ —

LAREL{T > A3
Flied,
Xyva

T um—

\T L UsTEd 2 ;

e

A

N

L ——

D e

Sector 2 RPO3

a

is @ Sector 1 RKO5

1st segment of MFD

_phugs}(ql
Sector #

;l
'

8-worRb BLOCKETTES)

(32

e e 25-4 19 worRoS

MFD

MFD/PAcCK]
o LABEL
NB, p

AB,

"RSTS S.W.S. Notes
[foevzee s RETATFML N1,] Actual
= CLuSTER &% TNV FORMAIToN) — | - / ceg 1?.5
sraf €Lock eVt : Locations
Pure Data
UuFrbo»D : FILE Coses
¥ : TR Ok ro wExT SFE W] Py
/f U e k) . ? 2B e REC w2 w1
3 =Y R TO o~ L C o . s 2
NBx S ' ' CuusTer S YeT W & are
ABu g Petusree 1] S O
[® Poinrer o o *]
RB‘“ « a:.:isrt& 2 E 3 T
RByy 3 [Porice ™, v e
! = v L@ n
| R84 @ |POINTER & 4 CoSECrom v A2 | ¢ ned
l NB POINTER TO f [: % _sSgcrog ¥ ne ¢ ne+?
: [. LusT s L SECTOR # N+ 4 ere
i Tas , | IPoTaTaR o A -
E B » ' .Y |_cusTar - 6 g ETc €Tc
| w8 'TD“ e : i’ =
p1 ; I N V—
— P < R ECTOR #2n-L W2pn-2
-2 RBF?)__ . — " SECTOR ¥2n _ #2n-1
[} . ~ K
t RB’, \ ST LINK TO ~m N } *zn
¥ | R8 ' T 8 * |
% [) PoINTER TO w~ ETcC
g O NB CLUSTER 7 u .
0 « b4 G | [Poinrar ™ o
P A8 w | _€w 8 3 ;
o 3 . 4 3 POINTER ro9 - i
6] o~ CLUSTER v
o 3 R8y, D $ [Poinrer v
- R CLugTER 18|
—~ 2 ® [Poinrar o
LN | ciusTer 13 ETc.
o POINTER Te |
M m \ CuUsSTER 12 !
-~ o ' POINTER TO o4 ! |
rf-t; [(A CiulTaR 13 i .
0 9w T RN
- & M
LS
83 I
§1 } ETc
o]
a
~

P e

FIiL& DiR&cTORY
CLUSTER MAP

NAME

|
|
4

FILE DIRECTORY|
CLUSTIR MAP

BLOCK

Accounting Block

Retrieval Block

—— denetes a link (offset relative
sector)

to blal'um nJ

== dencles a pointer (absolute secfor address)

SecToR B 13a+1

™ e “skcro weg
M
~ _ —
— ET¢C -
' ———
[—
——] -—_{
| Sy : -

b {3y WL T O
T 9 “Sécoa ® (¥na

ETc

ETc :
— 3 cnsl # N-n
- x 1z abUORE
~2Js — ETC
p— ETC ———v{
- —
L’-‘ B
3 — #wN-1}
S _Skcro L jww-2
SECTO N wN-1
N = # of sectors in file
na # o sectors in cluster
Eacn secfor = 25¢, wokDS.

5-23

The number of retrieval blocks per file is Not limited ...As manv
as needed are used and are contained in UFD.

Large

There are seven cluster pointers per Retrieval Block

Each cluster pointer points to a beginning segment number for +he

File Cluster of sectors. The Segment Number is Not a physical

disk address, but is converted into one.

All of the sectors in a cluster are physically contiguous.

In 5-21 PAK always cleaned on Start

In 5B~24 PACK cleamed if Bit 15 Pack Status word of MFD i set
during Start

Refresh Pack is

Default Pack is

K- ad

-

MASTER FILE DIRECTORY (MFD)

BLOCKETTE, FORMAT

MFD TARRL,
(ONE ONLY PER MFD)

LINK TO FIRST NP IN MFD

MFD_NAME DBLOCK (NB)

(ONE PER ACCOUNT CATALOGUED IN MFD)

LINK TO NEXT NB IN MFD (OR @ IF END)

-1 PROJECT 3# PROGRAMMER 4
g PASSWORD (CHARS 1 - 3) RADSZ
¢ PASSWORD (CHARS & - 6) RADS@
PACK CLUSTER SIZE »{ PROTECTION STATUS
CODE CODE
PACK STATUS 1 CURRENT ACCESS COUNT

PACK ID. (CHARS 1 ~ 3) RADSg® LINK TO AB FOR THIS ACCOUNT

X BLOCK OF' FIRST
PRCK ID. (CHAES 4 - 6) RADS@ ACCOURT (OR ¢) UFD BLOCK FOR THIS
MFD ACCOUNTING BLOCK (AB) HOLE (HO) - UNUSED BLOCK

(ONE PER ACCOUNT CATALOGUED IN MFD)

41 (TO SIGNAL THAT BLOCK IS IN USE)
(-2 IF BAD DISK BLOCK) 4

ACCUMULULATED CPU TIME FOR THIS
ACCOUNT

- ACCUMULATED CONNECT TIME FOR THIS
ACCOUNT

ACCUMULATED KILO~CORE-TICKS FOR
THIS ACCOUNT

ACCUMULATED DEVICE TIME FOR THIS

ACCOUNT

ACCUMULATED # .1 ACCUMULATED #
OF LOG-OUTS Or' LOG-INS
DISK QUOTA - OF DISK BLOCKS

PERMITTED AT LCG-OUT

UFD CLUSTER FACTOR

L— CURRENT ACCESS COUNT - SIGNALS WHETHLR
ACCOUNT IS IN USE. IT IS INCRENEKTED
BY 1 AT LOG-IN AND DECREMENTED

MFD FILE DIRECTORY CLUSTER MAP (FDCM)
{(ONE BLOCK OF THE MFD)

8Y 1 AT LOG-OUT.
FILE DIRECTORY CLUSTER SIZE

BLOCK ¥ OF FIRST BLOCK IN CLUSTER @&
JN MFD

BLOCK #OF FIRST BLOCK IN CLUSTER 1 . vy
IN MFD L___, PROTECTION CODE 1S MEANINGFUL IF UFD

BLOCK¥ OF FIRST BULOCK IN CLUSTER 2 IS OPENED AS A FILE.

IN MFD
BLOCK # OF FIRST BLOCK IN CLUSTER 3
IN MFD ‘
BLOCK # OF FIRST BLOCK IN CLUSTER 4 PACK STATUS:
IN MFD IF BIT 14 IS SET TO 1, TUE PACX Iizpp;vm?
— FLSE IT IS PUBLIC. SYSTEM DISKS ARE AIWAYS
BEOCK # OF FIRST BLOCK 1E CLUSTER S MARKED AS PRIVATE; WHEN USED A& THI I¥STEM
18 MED DISK, THE? ARE TREATED AS PUBLIC, SUT WHEN
BLOCK # OF FIRST BLOCK IN CLUSTER 6 MOUNTED ON ANOTHER SYSTEM THEY WILL RT
IN MFD PRIVATE.
BIT 15 IS SET TO 1 ON A "MOUNT" AND TO ¢
ON A"DISNOUNT®. (IF A NON-MGUNTEDL CISX ilAS

BIT 15 SET TO A 1, THEN IT WAS NCT PROPERLY
*DISMOUNTER" (EG. SYSTEM CRASH) AND NEEDS
TO BE "CLEANED",

BITS 13 - @ ARE CLEARED TO ¢

L5

MFD ID BLOCK

MFD Address (Link) of First Name Block‘

-1

0

0 e —— .

Pack Cluster Size (1,2,4,8, or 16)

Clean Priv 0

LY 4 __a s - - -—-
Pack ID (2 was in RAD 50)

Pack ID (2 wds in RAD 50)

UFD ID BLOCK

UFD Address of First NB

-1

0

0

File Directory Cluster Map

File Directory Cluster Size

Seg # of first segment in cluster g
of MFD

Al d] Wl O =

8
2
4
6

14
12

la
16

[T - S I -~

10

12
14
16

L -5/

ULNK ¢
Dummy Entry (not to
be confused with
account [255,255})

Public/Priv.Pack Ind.
Clean/Not Clean Ind.

Dummy Name
(Impossible)

One for

each sector

of directory
whether MFD

or UFD

w]
-
o
Fj
4
2

=
1
C

=

(B
w
o
[
on
(<]

MF ION
Link to next name, 0 is end of chain ULNK O

Project No. Programmer No. UNAM 2

Password Rad 50 4

Password Rad 50 6
11 UPROT | Protection Status USTAT 10
| CURRENT ACCESS COUNT UACNT 12
ACCOUNT BLOCK LINK T] uma 14
UFD Segment Start, 0 is no UFD UAR 16

. MFD NAME BLOCK

+1 if block in use, -2 if bad block _____JULNK

Accum CPU Time for Account ‘ * MCPU

CPU TIME.

4 bits Connect time for account MCON

Accum Kilo Core Ticks * MKCT 6

Accum Device Time * MDVT 10

CPU TIME 10 Bits

6 bits KCT MLDGI 12

Total Segments Permitted ‘MDPER 14
"UFD Cluster Size N jucLus 16

MFD ACCOUNT BLOCK *Reset by Read Data Reset Accounting

" Protection Byte Bit Assignments (UPROT) UFD/MFD
Bit 15 Privilege Bit, used to set JFSYS
14 1 = Run only - .
13 Write Protect from World
12 Read Protect from World
11 Write Protect from Group
10 Read Protect from Group
9 Write Protect from Self
8 Read Protect from Self
Status Byte Bit Assignments (USTAT) UFD/MFG
Bit 7 Marked for Delete if 1
6 File Entry if 0, MFD/UFD Entry if 1
5 Not to be Killed if 1
4 Not to be Extended if 1
3 File Already Open for Update
2 File Already Open for Write
1 Must be Zero
0 File is 'Out of Sat' if 1

L7

1 DIRECTORY

(UED),_BIACRETTE FORMAT

UFD IABEL

PR PALA

(ONE ONLY PER UFD)

UFD_NAMI: RIOCK (NB)
(ONE PFR FILFE CATATOGUED IN UFD)

LINK TO FIRST NB IN UFD. (OR @)

LINK TO NEXT NB IN UFD (OR @ IF END)

-1

FILEUAME (CHARS 1 - 2) RADSE

FiLENAME (CHARS 4 -~ €) RADSH

EXTENSION RADSH

PROTECTION CODE STATUS

FILE ACCESS COUNT

LINK TO AB FOR THIS FILE

il iw w9

LINK TO FIKST RR FCR THIS FILE

(OR @ 1F FILE IS OF @ LENGTH)

UFD_ACCOUNTING BIOCI. (AB)
(ONE PER FILE CATALOGUED IN UFD)

UFD RETRIEVAL BLOTK (RB)
(AS MANY PER FILE AS LENGTH REQUIRES)

+1 iTO SIGNAL THAT BIOCK IS IN USE)
-2 IF BAD DISK BLOCK)

INK TO NLCXT RB §'OR TH1S FILE
OR @ Il' IAST RB)!

LAST ACCESS DATE

.NUMBER OF BLOCKS IN FILE

BLOCK# OF FIRST BLOCK IN CLUSTER &
(7,14,2) etg) OF FILE

BLOCK# OF FIRST BLOCK IN CLUSIER 1
(8,15,22 etc) OF FILE

CREATIOH DATE

BLOCK # OF FIRST BL~CK IN CLUSTER 2
(9,16,23 etc) OF FILE

CREATION TIME

BIOCK 3t OF FIRST BLCCK IN CLUSTER 3
(1¢,17,24 ctc) OF FILE

{ UNUSED)

BIOCK #OF FIRST BLOCK IN CLUSTER 4
(11,18,25 ete) OF FILE

{ UNUSED)

BLOCK# OF FIRST BLOCK IN CLUSTER S
(12,19,26 etc) OF FI'E

CLUSTER FACTOR FOR TIIS FILE

BLOCK # OF FIRST BLOCK IN CLUSTER 6

(13,208,27 etc) OF FILE

UFD_FILE DIRECTORY CLUSTER MAP (I'DCM)
(ONE PER BLOCK OF THE UFD)

UFD HOLE (HO UNUSED BLOCK)

FILE DIRECTORY CLUSTER SIZE

RIOCK # OF FIRST BLOCK IN CLUSTER #
OF UFD

BLOCK #OF FIRST ELOCK IN CLUSTER 1
OF LD

BLOCK # OF FIRST BLOCK IN CIUSTER 2
QF UFD

BLOCK % OF FIRST BLOCK IN CLUSTER 3
OF UFD

BIOCK % OF FIRST BLOCK IN CLUSTER 4
QF_UFN

BIOCK # OF FIRST BLOCK IN CLUSTLR 5
QOF UFD

BLOCK ¥ OF FIRST BLOCK IN CLUSTER 6
OF UrD .

S-48

+9
+2

+4

+18
+12
+14

+16

+8
+2
+4
+6
+19
+12
+14

+16

+2
+2
+4
+6
+10
+12
+14

+16

UFD LABEL
(ONE ONLY PER UFD, AT
CLUSTER @, SECTOR §, BLOCK @)

LINK TO FIRST NB IN UFD
(OR #)

-1

2

UFD AB - ACCOUNTING BLOCK
(ONE PER PILE CATALOGUED IN UFD)

+1 (TO SIGNAL THAT BLOCK IS IN
USE) (-2 IF BAD DISK BLOCK)

LAST ACCESS DATE

NUMBER OF SECTORS IN FILE

CREATION DATE

CREATION TIME

RTS NAME RADS¢@

RTS NAME RADS@

CLUSTER FACTOR FOR THIS FILE

UFD FDCM - FPILE DIRECTORY CLUSTER MAP
(ONE FOR EACH SECTOR OF UFD}

FILE DIRECTORY CLUSTER SIZE

SEG. # OF FIRST SEG. IN
CLUSTER @ OF UFD

SEG. # OF FIRST SEG. IN
CLUSTER 1 OF UFD

SEG. # OF FIRST SEG., IN.
CLUSTER 2 OF UFD

SEG. # OF FIRST SEG. IN
CLUSTER 3 OF UFD

SEG. # OF FIRST SEG. IN
CLUSTER 4 OF UFD

SEG. # OF FIRST SEG. IN
CLUSTER 5 OF UFD

SEG. # OF FIRST SEG. IN
CLUSTER 6 OF UFD

ULNK=@

UDLA=2

USIZ=4

UDC=6

UTC=12

UCLUS=16

9

+2

+4

+6

+108

+12

+14

+16

+2
+2

+4

+19
+12

+14

+16

+9

+2

+6

+1¢

+12

+14

+16

UFD NB - NAME BLOCK
{ONE PER PILE CATALOGUED IN UFD)

LINK TO NEXT NB IN UFD
(OR @ IF END OF CHAIN)

FILE NAME (PART 1) RADS@

FILE NAME (PART 2) ‘RADSS

EXTENSION RAD5§

PROTECTION CODE STATUS

FILE ACCESS COUNT

LINK TO AB FOR THIS FILE
!

LINK TO FIRST RB FOR THIS FILE

(OR @ IF FILE IS OF # LENGTH)

UFD RB - RETRIEVAL BLOCK
(AS MANY PER FILE AS LENGTH
OF FILE REQUIRES)

LINK TO NEXT RB FOR THIS
FILE (OR § IF LAST RB)

SEG. # OF FIRST SEG. IN
CLUSTER § (7, 14, 21, ETC.) OF FILE

SEG. % OF FIRST SEG. IN
CLUSTER 1(8, 15, 22, ETC.) OF FILE

SEG. # OF FIRST SEG. IN
CLUSTER 2 (9, 16, 23, ETC.) OF FILE

SEG. # OF FIRST SEG. IN
CLUSTER 3 (18, 17, 24, ETC.) OF FILE

SEG. # OF FIRST SEG. IN
CLUSTER 4 (11, 18, 25, ETC.) OF FILE

SEG. # OF FIRST SEG. IN
CLUSTER 5 (12, 19, 26, ETC.) OF FILE

SEG. % OF FIRST SEG. IN
CLUSTER 6 (13, 2@, 27, ETC.) OF FILE

HO - HOLE (UNUSED BLOCK)

2

2

ULNK=g

UNAM=2

USTAT=1§
UPROT=11

UACNT=12
UAA=14

UAR=16

um?ﬂ

UENT=2

LYe 4

TBROT

UFY pne INEULUNS

Link to Next Name Block,0 is End of Chain

Filename

Filename

! — | ,
fﬂnggasggagmgagﬂsmUmb{

1_Agcesé Count

Account Block_Link
Retrieval Block Link,0 is No File Space|

UFD NAME BLOCK

+1 if Dlock in Use,-2 if Bad Block

ate of Last Access
File Segment Size

Date of Creation .
Time of Creation

RTS Name Rad 50
RTS Name Rad 50

File Cluster Size

UFD ACCOUNT BLOCK

Link to Next Rib, 0 is End of Chain
Physical Segment # of Cluster 0 Start

Physical Segment # 6f Cluster 1 Start

e A na r g oy e e

If 0 then endwaf list

RIB

Retrieval Information Block

o
.
3

ULNK O
UNAM 2

- USTAT 10

UACNT 12

UAA 14
UAR 16

UCLUS16

ULNK O

FORMAT OF LINK WORDS IN DISK DIRECTORIES

15 1m0 11 (1019 |8]Tl6lS [413(2|1 |@

L__T_,\.N_}

v—

1 . 3) BLOCK(ETTE) BYTE-OFFSET WITHIN THE BLOCK.
RANGE = @ to 496,, IN MULTIPLES OF 16,
eqg. ¥.16,32,48, etc.

1) LOGICAL CLUSTER IN THE FILE.
RANGE = & to 6
USED AS INDEX THROUGH FDCM.

2) BLOCK OFFSET WITIIX THE CLUSTER.
RANGE = @ to (CLUSTER SIZE -'1)

PROTECTJON CODE AND STATUS FORMATS IN NAME BLOCKS OF DIRECTORIES

FROTECTION STATUS
CODE FORMAT FORMAT

b5ﬂ15p211'.¢9576543121 ()
3 \ LA L L ADA \ & 4 04

1 = FILES DATA SPACE IS PHYSICALLY ON ANOTMHER DISK.
{(USED IN RK/RC DISK FOR FILES ON RC DISK)
2 = MUST BE CLEARED TO f#.

4 = FILE ALRFADY OPEN FOR WRITE.

lg.- FILE ALREADY OPEN FOR UPDATE.

2¢,- FILE NOT T0 BE EXTENDED.

4¢'- FILE NOT TO BE KILLED.

1¢¢'- MFD / UFD - IF THIS BIT IS CLEAR, IT 1S JUST A
PROGRAM or DATA FILE.
2¢¢; FILE MARKED FOR DELETION.

2 1 = READ PROTECTED AGAINST OWNER.

2 = WRITE PROTECTED AGAINST OWNER.

4 = READ PROTECTED AGAINST GROUP.

8 = WRITE PROTECTFD AGAINST GROUP.

16 = READ PROTECTED AGAILST WORLD.

32'.' WRITE PROTECTED AGAINST WORLD.

128; PRIVILEGED PROGRAM STATUS FOR .BAC FILE.

Protection Code Status word

T T T :
|15 |14 |13 |12 115105985746g534{3!2 1,9 |

STATUS WORD

BIT

a 1g Files data space is physically on another disk
1 g Must be zero

2 4g File open for write‘

3 19g File open for read'

4 2¢8 File may not be extended

5 4@g File may not be killed

6 1¢@g MFD/UFD = 1; program or data = #

7 2¢0@g File marked for deletion

PROTECTION CODE

8 1 Read orotect against owner

9 2 Write protect against owner
10 4 Read protect against group

11 8 Write protect against group
12 1679 Read protect against world

13 3210 Write protect against world
14 6410 BAC file

15 12849 BAC Progran is privileced

32

15

l 6 5 l 4 | 3 2 l 1 lo

AL “‘(A\, T

3) Blockette byte-offset within
sector '
Range @ to 496;5 in multiples
of 1610 .

1) Logical cluster number in the
file
Range @ to 6

2) Sector offset within the clust

Range @ to clustersize - 1

$-34

PACK STATUS AND OPEN COUNT FOR UNTCNT

ﬁt:“Count of number of "OPEN" les on a

disk file unit. (This must be @ before

the system will allow a file unit to be
dismounted.)

.= 1 non file structured

i—When this bit is cleared to @, the
file unit is unlocked. When this
bit is set to 1, the file unit is
) locked. When locked, no file
opening is permitted.
(When a pack is first mounted, it is
automatically in locked status; it can
(r é also be locked by the System Manager
H ‘ in preparation for dismounting.)

ﬁg When this bit is cleared to @. the file unit
.is public. When this bit is set to 1, the -
file unit is private.

t-When # pack is mounted.

Notes on DECtape processing

1) DECtape file handling.
A DECtape request to the File Processor causes the
following actions:
a) Parameters are set in the DECtape DDB.
b) The DDB is linked into the DECtape Symbiont queue (DTSQ)
c) 1If the symbiont had been inactive, the QDTSYM bit
is set in L3QUE. |
q d) An exit is made from the File Processor.
sooner or later the L3QUE mechanism (extended priority
arbitration) yill start the DECtape Symbiont.
The Symbiont will obtain needed buffers (directory
information on BUFF.SYS).
The Symbiont will place the request in the DECtape
driver queue (DTDRQ). :
The DECtape driver will initiate the transfer.
When I/0O is complete, the driver causes DTSRET to be
run a level 3.
If there are errors, these are passed to the FIP
function DTSERR.
If there are no errors, the FIRQB is re-inserted into
the FIP queue, and FIPSYS is entered.
If other requests are in the symbiont queue, DTSRET
sets the QDTSYM bit in L3QUE, causing the Symbiont

to be rerun as soon as possible.

Notes on DECtape processing (cont'd)

2) DECtape directory handling.

The DECtape UFD (blocks 1£2,1£3) and Permanent Bit Map
(block 1p84) are copied onto disk when first
required (into BUFF.SYS).

The disk sector number (in BUFF.SYS) assigned to
a given DECtape drive for holding its directory
blocks is stored in that drive's DDB+26 (DTDSK@ word).

Byte 1 (DTDSTS) of a DECtape DDB indicates the status
of that directory on the disk.

Bit 15 (DTDSK) is set when the directory on the disk
represents that of the currently mounted DECtape.

Bits 14,13,12 are set respectively when the UFD
no.l, UFD no.2, or PBM have been altered on the
disk and therefore need to be written back onto
the DECtape in their updated form.

The directory blocks are written back onto the
DECtape at the time of a delete, a renaming, or
a CLOSE. If there is an open output file, the
directory re-writing is delayed until the CLOSE.

Bit 15 is cleared whenever the Init count (DDB+36)

of files opened minus files closed becomes zero.

3) Cautions for users.
Users can avoid unnecessary repeated re-reads of the
DECtape directories by keeping at least one
DECtape file open in the program until the program
has completed all its DECtape processing.

When a user mounts a DECtape on a drive, he should not

i‘) ’21

Notes on DECtape processing (cont'd)

assume that the last person who used that.drive;;i?r

under his account closed the last file. It is
safer to force the system to read in the DECtape
directory afresh by the command CATALOG DTn:.

(writes Directory on BUFF.SYS)

A= 3n

3

DOS/RSTS DECtape Comaptibility

Problems:

An improperly closed DOS generated DECtape file (usage and/or

lock bits non-zero) will print with an invalid proteétion

when cataloged under RSTS.

Restrictions:

1)

2)

3)

1)

2)

RSTS will not allow processing (OPEN, CREATE, or DELETE)
of contiguous DECtape files.

In processing (INPUT) DOS generated linked DECtape files,
RSTS will ignore the "partial block" indications.

A RSTS generated (always linked) DECtape file cannot be

appended to or extended under DOS.

This means that formatted ASCII linked DECtape files
(properly closed) are still 19@% compatible in the
following sense:

If T write it under DOS, when I read it under RSTS I
get the éame data.

If T write it under RSTS, when I read it under Dos I

get the same data.

ol inélh FUN L)

AL VIPATTI DL Watis a@I™ B, e

256G,
ords

£ vord header

UKUSE A DECtape has 576, (=11¢%f,) blocks of 256 words each (=1000, byt
{ D) 0 () (] s Y
1 . The first word in cvery block of a linked file is a pointer to

LINKED FILES the next logical block of that file.
W (the pointer contains the physical block # of the next logical
blocks it is positive for forward tape motion and negative for
backward tape motion.) :
LINKED FYLES pe
The remaining 255,, words are data.
DECtape directory structure can catalog and map a max of 56, file:
7 FILE BIT MAPS FOR FILES 1.7 T Each File Bit
L7 FILE BIT MAP (3QJQORDS) FILE 22 tap has 36, word:
L d -
| riLE BIT MAPS FOR FILES 8-14 PR {=576,, bits)
P FILE BIT MAP (236, WORDS) FILE 23
L4 -
2{ pILE BIT MAPS FOR FILES 15-21] _-° Each bit mups 1
FILE BIT MAP (36ww0RDS) FILE 24 block of the
93| FILE BIT MAPS FOR FILES 22-28 DECtape. (A set
. . FILE BIT MAP (36 _WORDS) FILE 25 bit means an
74| FILE BIT MAPS FOR FILES 29-35| '~ 256, allocated tlock:
. wordq FILE BIT MAP (36MWORDS) FILFE 20 a clear bit means
75| FILE BIT MAPS FOR FILES 36-42] AN a free block.)
\\ FILE BIT MAP (36,WORDS) FILE 27] ‘
76| FILE BIT MAPS FOR FILES 43-49 N Each File Bit Maj
‘ ‘\ FILE BIT MAP (36 WORDS) FILE 28 | F2ps the entire
.# FILE BIT MATS TOR TILES 5¢-56 S, DECtapa.
. (4 WORDS UNUSED)
&b 1
489! MFD BLOCK #1 —1
4¢1 MFD BLOCK #2 [.= [ls,t word: 1¢1' {link to MFD bhlock #2)
256.0 2rnd word: 4 (interleave factor)
492| urp BLOCK #1 — 6rdS) 3rd word: 1¢4, (pointer to lst Master Bit Map)
4th word: 1g4; (pointer to non-existant 2nd
4¢3| urp niock #2 -— Master Bit Map)
L 252 words unused
%| MASTER/PERMANENT BIT MAP
, r lst word: ¢ (link to nonj . i3 k_#3)
WS LINKED FILES : r vIC
;:§::;::§§:;5f;:§§::;7::::;::£ .
256,, | up to §%, 4-word entries| | oointer to UFD
ord each with format shown { etart blosk
LINKED FILES of worGS(P*‘-f
UFD entry (=9
remainder unused.
¢
\
c lst word: 1¢3‘ (link to next UFD-block) or ¢
(end of chain)
MFD_BLOCK #2
RSTS goes Hot‘ read or check 28..f;19 entries FILENAME (PART 1) RADS{Y
DECtape UIC's. (max '
When zeroing a DECtape RSTS 9 words each FILENAME (PART 2) RADSY
enters a UlC of [1.1]. with this
format: EXTENSION PADS@
UED_BLOCKS
RSTS ignoras — LOCK Bits, USAGE COUNT, ¥ - CREATION DATE
ané END BLOCK entries in the UFD. 256, B S e
RSTS checks the "TYFE" bit (bit 15) words Lock — (N80
and will not allow a "CONTIGUOUS" file $2p;
to be OPENed. File Type START BLOCK #
when creating a L[ECtape file, RSTS writes
a protection code of 233, (for DOS-11 LENGTH
compatibility) . But RSTS docs not read
or check DECtape protection codes. END BLOCK &
PROTFECTION
3 wordés unused . coor __J

3C,,vword bit map of entire DECtape (a logical
(ORing of all Pile Bit Maps)

R8TS S.W.S. Notes

- Update accessing of disk files.

If a user attempts to open a file in update mode and
that file has already been opened by someone else in
normal mode, the system issues a "protection violation"
message. Otherwise the system proceeds to the next step

The system then determines the user's read and write privi-
leges from the user's account number and the file's
protection code.

If the job is running in privileged status (as described
above), then its privileges are extended to read-&-
write.

If the job has, as a result of the preceding, both read and

\ \ 3 e e~ VY meem A hm e i e D PR R
write privilceges, it is gllcwed Lo pivceed; else a

"protection violation" message is issued.

I') Miscellaneous Notes.

~) Basic file structures are imposed
an disks through DSKINT .

2) UFDs are created only when needed.

There is a distinct interrupt handler for each type of disk

A maximum of 5 retries are attempted when a disk error is reported.
If the error persists after the fourth retry, the operation is
aborted with an error flag for the caller.

All five errors are logged. All disk I/O routines are core-resident
(but not all File Processor routines). FIP routines are optionally
resident.

RP and RK disk driver code optimizes "seeks".

Distance which arm travels in "seek" is minimized by picking the
next operation to be performed on the basis of the cur-
rent position of the arm.

Simultaneously a fairness-count is kept for each waiting opera-
tion lest it wait in the queue indefinitely.

Thus the selection of the next operation is made on a twofold
basis: (a) closeness of the operation to the arm's cur-
rent position and (b) time in the queue.

BADB.SYS created at DSKINTIME, catalogs all known bad disk sectors.

The system will read this file and mark those sectors in the SAT
15 allocated.

S -0

CIL MAP

DIGITAL EQUIPMENT CORPORATION

BLK #0

" BLK #1

BLK #2

BLK #3

RSTS.CIL DESCRIPTION

CIL DIRECTORY
READ ONLY

DEFAULT PARAMETERS
R/W

STARTUP PARAMETERS
R/W

INIT :
READ ONLY

KERNEL MONITOR
READ ONLY

OVERLAY CODE
' READ ONLY

ERROR MESSAGES

READ ONLY
BASIC

READ ONLY
ODT

READ ONLY
ROLLIN

READ ONLY
DIAGNOSTIC |
| READ ONLY

Used by Auto Restar:
- : '

"Startup Parameters" are in effect for this run only.

"Default Parameters' are established by the Default establishment
in reply to the Default option.

Startup Parameters may or may not be the same as Default.

6~/

L3 # BOOTSTRAP

1 (1,1} mrD

=l

CIL INDEX

CIl
=SY

CI_=ER

CI_=Oov

R B

=ROLLIN

CI .

SYSTEM DISK

* optional
** in-house only
*es formatted binary

CIL INDEX CIL LINE
""" i XY "ﬂ
CIL LINE 6 g l 1
----- 4 -4 BYTE COUNT e
1 *
CIL cMDy [BLOCK LOAD POINT
1
3 (CIL CODE)
— E +8 | 18,5 (WORDS TO rox.mw)] (CIL cop:
s 42 ‘TIME OF DAY WHEN CIL WAS LAST MODIFIED
1 1
CIL cMD, Eloea TIME OF DAY WHEN CIL WAS LAST MODIFIED
L]
[
cr oo, i +6 JULIAN DATE WHEN CIL WAS LAST MODIFIED
b {1 | *1#| LOGICAL BLOCK SIZE OF CIL IN BYTES PER BLOCK
’
cn.’?m: HEREIE P # OF CORE-IMAGES IN CIL
1y
(] +14 .
c1 ow, D s 1 # OF BYTES REQUIRED FOR CIL INDEX ITSELF
* VU ele # OF LOGICAL CONTIGUOUS DISK BLOCKS
P ALLOCATED FOR CII
. +2p |* OF LOGICAL CONTIG, DISK BLOCKS REQUIRED BY CTQ
I @ BLOCK-SIZE SPECIFIED AT +10 WORD
+ i
i ' # OF LOGICAL CONTIG. DISK BLOCKS REQUIRED BY CIL
P 22 @ 6415 WORDS/BLOCK
t
P +24 ¥ OF LOGICAL CONTIG. DISK BLOCKS REQUIRED BY OIL
P @ 256)1 g WORDS/BLOCK
1o
vl 26] CHECKSUM
to Cmma
M
"
[
v ¢1L o
' “"“:; P [T ! N [T
1
B [TTY
i =4 [BYTE COUNT (OF WHOLE BLOCK EXCLUDING CHECKSUM)
1 LX T
! -2 BLOCK LOAD POINT
H
; +# | 1214 (WORDS TO FOLLOW) [3 (CIL CODE)
; +2 PROGRAM LOAD POINT
H +4 # OF BYTES IN CORE~IMAGE PROGRAM
1
| +6 TRANSPER ADDRESS
1
: ny. (ODT TRANSFER ADDRESS)
| +12 FIRST LOGICAL BLOCK OF CORE-INAGE PROGRAM
]
: +14 PROGRAM NAME (PART 1 - RADS)
H +16 PROGRAM NAME (PART 2 - RADS@)
t
: +288 - IDENT VERSION IDENTIFIER (PART 1 - RADSS)
! +22 - IDENT VERSION IDENTIFIER (PART 2 - RADSE)
]
' +24 | TIME QF DAY WHEN MODULE WAS LINKED (PART 1)
s *26 | TIME OF DAY WHEN MODULE WAS LINKED (PART 2)
H +38 DATE WHEN MODULE WAS LINKED
]
: +32 X1

[CHECKSUM

DIAGRAULS

DIGITAL EQUIPMENT CORPORATION

1. CeEATION OF

System ELemenT
C Qos/are i

2. SysLop

Buieo Cik oN Dk
FroM LCL on TaAPEL

3. OPNoN : DSKINT

AReATE Minvimum RSTS

FILE STRUCTURE

4. OPTIoN : REFRESH

QCReate and Fosimon

SysTEM Fiees

§. OPTIoN : DEFALLT

Esmause DEFAULT START

VP PARAMETERS

6. OPTION : START

7. Buwn Sysrem Lieary

8. Create User AcerTs.

A

</

O

speye

M\
e}

\

Je

/77 N N

DisTRIBLTION

TAPES

LCL

- ClL oN
Syster Disec

CiL
0.1 s F“-.’

11," 2 Lmam/ Acer

ALL &, 1Fu.=s
Prus 'rmz ABovE

Rerecren 18 CIL

Lioeary Tares

! USER'j

. —

JOB #1
{virtual)

ONLY ONE
MAPPING AT
A TIME.

-
L T Y
‘u': A
.\ ene, "\

f//////

BASIC+

g///é///

(N I LT3

AVAILABLE BUT
NOT MAPPED

NOT SWAPPED

ING

MEMORY MAPP

‘e

PHYSICAL KERNEL
MEMORY virtual
2 g
///// /]
/ /)/ t// 1)/ /)
MON / —> | MON/ /
/i
//// \1//////
l
([/zeaa /) RRERTIER
only , et
/ / RN W
{1 ASIC+ Yol
n..'.::': -:...’:.
/ / N RRSAT
// // / efiiel
k.“::..‘r‘ \.. o
JOB#3? ; ;.' R
Y 10
JOB#1? -
=
3
—p
JOB#7? &
=
N
[/3]
JOB#2? .
jca)
[+ 4
‘ 2‘ 2 § 400
‘." , 2 402
A g
EXISTENT 5
A B
\\\\\ 2 442
/// //// Etg——-—_’
<+ €<
/I/O//// 9”"2
&
EF
1000

, stsazj

USER
virtual

.ﬁsp.

KEYWORD

| "PIRQB"

USER MODET

USER MODEf

"xRB "

JOBF
I0STS

MEMORY ORGANTIZATTION

PHYSICAL
MEMORY SPACE
128K .
I/0 PAGE
KERNEL K , USER
VIRTUAL SPAC . VIRTUAL SPACE
32K NON-EXISTANT | 32K
1/0 PAGE MEMORY BASIC+
' USER
KERNEL e \ usen.
PAR%S §\\\
) J0B # 7 . 7 R/0
7 R/W
N 6 R/ O
SeraTcH) 6 | R/o / JOB # | \ 0
O 5 R/0 T | 5 R/0
MAPPING :
a, 4 RIO —7 JOB ¢ 4 ——q 4 R/0
; 3 R/W
2 R/0 \\\\\\5> BASICH 2 R/W
I R/wW
! R/0 RUN
0 R/W \\\\\\§§ TIME 0 R/W
SYSTEM
USER
PROGRAM
MONITOR // MONITOR
))
|

g 32 TR L g

[N R]

OPERATION OF THE SCHEDULER

SCHED.

NEXT?

YES \\sfo

MAIN SCHEDULE

BRINGN

ROOM TO
BRING JOB IN?

N?‘f,/” Ny

KICK ANYONE SWAP
SET NEXT OUT? IN
XESIDENT? (ONLY KICK OUT JOB
JOBS WITH :
l &O_ SvVVQU'::T = ;J‘) .
YES BRINGN YES O v
\ SET
SUB-SCHEDULE SVQUNT
SWAP SET C EQUAL TO
¢ WHAT IT COST
ouT BIT TO BRING
RESJOB N ¥ HIM IN
RTS &
SQVUNT = (QMUL*SIZE)+
QADD
RESJOB

START UP A RESIDENT JOB
IF: 1) TIMED OUT [BURST EXHAUSTED]
2) DISK STALL
3) FIP STALL
THEN: SVQUNT + (SVQUNT)-(# TICKS RUN THIS RUN)
IF SVQUNT<@ THEN SVQUNT = #

IF STALL WAS NOT DISK OR FIP THEN SVQUNT = ﬂ‘

"SVQUNT" IS THE GUARANTEED RESIDENCY
QUANTAM (RUN BEFORE SWAPPED) IF COMPUTE BOUND.
SVQUNT = (QMUL * SIZE) + QADD

[2] + DEFAULT SETTINGS + [4]

INTERRUPT HANDLING

USER
RUNNING . I/0 Interrupt
current mode= T !
user ‘ !
Prev. mode=
user + v

I/0 SERVICE
cur. mode=Kern

Prev. mode =?
Priority=4-7

T

|

[Re~route
Interrupt|

L

i

EFmt.

Service

'current-Kernel
Prev. = User
PRI = 3

I/0 INTERRUPT

| _To User

"RTI3"

"L3QUE"
TASKS TO

RUN

no

are there any

. 4ES .

o

———e oy

"RTI47"
, was PREV
PRIORITY |

X

RUN
L3QUE
TASK
rur. mode=Kerhe[l
Prev. mode-uspr

v PRI. =3 D

"FIP"

(FILE PROCESSOR) OPERATION

"SAVJOB" ; SAVE USER JOB

l

ENTER INTO
“FIQUE "

FIRST _ yo

IN OURNE JMP "RTI3"
?
"FIPRET" ;
YES QUEUED FIP
> ' OPERATION
COMPLETE
REQUEST |
PROCESSING ;
|
|
|
) i
!
|
OVERLAY NEEDED? |
Q I/0 (DISK)? ;
|
YES NO :
|
!
|
JMP RTI3 e A e J
COMPLETE
SET
"JBSTAT"
BITS
|
YES MORE FIP
OPERATIONS?
y Yo
JMP RTI3

~J
&

JOB STRUCTURE

DIGITAL EQUIPMENT CORPORATION

.BAC
file

USER JOB IMAGE

) <~ JOBORG points here /-
R6 Stack free header space
(2561¢ words) /.
(" Editor Flags, FIRQB with /
programmer name, Core
<4—————4(Common String, and inter- /
rupt stack data are
_stored here /
/
Rl Stack occupied header space
("Data Items, arithmetic /
arguments, & interpre-
<«+——+1(tative subroutine /
return~addresses are /
\stored here.
/
PDA permanent header space
(Program
Data
Area) <«—SPDA points here ———» +@ | ptr to head of string space

-«4+————4—Impure Data Area
(variables, arrays,
etc.)

PTA
(Program

Text

Area) :
««— SPTA points here.

<«—————}—Compiled interpretative

code. (A "pure"
area; never modifies
itself.)

-—ewn e mme e - . ewm wes e e .

PDA Forqgt

+2 | ptr to end of perm.str.sp.

+4 |[ptr to end perm. hdr. space

+6 | ptr to end of occ. str. spc

+18 | ptr to end occ. hdr space

+12 | ptr to end free string sp.

+14 | ptr to end free hdr space

permanent string space

(BASIC's system vari-
\ _ ables are stored here.)

\ occupied string space
(User program's vari-

\ ables and constants are
\ kept here.)

\ 4 Free string space

lower
addr.

allow
to
ctrl
ptrs
(ptr
"slid
ing

'Lboun -
dary)

higher
addr

DT dove’l I wa¥ L Ld'Ad W S hdin

mCuH+HOLU+ onNnkg

']

SPHMMOHZBHME

<

A B D n L O

x

S ABHYHDEC

>

A HZ R oW B0

V]

YR OOOmE = O

)

HHER

<

= £ B A UMGQUOR
RN

RC

4
o]
a A
23] <
e}
-
o}
4
m]
0
[=f
[
e}
5]
-
rd @
G N
U
et
5 %
o =
w1 G
C
@

I

5

! BT, RC,
C

N e e st s o s e e i

Optzicnal

@JOB#*2

ARROWS INDICATE POINTERS

JOB DATA BLOCK #1

POINTER

{2 2?27

(IOB) I/0O BLOCK

[TMeL D8dr
wn
-
]
(=]
wn
[|
g
jas]
@]
DDB/FCB |

JDIOB |<...JOBDA

JDFLG F?—JOBF

JDPOST | JprosT M IOSTS

JDWORK

JDRTS

JOB'S WORK BLOCK

|

JOBWRK

DEVICE DATA BLOCK
OR
FILE CONTROL BLOCK

USER's DEFINED
FIRQB OR XRB ARE
MOVED FROM HIS
USER CORE IMAGE
TO WORK BLOCK

RTS

RUN-TIME
SYSTEM
DESCRIPTION
BLOCK

CORE AP

DIGITAL EGQUIPMENT CORPORATION

ADDR IDENT CONTENTS
0 BR JMRTO@
2 PR7
4 FTLBP4 {Time oOut)
6 PR7
10 FTLZF (Illegal &
reserved)
12 PR7
14 ODT@P Address (BPT)
16 PR7
20 BUF @@ (10T)
22 PR7 .
24 POWERF (PWR Fajl)
|26 PR7 ,
30 EMT@@ (EMT)
32 PR7
34 TRAP@@ (TRAP)
36 PR3
40 RELOAD: JMP @ (PC)+
42 RELOAD
44 IDATE: Initlal Date
46 ITIME: Initial Start Time
50 BR RELOAD
52 BR XCRASH
54 AUTORH: HALT
56 BR RELOAD
60 TTI INT Addr
62 PR4
64 TTO INT Addr
66 PR4
70 PTRINT
72 PR4
74 PTPINT
76 PR4
100 CLOK (KkWwll-L)
102 PR6
104 CLOK
106 PR6 (KW1l-P)

Monitor Core Map 1

ADDR

‘IDENT

CONTENTS

110

JMPTOZ

JMP FTL@GP

112

114

FTL11l4 Parity)

116

PR7

120

122

124

126

130

129
he ot

134

136

140

142

144

146

150

152

154

156

160

162

lo4

166

oo

170]

172

176

200

(LPil)

202

204

(RF11)

206

210

(RC11)

212

214

(TC1l)

216

“”f‘)
1§

ADDR IDENT CONTENTS

220 v (RK11)

222

224 (TM11)

226

230 (CD11)

232

234 WRKCTL (Pointer to Stats Pointer)

236

240 Program Int

242

244 MONFIN (Floating Point Error)

246 PR7

250 FTL 250 (segmentation)

252 PR7

254 (RPII)

256

260
262

264 XCRASH JMP XXCRAS

266

270

272

274

276

300 (start of floating vectors)
302 ~

304

306

310

312

314

316

320

322

324

326

Monitor Core Map 3

300

TTIINT (lst DC 11)

302 PR 5 + unit #

304 TTOINT (lst BC 1l1)
306 PR 5 + unit #

310 N

etc. for remaining DC 1ll's

i
i

v

TTINT {1st DI. 11-A)

P

PR4 + unit #

TTOINT (lst DL 11l-A)

PR 4 + unit #

1

etc. for remaining D211-A's

)

etc. fd?'DLll-E's (PR5)

\ 4

DHINT

PRS + unit #

DHINT

PR5 4+ unit #

|

etc. for DH 1ll's

Monitor Core Map 4

(See Reliedbiiity and Tas% nanual}

9-4

ADDR

IDENT

CONTENTS

1000

NAME
Asird A

Internal Form

1002

TIME:

Internal Form

1004

Timeec/Timtic

1006

JOB :

Next/Job Now Running

1010

JOBDA:

Job ADR

1012

JOBF :

JOBFLG ADR

1014

IOSTS:

JDIOST ADR

1016

JOBWRK:

Work Block ADR

1020

JOBTIM:

TIME Left

1022

JOBQNT :

1024

PARTBL =

16 Possible Paritg

1026

CSR Addresses

1030

1032

1034

1036

1040

1042

1044

1046

1050

1052

1054

1056

1060

1062

1064

1066

PARRNG

16 Possible Ranges

1070

of CSR Addresses

1072

1074

1076

1100

1102

1104

1106

Monitor Core Map 5

ADDR

IDENT

CONTENTS

11110

1112

1114

1116

1120

1122

1124

1126

1130

PARZER

Non- Error Parity gsg Sample

1132

PARMIN

-

P ek PN maad A P T e e e
DLLUVUL raidley VO DJp.Lo

1134

PARDSP

ExXit Dispatch Address

1136

PARBA~D

1140

1142

1144

1146

1150

1152

FTL 114

Parity Error Code

1154

Bad Log is checked to see if soit error

also user/kernel mode

check - parity error in Kernel mode is

fatal

1432

PARGAP

Monitoxr Core Map 6

7-6

ADDR IDENT CONTENTS
system Stack Areab
68. words
2210 SYSTAK
8 wds User Area
FIP's Stack Area
68 words
2440 FISTAK
';'—TTY DDB 's
DTADDB Dectape DDB's
TPTDDR —Line Pointer DDB'sS
PTRDDB Paper Tape Reader DDB's
PTPDDB “Paper Tape Punch DDB
CDRDDB Card Reader DDB'S
MTADDE Magtape DDB'S
ple’elen)r):]
YYYDDB
ZZZDDB
RTSDFT | Défault Runtime System Description
FREES1 Start of small Buffer Pool
FREEB1 Start of Big.Butfer Pool
FIPBUF Non-Resident .BOrrier

Monitor Core Map 7

?-2

ADDR IDENT CONTENTS

FIBUF Directory Buffer
F1IBMAP Map Start
FIBENT Map Entries Start
SATBUF SAT Buffer ‘ f,',f‘ é’;’;
o0
CORTBL Core Management
JOBTBL Job Data Adr's
1 word/Possible Job
JBSTAT Job Status Table o
JBWAIT Job I/0 Wait Condition
TTYCLK TTY Timer Table
JOBCLK Job Timer Table
DEVCLK Hung DeviceTiming
SVQUNT JOB's Saved Quantum
DSDONQ Pointer to Start of Disk Dbone Queue
DSKQUE RF11/RC1l Disk Queue Start 3 0SS
DSRQDK RRIL Disk Queue start
L
i
§ DSKQDP RPII Disk Queue start —> DS & Vs OK
g t‘vS or
CORVENE
SATPTR One per Disk Unit. Points to TN
where in the devices SAT to start P
looking for free blocks.

Moniter Core Map §

ADDR IDENT CONTENTS

SATSIZ ~ SAT BYTE Size List

ORTCLO Cluster Size List

TAT & T & :

SATSTM SAT Starting Segment Lists

SATCTL Counts of Free Sectors in SAT lLists
SATCTM Counts of Free Sectors in SAT Lists
LOGNAH Device Dona Table

LOGEND

CLURAT Table of cluster Ratios Pack/Device
UNTCNT Pack status and Open Tount

PUT, Mounted, NFS, locked

DEVPTR Points to slots in UNTCNT or

DEVTBL appropriate to each device

DEVTBL

TTYDEV

DEVTBE

DTADEV

LPTDEV

FTRDEV

PTPDEV

CORDEV

MTADEV

XXXDEV

YYYDEV

ZZZDEV

DEVEND

.onitor Core Liap 10

7-7

ADDR IDENT CONTENTS
NAMTBL Pruyrain Name Tokle
TTYCTL Terminal Conﬁrol
Receivers table
MESTBL Message sending Table
ERRCTL. Error Control
DTACTL Dectape
MTACTL Magtape
*% ‘MONCTL Monitor
FIP CTL File Processor
CDR CTL Card Reader
RKREST - RK Dirty Area
RPREST RP Dirty Area
XXXCTL
YYYCTL
ZZZCTL

*Seef|.l and |i.2.

Monitor Core Map /)

CONTENTS

NV el &

2:ISR 2780 ISA
2.TAP 2780 TAP
2.5CIP 2780 _SCIP
Z.USER 2780 _User
CLOK
GSTATE
WRKCTL
Disk Stat Ptr
Job Stat Ptr
. Queue Stat Ptr
DSTATB
JSTATB
POWERS Power Fail Data space
- PATCH Patch Space
End of Read/hritE‘Area
Bgn of Read Only Area
X TBL
JUPLS iy Ly a WG DL .
FiPTBL
SERTBL 1/0 Svc¢ TBL
SIZTBL I/0 LineLength ThI
L3QTBL
EMTTBL EMT Dispatch Tbl

. SR b

Monitor Core Map {7,

Addr !Ident

Countents

§CP.LTL

i

Y e
adnd L ,I-l

| FIS3 Y

oLl

NTLTOR

" - -

L.TA

FPANPA U 2R B RIS |,

'[:1)1\ fﬂ

LRLOG

L OHFSV

RO I

Lot

i- : i
-CEIL | =ipopgcs B
{

VY

TUY)
aX 4 o
) CDR
DCDCD. o
| LiT B

D L A

RO

~onitor Tore L.up 12

P —ra-

CUITERTS

1.7

Aot

DUK

W1

T

WD WL WK 1 LD [

RFDSK

CPTDSK

CCLDSK

GPN

COFrl

- Or2

op3

Or4

0P5

€14[¢]

! 5

MES
b ?
3. I » _
e _
| S
i
W M . R

Monitor Core lap 14

7-/3

MONITOR RCUTINE NARRATEON

DIGITAL EQUIPMENT CORPORATION

Hotes on Smuil& Big Buffers

“he system's Small Buffers are each 161‘ words in length.

The system's Small Buffers are used for storing Jjob and 1/0 parumeters
and as I/0 data-transfer buffers for character-oriented
devices.

Every active job uses two small Buffers: one as Job Data Block
and the other as Job 1/0 Block. '

When active, each KB, the PR, and the PP should best have 5-6
Small Buffers each, and the LP should have 1¢ Small
Buffers. These serve as data-trunsfer buffers.

(Note -=- The Ck i1s record-oriented and has its own permanent

Input buffer 4t CDHRBUF. DT is file-oriented and uses a
Big system Buffer for its I/O. MagTape and disk use no
intermediate buffers but transfer directly into/from the
user's job area.)

Every open disk or DT file requires one 8mall Buffer as FCB (File
Control Block).

Every File-Processor request uses a Small Buffer for the PFIRQB
(Pile Request Queue Block).

Every disk-transfer request (except those made by the File Processor
and the Swap manager) uses a Small Buffer for the Disk
Parameter dlock.

when estimating the number of 8mall Buffers which a system should be con-
figured to have, the totals derived from the above facts
should be moderated by the consideration thut not all jobs
will be active at tlhie same time nor will all devices and
files be open at the same time.

The system's Small Buffer pool begins at FRESML.
when free (not in use), the Small Buffers ure linked together in a queue.

The origin of the queue (i.e. pointer to the first free
Small Buffer in the chain) is at FREES

At initializalion (before any buffer is in use) gacue looks like s :

FREES —— » c — = >

v

(free) (free) (free) (free) (free)

¢fie. the system has been f“"ﬂiﬂa, the jecue may look [ike Ths:

FRE&’S'—J -/ \-

in use (free) " uge in use (free)

[.

“c: Smat Suffer have been returned to free sféf-s, the Jueue may look like this:

']

FREES

(Frae) (free) (free) | in use (Free)

L

/0~/

“egading and writing is done by Monitor Code. The part of the
oner space with I/0 Buffer 1is mapped into Monitor by using
scratch R6 of PAR{ . La \ disk o MARCT4 -

e
¢

N:: device can own more than 25% of the system's small buffers.

i* less than 20% of the system's small buffers are left, they
can't user more than a particular device's quota.

170 Drivers us Monitor subroutines to get data. (:' v e Yer T2
Disk and MAGtape is direct from/to user area.

!5
DECtape I/0 to Monitor and from Monitor to UserAvia Big Buffers.

T 0 stell occurs when small buffer limit is reached 'k‘)y device

2>I/0 REDO altse when Adisk X¥fer coudlt be frans 6’/[‘-"“} Lo Mt

User Buffer I/O area in user image is as large as the user can
make it. Afax l?k.

R6 of KISAR is used as scratch register and is used to map
user space I/0 Buffer Area into Monitor Space for DT & LP

Leacwtien + BYTE count in XRB are used by Monitor to set up
' all 1/0 Trawsrers

ANE S wve alse wsel der THTs

st

!.-' ":}" 1) lj I w“ :)ect {c,‘," ;,';'I’\lﬂ? ‘ l(' e ‘l‘} i ad (I" /\',',:fl. 1’1) 'f'l/{e &

DIGITAL EQLHOMENT CORSIDRAATION

“

3 Levels of main scheduling

To reflect 1 Interactive Jobs
24C

3 Sysfunction to increase quantun for this swap.
So the Job Table is scanned 2 times before running NULL JOB
Also have 4 possible swap files which it set up correctly will
keep most active jobs on fastest swapping device. The slots

in the swap files are fixed tc swap MAX size each.

Highest priority jobs get lowes: swap slot numbers which are
allocated to fastest swapping device.

There are 4 swap files & swap MAP in core for each File because
the RS04 is a UNIT addressable device.

DIGITAL EQUIPMENT CORPORATION

/ -3

SWS NOTES

. RSTS/E
SCHEDULER INFORMATION
1006 JOB Low Core Area Current running job (locked)
1007 NEXT Low Core Area Job to run A.S.A.P.

SUBJOB Job who was sub-scheduled and
running because he is in core
and runnable and the job that
really should be running is
being brought in to core.

NXTRES Job to be made resident next.

JOBPTR Monitor Con- Is Round-Robin pointer to

trol Area job number (s) in job table
CORPTR Monitor Con- Is Round-Robin core table sub-
trol Area schedule pointer (next spot to
sub-schedule)

CORFOR Monitor Con- Is Round-Robin core table force

trol Area pointer used to determine who

should be forced out of core to
make room for a job that needs
residence. (Job number for
Force Out)

SCHEDULING CRITERIA

l) Must be runnable.
2) Highest priority.

3) Highest quantum {runnable time period)

so -4

1 Overview of Monitor Functions

The RSTS/E monitor performs the following range of functions:-

. It manages timeshared jobs by means of a round-robin scheduler
which selects runnable jobs in order of priority.

. It manages the memorv required by swapping jobs in and out of
main storage. 'Hole' selection for a job is on a best fit basis.

. It performs I/O and other service functions for timesharing jobs.
The interface is by means of EMTIs, XRBs and FIRQBs (Transfer
Control Blocks, File Request Queue Blocks)

. It performs memory mapping functions for communications and
transfers between modes

. It dispatches I/0 requests frcom the user, using buffers to enable
flexible control of tasks not actually involved in data transfers

. Users can handle their own traps. RSTS/E fully supports that
facility by resuming the job at an address specified in the job
image at known virtual addresses.

. It will run impure or pure code jobs
. It acts as a communications and scheduling system between the
following:~-

. USER/Device handlers

. Device handlers/RSTS MONiITOR
. RSTS MONITOR/USER

. User/file management software

. It handles I/0 errors at device levels and supports a log for
such errors.

The modules describad in this section form the basis of these functions
and define the essential mechanisms for RSTS/E.

o -&

2.5 User/Monitor Interface

This section covers the parameter and data passing interface
bztween a user job and the monitor. There are two main devices:

Transfer Control Block (XRB)

XRB is used by the user to initiate an I/O Request and for
Momitor/User data requests.

File Request Queue Block (FIRQB)

Each block is 4ﬂ8 bytes long (small buffer). The FIRQB holds

f ‘:nctions in slot FQFUN. A subset of these functions is available
to the RSTS/E user, and the rest are~used by the monitor itself.
When a FIRQB is set up, EMT CALFIP (EMT @) is issued which is
dispatched to FIB. FQFUN then defines the function to be performed
either by resident or overlaid code. Only relevant parameters are

needed.

/O —¢

This word is checked before a return is made from the monitor to
the user. Also device handlers and high priority functions

(levels 4-7) return to the monitor (RTI47) where L3QUE bits are
checked before returning to the user. If a bit is set in L3QUE
a corresponding entry in the table of handlers (L3QTBL) is used

for dispatch to the appropriate level 3 (monitor) routine.

Jo -7

"L3Q" LEVEL THREE QUEUE TASKS

OTIMER once per second - check for

Hung TTY's
Sleeping JOBS
Exhausted "KB" waits
Hung Devices
QFIP "FIP" I/0 Completions
i.e. continue in "FIP"
QSWAP SWAP Completion

i.e. update CORTBL "SWPRET"

QFILE Disk I/O Service Completion
QDTSYM

QDDCON DECTAPE

QDACON

QUECDR Card Done "CR:"

QBUFSM Small Buffer ALERTER sets "JSNUL"

;small buffers are now available

QMTADN

MAGTAPE
QMTACN
'QSCHED Scheduler
OBRING Bring JOB INTO Memory
QFORCE Force a 0B out of Memory
QBUF Big Buffer Available

o5

2.7 EMTs, Their Identifiers and Dispatch Table

EMTs are used in order to enter the monitor from a user job to effect

the same functions normally handled by the moniter.

"See the list of EMTs and the EMT dispatch table

/o -

N

2.8 TRAPs and Their Identifiers

fynchronous traps (in this case TRAP(184488) plus low-byte code)
4re ‘lispatched back to the handler in the RTS defined by P.TRAP.
The handler in the monitor is TRAPPF which simply returns to RTS

at the address in P.TRAP.
Many of the traps are used by BASIC-PLUS for error handling.

TF location of TRAP@F is in Loc 34. P.TRAP is maintained in the

Pure Code Area Critical Pointers table.

/0~/0

2.9 Buffer Requests (IOTs)

An IOT (@gP@@P4) is used to get and return, big (256. word) and
small (16. word) buffers from and to the appropriate buffer pools.

The parameters are passed immediately following the IOT.

70 =1/

2.1§ The Monitor Control Area

Apart from the low core variables, the monitor requires many data
~~+11ls and pointers for its functioning. These are contained in
tY.e Monitor Control Area. It contains swapping parameters, Job
Mappina. Buffer., and Job Status Information. The control area

is assembled in CSECT MONCTL.

ro~/2

EMT SERVICE
1 Simple
A). Get Data or perform other operation
B) JMP RT13
2 I/0 Request
A) Character I/0 (KB, LP, CR, PR, PP)
set "JBSTAT" = g

set "JBWAIT"

JsS??2?

DO TRANSFER

lfWés Tranéfer'Compleﬁéafaffj

\
3 \
pYyes "~ no 4«
"IOEKIT" 1. "sSavJjon"
"JBSTAT" = "JBSTAT"!JS??? i set appropriate 2. Set JOB FLAG Bits
Bits "JFREDO"
3. JMP RTI3
JMP RTI3
B) NPR TRANSFER (DT, MT, DISK)
JBWAIT = JS??°?
JBSTAT = g
l. Set up
2. "SAVJOB"
3. Position Device and/or wait in queue

3. "FNDJOB" ; find JOB/bring into core
4. Do transfer
5. Set JOB status bits

"JBSTAT" = "JBSTAT" !JB???

6. JMP RTI3)0 ~/3

‘ob Management and Scheduling

iv +» RSTS/E monitor software concerned with job management

nd scheduling falls into the following routines and functions:-

. Main Scheduling routine (SCHED)

. CORTBL search for a job in core (CORE)

. Find and lock a job into core or initiate a swap

(FNDJOB)

. Bring a job into core (BRINGN)

. Start (more) swaps if possible (SWAPP, SWAPIT)

. Process swap completions (SWPRET)

. Start a resident job and synchronise flags (RESJOB)

. Force a job to dump itself (FORCEQ)

. Kill a job (KILL)

. Dump the current job (SAVJOB)

. The Null Job (NULJOB)

These routines are described in the following sections.

3.1 Main Scheduling Routine (SCHED)

In RSTS/E scheduling is based on

. a round-robin scan of jobs (via JBSTAT and JBWAIT tables)

and

. a priority mechanism for the selection of the next job run

If the next selected job is both runnable and resident, it becomes
the next job to run. If it is runnable but not resident, an
attempt is made to get it into core. This may mean swapping out
resident jobs in order to make room for the job in question. Thus,
the scheduling of jobs may entail the initiation of a number of
swap-outs before the required job can be swapped in and run. While
jobs are being swapped out and the scheduled job is swapped in, a
search is made for a resident and runnable job which is then run
as a sub-scheduled job. If no such job can be found, NULJOB is

run until a swap is completed, which on completion sets QSCHED IN

dom

LBQUEJrecall the scheduler.

/0—-7%

3.2 CORTBL Search for a Job (CORE)

This routine is called via a JSR PC, CORE with register Rg

n. 'ding the number (*2) of the job which is the object of the
CORTBL search. The CORTBL is searched word by word until the index
in R§ is found in a low-byte. If the whole of CORTBL is searched
without finding the job., the N-condition bit is set true and CORE
returns. If the job is found, CORE returns with the N-bit =)

a1 R2 is holding the address of the highbyte of the word

corresponding to the start of the job in core.

/O “'"jé:-

3.3 Find and Lock a Job into Core or Initiate a Swap (FNDJOB)

This routine first of all calls routine CORE to find the job
passed on in Rf as a parameter (job number *2). If the return

is negative (the job is not in core), FNDJOB calls BRINGN to
initiate the swapping in of the job. If the job is in core, the
high byte (in R2) of the job's corresponding CORTBL word is tested,
and if non-zero, routine BRINGN is called to initiate the swap-in,
if the swap-in bit is not ‘already set, then FNDJOB just exists to
RTI3, where the L3QUE flag word is set with the flags passed on in"

the FNDJOB call in R3.

If the CORTBL high-byte on return from CORE is zero and the

job is resident then COROFF is called to compute the real address
(mapped into two words, MAPHI and MARLOW which are stored in the
Monitor Control Area). On return from COROFF, R2 still points to
the CORTBL entry (high byte) for the start of the job, and the
lock bit(LCK) is set in the high byte for all CORTBL words holding

the corresponding job slot. FNDJOB then returns (RTS PC).

10~/7

3.4 Bring a Job into Core BRINGN

“RINGN is called via JSR PC, BRINGN with R@ by holding the job
number (*2) for the job to be brought (swapped) into core and R3

I'»1ds the L3QUE bits to be set when the job is made resident.

R INGN initiates the gwapping out of iohs to make room for the
swea,.ped-in job (in R@) or, if this is not necessary, finds a
] Ole in core (smallest one that will accomodate job) and initiates

a swap into the hole.

An entry point in BRINGN i$§ BRINGQ which is the entry point on

dispatch from L3QTBL when the QBRING bit is set in L3QUE.

JO-~-7§

3.5 Start More Swaps Going If Possible (SWAPP, S
This routine logically falls intc two phases;
1. A search through CORTBL for jobs whose SWP bit is true,

‘2. The setting up of a DSQ (disk request queue block) and
initiation of the swap for the job (IN or OUT depending
on the IN or OUT bits). This is followed by a return to

phase 1 to seek for more jobs to swap.

This routine is a job housekeeping utility called on swap
completions (SWPRET) and when jobs are brought into core by

BRINGN.

The CORTBL search has three entry points:-
1. SWAPP - which pushes#RT13 on the stack as the return address.
2. SWAP - immediately following SWAPP, calls REGSAV to save the
caller's registers.,
3. SWAPLP - after SWAP. As the name implies it is a loop
return from SWAPIT (phase 2), and also is an eﬁtry
point frem BRINGN wh/ch has already saved the

registers.

Since SWAP references many data items, these are explained in

the following subsection.

/O~1F

1.6 Process Swap Completions (SWPRET)

‘nitially SWPRET checks SWDONQ, the queue of DSQ's of completed
swaps. If the queue is empty then SWPRET calls SWAPP which seeks
out and processes swaps. If a DSQ for a swap return is on the
SWDONQ queue, then it is accessed to get the job index for the
job from DSQJOB. If the job has been swapped out, then this slot

ie zern. otherwise it holds the index of the swapped in job.

If the sdot is non-zero, a check is made on DSQERR in the DSQ.
If an error is indicated, then the JFSWRR bit is set if the job'é
JDFLG slot is set true. From the DSQJOB, the job index allows
access to JOBTBL to get the address of the job's JDB. The JDSIZ@
(current size of job in K) is set equal to JDSIZI, the swapped-in

size.

DSQMSC slot of the returned DSQ holds the high byte of the job's

CORTBL entry. If the job has been swapped=in, this is the current
CORTBL entry, whereas if swapped-out, it holds the prévious entry.
From this byte, the type of swap (IN or OUT) can be ascertained

from the appropriate bits. If the swap was 'OUT', SWAPF is decre-
mented. SWAPF is a count of pending swaps OUT. Then, whether the
swap was IN or OUT, the high bytes for the job's CORTBL entries are
cleared. If the swap was out, then the low bytes (job index) are

also cleared.
CLRSWP is called to deallocate swapslots after swaps in.

If the DSQ was SWAPAR (the fixed swap DSQ) then SWPRET branches

back to the beginning to process further swap returns. If the DSQ

/O— R0

3.6 Process Swap Completions (SWPRET) (Cont'd)

was a small buffer from the pool, then IOT (BUFFER RETSML) is
effected, returning the DSQ to the small buffer pool. Then a

loop is made back to the beginning.

/O0~-2/

3.7 (RESJOB) Start Resident Job and Synchronise Flags

Ri‘ JOB is called with R3 holding the job index (job number *2).
7" "¢ is used to enter JOBTBL. The low core job management data-
»nse (JOBDA, JOBF, IOSTS, JOBWRK, and JOBTIM) is accessed. The

t ume used by the job (JOBTIM) is cleared.

ioutine USKMAY 1s called to map the job on the user rage Address
Recgisters and set thc¢ stack pointer to SYSTAK. If the JFKILL bit
i. set in the job's JDFLG slot of the job's JDB, then a jump is

made to KILL to kill the job.

If neither JFSWRR nor JFIRST bits in JDFLG are set, then the job
is to continue where it left off. Therefore RESJOB branches to the
'return-to-job' code. Otherwise, RESJOB, enters an area of code

in which the appropriate re-entry point to the RTS is found.

If JFSWRR (swap error) is true, RESJOB branches to 11$, where
the re~entry point is set to P.BAD, the RTS bad-job entry point.
DIOST (I/0 status slot in JDB) is set with the B.SWAP (bad-swap)
b't. If the job has caused a stack error, (from JFSTAK-bit in
JDFLG), then B.STAK is also set true in JDIOST. After this the

routine enters the general job return code (10$).

In 28 if the JFCRAS, JFRUN or JFSTRT bits in JDFLG are true then the
return addresses are set to P.CRAS, P.RUN or P.START appropriately.
The general job-return code is then entered (1g$). Even if none

of these bits is set in JDFLG.

/0-22

3.7 (RESJOB) Start Resident Job and Synchronise Flags

At 1#§$, the JDFLG2 bits are cleared, and then routine MAPRTS is

called to map the run-time system onto the Page Address Registers.

The user's PS is set up. This is pushed on the stack along with
dummy registers (Rg-R$). The return address (PC) is then pushed
‘on the stack. The job index is given to the user in the FIRQB at

FQJOB.

If the return address is P.BAD (a bad job) then a branch is made
to code which just returns to the RTS at the entry point.
Otherwise the user's error flag work (KEY) is cleared, and the
0ld register values restored along with resetting the floating
point processor (FPP) if necessary. The stack pointer is then

set up.
The QSCHED bit (schedule) is cleared from L3QUE to indicate

that the scheduling request has been processed. Then RESJOB

returns by jumping to RTI3, the general level 3 return.

/0 - 23

3.9 Kill a job (KILL)

vILL is jumped to from RESJOB if the JFKILL bit is set in the

.FLG2 byte of the resident job's JDB.

. Initially, KILL clears the JBSTAT word for the job so that
it is non-runnable, and the JSFIP (waiting for FIP completion)
bit is set true in the job's JBWAIT word. Setting the JBSTAT
word to zeru makes the job non-runnable since the scheduler
runs a job when the logical 'and' of its JBSTAT and JBWAIT
words is non-zero. The JSFIP bit is set true since killing
involves a queued file service (FIP) request to clear out

any pending IO requests... I/O rundown.

. If the file service request has already been made (JFKIL2 bit
set in JDFLG) then KILL branches to the clearing up house-

keeping at 1f$. (KILL immediately).

. If the JFKIL2 flag is not set, then it is set and JFHIBY and

JFPRIV bits are set in the job's JDFLG.

JFHIBY means that the job is in a critical state and JFPRIV

means that it has permanent priveleges.

. The job's work block is accessed and used as a FIRQB in
which is placed:-
. the job's number (*2)
. the clean-up function (UUOFQ)
. the channel slot is set to +5 as a code for logging out

the job.
/0 -2¥

3.9 Kill a job (KILL) (Cont'd)

. Routine UNLOCK is called to unlock the job from core.
Routine SAVJINL is called to set up NULJOB to run and dQump

current job.

. KILL then jumps to FIPSYS in FIP which then processes the

request defined by the FIRQB.just created.

- At 1#§ the immediate kill entry which is branched to within
kill if JFKIL2 is set) the following routine actions are

carried out:-

- Priority is switched to 7 to prevent any interrupts

. Mode is switched to Kernel mode

. If the job is not already detached it is then
detached (DDJBNC slot in terminal's DDB cleared)

. CORE is called to find the job's entry in CORTBL

. The job's entries in CORTBL are cleared

. The job's JOBTBL entry is cleared

. SAVINL is called to set up null job and clear the
current entries for the job

. The IOT BUFFER is effected with parameter RETSML to
return the JDB and WORK blocks for the job

. The job count (JOBCNT) is decremented

. and a jump is made to RTI3 for return and reschedule.

/0-R28

3.10 Dump the Current Job (SAVJOB)

This routine dumps the current job and optionally saves the

job's quantum.

. At SAVJQX (an entry point prior to SAVJOB) a check is made
on whether the current job is non-null

. Otherwise, At SAVJOB, if the current job is non-null, the
current quantum is destroyed for the job (SVQUNT)

. If the current job is NULJOB, then SAVJOB branches to SAVJINL

. UNLOCK is now called to unlock the current job from core

. The JFCODE bit in the job's JDFLG work of its JDB (pointed
to by JOBF) is tested

. If JFCODE is true then the job is running impure code (not
BASIC-PLUS) then the JFFPP (save/restore floating point unit)
bit in the job's JDFLG is cleared, otherwise the JFLOCK
(lock job in core) bit is also cleared

. The user's key word (KEY) - flags to be set on re-residency
or running - are moved into the job's JDFLG slot in its JDB

. The user's stack pointer is checked and if it has not overflowed,
the current user's registers (which have already been pushed
on the kernel stack) are popped onto the user's stack

. If the user's stack has overflowed into the stack save area,
the JFSWRR is set in the job's JDFLG to signify a swap error
(something wrong with the job)

. The JFSTAK (stack overflow) bit is set in the job's JDFLG2 byte
of the JDB

. Then the user's registers (SP,R@ ---RS,PC,PS) are pushed on

the user's stack

/O~ 2k

3.10 Dump the Current Job (SAVJOB) (Cont'd)

. Routine MONFSV is called to save FPP status if required

. Routine SAVTIM is called to save timing and core utilization
information

. SAVJINL is then entered to set up the null job. The stack
pointer is set to the system stack, the monitor data cells
JOB, QUANT are cleared and bit QSCHED is set in L3QUE to schedule
andther job and then a jump is made to the caller's return
address

. Routine SAVTIM is in the SAVJOB module

- SAVTIM computes the accumulative KCTs (Kilo-core ticks) from
JOBTIM (CPU time) and JDSIZ@ from the JDB (current size of job)

. If the job is detached, SAVTIM returns

. If not detached (by accessing terminal DDB from JOBDA slot in
monitor data area and then looking at DDJBNO slot of DDB) then
the time at which the job was attached to the terminal is
found from DDTIME in the DDB and corrected for midnight if
necessary. This is then added to the total in JDCON slot of

the JDB. SAVTIM then returns.

/0~ 27

32.11 The Null Job (NULJOB)

"his job runs when no other user job is running. It displays a right

+ left movement of lights on the 11/45 data paths display.

(0-2F¢

4.0 Core and Memory Management Routines

/0= 29

4.1 Monitor core manager expander/shrinker (CORE)

This routine is dispatched to from EMTTBL as a result of a

user EMT .CORE.

The caller's XRB holds the parameters of the call. The new core
size requested (in K words) is passed at XRB+f, with the
restriction that it is non-zero and less than or equal to

(.ORMAX. .

If robm,is available for expansion or if the size is less than
its current si%e, CORTBL is mapped accordingly. If the expansion
cannot be carried out, then the job is swapped out and brought in
again with the new size. On exit, if IOSTS is zero then the new
size was effected, otherwise the new allocation was not carried

out since the request was in error.

. CORE. first of all gets the new size from the user's
XRB+8 slot.

. IOSTS is set non-zero in anticipation of error.

. The job's JDB and RTS blocks are accessed (via JOBDA,
and the JDRTS slot of the JDB respectively.

. Via the R.USIZ ENTRY in the RTS description Block,
CORE. checks that the request is not bigger than
the maximum for éhe job. If it is then CORE. again exits
to RTI3.4 indicating an error in IOSTS.

. Otherwise IOSTS is cleared.

. Via JOB (job slot) the job;s slot is accessed and routine

CORE is called to locate the job in CORTBL.

/¢~ 30

4.1 Monitor core manage

H
[
e]

o
1]
3
o}
D
a}

. The JDSIZ1 (new size) slot is set in the JDB to the requested
value.

. If an expansion is required then CORE. branches to 3§$.

. If the request is less than the present size, then CORE.
enters 1$. If same 2$.

; At 1S, CORE. clears the extra CORTBL entries, and then enters
2$ where USRMAP is called to remap the user. and a test
is made to see if changing RTS. If so, go to Res job entry
SAUJQX If not, exit wvia RTI3.4.

. At 38 (processing core expansions) CORE. checks to find
whether there. is free space to accommodate the new size.

If there is then CORE. re-enteré 2$ and again calls USRMAP
to effect the new mapping and jumps to RTI3.4.

. If there is not eﬁough room for expansion, CORE. gets the
job's current size (JDSIZP) and saves the current CORTBL
pointer. Then it sets the SWP and LCK bits for all CORTBL
entires of the job and branches to SWAPP to initiate

the swap.

/0-3/

.2 Map a job into user space USRMAP

The function of this routine is to set up the user Page Address

R- yisters (PAR) to map a job.

. The job slot is obtained from JOB.

. Routine CORE is called to find the start of the job in CORTBL.

. On return it starts a loop which sets the LCK bits true in the
CORTBL entries for the job.

. From this, the numbe; of entries for the job are comﬁuted, so
the job size is known.

. Since CORTBL maps 1 word for 1K words of store for all physical
store, then the following computation sequence gets the entry
for PARf for the user:-

. Let the offset in CORTBL for the job start (on a 1K
boundary) = x. Then x = number of K (words) *2 (i.e.
the byte address in K).

. There are 16. blocks of 64. bytes in 1K bytes.

. Hence, since PAR address in units of 64. byte, then
x*16. gives the appropriate PAR entry.

. USRMAP, therefore, from the CORTBL entry computes the entry for
PARZ. If the job exceeds 4K (words) then PARl is set equal to
PARF + 2gg (20988 = 4K) and so on.

. Also, the associated descriptor registers are updated (length =
8K bytes and access = R/W).

. Finally, the job's flag word (JDFLG) is tested, and if negative
the job is running impure code and therefore there is no run-time
system to map into the user's PARs and therefore USRMAP returns,

If code is pure USRMAP enters MAPRTS.

/0 -32

4,3 Map a run-time system (MAPRTS)

If a job is associated with a run-time system (resident library)

then this is mapped from PAR7 downwards.

From the job's JDB, the RTS description block is accessed.
From the R.CPTR entry in the RTS block, the CORTBL offset for
the RTS is found.

From the R1KCT slot of the RTS block, the size of the RTS in K
words is given (nd. of CORTBL words).

In the R.REDO slot of the RTS block is the 4K description
pattern for the descriptor registers of the map.

MAPRTS then simply uses R.CPTR*16. as the PAR7 entry and loads
R.REDO into the descriptor register 7. |

It then backs up to PAR6 and places PAR7-2@f¢ there (4K less)
and so on until the last entry, when the actual descriptor

is used.

MAPRTS then returns.

/0 - 33

4.4 Scratch memory mapping for core-core transfers (SCRMAP)

At the start of this routine MAPHI and MAPLOW are already set up
as the most and least significant parts respectively of the job

- c.art. (The real address).

SCRMAP is entered with R5 holding a user's virtual address.

he job of SCRMAP is to point the kernels PAR6 at the same real
address as the user's virtual address in R5. But in V5C +V6
RSTS/E PAR6 also is used to point to monitor code at the proper

time.
Therefore SCRMAP does the following:-

It moves MAPHI into R4 (in preparation for R4/R5 double length
register).
It adds MAPHI to the virtual address in R5 and any carry to R4.
. Hence R4/R5 now holds the real address of the virtual address
in R5.
The combined register is shifted left 6 bits (divided by 64. to
give a byte address on a 64. byte boundary).
. R5 now holds a valid PAR address which is then loaded into
the kernel's PARS6.
. The descriptor register 6 of the kernel is set to 4K and R/W.
. Now, before R4/R5 was shifted left 6 bits (don't forget the
remainder), R5 had been pushed on the stack.

. R5 is now restored from the stack and all but the lowest 6 bits

are cleared.

s10~-3¢

4.4 Scratch memory mapping for core-core transfers (SCRMAP) (CONT'D)

. Therefore by adding 6*2@@@g to R5 we have in R5 the correct
vixtual address in kernel space for the user virtual address
passed to SCRMAP.

. SCRUMP has been appended to SCRMAP to handle .Remaping into

kernel window.

/0 ~3y%

4.5 Compute real address (COROFF)

This routine computes a double length real address of a job start

from its CORTBL entry (K address in bytes).

. The offset within CORTBL is found from R2 (which arrives
holding the job's CORTBL entry), leaving the result in R2.

. Hence R2 is moved to R3 in preparation for treating R2/R3 as
a double length register, and is then multiplied by 1§24 .
(Zlg) to give the byte address.

. The least significant part (R3) is moved to MAPLOW.

. R2 is shifted left 4 bits to give some free bits (don't ask me
why) and loaded into MAPHI as the most significant part of the
real address (*16. of course).

. CORQOFF then returns.

/0~ 36

-8
.

[«}}

)
!
O
=
L

Clock Routine

This 'routine' is the line clock or KWII-P handler depending.
upon the system clock.

It is activated at line frequency (Go CPS standard).

Thé time currency in RSTS/E is the system tick (1/1f second).
The WAITNT (wait for a system tick) bit is set in L3QUE to get
the system to wait until 1 system tick is up.

If a second has just passed, then the number of ticks to next
second (in TIMCLK) is reset to equal the line frequency, and

the QTIMER bit is set in L3QUE to schedule the timer service
(TIMERS) .

If a minute has passed, the number of seconds to the next minute
is reset.

If a day has passed (144f. minutes) a new day is counted and no
minutes to next day reset.

JOBTIM (ticks used by current job is incremented) and the amount
of his quantum remaining (in QUANT) is decremented.

If the quantum has expired then QSCHED is set in L3QUE to
effect a reschedule and QUANT is cleared.

CLOK@ then jumps to RTI47 the common ‘handler' return.

/0~ 3)

.0 I/0 Subroutines

»se routines are I/O housekeeping and checking routines for the

“Ri: I/0 interface (i.e. non file structured I/0).

jo— 34

5.1 Routine to set status bits in JBSTAT on I/0 completion (IOFINI)

It is called with Rl pointing to the DDB of the device concerned,
and the address after the call (JSR R5, IOFINI) holding the required
JBSTAT bits to set.
. From this the corresponding job number is obtained from the
DDJBNO slot in the DDB.
. The number is then used to address the JBSTAT table and the
bits in the word after the IOFINI call are set in the
appropriate JBSTAT slot.

. IOFINI then returns.

/0 =39

5.2 Transfer a character from the user buffer (TTYS2@§ and TTYS34)

At TTYS2F the current buffer address in user space (passed on
in R5 at XRLOC in the XRB) is obtained. The current character
(XRLOC points to it) is loaded into R2.

The PS priority level is raised to 5 with kernel-mode new and
user mode-old Dbits set. This preveunis rcle§ant interrupus.

. TTYS2@ then returrs with R2 holding the character.

. On calling TTYS3@, if the C-bit is set then an error has been
detected by the caller.

. R5 is pointing to the user's XRB at XRLOC the current byte in
the user's buffer.

. Priority level is set to 3.

. If the C-bit is not set then the buffer address is incremented
and the byte count decremented for the user in the XRB at
XRLOC and XRBC respectively.

. TTYS3# returns.

. If the C-bit is true, then TTYS3@ dumps the saved PC from the
stack, and starts an I/0 retry at IOREDO, described in the next

section.

[0~ FO

5.3 Re-effect I/O routine (IOREDO)

- IOREDO sets the JFREDO flag in the jobs JDFLG word.
. Calls SAVJOB to dump the job.

. Jumps to RTI3, the common level 3 exit.

/O~ 4y

5.4 Exit from I/O completion (IOEXIT)

The job slot is obtained from JOB and the bit the job is

waiting for (in its JBWAIT word) is set in the corresponding

JBSTAT word.

IOEXIT then branches to RTI3 to exit.

JO - Y&

5.5 Response to EMT .SLEEP (SLEEP)

. SLEEP. is dispatched to form the EMTTBL

. The job slot is obtained from JOB.

. The entry in the user's XRB + # slot is obtained (being the
sleep time in seconds) and entered into the job's JOBCLK entry.

. ;f the sleep is zero, SLEEP. immediately exits to RTI3.

. If the sleep is non zero, the JBSTAT word for the job is cleared
making it non runnable.

. The job's JBWAIT slot is set to JSKEY and JBWAIT bits.

. SAVJOB is called to dump the job and

. SLEEP. then jumps to RTI3.

Jo 43

6

Character transfer from buffer pool to user (CHRUSR) and (CHRU@1)

5n calling both (JSR R, CHRUSR or CHRUA1) Rl holds the

jevices DDB address add R5 points to the user's XRB at

the current buffer address at XRLOC.

At CHRUSR:-

The PSW is set to priority S to inhibit relevant interrupts.
Routine FETCH it called to get a character from the buffer pool
(placed in the current position (FP) offset to DDINP in the DDB).
On return from FETCH the priority level is set to 3 again and

the C-bit is set if no more characters are available.
If this is the case, CHRUSR exits, otherwise it enters CHRUfL.

At CHRUP1l, the character is moved into the user's buffer, the
byte count incremented and the buffer address. If the byte
count has now exceeded the buffer size (in XRB) then CHRU@1
returns to the address given after the call if no user buffer
room left.

If there is more room, then CHRU@1l returns to the address

given by the caller after the call.

/o -4Y

5.7 Check availability of buffers (FREBUF)

At the call Rl points to the appropriate DDB. After the call is

the Byte Count Fudge Factor.

It traces through small buffers from FREES (small buffer pool
head), until enough have been found to accommodate request.
FREBUF also checks to see if device has reached its quota yet
as well as whether or not enough buffers are free to exceed
quota to 24% of system total. If not enough can be found, the

C-bit is set and FREBUF exits.

/O~ 45

5.9 User 1/0 EMT interface (USERIX, USERIO)

USERIX is entered from RTI3 for re-doing of IO
USERIX tests the JFGO bit of the job's JDFLG word. If true,
it exits to RTI3 at RTIP3, to effect the force.

. If the job hasn't been forced out, it drops to level 3, clears
the I/0 re-do bit in JDFLG. Accesses the XRB and obtains the
tunction (read/write) from XRCIi+l 1n the XKB.

. It then enters ULERIO at USERI1l, missing out on moving of
XRB into the job?s work block by MOVXRB.

. USERIO is dispatched to from EMTTBL on EMTs .READ and .WRITE
and then, dispatches itself to the appropriate handler.

. On dispatch from USERIO the following contain:-

RF = 2 for read and 4 for write (access having been verified)

Rl = address of DDB or FCB
R2 = handler index (to access handler tables)
R3 = pointer to XRB (at XRLEN)

R5 = byte count pointer (XRB at XRBC)

. At USERIO, MOVXRB is éalled to move the XRB into the job's
work block.

. The channel slot is got from XRCI in the XRB. The job's IOB
(IO block) is entered at the channel slot to get the corresponding
DDB or FCB address.

. If the channel is closed, the error status slot JDIOST in the
job's JDB is set with bit NOTOPN. and USERIO branches to RTI3.

. If the channel is open, then the legality of access is checked
against the DDSTS slot of the devices DDB. I.E. you cant read

from an output only device and vice-versa.
. If access is invalid then bit PRVIOL (privelege violation) is set

in the job's JDIOST slot in its JDB.

ro-9¢

ser I/0 EMT interface (USERIX, USERIO) (Cont'd)

If access is valid, then the handler index is obtained from the
DDB or FCB.
The handler index is used to set the corresponding bit in the

job's JBWAIT word, with the corresponding bit in JBSTAT being

cleared.

The handler index is then used to enter SERTBL (the table of
handler addresses) and USERIO dispatches to the appropriate

handler from the appropriate SERTBL entry.

/0= 47

6.0 Notes on the File Processor

General Functions of FIP.
1) opens & cloées
a) files (initializing & maintaining file structures)
b) non-file-structured devices.
2) has facilities for executing non-resident system code
(--hence it handles certain pieces of the compiler

and RTS code).

FIP runs asynchronously from the rest of RSTS

-has its own stack

-has its own date base

-runs at level 3

-is started by EMT calls

-is restarted frow level 3 queue on disk I/O completion

-serves one job at a time. Each request must be completed
or reach an error condition before the nextvis begun.

As FIP completes the service for each request, it scans
its queue (orginating at FIQUE) and starts the next

request if there is one.

When a user job requests a FIP service,
1) the request is placed in the FIP queue (originating at
FIQUE),
2) the job goes into an I/O wait state for FIP.
Normally such a job can be swapped out, but a few

FIP requests cause a job to be locked in core.

Jo~- Y&

Notes on the FIle Processor (Cont'd)

The FIP queue is a chain of FIRQBs (File Request Queue Blocks)
originating at FIQUE.
Each FIRQB specifies the parameters for a FIP request.

When FIQUE = g, FIP is no longer busy.

FIP uses 2 buffers of 256 words each.
1) FIBUF is a directory buffer.

2) FIPBUF is a buffer for non-resident code.

Typical steps in executing a FIP request:
1) initialize FIP's in-core data base.
2) if non=resident code is needed, read code module
into FIPBUF.
3) dispatch to function handler.
4) set completion and/or error flags.
5) check FIQUE; if there is a next request, branch to it.

6) exit to RT13.
Approximately 5/6 of FIP is non-resident, swapped in as needed.

Notes on data errors:
1) There is no software error detection (such as
checksumming) .
The only errors reported in data are those detected
by the device controllers.

2) Data transmitted to a hung device is lost.

10-4/5

STRING HANDLING

- processing strings, it is essential to arrange the program
.¢ as to avoid "garbage collection". Note that garbage collection

~sps the job o.t and in again.

‘ne technique is to pre-assign all strings to their maximum length

ising the SPACES$ function and then use LSET and RSET to assign
12js8. A variation of £his technique is used by EDIT.

A data bufior is defined by opening a dummy keyboard file;

Then data .s moved within the buffer by one of FIELD, LSET, and

“SET statements. For example, to insert text intc the middle of .

the buffer, the program acts as follows:

1000 FIELD #B%, D% AS B@$, Z% - D% AS BgS :
FIELD #B%, D% AS B1S$, D8% AS Bl$, 2% - D% AS B2S$

The data buffer now has the following structure:

B@S
D% Zi - D%
Bl$ B2$
D% D8% z% - D%

We may now insert the string D8$ (length DB%) by the statements:

1100 RSET B2$ = BfS : move what follcws
LSET Bl1$ = D8S : move in insertion

2% = Z% + D8% : Z% 1s total length

D% = D% + D8% D% 1s length up to

end of insertion.

17/

STRING HANDLING (CONT'D)

To define the buffer, the program first executes:

100 B = 2% : 2% = 5@% * 74% :

OPEN "KB:" AS FILE B%, RECORDSIZE Z%

5 an example of three string-handling algorithms, consider
the problem of truncating trailing blanks from a data record
(for example, a card image). The two functions take as input
any string, returnihg the same string without trailing blanks
and CR-LF. The program segment performs the same function within

an input buffer.

The slowest algorithm succesively reassigns the argument until
it ends with a non-blank:
1499 DEF FNTS$ (X$) :
X$ = LEFT(X$, LEN(XS$)-1%)
WHILE RIGHT (X$,LEN(X$)) {= " "
AND LEN (X$)) #%
1919 FNT$ = X$
1929 FNEND
Results: 113 sec. clock, 18.6 sec. cpu time.
The following is much more efficient. It scans backwards until
a non~-blank character is found. Only one aésignment is made.
2¢p@ DEF FNT1S$ (X$) :
GOTO 2@1@ IF MID(XS$,X%,1%)) " "
FOR X% = LEN(X$) TO g% STEP -1%
2019 FNT1$ = LEFT (X$,X%)
2@2@ FNEND

Results: 9 sec. clock, 6.0 sec. cpu time.

The most efficient algorithm uses the data buffer directly,

avoiding the assignment caused by function calling and the
// ~o2

STRING HANDLING (CONT'‘D)

final assignment at line 2@1f above. (L% is the record length.)
3000 FOR K = L% TO 1% STEP -1%
FIELD #2%, K%-1% AS L$, 1% AS L$
IF L$) " " THEN
FIELD #2%, K% AS L$: GOTO 3928
3919 NEXT K% : LSET L$ = ""
3g2g...
Rasults: 7 sec. clock, 7.0 sec. cpu time.
Note that the more efficient algorithms are much more cpu-bound,

showing that they are doing much less swapping.

Use of INSTR to scan a text.

Assume that a text is stored in the string S$ in the following format:
"wordl word2 word3 "
i.e. each word is followed by exactly one blank. A blank even

follows the last word in the string.

The subroutine at line 1000 is executed once for each word.
The word will be in WS$.

note the following

WS the word to process

L1% points to the first byte of the word in S§

L2% points to the blank following the current word

149 L2% = @% linitialize for first
20¢ L1% = L2% + 1% 1L1% => first byte
3¢9 L2% = INSTR(L1l%,S$," ") lget trailing blank

/-3

STRING HANDLING (CONT'D)

48 IF L2%
THEN W$ = MID(S$,L1%,L2%-1%)
GOSUB 1¢d8 : GOTO 2¢¢ {found, process it

508 ! nothing left in S$

=

TIMING

The built-in functions TIME, TIME$, and DATES$ may be used
to time programs. Note that the following subprogram will be
complex if the program may run pastAmidnite. To use these
routines, execute

GOSUB 20010 to start timing

GOSUB 20000 to print the clock and

restart timing.

20998 T¢ = TIME(#) - T¢ : Tl = (TIME(l) - T1)/14.
PRINT T@; "clock time", Tl; "run time";
IF T@ = #.8 THEN PRINT
ELSE PRINT , T1/Tg; "ratio"

20918 7§ = TIME(F) : Tl = TIME(l) : RETURN

et

nSTS -- STATEMENT HEADERS

. ,CH LINE-NUMBERED STATEMENT CONTAINS A 12-BYTE HEADER, USING

" LTIPLE STATEMENTS CAN SAVE MUCH SPACE. FOR EXAMPLE,

100 X = ¢
110 Y = 1
120 2 = 2

SHOULD BE WRITTEN
100X =@ :Vv=1:2-=2

[HIS WILL SAVE 24 BYTES.

NOTE, HOWEVER, THAT CERTAIN STATEMENTS ALWAYS HAVE A HEADER --
EVEN IF NO LINE NUMBER WAS WRITTEN. THEY ARE:

DEF ‘ SINGLE- OR MULTIPLE-LINE

FNEND

DATA

FOR

NEXT

DIM REQUIRES TWO HEADERS, ONE BEFORE AND ONE AFTER

THUS

100 S =@ : FORI =1 TON : S =58 + X(I) : NEXT.I
IS EQUIVALENT TO

100 s =46

110 FORI = 1 TON : S = S + X(I)

120 NEXT I

//-b

RSTS -- CODE GENERATION

RSTS COMPILES THE BASIC PROGRAM INTO SINGLE-BYTE CODES. THE

VARIOUS COMPONENTS OF A STATEMENT HAVE THE FOLLOWING LENGTHS:

12 STATEMENT HEADER (FOR EACH LINE-NUMBER)

1 STATEMENT END

1 OPERATOR (+, -, MATRIX OPERATORS, ETC.)

3 CONSTANT OR VARIABLE

1 CONVERSION (EXCEPT THAT A = B% REQﬁIRES NO CONVERSION)
4 FUNCTION

6 USER-DEFINED FUNCTION

3 INDEX

ALSO, ONE EXTRA BYTE MAY BE GENERATED TO FORCE THE LENGTH TO AN
| EVEN NUMBER OF BYTES. FOR EXAMPLE:
100 I$ = A + B # SIN(C(X))
12 3 3131 4 3 3
1 (FOR CONVERSION TO INTEGER)
3 (FOR INDEXING)

TOTAL = 37 BYTES.

NOTE THAT A TEMPORARY VARIABLE MAY BE USED TO SAVE VECTOR ADDRESSING:

100 FOR I% = 1% TO N% :
S =85+ X(I%) : S2 = 82 + X(I%) # X(I%) { 42 BYTES
110 NEXT I
BUT
100 FOR I% = 1% TO N% :
T = X(I%) :
S=S+T:82=S2+T#%T ¢ 12424 BYTES
110 NEXT I

)0=7

"S-~ VARIABLE STORAGE OPTIMIZATION

“ACH DISTINCT NAME REQUIRES 4 BYTES PLUS THE NUMBER OF BYTES

+BUUIRED TO STORE

THE DATA. IN ADDITION, EACH DISTINCT

"i'iRST WAME" REQUIRES 2 BYTES.

F, r%, Fg, FNF, FNF%, FNFZ, F(...), F$(...), F€(...)

F AND F1 OR F

AND G

Dc JOT. THUS, IF YOJ USE F, YOU SHOULD USE F% ALSO. TRY TO USE

AS FEW DIFFERENT VARIABLES AS POSSIBLE -- REUSE VARIABLES WHENEVER

POSSIBLE.

DATA STORAGE REQUIREMENTS ARE AS FOLLOWS

2

4 OR 8
6 + N
4

26

INTEGER

FLOATING POINT

STRING, WHERE N IS THE STRING LENGTH IN BYTES
IF THIS IS TﬁE NAME OF A FUNCTION

BYTES FOR AN ARRAY HEADER, PLUS SPACE FOR EACH VALUE.

FOR CONSTANTS, ONLY THE VALUE SPACE IS NEEDED. NOTE THAT CONSTANTS

AR STORED WITHIN
100 A= 2,7 :

IS WASTEFUL, USE

il
(¥
.
~
e

100 A
INSTEAD.

OF COURSE,

100 &, B = 2,

THE PROGRAM. THUS

B = 2.7

7

IS THE MOST EFFICIENT.

/-5

RSTS =-- PROGRAM OPTIMIZATION

AVOID DYNAMIC ALLOCATION OF STRINGS. AT THE BEGINNING OF A PROGRAM,

ALLOCATE ANY STRINGS AT THEIR MAXIMUM LENGTH:

100 Xg = SPACEg (MAX%)

WHERE MAX IS THE MAXIMUM LENGTH OF THE STRING. THEN, USE THE LSET

AND RSET STATEMENTS TO MOVE DATA INTO THE STRING. DON'T RE-USE LET.

USE THE CHANGE STATEMENT TO ACCESS ELEMENTS AS AN INTEGER ARRAY.

CONSIDER:

100 A8 =

H

200 cg
300 Dg

NOTE THE TWO

Cg = Ag

LSET Cg = A8

NOTE ALSO

CS - Ag + nn

: BF =SPACEZ (5%) :- ALLOCATE SPACE
LSET BE = Ag : DON'T ALLOCATE SPACE
Ag + "E" : E§ = LEFT (Ag,2%) : ALLOCATE SPACE

TYPES OF STATEMENT IN LINE 200

THE VARIABLE Cg POINTS TO THE SAME ADDRESS
AS THE VARIABLE Ag.
THE STRINC THAT Ag POINTS TO IS COPIED INTO

THE DATA AREA THAT Cg POINTS TO.
CONCATINATES Ag WITH THE NULL-STRING WHICH

ALLOCATES MEMORY SPACE AND THEN COPIES THE

STRING THAT Ag POINTS TO.

s

RSTS ~-- PROGRAM OPTIMIZATION 2

STRING MOVEMENT EXAMPLE. ASSUME THE SITUATION WHERE

Ag Yo "ABCD"

cg - - T "DEF"

AFTER 100 Cg = Ag

-t ~ LR R Yalay]

Ap e 'cﬂ*"“ i
cg J
AFTER 100 LSET C2 = Ag
Ag —— - D> "ABCD"
CS e = "ABC"
AFTER 100 cg = aAg + ""
Ag SR o> "ABCD"
(of] T "ABCD"

NOTE THAT IF Ag POINTS TO AN I/0O BUFFER (BY THE FIELD STATEMENT) ,
THE STATEMENT |

100 Ccg = A8
WILL CAUSE Cg TO POINT TO THE SAME PART OF THE I/0 BUFFER. 1IF

A NEW DATUM IS READ (USING GET), C# WILL POINT TO DIFFERENT DATA.

WHEN YOU MUST MANIPULATE STRINGS, TRY TO USE ASCII AND CHANGE
STATEMENTS. AVOID USING TEMPORARY VARIABLES IF NOT NECESSARY.
INSTEAD OF

100 Mg = LEFT(Qg, 3%)

110 Ng RIGHT (P8, 2%)

120 T = Mg + Ng

/{-1O

RSTS -- PROGRAM OPTIMIZATION 2 (CONT'D)

USE

100 Tg = LEFT(QZ, 3%) + RIGHT(PZ, 2%)

OPEN I'ILES AT THE BEGINNING OF THE PROGRAM, NOT IN THE MIDDLE.

/=1

RSTS == :CODING OPTIMIZATION

USE INTEGER VARIABLES WHENEVER POSSIBLE, ALWAYS SPECIFY EITHER

‘¢! OR '.,' WHEN WRITING CONSTANTS.

'SE MULTIPLE STATEMENTS PER LINE. (THE MAXIMUM STATEMENT LENGTH

FOR MULTIPLE-LINE STATEMENTS IS 256 BYTES).
USE ! TO INDICATE COMMENTS INSTEAD OF REM.
IN IF STATEMENTS, DO NOT COMPARE VALUES WITH ZERO:

iFr a3{> g Go TO 1¢4g¢

SHOULD BE WRITTEN

IF A% GO TO 10
USE STATEMENT MODIFIERS WHENEVER POSSIBLE (SEE BELOW).
FREQUENTLY USED CONSTANTS SHOULD BE DECLARED AS VARIABLES.
AVOID MAT COMMANDS.
AVOID ARRAYS -- USE INDIVIDUAL VARIABLE NAMES WHERE POSSIBLE.

IF YOU USE ARRAYS, ALWAYS DIMENSION THEM AND SPECIFY

INTEGER SUBSCRIPTS. ARRAY ELEMENTS SHOULD BE INTEGERS

WHENEVER POSSIBLE.

7/~ 1A

RE-USE PREVIOUSLY CALCULATED ITEMS. AVOID INTERMEDIATE TERMS:

A =B+ C
D=A+E

SHOULD BE WRITTEN
D=B+C+E

UNLESS A IS NEEDED INDEPENDENTLY.

DON'T USE USER-DEFINED FUNCTIONS, ESPECIALLY WITH STRINGS. USE GOSUB.

- ALWAYS EXIT FROM SUBROUTINES VIA RETURN, NEVER VIA GOTO.

//-/1

RSTS -- FILE AND MOVING-HEAD DISK OPTIMIZATION

OPTIMIZE PACK AND FILE CLUSTERSIZE.

KEEP LARGE, FREQUENTLY USED FILES ON SEPERATE DISKS.
PRE-EXTEND FILES TO THEIR MAXIMUM SIZE.

PRE-ALLOCATE SCRATCH FILES. THEN, DO NOT KILL THEM, BUT CLOSE
AND RE-USE THEM.

CLEAN DISK STRUCTURES: COPY ALL ACTIVE FILES TO MAGTAPE, THEN
RE-STRUCTURE THE PACK USING DSKINT.

KEEP PRODUCTION AND DEVELOPMENT ACCOUNTS SEPERATE.

{F TWO FILES ARE TO BE OPEN AT THE SAME TIME, KEEP THEM ON

SEPERATE DISKS IF POSSIBLE.

FILE CLUSTERSIZE

A FILE-CONTROL-BLOCK (FCB) IS USED TO LOCATE THE ACTUAL SEGMENTS OF
A FILE. SEVEN SEGMENTS FIT IN ONE FCB. IF THE FILE REQUIRES MORE
THAN SEVEN SEGMENTS, A SECOND FCB IS READ FROM DISK. TRY TO DEFINE

FILE CLUSTERSIZE SO ONLY ONE FCB IS NEEDED.

THE NUMBER OF FCB BLOCKS IS GIVEN BY THE FORMULA:

N = 1 + INT((FILE LENGTH IN SECTORS / 7) x CLUSTERSIZE)

FOR EXAMPLE, FOR A FILE HAVING A LENGTH OF 200 SECTORS, N WILL

HAVE THE FOLLOWING VALUES

N CLUSTERSIZE
29 1 |
15 2

8 4

4 8

2 16

1 32

IF POSSIBLE.

CHOOSE A CLUSTERSIZE OF 32,

/=73

RSTS -~ RECORD TRANSFER OPTIMIZATION

JSE RECORD I/0 WHEREVER POSSIBLE.
AVOID READ AND PRINT AS THEY ARE VERY SLOW (CHARACTER BY CHARACTER).
WHILE VIRTUAL-ARRAY I/O IS FAST, IT MAY REQUIRE MULTIPLE ACCESSES.

100 DIM#4%, A(500%), B(500%)

200 C(I%) = A(I%) + B(I%) FOR I% = 1% TO N%

THIS WILL REQUIRE ONE READ FOR A(I%) AND ANOTHER FOR B(%). THE
SECOND WILL BE TO A DIFFERENT AREA OF THE DISK. IF A FILE STRUCTURE
WERE DEFINED WHERE A(I) AND B(I) WERE PARTS OF RECORD I IN A

FILE ACCESSED BY GET, ONLY ONE ACCESS WOULD BE NEEDED. THUS,

YOU TRADE A MORE COMPLEX PROGRAM (GET FOLLOWED BY FIELD FOLLOWED

BY THE COMPUTATION) FOR A SIMPLER I/O STRUCTURE AND A MUCH
FASTER-RUNNING PROGRAM -- ESPECIALLY IF THE FILES ARE LARGE AND

ARE STORED ON A MOVING-HEAD DISK.

e

DEVICE DRIVER

DIGITAL EQUIPMENT CORRPORATION

A Device Driver Needs: OPEN Routine
Service Routine
Close Routine
Interrupt Handler

Lev
Lev
Lev
INT

3
3
3
L

evel

OPN XXX
SER XXX
CLS XXX
XXX INT

Three exits and nine sub-routines exist in the Monitor for use

by Device Drivers.

1 REGSAV ISR RO-2R5 SAVE
2 FETCH UPDATES DDB & GETS CHAR
3 STORE STORE CHAR & UPDATE DDB
4 CIRBUT CLEARS SMALL BUFFER CHAINS
5 FREBUT FREE BUFFER AVAILABILITY CHECKER
6 CHRUSR XFR CHAR FROM MON SMALL BUFFER POOL USRBFR
7 CHRU@1 MOV CHR TO USER BUFFER
8 TTY520 MOV CHR FROM USER BUFFER TO DRIVER USING XRB
TTY530 UPDATE XRB
9 IOFINI IB STATUS TO SET FROM ISR
10 IOEXIT I/0 COMPLETE EXIT & ALSO RETURN ERROR CODE
11 IOREDO CAN't DO NOW - DO LATER :
12 RESRT4 ISR EXIT

DIGITAL EQUIPMENT CORPORATION

/2 -/

ADDING A DEVICE DRIVER TO RSTS V5B
khkhkhkhkhhkkhkhhkhhhhhhhkrrhkhhhhhhkhkx

Introduction - There exist hooks in the RSTS Monitor for adding

~Taneral

3 device drivers to the system. Including a device driver
requires a re-system generation. Two slots are presently
used for optional devices. XXX is used for pseudo
keyboards and ZZZ is used for the 278f¢ Emulator. Therefore,
the YYY slot is recommended.

Philosophy - There are two types of device drivers in
RSTS/E. Devices capable of NPR transfers move data
directly from the device to the user data buffer.
This requires the user to be locked in core during
the transfe-.

Slower character oriented devices perform data transfer
to monitor buffer space, while the job is not resident in
core. Later the data is tranferred from the monitor
buffer area to the user buffer. Monitor buffers can

be extracted from the small buffer pool or can be
special buffers defined in the read/write portion

of the monitor. Small buffers are 16 words long,

the first word contains a link word leaving room

to store 3@ characters of data. Monitor subroutines
are available for storing and extracting characters
from these buffers. Pointers to these buffers and
current position within these buffers is stored in

a device data blocks for a particular device.

If special buffers are defined within the monitor,

the device driver must manager that buffer.

Definitions -

FIRQB - File Request Queue Block

The "FIRQB" is the means for queueing request for

the file processor. Opening and closing of devices
and files are processed this way. The FIRQB is
actually a parameter block which contains information
pertinent to the request.

XRB = Transfer Control Block
Reads and writes are initiated by the Run-Time System.
The Monitor, not the file processor handles the request.
Information such as byte count and transfer address
is passed in the XRB. A copy of the XRB exists in both
the user image and the monitor.

DDB = Device Data Block

There exists one DDB per device unit. The format
for this device is basically the same for various
devices. However, each device uses various words
and bits differently.

/2 - L

IOB

for lééai aevice names;

DEVNAM:

XXXXXX
YYYYYY
2227222
-1

= I0 Block.

XRB's.

" DP
L1} DF
" DK
" KB
" DT
” LP
1] PR
" PP
" CR
IIMT

-

e e L R S RN e T L =2 ¥ Y

;END OF TABLE

The login procedure includes setting up
the job data structure, which consists of 3 small
buffers from the free small buffer pool.

One is used as a job data block, the first word
of which points to another small buffer which is
used as the IOB for thisjob. The IOB consists

of one entry per I/0O channel.

The third small buffer which is pointed to by the
job data block is a work block for FIRQB's and

JBSTAT/JBWAIT = the monitor contains a Job Status (JBSTAT)
and Job Wait (JBWAIT) Table. Each table contains

‘a one word entry per job. The JBWAIT table indicates
job's waiting for a completion. The JBSTAT

table indicates function completions.

The followinc describes the format of a one

word entry in both of these tables.

Overview -

JSDSK
JSKEY
JSDTA
JSLPT
JSPTR
JSPTP
JSCDR
JSMTA
JSXXX
JSYYY
JS2272Z
JSTEL
JSFIP
JSTIM
JSNUL

1

2

4

1g

20

49
199
209
4p9
1808
20080
4900
19808
20808
40009

DISK WAIT

KB:
DT:
LP:
PR:
PP:
CR:
MT:
XX
YY:
27
KB:

WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
TELEPRINTER WAIT

FILE PROCESSOR WAIT
.SLEEP WAIT CONDITION
SMALL BUFFER WAIT CONDITION

A device driver in RSTS requires the following
main sections.

1.

Open routine

/>3

2. Close routine

3. Level 3 service routine - read/write processor

4. Interrupt Service Routine

For each device driver in the RSTS monitor, there exists

a handler index. These are assigned in the following
manner:

'/ disk

2 keyboards

4 DECtape

6 line printer

18 paper tape reader
12 paper tape punch
14 card reader

16 magtape

20 XXX device

22 YYY device

24 2Z2Z device

The RSTS monitor contains common code for processing OPEN,
CLOSE, READs and WRITEs (GET, PUT, INPUT, PRINT) for de-
vices. The open and ciose code is contained in a module
named "OPN". Reads and writes to slower character oriented
devices perform data transfers to monitor buffer space,
while the job is not resident in core. Later the data is
transferred from monitor buffer space to the user buffer
area. Monitor buffers are extracted from the small/large
buffer pool or defined as part of the device driver. Reads
and writes to devices are processed in the module "MON".
Completion of these functions depends on three dispatch
tables which are accessed using the handler index.

1. Open table (OPNTBL) - this table contains one slot
for every device, which contains the address
of the open routine for that device.

2. Close table (CLSTBL) - similar to open table only
contains pointers to close routines for every
device.

3. Service table (SERTBL) - contains addresses for device

service routines which handle reads and writes.

Open "PR:" as file 1%

The above BASIC PLUS command opens the paper tape reader on
channel 1. This statement causes a file processor request to
be issued. The code executed as a result of this request

can be either resident or non-resident. One of the system
generation questions asks whether you want resident file
handling. This resident file handling includes the open

code.

= 0

The open code functions as described below.

l. Check channel specified. If some device or file is
already open on this channel, abort with an
error message.

2. Check device name specified with device name table.
If this device does not exist, abort with a
no device error, the unit # is also verified.

3. Check DDB for device owner. If this job already owns the
device, exit. If another job owns the device,
abort with an error message. Otherwise update
the DDB with the following information.

1. Current time

2. Clear status bit

3. Set access count to #.
4. Set job #.

4. Using the handler index which exists in the DDB, calculate
the address for the appropriate device open routine.
Now, execute the device open routine as a subroutine.

5. Increment access count in DDB.

6. Set up DDB address in IO block entry for specified
channel.

CLOSE

1. Remove entry from IO block entry for this channel.

2. Using handler index from DDB, calculate address for

appropriate close routine. Execute CLOSE routine
as a subroutine.

3. Decrement access count.

4. If device is not in use update DDB and save device time
job data block for the job who just used the
device.

READ/WRITE Processing

" USERIO - associated with this routine is the transfer control
block (XRB). The XRB contains the following information:

/2 =5 ' .

1. Length of I/0 buffer in bytes.
2. Byte count for transfer
3. Pointer to buffer start for transfer
4. Channel # for transfer
5. Starting device block # for transfer
6. Wait time for tty input

‘JSERIO performs the following:

1. Check that specified channel is open. If not open abort
with an error message.

~)

Check DDB for legal access (read locked and write locked
status). Insure we are not reading from a line printer.
If access is illegal, abort with the error message
"PROTECTION VIOLATION".

3. Set appropriate JBWAIT condition for this job.

4. Map the user buffer in kernel s$pace with the monitor.
This is done to allow core to core data transfers
between the users buffer and monitor buffers.

5. Using the handler index calculate the address for the appropriate
level 3 service routine. Then jump to the appropriate
device service routine.

USERIX

This is essentially a different entry point to "USERIO". It is

used for redoing I/0. 1If for some reason I/0O was stalled by the
or a special data buffer can be defined inthe read/write
portion of the monitor.

used for redoing I/0. If for some reason I/0 was stalled by the

driver exiting to IOREDO, the I/O request would later be processed

through this entry.

RELATED MONITOR ROUTINES AND ENTRIES
hkkhkhkhkhkkkhkhhrkkhkhkkkhkhhhhhkkkkkkkkhk

An understanding of the following monitor routines and entry points
is necessary to implement a driver. Including any of the following
requires an appropriate global definition (.GLOBL).

REGSAV

FETCH

STORE

CLRBUF

FREBUF

CHRUSR

CHRUZ1

TTYS2@ AND TTYS38
RESRT 4

IOREDO

O 0~ U W N
- - . L]]

- ”:SQ-
N
"
NS

12,

1g.

11.

12.

IOFINI

REGSAV-
FETCH -

STORE -

CLRBUF -

FREBUF -

CHRUSR -

CHRU@1 -

TTYS28 -

TTYS3§ -

RESRT4 -

IOREDO -

JOEXIT -

IOFINI -

saves registers
J-k t

&A‘“ -

the interr up

ﬂ hrough 5 on the stack. Used by

se ce rou
get character from the small buffer chain when
ready to output a character to the device.

takes a specified character and stores it in the
small buffer chain, updating appropriate pointers
and counts. Also attempts to allocate another
small buffer if no free space is available in
existing buffers.

clears small buffer chain which is being used for
either input or output, updates appropriate
counters, pointers, and return buffers to the
free buffer pool.

free buffer availability checker. 1If there are noct
at least 1f small buffers left in the system, return
a negative indication. If this device has not used
its quota return position indication.

Else if not at least 2@% of total free in system
return negative.

Else if this device has 25% or more of total system
small buffers return negative.

Else return positive.

transfer a character from the monitor small buffer pool
to the users buffer.

move specified character to the user buffer.

move a character from the user buffer to driver using
information in the XRB.

update pointers and count in XRB.

common return from interrupt processing at levels
4 through 7. If the interrupted level is
processor level 3 or higher issue an RTI.
Otherwise, look for other monitor routines to
start up.

signal I/0 redo. This exit is used to indicate
I/0 cannot be serviced at this time, but should be
redone later.

exit saying I/O complete. Used by levkl 3 service.
Also used to return an error code. Most common
error types are:

EOF end of file

DATERR general parity error
HNGDEV device is hung
NOROOM device is "full"

subroutine called from Interrupt Service Routine.

/2 -7

2.

3.

W me e PERANZAL WA AP T Al Attt wmee W T e - - -

"IOREDOC".

Save and Restore Registers

CALL:

CALL:

JSR R5,REGSAV

exits with SP->»Rg,R1,R2,R3,R4,R5

and the carry bit unchanged

JSR R5, REGRES

pops RP-R5 from stack leaving carry bit
unchanged

Character Fetching Routine

CALL:

R1->DDB

JSR R5,FETCH

+ OFFSET

oo RETURN [C=1 FOR NO CHARACTERS LEFT]

OrFSET=DDINF+TF LfOr input buffer
OFFSET=DDOUT+FP for output buffer
character is returned in R2

R4 is clobbered

Character Storing Routine

CALL:

where:

R1->DDB

R2=character to store

JSR R5,STORE

+ OFFSET

ces - RETURN [C=1 FOR NO ROOM LEFT]
OFFSET=DDINP+FP for input buffer
OFFSET=DDOUT+FP for output buffer
R3,R4 are clobbered by the process!

Buffer Chain Clearer Routine

CALL:

where:

R1->DDB

JSR R5,CLRBUF
+ OFFSET
oo RETURN

OFFSET=DDINP+EP for inputbuffer
OFFSET=DDOUT+EP for output buffer

R3 is clobbered by the process!

CPU priority raises to 5 during process

Free Buffer Availability Checker

CALL:

where:

R1-DDB
JSR R5,FREBUF
+ XXX .0B

e RETURN [C=1 IF NOT ENOUGH]
XXX.0B is BC count fudge factor

Character from Buffer Pool to User Routine

CALL:

CALL:

R1->DDB

R5-»XRB @ XRLOC

JSR R@,CHRUSR

oo RETURN IF NO USER BUFFER ROOM LEFT
o RETURN IF ROOM FOR MORE

oo RETURN IF NO BUFFER POOL CHARS LEFT

SAME REGISTER AS 6.

JSR R@,CHRUZL
. RETURN IS NO USER BUFFER ROOM LEFT

/&”J/ , 1)

cea return if room for more
R3 is clobbered by both routines

8. Character from User; IOF; Return
CALL: R5=»XRB @ XRLOC
JSR PC,TTYS28
ces RETURN

Character in R2
Check C bit and Wait or Adjust Counts and Return

CALL: R5=->» XRB @ XRLOC
CARRY=1 means buffering failure

JSR PC,TTYS38
. RETURN [only if no failure]
R5 NOW -»XRB @ XRBC
9. Return from Interrupt
CALL: JMP RESRT4
148. Re-Do the I/O Routine
’ CALL: JMP IOREDO
11. Exit from I/O Completion
CALL: JMP IOEXIT
Exit from I/O Completion with an Error
CALL: MOVB #HNGDEV,@IOSTS
JMP IOEXIT

HNGDEV can be replaced with DATERR, EOF, NOROOM, ETC.

Routine to Set Status Bits in JBSTAT
CALL: R1-»DDB

JSR R5,IOFINI
+ JBSTAT BITS TO SET
oo RETURN

JOB # is in R4 on return

REGISTER DEFINITIONS FOR OPEN, CLOSE, AND SERVICE

The following registers are set up before entering the
following sections of the device driver.

OPEN

R1->DDB
R4=»FIRQB

The following instructions should be included in the
OPEN subroutine to transfer the default buffer size
and flag value to the Run-Time System.

MOV #2??,FQBUFL[R4) ; SET DEFAULT BUFFER LENGTHK
THIS IS ALSO THE MINIMUM
BUFFER SIZE (RECORD SIZE!
BUFFER SIZE (RECORDS SIZE!}
MOV #YYYFLAG,FQFLAG(R4) ;SET FLAG VALUE

/2-9

CLOSE

2 for read, 4 for write (access verified)
FCB/DDB pointer

XRB pointer (@ XRLEN)
kernel window address to user's buffer

R1=-=DDB
RA«»FIRQB
R5-»DDB
~2ad/Write Service
RE -
Rl -
R2 - handler index
R3 -
R4 -
R5 -

-

byte count pointer (XRB @ XRBC)

The following macros must be defined in the device driver

1. VECTOR ORIGIN,ADDRES,PRI

where:

ORIGIN is the address of the interrupt vector
for this device '

ADDRESS is the address of the interrupt service
routine for this device

PRI is the priority at which the interrupt
service routine should run. This is actually
the value which goes into the second word

of the interrupt vector. The following
symbols were defined in the module kernel
which is assembled with device driver and may
be used here.

PR7 - defined as 340 to indicate

priority 7.

PR6 - defined as 3@fF to indicate
priority 6.

PR5 - defined as 244 to indicate
priority 6.

PR4 - defined as 2@@ to indicate
priority 4.

2. S$SSDEV DEV,STS,IBC,0BC,SIZ .
where: DEV indicates the device. For example,

YYY would be used if adding a YY device
driver.

STS indicates status. The following symbols
defined in kernel may be used here.

DDWLO - device is write-locked
FLGPOS - file's position needs checking

FLGFRC - file is force type, not blocked

J2 /0

IBC
for

OBC
for

S1z

R me & Dol ve e e e A A My wise
Run-Time System on output even
if the data buffer in the job

is not full).

FLGKB - file is keyboard type

FLGRND - file is random access type

DDRLO - device is read-locked

DDNFS - device is non file structured

is the
input.

is the
output.

number of small buffers allowed

number of small buffers allowed

indicates line size.

NOTE: Although IBC and OBC specify the number
of small buffers a device may allocated,
buffer management will allow a device to
allocate more buffers if there are a suf-~
ficient number of free small buffers in

the

$$$fLG DEV,

where:

system.,

Ql

DEV indicates the device. For example.
YYY would be used for a YY device.

Ql indicates the appropriate flag values
for a device. Any of the following symbols

may be OR'ed together.

DDNFS - file is non-file structured
DDRLO - file is read locked
DDWLO - file is write locked

FLGPOS - file's position needs checking.
Used by terminal and line printer drivers.
Keeps vertical and horizontal positions.
Checks control characters.

FLGFRC -~ file is force type, nct blocked.
Only significant for output devices.

Used for character oriented devices, data
is transferred from the Runtime System
without waiting for the buffer to fill up.
Should always be set for input only devices
so that error messages will he returned
immediately.

FLGKB - file is keyboard type

should indicate device is human oriented device
not used by the system. Meant tc be checked

. ’ ‘ ; by the user by checking the status

FLGRND - file is random access type

The Run-Time System will not accept the
"RECORD" option. It will return an error
message instead.

-

4, ORG YYYCTL - Only necessary if a portion of the driver must
be read/write. Otherwise, all code
in the driver must be read only code.
This line of code must be included if
you want to add your flag words and
buffers.

INCORPORATING A NON-STANDARD DEVICE DRIVER IN RSTS/E

The following modifications to the system generation procedure
are required.

After answering all SYSGEN questions the following message
appears on the terminal.

SYSGEN:IF YOU HAVE ANY SPECIAL REQUIREMENTS WHICH REQUIRE
SYSGEN:EDITING EITHER THE CONFIGURATION FILE (CONFIG.MAC)
SYSGEN:OR THE BATCH GENERATION FILE (SYSGEN.BAT), ABORT
SYSGEN:NOW BY TYPING "CONTROL/C" AND THEN "TE". RESUME AT
SYSGEN:THIS POINT BY TYPING "BATCH SYSGN2". OTHERWISE,
SYSGEN:TYPE "CO" TO CONTINUE WITH SYSTEM GENERATION:

At this point the files "CONFIG.MAC" and "SYSGEN.BAT" should be
modified. Therefore type "CONTROL/C" and then "TE".

The configuration file (CONFIG.MAC) must be modified to
include the following parameters.

YYYY1l=N ;N=Number of units for this device
YYYYYY="AB ;device name, must not conflict with existing
devices (DT, MT, PR, etc.)

The batch stream (SYSGEN.BAT) must be modified to include
assembly and linking of the new driver.

"SYSGEN.BAT" includes the following commands for assembling
TBL and TTY. A command for assembling YYY must be included.

$RUN MACRO
#TBL, TBL/CR<CONFIG,COMMON,KERNEL,TBL
$RUN MACRO
#TTY,TTY/CR<CONFIG,COMMON,KERNEL, PKB, TTY
* ok SRUN MACRO
* k% #YYY,YYY/CR<COMMON, KERNEL, YYY

A command must also be added to the link the driver to RSTS.
SRUN LINK
#UPDATE

#NOFAIL
#PATCH

/2 /2 ' | j

NN *YYY
#RSTS/IN:0OPN:SND/E

After including the above modification,

"BATCH SYSGN2".

/2-/73

ERRLOGGING AND CRASH ANALVYSIS

.27
* TR Tnf'GING ON RSTS/E

'7l-'.
P9

RH11/RPP4 ERROR LOGGING IN RSTS/E

O O R @ ome €3 cOm Wi W s e LTS Mae O X3 ST ENR M ASD ETE W SR SR TIL Twe et Sew e e

RSTS/E error logging uses 13 word packets. The fis
standard for all packets. The first 4 words ¢]

ERROR CODE

DATE

TIME (in seconds)
JOB

PROCESSOR STATUS

RP@4's use 6 of the remaining 9 words to save the following.

RHCS1 RH11 Contrel Status 1
RHCS2 RH11 Contrcl Status 2
RHDS RH1l Drive Status

RHER RH1l Erxror Status

RBDC RP@4 Desired Cylinder
RBDA RP@4 Desired Track/Sector
RBOFF RP@4 Offset

1 of the remaining 3 words is used as follows:

11/7%: RHBAE RH7@ Address Lxtension
RHCS3 RH7@ Control Status 3
Non-11/78: Flag indicating nc RHBAE or RE{SZ

The final 2 words are used as follows:
RBER2 & RBER3 are ¢

Flag indicating RBERZ
Flag indicating RBER3

g
z

RHWC RH11 Woréd Count
RHBA RH11 Bus Address

i

/3=

i

ERROR LOGGING ON RSTS/E

e L

s

March 21, 1975

RBER2 # ¢

RBER3 = g

Flag indicating RBER3 =
RBER2 RP@4 Error Register
RHBA RH11 Bus Address
RBER2 = g

RBER3 # g

Flag indicating RBER2 = g
RAWC PH11 wWord Count
RBER3 RP@4 Error Register

RBER2 & RBER3 # g

RBER2 RP@4 Error Register
RBER3 RP@4 Error Register

/33—

#2

#3

#2
#3

e BTG s A

Oﬁkiﬁittiifi*#it***t

THERE EXISTE A CORE TARLE CALLED "ERRTBL" WHICH HOLDS TEN 12=¥0RD

M“rTMAI FMTDYCQ THIZ‘ |r:Mr~‘ru 0 THIS TsBLE IS DEFINED BY THE

”ARAMFTER “FRRSIZ" NHICH APPEARS IN THE COMFIGURATION FILE
. CONF1G,MACn AND DEFINES THE NUMBER OF TABLE ENTRIES,

i.ARLOG CREATES A TABLE ENTRY ON THE STACK, COMPARES THIS ENTRY
FOR A POSSIBLE DUPLICATION IN THF TARLFE "ERRTRL"™, IF A
DUPLICATION IS FOUND, A REPEAT COUNT IS INGREMENTED IN THE
ALRZADY ExISTING TABLE ENTRY AND THE ROUTINE 1§ EXITED,

A MORE DETAILED DESCRYPTION FOLLOWS;

ERRLOG FIRST DECIDES WHETHER AN FRROR 1S BEFING LOGGED
OR THE SPECIAL SYS FUNCTION TO FIP («15) FDR ERRLOGGING
IS BEING EXECUTED, IF A PARAMETFR OF ¢ IS SPECIFIFD IN
THE SYS FUNCTION, ERRLOG INTERPRETS THIS AS AN ANNOUNCEMENT
THAT THIS JoB IS THE ERROR LOGGER AND SHOULD BE MADE
FINNABLE EVERY TIME AN ERROR I8 LOGGED, ERRLOG RECQRDS
THE JoB NUMBER AND JOB DATA ADDRESS 0OF THIS PARTICU|LAR JOB,
L

THE PARAMETER IS NON=-ZERO, TABLE ENTRIES FROM MERRTBL" ARE
“FASSED BACK 10 THE USER, ERRCPY USES TNIS SYS FUNCTION
T0 EXTRACT ENTRIES FROM CORE AND COPY THEM 10 THE DISK FILE
YSERRLOG,.FIL",

IF AN ERROR 1S BEING LOGGED, A 12 DECIMAL WORD ENTRY IS
CONSTRUCTED ON THE STACK, THE FORMAT FOR THIS EMTRy FOLLOWS,

"WORD © LOW BYTE CONTATNS evrvor code
The. HIGH BYTE CONTAINS A REPEAT COUNT

WORD ¢ BITS 1 THROUGH {5 CONTAIN THE DATE
BIT @ IS THE MIGHM RIT OF THE TIME IN HRS/MINS

WORD 2 BITS 6 THROUGH {5 ARE THE LOW BITS OF THE TIME
IN HRS/MINS :
BITS @ THROUGH 5 REPRESENT SECONDS TILL MIDNIGHT

“RD 3 BITS 6 THROUGH {5 REPRFESENT THE PSW IN PACKED FORMAT
BITS @ THROUGH 5 REPRESENT THE JOB NyMBER

WORD 4 «VIRTUAL PC .

WORD 5 +HIGH 12 BITS OF ABSOLUTE PC, RIGHT JUSTIFIED

WORD 6

THROUGH

WORD 11 VARIOUS REGISTERS, DEPENDENT ON ERROR TYPE

«INCLUDED FOR THE FOLLOWING ERRDRS ONLY
TRAP THROUGH 4
RESERVED INSTRUCTION TRAP
MEMORY MANAGEMENT ERROR
PARITY ERROR

JWERFAIL AND TRAP THOUGH @ SAVE NOTHING BEYOND WORD 3,

/3-3

mevy Wy e s wLbUmivty LUNUITIUND AKE IRVUE) AY lLLLUAL ram av

ASSUHED AND THE PSw ENTRY IS SFY 1O ALL §'S,

T BIT SET
< UNUSED RIT SCY
CURRENT OR PREVIQUS MODE SUPERVISOR "@i"

THE PSW IS PACKED INTO BITS 6 THROUGH 15 OF WORD 3 IN THF
“OLLOWING MANNER?®

EIT 15 {sCURRENT MODE USER
PRCURRENT MODE KFRNEL
BIT 14 {sPREVIOUS MODE USFR
PEPREVIOUS MODE KERNEL
Bii 1113 PRIORITY
BIT 10 GENER.L REGISTER SET, | IF 11745
BI. 9 N
BIT 8 2
BIT 7 v
BIT 6 c i

CALCULATING ABSOLUTE (PHYSICALY ADNDRESS FROM VIRTUAL ADDRESSH

Ns BITS 15~13 OF VIRTUAL ADDRESS
xxxs BITS {2=-06 OF VIRTyUAL ADDRESS .

C¢PAR Ny + XXX = HIGH ORDZR 12 BITS OF PHYSICAL ADDRESS

LOW ORDER 6 BITS ARE THE SAME IN BOTK PHYSICAL AND
VIRTUAL SPACE,

MISSED ERRORS

IF "ERRTRL"™ IS FULL AFTER A NEW ENTRY IS CREATED ON THF STACK,
AN EXISTING ENTRY WILL BE OVERLAYED, BEFORE THKIS HAPPENS,

THE REPEAT COUNT PROM THE TARLE ENTRV ABOUT TO BE LOST I8
ADDED TO A COUNTER WwHICH IS ALSO INCREMENTED { FOR THAT ENTRY,
THE CONTENT OF THIS COUNT IS LATFR PASSED TO THE USER AS IF

IT WERE A TABLE ENTRY, THIS ENTRY CONTAINS ONLY TWQ WORDS,

WORD © "

WORD | NUMBER OF MISSED ERRORS

IF THIS COUNY REACHES =i, IT IS RESEY TO THE WIGHEST POSITIVE VALUE,
THE "ERRTBL" COULD OVERFLOW IN THWIS MANNER, IF "ERRCPY,RAS" 1S

~NOT RUNNING, OR ERRORS ARE BEING LNGGED AT AN EXTREMELY RAPID
RATE,

/3-¢

AL L L KR XX TR XX TRy g ar g gy

THE FOLLONING 16 ERROR TYPES ARE LOGGED AND DISPLAYED WITH
THE ERROR LOGGING FACILITIES IN RSTS/E,

DECTAPE

RF114

RC1Y

RK11

RP1Y

MAGTAPE
KEYBDARD

TRAP THRQUGH 4
POWER FAIL

TRAP THROUGH @
RESERVED INSTRUCTION

JUMP TO @

RUN=TIME SYSTEM ERROR (CHECK=SUM ERROR)
MEMORY MANAGEMENT

DH11

PARITY

“HE INFORMATION DISPLAYED BY ERRNPIS REGARDING MOST ERRORS 1§
JELF=EXPLANATORY, THAT IS HARDWARE REGISTERS ARE DISPLAYED,
SELECT ERRORS CAN BE CAUSED BY REFFRENCING A UNIT # WHICH

IS NOT PHYSICALLY SELECTED.

THE DISPLAY OF TWO ERROR MESSAGES WHICH ARE NOT 0BVINUS
ARE DISCUSSED BELOW, (DHi{ AND CHECKSUM)

1. CHECKSUM ERRORS

THE FOLLOWING REGISTERS ARE DISPLAYED, SAMPLE VALUES ARF INCLUBED
TO HELP EXPLAIN THEIR MEANING,

#UISARQ 2400 USER IMAGE BASF = 2400«109 = 24p4ae
UISAR? 6000 YOP OF BASIC = 8NR2Cw 03+20030 = 2P
SIZE 5 USER IMAGE sizE
RYS SIZE 16 RUN=TIME SYSTEM SIZE IN 0CTAL
R3
R5

bWk bbbk kv ek O

* i

* * s
»)

» *

. *

ehdkdwbebnrwrbwww 240000
¢ USER IMAGE 5K «
Whh ko h
* *
¢ ¢
it**itttiﬁ*t*iibt
*

+

" -

. BASIC » .

v 14K *

. "

" »

Wk be R hbknnbawy H20000

/33—

AT et WSRO URLUNE

1, TRUE CHECKSUM, 3
R3<>R5 = R3 a CHECKSUM FROM D1SK
RS = COMPUTED CHECKSUM

THI8S ERROR WOULD OCCUR AFTER A RUN OR CHAIN COMMAND,
THE "PROGRAM LOST=SORRY" MESSAGE WOULD APPEAR ON A
USER!'S TERMINAL,

2, R3aR520 _
ON 11740 WITH NON=FIS MATH PACKAGE, THME FIS INTERRUPTED,
ON 11/45 WITH NON=FPP MATH PACKAGE, THE FPP INTERRUPTED.

3. R3a"FLOAING EXCEPTION CODE" 1 RS5e"FLOATING EXCEPTION ADDRESS"
ON $1745 WITH FPP MATH FACRAGE) THE "FLOATING EXCEPTION CODE"
WAS ILLEGAL,

THE MESSAGE "FLOATING PAINT ERROR PROGRAM LOST=SORRY" SHOLLR
APPEAR AT SNME USER!'S TERMINAL AT THE TIME OF THIS FRROR

FOR CASES 2, aAND 3,,

NOTEs SEE 11/45 PROCESSOR HANDBOOK FOR DEYAILED FPP INFORMATICN,
« USER INSTRUCTION SPACE ANDRESS REGISTER (PAR)
UISAR® THROUGH yIgAR3 ALwAYS MAP USER IMAGE,
UISAR4 THROUGH ylsgAr? BLWAYS MAP RQUN=TIME QYSTEM, STARTING
WITH 7 FOR THE TOP SEGMENT,

2, DH{{ ERRORS
THE INFORMATION DISPLAYED INCLUDES THE FOLLOWING;

JOB

PSW

*CH EB

CSR ADDRESS

CSR CONTENTS

SILO STATUS

LINE PARAMETER REGISTER .
CURRENT ADDRESS REGISTER ‘
BYTE COUNTY REGISTER

BUFFER ACYIVE REGISTER

THE FOLLOWING EVALUATION PROCEDURE SHOULD BE FOLLOWED}
EXAMINE CSR CONTENTS,

IF BIT 14 IS SET THEN THIS WAS & SILO OVERFLOW, THE
INFORMATION IN CH,EB 1S MEANINGLESS,

IF BIT 1@ IS SET THEN NON=EXISTENT MEMORY, THE INFORMATION
IN CH,EB IS MEANINGLESS,

/3 =6

OTHERWISE, CH,CE SHOULD BE EYAMINED, :

IF RIT 14 IS SET THEN THERE WAS A DATA OVERRUN'

IF BIT 12 IS SET, INDICATING PARITY FRROR THE LINF
PARAMETER REGISTER §HOyULD RE EXAMINED FOR Bly 4
WHICH IS THE PARITY ENARLE INDICATCR, THIS CASE
SHOULD NEVER OCCUR FOr PSTS/E DDES NOT ENABLE
PARITY ON THE DHWiy, KQWEVER, THIS CoONDITION HAS
OCCURRED, THE CAUSE wAS SOLDER SPLASH,

«CH,ER IS AN ABBREYIATION FOR CHARACTER « ERROR BIT REGISTER

/3 -7

tedhobddbabidw

IN ORDER TO ANALYZE SYSTEM CRASHES PROPERLY, THE CRASH DUMP
FATILITY MUST BE EMABLED DURINA THE START OPTION, AND THE
(UNSOLE SWITCHES MUST LEFT IN AN UPWARD POSITION,

“HEN THE RSTS/E SYSTEM CRASHES, APPROXIMATELY 12K OF CORE
~TtL 3E WRITTEN INTO THE DISK FILE CRASH,SYS UNDER ACCOUNT (0,1),

‘nPEE PROGRAMS MUST RE RUN TO FEXTRACT THE INFORMATION NECESSAY T0O
"RFORM CRASH ANALYSIS, THESE PROGRAMS WHICH ARE DISTRIBUTED
wITh THE SYSYEM LIBRARY ARE THF FOLLOWING}

ANALYS
ERRCRS
ERRDIS

THE EXECUTION OF THESE THREE PROGRAMS SHOULD BE INITIATED FROM
YHE CRASH,CTL FILE, THE FOLLOWING CRASH,CTL FILE EXAMPLE INCLUDES
THE NECESSARY COMMANDS,

FORCE KB@p RUN $ANALYS

FORCE KBOj {2,1)CRASH,8yS

FONCE KB@g KB}

FORCE KB@$ RUN SERRCRS

FORCE «B@t TEMP,TMP

FORCE KB@y

FORCF KR”: RUN SERRDIS

FORCE KBAy TEMP,TMP

FORCE KBps KB

FORCE KB@s ALL

FORCE KB@s /KILL

FORCE kB@s RUN SINIT

SEND 1'M NOW ATTEMPTING To RECOVER FRQOM A CRASH =
SEND THANK YOU FOR YOQUR PATIENCE,,.
END

THE LAST FORCE COMMAND IN THIS EXAMPLE FORCES THE SYSTEM

PROGRAM "INITM" TO RUN 4GAIN, THIS TIME EYECUTING ALL THE
COMMANDS IN THE START,CTL FILE, THIS ELIMINATES THE NEED

FOR REPEATING THOSE COMMANDS IN THIS FTILE, THE INIT PROGRAM
CONTAINS TWp ENTRIES, ONE WHICH REAUIRES IT TQ USE THE START,.CTL
FILE FOR COMMANDS AND THE QTHER WHICH CAUSES IT To ASSUME
COMMANDS FROM CRASNH,CTL,

THE INFORMATION QUTPUT BY THE COMMANDS IN TH1S CRASH,CTL AND
THE LOAD MAPS FOR THE SYSTEM ARE THE NECESSARY 7Y00LS FOR
ANALYZING CRASHES, .

ﬁ**i*ttt**i*i'*itti'ﬁi*ﬁti*iiti**it****i**ttiitiiii&iit*itt*i*tﬁﬁ

NOTE: JOB #'S IN THE CRASH DUMP ANALYSIS MUST RE CONVERTED FRNOM
OCTAL 7O DECIMAL AND DIVIDED RY 2 TO CORRESPOND WITH
JOB #'S IN THC CRASH DUMP STATUS, WHICH I8 DISPLAYED
AT THE BEGINNING OF THE CRASH ANALYSIS, NUMRERS UNDER
"JOB) NEXT" AND "FIJOR"™ ARE THWE JOB # MULTIPLIED Ry 2
IN OCYAL,

L]
&*Ah‘&b*&*****-ﬁ‘é#%b&&‘v&*&ﬁ&&i.&&&&’&7&3.&& O O A
—

1, ERROR CNDE = THE FIRST ITEM TO FXAMINE ON THE CRASH ANALYS
OUTPUT IS THE ERROR CODE, THIS CODE SHOULD CORRESPOND
TO ONE OF THE FOLLOWING,

ERROR_CODE DEFINITION
Mrtiavanan rhvavanmna
=y (1777727) UNKNOWN VECTOR
=2 (1777765 JUMP T0 o
41 TRAP 4
2 TRAP 10
43 TRAP 250 MEMORY MANAGMENT VInLevTow
A4 KERNEL SP STACK OVERFLOW
46 TRAP {14 PARITY MEMORY ERROR
) FORCED DUMP

IF A DUMP WAS FORCED (COMPUTER HALTED 4ND RESTARTED WRITING OUTY
THE CRASH FILE) ALL INFORMATIOM ON THE CRASH ANALYSIS FROM
"SAVED R@ TO R5" DOWN TO AND INCLUDING "uSER ADDR, REGS*® 13
MEANINGLESS, FORCED DUMPS OF THIS TYPE PO NOT CAUSE THE NOFATIL
CODE Yo BE EXECUTED WHICH SAVES THIS INFQRMATION, IF You MyST
FORCE A CRASH DUMP, IT wOyLD BF MORFE ADVISEABLE TO HALT TKF
COMPUTER, EXAMINE THE CONTENT oF LaCAYINN 4, sic THIS ADDRESS A
(NE SWITCH ADDRESSES, LQOAD ADDRESS, AND HIT START,

ey PC AND PSW = THE FIRST TwO ITEMS ON THE KERNEL STACK ARE THE
PC AND PSW AT THE TIME OF THE CRASH, .

PC = THE LOAD MaAPS sHouLp RE REFERENCED FOR MODULFES AND
GLOBALS wHICH MOST NEARLY CORRESPOND TG THIS ®C VALUE,

PWS » THE PSW SHOULD FOLLOW THE FOLLOWING FORMAT ¢

X XXX Xeo AxXX Xax XXX
XIS *

. « 1 IF 11/45, o IF y1/40
.

"
28A@ CURRENT AND PREVIOUS MODE KERNEL,
KERNEL CRASH FROM AN INTERRYUPT ROyUTINE,

Vﬂﬂli CURRENT MONE KFRNEL, PREVIOUS MODE USER,

KERNEL CRASH FROM INTERRIJPT ROUTINE OR MONITOR,

1111 CURRENT aAND PREVIOUS MODE USER, THIS WAS
A USER CRASH, THE J0nR # UNDER "JOBRjs NEXTH
WAS CURRFNT,

}1 RSTS/E DOES NOT USE SUPERVISOGR MODE, THE PSK S#OULD
1

)
| NEVER INDICATE SUPERV]ISOR MODE,

/3-5

3« KERNEL SP « SHOULD ALWAYS BF LESS THAN "FISTAK", THE RSTS/E
MONITOR UTILIZES TWO STACKS: ONE FOR FIP(FILE PROCESSOR)Y,
AND THE OTHER STACK FOR OTHER MONITOR OPERATION, "FISTAK"
MARKS THE BEGINNING OF THE FIP STACK, "SYSTAK 422 MARKS
THE BEGINNING OF SYSTEM STACK, AND THE BOTTOM OF LIMIT OF THE
FIP sSTACK, THE FOLLOWING HELPS DETERMINE WHAT TYPE OF OPERATION
WAS BEING PERFORMED, '

SP<n8YSTAK"«20n(0CTAL) A KERNEL (MONITOR) OPERATION WAS IN
PROGRESS, THE JOB & UNDER "JOR) NEXT"
WAS THE JOB BEING PROCESSED AT THE
TIME THNE SYSTEM CRASHED,

SP>"SYSTAK"+20{0CTAL) A FIP(FILE PROCESSOR) OPERATION WAS IN
PROGRESS. THE JNR # UNDED wET enne
DETERMINES WHICH JOB WAS IN A FILE
PROCESSING STATE,

IF THIS CASE 1§ TRUE THE INFORMATION
UNDER M“FIRQRW(FILEF REQUESY QUE BLOCK)
AND/OR "XRR"(TRANSFER CONTROL BLACK)
SHOULD BE FXAMINED, (REFER TO V5 S,W,5,
NOTES FQR FIrnB AND XRB FORMATS)

NOTEL MFISTAK® g "SySTAKN ARE GLORALS IN THE <LOWCOR>
SECTION OF THE RSTS.LDA LOAD MAP,

4, KERNEL, LDDR, REGISTERS = KERNEL ADDRESS REGISTERS @ THROUGH 5
ARE USED 10 MAP THE MONITOR, REGISTER 6 Is USED BY TYTHE
MONITOR YO MAP & PORTION OF THE USER IMAGE FOR YpANsFER
oF THE PECTAPE BUFFER FROM MoNITOR To USER SPACE, REGISTER 7
I8 USED T MAP YHE I/0 PAGE,

S. USER ADDR, REGISTERS = USER INSTRUCTION SPACE ADDRESS REGISTERS
@ THROUGN 3 ARLC yUSED TC MAP THE |JSER IMAGE, REGISTERS
4 THROUGH ? Map THE RUN=YTIME SYSTEM,

6., KERNEL DESC, REGS
USER DESC, REGS, = REFER 710 PAGE 2~9 OF THE K711 MEMORY MANAGEMENY
. UNIT MAINTENANCE MANyA((DEC={1=NKTB=D),

FORCED SYSTEM CRASHES

WA R YT T T
TWO FORCED CRASHES EXIST IN THE RSTYS/E MONITOR,
1o IN THE MODULE FIP, AT "FIPERR"+34
THE DiSK DRIVER RETURNING AN ERROR pURING ONE OF THE FOLLOWING?

{, WINDOW TURN 0R DISK FILE EXTEND,

2, READING NON=RESIDENT CONE NECESSARY FOR & MAGTAPE
OPEN, CLOSE, ZERQ, OR CATALNG,

3, READING NON=RESIDENT CODE NECESSARY FOR A DECTYAPE
OPEN, CLOSE, ZERO, OR CATALOG,

THE DISK DRIVER ALWAYS RFTIIRNS THE FRROR BECAUSE THWE
DISK DRIVER 1S PERFORMING THF nBIsK CPEFATIONS WHICH
HANDLE MAGTAPE anD DECTAPE QVER[AYS WHICH RESIDE ON
Disk,

/3-/0

FIVE ATTEMPTS ARE MADE BFFARE FORCING THE CRASM,
THESE ERRORS SHOULD BE LOGGED IN THE ERROR LOG FILE,

2, IN MODULE MTA, AT <MTACHK>+16

IF THE CURRENT MEMORY ADDRESS (MTCMA) OR THE WORpD COUNT
(MTYBRC) 1S CLOBBERED, THE SYSTEM FORCES A CRASH,

#««wBOTH OF YHE FORCED CRASHES DESCRIBED ABOVE wlLL gHOW yP
AS TRAPS THRU 4,

THE FOLLOWING INSTRUCTION IS ALWAYS USED TO FORCE A CRASK,

(PCad) 5737
(PC=2) i

/3~y

2780

DIGITAL EQUIRPNMENT CORDGEATIINN

&

DESCRIPTION: 2780 Information

RSTS/2780 is a software package which enables a suitably equipped
RSTS/E system to-act as a very powerful remote job entry (RJE)
terminal. Using RSTS/2780, RSTS/E users may queue data and/or

job control files for transmission to one of IBM's remote job
entry packageé (HASP, ASP, DOS/POWER or RJE), or to another
PDP-11 based system. RSTS/2780 accomplishes this by appearing

to a point-to-point synchronous data-link as an IBM 2780 Model

1 Data Transmission Terminal. The 2780 is supported by all of
the above-mentioned IBM programs, as well as being able tc communicate
with another 2780. Thus, RSTS/2780 emulating the 2780 can
communicate with the other PDP-11 based 2780 emulators (Core-2780,

DOS-2780, RSX-11D/2780 or another RSTS/2780).

RSTS/2780 operates at data rates ofA4800 bits per second over
switched or private facilities using Bell System series 208 modems
or their equivalents, or at 2400 bits per second on private lines
and 2000 bits per seqond on switched lines using Bell System series
201 modems or equivalents. The Bell System 801 Autocall unit is

not supported.

When communicating with an IBM system RSTS/2780 will operate
using either a 2701 Data Adapter, a 2703 Transmission Control
Unit, a 3704 or 3705 Transmission Controller, or a System/370
Model 135 Integrated Communications Adapter. The RSTS/2780 system

itself uses either the DUll or the DPll synchronous interfaces.

/4y

DESCRIPTION: 2780 Information (Cont'd)

RSTS/2780 consists of two software components; a driver for the
DP1ll or DUll synchronous data-link interface which is linked into
the RSTS/E Monitor, and a control.program which manages the flow
of data to and from the link. The control program, written in

the BASIC-Plus language, provides both interactive and spooled
modes of user interface. In interactive mode the system operator
establishes the data-link and specifies directly the files to be
transmitted to the remote system, as well as destination of re-
ceived data. In queued mode, the control program transmits files
as they are queued by RSTS/E users using the standard RSTS/E CUSP.
Received data is stored in operator-named RSTS/E files; a seperate
RSTS/E file for each received data file. The system automatically

updates the name extension for each received file.

RSTS/2780 communicates with an IBM system in a standard 2780
format, transmitting logical records of 80 or fewer characters
and receiving logical records of up to 132 characters. Blocks
may be up to 400 characters in length. When RSTS/2780 is
communicating with another DIGITAL 2780 emulator, a general mode
of operation permits transmission as well as reception of 132
character logical records. In either case, both transmitted

and received files may be considered to be ASCII, in which case
an EBCDIC to ASCII (or vice versa) translation is performed, or
binary, in which case the data is stored or transmitted untrans-
lated. All data-link control characters are supplied and stripped

automatically by the RSTS/2780 software.

/S -3

RSTS/E 2780

RSTS/2780 enables RSTS/E (VO5B) users to queue data and or
job control files for transmission to one of IBM's Remote Job
Entry packages (HASP, ASP, DOS/POWER, or RJE) or to another

PDP-11 based 2780 system.

RSTS/2780 can be used in either an interactive or a spooled mode.
In the interactive mode, the system operator establishes the
data 1ink and specified directly the files to be transmitted as
well as the destination of the received data. 1In the gqueued
mode, the control program transmits files as they are queued

by RSTS/E users using the standard RSTS/E CUSP. Received data

is stored in operator-named RSTS/E files.

PDP-11 - A valid RSTS/E or RSX-11lD confiquration with at least
48K words of memory, plus . . . |
0 a synchronous 1line interface
(DP11 or DU1ll)
O a communications arithmetic element
(KG11-a)
O a system clock (KWll-L or KWl1ll-P)
IBM - Bither a 2701 Data Adapter, a 2703 Transmission Coﬁtrol
Unit, a 3704 or 3705 Transmission Controller,
or a System/370 Model 135 Integrated Communications
Adapter.
Modems - Bell 208 or equivalent (4800 bps over switched or
private facilities) or

Bell 201 or equivalent (2400 bps over private lines

or 2000 bps over leased lines).

/Y =3

Questions and Answers

Answers to some of the more frequently asked questions on the

two new 2780 packages are presented below:

Question: Can one Remote Computer System like RSTS-2780 communicate
with another; say, D0S-2780?

Answer: Yes.

Question: Can multiple Remote Computer System be configured in
networks?

Answer: No. A network has many implications which go far
beyond a 2780 transmitting data. Just because one
RCS can communicate with another does not mean that
you can set up a network. Be careful not to associate

these products with networks.

Question: I have a customer who would like RSTS with HASP; will
RSTS-2780 suffice?

Answer: Be careful. People frequently confuse terminology.
First be aware that HASP is a software system which
is used in IBM 360 and IBM 370 systems. HASP soft-

ware can support 2780 terminals and HASP Workstations.

2780 terminals and HASP Workstations are not the
same. We have a HASP Workstation package (CORE-
HASP) but it has no relationship to the 2780 packages.

RSTS-2780 is a 2780 package.

AL

Questions and Answers (Cont'd)

Question:

Answer:

Question:

Answer:

Question:

DEC literature specifies Bell modems for use with the
2780 products. What if a user wants to use other
types of modems?

wé test our products with Bell modems. Since there
are so many other modems in the marketplace, it is
impossible for us to run tests with all of themn.

Our literature normally states "Bell Model (xxx) or
equivalent." If the customer can find the appropriate
equivalent fine. However, we can't help him if he

runs into problems.

Can a customer order a 2780 configuration without

a line printer?

It is possible to receive data directly onto disk

with the DOS, RSK-11D, and RSTS/E 2780 packages so
it's possible that a customer may want to order a

system without a line printer.

We do not recommend eliminating the line printer.
It will just make support more difficult; running
diagnostics and tests will be complicated. If the
customer insists on no line printer, then he shculd
be made well aware of the fact that he will incur

some inconvenience.

I've had difficulty getting programming documentation

for the 2780 products?

VR

Questions and Answers (Cont'd)

Answer:

Question:

Answer:

Question:

Answer:

The 2780 Remote Computer Systems do not require
programming manuals. Each package only requires
an operator's manual which shows how to run the
system. The documents that the customer should
normally get are: the sales brochure and the
software product description. An operator's

mcnual is shipped with the system.

Is the operation of RSTS/E-2780 identical to RSX-11D/27807?
No. RSTS/E-2780 can be used in two modes. In one

mode, the RSTS operator controls the transmission.

In the other mode, RSTS/E users can "queue" files

on disk for transmission. RSX-11D/2780 only provides

operator mode.

Are there any subtleties one should be aware of?
The new 2780 packages are not complex. However,
there are subtleties that can vary from application
to application. We recommend that you consult
someone who knows the 2780 packages well whenever

you have a prospect.

Ordering Information

RSTS/2780

QPD10-AC, AD, AE, AF* $4,000
includes single use license, binaries

manuals, and installation.

/S L

DH11 HARDWA-E/oOFIVAKE

DIGITAL FQUIPMENIT CORPORATION

RSTS/E DATA COMMUNICATIONS

RSTS/E data communications systems have been designed for flexibility and
ease of use. Line speeds of 10, 15, and 30 characters per second can be
used remotely over dedicated or dial-up lines and speeds up to 960 charac-
ters per second can be used local to the computer system. RSTS/E supports
only full duplex.

Several choices are available to configure DEC supplied hardware for
connecting telephone equipment into the system. BAmong those choices are
the DL1l1 and DH1ll communications hardware. Economic trade-offs can be
made between these two types of devices. DL11l's have the advantage of
small incremental growth costs, are slightly less expensive except in
installation increments of 16 lines, but do not provide the multiple line
speed capability on each line as the DH1ll's do.

Specific hardware attributes of the DH1l and DL1l equipment supported by
RSTS are given below.

Unit Description
DL1l1lA Current loop (20 ma) Serial Line Interface having one baud rate

of up to 9600.

DL11B EIA Serial Line Interface for connection to modem having cne
baud rate up to 2400 baud locally or up to 300 baud in private
line remote communications

DL11E EIA Serial Line Interface with modem control and supporting one
rate up to 300 baud on the switched telephone network.

DH11-AA Multiplexer which connects a PDP-1ll computer with up to 16 asyn-
chronous serial communications lines with individually program-
mable parameters. Remote lines have baud rates of 110, 150,
and 300 baud. Local lines operate at up to 9600 baud.

DM11-BB Modem Control Multiplexer which provides control to interface
with up to 16 data sets.

DM11-DC Provides lines for conditioning four EIA compatible lines with
modem control. (EIA Modem)

DM11-DB Line Adapter which implements four EIA lines for privéte line or
local terminal connection. (EIA Local or Non-Dial-up Modem Control
or private Line Applications.)

DM11-DA Line Adapter which implements four 20 milliamp. terminals. (20
Mill local)

Typical DH1l configurations might be as follows:

16 terminals connected to the switched network

?to PDP-11 UNIBUS

DH11-AA

DM11-BB
DM11-DC DM11-DC DM11-DC DM11-DC
7\ /7 \\ I ! N

to 16 terminals on switched network

16 terminals connected to local terminals

’to PDP-11 UNIBUS

DH11-AA
DM11-DB DM11-DB DM11-DA DM11-DA
77\ 77 A}Y 77 AR 77—
e I to 8-20 milliamp terminals
to 5 EIA interface terminals ‘K\\‘to 3 - EIA private lines

16 terminals connected to switched network as well as -some
local connections

DH11-AA
DM11-BB
DM11-DC DM11-DC DM11-DB DM11-DA
77 W V// W7 VA
A T to 4-20 milliamp terminals

to 2-local terminals with null modem

to 2 private lines with modems

L . .
to 8-terminals on the switches network

/S~ 2

Remember that the load imposed on the system by a terminal outputting at 9600
Baud is about the same as the load imposed by 32 terminals -- all outputting
at 300 Baud. Considering that most input takes place no faster than 50 Baud
(typing speed), five terminals running interactively at 9600 Baud in normal

Interactive use probably won't significantly degrade system performance, al-

though 9600 Baud output does place an instantaneous, heavy load on the system.

Few useful applications of terminals outputting at 9600 Baud exist. It
is more reasonable to output to a terminal at 1200 Baud or less.

DH11 PROGRAMMABLE ASYNCHRONOUS FROM: Dimitri Dimancesco
MULTIPLEXER x3953 A

DECcomm recently announced two new versions of the DH1l programmable l6~line multi-
plexer. The new versions designated DH11-AF and DH11-AN are mare comnact and are

priced lower than the existing DHI1l.
Ycu can now order:

DH11-AA - This is the original version of the DHl1ll. It requires DMll type line
adapters depending on the type of connection (DMll-DA for 20 mAmp, DML1-DB
for private phone lines, DM11-DC/DM11-BB for switched telephone network
connections),

The DH11-AA and appropriate DM1ll modules should still be ordered when
configuration requires a combination of 20 mAmp, private, or dial-up
lines.

DH11-AD - New. Interfaces PDP-1ll to 16 EIA/CCITT switched network lines. Includes
modem control. Uses DJ1l type distribution panel, therefore cables must

also be ordered for some configurations.

DH11-AE - New. Same as DHl11-AD except no modem control.

DM11l Type Modules (irclude cables)

60608386a6680840

DJ11 type interface panel
used with DH1l-AD and -AE
(no cables provided)

DH11-AA Distribution Panel
requires DM11l modules

/

$-¢

—

DH11-AA (C)

DM11-DA

DM11-DB

DM11-DC

DM11-BB

Programmable Asynch.
16-line multiplexer
and mounting panel.
Includes space for
up to 4 DMll Line
Adapters (16 lines).

Line Adapter for 4
20 mAmp terminals.
Includes cables.

Line Adapter for 4
EIA/CCITT lines.
Includes modem
cables.

Line Adapter for 4
EIA/CCITT lines.
When used with
DM11-BB, provides
modem control.
Includes modem
cable.

16~line modem
control for prog-
ram operation of
control leads for
103, 202 or equiv-
alent data sets.

DH11

Prereq. Price

11/CPU $4,400

DH11-AA 170

or =-AC

DH11-AA
or =AC 485

DH11-AA 860
or -AC

and

DM11-BB

DH11-AA

or -AC

and

DM11l~DC 1,295

*Mounts in DH11-AA or AC distribution panel

14

Disc

Type

2

Field
Maint.

32

11

19

Bus Amp
Install. Mounting Load +5V

175 2 su/ 2 4.7
Sm Pan

40 *

40 *

40 *

80 * 1 2.8

RSTS V5 DH11/DM11B HANDLER

The DH11/DM11B service for RSTS V5 provides essentially the same
services for the RSTS user which are provided by the DCll service.
These services include support of the variable speed capabilities
and auto-answer modem facility.

Relevent documents explaining the hardware are the DH11l Engineering
Specification and "DM11-BB Modem Control Manual" (DEC-11-HDMBA-B-D) .

The DH1l has 8 contiguous I/0 page-addressable registers which are:

C3SR interrupt control, extended memory, line select

NRC Received character, line number and char. status
LPR Line Harameters: speeds, etc.

CAR Current address

BC Byte count

BAR Buffer active: 1 bit per line

BCR Break control: 1 bit per line

SSR Silo status: silo fill level, silo alaram level

The error logging module is used to handle certain exceptions which
are caught by the DH1l service. These include:

Non-existent memory referenced by NPR transfer
Silo overflow

Data overrun

Break

Parity error

Non-existent memory errors should never occur. If they do, then
there is either a RSTS software problem or the hardware is
malfunctioning.

Silo overflow errors occur when more than 64 received characters
have accumulated in the silo, and indicate that RSTS is receiving
more characters than the software can process.

Data overruns are generated when a received character is lost due
to silo overflow.

A break condition is generated by reception of a break signal on a
line, break errors are no cause for alarm, as the break signal can
be generated by the keyboard Operator on many terminals.

Parity errors would be generated by reception of characters with
improper parity. However, since the parity sensing circuitry is
disabled when RSTS is running, these errors should not occur.

The DH1l is operated with the following conditions set up:

XMIT+NEM INT ENB ON
SILO OVERFLOW INT ENB ON
RECEIVER INT ENB ON
EXTENDED MEMORY BITS '/

;)56

RSTS V5 DH11/DM11B HANDLER

AUTO~ECHO OFF
HALF-DUPLEX OFF

TRANSMIT SPEED =RECEIVER SPEED — Aep Alweays
PARITY ENABLE OFF — . -
TWO STOP BITS ON ————— - 2741 15 diffecan
CHAR LENGTH 8 BITS —

BREAK CONTROL NOT USED

SILO ALARM LEVEL g

Since the small buffer Pool and indeed, the whole V5 monitor has
its virtual address equal to its physical address, the extended
memory bits are always zero. The silo alarm level is set at zero
so that a receiver interrupt will be generated on reception of a
single character.

The DH1l service depends on the standard RSTS terminal tables
having entries as follows: -

TTILST DHI/ CSR (Input side for KL1l1l's)
TTOLST DM11BB CSR ant (Output side for KL11l's)
TTSLST Line parameter (Word)

Subline number (Wo i-d)

Same as Kull (Byte)

Same as KL11 (Byte)

Same as KL11 (Byte)

Same as KL11 (Byte)

The DH1l has two interrupt vectors, one for XMIT and another for
receive. These vectors are located in the floating vector spaca,

_APC lav& In?’ov'ru,o'/“x Are qlrimad a Y— M, TAOT
XMer oy, rervupeix ave. o:’&)mQA a CH T

|19

The DH1l receiver interrupt pProcessor will empty the silo completely
before exiting. The received characters are processed by the
standard TTY service code to move the received character to a small

byte count before exiting. When a subline is found with a gero

byte count and with pending characters in its small buffer chain all
the characters Present in the leading small buffer are sent out via
the DH1l. Thus the NPR capability of the DH1l is utilized to send
up to 30 characters per interrupt.

/8 -7

RSTS V5 DH11/DM11B HANDLER

The DM118Bhas two I/0 page addressable registers:

CSR Interrupt and scan control
Line status

The DM11BB is operated with the following conditions set up:

INT ENB ON

SCAN ENDB ON

The treatment of NM11B interrupts is essentially analogous to the
treatment of the corresponding conditions, for the DCll. The modem
clock service which runs once per second is used to detect lines on
which carrier has been lost and lines for which carrier has not
appeared after ring and anser. There is at present no "hung line"
code for DHl1ll lines, since this condition has not yet been encountered.

r5-§

DH 1

5 S 13 1 [} jo G g) & 5 A S A .0
YSTEM XmIT |SILe X"TITJ;TOFAG asr&&' MHINg.‘C‘-?;)R RCVR [RCVYR|ExTENDED £ <
OVR Frew VAR FL SINENMY {mODE | N , LIN ELECT
CWTACL | INT. [T w7, ”fj'-g e = " paoc | vt |INT. | TE | MEMCAY oo
EGISTE .
STER Q[R Rjw 'MW KJw R RJW R N R Jw
Rfw mamm T R[W mA R|W MATINT.
NEXT VALLD DATA PARITY ’ ,
ECETVED VREL U oveRruNgpenit. | LINZ NumeER CHARACTER o
--1 DATA Eq\c g CRAOA
HAR, REG. T 2% |
R R R R R R
3/4/75"
tINE favre |yg.c | _ | oDF |ParTTy TW0 | uagacTER
WANETERIECHC | " o \TRANSMIT SPEED | RECEIVER SPEED o, ririan e g,;ors ceneTr | OH X
REGICTER |ENAGLE I :
* W W W w w w w w
~ *
“ CuRRENT RAooOAESS REGISTER el
\ - = 5
O R /w +ScR<
BYTE CouNT REGISTER | o
(2's CempemeNT 0F B cFE BYTES TO XM iT) :
R [W
D= = 1
')OPFER I LINE P
QLTINVE _ _ '[2 | :fLINC AR
CC1STER 15 o 12 120 [10] 9 8 1 L 5 Y 3 e
' Pl R/W .
bREAK |LINE
MTROL) ,
ZGISTER 1o L S jf i 1 10] 9. 1.8 2 e ! S .| 3 2 | ol
ALL R/W
SILo Rero STLO A
m TENANCE Lo E g LARM LEVEL
raTus ALNTE SL FILL LeVEL AE%NDOMD -0 .) &

3/

VT05/VT50

VT05 DIRECT CURSOR ADDRESSING

Direct cursor addressing of the VT05 display keyboard is done
by using PRINT statements of the form

PRINT #N%, CHRS (X%);
where X% is one of the following codes. The ; following the
argument is needed Lo prevent automatic carriage-return.

The codes are as follows:

8% backspace cursor
11s cursor down (line feed)
14% direct cursor control (see below)
24% cursor right one position
25% cursor left (don't use on VTO05)
26% cursor up
28% home down (don't use on VTO05)
29% home up (move cursor to upper left-hand corner)
30% clear to end of line
31% clear to end of screen

Direct addressing is established as follows:
if Y% is the line number (Y-axis)
and X% is the column number (X-axis)
and the upper left-hand corner is (1,1)
PRINT #N%, CHR$ (14%); CHRS (31%+Y%); CHRS (31%+X%);
positions the cursor to (X%,Y%)
Note the following functions:
20@@ DEF FNQ2 (X%,Y%) :
PRINT #11%, CHR$(14%); CHRS (31%+Y%); CHRS (31%+X%);

2@1¢ FNEND ' position cursor to (X%,Y%)

/6-/

/TO5 DIRECT CURSOR ADDRESSING (CONT'D)

214@ DEF FNQ3(X%,Y%)
PRINT #11%, CHRS$ (14%); CHRS (31%+Y%); CHRS (31%+X%) ;
CHRS$ (31%) ;
2118 FNEND ! position cursor to (X%,Y%) and clear to e.o.s.
2209 DEF FNQ4 (X%,Y%):
PRINT #11%, CHR$(14%); CHRS$ (31%+Y%); CHRS (318+X%);
CHRS (30%) ;

221@ FNEND ! position cursor to (X%,Y%) and clear to e.o.l.

/é— 2

The following table will be useful when writing programs that interface wi‘h the VTS50, It
details the processing of each 7-bit ASCl! character received at the terminal.

[When the VTS50 is in. ..

<z

...Normal Mode the next ASCli character
received is treated as data.

~~Z

]

|

...Escape Mode the next ASClI

character received is treated

. | asa command.

. Octal Resulting Resulting
Code Char Action Taken Mode Action Taken Mode
000 NUL None Normal None Escape
001 SOH None Normal None Escape

. 002 STX None Normal None Escape

l ooe CTX NOnE Normai None Escape
004 EOT None Normal None Escape
005 ENQ None Normal None Escape
£J6 ACK None Normal None Escape
€07 BELL Rings Beil. Normal Rings Bell. Escape
010 BS Backspaces Normal Backspaces Escape

Cursor. Cursor.

011 HT Horizontal Tab Normal Horizontal Tab Escape
Moves cursor to Moves cursor to
the next tab stop. the next tab stop. I
Tab stops are set Tab stops are set ;
every eight every eight 5
spaces to the spaces to the ;
72nd character 72nd character
position. After position. After i
the 72nd position, the 72nd position, !
TAB moves the TAB moves the ’
cursor to the right cursor to the right
one position. one position.

012 LF Moves Cursor Normal Moves Cursor Escape
down one line down one iine !
and scrolis if and scrolls if]
required. required.

013 VT None Normal None Escape

014 FF None Normal None Escape

015 CR Moves Cursor to Normal Moves Cursor to Escape
left margin of left margin of
current line. current line.

016 SO None Normal None Escape

017 Si None Normal None Escape

020 DLE None Normal None Escape

021 DC1 None Normal None Escape '

022 DC2 None Normal None Escape

023 DC3 None Normal None "Escape

024 DC4 None Normal . None Escape

025 NAK None Normal None Escape

026 SYN None Normal None Escape

027 ETB None Normal None Escape

030 CAN None Normal None ‘Escape

031 EM None Normal None Escape

032 SUB None Normal None Escape

[6—3

When the VTS50 is in. ..

<> . =~

. ..quma! Mode the next ASCI! character -..Escape Mode the next ASClII
received is treated as data. character received is treated
as a command.
Octal Resulting Resulting
Code Char Action Taken Mode Action Taken Mode 1
033 ESC Sets terminal Escape Sets terminal Normal
in Escape Mode. in Normal Mode.
034 FS None Normal None Escape
035 GS None Normal None Escape
.036 RS None Normal None Escape
037 us None Normal None Escape
040 Space Displayed Normal None Normal
041 ! Displayed Normal None Normal
042 " Displayed Normal None Normaj
043 # Displayed Normal None Normal
044 $ ~ Displayed Normal None Normal
045 % Displayed Normal None Normal |
046 & Displayed Normal None Normal |
047 ! Displayed Normal None Normal
050 (Displaved Normal None Normal
051) Displayed Normal None Norral
052 * Displayed Normal None Normal :,
053 + _ Displayed Normal None Normal
054 , Displayed Normal None Normal J
055 -~ Displayed Normal None Normal |
056 . Displayed Normal None Normal |
057 / Displayed Normal None Normat ;
060 0 Displayed Normal None Normal ‘
061 1 Displayed . Normal None Normat }
062 2 Displayed Normal. None Normal !
063 3 Displayed Normal None Normal |
064 4 Displayed Normal None Normal
065 5 Displayed Normal None Normal 1
066 6 Displayed ‘Normal None Normat
067 7 Displayed Normal None Normal
070 "8 Displayed Normal None Normal
071 9 Displayed Normal None Normal
072 : Displayed Normal None Normal
073 ; Displayed Normal None Normal
074 < Displayed Normal None Norma!
075 = Displayed Normal None Nermal
076 > Displayed Normal None Normal
077 ? ‘Displayed Normal None Normal
100 @ Displayed Normal None . Normai
101 A Displayed Normal Moves Cursor Normal
up one line.
102 B Displayed Normai None Normal |
12

| When the VT50 is in..

45 | 3 C

...Normal Mode the next ASCll character
received is treated as data.

...Escape Mode the next ASCIi
character received is treated

| acommand.
1C | =30

Print with top
line printed first.

Normal

Octal Resulting Resulting
Code Char Action Taken Mode Action Taken Mode
110 H Displayed ' Normal Moves Cursor Normal
to home position.
111 | Displayed Normal None Normal
iie] Uispilayea NOI i Erases ine irom Nornai
Cursor to bottom
of screen. ;
113 K Displayed - Normal Erases screen Normal
from Cursor to
right margin.
114 L Displayed Normal None Normal ‘
115 M Displayed Normal None Normal
116 N Displayed Normal None Normal
117 0] Displayed Normal None Normal
120 P Displayed Normal None Normal
121 Q Displayed Normal None Normal
122 R Displayed Normal None Normal I
123 S Displayed Normal None Normal |
124 T Displayed Normal None Normal |
125 U Displayed Normal None Normal |
126 Vv Displayed Normal None Normat |
127 w Displayed Normal None Normal |
130 X Displayed Normal None Normai !
131 Y Displayed Normal None Normai I
132 V4 Displayed Normal None Normal |
133 C Displayed Normal Enables Hold Normal g
Screen Mode. ;
(See'page 19 .)
134 \ Displayed Normal Disables Hold Normal
Screen Mode.
. {See page 19)
135 3 Displayed Normal All lines from Normal
. top of the screen
up to and includ- *
ing cursor line
are printed.
136 N\ Displayed Normal Enables Auto

Whenthe VT50isin. ..

< >

...Normal Mode the next ASCII character |
received is treated as data.

]
{
]

Xz

...Escape Mode the next ASClI|
character received is treated

as a command.
Octal Resuiiting l; Resulting
Code Char Action Taken Mode Action Taken Mode
137 — Displayed Normal Disables Auto Normal
Print after
currentiines
are copied
140 \ Displayed as @ Normal None Normal
141 a Dispilayad as A Normal None Normal
142 b Displayed as B Normal None Normal
143 c Displayed as C Normal None Normal
144 d Displayed as D Normal None Normai
145 e Displayed as E Normal None Normal
146 f Displayed as F Normal MNone Norma!
147 g Displayed as G Normal None Normal
150) Displayed as H Normal None Normal
151 i Displayed as | Normal None Norma!
152 j Displayed as J Normal None Normal
153 k Displayed as K Normal None Narma!
g 154 | Displayed as L. Ncermai None Normal
1155 m Displayed as M Normai None Normal
156 n Displayed as N Normai None Normal
11567 o] Displayed as O Normal None Normal
160 D Displaved as P MNormal None Nermal
i‘;61 a Displaved as Q Normal None Normai
162 r Displayedas R Normat None Normai |
;163 s Displayed as S Normal None Normai |
; 164 t Displayedas T Normal None Normal
1165 u Displayed as U Normai None Normal
166 \' Displayed as V Normal None Normal
167 w Displayed as W Normal None Normal
170 X Displayed as X Normal None Normal
171 y ‘Displayed as Y Normal None Normal
172 z Risplayed as Z Normal None Normal
173 | Displayed as O Normal None Normal
174 ! Displayed as / Normal None Normal
175 : Dispiayed as I Normal None Normal
| 176 ~N Displayed as > Normal None Normal
77 Celste Nong Normal None Escape

14

L e t——— 2 e e+

‘o~ 0

6 —
 Typing the key Transmits the following Typing the keyU\ Transmits the following
labeled 7-bit ASCH code labeled ﬂ/ 7-bit ASCil code
—
J L < < b < L

A - 101 T 124
B 102 U 125

, C 103 Vv 126
D 104 w 127
E 105 X 130

~ F 106 Y 131 |
G 107 | z 132 i
H 110 BACK SPACE 010 |
1 111 TAB 011 |
J 112 LF 012 |
K 113 RETURN 015 |
L 114 ESC 033
M. 115 SPACE BAR 040 :
N 116 \ 134 i
O 117 DELETE 177 :
P 120 BREAK Does not transmitan
Q 121 ASCll code. 5
R 122 Acts as a forceable |
S 123 interrupt (see page 19).;

The keys listed above are uneff
key and holding down the SHI

15

/6=

ected by the SHIFT key. For example, typing both the "A"
FT key and typing ‘A" transmit ASCI1 101,

The following keys are effected by the 'SHIFT" key.

Typing the key Unshifted transmits Withthe SHIFT key heid
labeled the 7-bit ASCIl code { down transmits the 7-bit
) ASCii code
JL J L 3C
1 061 041 (1)
2 062 100 (@)
3 063 043 (#)
4 064 044 (3)
5 065 045 (%)
6 066 136(A)
7 067 046 (&)
8 070 : 052 (*}
9 071 050(()
0 060 : 051())
T 055 137 ()
= /o 075 053 (+)
C 133 135(1)
; 073 072 (2)
' 047 __042(")
054 074 (<)
. 056 076 (>
/ 057 0777 J

Holding down the CTRL key affects the ASCII signal transmitted by the next key typed. it
forces bits 7 and 6 to 0. For example. holding down the CTRL key and typing the letter G
(107) forces 107 to be converted to 007 (BEL). The one exception is holding down the
CTRL key and typing the BREAK key. This reinitializes the terminal (see page 19).

The following keys do not transmit any signal outside of the terminal. They are used to
direct internal terminal activities.

. " . !
Typing the key Unshifted directs 1 With the SHIFT key
labeled... the terminal to... ; held down, directs
[- the terminal to...
1 -
<L < ST
CONT. Display (scroll) Display (scroll)
one new line when 12 new lines when
the terminal is in the terminal is in
Hold-Screen Hold-Screen
i Mode (see page 19). Mode {see page 19;. i
PRINT Produce a hard i Comphiments |
copy image of the 4 Auto-Print Mode !
entire screen. (see page 20:. |
16

Some Pointers on RSTS/E
Hardware Problems

oxr

What To Do If The Diagnostics Run

& RSTS Doesn't

Confidential - NOT For Customer Use

Gary Alles

Confidential

Notes on RSTS-E System Hardware Configuration

1. A KWll-L is less expensive and more reliable than a KW1ll-P.

2. An RP03/RP1l1-C is bigger, faster, and more reliable than an RKO05.
If your customer plans to expand, start him out with an RP.

3. An RP03, only system must be sold with ™11/TUl0 for proper
file backup. An RK/RP system should have tape.

4. Mos Memory helps to increase system thruput significantly, but
not advised nn.il purchasing memory from 88K, because core is
cheaper. Mos is now much more reliable than it was in the early
history of the 11/45.

5. FPP when installed on 11/45's helps thruput of Math Package
routines. You can see the differance.

6. The DHl1ll is a much more desireable TTY interface compared to
using several DL1ll's. It costs far fewer bus loads, and requires
relatively little care for it's driver.

7. It is possible to get an 8K user space in a 32K system by leaving
out most of the basic Plus features but the spooling programs
and a few other cups such as UT5DPY require 12K user space to
run. Unless you are very certain of your customers application,
avoid 32K systems. It is far wiser to start your customer out
with 48K core (3) MFllUP's. Parity is now required.

8. It is cheaper to buy 32K core than an RS03. Even if your system
has exceptionally high Disk activity already, it is probably
wiser to purchase core as opposed to swapping disk. 32K MF11lUP=$12.6K

6M wds. slow, unreliable
20M wds, fast, reliable

9. 1 RK1l @ + 5 RK05'sz-31,400
: 1 RP11 C, + 1 RP03 . 31,880

10. 1 RS03 + controller 256K wds = $14K
1 RS04 + controller 512K wds = $18K
2 RS03 + controller 512K wds = $23K

11. You should have enough core to keep,g'of your jobs in core.
(Assume largest size jobs.

/ 7=/

If you encounter similar errors during SYSGEN on the RK
on the same system that has errors during SYSGEN on the
RF, you may very well have a UNIBUS or memory problem.

Before getting too deep in this problem, first be certain
that the distribution kit is valid, and that it is being
read correctly. Tape skew and/or RK@5 head alignment may
be cause of problem. It RSTS/E has been configured at
another site, and it too fails suspect the hardware.
There are no kaown bugs in the sysgen procedure other
than mis-interpretation of DL11-C's and DL11-E's under
automatic sysgen. If you have two different types of

DOS supported disks, and sysgen fails on one but not the
other, you may have found a faulty disk unit.

Make sure all known patches are correctly installed.

F

/72

If you suspect memory, be sure to adjust strobe according
to latest technique, not by setting strobe in the middle
of the window. A minimum 50 NS window is required, or
your memory should be replaced. Strobe should be adjusted
25 NS back from latest failing point in strobe window.

Do not swap boards between memory sets unless you re-
strobe.

Strobe normally should not be bothered with on very new
systems, bui older systems (Apr '74 or older) often are
not found to have sufficient window sizes, and are fre-
qguently out of adjustment.

/73

If you suspect UNIBUS, be sure BUS-loading on both sides

of BUS repeater is about equal. (18 16ads or less) minimize
UNIBUS cable length wherever possible even if you have to
reconfigure system.

Foam the UNIBUS.

Inspect bus cables very carefully for holes, sharp crimps,
bubbles, and cuts.

N nals TIATTDITO acmaceds S v e s d —— 2 - t

A evon = ~u - e -
AR T Al AN Lo dd I T LU“V-‘-‘&” - 3V T e yl— W Al L bx A4

Power Cords.

Be certain that BUS signal levels on both sides of BUS
repeater are same or nearly so. Watch for noise.

Extensive engineering changes are being made to the BUS
structure itself. BG lines are now supposed to have pull-
down resistors at each interface. BUS Driver & BUS Receiver
chips have been re-engineered, and are to be replaced with
new chips when chips are available & conditions warrant.
M920's can cause problems, two new versions are being worked
on.

Preferred BUS Configuration is for systems w/o0 Mass. BUS Devices.

Processor

Core

Non Buffered NPR Devices
Buffered NPR Devices

ROMS & Communication Options

Ut b W N
L]

1% precision terminators are available for the Unibus

/ 71--?('

Remove unused DL1l's, they cause all kinds of problems
for no easily explained reason.

Traps and/or Jumps to zero have been known to be caused

by floating DL1l's, faulty TMll's and time-out problems
in RKO5's.

Vectors and addresses on DLll's are commonly incorrectly
jumpered. Check priority jumper card in DLll's and make
sure it has insulating tape and is properly installed.
If you have static, use H7002 or H7003 line filters.

Recheck speed setting for XTAL in DL1l. Check for loose
connections.

/7-5=

Be absolutely certain all power supply connections are tight,
power supplies are not susceptible to normal vibration,
(noise or spikes are not induced) and that power supplies
are correctly adjusted. This can not be assumed.

Check power plug polarity and proper grounding.

Line voltages from factory to customer site can and will
vary. Check for noise and transients.

Margin H720 power supplies for DC Lo sensitivity. (=15 uts).
Use of a DUM is preferred when adjusting power supplies.

1 -aa
.- o KNJ“
2. Scope DC-I0

3. Adjust =15 until DC-LO is in middle of its possible values

Pull on all Mate-N-Lock connectors and make sure wires
are in tight.

Make sure moving head Drive Packs are formatted on your
machine.

Make sure air filters are clean.
Check power-fail circuitry on 11/45's.
Monitor DC-LO while system is running.

Sector Transducer and Head Alignment should be correctly
adjusted.

/7-6

Never slow down processor to avoid problems. This will
cost much in the long run. if not cause more problems.

Make sure all 11/40 processor options are correctly
jumpered.

Margin Processor.
Investigate all grounding and static problems.
50% humidity is required.

Check for temperature variations and don't mount cold
packs.

Clean tape & disk drive heads.

Check tape head alignment and visimag tape. Use quality
tape.

Check for any potential mechanical connection problems.

Time~dependent power problems may occur.

17~/

Check ECO levels of all options.

If your system is a year behind in ECO

levels, you may well get RSTS/E to run, but the system
probablv won't be as reliahle ac 2 new ona wanld ha

AN VIR LA M Coe

/2-~¢

oDT

f@pr‘ 84S
EF oFv
KERPE, oor;
Jwrrovff

7o

£ an
;ll/e?

=3

fe-nel! 007

Mem Alloc Chauges ? tesg

Yable 0pvnn 3 aovy
WVhave ?

9

oPTION: ST
+ 7

BE Xxxaxx«X

)

4(/{’/5’ Kackh (.He

007#
oKl

1014 J XXX AKX D5 PHCc s>
1016/ xxxxxx 9, kTo

Ta.¥+ cuov

OFPVIonvw.' ooT

XXxxore 7 Wor/

\ 5y+9—

< ‘ast err /vt omon,

P d

LF wexl tec

(o' ¢ clese

)

@ aésalute open
/PVDCQQc(

L sedt bveak po A
G Go Yo

Basle Ple s ﬂ')‘t‘ S,aace. ? /L’e;J M a , ooV

/-1

DATE: APRIL 20,1973
AHBJECT RSTS 00T, WITH DISK LOOK AND NEw SYNTAX

e OMy MIKE SMITH (FORMERLY IN DEC SOFTWARE DEVELOPMENT)
(CURRENTLY FIYING CARS FOR GRINS AT)
(TINGLE'S LOTUS CENTER, 3R SPRING ST)
(WATERTOWN, MASSACHUSETTS, @2172)

PROJECT NUMBER: P=87=07668
RSTS DEVELOPMENT
RSTS/E DEBUGGING AID

FILENAME; oDTDOC, w DOCUMENTATION
0DT,« SOURCE PROGRAM

EDIT 653 oprpoc,5s

By JIM MILLER (MAYNARD, 12=2, 3173)

SYSTEM 40 IDt 140,1315 ACCOUNT wBRAMHALL®"

THE MATERIAL INCLUDED IN THIS DOCUMENT, LIMITED YO
But NOT INCLUDING, CONSTRUCTION SPEEDS AND OPERATING
PURPOSES 13 FOR INSTRUCTION TIMES ONLY, ALL SUCH
CLAIM 18 MATERIAL WITHOUT NQTICE, AND Is BOUND To
CHANGE THE syBJECT,

THE PURPOSE OF THIS 0DT IS T0 BE USEABLE FOR DEBUGGING RSTS/E,
SOME FEATURES OF THE 00T IN REGULAR SE ON THE PDPei{ HAVE BEEN
LEFT OUT WITH VERY MuCH PURPOSE, IF ANYONE WANTS TO USE THIS 00T
I WILL BE HWAPPY TO TELL YOU WHAT YOU NEED TO KNOW TO USE IT,

IF YOU HAVE SUGGESTIONS AND/OR IMPROVEMENTS AND I LIKE THEM
I WILL PUT THgM IN, IF I DON'T LIKE THEM 1 WILL TELL YOU HOw
TO PUT THEM INYOUR OwWN COPY OF ooT,

ALL BUGS WILL BE FIXED WITH GOOD MUMOR AND REASONABLE SPEED,

/y-2

PLwrw Ur 1ty YOCUMENTeew

THE PURPOSE OF TIS DOCUMENT IS8 YO NESCRINE THE USAGE OF THE (ODT
THAT wad ByIlt FOR St By RSYS, THIS 0Ny RaS A TPFRREINT SYNTAY
<7 AN THE NORMAL ODT AND HAS CERTAIN "pNWANCEMENTS® (Q0F COURSE (Y,

(” 'IS I8 NOT TO SAY THAT IS ENTIRELY DIFFERENT, BUT ENOUGH S0 THAT
-,OU SHOULD READ AT LEAST THIS FIRST PAGE,

THE MAJOR DIFFERENCE IN THE SYNTAX IS THE USE OF THE ®"j*
CHARACTER, IN SHORT IT IS NOT NEEDED EXCEPT TO DELIMIT MULTIPLE
ARGUMENTS GIVEN TO COMMAND, YOU SHOULD THINK ABOUT THWIS ONE CAUSE
IT CAN BE A PAIN IF yYOU TYPE ExTRA npmi1g§,

ANOTMER DIFFERENCE I8 IN THE WAY REGISTERS aARE OPENED, THE OPEN CUMMAND
IS USED TO OPEN A REGISTER AND TO RETYPE THE CONTENTS OF A REGISTER,

SO IF YOU OPEN A REGISTER AS A WARD, AND THEN TYPE THE CHARACTER THAT

IS USED TO TYPE A BYTE THE REGISTER IS STILL OPEN AS A WORD, THE REGULAR
OpY RE=~OPENS THE REGISTER AS A gYTE,

~ =T ANOTHER DIFFERENCE I8 THE ySE OF THE "g" (SINGLE INSTRUCTION)
A QMMAND, THE “8" COMMAND DOES NOT SET A MgDE BUT QPERATES LIKE THE
(f/" COMMAND IN THAT IT CAUSES AN INSTRUCTION TO BE EXECUTED, (MAYBE
vOU SHOULD READ THE WWOLE DQCUMENT).

THE PURPOSE OF THIS vERSION OF ODT 18 TN ALLOw THE USER 10 LOOK
AT THE DISK, THIS I8 DESCRIBED LATER ON, WHAT REALLY HAPPENED IS
THAT THE WHOLE THING GOT REeWRITYEN CAUSE 1 COULDN'T RESIST IT,

NOW COMES THE OPINION PART, THE SYNTAX IS MUCH CLEANER aND MORE
\jT‘WERFUL. TME CORE REQUIRED By THE CODE AND DIRTy DATA IS ALSO
CH LESS THAN THE STANDARD ODT, HBUT LHEN yOU ADD THE DISK 1/0
-JFFER OF 1000 BYYES It ySES SOMEWHERE AROYUND 6200 BYTES tOvAL,

/Y-3


~~~~~ e MY

THE CURRENT SOURCE OF 0DT MaY gE ASSEMBLED, LINKED, AND
~JADED JUST ABOUT ANYWMERE, THERE IS 4 SYMBOL CALLED "ORGODT" ThaT
~LS USED TO SET THE LOWEST ADDRESS OF 0p7 IN ABSOLUTE ASSEMBLIES,
( THE ASSEMBLY IS RELOCATABLE TWEN TWIS SYMBOL IS SET 710
“JRGODTm »

THE SIZE OF ODT I8 AS FOLLOwWS

DISK I/0 1020 (BYTES)
STACK : 49
CODE 5200
TOTAL 6249

¢« THIS 18 APPRONIMATE, FOR ExXacT FIGURES TRY ASSEMBLING IT,

SOME THINGS TO NOTE ABOUT STARTING ooT,

THE SOURCE MAS ALL VARTIABLES SET T0 THEIR INITIAL VALUES
AND SETS A VECTOR IN LOCATION 14 TO GO TO ODT, THIS IS TO
ALLOW INITIAL ENTRY vIa THE "HKP" INSTRUCTION {a00@w3) aND
GIVES CLEAR BREAKPOINTS AND EMPTY RELOCATION REGISTERS,

THERE ARE TWO ENTRY POINTS DEFINED THAT MaY BE OF INTEREST,

"0,0DT" IS AN ENTRY THAT I8 USED FOR & COMPLETE CLEAN START,
ALL BREAKPOINTS AND RELOCATION REGISTERS ARE CLEARES

"OLENTRY I8 AN ENTRY THAT MAKES OpT THINK IT WAS WIT AN UNDEFINED
BREAKPOINT, ALL ACTIVE BREAKS ARFE REMOVED FROM THE USER:S
CORE, IF yOy PROCEED FROM THIS ENTRy WITHOUT aLTERING
YOUR ®PC® YOU ARE RIGHT BACK WHERE YO STARTED FROM,

THE USER'S CONSTANT REGISTER IS INITIALIZED 8Y THE SOURCE
TO CONTAIN THE ADDRESS OF ®0,0DT", THE ADDRESS OF NO,ENTR™
IS EQUAL TO "0,0DTe2n,

THE CUE FOR & COMMAND IS "<CR»«LF> " AS OPPOSED TO "e" THIS 1S
SUPPOSED TO MAKE YOU THINK NEW SYNTAX, BESIDES THIS ODY was DEBUGGED
WITH PDP=1@ MIMIC AND Hew IS WHAT MIMIC TyPES FOR A COMMAND,

THE "RUB«OUT" CHARACTER 18 USED TO RESET THE COMMAND INPUT ROUTINE
VIA AN ERROR ENTRY, THE TYPE<ANEAD FEATURE 18 DRIVEN VIA THE
CHARACTER OUTPUT ROUTINE (IDEA COURTESy NATHAN TEICHHOLTZ) AND
CHECKS EACM CHARACTER AGAINST a <RO>, THIS ALLOWS STOPPING OF THOSE
LONG LISTS OF CELLS IN A wORD SEARCHM,

THE TYPE=AMEAD SCHEME IS NOT INTERRUPT DRIVEN, BUT THE walT LCOP OF
CHARACTER OUTPUT KEEPS LOOKING AT TWE INPUT FLAG, WHEN THE INPUT FLAG
COMES yP tHE CHARACTER 18 STASHED AWwAY IN A RING BUFFER, THE CHARACTER
INPYT ROYTINE OCOEs KEEP LOOKING AT THE INPyUT FLAG, THE SCHEME nNOEg

r§-4



DESCRIPTION OF NOTATION==

ALL NUMBERS IN THIS DOCUMENT ARE OCTAL NUMBERS UNLESS THEY
?;EFTCTTLY ARE SUFFIXED By a " ® IN WHICW CaSE THEY ARE -DECIMAL,

B J/C CONSTRUCTS==
OCTAL NUMBERS== NOTATION <0CT>
THIS 1S AN OCTAL INTEGER IN THE RANGE 177777 TO 9@@ae?,
IT'S USE I8 CONTEXT DEPENDENT AND THE ABOVE RANGE May
ALSO BE FURTHER LIMITED BY CONTEXT,
THERE ARE SPECIAL CHARACTERS DEFINED TO REPRESENT USEFUL

OCTAL NUMBERS WITHIN ODT's GUTS, THESE CHMARACTERS ARE
70 BE USED INTERCHWANGEABLY wITH OCTaL NyUMBERS, THEY ARE:

c VALUE STORED IN USER'!'S CONSTANT REGISTER

Q LAST OCTAL QUANTITYy TYPED

® ADDRESS OF LAST OR CURRENTLY OPEN REGISTER
VALUES == NOTATINON <VAL>

<VAL> DESIGNATES AN EXPRESSION, WITWOUT PAREN'S, WITH THE
FOLLOWING OPERATORS DEFINED]

- SUBTRACTION, UNARY MINUS
+,<8P> ADDITION

* MULTIPLY By 5@ AND ADD

’ RELOCATION COMPUTATION

jtrARATORS»=

VALUES ARE SEPARATED BY THE CHARACTER mpw
AND By COMMANDS,

NOTES:
A SPACE Ig EQUIVALENT 70 4 PLyg FOR ADDITION, THIg ONLY HAg
MEANING WHEN tHE PREVINUS CHARACTER WAS NOT A SEPARATOR
wHICH 8AYS yYQu CAN TYPE ALL THE SPACES You wANT wHILE Ypu
ATTEMPY T0 FIGURE QUT wHAT THE NEXT THING Yo Do IS,

ADJACENT OPERATQORS DO NOT ExIST, ALL OPERATORS ARE SEPARATED

By AT LEAST ONE NyLL wHICH ODY LIKES TO CALL A "@n (A TRyUE
MATHEMATICIAN MIGHT WINCE),

2f-5—



NEW]IJTER MANIPULATION COMMANDSwe
OPENING REGISTERS=w
“TQMee  «VAL><OPEN>

THIS FORM OPENS THE REGISTER INDICATED BY <«VAL> AND TYPES THE
CONTENTS IN THE MODE SPECIFIED By THE <OPEN> COMMAND, THIS MODE
REMAINS EFFECTIVE yNTIL ANOTHER COMMAND OF THI§ FORM Is TYPED,

FORM== <OPEN>

THE LAST OPENED REGISTER I8 PRINTED IN THE MODE SPECIFIED,
THE MODE 18 EFFECTIVE FOR THIS ONE COMMAND,
<OPEN> CPEN A8 OCTAL WORD
OPEN AS OCTAL BYTE
OPEN AS ANSII wORD
OPEN AS ANSII BYTE
OPEN AS RADIX 52 wQORD

E B A N

CLOSE REGISTER COMMANDS=w
FORM=e <VAL><CLOSE>

THIS FORM CAUSES <VAL> TO RE STGRED IN THE CURRENTLY
OPEN REGISTER AND THE ACTION SPECIFIED BY <CLOSE> T0 BE
TAKENs IF <VAL> IS NULL THEN NO DATA IS8 STORED AND QONLY
THE ACTION I8 TAKEN,

0sEdreaw <CR> CLOSE AND NO SpPECIFIC ACTION
<LF> CLOSE AND npEN THE NEXT LOCATION “Down"
A CLOSE AND QPEN THE NEXT REGISTER “up"
. CLNSE AND QPEN REGISTER SPECIFIED BY

THE CONTENTS OF THE OPEN REGISTER

TAKEN 48 A PC RELATIVE 4npRESS.

AS , BUT OPEN IS ABSOLUTE ACDRESS

> AS | BUT OPEN IS BRANCK DISPLACEMENT

< CLOSE AND RE-OPEN REGISTER LAST
OPENED BY AND EXPLICIT OPEN COMMAND,

/&5~



INTERNAL REGISTER REFERENCINGww

FORMS»w

§N
L
$NL

DEFINITIONS OF Lee

NOTESS

W e -

USER!'S mMaRp REGISTERS, R0eR7, B<aN<a?
INTERNAL CONTROL REGISTERS
INTERNAL CONTROL TABLES WHERE$

L IS THE CODE LETTER FOR THE SPECIFIC
REGISTER OR TABLE,
AND
N IS THE POSITIVE OFFSET TO THWE TABLE,

THIS I8 A NUMBER @<eN<s37 AND IT DOUBLED
AND ADDED YO THE ADDRESS SPECIFIED
BY *L* 10 GEY THE CORE ADDRESS,

CONTROL REGISTERSww

CONTROL

MNDOICMCI> T

TABLES=w

CC 4 D~O®

USER'S STATUS REGISTER

ODT'S RUNNING PRIORITY

ARGUMENT REGISTER

MASK REGISTER

LOW MEMORY SCANNING REGISTER

MIGH MEMORY SCANNING REGISTER

USBER'S CONSTANT REGISTER

LAST QUANTTITY TYPED REGISTER _
DISK /0 BUFFER START ADDRESS (256, WORDS)
ADDRESS AUTPUT FORMaY SWITCH

(THE ORDER ABOVE IS THE SAME AS THE ORDER
IN MEMORY)

Qw7 RREAKPOINT ADDRESSES

A=y BREAKPOINT PROCEED COUNTS

2=7 RREAKPQINT INSTRUCTION STORAGE

8=37 RELOCATION BASE ADDRESS OR SEGMENT NUMBER
0=3 CONSOLE/TTY DEVICE ADDRESSES

20=27 RELOCATION'DIsK UNITS (RK TYPE DIgk)
30=37 RELOCATION DISK UNITS (RP TYPE DIsK)

00T TREATS TMESE CONSTRUCTS AS A METHOD OF GENERATING
ADDRESSES AS FolLlLows!

THE QFFS§
SPECIFIE
THE NULL

EY 1S MULTIPLIED BY 2 AND ADDEN Tg THE ADDRESS
O BY TWE CODE LETTER, THE WARD REGISTER CASE 1S
LETTER,

THERE IS ONLY A MAXIMUM CHECK FOR THE OFFSET VALUE 8TTACHED
TO A TABLE REFERENCE,

CONTROL REGISTERS CANNOT BE USED wITH OFFSETS,

(-7



*Trw o CE&TENENLING (CONT D) e

REGISTER USAGE=«

A BRIEf DESCRIPTION OF Twg USAGE OF SELECTED REGISTERS APPEARS
BELOw?

sC THE USER CAN PLACE & CONSTANT VALUE IN THIS REGISTER
AND ACCESS IT BY TYPING 4 "C" AS PART OF A <VAL>
CONSTRUCT, IT 1s INTENDED 43 A wAY 70 CuT THE TYPING
NEEDED To GET THINGS DONE, WHEN 0DT IS LOADED THE
REGISTER "$C" WAS THE ADDRESS OF ODT'S STARTING
POINT STORED THERE (TYPE "Cany,

$Z THE ADDRESS OF THg DISK 1/0 BUFFER USED IN THE DISK LOOK
18 keBT MERE, THE USER MAY CHANGE THIS AT aAvy TIME, ODT
ASSUMES THAT THE ByUFFER IS 256, wORDS (512, BYTES OR
1022 OCtAL) IN LENGTH AND THAT THE FIRST WORD'S ADDRESS
I3 IN "gze, 1F THE CONTENTS OF “S$Z" ARE ZERO AN
ATTEMPT Y0 USE THE DISK Look CAUSES gDT TO QUESTION
YoUu, :

sF WHENEVER 00T TYPES an ADDRESS tBREAKpoINTs.'sEARCHEs,
© OPENING LOCATIONS, ETC,) IT CONSULTS WITH THE WFORMATH®
REGISTER TO SEg 1F THE USER WwANTS THE ADDRESS TYPED
IN RELOCATABLE OR ABSOLYTE, IF "sFn gays HONE ™
THAY MEANg ARSOLUTE, AND gAYING "ZERO" MEANS RELOCATABLE

s$P ODT CAN RUN aT ANY CPU PRIORITY (AT LEAST FOR a WMILE)Y,
SETTING THIS REGISTER TO A ny77n
MEANS THAT ODT Ig yO RyN AT THE PRIORITY OF THE ygER
WHEN THEY HWIy THEIR BREAKPOINY, IF THE REGISTER
DOES NOT CONTAIN & "377" THE REGISTER'S CONTENTS
ARE QMIFTED LEFT ¢ PLACES AND JAMMED INTO "pS", THE oDY
ASSUMES THAT YOU TYPED THE PRIORITY IN THE LO=3 BITS
OF ngpnw,

SYNTAX OF REGISYER REFERENCESwa
BE WARNED OF THE FOLLOWING PROBLEM wITH ODT:8 SYNTAX, ODT USES
LETTERS AS PART OF A VaALUE AND USES LETTERS aS A DELIMITER,
FOR ExAMPLE}
$7G MEANS THE SEVENTH PROCEED COUNT, NOT GO AT
REGISTER SEVEN,

“1% AND wU® TABLE DESIGNATORS ARE NOT yET COMMANDS, IF THEy
~ ARE EVER MADE INYO COMMANDS, BE CAREFL,

(¢-§



- . e T v G

Go To THE PROGR‘"' 'G" ..--.-..-------...------.--.....-.--.-. ”G" LA K X

" t0CEED

THIS COMMAND SETS TwE CPU'S REGISTERS @=7, AND PS
FROM THE USER'S IMAGE MAINTAINED BY ODT, TWIS ACTION HAS THME NET
RESULY OF STYARTING THE USER'S PROGRAM,

SYNTAXwew
<VAL>G SET THE USERIS PC TO «VAL> AND
START THE TARGET PROGRAM,
G - USE THE CURRENT SETTINGS OF THE USER!'S
REGISTERS YO START THE PROGRAM,
NOTESew

A MGM COMMAND SETS §,1, MODE TO “OFFW, IE, GO GOES| |
ERRORS~ 0DD ADDRESS,

FROM BREAK' llpll -.--..-----.--..-------.--.-....-----. 'P“ XX X ]

USE THIS COMMAND TO PROCEED FROM THE LAST BREAKPOINT HIT gy
O0DT, THIS IS USED FOR THE NORMAL BREAKS #Pw7 AND THE SINGLE
BREAK w8,

SYNTAXwme )
<SVAL>P PROCEED THRU THE CURRENTLY
ACTIVE BREAKPOINT <VAL> TIMES
BEFORE STOPPING AGAIN,
P <VAL> DEFAULTS TO { IF NOT SPECIFIED,
NOTESe=

A "P" COMMAND ET3 8,1, MOOD 1O noFFw,

THE INSTRUCTION AT THE BREAK ADDRESS IS EXECUTED WWEN
THE PROCEED TAKES PLACE,

A "G" TO A BREAKPOINT CAUSES THE BREAK TO HAPPEN,

WHEN A BREAKPOINT IS HIT AND MAY BE PROCEEDED THRU,
ODY TYPES THE FOLLOWING:

NBtAaAAAAR WHERE ;
N IS THE BREAK NUMBER, Qw7
WHICH ARE (SER SEy, AND 8 IS
THE CODE FOR A SINGLE INSTRUCTION
BREAK,

IF ODT FIELDS A ®"TRaAPH INTERRUPT AND HAS NO BREAKPOINT
DEFINED FOR yMay LOCATION It yyPES wBgE# FQOR THE ENTRY,
THE USER PC I3 gf1 10 THE LOCATION FOLLOWING THE “TRAP®

ERRORS« NO ACTIVE BREAKPOINT,

/¢



"oy

wme s «l v ANUD (CUNT VD) me

S$ET A BRE‘KPO!N?, sgn --u-------—----.----.-..--------------'. "B" saww

ALL BREAKPOINTS MAY BE CLEARED, SINGLE ONES CLEARED, AND
INDIVIDUAL ONES SEY VIA THE ngw COMMAND,

SYNTAXwa
B CLEAR ALL RREAKPOINTS
<0CT>»8 CLEAR ONLY GREAKPOINT ¥<OCT>»
<VAL>»)<0CT>8 SEY BREAKPOINT #<0CT> AT LOCATION
' <VAL>,
<VaLa»jB LET ODT PICK THE BREAKPOINT TO SET
AT LOCATION <VAL»,
NOTESew :
THERE ARE THREE CONTROL TABLES ASSOCIATED WITH A BREAK]
SNB TME ADDRESS OF THE BREAKPOINT.
NG THE PROCEED COUNT OF THE BREAKPOINT,
Sn1 THE CONTENTS OF THE ADDRESS AT THE

BREAKPOINT WHILE THE USER I8 RUNNING,
OcuN<s7 WHERE N 1S THE BREAK #

IF YOy SHOULD PERCHANCE GET INTO ODT wITH BREAKPOINTS
IN YOUR OWN PROGpAM, AND It Is EAgy 10 DO, YOy FIRST
MIGHT TRY LOOKING AT THE “In yaABLE TO FIND THE
CONTENTS OF THE LQCATIQNS In THE “R" TABLE THaY

GoT SCREWED up, CLEARING RREAKPOINTS IN THIS STATE Is
DI1SASTER, TRY LOOKING FoR *3nrg gy MEMORY FOR A START,

ERRORSe BAD BREAKPOINT NUMBER, 0ODO ADDRESS, RAN OUTT, BREAKS,

8INGLE INSThUCTION MODE, "g" .--.---.----vnnnu----.----.------ """ mewe

THIS COMMAND SETS THE MOOD WHERE ODT TRAPS ON EACH INSTRUCTION
EXECUTED AS IF IT WERE A BREAKPOINT, THE u8# COMMAND CAUSES
AN INSTRUCTION 70 BE EXECUTED IN THIS MODE,

SYNTAX==
s EXECUTE A SINGLE(C1) INSTRUCTION aND
THEN BREAKPOINT WITH #8,
<0CT>$ EXECUTE <OCT> INSTRUCTIONS AND THEN
BREAK WITN 8,
NOTESee

THE USUAL PROBLEMS OF EXECUTION OF CERTAIN INSTRUCTIONS
wITH THE nTaBIT" ON ARE SOLINLY ENTRENCHED IN THIS onT,
THE STACK OF OpT 1 ABOUT 4¢ wORDS IN LENGTH AND 1F

YOu CONSIDER THE 1p@n BYTE DISk BUFFER THAT Ig IN

FRONT OF THE STACK THATY IS A LOT OF STACK SpACE,

ERRORS= NONE CHECKED FoR BY OOT,

/8-/0



AVUREIIING COMPUTATION AND CONTROL»=
CONPUYE OFFSEYS. “0” ..-..-.--gggeaaaaaa----.---.-------.--..- “0" LY X1

THIS COMMANDS PRINTS THE PC RELATIVE aND BRANCH DISPLACEMENT
ATWIXT TwO LOCATIONS, IT DOES IT CORRECTLY wHICH I NEVER
AM QUITE ABLE T0 DO,

SYNTAX=a

<VAL>»0 , COMPUTE OFFSETS FROM "." T0 THE
ADDRESS «<vaL>,

<VALI>»)¢VAL>0 COMPUTE OFFSET FROM <YALI> TO «<VAL>
IF <VAL> I8 NULL ODT THINKS ZERO,
NOTESe=
THE OFFSETS ARE PRINTED ON THE LINE WITH THE COMMAND
AS 16 BIY NUMBERS, THIS Is s0 THAT YOU CAN FIGURE WOwW
FAR OUT 0F BRANCH DISPLACEMENT YQu ARE,
THE PC RELATIVE DOFFSET I8 PREFIXED BY 4 "M AND
THE BRANCH DISPLACEMENT IS8 PREFIXED By & fy>n,
TO SEE = AS + vyPE HeQan
ERRORSe NONE POSSIBLE,

THE RELOCATABLE EXPRESSION FOK GIVEN ADDRESSES IS TYPED gY TWIS
COMMAND, THE CORE (NOT DISK{) RELOCATION REGISTER AND OFFSET
ARE DISPLAYED INDEPENDENTLY OF THE MODE IN ngFw,

SYNTAXew
<VAL> ) <OCT>K COMPUTES AND TYPES THE RELOCATION
: EXPRESSION USING REGISTER <0CT»>
AND THE ADDRESS <yAL>,
IF <VAL> I8 NULL THEN THE CURRENT LOCATION
vIA w,w 1S ySED, IF <OCT> I8 EMPTy THEN ODT
SCANS THE RELOCATION TABLES LOOKING FOR THE
BEST FIT,
NOTES=e
THE INFORMATION PRINTED B8y nk» FOLLOWS ON THE SAME
LINE AS FOLLOWg: =R, LLLLLL

WHERES R IS THE RELOCATION REGISTER USED To
GET THE OFFSET L=L.

ERRORS» NO RELOCATION REGISTERS DEFINED,

’¥-//



Anolzaiiue COMPUTATION AND CONTROL (CONT!D)~a
SET R!LOC‘TIO~ REGISTER, Ly L CeCscssrrsRrAasrc LT et Rce TR e "R posw

THERE ARE 40 RELOCATION REGISTERS AND 202 UNIT REGISTERS
ASSOCIATED WITH THIS COMMAND., YOU SrOULD CONSULT THE “DISK LOOK"
DESCRIPTION WITHIN THIS DOCUMENT FOR THE NITTYaGRITTY, IN
SHORT== "R" REGS, QPe7 ARE CORE, 1@=17 ARE RF DISK, 20«27 ARE
RK DISK, AND 3m=37 ARE RP DI8kK,
"U' REGS @=17 DOMIT ExIST, 20=27 ARE RK yNIT REGISTERS,
AND 30237 ARE Rp UNIT REGISTERS,
THE VARIATIONS ON THE WR"™ COMMAND SET AND RESET TWOSE 608 REGS,

SYNTAXew
R . RESET ALL *R® REG3, TO =1 AND ALL "UM TO
a,
<UCT>R RESET ONLY THE REGISTERS SPECIFIED BY
<0CT> TO =1 AND @,
€O0CT1>)<yA >3<oCT>R SET RELOC REGISTER «<0CT> To

CONTAIN <VAL> AND SET UNIT
REGISTER «<OCT> TO CONTAIN
<0CTi>,

THE ABSENCE OF AN ARGUMENT TO TwE MULTIPLE
FORM OF TWE "RM™ COMMAND MEANS THAT NDT SETS
THAT vALUE Y0 @, yNIT REGISTERS De17 ARE
DEFINED Y0 CONTAIN ZERD'S,

NOTESee THESE REGISTERS YAy BE ADDRESSED DIRECTLY 48 INTERNAL
REGISTERS BUY THE 1§ NO RANGE CHECKING DONE RY THE
INTERNAL REGISTER ADDRESSING CoMPUTATIQN ROUTINES
80 IT Is RECOMMENDED THAT YOU USE THE "R" CommAND
TO DO THE SETTING AND THE "S$R/$U"™ FORMS TO DO
LOOKING,

ERRORS=~ YOU HAVE SPECIFIED a REGISTER THAT DOSEN'T ExIST

NOTES (AGAIN)wa
ODT's RP DIgk NRIVER COULDN'T CARE LEgS ABOyUT WHETHER
YOU HAVE A ByNeH QF RPB2's (i)SING RP11 CONTROLLER) Og
RPB3'S (USING THE Qpilie=C CONTROLLER) CAUSE THEY Lpgk
ALIKE oN THE DRIVER LEVEL, HOWEVER, THE Rrpo3 Is A
BIGGGGG DISK (RY,vnd BLOCKS) AND IT IS HARD T REPRESENT
80,000 THINGS WITW A 16 BT RELOCATION REGISTER, TwWE
PROBLEM DOESN'T COME UP ON AN RPO2 WITH A MERE 40,000
BLOCKS, THE PROBLEM I8 RESOLVED BY A SPECIAL HACK WITH
THE RP UNIT REGISTERS (38=37U), UNITS 0=y (CONTENTS OF
THE APPROPRIATE UNIT REGISTER) ARE USED TO INDICATE THE
LOWER HALF OF aN RP@3, UNITS 18=17 REFER T0 THE UPPER
HALF, wHAT HAPPENS IS THAT 49,000, IS ADNDED TO THWE
RELOCATION SEGMENT NUMBER (CONTENTS OF JP=37R) IF TYHE

DOES IT'sS worRK IN DOUBLE pRECISIQON(32 BITS), FOR EXAMPLE
IF 31us15 AND 31R=1@ AND YGU COMMAND ODT To QPEN A wgRD
wWITH ,31,26/ vou wILL GEY wWORD 26 OF SEGMENT NUMBER
40,000,+10840,708 pgn RP UNIT 8 (IF YOU DON'T BELIEVE ME,
TRY IT),

/-7 2



e et W ey NE @~
ﬂORD SE‘RCH NIYH H‘SK' “ﬂ' —-.----.---...--..-p--.-....--q.--- 'y" - -

ALL LOCATIONS BETWEEN THE LIMITS DEFINED BY wSL® AND wgHn®
THAT ARE EQUAL TO THE VALUE IN "$A" UNDER THWE MASK IN
"SM# ARE PRINTED IN THF MODE SET BY THE LAST OPENED
LOCATION, THE DATA IN CORE I8 waNpEC™ WITH THE MASK AND
THE VALUE IN W$a® Ig waANDED® AND THE COMPARE

I8 MADE WITH THE MASKED VALUES,

SYNT‘X.-
<VALI» ) eVAL>W SET u§Mr 10 <VAL1>» AND
SET "§A™ TO <VAL> AND
PERFORM THE SEARCH,

W USE THE CURRENT SETTINGS OF “gA® AND
"§M® TO DO THE SEARCH,

IF EITHER <VAL{> OR «VAL> IS NULL THEN THE
CORRESPONDING REGISTER IS NOT S8ET,

NOTESwn» .
THE SEARCHM MAY BE INTERRUPTED BY THE <RO> COMMAND
DESCRIBED LATER, -

ERRORS= NONE,

NOT WORD SEARCH WITH M‘SK' NN CEscencsnsnevunneneanssoweccnsawe NN eoewe

THIS COMMAND OPERATES SIMILARY TO THE "w" COMMAND BEXCEPT

THAT ALL LOCATIONS THAT ARE DIFFERENT UNDER

THE MASK ARE PRINTED, TYHE SyNTAx IS THE SAME A8 FOR wwu, SAyE
FOR THE COMMAND HISELF,

SYNTAXwe

N SEE THE "w" COMMAND FOR REGISTER
SETTINGS, '

NOTESe=
THE SEARCH MAy BE INTERRUPTED By THE <RO» COMMAND,

ERRORS= NONE,

/F-13



MEMORY SEARCHES (CONT!'D)we \

EFFECTIVE ADDRESS SEARCH WITH MASK, "E" wcemcmuccescsccsccacse "EN mmew

THE "EM COMMAND PRINTS ALL LOCATIONS BETWEEN "SL" AND “§H" THAT
RELATE TO THE wgA® VALUE AS FOLLOWS!

EQUAL, SAME ABSOLUTE ADORESS,

PC RELATIVE, THE LOCATION IN CORE 1S ASSUMED TO RE
A RELATYIVE (MODEs6, REGISTERm?) ADDRESS,

"BR" DISPLACEMENT, THE LOCATION IN CORE I8 ASSUMED
TO BE A CONDITIONAL BRANCH INSTRUCTIOw,

SYNTAXew
E SEE THE "W" AND "N¥ COMMANDS FOR VARIATIONS

NOTES ==
THE SEARCH MAY BE INTERRUPTED BY THE <R0O> .COMMAND,

THE EFFECTIVE ADDRESS IS ALSO A MASKED SEARCH, THIS 18
TO ALLOw RANGE SFARCHES,

PLEASE NOTE THAT THE "E® SEARCHM WILL ALMOST ALWAYS
GIVE wFALSE DROPSwe,

ERRORSe NONE,
- A LEFT OVER FROM THME OLD DAYS IN I.R,
LIST "EMORY ON DEVICE' "L“ bl DL L L L L L L L LT F Y Y J R Ry g ppepapagrepgy 'L" mewe

THE CONTENTS OF THE CELLS ATWIXT “SL® AND "SH" AND LISTED 10
UP ON THE SPECIFIED DEVICE,

SYNTAX=w
<0CTr»)<VAL>jeVvALi>L <0CT>» I8 THE OUTPUY DEVICE WHERE
@ OR NULL IS THE CONSOLE AND |
IS tHE LP11, «<yAL> AND <yALi>,
IF PRESENT SET "SL" AND mgHw
RESPECTIVELY,
NOTESe=

THE "gL® LIMIT Is ANDED WwITH A "177772% AFTER
BEING PICKED uP AND BEFORE ugE,

THE wLv COMMAND MAY BE INTERRUPTED AT ANY TIME VIa
THE <RO> COMMAND,

THE LISTING I8 PRINTED IN THE MODE SET BY THE LAST
OPENED REGISTER,

ERRORSe NONE,

(P-7¢

- "R



MISC COMMANDS==
FILL MEMORY WITH Ngngsi nEw ==-i---.-.-..-...--.-o..--q.----.- .F” LT T

. FILLS MEMORY WITH A GIVEN WORD,.STARTS AT THE LOCATION SET IN
THE REGISTER DEFINED BY "SL* AND STOPS AFTER THE LOCATION SET
IN THE REGISTER DEFINED Ry “$H" MAS BEEN FILLED,

SYNTAXee
r USE THE CONTENTS OF "g4n TO DO THE FILL
: FROM "SL" TO ®sW" INCLUSIVE,
SVAL>F . SET THE REGISTER “$a" 10 <VaL» AND THEN
DO AS ABOVE,
NOTESmw

ERRORS~ AL YOUR OWN, |

IF YOU WAVE A PpP=1y WITH LOTS OF DIFFERENT DEVICES, LIKE

A TV SET, USE THIS COMMAND TO MAKE OnT USE THE DEVICE FOR IT'sS
CONSOLE I/0, THE OLD CONSOLE STATUS IS RESTORED AND THE NEW
STATUS 18 PICKED UP WHEN CONSOLES ARE SwITCHED,

SYNTAXea
VA>T USE THE 1/0 PAGE ADDRESSES BEGINNING AT
<VAL> FOR CONSOLE /0,
T ~ RESET THE 1/0 DEVICE TO THE STANDARD
PDP=11 CONSOLE TTY ASSIGNMENT (177582)
NOTES=-

THE GIVEN ADDRESS 19 ASSUMED TO BE THE READ STATUS
REGISTER ADORESS AND THE REMAINING THREE DEVICE
REGIstERs ARE ASSUMED T0 HE THE NEXT THREE wORDS
IN THE I1/0 PAGE, THIS, I AM ASSURED, Is NOT AN
ASSUMPTION BUT A DEFINITIQN, WE ALL KNOW WHAT THAT MEANS,
ERRORS= ALL YOQUR OWN,
pRINT ExPRESSIDN ON LEFT ON RIGHT' '..“ ---....----.-..--.'...— “." L2 X X ]

THE EXPRESSION OR VALUE ON THE LEFT oF THE “a" IS PRINTED
AS AN OCTAL wORD,

SYNTAXwe

<VAL>n PRINT <VAL> A4S aN OCTAL wWORD,

/§-r5—

15



MISC COMMANDS (CONT'D)e=e : io

C‘NCEL AND RETURN’ HCRO>N menepcerwrasnecnencensennsevessanans "CROPIN -

THIS CHARACTER IS ABLE TO STOP THE CURRENT ACTION OF 00T,
NOT TO BE CONFUSED wITH THE USER, AND RETURN TO THE COMMAND
INPUT ROUTINE VIA THE ERROR ROUTINE, THE CHARACTER I8 TESTED
FOR IN THE TYPE<AWEAD ROUTINE AND WHEN DETECTED GOES

TCO THE ERROR ENTRY AND TwHIS RESETS TYPE«AMEAD AND CAUSES

ODT TO WAIT POR SOMETHING TO DO,

SYNTAXe»=
<R0> STOP ODT AND wAIT FOR COMMAND,
NOTES»==

USE THIS COMMAND TO 8TOP SEARCHES SINCE THE TYPE=AHEAD
USES THE QUTPUT ROUTINE TO LOOK FOR INPUT,

’7-/6



OVERVIEW OF THE "DISK LOOK® - 17

THE ®DISK LOOK™ EXTENSION TO ODT USES AN EXPANDED
VERSION OF THE RELOCATION FACILITY, IN GENERAL THE USER 1S ABLE
™ OPEN ONE WORD ON A GIVEN DISK, EXAMINE THAT WORD, MODIFY AND CLOSE

AT WORD, THE SAME HOLDS FOR RYTES,

THE DISK MAY BE OPERATED UPON IN THIS MANNER ONLY, AND NO
ABILITY TO SEARCHM DIRECTLY OR OTWER SUCH QPERATIONS IS IMPLIED,
THE ASTUTE HACKER MAy FIGURE SOME THINGS OUT THOUGH, '

THE USER IS GIVEN THE ABILITY TO CONTROL THE BUFFER USED IN THE
DISK LOOK FACILITy, THE INITIAL BUFFER DEFAULTS TO THE 256, WORDS
fMMEDIATELY PRECEEDING ODT'S WwORKING STORAGE,

THE DISK I8 ADDRESSED VIA AN EXTENSION OF THE ODT RELOCATION
SCHEME, THIS WILL BE SPECIFIED IN DETAIL A COUPLE OF PAGES LATER,
THE SCHEME ALLOwWS THE USER TO SET yP T0 EIGHT BASES ON AN
R® AND.RK (EIGHT FOR ALL EIGMT POSSIBLE UNITS)
ND THEN SPECIFY uP TQ A 16, BIT OFFSET TO THAT BASE, THE BASE
{8 A 16, BIT SEGMENT NUMBER IN THE STANDARD RSTS FORMAT,

/Y—-/Z



e o e wasrs BUUNT GAIENSION®=

THERE ARE 20 RELOCATION REGISTERS DIVIDED INTO GROUPS as
?gLLphsx

€L _ REGISTERS, NUMBERED Qw7 ($AR=§7R)

EACH REGISTER CONTAINS A 18, BIT CORE RELOCATION CONSTANT,
*F DISK REGISTERS, NUMBERED 1017 ($10Rag17R)

EACH REGISTER CONTAINS ONE 16, BIT SEGMENY NUMBER
(A SEGMENYT BEING A 256, wORD BLOCK OF DIgK ALA RSTS)

THERE ARE 20 ADDITIONAL REGISTER PAIRS DEFINED AS FOLLOWS;
R¥ UNIT AND DISK REGISTERS, NUMBERED 2027

$§20R-$27R RK ADDRESS (SEGMENT) REGISTERS
220 it 2Py RR UNIT REGISTERS

RP UNIT AND DISK RECISTERS,, NUMBER 3Jde37
$3 Reg3’R RP ADDRESS (SEGMENT) REGISTFRS
$32u=837y RP UNIT REGISTERS

THE UNIT REGISTERS CONTAIN fHE UNIT NUMBER (@7 ON RK 0OR RP@2)
(0=17 ON RPB3) WITH ITS ASSOCIATED ADDRESS (SEGMENT) REGISTER,
THE ADDRESS REGISTER CONTAINS A 16, BIT SEGMENT NUMBER,

THE UNIT REGISTER® ARE DEFINED TO CONTAIN A ZERO FOR
ALL RELOCATION REGISTERS NUMBERED a1y,

~ 0" " 1/0 BUFFERe=

DUE TO VARIOUS AND SUNDRY CHARACTERISTICS OF pISKS AND RSTS aLL 1/0
—DONE BY THE DISK LOOK FACILITY IS DONE IN 4go WORD UNITS, TWIS

SCHEME REQUIRES A 4p@ WORD BUFFER, AND ODT USES THE VALUE STORED IN

THE REGISTER ADDRESSED By 82 T0 DO IT:S 1/0, THE INITIAL yALUE IN

82 IS SET T0 POINT TO A BUFFER TWAT IS OCEFINED YO EXIST IN THE

400 WORDS IMMEDIATELY BEFQRE TWME SpACE ySED BY 0DT ForR IT's STACK,

~DISK I1/0 DESCRIPTIONe

IT 1S DEEMED IMPORTANT THAT THE USER BE ABLE TO FIND QuY
—4HAT I8 DONE TO THE DISK WHEN HE USES THE NISK, It 18 ESPECAILLY
80 IF YHE ysEgr Is DEBYGGING a DISK SERVICE, WMEN EVER ODY ACCEgSEg
THE DIgK THE FOLLOWING ORILL IS EXECUTED:

SAVE THE CALLING upgn

WAIT UNTIL THE DISK IS NOT aysy,

SET PRIORITY 71O #7w

IF DIsSK 18 Busy AGAIN RESTORE CALLING "P8" AND START OVER,
ISSUE A CLEAR CONTROLLER COMMAND TO THE DISK,
AWAIT UNTIL READY AGAIN

PERFORM THE READ OR WRITE

WAIT UNTIL READY

RESTORE THME CALLING npan VALUE

CHECK THE DIsSK FOR ERRORS,

ExIt,

- THE DISK 1,0 IS DONE IN THIS MANNER 80 THAT CONSISTENCY IS
INSURED, IT APPEARS 10 BE IMPOSSIBLE 10 COMPLETELY SAVE AND RESTORE
THE DIgK gATyS 80 I MAVE TAKEN THE OTMER EXTEREME

[ F-1F



COURING AT THINGEwe
GENERAL FORM==
<0CT1>»,<0CT><OPEN>
*O0R=
<YAL><OPEN>

<0CT4> I8 THE RELOCATION/UNIT PAIR TO BE USED
(RANGE 0-37), ‘

<OCT> 1S THE OFFSET T0 BE ADDED TO THE RELOCATION
UNIT PAIR SPECIFIED (RANGE 0=177727).,

IF THE CONSTRUCT "<OCTy>,% I8 ABSENT, THEN CORE IS ADDRESSED,

FOR EXAMPLE}

@)gI)or

B,1462/ XxX

HAS THE SAME QUTPUT (NOT EFFECT) aS TYPING
1462/ XxX

IF <OCTi> I8 ABSENT THEN THE VALUE DEFAULTS TO ZERO,

FOR EXAMPLE}

82,1324/ xxx

HAS THE SAME EFFECT (AND OUTPUT) aS TYPING
» 1324/ XXX :

Por EXAMPLE == |
TO LOOK AT THE CORE IMAGE OF RSTS LOCATED BEGINNING IN SEGMENT 61(8)

AND TO EXAMINE LOCATION 17362 OF THE CORE IMAGE I WOULD TYPE THE
POLLOWINGs (FOR CIL ON RK UNIT 21

817 2@R I1.E, SET UNIT P BY DEFaAULT, RELOCATE TO SEGMENT 61
. 28,17362/7 XXX OPEN WORD 17362(8) FROM TQP OF SEGMENT 61
WHICH I8 ACTUALLY WORD 362(g) OF SEGMENT gf(a)

THE OPENED LOCATION MAY BE OPERATED UPON AS IF IT WAS CORg.
(WHICH IN FACT IT IS})

’y=17



UUT CONMAND BSUMMARY, LETTERS AND NUMBERS=e

LETTER

)

{

~ -(K"‘)<C LDV OT CZzXCOX Co*e X O e oo g°

Be?

COMMAND

BREAKPOINY SET/RESET.

CONSTANT
EFFECTIVE ADDRESS

FILL
6o

RELOCATION VALUE COMPUTE
LIST MEMORY

NOT WQRD SEARCH
OFFSET VALUE COMPUTE

PROCEED

QUANTITY

RELOCATION SEY/RESETY
SINGLE INSTRUCTION
ALYER CONSOLE TrY

WORD SEARCH

oIT!'S

20
REGISTER

ARGUMENT
BKPT ADDRESSES (0=7)
CONSTANT

FORMAT CONTROL

BKPT PROCEED COUNTS (©6=7)
HIGH SCAN LIMIT

BKPT INSTRUCTION (@=7)

LOW SCAN LIMIT
MASK

00T PRIORITY
QUANTITY

RELOCATION (Q«27)
STATUS WORD

TTY ADDRESSES (0=3)

UNIT REGISTER (20=27)

DISK LOOK BUFFER
USER REGISTERS (Qe7)

/¢-20



00T COMMAND SUMMARY, CHARACTERS==

viewTy

CHARACTER ACTION

OPEN OCTAL RYTE
OPEN OCTAL wORD
OPEN ANSII BYTE
A OPEN ANSII WORD
X - OPEN RADIX 5@ wORD, 3 CHARACTERS

<CR> CLOSE LOCATION
“LF> CLOSE, OPEN NEXT IN « SEQUENCE
s CLOSE, OPEN NEXT IN = SEQUENCE

CLOSE, OPEN PC RELATIVE ADDRESS

’ CLOSE, OPEN INDIRECT QR ABSQLUTE
> CLOSE, OPEN OFFSET AS BRANCH

< RETURN TO LAST EXPLICTILY OPENED LOCATION
2o €ALT> ' REGISTER REFERENCE PREFIX

? ARGUMENT SEPARATOR

" RELOCATION OPERATOR

*,<8P> ADDITION OPERATOR

- SUBTRACTION OPERATOR

* MULTIPLY BY 5@ AND ADD

. CURRENT PLACE ADDRESS

s TYPE LEFT SIDE ON RIGHT

132? CANCEL COMMAND AND RETURN

ERROR WARNING

UNUSED CHARACTERS (NON=ALPHA)=w [ 1 ( ) 1224189
UNUSED LEYTERS IN COMMANDS o= A D M I J M uvxy:2
"'NUSED LETTERS IN REGISTERS == DE J K N OV W X v

“CETTERS JUST PLAIN UNUSED w= 0 J V X Y
LETTERS TO BE CAREFUL WITH == 7 U

-2/



BASIC - PLUS FILE PROCESSING

Theodore R. Sarbin
Digital Equipment Corporation



INTRODUCTION

These nofé; were prepared to introduce the BASIC programmer to the use of
files in a RSTS system on the PDP-11. Most of the 1ahguag§ features of
BASIC-PLUS are used and it is assumed that the reader is familiar with
them. For those who know éASIC but not the extended language features a
terse summary is provided in Apbendix A. A more complete exposition is
included in the BASIC-PLUS language manual. If there is any difficulty
in understanding the example programs then the ]énguage manual éhould be
available for consultation. When reading these notes the temptation to
5ust read the text and not to attempt to understand the example programs
should be avoided. The'éxamples and diagrams are integrated with the
text to such an extent that there is‘]itt]e bénefit to be gained frdm

Just reading the text itself.

/9-0



RSTS FILE PROCESSING

1. GENERAL

There are fundamentally three methods of performing input/output bp?rations
in BASIC-PLUS. They are serial input/output, virtual array, and "Record
I0". The first type is achieved through the use of the INPUT and PRINT
commands; virtual arrays are defined through the use of the DIM statement:
and "Record 10" (which ié something of a mis-nomer) uses the GET, PUT,
FIELD, LSET and RSET commands as well as the functions; CVTxx, CHR$, anc
ASCII. A1l types of input/output operations make use bf the OPEN and CLCSE

commands.

2. DEVICE NAMES, FILE NAMES, AND LOGICAL UNITS

1/0 operations in BASIC-PLUS are designed to be as device independent as
reasonable. Thus in the 1/0 statements thefe are no specific references to
devices. Instead, each statement contains a reference to a logical unit or
“channel".- (This is strictly a conceptual channel which should not be con-
fused with a hardware device called a channel).- Each "channel" is simply a
number from one fo twelve which potentially identifies the specific device
which is to perform an I/0 operation. Thus in one program logical unit or
channel 3 could be the line printer and channel 11 the card reader, while
in another program channel 3 could bemagtape wunit #2, channel 1 the paper
tape punch and channel 12 é file on the disk. The association of the
specific device with a channel number is done with the OPEN statement.'The
OPEN statement specifies a device, if necessary a file name, and the chan-
nel number to associate with that device. The form of the command is:

100 OPEN file name AS FILE n

17-4



The file nadg js a statement which cdmplcte}y describes where the data is
. to be found or put; It specifies tﬁe physical device as well as the name
that is to be assigned to the information. The complete file name consists
of the following parts: ‘ | .
DV: NAMEXX . EXT [111,222] {60>

Device File and Project, Protection
Name Extension Programmer Code
Names Number

The Device Name specifies the name of the device on which the file is locat-’
ed. It also may specify the unit number. Thus a file might be located on
the ﬁumber.three carfridge disk and would be referenced as "DK3:". A list
of device names can be found in the language manué]. If no device name is
specified then the public disk is assumed to be thevoné referenced. Most of
the examples cited in these notes use the public disk for simplicity but in
real applications it is uncommon to use other than private disks for produc-

tion data files.

) The File Name and Extension specify the name of the data. The name itsclf
is any sequence of six or%izggrcharacters from the set of letters and numbers.
A filename ﬁeed not be speéified when fhe device is of the type which dosas
not recognize file names; (The only devices which do recognize filenames
are disks, DecTape and. in some cases, Magnetic Tape). The only require-
ment about the filename is that it bé meaningful to those who uée it. The

extension is a three character field which is usually used to describe the

contents of the file. An extension of ".BAS™ means that the file contains

a BASIC-PLUS source program and an extension of ".BAC" means that the file contains
a BASIC-PLUS compiled program. The programmer can assign any file extension
he wants as long as it is meaningful to him. He nced not assign any ex-
tension at all. The file "ABCDEF" is unique and distinct from "ABCDEF.BAS"

or any other file with "ABCDEF" as the file name and an extension.

/9-2



The project:prqgrammer number field specifies in whose account the file

: is to be found. If it is omitted (and it usually is) then the system
assumes that the account that the job is logged in under is.the account
that the file is or is to be stored in. Writing into a fi]e’stofed.under
soheone else's accbunt is poséible.only ff he has explicitly permitted
that. Creating a file in someone else's account is generally not poss-
ible. (It can be done only by a privileged user. The System Manager's
Guide contains a discussion of privileged users.)

The last field is the protection code. This determines who can or cannot
access the file. It is only meaningful when the file is being created.
It 15 described in the.lLanguage manual and need not concern us further
here. |

The file name is specified either as a string literal (the file name in
quotes) or as a string variable which contains the filename. As an
example the following could be used:

100 INPUT "WHAT IS THE INPUT FILE'S NAME", A$
110 OPEN A$ AS FILE 4

In this case the user of the program supplies the file name at the time the
program is run. The n in the OPEN statement is sihp]y a number from one to
twelve or a variable which contains such a value. To terminate the assoc-
iation of a device and a channel we use the close statement and specify the
channel number to close. For example:

100 CLOSE n
alternatively we can close several channels in one comnand:

100 CLOSE m, n, o
The open and close statements have several other options which will be des-

cribed later but these statements create and terminate an association between

/7-3



device and/or file names and numbered logical units or channels. Thus by
changing the definition of the device or file for a specific channel we can

change the devices the program uses without revising the program.

3. SERIAL INPUT AND OUTPUT

This is the simplest form of input/output. thatever device is in use is
simply treated as if‘if was a.(possibly very fast) teleprinter. Where we
learned that to print on the teleprinter we used the PRINT statement we.now
make use of the sime statement but specify on which channel to print. Of
courseAit fs necessary to first associate a device br f{le with the channel
by means of an OPEN statement. Thus to print a table of squares and square
roots on the teleprinter we would have used the program:

100 FOR I =1 T0 100

110 PRINT I, SQR(I), I*I
120 NEXT 1.

’FE print the same table out on the 1line printer we would use the program:

A z 'S ASSOCIATES THE LINEPRINTER
1@E3 QPEM M o/ FILE & ITHIS ASSOCIATELS T\'j‘_.‘l.: .
1aE OPENTLE . TWITH CHARMEL RUMBEER 2
e I err T THE LOWIE
14%3 FOR (=1 TO 1&9 VETHRT rﬁg Loos
i‘_J:Ej i’F:INT g2, 1., SERCIM I+1 LTHIS DS 1:}:“:. R YT IMG
430 HERT 1 LSO THE L!J.’Ji e
i_;tj- t'ZEI'JSE 2 . VIERMINETE THE HEsEnnTART LN
156 END '

[7-$#



To write a file of names and addresses onto the disk we might use the

following program:

168 OFEM "MAMES. CAT" FOR QUTFUT AS FILE 1 VCHAMHEL IMITIALIZATION
2R THEFUT "HOM MANY MAMES": MY TFINDG OUT HOW MANY HEMES

16 FRINT #1, M2 VAMD PRIMT IT INTO THE FILE
136 FOR IX = 4% 70 MY VETART THE LODF

143 FRINT “IMPUT THE MAME" GEHTTHE  IMFORMAT IO
199 IMFUT LIME M$ 10M EACH NEME HND

168 FPRINT “INPUT THE MNUMEER AMC STREET" TAND AUDRESS

17¢ IMPUT LIME A% K

173 PRINT "INPUT “He CITY¥, STATE, AMD ZIF CODE®

< 3@ IMPUT LINE C% A 'MOM IT CAN BE OUTPUT
98 FRINT #1, M$; A% C$ VFRINT IT IMTO THE FILE
Z1m MEXT IX 'END THE LOOF

228 CLOSE 1

230 END

You will notice that a new‘eIemenf has been added to the OPEN-statement.
When we specify that a file is for OUTPUT that means that this is a new
file and any previous files of that name should be deleted first. Now
suppose that we want to use this file to print on the lineprinter all those
names and addresses for which the ZIP code begins with a 9 (i.e. those in

California). The following program Qou]d do that:

1oy OFEN "HAMES. DRET" FOR INFUT RS FILE Z VSET UF CHARMMEL T RS THE FILE

116 OoFErM "L B FILE S , PHND CHAMMEL 5 RS THE LINE FRTE
126 INFUT #Z. NE 'GET THE MUMEER OF FILE EMTHIEZ
128 FOR I = 45 To WX YSTHRT THE Lo

14 IMPLY LIME f2, A3CJIEDd FUR Ju=1x TO 32X YEET OME ENTEY

158 JX = LEMC H-%"._.fi,' A
JR=JE-1E OHT AL HIE.H‘H?‘..-;‘.'.,.- Jns ARs=nom
U J = Bk : VLo FOR THE ZLP CObE
LeA FRINT #5, R$CEHD): FOR EX=1 TO ZX
IF MIDCHS(END), JH+ALH. 1R0="

W

HMND Ja
PRRINT OM LIMNE FRTE

LI SIF CODE IS Sy

8 ONERET [N YSTOR THE LR
180 CLOZE 2,8 @ ENMD TALL DIME

e



The previou§ program is intended as an example. Of course if it were a real

" application we'ﬁou]d want to do more checking for valid data and probab]y‘

" at the time the data was entered. Also you will notice a new specification
in the OPEN statement. When we specify that a file is to be openéd‘for
INPUT that means that we expect the file to already exist and that if it
doesn't then that is an error and the program should not proceed. If we
specify neither FOR INPUT nor FOR OUTPUT then the system will use the file

of the specified name if one exists and if not it will create one and use
it. (A somewhat aromalous situation exists here in that a file may be opened

FOR INPUT (ie: it must exist) and then we can perform output operationsvon it

or we can open a file FOR OUTPUT thus creating it and later in the same program

we can read it.) At this point we have seen how to associate the name of a device or @
file with a Togical unit Ar channel number and how to access devices and
files in a serial manner. Next we will take up the two methods of accessing

data'randomly.

4. VIRTUAL ARRAYS

This is a very simple technique for accessing disk files. Ue simple equate
files onAthe disk with dimensioned arrays and treat}them in the program as
if they were simple arrays. Thus we can associate the name of a disk file
with an I/0 channel through the use of an OPEN statement and then associate
the name of an array with its size and with the I/0 channel through the use
of a DIM statément:

Thus:

100 OPEN "FILE.DAT" FOR INPUT AS FILE 2
110 DIM #2, A%(10Z3), B(1024)

The above statements simply state first that an association is to be made bet-
ween the file "FILE.DAT" on the public disk and channel two and that the file

is to already exist. Then we say that the file is a virtual array whose names

5o



are to be ﬁz(n)wand B(n). Thus to read the file we simply reference the
elements of the array. _To find the sum (as S%)_of the first 500 elements
in the file we might use the following.statehent:

120 S% = 0% : S% = S3 + A%(J%) FOR J% = 0% TO 499%
When the loop is executed we effecfive]y read from the file 500 times. To
write into the file we simply place our virtual arrayvreference on the left
side of a replacement operator (equals sign). Thus to write the first 1024
elements of the Tile with the first 1024 even numbers and then the next 1025
elements with the first 1025 real numbers starting at zero and increasing by

one-half we could use the following program:

130 AZ(1%/2%) = 1% FOR 1% = 0% TO 2046% STEP 29,
140 B(I%) = I1%*0.5 FOR I% = 0% to 1024%

One thing to remember is that in the program it looks Just 1ike we are refer-
ing to‘an in-core arra&, however, we really are reéding and writing on a
disk which is very much slower than reading and writing in core memory. Thus
we must expect that our program will run much more slowly when we use virtual
arrays.  Another special aspect of virtual arrays of strings is the handling
of the length of the string. When we store a string in core we keep track of
its length internally by means of a character count. However, when we place
the string arrays on the disk we need to be able to uniquely idgntify each
one without checking on thé length of the others. To accomplish this
efficiently, all of the strings in any one string'array must be the same
length and that length rust be an integral power of two (1,2,4,8,16,32,64,

25651 T ,
1285er-£§5). To define this length it is placed following an equals sign
| just after the right parenthesis in the DIM statement. Thus: |

100 DIM #8, A${100)=8, B$(20,20)=64

would state that the file open on channel eight consists of two arrays of

strings: A$ consists of 101 strings each 8 characters long and BS consists

/4 -



b b b

g b

of 441 striﬁgs.each 64 characters long. If you do not specify thé length
.of a virtual sfring array then the system will assume that it is 16
characters. Virtual string arrays are handled just 1ike in core string '
arrays would be handled except that they are much slower. Examine the
following example which étcepts a list of names from the teleprinter and
places them on the disk in a virtual string array. Then it sorté the

‘string array using a fairly inefficient sorting algorithm and it prints

the sorted 1ist on the line printer. Thus:

&F OPEN "MNAMES® FOR OUTFUT RS FILE 2 'CRERTE THE FILE
1@ DIM #2, NE(ZBOY=€4 VAREAY RS FILE
23 INPUT “HOM MANY NAKES"; Ni PHOM MANY NANMES IH THE FILE
Tp INPUT LINE R$CIEY FOR IX = 8% TO HE-1X
FREAL THE MAMES INTO THE FILE
40 W¥ = N” -2% * INOW FOR THE EU?['E SORT
So FX o= B . 'FR 18 THE INTERCHANSE FLAG
£@6 FOR 1% = @¥ TO MZ
IF N$CIEY > N&CIR+4y) THEN T=N&(IX
‘ MECIX) = HNECIRHLED
NE(THALEDY = T @
¥o= 1
nE o= By -4 LOTOCASE UHLESS FR=gN JTHID IR TOT O LDIEEOT
RS YILE E PRt DOSTEL T NDEOPE
NECIXY; FOR IX = 8 TO Ne-1X PTHH ZORTED LIST
END PALL DOMNE

This is a simple example of sorting a file on the disk when the file is a
virtual array.> Virtual érrays are very easy to use and when their lack of
flexibility is not a problem they can be used in place of record I]O when
random access is desired. Virtual arrays, however, have high bverhead and
programs which use theh will run slowly. The third method.of processing
files which we will take up next is the most flexible and the most power-

ful, but it also requires more work on the part of the programmer.

/7 -1

Lo I T

.
Pt



5. RECORD ORIENTED INPUT AND GUTPUT

- In this sect1on we will study the most powerful and most f]ex1b]e provi-
.'swons for input and output in BASIC- PLUS. "Here we will examine the use of
the GET, PUT, FIELD, LSET and RSET commands. Also we wil] make use of the
six conversions funtions (CVTFS$, CVT$F CvT%$, CVTS > CHRS, ASCII) and the
special system variables RECOUNT and COUNT. Ue will meet some new
variations on the OPEN statement. We will add the qualifiers RECORDSIZE,
CLUSTERSIZE, and MODE. .

6. STRING PROCESSING - LET STATEMENTS

Before we can start to study record I/0 it is necessary to have a more
ghorough understanding of now the system handles sfrings internally. When
we talk about operations on strings we should keep in mind that when we use
a string identifier we are referrvng to two parts of a strwng One is the
strlng header which contains the string length and a "pointer" which points
to the other part of the string, the data or characters which make up the
string. Thus when We execute the statement:

100 LET A$ = “ABCDEF"

we produce the following sort of structure in core:

+ BASIC-PLUS STRINS STORAGE . .

AS 611

(I T T I T R

String Headcr Area |String Data
Area

]
Figure 1 '

/7 -8



and when we nextvexecute the statement:
110 LET B$ = "GHI"

we produce the following in core:
- .. BASIC-PLUS STRING_ STORAGE

r‘_.,,—-i

™

AS
RS 3

‘\_

IJ 1 1] —l=lel nlm 1o > o | ]

String Header Area {String Data
Area

Figure 2

When an operation occurs which alters a string we necessarily create a new

one and the old one becomes garbage. Thus the following program statement:
120 LET A$ = MID(AS$, 2, 4)

causes the string header for the string A$ to point to a new string which

has a length of 4 and the string which A$ used to point to is now garbage.

As you sée there is no string header pointing to it and thu§ it cannot be

referenced. , .
e s [_U\S)C-I'LUS STIRING STORAGE .

N\

AS )
BS 3

W

I GARBAGE

| |mielok ~Ea[~im=mioln>

.

String Header Area |[String Data
‘ Area

.

L men



'As‘a program proceeds it generates garbage in the string data
area. Gradually this area fills up so that there is no more room for
§trings to be created. When this happens, the Garbage Collector (RSTS-]]}
or the Core Recycler (RSTS/E) is called aﬁd the strings are all cb]lected
into the beginning of the string data area.

Eéa/ﬁ;én we execute a statement such as:

100 LET C =D
the operation whi-h is performed is to take the contents of the variable D
and move it to the va?iab]e named C. This exp]anation applies when we are
talking about numbers, either integer or floating point. When we deal with
strings, however, the operation of the = operator is different since ve are
now concerned with headers as well as string data. When the following three
statements are executed, the string header area and string data area will

Took 1ike figure 4: ‘
IIABCD"

100 LET A$ =
110 LET BS = "UvW"
120 LET C$ = "ASDF"
. BASIC-PLUS STRING STORAGC

s a M/L,’”’n:

RS 3 1~ ?

- \\\T\\\$;

o i

V]

:".“

[ [ F=w

-

String Header Arca [String Data
Area

Figure 4

/g -1



he length and a pointer to the start of

LR}

string header contains
the corresponding étring. Now consider the effect of executing the following
statement:

130 LET BS = C§
The effect of this is to make the string header for B$ point to the SANME

string in core as the string header for C$. Of course, the old string wi. ch

B$ pointed to is now garbage and will be collected next time the garbage
collector is ca:led.

Figure 5 shows what the string area looks like after statement 130 is exe-

cuted. . BASIC-PLUS STRIKG STORAGE .
Al sl T T Al
85 1 4 e
¢S5 | 4 ey
) ol
O n
l v |} cARBAGE

T T FEw

tr ader Area |String Data
String He frea
: i

Figure 5

Any attempt to modify C$ will cause a neﬁ string to be formed with thé new
value of C$, however, the old value of C$ would not be garbage in this case
because it is still pointed to by the B$ string header. Thus the statement
below would cause a new.string C$ to be created and the o1d C$ would still
be B$ as shown in the following code and in figure 6.

140 LET C$ = MID(AS, 2, 2)

(f



. BASIG-PLUS STRING STORAGE

g7

String ticader Area 15tring
Figure 6

———

" Thus we can see that a change to a string effected by a LET statement will

not cause a change to another string which was equated with-that string.

Also any statement which is true of a LET statement is also true of an

implied LET.

7. STRING PROCESSING - LSET AND RSET

There is another statement which is similar to the LET statement with strings
exceplt that it always operates on the data in the string data area and
never on the string header. That is the LSET statement. The general form
of the LSET statement is:

100 LSET string name = string formula
The effect of this statement is to evaluate the string expression or formula
on the right side of the equa]s.sign and then substitute that string for the
string in the string data area which is poihted to by the string header for
the string variable on the lcft side of the equals sign. Now consider the
following:

100 LET A$ = “zZXxcvp"
110 LSET A$ = "ABCDEFGH"

After statement 100 the string area looks like figure 7.

- /9-i2



© e o - BASIC-PLUS STRING SIORASC

:‘«-l./>
|

AS

(]
¥

| To < ol 'j

IR

-

String Header Area |[String Data
. Areca

1
Figure _7

and after executing statement 110 it looks like figure 8.

so- aeem = oo oo BASIC-PLUS STRING STORAGE

T 0 = et T Y
) L
[
: AD.
iz
—
$tring tieader Arez |String Data

Area

Figure _;_{3__

Yryy will note that the excess characters were truncated (i.e. thrown away).
ine |SET operation can never change the length of the string nor can it move
the pointer in the string header. If there are insufficient characters in

the string on the right side of the equals sign then the remaining charzcte s

/9 13



e filled w%th.blanks. There is another statement similar to LSET (althut:l rarciy
veed) called RStT. It differs only in that if the string on the right .i.:

ﬁf thelequals sign is shorter than the one on the left side then the

characters are put in the right end of the string and the left end filled

with blanks. Also truncation proceeds from the left.

We said that the operation of the equivalencing of strings by having the

string headers ’

nnint
V\Jll‘\n

[ad
Q

+
string is modified with a LET statement. This is valid for the LET state-

ment but much the reverse for the LSET (and RSET) operation. The following
example demonstrates what happens when two strings are equivalenced and then

ore is modified with an LSET statement. First we execute the following:

100 LET A% = "123"
110 LET B$ = "ABCDE"
120 LET C$ = B$

and the string area is as shown in figure 9.

+ BASIC-PLUS STRING STORAGE

RS ] 3 11—+

ES | 5 ]S Fa

R B

A

2 ]

€

D

E |

]
String Header Arca |String Data

Areca
!
Figure 9

Tvy we execute the following statement:

130 LSET C$ = AS



Viis requests that the contents of A$ be copied into C$ and.the excess
aver the length of C§ be truncated or that the part of C$ which is not
filled by A$ be filled with spaces. The string area now is as shown in

figure 10.

- BASIC-PLUS SIRIKG STORAGEL Lo

il

Tlo @i ]=j=]~i~]

NOTE: The symbol "b" reelaces- A svace.

Ce = @FL Ty 2 .

as | 3T
8BS | &
cs

LD
!

=

[ FTTTT]

String Header Area String Data
Area

Figure _ 10
As you can see the string pointed to by C$ now has the same contents as
that pointed to by A$. However no changes have been made to any headers

and noﬁ the contents of BS have also been chénged. It's important to

remenber that LSET (and RSET) operate only on the string data area, never

on string headers.

Now, suppose that you wanted to have two strings effectively equal but
wanted them to be separate and distinct strings rather than simply two
headers pointing to the same data. This is accomplished by using the LFT
statement and concatenating the string with the null string as showun in
tno following example:

100 LET A$
110 LET B$

"QWERTY"
A$ + un

Hou

1he effect of the operation at line 110 is to force the creation of a -
iny in the string data area. The string area is shown in figure 11

i would be after executing the ahbove two statements.

(7-/8"



BASIC-PLUS STRING STORAGE

——
A [ L_.A—— """"-' 1}
SN 1

l t
K
| 1
l 4y
AN
Q
M
F
R
u
Y

Strina Heador Arez IString Da2ta

hrea

Figure _ 11

As you can see, the data from the string AS has been copied into another
string which is pointed to by the B$ string header. The significance of

this will become more apparent when we discuss moving data out of an I/0

buffer below.

NOTE: The string data structure as shown in the figures is
for pedagogic purposes and not intended to completely re-
present the actual structure used by BASIC-PLUS which is
somewhat more complex.

/71



.8. RECORD 1/0 - GETS AND PUTS

Now that our‘side trip into ﬁfring data structures is comp]gte we can re-
turn to the topic of random access input/output. Ve are about to censider
the input/output method called "record I/OL. Although this is applicable
to all input/output devices, we shall 1imit our consideration to the disk.
The disk itself is divided into units called sectors. The sector is
the physical unit which is written or read. In the case of the PDP-11 the
various disks have sectors of 256 words or 512 characters. This is the
smallest ambunf of information which can be read or written and all at-
tempts by the monitor to read or write the disk must speci%y an integral

number of sectors. A sector is also called a block or a physical record.

Even(though we may need only one or a few characters from a sector, the
nature of the equipment makes it mandatory that at least 512 characters
be read each time from the disk. In order to accomplish this, a region

of memory at least 512 characters long is set aside for the disk to read

into or to write from. This region is called a channel buffer. There is

one buffer for each channel which is currently open.

As mentioned above, the function of Fhe OPEN statement is to create an
association between a file or device name and a logical unit or charnel.
Also the GPEN command determines whether or not the requested file is
present or if specified creates it. Another function of the CPEN state-
ment is the creation of a.buffer. When a channel s OPElied the program
expands by 512 bytes (1/4K of core) and that area is set aside for use as
a buffer for the channel. (Remember that we are talking only about disks.

The size of the buffer for other devices varies according to the charac-

2717



teristics of'the device.) There are procedures whereby the buffer can be
made larger ahd tﬁey will be described later. Once a channel isvopened,
then all déta transfers take place between the device and the buffer and
then between the buffer and the appropriate places in the usér dafa_area.
How consider the following cxample:

100 OPEN "FILEA" FOR INPUT AS 9%

110 INPUT #9%, AS, B$

120 INPUT #9%, C$
After statement 100 was executed, the association of name to channel would
be established as would the buffer for channel 9. When statement 110 was
executed the monitor would discover that the buffér was empty so it
would read the first sector of the file into the buffer. Then it would
find the first two strings in the buffer and copy them into the string area
and set up the appropriate headers. At statement 120 there would still be
information in the buffér so the monitor would set up a string header for
C$ and would copy the next string in the buffer into the string data arca.
If during this time, the data in the buffer was exhausted then the monitor
would refill the buffer by reading in the next sector. Thus with serial
I/0 the buffer management is entirely transparent.to the programmer. Sim-
ilarly, in the case of virtual arrays the data is read from a disk into the
buffer and then accessed by the program but the user needn't concern him-

self with buffer management functions as the monitor does this for him.

In the case of record I/0 the programmer is given control over the buffer
and is responsible for its use. The system loads the buffer from the disk
and writes the buffer onto the disk in response to specific instructions
in the program. The transferring of data to and from the buffer and the
use of data within the program is all undertaken by the user program.

This provides for the maximum flexibility and gives the BASIC-PLUS pro-

/7 18



graumer a]lhthe,power in cootyolling devices and input/output functions that
| the system programmer normally has available in other systems. .
The reading of data from the disk into the buffer is accomplished by the GET
statement. We specify the channel number and the record (i.e. sector) in
the file that we want read as follows:

100 GET #3, RECORD 7

This statement would read into the buffer the contents of the seventh sector.
or physical reco.d in the file. As mentioned earlier a file on a disk con-
sists of one or more sectoro A]though their actua] location is a function
of the monitor's file processor each block has a 1ogxca1 or relative block
number. Thus the first block of the file is record 1, the next is record 2,
and so on. Using record f/O we can access'any block or sector of the file
simply by specifying the relative record number in the GET statement. Of
course before executing a GET statement it is necessary to associate a file
name with the channel number through the use of an OPEN statement. This is
the feature that gives rise to the descripfion of record I/0 files as

random-access. We can access any (physical) record of the file without

accessing those which preceed it in order to find that record. The method
of searching through a file in order to find a specified record is called

serial-access. If you wanted a program which read into the buffer a user

specified record then the following program segment would accomplish that:
100 OPEN "FILE.DAT" FOR INPUT AS FILE 1%
110 INPUT "WHICH RECORD DO YOU WANT", J%
120 GET #1%, RECORD J%

In actual use the RECORD qualifier is optional. If we specify no record

number the system GET's the next record which is the one next after the

Tast access on that channel. Thus to read a file serially only a series of

/7T 19



GET's is necessary not specifing a record number.

To write a sector from the data in the buffer we use the PUT statement. The
general format of the PUT is just like the GET except that the direction of
transfer this time is from the buffer to the disk. The following statement
writes the current contents of the buffer into relative record 23 of the

file which is open on channel twelve:

>
~

10G PUT #12%, RECORD 23

(5

In the same way s the GET the RECORD qualifier is optional and its omission
produces a‘seria] write of fhe file. Thus to create and write a 35 block
file (without attention to putting data into the buffer) the following pro-
gram might be used:

100 OPEN "FILEB.DAT" FOR QUTPUT AS FILE 11%
110 FOR I% = 1 to 35% twe want a thirty five block file

120 GOSUB 200 'the subroutine at 200 puts the data
'into the buffer.

130 PUT #11% lwrite the buffer onto the disk

140 NEXT I% ldo it 35 times

150 CLOSE #11% : STOP 1al1l done, ciose file

200 REM A subroutine to get data and move it into the buffer

;99 END |
At this point the reader may be inclined to observe that although he can read
and write between a channel's buffer and.the disk he doesh't sec any way to
access the daté in the buffer. That is the function of the next statement

\

which will be described, the FIELD statement.

9. RECORD I/0 - THE FIELD STATEMENT

It is the function of the FIELD statement to make .accessible the data in a
channel's buffer. This is accomplished through the use of the string header
mechanism described earlier. The FIELD statement establishes string headers

in the string header area which point not to the string data area but to the

19-2p



channel buffer. Thus the FICLD statement allows us to define the record or

segments of it kca]]ed fields) as string variables and then we can manipulatq
them using the siring operators available in the BASIC-PLUS language. Tb.set
up this association of the string header to the channel buffer the FIELD
statement has to have several pieces of information. It needs the channel
number o# the channel (in order to know which buffer is being referred to),
it needs the length of the string for the string header, and it needs the name
of the string. Thus a simple case of the FIELD statemont might establish
that the first fifteen characters in each sector of the file open on channel
4% is to be called X$ and would be written as:

100 FIELD #4%, 15% AS X$
The FIELD statement can be used to set up more than one header in one state-
ment. Suppose that in addition to X$ as described above, we want the variable
names Y$ to correspond to the next seven characters in the physical record |
after the fifteen characters in X$. The following statement would accomplish
that:

100 FIELD #4%, ]S%QLAS X$, 7% AS Y$
In general the FIELD stat;;ent can be continued qsb1ong as reasonable subject
to the generai Timitation of BASIC-PLUS that no numbered line in a source
program can be more than 255 characters long. Once the channel's buffer has
been described.in terms of string headers then the data within the buffer can
be manipulated with the LET, LSET and RSET statements described earlier. Now

we shall look at the mechanism by which this is accomplished.

If the following program segment were executed then the string header and
storage areas would be as shown in figure 12.

100 OPEN "FILE" FOR INPUT AS FILE 4%
110 FIELD #4%, 104 AS X$§, 3% AS YS$, 4% AS 7%

| é7
-21-



BASIC-PLUS STRING STORAGE

S,

11T

LT T

i

|
1 T1

String Header Area String Data Channel ¢

— Channel
Area Buffer Buffer

Figure 12
We now have.three string pointers pointing into the channel four buffer. If
we wanted to print on the .terminal the contents of each record (block) the
- following statements would accomplish it:
120 FOR I% = 1% TO N%

GET #4%

PRINT X$, Y$, 2§ ¢

NEXT 1%
Of course a FIELD statement must not be executed before its channel is OPEN-
ed as there would not be a buffer for the string headers to point to. Now
let us return to our example of the 1ist of names and addresses. First we
will accept a 1ist of names and addrgsses from the terminal and then we will
print them on the line printer. In order to do this with record 1/0 we must
first set up ﬁ "Record Definition Table" which defines the fields and their

1engths. Table 1 is an example of such a record definition table for this

example.
RECORD DEFINITION TABLE

FIELD VARIABLE LENGTH DESCRIPTION

NUMBER NAME
1 NS 23 Name, last name first
2 S$ 26 Street number and street
3 c$ 19 City and State
4 VA 5 Zip Code

Table 1. Record Definition Tahle
' /§-22-



Now e can‘write the program to accept the data.

LG DFEN "KARRES DRTY FOR GUTHUT HS FILE 1X 'OFEM THE FILE

apa ITnEuT “HON HMENY ITEHNSY; W ‘ VHUREBEER OF HNEMES &C.
12 FIELD #413, 23I¥ RS Nf, 262 RS SF, 197 RS OF, SXE AS Z2F
138 LSET NE = NUMEIRE)
FUT #1157, RECORD 41X VOETORE THE NUMEER OF ITEMS
148 FOR I¥ = 4% TO Wi :
FRINT “IRFUT THE HSHE" STHEPUT LIHE MHifs
FRIRT “"INeUT THE STREST AMND MUNEER" :E}FUT LIHE 18
FRINT "INPUT THE CITY RHD STHTE" ' : MPUT LINE Ci#
INPUT “INPUT THE ZIF CODE®; 21¥
453 LSET HE = hi# :
VEET 5% = &S4iF
LEET C¢ = (1% :
LEET 2% = 21% S0 MOYE THE DHTH FRLOHM THE -TFINu FRES INTOD

A ! THE EPP“NCL EUFFEE.

158 FUT #13, RECOSD IX + 1% .
T hERT Ix PWREITE TF E BUFFER TO ThHE riILE
17% CLOSE 4% CEND 'HLL DONE

How we have‘established our file of names and addresses. You will note that
in the first record we stored the number of entries and used the other re-
cords to store the actual data. This is not actually necessafy as BASIC-
PLUS provides a method for determininé the physical end of the file but it
is frequently a useful technique, particularly when random acéoss files are
being used. Several system utilities such as the SORT package expecf files
to be set up this way. Next we want to write a program which will print on
the line printer all the names and addresses for which the zip code begins

with a "9". The following program will accomplish that.

/7- 23



130 UPEN "NAMES. DETY FOR INFUT A5 FILE =%
OFEN "LE:" RS FILE 3%
FIELD #2%, 23 RS Nz,
_ VOFEN FILES AMD SET UP THE SUFFER
110 GET #2%, RECORD 1%
LET N¥ = YALC(N$?
PHOM MANY ITEWS BEE IM THE BUFFEFR

128 Fok IX = 12 To N2 :
GET #2¥, RECORD IX+1
) ] PPILL THE BUFFER FROM THE FILE
TX6 PRINT BER, N¥iS$: 0825 IF LEFT(ZE, 1¥) = vwan

RENT I
PRRINT THE [ATH

149 CrLo W Ed CEND 'RLL DONE

,..
[S2}

E

[ %]

SGH RS SF. 19X Aps CF, sX A

For a practical problem some editing of the input data would have been re-

quired. Now suppose we wanted to include in the line printer listing the

record number of each name. e might suppose that the record number might

also be a customer number or some other identification. Then we might change

1ine 130 to be as follows:

130 PRINT #3%, I%41%, N$; S$; C$; Z$ IF LEFT(ZS,1%)= "9"
NEXT 1%

Then we might want to write a program which printed out the name and add-

ress of a customer on the teriminal if we were given as input the customer

number. This type of inguiry-response program would make use of the ran-

dom access nature of récord 1/0 files. Look at the following progran

which does provide that type of information.

/4 -2¢



PO Ry T A IRV i WY ¥R PR YO PL R LR e

FIELD &1 SIe RS ONF.OAE ORT L ‘1'»'
I'EN FI"' firile DEimidE THE BUFFOR

! PHUNMSER OF RECORDRS
dao INFUT “WHICH G :
IF C¥ > kX
GGTO 128

NT MHDOSUCH CUSTOMER MUMBER®, 0

'GET RECORD NUMEER ANG RERNGE CHECK
#43, RECORD Cx+tr :
FRINT M. S$; C¢; =%
INFUT YRNSY MORE®: &F |
GOTO 128 UNLESS A% "ROY
) CLOSE 1% ;. END

[N
[EN
LA
[wpl
3
—

I 4y e

In this program the fi]é'isAopened and the fleld statement describes the
channel buffer in terms of strings. Then the record (i.e. customer) number
is obtained from the user and that record is obtained from the file. The
information in the buffer is then printed out on the term1na1 direetly from
the buffer. The final few 11nes prov1de for stopping the program when the
user is finished. Note also that there is a check for a customer number

which is too large lo be in the file.

10.  LOGICAL AMD PHYSICAL RECORDS
At this point we must learn the meaning of certain terms. These are logical

record, physical record, blocked and unblocked records and spanned records.

A record is Usual]y thought of as an entity which is retrieved from a file



’ as’a’ﬁhitf' A'}ogica1 record conteins all the information ahout something.
A cus tomer reco}d might contain the customer name and address, his current
ba]ance the maximum amount of credit which he is a]]oved the salesman
assiagned to his account, and any other information which pertazns to that
customer. An inventory item record might contain the description of the
item, the number of such items on hand, their price, whether a resupply of
the items has been ordered, their cost, and such other information as woﬁ]d'
pertain to that item. The individual items which make up a legical record
are usually called fields (thus the FIELD statement) and where a field is
made of several more fundamental items of information they are called sub-
fields. A physical record, on the other hand is usua]]y defined by the
nature 04 the recording mechanism. In the case of a disk on the BASIC-PLUS
system a physical record constitutes one or more blocks each consisting of .
256 vords or 512 characters. Since we describe a buffer and thus a phy-
sical block in terms of characters (with the FIELD statement) we generally
think in terms of a physical record of 512 characters. A physical record
is the smallest entity which is retrieved from a disk file. In our exanple
above we simply equated & phys@ial record (containing 512 characters) With
a logical record (73 characters) and wasted the remaining characters. The
greatest eff1c1ency in terms of fast’ response usually results when we can
equate physical records with Togical records but in most applications it is
not practical to waste large  amounts of stfgage to accomplish this. As a
result we generally put sevefa] Togical records into each physical record.

This process i$ called blocking records. There are two methods of blocking

records. In the most comron as many logical records as will fit are block-
ed into one physical record and the remaining characters are wasted. This

represents a compromise between the inefficiency of wasting a lot of space

/7 -26-



by not b]ocking'rccords and the amount of time needed to handle logical ve-
cords which are spread across more than one physical record. When we do

a
allow-a logical record to cross (or span) the boundry between two physical

records we refer to it as a spanned record. This is the most efficient

approach in terms of the conservation of disk storage space but consider-
ably more processing is required to handle such records so that normally

in the course of our file design we try to arrange that the logical records
will fi11 or almost fil] a physical record without spanning physical re-
cords. Figure 10 shows examples of "unblocked", "blocked", and "blocked
Qnd spanned” records. Later we will cover some aspectg of file design

and try to show how a fi]q system might be designed to minimize the wast-
age of storage without imposing the inefficiency of processing spanned

records.

PIYSICAL SECTORS IN THE FILE

SECTOR 1 SECTOR 2 staion 3
7 g3 |
Record liéégﬁccord 2 422 Record 3 ;{C

N

A\
X

s

Each Togical record is stored jn its oun sector-shaded area is wasled
disk storane.

SECTOR SECTOR 2 SECTOR 3
7 77
Rec 1| Rec 2 ?jf;;fz? Rec 1 ‘ Rec 2 ;22%22 fee 1 uRcc 2

Several logical records are blecked into cach seclor-shaded arca s wasted
dick storage. :

SECTOR 1 . SECTOR 2 SICTOR 3

Rec 1 | Rec 2| Ped 3 ‘ kec 4 | Pec S Rec 6] Rec 7 | RaclB

Several logcical records are blocked into sectors and the logical records
span physical records.
No;&iiak storage is wasted.

figure 13

/9 -21-



o 11, HANDLING HUMRERS - CONYERSTION FUNCTIONS

At this point you may have.observed tﬁat no mechan%sh has been described
.which allows a number to be placed in a buffer using record 1/0 other thaﬁ
converting it into a decimal string with the NUMS function. In térms of
elemental operations there is, in fact, no provision for p]ating numeric
items in the channel buffer. The actual hardware always works in terms

of blocks df characters so the software is designed to take advantage of
the hardware. None the less one generally wants to
store numbers s well as strings of data in a file and functions have been
provided for this. These functions take nuﬁbers in their internal rep-
resentation (i.e. binary) and translate them into strings so that they

can be placed into the buffer. Each such\function has a complementary one-
that takes a string in the buffer and places it back into the numeric data

area of the program. In BASIC-PLUS two type of numbers are available,

/7 -28



integers and f1baiing point. (In som2 systems decimal data'type replaces the
floating point.} The integers occupy two bytes in core and have a range of
+32767. They 2lso occupy two character positions in the buffer. Floating
point numbers are four bytes Tong and occupy four character positiops in the
buffer. Many systems replace the fioating point option with a double pre-
cision ﬁormat which occupies eight bytes in memory and requires eight char-
acter positions in the buffer. Thus if we have a two byte integer K% in
memory and we want to put it into a file we define a 2 character string in
the channe]hbuffer using the FIELD statement and then we move the binary
value of K% into the buffer by converting K% to a striﬁé and LSETing the
. string into the channel buffer. If we wanted K%.to be placed in the first two
characters of the channel -#3 buffer we would execute the following field
statement: |

100 FIELD #3%, 2% AS k%
and then we would place the value into the Suffer by converting it to the
string K§. The function which converts from integer to string is called CVT%S
and the code to put K% into the buffer would be:

110 LSET K$ = cvT9$(K%)
To retrieve an integer value from a channel buffer we first would use a
FILLD statement to describe the two tharaciev positions which held that value
2 a string and would then use the function CVTS$S% (convert from string to
integer) to make {he conversion as follows:

150 LET K% = CVTS$5(KS)
-~ This converts the string to an integer and moves the data into the area used
td store the values of numeric variables. Remembor that ve use the LSET
statement to move the characters in a string into a buffer but a LET state-
lment to move data into a core location (except where we deal with string

headers).

/7 -29-



Hc‘can handie Tloating point numbers in the same way except that we need to
" use four or eight char&cter;positions in the buffer and we use the function
CVIF$ to convert from floating point to string and the function CVTSF to
‘ convert from a string in the buffer to a floating point numBer. Thys if we
wanted to store two integers U% and C1% and two single precision floating
point numbers X and Y in the channel 8 buffer we could use the following

statement:

200 FIELD #0%, 2% AS U$, 2% AS C1$, 4% AS X$, 4% AS Y$
210 LSET J$ = CVT2$(U%) =
LSET C1$ = CVT%$(C1%)
LSET X$ = CVTF$(X)
LSET Y$ = CVTF$(Y)

mon

Similarly we could retrieve the same data by converting it from string to the
apprépriate numeric form as follows:,

200 FIELD #8%, 2% AS US, 2% AS C1$, 4% AS X$, 4% AS Y$
210 LET U% = CVTS%(US) :

LET C1% = CVT$%(C1$)
LET X = CVT$F(X$)
LET Y = CVTF$(Y$)

One more data type is provided for use in files which does not exactly corres-
pond with any data type found in the BASIC-PLUS language. That is the byte
data type. This is a numeric type used where it is desired to store a number
whose value is in the range of zero to 255 in one character. This is very
useful for type codes and similar data items where the range of values is
Timited. This type of data is transferred to and from the buffer in the same
way as inteyers except that the strings arc only one character long and the

function CHRS is used to convert from a value Lo a one character string and

/g -30-



the function ASCII is used to convert from a one character string to a value.

Thus to store the small integer X% in the buffer we might Wﬁite:

100 FIELD #8%, 1% AS XS,.........
110 LSET X$ = CHRS(X%)

Retrieving the value would be done similarly to retrieving integers except we

would substitute the ASCII function for CVT$%.

12. MORE ON STRINGS IN BUFFERS

Since the FIELD statement is an executable statement the description of chan-
nel buffer can be changed.at any time. In some cases it is convenient to have
records of several different types intermingled in a file. In this case one
of the characters in each record is a record type code. We GET the record _
into the buffer and then examine the type code using a previous field state-
ment. Based on the value of the type code we can then execute one of several
FIELD statements and process the record accordingly. Suppose we had a file
TRANS.ACT which contained transactions pertaining to a supply system. If the
transaction code (in character position one) was a one then the transaction
was an issue and the quantity issued-was in character positions two and
three. 1f the item had been received and was to be put into the inventory '
then the transaction code would be a two and the number received would be in

character positions three and four. In any case the stock number would be in
character positions ten and eleven. Suppose the other positions were used®

for information needed only in other programs. If the type code was three
then that would signa1 that this was the last record in the file and no other
fields would be used. The following Record Definition Table defines the

ficlds of the record.

) §-31



The field tybes are B for byte,

ENITEE ]
lumbar

Type

Type 1 Record

W N -

Ll e NN o)

Type 2 Record

TP O N et

Type 3 Record
1

Table 2,

OO w

B

Variabl
" Name

TS
Qs
D$
S$

TS
D$
Q$
D$
S$

T$

¢

Length

Record Definition Table

string and D for dummy.

we wagt by using a dgmmy field to describe

we want to write a program which wil} go th
pute the net changes which oc
simple we wil] assume that the st

twenty,

S
A1e
Egeyy]
i g

11

T e .
POOMTSR S

GOTo

'HERE
FIELD #q
TCOVTEres

Lol

YRERE
CLOGE x

FEINT

LK o

5

ald
-

Ji

4

LUE

Far

T¢I

The following progran

JE=1 Ta

CHE R HES Etile TYFE
SRS by, rw
i

1 should mak

FOR IneuT a: FIe

NN

NN s

el

NN
EXECUTE 7 Topp 4 f
LY ing,

PUPLRITE THE

r

Descripticn

Record type
Quantity jsg

Unused
Stock numbey

Record ty

Unused
Quantity received-
Unused
Stock

Record type code (=3)

pe code (=2)

b o

U C |

.

code (=1)
ued

I for integer, F for f]oatiﬁg point, S for

the unused character positions.

Mow

ough the transaction file and com-

0ck numbers are

curred in the inventory,

To make the progran

all in the range of one to

SNk
YTy
THVE
oI
RELASD oE
YOG T
S O AT T

EACH RECEIRT Typr

.
L

25 s

[

FOR G =
PERINT i

.

FECOTE

e the requested calculation,

BLLs, 2o os

DL .

ETHE ARFROPLIATE Vi
EFlLy

REPORT OF STOCE CHaNoE

HEFREOPRTAYE VHLLE o



In this program we first QPEN the file or ien we execute
~a FIELD statement to set up the string T$ as a one byte field. After line

110 has been executed the string area is described in figure 14..

mre s mees e o BASIC-PLUS SIRING STORAGE - e

18] - || ]
. - ] -
| - -
. T - -
String Header Area. String S,a‘:za Ch;gg:er__}‘ Channet
! Buffer
Figure 14

Then we zero out the I arrayvﬁhich we will use to accumulate the changes
to the inventory. At ]ine 130 we GET one record and at line 140 transfer
to the appropriate routine to process that type transaction. If the first
record contained a type one record we would transfer to line 200 and after
the field statement was executed the string area would be as shown in

figure 15. .
. . —-.--_ BASIC-PLUS STRING STORAGE e

e ] n
5] - N R ?
,%i Ha - AN 1
A -
ES 2| ‘ - — =
‘\.._ - _ 1
] | Ny N ]
o A -
i B -
tleader Area [String Data Channel 1§ evannel
String Heade Arca Buffer buffer
Figure 15

/7-33



Hote that the dummy variable D$ appears twice in the FIELD statement. Thi§
is alright since we don't really care about D$, we just want to space over
the unused character positibns in the buffer. When a variable is referenc-
ed more than once in a FIELD statement only the last use counts. Now at line
220 we update the appropriate entry in the I arréy using the CVT$% function

to convert the values in the file to integer values. Since this is an issue
we subtr
appears this process will be repeated. If the GET statement at line 130
gets a type two record we go to Tine 300 to process it. .Ye execute the

FIELD statement at 1ine 310 and then the string area appears asishown in

figure 16.

CASI1C-PLUS STRING STORAGE

1% 1 ._——J ] . __;
ns 2 - 3] |
o5 |_6l.] , _] ]
sS |2 <-~r"“““’7 ] ]
- I\ - | ]
~
S Lo -
_ \’ .
— \\\\s.d W
b4 b -
String Header Area [String Data . Chan.?? L A
hrea Buffer Burfor
Figure 16

The FIELD statemoent has caused the positions of the strings (except for T$
which was not referenced in the FIELD statement) to change. At line 320 the
\ sunmary data in I is updated, ihis time adding since this is a receipt.
When a type three record is found we transfer io 400 where we close the

channel and print out the summary data from I. Thus we can sce that the

/9-3¢



string definitions mwade with a TIELD statement are gynamic. They are estab-
.»]ished when a‘FIELD statement is executed and remain until another FIELD
statement changes them or when a LET statement affects them. Let's look
at another example. Consider the following FIFLD statement:

100 FICLD #11%, 2% AS A$§, 6% AS B, 4% AS C$, 1% AS D$

At this point the string area is set up as shown in figure 17. Now we want

-« -BASIC-PLUS SIRING STORAGE -

— - S T
RS AR == ——;

BS | 6 = k: B
D¢ 1| N o - ]
! < ] A
\i\__’\ : ____‘
™ \\\ﬁiw; -
_\_ ]

: trina Mt . N

String Header lfrca String P;\" ia Chgﬁr:?‘,r___ Channel
' U Buffer
Figure JZ__

1o put the character stfing "WASHR" into B$ but erroneously use the state-
ment: —

110 LET B$ = "MASHR"
The LET statement causes a new string to be set up in the string data area
and not in the channel buffer. Thus we now have the situation shown in

figure 18. The B$ string header points into the string data area and the

/%-35"



BASIC-1LUS STRING STORAGE

£ B s — (T N
RS 1) T/ !_‘.
s A~ S

08 1

l/; ‘.
Ve

~F

"

String Header Area [String Data
) ) Area

Figure 18

71

Chaane

1

Buffer

-!__]i
etod o

Channel
Buffer

only way to get it to point back into the channel buffer‘ié to execute ano-

ther FIELD statement. The statement we should have used to put the string

"WASHR" 4dnto the channel buffer was a LSET statement. If line 110 had been:

110 LSET B$ = “"WASHR"

The string area would have been as shown in figure 19. This would have

[
.

BASTC-PLUS SIRTLG STORAL

3
14

B 21
T E‘
(30 ) RN '

! ;
! _

, String Header frca  [String Dots Channel 13
. Guffer

hrea

 Figure 19

1

AN
W
A
S
R
R

A

b

1T

Ch2nnel
Buffcr

lTeft the BS pointer pointing into the channel buffer.

/9-36



The capabiifty.to have more than one stfing header point to the sama siring
is often used where a-data item consists of sub-items. For cxample a six
character field could contain the date in ddwmyy format. Sometimes we want
to reference it as a single field and move it intact from cne place to ano-
ther. Othertimes we need to look at the specific date and operate on each

sub-field. If the date was stored in the first six characters of the file

open on channel 1 and it was to be moved to character positicns four
thrrough nine of the channel buffer for file two and then the day tested to
see if it was before the fifteenth of the month we could use the following

program segment. -

100 FIELD #1%, 6% AS D15 _
FIELD #1%, 2% AS TS, 2% AS M$, 2% AS Y§
FIELD #2%, 3% AS D$, 6% AS D2% ,

110 GET #1%
LSET D2$ = D1$
IF VAL(T$) <15 THEN GOTO ....

After the three field statements in line 100 were executed the string area
would appear as shown in figure 20. HNote that D1$ and T$ point to the same
place but their length are different. Also M$ and Y$ point into the string

which is D1§ and are in fact substrings - {or sub-fields) of D15.

b ... LASIC-PLUS STRING STORASL -
» [ SRS e
= .
A e I J— i
BE - I S S —1
e | 2 [ - 7
V$ | 2 i :
t [.)é-ﬂ __3._ :\'\\ . i /
; Dli ‘\[\.‘;\\_: /
. e i e N i
- u 0
- i
|
String leader Arez |String Date gca,;agw* 1 o] 2
hra bRt Boffer

Figure 20 /? -3 7



Anotﬁer common - difficulty is the confus%on of strings in a channel buffer
and strings in the string déta area. Look at the Record Definition Table
below. Here we have an inventory record where the data is the quantity on
hand, the item description and the stock number. The stock number’ consists
of two parts, a two character class code and a three character item code. .

Note the use of the Sub--item description.

KECURDU DEFINITION TABLE

Field Type Variable Length Description
Number Name Item Cumulative
1 F Q$ 4 0 Quantity on hand
2 S S$ 5 4 Stock number
2.1 S. CS 2 4 Class Code
2.2 S 1$ 3 6 Item Number
3 S DS 20 9 Description of item

Table 3. Record Definition Table .

The cumulative length column simply shows the numbér of character positions
before each f{eld. Now we want to take this record definition and process
"a file which is in order by stock number. Basically we are goint to print
out a list of items and quantities on hand. We will also maintain two
summary totals one for each class and one for the entire inventory. Each
time the class changes we will print out the total quantity on hand for
that class and then zero the summary total for the class. Such a program

might be written as follows:

(5-3Y



[~
o2

[}
(]

e

+F
- p
LA
e

-
D)

b
-J
gl

Pxe]
'r !

I o
d
{

.-
af
ol

218

WL T Loa . - e
CVATD RL, 4 RS O, & owS L4, T RS LS
LS 'fC Tkt FIELD STATEMENTS TO REDEFIH:E THE Siodl
PMAMDT L o0 TUE S0 oo mup, TToOM RO o
MLVSIROR X ey i e Lo IR EL A" P SR B SO I RN L ISR O [ SR IR R

3
1

4,585 = @4 o
FEINT "STOCH RECORD Li=TING", DRTEECA)

PEERD THE SURMERY COUNTERS BMD FRINT HERDING

GET #1 :

IF S = "928Q2" THEH GOTO 2ad PETOCE
tiSoTHE
LET & = CWTF0$2 S
IF Cr <> 0% THEN FREINT “THE TOTAL FGRE CLASS “; 0% "¢ poRL
“1 = @ PRREINT T4T4L FOR By
POLWES RNDe ZERQ Joos T

FEINT D¢, &
51 = 51 + &
€2 = 52 + § PRETHT

THEDRTE O
PO HED 1:
PYRT PRENLD

-
™
—
L
4
il
w3
o

GaTD 1z8 .
FRINT “THE TDTPL FOR CLASS "; 0f "I&"; &4
FEINT .
FRINT “THE TOTRL FOR RLL CLARSSES IS v =2 ) YPRIET Fital
ETT S
CLOSE 1 :END RS
The program is fairly straightforward. First we open the file and des-
cribe the chaﬁne] buffer in line 110. We zero the variaias whign o
will use to accumulate the’necessary summary totals and thea print a
heading with the date. We read a record and check for the 2n¢ o7 tne
file. If not we convert the quantity on hand to a fleoating point rume
ber (1ine 140) and then check to see if we have changes tra class of
item from the previous item. If we just read an item from a nsw class
then at line 150 we print out the summ ary total from the orevio
class and then zero the total to use it with the next class. e .rint
the item recerd at line 160 and update the totals. A+ linz 170 w2 *fry
to save the class code of this record for use in making a carparisss in
the}next cycle and then we repeat the operatinr. At Ting 220 we pring
our last class total and the grand total and end the program. Untorii-
nately this program will not work as it contains & very couwmon error.
First let' s]nokAat the string storage area after the exzzuticr o

stztement 110. This is shown in figure 21. Whet the sfiizpons oo “ine

170 is executed the string area has a new header, that vc. o5, inis is
/94— 39



|
f
-

=i~
7a
1
L,
T
-;_.’ 11y
. // :
[ X
i
|

[}
o

N
|

.

I

/

]

l //
I
|

/

|
i
R
|

!
[
|

String Header Area Stfing Data Channel 2 Cha
. — nnel
Area Buffer Buffer—

Figure _ 21

shown in figure 22. Unfortunately the operation simpiy set up a new

BASIC-PLUS STRING STORAGE e

B AT ] ? :
BT 5T1J N i
D5 | 20 \\“r“*-:, — N
|2 \\\,\\\ =
IS 3 (- ) ‘”/’T'N N
b T R | b
- \.;_
e - -
String Header Area |[String Data Channe 1
. —— 1 Channel
Arca Buffer suffer
Figure 22

string header but it did not move any data (that is how a string équat&
is supposed to work). However, the Eomparison in Tine 150 will never
succeed since €5 and 0S5 will always be the same since they both point
to ihe same data. When we change the contents of C$ by reading a new
recerd into the channel buffer we also change 05 since 0% a@nd C$ are
the same string. We can avoid this by the use of either of two mech-
anisms. If we simply replace statement 170 by the following:

170 LLT OS: = Cs 4 n

/9-¢0



then the oﬁerq;ion requested will force a new string to be created in the
string data areca. After this statement is executed the string area will
.be as shown in figure 23. Mow we have the old value 0$ stored in the
string data areaz where it will not be affected by GETting the next. record

into the channel buffer.

e e - e - BASTC-PLUS STRING STORAGE - oo
—— Pt
os | a4 2 s E
S| ‘%L‘ - A
D8] 20 | ~— - ol
3 I Y I R N | ]
T Y %___ -
String Header Area [String Data . Chamnel _ 1 o
Area Buffer Chggrf];l o

Figure __23 :
Another more efficient way of accomplishing the same thing would &

D

to ey
ablish the string 0$ with the correct length in the string data aves o+
some point in the program before it was first re?erencgdx Then we 72ould
use a LSET to move the data from the buffer into thé string data arsz.
Suppose we added a statement 105 as follows:

| 105 LET 0§ = SPACES$(2) -
Then we could replace line 170 with the following:

170 LSET 0% = C$
This would have the desired cffect of moving the contents of C% intn 3%
(remember that LSET can never move a pointer, only string data;. Since
LSET cannot alter the length of a string it is important to estabiish the
correct length for the destination string before usiﬁg LSET in this way
The problem described above, that of mistakeniv moving a siring pofate -
. fo poﬁnt into tﬁekéhanﬁél buffer inétéédyof ﬁov%ng‘déié from whe pulfo
into the string data area is perhaps one of the most common grablems ci-

countered in using record 1/0. 4

15+~



13 BLOCKIRG RECORDS

Now that we have described the use of record I/0 in file processing we can
look at some techniques used to increase efficiency. Earlier we introduc-
ed the concept of blocking records. At this point we want to examine the

procedures used to block and deblock records. There are four operations we

/f—dz



want tu peffotm: writing blocied rgcords seriaily, reading blocked records
serially, writing blocked reéords randomly and reading b]ockéd records ran- -

domly. We will consider here only records which do not span physical scc-
tors. The fundamental technique used in these cases is to process muitiple
Togical records in one physical block by dyramically executing a FIELD
statement. Then the particular record we want to operate on is pointed to
by the string headers for the fields of the logical record. That is, if
our logical record is 32 characters long and consists of two fields, A%
which is 24 characters long and B$ which is 8 characters long, we would iuse
a FIELD statenient such as the following to look at the first logical record
in each block:

100 FIELD #1%, 24% AS AS, 8% AS B$ _
The effect of this is to describe as A$ and BS the first 32 characiers of
the.physica] record. To examine the second logical record in the blcck we
would use the following FIELD statement.

100 FIELD #1%, 32% AS DS, 24% AS A$,>8%‘AS BS
Thus the first logical iecord is spaced over by the "dummy® field D3 and
the second logical record is described by AS and B$. Since each physical
record consists of 512 characters, each will contain exactjy 15 logical
records. To find the Nth logical record in a block we could set the var-
iable N to a value between O and 15 and use the following FIELD statemznt
to set up the headers for AS and BS to point to the particular logicai re-
cord we are interested in:

100 FIELD #1, N * 32 AS DS, 24% AS AS, 8% AS BS
Woen Lhis is executed it will space over the previous logical vocorsds and
set up A$ and B$ as desired. To see how this would work let's sce what
vould happen if we wanted the first logical record in the bluck. In this

cese we would set the value of N to be 0. Thus N * 32 would aiso be zo2vo

s



{(since anything multiplied by zero is zero). Thus the effect would be tov
execute a T'IELD statement like the Tfollowing:

FIELD #1, 0 AS D$, 24% AS AS, 8% AS G$
D$ would point to the beginning of the buffer as would A$ and BS would point
to the 25th character in the buffer. To operate on the second logical re-
cord in the buffer we would set N to be 1 and execute the FIELD statement
described above. This time the formula M * 32 would evaluate as 32 and
the effect of the FIELD statement would be to use D$ to space over the first
Togical record and set up A$ and B$ to point to the second logical record.
To operate on the tenth Togical record we would set N to be nine and the for-
mula 9 * 32 would evaluate as 288. The effect of this would be to execute
the following: ,

FIELD #1, 288 AS D$, 24% AS A$, 8% AS B$
The first nine logical records (288 characters in all) would be spaced over

by D$ and AS and B$ would point to the tenth logical record.

Now let's Took at how we can make use of this by working with a practical
example. HWe will have a file called "LOCATE.INV" which contains the loc-
ation of items in a warehouse. Fach logical record will consist of Sixty-
four characters as described in the following record definition teble.

RECORD DEFINITION TABLE

Field Type Variable Lengtn Description
Number Natia 1tem Cumulative
1.0 S LS 5 0 Location of.item by
floor, bin and rack
1.1 B F$ 1 0 Floor of building
1.2 1 RS 2 1 Bin number for iiem
1.3 I RS 2 3 Rack number for item
2.0 S NS 59 5 Nowenclature of iten
Table 4. Record Definition Table for Location File |

K-y



PR

XL

U PR

Lﬁh

Thus there would be exactly eight logical records in each physical record

and in the buffer at any time. First we must create the file and we do

this by serially writing the file using the techniques described above.

The ffollowing program will create the file.

of the item in the file is its part number.

placing a count of the number of logical records in the firs

cord of the file.

Note that the logical position

We will signal end of file by

OFEM “LOCATE. INV" FOR OGUTPUT 85 FILE 1Xx
INPUT “HOM MANY ITEMS IW THE FILEY: M

FIELD #1¥, S¥ RS L# :
LSET L% = CVWTESCND (CE = 1%

'OFEN FILE RND STORE NUMBESR 0OF RECORDS IN IT

= NZ/BX + 1X

ey
oo
}

TUx IS THE NUMEER 0OF BLOCKS IN THE FILE
Fi = 14 PF® 15 THE FIRST LOGICAL RECORDE

'THE FOR E& LOOF

CONTROLS THE ME

YELOCES INTO THE FILE

FOR RZ = 41X T0 UX
FOR J¥ = F¥ TO 7R

FRINT "LCCRTION DBTH FOR FHFT HUMBER™.

t logical

re-

To #EITE
{F THE

. m
ITING

1) E‘ .
INFPUT “FLOCE. BINM. RATE"; 2%, S2X. SZk
PRINT "NOM THE WNOMEMCURTURE OF THE ITER"

INFUT LINE &%

YGET Eqc
FIELD #1X, J= Fx, 2X
2% RS
LSEET F# = [HE :
LSET BE = VT :
LEET B = [O¥TI :
LEET Mg = LEFT £, ) S -
PRMOYE O THE ITNFORMARTION INTO THE E
C = [ + 1 ;
GOTO Jofi LNioSs =N
NEXT J PUNBLSTE RECODD 00T
: VYT FOR OJE OLOGOR COoMNTREOL OEACH L
FUT H#1 RECOGRD R
FX =0 :
NERT RXE
PLeTowd
CLOSE 1 :
i INT "mll DONE® EHL VLEE TEAT FOR LH

/5 - 43



In this program we first set up the file in line 100 and obtained the tofal
number of ]og%ca] records to be entered. Then we put that into the file by
~ LSETing it into the firsf record. Rext we set up some useful constants.” UY
contains the maximum number of blocks we vould need for the entire file.
(Note that since adding a bleck to file takes a great deal of time and add-
ing mahy blocks to a fi?e takes very little more time than adding one block
we could make the program run more efficiently by inserting the statement
PUT #1%, RECORD U%
in line 110). We also set up F% to contain a one. This is used as the
first value for the FOR Toop which controls the field statement and thus the
number of logical records in each buffer. This is done because we will put
one fewer logical record. in block one since it contains the count of the re-
cords as its first ]ogicalvrecord. Every time the FOR J% loop is executed
except the first it will start at zero since we set F% to 0% at the end of
each block. The data is obtained for each logical record and put into the
buffer by the FIELD statement at line 140 and the LSETs which follow. We
update the record count and check for the last record. If we have just en-
tered it we gote line 200 otherwise wé continue to accept records until the
buffer is full at which point we goto line 160. At Tine 160 we write the
buffer to the disk and reset F%. At line 200 we write out the last buffer-
Toad, close the file and end the program. Another point to observe is that
in the statement just above line 150 we remove the last two characters of
the input string since the INPUT LINE operation includes the carriage re-

turn-and line feed characters and we don't want them in the file.

Although the method used above is entirely adequate there is another way of
determining the record and position of the desired logical record which is

frequently wore useful and is essential when dealing with rendom access te

/5= de



blucked rétorgs. This procedure uses the logical record number to obtain
tiie physical block number and the position of the Iogical record within
the physical record. Given the Togical record number we divide it by tﬁe
nuinber of Jogical records in one physical record. The quotient is one less
than the physical record number in which the logical record is to be found.
e then obtain the reﬁéinder of the division. This is the number of the
Togical record within the physical record less one. In the~case of the
remainder we leave it less one since it is used in that way to muitiply by
the length of the 1og1ca] record to deterﬂwne the length of the dummy
field used to space over to the Togical record in the buffer. Considering
our current example we have eight logical records in each physical record.
If we want to access record N% we first divide N by 8% and add one.

LET R% = N%/8% + 1%
We ﬁow have the actual physical record number we want in R%Z. We obtain the
remainder from the division by multiplying the quotient by the divisor and
subtracting it from the dividend. The following statement accomplishes
that:

LET J% = - (R%-1%) * 8%
Now suppose we want to look at the location record for part number ten.
First we'dfvidé'ten by eight (Since we are usfng.integer aritﬁmetic there
is no fraction when a division is perforred. That is essential to the
operation of this procedure.) Thus 10 / 8 gives vus a quotient of one. To
this we add one to obtain a physical record numser of two. This makes
sense as the first eight logical records are in physical bfock one and the
next cight are in block two. How we oblain the remainder. First we sub-
tract one from the block number. 2 - 1 gives us 1. Then multiply by
eight. 1 * 8 gives an eight. Then subtract this from the original logical

record number. 10 - 8 gives us a two. lHow we krow that we wust look at

/9-47



pliysical rccord number two and multiply the length of the logical record by
two to obtain ‘the Tength of the dusmy field. Thus we would use a FIELD
statement as follews for this example:

FIELD £1%, 2% * 64% AS DS, 1% AS F%
Note that the calculation aégumes that the first logical record number is
number zero. If the numbering system used in the program starts at one
then it will be necessary to subtract one from the logical record number

before doing the caicuialion. This is frequenily unnecessary since the

[Eoui]

technique of putting the number of logical records into the first {or

zeroth if you prefer) logical record is very common.

Now We can write a simple program to 1ist all of the location records cn
the Tineprinter. We wil] use the remainder technique to find each logi-

cal record.

- AN
Aee OFEN "LOCRTE. ITHY S FILE 1X

GET O #LE, RECOUFD SEAK = 31X

Fibol &14.

o= DTN

OFEw “Les

' S w i i)

Lia PRINT 2% FILE OM ", DRTCICD
12 FOR IX = 13 TO

. Wi

EXx Tdrex

Jioo= I8 = :

IF RO R EETDRD R = B

o e L e
L2 Fretie 3 1% ms P&, X &
- - .
Y HEUS
- .. o . . ,
FEoanT #2 I Il IR R I . 8
HERT I

L4 witTow FEld SLLLIT LE . Ll

1e-Yy



This program is very straightforward. First the files are opened and tﬁen
the nunber of records is obtained. The output device is opened aqd a head-
er printed on it. Ihen in the main loop starting at line 120 the record
number is calculated and the appropriate block read into the buffer if
necessary. The FIELD statement sets up the string headers and the data is
printed on the printer.' At line 140 the files are closed and the program
ends.

The only other important point to note is.that the vérfab]e RO% is used to
- indicate which block is currently in the buffer so that no more reads from
the disk are performed than necessary. -

In the example programs in this section you will notice that very few line
numbers are used. This is a special feature of BASIC-PLUS and enables us
to make bur programs more efficient. A]so}comb{ning the use of only the
essential line numbers with indenting the program helps make it more read-
able and the logic of the program more apparent.

To randomly read a blocked record from a file is similar to the last ex-
ample. The desired record number is obtained and then the remainder method
“is used to determine the block and record within the block to read. The
b]ock is read with a GET statement and then a FIELD statement is executed
which sets a dunmy string across the records preceeding the desired re-
cord and sets up the string headers to point to the appropriate fields in
the buffer. The following simple example requests a part number and then
pirints on the terminal the item nomenclature.  The record is the same as

used in the last example.

- (7-4 7



INYY FOE INEUT A% FILE ¥
Mo REDORD LY SR o= X
FIELD #2X., SX RS Lf
W = CuTsEdiLEs
RT RUMEER"; TIX :
1F 1¢ > WX THEN FRINT “FAERT RUNEBER ToO LARCE"
GOTO 1453 VCHECE RAMGE OF PRRET KNUMEBER
foRY o= IESEE O+ 1K
d% o= I8 - (RX - 1] e :
GET #2¥. RECOED kX UKNLESS RX = ROX
REX = Kk :

FIELD #2X. J2% # 542 Fe [y, 5% RS DE, S9X RS NE
1z FEINT "PART MUREBERY:; IX; 1% A "5 H$ D

$

INEUT “FINIGHED": RE
GOTo 118 UK =
CLOEE 28 : BN

1 \'IESII

The program is very much 1like tio previous example.  Here the files are
opened and the number of records is obtained. Then a part number is
obtained from the terminal and is checked against the maximum record num-
ber. If it is in range then it is djvided by the number of logical rec-
ords in a physical block obtaining’the block number as the quotient +1

and the logical record within the block as the remainder of the division.
The record is read into the buffer if necessary and a FIELD statement is
executed which sets up the desired logical record. Note that the variable
DS is used iwice in the same FIELD statement. The first time it is used
to select the desired 1ogica1'record and the second time to space past the

characters which we do not need for this particular program.

/7 -sT



Rindomly Qkitjng blocked roco?ds is very muvch like reading them. In fect
it is necessary to read the record before it is written. This is done
because other records which are in the same block may alrecady have been.
writlen. Since we always read and write physical records from or to the
buffer if we simply stored our information in the buffer and then did a
PUT, anything which was a part of another logical record within the same
block as the record we are writing would be destroyed. As an example
bf a program wh.ch writes a random blocked record we will take our pre-
vious example and change it so that the operator was to replace the no-
menclature of the part after it had been brinted out. To do this we
would insert the following statements betﬁeeh the third and forth lines
from the end of the program.

INPUT “NEW NOMENCLATURE": A$

LSET N$ = A$ UNLESS LEN(AS) = 0%

PUT #2%, RECORD R%
This would change the specific items nomenclature without altering any
other information in the file. Observe that if no information is entered
then the old nomenclature is not changed.
To summarize, to randomly rbad or write blocked records it is necessary
to take the logical record number and divide it by the number of logical
records contained in one physica1 block. The quotient of this division
plus one is the physical biock number which contains the logical record
desired. The remainder of the division is the number of logical records
vithin the‘b]ock which preceed the desired logical recordwithin the
block. When it is multiplicd by the length of the logical record it is
the number of characters within the block which precced the logical re-

cord. When that product is used as the length of a dumy string vari-

able in a FILLD statement then the next character described by the field

’r-57



statement is ﬁho first charocter of the desired Iogicaj record.

In all of our examples so far it has turned out to be very.convenient that
the Tength of a logical record is a sub multiple of the length of a block
(512 characters). It may appear that this is a little unréa]istic. In
practical situations the Togical record length is determined by the needs
of the application. In most applications as many logical records as will
fit are put in one physical block and the leftover characters in the b]oc%
are simply wasted. In many cases the number of characters wasted is very
small compared to the size of the file and this wastage is not a burden to
the system. If it appears to be unreasonable for a barticu]ar application
then spanned records can be used. In that case there will be no wastage
but the program will be somewhat larger and will execute a little more
slowly. Also certain useful functions will not be applicable to such a
fi]é. A detailed explanation of fhe use of spanned records must be de-
ferred until the RECORDSIZE option is described infra. ¥hen the records
do not span blocks then the method described above is applicable whether
or not the records exactly fill the block. Ve simply divide by the nuiber

of logical records which are contained within one physical block.

14. MORE ON OPEN - RECORDSIZE AND CLUSTERSIZE

At this point we can take up scveral now options which are associated with
the OPEN statement. First is the CLUSTLRSIZE opticn. This is used to
make access to large files more efficient. A complete discussion of the
CLUSTERSIZE opticn is beyond the scope of these notes, however, a few com-
ments are in order. The infovimation which RSTS keeps on the disk is div-
1ded into three parts: the file name, where the file is, and the data
within the file. 1In a simple case the informalion about where the file is

stored is simply a 1ist of the sector nubers of the scctors which make Uy

/Y- ST



the file. HNow we are not talking of the velative block numbers within a
file which we‘used earlier but of the actual havdware addresses of the
blocks. Each file consists of one or iore blocks and the blocks are allo-
cated from the supply of unused blocks maintained by the system. As a re-
sult the}b]ocks are randomly -arranged and while they seem sequential to
the program this is accomplished by the monitor's use of the list of the

blocks. In any case when a file is opened seven elements of this list are

placed in core in something called a "file window". When any of the seven‘
blocks descrited by the file window are requested RSTS simply looks up the
actual physical address of that block in the window and then accesses the
block. If a block which is not part of the window is requested then it is
necessary to replace the- contents of the file window. This is called a
"window turn".-.A window turn implies réading the location information

from the disk which means that before we can do our data transfer we have
to wait for the disk to transfer the information about where the block is.
To reduce the overhead inherent in this reading of the directory when we
want to read data we have defined a structure called a "cluster". A clus-
ter is always a power of two (1,2,4,8,16,32,64,128, or 256). When we de-
fine a file to have a clustersize of, say, 8, that means that the file is
made up of clusters of eight blocks each. Now the list of locations that
fhe monitor maintains is a list of clusters and the file windou describes
seven clusters rather than seven sectors. Thisvis of course possible

since it's only necessary to know where the first sector of each cluster

is since the others will be immediately adjacent. The general rule to rem-
ember is that the clustersize of a file should be such that seven times the

clustersize is larger than the file and seven times the next smalier

clustersize is smaller than the file. When this is not possible because

/F B3



fhetff1e size is so great that it ckCEeds 1792 blocks thern the clustersize
“should be 256. The clustersize of a file is established when the file is
created and is used when-an;existing file is accessed. To create a file
named "FILE.DAT" with a clustersize of sixteen we would use the following
statement: ' '
100 OPEN "FILE.DAT" FQR OUTPUT AS FILE 4%, CLUSTERSIZE 16%
The best clustersize can be calculated in a program if the size of the file
to be created is known. Suppose we had a case where each logial record
was to be 64 characters long. Thus exactly eight would fit into a biock.
The following program'segment would find out how large the file was to be,
open the file with the optimum clustersize, and then extend the file to
its length. “ ' A
100 INPUT “"HOW MAHY RECORDS IN THE FiLE"; 1% : 1% = 1%/8% + 1%

33 . 3‘:]4%+ 1% UNTIL 7% * (2%44J%)> = 1% or J% = 8%:

OPEN "FILE.DAT" FOR OUTPUT AS FILE 11%, CLUSTERSIZE 2%4 J%

PUT #11%, RECORD 1%
There is also a "device clustersize." This is the minimum clustersize
which any file may have on a given disk. It is set by the system manager
and is designed to reduce the extent to.which disk accessing slows the
system down. In the casé of very large disks a device clustersize is nec-
essary simply to make it possible to_address such large devices as the RP13
and RJIP11 disks.
The RECORDSIZE option, on the other hand, lets us extend the length of the
channel buffer and to read more information into it in one request. In our
previous discussion we have always asswmed that the size of a sector was
512 characters and the size of the buffer was the same as the sector. This

is not entively true. The size of the sector is indeed fixed by the hard-

~ware but the size of the buffer can be any integral multiple of the size of

/= s



the sector. Thus the b haracters long, or 1024, or 1536,
or 2048, etc. Of course if you make the channél buffer bigger than 512
characters then either the program will grow or you will run out of room.
When the buffersize has been made larger than the minimum (512 characters)
then a GET will cause the entire buffer to be filled by rcading as many
blocks as necessary. The FIELD statement works as it did before, however,
the entire channel buffer can be mapped by the FIELD statement. When a PUT
statement is executed the entire buffer is written into as many ( logically
consecutive) blocks as necessary. A pointto be cautious about, however,
is that the record specification in the GET and PUT ;tatement still spzci-
f{es which block is to be the first one read. Thus if we opened a file on
channel 1% with a recordsize of 1024 characters as follows:
100 OPEN “FILE" FOR INPUT AS FILE 1%, RECORDSIZE 1024% .
and then we proposed to read each bleck in the following manner:
110 FOR 1% = 1% TO N%
GET #1%, RECORD 1%
FIELD :1%,0.vvvvvnnn.

&EXT 1%
The effect would be that the first GET would read block number one.into the
first 512 characters of‘the buffer and then would read block number twc in-
to the next 512 characters of the buffer. The next time through the GET
statement would start at block number iwo and would read blecks two and
thrrce into the buffer. This is not whal was wanted sinpe block two (and
every other block except the first) would be recad (and processed ) twice.
Once in the second half of the buffer and once in the first half. To make
the program segment above worﬁ as desired it is only necessary to change
the FOR statement to read: |

110 FOR I% = 1% TO NZ STCP 2%



Row when fhe program is run it will GET blocks one and iwo the Tirst time,
then blocks three and four, and so on. |
Kow we can consider spanncd records. To briefly review our discussion éf
Togical record types, a spannaed record is one which may be stored.in two
adjacent physical blocks. This being the case it 1is necessary to read and
write more than one block in order to access a spanned record. There are
two techniques which can be used to achieve this. The simplest is des-
cribed here. This is to simply open the file with a large enough buffer-
size to contain the desired logical record. The recordsize to use in this
case is calculated as follows: When L% is the length of the logical record
in characters, the recordsize is,

512% * ((L%/512%) + 2%)

For most common cases we get the following:

Size of logical record Buffersize
less than 512 1024
exactly 512 records don't span blocks
513 through 1023 1536 ,
exactly 1024 records only span from odd

to even blocks. Use a buffer
size of 1024

1025 through 1535 : 2048
exactly 1536 size of 1536
1537 through 2047 2560
exactly 2048 size of 2048

For the simple cases above (1ogicai record is 1024, 1535, or 2048 characters
Tong) all that is necessary is to muliiply the desired record number minus i
by the number of blocks in each record and then to add one to the product.
Thus if the logical recordsize 1s 1536 (three blocks of 512 characters) and
we want to access record N we would use the following statenment:

100 GET #4%, RECORD 37 {N% - 1%) + 1%
and then process the record in the norwial way remembering that the FIELD
stétement must map 1538 characters in the buf{ier if we access all of the

data.

_/f~$’/,-



Hhen the size of the logical record is not a convenient integral multiple

LN

of 512 then we must use a more complex calculation to determine the block
where the record starts and the numbor of characters in the buffer which
preceed the record. He use these two numbers in thc same way we used
them when we used the remainder method with unspanned records. 1In this
case the calculation is as follows:

a. Multiply the record number of the desired logical
record by the length of the logical record.

- b, Divide that product by 512%. That is physical
secl r number -1 one of the blocks which contain
the logical record. Use it plus one in a GET
statement.

c.. Multiply the quotient obtained in step b above
by 512% and subtract it from the product obtained
in step a. That difference is the number of
characters in the buffer preceeding the desired
record.

(NOTE: This valid for files with<=2000 blocks unless
: double precision arithmetic is -used.)

In the following example, the length of each logical record {L%) is forty
characters. We want to retrieve the N% logical record.

100 OP;N "ZéLE" FOR ‘INPUT AS FILE 1%, RECORDSIZE 1024%
b .

1000 REM This subroutine reads the N% logical record from the
file. N% is set to the logical record number to read
and L% contains the Tlength of the lcgical record.

L% * N

R1/512%

C% = R1 — b12% *R%

GET #1%, RECORD R% :

FIELD #13, C% AS DS,
RETURN

1010 R1
R%

1w n

-----------

Our subrouline is called to read a logical rccord and it returns with the
read executed and the buffer set up by the FIELD statement. As with block-
gd records generally it is necessary to read a logical record before at-
tempting to write it to avoid modifying information in the other logical

records in the same block.

/7 -5)



The other method of dealiny with spanned records invo]vcsvreading each
block in which the desired record is located and copying it into the
string data area. Writing is the opposite procedure. The routines to

do this are complex and beyond the scope of these notes.

15.  FINDING DATA WITHIN A FILE

At this boint ve have learned how to open and close files and how to read
and write data into them both serially and randoﬁ]y. When making random
access to a file we have always specified the record number of the logical
record in the file that we wanted to access.  In some examples we simply
said that the record number would be the stock number or customer number,
In practice this is rarely satisfactory as such individual identifications
frequently carry more informaiion and also may have letters as well as
numbers in them. Even if such problems did not exist there is the problem
of re-using numbars when one item is discountinued and another assigned the
same number.  In nost cases it is necessary to establishe a mechanism for
retrieving a record from a file based on the information within the re-
cord. ‘Let's look at an example, Ve wil) take our example of the inventory
Tocations file and we will include in the file an item stocl nurber of
eight characters {either numbers or fetters). The record definition table

for this file is now as follows:

16-5y



RECORD DEFINITION TADLE

Field Type Variable Length Description
Humber Name Item  Cumulative
1. S L$ 5 0 Location of item

by floor, bin, or rack

1.1 B F$ 1 0 Floor of building
1.2 I BS 2 1 Bin number for item
1.3 I RS 2 3 Rack number for item
2. S S$ 8 5 Stock Number

3. S N$ 51 13 Noinenclature of item

Table 5. Rect~d Definition Table for Locatioﬁ by Stock Number File

Our task is lo write a program which will look up the location of an item
given the stocknumber of the item. This might be paft of a larger program
which takes orders to be filled and places the items in the sequence on a
packing list that will éesu]t in the shortest trip through the warehouse.
At any rate our current job is to find the record for an item if we know
its stock number. The simplest solution would be to simply search through
the entire file‘chetking each record unti) the desired record was found.
This is relatively inefficient. Since each logical record is sixty-four
characters long, each block will contain eight Togical records. If there
are 10,000 item records then the file will consist of 1240 blocks and each
time we éearch the file approximatg]y 625 separate disk reads will have to
be made. This could take a substantial amount of time. Although this may
not be very efficient it is probebly still worthwhile to code it as an
exercise.  The following program will accept the stocknumber from the

terminal and print the location of that jtem on the terminal.

ety



LEC OPEN “LOCATE. INV® FOR INFPUT AS FILE 4%
GET wik, RECORD 1Y
FIELD #4%., S RS L$

e = CWTsxoLs

BERE; KT COEOTO A58 IF v
% THEN \
FRINT "MOT R VELIDF STOCK NUNRER™,
GOTO 11w
FOR I# = 12 7O 0z
Ry o= TL/GY + 13 -
FAX = I8 - &Y% % (p% -

DO

iy
N\
[od

182 :
GET #1X, RECORD RE UNLESS FY = mpoX

Rax = Ry :
FIELD #1X, £4% % RL¥ AS [$, 4% RS F3,. 2w
C8X RS ZE. sS4 oAs

1z IF S% = ¥& THEN .
FRINT "Fior STOCK HUNBER 0 G, 7
PFLOOR": 8E0iYofay, woIyge; ow
FEINT "THE ] F RO 7 -
GOTO 10

A4 newT 1w
® e -
ST T T - ' R
FoIRT Dren NGT RoUwn SRR
L5y DLl 1ty END

/% -0



How we-can assum2 that on the average we will nceed to go half way through
the file befoye we find the item that we want so we will need to read the
file (11/16) tiﬁes where M is the number of logical records in the file. '
If there are 10,000 logical records and we assume that each disk access
takes around 200 milleseconds (one fifth of a second) then each response
would take about two minutes. Mot very good response from a computer.
‘ote that the actual amount of time that it takes to access a record on

a disk on a timeshared system depends in a large measure on how many other-
users are tryina (o use the disks. As a first step toward efficiency
let's try to reduce the number of disk reads by setting up a separate file
containing just the stock numbers. The term key is used to refer to the
field (or fields) within.a logical record which identify the record. 1In
this case the stock number is the key and the file which contains the keys
is'the key file. In this case we will simply set up another file called
LOCATE.KEY which will contain the keys in the same sequence as the records
are in the main file. All we do is to sequentially read the main file
(LOCATE.INV) and transfer each key to another file which we write seguen-
tially. In-each case the first logical record contains the number of

logical records in the file.

-6/



1o e CRERTE VFEY riLE

CREATES AN UNSORTED JEY FILE FORN
"LOCATE. INYY NS “LOTARYE. KEwe

110 GFEN "LOCRTE. INY"™ FOR INFUT HS FILE 1%
GET #1X, RECOR[D 1%
FIELD #1¥, Sk RS Ls
UK = CYWT§E(LE)
Bax = 1%
VIRFUT FILE INITIALIZARTION
DU IS NUMEBER OF RECORDS IN THE FILE
PORBE IS THo BLUCKE CURREMTLY IR THE [NEUT BUFFEE
12 OFEN "LOCARTE. KEY®™ FOR QUTPUT AS FILE 2¥. CLUSTERSITE 2%
FIELD 22X, 8% RS Y& '
LEET ¥Y&=CVTEsUuE

B
¥
SR o= 1%

e

POUTFUT FILE INMITIRLIZATION
PORUT RECORD COUNT INTO FIRST RECORD
PEan IS THE BLOCK CURRENTLY 1IN THE QUTFUT ELFE

“n
m

128 For I

= 1% TG U
Fr o= Iused :
1% = DX - RY ox g
B = 1U/E4%
SAk = IX - S % £43:
o= RM o+ 1Y

¥ = 8% o+ 1ix !

CRLCULRTE ELOCK NUNEBERS AND OFFSE7s
BOIS INWFUY FILE RNLOS 18 TUREQr Rioc
14 ESL bk o= RN

wla, REUCCORD KX snlERL
- [ .

m oo

[ N et B v
1ol

ELD #4%, 8l % RBIy AL B, S RS Do, &Y [s o !
FETREIEWE ONE KEY FROM INMPUT FILE 85 ¢
L0 NUNEBER RND HLE DS THE B 00y Ofes

EiX LS THE GLOoE y ;
#23, RECORD S8k UNLESS SO = o

PRy
on
ool
0o
el -

Sein o= BX

CIZUL 828, 8L o L4N ORI e BX ORDT v
LEET Vg = ©f )

[ 1o L

ROVE ONE FEY
KIS L

E THE BLODE OFF
LRITE THE

T
Ag}
i
i
wd

def NEST TH

FuT RECORD Sin

O
T
CLOoSE 1%, 2%

EhD !

MRITE 0OUT LEST (pRF

-1
3

o —
L
oIt
-
St
T
[y
-~
“ry
y
s
-
w2

CLOSE FILED

cn Jo-bz



B R R T O A e S i T R AT O e N

Lhe main fi}ebthen there arc 10,000 keys in the key file. Since cach key
is eight characters long, 64 of thom will fit into one disk block. Thus
the key file will be 157 5]ocﬁs and on the average we will need to go through
one-half of it to find a given key. Thus we will need to- read only 79
blocks which at 200 mil]eset&nds per read is 15.8 seconds. We stf]] need
to read one block out of the main file so the total time to retrieve the
record is just sixteen'seconds which is much betfer than two minutes. The
program is not complex. It uses the remazinder method to access both files.
First the initiulization for the input fi]e.obfains the number of records
in the input file. Then we create the output file and put the number of
records in its first logical record.  Then in the main 106p (1ines 130,
140, 150) we read onenlogical record from channel one (the main file),
extract the key, and write it into the key file. When all the keys have béen
extracted from the main file and transferred to the key file we write out

the last buffer in the key file at line 160, close both channels and stop.

Mow that we have created the key file we can use it to access a record in
the main file. We will use the same prob}em as before. Me open both files
and then obtain the stock number (key) to be searched for from the terminal.
Next we search through the key file for the key record which matches the
stock number. Mien we find it we then retrieve the corresponding data
‘record from the data file. Me verify that the key in the data record is
fhe one we arc looking for. If it isn't that wusually means that someone
has altered or modified the data file since the last time the key Tile was
Acreated; | In this caée it is necessary to recreate the key file. If the
key's do match then the required information is printed on the terminal

and more input is obtained. The program stops when an error occurs or when
the operater types either "DONLE" or “STOP". Mow here is the program which

will retrieve data records after scarching the key file.

T-b3



a0 kUM LUCHTE FECORD TH T ILE

THIS FROGENY FINDS A LOTETION 1M Tul THYENT Oy LUssT Heme

FILE BY SEGRECHING THE KOV FILE FOF THL KEN AND TN
RECCLSSING THE MAIN FILE.
ieg!
116 OFEN “"LOCNTE. 1MV FOR INFUT AS FILE 1%
OFEN “LOCATE. KEY* FOR INFUT £S FILEL &u
FLELD #1Z, S2 [% Ls :

FIELD #z2X, &2 aS vs :
GEY #13, RECORD 42 D ROZ = 47 :
GET #22., RCCORD 42 sar = ax !

OFEN BOTH FILES

LET U2 = CcvrescLe)

IF Ul (> CYT§Kivs) THEN
FRINT “LENGTHS OF FILES DON'T MATCH®
CLOSE 12, 2% o STOR

 ond
r
(=

UZ IS VHE NUMEER OF RECORDS IN THE FILE

RBZ END S6Z ARE THE BLOCK CURRENTLY IN ERCH BUFFER

120 IKPUT “STOCK BMUMEER*; X$ :
GOTO 180 IF X§¥ = "GONE® OF X¢ = °CTop»
IF LENCX$)Y <> &% THEM |
FRINT "NOT VHLID STacK NUl BER"; X§
GOTo 1z0
CHECK FOR ENMN[ OF FUN OF VALIL STOCK MUMEEF

4@ FOR 12 = 12 TO Uz
SZ = 12764 :
Siz= 12 - c/*€4ﬁ.
S4 = LZ o+ 12 .l

GET #2X, RECORD SZ UNLESS S22 = g
sed = s
FIELD #22, &% = ‘1/ RS DS, &4 RS ¥¢
GOTO 150 IF X% = vg

REXT 12 :
FRIRT “ITEM NOT FQUND IN FILE"; ¢
GOTO 130

141 ! MAIN L OOF.  CRLCULRTE ELOCH Al
OFFSET (S43) FOF LEY FILE. ehDl BICORD RN
FOR REQUESTED LEY. IF nOT FOURE FRINY ERfOn

AND TRY HGRIN,

< - kX ox gx

R = RZ + 12 :

GET #1X, RECORD R UNLESS kX = RO

ROZ = R :

FIELD £1X, €42 » F1Z RS DS, 12 RS F$, 2% RS EBe,
RS

2n NS B#; O AS €%, S1¥ RS

RETRIEVE URYTA RECOSD FRPOM FILE BY IS

ELOCK OGNl F4YX OFFSET. F I8 FLOGE, BE IS BIH.

RE TS ERCK GND N¥ IS DESCRIFTION, Y IS TNE
160 IF V& <> 5S¢ THEN

FRINKT "FILES fRE lPth_I‘1(N’"

FRINT I, w¢, 8¢, 4¢

FEINT “"KEY FILE MUST @F FECOAQTFUCTEF"

CLOSE 12, 2% @ STop
161 !

TEOTHE EFY JN THE ©LOTR FILE [ole ROT HATOR

TN THE FOY FILEC THEN YHEVE 15 R LERTOUS ?F?"'.

DIRGNOSTIC ITMFOFRKRYI TN o &1 0f
170 FEINT “FOR STUCL NUNLCL®, uf; CTHE LGOCaTIan 1o
YFLOOR", AscIiersy;
TEIN"G CVWTEN(ESLY;
YERCEY; CWTSEPs) :
PRINT “NOMENCLETUSDY, Py

Goton 41xa !
FOURD BEATCI G0 BRINT JUTORNAT oy

180 CLOST 43, 2% . CHD '

& f-rf



Cstitl will nee&'fiftoen seconds or morc Lo locate the desired information
“and this is much longer thaﬁ the operatof should have to wait. .He need a
more efficient method of searching the key file. Ve can reduce the time
it takes to search the key file by first putting in the file not only the
key itself but also the logical record number which it represents. Then
we could sort the key file so that the keys were in alphabetical order.

Then with the file sorted we could use a binary search to find the re-

quested key and along with the key would bz the logical record number of
the corre;ponding record. (if you don't know what a binary search is it
will be defined below), With a binary search the number of disk reads re-
quired will be somewhét less than the power to which two must be raised to
equal or exceed the number of logical records in thé file. (In other words,
the Togarithm to the base two of the number of records in the file). Thus
for a file having 10,000 records the number of disk accesses required would
be Log2 (10,000) or 14. This can be reduced by the 1092 of the nqmber of
keys stbred within one biock. Now our keys are som2what longer than be-
fore. Previously we had a key of eight characters. 'Now we have the same
eight characters plus two more used to store the logical record number (in
CVTSS format)i' Since each key is now ten characters long we can put 5]
such keys in one block and the ]og2 (51) is 5. Thus we would need to read
the disk only nine times which would require only about two seconds to
access the file. There are other still faster methods but first we should
understand how this one works.

ibe obvious first question is how is the key file to be placed in order.

There are many methods of sorting data and entire books have been written

1965



about the relative advantages of cach. Mriting an efficient sorting pie-
gram requireé'extensive knowledge and much effort. For the RSTS user,
however, this is not necessary as an efficient file sorting package is
supplied by Digital Equibment Corporation. A manual is provided which ex-
plains how the sort package is used. 1t both extracts the keys from the
data file and sorts the keys into alphabetic sequence. As an option it
will sort the data file itself but this is hardly ever nccessary. The
user should read the Sort manual before attempting to use the techniques
described belnw. For our purposes it is sufficient to say that the sort
package will create the sorted keyfile which we need to use with a binary
search. (Note: If you don't have access to the sort patkage then use
the randomizing or haéhipg technique described below.)

To make a binary search (also called the half-interval method). ile simply

take a sequence of values whicir is in order and search for one of them by
seeing if it is in the first or sccond half of‘the va1aés‘ If it is in
the first half then we look to see if it is in the first or second haif of
that half and so on until we have found the vaelue we are looking for. Al-
though we are mostly concerned with record 1/0 fiijes, we will take as our
first example a binary search of a virtual array. lie will use the sorted
- file of names which we created in thz program on page - .- Hers we have a
Tile of 209 names each 64 long which we have plered 14 elphabelical order.
Row we will search for a particular rame. First we open the fite and da-

clare it to be a virtual array.

100 OPEN "NAMES" FOR INPUT AS TILL 24
' DIM #2%, N$(200)=647

Next we oblain thc name to scarch for in the variabic A%,

170 INPUT "WHICH NAME"; RS



Now we sct up the binary scavch In this cese L% is the Towar Timit of
the search and U% is the Qppcr Timit of the scarch. C% is calculated from
L% and U% and is the centér of the interval between L% and U%. Initially
L% is 0% and U% is 200% thus making C% be 100%. ’

10 L% = 0% : |

- U% = 200%

120 C% = (L% + U%)/2%
Now we cah test whether we have found A% in the array. If we have, we
transfer to line 200 with C% = the index where we found it.
A$ THEN C% = L% : GOTO 200

A$ THEN C% = U% : GOTO 200
A$ THEN GOTO 200

130 IF N§{L%)
140 IF N$(U%)
150 IF N$(C%)

nonon
won

Now that we know that we have not exactly found AS we want to know whether
it is above or below N$(C%) in the sorted array. When we determine this
we change either L% or U% so that we now have a new interval which is just
“half as large as the previous one.
160 IF A$ <N$(C%) THEN U% = C% ELSE L% = C%

Now if U% and L% are the same or differ by onc then we know that AS is not
. to be found in the virtual array N$ otherwisc we check the new interval. the
same as we did with the previous one.

170 GOTO 120 UNLESS UZ-L%<= 1%

PRINT "COULD NOT FIND NAME"; AS
GOTC 110

tthen we find the name we could print it out or do whatever we now need to
do.

200 PRINT "FOUND IT"; A$; “IS NAME KUMBER"; C%; "IN THE FILE":
CLOSE 2% : END

Although it is useful for an example, the overhead associated with virtual
arrays is so great that this is not a feasible way of writing a production
pirogram. In a real situation record I/0 should be used when the binary

search is being made. Vhat follows is a simnle program to make a binavy

Y



scarch of ‘a sorted key file from our previous example; the Inventory Location

File.

s -ty



P §

ne wethod described above is reasonably cffective; however, there is <till
substantial w&sted ceffort. In our exemple we found it necessary to make
nine disk accesses in order to find one data record.- This is, in general,
not efficient enough for many applications although there ére situations in
which it is fully adequate. The next increase in efficiency comes from
trading off core space (and thus program size) for reduced time in locat-
ing a record. We reduce the number of necessary disk accesses to one to
the sorted key file and one to the data file by maintaining some information
in core which permits us to obtain the block of the sorted key file which
contains the key we are seraching for; In our example we had 10,000 data
records, each 64 characters long. Thus we also had 10,000 keys each of
which was 10 characters -long (eight for the actual key and two for the log-
ical record number)., Since each block is 512 characters long, each will
hold exactly 51 keys. The sorted key fi]e is therefore 196 blocks long.
-We could now set up an array in core which would contain the first key in
each block of the sorted key file. _Then our techniquzs to find a specified
record would be to first perform a binary search on the in-core array. The
outcome of this would be the biock number of the block of the sorted key
file which contained the key of the record we are looking for. We

would read that block and perform & binary search on its contents to detep-
Amine the actual record nuwber of the desired logical record. Then we
vould fetch the block from the data file which contafned that record. Thus
we obtain the record we desive, out of a total of 10,009 records, with two
disk accesses, one to the sorted key file, and one to the data file.

IT enough core to place the array of keys in core is not availesble, then it
is possible to mske that information part of the sorted key file and search

the buffer twice. This increases the nuabder of disk accesses by onc but

/5-65



climinates the need for the array in core.

In our examplé we had 10,000 keys in 196 blocks of 512 characters. If we use
2 recordsize of 1024 characters we would read Lwo b]ock§ of the sorted key
file at a time. Thus we would need on our preliminary search only 298 keys

of 8 characters each. These could be put into two blocks appendéd to the
sorted key file and ther searched in the buffer by the same routine which
made the binary search on the key file. Using this technique we could
expect to use only six-tenths of a second in retrieving a specific record.
There are mary variations on this technique which are beyond the scope of

these notes.

16. HASHED KEYS
Another technique which is often used to access data is that of hashed or

randomized keys. This method is based on the maintenance of a key file in

a random sequence which is directly accessed based on the value of the kej.
The preceeding cryptic remark is best explained by a very simple examnle.
Let us suppose that we have a key consisting of two alphabetic characters..
Initially our key file is empty. As entries are made in the data file the
keys are posted to the key file. The lccation in the key file into which
the keys are placed is determined by adding the ASCII values of the twg
characters of the key and daividing by the nurher of possible entries in the
key file. We use the remainder of this division as the position in the key
file for that key. For our oxample we will use a key file having just
eleven possible entries. First we wil) zero tho key file and then consider
cach entry in the dafa Tile.  Suppose the first Key was "E6",  The ASCI]
value of "E" is 69 and that of "G" is 71, Thetr sum s 14C and the re-
mainder ;f 140/11 is €. Thus in Tegiral recovd 8 of tho hey file we would

put the key "EG" and th. Tnoical cciord v oF the servespanding data



' record i.éQ:.ll. Suppose the next key was "FA". The ASCIT value "F" is
70 and that of "A" is 65. Their sum is 135 and the remainder of 135/11 is
3. Thus we would post to position 3 of the key file the key "FA" and the
logical record number of the second record. The third logiéal record of
the data file we find has a key of "BF". The ASCII values of "B" and “F"
are 66 and 70 and their sum is 136. The remainder of 136/11 is 4 so we
post the key "BF" and the logical record number 3 to the key file. The key.
file now looks like this:

Entry Key Data

Number - Record
0 A - 0
1 - 0
2 - 0
3 FA 2
. 4 BF 3
.5 - 0
6 - 0
7 - 0
8 EG 1
9 - 0
10 - 0

- At this point three keys have been entered. When we want to retrieve the
record for which the key is "FA" we perform the same arithmetic operations
on it and find that it is to be found in position 3 of the key file. We
look there, verify that position three contains the desired key and also
that the corresponding data record is in position 2 of the data fiie.

Row suppose that we found that the key for leogical record four was "HD".
The ASCIT values for "H" and "D" are 72 and 68. Their sum is 140 and the
remaindei of 140/11 is 8. Thus we post the key "HD" in position eight, or
do we? When we try to post "HD" in position ecicht we discover that pos-
ition cight is already occupicd by FG. These two keys are called synonyns
and are delt with in the following way. If we try gb:éost a key and can-
not because its position in the key file is a]reédyf0cgupicd, we try the
next position. 1f it is also occupied we try the next one. Eventually we

/7= 24



will find @n unoccupied one and will post it there or the key Tile will
be fuil. Th{é is not very geod. Generaily in order to minimize the
amount of searching which takes pidce wihien synonyms occur it ié des-
irable to have a substantial amount of empty space in the key file.
This is usually not a serious defect since the size of the key file is
usually small compared to the size of the data tile. About half avain
as many possible keys in the key fiie as there are data records in the
data file is generally adequate.

Let's add two more keys to the key ¥ilc. The key "AC" yields a hashed

value of 1 and the key "BA" a value ¢f G. MNow the key file looks like

this:

Entry . Key - Data

Number ‘ " Record
0 BA 6
1 AC 5
2 - 0
3 FA 2
4 BF 3
5 - 0
6 - 0
7 - 0
.8 EG i
9 HO 4
10 - C

Typically all we do is perform some arithmetic on tho key and obtain
from that a record number in a key-file. Ue use the %emainder mathod to
obtain that record from the key file end comparc the stored velue of the
key with the one we are searching for. If they waicn we have found the
record we want and can fetch it from tihe data file. I7 nol v con exram-
ine the next key in the key Tile. Lither we will find cne that natches
or we will find eventually an empty record.,  In the Iaiiny cacr oo bnow
that the desired key is not in the ey 97+ i of e acvimanos o
this technique 15 that wve can post pow verrons el U0 are Lo

we want without claborate poncosetoo, v o o e cortod bey

7572



file adding recovds implied sorting the new records into the file and then
- reconstructing'the preliminary key table. In the case of the randomized
or hashed key file we obtaiﬁ the record we need in typically one access to
the key file and one to the.daﬁa file. If there are many synonyms then we
rmight have to read another block from the key file but that is unusual if
the file is adequately large and the randomizing function is adequate. This
latter is not always that easy to determine; however, one which has often
been effective is to take the characters of the key from left to right; form
a sum by multiplying the previous sum by three and adding the ASCII value
of the next character to the sum. When all characters in the key have been
summed then divide by a prime number slightly smaller than the maximum num-
ber of keys in the key'fi[e. In BASIC-PLUS thié would be as follows: A$
-is the key and N is the key position. P%.is the prime number just less
than the maximum position in the key file.

100 N% = 0%

N% = FBS(N% * 3% + ASCII(MID(AS, 1%, 1%))) FOR I¥ = 1% TO LEN(AS)
Ng = N7 - P% * (NZ / PJ) -

Mere complex scheimes are availabie and can be found in many books on file
and data structures. .

A cautionary note is in order abqut the importance of not deleting entries
in a hashed key file. - The reason that keys must not be deleted is simply
that they may be in a sequence of synonyms and replacing one by a series of
blanks wbu]d cause a search to fail when in fact the desiro& key was simply
farther down in the key file. The common solution to this (if deletions are
to occur on line) is 1o reserve a byte in the key file to indicate that the
referenced record is deleted and should not be accessed.  Periodically the
key Tile is then reconstructed from the data file and the keys corresponding

to the deleted records are removed.

/723



.

Here follow iwo pregrams based on owr previous cxanple, the inventory loc-
ations file. The first one takes the inventory lecations file and posts a
key file based con the eight character key in nosition 6 through thirteen.
The second retrieves records by usirg the key tile to find the vecord in

the data record file.



100

116

i3e

148

158

1¢€a

200

210

VER

CRINTE HASHED KEY FILF

THIS FROGEAN CPEATCS A HASHED GR FRDOrIZED

- KEY FILE FROD THE LOCATL. 1Ny Fil[

QFENR “LOCATE. INV" FOR INEUT ﬁ‘ FI(E 1%

uLy

GET #12, RECCAL 13
FIELD #12, =2 fas Lt
UZ = CVTSCLs)

EOX = 12 .
PINFUT FILE INITIALIZATION

UZ 1S THE NUMEEF OF EECORDS IM THE FILE

Eaz i< THE ELOCK CURRENTLY IN THC INFUT BUFFEFR
= 1.5 » Uz

Jii = 1%
JZ = JZ + 172 UNTIL 722 (22 =I5 >= Uiz OF J2

OFEN “LOCATE. KEY" FOR QUTFUT AS FILE 2X, CLUSTER:SI
YCUMFUTE APFROFRIATE CLUSTERSIZE FOE THE
KEY FILE RN[» OFEN IT.

’ .
ZE @R g

PRINT “FLERSE INFURT ﬂ FRINME NUMEBER SMALLER THaM <5 14y

INFUT P
FIELD #2%Z, 1&¥ ﬂS Fe
LSET P& = CVYTXECPE) .
! P2 IS THE FRINE NUMEEF.
IT IS STORED IN THE FIRST LOGICAL FECORD OF THE
KEY FILE.

sex = 12

FOR J2 = 12 Te Uiy

Jiz = Jz ¢/ 512 .
J2u = J2 - (S4% % J1X)

J1% = T4z + 1% .

FUT 21, RECORD SO% UNLESS SoX = J1%
sex = J1u

180X 1S THE RECORD IN THE GUTFUT EUFFER
FIELD #22, 407 * J22 AS DS, &2 AS v§, SXORS RS
LEET ¥§ = SPRCES(ER) : .
LSET RS = CVWTzsCa
REXT J2
FUT &2, RECORD SO
YFILL THE KEY FILE WITH BLRNKS

FOR Iz = 12 TQ ux
k¥ = 13 2 &
K1z = 12 - &4 = g2
F'I = r v + 1/ . N .
GET #1%, RECURD R’ UNLESS R% = ROX
FoE = RE
FIELD B1Z, €42 = F'Z RS Dg, SX A5 DE, &Y RS St .
'RETRIEYE EACH RECORD FORM THE LAatTha FILE
J = ¢y o
J¥ = RBS(IZeIN + BCCTTOHIDCSS, KX, 120y FOF FX=1% 1o X
JZ = §H =~ PEsCJUSE
'(HLCH!PIL THE IH‘HED VALUE OF THE KEY
JE o= 1% IF Jﬂ = U
JiX = Jl /7 *1 N
J2d = JX - B4 e g1y
R ISR B S R B
GET 20, FECHFD J1X UNLESS Ji% = Sl
SO% = Jgin
'DLTOELINE FOSITION IM EEY FILD FOF THIS KOV
FICLD #2X, Lol v 327 fs br, X HZ N, ¥ oan mp
IF &5 O Brpcce g THEN
Ji o= I8 o+ 1% :
JE o= 1N O0IF Ji > Uiy
GOTO 150
YSEL OTF O THE T TH FOSITION 1N THE VEY FIv:
FS ERPTY BN IF NOT TPy RICE e
LEET ¥¢ = c« :
LEFT. F§ = CUYrTsscr
Ut B22, RECORD S
NENT 1%

cLosr 1z 2z

POK FOURD £ ROLL FOFR IV SO MIPTE IT GUT RAND TEY THE
NOXNT D8 RECORD

FEINT “RLL DONEY onpe

[7-25"



The progiram to create the hashed key file starts st line 110 by openiny
the input file and determining the number of records in it. At line 120 |
the size of the hashed key file is determined by multiplying the number of
records in the data file by 1 1/2. Then the cluster $ize for the key file
is determined and the key file is opened for output. At line 130 a prime
number which will be used in the hashing algorithm is obtained from the
terminal. This could have been calculated by the program. The prime num-
ber is stored in the first (i.e.: zeroth) logical record of the key file.
This is so that the program(s) which access the key file will know which |
prime number to use. The FOR loop at line 140 and 150 serve to fill the
key file with blanks. These initial values im the key file are necessary
so that we can determine, when we post the records to the file, whether

or not a particular key file position has been already used and when we
retrieve records to determine if a key is not in the file. The main loop
in the program, cxtending from line 160 to line 200 actually posts the
keys from the data file to the key file. The coda in line 150 sérves to
sequentially read each vecord in the data file. At line 170 each key is
nashed and its position in the key file (J%) is determined. At line 1860
that record is rcad from the key file and (at 190) if it is blank the

key and the logical record nuiber of the correspending data record is witit-

ten to the key file. 11 ihe position is not Liank then a synonym has

occurred and we try the nexi key position. In this code we test for 2 poss-
ible "wrap-avound" condilion in which vie scarch a chain of synonyws off tho
erd of the fite. In this case we simply go to record nurber O0F.  (Reman-
her that record zero contains the prime number.} Finally at 210 we closc
the files and terminate the program, At his point we have o cota file.

©

"LOCATE. TV and its corresponding oy Tile. "LOIATE. WY,

L A2



lle arc now
ready to randsmly access records in the data file using information con-
tained in the key file. The next program does that. It obtains a stock
numder from the terminal, locates the record in the data file by using the

key file and then prints the location information on the terminal.

At line 110 the data and key files are opened and the number of records in
the data f11e as well as the prime number for the hash code computation are
read from the fiies. 1In tine 130 we obtain the stock number from the term-
inal and check for a valid length and for the end of the job. If neither

" we calculate the hash code at line 140 and retrieve that key from the key
file at 1ine 150. Lihe ]60 checks to see if there is a valid key at that
location. If not then there is no record for the specified stock number
‘and the terminal user is so inferimed. TF the key is not blank then a check
is made to see if the desirved stock number is there or if it is a synonysi,
If the latter is present then the hashed index is incremented and we try
the next key. When the key is found then the record specified by the last
two characters of the key (I%) is retrieved from the data file. This oc-
currs at Tine 190. A check is made to verify that the key in the key file
and the key in the data record are the same. If not then the {iles arc
inconsistent (i.e. one has been altered since the key file was created).
and the key file must be recreated. At line 200 the requasted information
is prrinted on the terminal end the pregram ashs for another stock number.
1t s worthwhi]c to compare this progrém with the one which did the same
Job by serially scarching the key file Lo see the reduction in the nunber
of disk accesses. Typically only lwo disk accesses are required to loc-

ate any record in this file.

/5- 72



16C

1¢1

LOOKUF ECCORD TN TILE

THIS FROGERN TINGS A LOCATION 1IN THE THS LT Oy
LOCRTYONS FILE ©Y HASHING THE KLy SUBFLILD FREON THE
TEEMINAL RED LOOKTING IN THE HASHED FEY FILE Pk THE
RECORD NUMEER OF THE GHTH FECORD

118‘0PEN "LOCATE. INVY FOR INFUT RS FILD 1%

136

146

15¢

16¢

20y

205

OFLC

INF

Ji

Jiz

N “"LGCARTE. KEV" TOR INFUT FS FILE 23
FIELD M1, S nS Lt :
FIELD #22, 102 S Fg :

GET 841X, RECORD 12 kg
GET #2x, RECOGRD 1% N &
YOPEN EOTH FILES
CYTH+ACLS
CVISZFPS)
JUZ 1S THE NUMEER OF FECORDS M TME DAaTAR FILE
PX 15 THE MRGIC FPRIME HUMBER USEDR FOF BRSHING 1HE FEY
ROZ AND SO ARE THE RECORDS CURRENTLY N THE BUFFLE
UT “"STOCK NUMEBER"; ¥ : :
GOTD 2106 IF X§="DOKE* QR ¥§ = *STOp®
IF LERCX$EY <> &¥ THENM , .
FEINT “NOGT B YARLID STOCK NUMEEER®
GOTO 1z@
'GET DESIRED STOCK NUMEER AMD CHECE LENGTH

1z
1z

nou

<
Dae
"o

= @2
Jz
Ji
J

RESCIRZRIY + ASCITCMIDCONSE, KE, 4¥IIFOR KX = 12 70 ©x
J;’: ) F'Z * (JZI) P:’.’) .

12 IF J¥ = @ . :

! CALCULARTE THE HASHEDL KEY VRLUC

Hnon

= JR/51% :
J2d = Ji¥ - S54% % Ji¥
Jid = Ji¢ o+ 1z

" GET #2%, FECOFD 513 UNLESS J1% = <o

1F

IF

1%

iy

§

S6X = Jiu :
FIELD #2X, 18X v J2X RS Ds, XS ¥Y§, 2¥ A pe
YGET THY INDICRTED KEY
¥$5 = SPRCES&X> THEN
FRINT “THERE 1S N0 RECORD CORPESFONDING 10 ST00Y Miescy 5 x
GUTO 1z@
Y& (> ¥$ THEN
J2 = J2 + 12 :
o= 42 IF J%Z 1.5 % ux
GOTO 1S8¢C
YBOT FOSYNONYM FOR ¥¢& SO TEY THE NEXT FOSITION
= CVTEU(RS)
Rz = 18 282
R1¥ = 18 - RY » O
EZ = B2+ 1¥
GEYT £1%, FECOFL R UMLESS fow = kX
Eoy = RZ :
PGET THE DLOCE WHIGH MR THE LOTR RCCORD
FICLD ¥4¥, ¢4 + K1X RS s, 13 RS FE, 22 onpn ., v
X RS S, S1E RS N :
IF ¥5 (> &
P

S OTHEN
TRT "TTLES R%E INCONSISTENT - EESS FILD LULT bem;
" ELCONSTREUCYED, » :
CLUSE 1%, z¥ RS
THONERN SESIOUS PFRORULED BFDT
RT “FOk STOCKE NUnLfr v ge; o THE LOCerIon J: "
FRINT “FLOOE ", [RSCLICF$)Y;
YEIN G Y OVTENOLey;
"ERCE M CNT s
PRRIRY "ROHENCLOTURE v us
GOaTon 4%0
FOUND THE JTEN SO TR IKRY TpE TMPDEHGTION TH THE 1 e

246 CLosE 97, pu Y

79— 28



17. VARIABLE LENATH RECORDS

In all of fhe.previous discussions it has been assumed that the individual
»records in the files were all of the same length. This is the case in most
data processing applications. Usually comparable information is to be
maintainéd pertaining to each item described by‘tﬁe data in the file. There
do arise, however, cases in which it is desirable to have records of
varying length. There are several ways to handle these. If there is no need
for rqndom access then the‘data can simply be processed using the serial
input/output statements, INPUT and PRINT. In fhis case the records are
delimited in the file by carriage-return line-feed characters and the rec-
ord deblocking is handled by the BASIC-PLUS run time system. Generally

the length of each record is stored in the file either explicitly as a
character count or imb]iéitly as a character which separates the records.
When random access is needed then some kind of key file must be used.

After the data file has been created it is necessary to crcate a key file.
It would have within 1t the key, the bleck within which the reocord

starts and the character position within the block where the record
starts. This file could be arranged in the same sequence as the data file,
it could be sorted, or it could be randomized as degcribed above. Whichever.
procedure is used the technique usgd to randomly locate a variable ‘length
record in a file is to determine the block and starting address of the
record from the key'file and then to GET the block which contains the rec-

ord. The length is detewnmined from the record and a FIELD statement is

/9 - 75



uscd to map the record. Then the data is availeble for processing unless
the record spéns a block in which case it is necessary to move the partial
record into the string.data area and GET the next block. The remainder of
the record is then concatenated, in the string data area, Qith the first
part and the record can be processed. Rewriting a variable length record
in situ is possible as long as the Tength of the record does not increasec.
If the length increases tﬁen more complicated methods are needed. . One
which is sometimes used in this case is to provide a field in the record
to indicate where the record has been moved when it was rewritten and to
provide some space at the end of the file for writing‘reéords vhich no
longer fit dn their original positions. Thus when a record is altered so
that its length is changed it is rewritten at the end of the file. In its
old location (the one pointed to by the key file) the record is changed so
that a field contains the block number and character offsct where the rec-
ord is now located. Vhen the record is accessed it is first necessary- to
determine whether the record has moved and if so to access it at its new
location. Alternatively the record could be rewritten at the end of the
file and the key file updated to point to the new location of the record.
In this type of file processing‘it is necessary tq provide programs which
re-organize the files so as to reclaim the space lost when a record is
réwritten in anothor location or when a record becouses shorter. Such a
program wbu]d copy the data file, eliminating the unused records and would
reconstruct the key file.

Now let's look at an example of this type ¢f file. We will have a file
which contoins information about inventory items. In particuler it will
contain records of purchases of items and the prices paid for the items.
This is used to calculate an aged cest of inveniory. Thus we can take the

number of items on hand and assumie that they represent the Tast purchases

/9 -50



Fed -~ cmmemdTs o~ I o bdbaiimd o
1 veenivly diu suviti gy

P
LS

o P
]

.'.J.,..-. L ¥}
1Lems.  we

foolom Al niandil st a4
LahC Lie kot feLeeivaad oL

i
)

0 r ¥
from the numbér on hand. If there eare more on hand theﬁ ve take the next
 most recent receipt of those items and subtract it from the remainder oﬁ
hand and so Gn.until all items on hand have been assigned fo the reccipts.
Then costs can be calculated by applying the cost data for each receipt to
the number of items on hand from that receipt. When items are received
three new fields are added to the record pertaining to that item. Period—.
ically the fields which no longer are applicable (i.e. have been exhaust-

ed) are removed from the file. The record layout for the data file is as

follows:
RECORD DEFINITION TABLE

‘Field Type . Name Length - Description

Number ) ' ,
1 I LS 2 Length of record in bytes
2 I Qs 2 Quantity on hand
3 S S$ 8 Stock number (key)
4, I B3 2 Block for link record
5. I 0% 2 Offset for link
6.1 S J$ 9 Date of receipt
6.2 I N$ 2 Quantity receive
6.3 F2 c$ 8 Unit cost

(NOTE: 6.1-6.3 repeat as many times as needed)

Table 6. Record Definition Table ‘
The first field in each record is the character count for the record, i.e.
the number of characters in the record. The next field is the quantity of
each item which is on hand. The third field is the key, an eight character
alphanumeric stock number. This is what we will use to post to the key
Tile and to access the rccord rendomly. Ve will maintain the fiie in stock
nurber sequence for case in generaling reports. The next two Tields are
used to indicate that the record has been moved in the course of being re-
written. If CVT$S(BS) is 0% then ithe originzl record is the valid one and

can be used . Otherwise BS contains the Dlock number of the block where

(7—&/



the record'hqs moved and 0% coutains the offset into the block in charec-
ters, Lven after pursuing the record'in this manner it is nccéssahy to
check B$ and 0% in the new record to sec if it has moved from there. The
actual data cannot be used until the record for that stock.number has been
located with 0% containing a zero. HNext in the record we have the varizble

Tength elements J$, N$ and C$. These contain the date of the receipt in
DD-Mmm-YY format, the quantity received, and the unit cost of the itom
These three fields are repeated once for each active receipt. Thus a rec-
ord which has one active receipt will consist of 35 characters; one which
has two active receipts will consist of 54 characters and so on. Let's
first consider a program to create a hashed key file. At‘the beginning of
the data file we have some usefg] infermation. In the first logical rec-
ord we have the total number of records in the file, the block énd charac-
ter offset of the next available position in the file (for use in rewrit-
ting records which grow). Finally we have the actual length of the file in
blocks. After we have the key file cstab]ishedvthen we - can write a pro-
gram which processes incoining receipts and updates the quantity on hand

and adds a field which describes the new receipt. Finally we could print
out the aged inventory report. We would maintaih~the data file in stock
number sequence. The record foriat for the key file is eight characters

of key, two of block number (in CVTZS format) and iwo for the character
offset into the bhlock (also in CVTﬁS foritat). There arc thus 42 keys per
block and each key is 12 characters long. Now let's look in some deilail

al the program which creates thie hashed key file. Tt reads the file
serially assembling each logical record and posts to the key file the pos-
ition of each data record and lhe key. Note that logical records may bao
allowed to span blocks., In some ceses (whore the records are shorl even

if variable in length) this can be avoidazd by simply placing a signal

(7-§2



. 4

character -(gencrally a CHRS/?2554) in the first character follow ast

,,,,,, H

nn the 1
i |9 A |

t N
Py s

Togical record which would fit in a block. Then the program would simply

get the next block and would not have to try to assemble a record from two

blocks. This docs waste some storage space bul can result in more efficient

programs.

18. FILE DESIGN

These.notes are intended to provide some of the ﬁechﬁica? information about
the file hand.ing facilities available in RSTS and some’commonTy used
techniques. At this point you should have a reagonably complete under-
standing of record 1/0 and disk files. What fo]]o@s are a few comments on
recommended design practices. This is hardly comprehens{ve. If you want a
discussion of files in genera1.£ﬁen a.ﬁextbook on data processing tech-v
niques is in order. When designing the files for a system it is wise to

keep in mind the following points:

1. The larger a file is (tota) size) the loncer it takes
to access a single record. This is scuovhat true re-
gardless of the type of access. If the recerds in a
file are large- then consideration could be given to
dividing the file into two (or more) files each with
smaller records. This is particularly effective when
only some of the information in & record is used on-
line and the rest is used only for off-line pro-
Ccessing. ‘

2. The "patural" sizes of logical records are powers of
two characters less than or cqual te 512, (i.e. 1,
2, 4, 8, 16, 32, 64, 128, 256, or 512.chara :ters per
logicel record). If the logical records are equal
to or slightly less than these lengths then blocks
need not be spanned and 1itile ¢isk space need he
wasteda,  Spanned recerds ceuse the progran to be
larger than otherwise and probobly to exccute more
slowly.

/783



	001
	002
	003
	01-00_Tables
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-00_Blocks
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-00_MonitorInfo
	03-01
	03-02
	03-03
	03-04
	04-00_Words
	04-01
	04-02
	04-03
	05-00_DirStructure
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	06-00_CIL_Map
	06-01
	06-02
	07-00_Diagrams
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-00_JobStructure
	08-01
	08-02
	08-03
	09-00_CoreMap
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	10-00_MonitorRtns
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-00_DevDrvr
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-00_errLog
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	14-00_2780
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-00_DH11
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	16-00_VT05
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-00_HardwareProbs
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	18-00_ODT
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	19-001_FileProc
	19-002
	19-01
	19-02
	19-03
	19-03a
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	19-47
	19-48
	19-49
	19-50
	19-51
	19-52
	19-53
	19-54
	19-55
	19-56
	19-57
	19-58
	19-59
	19-60
	19-61
	19-62
	19-63
	19-64
	19-65
	19-66
	19-67
	19-68
	19-69
	19-70
	19-71
	19-72
	19-73
	19-74
	19-75
	19-76
	19-77
	19-78
	19-79
	19-80
	19-81
	19-82
	19-83

