

17
4,434,487

that corresponds to the previously revectored LBN. An
offset pointing to the primary RBN descriptor within
the RCT block is also produced. This algorithm always
produces a block number within the first copy of the
RCT within the replacement control area. The algo- S
rithm is illustrated in FIG. 10.

Detailed Description of an Embodiment of the Physical
Layer

With the foregoing generalized description in mind, it 10
will now be helpful to provide some further details of an
exemplary implementation.

Referring now to FIG. 11, a suitable sector format is
shown there, illustrating the various sector fields:
header 330, data 332, error detecting code (EDC) 334 1 S
and error correcting code (ECC) 336. Four copies of
the logical address are provided within the header. The
EDC in field 334 provides error detection coverage
from the entry of the data into the subsystem until its
exit from the subsystem. It is also used in the illustrated 20
embodiment to generate the "forced error indicator."
Sixteen bits are used for the error detecting code in the
present example, although codes of other lengths can be
employed, of course. The ECC in field 336 provides the
primary detection and correction mechanism against 2S
medium and device transmission errors. (An exemplary
ECC occupies 170 bits and is described in commonly
assigned patent application Ser. No. 277,060, filed June
24, 1981, by Charles M. Riggle et aI, and titled Multiple
Error Detecting and Correcting System Employing 30
Reed-Solomon Codes, which is incorporated by refer­
ence herein for the purpose of describing the error
correcting code and its use).

The header preamble "spacer" field 338 is an area
padded with zeroes and used to accommodate the maxi- 3S
mum uncertainty between a drive's negation of sector
pulse and a controller's notice of the change, plus the
controller quantization error in preamble length.

The header preamble field 340, also zeroes, is the
number of words necessary to allow the drive's phase-40
locking oscillator (PLO) to settle before the occurrence
of header sync. The "header preamble length" field is
provided to the controller by the drive in response to a
designated command.

4S
Generation and Use of the Forced Error Indicator
The controller 4 transmits to the drive 3 the informa­

tion for each sector, to be written in the format of FIG.
11. Generally, the error detecting code and error cor­
recting code are computed and are inserted in the ap- so
propriate fields of the sector format by the controller 4,
though in some cases the host or the drive itself might
supply some of such information. Similarly, when read­
ing from the disk drive 3, the controller 4 generally
performs the functions of checking the error detecting 55
code and error correcting code, though it is also possi­
ble for the host or drive to do so in some systems.

The procedure by which the controller (or host or
drive, as appropriate) gemerates and utilizes the error
detecting code field 334 for forced error indication is 60
illustrated in FIG. 13B. There, a flow chart is provided
illustrative of the operation of a processor for reading
from the recording medium. With reference now to that
figure, a sector "A" is to be read. Under command from
the controller, the disk drive positions a head appropri- 65
ately so as to "read" and provide to the controller the
information stored in sector A. (Step 360). From the
data field of the sector, an error detecting code (EDC)

18
is computed. (Step 362). The error detecting code cal­
culated in step 362 is then compared with the error
detecting code contained in field 334 of the information
read from sector A in step 360. (Step 364). If the calcu­
lated EDC matches the EDC read from the recording
medium, then the read operation is successful and pro­
cessing proceeds along the branch 366 to exit point 368.
However, if the two EDC values do not match, some
further processing is required to determine the reason
for the mismatch and to decide on further steps to take.
Thus, the controller next looks to see whether the
forced error indicator was present (or "set") in sector A
as recorded; this is done by comparing the calculated
EDC with the one's complement of the EDC read from
field 334. (step 370). If the two match, that means the
forced error indicator was detected, in which case pro­
cessing continues along branch 372; the controller then
knows that the data in the sector already was corrupted
when it was written and therefore cannot be recovered
through the read operation. Thus, the read operation
fails; and in doing so, a specific code or signal is gener­
ated in step 374 to notify the host that the read opera­
tion failed due to detection of the forced error indicator.
On the other hand, if the forced error indicator was not
detected in step 370, it is possible that error recovery
technique might successfully be employed, so control is
transferred along branch 376 to step 378. In step 378,
the available error recovery techniques are invoked and
an attempt is made to reconstruct the data written to
sector A. If error recovery is successful, then the read
operation has succeeded and, analogously to a success­
ful outcome from step 364, control proceeds along
branch 382 to exit point 368. However, if error recov­
ery does not succeed, then an error code is generated to
indicated to the host that the read operation failed due
to the medium inaccurately storing the information.
Step 384. This latter error code is different from the
error code generated in step 374, to distinguish between
read errors due to defective media and read errors due
to the forced error indicator.

It is important to distinguish between forced errors
and non-forced errors in reading because they are han­
dled differently when copying information from one
sector or group of sectors on to another sector or group
of sectors. When a forced error indicator has been set in
a sector, the underlying medium is still presumably in
satisfactory condition; thus, new information can be
written into that sector, at which point the forced error
indicator is cleared. However, if the information in a
sector is unrecoverably corrupted but the forced error
indicator is not present, it is likely that the medium
underlying sector is defective and that any futher writ­
ing onto that medium would result in a further loss of
information.

There are thus three types of situations to deal with
when copying a sector from a first volume of memory
into a second volume of memory. If the sector was
successfully read from the first volume of memory, it
may of course be written intact into the second volume
of memory. If the sector could not be successfully read
because it was logically corrupted and unrecoverable,
then the contents of that sector can either be discarded
entirely or can be written into a sector in the second
volume with the forced error indicator set to signify
that the data was corrupted when recorded. Rerecord­
ing of that sector subsequently results in the clearing of
the forced error indicator. Thus the organization of a
particular file can be retained with the position in the

19
4,434,487

file being held open and identified as not being defective
though containing incorrect data.

This is illustrated in FIG. 13C, which shows the two
possibilities for writing into the EDC/FEI field 334 of
a sector. If a sector is to be written with information 5
read from a disk file, and in the reading process of FIG.
13B, step 384 has been reached (signifying that the data
read is corrupted and the forced error indicator code is
not present for the sector which was read), then the data
known to be corrupted is to be wt"itten to a good block \0
of recording medium on the same or another disk sur­
face and the forced error indicator code is to be set
when the new sector is written. This is indicated by
going or branching from step 384 directly to a step 392,
where the write operation occurs with the forced error 15
indication code set in field 334. A contrast, when the
sector is to be written with new data from a host (which
data is presumed to be reliable and uncorrupted) or with
data successfully read from storage, as indicated by the
"yes" branches from steps 364 or 380, then the write 20
operation occurs with an appropriate non-comple­
mented error detection code written to the EDC/FEI
field. (Step 394).

The data preamble "space" field 342 is the area neces­
sary to accommodate controller quantization errors in 25
the transition between reading headers and writing data
preamble. The length of splice field 344 is the number of
words necessary to accommodate worst-case header
transmission delays, header compare time, write splice
area and PLO lock time. The number for this area (in 30
words) is placed in the "data preamble length" field of
the response to the above-designated command.

20
block number in the header represents the LBN for this
block. This LBN has been revectored to its primary
RBN. This header field may be registered in the non­
RCT portion of LBN space only.

Yet another code, such as 06, may be used to indicate
a usable replacement sector, wherein data mayor may
not be valid, depending on the validity of the EDC. The
block number in the header represents the RBN for this
block. This header code may appear in RBN space only.

Another code, such as II, may signify an unusable
sector, where data is invalid. The block number in the
header is that of the sector's type if it had been a usable
sector. This header code may appear in RBN, XBN, or
DBN space, the RCT area of LBN space, and in LBN's
which have been secondary revectored due to header
errors.

Yet another code, such as 12, may signify a usable
external sector, wherein data mayor may not be valid
depending upon the value of the EDC. The block num­
ber in the header represents the XBN for this block.
This header code may appear in XBN space only. A
further code, such as 14, may represent a usable diag­
nostic sector. The block number in the header repre­
sents the DBN for this block. This header code may
appear in DBN space only.

Header Compare Algorithm

A header compare algorithm is used by the controller
for locating a designated sector. First, the controller
determines the address of the sector it is searching for
on the disk (i.e., the "target" address). The controller
then reads the four copies of the 32-bit header of the
sector that may be at the target address. These headers
are broken into two 16 bit fields (low and high). If any

The length of the write-to-read recovery field 346 is
the number of bits necessary for write recovery, plus an
allowance for uncertainty.

The length of the reinstruct time field 348 is the disk
area traversed during the time the controller is cleaning
up the current sector transfer and sending the command
to the next one.

35 two of the four low fields, as retrieved from the disk,
match the low field of the target address and any two of
the four high fields, as retrieved from the disk, match
the high field of the target address, then the header
compare succeeds. If at least two low matches are not

The Headers
40 found, then a header match is not possible.

The sector header is 128 bits: thirty-two bits repli­
cated four times. The layout of one of the thirty-two bit
copies is shown in FIG. 12. A 16-bit word 352 and the
lower 12 bits of the next word 354 form a 28-bit block 45
number field, which is followed by a 4-bit header code
356. The block number field represents an LBN, an
RBN, an XBN, or a DBN, depending on the header
code. The block number field provides enough address­
ing for approximately 0.25 giga-sectors or I terabit of 50
data.

The octal header code may, for example, be inter­
preted as follows. First, an exemplary code such as 00
(octal) may indicate a usable logical sector wherein data
mayor may not be valid, depending upon the validity of 55
the EDC. The block number in the header represents
the LBN for this block. This header code may appear in
LBN space only. Another code, such as 03, may indi­
cate an unusable revectored logical sector. This header
code may appear in the non-RCT portion of LBN space 60
only. The data field contains the RBN header field of
the replacement block, replicated 128 times; the block
number in the header represents the LBN for this block.

Yet another code, such as 05, may indicate an unus­
able primary revectored logical sector. Such a sector 65
has been revectored onto the first replacement sector on
the track. The data field contains the RBN header field
of the replacement block, replicated 128 times. The

If at least two low matches are found and two high
matches are not found, then it is possible that the cor­
rect sector was located but the header code did not
match the target header code. This is possible if an LBN
has been replaced, or if a bad block has been found in a
multi-copy protected area (Le., RCT, XBN or DBN).
The controller alters the header code in the target ad­
dress then determines if two high matches now exist. A
variant of the header compare algorithm is also used to
conclude that a drive has mis-seeked or seeked to the
wrong cylinder or group, or that an incorrect head has
been selected. For this purpose, any three of the four
high header words must match and any three of the four
low header words must match, since there is not an
expected header value to match against. Given this
three-way match, the controller may interpret the
header code and block number fields to determine the
actual cylinder, group and track that have been ac­
cessed, for comparison against the correct values.

The Data

The contents of the data field are application-depend­
ent. The data field size will depend on the format used
by the host processor. For the assignee's products, there
are two basic data field sizes, 512 bytes and 576 bytes. A
portion of all disks is always formatted with 512 byte
data fields. This is the manufacturing defect area
(XBN). The other areas on disk drives attached to those

21
4,434,487

controllers that support both sector sizes may be for­
matted in either 512 or 576 byte format. Each time a
device comes "online" to a controller, the controller is
responsible for determining the sector size employed by
the device according to the algorithm described below. S
First, the device is instructed to change the sector size
of its reading operation to 512 bytes. The starting sector
of the first copy of format information is read. The first
word of this sector is tested. If it is equal to a preselected
number, then LBN/RBN space is written in 512 byte 10
mode. On the other hand, if it is written with some other
preselected number, then such space is written in 576
byte mode. If the starting XBN of the first copy is not
readable or a value other than the aforementioned pre­
selected values is in the first word, then the starting 1 S
XBN of the next copy of the format control table is
computed using the following formula:

next copy XBN =old copy XBN + size of format
control table.

This new sector is then read. If it has an uncorrectable
I/O error, then the next copy is accessed, until all cop-

20

ies are tried. If all copies are read and there is no copy
that can be read without an uncorrectable I/O error, 2S
then a media format error is returned to the host. Also,

22
one's complement of the EDC to be expected on the
basis of the recorded data.

The Track

A track is composed of sectors and timing marks.
There must be at least two sectors per track (1 LBN
sector and 1 RBN sector). Timing marks are of two
types: (I) sector marks and (2) index marks. A sector
mark precedes each sector and may be used by the
controller for rotational optimization purposes. An
index mark precedes the first sector on each track
within the first group in the cylinder and precedes a
sector at the same angular position with respect to the
first group on all other tracks within all other groups in
a cylinder.

Detailed Description of an Embodiment of The Logical
Layer

Address Spaces

There are four address spaces in the set of sectors
made available to the controller by the drive. The first
address space contains the set of logical blocks which
are visible to the host. This LBN space is divided into
two regions: the host accessible area and the RCT's.
The second address space contains replacement blocks
which are used to replace logical blocks that have be­
come unusable. These RBN's are invisible to the host
except for the implications they have on allocation

if the first sector (i.e., XBN) of the first copy read with­
out an uncorrectable error contains an invalid media
mode code, then a media format error is returned to the
host.

(The host may force the device into a specific mode,
in which case the controller will attempt to access the
device unit using that mode, without issuing the media
format error. This is intended only as a means of data

30 policies. The controller utilizes the logical blocks and
replacement blocks in a fashion that presents to the host
a logically contiguous set of blocks numbered from zero
to H-l, where H is the block capacity as seen from the

recovery, and not as a standard operating practice.) 3S
If the volume is in 512 byte format, the algorithm is

complete. If in 576 byte format, the controller is respon­
sible for prefacing all operations on XBN's or 512 byte
D BN's with a command to change the size to 512 bytes,
and preceeding the next reference to LBN's or RBN's 40
with a command to change the size back to 576 byte
format. In other words, the controller is responsible for
changing the sector size dynamically based on which
space the sector falls in, using 512 byte format for
XBN's and DBN's but 576 byte format for LBN's and 45
RBN's.

The EDC

The Error Detecting Code (EDC) is a 16-bit code
used to detect errors caused by internal problems in the SO
controller. It is applied as an end-to-end verification of
correct controller operation. The algorithm shown here
was designed to detect column errors as well as multi-

host. The third address space is the extended block
space; (XBN's); this is a set of blocks visible only to the
controller, which is used to store manufacturing format
control information and transient controller-specific
information. Finally, there is the diagnostic block space
(DBN's) containing blocks devoted to controller-resi­
dent diagnostics. The DBN's are also visible only to the
controller. These address spaces are differentiated by
unique header codes, preventing inadvertent access to
or operation in the wrong type of sector.

Although conformation to the overall geometry de­
scribed herein is a requirement of the invention, the
specific capacities and other physical parameters associ­
ated with the geometry of the disk will vary from de­
vice type to device type. These specific parameters are
part of the permanent characteristics of each device
type, and are determined when the device is designed.
The controller shields from the host these parameter-
dependent device properties. The controller issues a
generic command termed the GET CHARACTERIS­
TICS command, in response to which the drive re-bit parity errors.

55 sponds by sending to the. controller the parameters
necessary for use in geometry-related operations. The
controller then uses those parameters as appropriate
and necessary.

The EDC is computed via an exclusive-OR operation
and left circular shift algorithm, using a non-zero initial
value and 16 bit word size. The rotate used in this algo­
rithm has no carry. The algorithm itself is listed in FIG.
13A. In addition to detecting errors, the EDC also is
used herein to provide a forced error indicator. This is 60
accomplished by storing the one's complement of the
correct EDC in the EDC field of the sector. An "error"
is thereby indicated when the sector is read; this "error"
is eliminated when the sector is next written with cor­
rect EDC. This technique makes it very easy for diag- 65
nostic routines to identify sectors having forced errors.
That is, when an EDC indicates an error, it is a simple
matter to determine whether that EDC is in fact the

The Drive Characteristics Blocks

As mentioned above, in a secondary storage subsys­
tem according to this invention, a disk drive provides to
the controller, responsive to a command, one or more
messages containing various parametric information. In
this regard, it should be noted that within a drive there
may be one or more subunits, each of which can be
addressed independently by the host and controller.
Thus, to fully characterize the drive, two commands are

23
4,434,487

used. First, a command named the GET COMMON
CHARACTERISTICS command is employed to
evoke a message regarding parameters which are com­
mon to all subunits of the drive. Next, a comand named
the GET SUBUNIT CHARACTERISTICS command 5
is used to evoke the characteristics of specific subunits
of a drive. The format of the response to the GET
COMMON CHARACTERISTICS command is illus­
trated in FIG. 14. There, a 23 byte sequence is shown.
The first byte identifies the nature of the response. The 10
lower half of the second byte conveys the length of a
short time out, expressed as power of two. The upper
half of the second byte contains a number indicating in
the version of the bus used between the controller and
drive. In the third byte, the drives bit transfer rate is 15
specified, scaled down by a factor of 100,000. The
fourth byte, like the second byte, is broken in half. Its
lower half includes a long time out, also expressed as a
power of two; while its upper half conveys the number
of retries of a failed operation which will be required by 20
the drive. In the lower half of the fifth byte, a number is
written to indicate the number of FCT and RCT copies
maintained. The most significant bit in the fifth byte, SS,
indicates the drive sector size. The sixth byte specifies
the number of error recovery levels which the drive 25
makes available. It is a characteristic of this system that
the controller need not be aware of the error recovery
techniques available in the drive. The drive may employ
several different error recovery techniques, numbered
in their order of increasing or decreasing chance of 30
success. Assume. for example. that by convention error
recovery Level I corresponds to the technique having
the greatest probability of success; error recovery Level
2 is the next most likely to succeed, etc. Then, the con­
troller need only signal for the invocation of error re- 35
co very Level I and the subsequent error recovery tech­
niques. in ascending numerical order (corresponding to
descending probability of success). The drive, respon­
sive to seeing each of the error recovery level indica-
tors, invokes the appropriate recovery method. 40

The seventh byte contains the ECC threshold, above
which replacement and revectoring are invoked. The
eighth byte contains an indication of the microcode
revision number of the drive and the ninth byte contains
an indication of its hardware revision number. 45

24
this subunit, while the upper half of the byte contains
the same bits for the first DBN on this subunit.

The number of RBN's per track is indicated on byte
10. Bytes 12 and 13 contain the length of the data and
header preambles, respectively, in words.

Bytes 14-17 record the media type. Bytes 18 and 19
give the size of copy of the FCT, in XBN's.

Bytes 20-27 are used for the 512 byte format, and
their counterpart for the 576 byte format is bytes 28-35.
As labelled in the drawing, the contents of the bytes
should be self-explanatory. Bytes 20 and 28 indicate the
number of LBN's per track. Bytes 21 and 29 indicate the
group offset-i.e., the offset from one group to another
to permit spiral read operation. The number of LBN's in
the host area is indicated from byte 22 through the
lower-half of byte 25 and from byte 30 to the lower-half
of byte 33. Bytes 20-23 and 34-35 indicate the size of a
copy of the RCT, in LBN's.

Bytes 36-39 are common to both formats. Bytes 36
and 37 indicate the size of the XBN space, in cylinders.
Byte 38 indicates the number of groups in the DBN area
and byte 39 indicates the size of the DBN space in cylin­
ders.

The replacement sectors in any given drive are logi­
cally numbered from 0 to (Rs - I), where Rs = Lc*g*t*r
is the total number of replacement sectors. A replace­
ment block number is converted to a specific physical
disk location through a series of transformations per­
formed by the controller using parameters supplied by
the drive. These transformations are described later.
The last r sectors (where r is a drive-specific parameter)
of each track in the host application area is reserved for
replacement blocks for revectored bad blocks. These
alternate blocks lie outside of the LBN space presented
by the controller to the host, and are accommodated in
the logical-to-physical address conversion algorithm
described below.

FIG. 16 illustrates the first two and last tracks in the
LBN/RBN space of a subunit.

External Block Track Geometry

The external sectors on any given drive are logically
numbered from (0 to Xtot-I), where Xtot=Xc*g*t*s
and is the total number of external sectors.

The transformation for converting an external block
number to a specific physical disk location is explained
later.

XBN's are allocated contiguously on all XBN cylin-

Bytes 10-15 contain a unique drive identification
number or serial number. The sixteenth byte contains a
drive type identifier and byte seventeen indicates the
rotational speed of the disk platters, in revolutions per
second.

Bytes 18-23 contain various error thresholds.
50 ders; they increase incrementally from the starting XBN

number as the sector number, track number, and cylin­
der number increase, until the XBN cylinders are ex­
hausted. There are no replacement blocks on XBN

The response to the GET SUBUNIT CHARAC­
TERISTICS command is indicated in FIGS. 15A and
15B. As shown there, the response is 39 bytes in length.
The first byte contains a pattern indicating the nature of 55
the response. Bytes 2, 3, 4 and the lower-order half of
byte 5 contain the number of cylinders in the LBN
space. The field comprising bits 6-4 of byte 5 contains
bits number 30-28 of all cylinder numbers on this sub­
unit.

cylinders.
FIG. 17 illustrates the first two and last track in the

XBN space of a subunit.

Diagnostic Cylinder Geometry

The diagnostic sectors on a drive are numbered logi-

The number of groups per cylinder is indicated in
byte 6.

60 cally from 0 to Ds-l, where Ds=Dc*g*t*s is the total
number of diagnostic sectors. The method for trans­
forming DBN's to specific physical disk locations is
described below. An adequate number of cylinders is The lower-order half of byte 7 contains bits 27-24 of

the first LBN on this subunit, while the upper-order half
of that byte contains the same bits of the first XBN on 65
this subunit. Byte 8 contains the number of tracks per
group. Byte 9 is fragmented into two halves, the lower
half of which contains the bits 27-24 of the first RBN on

reserved for diagnostic usage. Sector headers in those
cylinders are coded to reflect that they are DBN's.
These diagnostic cylinders are formatted initially in the
512 byte mode and the last cylinder in this space must
remain in that mode; that cylinder contains various data

25
4,434,487

patterns prerecorded at the factory. Diagnostic space
geometry is illustrated in FIG. 18.

Address Conversions

Two generic variables are used to express the address 5
conversion algorithms. They are actual or calculated
device characteristics. The function QUO() is used to
indicate a quotient resulting from a division operation
and the function REM() is used to indicate the remain-
der resulting from a division operation. 10

The starting LBN for a drive (L) is computed from
the characteristic "HISTRTLBN", the high order part
of the address of the starting LBN. (see below). This is
done by OR-ing the "HISTRTLBN" nibble into bits 15
27-24 of a previously zeroed longword.

Given a header LBN, the algorithm listed in FIG. 19
is used to determine the logical block's physical sector
address. In reading that figure, note that the starting
cylinder for a drive (C) is computed from the drive 20
characteristic "HI CYL", the high order part of the
cylinder address. This is done by OR-ing the "HI CYL"
nibble into bits 30-28 of a previously zeroed longword.
In the figure, "0" represents an offset.

Given a header RBN, the algorithm of FIG. 20 may 25
be used to determine the replacement block's physical
sector address. Note that the starting RBN for a drive
(R) is computed from the characteristic
"HISTRTRBN," the high order part of the RBN ad­
dress. This is done by OR-ing the "HISTRTRBN" 30
nibble into bits 27-24 of a previously zeroed longword.

Given a header XBN, the algorithm listed in FIG. 21
may be used to determine the external block's physical
sector address. The starting XBN for a drive (X) is 35
computed from the drive characteristic
"HISTRTXBN," the high order part of the XBN ad­
dress. This is done by OR-ing the "HISTRTXBN"
nibble into bits 27-24 of a previously zeroed longword.

Given a header DBN, the controller executes the 40
algorithm of FIG. 22 to determine the diagnostic
block's physical sector address. The starting DBN for a
drive (D) is computed from the characteristic
"HISTRTDBN," the high order part of the DBN ad­
dress. This is done by OR-ing the "HISTRTDBN" 45
nibble into bits 27-24 of a previously zeroed longword.

26
Detailed Description of an Embodiment of the

Functional Layer Revectoring

Once a sector has been replaced, revectoring should
occur upon each access to the replaced LBN. Three
revectoring mechanisms are supported by the particular
implemention discussed herein. These mechanisms all
depend upon values in the code field of the sector's
header to initiate revectoring. Additionally, all revec-
tored LBN's contain 128 copies of the replacement
block's header in their data field, unless revectoring is
the result of a header error. The revectoring mecha­
nisms differ in the ways that the addresses of the target
RBN's are determined.

In the primary revectoring mechanism, the position
of the RBN to which revectoring is performed is im­
plied by the position of the LBN on the volume. This
implied position is the first replacement sector on the
track containing the LBN. This is a many LBN to one
RBN mapping function.

With so-called secondary revectoring, an arbitrary
RBN is used whose address is determined by the pres­
ence of the 128 copies of the RBN's header value (code
and address) in the data field of the bad LBN. The
algorithm listed in FIG. 23 is used to determine reliably
the correct value of the RBN header; it provides as
output (from the 128 copies input) the address found to
have at least 24 matches, if there is one.

Finally, there is a so-called tertiary revectoring
mechanism which is used when the header compare
algorithm fails to determine a valid header address or
code or the algorithm of FIG. 23 fails to yield a valid
result. It is important to determine then if the LBN has
been revectored or if access to the LBN should result in
an unrecoverable error. Since all revectored LBN's are
recorded in the multiple copies of the RCT, an RCT
search is used to determine if the bad LBN has been
revectored. The RCT search algorithm, described
above, results in the RBN address if the LBN was re­
vectored, or a failure indication if it was not revectored.
The determination that the attempted input/output
operation was done to the correct sector requires, since
the header is "smashed" and unusable (I) a determina­
tion that the correct cylinder, group and track have
been selected; (2) for controllers that use sector count­
ing via sector and index pulses, at least one revolution of
counting after completion of the foregoing step and (3)
for controllers that locate sectors by reading headers, at
least four full revolutions searched after the foregoing

Given a header LBN that has been revectored to the
first RBN on the same track (primary RBN), then the
following algorithm or formula may be used to deter­
mine the replacement block's RBN:

RBN=R+(QVO«LBN- L)/I»·r

50 step is complete. Failure to achieve a header match on
the latter two actions requires invocation of tertiary
revectoring.

Given a host LBN that has been revectored to the
first RBN on the same track (primary RBN), then the 55
following formula may be used to determine the re­
placement block's RBN:

Formatting Support

Formatting and reformatting processes are responsi-
ble for establishing which sectors are bad and replacing
them, if they are in the host applications area, or format­
ting there headers with the unusable code if they are
bad LBN's in the RCT, bad XBN's, bad DBN's or bad RBN = R + (QUO{(LBN)/ I»·r

Given the physical address (cylinder, group and
track) of a logical block that has revectored to the first
RBN on the same track (primary RBN), then the fol­
lowing formula may be used to determine the replace­
ment block's RBN:

RBN=R+([([(Cyl. No. -C)'g]+Group
No.)·t] + Track No.)'r

60 RBN's.
The formatting process is supported by the format

(;ontrol tables (FCT), which are used to record informa­
tion about the location of manufacturing detected bad
blocks. Format information for both 512 byte and 576

65 byte formats is stored in the FCT. The first subtable in
the FCT contains information about where the bad
blocks would be located if the disk were located in the
512 byte format, the second subtable contains informa-

27
4,434,487

tion about where the bad blocks would be located if the
disk were recorded in the 576 byte format. For those
mass storage devices that don't support the 576 byte
format, the 576 byte sub table contains null entries.

A second function of the FCT is the identification of 5
the current mode of the LBN space (i.e., whether it is
recorded in 512 or 576 byte format. The first sector of
each FCT copy contains a code identifying the current
LBN sector size. This mode identification sector is
updated each time the volume is formatted. 10

The FCT contains at least one track of subsystem
scratch storage also.

Each copy of the FCT is composed of one volume
information block, one 512 byte format table, one 576
byte format table, and one subsystem temporary storage 15

area (distributed amongst the alignment pads). This
format is illustrated in FIG. 24. The XBN area itself is
always formatted to contain 512 byte sectors. Sector 0
of the FCT contains various volume identification in- 20
formation. Its format is illustrated in FIG. 25.

Conclusion

Having thus described an exemplary embodiment of
the invention, it will be apparent that variOlls alter- 25
ations, modifications and improvements will readily
occur to those skilled in the art. Such obvious alter­
ations, modifications and improvements, though not
expressly described above, are nonetheless intended to
be implied and are within the spirit and scope of the 30
invention. Accordingly, the foregoing discussion is
intended to be illustrative only, and not limiting; the
invention is limited and defined only by the following
claims and equivalents thereto.

What is claimed is: 35

1. In a secondary storage subsystem (2) for a data
processing system (10), wherein data is recorded on a
mass storage medium (5) and the smallest addressable
unit of the medium is a sector (9), each sector including
a header field for recording address information and a 40
data field for recording data to be associated with and
stored at such address, the improvement comprising:

means (4, FIG. 13C-392) for writing in each sector a
predetermined code, termed the forced error indi­
cator, when the data being recorded in the data 4S
field is known to be logically corrupted and the
medium underlying the sector is not known to be
defective; and

means (4, FIG. 13B-374) for providing a signal, 50
termed a forced error signal, responsive to detec­
tion of the forced error indicator during a read
operation.

2. The apparatus of claim 1 wherein the means for
writing the forced error indicator code includes S5

means (4, FIG. 13C-394) for generating for each sec­
tor an error detection code which is uniquely re­
lated to such sector's data, in accordance with a
preselected algorithm, for use in detecting the pres­
ence of errors in reading data recorded in the sec- 60
tor; and

means (3, 4, FIG. 13C) for writing a signal into a
predetermined location in the sector (9, FIG.
11-334), such location being termed the EDC/FEI
field, said signal being 65

(a) the error detection code for the data being re­
corded in the sector when the data is not known to
be logically corrupted (396), or

28
(b) the forced error indicator code when the data

being recorded in the sector is known to be logi­
cally corrupted (392).

3. The apparatus of claim 2 wherein the forced error
indicator code is the one's complement of the error
detection code for the dal.a being recorded in the sector.

4. The apparatus of claim 3 further including:
means (4, FIG. 13B-362) for generating a second

error detection code upon reading the data re­
corded in a sector, using the preselected algorithm;
and

the means for providing a forced error signal com­
prising means for comparing the error detection
code thus generated with the signal read from the
EDC/FEI field (4, FIG. 13B-364, 370) and for
generating the forced error indicator when the
signal read from the EDC/FEI field corresponds
to the one's complement of the second error detec­
tion code.

5. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass
storage medium and the smallest addressable unit of the
medium is a sector, a method of replacing a defective
sector with a substitute sector, such that information to
be written to or read from a defective sector is written
to and then read from the substitute sector instead, once
the defective sector is identified as unreliable, such
method comprising the steps of:

A. reserving a portion of the medium to be used as
spare sectors for replacing defective sectors, at
least one spare sector being provided within each
set of sectors occupying contiguous logical loca­
tions on the medium;

B. replacing the first defective sector in said set of
sectors with the first one of said spare sectors,
termed a primary replacement sector;

C. indicating such replacement by writing a first
predetermined code in the defective sector; and

D. when writing data to or reading data from a sec­
tor, detecting the first predetermined code and, in
response to detecting said code, revectoring the
writing or reading operation to said first one of the
spare sectors for the involved set of sectors where
the code was detected.

6. The method of claim 5 wherein each sector com­
prises a header field and a data field, the address of the
sector normally being written ill the header field and the
information to be stored in the sector being written in
the data field, and further wherein said predetermined
code is written in the header field of the defective sec­
tor.

7. The method of claim 6 wherein the reserved sec­
tors are evenly distributed throughout the medium.

8. The method of claim 6 wherein the medium is a
magnetic disk and the sets of sectors are tracks.

9. The method of claim 6 wherein the reserved sec­
tors are located in predefined locations within said
tracks.

10. The method of claim 6 further including the steps
of, when the primary replacement sector is unavailable:

D. selecting for a defective sector other than the first
defective sector in said set of sectors a replacement
sector other than the primary replacement sector,
said replacement sector being termed a secondary
replacement sector;

E. in the header field of such defective sector, writing
a second predetermined code indicating that said

29
4,434,487

sector has been replaced by a secondary replace­
ment sector;

F. in the data field of each such defective sector,
writing a predetermined multiple number of copies
of the physical address of the secondary replace- 5
ment sector selected therefor;

G. on reading the header field of the defective sector,
checking for said second code;

H. responsive to detecting said second code, obtain­
ing the physical address of the secondary replace- 10
ment sector by reading said multiple copies and
comparing them statistically to arrive at the re­
corded value of said address; and

I. revectoring the writing or reading operation in­
tended for the defective sector to said secondary 15

replacement sector.
11. The method of claim 10 wherein the reserved

sectors are evenly distributed throughout the medium.
12. The method of claim 10 wherein the medium is a

magnetic disk and the sets of sectors are tracks.
13. The method of claim 10 wherein the primary

replacement sectors are located in predefined locations
within said tracks.

20

14. The method of claim 10 further including the 25
steps of, when the primary replacement sector is un­
available:

J. providing on the medium multiple copies of a table
containing a list of each spare sector and the ad­
dress of the defective sector replaced by it, if any; 30

K. responsive to detecting a defective sector, search­
ing a copy of said table to find the address of the
replacement sector therefor; and

E. revectoring the writing or reading operation in­
tended for the defective sector to said replacement 35
sector.

15. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass
storage medium and the smallest addressable unit of the
medium is a sector, each sector comprising a header 40
field and a data field, the address of the sector normally
being written in the header field and the information to
be stored in the sector being written in the data field, a
method of replacing a defective sector with a substitute
sector, such that information to be written to or read 45
from a defective sector is written to and then read from
the substitute sector instead, once the defective sector is
identified as unreliable, such method comprising the
steps of:

A. reserving a portion of the medium to be used as 50
spare sectors for replacing defective sectors;

B. selecting for a defective sector a replacement sec­
tor from among said spare sectors;

C. in the header field of such defective sector, writing
a predetermined code indicating that said sector 55
has been replaced by a secondary replacement
sector;

D. in the data field of a defective sector, writing a
predetermined mUltiple number of copies of the
physical address of the selected replacement sector 60
therefor, termed a secondary replacement sector;

E. on reading the header field of the defective sector,
checking for said second code;

F. responsive to detecting said second code, obtain­
ing the physical address of the secondary replace- 6S
ment sector by reading said multiple copies and
comparing them statistically to arrive at the re­
corded value of said address; and

30
G. revectoring the writing or reading operation in­

tended for the defective sector to said secondary
replacement sector.

16. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass
storage medium and the smallest addressable unit of the
medium is a sector, a method of replacing a defective
sector with a substitute sector, such that information to
be written to or read from a defective sector is written
to and then read from the substitute sector instead, once
the defective sector is identified as unreliable, such
method comprising the steps of:

A. reserving a portion of the medium to be used as
spare sectors for replacing defective sectors;

B. selecting for a defective sector a replacement sec­
tor from among said spare sectors;

C. providing on the medium multiple copies of a table
containing a list of each spare sector and the ad­
dress of the defective sector replaced by it, if any;

D. responsive to detecting a defective sector, search­
ing a copy of said table to find the address of the
replacement sector therefor; and

E. revectoring the writing or reading operation in­
tended for the defective sector to said replacement
sector.

17. In a disk drive for a secondary storage facility of
a data processing system, wherein a read/write head
must be positioned to read or write successive portions
of the medium and the usable area of the storage me­
dium is divided into sectors, each sector occupying a
specific physical position relative to an index location
on the medium and being available for reading or writ­
ing once per disk rotation, a method of reducing the
time consumed in head repositioning, comprising the
steps of:

A. logically grouping sectors into tracks, groups and
cylinders according to access time latencies, a track
being a set of sectors occupying contiguous logical
disk locations, a group, being a set of tracks which
can be selected within the time required for a sec­
tor to rotate past a head, and a cylinder being a
collection of groups that can be selected by opera­
tions having latencies less than the time for a head­
positioning seek operation;

tracks, groups and cylinders being independent of phys­
ical organization of the drive; and

B. mapping the physical address of each sector to a
logical track, group and cylinder address to effect
optimal access time reduction.

18. In a secondary storage device, the improvement
comprising: dividing the medium into multiple address
spaces, at least two address spaces being addressable by
a host computer system which uses the mass storage
device and at least two address spaces being invisible to
and not accessible by the host computer system;

the first address space addressable by the host com­
puter system being the set of storage locations
visible to an operating system of the host computer;

a second address space addressable by the host com­
puter system being a space containing revector
control tables for revectoring access to bad blocks
on the medium;

the first address space not accessible by the host com­
puter system comprising a region which provides
formatting information;

a second address space not accessible by the host
computer being adapted to contain diagnostic in­
formation.

• • • • III

