Local AreaTransport(LAT)
Specification

A simple, efficient, transparent mode! for exchanging data between terminals ccr-
nected to terminal servers and host operating system processes is described. The
model is termed Local Area Transport (LAT). LAT Is carefully tallored to take ac-
vantage of the environment offered by Local Area Networks, such as the Ethernet
data link, but maintains much of the simplicity of traditional methods of ccnnecting
terminals and hosts.

Dlgital Equipment Corporation/Proprietary and Confidential

dlilgliltlall

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

June 1989

Copyright ©1989 Digital Equipment Corporation
All rights reserved.

Tho following are trademarks of DIGITAL Equipment Corporation:

DEC _ LAT ; RT
DECmate MASSBUS ULTRIX
DECnet - PDP UNIBUS
DECUS P/OS VAX
DECwriter Professional VAXcluster
DIBOL Rainbow VMS
dlilgli[tlal1 RSTS vro
DNA \ RSX . Work Processor

[This manual was produced by Networks and Communications Publicaions]

iic This document was prepared using VAX DOCUMENT, Version 1.1

2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.4.1
2.4.2

Contents

Preface
1 Introduction

1.1 Terminology .« vvv ittt i i it it i i e 1-5
2 Architecture Overview

Introduction i i e 2-1
SLOT LAYER - USERINTERFACEcoviiiiiininnnennnnens 2-5
Connecting to the Host Servicecoiiiiiatt, 2-6
Connecting to the Terminal Server Service 2-7
VIRTUAL CIRCUIT LAYER ettt 2-9
Product Considerations e 2-11
Host....ooviiiiiiiiiii it i e (P Y 2-11
Terminal Servero iiiiiiiiiii ittt 2-12

Naming and Translation

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.3
3.4

Naming Conventions.oovivriniinieiinenennne.. i 3-1
Service Name Translation Processcooovviunen., v 3-1
Translation Process On A Source Node 3-4
Translation Process On A Destination Node. 3-5

Service Advertising Mechanisms 0o il 3-6
Host Advertising ittt 3-6
Terminal Server Advertisingo il i, 3-8

Specification of Namescoiiiiiiiiiiiiiiiiiiniiinn.. 3-9

Specification of Text.coiviiiiiii ittt 3-11

4 Circuit and Session Layers

4.1
4.1.1
4.1.2
413
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.3.5
4.1.3.6
4.1.4
4.1.4.1
4.1.4.2
4.1.4.3
4.1.4.4
4.1.4.5
4.1.4.6
4.1.4.7
4.1.4.8
4.1.4.9
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.3
4.2.3.1
4.2.3.2
4.3
43.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.1.4
4.3.1.5
4.3.1.6
4.3.1.7
4.3.1.8

Architectural Modelo it 4-1
Slot Data. . civv it ittt it i it e 4-1
2 4 11 43T o 4-1
Virtual Circuit Serviceccoiiiiiiii ittty 4-2

Virtual Circuit Stateciiiiiiiiiiiiiiiiininn., 4-2
Architecturally Controlled Names and Variables 4-4
Message Typesoviiiiiiiiiiiieiiinivineiennnn. 4-11
Cirtual Circuit State Variableso0iit. 4-12
Response Requested Flag and Balanced Mode.............. 4-13
Message Mapping Onto State Diagram 4-13
User Connection Management And Data Flow 4-19
Service Classescoiiiiiieiriiieiineiiiiens 4-19
Host Session Managementcooiiiiiiinnan 4-19
Multiplexing Over A Virtual Circuit 4-20
Slot Ordering Within Messages, 4-20
Slot State Variableso il 4-20
Terminal Server Slot Mapping Onto State Diagram 4-22
Terminal Server Slot State Table 4-23
Host Slot Mapping Onto State Diagram................... 4-24
Host Slot State Table..............oooiiiiiiiiiiinns, 4-25

LayerInterfacescooiiiiiiineiiiiiiiiiereneininnnennns 4-26
Data Types . ..vviiii ittt ittt it iitarranaeeternennen 4-27
User/Slot Layer Interface........ocoiviiiiiiieinniininennn, 4-28

Summary Of Functionsooviviiiiiiiiiiiiii,.. 4-28
Description Of Functionsocviiiiiiiiniinan. 4-29
Slot/Virtual Circuit Layer Interface........................... 4-32
Summary Of Functionsooviiiii i, 4-32
Description Of Functions, 4-33

Axioms And Algorithms et 4-35

Virtual Circuit Layer..........cooiiiiiiiiiiiiiiniiiinnnn... 4-37
Circuit Starter (Terminal Server Only).............c0cuun.. 4-37
Data Volunteered............cciiiiiiiiiiiiiiennnenn.. 4-37
Credits Returnedcciiiiiiiiiiiiiiiiinnnnnnn, 4-38
Gircut Enderooiiiiiiiiiiiiiiiiii i iiiin e, 4-38
Message Receiver............cooiiiiiiiii i, 4-38
Message Transmitter oot 4-40
Circuit Timer Policyoovviiiiiiiii i 4-42
Buffering i e 4-42

4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.24
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.2.9
4.3.3
4.3.3.1
4.3.3.2
4.4
4.4.1
44.1.1
4.4.1.2
4.4.1.3

Slot Layeroviiiiii ittt it it i i i e 4-43

Host System Managementciiiiiiieinnne, 4-43
Terminal Server System Management..................... 4-43
Session Starter (Terminal Server)ccvvut.. 4-44
Session Starter (HOSt) vvvvvin ittt 4-44
Slot Demultiplexerooviiiiii ittt i i 4-44
Slot Multiplexerottt 4-45
Session Ender........ovviiiiiiiiniiiiiiiiiiiiiniiinan 4-47
Flow Controliiiiiiiiiiiiniiiiiiiiiiiennennnens 4-47
Protocol Versions And ECOControlcoovuht, 4-48
Other Processescoovviiiniiiinrnnnennrineennenneennns 4-49
Keep-Alive Processcociviiiiiiiiiiiniiiiiennnn, 4-49
Progress Processciiiuiiiiiiiiiiiiiiiinaiann, 4-49
Message Formatscoiiiiiiiiiiiiiii ittt 4-50
Virtual Circuit Message Headercooiintt, 4-51
Start Message Formatcovviiiiiiiiiiniiniine 4-52
Run Message Format..............c.ociiiviiiiiii e, 4-55
Stop Message Formatcoviiiviiiiiiiiiin i, 4-62

Connection Solicitation

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.1.6
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.2
5.2.1
5.2.2

Architectural Modelottt i i i i i 5-1
Service Sharingcveiiiniiitieneinnsreenrosaseeneennes 5-2
Queue Coordinationccvivtiievenereeenensreneenanss 5-4
QUEUE ACCESS . vt v vve v trensonsensensosonsonsonssonansos 5-5
Queue Structure.ciiiii it ittt e i e 5-6
Queue Operationsoiiiiiiniiiiiiiein i, 5-7
Concatenating The Status Entries 5-12
Retransmission And Time-out Policies 5-12
Connection Initiationcooiiiii ittt i e 5-13
Solicitation Process Message Flow........................ 5-14
Solicitation process state-tables 0000, 5-24
Name And Information Field Presentation................. 5-30
Message Formatsc.coiiiiiiieieneneneninensnenenennnns 5-31
Command Messagecovviiiiiiiieiniinneenneneennnes 5-32
Status Messagevvviiiiiiiiiiiiiii i e 5-36

A Service Class 1 - Interactive And Application Terminals.

Al Local Area Directory Service...........coiviiiiiiii i, A-1
A2 Service Access Control ... A-2
A3 Advertising Services Through Multicast Message A-6
A3.1 2 (o T S A-6
A3.1.1 Inmitialization e A-6
A3.1.2 Host Group Codes.coiviii ittt i, A-7
A.3.1.3 Host Node Names..........ovviviiiinninnnnenanans, A-7
A3.1.4 Multiple-Node Service Ratings, A-7
A.3.1.5 Steady-State Operationcoiviiiiiii i, A-7
A3.1.6 System Shutdownottt A-8
A.3.2 Terminal Servert e e A-8
A3.2.1 Initialization i A-8
A3.2.2 Building The Circuit Name Database...................... A-9
Ad Advertising Through Solicitation and Response Messages A-11
A4l A Node Operating In Slave Mode, A-12
A4.2 A Node Operating In Master Mode A-13
A43 Response Information Message Policy....................... A-14
A5 Service Class 1 Messagesciiiiieiiniineniiinnnnnn, A-15
Ab5.1 Service Announcement Message i, A-15
A.5.2 Solicit Information Messagecoviiiiiiiiiiiiiia A-19
A.5.3 Response Information Messagenntt, A-22
A6 Service Class 1 Slot Format Extensions A-28
A.6.1 Start Slot Status Fieldcoiviiiiiiiiiiiint, A-29
A.6.2 Attention Slot Status Fieldo, A-31
A.6.3 Data_b Slot Extensionccoiiiiiiiiiiiiiiiiiiiann, A-33
A.6.3.1 Information Exchange Using Data_b Slots A-33
A.6.3.2 DatabSlotFormatcoiiiiiiiiiiiiinn... A-34
A.6.3.3 Guidelines And Recommendations For Data_b Slot Processing A-38

B Compatibility and Implementation

B.1 Implementation Issues. ...ttt B-1
B.1.1 Possible Implementations of the LAT V5.1 architecture.......... B-1
B.1.2 LocalDataBasecoiiiiiiiiiiiiiiiiiiiiii i, B-3
B.1.3 Cluster Static Load Balancingc.oiiiiiin.., B-3
B.1.4 Multiprocessors, Gateways, Virtual Machines B-4
B.2 Compatibility Issues........ ... B-4
B.2.1 Virtual Circuits Establishment o B-4
B.2.2 Data_b Slot Length Compatibilityt B-5
B.2.3 Data_b Slot Data Compatibility..............oooiiiiiiii B-5

B.2.4 Non-Unique Node Namescciiiiiiiiininn.n. B-6
B.2.5 Implementation Of The ethernet And 802 Protocols B-7

C Algorithm For Assignment/Deassignment Request/Entry Identifiers

C1 Interface to the Algorithmooiiiiiiiiiiiin it C-2
C.2 Data Structures.ovvviiiinineniiiriiieniiraseansenenenens C-2
C.3 Algorithm Operation i ittt e C-3
Figures
2-1 LAT Network Topology ..o iriviiniiiiniiiniiiieriennenineenn, 2-2
2-2 Relations Between Layersoiiiiiiiiiiiiiiiienennennennns 2-3
2-3 Physical and Data Link Layersooiiiiiiiiiniiiiiinnnanens 2-4
2-4 Layered View of the LAT Architectureccciiiiinvninnnenns 2-5
2-5 Connecting to Host Services.ooiiiiiiiiiiiininnrennennnnn. 2-6
2-6 Connecting to Servers Servicescoiiiiiiiiiiiiiiiiin. 2-9
2-7 LAT Driver Organization.cooiiiiiiiiiiiiiiiiiiinenn.. 2-12
3-1 Name Translation Processccoviiiiiiiiiiiiiiiiiiiiinnn.. 3-2
3-2 A Combination of Services, Nodesand Ports 3-3
3-3 Name Translation Table (Source Node)cccvviiiierennrnnnn. 3-4
3-4 Host Advertisingccitiiiiiiiiiiiiii it iiiiiiiernnennnens 3-6
3-5 Server Advertisingcivii it ittt i i i i i i e e 3-8
4-1 LAT Layers Interfacecoiiviiniiinenniinrennnieennneannns 4-36
4-2 Message Header Formatc.cciiiiiiiiiiiiiiiniiniennen, 4-51
4-3 Start Message Formatcoviiiiiiiiiiiiieiiiiiinienenenans 4-53
4-4 Start Slot Formatttt i i i i 4-56
4-5 DataaSlotFormat it 4-57
4-6 Data b Slot Format ... v v ittt ittt iitttrertereereneeeeenes 4-58
4-7 Attention Slot Formatciiiiiiiiiiii i i i 4-59
4-8 Reject Slot Formatciiiiiiiiiiiiiiiiiiiiiiiiiineinennen, 4-60
4-9 Stop Slot FOrmatovvueerernernrreneneennonnonns e 4-61
4-10 Stop Message Formatcciiiiriiiniiiiiieinnneeniienenns 4-62
5-1 Queue Coordinationiiiiiitinritrnernenernnoineennnnns 5-5
5-2 Access Methods and Service Characteristics0oLt. 5-6
5-3 Queue and Request List Structure i, 5-7
5-4 Exchange Between Slave and Master5-24
5-5 Command Message Formatcoiiiiiniinne......5=32
5-6 Status Message Formatttt i 5-37
A-1 ACL and IDL Flow During Connection Establishment A-3
A-2 ACL/IDL Connectivity Restriction Example A-5
A-3 Service Announcement MeSSagecoveueerrneanennennnn. A-16

vii

A-4 Solicit Information Messagecoviiiiii it i i e A-20
A-5 Response Information Messageciiiiiiiiininnnnennnens A-23
A-6 Start Slot Formatcii i i it it e e et A-29
A-7 Attention Slot Formatc ittt i A-32
A-8 Data b Slot FOrmat ..ottt ittt ittt et iestnnnonoesnaasnnses A-34
Tables

3-1 Multicasted Messagesccouiitiiiiiiiiiiiiiiiiiiiiiieeae 3-7
3-2 Data Baseonthe Servercoiiiiiiiiiiiiiiiiiiiiiiinnnens 3-7
3-3 Information Available ToThe Hostooiiiiiii i, 3-9
4-1 Terminal Server Virtual Circuit State Table......................... 4-15
4-2 Host Virtual Circuit State Table e 4-17
4-3 Terminal Server Slot State Tablet 4-23
4-4 Host Slot State Table.coiiiiiiiiiiiiiiiiiiiii it ieeennn, 4-25
4-5 User/Slot Layer FUNCLONSovviiiiiiiiin i i inneenennnen. 4-28
4-6 Slot/Virtual Layer Functionscoiiiiiiiiiiiiiin i, 4-33
5-1 Name Translation Examplescooiiiiiiiiinii i, 5-10
5-2 Example of Connection Resolicitationcooviionn., 5-17
5-3 Example of Slave Initiating Connection to Master................... 5-20
5-4 Example of Master Initiating Connectionto Slave.................... 5-21
5-5 Example of Connection Initiation Between Nodes Operating in Master/Slave

MOde. . it iiiiiii ittt ittt ittt i ittt 5-22
5-6 Subject (Slave) Node State Table................cciiiiiiiinn.s, 5-25
5-7 Object (Master) Node State Tableccociiviiiiiiin.., 5-27
5-8 Subject (Master) Node State Table oviiiinnet, 5-28
5-9 Object (Slave) Node State Tablecooiiiiiiiiian.., 5-29
5-10 Name and Information Fields. oottt 5-31
A-1 ACLs and IDLs in MeSsageso vvvtitiienennennennonnnnennens A-3
A-2 A Node Operating in Slave Modecoiiiiiiinin.... A-12
A-3 Response Service Announcement Policy.................. e A-14
A-4 SRC_NODE_STATUS Bit Combinationscvvtveevrereeeeess. A-25
B-1 LAT V5.1 Implementations and LAT Messages B-2
B-2 Port Settingby DatabSlots...........coiiiiiiiiiiiiiiiiiinn, B-6

vili

Preface

SCOPE

This document presents a communication architecture for an Ethernet local area
network. The architecture is called Local Area Transport (LAT). LAT is utilized
as a low level communication service upon which other higher level services are
layered.

LAT is structured as a communication service for terminal servers and host oper-
ating systems. The reason for presenting a specific model is to provide a clear ex-
ample of how the architecture can be implemented. In fact, the architecture is ap-
propriate to applications other than terminal to host communications. In general
the term "terminal” depending upon context means not only conventional inter-
active terminal, but rather a port with equipment connected to it. Therefore, the
term "terminal” refers to a conventional terminal, application terminal, printer,
and even a computer,

The document assumes that the reader is familiar with the Ethernet, communi-
cations concepts, and practical problems accompanying implementations of dis-
tributed services.

The document describes a data transport service provided to the host and the ter-
minal server. The level of detail is sufficient to allow the interoperability of hosts
and servers. Specific issues involved in building products that utilize LAT as a
transport service are addressed in detail by service classes.

Service classes are documented in appendices. Service classes define message for-
mats and algorithms which extend the basic services provided by the LAT architec-
ture. These extensions address problems that are unique to the service class or to
the implementation of a product.

ASSOCIATED DOCUMENTATION

» "The Ethernet - A Local Area Network - Data Link Layer and Physical Layer
Specifications”, DEC-INTEL-XEROX, V2.0, September 30, 1980.

= DNA CSMA/CD Data Link Functional Specification, Version 1.0.1, 25 November
1985, Digital Equipment Corporation, Order No. AA-Y298A-TK.

= DDNA NI Node Product Architecture Specification, Version 2.0.1, 11 November
1988, Digital Equipment Corporation.

= DEC STD 169 (DEC muiltinational characters set), May 1982.

» DECnet Digital Network Architecture Phase IV, NSP Functional Specification

PURPOSE

The purpose of this document is to specify the LAT architecture in sufficient detail
to allow interoperable implementations to be built based on this document. The
purpose of the LAT protocol is to bias every design decision in favor of simplicity,
while simultaneously preserving the goals of the LAT architecture.

DOCUMENT STRUCTURE
The LAT architecture document consists of the following chapters:

= Chapter 1 (Introduction) - states the assumptions, goals and development
history of the LAT protocol, defines the terminology and notations used in
the document.

= Chapter 2 (Architecture Overview) - describes main features, functions and
the characteristics of the LAT protocol.

» Chapter 3 (Naming and Translation) - presents syntax and semantic of
Names, used by LAT architecture, describes Name Translation Process.

» Chapter 4 (Circuit and Session Layers) - presents an architectural model
which describes state diagrams, axioms and algorithms, and messages for the
virtual circuit and session establishment and control.

s Chapter 5 (Connection Solicitation) - presents and architectural model which
describes connection initiation and queuing processes algorithms and mes-
sages.

= Appendix A (Service class 1) - presents interactive and application terminals
services: describes the local area directory service, presents service access
control, describes algorithms and defines messages and extensions of the
slots used by the Service Class 1.

» Appendix B (Compatibility and Implementation) - discusses compatibility is-
sues between products implementing LAT 5.0 and LAT 5.1 versions of the
Architecture.

CONVENTIONS USED IN THIS MANUAL
All numeric values are specified in decimal.

Character string literals are quoted as in "DELPHI". Occasionally, phrases and
terms that are conceptually important to the architecture are quoted, "balanced
mode” for instance.

Capitalized names are architecturally defined, an example is SERVER_CIRCUIT_

TIMER. Lower case names are function names or events. For example: transmit_

unacknowledged_queue is a function name and Send_data is an event.

Xi

1
Introduction

Local area networks allow computing resources to be physically distributed through-
out a facility, which satisfies the needs of the facility, instead of the needs of the
computing resources. Also local area networks dramatically reduced cabling costs,
since all of the distributed computing resources connect to a common cable.

An Ethernet can have as many as 1000 attachments on a single coaxial cable over
1 mile in length. A potential problem with so many attachments is the limited
bandwidth available on the Ethernet (about 7 usable megabits/second). For this
reason, communication architectures operating in this shared environment should
allocate the available bandwidth efficiently, fairly and predictably among the many
systems. This is an explicit goal of the LAT architecture.

A non-goal of the LAT architecture is to specify a transport mechanism sufficient
for the needs of a large number of applications. Instead, the architecture makes
simplifying assumptions appropriate to a subset of possible applications. The
most important assumptions are:

s Communication is local to a single (logical)Ethernet. This eliminates the need
for any routing capability.

= The nature of the communication is inherently asymmetric. This simplifies
connection management, increases efficiency and greatly simplifies the host
implementation.

s The bandwidth of the Ethernet is much greater than the bandwidth needed by
an application. This assumption results in a timer based protocol.

introduction 1-1

The above assumptions applied to the problem of connecting terminals to hosts
allow the following tradeoffs:

= Minimize the load on the host operating systems by transferring load to the
terminal server.

» Reduce terminal server complexity to allow very low cost hardware imple-
mentations, or increase the complexity to achieve a value added service in the
terminal server.

= Allow a user terminal to attach to any host in the local area, or restrict the
users view to a subset of the available hosts.

= Increase the level of performance at the terminal servers and limit the total
number of terminal servers simultaneously using the Ethernet, or decrease
the level of performance at the terminal servers allowing a greater number of
terminal servers to utilize the shared Ethernet.

LAT views the Ethernet as a local device, not as a network. This approach allows
the implementation of the architecture to be confined to low levels of the host
operating systems. It also minimizes the cost of installation and support of the
computing resources by requiring very little training on the part of the network
manager and users.

LAT assumes the Ethernet has very predictable attributes. LAT’s performance
depends on "low probability” events occurring infrequently. LAT’s correctness
depends on very “low probability events” not occurring at all. If "low probabil-
ity” means less than one event every hour, and "very low probability” means less
than one event every year, then LAT assumes the Ethernet data link has the fol-
lowing attributes:

= a low probability of datagram duplication

» alow probability of datagrams being received in an order different from that
in which they were transmitted

= alow probability of datagrams being corrupted (and therefore not delivered)

= a low probability of datagrams being delayed more than 10 milliseconds be-
tween source and destination ports

= a very low probability of datagrams being delayed more than 10 seconds be-
tween source and destination ports

= a very low probability of datagrams being delivered to the wrong destination
address

LAT/Digital Equipment Corporation/Proprietary and Confidential

a very low probability of datagrams being delivered which contain undetected
corrupted data

a bandwidth greater than 1 megabit/second

a broadcast/multicast capability (see above)

Another non-goal of this architecture is to provide any level of security beyond
that provided by the Ethernet itself. Extensions to this architecture in the areas of
authentication and data link encryption have been anticipated, but not realized.

LAT architecture development history is presented by two protocol versions: LAT
5.0 version and the LAT 5.1 version. The main characteristics provided by the
LAT 5.0 version (first version implemented in the actual products) are:

multiplexing multiple sessions over one virtual circuit;

asymmetry - master/slave relations between terminal server (master) and host
(slave) where connection can be established only from master to slave;

services are offered only by hosts (hosts advertise offered services through
multicast messages and never listen to multicasts; servers listen to multicasts
and support data base of nodes and services).

The additional features of LAT architecture 5.1 (compared to LAT architecture 5.0)
consist of the following:

Introduction

support of application terminals (such as printers) that require connections
driven by the the hosts (slave) nodes. I.e. LAT 5.1 version allows host
(slave) nodes initiate connections to the server (master) nodes.

in addition to the host advertising, servers can advertise offered services
(such as printers) by listening to the solicit information request issued by host
nodes and responding with the message containing required information;

connections to the specific ports to allow users to set characteristics and con-
nect to required ports;

clarification of the Group Codes, ambiguously defined by the LAT 5.0 archi-
tecture.

compatibility between products implementing 5.0 and 5.1 versions of the ar-
chitecture.

1-4

LAT 5.1 architecture was developed to satisfy the above mentioned requirements.
The main features of the LAT 5.1 version discussed in this document are:

s preserving “asvmmetrical” nature of the master-slave relations, the LAT 5.1
architecture allows hosts (slaves) to initiate connection to the terminal servers
(masters), providing connections to the application terminals;

» symmetry of services was introduced (i.e. servers can advertise offered ser-
vices as well as hosts). Special measures were included in the architecture
to allow hosts to choose means of processing service information depending
upon available resources;

= "queued” access to the services allowing services queue connection request to
the currently active service for the future processing;

= port names were introduced, allowing a user to directly connect to the speci-
fied port offering the requested service;

» usage clarification of the Group Codes as “connectivity restriction” mecha-
nism;

= clarification of the issues concerning session characteristics, data transparency
and port characteristics setting;

» discussion of the compatibility issues between products implementing LAT
5.0 and LAT 5.1 architecture.

The major goal of the new LAT architecture is to provide a reasonable compro-
mise between the number and complexity of the features included in the archi-
tecture and requirements of the wide range of products based on the LAT archi-
tecture. Another very important issue in the process of the development of the
LAT 5.1 architecture was to provide smooth transition from the LAT 5.0 products
to the LAT 5.1 products. The main issue to resolve was to design the architec-
ture which addresses needs of different products, allows products to satisfy their
time-to-market requirements and preserves compatibility between products.

In pursuing these goals major attention in the design of the LAT architecture was
paid to two aspects: a)to provide wide spectrum of the LAT products with the
architecture to satisfy their needs without necessity to invent new mechanisms or
protocols for each product and b)produce a "modular” architecture that would
allow any specific product to implement any of new features without necessity to
implement all of them and still preserve compatibility across the product space.

The above requirements dictated the architecture would have:

LAT/Digital Equipment Corporation/Proprietary and Confidential

features that can be "added” to the LAT products without need to rewrite the

whole implementation completely (new state tables, changes in the protocol,
etc.);

features that are "modular” (i.e. each product can decide what features
should be implemented based on their schedule, resources etc.). It is not nec-
essary to implement all features in order to be compatible with other prod-
ucts;

compatibility between products based on the LAT 5.0 version of the architec-
ture and new products implementing features of the LAT 5.1 version.

1.1 Terminology

introduction

local area (network) - the topology defined by the set of logically equivalent
processors directly attached to a shared interconnect.

terminal server - a dedicated function system (processor, controller) provid-
ing attachment points for terminals in the local area via a responsive virtual
circuit service spanning the shared interconnect.

datagram - an atomic unit of information exchanged by local area networks.
In the Ethernet implementation, datagrams are required to have a constant
format consisting of: destination port address, source port address, protocol
type, data and an error detection code. Datagrams may get corrupted on the
Ethernet, and are therefore not always delivered to the destination address.

message - a datagram under virtual circuit error control.

slot - a segment of a message used to communicate data between a terminal
on a terminal server and a host service. Messages may have zero or more
slots.

session (connection) - a transient association which allows a terminal server
to exchange data reliably with a single host service utilizing an underlying
shared virtual circuit.

flow control - a set of rules applied to processes which prevents a transmit-
ting process from sending data to a receiving process that is not prepared to
buffer the transmitted data.

broadcast - as applied to data links, broadcast capability refers to the ability
of any one port to address all other ports simultaneously with a single data-
gram.

multicast - as applied to data links, multicast capability refers to the ability
of any one port to address a sub-set of all other ports simultaneously with a
single datagram.

users - the consumers of the services provided by this architecture. As ap-
plied in this document, the term “user” is an abstraction that refers to the set
of routines interfacing to the highest level of the architecture. The services
provided to users are connection management and data transfer.

Service class - a 1-byte value in the range 0-255:
— value 0 - reserved

— value 1 - reserved for interactive and application terminals (serial byte
stream processing).

— values in the range 2 to 127 reserved for DEC use ‘
— values in the range 128 to 255 reserved for customers

Name - a string of ASCII characters meaningful in the context of a client us-
ing it. Names are used to provide identification of entities within the LAT
architecture that can and need to be identified. Characters within an ASCII
string representing the name are constrained as described in the section of
the LAT architecture entitled "Specification of Names. ”

Resource - an entity or set of entities known to perform a certain set of func-
tions that can be identified, named, and accessed within LAT.

Master - an addressable process that provides communication attachment
points for virtual circuits. The master initiates and controls activity over vir-
tual circuits. The state-table of a master process is defined in the LAT archi-
tecture document.

Slave - an addressable process that provides the passive side of the com-
munication attachment point for a virtual circuit. The slave responds to the
master’s request. The state-table of a slave process is defined in the LAT ar-
chitecture document.

Virtual circuit - a communication path between a master and a slave. A vir-
tual circuit is a bidirectional, sequential, timely, and error-free logical stream
of data. On Ethernet, a virtual circuit service is a value added service since
the Ethernet data link provides a datagram service.

Subject - a consumer of the resources, an active initiator of a connection. A
subject can initiate and support relations only with objects, not with other
subjects. A subject can be a master as well as a slave.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Introduction

Object - a provider of the resources, a passive responder to requests for es-
tablishing connections. An object does not initiate connections. An object
can be a master as well as a slave.

Session - a transient association that allows a subject to exchange data reli-
ably with an object by utilizing an underlying shared virtual circuit.

Service - the descriptive name of the resources; the name is used by users
to identify a resource and is used by LAT to establish an access path to the
resource.

Node - the environment on the end of the virtual circuit that provides func-
tioning of a master and slave processes. A node can operate as slave, mas-
ter or both simultaneously. In this document the expression "slave (master)
node” really means "a node operating in slave (master) mode.” Each node is
uniquely identified by name.

Advertising - the process that allows users to identify names and characteris-
tics of the resources to be used. As applied in this document, the term "ad-

vertising process” refers to a certain message-exchange mechanism provided
by the LAT architecture. Each node, whether it is a slave, a master or both,

can advertise services.

Interactive terminal - a device that is under the control of the terminal user
connected to a node running in master mode.

Application terminal - a device that is under control of the application pro-
cess running within a slave environment (in some cases an application de-
vice may not have a keyboard or even be a ‘terminal’ at all - it may be a line
printer, a video monitor, a display window etc.).

Port - an access point that a node present to users. Each port serves as a
communication path between a user and a resource. Ports can be named.

2
Architecture Overview

2.1 Introduction

The major components of the architecture are the terminal server, the host node,
the local area network and software modules in the terminal server and host.

The principal functional capability provided by the architecture is the logical con-
nection of interactive and application terminals to host nodes. A vertical view of
the topology would reveal:

Architecture Overview 2.1

Figure 2-1: LAT Network Topology

to e ————— + Application Application
| H O s T S ER V I CE 8| process process
e ——— Fom——— ‘e ——— tmm——- o +——t R e + tecem———— +
| Node 1 | | Node 2 | | Node 3 | | Node m | | Node n |
R + S —— + tommm e + R SN LI T ——— +
~ A A - -~
I I I I !
v v v v v
Ether<--—e—-- - o e e e ————————— >net
~ A ~
I I I
I | I
v v v
+ + tomr e cen————— + + - +
| Terminal | | Terminal | | Terminal |
| Server 1 | | Server 2 | | Server n |
B T s Ly + F o et e e e + B D +
N I I PRy [|1 bFee b1
0000 o oo * o * * o0o0
o +
Interactive Terminals | Servers Services]
tm——— - +

Application Terminals

LAT architecture provides symmetry of services offered by hosts as well as ter-
minal servers. Users on the terminal servers have an access to the list of services
available on the hosts and can initiate the connections to the services. The same is
true for users (i.e. application processes) on the hosts - they have an access to the
list of services offered by the terminal servers and can initiate connections to those
services (though because of asvmmetry in the algorithms on the host and terminal
servers actual connection initiation processes are different as shown further).

Each of the users of the terminals on “terminal server 1” could be connected to a
different host service simultaneously. Or they could all be utilizing the same host
service. The same holds true for all of the other terminal servers.

Symmetrically, each application process running on the host node (i.e. "user”)
can be connected to a different service offered by a terminal servers or several
users can utilize the same service.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Services are named resources within the LAT environment. Names are the pri-
mary mechanism for users to identify required resources and provide LAT with
enough information to arrange an access path from the user to the resources. The
LAT architecture presents a “name translation process” that takes place when a
name is presented to the LAT session interface This process provides translation
of the descriptive name presented by a user into a physical path to a resource.

It is also possible for a single system to operate simultaneously as both a host
implementation and a terminal server implementation. If such a system wishes
to allow local terminal users to transparently connect to the local host services,
Ethernet messages transmitted by the local system must logically be delivered to
the local system.

The following diagram shows the relations among master/slave, subject/object,
user/resources, and nodes.

Figure 2-2: Relations Between Layers

Active Connection Passive Corresponding

elenent element 1SO levels
data stream

User < > Resources level 6
session

Subject <« > Object level 5

virtual circuit

Master > Slave level 4

Slave < Master
datagrams

Node Cmmmmmc e ————— > Node level 3

Architecture Overview 2-3

The Ethernet itself is layered:

Figure 2-3: Physical and Data Link Layers

multiple communicat ion architecturets

| A ~ l A

v | v v |

- + + tern e —e——— + + -
~ |protocol user 1] | protocol user 2| .. | protocol user nj
| -+ -t L e + + +

Data \ | /

Link \ | /

Layer + +
| |the port delivers datagrams to the different protocol users |
v | based upon the protocol type field in received datagrams |

- -+ +
| |
| v

Physical ——ccrmmcmmemcmrc e -

Layer Cmme Ethernet datagrams ——
|
‘ A ~ ~
v | I I

- v v v

other Ethernet ports

As shown above, the Ethernet data link layer (the port hardware and driver) and
the Ethernet physical layer (the cable) can simultaneously support LAT and other
communication architectures. This is accomplished by assigning each communica-
tion architecture a unique protocol type in the Ethernet datagrams. The Ethernet
ports use the Ethernet protocol type field of receive datagrams to distinguish be-
tween the LAT protocol and other protocol users of the Ethernet.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Datagrams are transmitted and received over the Ethernet by an implementation
of the LAT architecture. The LAT architecture could be viewed as a layered archi-
tecture:

Figure 2-4: Layered View of the LAT Architecture

Terminals Application Processes
tom—— tom—m——— tommm—— + Fommmm tom—m——— tomm——— +
Juser-1| . . . |user-n|<- Users Services ->|user-al . . . |user-N|
-t mm———— Y- ———— too - + + + + +
L Terminal Server |<-Terminal Server and Host-> Host
Slot Layer |processes pass data & control Slot Layer
A+ - + e +
Terminal Server |<-Terminal Server and Host-> Host
T |Virtual Circuit Layer|processors exchange messages |Virtual Circuit Layer
=>tetetotatetatototatat=t tetetetet—t—totat—tatat
E Terminal Server | <-Terminal Server and Host-> Host
T Data Link Layer |processors exchange datagrams Data Link Layer
H tetetetetadatctatateotat =« o - o 6o = o o = - = = = = totetet—tetewtatet—tat—ot
E
R ETHERNET Physical Layer
N (Physically shared)
E
T l

In practice, an implementation would collapse the Slot and Virtual Circuit Layers
into a single module.

Functionally, the virtual circuit layer establishes and maintains a shared virtual cir-
cuit. The slot layer multiplexes one or more users connections over the underlying
shared virtual circuit.

2.2 SLOT LAYER - USER INTERFACE

The primary responsibility of the slot layer is user session establishment, data
transfer and multiplexing/demultiplexing over a common underlying virtual cir-
cuit maintained by the virtual circuit layer. The sessions are established between
terminals and host services.

Architecture Overview 2-5

The LAT protocol is specified in a way that allows each service class the freedom
to define extensions to the basic connection management and data transfer ser-
vices. These extensions to the foundation service can address problems unique to
the type of service being provided.

2.2.1 Connecting to the Host Service

Each host service makes its presence known to the local area by advertising the
service in a datagram which is periodically multicasted to all terminal servers from
each host node. Both the host node name (SLAVE_NODE_NAME) and the host
service names (SERVICE_NAME) are represented in each multicasted datagram.
The terminal servers receive these multicast datagrams, to build up a list of avail-
able host nodes and services, so as to provide the user a selection of the hosts
services. Normally, these services would be presented at each terminal in a con-
sole mode local to the terminal server as shown in Figure 2-5.

Figure 2-5: Connecting to Host Services

T + 4+ I S R S KR SO +
|Sservice-a| |Service-b| |Service-c| |Service-d| |Service-e]|
|service-c} |Service-c| | | |Service-c| |Service-c|
ST —— S = SR R S SO—— ++ 4o ++ ++ ———t
|Node A| |Node B| |Node C| |Node DJ |Node E|

R S + R + + + + + + +

These host nodes (A,B,C,D and E) multicast datagrams
periodically onto the Ethernet which name services a,b,c,d and e.
| | | | I
v v v v v
Ether< - ' - >net
Terminal serverl build up and present lists of available host services
to each user. The node names are not presented to users.

v v
+ -+ tormr e —— +
| Available services:| | Available services: |
| a,b,c,d,e | | a,b,c,d,e |
+ + + +
| coooooo00| | oooooo00 |
| ooooo000| | oooooooo|
B L + e +
Terminal at Terminal at
terminal server a terminal server b

A user can simply select the desired host service from the displayed list of avail-
able host services. The slot layer translates the selected host service name into
the name of a host node which offers the service. After successfully establishing
a session with the desired host service, further input typed by the user at the ter-
minal is transferred as if the terminal was, in fact, local to the host. On the other

LAT/Digital Equipment Corporation/Proprietary and Confidential

hand, the peculiarities (such as meaning of control-O, control-T, control-Y ...) of
a particular host service remain unknown to the terminal server.

Note that more than one host node can offer the same host service (e.g. host ser-
vice c¢). This is useful when the host services being offered are equivalent (e.g. an
interactive timesharing service offered by a VAXcluster).

For network management purposes, each terminal server can present a different
set of available host services based on group codes assigned to host nodes and
terminal servers. This capability is provided to allow segmentation of the com-
puting resources based on such criteria as departmental ownership or physical
location. See the section "LOCAL AREA DIRECTORY SERVICE” (Appendix A)
for more details.

2.2.2 Connecting to the Terminal Server Service

The case above presented a model for initiating a connection from the interactive
terminals (which are connected to terminal servers) to the services offered and
advertised by the host operating systems.

LAT architecture also allows the connection of application terminals to terminal
servers that offer services. Application terminals are defined as devices under the
control of an application process on a host operating system. A line printer con-
nected to a terminal server is an example of an application terminal. An applica-
tion process such as a line printer despooler can initiate the connection from the
host system to the terminal server for this device. Application terminals are not
constrained to be output-only devices.

Advertising services, host services periodically multicast advertising messages to
the local area network, and terminal servers receive these datagrams to build up
a directory of available host nodes and services. A host node would not normally
listen to these messages unless it choose to implement both the terminal server
and LAT host functionality. In order to not burden host applications with imple-
menting a directory service, LAT architecture provides also a different mechanism
that allows host applications to solicit node and service information. Host appli-
cations use this mechanism to get information about services and terminal server
nodes supporting application devices.

In order to connect an application process running on the host to the service of-
fered by terminal server, the LAT architecture provides two functions:

= "connection solicitation”. A mechanism that allows host node to solicit con-
nection requests from the terminal server which then actually starts the con-
nection.

Architecture Overview 2-7

s directory service. A mechanism that allows advertising of services offered by
servers. That is, the LAT servers can offer services (for example, application
terminals) as well as host systems. Advertising services offered by servers al-
lows hosts to receive and process directory information from servers thereby
avoiding manual input of the addresses.

An application on any of the host operating systems may solicit a connection to
an application terminal by either selecting a service offering the desired applica-
tion terminal or by selecting a port on a specific terminal server. A service name
provides an access path to one or more application terminals or one or more-
servers. An application terminal may belong to zero or more services. Normally,
an application process selects the desired service, and the slot layer translates the
service name into the name of a terminal server node which offers that service.
The solicit connection request is sent to the target terminal server for evaluation,
and any port offering the requested service will satisfy the solicitation connection.
Port names are not constrained to be unique within the local area network and
are only defined within the context of the port’s node. The target terminal server
must validate the port name portion of a solicit connection request.

Before a host node solicits a connection to a service, it may multicast a solicit ser-
vice information request. One or more nodes may respond to the request with
service information. The host node evaluates the responses and selects a node to
solicit for a connection. If a request is accepted by the terminal server, the termi-
nal server initiates a connection.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 2-6: Connecting to Servers Services

Application Processes
S . + Fomm + tommmee e + R +
| Node 1 | | Node 2 | | Node 3 | | Node m |
Fomm e + R S ——— + torcme e + Fommmemee +
| a,b | | ¢,d | | a,b,c | | a,b,c,d| available services
Yoo + Yo + D SR + O +

These host nodes solicit service information from the
terminal servers and process incoming responses.

v v v v
Ether<- - — e —————— snet
A A A
I | |
| These terminal servers respond with service information
I ! |
l v v
T T + + trmem e ———— +
| Terminal | | Terminal | | Terminal |
| Server 1 | | Sserver 2 | | Server n |
trmrme e + temmr— e ———— + Frmr - +
Lol L lee 4+ I
oo o o0 oo *o * * o 0
+ - +
Interactive | Services |
terminals only | p,q9.,1,8,t |
(no services) fo———— +

Application Terminals

The slot layer of the LAT architecture allows "shared” services, (i.e. one service
can be shared by many users by means of queued access to services). This is par-
ticularly desirable for services that can only be satisfied by a limited number of
physical entities such as those services that offer access to application devices.
The principle of "service sharing” is based on a mechanism of queues. Each ser-
vice possesses “queued” or "non-queued” characteristics. Queues are accessed by
subjects through connection requests qualified by "queued” or "non-queued” ac-
cess methods. The LAT architecture defines methods for a user to request queued
or non-queued access to a particular service.

2.3 VIRTUAL CIRCUIT LAYER

The primary responsibility of the virtual circuit layer is to establish and maintain
virtual circuits between host nodes and terminal servers.

The virtual circuit allows messages to be reliably exchanged between the terminal
server and the host node. The format and the rules governing message exchange
is specified by the Local Area Transport architecture. The virtual circuit layer is
responsible for translating node names into 48-bit Ethernet addresses. The data

Architecture Overview 2-9

necessary to make this translation is normally supplied to the virtual circuit layer
by multicast datagrams.

Transmission of messages from the terminal server to the host node is timer
based. The host always responds to these messages from the terminal server.
Under certain conditions (see state diagram) the host node may send an unso-
licited message.

The architecture minimizes the overhead of the virtual circuit by:

» using simple, asymmetric connection management. Only one virtual circuit
is established between any pairing of a terminal server and host node (multi-
ple nodes may be implemented in a single processor or multiprocessor). The
virtual circuit service is always initiated at the request of the terminal server.

s procrastinating so there is more to do when things have to be done. Messages
are not normally exchanged when data is available to be transmitted. Instead,
messages are exchanged periodically. The rate of exchange can be set to a
constant value or varied to suit the needs of the application. A typical value
for terminal servers is about 80 milliseconds. As more users are connected
over an existing virtual circuit, the number of messages exchanged is held
constant, but the length of each message is likely to increase.

» piggybacking virtual circuit control information and multiple users data in a
single message. The virtual circuit simultaneously supports more than one
user, the messages are divided into an Ethernet header (which allows the
physical cable to be shared), a LAT header (which allows the virtual circuit
to be shared) and one or more slots. Slots contain a header, which identifies
a terminal and a host process offering the host service.

An Ethernet message is limited in length to 1518 bytes:

+ E— Fomm———————————— + -+
|Ethernet header| LAT message

| Frame check |
+ + R S -+ -+
|<-- 14 bytes ->|<=—--- up to 1500 bytes ———-- >|<=~ 4 bytes -->|

Maximum size of the LAT message is 1500 bytes. LAT message consists of
slots, where a LAT slot is limited to 255 bytes of data:

+ + ———
| LAT slot header | slot data |
+ -t ——
| <==-- 4 bytes --->|<- 255 bytes maximum ~>]

2-10 LAT/Digital Equipment Corporation/Proprietary and Confidential

= assuming a low loss, highly responsive, high bandwidth, point to point inter-
connect. Messages are not pipelined; instead, each end of a virtual circuit
takes turns transmitting messages. This limits the load a single virtual cir-
cuit can present to the Ethernet. Since messages can be exchanged quickly,
it does not reduce the available bandwidth below useful levels for most appli-
cations.

2.4 Product Considerations

2.4.1 Host

Hosts implement the passive (or slave) end of the virtual circuit because this end
of the virtual circuit is simpler (and therefore offers less load). The entire archi-
tecture can be implemented in operating systems by presenting the LAT user in-
terface to the operating system terminal driver as though it were one or more
terminals. By encapsulating the architecture within this existing framework, the
maximum benefit can be gained with a minimum effort.

An example sequence of events when a user on the terminal server connects to
the service on the host node can be presented follows:

1. A terminal server "hears from” a host node and adds the host node to its
menu of available systems and the host service names to its menu of avail-
able services.

2. The terminal server user requests a connection to a specific host service by
choosing one of the host service names displayed at the terminal server.

3. The terminal server connects to the host node.
4. The operating system terminal driver creates a "virtual” terminal.

5. The terminal server user "logs in”.

An example sequence of events when an application process (user) on the host
node connects to the service on the terminal server node can be presented fol-
lows:

1. The host sends a request, to solicit information about a desirable service from
all nodes. The host waits for the responses, processes the information and
chooses one particular node.

2. A host sends a connection solicitation request to that particular node and
processes a response containing information about status of the request.

Architecture Overview 2-11

3. The terminal server connects to the host node by creating a virtual circuit.

4. The application process starts transmitting data.

Operating systems that implement the LAT architecture will benefit greatly if the
terminal driver is organized as a terminal "class driver” and "port driver”. The
class driver embodies the control characteristics of the operating system termi-
nal interface, while one or more port drivers specialize in passing stream data
between the (local) terminal hardware interface and a common class driver inter-
face. As a specific example, consider the following example (VAX/VMS operating
system).

Figure 2-7: LAT Driver Organization

+ —_——t
Soft, 0OS specific, | VMS Terminal Class Driver | Class Driver
interface --- > + -+

| D232 | DZ11 | DMF | LAT

| Port | Port | Port | Port Port Driver
Hard, DEC specific, | briver | Driver | Driver | Driver
interface —ccecccccaaoo > tew - -+

| Dpz32 | pz211 | DMF | NI |

| Port | Port | Port | Port Local Interface
Hard, industry | Hardware | Hardware | Hardware | Hardware
standard interface --> + +

| wires, fibers and other

assorted paraphernalia

|
+ +

Within the host, the implementation of the Local Area Terminal architecture is
confined to the box labeled “LAT Port Driver”. In an actual implementation, the
"LAT Port Driver” would consist of a LAT protocol driver and an underlying, nor-
mally shared, NI Port Driver.

2.4.2 Terminal Server

2-12

The simplest terminal server can be implemented by using a inexpensive micro-
computer. The LAT software modules, and the rest of the operating system code
can be implemented in read only memories. A user friendly console interface, bet-
ter than those found on large commercial terminal switches, can be used to assist
the person trying to utilize a host service.

A more complex terminal server could utilize LAT to communicate more struc-
tured data than the character streams described in this document. Examples might
be workstations transferring files between the host and the workstation, or a ter-
minal server that supported multiple windows at the terminal, each mapped to a
different session.

LAT/Digital Equipment Corporation/Proprietary and Confidential

3
Naming and Translation

3.1 Naming Conventions

Service names are the primary mechanism for users to identify required resources
and provide LAT with enough information to arrange an access path from the
user to the resources. When a service name is presented to the LAT environment,
processing takes place in the context of a request that allows the subject to estab-
lish a connection with an object and associate the request with an access point
(port). Service name translation involves message exchange between subject and
object nodes and translation of service names (coded within LAT message fields
as ASCII strings) on both communicating nodes as described below.

The scope of the service name space is the local Ethernet or the extended local
Ethernet if bridges or repeaters are used to extend the Ethernet local area net-
work.

3.1.1 Service Name Translation Process

A user initiates a connection by presenting a resource name to the name transla-
tion process used by LAT. A resource name is based on a triplet of names: the
name of a destination node, the name of a requested service, and the name of a
port on a destination node. The general principles of the name translation process
are presented below, where a connection from the source node (SOURCE_NODE)
to the destination node (DESTINATION_NODE) is established based on a triplet
of names: SERVICE_NAME, DESTINATION_NODE_NAME, DESTINATION_
PORT_NAME. A model of the name translation process is presented in Figure 3-1
({} denote optional parameters). A

Naming and Translation 3-1

Figure 3-1: Name Translation Process

user

{SERVICE_NAME}
{DESTINATION_NODE_NAME}
{DESTINATION_PORT_NAME}

DESTINATION_NODE

B PPN [P — _— ———+
SOURCE_NODE
v
e - + + -+
| SERVICE_NAME into | | Local area |
| DESTINATION_NODE_NAME |--=--- >|directory service|
| translation and | mmmem—e | (advertising [
| DESTINATION_NODE name | | process) |
| validation | | |
o ——— e ———————————— + B +
| ~
+ - RO +
DESTINATION_NODE_NAME
{DESTINATION_SERVICE_NAME}
{DESTINATION_PORT_NAME)
+ - -t
I
I
|
v | |
+ + e + |
| mapping/defaulting | | Service name| |
| SERVICE_NAME and | === >| translated | |
| PORT_NAME into | | locally (new| |
] service/port pair |<=====| name may be | |
+ + | created |
R +
I
+

+

Figure 3-2 presents a possible combination of services, nodes and ports. Table
3-1 gives some examples of the rules of a SERVICE_ NAME, NODE_NAME and
PORT_NAME translation based on the Figure 3-2.

Services S1 and S2 (denoted by + + + + + +) are offered by Nodes N1 and N2
(denoted by ——-). The ports are represented by the symbol "0”. There are two
services, two nodes, and three ports in each node. Ports PA on Nodes N1 and

LAT/Digital Equipment Corporation/Proprietary and Confidential

N2 do not provide any services. Port PB on node N1 provides only service S1

and Port PB on node N2 provides only service S2. Ports PC on both nodes can
provide both services. Each node offers both services S1 and 52. Each node pro-

vides a "default service.” A default service is a service provided by a node if a
received connect request does not specify a destination service name.

Figure 3-2: A Combination of Services, Nodes and Ports

NODE N1

o Port PA

+
+ Por
+ o
+

R R R e G e E R s S

S

mO~<TMm

++ A+
N0

t PB

B r o s o R T

| +
+

Port PA
(o]

NODE N2

[+ +
+ +
+Port PC+
+ o0 +
+ +
+ +
...... o e F
+ +
+ +
+ +oe
+ +
Port + +
PB +Port PC+
(e} + o +
+ +

B B e S R B Gana s

SERVICE S1

O R N EE EEE R E R X e

B S S S e S S

The process that translates the service name on the target node may either cause

no translation at all by using the default service name, or causes a complicated

translation process depending upon available resources, existing services, sched-
ule, some special translating functions, etc. When it receives the destination ser-
vice name, the destination node translates it and sends it back to the source node.
The source node should not reject the connection if a different service name was
returned by a destination node. The source node may use the result of a transla-
tion to establish a connection.

Naming and Translation

Some examples of the translation process are presented in Figure 3-3. Those ex-
amples are based on Figure 3-2. Assume that the node translates the service name
S1 into S1 and that the default service name is also S1.

Figure 3-3: Name Translation Table (Source Node)

input result of translation
service node port service node port error
s1 s1 N1 PC(N1)
or PB(N1)
N2 PC(N2)
s1 N1l S1 N1 PC
or PB
s1 N1 PA port doesn’t offer srvc
Ss1 N1 PB s1 N1 PB
N1 S1 N1 PC
or PB
_________ [T SR
i N1 PB 81 N1l PB
| |

The translation rules, presented below, provide name translation for combinations
of nodes, services, and ports.

3.1.2 Translation Process On A Source Node

3-4

To initiate a connection, a user presents to a source node a Resource Name con-

sisting of: {SERVICE_NAME}{DESTINATION_NODE_NAME}{DESTINATION_
PORT_NAME}. The DESTINATION_PORT_NAME presented without the DESTINATION
NODE_NAME causes the source node to be chosen as a destination. If the DESTINATIO
NODE_NAME is specified, the DESTINATION_PORT_NAME is optional.

At the SOURCE_NODE only the DESTINATION_NODE_NAME is translated/validated.
If the DESTINATION_NODE_NAME is specified, no SERVICE_NAME translation

is done and the DESTINATION_NODE_NAME is used to initiate a connection (if
validation succeeded).

If no DESTINATION_NODE_NAME is specified, the DESTINATION_NODE_
NAME is determined based on translation of the SERVICE_ZNAME from the ad-
vertised service database. The source node may reject the connection based on an
unknown node, or, if a node isn’t specified, based on the inability to translate the
service to a node.

LAT/Digital Equipment Corporation/Proprietary and Confidential

3.1.3 Translation Process On A Destination Node

The SERVICE_NAME is always translated on the DESTINATION_NODE. If the
DESTINATION_PORT_NAME is specified, a port is selected and the service is se-
lected at that port. If the service is not available at the specified port, the request
is rejected with the "port doesn’t offer service” reason. If the DESTINATION_
PORT_NAME is not specified, an available port is selected by the DESTINATION_
NODE for the requested service. If a service name is not specified on a source
node and if a destination node does not have a default service (i.e., the default
service is unnamed), the destination node may choose to accept or reject a con-
nection. If the destination node accepts a connection, it translates an unspecified
service name into a null-length name field. If the destination node rejects a con-
nection, it returns the "no service available” reason.

The service name serves a dual role. The service name may be used to select a
destination node at the source node, may be used to select a port at the destina-
tion node, and may be used to select the data processing function at the destina-
tion port (the latter describes the case of an application task running on a slave
and not necessarily advertised as a service). LAT V5.1 provides a mechanism that
allows a user to initiate a connection with an application task. In this case, an-
other name (process name or task name) that uniquely identifies a task within a
node is used as the service name.

Discussed three types of names are interpreted by the circuit and session layers as
follows:

» NODE_NAME - Node names correspond to “service access points” (SAPs) or
"sockets” in the host node virtual circuit layer. Each virtual circuit between
a host node and a Terminal Server connects two of these virtual circuit layer
service access points together. Source and destination node names together
with source and destination Ethernet addresses uniquely identify each vir-
tual circuit. The virtual circuit (CIRCUIT_NAME) on the master assumes the
name of the host node (SLAVE_NODE_NAME). The virtual circuit (CIRCUIT_
NAME) on the slave assumes the name of the server node (MASTER_NODE_
NAME).

» SERVICE_NAME - Service names correspond to service access points in the
slot layer in the host. These names are supplied to terminal server users for
the purpose of providing a convenient means of identifying services. These
names are especially useful in establishing slot sessions when more than one
type of service is offered by a host node. The same service name might be
specified by more than one host node if equivalent services are offered by the
two different nodes. Destination service is specified by user is specified in the
start slot.

Naming and Translation 3-5

s TORT_NAME - Port names correspond to physical or virtual ports on the
host or server nodes. Connecting to the required service user can specify this
name to direct data flow to the particular port.

3.2 Service Advertising Mechanisms

The following sections describe two methods of service advertising implemented
by the LAT architecture.

3.2.1 Host Advertising

To advertise availability of services, host nodes utilizes a single multicast mes-
sage. This message enables the virtual circuit layer to translate node names into
48-bit Ethernet destination addresses and the slot layer to translate host service
names into node names. The format and usage of this Service Class 1 message is
described in the Service Class 1 appendix.

All messages multicasted by host nodes are required to specify a a node name of
the host node. Systems that wish to announce an available service send multicast
messages periodically.

In order to support the following environment:

Figure 3-4: Host Advertising

Host services: 1 2 3 4 1
\ / | \ /
\ /] \ /
\ / | \ /
Host nodes: NODEA NODEB NODEC
| / \ I
I / \ |
/ \
Host Ethernet ports: ETHERNET_PORT_A ETHERNET_PORT_B
I |
| |
Ethernet physical layer!: <ee——eccsecemcccmccccaraccncccccc e mccccc e cccc e >

3-6 LAT/Digital Equipment Corporation/Proprietary and Confidential

Naming and Translation

These multicast messages could be transmitted periodically:

Table 3-1: Multicasted Messages

Source PORT_A PROT_A or PORT_B PORT_B
Address: '

Node Name: NODE A NODE B NODE C
Service 1 - rating 233 3 - rating 231 4 - rating 34
Names: 2 - rating 134 1 - rating 250

Which would cause the following database to be constructed in a server:

Table 3-2: Data Base on the Server

NODE_ SERVICE_
NODE_NAME ADDRESS NAME SERVICE_RATING
NODEA PORT_A 1 233

2 134
NODEB PORT_A 3 231

or PORT_B

NODEC PORT_B 4 34

1 250

And results in the following display to a server user:

Service Name Status Description

1 Available Description of service 1
2 Available Description of service 2
3 Available Description of service 3
4 Available Description of service 4

Note that the node names are not displayed to the user. If the user chooses ser-
vice 1, the service rating is used to choose between the equivalent services.

3-7

3.2.2 Terminal Server Advertising

The service advertising mechanism eliminates the need for manual preparation of
a database. To advertise services offered by the terminal servers two messages are
used:

= Solicit information message (multicasted or physically addressed by a host
node);

» Response message (physically addressed by the terminal server to the host
node that sent Solicit message).

Figure 3-5: Server Advertising

Service 1 Service 3 Service 3 Service 2 Service 3 Service 4
\ / \ / \ /
\ / \ / \ /
T + Fomm e —————-——— + d o —-——————— +
Terminal		Terminal		Terminal
server		server		server
Ts1		TS2		TS3
S S ———t S — + S, +				
I				
I				
tommmmmm——e + . + E S —— +				
Ethernet		Ethernet		Ethernet
port A		port B		Port C
b = o = - + L T T tmmmma—.-——— +				
I				
I l [
- - Ethernet
|
I
Y +
I |
| Host |
I I
+ +

Application process (user)

3-8 LAT/Digital Equipment Corporation/Proprietary and Confidential

Host node multicast information solicitation request for the Service 3. The re-
sponse messages directed by all terminal servers to the host node will be:

Table 3-3: Information Available To The Host

Source Address Port A Port B Port C
Node name TS1 TS2 TS3
Service Service 3 Service 3 Service 3
Information rating 100 rating 43 rating 57

The above messages allow the host node to process requested service informa-
tion and choose the terminal server node to connect to. Type of processing may
be chosen by the host node depending upon product requirements (building a
full data base the way servers do, limiting number of entries in the data base, or
processing without caching any data).

3.3 Specification of Names

The NODE_NAME, SERVICE_NAME, PORT_NAME and other architecturally
specified names in the host multicast message, Start slot, and Start message are
constrained to contain the following characters (refer to the DEC Multinational
Character Set, STD 169):

s character code 2/4 ("$" - Dollar sign character).

= character code 2/13 ("-" - Hyphen or dash).

s character code 2/14 (".” - Period).

= character codes 3/0 to 3/9 ("0 through 9” - Numerals).

= character codes 4/1 to 5/10 ("A through Z” - Upper case letters).
» character code 5/15 ("_" - Underscore).

» character codes 6/1 to 7/10 ("a through 2" - Lower case letters).

e character codes 12/0 to 15/15.

These names user are upcased before they are compared. Upcasing means sub-
tracting the value 32 from the lower case letters in the range 6/1 through 7/10 and
subtracting 32 from the character set in the range 14/0 through 15/15.

Naming and Translation 3-9

Notice that since these names are upcased before comparison, advertising lower
case names is for display purposes only. If two different systems advertise the
same name, one in lower case, and the other in uppercase, a number of different
scenarios can result. Two typical scenarios are:

s If the NODE_NAME in the two messages is the same (upper and lower case),
but the source address of the Ethernet packets are different, than the servers
will detect this as a conflict and increment the DUPLICATE_NODE_NAME
counter.

« If the NODE_NAME in the two messages is truly different, but one or more
SERVICE_NAMES are the same (upper and lower case), the servers will
"load balance” between the services.

If characters are specified in the international character set for service names, only
those terminals that support the international character set will be able to select
those host services.

Some implementations may not support the international character set. In local
area networks that include these cases, the international character set should not
be specified in names.

Note, that in the 5.1 version of the LAT protocol both - servers and hosts nodes
are uniquely named. If a node name has not been supplied, a unique default
node name must be created.

The physical address of each Ethernet port is guaranteed to be unique and can
be used reliably to form a unique node name. The recommended procedure is to
form the name from the human-readable form of the Ethernet address which is
derived based on the algorithm described in the Ethernet specification document.
The node name can be formed by combining the facility code and the human-
readable form of the Ethernet address with the hyphens removed.

For example if the Ethernet address corresponds to the following sequence of bits
on the Ethernet (bits are arranged from left to right):

0000 1111 0111 0100 1010 1000 0011 0110 1110 1110 1101 1001

the node name should be in the following human-readable form:

LAT_F02E156C779B

LAT/Digital Equipment Corporation/Proprietary and Confidential

Note, that this unique node name must not be used to determine the Ethernet ad-
dress. The real physical port address is present in the Ethernet message itself.

3.4 Specification of Text

Some messages contain fields representing textual or descriptive information.
Valid characters present in these fields are 2/0 to 7/14 and 10/10 to 15/15.

Naming and Translation 3-11

4
Circuitand Session Layers

4.1 Architectural Model

This section presents state diagrams for the underlying virtual circuit (Virtual
Circuit layer) and for slot session establishment (Slot layer).

Further discussion of many of the variables found in this section can be found in
the "AXIOMS AND ALGORITHMS" section.

4.1.1 Slot Data

The term "slot data” means data supplied by any of the following functions:

= volunteer_xmt_data_a
s volunteer_xmt_data_b
= volunteer_attention_data

= queue_rcv_slot_buffer (creates a credit to be transferred)

4.1.2 Asymmetry

The host and terminal server state diagrams differ significantly. For this reason,
they are presented separately. The state variables and mapping of received mes-
sages into the state diagrams are so similar that this material is presented once for
the virtual circuit and once for the slot sessions. Frequently explicit notes point
out that an item is relevant only to the host or to the terminal server.

Circuit and Session Layers 4-1

4.1.3 Virtual Circuit Service

In order to establish a virtual circuit from a server to a host node, the Ethernet
address, the host node name, and desired service class of the target host node
must be known. The target host node name, Ethernet address and service class
are usually determined from a multicast datagram received by the terminal server.

4.1.3.1 Virtual Circuit State

4-2

The state of a virtual circuit is captured in a data structure called the Circuit Block.
The host and the terminal server maintain a separate Circuit Block. Changes to
the Circuit Block are caused by events at the Ethernet port, events at the user in-
terface and timers (counters) within the protocol state machine.

A general description of these variables follows. Algorithms for receiving and
transmitting messages can be found in the "AXIOMS AND ALGORITHMS" sec-
tion.

e CIRCUIT_NAME - the name of the virtual circuit
= REM_ADDRESS - the Ethernet address of the remote system.
s LOC_ADDRESS - the Ethernet address of the local system.

= MSG_TYP - Message type. The high order six bits of this field distinguish be-
tween different message types. The low order bit (bit 0) of this field is the
RRF (response requested flag) flag. Bit 1 of this field is the the Master flag. It
is always set in messages transmitted by the terminal server and always clear
in messages transmitted by the host node.

= RRF - The Response Requested Flag. This bit is always clear in messages
transmitted by the terminal server. This bit is conditionally set when mes-
sages are transmitted by the host node.

s REM_CIR_ID - Remote circuit identification
s LOC_CIR_ID - Local circuit identification (index to circuit block itself)

= NXMT - Next message number to transmit (modulo 256). This value is used
to guarantee message sequencing. Every new message transmitted is num-
bered one higher than the previous message modulo 256 (254,255,0,1...).

= ACK - Highest message number received in sequence (modulo 256). This
value is used to tell the session partner which sequenced message(s) have
been received by the local system. It is transmitted in every message header
for the remote session partner’s use.

LAT/Digital Equipment Corporation/Proprietary and Confidential

= DWEF (terminal server only) - Data Waltmg Flag. The flag is set by the virtual
circuit layer whenever the RRF flag is set in a message received from the host
node. DWF is also set by the slot layer whenever slot data is supplied.

The DWF is cleared by the terminal server virtual circuit layer every time a
new message is transmitted to the host that contains all of the available siot
data supplied by the local users. Thus the DWF is cleared when all slot block
Data Ready Flags are clear.

= DWEF (host only) - Data waiting flag. This flag is set by the slot layer when-
ever any slot data is supplied. The DWF is cleared by the host virtual circuit
layer every time a new message is transmitted to the terminal server that con-
tains all of the slot data available from local users. Thus the DWF is cleared
when all slot block Data Ready Flags are clear.

= LXMT - Lowest unacknowledged message number transmitted (modulo 256)
» HXMT - Highest unacknowledged message number transmitted (modulo 256)

» HOST_RETRANSMIT_TIMER (host only) - The host’s retransmit timer is an
interval timer which is started when the host node sends an "unsolicited”
message to the terminal server. When this timer expires all unacknowledged
messages are retransmitted.

» SERVER_CIRCUIT_TIMER (terminal server only) - This timer is used to ini-
tiate the transmission of new data but is not used to retransmit unacknowl-
edged data.

« SERVER_RETRANSMIT_TIMER (Terminal server only) - This timer is used to
retransmit unacknowledged messages. The terminal server retransmit pol-
icy is explained in the AXIOMS and ALGORITHMS section in the Message
Transmitter section.

= HOST_RETRANSMIT_COUNTER, SERVER_RETRANSMIT_COUNTER -
Count of number of times the current message number has been retransmit-
ted. If this value reaches the LAT_ MESSAGE_RETRANSMIT_LIMIT, one of
two different policies can be enforced:

1. The users of the circuit are notified that communications has been lost
The state of the virtual circuit is set to Halted.

2. The users of the circuit are notified that communications has been tem-
porarily interrupted. The state of the virtual circuit is not changed and
messages continue to be retransmitted.

Circuit and Session Layers 4-3

If the terminal server does not support multiple sessions, it is recom-
mended that policy #1 be enforced. If the host crashes, policy #2 would
"hang” all of the users until the host is rebooted and the terminal server
transits the virtual circuit state through Halted; even users that attempt
to disconnect would be "hung” in the disconnecting sub-state until a
message was successfully transmitted and acknowledged or until the
virtual circuit state reached Halted. If multiple sessions are supported,
users can escape to a new virtual terminal.

s VC_QUALITY - A rating of the virtual circuit quality. Circuit quality is either
acceptable or unacceptable.

» XMT_BUFFER_FREEQ - Linked list of available transmit buffers.

= UNACKED_XMTQ - Linked list of unacknowledged transmit messages.
Messages are numbered from LXMT to HXMT consecutively, unless the
queue is empty. (On the terminal server the length of this queue does not
normally exceed one message.)

« SECONDS_SINCE_LAST_ZEROED (optional) - Seconds since the following
counters were zeroed.

= MESSAGES_TRANSMITTED - Count of messages transmitted. The multicast
messages transmitted by the host should be included in this total.

= MESSAGES_RECEIVED - Count of messages received.

= MESSAGES_RETRANSMITTED - Count of messages retransmitted because
the message was not acknowledged.

= OUT_OF_SEQUENCE_MESSAGES_RECEIVED - Count of messages received
which were not in sequence. .

» ILLEGAL_MESSAGES_RECEIVED - Count of illegal messages received (see
next section).

s IJLLEGAL_SLOTS_RECEIVED - Count of illegal slots received (see next sec-
tion).

4.1.3.2 Architecturally Controlled Names and Variables

4.1.3.3 Virtual Circuit State Variables

There are four state variables maintained by each end of a virtual circuit in the cir-
cuit block which are constrained by the architecture:

s LOC_CIR_D - local circuit identification. This value is stored in the circuit
block when the circuit block is created. The value zero is reserved and is not

4-4 LAT/Digital Equipment Corporation/Proprietary and Confidential

valid as a LOC_CIR_ID. Each valid Run message received by the local system
will have the DST_CIR_ID field of the received message equal to the LOC_
CIR_ID field in some circuit block.

The LOC_CIR_ID value should be defined by the system to help locate the
circuit block. If a virtual circuit to a partner should fail, and a new circuit to
the same partner is to be formed, the values of LOC_CIR_ID used to form
the new circuit must be different than the value used in the previous circuit.
Normally this is accomplished by using a sequence number.

= REM_CIR_ID - remote circuit identification. Initially the REM_CIR_ID value is
zero in the circuit block. The source of this value is the SRC_CIR_ID field in
received messages. This non-zero value references the remote system circuit
block.

= NXMT - next message number to transmit. This circuit block value is a

modulo-256 value that is used to assign the message header field MSG_SEQ_
NBR.

» ACK - the number of the most recent message received in sequence. This cir-
cuit block value is also a modulo-256 value. 1t is copied from the MSG_SEQ_
NBR field of any message received in sequence (including Start messages) to
the circuit block ACK field. Every time a message is transmitted, this value is
copied into the message MSG_ACK_NBR field.

4.1.3.4 Slot State Variables

The LOC_SLOT_ID is a value assigned by the local 1mplementahon Received Run
slot DST_SLOT_IDs will be identical to the value transmitted in the Start slot SRC_
SLOT_ID field used to establish the slot session. For this reason, the value should
be assigned as an index into an array of slot block addresses. The value LOC_
SLOT_ID is constrained to be non-zero.

REM_SLOT_ID is a value stored in the local siot block which is used to validate re-
ceived Run slots. Initially the REM_SLOT_ID is zero in the slot block. The source
of this value is the SRC_SLOT_ID field in received Start slots. This non-zero value
references the remote system slot block.

4.1.3.5 Message Counters

The implementor of Digital products should read "Digital Ethernet Node Product
architecture” specification. This document specifies generic product requirements
for Digital Ethernet nodes.

The purpose of requiring counters is to identify hardware faults and software im-
plementation errors.

Circuit and Session Layers ‘ 4-5

Required counters must be displayable on demand by a privileged user on a termi-
nal connected to the local system. The description of the displayed counters must
resemble the descriptions used in this section.

These counters should be zeroed as infrequently as possible. Ideally, counters
should be zeroed by command of a privileged user only. It may be desirable for
nonprivileged users to be able to display counters.

If a virtual circuit to a remote system is halted, the associated counters must must
not be zeroed (although they may be deleted). An implementation should attempt
to retain counters even after communications with a remote system has termi-
nated so long as this requirement causes only idle resource consumption.

Values must be unsigned 32-bit integers. The values must “latch” the highest pos-
sible value if they overflow.

An implementations must collect and be capable of locally displaying the following
list of values:

» Those required in "Digital Ethernet Node Product Architecture”

s Total number of Illegal messages received (and associated Ethernet physncal
address if possible)

= Total number of Illegal slots received (and associated Ethernet physical ad-
dress if possible)

NOTE

Illegal message and slot counters are maintained as a part
of the virtual circuit database listed above. If. these counter
databases are retained for some time after the virtual cir-
cuits are terminated, a valuable piece of information is
retained to diagnose the source of the illegal data - the
Ethernet physical address the remote system | A mini-
mum of one circuit block must be retained by an imple-
mentation after active circuits are terminated. This is to re-
tain the circuit block counters for some minimum amount
of time for error diagnosis.

Implementations must collect and be capable of locally displaying the following list
of values for each currently active virtual circuit:

s (best effort) SECONDS_SINCE_LAST_ZEROED (optional)

LAT/Digital Equipment Corporation/Proprietary and Confidential

s MESSAGES_TRANSMITTED

= MESSAGES_RECEIVED

» MESSAGES_RETRANSMITTED

» OUT_OF_SEQUENCE_RECEIVED

» ILLEGAL_MESSAGES_RECEIVED (causing the virtual circuit to be aborted)
« ILLEGAL_SLOTS_RECEIVED (causing the virtual circuit to be aborted)

Remember that messages are Ethernet frames under virtual circuit control. Multicast
datagrams are not messages.

4.1.3.6 Error Handling - lllegal Slots And Messages

Virtual circuits are immediately stopped when illegal messages or slots are re-
ceived.

Illegal messages and slots are those that do not conform to the defined message
formats or grossly violate the defined state transitions of a virtual circuit or user
slot sessions. These messages and slots should not occur, but if they do:

= Minimally, a displayable counter must be incremented. Ideally, the affected
users and the system manager should be immediately notified of this unusual
event.

» As much of the message or slot as possible should be stored in order to diag-
nose the failure. Optionally store the number of the error (see below).

= The message should be discarded.

= The (underlying) virtual circuit must be stopped.

The term "illegal” should be distinguished from the term "invalid”. Invalid mes-
sages and slots are normal events and are usually caused by improper synchro-
nization (resynchronization of virtual circuits and user sessions).

Examples of illegal messages are:

1. A received message with either the DESTINATION_ADDRESS or the SOURCE_
ADDRESS equal to zero.

2. An unknown MSG_TYPE in a received message.

Circuit and Session Layers 4-7

3. A non-zero SRC_CIR_ID in a received Stop message.

4. A zero SRC_CIR_ID in a Start or Run message.

5. A non-zero DST_CIR_ID in a Start message received by a host node.

6. A zero DST_CIR_ID in a Run or Stop message sent by the terminal server.
7. A zero DST_CIR_ID in a Start, Run or Stop message sent by the host.

8. Others - please get them added to this list.

Examples of illegal slots are:

1. An unknown SLOT_TYPE value is received.

An unknown SERVICE_CLASS is received in a Start slot.

A non-zero SRC_SLOT_ID in a received Stop slot.

A zero SRC_SLOT_ID in a Start slot.

A non-zero DST_SLOT_ID in a Start slot received by a host node.

A zero DST_SLOT._ID in any slot but a Start slot sent by the terminal server.

N s 9 s » B

An Attention slot specifying a non-zero value in the credit field (documented
as an MBZ field in the message format section).

®

a Start slot received in the Run state (without and intervening Stop slot)
9. a Reject slot received in the Run state.

10. a Data_a or Data_b slot arrives which contains data (consumed a remote
credit), but no user buffer is available (no credit was extended).

11. a Run slot with a zero SRC_SLOT_ID.

12. Others - please get them added to this list.

4.1.3.7 Defined Parameters And Recommended Or Required Default Values

Some of the values defined in this section may be changed by the system man-
ager. The name of the variable should be similar to the name used below in com-
mand interfaces.

4-8 LAT/Digital Equipment Corporation/Proprietary and Confidential

The follow values are architecturally defined constants:

= Protocol Type - 60-04 (hexadecimal) or as a bit stream, first bit on Ethernet at
left (0000.0110.0010.0000)

« Multicast Address - 09-00-2B-00-00-0F (hexadecimal) or as a bit stream, first
bit on Ethernet at left (1001.0000.0000.0000.1101.0100.0000.0000.0000.0000.1111.000)

The following values must be specified before an implementation is operational.
If an implementation allows the values are settable within the ranges specified,
the names used to refer to the parameters must be a reasonable facsimile of the
name used below. If the parameters are not settable, the recommended default
values should be used. The archite¢ture requires the values be within the ranges
specified:

« PROTOCOL_VERSION - The value 5.

» PROTOCOL_ECO - The value 1.

» SERVICE_NAME - must be specified by the host system manager before the
start of service can be announced.

» NODE_NAME - must be specified by the host system manager before the
start of service can be announced.

= SERVER_CIRCUIT_TIMER - In the range 1-100. This parameter specifies 10
millisecond intervals. (The value 8 is recommended - 80 milliseconds).

= SERVER_RETRANSMIT_TIMER - In the range 1 to 2 seconds.
= HOST_RETRANSMIT_TIMER - In the range 1 to 2 seconds.

» LAT_MESSAGE_RETRANSMIT_LIMIT - Four or more messages. Eight
messages recommended for the terminal server (SERVER_RETRANSMIT_
COUNTER limit), more than 60 messages recommended for the host node
(HOST_RETRANSMIT_COUNTER limit).

» HOST_MULTICAST_TIMER - In the range 10 to 180 seconds (60 seconds rec-
ommended). This value is supplied via the start_service_class function.

» LAT_MIN_RCV_DATAGRAM_SIZE - In the range 576 to 1518 (1518 recom-
mended) for both the host node and terminal server.

» LAT_MIN_RCV_SLOT_SIZE - In the range 1 to 255 (127 recommended) for
both the host and terminal server.

Circuit and Session Layers 4-9

4-10

LAT_MIN_RCV_ATT_SLOT_SIZE - In the range 1 to 255 (31 recommended)
for both the host and terminal server.

NBR_DL_BUFS - The number of data link buffers assigned minus one. A
value of zero is recommended.

A Host implementation should enable multicast group 0 by default (unless
specified differently interactively).

A Server implementation should enable multicast group 0 by default (unless
specified differently interactively).

RESPONSE_TIMER - in the range 1 to 2 seconds.
MULT_STAT_TIMER - in the range 10 to 100 milliseconds.

STAT_REP_TIMER - in the range 10 seconds to 1 hour. The recommended
value is 60 seconds.

RETR_.COMM_TIMER - is recommended to be 1 second.
RETR_COMM_COUNT - is recommended to be a value of 3 or 4.
RETR_STAT_TIMER - is recommended to be 1 second.
RETR_STAT_COUNT - is recommended to be a value of 3 or 4.
PRODUCT_TYPE_CODE -

1. Ethernet terminal server
Decserver 100
VAX/VMS
RSX11-M
RSX11-M +
TOPS-20
TOPS-10
ULTRIX-11

¥ ® N o Uk w B

LAT-11
10. RSTS/E
11. ULTRIX-32

LAT/Digital Equipment Corporation/Proprietary and Confidential

12.
13.
14.
15.
16.
17.
18.
19.
» TPRODUCT_VERSION_NUMBER - version number of a product.

ELN

MS/DOS
P/OS
PCSG-LAT
DELIX
DECserver 200
DECserver 500

Actor

The following value must be supplied before an implementation is convenient to

use:

» LAT_KEEP_ALIVE_TIMER - In the range 10 to 255. A value of 20 seconds is
recommended.

The parameters that are optional are:

FACILITY_NUMBER - A value supplied via the local command interface.
SERVER_NAME - A name supplied via the local command interface.

LOCATION_TEXT - Text supplied via the local command interface.

» Parameter data supplied by an implementation’s software modules or via the
local command interface. See individual service classes for a description of
these parameters.

4.1.3.8 Message Types

There is a common virtual circuit header format for LAT messages documented
in the section "MESSAGE FORMATS" (other message formats are defined by the
different service classes). This virtual circuit message format is one of three differ-

ent types:

1. start message - Start messages are used to establish new virtual circuits.

2. run message - Run messages convey state and slot data between systems.

Circuit and Session Layers

3.

stop message - Stop messages are used to end a virtual circuit session.

A stop message is also used as a "no circuit” message to reply to a received mes-
sage which references a nonexistent or invalid virtual circuit (see state diagrams
"Send Stop”). An implementation should make a best effort to send these "no
circuit” messages. Occasionally, due to lack of resources or Ethernet data link er-
rors, these “no circuit” messages may fail to get delivered. Failure to send these
“no circuit” messages can result in slow resynchronization after the host node or
server crashes.

4.1.3.9 Cirtual Circuit State Variables

4-12

There are three virtual circuit states: Halted, Starting and Running. Once the
system to system virtual circuit has started successfully, the circuit reaches the
Running state.

These events determine state transitions:

N oo ow s

10.

11.

VC_start (server only) - user requests virtual circuit startup. An implementa-
tion would allocate a Circuit Block at this point if none existed.

VC_halt - user requests that the virtual circuit be halted immediately

Start_rcv - Start message received. An implementation would allocate a
Circuit Block at this point, if one did not exist from a previous circuit, and
initialize all state variables.

Inv_start_rcv - invalid Start received (see message mapping section)
Stop_rcv - Stop message received.
Inv_stop_rcv - invalid Stop received (see next section)

Run_rcv - Run message received with valid connection identification. The
message is in sequence if MSG_SEQ_NBR of received message equals the
value ACK+1 in the circuit block (modulo 256).

Inv_run_rcv - invalid Run received (see next section)
Circuit_timer - the SERVER_CIRCUIT_TIMER expires.

Rexmit_timer - The SERVER_RETRANSMIT_TIMER or HOST_RETRANSMIT_
TIMER expires.

Resend_limit - The retransmit counter reached the limit LAT_MESSAGE_
RETRANSMIT_LIMIT.

LAT/Digital Equipment Corporation/Proprietary and Confidential

12. Send_data (host only) - A user supplies slot data and the RRF flag in the cir-
cuit block is clear. Note that this event is blocked if the RRF is set.

4.1.3.10 Response Requested Flag and Balanced Mode

4.1.3.11

When the most recent message received from the host node has the RRF clear (no
response requested), and this message acknowledges the last message transmitted
from the terminal server, the virtual circuit is said to be "balanced”. When in this
state, the host node has permission to send one “unsolicited” message and the
terminal server will not send messages if the DWF (data waiting flags) is clear.

This state will persist until either the Send_data event occurs in the host or the
DWEF is set in the terminal server (possibly due to the keep alive timer).

"Balanced mode” prevents the LAT protocol from consuming unnecessary Ethernet
bandwidth. Without balanced mode, LAT messages would be exchanged at
SERVER_CIRCUIT_TIMER miillisecond intervals, even though no useful data was
being exchanged.

There is a sub-state that is not evident from a cursory inspection of the state di-
agrams. This sub-state is entered when the event Send_data occurs. Notice that
this event causes the HOST_RETRANSMIT_TIMER to be started and may cause
the Circuit Block RRF flag to be set. Also notice that this event cannot occur if
the RRF flag is already set. This sub-state retransmits all unacknowledged mes-
sages whenever the HOST_RETRANSMIT_TIMER expires. This sub-state is exited
when the host node receives a message that acknowledges all of the currently un-
acknowledged messages. At this point and the HOST_RETRANSMIT_TIMER is
stopped. The purpose of this sub-state is to guarantee "unsolicited” message de-
livery.

Message Mapping Onto State Diagram

Received messages must be validated.

The Ethernet data link layer verifies that the Ethernet DESTINATION_ADDRESS
field in the received message matches the address assigned to the local system and
that the PROTOCOL_TYPE field in the received message is equal to the LAT pro-
tocol type.

On the slave end the LAT virtual circuit layer maps Start messages onto circuit
blocks based on the value of the MASTER_NODE_NAME field and the SOURCE_
ADDRESS field of the received Start message. A match to a circuit block is found
if the MASTER_NODE_NAME field of the received Start message equals the
CIRCUIT_NAME field in the circuit block AND the SOURCE_ADDRESS field of
the received Start message equals the REM_ADDRESS field in the circuit block.

Circuit and Session Layers 4-13

4-14

A Start message can match a circuit block even if it is in the Running state (as
shown in the state diagrams).

On the master end the LAT virtual circuit laver maps Start messages onto circuit
blocks based on the value of the DST_CIR_ID., The SLAVE_NODE_NAME field
and the SOURCE_ADDRESS field of the received Start message must match to
the CIRCUIT_NAME field AND the REM_ADDRESS field in the referenced circuit
block.

In the case of the first Start_rcv event in the host node, no circuit block will exist
to reference. A circuit block should be allocated and the state variables should be
initialized as described below the host virtual circuit state table. The DST_CIR_ID
of the received message should be considered a match to the LOC_CIR_ID of the
circuit block in this case. If a circuit block cannot be allocated, the implementation
should attempt to send a Stop message that indicates no resources.

Note that it is possible for a pair of nodes that each implement terminal server
and host capabilities (master and slave capabilities) to establish exactly one virtual
circuit in each direction, but not more.

Run messages and Stop messages are mapped onto a circuit block based solely
on the value of the DST_CIR_ID field of the received message. The value DST_
CIR_ID must match the value LOC_CIR_ID in the referenced circuit block and the
value SRC_CIR_ID must match the REM_CIR_ID value in the circuit block. Run
messages that do not map onto a circuit block in the Running state are discarded
and a Stop message is sent to the remote system.

Next, the message type is determined from the LAT header MESSAGE_TYPE
field. The received message is then mapped into the state diagram based on the
following rules:

s Start_rcv - The DST_CIR_ID of the received message must equal the LOC_
CIR_ID in the referenced circuit block (except as noted above). The SRC_CIR_
ID of the message must not be zero, and is copied to the REM_CIR_ID of the
referenced circuit block.

= Inv_start_rcv - The DST_CIR_ID of the received message is non-zero and is
not equal to the LOC_CIR_ID in the referenced circuit block.

» Run_rcv - The DST_CIR_ID of the received message equals the LOC_CIR_ID
of the circuit block, and the SRC_CIR_ID of the received message equals the
REM_CIR_ID of the circuit block. The message is in sequence if the MSG_
SEQ_NBR of the received message equals the value ACK+1 in the circuit
block (modulo 256).

LAT/Digital Equipment Corporation/Proprietary and Confidential

» Inv_run_rcv - The DST_CIR_ID of the message is not equal to the LOC_CIR_
ID in the circuit block, or the SRC_CIR_ID of the message is not equal to the
REM_CIR_ID of the circuit block.

» Stop_rcv - The DST_CIR_ID of the message equals the LOC_CIR_ID of the cir-
cuit block, and the SRC_CIR_ID of the message equals zero.

Invalid messages are the result of improper synchronization between the host
node and terminal server. These events are normal; the message is treated as de-

scribed in the state diagrams.

4.1.3.12 Terminal Server Virtual Circuit State Table

Table 4-1: Terminal Server Virtual Circuit State Table

State Event(s) Action(s) Next State

Halted VC_start Initialize, Send Start. Starting
Stop_rcv No action. Halted
Inv_stop_rcv No action, Halted
any other msg Process Start, Send Stop. Halted
any other No action. Halted

Starting Start_rcv Process Start, send Run. Running

(typically including Start slot)

Resend_limit Notify users, send Stop. Halted
Rexmit_timer Resend Start. Starting
Stop_rcv Notify users. Halted
VC_halt Send Stop Halted
Inv_stop_rcv No action. Starting
any other msg Process Start, send Start. Starting

Running Run_rcv If msg is out of sequence: Running

Rexmit_timer

Circuit and Session Layers

zero NBR_SLOTS in msg
hdr. If RRF flag is set: set
DWF. Process received ack;
process message.

If messages remain unac-
knowledged: resend all un-
acked messages.

4-16

Table 4-1 (Cont.): Terminal Server Virtual Circuit State Table

State Event(s) Action(s) Next State
Running Circuit_timer If messages acked and DWF ~ Running
(cont.) set: send message; clear

DWEF if all slot data has been
sent. If messages acked and
DWF clear: no action.

Resend_limit Notify users (or optionally Running (Halted)
halt via VC_halt event).

VC_halt Send Stop Halted

Stop_rcv Notify users Halted

any other set DWF Running

Note that the server slot state table also specifies that DWF be set.

Terminal Server Virtual Circuit State Table Notes

"Process Start” means copy the SRC_CIR_ID field from the received Start mes-
sage to the REM_CIR_ID field in the circuit block. Verifies circuit block by match-
ing SLAVE_NODE_NAME and the SOURCE_ADDRESS from the start message
against CIRCUIT_NAME and REM_ADDRESS.

The "Initialize” means the values in the Circuit Block are initialized as:

A

CIRCUIT_NAME< - <the name passed by the VC_start function >
REM_AI?DRESS<- <value passed in-the VC_start call>
LOC_ADDRESS <- <value assigned to the local system >
REM_CIR_ID<- 0 (later copied from received Start message)
LOC_CIR_ID<- <unique virtual circuit connection id >

NXMT<- 0 - Next message number to transmit

ACK <- 255 - message number most recently received in sequence

LXMT<- 0 - Lowest unacknowledged message number transmitted

WL N O e DB N

HXMT<- 0 - Highest unacknowledged message number transmitted

LAT/Digital Equipment Corporation/Proprietary and Confidential

10. SERVER_CIRCUIT_TIMER < - <reset to ~ 80 ms> (count-down to zero)

11. SERVER_RETRANSMIT_COUNTER < -0 (count-up to LAT_MESSAGE_
REXMIT_LIMIT)

12. UNACKED_XMTQ<- <empty>

13. RRF and DWF are cleared

4.1.3.13 Host Virtual Circuit State Table

Table 4-2: Host Virtual Circuit State Table
State Event(s) Action(s) Next State
Halted Start_rcv or Initialize; process Start; Starting (or Halted)
Inv_stop_rcv Send Start (or Stop).
Stop_rcv or No action. Halted
Inv_stop_rcv
any other msg, Process Start; send Stop. Halted
Or No resources «
Starting Run_rcv If msg is out of sequence: Running
zero NBR_SLOTS in msg
header. Process rcvd
ACK. Process rcvd mes-
sage.
VC_halt Send Stop Halted
Stop_rcv No action. Halted
Inv_stop_rev No action. Starting
Start_rcv Initialize; process Start; Starting
send Start
any other msg send Start Starting
Running Run_msg_rcv If msg is out of sequence: Running

Circuit and Session Layers

zero NBR_SLOTS in

msg header. Process

revd ACK; if all msgs

are acked: stop timer,
Process rcvd message;
queue_transmit_message;
transmit_unacknowledged_
queue.

4-18

Table 4-2 (Cont.): Host Virtual Circuit State Table

State Event(s) Action(s) Next State
Running Send_data Start timer; queue_ Running
(cont.) transmit_message; trans-
mit_unacknowledged_
queue.
Rexmit_Timer Resend unacked msgs; Running,
reset timer.
Resend_limit Notify users (or optionally Running (Halted)
halt via VC_halt event).
VC_halt Send Stop. Halted
Stop_rcv Notify users. Halted
Start_rcv ‘ Initialize; process Start; Starting
send Start
any other Transmit_unacknowledged_ Running
queue.

"Process Start” means copy SRC_CIR_ID from the received Start message into
the circuit block field REM_CIR_ID; copy the SRC_ADDRESS from the message
into the REM_ADDRESS field in the circuit block and copy the MASTER_NODE_
NAME from the received Start message into the circuit block CIRCUIT_NAME
field.

“Initialize” means the values in the Circuit Block are initialized as:

.

REM_ADDRESS <- < SOURCE_ADDRESS from the received Start message >
LOC_ADDRESS <- <value assigned to the local system >

REM_CIR_CID< - <coi3ied from received Start message >

LOC_CIR_ID<- <unique connection id >

NXMT<- 0 - Next message number to transmit

ACK <- 0 - most recent message number received in sequence

LXMT<- 0 - Lowest unacknowledged message number transmitted

HXMT<- 0 - Highest unacknowledged message number transmitted

N T A o o o

HOST_RETRANSMIT_TIMER < - <stopped >

LAT/Digital Equipment Corporation/Proprietary and Confidential

10. HOST_RETRANSMIT_COUNTER < - 0 (counts up to LAT_MESSAGE_REXMIT_
LIMIT)

11. UNACKED_XMTQ < - <empty >
12. RREF flag is cleared
13. DWF is cleared

"Start rexmit_timer” starts a one to two second interval timer. This timer is used
to retransmit messages that do not get acknowledged by the terminal server
within the expected time limit. One second is arbitrarily larger than the timer
value used by the terminal server (SERVER_CIRCUIT_TIMER). If this HOST_
RETRANSMIT_TIMER expires, most likely the terminal server has crashed or the
Ethernet data link has failed.

4.1.4 User Connection Management And Data Fiow

Variables in this section are described in sufficient detail to explain the slot state
transitions necessary to establish and maintain slot sessions.

4.1.4.1 Service Classes

It is the responsibility of the slot layer to deliver start slots (connect requests) to
the appropriate service class in the host. Each service class has the freedom to
define the capabilities utilized by that service class independently. For instance,
the service class A might utilize attention slots while the service class B might not.

After the start slot has been accepted by the service class, and a start slot sent in
response, all subsequent slots associated with that session are delivered to the
same service class.

Therefore the virtual circuit service can be shared by one or more service classes,
while each service class utilizes different slot types and slot formats.

4.1.4.2 Host Session Management

The host implementation may choose to always accept or reject a connection (re-
spond to a start slot received by the host service with a start or reject slot) based
solely on currently available resources. (Lack of resources might include such
criteria as nonavailability of memory, too many users or system shutdown in
progress). This type of implementation is appropriate if the connect request con-
tains insufficient information for the host service to make a decision to reject the
connection. Interactive terminal login is an example of such a host service. The
account name and password must be supplied within the context of the session
before the host service can reject the session.

Circuit and Session Layers 4-19

Alternatively, a host implementation mayv offer the host service a chance to reject
or accept directly. This is the behavior modelea in the host slot state table.

4.1.4.3 Multiplexing Over A Virtual Circuit

To provide multiple users connection management and data transfer service si-
multaneously, the underlying virtual circuit can be shared by all active users. This
sharing is accomplished by dividing each message into a header and one or more
slots. Whenever more than one user has volunteered data to be transmitted, an
individual user’s ability to transmit data is restricted by the following rules, which
guarantee each user gets treated fairly:

= limiting the slot size - the maximum slot size is the slot header size (4 bytes)
plus the maximum data size (255 bytes), or 259 bytes. Thus one 1518 byte
message has enough room for at least five, and usually more slots.

= slot flow control - Data_a and Data_b slots cannot be transmitted unless a
transmit slot credit (LOCAL_CREDITS) is owned by the user.

= limiting each user to one slot until all other users have been considered

= not starting with same user each time - if not all of the slot data fit into a
message, the next scan for slot data should resume with the users that did
not get slot data into the message the previous time.

As with frames on the Ethernet, slots are divided into a header and a data section.
Connection management is accomplished by defining the state transitions of the
slot headers as described in the following sections.

4.1.4.4 Slot Ordering Within Messages

Slot ordering within a message is not arbitrary. }f two or more slots in a buffer
are addressed to the same user, the slots are processed from the beginning of the
buffer to the end.

For instance, an "abort” slot received by a terminal server will abort any output
data in slots received before it within the message (and in previous messages), but
will not affect a slot in the buffer following it.

4.1.4.5 Slot State Variables

The state transitions for slots are similar to those for the underlying virtual circuit
itself. Any of the slot transitions shown in the slot state tables assume an un-
derlying virtual circuit in the Running state. If the virtual circuit should exit the
Running state, the slot sessions immediately transfer to the halted state.

4-20 LAT/Digital Equipment Corporation/Proprietary and Confidential

The state of a slot session is captured by each end in a data structure called the
Slot Block. Changes to the Slot Block are caused by events at the Ethernet port
and events at the user interface.

The virtual circuit layer delivers to the slot layer messages that contain one or
more slots. Slot validation is the responsibility of the slot layer.

The slot block contains the following fields:

= REM_SLOT_NAME - the name of the remote slot block. Required to be the
name of the remote service selected.

» LOC_SLOT_NAME - the name of the local slot block
» REM_SLOT_ID - Remote slot connection identification
« LOC_SLOT_ID - Local slot connection identification

= REMOTE_CREDITS - credits being extended to the session partner. This
credit total is zeroed by the slot layer each time the slot multiplexer copies
the slot into a message buffer. This total is incremented every time the user
adds a receive buffer via the queue_rcv_slot_buffer function.

s LOCAL_CREDITS - available credits to transmit slots. This field is initial-
ized to zero when the slot block is created. The slot layer slot demultiplexer
adds any credits extended in the received slot CRED field to this slot block
LOCAL_CREDITS field. The slot layer slot multiplexer decrements this field
whenever a Data_a or Data_b slot is copied into a message buffer with a non-
zero SLOT_BYTE_COUNIT. Data_a and Data_b slots do NOT consume credits
if the SLOT_BYTE_COUNT is zero (to prevent infinite looping|). Start, Stop
and Attention slots do not consume credits.

s SLOT_TYPE - slot type. One of Start, Data_a, Data_b, Attention, Reject or
Stop.

* DRF - Data Ready Flag. Set whenever slot data is available. Cleared by the
slot layer whenever all slot data is under virtual circuit control.

s SLOT_COUNT - byte count of next field (which could be zero)

» SLOT_DATA_BUFFER - This buffer is used to store Data_a received over the
session as the result of extending slot credits.

» ATTENTION_DATA_BUFFER - This buffer is used to deliver Attention data to
the user. A semaphore (not shown in the slot block) is used to arbitrate own-
ership of the buffer. Since Attention data is not flow controlled, Attention
data is discarded if new data is delivered and the buffer is not available.

Circuit and Session Layers 4-21

These events determine state transitions:

-

e ® N o e WD

Connect_req (terminal server only) - user requests connection.
Disconnect_req - user requests disconnection.

Reject_req (host only) - user rejects a requested connection.
Accept_req (host only) - user accepts a requested connection.
Start_rcv - start slot received.

Stop_rcv - stop slot received .

Reject_rcv - reject slot received.

Run_rcv - Data_a, Data_b or Attention slot received.

User_data - user supplies data via volunteer_data_a or volunteer_data_b.

10. User_rcv - user supplies receive slot buffer via queue_rcv_slot_buffer.

11. Stop_sent - Stop slot under virtual circuit control.

4.1.4.6 Terminal Server Slot Mapping Onto State Diagram

4-22

Received slots are mapped onto the events based on the values received in the
received slot DST_SLOT_ID and SRC_SLOT_ID fields, and the current slot block
values of REM_SLOT_ID and LOC_SLOT_ID.

The key for the symbols in the table:

L - DST_SLOT_ID from the received slot equals LOC_SLOT_ID in the refer-
enced slot block

R - SRC_SLOT_ID from the received slot equals REM_SLOT_ID in the refer-
enced slot block

I- DST_SLOT_ID from the received slot does not equal LOC_SLOT_ID in the
referenced slot block

]- SRC_SLOT_ID from the received slot does not equal REM_SLOT_ID in the
referenced slot block

LAT/Digital Equipment Corporation/Proprietary and Confidential

s D - Doesn’t matter what SRC_SLOT_ID in the received slot is

w 0-DST_SLOT_ID or SRC_SLOT_ID in received slot is zero

DST_SLOT_ID SRC_SLOT_ID State Type of siot or action to be taken
L R Running Data_a, Data_b or Attention slot

L D Starting Start slot (D cannot be zero)

L 0 any Stop or Reject slot

L] Running send Stop to SRC_SLOT_ID

I D Starting ignore slot (session shutting down)
1 D Running ignore slot (session shutting down)

Events shown in this list but not in the table below are either invalid or are events

that occur as a session shuts down. The list suggests an appropriate action.

4.1.4.7 Terminal Server Slot State Table

Table 4-3: Terminal Server Slot State Table

State Event Action Next State
Halted connect_req Initialize, Send Start. Starting
any other No action. Halted
Starting disconnect_req No action. Abort_start
Reject_rcv No action. .. Halted
Start_rcv process SRC_SLOT_ID; Running
update credits; process
Start.
any other No action. Starting
Abort_strt Reject_rcv No action. Halted
Start_rcv Send Stop Halted
any other No action. Abort_start
Running disconnect_req Send Stop (see note be- Stopping
low).
Stop_rcv Notify user. Halted

Circuit and Session Layers

4-23

Table 4-3 (Cont.): Terminal Server Slot State Table

State Event Action Next State
Running Reject_rcv Tilegal slot (Declare VC_ Halted
(cont.) halt)
Start_rcv Illegal slot (Declare VC_ Halted
halt)
Run_rcv Update credits and pro- Running
cess slot.
User_data or Set DWF and DRF. Running
User_rcv
any other No action. Running
Stopping Stop_sent No action. Halted
any other No action. Stopping

A Start_rcv event need not be distinguished from a Run_rcv except in the Starting
state. In the Starting state the Start slot should be validated based on Slot_type to
be sure a Run slot is not being received.

"process SRC_SLOT_ID” means copy the SRC_SLOT_ID field from the received
slot into the REM_SLOT_ID field of the slot block.

"Update credits” means add the CREDIT field in the received slot into the LOCAL_
CREDITS field of the slot block.

The "Send stop” action in the table may involve queue delays until the virtual cir-
cuit layer accepts the Stop slot. Until the Stop slot is accepted under virtual circuit
control, all other received messages should be ignored, and the transition to the
Halted state must be delayed. This prevents the connect_req event from reusing a
slot state table until a queued stop has been accepted by the virtual circuit layer.

4.1.4.8 Host Siot Mapping Onto State Diagram

Slots are mapped onto the events based on the values received in the slot DST_
SLOT_ID and SRC_SLOT_ID fields, and the current slot block state variables LOC
SLOT_ID and REM_SLOT_ID. The key for the symbols in the table:

« L -DST_SLOT.ID from the received slot equals LOC_SLOT_ID in the refer-
enced slot block

» R -SRC_SLOT_ID from the received slot equals REM_SLOT_ID in the refer-
enced slot block

4-24 LAT/Digital Equipment Corporation/Proprietary and Confidential

= 1-DST_SLOT_ID from the received slot does not equal LOC_SLOT_ID in the
referenced slot block

=] - SRC_SLOT_ID from the received slot does not equal REM_SLOT_ID in the
referenced slot block

s D - Doesn’t matter what SRC_SLOT_ID in the received slot is

s 0-DST SLOT.ID or SRC_SLOT_ID in received slot is zero

DST_SLOT_ID SRC_SLOT_ID Type of siot or action to be taken

L R Data_a, Data_b or Attention slot

L] Ignore (stop slot followed by reassignment of
LOC_SLOT_ID.)

L 0 Stop or Reject slot

0 D Start (D cannot be zero).

1 D ignore slot (session shutting down)

The Start_rcv event <0 D> can occur in any state, but the event is always mapped
onto a new slot block in the halted state.

Events shown in this list but not in the table below are either invalid or are events
that occur as a session shuts down. The list suggests an appropriate action.

4.1.4.9 Host Slot State Table

Table 4-4: Host Slot State Table

State Event Action Next State
Halted start_rcv Init; request session of Starting
user.
Any other No action. Halted
Starting reject_req Send Reject. Halted
accept_req Send Start. Running
Any other No action. Starting
Running Disconnect_req Send Stop. Stopping

Circuit and Session Layers 4-25

Table 4-4 (Cont.): Host Slot State Table

State Event Action Next State
Running Stop_rcv No action. Halted
(cont.)
Run_rcv Process slot. Running
User_data or Set DWF and DRF. Running
User_rcv
last
Any other No action. Running
Stopping Stop_sent No action. Halted
Any other No action. Stopping

A host implementation may choose to always accept a requested session. In this
case the Starting state in the table would not exist. The start_rcv event would es-
tablish a session (assuming sufficient resources). A host service (the terminal class
driver) might then later reject the session via the disconnect_req. This example
would occur during a terminal server user login failure.

4.2 Layer interfaces

4-26

The interfaces presented in this section are not meant to be implemented. The
purpose is to present the control and data flowing through the LAT layers be-
tween the users in a way that unambiguously describes what is required at the
interfaces, but allows implementations the freedom necessary to implement the
functions appropriately for each different system.

The model presented implies that each side of the interface both provides ser-
vice entry points and utilizes service entry points provided to it. Synchronization
across interfaces is the responsibility of the implementation. Specifically, the im-
plementation must assure that all user and Ethernet data link interface events are
processed serially and atomically, in both directions. This requirement arises pri-
marily from the need to maintain predictable states in the shared Circuit and Slot
blocks.

The polling model is used to show correspondence of functions and to reduce
the amount of text necessary to describe the interfaces. Only one interface is de-
scribed at each layer. In fact, implementations would offer only a subset of the
functions described, one subset corresponding to the terminal server and another
corresponding to the host.

LAT/Digital Equipment Corporation/Proprietary and Confidential

In interface calls:

= input parameters are specified first
» input parameters are separated from output parameters by a semicolon
= parameters are separated by commas

s "S.”,"H-”, and "SH-" indicate that a function is available at the terminal
server (”S-"), host ("H-") or both ("SH-").

Within the interface calls, the “reason” argument is defined separately for each
different service class (see the appendices).

4.2.1 Data Types

There are two distinct types of data that can be transferred between session part-
ners: Data streams (Data_a and Data_b) and attention data. The data streams are
flow controlled and error controlled. The attention data is error controlled, but is
not flow controlled. Idempotent operations and data not requiring delivery can be
transferred in attention slots.

The purpose of having both Data_a and Data_b data streams is:

= Status and control information (Data_b) can be transferred as a separaté data
stream. An implementation does not have to embed the status and control
information in the data stream or operate a separate virtual circuit.

= Status and control (Data_b) transfers are phase locked relative to Data_a
transfers. If the Data_b slot indicates a change is to be applied to the Data_a
stream, the change is unambiguously applied to the subsequent Data_a slots.

= The implementation is free to define the entire format of the Data_b slots.
This provides much greater flexibility since the Data_a channel is normally
unformatted.

The rules governing Attention data are different than those governing Data_a and
Data_b. Attention data can be transmitted even though the LOCAL_CREDIT total
in the slot block is zero. The purpose of Attention data is:

= to allow a control slot to preempt any data waiting to be transmitted at the
local system

Circuit and Session Layers 4-27

» to allow a control information to be transferred to the session partner even
though the normal Data_a and Data_b paths are blocked due to lack of flow
control credits

Each service class must define the maximum size of attention data slots. The slot
block must reserve a buffer of this size dedicated to the delivery of Attention data.
A semaphore is set by the slot layer when Attention data is delivered into this
buffer and cleared when the user has process the data. If the semaphore is set
when Attention data is delivered, the Attention data is discarded by the slot layer.

4.2.2 User/Slot Layer Interface

This interface allows users to advertise service, establish user (slot) sessions, and
transmit and receive data. These three categories of service are referred to as di-
rectory services, session control services and data transfer services.

The slot layer itself formats slots for transmission and validates received slots be-
fore passing the data to the user. The slot layer is also responsible for flow con-
trol and periodic service advertisements.

4.2.2.1 Summary Of Functions

4-28

The slot layer offers the following hierarchy of functions to the user layer:

Table 4-5: User/Slot Layer Functions

Function offered: Type of function:
H- start_service_class directory service
S- poll_service_class directory service
S- start_session (connect) ' session'service
H- new_session_poll session service
H- accept_new_session session service
H- reject_new_session session service
SH- poll_session session service
SH- queue_rcv_slot_buffer data service

SH- poll_rcv_done data service

SH- queue_attention_buffer data service

SH- poll_attention_done data service

SH- volunteer_xmt_data_a data service

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 4-5 (Cont.): User/Slot Layer Functions

Function offered: Type of function:
SH. volunteer_xmt_data_b data service

SH- volunteer_attention_data data service

SH- poll_xmt_done data service

SH- end_session (disconnect) session service

H- end_service_class directory service

4.2.2.2 Description Of Functions

The functions offered to the user by the slot layer are:

» H-start_service_class(class, timer;status),
H-end_service_class(class, reason;status),
S-poll_service_class(class;status)

These functions are used to advertise availability and to determine availability
of particular service classes (such as interactive terminals) in the local area.
Conceptually, these functions bracket all of the other services offered to the
users by the slot layer. These are directory services, and are not an integral
part of an implementation. These functions normally control the transmis-
sion and reception of multicast addresses.

= class - service class (see appendicies)

= timer (optional) - specified in seconds, determines frequency of multi-
cast message transmission HOST_MULTICAST_TIMER (see DEFINED
PARAMETERS AND RECOMMENDED OR REQUIRED DEFAULT
VALUES).

= status - one of: class enabled, class disabled.

s S-start_session(rem_srv_nm,loc_srv_nm, class, min_slot_size; handle,status)
SH-end_session(handle, reason;status)

These functions are used to establish a new session and to disestablish an ex-
isting session. These functions bracket the remaining functions offered to a
user by the slot layer; data services cannot be invoked unless the user has
successfully established a session.

s address - Ethernet address of host

Circuit and Session Layers 4-29

rem_service_name - The name of the host service selected by the user.
This field may not be null.

loc_service_name - The name of the local service (username) or null.
class - service class
handle - used to reference the session locally

slot_size - the minimum slot size queued by queue_rcv_slot_buffer for
Data_a, Data_b and Attention slots.

status - one of: request_active, request_rejected (see service class ap-
pendix), insufficient resources to complete request, no such session.

reason - the reason can be an integer value, a bvte counted ASCII string
or both. This reason may be supplied to the users if that is appropri-
ate to the implementation. The reason is conveyed to the remote half-
session by the Stop message and/or a multicast message.

= H-new_session_poll(;handle,status),
H-accept_new_session
(hndl, rem_slt_nm,loc_slt_nm, min_slt_size,mode; status),
H-reject_new_session(handle, reason;status)

These functions are used to accept or reject a request to establish a session.

4-30

handle - used to reference the session locally
rem_slot_name - The slot_name received in the start slot or null.

loc_slot_name - The name of the local slot block (could be the host ser-
vice name or some other name) or null.

slot_size - the minimum slot size queued by queue_rcv_slot_buffer for
Data_a, Data_b and Attention slots.

status - one of: request active, request_rejected(see service class ap-
pendix), insufficient resources to complete request, no such session.

reason - the reason can be an integer value, a byte counted ASCII string
or both.

LAT/Digital Equipment Corporation/Proprietary and Confidential

= SH-poll_session(handle;status, quality)

This function is used to determine the status of existing sessions.
» handle - used to reference the session locally

» status - Starting, Running or Halted (with reason code).

= quality - the quality of the virtual circuit, one of: VC_ok, VC_suspect,
transport disabled.

» SH-queue_rcv_slot_buffer(handle, buffer;status),
SH-poll_rcv_done(handle;buffer, status)

These functions allow slot buffers to be queued and received slot data to be
delivered. The minimum length of this receive buffer is specified in the Start
slot MINIMUM_ATTENTION_SLOT_SIZE and MINIMUM_DATA_SLOT_SIZE
fields. Since slot credits are used for both Data_a and Data_b slots, these slot
receive buffers must be the same minimum size.

s handle - a reference to a local session
= Dbuffer - the starting address and length of a buffer.

= status - one of: buffer queued, no slot data available, slot data available
(Start, Stop, Data_a, Data_b or Reject).

» SH-queue_attention_buffer(handle,buffer;status),
SH-poll_attention_done(handle;buffer, status)

These functions allow the user to receive out of band data. Data delivered by
this function is not sequenced relative to the data delivered via poll_rcv_done.
If the data delivered by this function is not received faster than it is delivered,
new data may be discarded by the slot layer.

s handle - a reference to a local session
» buffer - the starting address and length of a buffer.

= status - one of: buffer queued, no data available, data available, data
available and data missed.

e SH-volunteer_xmt_data_a(handle, buffer;status),
SH-volunteer_xmt_data_b(handle, buffer;status),
SH-volunteer_xmt_attention(handle, buffer;status),
SH-poll_xmt_done(handle;buffer, status)

Circuit and Session Layers 4-31

These functions allow data and attention slots to be transmitted to the session
partner. Attention data is not flow controlled. Attention data (out of band) is
-not blocked by the normal data (in band).

» handle - a reference to a local session
= buffer - the starting address and length of a buffer.

s status - one of: buffer queued, data transmitted.

4.2.3 Slot/Virtual Circuit Layer Interface

This interface allows the slot layer to establish virtual circuits and to transmit and
receive messages and multicast datagrams.

The virtual circuit layer maintains virtual circuits to one or more remote systems,
transmits and receives messages, runs a timer, transmits and receives multicast
datagrams and notifies the slot layer about changes in service.

4.2.3.1 Summary Of Functions

In summary, the virtual circuit layer offers the following hierarchy of functions to
the slot layer:

4-32 LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 4-6: Slot/Virtual Layer Functions

Function offered:

SH-
SH-
SH-
SH-
S.-

H-

SH-
SH-
SH-
SH-
SH-
SH-

queue_rcv_datagram
poll_rcv_done
queue_transmit_datagram
poll_transmit_done
VC_start
accept_virtual_circuit
poll_virtual_circuit
poll_receive_message_done
queue_transmit_message
poll_transmit_message_acked
transmit_unacknowledged_queue

VC_stop

4.2.3.2 Description Of Functions

The specific functions offered to the slot layer by the virtual circuit layer are:

S-Virtual_Circuit_start(node_name, max_sessions; handle, status),
H-accept_virtual_circuit(handle;status),
SH-Virtual_Circuit_stop(handle;status)

These functions allow the slot layer to establish and disestablish virtual cir-
cuits. The slot layer must poll the virtual circuit layer to discover the state

of virtual circuits and the state of the underlying data link itself. The host
node must not dally in responding to a request to start a virtual circuit. If the
host node wishes not to have any new circuits established, all service classes
should be disabled and the appropriate status should be indicated in the mul-
ticast message transmitted by the host periodically. This multicast message

. should be transmitted at least once before host services are discontinued.

= address - Ethernet address of destination system

= node_name - The name of the target node. Used as the virtual circuit
name CIRCUIT_NAME.

Circuit and Session Layers 4-33

4-34

» max_sessions (optional) - the maximum number of session that will ever
be active simultaneously. If supplied by the terminal server, a host im-
plementation might avoid allocating unnecessarily large data structures.

» handle - handle used to reference the virtual circuit locally (a reference
to the circuit block)

= status - one of: insufficient resources to complete request, no such cir-
cuit.

H-poll_virtual_circuit(;handle, status, quality),
SH-poll_virtual_circuit(handle;status, quality)

These functions allow the existence of new sessions and the status of existing
sessions to be determined.

» handle - handle used to reference the virtual circuit locally
» status - one of: Starting, Running or Halted (with reason).

» quality - the virtual circuit quality, one of: VC_ok, VC_suspect, Ethernet
data link disabled.

SH-queue_receive_datagram(buffer;status),
SH-poll_rcv_done(;handle, buffer,status)

This function gives the virtual circuit layer datagram buffers which are in turn
queued to the Ethernet data link. These datagram buffer are filled by multi-
cast datagrams and by virtual circuit messages.

\

= Dbuffer - address and length of a buffer.

s status - one of: buffer queued, no data available, multicast datagram
available.

H-queue_transmit_datagram(buffer;status),
H-poll_transmit_done(;buffer, status)

These functions queue datagrams to the Ethernet data link for transmission
and poll for the transmit completion. These functions are used to transmit
the multicast (or possibly other types) of datagrams.

= buffer - address and length of a buffer.

= status - one of: buffer queued, transmitter error.

LAT/Digital Equipment Corporation/Proprietary and Confidential

» SH-queue_transmit_message(handle,buffer;status),
SH-poll_transmit_message_acked(handle;buffer;status)

These functions allow the slot layer add messages to the virtual circuit laver
unacknowledged message queue and to receive them back after they have
been acknowledged.

» handle - handle used to reference the virtual circuit locally
= Dbuffer - address and length of a message.

= status - one of: message queued for transmission or message
transmitted.

= SH-transmit_unacknowledged_queue(handle)

This function caused all outstanding unacknowledged messages to be retrans-
mitted.

» handle - handle used to reference the virtual circuit locally

= SH-poll_receive_message_done(handle;buffer, status)

This function allows the slot layer poll the transport layer for any received
messages.

= handle - handle used to reference the virtual circuit locally
= buffer - address and length of a message.

= status - one of: no data available, message available..

4.3 Axioms And Algorithms

This section details a set of algorithms that would produce the correct behavior at
the user and Ethernet data link interfaces. While these algorithms would produce
the desired result, any number of equivalent algorithms that produce an equiva-
lent result at the same two interfaces would serve equally well.

The whole architecture can be characterized as two (host and terminal server)
two-port black boxes. Compressing both the host and the terminal server into
single diagram, one might visualize the internal structure of the LAT architecture
as:

Circuit and Session Layers ' 4-35

Figure 4-1: LAT Layers Interface

USER LAYER

volunteer Fomm + receive
slot data | sLoT | slot data
- - —— | BLOCK |=mmommm oo
| | (shared)| . ~
v tom————— + | EC
L, + - —_— -+ oL
timer | slot | pass credits | slot | N A
---------- >| multiplexer |<-=-—--cececcmcceecmecco——| demultiplexer | NNY
+--| (slots into msg)| pass control (in host)| (msg into slots)| EE
T + 4 + CR
[~ jqueue DT
transmit| | ettt + | |receive
v message v | | CIRCUIT | | vbuffer
+em -4 - -] BLOCK | B
transmit |~ | (shared) | ~
unacked | |return R +
queue | |acknowledged deliver| | T
v |message message| v R
O + + - + AL
| nessage | remove acked message | message | N A
+->| transmitter R | receiver | S Y
| (virtual circuit |<e-eeceocecccccmccaaaaa- | (virtual circuit | P E
| maintenance) | transmit unacked queue] maintenance) | OR
+ — O + R
transmit | transmit ~ receive * queue | T
datagram v complete | datagram | receive v
ETHERNET DATA LINK LAYER

The following process abstractions are (somewhat arbitrarily) created within the
slot layer to help present a detailed model of the internal flow of control and data

within the layer:

s slot_demultiplexer - turns a message into one or more slots

slot_multiplexer - turns one or more slots into messages

session_starter - allocates a SLOT_BLOCK and initializes a half-session

session_ender - closes a half-session and deallocates the SLOT_BLOCK

administrator - advertises service (in host) and builds lists (in terminal server)

The following process abstractions are (again somewhat arbitrarily) created within
the virtual circuit layer to help present a detailed model of the internal flow of
control and data within the laver:

s circuit_starter (terminal server only) - starts new virtual circuits

4-36 LAT/Digital Equipment Corporation/Proprietary and Confidential

» circuit_ender - stops an existing virtual circuit

= message_receiver - receives datagrams from the Ethernet data link, validates
the received datagrams (turning each into a message) and passes the message
on to the slot layer

= message_transmitter - receives messages from the slot layer, maintains a
queue of unacknowledged messages, and transmits datagrams on the Ethernet
data link.

4.3.1 Virtual Circuit Layer

Thie algorithms described in this section correspond to the state table actions, not
the state table events.

4.3.1.1 Circuit Starter (Terminal Server Only)

When a request is received to start a new virtual circuit (via the VC_start func-
tion), the terminal server:

» allocate a circuit block (see state diagram) and buffers. Allocate NBR_DL_
BUFS +1 receive message buffers and one transmit message buffer where
NBR_DL_BUEFS is the value sent in the Start message.

» queue the receive message buffer(s) to the Ethernet data link via the queue_
rcv_datagram function

= store the transmit message buffer in the circuit block

» Translate the CIRCUIT_NAME into a 48-bit Ethernet address and load this
address into the REM_ADDRESS field of the Circuit Block.

= generate a Start message (using the transmit. message buffer) and queue it to
the Message Transmitter via the queue_transmit_message function

4.3.1.2 Data_Volunteered

If Slot Data is volunteered:

= Set DRF in the coresponding slot block.

= If a credit exists to transmit the Slot Data, set the corresponding Circuit Block
DWEF.

Circuit and Session Layers 4-37

4.3.1.3 Credits Returned

If:

s the current credit total is zero and
= a credit is being added to the Slot Block and

= the DRF is set in the Slot Block

then set the corresponding Circuit Block DWF.

4.3.1.4 Circuit Ender

When a request is received to stop an existing virtual circuit (via the VC_stop func-
tion), the Circuit Ender generates a Stop message and queues it to the Message
Transmitter via the queue_transmit_message function and indicates in the circuit
block that the virtual circuit is in the Halted state.

In the host, if service is being terminated, the Circuit Ender should also send at
least one multicast datagram to indicate that service has been ended.

4.3.1.5 Message Receiver

4-38

The message receiver validates received messages. The Ethernet data link verifies
the:

= Ethernet destination address of the frame matches that of the local system

= LAT protocol type (depending on implementation)

After these fields are checked, the message type is"determined from the LAT
header MESSAGE_TYPE field. The received message is then mapped as one of
the message types (see STATE DIAGRAMS section). If any of the actions de-
scribed fails, the message is discarded without perturbing the existing circuit state.
In any case, the receive buffer is always queued back to the Ethernet data link
quickly with respect to SERVER_CIRCUIT_TIMER.

= Start message (slave) -
» discard message if the SRC_CIR_ID field of message is zero.

= Match to an existing circuit block or, if no circuit block exists, allocate
a circuit block and buffers. If insufficient resources exist to accomplish
this, a best effort attempt is made to send a Stop message. Normally
one receive message buffer is allocated. If the NBR_DL_BUFS field in the

LAT/Digital Equipment Corporation/Proprietary and Confidential

Start message response will be non-zero, that many additional receive
buffers are allocated. Two transmit message buffers plus (optionally) the
value in the NBR_DL_BUFS in the received Start message are allocated.
(One transmit message buffer is consumed by a message containing data
with the RRF flag clear since it will not be acknowledged; so a second
buffer is required which, if it is the last, will always have RRF set to force
a terminal server response).

= queue the receive message(s) to the Ethernet data link via the queue_rcv_
datagram function

= store the available transmit message buffers in the circuit block

s copy the SRC_CIR_ID field from the received message to the REM_CIR_
ID field of the circuit block, copy the SRC_ADDRESS from the received
message into the Circuit Block and copy the MASTER_NODE_NAME
from the Start message in to the Circuit Block.

= generate a Start message (normally) or generate a Stop message (with a
reason specified) and queue it to the Message Transmitter via the queue_
transmit_message function

= Start message (terminal server) -

= If the SRC_CIR_ID is non-zero, match to an existing circuit block. If no
circuit block is referenced (invalid message) discard the message and
send a Stop message addressed too SRC_CIR_ID. If the SRC_CIR_ID is
zero it is an illegal message. If a valid Start message is received, SRC_
CIR_ID of the received message should be copied to the REM_CIR_ID
field of the referenced circuit block.

= if the NBR_DL_BUFS field in the received Start message is non-zero, op-
tionally allocate that many additional transmit buffers and store them in
the circuit block.

= Run_msg rcv (Host and terminal server) -

» If the MSG_SEQ_NBR is not equal to ACK+1 (modulo 256) in the circuit
block, set the NBR_SLOTS in the message header to zero. In the termi-
nal server only, if the MSG_SEQ_NBR is not equal to ACK+1, copy the
SOURCE_ADDRESS of the received message into the CIRCUIT_BLOCK
REM_ADDRESS field - this will allow dynamic path failover if a host
node has access to two different Ethernet ports.

s In terminal server, if RRF is set, set DWF,

Circuit and Session Layers 4-39

= request the Message Transmitter to return all messages acknowledged by
the value MSG_ACK_NBR received in the message. This algorithm must
be done modulo 256.

» In the host node, stop the HOST_RETRANSMIT_TIMER if all messages
are acknowledged.

» If the MSG_SEQ_NBR is equal to ACK+1 (modulo 256) in the circuit
block then increment ACK in the circuit block.

= pass the message to Slot demultiplexer
= Stop_rcv (or Reject_rcv) -
= notify slot demultiplexer of circuit state transition
= indicate state of circuit block is Halted
=« requeue the datagram buffer to the Ethernet data link

Any time the circuit goes into the Halted state, the circuit block can be deallo-
cated along with its associated resources.

A special use of the DST_CIR_ID field occurs whenever the host node and termi-
nal server are out of synchronization due to crashes, prolonged communication
link failures or nonsequential message delivery. In these cases, the remote system
might ignore the message (possibly a delayed Stop message) in order to preserve
the currently Running virtual circuit. In order to close this half established (half-
open session), the SRC_CIR_ID field is copied from the Running message into the
REM_CIR_ID field of the circuit block and a Stop message is generated. This will
cause the remote system to reinitialize.

Any fields not defined by the LAT architecture (labeled UNPREDICTABLE in the
message formats) are ignored.

4.3.1.6 Message Transmitter

4-40

The terminal server message transmitter normally maintains an unacknowledged
transmit queue of one entry, while the host node normally maintains a queue of
one or two entries. If extra data link buffers are allocated, these queues can be
longer.

The Message transmitter gets three types of requests:

= transmit unacknowledged transmit queue - this causes the Message Transmitter
to start transmitting the head of the queue, wait for the transmit complete

LAT/Digital Equipment Corporation/Proprietary and Confidential

event, and transmit the next message until the entire queue has been emp-
tied. If this was in progress when the request to retransmit the queue is
made, the request is ignored.

Before a message is retransmitted, the MSG_ACK_NBR field in the message
header is copied from the circuit block field ACK.

The Retransmit limiter is a part of the message transmitter. Every time the
head of the unacknowledged transmit queue is transmitted, the retransmit
counter is incremented (either HOST_RETRANSMIT_COUNTER or SERVER_
RETANSMIT_COUNTER). Every time the head of the unacknowledged trans-
mit queue changes, Retransmit_Counter is zeroed. If the retransmit counter
reaches LAT_MESSAGE_RETRANSMIT_LIMIT, the Resend_limit event oc-
curs. This event (Resend_limit) should cause users to be notified of the unac-
ceptable virtual circuit quality.

= queue/dequeue transmit message - this adds and deletes entries from the un-
acknowledged transmit queue. As each new message is added to the queue,
via the queue_transmit_message function, the message the header is created
by:

» copying the REM_CIR_ID from the circuit block to the message field
DST_CIR_ID

» copying the LOC_CIR_ID from the circuit block to the message field
SRC_CIR_ID

» (host only) the RRF flag is:
= setif:
1. the Circuit Block DWF is set or
2. this is the last transmit message buffer
3. credit consuming slots were sent in last message
4

(optionally) if new data is expected via the volunteer functions
- this may cause better behavior under load by preventing un-
necessary “unsolicited” messages from being sent by the host.
This state could be anticipated if data were delivered but not
echoed for instance.

s cleared otherwise.

» (host only) copying the RRF flag state into the message header from the
circuit block

Circuit and Session Layers 4-41

s copving the NXMT circuit block field into the message header MSG_
SEQ_NBR and incrementing NXMT

= transmit datagram - this function transmits the buffer and returns the trans-
mit complete event, along with the buffer, to the requestor.

Retransmission of the unacknowledged transmit queue (the first of the three
types of request described above) in the host node occurs at the rate HOST_
RETRANSMIT_TIMER seconds. This causes messages to be retransmitted about
every one or two seconds.

In the terminal server, this would be an unsatisfactory arrangement due to the
rate at which retransmissions would occur (the value used by SERVER_CIRCUIT_
TIMER is typically 80 milliseconds). Because the most likely reason a message

is being retransmitted is that the host node has not had a chance to process the
received message, the terminal server retransmission of messages must occur at
dramatically reduced rates. One acceptable policy is to retransmit at SERVER_
RETRANSMIT_TIMER intervals after the original message was sent.

NOTE

In an actual implementation, the host node may be over-
loaded and unable to respond to received buffers. The re-
transmit policy is based on the assumption that the host
node has not responded because it has not processed

the buffer. This policy assures that the host node is not
swamped with duplicate buffers during heavy host load-
ing.

4.3.1.7 Circuit Timer Policy

The circuit timers, in both the terminal server and the host node, should be re-
set both when the message is queued for transmission and when the transmit
completes. This policy prevents multiple terminal servers from synchronizing by
utilizing the Ethernet backoff algorithm.

4.3.1.8 Buffering

4-42

The LAT architecture assumes that any receive buffers assigned to the Ethernet
data link cannot be preempted by other architectures that might share the data
link. Failure to adhere to this policy may cause LAT to be unable to deliver data
in a timely fashion.

In the case of a host implementation, the initial processing of received data link
buffers should occur at high priority. Received messages that are out of sequence
or received start messages that cause the current total to exceed the value LAT_

LAT/Digital Equipment Corporation/Proprietary and Confidential

MAX_SERVERS, must be rejected immediately and requeued to the Ethernet data
link to allow new data messages to be stored until they can be processed. Failure
to adhere to this policy can cause long delays since host buffers can be filled by
duplicates causing non-duplicates to not be delivered. If the retransmission policy
is to wait one second, this failure mode will cause one second delays as perceived
by the user.

4.3.2 Slot Layer

The algorithms described in this section correspond to the state table actions, not
the state table events.

4.3.2.1 Host System Management

When the start of service is announced in the host (start_service_class function),

a transmit datagram must be allocated and reserved for the purpose of transmit-
ting the multicast datagram periodically. In addition, LAT_MAX_SERVERS receive
datagram buffers must be allocated and queued via the queue_receive_datagram
function. The value LAT_MAX_SERVERS is equal to the number of terminal
servers that the host node wishes to allow to startup simultaneously.

These same resources must be recovered when the end of service is announced.

« Start multicast transmit and start multicast timer for retransmission.

= Stop the HOST_RETRANSMIT_TIMER (the timer could not be active since no
virtual circuits are active).

4.3.2.2 Terminal Server System Management

When service is started in the terminal server:

» at least one buffer should be queued to the data link to receive multicast ad-
dresses.

» start the server circuit timer in anticipation of virtual circuits being activated
(it should already be running).

Policies might reasonably be modified or extended by each different service class.

Circuit and Session Layers 4-43

4.3.2.3 Session Starter (Terminal Server)

This process allocates and initializes a slot block upon receiving a call from the
start_session function.

One important responsibility of the session starter of the terminal server is trans-
lating the REM_SERVICE_NAME supplied in the start_session function into a
node_name to be passed in the VC_START function when a new virtual circuit
must be established.

4.3.2.4 Session Starter (Host)

A host service implementation can choose between two models. In one model,
received Start slots cause the user to receive a request to start a new session. The
user can then either accept or reject the session. The user should not procrasti-
nate in making this decision.

The second model does not give the host service this choice, but instead accepts
or rejects the session without notifying the service. Later the host service may
stop the session with a reason.

If a DST_SLOT_NAME is specified in the start slot, the host session can be bound
to a specific host service (host port such a specific controller or unit) associated
with the slot name or can be bound to a more abstract service, such as electronic
mail.

4.3.2.5 Slot Demultiplexer

4-44

This process receives its input and control from the poll_rcv_done function. Each
such message received has been validated on the virtual circuit by the message
receiver.

Messages contain zero or more slots. A slot can be a Start, Data_a, Data_B,
Attention, Reject, or Stop slot.

Slots are validated by using the received slot’s DST_SLOT_ID field to reference

a slot block. The referenced slot block’s LOC_SLOT_ID field must equal the re-
ceived slot’s DST_SLOT_ID field. Additionally, the received slot’'s SRC_SLOT_ID
field must equal the slot block’s REM_SLOT_ID field. The slot type field must be
consistent with the state block receiving the slot. (See the section on slot mapping
onto state diagram.)

If the terminal server receives a start slot, the slot’s SRC_SLOT_ID field is copied
into the referenced slot block’s REM_SLOT_ID field.

LAT/Digital Equipment Corporation/Proprietary and Confidential

In the host, the slot_demultiplexer creates and initializes a slot block if a start slot
is received and passes the slot block to the appropriate class of service via the
new_session_poll function. The siot block is a data structure shared by all slot
layer processes and is accessed by the user processes. (see slot state variables sec-
tion).

The host may use the DST_SLOT_NAME supplied in the Start slot to bind the ses-
sion to a particular service access point.

If any credits are received in a slot, the credit field value is added into the LOCAL_
CREDIT field of the referenced slot block to create a new total.

Data_a and Data_b slots are delivered via the poll_rcv_done; Attention slots are
delivered via poll_attention_done; Start and Stop slots are delivered via the poli_
session function.

A Stop slot causes the slot block to be deallocated and the event is delivered to
the user via the poll_session function.

In the host, after the slot demultiplexer has finished processing the received mes-
sage, the message is requeued to the virtual circuit layer and control is passed to
the slot multiplexer.

4.3.2.6 Slot Multiplexer

In the host, this process receives control soon after the slot demultiplexer exe-
cutes. This transfer of control can be immediate or can be delayed in an effort to
return more data in the response. This transfer of control between the slot de-
multiplexer and the slot multiplexer in the host does not have to preserve the "se-
rial and atomic” requirement stated in the layer interface introduction. This delay
should never exceed about 1/2 the SERVER_CIRCUIT_TIMER; the response gen-
erated must be received by the terminal server before SERVER_CIRCUIT_TIMER
expires a second time.

In the terminal server, this transfer of control is timer based and cannot be less
than SERVER_CIRCUIT_TIMER milliseconds.

When reading the algorithms, keep in mind that "slot data” can be Data_a, Data_
b, Attention data or REMOTE_CREDITS waiting to be transferred.

Before accepting any data from users, the process verifies that at least one trans-
mit message buffer is available in the circuit block. If none is available, then
execute the transmit_unacknowledged_transmit_queue function. The follow-

ing algorithm is executed by the terminal server whenever control is received

Circuit and Session Layers 4-45

from the timer event and by the host whenever control is received from the slot_
demultiplexer. In the host, transfer of control is also received from the volunteer
functions if the circuit block RRF flag is clear (the Send_data event):

» In the host, if the DWF is clear:

= dequeue a transmit message buffer from the circuit block XMT_BUFFER_
FREEQ (if it is empty, execute the transmit_unacknowledged_queue func-
tion and exit)

= generate a new message header

= execute queue_transmit_message

= execute transmit_unacknowledged_queue
s In the terminal server, if the DWF is clear, exit.
= if the DWF is set:

1. dequeue a transmit message buffer from the circuit block XMT_BUFFER_
FREEQ (if it is empty, go to step 8 - EXIT)

2. generate a new message header

3. UNTIL the message buffer is filled or UNTIL all slots have DRF clear or
UNTIL all slots with DRF set have no LOCAL_CREDITS left: Find the
next slot block with DRF set in a round-robin fashion and:

— if Attention data is volunteered, format attention slot in message
buffer, clear DRF if no slot data is left. Exit back to UNTIL loop.

— if Data_a or Data_b is signaled, decrement LOCAL_CREDITS (if
none available, go to next step), format Data a or Data_b slot
header in message buffer, copy REMOTE_CREDITS field from slot
block into slot header and zero and REMOTE_CREDITS field, copy
data into slot and clear DRF if no slot data is left. Exit back to
UNTIL loop.

— if REMOTE_CREDITS is non-zero (because LOCAL_CREDITS is
zero in previous step or because no Data_a or Data_b has been
volunteered), format Data_a slot header in message buffer, copy
REMOTE_CREDITS field from the slot block into slot header and
zero the slot block REMOTE_CREDITS field, and clear DRF if no
slot data is left. Exit back to UNTIL loop.

4. queue the buffer via queue_transmit_message

4-46 LAT/Digital Equipment Corporation/Proprietary and Confidential

5. if all slot block DRF flags are clear, clear DWF.

6. In the host, if control was received via a volunteer function, the HOST_
RETRANSMIT_TIMER is started. (Whenever this timer expires, all unac-
knowledged messages are retransmitted.)

7. If more slot data is available, go to step 1.

8. Exit - execute the transmit_unacknowledged_queue function.

4.3.2.7 Session Ender

The terminal server cannot stop a session while it is in the Starting state. This is
because the handle on the remote slot block is not known until a response to the
start slot is received. Thus the special state Abort_start is entered upon receiving a
disconnect_req. A slot block in this state cannot be used to start a new session.

Otherwise, either the host service or the terminal server user can issue an end_
session (disconnect) function call.

4.3.2.8 Flow Control

There are two levels of flow control: One in the slot layer and one in the virtual
circuit layer.

4.3.2.9 Slot Flow Control

The session user that owns a flow control credit (credit is held on user’s behalf
by the slot layer), is guaranteed that the session partner will be able to receive
(and buffer) at least one Data_a or Data_b slot. In an implementation, slot data
is copied from a receive message buffer in the virtual circuit layer into slot buffers
supplied by the users. This is the model described in this document.

These flow control credits are consumed by Data_a and Data_b slots if, and only
if, the SLOT_BYTE_COUNIT field is non-zero.

As a CPU performance optimization, this can be implemented in different way.
CPU usage can be traded for memory usage. The users can supply data link sized
slot buffers (LAT_MIN_RCV_DATAGRAM_SIZE), and the entire buffer can be
passed to the user without copying data. This method requires that an occupancy
count be maintained for each buffer since buffers can be occupied by one or more
slots destined for different users. In this way received slot data does not have to
be copied. However prodigious amounts of memory is consumed. For instance,
to extend two slot credits for each of 8 users, 2x8x1518 (24,288) bytes of buffering
is used instead of 2x8x255 (4080) bytes of buffering,.

References are made to “slot” flow control throughout the document. The sec-
tions SLOT MULTIPLEXER and SLOT DEMULTIPLEXER in the AXIOMS and

ALGORITHMS section define how slot flow control is applied to a running slot
session.

4.3.2.10 Message Buffer Flow Control

4.3.2.11

In the virtual circuit laver, when a new circuit is to be established, a fixed number
of datagram buffers is allocated before the Start message is sent. These buffers are
queued as receive buffers to the Ethernet data link layer. The number of buffers
queued as receive buffers minus one is then transmitted in the Start message
NBR_DL_BUFS field.

In the terminal server, the number of transmit buffers allocated should be equal to
the value NBR_DL_BUFS received in the Start message plus one.

In the host, the number of transmit buffers allocated should be equal to the value
NBR_DL_BUFS received in the Start message plus two. This extra buffer is used
to sent the one possible "unsolicited” message when the virtual circuit is balanced
(RRF clear).

In general, this document does not directly refer to flow control at the virtual cir-
cuit level (references to the term “flow control” are normally references to slot
flow control). Instead, references are made to the availability of data link buffers
(XMT_BUFFER_FREEQ in the circuit block). Availability of a data link message
buffer corresponds to the availability of a credit to transmit a message buffer
since these buffers remain on the unacknowledged transmit queue until they are
acknowledged by the receiving process. This acknowledgment guarantees that
the remote system has emptied and requeued the data link buffer to receive a
new message. See the AXIOMS and ALGORITHMS section titled MESSAGE
TRANSMITTER and MESSAGE RECEIVER.

Protocol Versions And ECO Control

Multicast messages for each service class specify LOW_PRTCL_VER, HIGH_
PRTCL_VER, CUR_PRTCL_VER, CUR_PRTCL_ECO.

The start message specifies PRTCL_VER and PRTCL_ECO.

The HIGH_PRTCL_VER specifies the highest (most recent) protocol version that
the system supports.

The LOW_PRTCL_VER specifies the lowest (oldest) protocol version that the sys-
tem supports.

The CUR_PRTCL_VER specifies the protocol version of the message. In the case
of the Start message, it also guarantees that all other messages will also be of the
same protocol version as the Start message.

The PRTCL_ECO specifies the Engineering Change Order level of the message.
Again, in the case of the Start message, it also guarantees that all Run and Stop
messages will also be of the same ECO level as the Start message. ECOs are
made to a protocol version only if the change will not adversly affect the un-
changed systems already in the field. This means that existing systems should
continue to perform implemented functions, but from the point of view of the sys-
tem implementing higher ECO level, not all of its functionality will be supported
by the lower level system.

For any given protocol version, ECOs are backward compatible. If a change will
make systems incompatible in the field, then a new (higher) protocol version
number must be allocated.

4.3.3 Other Processes
4.3.3.1 Keep-Alive Process

The keep-alive process is relevant to the terminal server only - the host does not
implement a keep-alive process. The purpose of the keep-alive process is to no-
tify the users of an idle virtual circuit that the circuit is suspected to be inopera-
ble. This is is accomplished by causing data to be transmitted at least every LAT_
KEEP_ALIVE_TIMER seconds. The keep-alive process accomplishes this by sim-
ply guaranteeing that the data waiting flag (DWF) is set at least every LAT_KEEP_
ALIVE_TIMER seconds.

Setting DWF causes a sequenced message to be sent. If the message repeat-
edly fails to be acknowledged, the LAT_ MESSAGE_RETRANSMIT_LIMIT will be
reached, and the users notified of the unacceptable- circuit quality.

4.3.3.2 Progress Process

In theory, the virtual circuits described in this document cannot “deadlock”.
However, cosmic radiation, UNIBUSes and other equally defenseless culprits are
often blamed for events that “cannot” happen.

As insurance against such unlikely events, a terminal server can implement a
progress process. After the LAT_ MESSAGE_RETRANSMIT_LIMIT is reached,

an implementation may choose to continue sending messages every LAT_KEEP_
ALIVE_TIMER seconds. If the value of LAT_ MESSAGE_RETRANSMIT_LIMIT
should reach a ridiculous value, such as 500 messages, or if more than an hour
of real time has elapsed, the circuit should be stopped by transmitting a stop mes-
sage with an appropriate reason.

Circuit and Session Layers 4-49

A host implementation must run an additional timer when the RRF flag is clear in
the circuit block. If a message is not received within a reasonable time (as little as
2 or 3 times the LAT_KEEP_ALIVE timer seconds or as long as a few days), the
host may wish to generate a Stop message to stop the circuit. If host implemen-
tation lacked this timer, it would not discover that a terminal server had crashed
if the crash occurs while the host RRF flag was clear. The hazard is that host re-
sources are dedicated to the virtual circuit until a user from the same terminal
server again requests service from the host.

4.4 Message Formats

Bits are transmitted onto the Ethernet low order bit first. When fields are con-
catenated, the right hand field is transmitted first. Numeric fields more that 8-bits
long are transmitted least significant byte first.

Fields are represented as bit streams, right to left. All fields are an integer multiple
of eight bits. The symbol “=" is used to indicate fields of varying or indeterminate
length.

A message transmitted from a master to a slave (from a terminal server to a host
node) always has the MASTER bit of the message type field set to 1. A message
transmitted from a slave to a master always has the MASTER bit of the message
type field set to 0. Notice that this makes it possible to implement both ends of
the asymmetric LAT architecture simultaneously in a single system.

Legal values of the LAT messages are restricted by the LAT architecture to be in
the range of 576 through 1518 bytes. Node may receive an unsolicited LAT mes-
sage (Start) of maximum LAT message length and is responsible for allocating
enough buffers to accomodate this message. Sizes of the solicited messages are
specified during the virtual circuit establishment process through the LAT_MIN_
RCV_DATAGR_SIZE value in Start messages. Once a circuit is established, all
messages exchanged between those nodes are limited by the specified values.
Note that specified sizes can be different on both sides of the connection. Nodes
can also receive unsolicited Command and Solicit information messages. The
size of the message that can be processed by the sending node is specified in the
DATA_LINK_RCV_FRAME_SIZE value.

A LAT message is defined as only those fields specified in this specification;
datalink fields are not included. l.e. the actual length of the LAT message that
can be sent to the transmitting node equals the value given in those fields minus
18. (18 is the amount of overhead required by the standard Ethernet datagram.
The Ethernet datagram is no longer part of the LAT specification, but compatibil-
ity requires addition of this value.)

4-50 LAT/Digital Equipment Corporation/Proprietary and Confidential

Following rules define the value of the slot count byte field in the slot header:

= value of the slot count byte must include all bvtes present in the slot;
» all fields defined by the architecture must be present in the slot;

= parameter code 0, indicating the end of the parameters list, must be present
in the slot.

Exceptions to these rules are noted in the relevant sections.

When an error reason value of zero is specified, no reason has been supplied.

4.4.1 Virtual Circuit Message Header
All messages have the same header format:

Figure 4-2: Message Header Format

1

5 0
| NBR_SLOTS | MSG_TYPE |M|R|
+ - —t
| DST_CIR_ID 1
+ +
[SRC_CIR_ID |
+ ———+
| MSG_ACK_NBR | MSG_SEQ_NBR |
+ +

» R (1 bit) - RRF flag. This flag is clear for all message types except for Run
messages transmitted from the host node to the terminal server which require
responses. This flag is never set in any message transmitted by the terminal

server.
= M (1 bit) - MASTER flag. This flag is set in all messages sent by the termi-
nal server to the host node. Messages sent by the host node to the terminal
server always clear this flag.
= MSG_TYPE (6 bits) - the message type field:
= Start message have this field set to 1.
= Run message have this field set to 0.

» Stop message have this field set to 2.

s NBR_SLOTS - number of slots in the message

Circuit and Session Layers 4-51

» DST_CIR_ID - one of the virtual circuit identifications

s SRC_CIR_ID - one of the virtual circuit identifications

» MSG_SEQ_NBR - message sequence number (modulo 256)

» MSG_ACK_NBR - message acknowledgment number (modulo 256)

4.4.1.1 Start Message Format

4-52

Start message headers have MSG_TYPE fixed at 1, the NBR_SLOTS equal to zero.
Additionally, start messages transmitted by the terminal server must specify the
DST_CIR_ID as zero and the SRC_CIR_ID as non-zero. Start messages transmitted
by the host node must specify these same two fields as non-zero.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 4-3: Start Message Format

5 0
e ettt L e +
| LAT_MIN_RCV_DATAGRAM_SIZE |
Fommm e ———-— tormrrc e crn————- +
| PRTCL_ECO | PRTCL_VER |
+ - et - -t
| NBR_DL_BUFS | MAX_SIM_SLOTS |
torr—e e ——— R +
| KEEP_LIVE_TIMER| SRV_CIRCT_TMR |
+ R ekttt +
| FACILITY_NUMBER |
+ — - ———t
| PROD_VERS_NUMB | PROD_TYPE_CODE]|
trmr e ——— R +

| SLAVE_NAME_LEN|

ot e s om0 e e +
= SLAVE_NODE_NAME =
+ T . +

|MASTER_NAME_LEN |

tPrmmr e ———— +
= MASTER_NODE_NAME =
temmr e ccc - R ettt +

| LOCATION_LEN |

+ +
= LOCATION_TEXT =
+ + +
| PARM_LEN | PARM_CODE |
+ tme— -+
- PARM_DATA =
+ +
| PARM_CODE, PARM_LEN, and |
= PARM_DATA repeated until =
| PARM_CODE is equal to zero. |
Fem e e, e e - +
= UNPREDICTABLE =
to—— - +

» LAT_MIN_RCV_DATAGRAM_SIZE (2 bytes) - an implementation must spec-
ify the maximum LAT message size it is capable of processing. Actual length

of a LAT message is LAT_MIN_RCV_DATAGRAM_SIZE-18.

= PRTCL_VER (1 byte) - The protocol version of this message and of all mes-

sages transmitted during this session (current version is 5).

» PRTCL_ECO (1 byte) - The protocol version ECO (Engineering Change

Order) of this message and of all messages transmitted during this session
(current ECO is 1).

Circuit and Session Layers

4-53

4-54

MAX_SIM_SLOTS (1 byte) - maximum number of simultaneous sessions
that can be opened on this virtual circuit. Value is suggested by the termi-
nal server. Value supplied by the host must be used as the maximum by the
terminal server,

NBR_DL_BUFS (1 byte) - number of extra data link buffers queued. This cor-
responds to the number of additional messages (beyond the normal one mes-
sage) that can be generated by the slot multiplexer on the system receiving
this start message.

SERVER_CIRCUIT_TIMER (1 byte unsigned) - Circuit timer in 10 millisecond
intervals. Specified by terminal server. This field is ignored when received
from the host. A value of zero in this field is illegal.

KEEP_ALIVE_TIMER (1 byte unsigned) - Value specified in seconds by termi-
nal server. This field is ignored when received from the host by the terminal
server. A value of zero indicates that no keep-alive message will be sent.

FACILITY_NUMBER (2 bytes) - Value specified by the server and host. This
value is not restricted. It is intended to allow terminal servers and hosts to be
uniquely numbered within a local area. A privileged user should supply this
value to the implementation.

PROD_TYPE_CODE (1 bytes unsigned) - The product type codes are assugned
by Digital Equipment Corporation.

PROD_VERS_NUMB (1 byte unsigned) - Product version number.

SLAVE_NAME_LEN (1 byte unsigned) - The byte count of the next field. A
value of zero in this field is illegal.

SLAVE_NODE_NAME (SLAVE_NAME_LEN bytes) - Name of the slave node
of the connection.

MASTER_NAME_LEN (1 byte unsigned) - The byte count of next field. A
value of zero in this field is illegal.

MASTER_NODE_NAME (MASTER_NAME_LEN bytes) - Name of the master
node of the connection.

LOCATION_LEN (1 byte unsigned) - Byte count of LOCATION_TEXT field.
This field may be zero.

LOCATION_TEXT (LOCATION_LEN bytes) - The text within this field should
describe the physical Jocation of the system that transmits this message.

LAT/Digital Equipment Corporation/Proprietary and Confidential

» PARM_CODE (1 byte) - A parameter code. No parameter codes are currently
defined. The value zero indicates the end of the list (which means the follow-
" ing fields are unpredictable). A non-zero value in this field indicates the next
two fields are valid. Parameter codes 0 through 127 are reserved for use by
Digital Equipment Corporation, while parameter codes 128 through 255 are
reserved for users.

» PARM_LEN (1 unsigned byte) - the length of the following field in bytes.

= PARM_DATA (PARM_LEN bytes) - the format of this field is defined by the
associated PARM_CODE.

4.4.1.2 Run Message Format

Run messages have MSG_TYPE set to 0. If the NBR_SLOTS (number of slots in
the message) is zero, then the message header is the entire message. NBR_SLOTS
is equal to the number of slots within the message. The DST_CIR_ID and SRC_
CIR_ID must always be non-zero in Run messages.

Each slot is aligned on word (16-bit) boundaries. The first slot is contiguous to
the message header. The second slot is contiguous to the first if the slot’s total
length is even. If a slot’s total length is odd, then one byte of UNPREDICTABLE
data is used as a pad byte between the slot to force the following slot to a word
boundary.

Run messages can contain Start, Data_a, Data_b, Attention, Reject and/or Stop
slots.

Note that the slot type assignment are done to assist an implementation in detect-
ing a Data_a slot. Specifically Data_a slots are assigned the value zero while all
other slots (and all future slot type assignments) are assigned a four bit value with
the left-most bit set. Thus Data_a slots are easily recognized since the byte value is
always zero or positive and credits are conveyed by Data_a slots as a byte value.

4.4.1.3 Start Slot

If a start slot is received (see slot state tables), the format of the slot is:

Circuit and Session Layers 4-55

Figure 4-4: Start Siot Format

7 0
F o o o e e 2 e e e e +
] DST_SLOT_1D [
Fom e r s e rm — - - +
| SRC_SLOT_ID |
F o e o 2 +
| STATUS_BYTE_COUNT |
tmrr e~ - tomrrre e ——————— +
| SLOT_TYPE | CREDITS |
+ + + .
| SERVICE_CLASS | <-- start of STATUS field
o e e e e e e e e +
| MINIMUM_ATTENTION_SLOT_SIZE |
+ - o o e o e o e o +
| MINIMUM_DATA_SLOT_S1Z |
+ - - o - - +
] OBJ_SRVC_LEN |
Fe e rcr e e e .- - ——--——————-— - +
= OBJ_SRVC =
Fom e e, c e m e c e m e ———— +
| SUBJ_DSCR_LEN
F e r - — .- - -————— - +
= SUBJ_DSCR =
B e T e +
= remainder of STATUS field =
+ - +
| UNPREDICTABLE | (only exists if
+ -— ----+ STATUS_BYTE_COUNT is odd)

s DST_SLOT_ID - a reference to a slot block
s SRC_SLOT_ID - a reference to a slot block

= STATUS_BYTE_COUNT - an unsigned integer count of the length of the
STATUS field.

= CREDITS (4 bits) - a 4-bit integer equal to the number of credits being trans-
ferred.

s SLOT_TYPE (4 bits) - the value 9 (1001).
» SERVICE_CLASS - see appendices

» MINIMUM_ATTENTION_SLOT_SIZE (1 byte) - The minimum slot size queued
to receive Attention slot data (not including the slot header). The system
receiving this message must limit transmitted Attention slots to this size. A
value of zero indicates Attention slots are not supported.

4-56 LAT/Digital Equipment Corporation/Proprietary and Confidential

» MINIMUM_DATA_SLOT_SIZE (1 byte) - The minimum slot size queued to
receive Data_a and Data_b slots (not including the slot header). The system
receiving this message must limit transmitted Data_a and Data_b slots to this
size, ’

= OBJ_SRVC_LEN (1 byte unsigned) - The byte count of the next field.
= OBJ_SRVC - The name of the destination service.

= SUBJ_DSCR_LEN (1 byte unsigned) - The byte count of the next field.
= SUBJ_DSCR - The description of the source service.

» STATUS - The remainder of the status field meanings are defined separately
for each service class.

4.4.1.4 Data_a Slot

Figure 4-5: Data_a Slot Format

7 0
+ - -t
| DST_SLOT_ID |
+ +
| SRC_SLOT_ID |
+ +
| SLOT_BYTE_COUNT |
+ -t +
| SLOT_TYPE | CREDITS |
= SLOT_DATA =
+ ———— e e e e e e o +
UNPREDICTABLE | (only exists if
+—e — ---+ SLOT_BYTE_COUNT is odd)

» DST_SLOT.ID - a reference to a slot block
« SRC_SLOT_ID - a reference to a slot block

» SLOT_BYTE_COUNT - an unsigned integer count of the length of the SLOT_
DATA field.

» CREDITS (4 bits) - a 4-bit positive integer equél to the number of credits be-
ing transferred.

» SLOT_TYPE (4 bits) - the value 0.
= SLOT_DATA - SLOT_BYTE_COUNT bytes of slot data.

Circuit and Session Layers 4-57

4.4.1.5 Data_b Slot

Figure 4-6: Data_b Slot Format

7 0

T o o +

| DST_SLOT_ID |

o rrr e r e ———————————— +

| SRC_SLOT_ID]

+ - e e e e e e e +

| SLOT_BYTE_COUNT [

B L Y toerr e n———————— +

| SLOT_TYPE | CREDITS |

= SLOT_DATA =

+ ——————————— +

| UNPREDICTABLE | (only exists if
R e e + SLOT_BYTE_COUNT is odd)

» DST SLOT_ID - a reference to a slot block
s SRC_SLOT_ID - a reference to a slot block

» SLOT_BYTE_COUNT - an unsigned integer count of the length of the SLOT_
DATA field.

= CREDITS (4 bits) - a 4-bit positive integer equal to the number of credits be-
ing transferred.

» SLOT_TYPE (4 bits) - the value 10. (1010)
" SLOT_DATA - SLOT_BYTE_COUNT bytes of slot data.

4.4.1.6 Attention Siot

4-58 LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 4-7: Attention Slot Format

7 0

T ettt L LT P +

| DST_SLOT_ID |

G o o o o e e e e e o e e e e e e 9 +

| SRC_SLOT_ID |

+ +

| SLOT_BYTE_COUNT |
. S +

| SLOT_TYPE | MBZ |

= SLOT_DATA =

trmm————— e +

| UNPREDICTABLE | (only exists if
S — + SLOT_BYTE_COUNT is odd)

» DST.SLOT_ID - a reference to a slot block
= SRC_SLOT_ID - a reference to a slot block

» SLOT_BYTE_COUNT - an unsigned integer count of the length of the SLOT_

DATA field.
s MBZ (4 bits) - must be zero.
» SLOT_TYPE (4 bits) - the value 11. (1011)
» SLOT_DATA - SLOT_BYTE_COUNT bytes of slot data.

Circuit and Session Layers

4-59

4.4.1.7 Reject Slot

Figure 4-8: Reject Slot Format

-
(=]

+ - - -t
| DST_SLOT_ID [
Frmr e, e, e, —————————— +
| SRC_SLOT_ID |
P o e e e e e e e e e e e e e +
| STATUS_BYTE_COUNT |
+- -t -+
| SLOT_TYPE | REASON |
= STATUS =
+ +
| UNPREDICTABLE | (only exists if
+ +

STATUS_BYTE_COUNT is odd)

» DST_SLOT_ID - a reference to a slot block
» SRC_SLOT_ID - a reference to a slot block

« STATUS_BYTE_COUNT - an unsigned integer count of the length of the
STATUS field.

= REASON - an unsigned 4-bit integer (see following section entitled "Slot rea-
son codes”).

= SLOT_TYPE - the value 12. (1100)

= STATUS - STATUS_BYTE_COUNT bytes of status. The status field meanings
are defined separately for each service class.

This slot can only be transmitted from the host.

4-60 LAT/Digital Equipment Corporation/Proprietary and Confidential

4.4.1.8 Stop Siot

Figure 4-9: Stop Slot Format

7 0

tommrr e e e e e —c e ————- +

] DST_SLOT_ID |

tomrr e e — e e ———————— +

| SRC_SLOT_ID |

+ - - - +

| STATUS_BYTE_COUNT |

R R iattatatatatat T +

| SLOT_TYPE | REASON |

+ + +

= STATUS =

F o e e e o o et e e e +

| UNPREDICTABLE | (only exists if
+ + STATUS_BYTE_COUNT is odd)

s DST_SLOT_ID - a reference to a slot block
» SRC_SLOT.ID - a reference to a slot block (must be zero)

= STATUS_BYTE_COUNT - an unsigned integer count of the length of the
STATUS field.

» REASON - an unsigned 4-bit integer (see following section entitied “Slot rea-
son codes”).

s SLOT_TYPE - the value 13. (1101)

» STATUS - STATUS_BYTE_COUNT bytes of status. The status field meanings
" are defined separately for each service class.

4.4.1.9 Slot Reason Codes

Reason codes used in the Reject slot and Stop slot are defined below. These
codes are also used by Status message (see section on the connection solicitation).

. reason is unknown

. user requested disconnect

1
2
3. system shutdown in progress
4. invalid slot received

5

. invalid service class

Circuit and Session Layers 4-61

insufficient resources to satisfy request
service in use

no such service

© ® N =

service is disabled

10. service is not offered by the requested port
11. port name is unknown

12. invalid password

13. entry is not in the queue

14. immediate access rejected

15. access denied

16. corrupted solicit request
Note: all reason codes have been assigned.

4.4.1.10 Stop Message Format

Stop message headers have MSG_TYPE equal to 2. The SRC_CIR_ID field must
always be zeroed in Stop messages.

Figure 4-10: Stop Message Format

P S e ————————
CIRCUIT_DISCONNECT_REASON

|

+

| REASON_BYTE_COUNT

+. - -
| v
I
+

REASON_TEXT

===+ — +

= CIRCUIT_DISCONNECT_REASON (1 byte unsigned) - A zero value means
no reason is given. The currently defined reasons are:

1. reason is unknown

No slots connected on virtual circuit.

!\J

w

Illegal message or slot format received.

4-62 LAT/Digital Equipment Corporation/Proprietary and Confidential

4. VC_halt from user.

5. No progress is being made.

6. Time limit expired.

7. LAT_MESSAGE_RETRANSMIT_LIMIT reached.
8. Insufficient resources to satisfy request.

9. SERVER_CIRCUIT_TIMER out‘ of desired range.
10. Number of virtual circuits is exceeded.

11. (make up your own reasons, but please get them added to this docu-
ment).

= REASON_BYTE_COUNT (1 byte) - Byte count of REASON_TEXT field.
Normally specified as zero.

» REASON_TEXT (REASON_BYTE_COUNT bytes) - This field of ASCII charac-
ters contains the reason the stop message was sent.

Circuit and Session Layers 4-63

5
Connection Solicitation

5.1 Architectural Model

This section describes how an application process running within a host (slave)
environment can initiate a connection to application terminals that are connected
to the terminal server (master).

The primary difference between interactive and application terminals is that inter-
active terminals require a mechanism for master-initiated connections to slaves,
while application terminals require a mechanism for slave-initiated connections

to masters. Since the LAT protocol requires that only a master can actually start

a connection to a slave, different processes are required to allow a slave to for-
mulate a request to a master to start a connection. During that process, a slave
initiates a connection by issuing a solicitation request to a master, which actually
starts a connection (the connection solicitation process). The connection solici-
tation process also allows "queued” services, where connection requests can be
stored in the service’s queue for future processing. The architecture of the connec-
tion solicitation process implemented by LAT architecture not only allows slaves
to initiate connections to masters, but also allows masters to use the connection
solicitation process to initiate connections to slaves, thereby providing queued ser-
vices on slave nodes.

To implement the mechanism providing the connection solicitation process, two
aspects of the LAT architecture are discussed in the following chapter and in the
Appendix A: local area directory service and connection initiation. Local area di-
rectory service includes the advertising process, which allows advertising of ser-

vices offered by the masters. The connection initiation process supports connec-
tion solicitation and queued services.

Connection Solicitation 5-1

5.1.1 Service Sharing

The principle of "service sharing” is based on a mechanism of queues. Each ser-
vice possesses "queued” or "“non-queued” characteristics. Queues are accessed by
subjects through connection requests qualified by "queued” or "non-queued” ac-
cess methods. When a subject makes a request for usage of a service, the subject
specifies the access method to be used. The object returns an acknowledgment,
where it specifies the status of the request. A request for "queued” access may

be rejected, or it may be accepted in the service’s queue for future processing. If
the service is busy with another user, and the service possesses characteristics that
permit queuing, and the user requests "queued” access, the connection request is
placed in a queue associated with the service. The subject node stores the connec-
tion request in its context area and the object node that receives the connection
request creates a corresponding entry in its queue. The LAT architecture provides
a method of correlating the request from the subject with an entry in the object’s
queue using two values: the request identifier and the queue entry identifier. The
queue status and entry information are passed back to the subject requesting the
connection. Subject node operations are available to the subject to request the
status of the whole queue and individual entries, cancel the queued entry, etc.

Service characteristics, available to a user through the Advertising process and
the specification of an access type supplied by the subject during the connection
request, allow a user to organize usage of services.

» Service characteristics are:
— queued
— non-queued
— disabled
» Access types used by subjects are:
— queued

— non-queued
Allowed service access-service characteristics combinations are:

» Queued or non-queued access to a disabled service:

— Any type of access to a disabled service will result in the "service dis-
abled” reject reason returned.

5-2 LAT/Digital Equipment Corporation/Proprietary and Confidential

= Queued access to a non-queued service:

— If service is available, then access is granted and connection is made.
If service is not available, then "immediate access rejected” error is re-
turned.

s Queued access to a queued service:

— A service is available for use potentially by many users. For this reason,
request arbitration in the form’ of request queuing is provided by an ob-
ject. This scheme provides an element of fairness since requests from
the users are queued to the service on a first come, first served basis.

— As requests arrive from subject nodes, they are queued to the service.
They are then dequeued on a first-come, first-served basis. When its re-
quest is dequeued, the subject has exclusive use of the service until either
the user disconnects from the service (i.e., finishes using it) or the server
disconnects from the user’s node.

— When the current session completes, the next request is dequeued and
causes an attempt to establish a connection between the subject and the
object. Subject and object nodes exchange Start messages (Start slots)
establishing a session between the user and the service.

— When a session is established, data transmission occurs by means of
Data Slots after the Start Slots are exchanged.

— The subject that requested the connection can always refuse to start the
connection or cancel the queued request. Such a situation may occur
if the node found another service available to satisfy the request after it
sent the original request. Note that a mechanism is provided to the node
that requested a connection to cancel a queued request.

= Non-queued access to a queued service:

— Non-queued access to a queued service will be accepted only if the
queue is empty. If there are other entries in a queue an "immediate ac-
cess rejected” error will be returned by the subject. After the connec-
tion is started, a user has exclusive access to a service. All requests for
queued access will be queued, and for non-queued access will be re-
jected. An active user retains exclusive access to the service until the
connection to the service is broken.

= Non-queued access to a non-queuetl service:

— A "service in use” error will be returned in a Status message if the ser-
vice is being currently used. Otherwise, an attempt to establish a con-
nection will be made by the solicited node.

Connection Solicitation 5-3

The connection solicitation process allows a subject to queue a connection request
to a service that possesses characteristics allowing queuing. A subject requests
queued access to a service, and the queued service places the connection request
in the queue for future processing. The connection solicitation process provides
coordination between the subject and the object, allows correlation of the request
(subject) and corresponding queue entry (object),and provides the subject with
set of functions to handle the queue. Communication between a subject and an
object that provides queuing of a connection request is implemented using two
messages - the Command message and the Status message. For specific details on
messages flow and object/subject state-tables during the solicitation process, see
"Connection Initiation.”

5.1.1.1 Queue Coordination

Coordination of a connection request between a subject and an object is imple-
mented using two values that identify local data structures within each of the com-
municating nodes - the request_ident and the entry_ident. The request_ident and
the entry_ident are unique in the node in which they where assigned and must

not be 0. When system is booted, initially these identifiers must be chosen as ran-
dom numbers. These identifiers may be reused by the node. The algorithm for
assigning and deassigning of these identifiers is presented in the Appendix C.

To solicit a connection, the subject node assigns a request_ident (a handle on the
local data structure) and sends it to the object node in a Command message. The
object node that receives the solicitation request (and decides to queue it to a spe-
cific service) assigns an entry_ident to its local data structure that corresponds

to the solicitation request, and sends the entry_ident back to the solicitor in the
Status message. State-tables that fully describe the request-queue entry coordina-
tion process through message flow are defined in a later section.

The above identifiers allow communicating nodes to coordinate solicitation re-
quests. Many requests can be queued to- the service simultaneously, and each
request is uniquely identified by the name of the node that queued the entry and
a pair of the request-entry identifiers. Any request from the subject and any re-
sponse from the object must supply in the corresponding messages the request_
ident-entry_ident pair that uniquely defines the connection request. The request
from the subject can be rejected by the object. The reason for the rejection is re-
turned to the subject in the Status message (see LAT messages).

5-4 LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 5-1: Queue Coordination

-+ TS +
| request_ident|

When resources to satisfy an entry in the queue become available on the object
node, the corresponding connection can be started. When a master node starts
a connection using a Start slot, it supplies a request or entry identifier that was
uniquely identified on the node to which the Start slot is directed.

5.1.1.2 Queue Access

Queued and non-queued access methods can be used by a subject to initiate a
connection to an object. Access from a subject to an object is established using
Start Messages/Start slots and Command/Status messages. Figure 5-2 correlates
access methods and service characteristics.

Connection Solicitation 5-5

Figure 5-2: Access Methods and Service Characteristics

Service Characteristics

F o e o e e o e e e e e e F - —— - e e - +
s | Master | Slave | I
e o m—e— e ————— toemr e —————— T ——— tocrmm e ———— +
r] queued | non-queued | gueued | non-queued |
v P S, tommm e — e tomm—c e ———————— | S ——— +- +
i s | queued] send: Command | send: Command | |
c L receive: | receive:
e A | Status(queued | Status (immed.
v | or rejected) |access rejected
E | or Start | or Start)
+ —to—— tommme e ———— - + no slave-to-slave
A | non- |send: Command | connection possible
c | queued|receive: Status(reject)
c | or Start |
e tomem—— t—— - - - = e +e- - -t +
B M qgueued send: Command send: Command
-] A receive: receive:
s | status(gueuned) Status(accept
T |or (rejected) or reject)
E to——— + no master-to-master R tommm——— ——————— +
R non- connection possible | send: Start Send: Start]
queued | receive: receive: Start
| Start or Reject or Reject
+ + - - - tommmm e -+ +

Note that there is the difference between connection initiation from a master to a
slave and connection initiation from a slave to a master. A slave can use only a
Command message to provide queued and non-queued access, but a master can
provide queued and non-queued access using a Start message/Start Slot as well as
a Command message.

5.1.1.3 Queue Structure

In Figure 5-3 the structure of the request-blocks list on the subject node and the
queue-structure on the object node do not attempt to dictate an implementation,
but rather serve as an example of request_ident-entry_ident usage. Other param-
eters that define data used by operations available for queue control are shown
united in the Queue Entry Control Block.

The structure of the queue in the object node is assumed to be a node-wide queue
to provide uniqueness of the request and entry identifiers among all entries.
Actual queuing is done to the services and ports. Queue position parameters at-
tached to each request denote the position of the entry within the queue directed
to a particular service and port. Each entry can be designated for a particular port
or all ports offering this service. Queuing of requests depends upon the service
and port name translation.

LAT/Digital Equipment Corporation/Proprietary and Confidential

In Figure 5-3, the subject stores in the list of the request control blocks (RCB) all
requests that are currently being queued. A unique request_ident (rn) is provided
for each block in the list. The object has a node-wide queue that includes entries
queued to all services. Each entry is represented by a Queue Entry Control Block
(ECB). Uniqueness of the entry in the queue is provided by the entry and request
identifiers and name of the soliciting node. Command/Status message exchange
allows creation of a corresponding ECB entry (qn) for each request (rn). Each
ECB in the queue and each RCB are identified by the same pair of request_ident
and entry_ident. All entries in the queue are linked into a list that is queued to a
specific service. Each entry changes its queue depth moving up in the queue ac-
cording to the processing of the requests. On the figure below service 51 is of-
fered by the ports PB and PC and service S2 is offered by the port PC.

Figure 5-3: Queue and Request List Structure

+e + + - +
| " | request_ident| |
| SUBJECT | = > OBJECT |
I I
e | | entry_ident | (Node N1) |
| [———— | !
o ————— + S —
| I
I |
+ + |
D T | Service S1 | |
+ + | Node-wide Queue
| Service 82 | -+ + +
+ >+ + + + |ECB rl,gql,node name|
| RCB | + +
| rl,q1 | |ECB r2,q2,node name|
+ + + + + + +
| | Port PA] |ECB r3,q3,node name)
t - Pt ————- + o e + Feow—— +
| RCB | e >| Port PB |
| r2,q2 | | + + -
D S — tomm————— + L — >| Port PC |<-+
| + +
+ >+ +
| RcB |
| r3,q3 |
S S +

5.1.1.4 Queue Operations

LAT provides a set of operations that a subject can perform in order to oper-

ate with a service’s queue: insert an entry into a service’s queue, delete an en-
try, acquire information about any particular entry in the service queue, etc. The
Command message and the Status message contain fields that allow an exchange

Connection Solicitation 5-7

of operation codes and parameters between the subject and the object (see LAT
Message formats). A subject defines an operation code in the COMMAND_TYPE
in the Command message.

Operations performed by a subject can be viewed as "access” operations and
“status request” operations which are specified by the COMMAND_TYPE and
COMMAND_MODIFIER fields of the Command message. "Access” type opera-
tions always define an entry and allow inclusion or cancellation of an individual
entry in the queue. "Status request” type operations allow request of the status
of the individual or multiple entries in the queue. A Command message type is
defined by an operation code (value) and a specifier (bit mask). The following
operation codes are specified:

» non-queued access operation
= queued access operation

= cancel entry operation

= individual status operation

» multiple status operation

= queue status operation

There is also a possibility of a "local” operation - an object node can delete an en-
try in the local queue without request from the subject. In that case, a Status mes-
sage is sent by the object to the corresponding subject to inform the subject about
deletion of an entry.

A side from the local operation described above, any operation on an existing
entry in the queue can be performed only by the node that queued the entry.

The object node that contains the queue must always validate the subject node-
name to verify whether the specified entry was queued by the node issuing the re-
quest. If not, the object node must return a Status message with the error reason
"Inconsistent or illegal request.”

5.1.1.5 Connection Solicitation Operations

5-8

"Access” operations allow a subject to request access to a service or delete an en-
try in the service’s queue. Defined access operations are:

» Solicit queued access to the service - the subject supplies a REQUEST_IDENTIFIER

and, if the object accepts the request for queuing, it builds and queues an
ECB and sends a Status message to the subject. The Status message includes
an ENTRY_IDENTIFIER along with other parameters (see "Status Message”).

LAT/Digital Equipment Corporation/Proprietary and Confidential

If the queue request is not accepted, the Status message returns with a reject
reason.

= Solicit non-queued access to the service - if the request can’t be accepted im-
mediately, a Status message with a reject reason is returned by the object.

» Delete an entry in the queue - a subject can cancel an entry in the queue.
A subject identifies the entry in the queue using ENTRY_IDENTIFIER and
REQUEST_IDENTIFIER values. An object node must verify a subject node
name against the name of the node that queued an entry.

When the Command message is sent to the solicited node, the solicited node’s
decision as to how to queue the request to the service and port is based on the
service/port name information supplied in the Command message:

» if only the service name is provided - the request is queued to the service and
the first available port offering this service is chosen. An error is returned if
the node does not offer the requested service.

= if only the port name is provided - the request is queued to the default ser-
vice. An error is returned if the requested port does not offer the specified
service. The default service name is returned in the SRVC_NAME field of the
Status message. A null name (the name length counter=_0) is returned if no
default service is defined.

= if both the service and port names are provided - the request is queued to the
requested service for the specified port. An error is returned if the node does
not support the requested service or the port does not offer the requested
service.

= if neither the service nor the port name is provided - the request is queued to
the default service on the node and the first available port offering the default
service is chosen. The default service name is returned in the SRVC_NAME
field of the Status message.

An example of request queuing is presented below (refer to "Name Translation

Process”) The source node that made a solicitation request translated the source
<NODE_NAME > < SERVICE_NAME > and sent a solicitation request to the

node N1. Table 5-1 shows how the name translation process results in a queue

structure on the object node N1 depending upon the given < SERVICE_NAME > <PORT_
NAME > combinations.

Connection Solicitation 5-9

Table 5-1: Name Translation Examples

service node-wide
presented entry queued port service-wide queue posi-
name ident to used queue position tion
<S1><PB> rl,ql S1 PB queue_posit=1 queue_
posit=1
<S1> r2,q2 S1 undef. queue_posit =2 queue_
posit=2
<PB> r3,q3 S1 PB queue_posit =3 queue_
posit=3
none r4,q4 S1 undef. queue_posit =4 queue_
posit=4
<PC> 15,95 S1 PC queue_posit=>5 queue_
posit=5
<S2> r6,q6 S2 PC queue_posit=1 queue_
posit=6
<S2><PC> 17,97 S2 PC queue_posit=2 queue_
posit=7

Service-wide and node-wide queue_position values give the user the position of an
entry by defining its positions in the service and node queues. This is an approx-
imate position and not necessarily an order in which an entry will be taken for
processing. An entry is taken for processing when it becomes the highest entry in
the node-wide queue for which resources become available.

5.1.1.6 Status Solicitation Operations

5-10

An object node returns the status of only those entries that were queued by the
subject node issuing a Command message (i.e., an object node has to check an
entry against the soliciting node name). There are three types of status solicitation
requests as defined by the COMMAND _TYPE operation code:

» Individual entry status - this type of operation requires an object node to re-
turn the status of a particular entry to the subject node. Request and entry
identifiers both are not 0. Note that the object node can still respond with a
Status message containing a multiple-entries status (to provide concatenating
of the entries in one Status message).

» Multiple entries status - a subject node can inquire about all queued entries.
Request and entry identifiers both must be 0. When this operation is per-
formed, all entries queued by the subject node (and only those) are included
in the Status message and sent back by the object node.

LAT/Digital Equipment Corporation/Proprietary and Confidential

» Queue status - a subject node can query the status of the queue. Request and
entry identifiers both must be 0. When a message has to be returned by an
object node, the ENTRIES_COUNTER field in the Status message must be 0,
and no entry information will be included in the message. In the future, ex-
tensible parameter fields in the Status message can be used to return different
types of information about the queue status on the object node.

As stated above, the solicited node can always concatenate the status of several
entries in one Status message in order to minimize message traffic when the solic-
iting nodes require status reports on a timer or queue-depth change basis (see the
following sections). That is, the soliciting node can always receive a Status mes-
sage that includes more entries than the soliciting node requested. The soliciting
node should provide the necessary filtering of entries.

The COMMAND_MODIFIER bit mask specifies how the status of an individual
entry is to be sent by an object node. The defined modifiers are the periodic sta-
tus request and the queue-depth-change status request. The specifier creates a re-
quest state for an individual entry. That request state cannot be changed during
an entry’s life-time in the queue.

An object node that is queuing connection requests specifies the optional param-
eters, destination port name and destination service name. Those parameters are
preserved in the Entry Control Blocks for each entry.

When a subject node requests the status of one particular entry, no filtering is
performed because each entry is uniquely identified by request-entry identifiers.
When a subject node requests multiple-entries status, an object node can use the
destination port and service names to filter entries included in the queue as fol-
lows:

= if no destination port or service name is specified, the object node includes in
the Status message all entries queued by the subject node.

= if only the destination service name is specified, the object node includes in
the Status message only those entries that are queued to the specified service.

= if only the destination port name is specified, the object node includes in the
Status message only entries queued to the specified port (the name of the
destination port was explicitly specified in a Command message).

= if both the destination service and port names are specified, the object node
includes in the Status message only entries queued to the specified port and
the specified service.

Connection Solicitation 5-11

5.1.1.7 Concatenating The Status Entries

The Status message allows sending of the status of more than one queue entry in
one status message. Concatenating multiple status entries in one status message
allows minimization of message traffic. The object node can concatenate in one
message all entries that were queued by the subject node when:

= The subject node requests multiple-entries status.

= The queue depth changes and several entries have a request-state requiring a
status message to be sent to the same subject node.

= The timer expired on an entry with a "periodic” request state, and the status
of several entries have to be reported to the same subject node.

One note is necessary about the expected behavior of a subject node when it re-
ceives multiple status entries in the Status message. If multiple status entries do
not fit in the Status message, the object node can send several Status messages

to the subject node. Actually, the subject node can’t be sure that all entries are
included in the Status message. The rule is that the subject node cannot use the
absence of an entry in the Status message to make any conclusions about whether
an entry is still pending in the object node’s queue. The subject node can time-out
the queued state of the entry if no entry status information has been returned in
the Status message(s) during the time-out period.

5.1.1.8 Retransmission And Time-out Policies

5-12

Since the Command-Status/Start message exchange is going outside virtual cir-
cuit context policies that govern event time-outs, timer values and retransmis-
sion counters play an important role. Values recommended or required for those
timers and counters are presented in the section entitled "Defined parameters and
recommended or required default values”..

s MULT_STAT_TIMER defines the time interval between Status messages when
multiple Status messages have to be sent by the object node to provide infor-
mation on all queued entries.

« STAT_REP_TIMER is used by an object node as a retransmit interval to report
the status of entries in the queue when it is requested by a subject node.

= A node queues an entry using a Command message. The node that receives
the request for queuing responds with a Status message (see "State Tables”
below). RETR_COMM_TIMER parameter defines time interval for a node to
retransmit an unanswered Command message. RETR_COMM_COUNT de-
fines number of times this process must be repeated before timing-out the
request.

LAT/Digital Equipment Corporation/Proprietary and Confidential

= When a master node queues an entry to a slave node, the master node has
to respond with the Start message upon receiving from the slave node the
Status message informing the master that the entry has been chosen for pro-
cessing (see "State Tables” below). RETR_STAT_TIMER and RETR_STAT_
COUNT parameters define a time interval forretransmission of an unan-
swered Status message from the slave where an entry is queued and number
of times that process must be repeated before entry is timed-out.

5.1.2 Connection Initiation

On the virtual circuit level a connection can be established only from a master to
a slave. That is, a master always behaves as a subject and a slave always behaves
as an object. Implemented connection solicitation process allows connection ini-
tiation from slave nodes to master nodes and provides communication of data to
the master nodes (and to the application terminals) using the underlying LAT pro-
tocol. The connection initiation process allows arbitration of conflicting, requests
for use of services by queuing concurrent requests, acquiring information about
queued requests, and canceling a solicitation. Because of the asymmetrical nature
of the LAT architecture, the connection solicitation process allows slaves to initiate
connections to services offered by masters by requesting a master to actually start
a connection.

To:

» preserve the investment in the slave and master node implementations
= allow shared services offered by slave and master nodes to be arbitrated

= allow slave node application processes to initiate sessions to master node
ports

» muitiplex all data over a single virtual circuit

= provide access to the status of queued processes

The LAT architecture allows both slaves and masters to behave as subjects and
objects (i.e., both slave and master nodes can “solicit” connections to services).

The LAT architecture allows slaves to use the connection solicitation process to
connect to masters. Correspondingly, the masters that support this version of
the architecture also can use the connection solicitation process to arbitrate con-
nection requests and acquire queue information about th: slaves that support this
version of the architecture Depending upon the status of the node that offers the
service and the service characteristics, a master can directly connect to a slave or
initiate connection by using the connection solicitation process. See Figures 6-4

Connection Solicitation 5-13

through 6-7 for connection initiation examples and Tables 6-2 through 6-6 for the
state tables.

LAT implements two messages to allow slave-initiated connections to masters -

a Command message and a Status message. Both messages are physically ad-
dressed. Once the decision is made by the solicitor to establish a connection using
the solicitation process, it formats and sends a Command message to the node
that provides the service. Such a Command message (specified below) informs
the solicited node of the solicitor’s desire to use the service. As discussed before,
this message has two additional uses: a) to cancel a previous solicitation, and b)
to inquire about service status and queue position.

The connection solicitation mechanism allows a slave node to solicit a connection
across an already existing virtual circuit made in the "wrong” direction. In order
to do that, the slave node should know that such a virtual circuit already exists.
SLAVE_NODE_NAME and MASTER_NODE_NAME fields contained in the Start
message allow the soliciting node to identify the name of the node connected to
the virtual circuit. That makes it possible to solicit a connection using an already
established virtual circuit.

5.1.2.1 Solicitation Process Message Flow

To clarify how the node status and virtual circuit direction influence connection
solicitation, some examples of establishing a connection between master and slave
nodes are shown in Figures 6-3 through 6-5. the service that is being connected
to possesses "queued” characteristic. Message flow diagrams are presented to-
gether with explanations to clarify those examples. In the message flow diagrams,
Start messages are not shown. In these examples, rN means the request_identifier
N, which is assigned by a soliciting node, and qN means the entry_identifier N,
which is assigned to the request by a solicited node.

Initiation:

How connection is initiated between nodes depends upon service characteristics,
the method of initiating connections to the node (inbound/outbound bits in the
NODE_STATUS field of the Response message) and the direction of the already
established virtual circuit (see Tables 5-2 through 5-5 for the connection solicita-
tion state tables). The rules that define possible access methods to services are
described in Figure 5-2.

5-14 LAT/Digital Equipment Corporation/Proprietary and Confidential

Queuing;:

If the service is already in use, the solicitor may still attempt to initiate a connec-
tion to the service. The request may be placed in a queue of requests to the ser-
vice for servicing at a later time, provided that the service characteristics permit
such queuing. Note that a mechanism exists to cancel a previously issued solicita-
tion should the solicitor later decide not to use the service.

Upon receipt of the Command message, the Master replies with a) a Status
Message or b) a Start Message or ¢) a Run Message containing a Start Slot.

The Status message is sent by a master only in two cases: if the solicitation is re-
jected by the node or if the solicitation is accepted but the service is currently be-
ing used by some other process and the service characteristics allow queuing of
requests. Upon receipt of the Command message, a slave always responds with
the Status message.

The Status message indicates the acceptance of the solicitation if the service is
busy with another user, the service possesses characteristics that permit queuing,
and the user requested "queued” access. In this case, a "queue-entry” identifier
is assigried by the solicited node and the solicitation request is placed in the node
queue. This entry identifier and its position in the queue are passed back to the
soliciting node in the Status Message.

The solicitor has the ability to inquire about the status of queued entries. The
Command message with a certain COMMAND_TYPE (see "Command Message")
is issued by the soliciting node to perform this inquiry. The solicited node re-
sponds with a Status Message supplying information about queued entry.

Rejection:

The Status message returned by a solicited node may indicate rejection for a vari-
ety of reasons; for example, a resource problem at the solicited node, authoriza-
tion failure, the service is busy and its characteristics do not support queuing, etc.
See the Status message rejection codes.

Rejection of the solicitation request by the solicited node causes the soliciting node
to delete the corresponding request from its context. It also can happen that the
request from the soliciting node has been accepted and the solicited node re-
sponded with a Start slot, but the soliciting node may decide not to use the con-
nection. A typical reason may be that the solicitor has insufficient resources to
complete the connection. In this case, the soliciting node deletes the request from
its context and sends a reject slot that causes the solicited node also to delete the
corresponding entry in its queue.

Connection Solicitation ' 5-15

Note that the solicited node itself also can delete a queue entry created by a solic-
itation request from a soliciting node. The solicited node in that case should send
a Status message with a reject reason back to the solicitor and the solicitor will
delete the request from its context.

Acceptance:

If the service on a master node can accept a connection request immediately, no
Status message is returned on success. Instead, the master attempts to establish
the connection between the soliciting and solicited nodes. The underlying virtual
circuit may not already exist between the master and the slave nodes. If it already
exists, the connection uses the existing virtual circuit and a Run message contain-
ing a Start slot is sent by the master to the slave node. If it doesn’t exist, the vir-
tual circuit must somehow be established. There is an inherent asymmetry in the
virtual circuit establishment process as defined by the LAT Architecture, namely
that the establishment must be initiated by the master. Consequently, the master
must initiate the creation of the virtual circuit by sending a Start message to the
slave node.

The service on a slave node always responds with a Status message to the mas-
ter’s request. The master node can see whether the request is queued from the
ENTRY_STATUS bit in the Status message. When the entry reaches the top of
the queue, the slave node sends a Status message with the "entry accepted for
processing” bit set in the ENTRY_STATUS field of the Status message. When the
master node receives a Status message with this bit set, the master node can initi-
ate a connection using a Start slot or create a virtual circuit using a Start message.
An attempt by a master node to start a connection on a queued entry will be re-
jected by a slave node using a Reject slot with a "request is queued” error code.

Resolicitation:

Should a Command message from the subject-node become-lost in transmission
to the object node, the solicitor can retransmit the Solicit Message at a rate de-
fined by the corresponding timer. No problem can arise from duplicate requests
being received by the solicited node on behalf of the same session because each
request is ‘tagged’ with the request_ident assigned by the solicitor. Only one
Command message from a given soliciting node with a given request_ident is al-
lowed.

Resolicitation may be also caused by events such as the following:

1. the subject node queues the request to the object node;

2. the subject node crashes;

LAT/Digital Equipment Corporation/Proprietary and Confidential

3. the subject node immediately restarts while request is still in the queue on the
object node.

If the subject node queues a new entry using the same request identifier that was
used for the entry which is still queued on the object node, the object node has
no way of knowing that it is actually a different request; the second request may
specify a totally different object. If this connection is allowed to be started, un-
intended results may occur. For example ASCII text may be sent to a graphic
plotter instead of a printer.

To avoid this situation, the service and port names in the Command message,
Status message and Start slot must be consistent in order to start a connection.

If the object node receives a Command message specifying the same request iden-
tifier as an existing queue entry and the same object is specified (service and port
names are the same), the object node returns a Status message with the reason
code "request already queued”. If the object specified is different, then the object
node deletes the existing entry from the queue, queues new entry, and then sends
a Status message specifying success.

When the object is available and the connection starts, all parameters of the
queued entry (service and port names) are included in the Start slot by the muster
node and verified against stored parameters of the request by the slave. If this
verification fails, the error "solicitation request is corrupted” is returned to the
user and the entry is deleted from the queue as shown in Table 5-2 below.

Table 5-2: Example of Connection Resolicitation

Subject Object
(Master) (Slave) Action

command msg (access r1,0) Subject queues an en-

———————— > try. Entry is accepted and
queued. All parameters
saved

status msg (rl,q1) (accepted) Status message is not re-

C—————— ceived by the subject or
subject went down, came
up again and acciden-
tially chooses the same
identifier

command msg (access r1,0) Subject queues an entry.
———————— > Obiject verifies parame-
ters.

Connection Solicitation 5-17

Table 5-2 (Cont.):

Example of Connection Resolicitation

Subject
(Master)

Action

status (r1,q1) (already queued)

status msg (rl,ql) (success)

status msg (r1,q1)(entry al-
ready queued)

Parameters match: Object
returns status "entry al-
ready queued”

Parameters don’t match:
Object deletes old entry
and queues new one. All
parameters saved.

Status message returned.

When resourse is avail-
able slave sends status
message

Subject (master) starts
connection.

Obiject verifies parameters
in the Start slot against
stored parameters of the
entry and responds with
start (if verification suc-
ceeds) or reject.

Subject queues an en-

try. Entry is accepted and
queued. All parameters
saved

Status message is not re-
ceived by the subject or
subject went down, came
up again and acciden-
tially chooses the same
identifier

Subject queues an entry.

Object deletes old entry

and queues new one. All
parameters saved.

Status message returned.

Obiject (master) starts con-
nection. Subject verifies
parameters in the Start
slot

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-2 (Cont.):

Example of Connection Resolicitation

Subject
(Master)

Object
(Slave)

Action

start (accept/reject)

against stored parameters
of the entry and responds
with start (if verification
succeeds) or reject.

Connection Solicitation

5-19

Table 5-3: Example of Siave Initiating Connection to Master

Slave Master Action
command msg (r1,0) Slave sends command
———————— > message. Service is avail-

able. Master responds
with Start message es-
tablishing connection
between master and slave.

start slot (r1) No queue has been estab-

C———— lished for that request.

start/reject slot Slave responds with Start

———————— > or Reject.

command msg (r1,0) Slave sends command

———————— > message. Solicitation is
rejected.

status msg (r1,0) (reject rea- No queue entry has been

son) established for that re-

<C———— quest.

Command msg (r1,0) Slave sends command

________ > message. Solicitation is

accepted. Service is busy
and queued. Queue entry

created,
Status msg (rl,ql,) entry_ident and queue
———————— > position returned to solic-
iting node.
Command (r1,q1) (status). Slave can solicit again to
———————— > inquire queue status.
Status (r1,q1) (status) Master responds with sta-
€Cm—m——— tus information.

Several solicitation re-
quests can be queued
uniquely identified by
r2q2,r3q3, etc.

5-20 LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-3 (Cont.):

Example of Slave Initiating Connection to Master

Slave

Master

Action

Start slot (r1)

—— ———p—— —-

Status msg (r1,0) (reject rea-
son)

When reaches top of the
queue, master sends Start.

Slave responds with Start
or Reject.

Slave sends command
message. Solicitation is
accepted. Service is busy
and queued. Queue entry
created.

Entry_ident and queue
position returned to solic-
iting node.

Some time later solicited
node decided to delete
entry from the queue and
reports that to solicitor.

Table 5-4: Example of Master Initiating Connection to Slave

Master

Slave

Action

Connection Solicitation

Start slot

Master establishes direct
connection to the slave by
sending a Start slot.

Slave accepts request (if
queue is empty) or rejects
it (if queue is busy).

Master solicits queued
connection to the slave.

Slave returns Status

msg. Master can send
Command message again
or request slave to send
entry status periodically
or when queue depth
change.

5-21

Table 5-4 (Cont.): Example of Master Initiating Connection to Slave

Master Slave Action

Status msg (r1,q1)

———————— >

Status msg (r1,q1) When entry reaches top of

<C——————— the queue, Status message
reports this event to the
Master.

Start slot (q1) Now master can start con-

———————— > necttion by sending Start
slot.

Start/reject slot Slave responds with Start

Cm——— or Reject siot.

Table 5-5: Example of Connection Initiation Between Nodes Operating
in Master/Slave Mode

Master/Slave Master/Slave Action
virtual circuit direction Virtual circuit already
———————— > established as shown.

Connection can be es-

tablished in the same di-
rection using solicitation
or/and direct connection.

Command msg (r1,0) Master can solicit queued
———————— > connection from the slave.
Status msg (r1,q1) Slave can return Status
C—————— e (accept) message.

Status msg (r1,ql) (chosen) When Status message
———————— > with "entry is chosen”

comes back

5-22 LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-5 (Cont.): Example of Connection Initiation Between Nodes
Operating in Master/Slave Mode

Master/Siave . Master/Slave Action
Start slot (q1) Master can start a a con-
———————— > nection.

———————— >

virtual circuit direction Virtual circuit already

———————— > established as shown.
Connection may be estab-
lished in reverse direction
on the same VC using
solicitation.

Command msg (r1,0) Solicitation is accepted.

e t——— Service is busy and
queued.

Status msg (r1,q1) Queue entry has been

<C——— created entry_ident and
queue position returned to
soliciting node.

Start slot (rl) When request can be sat-

C—————— isfied, start sent.

Start/reject slot Start/reject sent.

———————— >

Table 5-5 presents one specific example of the message flow for a slave node so-
liciting a print service on a master node that has other sessions already queued to
the service.

Connection Solicitation 5-23

Figure 5-4: Exchange Between Slave and Master

Slave Master

] Solicit information
User issues e L >
'CONNECT’

Status Message (accept) Request is
| €mmmmm e - - queued
User issues Conmand Message (status)
'SHOW QUEUE’ |ceeccccmmccmcmccrcerc e >
Status Message (status) Session status
Comec—c——— -~-~| is returned

| Master
Sy | starts vC

|

|

| Run Message (Start Slot) Master
L R P starts connect
Run Message (Start Slot)
- - ->
Run Message (Data) Data flow starts
-
Session finishes Run Message (Stop Slot) |
>
VC is killed Stop Message
< - - - " - - - ————

The above diagram shows an exchange between the slave and the master in which
the slave solicits the service, the master accepts the solicitation, and the slave later
accepts the connection to the service.

5.1.2.2 Solicitation process state-tables

The solicitation process exists simultaneously as a position on a state-table on
both ends of the connection - the soliciting node and the solicited node. Events
on one end change the state on both ends of the connection. Soliciting and so-
licited node state-tables are shown in Tables 6-6 through 6-10.

Notes:

» The timeout algorithm presumes a retransmit_timer and a retransmit_count
or timeout and global_timeout events to avoid looping within the soliciting
state. Timers should start every time a state changes. If a Status message

5-24 LAT/Digital Equipment Corporation/Proprietary and Confidential

or a Start message is not received when the retransmit_timer expired, a re-
transmit_counter (or a global_timer) can be used to repeat that process. If
that fails, the solicited node is presumed to be down.

» The state tables below describe the establishing of a session through the so-
licitation and queuing process. There is a transition from these tables to
the Host/Server slot state tables presented in the previous chapter entitled
"Circuit and session layers”. "Next state” in this case references to corre-
sponding state in one of the host or server slot state tables in the sections
named "Host Slot State Table and “Terminal Server Slot State Table”.

= Note that the entry taken for processing must stay in the queue. This entry is
deleted from the queue and the request-entry identifiers reused only after the
session is started.

» To simplify the state transitions, multiple status messages are not shown.
Transition from one state to another is made based on the presence (absence)
of a particular entry status.

= When a resource allocation failure happens, the node should make its best
attempt to inform a partner about the allocation failure.

= Request and entry identifiers can not be recycled faster then the node con-
sumes the queue requests. That means the node is limited to 65534 outstand-
ing requests.

= In the state tables below, a value of 0 is used when no identifier exists.
» The request and entry identifiers can not be zero.

Table 5-6: Subject (Slave) Node State Table
State Event Action Next State

halted user solicit send Command soliciting
{(access r1,0)
create an entry (r1)

Status received (r1,q1) no action halted

Start received (r1) send Reject halted

any other user event return error to user halted
soliciting timeout send Command soliciting

(access r1,0)

global timeout delete entry (rl) halted

Connection Solicitation 5-25

Table 5-6 (Cont.):

Subject (Slave) Node State Table

State Event Action Next State
Soliciting Status received (accept update queue state queued
(cont.) entry rl,ql)
Status received (reject delete entry (rl) halted
entry rl)
Start received (r1) Verify parameters
if match: start-rev
delete queue state Table 5-4
session starts
if not match: send reject
delete queue state (corrupted entry)
v User cancel entry (r1) update queue state cancel
queued user cancel entry send Command cancel
(r1) (cancel r1,q1)
user status request send Command queued
(rl) (status rl,ql)
entry timed out (r1) delete entry (r1) halted
(no status returned)
Status received (queued update queue state queued
rl,ql)
Status received (rl,ql delete entry (rl1) halted
deleted)
Start received (r1) Verify parameters
if match: delete start-rcv
queue state Table 5-4
(session starts)
if not match:. send reject (corrupted en-
delete queue state try)
cancel Status received (rl,ql delete entry (r1) halted
deleted)
timeout send Command cancel
(cancel rl,ql)
global time out delete entry (r1) halted
Status received (rl,ql send Command cancel
accepted) (cancel r1,q1)
Status received (rl re- delete entry (r1) halted

jected)

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-6 (Cont.): Subject (Slave) Node State Table

State Event Action Next State
Cancel Start received (rl) send Reject delete halted
(cont.) entry (rl)

Table 5-7 describes the case where the host (slave) node attempts to queue a re-
quest to the queued service offered by the server (master) node.

Table 5-7: Object (Master) Node State Table

State Event Action Next State
halted Command received send Status (queued queued
(access rl1,0) rl,ql create an entry)
(r1,ql)
send Status halted
(reject r1)
send Start (r1) connect_req Table 5-3
other Command mes- return Status (r1,0) halted
sage received (rlql) (unknown entry)
any other user event return error to user halted
queued Command received send Status halted
(cancel rl,q1) (rlql deleted)
delete entry
Command received send Status (rl1,q1) queued
(status rl,ql)
Command received Verify parameters
(access r1,0)
if match: queued
Send Status

(already queued rl,ql)

if don’t match:

delete old, queue new
Send Status

(queued r1,ql)

send status event (timer send Status (r1,q1) halted
or queue-depth) (rl,q1 deleted) delete
entry
user delete entry (r1) send Status (rl,ql halted
deleted)
delte entry

Connection Solicitation 5-27

Table 5-7 (Cont.): Object (Master) Node State Table

State Event Action Next State
Queued resources available send Start (r1) connect_req
(cont.) delete queue state Table 4-3
resources available send Status halted
can’t start (delete rl1,q1)

delete entry

Table 5-8 describes a case, where the server (master) acts as an object, and re-
ceives a request to queue an entry to one of the offered services.

Table 5-8: Subject (Master) Node State Table

State Event Action Next State
halted user solicit send Command (access soliciting
r1,0)
create entry (rl)
any other user request return error halted
Status received (rl,ql) no action halted
soliciting timeout send Command (access soliciting
r1,0)
global timeout delete entry (r1) halted
Status received update queue state queued
(accept entry rl,ql)
Status received delete entry (r1) halted
(reject entry rl)
user cancel entry (rl) update queue state cancel
queued user cancel entry send Command- - cancel
(rl) (cancel r1,q1)
user status request send Command queued
(r1)
entry timed out delete entry (r1,ql) halted
(no status returned)
Status received update queue state queued
(queued r1,q1)
Status received delete entry (rl,q1) halted

(rl,q1 deleted(

5-28 LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-8 (Cont.):

Subject (Master) Node State Table

State

Event

Action

Next State

Queued
(cont.)

cancel

Status received
(process entry r1,ql)

Status received
(r1,q1 deleted)

timeout

global time out

Status received

(r1,q1 accepted/queued)

Status received
(r1 rejected)

send Start (r1)
{session starts)
delete queue state

delete entry (rl,q1)

se;\d Command
(delete r1,ql)

delete entry (r1,q1)

send Command
(cancel r1,q1)

delete entry (r1,q1)

connect_req
Table 5-3

halted
cancel

halted

cancel

halted

Table 5-9 describes the case where server (master) node acts as a subject and at-
tempts to queue a request for queued services offered by the host node (slave).

Table 5-9: Object (Slave) Node State Table

State Event Action Next State
halted Command received send Status queued
(access r1,0) (queued rl,q1)
create an entry
(rl,q1)
send Status halted
(rejected rl)
other Command send Status (r1,0) halted
message received (unknown entry)
(rl.ql)
any other user event return error halted
Start received (rl) send Reject halted
queued Command received send Status halted

Connection Solicitation

(cancel r1,q1)

Command received
(status rl,ql)

(r1,q1 deleted)
delete entry

Verify pareameters

5-29

Table 5-9 (Cont.):

Object (Slave) Node State Table

State

Event

Action

Next State

Queued
(cont.)

ready

send status event
(timer orqueue-depth)

user delete entry
(r1)

resources available
timeout

global timeout

Start received (rl)

if match:

Send Status
(already queued
rl,ql)

if don’t match:
delete old, queue
new

Send Status
(queued r1,ql)

send Status (r1,q1)
update queue state

send Status
(deleted rl,q1)
delete entry

send Status
(process entry
rl,ql)

send Status
(process entry
rl,ql)

send Status
(deleted r1,q1)
delete entry

Verify parameters

if match:
delete queue state
(session starts)

if not match:
delete queue state

queued

queued

halted

ready

ready

halted

start-rcv
Table 5-4

send reject
(corrupted entry)

Table 5-10 describes a case where a host node (slave) offers services that posess
queued characteristics. Node acts as an object and receives a request to queue an

entry to one of the services it offers.

5.1.2.3 Name And Iinformation Field Presentation

5-30

A subject that requests usage of the resources on an object initiates an exchange
of Command-Status messages, and Start(initiate)-Start(response) slots. Those
messages contain object names (nodes, services, ports) that are translated, and
subject description fields designated for informational purposes. Table 5-10 shows

LAT/Digital Equipment Corporation/Proprietary and Confidential

the rules that subject and object nodes should follow in filling those fields in order
to provide name translation and information caching support.

Table 5-10: Name and Information Fields

Messages Flow

Name and Information Fields

Start (init) —

+—Start (resp)

Command —

—Start (init)

Start (resp) —

Command —

+~— Status
Start (init) —

+~——Start (resp)

Command —

+——Status

+«——Start (init)

Start (resp) —

object name fields (source)
subject information fields

object name fields (translated)
subject information fields - 0 on send, ignored on receive.

unique request identifier
object name fields (source)
subject information fields

request identifier
object name fields (translated)
subject information fields - 0 on send, ignored on receive.

name/information fields must be 0 on send, ignored on receive.

unique request identifier object name fields (source)

unique entry identifier
object name fields (translated) optional subject information fields

entry identifier
object name fields same as in the received Status message

name/information fields must be 0 on send, ignored on receive.

unique request identifier
object name fields (source)
subject information fields

unique entry identifier
object name fields (translated)
optional subject information fields

request identifier
object name fields same as in the sent Status message

name/information fields must be 0 on send, ignored on receive.

5.2 Message Formats

This section presents formats, layouts and contents of the messages used by the
connection solicitation mechanism.

Connection Solicitation

5-31

Node may receive an unsolicited LAT message (Command) of maximum length
and is responsible for allocating enough buffers to accomodate it. Command mes-
sage contains a DATA_LINK_RCV_FRAME _SIZE field that defines the maximum
size of the solicited LAT message (Status) that can be send to this node.

5.2.1 Command Message

A Command message is a physically addressed message used to initiate a connec-
tion from the slave to the master node and to provide queued services. Figure 5-5
presents the format of the Command message. A detailed description of each field
in the message follows.

Figure 5-5: Command Message Format

—— b — 4 — e p— b — =+ — 4 U1 =

———— h—— ¢ I —— 4 —— 4

OBJ_SRVC_NAME | OBJ_SRVC_LEN

+ ———

0
+
PRTCL_FORMAT | MSG_TYP [|M|R]
---------------------- R e AL .
LOW_PRTCL_VER | HIGH_PRTCL_VER |
---------------------- L e LT
CUR_PRTCL_ECO | CUR_PRTCL_VER |
---------------------- tm——— - -+
DATA_LINK_RCV_FRAME_SIZE |
o+
REQUEST_IDENTIFIER |
- +
ENTRY_IDENTIFIER |
+ +
COMMAND_MODIFIER | COMMAND_TYPE |
+ +< -
OBJ_NODE_NAME | OBJ_NODE_NAME_LEN |
+ -t
OBJ_NODE_NAME_LEN ascii characters =
—————————————————————— Rt el e ke s 4
SUBJ_GROUP | SUBJ_GROUP_LEN |
F o e e o e e e +
SUBJ_GROUP_LEN bytes =
- o = o - -t
SUBJ_NODE_NAME | SUBJ_NODE_NAME_LEN |
Frmmw e —————-——-—-- +
SUBJ_NODE_NAME_LEN ascii characters =
SUBJ_PORT_NAME | SUBJ_PORT_LEN |
+ +
SUBJ_PORT_NAME ascii characters =
+ +
SUBJ_DSCR | SUBJ_DSCR_LEN |
+ +
SUBJ_DSCR_LEN ascii characters =
——— -
I
I

destination
node info

source node
info

source
service/port
info

destination
service/port
names

Figure 5-5 Cont'd. on next page

5-32

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 5-5(Cont.): Command Message Format
= OBJ_SRVC_NAME ascii characters =

A et e o e e e e tmr e ————— +

| OBJ_PORT_NAME | OBJ_PORT_NAME_LEN |

+ et |

= OBJ_PORT_NAME_LEN ascii characters =

Fommr e — e —————————— trmrrm e — e —————— +<-= extensible

| PARAM_LENGTH | PARAM_CODE | fields

termr . ———— B et +

| PARAM_DATA |

= (PARAM_LENGTH bytes) =

Fom e —————— + PARAM_CODE,
PARAM_LENGTH,

PARAM_DATA
repeat until
PARAM_CODE egual 0

= R and M (2 bits) - Must be 0.
» MSG_TYP (6 bits) - Fixed at 12. (Command message).
» PRTCL_FORMAT (1 byte) - Protocol Format flag,.
» Bits 0 through 7 - Must be 0 on transmit; ignored on receive.

» HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by the
node.

« LOW_PRTCL_VER (1 byte) - Lowest protocol version supported by the node.

» CUR_PRTCL_VER (1 byte) - Protocol version of this message (current version
is 5).

» CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_VER for this message
(current ECO is 1).

= DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - Maximum size of the
LAT message that can be sent to this node. Actual length of a LAT message
is DATA_LINK_RCV_FRAME_SIZE-18.

= REQUEST_IDENTIFIER (2 bytes unsigned) - Request identifier. This field con-
tains a solicit request identifier that is assigned by the node soliciting the con-
nection to the service. This value is used by the soliciting node to correlate
Status messages arriving from the solicited node with Command messages
sent by the soliciting node.

= ENTRY_IDENTIFIER (2 bytes unsigned) - Entry identifier. This field contains
the identifier of a previously issued Command message (i.e., one in which
COMMAND_TYPE was set to 2).

Connection Solicitation 5-33

5-34

» COMMAND_TYFE (1 byte unsigned) - Command message operation code.
The Command message is issued by the solicited node for various reasons
which are summarized by the codes below as a set of values:

value = 1 (access) - Solicit non-queued access to the service. If the ser-
vice cannot immediately satisfy that request, an error is returned; other-
wise connection initiation is attempted.

value = 2 (access) - Solicit queued access to the service. This value is
passed if the message is used to solicit queued access to the service.

The request may be queued if the service is busy. The service must have
“queued” characteristics, otherwise an error is returned. This command
requires REQUEST_IDENTIFIER to be non-zero.

value = 3 (access) - Cancel entry in the queue. This value is passed
if the message is used to cancel an entry in the queue that was cre-
ated as a result of a previously issued solicitation (Command message
with COMMAND_TYPE set to 2). This command requires ENTRY_
IDENTIFIER and REQUEST_IDENTIFIER values to be non-zero.

value = 4 (status) - Send status of the entry. This value requires the so-
licited node to return a Status message with information about an entry
queued as a result of a previously issued solicitation (Command message
with COMMAND_TYPE set 2). ENTRY_IDENTIFIER and REQUEST_
IDENTIFIER must not be 0.

value = 5 (status) - Send status of the queue. The solicited node re-
turns information about its node queue in the Status message. ENTRY_
IDENTIFIER and REQUEST_IDENTIFIER must be 0.

value = 6 (status) - Send status of multiple entries. An object node will
return all entries queued by the soliciting node. ENTRY_IDENTIFIER
and REQUEST_IDENTIFIER must be 0.

» COMMAND_MODIFIER (1 byte unsigned) - Bit mask that specifies how the
status message should be sent by the solicited node. The meaning of the bits
(when set)is:

bit 0 - Send status of the entry (entries) periodically. This value requires
an object node to periodically send the status of the entry in the Status
message. This bit can be used with COMMAND_TYPE operation code
equal to 2. '

bit 1 - Send status of the entry (entries) every time the queue depth
changes. This value requires the solicited node to return a Status mes-
sage every time the node-wide queue depth changes. This bit can be
used with COMMAND_TYPE operation code equal to 2.

LAT/Digital Equipment Corporation/Proprietary and Confidential

s Dbits 2-7 - Must be zero.

The next fields represents subject and object node information.

» OBJ_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the OB]_ NODE_NAME field in bytes. A value of
zero is illegal.

= OBJ_NODE_NAME (OB]_ NODE_NAME_LEN bytes) - Destination node
name. An array of ASCII characters describing the name of the destination
node. These characters are constrained as described in the section of the LAT
Architecture Specification entitled "Specification of Names. "

= SUBJ_GROUP_LEN (1 byte unsigned) - Subject group code byte length. A
byte count of the SUB)_GROUP field. A value of zero is legal and indicates
that the subject can access any services. Maximum value is 32 (-> 256 bits).

= SUBJ_GROUP (SUBJ_GROUP_LEN bytes) - Subject group code mask. This
field is specified as a bit-mask of up to 256 bits. A bit set to 1 indicates the
subject belongs to that group. The first bit of the mask (bit 0) corresponds to
group 0. This group code mask represents an Identifier List (IDL).

» SUBJ_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the SUB] NODE_NAME field in bytes. A value of
zero is illegal.

= SUBJ_NODE_NAME (SUBJ]_NODE_NAME_LEN bytes) - Soliciting node
name. An array of ASCIl characters describing the name of the node issu-
ing the Command message. These characters are constrained as described
in the section of the LAT Architecture Specification entitled ”Specification of
Names.”

The next fields represent subject information.

» SUBJ_PORT_LEN (1 byte unsigned) - A byte containing the length in bytes
of the SUB]_PORT_NAME field. A value of 0 means that no port name is
provided.

= SUBJ_PORT_NAME (SUBJ_PORT_LEN bytes) - Soliciting node port name.
An array of ASCII characters that forms the name of the source port.

=« SUBJ_DSCR_LEN (1 byte unsigned) - Subject description length. A byte con-
taining the length in bytes of the SUB]_DSCR field. A value of 0 means that
no description is provided.

‘Connection Solicitation 5-35

SUBJ_DSCR (SUBJ_DSCR_LEN bytes) - An array of ASCII characters that
forms the textual description of the subject.

The next fields represent destination service/port names.

OBJ_SRVC_NAME_LEN (1 byte unsigned) - Destination service name length.
A byte containing the length in bytes of the OB]_SRVC_NAME field. A value
of 0 means that no name is provided.

OBJ]_SRVC_NAME (OBJ_SRVC_NAME_LEN bytes) - Destination service
name. An array of ASCII characters that forms the name of the service. This
is a service name as advertised previously by the Service message.

OBJ_PORT_LEN (1 byte unsigned) - Destination service port name length. A
byte containing the length in bytes of the next field. A value of 0 means that
no name is provided.

OBJ_PORT_NAME (OBJ_PORT_LEN bytes) - Destination service port name.
The solicited node port name requested by the soliciting node.

The next field marks the beginning of the optional information.
PARAM_CODE (1 byte) - Parameter code. The following codes are defined:
= Parameter code 0 - Denotes the end of the parameter list.

= Parameter code 1 - Required service class. PARAM_DATA field specifies
service class to be used. If this PARAM_CODE is not present Service
Class 1 is requested.

= Parameter codes 2-127 - Reserved for DEC.

= Parameter codes 128-255 - Reserved for users.
PARAM_LEN (1 byte) - Length of the next field in bytes.
PARAM_DATA (PARAM_LEN bytes) - Parameter data.

5.2.2 Status Message

5-36

A Status message is used to return information about acceptance/rejection of the

solicitation request. A Status message is physically addressed. Figure 5-6 presents
the format of the Status Message. A detailed description of each field in the mes-
sage follows.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 5-6: Status Message Format

1 0
5
+ +
| PRTCL_FORMAT | MSG_TYP |M|R|
S S S, +etet
[LOW_PRTCL_VER | HIGH_PRTCL_VER |
o ——— U +
| CUR_PRTCL_ECO | CUR_PRTCL_VER |
o T TR +
| DATA_LINK_RCV_FRAME_SIZE |
tome e —————————— - - —
| STATUS_RETRANSMIT_TIMER |
b e e - e e o e e e +
| SUBJ_NODE_NAME_LEN | ENTRIES_COUNTER |
toerrr————— e ——————————— o —————————— + this field is
| SUBJ_NODE_NAME | padded by one
| | byte if it has
= SUBJ_NODE_NAME_LEN ascii characters = an odd length
+ T t< et
| ENTRY_STATUS | ENTRY_LENGTH |
e Fome e +
| RESERVED | ENTRY_ERROR |
tomr e, c e ———————— Frr - +
] REQUEST_IDENTIFIER |
+ -—— - +
| ENTRY_IDENTIFIER |
+ - ——- - + ENTRY_LENGTH+1
[ELAPSED_QUEUE_TIME | Dbytes
+ - - +
| MIN_QUEUE_POSITION
o e e e o e e e +
] MAX_QUEUE_POSITION
+ +
| OBJ_SRVC_NAME | OBJ_SRVC_NAME_LEN |
| Formr e - +
= OBJ_SRVC_NAME_LEN ascii characters =
tomm————————— - -—
| OBJ_PORT_NAME | OBJ_PORT_NAME_LEN |
| + +
= OBJ_PORT_NAME ascii characters = =
+ - +- - +
this field | SUBJ_DSCR | SUBJ_DSCR_LEN |
is padded | +ee- +
by 1 byte = SUBJ_DSCR_LEN ascii characters =
if ENTRY_ tomrmm e — e ————— + - R Jep—
LENGTH is | previous ENTRY_LENGTH+1 bytes |
even = can repeat =
+ + -t
| ENTRIES_COUNTER times |
= +
| PARAM_LENGTH | PARAM_CODE |
+ + +
| PARAM_DATA [
= (PARAM_LENGTH bytes) =

Figure 5-6 Cont’d. on next page

Connection Solicitation 5-37

Figure 5-6(Cont.): Status Message Format

tom e —m— e e e—e e ————————— e + PARAM_CODE,
PARAM_LENGTH,
PARAM_DATA
repeat until
PARAM_CODE equal 0

» R and M (2 bits) - Must be zero.
« MSG_TYP (6 bits) - Fixed at 13. (Status Message).
= PRTCL_FORMAT (1 byte) - Protocol Format flag,.
» Bit 0 through 7 - Must be 0 on send; ignored on receive.

« HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by the
node.

= LOW_PRTCL_VER (1 byte) - Lowest protocol version supported by the node.

« CUR_PRTCL_VER (1 byte) - Protocol version of this message (current version
is 5).

» CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_VER for this message
(current ECO is 1).

» DATA_LINK_RCV_FRAME_SIZE (2 bvtes unsigned) - This field must be zero
on send, and is ignored on receive.

» STATUS_RETRANSMIT_TIMER (2 bytes unsigned) - Value of status retrans-
mit timer. The soliciting node can request the solicited node to use this value
" to periodically return the entry status. A value of 0 means that no local timer
is supported. The required value is between 10 seconds and 1 hour. The rec-
ommended value is 60 seconds.

= ENTRIES_COUNTER (1 byte unsigned) - Number of entries whose status is
reported in the message. This field equals 0 for a node queue status request
(COMMAND_TYPE equals 5).

= SUBJ_NODE_NAME_LEN (1 byte unsigned) - Length of the next field in
bytes. A value of 0 is illegal.

= SUBJ_NODE_NAME (SUB]_NODE_NAME_LEN bytes) - Name of the node
that queued the solicitation request. A string of ASCII characters describ-
ing the name of the node that issued the Command message. These char-
acters are constrained as described in the section of the LAT Architecture

5-38 LAT/Digital Equipment Corporation/Proprietary and Confidential

Specification entitled "Specification of Names.” Note that this field must be
padded by one byte if NODE_NAME has an odd length.

The following field marks the beginning of the entry status information.

s ENTRY_LENGTH (1 byte unsigned) - Summary length of all following fields
that describe this entry (length in bytes).

= ENTRY_STATUS (1 byte unsigned) - Bit map defining the status of an indi-
vidual entry. Bit 7 clear means success (the operation is completed with suc-
cess). Possible additional information is provided by bits 0-6 (when set) as
follows:

» 0 - No additional information is provided.
» 1 - Request is already queued.

» 2 - Entryis accepted for processing (sent by slave node when entry is
chosen from the queue for processing).

» 3 - Periodic status return is not supported.
» 4 - Queue-depth status report is not supported.
= other values - TBD

If bit 7 is set, the solicitation request presented in the Command message was
rejected, and the following byte contains the rejection reason.

» ENTRY_ERROR (1 byte unsigned) - Solicitation rejection reason. A byte con-
taining a solicitation rejection reason code. This field must be 0 if bit 7 of the
ENTRY_STATUS field is clear. If bit 7 of the ENTRY_STATUS field is set, the

request is rejected and the ENTRY_ERROR field contains rejection reason val-
ues as follows:

=« 0 to 15 - see slot reason codes.

= 16 - COMMAND_TYPE code is illegal/not supported.
» 17 - Start slot can’t be sent.

= 18 - Queue entry deleted by local node.

= 19 - Inconsistent or illegal request parameters.

» other values - to be defined

» RESERVED (1 byte) - this is reserved byte (zero on send, ignored on receive).

Connection Solicitation 5-39

5-40

REQUEST_IDENTIFIER (2 bvtes unsigned) - Request identifier. This field con-
tains the identifier of the Command message assigned by the soliciting node.
The REQUEST_IDENTIFIER is returned here in order to provide the solic-
iting node with a means of identifying the solicitation request that is being
responded to.

ENTRY_IDENTIFIER (2 bytes unsigned) - Session identifier. This field con-
tains the identifier of the Command message as assigned by the solicited
node. This value must be unique on the node.

ELAPSED_QUEUE_TIME (2 bytes unsigned) - Elapsed time. The time that
this particular entry has been kept in the queue in minutes, When summary
information is requested, this value contains ELAPSED_QUEUE_TIME of the
active entry ECB. When all bits in this word are set to 1, no time is provided.

MIN_QUEUE_POSITION (2 bytes unsigned) - Minimum queue position. This
value is equal to the entry position in the solicited node service queue. When
a summary status of the queue is requested, this value represents number of
entries in the service queue.

MAX_QUEUE_POSITION (2 bytes unsigned) - Maximum queue position.
This value is equal to the entry position in the solicited node node-wide
queue. When a summary status of the queue is requested, this value repre-
sents number of entries in the node-wide queue.

OBJ_SRVC_NAME_LEN (1 byte unsigned) - Service name length. A byte con-
taining the length in bytes of the next field. A value of 0 means that no name
is provided.

OBJ_SRVC_NAME (OBJ_SRVC_NAME_LEN bytes) - Service name. An array
of ASCII characters that forms the name of the service provided by a solicited
node. ‘

OBJ_PORT_NAME_LEN (1 byte unsigned) - A byte containing the length in
bytes of the next field. - A value of 0 means that no port name is provided.

OBJ_PORT_NAME (OB]_PORT_LEN bytes) - Name of the port, provided by a
solicited node. An array of ASCII characters.

SUBJ_DSCR_LEN (1 byte unsigned) - Length of the next field in bytes. A
value of zero is legal and indicates that no service description is provided.

SUBJ_DSCR (SUB]_DSCR_LEN bytes) - ASCII string of characters represent-
ing the textual description of the source service (copied from the SUBJ_DSCR
field of the Command message).

LAT/Digital Equipment Corporation/Proprietary and Confidential

Connection Solicitation

The previous field marks the end of the entrv status information. One byte
should be added after the SUBJ_DSCR field if the ENTRY_LENGTH value
is even. If there is more than one entry, the previous fields are repeated
ENTRIES_COUNTER times.

PARAM_CODE (1 byte) - Parameter code. The following codes are defined:
» Parameter code 0 - Denotes the end of the parameter list.
= Parameter codes 1-127 - Reserved for DEC.
= Parameter codes 128-255 - Reserved for users.

PARAM_LEN (1 byte) - Length of the next field in bytes.

PARAM_DATA (PARAM_LEN bytes) - Parameter data.

5-41

A

Service Class 1 -Interactive And
Application Terminals.

While different classes of service share the same underlying data transport ser-
vice, each class of service defines a different directory service appropriate to the
needs of that particular class of service. This service class allows data terminal
equipment to be remoted from a host over an intervening Ethernet. Except for
the latency associated with reading and writing to the device, the host and ter-
minal server user should find that the remoted terminal performs similarly to a
locally connected terminal.

A.1 Local Area Directory Service

The LAT directory service exists to facilitate connections to services within a dy-
namic Local Area Network by providing an automatic mechanism to map node
names, Ethernet addresses, and service names into unique entities. The slot layer
of the LAT architecture translates service names into node names and the virtual
circuit layer translates node names into 48-bit Ethernet addresses. These transla-
tions can be accomplished by utilizing the information provided by the directory
service messages. The directory service utilizes the multicast mechanism provided
by the Ethernet. It is very responsive to sudden changes in the local area topol-

ogy.

Implementations are not required to support the directory service messages. A
possible alternate strategy which could be implemented by products would be

to require that the directory database be entered manually. A significant draw-
back to this strategy (in addition to the requirement of manual intervention) is
that the availability of the service is not known until the connection to it is actually
attempted.

Service Class 1 - Interactive And Application Terminals. A-1

The Directory Service for Service Class 1 is supported through the following, three
messages:

» Service announcement message - a multicast message used by nodes to ad-
vertise services.

= Solicit information message - a multicasted or physically addressed message
used by nodes to solicit an advertisement.

= Response information message - a physically addressed message used by
nodes to respond to the received Solicit information message.

The LAT V5.0 architecture provides the service announcement message to auto-
mate the directory service function. Host nodes multicast service announcements
at regular intervals while terminal servers listen to these announcements and build
a database of services to present to users. The LAT V5.1 architecture supplements
the directory service function with the solicit and response information messages.
The solicit information message allows nodes which do not listen to multicasted
service announcements to still acquire advertisement information without entering
the database manually.

A.2 Service Access Control

Users (subjects, consumers of resources, or active initiators of a connection) may
be restricted from accessing certain resources (objects, providers of resources,

or passive responders to connections) through the use of group codes. This re-
striction allows computing resources to be segmented based on such criteria as
departmental ownership or physical location. Group codes do not solve security
problems.

It is not the intention of the LAT V5.1 architecture to change either the intent or
the meaning of group codes as they were defined by the LAT V5.0 architecture.
However, the term ‘group codes’ can be ambiguous and confusing. Therefore,
new terminology is introduced with LAT V5.1: Access Control List (ACL) and
Identifier List (IDL). Resource (object) group codes are referred to as ACLs and
user (subject) group codes are referred to as IDLs.

Figure A-1 illustrates the usage of ACLs and IDLs during the process of connec-
tion establish.

A-2 LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure A-1: ACL and IDL Filow During Connection Establishment

advertising (ACL)
SUBJECT < === OBJECT

request (IDL)
SUBJECT > OBJECT

response (accept/reject)
SUBJECT < OBJECT

The algorithm which grants or denies a subject access to an object is based upon
comparing ACLs and 1DLs. If the intersection between a subject’s IDL and an ob-
ject’s ACL is not empty, the subject is granted access to an object. If that intersec-
tion is empty, access is denied. Implementations may choose how ACLs and IDLs
are managed.

There are three types of group-code fields in LAT messages: node group code(s),
service group code(s), and user group code(s). User group codes are IDLs. Service
group codes are ACLs. Node group codes is an "OR" function of an IDLs or
ACLs group code fields presented in the messages according to the table A-1. The
group code field consists of a counter followed by a string of bytes representing

a group code mask. This field is specified as a bit-mask of up to 256 bits. A bit

set to 1 in a node group code indicates the node belongs to that group (i.e., pos-
sesses the corresponding identifier value). The first bit of the mask (bit 0) corre-
sponds to group 0.

LAT V5.1 messages present an IDL or an ACL in a group code field depend-
ing upon the message type (i.e., the performed function - advertising or access).
Table A-1 defines the group-code fields in the LAT messages.

Table A-1: ACLs and IDLs in Messages

Message Access-list
Respdnse information ACL
Multicast Service announcement ACL
Solicit information IDL
Command message IDL
Start slot IDL

Before a node can solicit the use of a service, the name and characteristics of the
service must be made available to the soliciting node, and the soliciting node must
have the authority to use the service. As described above, that information can be

Service Class 1 - Interactive And Application Terminals. A-3

A-4

acquired through a Response service announcement message which contains the
characteristics and status of the service (name, availability, rating, etc.).

A subject process, no matter how privileged within the context of its own envi-
ronment, cannot use an object unless the intersection between its IDL and the

object’s ACL is not empty. In other words, access to a service is allowed if any
group code(s) assigned to the solicitor of a service matches any group code as-

signed to the service on the solicited node.

The set of rules that control service access with the group code mechanism is as
follows:

» Nodes ignore Solicit information messages from nodes whose group codes
do not intersect their group codes.

= Nodes ignore multicast advertising messages from nodes whose node group
code do not intersect their group codes. Therefore a node may provide ser-
vice announcement message filtering based on group codes.

» If the object node receives a Command message from a subject node whose
group code do not intersect with its own group codes, the object node must
respond with a Status message specifying "access denied” error code.

The following example illustrates connectivity restriction mechanism of group
codes. Services on the host nodes are assigned to one or more groups. Terminals
(or terminal servers) are also assigned to one or more groups. Whenever a termi-
nal (subject) and a host node service (object) share the same ACL and IDL (same
group code) those two system can interact. For example:

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure A-2: ACL/IDL Connectivity Restriction Example

——

| H 0 s T s E R v 1 o] E s |
S . S S, O—— ¥ S tomeee tomemee —— +- -+ -+ +- +
I | || || I
Sservice SA		Service SC		Service SB		Service SC		Service SE
(groups 1)		(groups 1,9)		Service SD		Service SB		(group 5)
Service SB				(group 4)				service SF
(group 2)			1 I		(group 3)			
	1 I			service sD				
tortoma——— Yot tomtemm——— tommet teetemc——— e A D Yot ttem—mmme- + =t								
Node a		Node b	Node c		Node d		Node e	
oo + P + S - + S . + S +								
groups	jgroups		groups		groups		groups	
1,2 | | 1,9 | | 2,4 | | 1,2,9] | '5,4,3]
Fememmee + o + R S — + . + 4o +

v

Ether<

v

>net

Terminal servers build up and present lists of available

host nodes and host services

at each terminal based on group codes

v v
/ Available services: \ / Available services: \
| SB, SC, SE, SD | | SC,SE]
+ + + +
tocoeacnma + Fommm———— +
| oooooo00| | ooooooo0|
tommm———— + tommm———— +
Terminal at Terminal at
terminal server a terminal server b

(groups-2,4,5,9) (groups-5,9)

Visible nodes - a,b,c,d,e

Visible nodes - b,d,e

The NODE_GROUPS field is a bit mask of 256 bits. If a bit is set, then the node
is a member of that group. The first bit of the mask (bit 0) corresponds to group
0. A maximum of 256 groups can be specified (0-255) and therefore this field’s
maximum length is 32 bytes.

A terminal server implementation should provide a privileged user with a single
command which enables all group codes.

Service Class 1 - Interactive And Application Terminals.

A.3 Advertising Services Through Multicast Message

This service class provides a local area directory service to allow users at a termi-
nal server to address host services without the manual intervention of a network
manager.

The directory service is very responsive to sudden changes in the local area topol-
ogy. All terminal servers discover that a particular host node is available within
milliseconds of the host node announcing the service. If a host node should
crash, the terminal servers can notify the users within a few seconds that the host
node may have crashed.

The directory service is based on the multicast mechanism built into the Ethernet.

A.3.1 Host

A.3.1.1 Initialization

A-6

A host system manager may specify:

= group codes (R)

= host node name (R)

= host service names and ratings (R)

= the guaranteed minimum Ethernet data link receive buffer size (R)
» the maximum slot size that can be received (R)

= the maximum slot size that can be transmitted (R)

= the physical location of the host node

= a facility number

s host characteristics and status as defined by the particular service class to
which the host belongs

It is recommended that the system manager be required to specify none of these
parameters in order to communicate with terminal servers that belong to group
0. To accomplish this, LAT host implementations must supply reasonable de-
fault values for those parameters labeled (R) (see DEFINED PARAMETERS AND
RECOMMENDED OR REQUIRED DEFAULT VALUES).

LAT/Digital Equipment Corporation/Proprietary and Confidential

A host node that has no assigned NODE_NAME or assigned SERVICE_.NAME
may not announce start of service. Instead, an error should be returned to the
system manager.

A.3.1.2 Host Group Codes

Coordination of the access from the certain terminal servers to the host services
is provided by usage of the facility-wide group codes arranged by the facility man-
ager.

A.3.1.3 Host Node Names

One or more ASCII names are specified in the multicast message transmitted peri-
odically by each host node.

Although an ASCII names can be up to 127 characters in length, a name should
be convenient for a user to remember and type. Hosts should not specify names
that are hard (or impossible) for terminal server users to specitfy. Terminal servers
must support a minimum ASCII name length of 16 bytes.

A host node must specify one NODE_NAME in the multicast message.

A host can specify more than eight SERVICE_ZNAMES, a terminal server is re-
quired to buffer a minimum of eight SERVICE_ZNAMES. A terminal server is re-
quired to update all of the information in a multicast message or ignore it.

A.3.1.4 Muitiple-Node Service Ratings

In the case where a given service is offered by more than one node, the server
selects the node to establish a session based on the service with the highest rating.

A.3.1.5 Steady-State Operation

The host node should periodically multicast the multicast datagram. This interval
is measured in seconds and is specified in the HOST_MULTICAST_TIMER field.

Whenever any of the information in the multicast datagram changes, the MSG_
INCARNATION must be incremented (modulo 256) and the CHANGE_FLAGS
field should reflect which field was changed. The CHANGE_FLAGS field bits are
toggled each time the associated field is changed. The flag remains in the new
state until the field is changed a second time.

Service Class 1 - Interactive And Application Terminals. A-7

A.3.1.6 System Shutdown
When a host node is "shutting down”, the NODE_STATUS field in the multicast

datagram should reflect the fact the the host is not accepting new sessions.

If service is terminated by the host svstem manager, at LEAST one addition multi-
cast message should be transmitted to reflect this change of state.

A.3.2 Terminal Server

A.3.2.1 Initialization

Whenever a terminal server is initialized, and no parameters are supplied interac-
tively, the following default values must be supplied by implementations:

Group code 0 is enabled.
= S and "Q are used as the output flow control characters
= S and "Q are used as the input flow control characters

= These flow control defaults are used when a slot session is established.
Questions related to setting of the flow control characteristics are discussed
in the Appendix B of the document.

An implementation might allow a privileged terminal server user to specify:

= group codes (R)

= the guaranteed minimum Ethernet data link receive buffer size (R)
» the circuit timer value (R)

= the maximum slot size that can be received (R)

s the maximum slot size that can be transmitted (R)

= the physical location of the terminal server

= a facility number

= a nickname used to refer to the terminal server

» server characteristic and status as defined by the particular service class to
which the terminal server belongs

A-8 LAT/Digital Equipment Corporation/Proprietary and Confidential

It is recommended that an implementation not require a privileged terminal server
user to specify any of these parameters in order to communicate with host nodes
that belong to group 0. In order to accomplish this, an implementation must
supply reasonable default values for those parameters labeled (R) (see DEFINED
PARAMETERS AND RECOMMENDED OR REQUIRED DEFAULT VALUES).

An implementation of a terminal server might allow all group codes to be enabled
with a single command.

A.3.2.2 Building The Circuit Name Database

Each Terminal Server builds a database from the information received in multi-
cast datagrams. A terminal service is require to process all of the information in a
multicast datagram, or ignore the datagram.

Terminal servers receive multicast datagrams periodically from each host node.
Each time a multicast datagram is received, the terminal servers scan a list of
enabled group codes, and if one of the group codes in the multicast datagram
matches one of those assigned to the terminal server (user), then the informa-
tion in the multicast message is added to the local server database (see section

on LOCAL AREA DIRECTORY SERVICE). All multicast messages specifying the
NODE_GROUP_LENGTH field as zero imply that the host is not offering any ser-
vices.

If the multicast message contains a NODE_NAME which is not already in the
list, a new node entry is created and the information in the multicast datagram
is parsed into the entry. If the NODE_NAME has associated SERVICE_NAMES,
these too are added to the database.

If the NODE_NAME is already entered, the datagram MSG_INCARNATION field
is compared with the MSG_INCARNATION field stored in the list entry to see if
the information in this multicast datagram is identical to the data receive previ-
ously from the host node. If this field has changed, then the information in the
multicast datagram is reparsed into the list entry corresponding to the NODE_
NAME. The CHANGE_FLAGS field should be used to reduce the CPU time nec-
essary to parse the entry.

If the NODE_NAME is already entered in the list, but as the message is parsed
into an existing entry it is determined that the message was received from a dif-
ferent Ethernet address, the TOTAL_DUPLICATE_NODE_NAME counter should
be incremented. The newly received multicast datagram should replace the exist-
ing entry. This behavior is possible if a host node has access to more than one
Ethernet port and the port that was being used failed. The host node might then
start transmitting the same multicast datagram from a different port. Of course,
the name could be mistakenly shared by more than one host system. For this

Service Class 1 - Interactive And Application Terminals. A-9

reason, the TOTAL_DUPLICATE_NODE_NAME counter is maintained. The facil-
ity manager can diagnose this second aberrant condition by monitoring the node
name from a terminal server and observing the changing Ethernet 48-bit address.

Servers maintain the list of all names in memory.

If a terminal server has insufficient memory to buffer all of the received multicast
data, NODE_NAME entries are purged from this database in the following order:

1. Timed-out - these are nodes that are known to be unavailable because the
LAT_MESSAGE_RETRANSMIT_LIMIT was reached on an active virtual circuit
associated with the host node.

2. Unknown - these nodes have stopped transmitting multicast messages for
more than 5 times the HOST_MULTICAST_INTERVAL seconds, and are
therefore assumed to be in an unusual state (crashed).

3. Shutdown - these are host nodes that have indicated that they are no longer
accepting new virtual circuits.

4. Reachable (optional) - these are host nodes that are available, but no virtual
circuit is currently established to the node NODE_NAME. If these names are
purged from the server database, an unacceptable CPU penalty may be ex-
acted due to the high turnover rate of entries in some implementations.

If after all of the above entries have been purged from the NODE_NAME database,
no entries are available, the multicast message is discarded. Nodes associated
with active virtual circuits are never purged from the node data base.

A.3.2.2.1 Error Recovery

If a connect to a SERVICE_NAME name fails, the list of SERVICE_NAME:s is
searched for an alternate NODE_NAME path to the SERVICE_NAME. If one is
found, a connection is attempted. This continues until a connection succeeds or
until all possible NODE_NAME paths to the selected SERVICE_NAME have failed.

If 5 times the HOST_MULTICAST_TIMER seconds elapse in the terminal server,
and a terminal server has not received the multicast datagram corresponding to a
list entry, the entry status field is set to unknown.

A-10 LAT/Digital Equipment Corporation/Proprietary and Confidential

A.4 Advertising Through Solicitation and Response Messages

While preserving the LAT V5.0 directory service, the LAT V5.1 architecture defines
another method for a node to collect information it needs to initiate a connection
to other nodes. Before attempting to establish a connection, a node may request
information needed for establishing a connection using a Solicit information mes-
sage. A soliciting node may multicast this message or send it physically addressed
to a specific node (if this node is known as a provider of a required service). A
Solicit information message can solicit information about all services, one specific
service, or node information using parameters in the Solicit information message.
See the section entitled "LAT Messages.”

All nodes (or one specified by a name or address) that satisfy access control re-
quirements (see “Service Access Control”) and are able to process a Solicit infor-
mation message, reply with a Response information message physically addressed
to a soliciting node. The solicited node may respond with a Response information
message that includes the following information:

s the node and all offered services
» one explicitly-requested service

» the node only (Ethernet address and some node parameters)

The soliciting node processes incoming messages and collects enough information
to initiate a connection.

A node can use both methods of acquiring information about nodes and services:
listening to multicasted Service announcement messages and using the Solicit
information message. There is no coordination mechanism between Service an-
nouncement messages and Response information messages that would allow such
a node to support a unified local cache using information from both messages.
Such a node must support two separate local caches of information and update
both caches separately.

More than one solicit message request may be outstanding on a soliciting node.
A solicitation identifier is provided to correlate Solicit information requests with
Response messages. A soliciting node inserts this identifier into the Solicit mes-
sage and all replying nodes insert the same identifier into the Response message.
So, all Response messages that are sent in response to this Solicit message will
have the same solicit identifier.

Service Class 1 - Interactive And Application Terminals. A-11

A.4.1 A Node Operating In Slave Mode

Operations performed by a slave node may be defined as:

= The node does not listen to multicast messages.

= The node may multicast Service announcement messages containing informa-
tion about services offered by that node. Multicasting is based on the multi-

cast timer.

» The node may multicast (or send physically addressed) Solicit information
messages whenever the node needs to collect information about master

nodes and the services they offer.

» The node may receive and process Response information messages sent by

master nodes in response to a Solicit information message.

» The implementation chooses an algorithm for processing Response informa-
tion messages and methods for caching/updating a local database.

Table A-2: A Node Operating in Slave Mode

State Event Action State
Halted or Multicast timer expired Multicast Service Return to existing
Soliciting announcement message state
Halted solicit information: Multicast Solicit Soliciting multiple

Soliciting spe-
cific node

Soliciting mul-
tiple nodes

- destination node
address unknown

solicit information:
- destination node
address is known

response message rec.

Response time-out

Global time-out

Response message re-
ceived

Response timeout

Global time-out

Response message re-
ceived

information message

Send addressed Solicit
information message

no action

Resolicit

Abort solicitation

Process message
Resolicit

Abort solicitation

Process message

nodes

Soliciting specific
node

halted
Soliciting

Halted
Halted

Soliciting

Halted

Soliciting

A-12

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table A-2 assumes that each Response message is correlated to a corresponding
Solicit message by means of solicitation identifiers to provide the correct state
transitions.

A multicasted Solicit information message may result in some unknown number
of responses. A multicasted or physically addressed Solicit information message
is not guaranteed to be delivered. Therefore, a node must implement some pol-
icy for retransmitting and timing out Solicit information message requests. A re-
sponse timer and a global timer can be used to retransmit a Solicit information
message. The suggested method is to retransmit a Solicit information message 2
to 3 times with 1- to 2-second intervals.

A.4.2 A Node Operating In Master Mode

Operations performed by a master node can be defined as:

= The node may listen to multicast messages and support local data cache.
= The node does not multicast service announcement messages.

= After receiving a Solicit information message, the node responds with a
Response information message physically addressed to a soliciting node. A
Response information message can contain node information only, specified
service information, or information about all services offered by the node (see
“Response Information Message Policy”).

To avoid a simultaneous response by all nodes, each responding node should not
make its response event-driven, but rather implement a delay that will cause the
node to reply within a certain time interval. The RESPONSE_TIMER parameter in
the Solicit information message and some random number must be implemented
by the solicited nodes to distribute the reply within the soliciting node’s retransmit
time interval.

One of possible algorithms of getting a random number is presented as follows:
add all bytes within the unique Ethernet address resulting in a 16-bit value; use
this value to initialize a counter; use the counter to count seconds since sys-
tem boot; take low-order bits of the result as a random value to respond within
RESPONSE_TIMER interval.

It is the responsibility of the soliciting node to implement a resolicitation algorithm
as needed.

Service Class 1 - Interactive And Application Terminais. A-13

A.4.3 Response Information Message Policy

A Solicit information message can be directed to one node using a physical ad-
dress or to all nodes by using a multicast address. The soliciting node can specify
in the request a destination node name, the requested service name, and the re-
quested port name. A soliciting node can request information about a node, one
specific service, or all services offered bv a destination node. Using the Response

message, the solicited node may respond with node information only (SRVC_
COUNT is 0), node and all offered services information, or node and specified
service information only. The policies that govern the request/response informa-
tion flow between a soliciting node and a solicited node are presented in Table
A-3. A null name means that no name is provided in the Solicit information mes-

sage.

Table A-3: Response Service Announcement Policy

Solicit service

destination destination message Soliclt service message

service name node name multicasted physically addressed

null null Any node may re- Addressed node may respond
spond with node with node info an optionally
info and optionally all services.
all services.

null not null Named node must If node name is correct, node
respond with node must respond with node and
info and optionally optionally all services info.
all services.

not null null If node offers ser- If node offers service, it must
vice, it must re- respond with node and service
spond with node info. Else returns error "node
and service informa- doesn’t offer service”.
tion.

not null not null If named node.of- If node name is correct and

fers service, it must
respond with node
and service infor-
mation. Else node
returns error "node
doesn’t offer ser-
vice”.

node offers service, it must
respond with node service
info. Else return error "node
doesn’t offer service”.

Note that the node responds only if access control requirements are satisfied (see

"Access Control”).

LAT/Digital Equipment Corporation/Proprietary and Confidential

A.5 Service Class 1 Messages

Advertisement messages can be solicited or unsoiicited. The Solicit information
and Service announcement messages are unsolicited. The Status and Response
messages are solicited messages. Each node is responsible for allocating buffers
to receive maximum length unsolicited LAT messages. Unsolicited messages con-
tain a DATA_LINK_RCV_FRAME_SIZE field that defines the maximum size of the
solicited LAT messages which can be sent to the node.

Each service class can define extensions to the messages in the main body of the
document.

If the slot byte count is in conflict with a field byte count, the slot is invalid. If the
slot byte count truncates an extension to the slot, the slot is valid and the exten-
sion is not supplied. If a byte counted field within a slot status field is specified as
zero length, the next byte following the byte count is the first byte of the following
field.

Bits are transmitted low order bit first onto the Ethernet. When fields are con-
catenated, the right hand field is transmitted first. Numeric fields more that 8-bits
long are transmitted least significant byte first.

Fields are represented as bit streams, right to left. All fields are an integer multiple
of eight bits. The symbol " =" is used to indicate fields of varying or indeterminate
length.

A.5.1 Service Announcement Message

This service class defines the following additional message (this is a multicast mes-
sage used in the LAT 5.0 version):

Service Class 1 - Interactive And Application Terminals. A-15

Figure A-3: Service Announcement Message

1

5 0
+ t
| SRV_CIRCT_TMR | MSG_TYP |M|R}
——————————————— Focrccem -ttt
| LOW_PRTCL_VER | HIGH_PRTCL_VER|
Fo - —— F o e +
| CUR_PRTCL_ECO | CUR_PRTCL_VER |
[R - B — +

| CHANGE_FLAGS |MSG_INCARNATION|

+

+ - - torercmrerrcn———-— +
| NODE_STATUS |NODE_MULTI_TIMR]|
+- . t—— ———t
NODE_GROUPS | NODE_GROUP_LEN |

+ +
= NODE_GROUP_LEN group numbers =
B e et e e +
| NODE_NAME_LEN |

]
=
[o]
=]

|]
z
2]
1
c
%)
2
o
/2]
o]
-
-
o]
pvg
[}
[}
o
Q
ct
]
]
/]
[}

- = ——— +

| NODE_DESC_LEN |

+ +

NODE_DESC_LEN ascii characters=
+ +

SRVC_RATING |SRVC_NAME_COUNT|
- - ———+

| SRCV_NAME_LEN |

+ +

SRCV_NAME_LEN ascii characters=
-+
| SRVC_DESC_LEN |

F o - - - - +

SRVC_DESC_LEN ascii characters=
o = = +

if SRVC_NAME_COUNT is greater |
than one, then the previous =
five field are repeated here - |
-t -
I

+

+

NODE_SER_CLASES| NODE_SER_LEN
+

NODE_SER_LEN service classes

1+ ——t— | — 4 | —— ¢ N—— b — 4 |

= R (1 bit) - Response requested flag. Must be zero.
= M (1 bit) - Master flag. Must be zero.
« MSG_TYP (6 bits) - fixed at 10.

A-16 LAT/Digital Equipment Corporation/Proprietary and Confidential

Service Ciass 1

SERVER_CIRCUIT_TIMER (1 byte) - Desired value in 10 millisecond inter-
vals. The node suggests a value in this field. The value may be ignored by
the terminal server. A zero specifies no preferred value.

HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by node.
LOW_PRTCL_VER (1 byte) - Lowest protocol version supported by node.

CUR_PRTCL_VER (1 byte) - Protocol version of this message (current version
is 5).

CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_VER for this message
(current ECO is 1).

MSG_INC (1 byte) - Message incarnation. This multicast datagram is trans-
mitted periodically by each node. Any time ANY field within this message

changes value relative to the previous message, the MSG_INCARNATION

must be incremented by one. When the node assigns this value to the first

multicast message, a random value should be chosen.

CHANGE_FLAGS (1 byte) - Each bit in this byte corresponds to a field in the
multicast message that can change:

» bit 0 - Node group codes changed

= Dbit 1 - Node descriptor changed.

= bit 2 - Service names (and/or number of names) changed
= bit 3 - Service ratings changed.

= bit 4 - Service descriptors changed.

» Dbit 5 - Service classes changed.

= bit 6 - unpredictable

= bit 7 - Other parameters changed.

If a field changes, the bit value toggles (0 -> 1 or 1 -> 0) and then remains
at that value as multicast messages are transmitted until the field changes
again. Only the bit(s) associated with the fleld(s) that have actually changed
may be toggled in this way.

DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - Maximum size of the
LAT message that can be sent to this node. Actual length of a LAT message
is DATA_LINK_RCV_FRAME _SIZE-18.

- Interactive And Appilication Terminals. A-17

A-18

NODE_MULTICAST_TIMER (1 byte unsigned) - The minimum rate at which
the node will send multicast messages in seconds.

NODE_STATUS (1 byte bit mask) - Node status flags byte.
= Bit 0 - Set to 1 if the node is not accepting new sessions.
= Bits 1 through 7 - zero on send, ignored on receive.

NODE_GROUP_LEN (1 byte unsigned) - A bvte count of the NODE_GROUP
field. A value of zero is legal and indicates that the node does not offer any
services.

NODE_GROUPS (NODE_GROUP_LEN bytes) - This field is specified as a bit-
mask of 256 bits. A bit set to 1 indicates the node belongs to that group. The
first bit of the mask (bit 0) corresponds to group 0.

NODE_NAME_LEN (1 byte signed) - A byte count of the NODE_NAME field.
A value of zero is illegal.

NODE_NAME (NODE_NAME_LEN byvtes) - These characters are constrained
as described in the section entitled "Specification of names”.

NODE_DESCRIPTOR_LEN - (1 byte unsigned) - A byte count of the NODE_
DESCRIPTOR field. A value of zero indicates that no node description is
available.

NODE_DESCRIPTION (NODE_DESCRIPTION_LEN bytes) - An ASCII string
of characters that describes the node.

SERVICE_NAME_COUNT (1 byte unsigned) - This field is equal to the num-
ber of service names offered. The next five fields are repeated SERVICE_
NAME_COUNT times.

SERVICE_RATING (1 byte unsigned) - the rating of the associated service
name.

SERVICE_NAME_LEN (1 byte signed) - A byte count of the SERVICE_ZNAME
field. A value of zero is illegal.

SERVICE_NAME (SERVICE_NAME_LEN bytes) - These characters are con-
strained as described in the section entitled "Specification of names”.

SERVICE_DESCRIPTOR_LEN - (1 byte unsigned) - A byte count of the
SERVICE_DESCRIPTOR field. A value of zero indicates that no service de-
scription is available.

LAT/Digital Equipment Corporation/Proprietary and Confidential

= SERVICE_DESCRIPTION (SERVICE_DESCRIPTION_LEN bytes) - An ASCII
string of characters that will help the terminal server user identify the service
being offered. The node should not load control characters into ‘this field.
Terminal servers must support a minimum SERVICE_NAME length of 64
characters.

= NODE_SERVICE_LEN (1 byte unsigned) - A byte count of the NODE_SER_
CLASES field. A value of zero is illegal.

= NODE_SERVICE_CLASSES (NODE_SERVICE_LEN bytes) - A node might
simultaneously support multiple service classes. A service class is coded as
a byte value in the range 0 to 255. The value zero is reserved. This field is
specified to make the architecture extensible. A node must specify the service
classes it supports. The service classes defined at present are:

» CLASS 1 - Interactive terminals and Application terminals

A.5.2 Solicit Information Message

The Solicit information message can be used by a node to solicit a Response infor-
mation message(s) from another node(s). The Solicit information message can be
multicasted or physically addressed.

Figure A-4 presents the format of the Solicit information message. Detailed de-
scriptions of each field in the message follow.

Service Class 1 - interactive And Application Terminals. A-19

A-20

Figure A-4: Solicit Information Message

0
S

PRTCL_FORMAT | MSG_TYP IM|R|
------------------ b ——————t—t -t
LOW_PRTCL_VER | HIGH_PRTCL_VER |
—————————————————— Y mr e r e m———————t
CUR_PRTCL_ECO | CUR_PRTCL_VER |
e r e ———— +

DATA_LINK_RCV_FRAME_SIZE |

- -_— s

SOLICIT_IDENTIFIER |

RESPONSE_TIMER |
e o i e e e i e e e +
DST_NODE_NAME | DST_NODE_NAME_LEN|
+ I
DST_NODE_NAME_LEN ascii char. =

Frr e — e ——————— +
SRC_NODE_GROUP_LEN bytes =
F o o o e e F o e e +

SRC_NODE_NAME | SRC_NODE_NAME_LEN |
+ |

|

= SRC_NODE_NAME_LEN ascii char. =
+ - - +
| DST_SRVC_NAME |DST_SRVC_NAME_LEN |
| + I
| DST_SRVC_NAME_LEN ascii char. |
+ - [-t
| PARAM_LENGTH | PARAM_CODE |
+ e ———— +
i PARAM_DATA |
= (PARAM_LENGTH bytes) =
+ e + PARAM_CODE,

PARAM_LENGTH,
PARAM_DATA repeat
til PARAM_CODE equal 0

= RM (2 bits) - Must be 0.
= MSG_TYP (6 bits) - fixed at 14.
= PRTCL_FORMAT (1 byte) - Protocol Format flag.
. Bit 0 through 7 - Must be 0 on transmit, ignored on receive.

= HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by the
node.

= LOW_PRTCL_VER (1 byte) - Lowest protocol version supported by the node.

LAT/Digital Equipment Corporation/Proprietary and Confidential

= CUR_PRTCL_VER (1 byte) - Protocol version of this message (current version
is 5).

= CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_VER for this message
(current ECO is 1).

» DATA_LINK_RCV_FRAME _SIZE (2 bytes unsigned) - Maximum size of the
LAT message that can be sent to this node. Actual length of a LAT message
is DATA_LINK_RCV_FRAME_SIZE-18.

= SOLICIT_IDENTIFIER (2 bytes unsigned) - Identifier produced by the solicit-
ing node that uniquely identifies the Solicit information message. The solicit-
ing node uses this identifier to correlate corresponding Solicit and Response
information messages.

» RESPONSE_TIMER (2 bytes unsigned) Retransmit timer (seconds) that starts
when a Command message (access) is sent. The soliciting node uses this
timer to time-out waiting state for the responses. The responding node
should use that value as a maximum for its local response timer.

« DST_NODE_NAME_LEN (1 byte unsigned) - length of the next field. A byte
containing the length of the DST_ NODE_NAME field in bytes. A value of
zero is legal.

s DST_NODE_NAME (DST_NAME_LEN bytes) - Destination node name. An
array of ASCII characters describing the name of the node known to be a
provider of services. These characters are constrained as described in the sec-
tion of the LAT Architecture Specification entitled "Specification of Names.”

» SRC_NODE_GROUP_LEN (1 byte unsigned) - Node group code byte length.
This byte denotes the lengths of the next field. A value of 0 is legal and indi-
cates that node can access any services. Maximum value is 32 (256 bits).

» SRC_NODE_GROUPS (SRC__NODE_GROUP_LEN bvtes) - Soliciting node
group code mask. This field is specified as a bit-mask of up to 256 bits. A bit
set to 1 indicates the node belongs to that group. The first bit of the mask
(bit 0) corresponds to group 0. This group code mask represents Identifiers
List (IDL).

» SRC_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the SRC_NODE_NAME field in bytes. A value of
zero is illegal.

» SRC_NODE_NAME (SRC_NODE_NAME_LEN bytes) - Soliciting (source)
node name. An array of ASCII characters describing the name of the node
soliciting a response message. These characters are constrained as described
in the section of the LAT Architecture Specification entitled “Specification of
Names."”

‘Service Class 1 - Interactive And Application Terminalis. A-21

s DST_SRVC_NAME_LEN (1 bvte unsigned) - Service name length. A byte
containing the length in bytes of the DST_SRVC_NAME field. A value of zero
indicates no Service name is requested.

« DST_SRVC_NAME (DST_SRVC_NAME_LEN bytes) - Requested service
name. An array of ASCII characters that forms the name of the requested
service. These characters are constrained as described in the section of the
LAT Architecture Specification entitled "Specification of Names.” This name
is not constrained to be unique in the Local Area Network because the same
service name can be offered by different nodes.

» PARAM_CODE (1 byte) - Parameter code. The following codes are defined:
» Parameter code 0 - Denotes the end of a parameter list.
s Parameter codes 1-127 - Reserved for DEC use.
= Parameter codes 128-255 - Reserved for users.

» PARAM_LEN (1 byte) - Length of the next field in bytes.

PARAM_DATA (PARAM_LEN bytes) - Parameter data.

A.5.3 Response Information Message

A-22

The Response information message is physically addressed to the soliciting node.
The Response message must fit in the receive buffer provided by the soliciting
node (see "Solicit Information Message”). The more general solution needed in
the case when the Response message does not fit in the provided buffer is outside
the scope of the LAT V5.1 architecture.

Figure A-5 presents the format of the Response information message. A detailed
description of each field in the message follows.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure A-5: Response Information Message

+ |
SRVC_NAME_LEN ascii characters |

1
5 0
Start of ----—- >+ +
Protocol info | PRTCL_FORMAT | MSG_TYP IM|R]
area Fmm - trm— e ——————— tet -t
| LOW_PRTCL_VER | HIGH_PRTCL_VER |
o ———— tommm e +
| CUR_PRTCL_ECO | CUR_PRTCL_VER |
Fomm e —————— Fom e —— +
| DATA_LINK_RCV_FRAME_SIZE |
e +
. | SOLICIT_IDENTIFIER |
Start of the + - -+
node | RESPONSE_STATUS |
info area >t- -— +
I SRC_NODE_STATUS |
+ -— - - -+
I
SOURCE_NODE_ADDR |
I
B et +
| NODE_MC_TIMER [
B Rttt +
DST_NODE_NAME | DST_NODE_NAME_LEN |
+ +
DST_NODE_NAME_LEN ascii char |
teo- +
' SRC_NODE_GROUP |SRC_NODE_GROUP_LEN |
+ +
SRC_NODE_GROUP_LEN bytes =
+ + +
SRC_ NODE_NAME | SRC_NODE_NAME_LEN |
+ +
= SRC_NODE_NAME_LEN ascii chars =
+ - -+ - +
| SRC_NODE_DESC | SRC_NODE_DESC_LEN |
Start | Fom e +
of service = SRC_NODE_DESC_LEN ascii characters = Start of the
descriptor >+ t—e +< gservices area
| SRVC_ENTRY_LEN |~ SRVC_COUNT * |
+ + -t
| SERVICE_CLASS | SRVC_CLASS_LEN |
+ +—- ———t
= SERVICE_CLASS_LEN ascii characters =
tomm e —————— +me - +
| SRVC_RATING | SRVC_STATUS |
+ + -—
| SRVC_GROUPS | SRVC_GROUP_LEN |
+ . + ——
= SRVC_GROUP_LEN bytes =
+ + ———t
| SRVC_NAME | SRVC_NAME_LEN |
I
I

Figure A-5 Cont’d. on next page

Service Class 1 - Interactive And Application Terminals. A-23

A-24

Figure A-5(Cont.): Response Information Message
e fommm e ————————— +
| SRVC_DESC | SRVC_DESC_LEN |
| Vo ——————————— +
= SRVC_DESC_LEN ascii characters =

End of - ——--- b ettt L L L L DL S PP DL P +
Service | if SRVC_COUNT is greater]
descriptor = than one, then the Service =
|descriptor fields are repeated |

End of - ~==w-=- Ptemmm—c—————————— B e e +
Services area PARAM_LENGTH | PARAM_CODE |
----------------- o -

PARAM_DATA |

+ I —+—

(PARAM_LENGTH bytes)

+ PARAM_CODE,
PARAM_LENGTH,
PARAM: DATA repeat
til PARAM_CODE equal 0

= RM (2 bits) - Must be zero.

» MSG_TYP (6 bits) - Fixed at 15.

» PRTCL_FORMAT (1 byte) - Protocol Format flag. Bits 0 - 1 define mode of
operation of the node as follows:

00 - node can operate in the Ethernet format only

01 - node can operate in the 802 format only
10 - node can operate in both - 802 and Ethernet

11 - reserved

formats

Bits 2 through 7 - Must be 0 on transmit, ignored on receive.

= HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by the
node.

= LOW_PRTCL_VER (1 byte) - Lowest protocol version supported by the node.

= CUR_PRTCL_VER (1 byte) - Protocol version of this message (current version

is 5).

= CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_VER for this message
(current ECO is 1).

s DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - This field must be zero
on send; ignored on receive.

LAT/Digital Equipment Corporation/Proprietary and Confidential

» SOLICIT_IDENTIFIER (2 bytes unsigned) - This value is equal to the value of
the SOLICIT_IDENTIFIER field of the received Solicit information message
that is being replied to by this Response information message.

= RESPONSE_STATUS (2 bytes unsigned) - Response status. Bit mask repre-
senting status of the Response information message. Meaning of bits (when

set):
= Bit 0 - reserved
= bit 1 - Node does not offer requested service.

s bits 2-15 - Must be zero.

The next field marks the start of the node information area.

= SRC_NODE_STATUS (2 byte bit mask) - Responding node status flag word
represented by a bit mask as follows:

= Bit O set - the node is disabled (node is not accepting new connections to
its services).

= bit 1 set - Start message can be sent by the subject node to the object
node that issued the Response information message.

= Dbit 2 set - Command message can be send by the Subject node to the
Object node that issued the Response information message.

= Remaining bits - must be 0 on send, ighored on receive.

Bits 1 and 2 in the SRC_NODE_STATUS field define functional capabil-
ities of the solicited node. Using those two bits in the NODE_STATUS
byte of the Response message, a responding node reports to the solicitor
what messages the subject can use to initiate a connection to the object.
Table A-4 explains the meaning of those bits and combinations.

Table A-4: SRC_NODE_STATUS Bit Combinations

Bits

2 1 Meaning

00 Object does not accept either Command or Start message. No connection
can be made to this object (5.0 server is an example of a such node).

01 Subject can send a Start message. Object will respond with Start/Reject

message only. (5.0 host is an example of a such node).

Service Class 1 - Interactive And Application Terminals. A=-25

A-26

Table A-4 (Cont.): SRC_NODE_STATUS Bit Combinations

Bits

2 1 Meaning

10 Subject can send Command message. Object can respond with Start/Reject
or Status messages. (5.1 server that offers services is an example).

1 1 Subject can send both Start and Command messages. Object can respond

with both Start and Status messages. By advertising ability to receive a
Start message, object announces itself to be at least a slave. (5.1 slave
which provides queuing to the services and symmetric node are examples
of such nodes).

SOURCE_NODE_ADDR (6 byte field) - transmitting node must fill this field
with the value equal to the data link source address of the node. Receiving
node must reference this field and must ignore the actual source address of
the message. '

NODE_MC_TIMER (2 bytes unsigned) - Slave node muilticast timer (the max-
imum time between transmitted Service messages in seconds). The value
must be in the range 1 to 3600 seconds.

DST_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the DST_NODE_NAME field in bytes. A value of
zero is legal.

DST_NODE_NAME (DST_NAME_LEN bytes) - Destination node name.

An array of ASCII characters describing the name of the node to which the
Response message is directed. These characters are constrained as described
in the section of the LAT Architecture Specification entitled "Specification of
Names.”

SRC_NODE_GROUP_LEN (1 byte unsigned) - Node group.code byte length.
This byte denotes the length of the next field. A value of 0 is legal and in-
dicates that the node is offering no services. The maximum value is 32 (256
bits).

SRC_NODE_GROUPS (SRC_NODE_GROUP_LEN bytes) - Node group code

mask. This field is specified as a bit-mask of up to 256 bits. A bit set to 1 in-
dicates the node belongs to that group. The first bit of the mask (bit 0) corre-
sponds to group 0. This group code mask represents an Access Control List

(ACL).

SRC_NODE_NAME_LEN (1 byte unsigned) - Node name length. A byte
count of the following field. A value of zero is illegal.

LAT/Digital Equipment Corporation/Proprietary and Confidential

» SRC_NODE_NAME (SRC_NODE_NAME_LEN bvtes) - Node name. An
ASCII string of characters that contains the name of the node for which the
information applies. These characters are constrained as described in the sec-
tion of the LAT Architecture Specification entitled "Specification of Names. "
This name must be unique to the Local Area Network.

= SRC_NODE_DESC_LEN (1 byte unsigned) - Node description length. A byte
count of the following field. A value of zero indicates that no node descrip-
tion is available.

» SRC_NODE_DESC (SRC_NODE_DESC_LEN bytes) - Node description. An
ASCII string of characters representing the textual description of the node.

The next field marks the start of the Services area.

= SRVC_COUNT (1 byte unsigned) - Service count. This is the total number of
service entries included in the message.

The next field marks the start of the Service entry.

= SRVC_ENTRY_LEN (1 byte unsigned) - Number of bytes in this service entry.
It is used to speed the search through the entries presented in the list.

= SRVC_CLASS_LEN (1 byte) - length of the following field in bytes. A value
of zero is legal and means that service belongs to class 1.

» SERVICE_CLASS (SRVC_CLASS_LEN bytes) - class of the described service
(service can belong to more then 1 class). Equal 1 for the interactive and ap-
plication terminals.

» SRVC_STATUS (1 byte unsigned) - Service status. This field is specified as a
bit mask of 8 bits. The bits are defined as follows: -

= Bit 0 set - Service is enabled.
= Bit 1 set - Service supports queuing (see "Service Sharing”).
» Remaining bits - must be 0 on send, ignored on receive.

= SRVC_RATING (1 byte unsigned) - The rating of the associated Service. This
value changes dynamically depending upon type of service, system resources,
number of users, etc.

» SRVC_GROUP_LEN (1 byte unsigned) - Service group code length. A byte
count of the SRVC_GROUP field. A value of 0 is legal and indicates that the
service group codes are not available (use node group codes). The maximum
value is 32 (-> 256 bits).

Service Class 1 - Interactive And Application Terminals. A-27

» SRVC_GROUPS (SRVC_GROUFP_LEN bytes) - Service group codes. This
field is specified as a bit-mask of 256 bits. A bit set to 1 indicates the service
belongs to that group. The first bit of the mask (bit 0) corresponds to group
0. This group code mask represents an Access Control List (ACL).

= SRVC_NAME_LEN (1 byte unsigned) - Service name length. A byte contain-
ing the length in bytes of the SRVC_NAME field. A value of zero is illegal.

» SRVC_NAME (SRVC_NAME_LEN bytes) - Service name. An array of ASCII
characters that forms the name of the service. These characters are con-
strained as described in the section of the LAT Architecture Specification en-
titled “Specification of Names.” This name is not constrained to be unique in
the Local Area Network.

= SRVC_DESC_LEN - (1 byte unsigned) - Service description length. A byvte
count of the SRVC_DESC field. A value of zero indicates that no description
is available.

= SRVC_DESCRIPTION (SRVC_DESC_LEN bytes) - Service description. An
ASCII string of characters that describes the service. For an application ter-
minal service, this is typically the device location.

The previous field marks the end of the Service description entry.
= PARAM_CODE (1 byte) - Parameter code. The following codes are defined:
s Parameter code 0 - Denotes the end of the parameter list.
= Parameter codes 1-127 - Reserved for DEC.
= Parameter codes 127 - 255 - Reserved for users.
« PARAM_LEN (1 byte) - Length of the next field in bytes.
« PARAM_DATA (PARAM_LEN bytes) - Parameter data.

A.6 Service Class 1 Slot Format Extensions

To accommodate functionality and features of the Class 1 service some slots are
extended by this service class.

A-28 LAT/Digital Equipment Corporation/Proprietary and Confidential

A.6.1 Start Slot Status Field

Start slot status field is extended by this service class.

As was mentioned before, a node using a Solicit service message to request
Response service announcements can use different methods to process responses
(limited caching, filtering, etc.). Other nodes can use Start slots to initiate connec-
tions. To provide naming conventions as specified by the LAT architecture, the
Start slot contains destination and source service and port names.

To preserve compatibility with the LAT 5.0 implementations and provide easy
ECOing, new fields have been incorporated into the Start slot within the param-
eter field.

Figure A-6: Start Slot Format

Start Slot format

[}

DST_SLOT_ID

SRC_SLOT_ID

STATUS_BYTE_COUNT

-t -

SLOT_TYPE | CREDITS

SERVICE_CLASS

MINIMUM_ATTENTION_SLOT_SIZE

MINIMUM_DATA_SLOT_S12

OBJ_SRVC_LEN

OBJ_SRVC

+—t—d—F— =+ — +— +— 4

SUBJ_DSCR_LEN

SUBJ_DSCR

PARM_CODE

PARM_LEN

PARM_DATA

remainder of STATUS field repeats until param_code=0

)
i
+ N +—F+—+—+ W F—+ 0

unpredictable | exists only if
+ STATUS_BYTE_COUNT is odd

RN TR bbb — b — b — o — 4

= DST_SLOT_ID (1 byte) - A reference to a slot block.

Service Class 1 - Interactive And Application Terminals. A-29

= SRC_SLOT_ID (1 byte) - A reference to a slot block.

» STATUS_BYTE_COUNT (1 byte) - An unsigned integer count of the length of
the STATUS field.

= CREDITS (4 bits) - A 4-bit integer equal to the number of credits being trans-
ferred.

» SLOT_TYPE (4 bits) - The value 9 (1001).

= SERVICE_CLASS (1 byte) - The value 1 for application and interactive termi-
nals.

» MINIMUM_ATTENTION_SLOT_SIZE (1 byte) - The minimum slot size queued
to receive Attention slot data (not including the slot header). The system
receiving this message must limit transmitted Attention slots to this size. A
value of zero indicates Attention slots are not supported.

= MINIMUM_DATA_SLOT_SIZE (1 byte) - The minimum slot size queued to
receive Data_a and Data_b slots (not including the slot header). The system
receiving this message must limit transmitted Data_a and Data_b slots to this
size. A value of 0 is illegal.

» OBJ_SRVC_LEN (1 byte unsigned) - The byte count of the next field. A value
of zero indicates that no service name is provided.

= OBJ_SRVC (OBJ_SRVC_LEN) - When a Start slot is sent by the initiator, this
field specifies the destination service name. When a Start slot is sent by a
responder, this field is the result of the destination service name translation
process.

= SUBJ_DSCR_LEN (1 byte unsigned) - The bvte count of the next field. A
value of zero indicates that no textual description is provided.

= SUBJ_DSCR (SUBJ_DSCR_LEN bytes) - When sent by an initiator, this field
specifies the subject textual description. When sent by a responder, this field
must be 0 on send and ignored on receive.

» The following Start Slot parameters are defined:
» Parameter code 0 is reserved.
= Parameter code 1(2 bytes) - Flag word; bits when set are:

— Bit 0 - If set indicates a dialup line. If cleared indicates a local line.
Intendent to be settable by a server manager to indicate a dialup
line.

A-30 LAT/Digital Equipment Corporation/Proprietary and Confidential

— Bit 1 - if set this line does not automatically initiate a login sequence
in the Start slot.

— Bits 4-15 - Zero on send ignored on receive.

» Parameter code 2 - identifier of the particular entry in the queue (2 bytes
unsigned) - This field contains the unique identifier assigned to the queue
entry by the node to which the Start is directed. This value correlates
the connection request with the service queue. If the session was not
solicited, this parameter should not be specified.

» Parameter code 3 (2 bytes) - reserved (zero on send, ignored on receive).

» Parameter code 4 - OB]_PORT_NAME (string of bytes PARM_LEN long)
- Destination node port name. This parameter is used to designate a
particular port on a destination node.

» Parameter code 5 - SUB]_PORT_NAME (string of bytes PARM_LEN
long) - Source node port name. This parameter is used to designate a
particular port on a source node.

» Parameter code 6 - SUB]_.GROUP_CODES (string of bytes PARM_LEN
long) - Source service group codes. This field is spec1f1ed as a bit-mask
up to 256 bits. A bit set to 1 indicates the subject belongs to that group.
The first bit of the mask (bit 0) corresponds to group 0. This group code
mask represents an ldentifier List (IDL). It must not be present in the
Start (response) slot.

= Parameter code 7 - OBJ_SRVC_PASS (string of ASCII characters PARM_
LEN long) - Service password. This parameter is used to pass a per-
service password to the object node (for implementations that use ser-
vice passwords).

s Parameter codes 8-127 - Reserved for DEC.

s Parameter codes 128-255 - Reserved for users.

Note that no queue depth indicator is returned in the Start Slot since the estab-
lishment of the connection means that the service is ‘online’ to the solicitor.

A.6.2 Attention Slot Status Field

The Attention slot is extended by this service class to include 1 byte of control
flags, and within the byte a single "abort” flag. It’s purpose is to discard all
buffered data remaining to be delivered to the user. The slot can be sent by either
the host or the terminals server.

Service Class 1 - Interactive And Application Terminals. A-31

Host implementation is optional for both transmission and reception of the slot.

The terminal server must process this slot if it is received, but transmission of this
slot is optional.

Note that this slot is not flow controlled.

The minimum Attention slot size is 1 byte. The format of the Attention slot is:

Figure A-7: Attention Slot Format

7 0
For e .- - ———— . - - - +
| DST_SLOT_ID |
B e e +
] SRC_SLOT_ID |
+ - - ———t
| SLOT_BYTE_COUNT |
trrmccccc—c—————— B L +

| SLOT_TYPE | MBZ |

| CONTROL_FLAGS |

| UNPREDICTABLE [

s DST SLOT_ID - a handle on the remote slot block
» SRC_SLOT_ID - a handle on the local slot block

= SLOT_BYTE_COUNT - an unsigned integer count of the length of the SLOT
DATA field - the value 1.

= MBZ (4 bits) - must be zero
s SLOT_TYPE (4 bits) - the value 11.
» CONTROL_FLAGS (8 bits) :
« (bit 0 through bit 4) - Unpredictable.

» (bit 5) - Abort. Causes buffered output data pipe to be flushed of all
data. Credits are returned as if the data had been normally delivered.

= (bit 6 and bit 7) - Unpredictable.

A-32 LAT/Digital Equipment Corporation/Proprietary and Confidential

A.6.3 Data_b Slot Extension

The data_b slot is extended by this service class to provide port control and infor-
mation, session control and data stream information functions.

The flow control discussed in this chapter concerns only the communication be-
tween the DTE and the session and not the LAT session flow control which is
credit based as described in the previous chapters.

The LAT V5.1 architecture supports only XON/XOFF flow control (DEC STD 110).
Other flow control mechanisms are outside the scope of this architecture.

A.6.3.1 Information Exchange Using Data_b Slots

The LAT architecture defines two types of a data_b slots - “Set” and "Report”.

By using different types of data_b slots each of the sessions may coordinate the
setting and display of remote port characteristics and data transparency mode.

This design does not require a specific implementation. Actual implementation

of the set/report data_b slots is a product specific issue. Products can choose to
implement or not to implement this functionality.

Information about physical port characteristics, the status of the data stream and

the setting of the data transparency mode (described below) is communicated be-
tween connecting nodes using Data_b slots. The following information is included
in Data_b slots:

Port Session Data Stream
Receive Speed Transparency Mode: . Break Condition
Transmit Speed - none Data Error Detected
Parity Type - passall

Data Length - pasthru

Input Flow Control
Output Flow Control
Bell on Discard

Each end of the communication session can be conveniently described as having
three databases. One database describes the characteristics of the physical port on
the local end (if one exists), one database is the image of physical characteristics of
the port on the remote end of the connection (if one is needed), and one database
describes the current session characteristics.

Service Class 1 - Interactive And Application Terminals. A-33

"Set” and “report” data_b slot types are represented by bits 5 and 6 in the CONTROL
FLAGS byte of the Data_b slot as follows:

= Dbit 5 and bit 6 are both cleared - V5.0 compatibility (in most cases, the data_b
slot of this type will be processed as "set” if the physical port is present).

= Dbit 5 is set, bit 6 is cleared - "Set” type of data_b slot.
= bit 5 is cleared, bit 6 is set - "Report” type of data_b slot.

= both bits set - this combination must not be specified on transmit, and a
data_b slot with this combination must be ignored on receive.

The ‘report’ data_b slot contains all the information about the local port charac-
teristics and the transparency mode setting regardless of what information has
been changed. A node sends a ‘report’ data_b slot when information in the lo-
cal database has been changed. The "set’ data_b slot contains information on only
those parameters that are being changed. 1t is sent by the node which is attempt-
ing to modify remote physical port characteristics or the transparency mode set-
ting for a session.

A.6.3.2 Data_b Slot Format
The format of the data_b slot is shown in Figure 6-1.

Figure A-8: Data_b Slot Format

Figure A-8 Cont'd. on next page

A-34 LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure A-8(Cont.):

Data_b Siot Format

- = = - - ———

SRC_SLOT_ID

SLOT_BYTE_COUNT

SLOT_TYPE |

CONTROL_FLAGS

STOP_OUTPUT_CHANNEL_CHAR

+

I

+

|

+

I

+
CREDITS I
I

+

I

+
START_OUTPUT_CHANNEL_CHAR |
+

STOP_INPUT_CHANNEL_CHAR
- +

START_INPUT_CHANNEL_CHAR |

PARAMETER_CODE |

PARAMETER_LENGTH |

PARAMETER_DATA]

=t b b p— b b b — b= — + — +

UNPREDICTABLE |
+

+ <- Start SLOT_DATA field

Repeated

until
PARAMETER_CODE
equal

zero

(only exists if
SLOT_BYTE_COUNT is odd)

= DST_SLOT_ID (1 byte) - A handle on the remote slot block.

= SRC_SLOT._ID (1 byte) - A handle on the local slot block.

= SLOT_BYTE_COUNT (1 byte)

SLOT_DATA field.

- An unsigned integer count of the length of the

» CREDITS (4 bits) - A positive integer equal to the number of credits being

extended.

s SLOT_TYPE (4 bits) - The value 10.

= CONTROL_FLAGS (8 bits) - Control flags. The bit settings are as follows.

— bit 0 - Enable usage of input flow control characters. This bit changes
the meaning of STOP_INPUT_CHANNEL_CHAR and START_INPUT_
CHANNEL_CHAR in the terminal output stream. If the terminal server
is about to overflow the terminal input stream buffer, it should insert
the STOP_INPUT_CHANNEL_CHAR into the terminal output stream.
When sufficient input buffering is again available, the START_INPUT_
CHANNEL_CHAR must be inserted into the terminal output stream.

Service Class 1 - Interactive And Application Terminals.

A-35

A-36

— bit 1 - Disable recognition of input flow control characters. No charac-
ters are generated by the terminal server and inserted into the output
stream to control the input data flow (e.g., when the server input buffer
1s overflowing).

— Dbit 2 - Enable recognition of output flow control characters. This bit
changes the meaning of STOP_OUTPUT_CHANNEL_CHAR and START_
OUTPUT_CHANNEL_CHAR in the terminal input stream. Upon detect-
ing one of these characters, the terminal server should disable/enable the
terminal output stream as indicated. The STOP_OUTPUT_CHANNEL_
CHAR and START_OUPUT_CHANNEL_CHAR flow control characters
are discarded by the terminal server from the input stream (i.e., they are
not passed to the host).

— bit 3 - Disable recognition of output flow control characters. All charac-
ters in the terminal input stream are passed directly through to the host
without interpretation by the terminal server.

— bit 4 - Break condition detected. Parameter code 6 in the parameter list
defines a long or short break signal. Parameter code 6 is used only if
long/short break signal can be distinguished.

— bit 5 - Set port characteristics The characteristics are represented by the
specific parameter codes 1 through 5 in the parameter list.

— bit 6 - Report port characteristics. the characteristics are represented by
the specific parameter codes 1 through 5 in the parameter list.

— bit 7 - must be 0 on send; ignored on receive.

Pairs of bits that cannot be simultaneously set in the same data_b slot are:
bits 0 and 1, bits 2 and 3, bits 5 and 6.

STOP_OUTPUT_CHANNEL_CHAR (1 byte) - The value assigned to stop the
terminal output stream if output flow control characters are enabled. The
value assigned is always control-S. When the terminal server detects this
character in the input stream, it immediately stops any output to the termi-
nal. The terminal server discards this flow control character from the input
stream (i.e., it does not pass it to the host). The terminal server interprets
this character as a flow control character only if bit 2 is set in the CONTROL_
FLAGS byte.

START_OUTPUT_CHANNEL_CHAR (1 byte) - The value assigned to start
the output channel if output flow control characters are enabled. The value
assigned is always control-Q. When the terminal server detects this charac-
ter in the input stream, it resumes any output that was previously stopped
because the STOP_OUTPUT_CHANNEL_CHAR character was seen in the
input stream. The terminal server discards this flow control character from

LAT/Digital Equipment Corporation/Proprietary and Confidential

the input stream (i.e., it does not pass it to the host). The terminal server
interprets this character as a flow control character only if bit 2 is set in the
CONTROL_FLAGS byte.

» STOP_INPUT_CHANNEL_CHAR (1 byte) - The value assigned to stop the
terminal input channel if input flow control characters are enabled. The value
assigned is always control-S. The terminal server outputs this character when
its local buffer for the input data stream begins to overflow. The terminal
server uses this character as a flow control character only if bit 0 is set in the
CONTROL_FLAGS byte.

» START_INPUT_CHANNEL_CHAR (1 byte) - The value assigned to start the
terminal input channel if input flow control characters are enabled. The
value assigned is always control-Q. The terminal server outputs this charac-
ter when sufficient local buffering for the input stream exists to resume input
previously suspended by the STOP_INPUT_CHANNEL_CHAR. The terminal
server uses this character as a flow control character only if bit 0 is set in the
CONTROL_FLAGS byte.

= PARAMETER_CODE (1 byte) - The following codes are defined:
1. code 0 - Denotes the end of the parameter list.
2. code 1 (1 byte) - the parity and the frame size.
» bits 0-3 - Bits per character (not counting parity bits).
= bit 4 - Parity enabled if set; parity disabled if cleared.
= bits 5-6 - Type of parity (00=space, 01=o0dd, 10=even, 11=mark).
= Dbit 7 - Reserved; must be 0 on send; ignored on receive.

3. code 2 - INPUT_SPEED (2 bytes unsigned) - The approximate input data
rate of the service in bits per second. This field only has meaning for
services that are application terminals. A value of zero indicates that the
speed is unknown. An octal value of 177777 is taken to mean that the
speed is in excess of 64k bits.

4. code 3 - OUTPUT_SPEED (2 bytes unsigned) - The approximate output
data rate of the service in bits per second. This field only has meaning
for services that are application terminals. A value of zero indicates that
the speed is unknown. An octal value of 177777 is taken to mean that
the speed is in excess of 64k bits.

5. code 4 (1 byte) - User preference feature, which has a value of:

s 0 - Disable bell-on-discard.

Service Class 1 - Interactive And Application Terminals. A-37

= 1 - Enable bell-on-discard.
6. code 5 (1 byte) - Transparency mode, which has a value of:
= 0 - Normal mode (passall and pasthru are disabled).
= 1 - Enable passall mode.
= 2 - Enable pasthru mode.
7. code 6 (2 bytes) - Status. The first byte is a status code as follows:
= 0 - Unknown error.
= 1 - Short break detected.
» 2 - Long break detected.
= 3 - Framing error.
=« 4 - Data overrun.
=« 5 - Parity error.

For status codes 3, 4, and 5, the second byte is an image of the received

byte.
®» codes 7-127 - Reserved for DEC use.

» codes 128-255 - Reserved for users.

Note, that parameter codes 1-5 can be present in both - "set” and "report” data_b
slot types. Parameter code 6 can be present only in the "report” data_b slot type.

A.6.3.3 Guidelines And Recommendations For Daia;b Slot Processing

The following section does not present a requirement for implementing data_b
slots processing in products. It represents some guidelines and ideas of how to
deal with flow control and transparency mode using data_b slots. Each imple-
mentation can use data_b slots in designing the behavior most appropriate for the
particular product. The guidelines and implementation examples given below clar-
ify possible usage of data_b slots allowing cooperating products to distribute the
control of the physical port and session characteristics, change transparency mode
and update the displayed port characteristics.

A-38 LAT/Digital Equipment Corporation/Proprietary and Confidential

A.6.3.3.1 Port Characteristics

There are a number of characteristics that are considered to be attributes of the
port and not of the session:

» Receive Speed

» Transmit Speed

= Parity Type

» Data Length

» Input Flow Control Method
= Output Flow Control Method

a Bell on Discard

These characteristics define the manner in which the port interacts with the equip-
ment at the other end of the line. Port characteristics are visible on the server side
as well as on the host. After the session has been established, the current port
characteristics must be reported to the connected node. Also, any time any of the
port characteristics are changed, any connected session must be notified of the
change. Architecturally port characteristics are settable not only from the server,
but also from the host over the currently active session by using mechanisms de-
fined in the architecture.

Following presumtions allow to organize flow control, port characteristics setting
and data transfer:

= Flow control concerns only the communication between the terminal and the
server port, and is restricted to an enabling/disabling XON/XOF. Recognition
of the switch characters (XON/XOFF), the BREAK key, and flow control char-
acters, and insertion of those characters in a data stream is dealt with by
transparency mode (see below).

» Flow control is a port rather than a session characteristic. Characteristics of
the port, once set, will stay that way until another SET CHARACTERISTICS
command is issued from a local terminal or from a remote node. That is,
flow control characters set within one session will not be changed or restored
when the user switches to another session (including switching to a local ses-
sion). Setting flow control from a local terminal has the same effect as a flow
control command received from a remote node.

Service Class 1 - Interactive And Application Terminals. A-39

A.6.3.3.2 Session Management

The setting of switch characters, including the BREAK key, is part of the session
management context. Transparency mode is a characteristic of the session. The
transparency modes are:

= none - No transparency mode. The BREAK key may be set to be LOCAL
(i.e., switch character), REMOTE (i.e., signaled to the host), or ignored de-
pending on the product and user requirements.

» passall - All characters including XON/XOF, forward and local switch char-
acters, and BREAK are transferred through the data stream. Intent is to pro-
vide uninterraptable channel for binary data communication purposes be-
tween computers. Conformance with this mode is a product specific issue.

» pasthru - XON/XOF are still flow control characters, but all other characters,
including BREAK and forward and local switch characters, are transferred
through the data stream.

Data transparency is provided on three levels:

» Disabling filtering of the switch characters in the input stream and insertion
of the switch characters in the output stream.

= Disabling recognition and interpretation of the in-band flow control charac-
ters.

= Setting the BREAK key in REMOTE mode.

The duration of the data transparency setting will be from the time transparency
mode is enabled until either transparency mode is disabled or the session is in-
terrupted. Possible ways of dealing with-an interrupted session include session
termination, error indication, and the possibility of resuming a session. The con-
trol and visibility of the data transparency is the same as for port characteristics.
Other methods of interrupting a session in transparency mode are product or user
requirements issues.

A.6.3.3.3 Data_b Slot Processing

A-40

The local database represents characteristics of the local port and is shared among
all connected sessions. Therefore when port characteristics change, all connected
sessions must be notified about the change. The data transparency mode setting
and the remote database (i.e. characteristics of the remote port) are part of the
session context and therefore applicable only to a particular session.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Sending of a data_b slots:

s A node sends a ‘Reporl’ data_b slot to inform the remote node of it's cur-
rent port and session characteristics when the port characteristics in the lo-
cal database are modified by a user through a local command. All connected
sessions should be notified about the change.

» When a characteristic belonging to the remote database is modified, a "set”
type data_b slot may be sent in order to modify port characteristics on the
remote node (result of this operation depends upon implementation on the
remote node).

= Each node must send a "report’ type data_b slot after a session is started to
inform the partner about the current port characteristics and desired data
transparency mode.

=« When the session database is modified (by a user command), both ends of
the connection are affected, and the local node should send a "Set” type
data_b slot. When session characteristics are specified in a "Set” data_b slot,
the receiving node interprets the request to mean that the requesting has
changed the characteristic and the object should also change it. The send-
ing node should update the remote database if one exists. The receiving
node should change session characteristics when it receives this slot if it has
a physical port. However, nodes without physical ports may not be able to
change session characteristics, and thus this operation is not guaranteed.

= A node sending a ‘Set’ type data_b slot must not go to a waiting state for the
return of the report slot. All processing of the information is done whenever
the ‘Report’ slot is actually received. Since slots are only processed for cur-
rent sessions, a ‘Set’ slot sent to a dormant (non-current) session may not be
processed for some time or the partner node may not the implement func-
tionality to change its local database.

Receiving of a data_b slots:

» The node which receives a ‘set’ data_b slot should issue a command the lo-
cal physical port (if applicable) and update the local database. In order to
insure proper operation ‘report’ data_b slot must be sent by the node when it
receives and reacts to a “set’ data_b slot.

= If a "report” data_b slot is received, the node updates the remote database
(if applicable). Though remote database was updated, node must not send a

"on

"set” data_b slot to avoid a "set”-"report” loop.

Service Class 1 - Interactive And Application Terminais. A-41

A.6.3.3.4 Implementation Examples

A-42

A "Host” node would not have a local database (local port does not exist)
but does have a remote database (image of the port on the server). Executing
"set terminal” commands node would modify the remote database and
would send a 'Set’ data_b slot. Terminal server on the receiving end end
could elect to change or not to change the port characteristic, depending on
the desired results of the server. The server would respond with a ‘Report’
data_b slot. When a "report” data_b slot is received, the host will modify its
remote database. A "show terminal” commands display data from the re-
mote set.

A server has a local database (real physical port) and does not have a remote
database. Local "Set” and "Show” commands operate on the local database.
After a local "Set” command, the server updates it's local database and
should send a "Report’” DATA_B slot to all sessions associated with that port
(therefore making new characteristics available to all connected sessions).

When both a local and a remote database exist (port-to-port connection),

a different type of SET/SHOW command can be implemented to control
characteristics of communicating physical ports and their image in a remote
database.

A server user issues a local "Set Session” command to change the data trans-
parency mode of that session. The server does not know if it is communi-
cating with a "host” system or with a "reverse server”. The server issues a
‘Set” DATA_B slot (for that session only). The receiving node updates it’s
session characteristic database and sends a "Report’ DATA_B slot in return.
Note that in the case of a “reverse server”, this action is essential to allow
transparent data transfer operate properly.

A server user has the BREAK characteristic set to REMOTE and, while in host
mode, enters a break character. The server sends a ‘Report’ type DATA_B
slot (to the current session only) with the break detected bit set.

A session is created on a server. The server sends a ‘Report’ type DATA_B
slot after receiving the slave start slot. This "Report’ slot contains complete
information on all port and session characteristics.

A user on a server issues a local "Set session passall” command to change
the data transparency mode of a session connected through a reverse server.
The local server is using LAT V5.1 and the remote server is using LAT V5.0.
The DATA_B slot is sent with the disable input and output flow control bits
set.

LAT/Digital Equipment Corporation/Proprietary and Confidential

B
Compatibility and Implementation

Following chapter discusses some of the compatibility and implementation issues
between products implementing LAT 5.0 and LAT 5.1 versions of the architecture.

B.1 Implementation Issues

A number of different services can be presented using messages defined by the
Service Class 1 architecture. Some of the implementation issues are discussed be-
low.

B.1.1 Possible Implementations of the LAT V5.1 architecture

LAT architecture is build on the principle of “modularity”. That means product
implementators can choose what features of the LAT 5.1 architecture to imple-
ment to build a product with desirable characteristics. Three major architectural
functions introduced by LAT 5.1 architecture are:

= information solicitation/response
» connection solicitation

= queuing

Any of these features can be implemented independently of others in each partic-
ular product (for example host node can provide initiate connection to the termi-
nal server services without supporting information solicitation, or terminal server
can avoid implementing queuing, etc). Different products can choose an imple-
mentation that combines some of those features to achieve required product func-
tionality:

= connection solicitation will be always supported by the LAT 5.1 products in
order to provide host-driven connection to services on terminal servers.

Compatibility and Implementation B-1

if host node does not implement information solicitation/response algorithm,
then Ethernet addresses must be manually introduced into the system, and
this information must be constantly updated keeping the database in order.

terminal server that does not support information response will be invisible
to the soliciting host nodes, i.e. host nodes should be provided with this in-
formation in some other fashion (manually);

if the host node does not implement connection solicitation algorithm then
node can’t access services on the servers (LAT 5.0);

terminal server that does not support queuing will reject connection to the
busy resource and queuing node will have to repeat connection request in
order to get connection.

queuing also can be implemented in a fashion where hosts can queue re-
quests to the provided services and servers can use connection solicitation
mechanism to queue requests. That would allow the host node also queue
requests to the offered services.

Table B-1 presents some possible implementations of the LAT V5.1/5.0 products
and their relations in terms of listening and reacting upon LAT messages on the
Ethernet.

Table B-1:

LAT V5.1 implementations and LAT Messages

Listens
Listens Responds to start
to mul- Sends Solicits & Listens to -status, & re-
ticast multicast listens to solic. & Solicits provides Initiates sponse
msgs msgs response responds connect queues start start
1 - + - - - - - +
2 + - - - - - + -
3 - + + - + - - +
4 - + + - + + - +
5 + - - + - + + -
6 + - - + + + + -
7 o+ + - - - - + +
8 + + + + + + + +
In the table above sign “+ " means "feature is implemented” and sign “-” means
"feature is not implemented”. Short description of the products described in the
table is given below:
B-2 LAT/Digital Equipment Corporation/Proprietary and Confidential

» 1-5.0 host

= 2-5.0 server

= 3 -5.1 host without queued services

= 4 -5.1 host with queued services

s 5 -5.1 server without queuing to hosts

» 6 - 5.1 server with queuing to hosts

= 7 -5.0 symmetric server (slave and master within one node)

» 8 -5.1 symmetric server (slave and master within one node)

B.1.2 Local Data Base

Terminal servers in the LAT 5.0 architecture may support the full data base of
nodes and advertised services. 1t is recommended that LAT products support full
data base. If LAT 5.1-based product is not able to support full data base for the
lack of resources, advertising mechanism architectured into the LAT 5.1 version
allows this node to use Solicitation/Response messages to acquire information
needed for the connection establishment. Soliciting of information allows different
products to implement different mechanisms of keeping local cache, for exampile:

= Multicasting Solicit information messages “on demand” and supporting a full
service data base.

» Keeping a cumulative data base on a per-request basis and restricting the
number of entries in a data base.

= Processing Response information messages without caching data.

» Using a directed Solicit information message when the provider of services is
known or when multicasting is restricted or not permitted at all.

B.1.3 Cluster Static Load Balancing

Clusters of machines might choose to present the same SERVICE_NAME in their
multiple multicast messages if they offer equivalent services. By cooperating
among themselves to establish a common SERVICE_NAME with appropriate inde-
pendent SERVICE_RATINGS, cluster members can arrange to share the terminal
user load. Digital Equipment VaxCluster present this type of name space to LAT
terminal servers.

Compatibility and implementation B-3

B.1.4 Multiprocessors, Gateways, Virtual Machines

Multiprocessors may wish to present individual host system processors as unique
systems through a shared Ethernet port. More specifically, they may require that
messages arriving at the single Ethernet port contain slots all destined for the
same physical (virtual) processor.

This can be accomplished by assigning multiple NODE_NAME:s to a single multi-
processor system which shares a single Ethernet port. This will cause a terminal
server to establish a new virtual circuit to each different NODE_NAME. Name

of a destination node is included in all LAT 5.1 messages to allow addressing of
each of the node hidden behind the common Ethernet address. In general desti-
nation/source node names and destination/source node addresses allow complete
identification of subjects and objects.

Each NODE_NAME can still specify one or more SERVICE_NAMES. This would
allow piggybacking of sessions as usual. The same SERVICE_NAME can be as-
signed to more than one NODE_NAME to achieve static load balancing.

B.2 Compatibility Issues

Compatibility issues between LAT 5.0 and LAT 5.1 based products are discussed
below.

B.2.1 Virtual Circuits Establishment

B4

In the LAT 5.0 architecture master is always a subject and slave is always an ob-
ject of a connection. LAT V5.1 architecture allows both a slave and a master node
to be a subject and an object of a connection. A LAT 5.1 master/slave node can
use a virtual circuit established in a “wrong” direction to solicit a session over

the same virtual circuit, as opposed to starting a new virtual circuit. To achieve
this, the NODE_NAME and SYSTEM_NAME presented in the Start message are
defined by the LAT 5.1 architecture as follows:

» The NODE_NAME field in the Start message is redefined as SLV_NODE_
NAME (name of the slave node).

» the SYSTEM_NAME field in the Start message is redefined as MST_NODE_
NAME (name of the master node).

In order to provide compatibility between LAT 5.0 and LAT 5.1 products, im-
plementations of the LAT V5.1 architecture must provide valid slave and master
names. The MST_NODE_NAME field received from a LAT V5.0 node must be
ignored.

LAT/Digital Equipment Corporation/Proprietary and Confidential

B.2.2 Data_b Slot Length Compatibility

The parameter code field may not be present in some implementations of the 5.0
version. Therefore the presence of this field must be determined based on the slot
length.

Some implementations do not include any trailing zero-valued fields. For exam-
ple, if flow control is being disabled, TOPS does not include the four uninter-
preted flow control characters in the data_b slot. However, some implementations
do not use the slot length in interpreting slots, which may result in unintended re-
sults because the following slot header will be interpreted as slot data. We do not
believe any serious incompatibility exists at this time.

If implementations do -not process slots using the slot length field, future incom-
patibility problems may be more severe. For this reason the architecture requires
all architecturally specified field to be present in the slot. This simplifies slot pro-
cessing because all fields normally will be present.

B.2.3 Data_b Slot Data Compatibility

Existing versions of the LAT host implementation use the V5.0 data_b slot format.
Therefore, they provide bell-on-discard by enabling HOSTSYNC with null/bell in
the START/STOP characters; and provide transparency mode by disabling both
HOSTSYNC and TTSYNC. For compatibility with existing implementations, the
following rules apply to the setting of flow control, user preference, and trans-
parency mode in a V5.1 node communicating with a V5.0 node.

= LAT V5.1 STOP/START and INPUT/OUTPUT characters can be only XON/XOF.
A V5.1 node that receives a data_b slot with the input and output flow con-
trol characters specified does not change flow control characters.

» Bell-on-discard:

— LAT V5.1 implementations must not use null/bell in the START/STOP
character.

— If ENABLE HOSTSYNC is received from a host with null/bell in the
START/STOP character, the server sets the port to bell-on-discard and
enables HOSTSYNC. In this case, no user_preference parameter field
should appear in the data_b slot.

— If The user_preference parameter field is present, the server should
set the user preference to whatever is specified, independent of the
HOSTSYNC setting.

Compatibility and iImplementation B-5

= Transparency mode:

— If DISABLE HOSTSYNC and DISABLE TTSYNC settings came from the
host, the server sets the session into passall mode.

— If passall mode is found in the transparency parameter, it overrides
HOSTSYNC/TTSYNC setting.

— A node implementing V5.1 of the LAT Architecture may set the enable/
disable input/output flow control bits (0-3 of control flag) in the 'Set’
DATA_B slot to simulate PASSALL and NORMAL mode as shown be-

low:
input flow output flow desired mode
disable disable passall
enable enable normal

Table B-2 represents the setting of the port on the 5.1 node by an incoming data_b
slot from the 5.0 node (no user preference or transparency mode parameters are
present).

Table B-2: Port Setting by Data_b Slots

HOSTSYNC TTSYNC Port Setting

Enable Enable HOSTSYNC/TTSYNC
(XON/XOF)

Enable Disable HOSTSYNC/NOTTSYNC
(XON/XOF)

Enable Enable HOSTSYNC/TTSYNC Bell-on-discard
(null/bell)

o E_nable. Disable HOSTSYNC/NOTTSYNC Bell-on-discard
- (null/bell)
Disable Enable NOHOSTSYNC/TTSYNC

Disable Disable NOHOSTSYNC/NOTTSYNC

B.2.4 Non-Unique Node Names

Server nodes implementing version 5.0 of the architecture do not guarantee
uniqueness of the node names (because no master node name concept exists in
the 5.0 version of the LAT protocol). To preserve compatibility between 5.1 and
5.0 products, 5.1 node must provide for the case where the same node name with
different Ethernet address is used by muitiple 5.0 nodes. When this happens, the
5.1 node must create and enter in its data base a unique name for these 5.0 nodes
using the Ethernet addresses according to the rules, presented in the section of
the document entitled "Specification of names” in the paragraph which describes

LAT/Digital Equipment Corporation/Proprietary and Confidential

creation of the default node names. In other words, the 5.1 nodes must operate
compatibly with the 5.0 nodes.

B.2.5 Implementation Of The ethernet And 802 Protocols

The LAT architecture supports both Ethernet and 802 protocols. LAT products
can support Ethernet only, 802 only, or both. Some important assumptions made
by the LAT architetcure that allow LAT products to use both protocols are:

= Ethernet-only products can discard an 802 message only in software (i.e.
may fail to process an immediately following Ethernet message). 802 only
products discard an Ethernet message in the hardware. Therefore when mes-
sages are transmitted in both formats, the Ethernet message must be sent
first.

» Cost of processing either message is the same i.e. if nodes can communicate
in both protocols it is not important which one is used.

= Knowledge about datagram’s protocol is available to the virtual circuit layer
when it operates in both protocols.

Based on these assumptions, the following rules of operation are defined:

» When a node advertises services using the Advertising message it transmits
this message in all protocols it supports. If the node can operate in both pro-
tocols, it transmits two Advertising messages back to back, the first message
in Ethernet format and the second in 802 format.

» When the subject node operates in both protocols and has no information
about the protocols supported by the object node, the subject always sends
Solicit information, Start, and Command messages in both protocols back to
back, the first message in Ethernet format, the second message in 802 format.

=« The node that receives one of these messages responds with a message in
the same protocol. Note, that if both nodes operate in both protocols, then
either one of the protocols can be chosen by the nodes for communication.

Compatibility and Implementation B-7

C

Algorithm For
Assignment/Deassignment
Request/Entry Ildentifiers

Following algorithm is taken from the NSP Functional Specification document
(DECnet Digital Network Architecture).

An identifier is a 16-bit value. When a request is queued, an identifier is assigned.
When connection actually starts, the identifier is deassined. The algorithm that
assigns and deassigns these identifiers is implementation-dependent. There are
two requirements for this algorithm:

= It must not assign a given identifier to two entries in the queue concurrently;

« It must not reassign a given identifier for a long period following its deassign-
ment. '

In addition, the algorithm should operate with a modest amount of memory, trad-
ing off the amount of memory for the period of reassignment.

The algorithm described in this appendix is a sample algorithm that meets these
requirements. No implementation of LAT is required to use this algorithm, how-
ever. Any algorithm that meets the two requirements stated above is acceptable.
The sample algorithm restricts the number of outstanding, assigned identifiers.

Algorithm For Assignment/Deassignment Request/Entry Identifiers C-1

C.1 Interface to the Algorithm

1

e
The sample algorithm is implemented by a module that accepts three calls: one to

assign an identifier, one to deassign an identifier and one to initialize the module.

~ The following routine assigns an identifier

-, ~GET-ADDRESS

returns: success - an identifier is returned
failure - too many identifiers are currently assigned

The following routine deassigns an identifier.
RELEASE-ADDRESS (address)
address: the identifier to be deassigned

returns: success
tailure - identifier was not assigned

The following routine initializes the algorithm module.
INITIALIZE-ADDRESS

The routine is called during initialization and allows the algorithm module to meet
the second requirement

C.2 Data Structures

S22

This algorithm forms identifiers of the following form:
random part index part
r bits i bits

where:
r+i = 16

No two concurrently assigned identifiers will contain the same value in the low i
bits.

Furthermore, the algorithm restricts the number of identifiers that can be assigned
concurrently

27i-1
The data base consists of two vectors and three variables. These are the following,.

s Boolean vector INUSE

LAT/Digital Equipment Corporation/Proprietary and Confidential

This vector contains 27 bits. There is one bit for each pogsible ;;g}}t;e,,;,if!}}pye)
index part of an identifier. A bit is set to “true” if the corresponding index
is in use (i.e., is in the lower i bits of an assigned identifier). The bit is set to

"false” otherwise.
s Vector RANDOM

This vector contains 21 entries, each r bits wide. An element of the vector
contains the random part of the last identifier assigned with the index part
equal to the index of this element in the vector.

= Variable NUMBER-ASSIGNED

This variable contains the number of identifiers currently assigned. It has a
value in the following range:

0 <= NUMBER-ASSIGNED <= 2°i-1

When NUMBER-ASSIGNED = 27i-1, then no more identifiers may be as-
signed.

» Variable INDEX

This variable contains the index value portion of the last identifier that was
assigned.

s Variable TEMP

This variable is used to temporarily hold the index value portion of an identi-
fier that is being deassigned and in module initialization.

C.3 Algorithm Operation

GET-ADDRESS:

If (NUMBER-ASSIGNED < 27i-1) then

Beginwhile
NUMBER-ASSIGNED <-- NUMBER-ASSIGNED + 1
While (INUSE(INDEX) true) do

INDEX <--~ INDEX + 1 (mod 27i)

Endwhile
RANDOM(INDEX) <-- RANDOM (INDEX) + 1 (mod 2*r)
INUSE(INDEX) <=-- true
random part of identifier <-- RANDOM(INDEX)
index part of identifier <-- INDEX

While (identifier = 0)
return success

Else
return failure

Endif

RELEASE-ADDRESS:

Algorithm For Assignment/Deassignment Request/Entry ldentifiers LCx>3.

Crd

.TEMP <-- index part of the identifier
1f . (INUSE(TEMP) true
and RANDOM(TEMP) = random part of identifier) then
-, INUSE(TEMP) <-- false
.. NUMBER-ASSIGNED <-- NUMBER-ASSIGNED - 1
_return success
Else
return failure

Endif
INITIALIZE-ADDRESS:

.. TEMP <=~ 0
. While (TEMP < 2°i) do
INUSE(TEMP) <-- false
RANDOM(TEMP) <-- random number (mod 2°r)
TEMP <-- TEMP + 1
Endwhile
INDEX <-- random number (mod 2°i)
NUMBER-ASSIGNED <-~ 0

LAT/Digital Equipment Corporation/Proprietary and Confidential

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04

