RSX-11M-PLUS and Micro/RSX

|/O Drivers Reference Manual
Order No. AA-JS11A-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, May 1979
Revised, December 1981
Revised, July 1985

Revised, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1979, 1981, 1985, 1987 by Digital Equipment Corporation

All Rights Reserved..
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem~10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS dilgitiall
DIBOL RSX

ZK3078

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO™ CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager

P.O. Box CS2008 100 Herzberg Road c/o Digital’s local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Atin: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster,
Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TgX, the typesetting system developed by Donald E. Knuth at Stanford University. TeX is a trademark of the
American Mathematical Society.

Contents

Preface xxi

Summary of Technical Changes Xxvii

Part I: Common Drivers

Chapter 1 Operating System Input/Output

1.1
1.2
1.3

1.4

1.5

Overview of RSX-11M-PLUS and Micro/RSXI/O 1-1
Physical, Logical, and Virtual I/O oo 1-2
Logical Units e e e e e 1-2
1.3.1 Logical Unit Number. 1-2
1.3.2 Logical Unit Table i 1-3
1.3.3 Changing LUN Assignmentsttt innennen .. 1-4
Issuing an I/O Request i e 1-4
1.4.1 QIO$ Macro Formato v oo it e e et e e e e e 1-6
1.4.1.1 Syntax Elements: Square Brackets, Angle Brackets, and Braces. 1-6
1412 FNCParameter it 1-6
1413 LUN Parametero e 1-7
1414 EFN Parameter 1-7
1.4.15 PRIParameter. it 1-8
1.41.6 ISBParameter i e e 1-8
1.4.1.7 AST Parameter e 1-9
1.4.1.8 P1,P2,..,P6Parameters 1-9
1.4.2 Significant Events 1-9
1.4.3 Event Flags o 1-9
1.4.4 System Traps.o e e 1-10
1.4.5 Asynchronous System Traps 1-11
Directive Parameter Blocks e 1-12

iii

1.6

1.7

1.8
1.9

1.10
1.11
1.12

1.5.1 I/O Packets 1-13

1.5.2 Significant Event Declaration. 1-13
I/O Related Macros e 1-13
1.6.1 QIOP Form oo 1-13
1.6.2 QIO$S Form 1-14
1.6.3 QIOBC Form 1-14

1.6.3.1 Additional QIO Macro Call Information 1-15
1.6.4 The QIO$ Macro: Issuing an I/O Request 1-15
1.6.5 The QIOW$ Macro: Issuing an I/O Request and Waiting for an Event Flag . . 1-16
1.6.6 The DIR$ Macro: Executing a Directive 1-16
1.6.7 The .MCALL Directive: Retrieving System Macros 1-17
1.6.8 The ALUN$ Macro: Assigninga LUN 1-17

1.6.8.1 Physical Device Names 1-19

1.6.8.2 Pseudo-Device and Physical Device Names 1-20
1.6.9 The GLUN$ Macro: Retrieving LUN Information 1-21
1.6.10 The ASTX$S Macro: Terminating AST Service 1-24
1.6.11 The WTSE$ Macro: Wait-for Single Event Flag 1-24
Standard I/O Functions 1-26
1.71 I/O Subfunction Bits 1-26
1.7.2 QIO$C IO.ATT—Attaching toan I/O Device 1-27
1.7.3 QIO$C 1I0.DET—Detaching from an I/O Device 1-28
1.7.4 QIO$C I0.KIL—Canceling I/O Requests 1-29
1.75 QIO$C IO.RLB—Reading a Logical Block 1-30
1.7.6 QIO$C IO.RVB—Reading a Virtual Block 1-31
1.7.7 QIO$C IO.WLB—Writing a Logical Block 1-32
1.7.8 QIO$C IO.WVB—Writing a Virtual Block 1-33
User-Mode Diagnostic Functions 1-34
I[/O Completion e e 1-36
1.9.1 Return Codes e 1-36
1.9.2 Directive Conditions 1-37
1.9.3 [/O Status Conditions 1-38
Powerfail Recovery Procedures for Disks and Dectape 1-42
RSX-11M-PLUS and Micro/RSX Devices. 1-42
RSX-11IM-PLUS and Micro/RSX Devices. 1-43

v

Chapter 2 Full-Duplex Terminal Driver

21

2.2
23

Introduction to the Full-Duplex Terminal Driver 2-1
2.11 Full-Duplex Terminal Driver 2-1
2.1.2 Terminals Supported by the Full-Duplex Terminal Driver 2-2
2.1.2.1 ASR-33/35 Teletypewriters 2-4
2.1.2.2 KSR-33/35 Teletypewriters 2-4
2.1.23 LAl12 Portable Terminal 2-4
2124 LAIOODECprinter i e 2-5
2125 LA30DECwriter e 2-5
2126 LA36 DECwriter e e 2-5
2127 LA34/38 DECwritersttt 2-5
2.1.2.8 LAI120 DECwriter e 2-5
2.1.29 LAI80S DECprinterottt ettt 2-5
2.1.2.10 LQPO2 Letter-Quality Printer 2-5
2.1.2.11 LQPO3 Letter-Quality Printer 2-6
21212 LASOPersonal Printer. 2-6
21213 LA75Personal Printer. 2-6
2.1.2.14 LA210 Letter Printer e 2-6
2.1.2.15 LNO3/LNO03 PLUS Laser Printersc.0u....... 2-6
2.1.2.16 RT02 Alphanumeric Display Terminal and RT02-C Badge
Reader/Alphanumeric Display Terminal 2-7
2.1.2.17 VTO5B Alphanumeric Display Terminal 2-7
2.1.2.18 VTS50 Alphanumeric Display Terminal 2-7
2.1.2.19 VT50H Alphanumeric Display Terminal 2-7
2.1.2.20 VT52 Alphanumeric Display Terminal 2-7
2.1.2.21 VT55 Graphics Display Terminal 2-7
2.1.2.22 VTe6l Alphanumeric Display Terminal 2-7
21223 VTI00 Terminalt e 2-8
21224 VTI01 Terminalt e 2-8
2.1.2.25 VTI102 Terminal, 2-8
21226 VTI05 Terminalt 2-8
21227 VTI31 Terminal i e 2-8
2.1.228 VT220 Terminal e 2-8
2.1.2.29 VT240 Terminal 2-8
2.1.230 VT241 Terminal e, 2-8
Get LUN Information Macro e 2-9
QIO MaCIO ottt e e e e e e 2-9
2.3.1 Format of QIO$C for Standard Functions. 2-10
2.3.2 Format of QIO$C for Device-Specific Functions 2-10
233 Parameters e 2-12
2.34 Subfunction Bits e 2-14

24

2.5
2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14

Device-Specific QIO$ Functions 2-19

24.1 System Generation Options in the Full-Duplex Terminal Driver 2-20
242 Functions and Allowed Subfunctions 2-21
24.3 QIO$C I0.ATA—Attach a Terminal with ASTs 2-22
244 QIO$C I0O.CCO—Cancel CTRL/Oo o i i 2-25
2.4.5 QIO$C IO.EI0O—Extended I/O Functions 2-27

2451 Item List1 for IO.EIOITERLB. 2-32

2452 Item List 2 for IO.EIOITFEWLB 2-34
24.6 QIO$C I0.GTS—Get Terminal Support. 2-35
2.4.7 QIO$C IO.HNG—Disconnect a Terminal 2-37
2.4.8 QIO$C I0.RAL—Read All Characters Without Interpretation 2-38
249 QIO$C IO.RNE—Read Input Without Echoing 2-40
2410 QIO$C IO.RPR—Read with Prompt 2-42
2.4.11 QIO$C IO.RST—Read Logical Block with Special Terminators 2-45
2.4.12 QIO$ IO.RTT—Read with Terminator Table. 2-46
2.4.13 QIO$C IO.WAL—Write a Logical Block and Pass All Characters. 2-48
2.4.14 QIO$C IO.WBT—Break Through to Write a Logical Block 2-51
2.4.15 QIO$C SF.GMC—Get Multiple Characteristics 2-53

2.4.15.1 Characteristic Bit Special Information 2-60
2.4.16 QIO$C SF.SMC—Set Multiple Characteristics 2-61

2.4.16.1 Processing for TC.MAP, TCMHU, TC.SSC, and TCOOB. 2-63

2.4.16.2 Side Effects of Setting Characteristics 2-65
Status Returns e e 2-66
Control Characters and Special Keys. 2-69
2.6.1 Control Characters i, 2-70
2.6.2 Special Keys 2-72
Escape Sequences e 2-73
2.7.1 Definition of Escape Sequence Format. 2-74
2.7.2 Prerequisites e e 2-74
2.7.3 Characteristics it 2-75
274 Escape Sequence Syntax Violations. 2-75

2.74.1 Delete or Rubout (177) i e e 2-75

2.7.4.2 Control Characters (0 to 037g) 2-75

2743 FullBuffer 2-76
2.75 Exceptions to Escape Sequence Syntax 2-76
Vertical Format Control e 2-77
Automatic Carriage Return e 2-77
Hard Receive Error Detection i i 2-78
Task Buffering of Received Characters., 2-79
Type-Ahead Buffering 2-79
Full-Duplex Operationo oottt i i e e 2-80
Private Buffer Pool e 2-80

vi

2.15
2.16
217

Intermediate Input and Output Buffering 2-81
Terminal-Independent Cursor Control 2-81
Terminal Interfaces 2-82
2.17.1 DHI11 Asynchronous Serial Line Multiplexer 2-82
2.17.2 DHU11 Asynchronous Serial Line Multiplexer 2-82
2.17.3 DHQ11 Asynchronous Serial Line Multiplexer 2-82
2.17.4 DHV11 Asynchronous Serial Line Multiplexer 2-82
2.17.5 DJ11 Asynchronous Serial Line Multiplexer 2-82
2.17.6 DL11 Asynchronous Serial Line Interface 2-82
2.17.7 DZ11 Asynchronous Serial Line Multiplexer 2-83
2.17.8 DZQ11 Asynchronous Serial Line Multiplexer. 2-83
2.17.9 DZV11 Asynchronous Serial Line Multiplexer 2-83
2.17.10 CXA16/CXB16 Asynchronous Multiplexers 2-83
2.17.11 CXY08 Asynchronous Multiplexer 2-83
Programming Hints. 2-83
2.18.1 Checkpointing During Terminal Input 2-83
2182 RT02-C Control Function 2-84
2.183 Remote DL11-E, DH11, and DZ11 Lines 2-84
2184 Modem Support L 2-84

Chapter 3 Virtual Terminal Driver

3.1
3.2
3.3

3.4

Introduction to the Virtual Terminal 3-1
Get LUN Information Macro 3-1
QIOS MaCIO oo 3-2
3.3.1 Standard QIO Functions 3-4

3.3.1.1 [IO.ATT . e 3-4

3.3.1.2 IODET, 3-4

33.1.3 IOKIL. 3-4

3.3.1.4 IO.RLB, IO.RVB, IOWLB, and IOWVB 3-5
3.3.2 Device-Specific QIO Function (IO.STC) 3-5
3.3.3 SE.GMC . . . e, 3-6
334 IO.GTS . ., 3-7
3.3.5 IORPR . ., 3-7
3.3.6 SESMC . . . e, 3-7
Status Returns e 3-8

vii

Chapter 4 Disk Drivers

4.1

4.2
4.3

4.4
4.5

Introduction to Disk Drivers o e e e 4-1
4.1.1 RF11/RS11 Fixed-Head Disk o 4-2
4,12 RSO3 Fixed-Head Disk o oot it e e e e e 4-3
413 RM02/RM03/RM05/RM80 Disk Pack 4-3
4.1.4 RP04, RP05, RP06, and RPO7 Disks 4-3
4.1.5 RK11/RK05 or RKOSF Cartridge Disks 4-3
4.1.6 RL11/RLO1 or RLO2 Cartridge Disk 4-3
4.1.7 RK611/RK06 or RKO7 Cartridge Disk 4-3
4.1.8 RX11/RX01 Flexible Disk 4-4
419 RX211/RX02 Flexible Disk i 4-4
4.1.10 ML-11 Disk Emulator 4-4
4.1.11 KDA50, UDA50/RA60/RA80/RA81 Disks. 4-4
4112 RC25Disk Subsystemo 4-5
4.1.13 RD31 Fixed 5.25-Inch Disk 0 e 4-5
4.1.14 RX33 5.25-Inch Half-Height Disk 4-5
4.115 RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk 4-5
4116 RD52 Fixed 5.25-Inch Disk e 4-6
4117 RD53 Fixed 5.25-Inch Disk i 4-6
4,118 RD54 Fixed 5.25-Inch Disk i 4-6
Get LUN Information Macro oottt e e e e 4-6
QIOP MACIO . . v vt it e e e e e e e e 4-7
4.3.1 Standard QIO$ Functions ittt e 4-7
432 Device-Specific QIO$ Functions 4-8
433 Device-Specific QIO$ Function for the DUDRV 4-9
Status RELUINIS v v o v e e e e e e e e e e e e e e e e e 4-9
Programming Hints. 4-11
45.1 UDA50 QIO$C IO.ATT Before GLUNS 4-11
4.5.2 RX02 QIO$C 10.SEC Before GLUNS$ 4-11
453 Bad Sector Track on Disks e 4-11
454 Stalling Input and Output 4-12
455 Dismounting the RC25 o 4-13

viii

Chapter 5 DECtape Il Driver

5.1

5.2

5.3

Introduction to the DECtape Il Driver 5-1
5.1.1 TUS8 HardwWare o v vt it it e i e e e e e e e e e e 5-1
5.1.2 TUSS DEVEL . & o v v o et et e e e e et e e e e 5-1
Get LUN Information Macro o o o i i vt e et it e e e et e e e e 5-2
5.2.1 QIO MACRO . . ittt e e e e 5-2
5.2.2 Standard QIO Functions ot 5-3
5.2.3 Device-Specific QIO Functions oo 5-3
5.2.3.1 IO WLC . . e e e e 5-4
5232 T0O.RLC . .. e e 5-4
5233 T0.BLS e e e 5-4
523.4 JODGN . ..o e e 5-4
Statts ReEtUINS . . . o o v o e e e i e e e e e e e e e e e e e e e e 5-4

Chapter 6 Magnetic Tape Drivers

6.1

6.2
6.3

6.4

6.5

Introduction to the Magnetic Tape Drivers 6-1
6.1.1 TE10/TU10/TS03 Magnetic Tape 6-3
6.1.2 TE16/TU16/TU45/TU77 Magnetic Tape 6-4
6.1.3 TS11/TU80 Magnetic Tape oot 6-4
6.14 TSVO05 Magnetic Tapeo ot 6-4
6.1.5 TK25 Magnetic Tape oo 6-4
6.1.6 TK50 Magnetic Tapeottt 6-4
6.1.7 TU81 Magnetic Tape 6-4
Get LUN Information Macro o oottt e e 6-5
QIOF MACIO . . o v vt e e et et e e e 6-5
6.3.1 Standard QIO$ FUNCHONS o oo ittt e 6-6
6.3.1.1 TOKIL e 6-6
6.3.2 Device-Specific QIO$ Functions i 6-7
6.3.2.1 TORLV ... e e e 6-8
6.3.22 TORWD e 6-8
6.3.23 TORWU 6-8
6.3.24 TO.ERS . .. e 6-8
6.3.25 TODSE . .. 6-8
6.3.26 TOSEC o 6-8
6327 TOSMO 6-10
Status RETUIMS . . o v v v v e e e e e e 6-10
6.4.1 Select RECOVEIY vt v it 6-13
6.4.2 Retry Procedures for Reads and Writes 6-13
6.4.3 Powerfail Recovery for Magnetic Tapes 6-14
Programming Hints. 6-14

6.6

6.5.1 Issue Powerfail QIOs for TM11 Before GLUN$ 6-14

6.5.2 Block Size. 6-14
6.5.3 Importance of Resetting Tape Characteristics 6-15
6.5.4 AbortingaTask 6-15
6.5.5 Writing an Even-Parity Zero-NRZI. 6-15
6.5.6 Density Selection 6-15
6.5.7 End-of-Volume Status (Unlabeled Tape) 6-15
6.5.8 Resetting Tape Transport Status or Volume Check 6-16
6.5.9 Issuing QIO$s 6-16
Block Size on Tapes Mounted /NOLABEL 6-17

Chapter 7 Line Printer Driver

7.1

7.2
7.3
7.4

7.5
7.6

Introduction to the Line Printer Driver 7-1
7.1.1 KMC-11 Auxiliary Processor i 7-2
7.1.2 LP11 Line Printer oot e e e e e e e e e e e 7-2
7.1.3 LS11 Line Printer o o v i it e i e e e e e e e e e e e e e e e 7-2
7.1.4 LV11 Line Printer o i e e e e e e e e e 7-2
7.1.5 LA180 DECprinterttt 7-3
7.1.6 LNOT1 Laser Printer 0 0 it i e e e e e e e 7-3
Get LUN Information Macro ot i it e e e e e e e e e e e 7-3
QIOP MACrOo e e e e e e e 7-4
Status Returns e e e 7-4
7.4.1 Ready Recovery e 7-5
Vertical Format Control e e e 7-6
Programming Hints. 7-6
7.6.1 RUBOUT Character vt ittt et et et e e e e e e e e et e e 7-6
7.6.2 Print Line Truncation e 7-7
7.6.3 AbortingaTask e e 7-7

Chapter 8 Null Device Driver

8.1
8.2

Introduction to the Null Device Driver ittt it e e 8-1
Null Device FUNCHON o o o et e e e e e e e e e e e e e e e e e e e 8-1

Part IIl: RSX—11M-PLUS Drivers

Chapter 9 Card Reader Driver

9.1
9.2
9.3

9.4

9.5

9.6

9.7

Introduction to the Card Reader Driver 9-1
Get LUN Information Macro e 9-1
QIOF MaCIO . . v v ottt e e ettt e e e e e e e e e e e 9-2
9.3.1 Standard QIO Functions e 9-2
9.3.2 Device-Specific QIO Functions o L 9-3
Status Returns o i it e e e 9-3
9.4.1 Card Input Errors and Recovery 9-4
9.4.2 Ready and Card Reader Check Recovery 9-5
9.4.3 I[/O Status Conditions e 9-6
Functional Capabilities. 9-7
9.5.1 Control Characters c ittt e e 9-7
Card Reader Data Formats i i e 9-8
9.6.1 Alphanumeric Format (026 and 029) 9-8
9.6.2 Binary Format e 9-8
Programming Hints. e 9-8
9.7.1 Input Card Limitation 9-8
9.7.2 AbortingaTask e 9-9

Chapter 10 QIO DEUNA Driver

10.1

10.2

10.3

Introduction to the QIO DEUNA Drivero, 10-1
10.1.1 Parameters That You Can Tailor 10-2
10.1.2 Requirements for Tasks Using the RSX-11M-PLUS QIO DEUNA Driver 10-2
10.1.3 Special Considerations for Ethernet User Tasks 10-2
10.1.4 Messageson Ethernet Lo L 10-2
10.1.5 Protocol and Address Pairs on Ethernet. 10-2
10.1.6 Opening Ethernet for Transmit and Receive 10-3
10.1.7 Padding Messages on Ethernet 10-3
10.1.8 Hardware Errors on Ethernet 10-3
DEUNA Driver QIO$s oo 10-3
10.2.1 Standards and Access to QIO$ Macros 10-3
10.2.2 Programming Sequence 10-4
10.2.3 Driver Installation. 10-4
10.2.4 QIO DEUNA Status Returns oottt i o 10-5
QIOS MaCIOS . . v v v v et et e e e e e e10-5
10.3.1 I0.XOP—Open the Ethernet Device 10-5

xi

10.4
10.5

10.6

10.3.2 10.XSC—Set Characteristics (Ethernet) 10-7

10.3.2.1 The Set Characteristics Buffer—General Format 10-8
10.3.2.2 Set Characteristics—Setting Up Protocol/Address Pairs 10-9
10.3.2.3 Characteristics—Setting Up a Multicast Address 10-10
10.3.3 IO.XTM—Transmit a Message ontheLine 10-11
10.3.3.1 Auxiliary Buffer to Set the Destination Address 10-12
10.3.3.2 Auxiliary Buffer to Set the Protocol Type 10-14
10.3.3.3 Completion Status Codes for IOXTM. 10-15
10.3.4 TO.XRC—Receive a Messageonthe Line 10-15
10.3.4.1 Buffer for Reading the Ethernet Address 10-16
10.3.4.2 Buffer for Reading the Protocol Type 10-17
10.3.4.3 Buffer for Reading the Destination Ethernet Address 10-18
10.3.4.4 Completion Status Codes for IOXRC 10-18
1035 IO0XCL—Closethe Line 10-19
10.3.5.1 Completion Status Codes for IOXCL 10-20
10.3.6 IO.XIN—Initialize the Line 10-20
10.3.6.1 Completion Status Codes for IOXIN 10-20
10.3.7 IOXTL—Control Function 10-21
10.3.7.1 Completion Status Codes for IOXTL 10-22
Diagnostic Functions for IOXTM/IOXRC 10-22
Programming Hints. 10-23
10.5.1 Information on the DEUNA Device 10-24
10.5.2 DEUNA Read/Write Mode Function. 10-24
10.5.3 DLX Incompatibility 10-24
10.5.4 Asynchronous I/O 10-24
10.5.5 Diagnostic Functions Without Data Transfer 10-24
10.5.6 Maximum and Minimum Buffer Size 10-24
10.5.7 Default Mode 10-25
10.5.8 Example of Connecting to a Remote Task 10-25
Glossary o e 10-26

Chapter 11 PCL11 Parallel Communications Link Drivers

11.1

11.2
113

Introduction to the PCL11 Parallel Communications Link Driver. 11-1
11.1.1 PCL11-BHardware s, 11-1
11.1.2 PCL11 Transmitter Driver 11-1
11.1.3 PCL11 Receiver Driver i 11-2
Get LUN Information Macro 11-2
QIO Macro—PCL11 Transmitter Driver Functions 11-3
11.3.1 Standard QIO Functions i e 11-3

xit

11.3.2 Device-Specific QIO Functions. 11-3

11.3.2.1 IO.ATX . .. 11-5

11.3.2.2 TO.SEC 11-5

11.3.2.3 T0.STC, 11-6

11.4 PCL11 Transmitter Driver Status Returns. 11-7
11.5 QIO Macro—PCL11 Receiver Driver Functions 11-8
11.5.1 Standard QIO Functions 11-8

11.5.2 Device-Specific QIO Functions. 11-8
11.5.2.1 TO.CRX . . . 11-9

11.5.2.2 IORTFE . . . 11-10

11.5.2.3 I0.ATF . . . 11-10

11.5.2.4 TODRX 11-10

11.6 PCL11 Receiver Driver Status Returns. 11-11

Chapter 12 Laboratory Peripheral Accelerator Driver

12.1 Introduction to the Laboratory Peripheral Accelerator Driver 12-1
12.1.1 LPA11-K Dedicated Mode of Operation. 12-1
12.1.2 LPA11-K Multirequest Mode of Operation 12-1

122 Get LUN Information Macro 12-2

12.3 The Program Interface, 12-2
12.3.1 FORTRAN Interface 12-2

12.3.1.1 ADSWP—Initiate Synchronous A/D Sweep. 12-3
123.1.2 CLOCKA—Set Clock ARate 12-6
123.1.3 CLOCKB—Control Clock B 12-7
12.3.1.4 CVADF—Convert A/D Input to Floating Point 12-8
12.3.1.5 DASWP—Initiate Synchronous D/A Sweep. 12-8
12.3.1.6 DISWP—lInitiate Synchronous Digital Input Sweep 12-10
12.3.1.7 DOSWP—Initiate Synchronous Digital Output Sweep 12-13
12.3.1.8 FLT16—Convert Unsigned Integer to a Real Constant 12-15
12.3.1.9 IBFSTS—Get Buffer Status 12-15
12.3.1.10 IGTBUF—Return Buffer Number 12-16
12.3.1.11 INXTBF—Set Next Buffer 12-16
12.3.1.12 IWTBUF—Wait for Buffer 12-17
12.3.1.13 LAMSKS—Set Masks Buffer. 12-18
12.3.1.14 RLSBUF—Release Data Buffer 12-19
12.3.1.15 RMVBUF—Remove Buffer from Device Queue 12-19
12.3.1.16 SETADC—Set Channel Information 12-20
12.3.1.17 SETIBF—Set Array for Buffered Sweep. 12-21
12.3.1.18 STPSWP—Stop Sweep i 12-22
12.3.1.19 XRATE—Compute Clock Rate and Preset 12-22

xiii

12.3.2 MACRO-11 Interface @ . i i e 12-23

12.3.2.1 Accessing Callable LPA11-K Support Routines 12-23

12.3.2.2 Standard Subroutine Linkage and CALL Op Code 12-23

12.3.2.3 Special-Purpose Macros. e 12-24

12.3.2.4 Device-Specific QIO Functions 12-25

123.3 Thel/OStatusBlock 12-27

12.4 Buffer Management. e e 12-28
12.5 Loading the LPA-11 Microcode i 12-30
12.6 Unloading the Driver e 12-31
12.7 Timeout of the LPAI1-K 12-31
12.8 22-Bit Addressing Support e e 12-31
129 Sample Programs e e 12-32

Chapter 13 K-Series Peripheral Support Routines

13.1 Introduction to K-Series Peripheral Support Routines 13-1
13.1.1 K-Series Laboratory Peripherals 13-1
13.1.1.1 AA11-KD/A Converterttty 13-2

13.1.1.2 AD11-K A/D Converterot iuunennn.n.. 13-2
13.1.1.3 AM11-K Multiple Gain Multiplexer 13-2
13.1.1.4 DR11-K Digital I/O Interface 13-2
13.1.1.5 KW11-K Dual Programmable Real-Time Clock 13-3
13.1.2 Support Routine Features 13-3
13.1.3 Generation and Use of K-Series Routines 13-4
13.1.3.1 Generation of K-Series Support Routines. 13-4
13.1.3.2 Program Use of K-Series Routines 13-5

13.2 The Program Interface 13-6
13.2.1 FORTRAN Interface 13-6
13.2.1.1 ADINP—Initiate Single Analog Input 13-7
13.2.1.2 ADSWP—Initiate Synchronous A/D Sweep 13-8
13.2.1.3 CLOCKA—Set Clock ARate. 13-10
13.214 CLOCKB—Control Clock B. 13-11
13.2.1.5 CVADF—Convert A/D Input to Floating Point 13-12
13.2.1.6 DASWP—Initiate Synchronous D/A Sweep 13-12
13.2.1.7 DIGO—Digital Start Event 13-14
13.21.8 DINP—Digital Input L. 13-14
13.2.1.9 DISWP—Initiate Synchronous Digital Input Sweep 13-15
13.2.1.10 DOSWP—Initiate Synchronous Digital Output Sweep. 13-16
13.2.1.11 DOUT—Digital Output, 13-18
13.2.1.12 FLT16—Convert Unsigned Integer to a Real Constant 13-18
13.2.1.13 GTHIST—Gather Interevent Time Data 13-19
13.2.1.14 IBFSTS—Get Buffer Status 13-20

xiv

13.3
13.4

13.2.1.15 ICLOKB—Read 16-Bit Clock 13-21

13.2.1.16 IGTBUF—Return Buffer Number 13-21
13.2.1.17 INXTBF—Set Next Buffer 13-21
13.2.1.18 IWTBUF—Wait for Buffer 13-22
13.2.1.19 RCLOKB—Read 16-Bit Clock 13-23
13.2.1.20 RLSBUF—Release Data Buffer 13-23
13.2.1.21 RMVBUF—Remove Buffer from Device Queue 13-24
13.2.1.22 SCOPE—Control Scopeco . 13-24
13.2.1.23 SETADC—Set Channel Information 13-25
13.2.1.24 SETIBF—Set Array for Buffered Sweep 13-26
13.2.1.25 STPSWP—Stop Sweepc.\ v . 13-26
13.2.1.26 XRATE—Compute Clock Rate and Preset. 13-27
1322 MACRO-111Interface 13-28
13.2.2.1 Standard Subroutine Linkage and CALL OpCode 13-28
13.2.2.2 Special-Purpose Macros. 13-28
13.23 Thel/OStatus Block 13-29
Buffer Management. 13-29
Sample FORTRAN Programs 13-30
13.4.1 Sample Program Using Event Flag 13-31
13.4.2 Sample Program Using Completion Routine 13-32

Chapter 14 UNIBUS Switch Driver

14.1

14.2
14.3

14.4

145

Introduction to the UNIBUS Switch Driver. 14-1
14.1.1 DTO07 UNIBUS Switches 14-1
14.1.2 UNIBUS Switch Driver 14-2
Get LUN Information Macro 14-2
QIOS Macro 14-2
14.3.1 Standard QIO Functions 14-2
14311 IOATT ... 14-3
14312 TODETt 14-3
14313 IOKIL. 14-4
14.3.2 Device-Specific QIO Functions. 14-4
14321 IO.CON. 14-5
14322 I0ODIS. 14-5
14323 IODPTt 14-5
14324 IOSWI ... 14-6
14325 IO.CSR 14-6
Powerfail Recovery 14-6
14.4.1 System Powerfail Recovery 14-6
14.4.2 UNIBUS Powerfail Recovery 14-7
Status Returns 14-7

XU

14.6

FORTRAN USAZE .« -« o o o v vv v e 14-8

Appendix A Summary of |/O Functions

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
A1l

Card Reader DIIVET . « o v v v v i e e et e e e A-1
DECtape I DRIVERot oot e A-1
DEUNA DIIVET . & v v e o e e e it e e e e e e e A-2
DiESK DEVET .« « o v e e e et e e e e e e e e A-2
Laboratory Peripheral Accelerator Drivero A-2
Line Prnter DIIVET . o o o o v v e e e e e e e e e e e A-3
Magnetic Tape DIIVErot oiv e A-3
Parallel Communication Link Drivers i A-4
Terminal DIVET . . o o o v v o e et e e e e e A-4
UNIBUS SWitch DIIVET . o o v v vt v v e it et e e et e s e e e e e A-6
Virtual Terminal DEVEr . . . o v v oot e et et e e e A-6

Appendix B 1/O Function and Status Codes

B.1

B.2

B.3

1/0 Completion Status Codesot B-1
B.1.1 I/O Error Status Codes B-1
B.1.2 I/O Status Success Codes B-5
Directive Status COdeS . . . o v v v v e v v e e e e e B-5
B.2.1 Directive Error CodeS . . . v v v v v et e e e B-6
B.2.2 Directive Success COdes . . . v v v v vt vt e B-7
/O Function COdeso vvv ot B-7
B.3.1 Device-Independent 1/0 Function Codeso B-7
B.3.2 Specific DECtape II I/O Function Codeso B-8
B.3.3 Specific Disk I/O Function Codeso B-8
B.3.4 Specific Magnetic Tape I/O Function Codes . . .o v B-8
B.3.5 Specific Terminal I/O Function Codes. [P B-9
B.3.6 Specific Virtual Terminal I/O Function Codes B-11
B.3.7 Specific A/D Converter 1/O Function Codes—RSX-11M-PLUS Only B-11
B.3.8 Specific Card Reader 1/O Function Codes—RSX-11M-PLUS Only B-12
B.3.9 Specific Cassette I/O Function Codes—RSX-11M-PLUS Only B-12
B.3.10 Specific Communication (Message Oriented) 1/O Function Codes—RSX-11M-PLUS
ONLY . ottt e B-12
B.3.11 Specific DECtape 1/O Function Codes—RSX-11IM-PLUS Only B-13
B.3.12 Specific Parallel Communications Link 1/0 Function Codes—RSX-11M-PLUS
ONIY oottt B-13
B.3.12.1 Transmitter Driver Functionso v B-13
B.3.12.2 Receiver Driver Functions B-13
B.3.13 Specific UNIBUS Switch 1I/O Function Codes—RSX-11M-PLUS Only B-14

xvi

Appendix C Error Codes

Index

Figures
1-1 Logical Unit Table 1-3
1-2 QIO$ Directive Parameter Block 0. ... 1-12
1-3 1/0 Status Block for Terminal Read Operation 1-39
1-4 1/O Status Block for ISxxx. 1-39
2-1 Structure of the Item List 1 Buffer 2-32
2-2 Structure of the Item List 2 Buffer, 2-34
2-3 Buffer Required for TCMHU 2-64
2-4 Buffer Required for TC.SSC i 2-64
2-5 Buffer Required for TCOOB. 2-65
2-6 I/O Status Block Line Termination. 2-76
2-7 1/0O Status Block for Partial Escape Sequence 2-76
10-1 General Form of Characteristics Buffer 10-8
10-2 Buffer for Setting Up Protocol/Address Pairs 10-9
10-3 Buffer for Setting Up a Multicast Address 10-11
10-4 Buffer for Setting the Ethernet Address 10-13
10-5 Buffer for Setting the Protocol Type 10-14
10-6 Buffer for Reading the Ethernet Address 10-16
10-7 Buffer for Reading the Protocol Type 10-17
10-8 Buffer for Reading the Destination Ethernet Address 10-18
10-9 Diagnostic Request Block L 10-22
11-1 IO.SEC Status Block Contents 11-5
11-2 IO.CRX Status Block Contents. 11-10

Tables
1-1 Macro Syntax Elements 1-6
1-2 Physical Device Names 1-19
1-3 Get LUN Information 1-22
1-4 Directive Conditions 1-37
1-5 I/0 Status Conditions 1-40
1-6 Devices Supported by RSX-11M-PLUS and Micro/RSX 1-43
2-1 Supported Terminal Devices 2-2
2-2 Standard Terminal Interfaces 2-4
2-3 Word 2 of the Get LUN Macro Buffer 2-9
2-4 Standard and Device-Specific QIO Functions for Terminals 2-11
2-5 Terminal Driver Subfunction Bits 2-14

2-6

2-8
2-9
2-10
2-11
2-12
2-13

10-1
10-2
10-3
111
11-2
11-3

Summary of Subfunction Bits L 2-21

Information Returned by Get Terminal Support (I0.GTS) QIO$ 2-36
Terminal Characteristics for SF.GMC and SF.SMC Functions 2-54
Bit TC.TTP (Terminal Type) Values Set by SF.SMC and Returned by SE.GMC . 2-58
Terminal Status Returns 2-66
Terminal Control Characters 2-70
Special Terminal Keys 2-72
Vertical Format Control Characters 2-77
Standard and Device-Specific QIO Functions for Virtual Terminals 3-2
Virtual Terminal Characteristics 3-8
Virtual Terminal Status Returns for Offspring Task Requests 3-8
Virtual Terminal Status Returns for Parent Task Requests 3-9
Standard Disk Devices 4-1
Standard QIO$ Functions for Disks 4-7
Device-Specific Functions for the RX01/RX02, RLO1 /RLO2, and RX33 Disk

Drives 4-8
Device-Specific QIO$ Function for the DU: Device Driver 4-9
Disk Status Returns, 4-9
Standard QIO Functions for the TU58 5-3
Device-Specific QIO Functions for the TU58 5-3
TU58 Driver Status Returns 5-5
Standard Magnetic Tape Devices 6-2
Standard QIO$ Functions for Magnetic Tape 6-6
Device-Specific QIO$ Functions for Magnetic Tape 6-7
Magnetic Tape Status Returns 6-10
Information Contained in the Second 1/O Status Word 6-12
Standard Line Printer Devices, 7-1
Standard QIO Functions for Line Printers 7-4
Line Printer Status Returns 7-4
Vertical Format Control Characters 7-6
Standard QIO Functions for the Card Reader 9-2
Device-Specific QIO Function for the Card Reader 9-3
Card Reader Switches and Indicators 9-4
Card Reader Status Returns 9-6
Card Reader Control Characters 9-8
Translation from DEC026 or DEC029 to ASCII 9-9
RSX-11M-PLUS QIO DEUNA Driver Function Codes and Their Meaning 10-4
QIO DEUNA Driver Status Returns 10-5
Diagnostic Functions for [O.XTM/IOXRC 10-23
Standard QIO Functions for PCL11 Transmitters 11-3
Device-Specific QIO Functions for PCL11 Transmitters 11-4
PCL11 Transmitter Driver Status Returns 11-7

xviii

11-4
11-5
11-6
12-1
12-2
12-3
13-1
13-2
13-3
14-1
14-2
14-3

Standard QIO Functions for PCL11 Receivers 11-8

Device-Specific QIO Functions for PCL11 Receivers 11-9
PCL11 Receiver Driver Status Returns 11-11
FORTRAN Subroutines for the LPA11-K 12-2
Device-Specific QIO Functions for the LPA11-K 12-25
Contents of First Word of IOSB 12-28
FORTRAN Subroutines for K-Series Laboratory Peripherals 13-6
Scope Control Word Values 13-24
Contents of First Word of IOSB 13-29
Standard QIO Functions for UNIBUS Switches 14-2
Device-Specific QIO Functions for UNIBUS Switches 14-4
UNIBUS Switch Driver Status Returns 14-7

Xix

Preface

Manual Objectives

This manual provides all the information needed to interface directly with the 1/O device drivers
supplied as part of the RSX-11M-PLUS and Micro/RSX operating systems.

Intended Audience

This manual is for experienced RSX-11M-PLUS and Micro/RSX programmers who want to
take advantage of the time and/or space savings that result from direct use of the 1/0 drivers.
Readers should be familiar with the information contained in the RSX-11M-PLUS and Micro/RSX
Executive Reference Manual, should have some experience using the Task Builder (TKB) and either
MACRO-11 or FORTRAN programs, and should be familiar with the manuals describing their
use.

Structure of This Document

Chapter 1 provides an overview of RSX-11M-PLUS and Micro/RSX input/output operations. It
introduces you to logical unit numbers (LUNSs), Directive Parameter Blocks (DPBs), event flags,
macro calls, and so on; includes discussions of the standard I/O functions common to a variety
of devices; and summarizes standard error and status conditions relating to completion of 1/0
requests.

Chapters 2 to 14 describe the use of all device drivers supported by RSX-11M-PLUS and
Micro/RSX. Each of these chapters is structured in similar fashion and focuses on the following
basic elements:

* The device, including information on physical characteristics such as speed, capacity, access,
and usage

* The standard functions that the devices support and descriptions of device-specific functions
® The special characters, carriage control codes, and functional characteristics

* The error and status conditions that the driver returns on acceptance or rejection of I/0
requests

¢ Programming hints

xxi

Appendix A provides quick reference material on I/O functions. Refer to the RSX-11M-PLUS
and Micro/RSX 1/0O Operations Reference Manual for more information on status codes.

Appendix B lists numeric codes for all I/O functions, directive status, returns and I/O completion
status returns.

Appendix C includes the source code for 1/O error codes, Directive Status Word (DSW) error
codes, and 1/O function codes.

Associated Documents
The following RSX-11M-PLUS and Micro/RSX manuals may be useful:

RSX-11M-PLUS Information Directory and Master Index
RSX-11M-PLUS and Micro/RSX Executive Reference Manual
RSX-11M-PLUS and Micro/RSX Task Builder Manual
PDP-11 MACRO-11 Language Reference Manual
RSX-11M-PLUS Release Notes

Micro/RSX Base Kit Release Notes

Micro/RSX Release Notes

In addition, documentation for programming in any of the PDP-11 languages may be helpful.

Conventions Used in This Document

The following conventions are observed in this manual:

xxii

Convention

Meaning

>

MCR>
DCL>
UPPERCASE

command abbrevia-
tions

lowercase

/keyword,
/qualifier,
or

/switch

parameter

[option]

[-]

A right angle bracket is the default prompt for the Monitor Console
Routine (MCR), which is one of the command interfaces used on
RSX-11M-PLUS and Micro/RSX systems.

A dollar sign followed by a space is the default prompt of the DIGITAL
Command Language (DCL), which is one of the command interfaces used
on RSX-11M-PLUS and Micro/RSX systems. Many systems include DCL.

This is the explicit prompt of the Monitor Console Routine (MCR).
This is the explicit prompt of the DIGITAL Command Language (DCL).

Uppercase letters in a command line indicate letters that must be entered
as they are shown. For example, utility switches must always be entered
as they are shown in format specifications.

Where short forms of commands are allowed, the shortest form acceptable
is represented by uppercase letters. The following example shows the
minimum abbreviation allowed for the DCL command DIRECTORY:

$ DIR

Any command in lowercase must be substituted for. Usually the
lowercase word identifies the kind of substitution expected, such as a
filespec, which indicates that you should fill in a file specification. For
example:

filename.filetype;version

This command indicates the values that comprise a file specification;
values are substituted for each of these variables as appropriate.

A command element preceded by a slash (/) is an MCR keyword; a
DCL qualifier; or a task, utility, or program switch.

Keywords, qualifiers, and switches alter the action of the command they
follow.

Required command fields are generally called parameters. The most

common parameters are file specifications.

Square brackets indicate optional entries in a command line or a file
specification. If the brackets include syntactical elements, such as periods
(.) or slashes (/), those elements are required for the field. If the field
appears in lowercase, you are to substitute a valid command element if
you include the field. Note that when an option is entered, the brackets
are not included in the command line.

Square brackets around a comma and an ellipsis mark indicate that you
can use a series of optional elements separated by commas. For example,
(argument [,...]) means that you can specify a series of optional arguments
by enclosing the arguments in parentheses and by separating them with
commas.

xxiii

Convention

Meaning

)

:argument

()

[8m]
[directory]

filespec

Braces indicate a choice of required options. You are to choose from one
of the options listed.

Some parameters and qualifiers can be altered by the inclusion of
arguments preceded by a colon. An argument can be either numerical
(COPIES:3) or alphabetical (NAME:QIX). In DCL, the equal sign (=) can
be substituted for the colon to introduce arguments. COPIES=3 and
COPIES:3 are the same.

Parentheses are used to enclose more than one argument in a command
line. For example:

SET PROT = (S:RWED,0:RWED)

Commas are used as separators for command line parameters and to
indicate positional entries on a command line. Positional entries are
those elements that must be in a certain place in the command line.
Although you might omit elements that come before the desired element,
the commas that separate them must still be included.

The convention [g,m] signifies a User Identification Code (UIC). The g
is a group number and the m is a member number. The UIC identifies
a user and is used mainly for controlling access to files and privileged
system functions.

This may also signify a User File Directory (UFD), commonly called a
directory. A directory is the location of files.

Other notations for directories are: [ggg,mmm], [gggmmm], [ufd], [name],
and [directory].

The convention [directory] signifies a directory. Most directories have
1- to 9-character names, but some are in the same [g,m] form as the UIC.

Where a UIC, UFD, or directory is required, only one set of brackets is
shown (for example, [g,m]). Where the UIC, UFD, or directory is optional,
two sets of brackets are shown (for example, [[g,m]]).

A full file specification includes device, directory, file name, file type, and
version number, as shown in the following example:

DL2: [46,63] INDIRECT.TXT;3

Full file specifications are rarely needed. If you do not provide a version
number, the highest numbered version is used. If you do not provide a
directory, the default directory is used. Some system functions default
to particular file types. Many commands accept a wildcard character (*)
in place of the file name, file type, or version number. Some commands
accept a filespec with a DECnet node name.

A period in a file specification separates the file name and file type. When
the file type is not specified, the period may be omitted from the file
specification.

xxiv

Convention

Meaning

7

@

KEYNAME

=]

XXX

A semicolon in a file specification separates the file type from the file
version. If the version is not specified, the semicolon may be omitted
from the file specification.

The at sign invokes an indirect command file. The at sign immediately
precedes the file specification for the indirect command file, as follows:

@filename[.filetype;version]

A horizontal ellipsis indicates the following:
* Additional, optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis shows where elements of command input or statements
in an example or figure have been omitted because they are irrelevant to
the point being discussed.

This typeface denotes one of the keys on the terminal keyboard, for
example, the RETURN key.

The symbol [CTRL/o] means that you are to press the key marked CTRL
while pressing another key. Thus, indicates that you are to press
the CTRL key and the Z key together in this fashion. is echoed on
some terminals as "Z. However, not all control characters echo.

A lowercase n indicates a variable for a number.

A symbol with a 1- to 3-character abbreviation, such as [x] or [RET],
indicates that you press a key on the terminal. For example, indicates
the RETURN key, indicates the LINE FEED key, and indicates the
DELETE key.

In addition, unless otherwise noted, the term “RSX-11" refers to both the RS5X-11M-PLUS and
Micro/RSX operating systems.

Note that while RSX-11M-PLUS and Micro/RSX systems require certain parameters, they ignore
them. These parameters are necessary to maintain compatibility with RSX-11D.

Furthermore, except in MACRO-11 coding examples, all numbers are assumed to be decimal
unless otherwise specified. In MACRO-11 coding examples, the reverse is true: all numbers are
considered to be octal unless followed by a decimal point (which indicates a decimal number).

Finally, in FORTRAN subroutine models, parameters that begin with the letters i to n indicate
integer variables. In general, where a call uses both i and n prefixes, the i form indicates the
name of an array and the n form specifies the size of the array.

xxXv

All integer arrays and variables are assumed to occupy one storage word for each variable (that
is, INTEGER#+2) and all real arrays and variables are assumed to occupy two storage words for
each variable (that is, REAL*4).

xxvi

Summary of Technical Changes

The following sections list features, commands, qualifiers, error messages, and restrictions that
are new to 1/O drivers for the RSX-11M-PLUS and Micro/RSX Version 4.0 operating systems.
These new or modified features are documented in this revision of the RSX-11M-PLUS and
Micro/RSX 1/0 Drivers Reference Manual.

Also, major changes to the organization of the manual are included at the end of this summary.

New Hardware Support
RSX-11M-PLUS and Micro/RSX Version 4.0 support the following new hardware:
e The LQPO3 letter-quality printer
¢ The LA75 dot matrix printer and LCGO01 graphics printer
e The LA210 and LA2XX-series personal printers
e The DHU11 and DHQ11 asynchronous multiplexers
e The CXA16, CXB16, and CXY08 BA200-series multiplexers
e The RAS82, RD32, and RD54 Winchester disk drives
e The RX33 single flexible disk

New Features
The terminal driver (TTDRV) has the following new features:

e Support for the following terminal characteristics:

Characteristic Function

TC.CLN 7- or 8-bit character size at hardware level

TC.SXL Printer supports sixel graphics

TC.MAP Local Area Terminal (LAT) mapping

TC.QDP Connect/disconnect/queue-depth of LAT application terminal

xxvii

A new hardware bit characteristic (7- and/or 8-bit characteristic) that supports nonterminal
devices. This characteristic, which is defined in the TTSYM module, determines that the
eighth bit is not required if the 7-bit characteristic is selected. The characteristic can be set
using either the Monitor Console Routine (MCR) command SET /CHAR_LENGTH or the
Digital Command Language (DCL) command SET TERMINAL/CHARACTER _LENGTH.

Nonprivileged tasks can now issue the subfunction breakthrough write (TF.WBT) to the
tasks’ terminal. However, nonprivileged tasks cannot issue TF.WBT to other terminals.

To improve task performance, TTDRV no longer uses intermediate buffers when performing
Q-bus direct memory access (DMA) using the instruction write logical block and pass all
characters (I0.WAL).

TTDRYV no longer requires that a terminal be attached for asynchronous system trap (AST)
notification (IO.ATA) to set the terminal characteristics TC.OOB, TC.ICS, and TC.SCA.

Changes to the Document

The following changes in organization are included in this revision of the RSX-11M-PLUS and
Micro/RSX 1/0 Drivers Reference Manual:

The manual is now divided into the following parts:
— Part 1: Common Drivers

This part of the manual is devoted to I/O drivers that are common to both
RSX-11M-PLUS and Micro/RSX.

— Part 2: RSX-11M-PLUS Dirivers

This part of the manual is devoted to I/O drivers that are available only to
RSX-11M-PLUS.

A new appendix (Appendix C) that includes the source code for 1/O error codes, Directive
Status Word (DSW) error codes, and I/O function codes has been added.

The RSX-11M-PLUS and Micro/RSX 1/O Drivers Reference Manual appendix that included
information about the QIO$ interface to the Ancillary Control Processors (ACPs) is now in
the RSX-11M-PLUS and Micro/RSX 1/0 Operations Reference Manual.

xxviii

Partl: Common Drivers

Chapter 1
Operating System Input/Output

1.1 Overview of RSX-11M-PLUS and Micro/RSX 1/0O

The RSX-11M-PLUS and Micro/RSX operating systems support a wide variety of input and
output devices, including disks, DECtapes, magnetic tapes, tape cassettes, line printers, card
readers, and such laboratory and industrial devices as analog-to-digital (A/D) converters,
universal digital controllers, and laboratory peripheral systems.

Digital Equipment Corporation supplies the drivers for these devices as part of the system
software. This manual describes all the device drivers that the RSX operating system supports
and the characteristics, functions, error conditions, and programming hints associated with each.
You can add devices that this manual does not describe to basic RSX system configurations, but
you must develop and maintain your own drivers for these devices. (See the RSX-11M-PLUS
and Micro/RSX Guide to Writing an 1/0O Driver.)

Input/output operations under RSX-11M-PLUS and Micro/RSX are extremely flexible and are
as device- and function-independent as possible. Programs issue I/O requests to logical units
that you previously associated with particular physical device units. Each program or task can
establish its own correspondence between physical device units and logical unit numbers (LUNS).
The Executive queues I/O requests as your task issues them and subsequently processes them
according to the relative priority of the tasks that issued them. Your tasks can issue I/O requests
for appropriate devices through either the File Control Services (FCS) or Record Management
Services (RMS), or your tasks can interface directly to an I/O driver by the Queue 1/0 (QIO$)
Executive directive macro.

Your task requests all of the I/O services that this manual describes by using QIO$ Executive
directive macros. A function code that you include in the QIO$ macro indicates the particular
input or output operation that the system and the driver are to perform. I/O functions can
request operations such as the following:

* Attaching or detaching a physical device unit for a task’s exclusive use
* Reading or writing a logical or virtual block of data

* Canceling a task’s I/O requests

Operating System Input/Output 1-1

QIO macros can also specify a wide variety of device-specific I/O operations (for example,
reading DECtape in reverse and rewinding cassette tape).

1.2 Physical, Logical, and Virtual I/O

An I/O transfer can take place in three possible modes: physical, logical, and virtual. A
description of each mode follows:

I/O Mode Description

Physical Takes place by reading and writing data in the actual physical units that the
hardware accepts (for example, sectors on a disk). For most devices, physical I/O
is identical to logical 1/O. For example, the RK05 cartridge disk has sectors of
256 words, the same size as RSX-11M-PLUS and Micro/RSX logical blocks for
all disks. Thus, for the RKO05, a logical block maps directly into a physical block.
However, the mapping is not one to one for other devices. The RF11 fixed-head
disk, for example, is word addressable, but no physical I/O may be done with the
RF11. Data is always written in 256-word logical blocks. The system records data
for the RX01 flexibie disk in physical sectors of 64 words each. Therefore, logical
blocks for the RX01 are made up of four physical sectors.

Logical Takes place by reading and writing data in blocks convenient for the operating
system. For most devices logical blocks map directly into physical blocks.
For block-structured devices (for example, disks), logical blocks are numbered,
beginning with 0. For non-block-structured devices (for example, terminals),
logical blocks are not addressable.

Virtual Takes place by reading and writing data to open files. In this case, the Executive
maps virtual blocks into logical blocks. For file-structured devices (disks or
DECtapes), virtual blocks are the same size as logical blocks, are numbered starting
from 1, and are relative to the file rather than to the device. For non-file-structured
devices, the mapping from virtual block to logical block is direct.

1.3 Logical Units

This section describes the construction of the Logical Unit Table (LUT) and the use of logical
unit numbers (LUNSs).

1.3.1 Logical Unit Number

A logical unit number, or LUN, is a number that the system associates with a physical device
unit during RSX-11M-PLUS and Micro/RSX I/O operations. For example, you might associate
LUN 1 with one of the terminals in the system; LUNs 2, 3, 4, and 5 with DECtape drives; and
LUNs 6, 7, and 8 with disk units. The association is a dynamic one; each task running in the
system can establish its own correspondence between LUNs and physical device units, and the
system can change that association at almost any time. This dynamic, flexible association is a
major factor in the device-independent programming of the system.

A LUN is simply a short name for the association between a logical unit and a physical device
unit. Once the association has been made, the LUN provides a direct and efficient mapping to
the physical device unit, thus eliminating the searching of device tables whenever the system
encounters a reference to a physical device unit.

1-2 Operating System Input/Output

Remember that, although you or a task can change the association of a LUN to a physical
device unit at any time, reassigning a LUN at run time causes pending 1/O requests for the
previous LUN assignment to be canceled. Therefore, you must verify that all outstanding 1/0
requests for a LUN have been serviced before you associate that LUN with another physical
device unit.

1.3.2 Logical Unit Table

There is one Logical Unit Table (LUT) for each task running in the operating systems. The task
header contains this table as a variable-length block. Each LUT contains enough 2-word entries
for the number of logical units. You specify the number of logical units in the Task Builder
(TKB) by the “UNITS=" option when you build your task.

The first word of each 2-word entry contains a pointer to the Unit Control Block (UCB) that
represents the physical device unit currently associated with that LUN. This linkage may be
indirect; that is, you may force redirection of references from one unit to another unit with the
Digital Command Language (DCL) command ASSIGN/REDIRECT. The second word of each
2-word entry contains a pointer to the window block of the task that has a file open. The
window block contains pointers to areas on the file that are accessed by the task.

Whenever your task issues an 1/0 request, the system matches the appropriate physical device
unit to the LUN that the call specifies. The system does this by indexing into the LUT by
using the LUN number. Thus, if the call specifies 6 as the LUN, the system accesses the sixth
2-word entry in the LUT and associates the 1/0 request with the physical device unit to which
the entry points. The number of LUN assignments valid for a task ranges from 0 to 255, but it
cannot be greater than the number of LUNs specified at task-build time.

Figure 1-1 illustrates a typical LUT.
Figure 1-1: Logical Unit Table

Number of LUNs

Pointer to UCB of LUN 1

Pointer to Window Block of LUN 1

Pointer to UCB of LUN 2

— — e—

Pointer to Window Block of LUN 2

Pointer to UCB of LUN 3

Pointer to Window Block of LUN 3

Pointer to UCB of LUN 4

Pointer to Window Block of LUN 4

ZK-4078-85

Operating System Input/Output 1-3

1.3.3 Changing LUN Assighments

Logical unit numbers have no significance until you associate a LUN with a physical device
unit by using one of the following methods:

e At the time you build the task that is to do the I/O operation, you can specify an ASG
(Assign) keyword option to the TKB. This option associates a physical device unit with a
LUN referenced by the task being built.

* You or the system operator can issue a REASSIGN command to the Monitor Console
Routine (MCR) or an ASSIGN/REDIRECT command to DCL. This command reassigns a
LUN to another physical device unit and thus changes the correspondence between the
LUN and the physical device unit. Note that this reassignment has no effect on the in-core
image of a task.

¢ At run time, a task can dynamically change a LUN assignment by issuing the Assign LUN
Executive directive macro (ALUNS$). This changes the association of a LUN with a physical
device unit during task execution.

1.4 Issuing an 1/O Request

Your tasks perform I/O in the operating systems by submitting requests for 1/O service as
Queue 1/0 (QIO$) or Queue I/O and Wait (QIOWS$) Executive directive macros. See the
RSX-11M-PLUS and Micro/RSX Executive Reference Manual for a complete description of system
directives.

The RSX-11M-PLUS and Micro/RSX operating systems have a set of system macros that make
issuing QIO$ macros easier. You must make these macros available to the source program by
placing the MACRO-11 assembler directive MCALL in the source program. The macros reside
in the System Macro Library (LB:[1,1]JRSXMAC.SML). Section 1.6.7 describes the function of
.MCALL.

In both operating systems, as in most multiprogramming systems, tasks do not normally access
physical device units directly. Instead, they use I/O services that the Executive provides,
because the system can effectively multiplex the use of physical device units over many tasks.
The Executive routes 1/O requests to the appropriate device driver and queues them by the
priority of the requesting task. 1/O operations proceed concurrently with other activities in
RSX-11M-PLUS and Micro/RSX systems.

Before the Executive queues a QIO$ request to the driver, the QIO$ must pass a series of tests
executed by the Executive. If the request fails, the Executive rejects it. The Executive signals this
rejection by setting the C-bit. As good programming practice, you should check for directive
rejection by following the QIO$ macro with a MACRO-11 BCS instruction or its equivalent.

After the Executive queues an I/O request, the system does not wait for the operation to
complete. Perhaps, the task that issued the QIO$ request cannot proceed until the I/0
operation completes. In this case, the task should specify an event flag (see Section 1.4.1.4) in
the QIO$ request and should issue a Wait-for Single Event Flag (WTSE$) Executive macro that
specifies the same event flag at the point where synchronization must occur. Your task then
waits for the I/O to complete by waiting for the Executive to set the specified event flag.

1-4 Operating System Input/Output

The QIO$ and Wait (QIOW$) macro is a more economical way to achieve this synchronization.
QIOWS$ waits until the system completes the I/O before returning control to the task. Thus,
the additional WTSE$ macro is not necessary.

Each QIO$ or QIOW$ macro must supply sufficient information to identify and queue the 1/0
request. You may also want to include locations in your task to receive error or status codes
and to specify the address of an asynchronous system trap (AST) service routine. Certain types
of I/O operations require the specification of device-dependent information as well. Typical
QIO$ parameters are the following:

* I/0 function to be performed
* LUN associated with the physical device unit to be accessed

* Optional event flag number for synchronizing I/O completion processing (required for
QIOWS)

* Optional address of the I/0 status block (IOSB) to which the Executive returns information
indicating successful or unsuccessful completion

* Optional address of an AST service routine in your task to be entered upon completion of
the I/0 request

* Optional device- and function-dependent parameters specifying such items as the starting
address of a data buffer, the size of the buffer, and a block number

Several of the first six parameters in the QIO$ macro are optional, but you must reserve space
for these parameters. During expansion of a QIO$ macro, the Executive defaults to a value of
0 for all null (omitted) parameters. Inclusion of the device- and function-dependent parameters
depends on the physical device unit and function you specify. If you want to specify only an
I/0 function code, a LUN, and an address for an AST service routine, issue the following:

QIO$ I0.ATT,6,,,,ASTOX

IO.ATT is the QIO$ function code and the following describes the meaning of the parameters:

Parameter = Meaning

IO.ATT Specifies the I/O function code for attach.

6 Specifies the LUN associated with the device unit.

" Specifies null arguments for the event flag number, the request priority, and the
address of the IOSB.

ASTOX Specifies the AST address using the symbolic name ASTOX.

The system requires no additional device- or function-dependent parameters for an attach
function. Section 1.6 describes the three legal forms of the macro.

For convenience, you may omit any commas if no parameters appear to the right of it. Therefore,
if you did not want the AST, you could issue the preceding command as follows:

QIO$ ID.ATT,.6

All extra commas have been dropped. However, if a parameter appears to the right of any
place-holding comma, that comma must be retained.

Operating System Input/Output 1-5

1.4.1 QlO$ Macro Format

The arguments for a specific QIO$ macro call may be different for each I/O device your task
accesses and for each I/O function it requests. However, the general format of the call is
common to all devices.

Format

QIO$ fnc,lun,[efn],[pri] [isb] [ast],[<pl,p2,...,p6>]

1.4.1.1 Syntax Elements: Square Brackets, Angle Brackets, and Braces
Table 1-1 lists the syntax elements that you may use in macro call. Note that some of the
syntax elements are required syntax for macro calls.

Table 1-1: Macro Syntax Elements

Element Meaning

[1 Square brackets enclose optional parameters. You may use one or more of the
optional parameters.

< > Angle brackets must enclose function-dependent parameters if the QIO$ requires
the parameters <pl,..,p6> . The angle brackets are part of the syntax and must
be used. The parameters may or may not be present in a given QIO$ macro, and,
if present, some may be optional.

{ Braces indicate that you must make a choice among the arguments enclosed within
the braces.

The following paragraphs summarize the use of each QIO$ parameter. Section 1.7 explains
different forms of the QIO$ macro itself.
1.4.1.2 FNC Parameter

The fnc parameter is the symbolic name of the I/O function that you want to request. This
name is usually of the following form:

I0. xxx
The xxx parameter identifies the particular I/O operation.

For example, a QIO$ request to attach the physical device unit associated with a LUN specifies
the function code I0.ATT with its complete QIO$ form appearing as follows:

QIO$ I0.ATT,lun
The lun parameter is the number assigned to the physical device unit.

A QIO$ request to cancel (or kill) all I/O requests for a LUN that you specified begins like the
following;:

QI0O$ IO.KIL,...

The system internally stores the fnc parameter, which you specify in the QIO$ request, as a
function code in the high-order byte and as modifier bits in the low-order byte of a single word.

1-6 Operating System Input/Output

The function code is in the range 0 to 313 and is a binary value that the system supplies to
match the symbolic name specified in the QIO$ request.

The system object module library defines the correspondence between global symbolic names
and function codes. The Task Builder (TKB) searches the library. You can obtain local symbolic
definitions by using the FILIO$ and SPCIO$ macros, which reside in the System Macro Library
and which are summarized in Appendix A.

Several similar functions may have identical function codes, and you may distinguish them only
by their modifier bits. For example, the DECtape read logical forward and read logical reverse
functions have the same function code. Although the function codes are the same, the system
stores the modifier bits for these two operations.

1.4.1.3 LUN Parameter

The lun parameter represents the logical unit number (LUN) of the associated physical device
unit that the I/O request is to access. The association between the physical device unit and the
LUN is specific to the task that issues the I/O request, and the LUN reference is usually device
independent. You begin an attach request to the physical device unit associated with LUN 14
by using the following command:

QI0O$ I0.ATT,14.,...

Because each task has its own Logical Unit Table (LUT) in which the correspondence between
the LUN and the physical device unit is established, the legality of a LUN parameter is specific
to the task that includes this parameter in a QIO$ request. In general, the LUN must be in the
following range:

0 < LUN < number of LUNs in table

The number of LUNSs specified in the LUT of a particular task cannot exceed 255.

1.4.1.4 EFN Parameter

The efn parameter is a number representing the event flag to be associated with the I/O
operation. It is an optional parameter for inclusion in the QIO$ request. The specified
event flag is cleared when the I/O request is queued and is set when the I/O operation has
completed. If the task issues the QIOW$ macro, the Executive suspends task execution until
the I/O completes. If the task issues the QIO$ macro (with no WTSE$ macro), task execution
proceeds in parallel with the I/O. When the task continues to execute, it may test the event
flag whenever it chooses by using the Read All Event Flags (RDAF$) Executive directive macro
(if group-global event flags are not being used), the Read Extended Flags (RDXF$) Executive
directive (for all event flags, including group-global event flags), or the Read Single Event Flag
(RSEF$) Executive directive.

If you specify an event flag number, it must be in the range 1 to 96. If you do not want to
specify an event flag, you can omit efn or supply it with a value of 0. Event flags 1 to 32
are local (specific to the issuing task); event flags 33 to 64 are global (shared by all tasks in
the system). Event flags 65 to 96 are group-global event flags (shared by all tasks in the same
user group). Flags 25 to 32 and 57 to 64 are reserved for use by system software. Within
these bounds, you can specify event flags as desired to synchronize I/O completion and task
execution. Sections 1.4.2 and 1.4.3 provide a more detailed explanation of significant events
and event flags.

Operating System Input/Output 1-7

Note

If an event flag is not specified, the Executive treats the directive as if it were a
simple QIO$ request.

1.4.1.5 PRI Parameter

The optional pri parameter is supplied only to make RSX-11M-PLUS and Micro/RSX QIO$
requests compatible with RSX-11D. Thus, you should use a value of 0 (or a null) for this
parameter.

1.4.1.6 I1SB Parameter

The optional isb parameter identifies the address of the IOSB associated with the I/O request.
This block is a 2-word array in which a code is returned that represents the final status of
the I/0O request on completion of the operation. This code is a binary value corresponding to
a symbolic name of the form IS.xxx (for successful returns) or IE.xxx (for error returns). The
binary error code is returned to the low-order byte of the first word of the status block. The
error code can be tested symbolically, by name. For example, the symbolic status IE.BAD is
returned if a bad parameter is encountered. The following illustrates the examination of the
1/0 status block, IOSB, to determine the success of the I/O:

QIO$C IOD.ATT,14.,2,,I0SB
BCS DIRERR
WISE$C 2

CMPB #IS.SUC, I10SB
BNE ERROR

susan

The system object module library defines the correspondence between global symbolic names
and I/O completion codes. TKB searches this library. The IOERR$ macro, which resides in the
System Macro Library, obtains local symbolic definitions (summarized in Appendix B).

On completion of the 1/0 operation, the system returns certain device-dependent information
to the high-order byte of the first word of isb. If a read or write operation is successful, the
second word is also significant. For example, in the case of a read function on a terminal, the
system returns in the second word of the isb the number of bytes that you typed preceding a
carriage return. If a magnetic tape unit is the device and you specified a write function, this
number represents the number of bytes actually written. The status block can be omitted from
a QIO$ request if you do not intend to test for successful completion of the request.

1-8 Operating System Input/Output

1.4.1.7 AST Parameter

The optional ast parameter specifies the address of a service routine to be entered when an
asynchronous system trap (AST) occurs. If you want to interrupt your task to execute special
code on completion of an I/O request, you can specify an AST routine in the QIO$ request.
When the specified 1/O operation completes, control branches to this routine at the software
priority of the requesting task. The system then executes the asynchronous code beginning at
address ast, similar to the way the system executes an interrupt service routine. If you do not
want to perform asynchronous processing, you can omit the ast parameter or specify a value of
0 in the QIO$%$ macro call.

Section 1.4.5 discusses the use of ASTs, and the RSX-1IM-PLUS and Micro/RSX Executive
Reference Manual describes traps in detail.

1.4.1.8 P1,P2,....P6 Parameters

The additional QIO$ parameters <pl,p2,...p6> depend on the particular function and device
specified in the I/O request. Typical parameters may include I/O buffer address, 1/O buffer
length, and so on. You can include between zero and six parameters depending on the particular
I/O function. Subsequent chapters of this manual describe rules for including these parameters
and legal values.

1.4.2 Significant Events

A significant event is a change in system status that causes the Executive to reevaluate the
eligibility of all active tasks to run. (For some significant events, specifically those in which
the current task becomes ineligible to run, only those tasks of lower priority are examined.) A
significant event is usually caused (either directly or indirectly) by an Executive directive issued
from within a task. This manual is concerned with the significant event caused by an I/O
completion.

Significant events are normally set by Executive directives by completing a function that you
specified. A task uses event flags to recognize the occurrence of specific events.

1.4.3 Event Flags

Event flags are a means by which tasks recognize specific events. (Tasks also use ASTs to
recognize specific events.) In requesting a system operation (such as an 1/O transfer), a task
may associate an event flag with the completion of the operation. When the event occurs, the
Executive sets the specified flag.

Tasks distinguish one event from another by using 96 event flags. Each event flag has a
corresponding unique event flag number (efn). Numbers 1 to 32 form a group of flags that are
unique to each task and are set or cleared as a result of that task’s operation. Numbers 33 to 64
form a second group of flags that are common to all tasks, hence their name “common flags.”
Common flags may be set or cleared as a result of any task’s operation. The last eight flags in
each group, local flags (25-32) and common flags (57-64), are reserved for use by the system.
Numbers 65 to 96 form the third group of flags, known as “group-global event flags.” You
can use these flags in any application where common event flags can be used; however, only
tasks running under User Identification Codes (UICs) containing the group code specified when
the group-global event flags were created can use them. Eight Executive directives provide the

Operating System Input/Output 1-9

support for creating, setting, clearing, reading, and testing event flags. See the RSX-11M-PLUS
and Micro/RSX Executive Reference Manual for a description of these directives.

The following textual example illustrates the use of a common event flag to synchronize task
execution:

A task issues a QIO$ macro with an efn parameter specified. A WTSE$ macro follows the
QIO$ and specifies the same event flag number as an argument. The Executive clears the event
flag when the Executive queues the I/O request. Then, the Executive blocks the task when the
Executive executes the WTSE$ directive. The task remains blocked until a significant event is
declared at the completion of the I/O request and the significant event sets the event flag. The
task resumes when the appropriate event flag is set, and execution resumes at the instruction
following the WTSE$ macro. Using these macros and an event flag in this way ensures that
the task does not manipulate the data until all the I/O has completed.

Specifying an event flag does not mean that a WTSE$ macro must be issued. Event flag testing
can be performed at any time. The purpose of a WTSE$ macro is to block the task execution
until an indicated event occurs. Hence, it is not necessary to issue a WISE$ macro immediately
following a QIO$ macro, but a task that depends on a specific I/O operation to complete must
issue the WTSE$ macro before continuing.

A task can issue a Stop For Single Event Flag (STSE$) macro instead of a WTSE$ macro. When
this is done, an event flag condition not satisfied results in the task’s being stopped instead of
being blocked until the event flag is set. A blocked task still competes for memory resources at
its running priority. A stopped task competes for memory resources at priority 0.

1.4.4 System Traps

System traps can interrupt task execution and can cause a transfer of control to another memory
location for special processing. The Executive handles system traps. The traps are relevant
only to the task in which they occur. To use a system trap, a task must contain a trap service
routine, which is automatically entered when the trap occurs.

There are two types of system traps: synchronous and asynchronous. You can use both to
handle error or event conditions, but they differ in their relation to the task that is running
when the traps are detected. The system traps differ as follows:

Synchronous (SSTs) ~ Signal error conditions within the executing task. If the same instruction
sequence were repeated, the same synchronous trap would occur at the
same place in the task. Synchronous traps are fully described in the
RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

Asynchronous (ASTs) Signal the completion of an external event such as an I/O operation. An
AST usually occurs as the result of initiating or completing an external
event rather than as a program condition.

Although not able to distinguish execution of an SST routine from task execution, the Executive
is aware that a task is executing an AST routine. An AST routine can be interrupted by an SST
routine but not by another AST routine.

1-10 Operating System Input/Output

1.4.5 Asynchronous System Traps

The primary purpose of an AST is to inform the task that a certain event has occurred—for
example, the completion of an 1/O operation. As soon as the task has serviced the event, it
can return to the interrupted code.

Some directives can specify both an event flag and an AST; with these directives, you can use
ASTs as an alternative to event flags or you can use the two together. Therefore, you can
specify the same AST routine for several directives, each with a different event flag. Thus,
when the Executive passes control to the AST routine, the event flag can determine the action
required. However, it is standard programming practice to use the I/O status block (IOSB)
rather than the event flags to determine which I/O operation is completed. Thus, when control
is passed to an AST from a QIO$, the IOSB is on top of the stack. Use this IOSB to determine
which I/0 has completed.

The Executive queues ASTs in a first-in/first-out (FIFO) queue for each task and monitors all
asynchronous service routine operations. Because asynchronous traps may be the end result of
1/O-related activity, the task cannot control the occurrence of the ASTs directly. An example
of an asynchronous trap condition is the completion of an I/O request. The timing of such an
operation clearly cannot be predicted by the requesting task. If the task does not specify an AST
service routine in an I/O request, a trap does not occur and normal task execution continues.

However, the task may, under certain circumstances, block recognition of ASTs to prevent
simultaneous access to a critical data region. When access to the critical data region has been
completed, the queued ASTs may again be honored. The Disable AST Recognition (DSARS$S)
and Enable AST Recognition (ENAR$S) Executive directives provide the mechanism with proper
access to a critical data region.

Associating ASTs with 1/O requests enables the requesting task to be truly event driven. The
system executes the AST service routine contained in the initiating task as soon as possible,
consistent with the task’s priority. Using the AST routine to service I/O-related events provides
a response time that is considerably better than a polling mechanism, and it provides for better
overlap processing than the simple QIO$ and WTSE$ macros. ASTs also provide an ideal
mechanism for use in multiple buffering of 1/O operations.

The Executive inserts all ASTs in a FIFO queue on a per task basis as they occur (that is, the
event that they are to signal has expired). The Executive executes them one at a time whenever
the task does not have ASTs disabled and is not already in the process of executing an AST
service routine. Executing the AST includes storing certain information on the task’s stack,
including the task’s WTSE$ mask word and address, the Directive Status Word (DSW), the
program status (SP), the program counter (PC), and any trap-dependent parameters. The task’s
general-purpose registers RO-R5 are not saved, and thus AST service routines must save and
restore all registers used. If the registers are not restored after an AST has occurred, the task’s
subsequent execution may be unpredictable.

After an AST is processed, the trap-dependent parameters (if any) must be removed from the
task’s stack and an AST Service Exit ASTX$S macro must be executed. The ASTX$S macro,
described in Section 1.6.10, issues the AST Service Exit directive. On AST service exit, control
returns to another queued AST, to the executing task, or to another task waiting to run.

The RSX-11M-PLUS and Micro/RSX Executive Reference Manual describes in detail the purpose
of AST service routines and all Executive directives that handle them.

Operating System Input/Output 1-11

1.5 Directive Parameter Blocks

A Directive Parameter Block (DPB) is a fixed-length area of contiguous memory that contains the
arguments that you specify in an Executive directive macro call. The DPB for a QIO$ directive
has a length of 12 words. The Executive generates it as the result of expanding a QIO$ macro
call. The first two bytes of the DPB contain the following;

* The first byte of the DPB contains the Directive Identification Code (DIC)—always 1 for
QIOS.

* The second byte contains the size of the DPB in words—always 12 for RSX~11M-PLUS
and Micro/RSX.

During the assembly of your task containing QIO$ requests, the MACRO-11 assembler generates
a DPB for each 1/0 request specified in a QIO$ macro call. At run time, the Executive uses
the arguments stored in each DPB to create, for each request, an 1/O packet in system dynamic
storage. Figure 1-2 illustrates the layout of a sample DPB.

Figure 1-2: QIOS Directive Parameter Block

0
Word O Size of DPB — = 12 1 - DiCforaio
Directive
1 Function — FNC Modifiers ~<— |/0 Function
L ////// . .
2 Reserved LUN -=«—— Logical Unit Number
LLLLLLLL LA 6
3 Priority —_— PRI EFN -« Event Flag Number
8
4 ISB '« Address of I/0
10 Status Block
5 AST —=—— Address of
12 Asynchronous System Trap
Service Routine
6
* Device-Dependent
Parameters
[]
L]
1

ZK-005-81

1-12 Operating System Input/Output

1.5.1 1/O Packets

The Executive enters the I/O packet by priority into a queue of I/O requests for the specified
physical device unit. The Executive creates and maintains this queue and orders it by the
priority of the tasks that issued the requests. The I/O drivers examine their respective 1/O
packet queues for the I/O request with the highest priority capable of being executed. The
driver removes this packet from the queue and performs the I/O operation. The process is then
repeated until the queue is empty of all requests.

1.5.2 Significant Event Declaration

After the 1/0 request has been completed, the Executive declares a significant event and may
do one or more of the following;:

* Set an event flag.
e (Cause a branch to an AST service routine.
* Return the 1/0O status.

Any of the preceding actions depend on the arguments specified in the original QIO$ macro
call.

1.6 1/0O Related Macros

Both operating systems supply several system macros to issue and return information about I/0
requests. These macros reside in the System Macro Library and must be made available during
assembly by including the MACRO-11 assembler directive MCALL in the task’s code.

The RSX-11M-PLUS and Micro/RSX system also supplies FORTRAN-callable subroutines that
perform the same functions as the system macros. See the RSX-11M-PLUS and Micro/RSX
Executive Reference Manual for more details.

Most of the Executive directive macros described in this section have three distinct forms. The
following sections summarize the forms of QIO$, but the characteristics of each form also apply
to QIOW$, ALUN$, GLUNS, and the other described Executive directive macros.

1.6.1 QIOS Form

The QIO$ form is useful for a directive operation that is to be issued several times from different
locations in a non-reentrant program segment. The QIO$ form is most useful when the directive
is issued several times with varying parameters (one or more but not all parameters change)
or in a reentrant program section when a directive is issued several times even though the
DPB is not modified. This form produces only the directive’s DPB and must be issued from a
data section of the program. The code for actually executing a directive in the QIO$ form is
produced by a special macro, DIRS.

Because execution of the directive is separate from the creation of the directive’s DPB, the
following occur:

e A QIO$ form of a given directive needs to be issued only once (to produce its DPB).

e A DIR$ macro associated with a given directive can be issued several times without incurring
the cost of generating a DPB each time it is issued.

Operating System Input/Output 1-13

* It is easy to access and change the directive’s parameters by labeling the start of the DPB
and by using the offsets defined by the directive.

When a program issues the QIO$ form of a macro call, the parameters required for DPB
construction must be valid expressions for MACRO-11 data storage instructions (such as .BYTE,
.WORD, and .RAD50). You can alter individual parameters in the DPB. You might do this if
you want to use the directive many times with varying parameters.

1.6.2 QIOSS Form

Program segments that need to be reentrant should use the QIO$S form. Only the QIO$S form
produces the DPB at run time. The other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack. The code is followed by an
EMT 377 instruction. In this case, the parameters must be valid source operands for MOV-type
instructions. For a 2-word Radix-50 name parameter, the argument must be the address of a
2-word block of memory containing the name. Note that you should not use the stack pointer
(or any reference to the stack pointer) to address directive parameters when the QIO$S form is
used.!

Note that in the QIO$S form of the macro, the macro arguments are processed from right to
left. Therefore, when using code in the following form, the result may be obscure.

MACROSS, , (R4) +, (R4) +

1.6.3 QIOSC Form

Use the QIO$C form when a directive is to be issued only once. The QIO$C form eliminates
the need to push the DPB (created at assembly time) onto the stack at run time. Other parts of
the program, however, cannot access the DPB because the DPB address is unknown.

The QIO$C form generates a DPB in a separate program section’ called $DPB$$. The DPB is
first followed by a return to the user-specified program section, then by an instruction to push
the DPB address onto the stack, and finally by an EMT 377 instruction. To ensure that the
program reenters the correct program section, you must specify the program section name in
the argument list immediately following the DPB parameters. If the argument is not specified,
the program reenters the blank (unnamed) program section.

This form also accepts an optional final argument that specifies the address of a routine to be
called (by a JSR instruction) if an error occurs during the execution of the directive (See the
RSX-11M-PLUS and Micro/RSX Executive Reference Manual for more information).

When a program issues the QIO$C form of a macro call, the parameters required for DPB
construction must be valid expressions for MACRO-11 data storage instructions (such as .BYTE,
.WORD, and .RAD50). (This is not true for the program-section argument and the error-routine
argument, which are not a part of the DPB.)

1 Subroutine or macro calls can use the stack for temporary storage, thereby destroying the positional relationship between SP and the
parameters.

2 Refer to the PDP-11 MACRO-11 Language Reference Manual for a description of program sections.

1-14 Operating System Input/Output

1.6.3.1 Additional QIO Macro Call Information

Parameters for both the QIO$ and QIO$C forms of the macro must be valid expressions for
the MACRO-11 .WORD and .BYTE statements. Parameters for the QIO$S form must be valid
source operand address expressions for MACRO-11 assembler instructions such as MOV and
MOVB. The same parameters are noted in the three distinct forms of the macro call that follow.

Format

QIO$ IO.RLB,6,2,,AST01, <RDBUF,80.>
QIO$C I0O.RLB,6,2,,AST01, <RDBUF,80.>
QIO$S #IO.RLB,#6,#2,, #AST01, <#RDBUF,#80.>

Only the QIO$S form of the macro produces the DPB dynamically. The other two forms
generate the DPB at assembly time. The RSX-11M-PLUS and Micro/RSX Executive Reference
Manual describes the characteristics and use of these different forms.

The sections that follow describe the following Executive directives and MACRO-11 assembler

macros:

QIO$ Requests an I/0 operation and supplies parameters for that request.

QIOWS Equivalent to QIO$ followed by WTSES.

DIR$ Specifies the address of a DPB as its argument and generates code to execute the
directive.

MCALL Makes all macros referenced during task assembly available from the System Macro
Library.

ALUN$ Associates a LUN with a physical device unit at run time.

GLUNS$ Requests that the information about a physical device unit to LUN association be
returned to a buffer that you specify.

ASTX$S Terminates execution of an AST service routine.

WTSE$ Instructs the system to block execution of the issuing task until a specified event
flag is set.

1.6.4 The QIO$ Macro: Issuing an I/O Request

As previously described, you may use three general forms of the QIO$ macro. They are
reviewed as follows:

e QIO$ generates only the DPB for the I/O request. This form of the macro call is used with
DIR$ (see Section 1.6.6) to execute an 1/O request.

e QIO$S generates a DPB for the I/O request on the stack as well as generating code to
execute the request.

e QIO$C generates a DPB and code, but the DPB is generated in a separate program section.

Operating System Input/Output 1-15

1.6.5 The QIOWS$ Macro: Issuing an I/O Request and Waiting for an Event
Flag

The QIOW$ macro is equivalent to a QIO$ macro followed by a WTSE$ macro. It is more
economical to issue a QIOW$ request than to use the two separate macros. An event flag (efn
parameter) must be specified with QIOWS$.

Note
Please note that tasks or applications that execute many 1/O operations will run

much more efficiently using QIOW$ rather than QIO$ followed by a WTSE$.
Efficiency increases because system overhead is reduced.
Format
QIOWS$ function,lun,efn,[pril,[isb],[ast],[<p1l,...,p6>]
See the RSX-11M-PLUS and Micro/RSX Executive Reference Manual for a complete description
of the QIOW$ macro.
1.6.6 The DIRS Macro: Executing a Directive
The DIR$ (execute directive) macro allows a task to reference a previously defined Directive
Parameter Block (DPB).
Format
DIR$ [addr][err]

Parameters

addr
Specifies the address of a DPB used in the directive. If addr is not included, the DPB itself
or the address of the DPB is assumed to already be on the stack. This parameter must be
a valid source operand for a MOV instruction generated by the DIR$ macro.

err
Indicates an optional argument that specifies the address of an error routine to which control
branches if the directive is rejected. The branch occurs by means of a Jump to Subroutine
Program Counter (JSR PC) instruction (err, if the C-bit is set), indicating rejection of the
QIO$ directive.

Example
QIOREF: QIO$ 10.RLB,6,2,,,ASTO1,<BUFFER,80.> ;CREATE QI0$ DPB

READ1: DIR$ #QIOREF ; ISSUE I/0 REQUEST

READ2: i)IR‘ #QIOREF ; ISSUE I/0 REQUEST
Shows that the DIR$ macro actually generates the code to execute the QIO$ directive. It

1-16 Operating System Input/Output

provides no QIO$ parameters of its own, but it references the QIO$ DPB at address QIOREF
by supplying this label as an argument.

1.6.7 The .MCALL Directive: Retrieving System Macros

The .MCALL directive is a MACRO-11 assembler directive that retrieves macros from the
System Macro Library (LB:[1,1]RSXMAC.SML) for use during assembly. You must include it in
every task that invokes system macros. The MCALL directive is usually placed at the beginning
of your task source module and specifies, as arguments in the call, all system macros that must
be made available to your task from the library.

Example

.MCALL QIO$,QIO0$S,DIR$, WTSES$S ; MAKE MACROS AVAILABLE
ATTACH: QIO$S #I0.ATT,#6,,,#I0SB,#ASTO2 ; ATTACH DEVICE
QIOREF: QIO$ 10.RLB,6,,,I0SB,ASTO1,. .. ; CREATE ONLY QI0$ DPB

READ1: DIR$ #QIOREF ,DIRERR ; ISSUE I/0 REQUEST

Illustrates the use of the .MCALL directive. You can include as many macro references as can
fit on a line in a single .MCALL directive. You can specify any number of .MCALL directives.

1.6.8 The ALUNS Macro: Assigning a LUN

The Assign LUN (ALUNS$) macro associates a logical unit number (LUN) with a physical device
unit at run time. All three forms of the macro call may be used. Assign LUN does not request
1/0 for the physical device unit, nor does it attach the unit for exclusive use by the issuing task.
It only establishes a LUN-physical device unit relationship, so that when the task requests 1/O
for that particular LUN, the task can reference the associated physical device unit. You can
issue the macro from a MACRO-11 program by using the format shown next.

Format
ALUN$ lun,dev,unt

Parameters

lun

Specifies the logical unit number to be associated with the specified physical device unit.
See Sections 1.3 and 1.4.1.3.

Operating System Input/Output 1-17

dev

Specifies the device name of the physical device or a logical device name assigned to a
physical device (see the MCR command ASN or the DCL command ASSIGN).

Note

When specifying a device name for the dev parameter you must use
uppercase letters.

unt
Specifies the unit number of the preceding device specified.

For example, to associate LUN 10. with terminal unit 2, a task could issue the following macro
call:

ALUN$C 10.,TT,2

A unit number of 0 represents unit 0 for multiunit devices such as disk, DECtape, or terminals;
it indicates the single available unit for devices without multiple units, such as card readers and
line printers.

Logical devices are included as part of RSX-11M-PLUS and Micro/RSX.

Example

; DATA DEFINITIONS

ASSIGN: ALUN$ 10.,TT,2 ; GENERATE DPB

; EXECUTABLE SECTION

DIR$ #ASSIGN ; EXECUTE DIRECTIVE

ALUN$C 10.,TT,2 ; GENERATE DPB IN SEPARATE PROGRAM
; SECTION, THEN GENERATE CODE TO
; EXECUTE THE DIRECTIVE

ALUN$S #10.,#"TT,#2 ; GENERATE DPB ON STACK, THEN
; EXECUTE DIRECTIVE

[Hlustrates the use of the three forms of the ALUN$ macro.

1-18 Operating System Input/Output

1.6.8.1 Physical Device Names

Table 1-2 contains physical device names, listed alphabetically, that you may include as dev
parameters. Note, that, not all the devices are supported by Micro/RSX. Devices supported by
Micro/RSX are identified in a separate column.

Table 1-2: Physical Device Names

Device Supported by
Mnemonic Device Micro/RSX
BS DT03/DT07 UNIBUS switch No

CD CD11 card reader No

cp Central processing unit (CPU) in a multiprocessor system No

CR CR11/CM11 card reader No

CT TA11/TU60 tape cassette No

DB RP04, RP05, RP06 disk pack No

DD TU58 DECtape 11 Yes

DF RF11/RS11 fixed-head disk No

DK RK11/RKO05 cartridge disk No

DL RL11/RLV11/RL01/RLO2 cartridge disk Yes

DM RK611/RK06 and RK711/RK07 cartridge disk No

DP RP11/RP02/RP03 disk pack No

DR RMO02/RM03/RM05 disk pack and RM80/RP07 fixed-media disk = No

DS RS03 and RS04 fixed-head disks No

DT TC11/TU56 DECtape No

DU RA80/RA81/RA82 fixed-media disk, RA60 disk pack, RC25 disk Yes

subsystem, RD51/RD52/RD53/RD54 fixed-media disk, RUX50
UNIBUS interface, RQDX50 Q-bus interface, and RX50/RX33
flexible disk

DX RX11/RXO01 flexible disk No
DY RX211/RX02 flexible disk Yes
EM ML-11 fast electronic mass-storage device No
LA LPA11-K laboratory peripheral accelerator No
LP LP11/LS11/LV11 and the KMC-11-A auxiliary processor No
LP LLA180/LNO01/LN03/LP25/LP26 and the LPV11 controller Yes
LR PCL11-A/PCL11-B receiver port No

Operating System Input/Output 1-19

Table 1-2 (Cont.): Physical Device Names

Device Supported by

Mnemonic Device Micro/RSX

LT PCL11-A/PCL11-B transmitter port No

MM TU16/TE16/TU45/TU77/TM02/TM03 magnetic tape No

MS TS11 and the TU80 magnetic tape device No

MS TSVO05 and the TK25 magnetic tape Yes

MT TM11/TU10/TU11 or TS03 magnetic tape No

MU TK50 cartridge tape device Yes

MU TU81 magnetic tape device Yes

NL The null device Yes

PP PC11 paper tape punch No

PR PC11 or PR11 paper tape reader No

TT Terminals (regardless of interface) (not Network Command Yes
Terminals)

XE QIO DEUNA driver No

XM DMC11 synchronous communication line interface No

XW DUP11 synchronous communication line interface No

JA-JZ Reserved for customer use (not used by DIGITAL)

QA-QZ Reserved for customer use (not used by DIGITAL)

ZA-77 Reserved for customer use (not used by DIGITAL)

1.6.8.2 Pseudo-Device and Physical Device Names

A pseudo-device name is a logical device name that must be directed to a physical device
unit. A pseudo-device name can be redirected, by the operator, to another physical device at
any time without requiring changes in programs that reference the pseudo-device name. (The
DV.PSE bit in the LUN information buffer is set to 1 if a pseudo-device name references a
physical device.) Dynamic redirection of a physical device unit affects all tasks; MCR command
REDIRECT affects only one task.

Nonphysical device names are not associated with a physical device but with a driver that
interfaces with data structures instead of a real physical device.

The following list indicates the pseudo devices (and nonphysical devices) supported by
RSX-11M-PLUS and Micro/RSX:

1-20 Operating System Input/Output

Nonphysical Physical
Name Name Driver Unit

CL (pseudo) Console listing, normally the line printer.

CO (pseudo) CODRV Console output, normally the main operator’s
console.

HT HTDRV Network remote terminal.

LB (pseudo) System library device, normally the device from
which the system was bootstrapped. For example,
tasks such as TKB and MAC access the LB device
for default library files.

NL NLDRV Null device.

NS Network pseudo device for NSP.

NX Network pseudo device for DLX.

RD RDDRV Online reconfiguration pseudo device.
RT RTDRV Network Command Terminals (NCTs).

SP (pseudo) Spooling scratch disk device.

SY (pseudo) Your system default device. On nonmultiuser
systems, SY is normally the disk from which the
system was bootstrapped. On multiuser systems,
SY is normally the default login device.

TI (pseudo) Pseudo input terminal; TIO is the terminal from
which a task was requested.

The pseudo device TI cannot be redirected, because
such redirection would have to be handled on a
per-task rather than a systemwide basis (that is,
you can change the TI device for one task without
affecting the TI assignments for other tasks).

VT VTIDRV Virtual terminal. Used by some RSX-11M-PLUS

and Micro/RSX offspring tasks as TI for command
and data 1/0.

1.6.9 The GLUNS Macro: Retrieving LUN Information

The Get LUN Information (GLUN$) macro requests the return of information about association
between a LUN and physical device unit in a 6-word buffer specified by the issuing task.
Upon successful completion of a QIO$ directive, the buffer contains the information listed in
Table 1-3, as appropriate for the specific device. All three forms of the macro call may be used.
It is issued from a MACRO-11 program by using the format shown next.

Format

GLUN$ lun,buf

Operating System Input /Output 1-21

Parameters

lun

Specifies the logical unit number associated with the physical device unit for which
information is requested. See Sections 1.3 and 1.4.1.3.

buf

Specifies the 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with LUN 8, issue the following

call:

GLUN$C 8.,I0BUF

Table 1-3: Get LUN Information

*-3 Symbolic
Numerical Offset Offset

Word Byte Bit Word Byte

Bit

Contents

0 G.LUNA

1 0 G.LUNU

1 G.LUFB

2 G.LUCW!

0 (U.CWI)

(DV.REC)

(DV.CCL)

(DV.TTY)
(DV.DIR)

(DV.SDI)

(DV.SQD)

(DV.MSD)

(DV.UMD)

Name of device associated with LUN
(ASCII bytes)

Unit number of associated device

Driver flag value. Returned as 128;; or
2004 if the driver is resident, or as 0 if a
loadable driver is not in the system

First device characteristics word:

Unit record-oriented device (for example,
card reader, line printer) (1 = yes)

Carriage-control device (for example, line
printer, terminal) (1 = yes)

Terminal device (1 = yes)

Directory device (for example, DECtape,
disk) (1 = yes)

Single directory device (for example,
ANSI-standard magnetic tape) (1 = yes)

Sequential device (for example, ANSI-
standard magnetic tape) (1 = yes)

Mass-storage device (for example, disks
and tapes) (1 = yes)

User-mode diagnostics supported
(1=yes)

LThe following word and bit symbols shown in parentheses are used in defining and referencing corresponding items in the device Unit Control

Block (UCB).

1-22 Operating System Input/Output

Table 1-3 (Cont.):

Get LUN Information

*-3 Symbolic
Numerical Offset Offset
Word Byte Bit Word Byte Bit Contents
8 (DV.EXT) Device supports 22-bit direct addressing
9 (DV.SWL) Unit software write-locked (1 = yes)

10 (DV.ISP) Input spooled device (1 = yes)

11 (DV.OSP) Output spooled device (1 = yes)

12 (DV.PSE) Pseudo device (1 = yes)

13 (DV.COM) Device mountable as a communications
channel for Digital network support (for
example, DP11, DU11) (1 = yes)

14 (DV.F11) Device mountable as a Files-11 device
(for example, disk or DECtape) (1 = yes)

15 (DV.MNT) Device mountable (logical OR of bits 13
and 14) (1 = yes)

3 G.LUCW+02 Second device characteristics word:
(U.CW2) (U2.xxx) Device-specific information

4 G.LUCW+04 Third device characteristics word:
(U.CW3) (U3.xxx) Device-specific information 2

5 G.LUCW+06 Fourth device characteristics word:
(U.CW4) Default buffer size (for example, for disks,

and line length for terminals)

2For mass-storage devices, such as disks, DECtape, and DECtape I, this is the number of blocks (maximum logical block number plus one).
For the proper use of the RX211/RX02 flexible disk, you must test G.LUCW+04 to determine the media density.

Example
. DATA DEFINITIONS

GETLUN: GLUN$ 6, DSKBUF

; EXECUTABLE SECTION

; GENERATE DPB

Operating System Input/Output 1-23

DIR$ #GETLUN ; EXECUTE DIRECTIVE

GLUN$C 6,DSKBUF ; GENERATE DPB IN SEPARATE PROGRAM
. ; SECTION, THEN GENERATE CODE TO
; EXECUTE THE DIRECTIVE

GLUN$S #6, #DSKBUF ; GENERATE DPB ON STACK, THEN
; EXECUTE DIRECTIVE

Illustrates the use of the three forms of the GLUN$ macro.

1.6.10 The ASTXSS Macro: Terminating AST Service

The ASTX$S macro terminates execution of an asynchronous system trap (AST) service routine.
The Executive provides all forms of the macro. However, the S-form requires less space and
executes at least as fast as the ASTX$ or ASTX$C form of the macro.

Format
ASTX$S [err]

Parameter

err
Indicates an optional argument that specifies the address of an error routine to which control
branches if the directive is rejected.

After the Executive completes the operation specified in this macro call, the Executive executes the
next AST immediately if another AST is queued and ASTs have not been disabled. Otherwise,
the Executive restores the task’s state existing before the AST was entered. (The AST service
routine must save and restore the registers it uses.) j

1.6.11 The WTSES Macro: Wait-for Single Event Flag

The WTSE$ macro suspends execution of the issuing task until the Executive sets the event flag
specified in the macro call. This macro is extremely useful in synchronizing other activity with
the completion of I/O operations. You may use all three forms of the WTSE$ macro call.

Format
WTSE$ efn

Parameter

efn
Specifies the event flag number.

WTSE$ blocks the task from execution until the specified event flag is set. Frequently, you may
include an efn parameter in a QIO$ macro call, and the Executive sets the event flag upon the
completion of the I/O operation specified in that call.

1-24 Operating System Input/Output

Example

WAIT:
I0SB:

.MCALL WTSE$, ALUN$S, QIOC, DIR
.MCALL QIO$S, WTSE$S, WTSE$C

; DATA DEFINITIONS

WISE$ 5 ; GENERATE DPB
.BLKW 2 ; I/0 STATUS BLOCK

; EXECUTABLE SECTION

ALUNSS #14..#"MM ; ASSIGN LUN 14 TO MAGNETIC

QIO$C
DIR$

éxoss
WTSE$S
éxoSc
WTSES$C

QIo$c

; TAPE UNIT ZERO
I0.ATT,14.,5 ; ATTACH DEVICE
#WAIT ; EXECUTE WAIT FOR DIRECTIVE

#I0.RLB,#14. ,#2, ,#I0SB, ,<#BUF,#80.>
; READ RECORD, USE EFN2

#2 ; WAIT FOR READ TO COMPLETE

10.wLB,14.,3,,10SB,,<BUF,80.>

; WRITE RECORD, USE EFN3

3 ; WAIT FOR WRITE TO COMPLETE

I0.DET,14. ; DETACH DEVICE

INlustrates task blocking until the specified event flag is set. This example also shows the use of
three forms of the WTSE$ macro call.

Operating System Input /Output

1-25

1.7 Standard I/O Functions

You can specify a large number of I/O operations with the QIO$ macro. You can request
a particular operation by including the appropriate function code as the first parameter of a
QIO$ macro call. Certain functions are standard. These functions are almost totally device
independent; thus, you can request them for nearly every device described in this manual.
Other 1/0 functions are device dependent and are specific to the operation of only one or two
I/O devices. This section summarizes the function codes and characteristics of the following
standard device-independent 1/O operations:

® Attaching to an I/O device

* Detaching from an I/O device
* Canceling I/O requests

* Reading a logical block

* Reading a virtual block

* Writing a logical block

* Writing a virtual block

For certain physical device units, a standard I/O function may be described as being a no
operation (no-op). This means that no operation occurs as a result of specifying the function,
and the Executive returns an I/O status code of IS.SUC in the I/O status block (IOSB) specified
in the QIO$% macro call.

1.7.1 1/O Subfunction Bits

Most terminal QIO$ functions can be modified by using the symbolic name of a subfunction
bit in a logical OR with the QIO$ function. The symbolic names of subfunction bits take
the form TF.xxx, where xxx is the acronym of the subfunction to be performed. A standard
QIO$ function called IO.ATT (attach a device) in a logical OR with the TF.ESQ subfunction for
terminals (recognize escape sequences) would appear as follows:

QIO$C IO0.ATT!TF.ESQ,lun, [efn], [pril, [isb], [ast]

A subfunction bit modifies and extends the operation indicated by the terminal QIO$ function.
Note that the use of TF.ESQ with IO.ATT is a terminal-specific function. Often, you may
want to use more than one subfunction bit when you use QIO$ requests to read or write
to a terminal. In this case, you may use several subfunction bits together in a logical OR.
The standard QIO$ IO.ATT function may be extended to both recognize escape sequences and
allow special processing in the task upon the occurrence of ASTs. To do this requires that you
combine in a logical OR two subfunction bits with the IO.ATT function. If you do this, the
QIO$ IO0.ATT macro would appear as follows:

QIO$C IO.ATT!TF.ESQ!TF.AST,1un, [efn], [pri],[isb], [ast]
Note that the use of TF.ESQ or TF.AST with IO.ATT is a terminal-specific function.

If your task invokes a subfunction bit that is not supported on the system, the subfunction bit
may be ignored or an error may be issued by the system and the QIO$ rejected.

The subfunction bits that apply to a specific QIO$ macro are described with that QIO$ macro
in Chapter 2.

1-26 Operating System Input/Output

1.7.2 QIOS$C 10.ATT—Attaching to an I/O Device

Use the I0.ATT function code when your task requires exclusive use of an I/O device.

Successful completion of an IO.ATT request exclusively dedicates the specified physical device
unit to the task that issues the IO.ATT. This enables the task to process input or output in
an unbroken stream and is especially useful on sequential, non-file-oriented devices such as
terminals, card readers, and line printers. An attached physical device unit remains under
control of the task until that task explicitly detaches it. To detach the device, the task issues the
QIO$C IO0.DET macro with the logical unit number (LUN) previously assigned to the attached
device.

While a task attaches a physical device unit, the I/O driver for that unit dequeues only 1/O
requests issued by the task that attaches the unit. However, a privileged task can issue a write
breakthrough function (I0.WBT) to a terminal attached by another task. This is an exception for
terminals only. Thus, except for the case of IO.WBT, the Executive does not process a request
to attach a device unit already attached by another task, or until the attachment by the first
task is broken and no higher-priority request exists for the attached unit.

A LUN that is associated with an attached physical device unit may not be reassigned by an
Assign LUN (ALUNS$) macro unless at least one LUN is still assigned to the attached device. If
the task that issued an attach function exits or is aborted before it issues a corresponding detach
function, the Executive detaches the physical device unit.

Format
QIO$C IO.ATT, lun,[efn] [pri] [isb],[ast]

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Sections 1.3 and 1.4.1.3.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D. Thus, a
value of 0 (or a null) should be used for this parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/0 request. For more information refer to Section 1.4.1.6.

ast
Specifies the address of a service routine to be entered for I0.ATT when the I0.ATT
operation completes. If you want to interrupt your task to execute special code upon
completion of this I/O request, you may specify ast. When this I/O request completes,
control branches to the address specified by ast at the software priority of the requesting

Operating System Input/Output 1-27

task. Omit ast or specify 0 to omit AST processing. For more information refer to
Sections 1.4.4 and 1.4.5.

See the RSX-11M-PLUS and Micro/RSX Executive Reference Manual for further details on
ASTs.

1.7.3 QIOSC 10.DET—Detaching from an I/O Device

IO.DET detaches a physical device unit that has been previously attached by an IO.ATT request.
You can issue the QIO$C IO.DET macro in the format shown next. -

Format
QIO$C IO.DET lun,[efn],[pri][isb],[ast]

Parameters

lun
Specifies the logical unit number of the associated physical device unit to be accessed by
the I/0O request. For more information refer to Sections 1.3 and 1.4.1.3.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D. Thus, a
value of 0 (or a null) should be used for this parameter.

isb
Specifies the address of the I1/O status block (I/O status doubleword) associated with the
I/0O request. For more information refer to Section 1.4.1.6.

ast —_
Specifies the address of a service routine to be entered when an asynchronous system trap
(AST) occurs. If you want to interrupt your task to execute special code upon completion of
this I/O request, you may specify ast. When this I/O request completes, control branches
to the address specified by ast at the software priority of the requesting task. Omit ast or
specify 0 to omit AST processing. For more information refer to Sections 1.4.4 and 1.4.5.

Example

.MCALL ALUN$S,QI0$S
ALUN$S #14.,#"LP ; ASSOCIATE LINE PRINTER WITH LUN 14

QI0$S #I0.ATT,#14. ; ATTACH LINE PRINTER

1-28 Operating System Input/Output

LOOP: QIO$S #IO.WLB,#14.,... ;PRINT

QI0$S #IO.DET,#14. ; DETACH LINE PRINTER

Nllustrates that the LUN specifications of both IO.ATT and IO.DET must be the same. This
example also illustrates the use of S-forms of several macro calls.

1.7.4 QIOSC 10.KIL—Canceling 1I/0O Requests
IOKIL cancels the issuing task’s 1/O requests for a particular physical device unit.

For 1/0 requests waiting for service (that’is, in the 1/O driver’s queue), the Executive returns a
status code of IE.ABO in the I/O status block (IOSB). An event flag is set, if specified. But any
AST service routine that you may have specified is not executed.

For 1/0 requests being processed by any I/O driver, except the disk or DECtape drivers, the
Executive returns the IE.ABO status code. The Executive also returns other status information
(byte count, and so on) in the 1/O status block. An AST, if specified, is executed.

If your task issues an IO.KIL for disk, DECtape, or DECtape II I/O requests being processed,
the IO.KIL acts as a no-op. The I/O request completes, except in the case in which a DECtape
transfer is blocked by a select error. Because disk and DECtape operate quickly, IO.KIL causes
the return of IS.SUC in the IOSB.

IOKIL is useful in such special cases as canceling an I/O request on a physical device unit from

which a response is overdue (for example, a read on a paper tape reader).

Format
QIO$C IO.KIL,lun,[efn],[pri],[isb],[ast]

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/0 request. For more information refer to Sections 1.3 and 1.4.1.3.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D. Thus, a
value of 0 (or a null) should be used for this parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/0O request. For more information refer to Section 1.4.1.6.

Operating System Input/Output 1-29

ast
Specifies the address of a service routine to be entered when an asynchronous system trap
(AST) occurs. If you want to interrupt your task to execute special code upon completion of
this 1/0 request, you may specify ast. When this I/O request completes, control branches
to the address specified by ast at the software priority of the requesting task. Omit ast or
specify 0 to omit AST processing. For more information refer to Sections 1.4.4 and 1.4.5.

1.7.5 QIOSC I0.RLB—Reading a Logical Block
Issue IO.RLB to read a block of data from the specified physical device unit.

Format
QIO$C IO.RLB,lun,[efn],[pri][isb],[ast], <stadd,size,pn>

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Sections 1.3 and 1.4.1.3.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D. Thus, a
value of 0 (or a null) should be used for this parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/O request. For more information refer to Section 1.4.1.6.

ast
Specifies the address of a service routine to be entered when an asynchronous system trap
(AST) occurs. If you want to interrupt your task to execute special code upon completion of
this I/O request, you may specify ast. When this I/O request completes, control branches
to the address specified by ast at the software priority of the requesting task. Omit ast or
specify 0 to omit AST processing. For more information refer to Sections 1.4.4 and 1.4.5.

stadd
Specifies the starting address of the data buffer. The address must be word aligned for
certain drivers; otherwise, stadd may be on a byte boundary.

size
Specifies the size of the stadd buffer in bytes. The buffer must be within the task’s address
space.

pn

Specifies one to four optional parameters that specify such additional information as block
numbers for certain devices.

1-30 Operating System Input/Output

1.7.6 QIO$C I0.RVB—Reading a Virtual Block

IO.RVB reads a virtual block of data from the specified physical device unit. A “virtual”
block indicates a relative block position within a file and is identical to a logical block for
such sequential, record-oriented devices as terminals and card readers. For these sequential,
record-oriented devices, the Executive converts IO.RVB to IO.RLB before it issues the QIO$.

Note

Any subfunction bits specified in the IO.RVB request are stripped off in this
conversion.

All tasks should use virtual rather than logical reads to file-structured devices. However, if a
task issues a virtual read for a file-structured device (disk, DECtape, or DECtape II), you must
ensure that a file is open on the specified physical device unit.

Format
QIO$C IO.RVB,lun,[efn],[pri],[isb] [ast], <stadd,size,pn>

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Sections 1.3 and 1.4.1.3.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D. Thus, a
value of 0 (or a null) should be used for this parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
1/0 request. For more information refer to Section 1.4.1.6.

ast
Specifies the address of a service routine to be entered when an asynchronous system trap
occurs. If you want to interrupt your task to execute special code upon completion of this
I/O request, you may specify ast. When this I/O request completes, control branches to the
address specified by ast at the software priority of the requesting task. Omit ast or specify
0 to omit AST processing. For more information refer to Sections 1.4.4 and 1.4.5.

stadd

Specifies the starting address of the data buffer. The address must be word aligned for
certain drivers; otherwise, stadd may be on a byte boundary.

size

Specifies the size of the stadd buffer in bytes. The buffer must be within the task’s address
space.

Operating System Input/Output 1-31

pn
Specifies one to four optional parameters that specify such additional information as block
numbers for certain devices.

1.7.7 QIO$C 10.WLB—Writing a Logical Block
I0.WLB writes a block of data to the specified physical device unit.

Format
QIO$C 10.WLB,lun,[efn],[pri] [isb] [ast], <stadd,size,pn>

Parameters

lun
Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Sections 1.3 and 1.4.1.3.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D. Thus, a
value of 0 (or a null) should be used for this parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/0 request. For more information refer to Section 1.4.1.6.

ast
Specifies the address of a service routine to be entered when an asynchronous system trap
(AST) occurs. If you want to interrupt your task to execute special code upon completion of
this I/O request, you may specify ast. When this I/O request completes, control branches
to the address specified by ast at the software priority of the requesting task. Omit ast or
specify 0 to omit AST processing. For more information refer to Sections 1.4.4 and 1.4.5.

stadd
Specifies the starting address of the data buffer. The address must be word aligned for
certain drivers; otherwise, stadd may be on a byte boundary.

size
Specifies the size of the stadd buffer in bytes. The buffer must be within the task’s address
space.

ph

Specifies one to four optional parameters that specify such additional information as block
numbers or format control characters for certain devices.

1-32 Operating System Input/Output

1.7.8 QIOSC 10.WVB—Writing a Virtual Block

IO.WVB writes a virtual block of data to a physical device unit. A virtual block indicates a block
_ position relative to the start of a file. For sequential, record-oriented devices such as terminals
and line printers, the Executive converts I0.WVB to I0.WLB.

All tasks should use 10.WVB rather than I0.WLB to write for file-structured devices. However,
if you issue a virtual write for a file-structured device (disk or DECtape 1I), you must ensure

that a file is open on the specified physical device unit. For record-oriented devices, you should
use IO.WLB.

Note that any subfunction bits specified in the I0.WVB request (for example, TF.CCO, TF.WAL,
or TE.WBT) are stripped when the IO.WVB is converted to an I0.WLB.

Format
QIO$C 10.WVB,lun,[efn],[pri][isb},[ast], <stadd,size,pn>

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/O request. For more information refer to Sections 1.3 and 1.4.1.3.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Section 1.4.1.4.

pri
Makes RSX-11M-PLUS and Micro/RSX QIO$ requests compatible with RSX-11D: Thus, a
value of 0 (or a null) should be used for this parameter.

isb

Specifies the address of the I/O status block (I/O status doubleword) associated with the
1/O request. For more information refer to Section 1.4.1.6.

ast

Specifies the address of a service routine to be entered when an asynchronous system trap
(AST) occurs. If you want to interrupt your task to execute special code upon completion of
this I/O request, you may specify ast. When this I/O request completes, control branches
to the address specified by ast at the software priority of the requesting task. Omit ast or
specify 0 to omit AST processing. For more information refer to Sections 1.4.4 and 1.4.5.

stadd
Specifies the starting address of the data buffer. The address must be word aligned for
certain drivers; otherwise, stadd may be on a byte boundary.

size

Specifies the size of the stadd buffer in bytes. The buffer must be within the task’s address
space.

Operating System Input/Output 1-33

pn
Specifies one to four optional parameters that specify such additional information as block
numbers or format control characters for certain devices.

1.8 User-Mode Diagnostic Functions

The 1/0 function code subfunction bit, IQ.UMD, provides support for user-mode diagnostics.
You can execute standard 1/0 functions such as Read Logical Block, Write Logical Block, Attach
to Device, and Detach from Device as user-mode diagnostics. To perform a diagnostic function,
you must specify in the QIO$ Directive Parameter Block (DPB) the logical OR of IQ.UMD and
the function you want to perform. For example, to perform a diagnostic Read Logical Block
operation, specify the following as the QIO$ directive:

QIO$C IO0.RLB!IQ.UMD,lun,...

Support for user-mode diagnostics is always present for RSX-11M-PLUS and Micro/RSX,
but not all drivers support user-mode diagnostic functions. Unpredictable device and driver
behavior results when you set the IQ.UMD subfunction bit in QIOS$s that are directed to the
device if it does not support user-mode diagnostics. You can avoid problems if you issue a Get
LUN (GLUNS$) macro and check the user-mode diagnostics bit before emitting the user-mode
diagnostic QIO$.

For a device to support user-mode diagnostics, the DV.UMD bit in the Unit Control Block (UCB)
must be set. DV.UMD is at offset U.CW1 in the UCB.

In addition to standard I/O functions, both operating systems provide the following device-
dependent, user-mode diagnostic functions:

* Disk diagnostic functions, as follows:
[O.HMS Home seek or recalibrate
IO.BLS Block seek (explicit seek)
IO.OFF Offset position
IO.RDH Read disk header
IO.WDH Write disk header
10.WCK Write-check
* DECtape diagnostic functions, as follows:
IO.RNF Read block number forward
IO.RNR Read block number reverse
* Magnetic tape diagnostic functions, as follows:
IO.LPC Read longitudinal parity character
IO.ERS Erase tape
UMDIOS is the macro that defines these functions.

1-34 Operating System Input/Output

To execute a user-mode diagnostic function, you must first attach a device for diagnostics by
using 1/O function code IO.ATT!IQ.UMD. Execute the diagnostic functions and then detach the
device.

The parameter list in words 1 to 6 of the DPB should contain the following information:
* I/0 buffer address.
* I/0 buffer size.

* Offset factor for disks with offset recovery. To determine the offset factor, refer to the offset
register in the hardware reference manual; this parameter is not used if the device does not
have offset recovery.

® Double-precision logical block number.

* Your task’s register buffer address (the /O driver copies its hardware registers to this buffer
in your program); see a hardware reference manual for the length of the address.

A typical DPB for a diagnostic function might look like the following;

$DSKPB: :
.BYTE 3,12. ; Size of the DPB, QIOW
; directive code
.WORD IO.WDH!IQ.UMD ; I/0 function code
.WORD THELUN ; Logical Unit Number
.BYTE THEEFN,O ; Event flag number
.WORD $IOSTS ; I/0 status block address
.WORD O ; AST address
$I0BUF:: .WORD O ; Buffer address
.WORD O ; Transfer size in bytes
.WORD O ; Device dependent
$LBH:: .WORD O ; High-order logical block number
$LBL:: .WORD O ; Low-order logical block number
.WORD $RGBUF ; Register buffer address

The user-mode diagnostic functions return either Success (IS.SUC) or Device Not Ready (IE.DNR)
messages. No other error codes are returned. All error recovery is completely up to you. Any
errors that occur are not logged in the error log.

A typical program fragment, using the user-mode diagnostic functions, might look like the
following;:

.MCALL UMDIO$,ALUN$S,QIO$S

UMDIO$; Define diagnostic functions
ALUN$S #14.,#"DM,#0 ; Associate DMO with lun 14

QIO$S #I0.ATT!IQ.UMD,#14. ; Attach DM for diagnostic I/0
QID$S #I0.RDH!IQ.UMD,#14.,,,,,<#$I0BUF,#512.,,#LBH,#LBL, #$RGBUF>

; Read disk header

Operating System Input/Output 1-35

QI0$s #I0.RLB!IQ.UMD,#14.,,,, ,<#$I0BUF,#512.,,#LBH,#LBL, #$RGBUF>

; Read logical block

QIO0$S #I0.DET!'IQ.UMD,#14. ; Detach DM

1.9 1/O Completion

When the system completes an I/O request, either successfully or unsuccessfully, the Executive
selects return conditions depending upon the parameters included in the QIO$ macro call. There
are three major returns:

The Executive declares a significant event when an I/O operation completes execution. If
you included an efn parameter in the I/O request, the corresponding event flag is set.

If you included an isb parameter in the QIO$ macro call, the Executive returns a code
identifying the type of success or failure. The code is in the low-order byte of the first word
of the I/O status block (IOSB) at the location represented by isb.

This status return code is of the form IS.xxx (success) or IE.xxx (error). For example, if the
device accessed by the I/O request is not ready, a status code of IE.DNR is returned in isb.
The section named Return Codes summarizes general codes returned by most of the drivers
described in this manual.

If the isb parameter was omitted, the requesting task cannot determine whether the 1/O
request was successfully completed. A carry clear return from the directive itself simply
means that the directive was accepted and the I/O request was queued, not that the actual
I/O operation was successfully performed.

If you specified an ast parameter in the QIO$ macro call, a branch to the AST service
routine, beginning at the location identified by ast, occurs when the I/O operation completes
execution.

1.9.1 Return Codes

The Executive recognizes and handles the following two kinds of status conditions when they
occur in I/O requests:

Directive Indicate the acceptance or rejection of the QIO$ directive itself.

I/0 status Indicate the success or failure of the I/O operation.

Directive conditions relevant to I/O operations may indicate any of the following:

Directive acceptance
Invalid buffer specification
Invalid efn parameter
Invalid lun parameter

Invalid Directive Identification Code (DIC) number or Directive Parameter Block (DPB) size

1-36 Operating System Input/Outp

® Unassigned logical unit number (LUN)
* Insufficient memory

The Executive returns a code indicating the acceptance or rejection of a directive to the Directive
Status Word (DSW) at symbolic location $DSW. You can test this location to determine the type
of directive condition.

1/0 conditions indicate the success or failure of the I/O operation that you specified in the QIO$
macro. I/O driver errors include such conditions as Device Not Ready, Privilege Violation, File
Already Open, or Write-Locked Device. If you include an isb parameter in the QIO$ directive,
identifying the address of a 2-word IOSB, the Executive returns an I/O status code in the low-
order byte of the first word of this block when an I/O operation completes execution. This code
is a binary value corresponding to a symbolic name of the form IS.xxx or IE.xxx. You can test
the low-order byte of the word symbolically, by name, to determine the type of status return.
The system object module library defines the correspondence between global symbolic names
and directive and I/O completion status codes. You may also obtain local symbolic definitions
by using the DRERR$ and IOERR$ macros, which reside in the System Macro Library and are
summarized in Appendix B.

Binary values of status codes always have the following meanings:

Code Meaning

Positive (greater than 0) Successful completion

0 Operation still pending
Negative Unsuccessful completion

A pending operation means that the I/O request is still in the queue of requests for the respective
driver, or the driver has not yet completely serviced the request.

1.9.2 Directive Conditions

Table 1-4 summarizes the directive conditions that your task may encounter by issuing QIO$
directives. The table lists acceptance condition first, followed by error codes indicating various
reasons for rejection.

Table 1-4: Directive Conditions
Code Reason '

IS.SUC Directive accepted

The first six parameters of the QIO$ directive were valid, and sufficient dynamic
memory was available to allocate an 1/0 packet.

IE.ADP Invalid address

The IOSB or the QIO$ DPB was outside of the issuing task’s address space or was
not aligned on a word boundary.

Operating System Input/Output 1-37

Table 1-4 (Cont.): Directive Conditions
Code Reason

IE.IEF Invalid event flag number
The efn specification in a QIO$ directive was less than 0 or greater than 96.

IEILU Invalid logical unit number
The lun specification in a QIO$ directive was invalid for the issuing task. For example,
there were only five logical unit numbers associated with the task, and the value
specified for lun was greater than 5.

IE.SDP Invalid DIC number or DPB size

The directive identification code (DIC) or the size of the Directive Parameter Block
(DPB) was incorrect; the legal range for a DIC is from 1 to 127, and all DIC values
must be odd. Each individual directive requires a DPB of a certain size. If the size
is not correct for the particular directive, this code is returned. The size of the QIO$
DPB is always 12 words.

IEULN Unassigned LUN
The logical unit number in the QIO$ directive was not associated with a physical
device unit. Your task may recover from this error by issuing a valid Assign LUN
(ALUNS) directive and then by reissuing the rejected directive.

IE.UPN Insufficient dynamic memory
There was not enough dynamic memory to allocate an I/O packet for the I/O request.
You can try again later by blocking the task with a WTSE$ macro. Note that WTSE$
is the only effective way for the issuing task to block its execution, because other
directives usable for this purpose require dynamic memory for their execution (for
example, Mark Time (MRKTS$)).

1.9.3 1/O Status Conditions

I/O status is returned in a 2-word IOSB upon completion of the I/O operation. The status
may show a successful completion or an error. The contents of the 2-word IOSB is explained
as follows:

® The low-order byte of the first word receives a status code of the form IS.xxx (success) or
IE.xxx (error) when an I/O operation completes execution.

* The high-order byte of the first word is usually device dependent.

* The second word contains the number of bytes transferred or processed if the operation is
successful and involves reading or writing.

If the isb parameter of the QIO$ directive is omitted, this information is not returned.

Figure 1-3 illustrates an example 2-word IOSB on completion of a terminal read operation.

1-38 Operating System Input/Output

Figure 1-3: 1/0 Status Block for Terminal Read Operation

1 0 Byte

Word O 0 -10

1 Number of Bytes Read

ZK-5877-HC

In the figure, the number -10 is the status code for IE.EOF (end-of-file). If this code is returned,
it indicates that input was terminated by pressing CTRL/Z, which is the end-of-file termination
sequence on a terminal.

To test for a particular error condition, your task generally should compare the low-order byte
of the first word of the IOSB with a symbolic value, as follows:

CMPB #IE.DNR, IOSB

However, to test for certain types of successful completion of the I/O operation, the entire
word value must be compared. For example, if a carriage return terminated a line of input from
the terminal, a successful completion code of IS.CR is returned in the IOSB. If an Escape (or
Altmode) character was the terminator, a code of IS.ESC is returned. To check for these codes,
your task should first test the low-order byte of the first word of the block for IS.SUC and then
test the full word for IS.CC, IS.CR, IS.ESC, or IS.ESQ. (Other success codes that must be read
in this manner are listed in Appendix B).

Note that both of the following comparisons test as equal because the low-order byte in both
cases is +1:

CMP #IS.CR,I0SB
CMPB #IS.SUC,I0SB

Figure 1-4 illustrates the status block of a successful completion where the carriage return is
the terminal indicator (IS.CR).

Figure 1-4: |/O Status Block for IS.xxx

1 0 Byte

Word O 15 +1

1 Number of Bytes Read
(Excluding the CR)

ZK-5878-HC

In the figure, 15 is the octal code for carriage return and +1 is the status code for successful
completion.

Table 1-5 summarizes status codes that may be returned in the IOSB specified in the QIO$
directive on completion of the I/O request. The codes described in Table 1-5 are general
status codes that apply to the majority of devices presented in subsequent chapters. Error codes
specific to only one or two drivers are described only in relation to the devices for which they

Operating System Input/Output 1-39

are returned. Table 1-5 describes successful and pending codes first, and then describes error

codes.

Table 1-5: /0O Status Conditions

Code Reason

ISSUC Successful completion
The I/O operation specified in the QIO$ directive was completed successfully. The
second word of the IOSB can be examined to determine the number of bytes processed
if the operation involved reading or writing.

ISPND I/O request pending
The I/O operation specified in the QIO$ directive has not yet been executed. The
I/0 status block is filled with zeros.

IE.ABO Operation aborted
The specified I/O operation was canceled while in progress or while still in the I/O
queue.

IE.ALN File already accessed on LUN
The task attempted to open a file on the physical device unit associated with the
specified LUN, but a file has already been opened by the issuing task on that LUN.

IEBAD Bad parameters
An invalid specification was supplied for one or more of the device-dependent QIO$
parameters (words 6-11). For example, a bad channel number or gain code was
specified in an analog-to-digital (A/D) converter I/O operation.

IE.BBE Bad block on device
One or more bad blocks were found. Data cannot be written on or read from bad
blocks.

IEBLK Illegal block number
An invalid block number was specified for a file-structured physical device unit. This
code is returned, for example, if block 4800 is specified for an RK05 disk on which
legal block numbers extend from 0 to 4799.

IEBYT Byte-aligned buffer specified
Byte alignment was specified for a buffer, but only word (or doubleword) alignment
is legal for the physical device unit. For example, a disk function requiring
word alignment was requested, but the buffer was aligned on a byte boundary.
Alternatively, the length of a buffer was not an appropriate multiple of bytes. For
example, all RP03 disk transfers must be an even multiple of 4 bytes.

IEDAA Device already attached

The physical device unit specified in an IO.ATT function was already attached to
the issuing task. This code indicates that the issuing task has already attached the
desired physical device unit, not that the unit was attached by another task.

1-40 Operating System Input/Output

Table 1-5 (Cont.): 1/0O Status Conditions

Code Reason

IELDNA Device not attached
The physical device unit specified in an IO.DET function was not attached to the
issuing task. This code has no bearing on the attachment status of other tasks.

IE.DNR Device not ready
The physical device unit specified in the QIO$ directive was not ready to perform
the desired I/O operation. This code is often returned as the result of an interrupt
timeout; that is, a reasonable amount of time has passed, and the physical device
unit has not responded.

IEEOF End-of-file encountered
An end-of-file mark, record, or control character was recognized on the input device.

IEFHE Fatal hardware error
The controller is physically unable to reach the location where input/output is to be
performed on the device. The operation cannot be completed.

IE.IFC Illegal function code
A function code that was invalid for the specified physical device unit was specified
in an I/O request. This code is returned if the task attempts to execute an invalid
function or if, for example, a read function is requested on an output-only device,
such as the line printer.

IENLN No file accessed on LUN
The task tried to close a file on the physical device unit associated with the specified
LUN, but no file was currently open on that LUN.

IEINOD Insufficient buffer space
Dynamic storage space has been depleted, and not enough buffer space was available
to allocate a secondary control block. For example, if a task attempts to open a file,
buffer space for the window and file control block must be supplied by the Executive.
This code is returned when there is not enough space for such an operation.

IE.OFL Device off line
The physical device unit associated with the LUN specified in the QIO$ directive was
not on line. When the system was bootstrapped, a device check indicated that this
physical device unit was not in the configuration.

IE.OVR Illegal read overlay request
A read overlay was requested and the physical device unit specified in the QIO$
directive was not the physical device unit from which the task was installed. The
read overlay function can be executed only on the physical device unit from which
the task image containing the overlays was installed.

IE.PRI Privilege violation

The task that issued a request was not privileged to execute that request. For example,
for the UDC11 and LPS11 devices, a checkpointable task attempted to connect to
interrupts or to execute a synchronous sampling function.

Operating System Input/Output 1-41

Table 1-5 (Cont.): 1/O Status Conditions
Code Reason

IE.SPC Illegal address space
The following conditions can cause this error:

¢ The buffer that your task requested for a read or write operation was partially or
totally outside the address space of your task.

* You specified a byte count of 0.
* You specified TF.XCC and AST2 in the same QIO$ request.

IE.VER Parity error on device

After the system attempted its standard number of retries after an error occurred, the
operation still could not be completed. This code is returned in the case of parity,
Cyclic Redundancy Check (CRC), or similar errors.

IEWCK Write-check error
An error was detected during the check (read) following a write operation.

IEWLK Write-locked device
The task attempted to write on a write-locked physical device unit.

1.10 Powerfail Recovery Procedures for Disks and Dectape

Powerfail recovery recommendations for various devices are included in the following chapters.
For disks and DECtape, power recovery asynchronous system traps (ASTs) should be used.
Before returning for normal I/O operations, the AST service routine should provide a sufficient
time delay, for the disk to attain normal operating speed before actually attempting read and
write operations.

If QIO$s are being used for disk or DECtape 1/O operations during powerfail recovery, an
IE.DNR error status may be returned if the device is not up to operating speed when the request
is issued. When this error is returned, your task should wait for the device to attain operating
speed and attempt the I/O operation again prior to reporting an error. For example, an RK05
disk may require approximately 1 minute to attain operating speed after a power failure.

1.11 RSX-11M-PLUS and Micro/RSX Devices

RSX-11M-PLUS and Micro/RSX support the devices listed in Table 1-6 except as indicated.
Digital Equipment Corporation supplies drivers for each of these devices. However, you should
refer to your Software Product Description (SPD) to determine whether a device is supported
by your computer’s operating system. Table 1-6 lists the physical name, the driver, and the
device description.

1-42 Operating System Input/Output

1.12 RSX-11M-PLUS and Micro/RSX Devices

RSX-11M-PLUS and Micro/RSX support the devices listed in Table 1-6 except as indicated.
Digital Equipment Corporation supplies drivers for each of these devices. However, you should
refer to your Software Product Description (SPD) to determine whether a device is supported
by your computer’s operating system. Table 1-6 lists the physical name, the driver, and the
device description.

Table 1-6: Devices Supported by RSX-11M-PLUS and Micro/RSX

Physical Supported by
Name Driver Description Micro/RSX
TERMINAL

DEVICES:

TT TTDRV ASR/KSR-33 and ASR/KSR-35 teletypewriters No

TT TTDRV All terminals supported by RSX-11M-PLUS and Micro/RSX,

including the LA-, LQP-, VTO05, VTS50, VT61-,
VT100-, VT200-, and RTO02-series terminals. See the
Software Product Description for your system.

TT TIDRV DH11 and DH11-DM11-BB asynchronous communication No
line interface multiplexer

T TTDRV DHV11 asynchronous communication line interface multi- Yes
plexer

TT TTDRV DHU11 asynchronous communication line interface multi- No
plexer

TT TIDRV DL11-A, DL11-B, DL11-C, DL11-D, DL11-E and DL11-W No
asynchronous communication line interfaces

TT TTDRV DLV11-E, DLV11-F asynchronous communication line in- Yes
terfaces

TT TTDRV DZ11 asynchronous communication line interface multi- No
plexer

TT TTDRV DZV11 asynchronous communication line interface multi- Yes
plexer

TT TTDRV DZQ11 Q-Bus 4-line terminal multiplexer

DISK DEVICES:

DB DBDRV RP04/RP05/RP06 disk pack No

DF DFDRV RF11/RS11 fixed-head disk No

DK DKDRV RK11/RKO05 or RKO5F cartridge disk No

DL DLDRV RLV12/RL01/RLO2 cartridge disk Yes

Operating System Input/Output 1-43

Table 1-6 (Cont.): Devices Supported by RSX-11M-PLUS and Micro/RSX

Physical Supported by
Name Driver Description Micro/RSX
DISK DEVICES:
DM DMDRV RKé611/RK06 or RK07 cartridge disk No
DP DPDRV RP11/RP02 or RP03 disk pack No
DR DRDRV RM02/RM03/RMO05 disk pack No
DR DRDRV RMS80, RP07 fixed-media disk No
DS DSDRV RS03/RS04 fixed-head disk No
DU DUDRV KDA50/UDA50/RA80/RA81/RA82 fixed-media disk Yes
DU DUDRV KDA50/UDA50/RA60 disk pack Yes
DU DUDRV RC25 fixed-media and removable cartridge disk subsystem Yes
DU DUDRV RD51/RD52/RD53/RD54 fixed-media disk Yes
DU DUDRV RX50/RX33 flexible disk Yes
DX DXDRV RX11/RX01 flexible disk No
DY DYDRV RX211/RX02 flexible disk Yes
EM EMDRV ML-11 fast electronic mass-storage device No
TAPE DEVICES:
DD DDDRV DL11/TU58 DECtape II
MS MSDRV TUB80 magnetic tape subsystem No
MS MSDRV TSV05/TK25 magnetic tape subsystem Yes
MS MSDRV TS11 magnetic tape subsystem No
MT MTDRV TM11 magnetic tape controller with TE10, TU10, or TS03 No
drive
MM MMDRV RH11/70 controller with TM02/03 formatter and TE16, No
TU16, or TU45 drive
MM MMDRV RH11/70 controller with TM03 formatter and TU77 drive =~ No
MU MUDRV TK50 cartridge tape drive Yes
MU MUDRYV TUS8I1 tape drive No

1-44 Operating System Input/Output

Table 1-6 (Cont.):

Devices Supported by RSX-11M-PLUS and Micro/RSX

Physical Supported by

Name Driver Description Micro/RSX

PRINTER DEVICES:

LP LPDRV LP11 controller with LP14, LP01, LP02, LP04, LP05, LP06, No
LP07, LP26, and LP27 line printers

LP LPDRV LPV11/LP25/LP26 line printers, LNO1/LNO3 laser printer ~ Yes

LP LPDRV LS11 controller and line printer No

LP LPDRV LV11 controller with LV01 line printer No

LP LPDRV LA180 controller and line printer No

CARD READER

DEVICES:

CR CRDRV CR11/CM11 card reader No

COMMUNICATION

LINE DEVICES:

XB XBDRV DAI11-B asynchronous communication line interface No

XL XLDRV DL11-E asynchronous communication line interface No

XL XLDRV DLVI11-E asynchronous communication line interface No

XC XMDRV DMC11 synchronous communication line interface No

XE XEDRV RSX QIO DEUNA driver No

XwW XWDRV DUPI11 synchronous communication line interface No

LABORATORY

DEVICE:

LA LADRV LPA11-K Laboratory Peripheral Accelerator No

PAPER TAPE

DEVICES:

PP PPDRV PC11 paper tape reader/punch No

PR PRDRV PR11 paper tape reader No

Operating System Input/Output

1-45

Table 1-6 (Cont.): Devices Supported by RSX-11M-PLUS and Micro/RSX

Physical Supported by
Name Driver Description Micro/RSX
NULL DEVICE:

NL NLDRV Null device driver; a software construct to eliminate un- Yes

wanted output

K-SERIES

LABORATORY

PERIPHERAL

DEVICES:
AA11-K digital-to-analog converter and display No
AD11-K analog-to-digital converter No
AM11-K multiple-gain multiplexer No
DR11-K digital I/O interface No
KW11-K programmable real-time clock No

COMMUNICATIONS

DEVICES:

LR/LT LRDRV PCL11 parallel communications link No

LR/LT LRDRV PCL11-A/PCL11-B receiver port No

OTHER DEVICES:

QA-QZ Any A physical name reserved for customer use Yes

JA-]Z Any A physical name reserved for customer use Yes

ZA-77 Any A physical name reserved for customer use Yes

1-46 Operating System Input/Output

Chapter 2

Full-Duplex Terminal Driver

2.1 Introduction to the Full-Duplex Terminal Driver

2.1

This chapter describes the use of the full-duplex terminal driver (TTDRV.TSK) supplied with
the RSX-11M-PLUS and Micro/RSX system. This chapter contains descriptions of all the QIO$
functions that you can use to read from or write to a full-duplex terminal. Additionally, it
contains a description of terminal subfunctions that are specific to terminal drivers and that
modify the action of the QIO$ functions. You can combine the subfunctions in a logical OR
with the QIO$ function. Specific programming circumstances are combined with the description
of the QIO$ function where they apply.

Throughout the remainder of this chapter, references made to Monitor Console Routine (MCR)
can generally be applied to other command line interpreters (for example, the DIGITAL
Command Language (DCL)). In addition, the prompt displayed on a terminal in response
to invoking a command line interpreter (CLI) is appropriate for the specific CLI in use. For
example, when MCR is invoked, the MCR prompt is displayed as follows:

>

1 Full-Duplex Terminal Driver

The full-duplex terminal driver described in this chapter works with a wide variety of terminals.
It contains the following features:

¢ Full-duplex operation

e Type-ahead buffering

* Eight-bit characters

e Detection of hard receive errors

* Increased byte transfer length (8128 bytes)
e Additional terminal characteristics

e Additional terminal types

e Optional timeout on solicited input

Full-Duplex Terminal Driver 2-1

® Device-independent cursor control
* Redisplay of prompt buffer when CTRL/R or CTRL/U is pressed

* Automatic XOFF character generation when a read is completed while in half-duplex mode,
if requested

* Autobaud speed detection

® Added hardware support

2.1.2 Terminals Supported by the Full-Duplex Terminal Driver

The full-duplex terminal driver supports a variety of terminal devices, as listed in Table 2-1.
Table 2-2 describes standard terminal interfaces. Subsequent sections describe each device in
greater detail.

Table 2-1. Supported Terminal Devices

Model Hardcopy Columns Lines/ Character Baud Uppercase Lowercase
Terminal Screen! Set Range Send Receive

ASR-33/35 No 72 64 110

DTCO01 No 9600

KSR-33/35 No 72 64 110

LA12 Yes 132 96 50-9600 Yes Yes

LA100 Yes 132 96 110-9600 Yes Yes

LA30-P Yes 80 64 300

LA30-S Yes 80 64 110-300

LA34 Yes 132 96 110-300 Yes Yes

LA36 Yes 132 64-96 110-300 Yes Yes?

LA38 Yes 132 96 110-300 Yes Yes

LA50 Yes 80/96/132 110-4800

LA75 Yes 80/96/132 110-4800

LA120 Yes 132 96 50-9600 Yes Yes

LA180S Yes 132 96 300-9600 Yes

LA210 Yes 132 96 300-9600 Yes

LA2XX Yes 132 96 300-9600 Yes

1Applies only to video terminals.

2Only for 96-character terminal. The terminal driver supports the terminal interfaces summarized in Table 2-2. These interfaces are described
in greater detail in Section 2.17. Programming is identical for all interfaces.

2-2 Full-Duplex Terminal Driver

Table 2-1 (Cont.): Supported Terminal Devices

Model Hardcopy Columns Lines/ Character Baud Uppercase Lowercase
Terminal Screen’ Set Range Send Receive

LNO3 Yes «3 1200-19200 Yes

LNO03 PLUS Yes »3 1200-19200 Yes

LQP02 Yes 132 110-9600

LQP03 Yes 132/158 110-9600

RT02 No 64 1 64 110-1200

RT02-C No 64 1 64 110-1200

VTO05B No 72 20 64 110-2400 Yes

VT50 No 80 12 64 110-9600

VT50H No 80 12 64 110-9600

VT52 No 80 24 96 110-9600 Yes Yes

VT55 No 80 24 96 110-9600 Yes Yes

VTé1 No 80 24 96 110-9600 Yes Yes

VT100 No 80/132 24 96 50-9600 Yes Yes

VT101 No 80/132 24 96 50-19200 Yes Yes

VT102 No 80/132 24 96 50-9600 Yes Yes

VT105 No 80/132 24 96 50-19200 Yes Yes

VT125 No 80/132 24 96 50-9600 Yes Yes

VT131 No 80/132 24 96 50-19200 Yes Yes

VT132 No 80/132 24 96 50-19200 Yes Yes

VT220 No 80/132 24 94* 50-19200 Yes Yes

VT240 No 80/132 24 94* 50-19200 Yes Yes

VT241 No 80/132 24 94* 50-19200 Yes Yes

1Applies only to video terminals.
3Includes the DEC Multinational Character Set.

4Eive character sets of 94 characters each. Includes the DEC Multinational Character Set.

Full-Duplex Terminal Driver 2-3

Table 2-2: Standard Terminal Interfaces

Model Type

DH11 16-line multiplexer

DHU11 UNIBUS 16-line asynchronous multiplexer

DHV11 8-line multiplexer?

DH11-DM11-BB 16-line multiplexer with modem control®

DJj11 16-line multiplexer

DL11-A/B/C/D/E/W Single-line interfaces

DLV11-E/F Single-line interfaces*

DZ11 8-line multiplexer with modem control*

DZQ11 Q-bus 4-line terminal multiplexer

DZV11 Q-bus 4-line asynchronous multiplexer

CXAl6 LSI-11/Q-bus 16-line BA200-series asynchronous multiplexer
CXB16 LSI-11/Q-bus 16-line BA200-series asynchronous multiplexer
CXY08 Q-bus 8-line BA200-series asynchronous multiplexer

1 Direct memory access (DMA) is supported in the full-duplex terminal driver only.

2pyli duplex terminal driver only.

3Full-duplex control only. For example, in the United States, a Bell 103A-type modem provides full-duplex control only.

4pLv11 support with modem control is provided in the full-duplex terminal driver only.

Terminal input lines can have a maximum length of 8128 (8K minus 64) bytes. Extra characters
of an input line that exceed the maximum line length generally become an unsolicited input line
if the terminal is not attached with the type-ahead buffering feature enabled. The full-duplex

terminal driver discards all unsolicited input from an unattached, slave terminal.

2.1.2.1 ASR-33/35 Teletypewriters

The ASR-33 and ASR-35 teletypewriters are asynchronous, hardcopy terminals. No paper-tape

reader or punch capability is supported.

2.1.2.2 KSR-33/35 Teletypewriters
The KSR-33 and KSR-35 teletypewriters are asynchronous, hardcopy terminals.

2.1.2.3 LA12 Portable Terminal
The LA12 is a personal, portable, hardcopy terminal.

2-4 Full-Duplex Terminal Driver

2.1.2.4 LA100 DECprinter
The LA100 is a desktop, matrix, hardcopy terminal.

2.1.2.5 LA30 DECwriter

The LA30 DECwriter is an asynchronous, hardcopy terminal that is capable of producing an
original and one copy. The LA30-P is connected by a parallel line and the LA30-S is connected
by a serial line.

2.1.2.6 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy and operates in
serial mode. It has an impact printer capable of generating multipart and special preprinted
forms. The LA36 can receive and transmit both uppercase and lowercase letters.

2.1.2.7 LA34/38 DECwriters

The LA34 DECwriter is an asynchronous terminal that produces hard copy and uses a platen
paper-feed mechanism.

The LA38 DECwriter includes a detachable tractor-feed mechanism for use with continuous
forms.

2.1.2.8 LA120 DECwriter

The LA120 DECwriter is a hardcopy, uppercase and lowercase terminal. It can print multipart
forms at speeds up to 180 characters per second. You can select serial communications
speed from 14 baud rates ranging from 50 to 9600 bits per second (bps) the terminal driver
supports split transmit and receive baud rates. Hardware features allow bidirectional printing
for maximum printing speed, and they also allow you to select features, including font size,
line spacing, tabs, margins, and forms control. Also, you can set up these functions if you issue
appropriate ANSI-standard escape sequences.

2.1.2.9 LA180S DECprinter

The LA180S DECprinter is a serial version of the LA180. It is a print-only device (it has no
keyboard) that can generate multipart forms. The LA180S can print uppercase and lowercase
letters.

2.1.2.10 LQP02 Letter-Quality Printer

The LQPO02 letter-quality printer is a formed-character, desktop printer incorporating daisywheel
technology. This letter-quality printer offers over 100 character sets and handles regular office
stationery up to a maximum of 15 inches (with a print capacity of 13.5 inches). You can select
lines per inch and characters per inch: 10 or 12 characters per inch and 2, 3, 4, 6, and 8 lines
per inch. At 10 characters per inch you get 132 columns, and at 12 characters per inch you get
158 columns. The buffer capacity is 25610 characters.

Full-Duplex Terminal Driver 2-5

2.1.2.11 LQP03 Letter-Quality Printer

The LQPO3 letter-quality printer is a compact, 130-petal daisywheel printer that prints on
multipart forms and fanfold paper. It prints at speeds of 25 characters per second maximum in
10-pitch Shannon text and 34 characters per second in 12-pitch triple-A text. It also includes
support for all the same features as the LQP02.

2.1.2.12 LA50 Personal Printer

The LAS50 personal printer is a desktop dot-matrix impact printer. It has two print modes:
text mode and enhanced print mode. In text mode, it prints 100 characters per second. In
enhanced print quality mode, it prints 50 characters per second and creates a crisper, more
uniform character than an ordinary dot-matrix printer. You can choose 10, 12, or 16 characters
per inch that print up to 80, 96, or 132 columns respectively. There can be 6, 8, or 12 lines per
inch. The buffer capacity is 255,¢ characters.

2.1.2.13 LA75 Personal Printer

The LA75 personal printer is a versatile and reliable high-speed, dot-matrix impact printer. It
includes all the features of the LA50. In addition, the LA75 contains a built-in tractor feed
that accepts form-fed paper and labels. The LA75 allows single-sheet printing and can print
text in five modes: draft, memo, near letter-quality, letter quality, and bit-mapped graphics.
Additionally, it has a font cartridge capability that provides plug-in Letter Gothic or Orator fonts
for meeting special printing requirements.

2.1.2.14 LA210 Letter Printer

The LA210 letter printer is a desktop, dot-matrix tex and graphics printer. It can print text in
four modes: draft, memo, near letter-quality, and full bit-mapped graphics. The LA210 can
print on office stationery, multipart forms, labels, roll and fanfold paper up to 14.9 inches wide.
It supports numerous standard resident typefaces, and includes optional font cartridges and
ROM chips.

2.1.2.15 LNO3/LNO3 PLUS Laser Printers

The LNO3 laser printers are desktop units that employ electrophotographic imaging and
xerographic printing. They print at a speed of 8 pages per minute. The print resolution
is 300 by 300 dots per inch. They contain up to 17 resident fonts in three typefaces, including
ASCII, multinational, and technical character sets. Both printers print in portrait and landscape
mode.

The LNO3 PLUS also includes the following additional features:

* Full-page, bit-mapped graphics that are compatible with Digital’s sixels and Tektronix!
4010/4014 graphics protocols

* One megabyte (Mb) of on-board RAM for text/graphics applications

1 Tektronix is a registered trademark of Tektronix, Inc.

2-6 Full-Duplex Terminal Driver

2.1.2.16 RT02 Alphanumeric Display Terminal and RT02-C Badge
Reader/Alphanumeric Display Terminal

The RT02 is an alphanumeric display terminal for applications in which source data is primarily
numeric. A shift key permits the entry of 30 discrete characters, including uppercase alphabetic
characters. The RT02 can, however, receive and display 64 characters.

The RT02-C model also contains a badge reader. This option provides a reliable method
of identifying and controlling access to the PDP-11 minicomputer or to a secure facility.
Furthermore, data in a format corresponding to that of a badge (22-column fixed data) can be
entered quickly.

2.1.2.17 VT05B Alphanumeric Display Terminal
The VTO05B is an alphanumeric display terminal that consists of a cathode-ray tube (CRT) display
and a self-contained keyboard. The VT05B offers direct cursor addressing.

2.1.2.18 V150 Alphanumeric Display Terminal
The VT50 is an alphanumeric display terminal that consists of a CRT display and a keyboard.
It is similar to the VT05B in operation, but it does not offer direct cursor addressing.

2.1.2.19 VT50H Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display, keyboard, and numeric
keypad. It offers direct cursor addressing, but its direct cursor addressing is not compatible with
that of the VT05B.

2.1.2.20 V152 Alphanumeric Display Terminal

The VT52 is an uppercase and lowercase alphanumeric terminal with CRT display. It also has a
numeric keypad and direct cursor addressing. The VT52’s direct cursor addressing is compatible
with that of the VT50H, but not with that of the VT05B. The VT52 can be configured with a
built-in thermal printer.

2.1.2.21 V155 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric terminal. The VT55 offers
graphics display features that are accessible by a task.

2.1.2.22 V161 Alphanumeric Display Terminal

The VT61 is an uppercase and lowercase alphanumeric terminal with an integral microprocessor.
It offers two 128-member character sets and numerous built-in functions for editing and forms
preparation as well as a block-transfer mode.

Full-Duplex Terminal Driver 2-7

2.1.2.23 VT100 Terminal

The VT100 terminal is an uppercase and lowercase alphanumeric keyboard and video display
terminal. It can display 24 lines of 80 to 132 characters per line. You can select serial
communications speed from baud rates ranging from 50 to 9600 bps. Hardware features allow
you to select display characteristics and functions including smooth scroll, reverse video, and so
forth. The system also sets up these functions if you issue appropriate ANSI-standard escape
sequences.

2.1.2.24 VT101 Terminal
The VT101 terminal is functionally identical to the VT100. However, it does not support the
advanced video features.

2.1.2.25 V1102 Terminal

The VT102 terminal is functionally identical to the VT100. However, it does not have any
expansion capability. It has enhanced modem control, supports advanced video features, and
includes a port for a printer.

2.1.2.26 VT105 Terminal

The VT105 terminal is an alphanumeric and graphics display video terminal. The VT105
can display two graphs, two shaded graphs, or two strip charts. These graphs may have
alphanumeric labels.

2.1.2.27 VT131 Terminal
The VT131 is the same as the VT102 with the addition of built-in editing features.

2.1.2.28 V1220 Terminal

The VT220 terminal is a general-purpose video display terminal displaying 24 rows of 80 or
132 columns. It has: ANSI-compatible control functions; user-definable function keys; video
reverse, bold, underline, blink, double height/double width line attributes; and can run in
VT100, VT200 7-bit, VT200 8-bit, and VT52 modes. Setup state allows you to configure the
terminal and examine its status.

2.1.2.29 V1240 Terminal

The VT240 terminal is a general-purpose video display terminal displaying 24 rows of 80 or 132
columns. It has: ANSI-compatible control functions; user-definable function keys; and video
reverse, bold, underline, blink, double height/double width line attributes. It can run in VT100,
VT200 7-bit, VT200 8-bit, VT52, Tektronix 4010/4014, and ReGIS graphics modes. Setup state
allows you to configure the terminal and examine its status. The VT240 has graphics capability
to draw points, vectors, circles, arcs, and curves.

2.1.2.30 V1241 Terminal

The VT241 terminal is functionally identical to the VT240 terminal except that the VT241 has
a color monitor.

2-8 Full-Duplex Terminal Driver

2.2 Get LUN Information Macro

The Get LUN information directive (GLUNS) instructs the system to fill a 6-word buffer with
information about the physical device unit to which the LUN is assigned. For more information
about this directive, refer to Get LUN in the RSX-11M-PLUS and Micro/RSX Executive Reference
Manual. The following section describes the information that Get LUN makes available for
terminals in word 2 of the buffer.

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the terminal information shown in Table 2-3. A setting of 1 indicates that the
described characteristic is true for terminals.

Table 2-3: Word 2 of the Get LUN Macro Buffer

Bit Setting

Meaning

1

O 00 N9 O U e W = O

— e e e
w N =, O

—_
'S
O O O O O O O O O O O O O &mo=

15

Record-oriented device
Carriage-control device

Terminal device

File-structured device
Single-directory device
Sequential device

Mass-storage device

User-mode diagnostics supported
Device supports 22-bit direct addressing
Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device is mountable as a communications channel

Device is mountable as a Files-11 Volume

Device is mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates the default buffer size (the width
of the terminal carriage or display screen).

2.3 QlO0$ Macro

Standard QIO$ functions may be used with any device; whereas, device-specific QIO$ functions
apply only to specific devices or uses.

Full-Duplex Terminal Driver 2-9

2.3.1 Format of QIOSC for Standard Functions

The QIO$ macros formats for standard functions are shown next.

Formats

QIOS$C

QIO$C

QIOs$C

2.3.2 Format of QIOSC for Device-Specific Functions

The QIO$ macro formats for device-specific functions are shown next.

Formats
QIOS$C

QIOS$C

QIOS$C

QIO$C

QIOS$C

QIOS$C

QIO$C

QIO$C

QIOS$C
QIO$C

QIO$C

Table 2-4 lists the standard and device-specific functions of the QIO macro that are valid for
terminals. The standard functions are described in Chapter 1. Some device-specific functions are
options that may be selected during system generation. Two device-specific functions, SE.SMC

IO.ATT
IO.DET soves
I0.KIL

IO.RLB .
{ RV } 1. <staddsize,[tmo]>

I0.WLB)
ey < , vic>
{ I0.WVB } , stadd,size,vfc

I0.ATA, ..., <[astl] [parameter2] [ast2]>
10.CCO...., <stadd,size,vfc>
I0.EIO,..., <stadd,size>

IO.HNG,...,,

IO.RAL .
poer < ,size, >
{ IO.RNE } stadd,size,[tmo]

IO.RPR,..., <stadd,size,[tmo],pradd,prsize,vfc>
IO.RST,..., <stadd,size,[tmo]>
IO.RTT,..., <stadd,size,[tmo],table>

I0.WAL)
{ IO.WBT } sy <stadd,size,vfc>

SE.GMC .
Jeers , >
{ 10.GTS <stadd,size

SE.SMC...., <stadd,size>

and SF.GMC, have nonstandard function names.

2-10 Full-Duplex Terminal Driver

Table 2-4: Standard and Device-Specific QIO Functions for Terminals

Format

Function

STANDARD FUNCTIONS:

READ FUNCTIONS
QIO$C IO.RLB.,..., <stadd,size,[tmo]>

QIO$C IO.RVB,..., <stadd,size,[tmo]>

WRITE FUNCTIONS
QIO$C I0.WLB,..., <stadd,size,vfc>
QIO$C IO.WVB,..., <stadd,size,vfc>

Read logical block (read typed input into
buffer).

Read virtual block (read typed input into
buffer).

Write logical block (print buffer contents).

Write virtual block (print buffer contents).

ATTACH, DETACH, AND CANCEL FUNCTIONS

QIO$C I0.ATT,...
QIO$C IO.DET.,...
QIO$C IO.KIL,...

Attach device.
Detach device.

Cancel I/0O requests.

DEVICE-SPECIFIC FUNCTIONS:

READ FUNCTIONS
QIO$C IO.RAL,..., <stadd,size,[tmo]>
QIO$C IO.RNE.,..., <stadd,size,[tmo]>

QIO$C IO.RPR,..., <stadd,size,[tmo],
pradd,prsize,vfc>

QIO$C IO.RST,..., <stadd,size,[tmo]>

QIO$C IO.RTT...., <stadd,size,[tmo],table>

WRITE FUNCTIONS
QIO$C I0.WAL,..., <stadd,size,vfc>
QIO$C 10.WBT,..., <stadd,size,vfc>

Read logical block; pass all characters.
Read logical block; do not echo.
Read logical block after prompt.

Read logical block ended by special
terminators. :

Read logical block ended by specified special
terminators.

Write logical block; pass all characters.

Write logical block; breakthrough 1/O condi-
tions at terminal.

Full-Duplex Terminal Driver 2-11

Table 2-4 (Cont.): Standard and Device-Specific QIO Functions for Terminals
Format Function

DEVICE-SPECIFIC FUNCTIONS:

MISCELLANEOUS FUNCTIONS

QIO$C I0.ATA,..., <ast,[parameter2],[ast2]> Attach device, specify unsolicited input-
character asynchronous system trap (AST).

QIO$C 10.CCO...., <stadd,size,vfc> 1(:’Zlanf(el CTRL/O (if in effect), then write logical
ock.

QIO$C I0.EIO { gIF::RwL[?B } ..., <stadd,size> Extended 1/O.

QIOS$C IO.GTS,..., <stadd,size> Get terminal support.

QIO$C I0.HNG,... Hang up remote line.

QIO$C SF.GMC,..., <stadd,size> Get multiple characteristics.

QIO$C SF.SMC.,..., <stadd,size> Set multiple characteristics.

2.3.3 Parameters

The parameters for the various QIO$ macros and their descriptions are shown next.

Parameters

ast
Specifies the entry point for an unsolicited input-character AST.

ast2
Specifies the entry point for a CTRL/C AST.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

isb R
Specifies the the address of the I/O status block (I/O status doubleword) associated with
the 1/O request. For more information refer to Chapter 1.

lun
Specifies the logical unit number of the associated physical device unit to be accessed by
the I1/0O request. For more information refer to Chapter 1.

parameter2
Specifies a number that you can specify in your task to identify this general terminal as the
input source when an unsolicited character AST routine is entered.

pradd
Specifies the starting address of the byte buffer where the prompt is stored.

2-12 Full-Duplex Terminal Driver

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

prsize
Specifies the size of the pradd prompt buffer in bytes. The specified size must be greater
than 0 and less than or equal to 8128 bytes. The buffer must be within the task’s address
space.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.
For 10.EIO, SF.GMC, I0.GTS, and SF.SMC functions, size must be an even value.

stadd

Specifies the starting address of the data buffer. The address must be word aligned for
I0.EIO, SF.GMC, I0.GTS, and SF.SMC; otherwise, stadd may be on a byte boundary.

table
Specifies the address of the 16-word, user-defined terminator table.

tmo
Specifies an optional timeout count specified in 10-second intervals. (For IO.EIO, the
interval is specified in seconds.) Timeout is the maximum time allowed between two input
characters before the read is aborted. The maximum timeout value is 255;¢ intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 255, intervals (or 255,¢ seconds for IO.EIO), issue an asynchronous
QIO$ request followed by a Mark Time directive (MRKTS$) for the required interval. Specify
different event flags in the two directives and, after issuing them, wait for the logical OR of
the two event flags.

vic
Specifies cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as
(1,1). The driver outputs cursor-positioning commands appropriate for the terminal in use
that move the cursor to the specified position. If the most significant bit of the line number
is set, the driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high
byte is 0. See Section 2.8 for more information about the characters your task can use for
vertical format control on the terminal. Any one of these characters can be specified as the
value of the vic parameter.

Full-Duplex Terminal Driver 2-13

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

2.3.4 Subfunction Bits

The terminal-specific functions described in this section are selected by using subfunction bits.
A subfunction bit further modifies the action of an I/O function. A subfunction bit is specified
by the name TF.xxx, and an I/O function is specified by the name I0.xxx, where xxx in each
case is an acronym that represents the specific kind of function requested.

As an example, a QIO$ function to a terminal to request a read with no echo (I0.RNE) can be
modified to read all characters. The “read all characters” subfunction bit is TF.RAL. To modify
the function, you perform a logical OR of the subfunction bit with the QIO$ function in the
QIO$ statement. To create the logical OR of the bit and the function, in this example, the QIO$
statement would appear as follows:

QIO$ IO.RNE!TF.RAL,...,...

See Section 2.4.2 for a listing of QIO$ functions and relative subfunction bits that can be issued.

Table 2-5 lists each subfunction bit with its symbolic name and meaning.

Table 2-5: Terminatl Driver Subfunction Bits

Subfunction Meaning

TF.AST Unsolicited input-character AST
For IO.ATT or IO.ATT!TE.ESQ, ast in the QIO$ macro specifies the address
of an asynchronous system trap (AST) service routine to be entered when
an unsolicited input character is entered. Control passes to ast whenever an
unsolicited character (other than CTRL/Q, CTRL/S, CTRL/X, or CTRL/O) is
entered at the terminal.

TF.BIN Binary prompt (send prompt as pass all)
The prompt is sent to the terminal without interpretation by the driver. This
is similar, for the prompt, to a write-pass-all operation.

TF.CCO Cancel CTRL/O

The driver writes a logical block of data to the terminal regardless of a
CTRL/O condition that may be in effect. If CTRL/O is in effect, it is
canceled before the write occurs.

TF.ESQ Recognize escape sequences

Escape sequences recognition from the terminal are returned to the task.
Otherwise, ESC is a line terminator. The subfunction TF.ESQ is for use with
I0.ATA or IO.ATT!TF.AST.

2-14 Full-Duplex Terminal Driver

Table 2-5 (Cont.): Terminal Driver Subfunction Bits

Subfunction

Meaning

TE.NOT

TF.RAL

TF.RCU

TF.RDI

TF.RES

TF.RLB

TE.RLU

Notification of unsolicited input

Unsolicited notification input causes an AST and entry into the AST service
routine in the task. When the full-duplex terminal driver receives unsolicited
terminal input (except CTRL/C) and you used the TF.NOT unsolicited input
subfunction with I0.ATA, the resulting AST serves only as notification of
unsolicited terminal input; the terminal driver does not pass the character to
the task. Upon entry to the AST service routine, the high byte of the first
word on the stack identifies the terminal causing the AST (parameter2) in the
IO.ATA function.

Using the TE.NOT subfunction allows a task to monitor more than one
terminal for unsolicited input without continuously reading each terminal for
possible unsolicited input. Note that the TF.NOT subfunction cannot be used
with the CTRL/C AST (ast2) in unsolicited input IO.ATA); an unsolicited
CTRL/C character flushes the type-ahead buffer.

Read all characters (pass all)

This subfunction allows the passage of all characters to the requesting task.
The driver does not intercept control characters. The characteristic TC.8BC,
when set, allows the driver to pass 8 bits. For example, CTRL/C, CTRL/Q,
CTRL/S, CTRL/O, and CTRL/Z are passed to the task and are not interpreted
by the driver.

Restore cursor position

When defining cursor position in a function, you can use the TF.RCU
subfunction to save the current cursor position. TF.RCU causes the driver
first to save the current cursor position, then to position the cursor and output
the specified buffer, and, finally, to restore the cursor to the original (saved)
position once the output transfer has been completed.

Read with default input

The default input that you specified in the extended 1/O item list is displayed
as an input line at the start of the read on the terminal. You may change
this line or use it as input to the system. This subfunction is for use with the
extended I/0O function (I0.EIO) only.

Read with escape sequence processing enabled

This subfunction enables escape sequence recognition for the read operation
in extended 1/0; it is effective for only one read.

Read logical block

This subfunction causes the driver to read a logical block from the specified
terminal; it is for use with the extended I/0O (IO.EIO) function only.

Read with lowercase-to-uppercase conversion

The task that uses this subfunction gets input in the buffer in uppercase; it is
for use with the extended I/O (IO.EIO) function only.

Full-Duplex Terminal Driver 2-15

Table 2-5 (Cont.): Terminal Driver Subfunction Bits
Subfunction Meaning

TF.RNE Read with no echo

This subfunction reads terminal input characters without echoing the
characters back to the terminal for immediate display. You can use this
feature when typing sensitive information. CTRL/R is ignored while read
with no echo is in progress.

TF.RNF Read with no filter
This subfunction reads and passes through CTRL/U, CTRL/R, and DELETE
characters as normal characters. It is for use with the extended 1/0 (I0.EIO)
function only.

TF.RPR Read after prompt

This subfunction is for use with the extended I/O only. The TF.RPR
subfunction causes the driver to send a prompt to the terminal, and the
driver immediately follows the prompt with a read function at the terminal.
The TF.RPR acts as an IO.WLB (to write a prompt to the terminal) followed
by IO.RLB. However, TE.RPR differs from the combination of those two
functions as follows:

e System overhead is lower with the TE.RPR because only one QIO$ is
processed.

* When using the TF.RPR function, there is no “window” during which a
response to the prompt may be ignored. Such a window occurs if the
task uses I0.WLB followed by an 10.RLB because no read may be posted
at the time the response is received.

e If the issuing task is checkpointable, it can be checkpointed during both
the prompt and the read requested by the TF.RPR.

e A CTRL/O that may be in effect prior to issuing the TF.RPR is canceled
before the prompt is written.

Note

If a TF.RPR function is in progress when the driver
receives a CTRL/R or CTRL/U, the prompt is
redisplayed.

TE.RPT Read in pass-through mode

This subfunction passes all characters except XON/XOFF. It allows the
passage of all characters to the requesting task. The characteristic TC.8BC,
when set, allows the driver to pass 8 bits instead of 7. The driver intercepts
the control characters CTRL/S and CTRL/Q. Other control characters, for
example, CTRL/C, CTRL/O, and CTRL/Z, are passed to the task and are
not interpreted by the driver. This subfunction is for use with the extended
1/0 (IO.EIO) function only.

2-16 Full-Duplex Terminal Driver

Table 2-5 (Cont.): Terminal Driver Subfunction Bits

Subfunction

Meaning

TE.RST

TE.RTT

TF.TMO

TF.TNE

Read with special terminators

Special characters in the ranges 0-0373 and 175-177; terminate the read. The
driver does not interpret the terminating character. For example, a DELETE or
RUBOUT 1773 does not erase, and a CTRL/C does not produce a CLI prompt
or, if CTRL/C abort is enabled, abort tasks. CTRL/U and CTRL/R do not
perform their usual functions either. All control characters are terminators.

TE.RST sets TF.TNE by default, which means that terminators are not echoed
on the terminal screen.

If uppercase-to-lowercase conversion is disabled, characters 1755 and 1764
do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (0175, 0215, and
0233 respectively) are not special terminators. The driver interprets them as
output control characters in a normal manner.

Read with terminator table

This subfunction is for use with the I0.EIO extended I/O function only.
Control characters function normally with TF.RTT. Terminators echo by
default. The additional use of subfunction TE.TNE prevents the echoing
of terminators on the terminal screen. If you want to use special control
characters as terminators, their normal function should be disabled with the
subfunction TF.RNF or TF.RAL, or the characteristic TC.PTH. The terminator
table (a bit mask table) length can be from 1-32;, bytes, where bit 0 is a null
character, bit 1 is a CTRL/A, and so forth. The terminator table address is
in the item list of the IO.EIO function. To use ASCII characters 128,,-255,,
the characteristic TC.8BC must be set.

Read with timeout

This subfunction allows the use of the tmo parameter to require input from
the terminal within a specified time.

Specify the timeout count in 10-second intervals. (For IO.EIO, the interval is
specified in seconds.) Timeout is the maximum time allowed between two
input characters before the read is aborted. The maximum timeout value is
25, intervals.

If 0 is specified, the read times out immediately after reading any data that
may be in the type-ahead buffer. In other words, if you enter a 0, no time
is allowed for you to enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 25,y intervals (or 25,y seconds for IO.EIO), issue an

asynchronous QIO$ request followed by a Mark Time directive (MRKT$) for
the required interval. Specify different event flags in the two directives and,
after issuing them, wait for the logical OR of the two event flags.

Read terminators with no echo

This subfunction allows for reading terminator characters from the terminal
without their being echoed on the terminal screen as they are entered. It is
for use with the extended 1/0 function (IO.EIO) only.

Full-Duplex Terminal Driver 2-17

Table 2-5 (Cont.): Terminal Driver Subfunction Bits
Subfunction Meaning

TEF.WAL Write all characters

During a write-pass-all operation (as in IO.WAL or IO.WLB!TF.WAL), the
terminal driver outputs characters without interpretation. It does not intercept
control characters, and it does not keep track of cursor position. Long lines
are not wrapped around if I/O wraparound has been selected.

TF.WBT Breakthrough write

This subfunction instructs the driver to write the buffer regardless of the
I[/0O status of the receiving terminal. If another write function is currently
in progress, it finishes the current request and the breakthrough write is the
next write issued. Therefore, the TF.WBT subfunction cannot break through
another breakthrough write that is in progress. The effect of this is that a
CTRL/S can stop breakthrough write functions. Thus, it may be desirable
for tasks to time out on breakthrough operations.

If a read is currently posted, the breakthrough write proceeds, and an
automatic CTRL/R redisplays any input that was received before the
breakthrough write was effected (if the terminal is not in the full-duplex
mode).

CTRL/O, if in effect, is canceled.

An escape sequence that was interrupted is rubbed out.

Privileged tasks may issue a breakthrough write to any terminal. In addition,
a nonprivileged task may issue a breakthrough write to the task’s terminal.
(The privileged MCR command BRO (broadcast) uses IO.WBT.)

TE.WIR Write with input redisplayed

This subfunction performs a write to the terminal. If a read is in progress at
the terminal and you have entered characters in the input line, the prompt
and the characters are redisplayed at the end of the write.

TF.WLB Write logical block to the specified device unit

Write logical block to the specified terminal. This subfunction is used with
the extended I/O (IO.EIO) function only.

2-18 Full-Duplex Terminal Driver

Table 2-5 (Cont.): Terminal Driver Subfunction Bits
Subfunction Meaning

TF.XCC Exclude CTRL/C or abort active tasks

For use with the IO.ATA function. When TE.XCC is included in the I0.ATA
function, all characters (except CTRL/C) are handled in the manner previously
described. CTRL/C marks the beginning of a command line interpreter (CLI)
line that is processed by a CLI task or, if CTRL/C abort is enabled, that
aborts tasks active at the terminal. None of the characters, including the
CTRL/C, are sent to the task issuing the function.

Note that you can use either ast2 or TF.XCC, but not both, in the same QIO
request. If both are specified in the request, an IE.SPC error is returned.

TF.XOF Send XOFF

The driver sends an XOFF to the terminal after it is read. The XOFF (CTRL/S)
may have the effect of inhibiting input from the terminal, if the terminal
recognizes XOFF for this purpose. TF.XOF is ignored when full-duplex 1/0
is in use.

See Section 2.4.2 for a list of bits that can be combined in a logical OR with QIO$ functions.
If a task invokes a subfunction bit that is not supported on the system, the subfunction bit is
ignored, and the QIO$ request is not rejected. For example, if breakthrough write (TF.WBT) is
not supported, an I0.WBT or IO.WLB!TF.WBT function is interpreted as an IO.WLB function.

In the following example, the QIO$ request uses more than one subfunction bit: a nonechoed
read (TF.RNE), which is terminated by a special terminator character (TF.RST), and is preceded
by a prompt:

QIO$C IO.RPR!TF.RNE!TF.RST,..., <stadd,size, ,pradd,prsize,vic>

2.4 Device-Specific QIOS$ Functions

The following sections describe the device-specific functions for the full-duplex terminal driver.
Some full-duplex terminal driver functions and features are system generation options. These
options are briefly described in the following section.

Full-Duplex Terminal Driver 2-19

2.4.1 System Generation Options in the Full-Duplex Terminal Driver

Following is a list of device-specific functions that are always included for the full-duplex
terminal driver during system generation:

Unsolicited input char-
acter AST

Breakthrough write

CTRL/R retype

Escape sequence
handling

Get Multiple
Characteristics

Set Multiple
Characteristics

Get Terminal Support

Read After Prompt

Specifies an AST entry point for unsolicited input-character handling.
This support is automatically included if your Executive supports
asynchronous system traps (ASTs).

Instructs the driver to write the buffer regardless of the I/O status
of the receiving terminal. If another write function is currently in
progress, it finishes the current request and the breakthrough write
is the next write issued. Therefore, the TF.WBT subfunction cannot
break through another breakthrough write that is in progress. The
effect of this is that a CTRL/S can stop breakthrough write functions.
Thus, it may be desirable for tasks to time out on breakthrough
operations.

If a read is currently posted, the breakthrough write proceeds, and
an automatic CTRL/R is performed to redisplay any input that was
received before the breakthrough write was effected (if the terminal
is not in the full-duplex mode).

CTRL/O, if in effect, is canceled.
An escape sequence that was interrupted is rubbed out.

Privileged tasks may issue a breakthrough write to any terminal. In
addition, a nonprivileged task may issue a breakthrough write to the
task’s terminal. (The privileged MCR command BRO (broadcast) uses
I0.WBT.)

Sends a carriage return and line feed followed by the input buffer
contents to the terminal whenever you press CTRL/R.

Recognizes and treats escape sequences as line terminators for all
solicited input except read-pass-all requests. See the QIO$ functions
IO.RAL, IO.RST, and IO.RTT in the following sections, and see
Section 2.7 for a description of escape sequences.

Allows a task to determine the characteristics of individual terminals.
See Section 2.4.15 for information about the QIO$ SF.GMC function.

Allows a task to set the physical characteristics of a terminal. See
Section 2.4.16 for information about the QIO$ SF.SMC function.

Allows a task to determine which terminal driver options were
selected during system generation. See Section 2.4.6 for information
about the QIO$% IO.GTS function.

Writes a prompt to the terminal and immediately follows it with a
read. Reduces overhead and allows a task exclusive access to the
terminal for the write and following read. See the QIO$ IO.RPR
function in Section 2.4.10.

2-20 Full-Duplex Terminal Driver

CRT Rubout

Hard Receive Error

Detection

Terminal-Independent

Cursor Control

Allows the DELETE (or RUBOUT) key to erase a character from the
CRT screen by echoing the characters to be deleted as backspace-
space-backspace. See Section 2.6.2.

Known as Unrecoverable Input Error Notification in system genera-
tion. The driver flags framing errors, character parity errors, and data
overruns and then passes the input characters to the requesting task
with notification of an input error (including type). See Section 2.10.

Allows the driver to output a cursor-positioning command before it
outputs the contents of the buffer if you specify the vfc parameter for
an output buffer.

The following device-specific functions are system generation options for the full-duplex driver:

Unsolicited input time-

out

Extended I/0O

Extended Network

Command Terminal

(NCT) Support
Modem Control

Discards unsolicited input when the timeout value that you specified
during system generation expires.

Allows the use of I0.EIO with TF.WLB or TE.RLB to increase the
number of allowable /O subfunctions.

Allows the use of a terminal as a Network Command Terminal.

Sets the default answer speed for modems during system generation
time but allows the speed to be changed on line with the SET
command.

2.4.2 Functions and Allowed Subfunctions

Table 2-6 lists the functions with their allowed subfunctions. The subfunction bits are specified
in the following QIO$C function descriptions; subfunction bits are described in general in
Section 2.3.4. ‘

Table 2-6: Summary of Subfunction Bits

Function

Equivalent

Subfunctions Allowed Subfunctions

STANDARD FUNCTIONS

IO.ATT
I0.DET
IOKIL
I0.RLB
IO.RVB!
IO.WLB
I0.WVB!

None
None
None
None
None
None

None

TF.AST, TF.ESQ

None

None

TF.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
TE.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
TE.CCO, TF.RCU, TF.WBT, TF.WAL
TE.CCO, TF.RCU, TE.WAL, TE.WBT

Lsufunctions are stripped off if they are specified with 10.RVB or IO.WVB.

Full-Duplex Terminal Driver 2-21

Table 2-6 (Cont.): Summary of Subfunction Bits

Function

Equivalent

Subfunctions Allowed Subfunctions

DEVICE-SPECIFIC FUNCTIONS

10.ATA
10.CCO
10.EI0?
SF.GMC
10.GTS
IO.RAL
IO.RNE
IO.RPR
IO.RST
IO.RTT
SF.SMC
I0.WAL
10.WBT

IO.ATT!TF.AST TF.ESQ, TENOT, TE.XCC
IO.WLB!ITE.CCO TF.WAL, TFWBT
TF.RLB, TF.WLB

I0.RLB!TF.RAL TF.RNE, TERST, TF.TMO, TF.XOF
IO.RLB!TF.RNE TF.RAL, TE.RST, TE.TMO, TF.XOF

TE.BIN, TF.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
IO.RLBI!TE.RST TE.RAL, TE.RNE, TF.TMO, TF.XOF

TF.RAL, TF.RCU, TE.RNE, TE.TMO

IO.WLB!TF.WAL TF.CCO, TE.RCU, TF.WBT
IO.WLB!ITEWBT TF.CCO, TE.RCU, TFE.WAL

2You must use TE.RLB or TEWLB with I0.EIO, but you should not use both.

In addition to the device-specific QIO functions, the following sections also describe the use of
subfunction bits.

2.4.3 QIOSC I0.ATA—Attach a Terminal with ASTs

The QIO$ IO.ATA macro attaches the terminal and identifies astl and ast2 as entry points for
unsolicited input-character ASTs. With astl and ast2, IO.ATA specifies asynchronous system
traps (ASTs) to process unsolicited input characters entered at the terminal. A minimum of one
AST parameter (ast or ast2) is required.

IO.ATA is equivalent to the IO.ATT attach function executed in a logical OR with the subfunction

bit TE.AST.

The use of I0.ATA is enhanced by the addition of the TF.NOT and TF.XCC subfunction bits,
which are described later in this section. You may include any or all the subfunctions described
in this section with the IO.ATA function.

2-22 Full-Duplex Terminal Driver

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the I0.ATA function task and
does not reach the command line interpreter (CLI). Thus, any task that uses I0.ATA without the
TF.XCC subfunction should recognize some input sequence as a request to terminate; otherwise,
the CLI cannot be invoked to abort the task in case of difficulty.

Format
ITF.ESQ
QIO$C IO.ATA | ITENOT | ,lun/[efn],[pri][isb], <[astl][parameter2] [ast2]>
ITF.XCC
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/0 request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of function 0 or a null for
this parameter.

isb

Specifies the address of the I/O status block (I/O status doubleword) associated with the
I1/0 request. For more information refer to Chapter 1.

ast1
Specifies the entry point for an unsolicited input-character AST.

Either astl or ast2 is required.

Control passes to ast whenever an unsolicited character (other than CTRL/Q, CTRL/S,
CTRL/X, or CTRL/O) is entered at the terminal. If ast2 is not specified, an unsolicited
CTRL/C results in entering the AST specified in the ast parameter.

If TF.NOT is specified, after the AST has been effected, the AST becomes “disarmed” until a
read request is issued by the task. If multiple characters are received before the read request
is issued, they are stored in the type-ahead buffer. Once the read request is received, the
contents of the type-ahead buffer, including the character causing the AST, is returned to
the task; the AST is then “armed” again for new unsolicited input characters. If TF.NOT is
not specified, every unsolicited character causes an AST.

Upon entry to the AST routines, the unsolicited character and parameter2 are in the top
word on the stack, as shown in ast2. That word must be removed from the stack before
exiting the AST.

parameter2
Indicates a value that you can specify to identify individual terminals in a multiterminal
environment. Parameter2 is located in the high byte of SP+00.

Full-Duplex Terminal Driver 2-23

ast2
Specifies the entry point for an unsolicited CTRL/C AST.

Either astl or ast2 is required.

If you specify the ast2 parameter, an unsolicited CTRL/C character results in entering the
AST specified in that parameter. If ast2 is not specified, an unsolicited CTRL/C results in
entering the AST specified in the ast parameter.

Upon entry to the AST routines, the unsolicited character and parameter2 are in the top
word on the stack. That word must be removed from the stack before exiting the AST. The
stack contents is as follows:

SP+10 Event flag mask word

SP+06 Program Section (PS) of task prior to AST
SP+04 Program Counter (PC) of task prior to AST
SP+02 Task’s Directive Status Word (DSW)

5:+00 Unsolicited character in low byte

After the AST has been effected, the AST becomes “disarmed” until a read request is issued
by the task. If multiple characters are received before the read request is issued, they are
stored in the type-ahead buffer. Once the read request is received, the contents of the
type-ahead buffer, including the character causing the AST, is returned to the task: the
AST is then “armed” again for new unsolicited input characters. Thus, using the TE.NOT
subfunction allows a task to monitor more than one terminal for unsolicited input without
the need to read each terminal continuously for possible unsolicited input. Note that
the TE.NOT subfunction cannot be used with the CTRL/C AST; an unsolicited CTRL/C
character flushes the type-ahead buffer.

Either ast2 or TF.XCC can be used, but not both, in the same QIO$ request. If you specify
both in the request, an IE.SPC error is returned.

See the RSX-11M-PLUS and Micro/RSX Executive Reference Manual for further details on
ASTs.

Subfunction Bits

TF.ESQ
Recognize Escape Sequences—This subfunction issued with I0.ATT or IO.ATA attaches a
terminal and notifies the driver that it recognizes escape sequences entered at that terminal.
Escape sequences are recognized only for solicited input (if a read was issued to the terminal).
(See Section 2.7 for a discussion of escape sequences.)

If escape sequences are recognized, the sequence terminates input and a status code IS.ESC
is returned. In addition, if uppercase-to-lowercase conversion is not enabled, the character
ALTMODE (codes 1755 or 1763) is also treated as an escape character.

If the terminal has not been declared capable of generating escape sequences, I0.ATA!TF.ESQ
has no effect other than attaching the terminal. No escape sequences are returned to the task
because any ESCAPE sent by the terminal acts as a line terminator. The QIO$C SF.SMC
function, the MCR command SET /ESCSEQ, or the DCL command SET/[NOJESCAPE

2-24 Full-Duplex Terminal Driver

declare the terminal capable of generating escape sequences (see Table 2-8 in Section 2.4.15,
and see also Section 2.7).

TF.NOT

Notification of Unsolicited Input—Unsolicited input causes an AST and entry into the AST
service routine in the task. When the full-duplex terminal driver receives unsolicited terminal
input (except CTRL/C) and you used the TF.NOT subfunction with I0.ATA, the resulting
AST serves only as notification of unsolicited terminal input; the terminal driver does not
pass the character to the task. Upon entry to the AST service routine, the high byte of the
first word on the stack identifies the terminal causing the AST (parameter2 in the I0.ATA
function).

If TE.NOT is specified, after the AST has been affected, the AST becomes “disarmed” until
a read request is issued by the task. If TENOT is not specified, every unsolicited character
causes an AST.

Using the TE.NOT subfunction allows a task to monitor more than one terminal for
unsolicited input without the need to read each terminal continuously for possible unsolicited
input. Note that the TE.NOT subfunction cannot be used with the CTRL/C AST (ast2 in
I0.ATA); an unsolicited CTRL/C character flushes the type-ahead buffer.

TE.XCC

Exclude CTRL/C from AST Notification—TF.XCC is for use with the IO.ATA function.
When TF.XCC is included in the IO.ATA function, all characters (except CTRL/C) are
handled in the manner previously described. CTRL/C marks the beginning of a command
line interpreter (CLI) line that is processed by a CLI task, or, if CTRL/C abort is enabled,
it aborts tasks active at the terminal. None of the characters of CLI input, including the
CTRL/C, are sent to the task issuing the function.

Note that you can use either ast2 or TE.XCC, but not both, in the same QIO request. If
both are specified in the request, an IE.SPC error is returned.

2.4.4 QIOSC 10.CcCO—Cancel CTRL/O

The QIO$ 10.CCO macro directs the driver to write a logical block of data to the terminal
regardless of a CTRL/O condition that may be in effect. If CTRL/O is in effect, it is canceled
before the write occurs.

10.CCO is equivalent to IO.WLB!TE.CCO.

Format
'TF.WAL . .
QIO$C 10.CCO [!TF'WBT] Jlun,[efn] [pri}[isb] fast], <stadd,size,vfc>
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/0 request. For more information refer to Chapter 1.

Full-Duplex Terminal Driver 2-25

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/O request. For more information refer to Chapter 1.

ast
Specify ast if you want to interrupt your task to execute special code upon completion of
this 1/O request. When the I/O request completes, control branches to the address specified
by ast at the software priority of the requesting task. Omit ast or specify 0 to omit AST
processing.

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

vfc
Specifies the cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as
(1,1). The driver outputs cursor-positioning commands appropriate for the terminal in use
that move the cursor to the specified position. If the most significant bit of the line number
is set, the driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high
byte is 0. See Section 2.8 for more information about the characters your task can use for
vertical format control on the terminal. Any one of these characters can be specified as the
value of the vfc parameter.

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task 1/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

Subfunction Bits

TF.WAL
Write All Characters—During the write-pass-all operation specified by this subfunction (as in
IO0.WAL or IO.WLB!TF.WAL), the terminal driver outputs characters without interpretation.
It does not intercept control characters, and it does not keep track of cursor position. Long
lines are not wrapped around if I/O wraparound has been selected.

2-26 Full-Duplex Terminal Driver

TF.WBT
Breakthrough Write—This subfunction instructs the driver to write the buffer regardless
of the I/O status of the receiving terminal. If another write function is currently in
progress, it finishes the current request and the breakthrough write is the next write issued.
Therefore, the TE.WBT subfunction cannot break through another breakthrough write that
is in progress. The effect of this is that a CTRL/S can stop breakthrough write functions.
Thus, it may be desirable for tasks to time out on breakthrough operations.

If a read is currently posted, the breakthrough write proceeds, and an automatic CTRL/R is
performed to redisplay any input that write breakthrough received before the breakthrough
write was effected (if the terminal is not in the full-duplex mode).

CTRL/O, if in effect, is canceled.
An escape sequence that was interrupted is rubbed out.

Privileged tasks may issue a breakthrough write to any terminal. In addition, a nonprivileged
task may issue a breakthrough write to the task’s terminal. (The privileged MCR command
BRO (broadcast) uses I0.WBT.)

2.4.5 QIOS$C 10.EI0O—Extended I/O Functions

The QIO$C 10.EIO macro allows the use of additional I/O subfunctions. The design of the QIOS
macro, as used with the other QIO$ functions, allows a limited number of I/O subfunctions
to be implemented. With IO.EIO, the address of an item list buffer (stadd) is contained in the
macro statement. The item list buffer contains I0.EIO modifiers (recognizable as subfunctions),
and it allows the use of a maximum of two words of I/O subfunction bits. See Figure 2-1,
which shows the structure of the Item List 1 buffer for use with TF.RLB, and Figure 2-2, which
shows the structure of the Item List 2 buffer for use with TF.WLB.

The QIO$C I0.EIO function reads from or writes to a terminal. The modifiers in the item list
allow you to modify the nature or operation of that read or write. A read (TF.RLB) subfunction
or write (TE.WLB) subfunction must be issued with the IO.EIO function. But both of these
subfunctions cannot be executed together as a logical OR.

Note

IO.EIO function will not work if your terminal has been set as a remote
terminal (RT) to another system. That is, after entering the following command
and logging in to a remote terminal (RT), the terminal driver will reject a QIO
by issuing an extended I/O request from the RT:

>SET HOST xxxxx

Formats
QIO$C IO.EIO!TF.RLB,lun,[efn],[pri],[isb],[ast], <stadd,size>

QIO$C 10.EIO!TF.WLB, lun,[efn],[pri] [isb],[ast], <stadd,size>

Full-Duplex Terminal Driver 2-27

The TF.WLB and TE.RLB subfunctions each allow specific modifiers, which are located in the
item list, to be used with them. They are listed as follows:

Subfunction Modifiers

TE.RLB TF.BIN, TF.RAL, TF.RDI, TF.RES,
TERLU, TF.RNE, TF.RNF, TF.RPR,
TERPT, TFRST,! TERTT,! TFE.TMO,
TF.TNE, TF.XOF

TF.WLB TF.CCO, TF.RCU, TF.WAL, TEWBT,
TF.WIR

Lif both the TF.RST and TF.RTT modifiers are included, TF.RST supersedes the function of TF.RTT.

Parameters

un
Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Chapter 1.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a function value of 0 or a null for
this parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/0O request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this I/O
request by specifying ast. When the 1/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

stadd
Specifies the starting address of the item list of the length specified in size. The address of
the item list must be word aligned and in the task’s address space.

size
Specifies the size of the item list in bytes. The specified size for the I0.EIO!TF.RLB function
cannot exceed 241y bytes. The specified size for the I0.EIO!TF.WLB function cannot exceed
1050 bytes. The item list must be within the task’s address space.

2-28 Full-Duplex Terminal Driver

Subfunction Bits

TF.BIN

Binary Prompt (send prompt as pass all)—The prompt is sent to the terminal without
interpretation by the driver. This is similar, for the prompt, to a write-pass-all operation.

TF.CCO

Cancel CTRL/O—The driver writes a logical block of data to the terminal regardless of a
CTRL/O condition that may be in effect. If the CTRL/O is in effect, it is canceled before
the write occurs. ‘

TF.RAL
Read All Characters (Pass All)—This subfunction allows the passage of all characters to the
requesting task. The driver does not intercept control characters. The characteristic TC.8BC,
when set, allows the driver to pass 8 bits. For example, CTRL/C, CTRL/Q, CTRL/S,
CTRL/O, and CTRL/Z are passed to the task and are not interpreted by the driver.

TF.RCU
Restore Cursor Position—When defining cursor position in a function, you can use the
TF.RCU subfunction to save the current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original (saved) position once the output transfer
has been completed.

TF.RDI

Read with Default Input—The default input that you specified in the extended I/O item
list is displayed as an input line at the start of the read on the terminal. You may change
this line or use it as input to the system. This subfunction is for use with the extended 1/0
function (I0.EIO) only.

TF.RES

Read with Escape Sequence Processing Enabled—This subfunction enables escape sequence
recognition for the read operation in extended I/0; it is effective for one read only.

TF.RLU
Read with Conversion From Lowercase To Uppercase—The task that uses this subfunction

gets input in the buffer in uppercase. This subfunction is used with the extended 1/0
(IO.EIO) function only.

TF.RNE

Read with No Echo—This subfunction reads terminal input characters without echoing the
characters back to the terminal for immediate display. You can use this feature when typing
sensitive information. CTRL/R is ignored while Read With No Echo is in progress.

TF.RNF
Read with No Filter—This subfunction reads and passes through CTRL/U, CTRL/R, and
DELETE characters as normal characters. It is for use with the extended 1I/O (IO.EIO)
function only.

Full-Duplex Terminal Driver 2-29

TF.RPR
Read After Prompt—This subfunction is for use with the extended I/O (IO.EIO) function
only. The TF.RPR subfunction causes a prompt to be sent to the terminal and immediately
follows it with a read function at the terminal. The TF.RPR acts as an IO.WLB followed by
IO.RLB. However, TF.RPR differs from the combination of those two functions as follows:

* System overhead is lower with the TF.RPR because only one QIO$ TF.RPR is processed.

® When using the TF.RPR function, there is no “window” during which a response to the
prompt may be ignored. Such a window occurs if the task uses IO.WLB followed by
an IO.RLB, because no read may be posted at the time the response is received.

® If the issuing task is checkpointable, it can be checkpointed during both the prompt and
the read requested by the TE.RPR.

e A CTRL/O that may be in effect prior to issuing the TF.RPR is canceled before the
prompt is written.

Note

If a TE.RPR function is in progress when the driver receives a CTRL/R or
CTRL/U, the prompt is redisplayed.

TF.RPT
Read in Pass-Through Mode—This subfunction passes all characters except XON/XOFF.
It allows the passage of all characters to the requesting task. The characteristic TC.8BC,
when set, allows the driver to pass 8 bits instead of 7. The driver intercepts the control
characters CTRL/S and CTRL/Q. Other control characters, for example, CTRL/C, CTRL/O,
and CTRL/Z, are passed to the task and are not interpreted by the driver. This subfunction
modifier is for use with the I0.EIO!TF.RLB function only.

TF.RST
Read with Special Terminators—Special characters in the ranges 0 to 037, and 175 to
17740 terminate the read. The driver does not interpret the terminating character. For
example, a DELETE or RUBOUT 177, does not erase, and a CTRL/C does not produce a
CLI prompt or abort tasks active at the terminal if CTRL/C abort is enabled. CTRL/U and
CTRL/R do not perform their usual functions either. All control characters are terminators.

TF.RST sets TE.TNE by default, which means that terminators are not echoed on the terminal
screen.

If uppercase-to-lowercase conversion is disabled, characters 17519 and 176, do not act as
terminators. CTRL/O, CTRL/Q, and CTRL/S (01719, 02149, and 023;¢, respectively) are
not special terminators. The driver interprets them as output control characters in a normal
manner.

Exercise great care when using IO.RAL and TF.RST together. Obscure problems can result
if you use them in this way.

TE.RTT
Read with Specified Terminator Table—This subfunction is for use with the IO.EIO extended
I/O function only. Control characters function normally with the TE.RTT subfunction.
Terminators echo by default. The additional use of subfunction TE.TNE prevents the
echoing of terminators on the terminal screen. If you want to use special control characters

2-30 Full-Duplex Terminal Driver

as terminators, their normal function should be disabled with the TE.RNF subfunction or
the TC.PTH characteristic. The terminator table (a bit mask table) length can be from 1y to
329 bytes where bit 0 is a null character, bit 1 is a CTRL/A, and so forth. The terminator
table address is in the item list of the IO.EIO function. To use ASCII characters 128,y to
25510, the characteristic TC.8BC must be set.

TF.TMO
Read with Timeout—This subfunction allows the use of the tmo parameter to require input
from the terminal within a specified time.

Specify the timeout count in seconds. Timeout is the maximum time allowed between two
input characters before the read is aborted. The maximum timeout value is 255;¢ intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 25539 seconds, issue an asynchronous QIO$ request followed by a
Mark Time directive (MRKT$) for the required interval. Specify different event flags in the
two directives and, after issuing them, wait for the logical OR of the two event flags.

TF.TNE
Read Terminators with No Echo—This subfunction allows reading terminator characters
from the terminal without their being echoed on the terminal screen as they are entered. It
is for use with the extended I/O function IO.EIO only.

TF.WAL
Write All Characters—During the write-pass-all operation specified by this subfunction (as in
IO.WAL or IO.WLB!TF.WAL), the terminal driver outputs characters without interpretation.
It does not intercept control characters, and it does not keep track of cursor position. Long
lines are not wrapped around if 1/O wraparound has been selected.

TF.WBT
Breakthrough Write—Instructs the driver to write the buffer regardless of the I/O status
of the receiving terminal. If another write function is currently in progress, it finishes the
current request and the breakthrough write is the next write issued. Therefore, the TFE.WBT
subfunction cannot break through another breakthrough write that is in progress. The effect
of this is that a CTRL/S can stop breakthrough write functions. Thus, it may be desirable
for tasks to time out on breakthrough operations.

If a read is currently posted, the breakthrough write proceeds, and an automatic CTRL/R
is performed to redisplay any input that was received before the breakthrough write was
effected (if the terminal is not in the full-duplex mode).

CTRL/O, if in effect, is canceled.
An escape sequence that was interrupted is deleted.

Privileged tasks may issue a breakthrough write to any terminal. In addition, a nonprivileged
task may issue a breakthrough write to the task’s terminal.

Full-Duplex Terminal Driver 2-31

TF.WIR
Write with Input Redisplayed—This subfunction performs a write to the terminal. If a read
is in progress at the terminal and you have entered characters in the input line, the prompt
and the characters are redisplayed at the end of the write.

TF.XOF
Send XOFF—This subfunction causes the driver to send an XOFF to the terminal after it is
read. The XOFF (CTRL/S) may have the effect of inhibiting input from the terminal, if the
terminal recognizes XOFF for this purpose. TF.XOF is ignored when full-duplex I/0 is in
use.

2.4.5.1 Item List 1 for 10.EIO!TF.RLB

Figure 2-1 shows the structure of the Item List 1 buffer. You should use the Item List 1 buffer
when you use the TF.RLB function with I0.EIO. Modifier word 2 is currently not used but must
be 0. All the other fields in the item list must be present if they fall before the last pertinent
field. Thus, if a read with prompt (TF.RPR) is not being performed, words 6, 7, and 8 are not
used.

Figure 2-1: Structure of the ltem List 1 Buffer

Word Number Decimal Offset

1 (0]
(1] Modifier Word 1

3 2
(2] Modifier Word 2

5 4
© Address of Read Data Buffer

7 6
(4] Length of Read Data Buffer

9 8
(5] Timeout Value in Seconds

11 10
6] Address of Prompt Buffer

13 12
Q Length of Prompt Buffer

15 14
(5] Prompt VFC

17 16
(9] Terminator Table Address

19 18
{10] Length of Terminator Table

21 20
(1] Default Data Buffer Address

23 22
® Default Data Buffer Length

ZK-4079-85

2-32 Full-Duplex Terminal Driver

© Modifiers (subfunctions) of the group of additional modifiers allowed for any I1/O read
function.

® Currently must be 0.

©® The starting address of the read data buffer. The read data buffer may be on a byte
boundary.

© The size of the read data buffer in bytes. The specified size must be greater than 0 and less
than or equal to 8128 bytes. The buffer must be within the task’s address space.

@ For use with TE.TMO. TE.TMO must be in modifier word 1.

@ For use with TF.RPR and contains the starting address of the prompt buffer. TE.RPR must
be in modifier word 1. The prompt buffer may be on a byte boundary.

@ For use with TF.RPR. The size of the prompt buffer in bytes. The buffer must be within
the task’s address space. The specified size must be greater than 0 and less than or equal
to 8128 bytes.

© For use with TE.RPR. The vfc parameter normally specifies cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as
(1,1). The driver outputs cursor-positioning commands appropriate for the terminal in use
that move the cursor to the specified position. If the most significant bit of the line number
is set, the driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high
byte is 0. See Section 2.8 for more information about the characters your task can use for
vertical format control on the terminal. Any one of these characters can be specified as the
value of the vfc parameter.

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

© For use with TERTT. The TF.RTT function must be in modifier word 1. The table
(110 to 3230 bytes) starts at the address specified by the table address. The first word
contains bits that represent the first 16 ASCII character codes (0 to 17;¢); similarly, the
second word contains bits that represent the next 16 character codes (205 to 3749), and
so forth, through the sixteenth word, bit 15, which represents character code 377,y. For
example, to specify the percent sign (%) symbol (code 04510) as a read terminator character,
set bit 05 in the third word, because the third word of the table contains bits representing
character codes 401y to 57;9.

The terminal must be set for read-pass-all operation (TC.BIN=1) or to read-pass 8 bits
(TC.8BC) if you want to use any of the following characters as terminator characters:

* CTRL/S (023)
e CTRL/Q (021)
® Any characters whose codes are greater than 177;9

® Length of the terminator table specified in the terminator table address field.

Full-Duplex Terminal Driver 2-33

® For use with TF.RDI. TF.RDI must be in modifier word 1. This buffer contains the default
input that is to be displayed on the terminal.

® For use with TE.RDIL. This word contains the length of the buffer at the address specified in
the default data buffer address field.
2.4.5.2 item List 2 for 10.EIO!TF.WLB

You should use the Item List 2 buffer when you use the TE.WLB function with I0.EIO. Modifier
word 2 is not used currently but must be 0. All the other fields in the item list must be present
except the VFC cursor position, which is optional. Item list 2 is shown in Figure 2-2.

Figure 2-2: Structure of the Item List 2 Buffer

Word Number Decimal Offset
(1] 1 0
Modifier Word 1
e 3 2
Modifier Word 2
(3] 5 4
Address of Output Buffer
(4] 7 6
Length of Output Buffer
(5} 9 8
VFC Cursor Position

ZK-4080-85

Modifiers (subfunctions) of the group of modifiers allowed for I/O write functions.
Currently must be 0.

The starting address of the write data buffer. The address may be on a byte boundary.

© 000

The size of the stadd buffer in an even number of bytes. The specified size must be greater
than 0 and less than or equal to 8128 bytes. The buffer must be within the task’s address
space.

© The vfc parameter normally specifies cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as (1,1).
The driver outputs cursor-positioning commands appropriate for the terminal in use that move
the cursor to the specified position. If the most significant bit of the line number is set, the
driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high byte
is 0. See Section 2.8 for more information about the characters your task can use for vertical
format control on the terminal. Any one of these characters can be specified as the value of the
vfc parameter.

2-34 Full-Duplex Terminal Driver

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

2.4.6 QlOSC 10.6TS—Get Terminal Support

The QIO$C 10.GTS macro returns information to a 4-word buffer that specifies which system
generation options are part of the terminal driver. Only two of these words are currently
defined. Table 2-7 gives details for these words. The I0.GTS function is a system generation
option. If IO.GTS is issued on a system without I0.GTS support, IE.IFC is returned in the I/O
status block (IOSB).

Format
QIO$C 10.GTS,lun,[efn],[pri],[isb] [ast], <stadd,size>

Parameters

fun
Specifies the logical unit number of the associated physical device unit to be accessed by
the I/0 request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
1/0 request. For more information refer to Chapter 1.

ast

Allows you to interrupt your task to execute special code upon completion of this 1/0
request by specifying ast. When this 1/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

stadd
Specifies the starting address of the data buffer. The address must be word aligned.

size

Specifies the size of the stadd data bulffer in bytes. The specified size must be 4 bytes. The
buffer must be within the task’s address space.

Full-Duplex Terminal Driver 2-35

The various symbols used by the 10.GTS, SF.GMC, and SF.SMC functions are defined in
a system module, TTSYM. These symbols include Fl.xxx and F2.xxx (Table 2-7); TC.xxx
(Table 2-8); T.xxxx (Table 2-9); and the SE.xxx status returns described in Table 2-10. These
symbols may be defined locally within a code module by using the following:

.MCALL TTSYM$

TfSYM$

Symbols that are not defined locally are automatically defined by the Task Builder (TKB).
Octal values shown for the symbols are subject to change. Therefore, only the symbolic names
should be used.

Table 2-7: Information Returned by Get Terminal Support (10.GTS) QlO$

Octal
Bit Value Mnemonic Meaning When Set to 1

Word 0 of Buffer:

0 1 F1.ACR Automatic CR/LF on long lines
1 2 TF1BTW Breakthrough write
2 4 F1.BUF Checkpointing during terminal input
3 10 F1.UIA Unsolicited input-character AST
4 20 F1.CCO Cancel CTRL/O before writing
5 40 F1.ESQ Recognize escape sequences in solicited input
6 100 F1.HLD Hold-screen mode
7 200 F1.LWC Lowercase-to-uppercase conversion
8 400 F1.RNE Read with no echo
9 1000 F1.RPR Read after prompting
10 2000 F1.RST Read with special terminators
11 4000 F1.RUB CRT rubout
12 10000 F1.SYN CTRL/R terminal synchronization
13 20000 F1.TRW Read all and write all
14 40000 F1.UTB Input characters buffered in task’s address space
15 100000 F1.VBF Variable-length terminal buffers

2-36 Full-Duplex Terminal Driver

Table 2-7 (Cont.): Information Returned by Get Terminal Support (I0.GTS) QIO$

Octal
Bit Value Mnemonic Meaning When Set to 1

Word 1 of Buffer:

0 1 F2.SCH Set characteristics QIO$ (SF.SMC)

1 2 F2.GCH Get characteristics QIO$ (SF.GMCQC)
2 4 F2.DCH Dump /restore characteristics

3 10 F2.DKL Historical RSX-11D or IAS IO.KIL

4 20 F2.ALT ALTMODE is echoed

5 40 F2.SFF Form feed can be simulated

6 100 F2.CUP Cursor positioning

7 200 F2.FDX Full-duplex terminal driver

8 400 F2.EIO Extended 1/0

9 1000 F2.NCT Network command terminal support

2.4.7 QIOSC I0.HNG—Disconnect a Terminal

The QIO$C IO.HNG macro disconnects a terminal that is on a remote line or on a DECnet link.

A nonprivileged task can issue an IO.HNG request for its own terminal (TI) only. A privileged

task can issue IO.HNG to any terminal.

Format
QIO$C IO.HNG,lun,[efn] [pri][isb] [ast]

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by

the I/O request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more

information refer to Chapter 1.

pri

Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this

parameter.

isb

Specifies the address of the I/O status block (I/O status doubleword) associated with the

I/0 request. For more information refer to Chapter 1.

Full-Duplex Terminal Driver 2-37

ast
Allows you to interrupt your task to execute special code upon completion of this I/0
request specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
AST processing.

2.4.8 QIOSC IO.RAL—Read All Characters Without Interpretation

The QIO$C IO.RAL macro causes the driver to pass all characters that were read to the
requesting task. The driver does not intercept control characters. For example, CTRL/C,
CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the program and are not interpreted
by the driver.

Note
IO.RAL echoes the characters that are read. To read all characters without
echoing, use JO.RAL!TF.RNE.

IO.RAL is equivalent to IO.RLB used in a logical OR with the subfunction bit TF.RAL. The
IO.RAL function can be terminated only by a full character count (input buffer full).

Format
!ITF.RNE
ITE.RST . .
QIO$C IO.RAL TETMO | lun,[efn],[pri] [isb] [ast], <stadd,size,[tmo]>
ITF.XOF
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Chapter 1.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/0 request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this 1/0
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

2-38 Full-Duplex Terminal Driver

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size

Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

tmo
Specifies the optional timeout count for use with the TF.TMO subfunction.

Subfunction Bits

TF.RNE
Read with No Echo—This subfunction reads terminal input characters without echoing the
characters back to the terminal for immediate display. You can use this feature when typing
sensitive information. CTRL/R is ignored while Read with No Echo (TF.RNE) is in progress.

TE.RST
Read with Special Terminators—Special characters in the ranges 0 to 037 and 175 to 177
terminate the read. The driver does not interpret the terminating character. For example, a
DELETE (or RUBOUT) does not erase, and a CTRL/C does not produce a CLI prompt or
abort tasks active at the terminal if CTRL/C abort is enabled. Also CTRL/U and CTRL/R
do not perform their usual functions either. All control characters are terminators.

If uppercase-to-lowercase conversion is disabled, characters 175 and 176 do not act as
terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023, respectively) are not
special terminators. The driver interprets them as output control characters in a normal
manner.

Exercise great care when using IO.RAL and TF.RST together. Obscure problems can result
if you use them in this way.

TF.TMO

Read with Timeout—This subfunction allows the use of the tmo parameter to require input
from the terminal within a specified time.

Specify the timeout count in 10-second intervals. Timeout is the maximum time allowed
between two input characters before the read is aborted. The maximum timeout value is
255, intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 255y intervals, issue an asynchronous QIO$ request followed by a
Mark Time directive (MRKT$) for the required interval. Specify different event flags in the
two directives and, after issuing them, wait for the logical OR of the two event flags.

TF.XOF

Send XOFF—The driver sends an XOFF to the terminal after its read. The XOFF (CTRL/S)
may have the effect of inhibiting input from the terminal, if the terminal recognizes XOFF
for this purpose. TF.XOF is ignored when full-duplex I/O is in use.

Full-Duplex Terminal Driver 2-39

2.4.9 QIOSC IO.RNE—Read Input Without Echoing

The IO.RNE function reads terminal input characters without echoing the characters back to the
terminal for display. You can use this feature when typing sensitive information (for example,
a password or combination) or when reading a badge with the RT02-C terminal.

(Note that the no-echo mode can also be selected with the SF.SMC function; see Table 2-8 in
Section 2.4.15, bit TC.NEC.)

CTRL/R is ignored while an IO.RNE is in progress.
The IO.RNE function is equivalent to IO.RLB in a logical OR with the subfunction bit TF.RNE.

Format
'TF.RAL
QIO$C IO.RNE gg 1;1?}0 Jdun,[efn],[pri] [isb] [ast], <stadd size [tmo]>
'TF.XOF
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Chapter 1.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

Isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
1/0 request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this I/O
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

tmo
Specifies the optional timeout count for use with the TFE.TMO subfunction.

2-40 Full-Duplex Terminal Driver

Subfunction Bits

TF.RAL
Read All Characters (Pass All)—This subfunction allows the driver to pass all characters to
the requesting task. The characteristic TC.8BC, when set, allows the driver to pass 8 bits.
For example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the task
and are not interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST (read with special terminators)
together. Obscure problems can result if you use them in this way.

TF.RST
Read with Special Terminators—Special characters in the ranges 0 to 037 and 175 to 177
terminate the read. The driver does not interpret the terminating character. For example,
a DELETE (or RUBOUT) does not erase, and a CTRL/C does not produce a command
line interpreter (CLI) prompt or abort tasks active at the terminal if CTRL/C abort is
enabled. Also CTRL/U and CTRL/R do not perform their usual functions either. All
control characters are terminators.

If uppercase-to-lowercase conversion is disabled, characters 175 and 176 do not act as
terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023, respectively) are not
special terminators. The driver interprets them as output control characters in a normal
manner.

Exercise great care when using TF.RAL (read all) and TF.RST (read with special terminators)
together. Obscure problems can result if you use them in this way.

TF.TMO

Read with Timeout—This subfunction allows the use of the tmo parameter to require input
from the terminal within a specified time.

Specify the timeout count in 10-second intervals. Timeout is the maximum time allowed
between two input characters before the read is aborted. The maximum timeout value is
2559 intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 255, intervals, issue an asynchronous QIO$ request followed by a
Mark Time directive (MRKT$) for the required interval. Specify different event flags in the
two directives and, after issuing them, wait for the logical OR of the two event flags.

TF.XOF
Send XOFF—The driver sends an XOFF to the terminal after it is read. The XOFF (CTRL/S)
may have the effect of inhibiting input from the terminal, if the terminal recognizes XOFF
for this purpose. TF.XOF is ignored when full-duplex 1/O is in use.

Full-Duplex Terminal Driver 2-41

2.4.10 QIOSC I0.RPR—Read with Prompt

The QIO$C IO.RPR macro sends a prompt to the terminal and immediately follows it with
a read function at the terminal. The IO.RPR functions as an IO.WLB (write a prompt to the
terminal) followed by IO.RLB. However, IO.RPR differs from the combination of those two
functions as follows:

* System overhead is lower with the IO.RPR because only one QIO$ is processed.

¢ When you use the IO.RPR function, there is no “window” during which a response to the
prompt may be ignored. Such a window occurs if the task uses IO.WLB/IO.RLB, because
no read may be posted at the time the response is received.

e If the issuing task is checkpointable, it can be checkpointed during both the prompt and
the read requested during the IO.RPR.

¢ A CTRL/O that may be in effect prior to issuing the IO.RPR is canceled before the prompt
is written.

Subfunction bits may be excuted as a logical OR with IO.RPR to write the prompt as a “write
all” (TF.BIN) and to send XOFF after the read (TF.XOF). In addition, your task can use TF.RAL,
TF.RNE, and TF.RST with IO.RPR.

Note

If an IO.RPR function is in progress when the driver receives a CTRL/R or
CTRL/U, the prompt is redisplayed.

Format
ITF.BIN
ITF.RAL

QIO$C IO.RPR gl;gg‘f Jun, [efn] [pri [isb].[ast], <stadd,size,[tmo] pradd,prsize,vfc>

ITF.TMO
{TF.XOF

Parameters

lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the I/O request. For more information refer to Chapter 1.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.
isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
* I/O request. For more information refer to Chapter 1.

2-42 Full-Duplex Terminal Driver

ast
Allows you to interrupt your task to execute special code upon completion of this /O
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
AST processing,

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

tmo
Specifies the optional timeout count for use with the TF.TMO subfunction.

pradd
Specifies the starting address of the byte buffer where the prompt is stored.

prsize
Specifies the size of the pradd prompt buffer in bytes. The specified size must be greater
than 0 and less than or equal to 8128 bytes. The buffer must be within the task’s address
space.

vic
Specifies the cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as
(1,1). The driver outputs cursor-positioning commands appropriate for the terminal in use
that move the cursor to the specified position. If the most significant bit of the line number
is set, the driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high
byte is 0. See Section 2.8 for more information about the characters your task can use for
vertical format control on the terminal. Any one of these characters can be specified as the
value of the vfc parameter.

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

Subfunction Bits

TF.BIN
Binary Prompt (send prompt as pass all)—As used in IO.RPR, the TF.BIN subfunction
results in a “binary” prompt; that is, a prompt is sent to the terminal by the driver with
no character interpretation (as if it were issued as an IO.WAL). The read follows the binary
prompt.

Full-Duplex Terminal Driver 2-43

TF.RAL
Read All Characters (Pass All)—The driver passes all characters to the requesting task. The
characteristic TC.8BC, when set, allows the driver to pass 8 bits. For example, CTRL/C,
CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the task and are not interpreted
by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST (read with special terminators)
together. Obscure problems can result if you use them in this way.

TF.RNE
Read with No Echo—This subfunction reads terminal input characters without echoing the
characters back to the terminal for immediate display. You can use this feature when typing
sensitive information. CTRL/R is ignored while TF.RNE is in progress.

TF.RST
Read with Special Terminators—Special characters in the ranges 0 to 037 and 175 to 177
terminate the read. The driver does not interpret the terminating character. For example, a
DELETE (or RUBOUT) does not erase, and a CTRL/C does not produce a CLI prompt or
abort tasks active at the terminal if CTRL/C abort is enabled. Also CTRL/U and CTRL/R
do not perform their usual functions either. All control characters are terminators.

TF.RST sets TE.TNE by default, which means that terminators are not echoed on the terminal
screen.

If lowercase-to-uppercase conversion is disabled, characters 175 and 176 do not act as
terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023, respectively) are not
special terminators. The driver interprets them as output control characters in a normal
manner.

Exercise great care when using TF.RAL and TF.RST together. Obscure problems can result
if you use them in this way.

TF.TMO
Read with Timeout—This subfunction allows the use of the tmo parameter to require input
from the terminal within a specified time.

Specify the timeout count in 10-second intervals. Timeout is the maximum time allowed
between two input characters before the read is aborted. The maximum timeout value is
255, intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 255y intervals, issue an asynchronous QIO$ request followed by a
Mark Time directive (MRKT$) for the required interval. Specify different event flags in the
two directives and, after issuing them, wait for the logical OR of the two event flags.

TF.XOF
Send XOFF—The driver sends an XOFF to the terminal after its prompt-and-read. The
XOFF (CTRL/S) may have the effect of inhibiting input from the terminal, if the terminal
recognizes XOFF for this purpose. TF.XOF is ignored when full-duplex 1/0 is in use.

2-44 Full-Duplex Terminal Driver

2.4.11 QIOSC I0.RST—Read Logical Block with Special Terminators

A QIO$C IO.RST reads a block of data from the terminal. This function is equivalent to an
IO.RLB!TF.RST. Certain special characters in the ranges 0 to 037 and 175 to 177 terminate
the read. The driver does not interpret the terminating character. For example, a DELETE or
RUBOUT 1774y does not erase, and a CTRL/C does not produce a command line interpreter
(CLI) prompt or abort tasks active at the terminal if CTRL/C abort is enabled. Also CTRL/U
and CTRL/R do not perform their usual functions. All control characters are terminators.

If lowercase-to-uppercase conversion is disabled, characters 175 and 176 do not act as
terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control characters in a normal manner.

Upon successful completion of an IO.RST request that was not terminated by filling the input
buffer, the first word of the I/O status block (IOSB) contains the terminating character in the
high byte and the 1S.SUC status code in the low byte. The second word contains the number
of bytes contained in a buffer. The terminating character is not put in the buffer.

Format
ITE.RAL
ITE.RNE o .
QIO$C IO.RST TE TMO Jun,efn,[pri][isb] [ast], <stadd,size,tmo>
ITE.XOF
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/0 request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the 1/0 status block (I/O status doubleword) associated with the
I/0 request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this I/O
request by specifying ast. When this /O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

stadd

Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

Full-Duplex Terminal Driver 2-45

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

tmo
Specifies the optional timeout count for use with the TF.TMO subfunction.

Subfunction Bits

TF.RAL
Read All Characters (Pass All)—The driver passes all characters to the requesting task. The
characteristic TC.8BC, when set, allows the driver to pass 8 bits. For example, CTRL/C,
CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the task and are not interpreted
by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST (read with special terminators)
together. Obscure problems can result if you use them in this way.

TF.RNE
Read with No Echo—This subfunction reads terminal input characters without echoing the
characters back to the terminal for immediate display. You can use this feature when typing
sensitive information.

TF.TMO
Read with Timeout—This subfunction allows the use of the tmo parameter to require input
from the terminal within a specified time.

Specify the timeout count in 10-second intervals. Timeout is the maximum time allowed
between two input characters before the read is aborted. The maximum timeout value is
255, intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 255, intervals, issue an asynchronous QIO$ request followed by a
Mark Time directive (MRKTS$) for the required interval. Specify different event flags in the
two directives and, after issuing them, wait for the logical OR of the two event flags.

TF.XOF
Send XOFF—The driver sends an XOFF to the terminal after it is read. The XOFF (CTRL/S)
may have the effect of inhibiting input from the terminal, if the terminal recognizes XOFF
for this purpose. TF.XOF is ignored when full-duplex I/0 is in use.

2.4.12 QIOS 10.RTT—Read with Terminator Table

The QIO$C IO.RTT macro reads characters like the QIO$C 10.RLB macro, except that a character
that you have previously specified terminates the read operation. The specified character’s code
can range from 0 to 377s. You can specify it by setting a bit in a 16-word table, which you
specify, that corresponds to the desired character. Multiple characters can be specified by setting
their corresponding value.

2-46 Full-Duplex Terminal Driver

The 16-word table starts at the address specified by the table parameter. The first word contains
bits that represent the first 16 ASCII character codes (0 to 17); similarly, the second word
contains bits that represent the next 16 character codes (20 to 37), and so forth, through the
sixteenth word, bit 15, which represents character code 377. For example, to specify the percent
(%) symbol (code 045) as a read terminator character, set bit 05 in the third word, because the
third word of the table contains bits representing character codes 40 to 57.

If you want to use the CTRL/S (023), CTRL/Q (021), or any characters greater than 177 as the
terminator characters, the terminal must be set to allow a read-pass-all operation (TC.BIN=1),
or read-pass 8 bits (TC.8BC), as listed in Table 2-8 in Section 2.4.15.

The optional timeout count parameter may be included as desired.

Format
ITF.RAL
QIO$C IO.RTT :gg;‘é lun,[efn],[pri] [isb],[ast], <stadd,size,[tmo],table>
ITE.TMO
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/0 request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
1/0 request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this 1/0
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size

Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

Full-Duplex Terminal Driver 2-47

tmo
Specifies the optional timeout count for use with the TE.TMO subfunction.

tabie
Specifies the address of the 16-word, user-specified terminator table that you create in your
task.

Subfunction Bits

TF.RAL
Read All Characters (Pass All)—The driver passes all characters to the requesting task. The
characteristic TC.8BC, when set, allows the driver to pass 8 bits. For example, CTRL/C,
CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the task and are not interpreted
by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST (read with special terminators)
together. Obscure problems can result if you use them in this way.

TF.RCU
Restore Cursor Position—When defining cursor position in a function, you can use the
TF.RCU subfunction to save the current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original (saved) position once the output transfer
has been completed.

TF.RNE
Read with No Echo—This subfunction reads terminal input characters without echoing the
characters back to the terminal for immediate display. You can use this feature when typing
sensitive information. CTRL/R is ignored while TF.RNE is in progress.

TF.TMO
Read with Timeout—This subfunction allows the use of the tmo parameter to require input
from the terminal within a specified time.

Specify the timeout count in 10-second intervals. Timeout is the maximum time allowed
between two input characters before the read is aborted. The maximum timeout value is
2551 intervals.

If 0 is specified, the read times out immediately after reading any data that may be in the
type-ahead buffer. In other words, if you enter a 0, no time is allowed for you to enter
characters, and all characters are read from the type-ahead buffer.

If you need more than 255 intervals, issue an asynchronous QIO$ request followed by a
Mark Time directive (MRKTS$) for the required interval. Specify different event flags in the
two directives and, after issuing them, wait for the logical OR of the two event flags.

2.4.13 QIOSC I0.WAL—Write a Logical Block and Pass All Characters

The QIO$C IO.WAL macro causes the driver to pass all output from the buffer without
interpretation. It does not intercept control characters. Long lines are not wrapped around if
I/O wraparound has been selected.

IO.WAL is equivalent to the IO.WLB!TF.WAL function.

2-48 Full-Duplex Terminal Driver

Format

'TE.CCO
QIO$C IO.WAL ¢ ITF.RCU Aun,[efn],[pri],[isb] [ast], <stadd,size,vfc>
'TFE.WBT
Parameters
tun

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/O request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the I/O status block (I/O status doubleword) associated with the
I/0 request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this 1/0
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
AST processing.

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

vfc
Specifies the cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as
(1,1). The driver outputs cursor-positioning commands appropriate for the terminal in use
that move the cursor to the specified position. If the most significant bit of the line number
is set, the driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high
byte is 0. See Section 2.8 for more information about the characters your task can use for
vertical format control on the terminal. Any one of these characters can be specified as the
value of the vfc parameter.

Full-Duplex Terminal Driver 2-49

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

Subfunction Bits

TF.CCO
Cancel CTRL/O—The driver writes a logical block of data to the terminal regardless of a
CTRL/O condition that may be in effect. The CTRL/O, if in effect, is canceled before the
write occurs.

During a write-pass-all operation (I0.WAL or I0O.WLB!TF.WAL), the terminal driver outputs
characters without interpretation; it does not keep track of cursor position.

TF.RCU
Restore Cursor Position—When defining cursor position in a function, you can use the
TF.RCU subfunction to save the current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original (saved) position once the output transfer
has been completed.

During a write-pass-all operation (I0.WAL or IO.WLB!TF.WAL), the terminal driver outputs
characters without interpretation; it does not keep track of cursor position.

TF.WBT
Breakthrough Write—This subfunction instructs the driver to write the buffer regardless
of the I/O status of the receiving terminal. If another write function is currently in
progress, it finishes the current request and the breakthrough write is the next write issued.
Therefore, the TFE.WBT subfunction cannot break through another breakthrough write that
is in progress. The effect of this is that a CTRL/S can stop breakthrough write functions.
Thus, it may be desirable for tasks to time out on breakthrough write operations.

If a read is currently posted, the breakthrough write proceeds, and an automatic CTRL/R
is performed to redisplay any input that was received before the breakthrough write was
effected (if the terminal is not in the full-duplex mode).

CTRL/O, if in effect, is canceled.
An escape sequence that was interrupted is deleted.

Privileged tasks may issue a breakthrough write to any terminal. In addition, a nonprivileged
task may issue a breakthrough write to the task’s terminal.

During a write-pass-all operation, (I0.WAL or IO.WLB!TF.WAL) the terminal driver outputs
characters without interpretation; it does not keep track of cursor position.

2-50 Full-Duplex Terminal Driver

2.4.14 QlOSC 10.WBT—Break Through to Write a Logical Block

The QIO$C I0.WBT macro instructs the driver to write the buffer regardless of the I/O status
of the receiving terminal. If an IO.WBT function is issued on a system that does not support
I0.WBT, it is treated as an 10.WLB function. The IO.WBT macro works as follows:

e If another write function is currently in progress, it finishes the current request and the
IO.WBT is the next write issued. The effect of this is that a CTRL/S can stop I0.WBT
functions. Therefore, it may be desirable for tasks to time out on I0.WBT operations.

* If a read is currently posted, the IO.WBT proceeds, and an automatic CTRL/R is performed
to redisplay any input that was received before the breakthrough write was effected (if the
terminal is not in the full-duplex mode).

e If CTRL/O is in effect, it is canceled.
e An escape sequence that was interrupted is deleted.
An IO.WBT function cannot break through another IO.WBT that is in progress.

Privileged tasks may issue a breakthrough write to any terminal. In addition, a nonprivileged
task may issue a breakthrough write to the task’s terminal. The privileged MCR command BRO
(broadcast) uses I10.WBT.

Format
ITF.CCO
QIO$C IO.WBT | ITE.RCU | ,lun,[efn][pri][isb][ast] <staddsizevfc>
ITF.WAL
Parameters
lun

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/0 request. For more information refer to Chapter 1.

efn

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb

Specifies the address of the 1/O status block (I/O status doubleword) associated with the
1/0 request. For more information refer to Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this I/O
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

Full-Duplex Terminal Driver 2-51

stadd
Specifies the starting address of the data buffer. Stadd may be on a byte boundary.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.

vic
Specifies the cursor position.

If the parameter defines cursor position, the high byte must be a nonzero number. The low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as
(1,1). The driver outputs cursor-positioning commands appropriate for the terminal in use
that move the cursor to the specified position. If the most significant bit of the line number
is set, the driver clears the display before positioning the cursor.

However, the parameter is interpreted as a vertical forms control (vfc) parameter if its high
byte is 0. See Section 2.8 for more information about the characters your task can use for
vertical format control on the terminal. Any one of these characters can be specified as the
value of the vfc parameter.

Terminal-independent cursor control capability is provided at system generation time. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use.

Subfunction Bits

TF.CCO
Cancel CTRL/O—The driver writes a logical block of data to the terminal regardless of a
CTRL/O condition that may be in effect. If the CTRL/O is in effect, it is canceled before
the write occurs. The IO.WBT function implies the subfunction TF.CCO; therefore, using
IO.WBT!TF.CCO is redundant.

TF.RCU
Restore Cursor Position—When defining cursor position in a function, you can use the
TE.RCU subfunction to save the current cursor position. TF.RCU causes the driver first to
save the current cursor position, then to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original (saved) position once the output transfer
has been completed.

TF.WAL
Write All Characters—During a write-pass-all operation (as in I0.WAL or IO.WLB!TF.WAL),
the terminal driver outputs characters without interpretation. It does not intercept control
characters, and it does not keep track of cursor position. Long lines are not wrapped around
if I/O wraparound has been selected.

2-52 Full-Duplex Terminal Driver

2.4.15

QIOSC SF.GMC—Get Multiple Characteristics

The QIO$ SF.GMC macro returns terminal information into a specified buffer. Table 2-8 shows

the
the

terminal characteristics that can be obtained with the QIO$ SF.GMC macro and set with
QIO$ SF.SMC macro.

Format

QIO$C SF.GMC lun,[efn],[pri] [isb],[ast], <stadd,size>

Parameters

lun

efn

prl

isb

ast

Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/O request. For more information refer to Chapter 1.

Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

Specifies the address of the I/O status block (I/O status doubleword) associated with the
1/0 request. For more information refer to Chapter 1, but consider the following exception.

For SF.GMC, the contents of the I/O Status Block (IOSB) is different from that described
in Chapter 1. The first word of the status block is the same as the first word of the status
block described in Chapter 1. However, the second word is not the same. For SF.GMC
or SF.SMC, the second word contains the number of bytes in the specified user buffer that
were sucessfully processed. For example, if you have a characteristic in the buffer that
caused an error, ISB+2 (the second word) will contain the offset to the characteristic.

Allows you to interrupt your task to execute special code upon completion of this 1/0
request by specifying ast. When the I/0 request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
AST processing.

stadd

Specifies the starting address of a data buffer of length “size” bytes. For most characteristics,
each word in the buffer has the following form:

.BYTE characteristic-name
.BYTE O

Full-Duplex Terminal Driver 2-53

characteristic-name

Specifies one of the bit names that is given in Table 2-8. The value returned in the high
byte of each byte-pair is 1 if the characteristic is true for the terminal and the value is 0 if
the characteristic is not true. Some characteristics require a different buffer format. These
formats are described in Section 2.4.16.1.

size
Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.
For SF.GMC, size must be an even value. For the TC.TTP characteristic (terminal type),

one of the values shown in Table 2-9 is returned in the high byte.

Table 2-8: Terminal Characteristics for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name Value Meaning (If Asserted) MCR Command
TC.ABD 77 Specifies autobaud detection. SET /ABAUD=TTnn:
TC.ACD 103 Specifies the ancillary control driver. -
The value is determined by system
manager.
TC.ACR 24 Specifies wraparound mode. SET /WRAP=TTnn:
TC.ANI 122 Specifies an ANSI CRT terminal. SET /ANSI=TTnn:
TC.ASP 76 Specifies remote line answer speed and SET /REMOTE=TTnn:speed
initial speed over dial-up line.
TC.AVO 123 Specifies VT100-family terminal display. SET /AVO=TTnn:
TC.BIN 65 Specifies binary input mode (read-pass- SET /RPA=TTnn:
all). No characters are interpreted as
control characters.
TC.BLK 42 Specifies that the terminal is capable of SET /BLKMOD=TTnn:
block mode transfers.
TC.CLN 152 Specifies 7- or 8-bit character size at the SET /CHAR_LENGTH
hardware level.
TC.CTS 72 Suspends output to a terminal. The task -
can cancel an input "S or get the current
state of the terminal with regard to "S
or "Q, as follows:
0 = Resume
1 = Suspend
TC.DEC 124 Specifies a DIGITAL CRT terminal. SET /DEC=TTnn:

2-54 Full-Duplex Terminal Driver

Table 2-8 (Cont.):

Terminal Characteristics for SF.GMC and SF.SMC Functions

Bit
Name

Octal
Value

Corresponding
Meaning (If Asserted)

MCR Command

TC.DLU!

TC.EDT

TC.EPA

TC.ESQ

TC.FDX
TC.HFF

TC.HFL

TC.HHT

TC.HLD

TC.HSY

TC.ICS

41

125

40

35

64
17

13

21

44

132

141

Specifies a dial-up line as follows:

0 = Local line

1 = Remote line

2 = Remote line with autocall enabled

Specifies terminal performs editing func-
tions.

Specifies the following when TC.PAR is
enabled:

0 = Odd parity

1 = Even parity

Specifies input escape sequence recogni-
tion.

Specifies full-duplex mode.

Specifies hardware form-feed capability.
(If 0, form feeds are simulated using
TC.LPP.)

Specifies the number of fill characters
to insert after a carriage return (0-7=x).
(Use a value of 7 for the LA30-S.)

Specifies horizontal tab capability. (If
0, horizontal tabs are simulated using
spaces.)

Specifies hold screen mode and indicates
the terminal has the ability to hold
screen. This feature is not supported
over the network (NCT).

Specifies host-to-terminal synchroniza-
tion. This bit is sent when resources are
low. XON is sent when resources are
high. XOFF prevents terminal character
input, as follows:

0 = No flow control

1 = Flow control exerted

Indicates change in type-ahead buffer
(input count state).

SET /REMOTE-TTnn:

SET /EDIT=TTnn:

SET /ESCSEQ=TTnn:

SET /FDX=TTnn:
SET /FORMFEED=TTnn:

SET /HFILL=TTnn:x

SET /HHT=TTnn:

SET /HOLD=TTnn:

XOFFSET /HSYNC=TTnn:

1o program can enable the autocall feature of the DF03 modem by setting TC.DLU to a value of 2. Autocall allows you to use the terminal to
dial out of the computer. (This is in addition to receiving incoming calls.) While in this mode, read and write requests are serviced even when
a line is not in use. Consequently, I/O requests do not fail when the line is hung-up, which is the case for remote lines (TC.DLU=1).

Full-Duplex Terminal Driver 2-55

Table 2-8 (Cont.): Terminal Characteristics for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name Value Meaning (If Asserted) MCR Command
TC.ISL 6 Gets MUX subline (=0-15) on interface -

to which user is connected (SF.GMC

only).
TC.LPP 2 Specifies page length (1-255;=x). SET /LINES=TTnn:x
TC.MAP 154 Specifies LAT application terminal. Broadcasting

is disabled and no unsolicited input is
accepted by default.

TCMHU 145 Declares modem hang-up asynchronous -
system trap (AST). Specifies address of
AST activated by lost carrier.

TC.NBR 102 Indicates broadcast disabled. SET /NOBRO=TTnn:
TC.NEC 47 Indicates echo suppressed. SET /NOECHO=TTnn:
TC.00B 140 Specifies out-of-band characters and -

whether they are included in the type-
ahead buffer, and whether they are to
clear the type-ahead buffer.

TC.PAR 37 Generates and checks parity. SET /PARITY=TTnn:
TC.PPT 147 Specifies that the terminal has a printer SET /PRINTERPORT=TTnn:
port.
TC.PRI 51 Specifies that the terminal is privileged SET /PRIV=TTnn:
(SF.GMC only).
TC.PTH 146 Specifies pass through enable. Only SET /PASTHRU=TTnn:
CTRL/S and CTRL/Q are honored as
follows:

1 = Pass Through
0 = Default; no pass through

TC.QDP 153 Specifies queue-depth of LAT applica- -
tion terminal as follows:
0 = Connected
1 = Disconnected
1-255,p= Queue-depth
(SF.GMC only)

TC.RAT 7 Specifies the type-ahead buffer as fol- SET /TYPE-AHEAD=TTnn:
lows:
0 = 1-character type-ahead
1 = 36-character type-ahead

TC.RGS 126 Specifies that the terminal supports SET /REGIS=TTnn.
ReGIS instructions.

2-56 Full-Duplex Terminal Driver

Table 2-8 (Cont.):

Terminal Characteristics for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name Value Meaning (If Asserted) MCR Command
TC.RSP 3 Specifies receiver speed (bps). SET /SPEED=TTnn:rcv:xmit
TC.SCP 12 Specifies that the terminal is a scope SET /CRT=TTnn:
(CRT).
TC.SFC 131 Specifies that the terminal supports soft SET /SOFT=TTnn:
character set.
TC.SLV 50 Indicates that no unsolicited input is SET /SLAVE=TTnn:
accepted.
TC.SMR 25 Specifies that uppercase conversion dis- SET /LOWER=TTnn:
abled.
TC.SSC 142 Specifies terminal management switch -
characters. These characteristics cause
a switch from normal mode to terminal
management mode.
TC.SXL 150 Indicates that the printer supports sixel -
graphics.
TC.TBF 71 Specifies the type-ahead buffer count -
obtained by SF.GMC. The count is
cleared by SF.SMC.
TC.TBM 101 Specifies type-ahead buffer mode as SET /SERIAL=TTnn:
follows:
0 = Task type-ahead
1 = CLI type-ahead
TC.TBS 100 Indicates type-ahead buffer size (0- SET /TYPE-AHEAD=TTnn:x
255;0=x) (RSX-11M-PLUS I/D systems
only).
TC.TLC 130 Indicates that CLI gets CTRL/C notifi- SET /CTRLC=TTnn:
cation.
TC.TMM 143 Indicates that characteristics are in ter- -

minal management mode. The bit is set
when switch characters have been de-
tected and terminal management mode
is active. The bit is cleared by QIO$
SF.SMC. The mode is indicated as fol-
lows:

1 = In terminal management mode.

0 = Exit terminal management mode.

Full-Duplex Terminal Driver 2-57

Table 2-8 (Cont.): Terminal Characteristics for SFFGMC and SF.SMC Functions

Bit Octal Corresponding
Name Value Meaning (If Asserted) MCR Command
TC.TSY 144 Specifies output flow control. Allows SET /TTSYNC=TTnn:

input XON or XOFF to function. XOFF
prevents output from the terminal as
follows:

0 = XON/XOFF ignored

1 = Default; process XON/XOFF

TC.TTP 10 Indicates the terminal type (0-255,p=x.) SET /X=TTnn:
SET /TERM=TTnn:x
TC.VFL 14 Sends four fill characters after line feed SET /VFILL=TTnn:
for vertical forms control.
TC.WID? 1 Specifies the page width (1-255p=x.) SET /BUF=TTnn:x
TC.XSP 4 Specifies the transmitter speed (bps). SET /SPEED=TTnn:rcv:xmit
TC.8BC 67 Passes 8 bits on input, even if not binary SET /EBC=TTnn:

input mode (TC.BIN).

2Unsolicited input that fills the buffer before a terminator is received is possibly invalid. When this happens, the driver discards the input by
simulating a CTRL/U and by echoing "U.

In Table 2-9, the octal values 0 to 177 are reserved by DIGITAL. Values 200 to 377 are available
for customer use to define non-DIGITAL terminals. The implicit characteristics shown are set by
the driver. Values not shown are not automatically set by the driver. An “unknown” terminal
type has no implicit characteristics.

Table 2-9: Bit TC.TIP (Terminal Type) Values Set by SF.SMC and Returned by SF.GMC
Implicit Characters

Octal Terminal
Value Symbol Type TC.LPP TCWID TC.HFF TCHHT TCHFL TC.VFL TC.TTP
0 T.UNKO Unknown

1 T.AS33 ASR33 66 72 1

2 T.KS33 KSR33 66 72 1

3 T.AS35 ASR35 66 72 1

4 T.L30S LA30S 66 80 7

5 T.L30P LA30P 66 80

6 T.LA36 LA36 66 132

7 T.VT05 VT05 20 72 1 1 1
10 T.VT50 VT50 12 80 1 1

2-58 Full-Duplex Terminal Driver

Table 2-9 (Cont.): Bit TC.TTP (Terminal Type) Values Set by SF.SMC and Returned by

SF.GMC
Octal Terminal Implicit Characters
Value Symbol Type TC.LPP TC.WID TCHFF TCHHT TCHFL TC.VFL TC.TTP
11 T.VI52 VT52 24 80 1 1
12 T.VI55 VTI55 24 80 1 1
13 T.VI61 VTél 24 80 1 1
14 T.L180 LA180S 66 132 1
15 T.V100 VT100 24 80 1 1
16 T.L120 LA120 66 132 1
20 T.LA12 LA12 66 132 1
21 T.L100 LA100 66 132 1
22 T.LA34 LA34 66 132 1
23 T.LA38 LA38 66 132 1
24 T.V101 VT101 24 80 1 1
25 T.V102 VT102 24 80 1 1
26 T.V105 VT105 24 80 1 1
27 T.VI25 VT125 24 80 1 1
30 T.V131 VT131 24 80 1 1
31 T.V132 VT132 24 80 1 1
32 T.LA50 LA50 66 80
33 T.LQP1 LQPO1 66 132
34 T.LQP2 LQPO2 66 132
35 T.PC3X PC3XX 24 80
36 T.V2XX VT2XX 24 80
37 T.LNO3 LNO3 66 132
40 T.DTC1 DTCO1 66 132
41 T.L210 LA210 66 132
42 T.LQP3 LQPO3 66 132
43 T.LA75 LA75 66 80
44 T.L2XX LA2XX 66 132

Full-Duplex Terminal Driver

2-59

2.4.15.1 Characteristic Bit Special Information
The following bits have special, additional information:
* TC.HLD—Effective for VT5x and VT61 only.

] TC.RSP, TC.XSP, and TC.ASP—The list of baud rates in bps and valid MCR SET /SPEED
or SET /REMOTE values that may be set is as follows:

TC.ASP, TC.RSP, or Baud Rate (in bps) and
TC.XSP Value Valid MCR SET Values
S.0 (Disabled)

5.50 50 (Baudot codes are not supported)
S.75 75

S.110 110

5.134 134

5.150 150

5.200 200

$.300 300

5.600 600

S.1200 1200

S5.1800 1800

S$.2000 2000

5.2400 2400

S$.3600 3600

S.4800 4800

S.7200 7200

S.9600 9600

S.EXTA (DH11 external speed A)
S.EXTB (DH11 external speed B)
5.19.2 19200 (Not available on DZQ11 or DZV11)

Speed can be set only on the following controllers:
e DH11/DZ11

e DHUI11/DHV11/DHQ11

¢ C(CXA16/CXB16

* CXY08

2-60 Full-Duplex Terminal Driver

DZV11 and DZQ11 transmitter and receiver speeds must be equal (no split baud rates are
permitted). Only one value may be specified for the remote answer speed. This value
applies to both the transmitter and the receiver.

¢ TC.TTP—When the terminal driver reads this bit, the driver sets implicit values for terminal
characteristics TC.LPP, TC.WID, TC.HFF, TC.HFL, TC.HHT, TC.VFL, and TC.SCP, as shown
in Table 2-9. You can change (override) these values by subsequent 10.SMC requests. In
addition, the terminal driver uses TC.TTP to determine cursor positioning commands, as
appropriate.

e TC.CTS—Returns the present suspend (CTRL/S), resume (CTRL/Q), or suppress (CTRL/O)
state set via the SF.SMC function. Values returned are as follows:

Value
Returned State
0 Resume (CTRL/Q)
1 Suspend (CTRL/S)
2 Suppress (CTRL/O)
3 Both suppress and suspend

When a value of 0 is used with the SF.SMC function, the suspend state is cleared; a value
of 1 selects the suspend state.

e TC.TBF—Returns the number of unprocessed characters in the type-ahead buffer for the
specified terminal. This allows tasks to determine whether any characters were typed that
did not require AST processing. In addition, you can use the value returned to read the
exact number of characters typed, rather than a typical value of 80 or 132y characters
for the terminal. Please note the following three items when attempting to use the number
returned by TC.TBF:

1. The task must attach the terminal to receive characters from the type-ahead buffer.

2. The maximum capacity of the type-ahead buffer is 255,9 characters for RSX-11M-PLUS
and Micro/RSX systems.

3. Using TC.TBF in an SF.SMC function flushes the type-ahead buffer.
2.4.16 QIO$C SF.SMC—Set Multiple Characteristics

The QIO$C SF.SMC macro enables a task to set and reset the characteristics of a terminal.
SF.SMC is the inverse function of SF.GMC (Get Multiple Characteristics).

Table 2-8 notes the terminal characteristics for both the SF.SMC and the SF.GMC functions.

If the characteristic-name is TC.TTP (terminal type), the octal value that corresponds to the
terminal type can have any one of the values listed in Table 2-9.

A nonprivileged task can issue an SF.SMC request for its own terminal (TI) only. A privileged
task can issue SF.SMC to any terminal.

Full-Duplex Terminal Driver 2-61

2-62

Terminal output can be suspended or resumed (simulated CTRL/S and CTRL/Q, respectively)
by specifying an appropriate value for TC.CTS. A value of 0 resumes output and a value of 1
suspends output. Specifying any value for TC.TBF flushes (clears) the type-ahead buffer (forces
the type-ahead buffer count to 0).

For SF.SMC, the contents of the I/O Status Block (IOSB) is different from the contents of the
IOSB described in Chapter 1. The first word of the status block is the same as that in Chapter 1.
However, the second word is not the same. For SF.GMC or SF.SMC the second word contains
the number of bytes in the specified user buffer that were sucessfully processed. For example,
if you have a characteristic in the buffer that caused an error, ISB+2 (the second word) will
contain the offset to the characteristic.

Format
QIO$C SF.SMC lun,[efn],[pri] [isb] [ast], <stadd,size>

Parameters

lun
Specifies the logical unit number of the associated physical device unit to be accessed by
the 1/0 request. For more information refer to Chapter 1.

efn
Specifies the number of the event flag to be associated with the QIO$ operation. For more
information refer to Chapter 1.

pri
Makes this QIO$ macro compatible with RSX-11D. Use a value of 0 or a null for this
parameter.

isb
Specifies the address of the 1/O status block (I/O status doubleword) associated with the
I/0 request. For more information refer to Chapter 1; however, the IOSB used for SF.SMC
is different from the IOSB described in Chapter 1.

ast
Allows you to interrupt your task to execute special code upon completion of this 1/0
request by specifying ast. When this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting task. Omit ast or specify 0 to omit
asynchronous system trap (AST) processing.

stadd

Specifies the starting address of a buffer of length “size” bytes. The address must be word
aligned for SF.SMC. Except for the characteristics TC.MHU, TC.SSC, TC.OOB, and TC.MAP,
each word in the buffer has the following form:

.BYTE characteristic-name
.BYTE value

Full-Duplex Terminal Driver

characteristic-name
Specifies one of the symbolic bit names given in Table 2-8.

value

Specifies either 0 (to clear a given characteristic) or 1 (to set a characteristic).

size

Specifies the size of the stadd data buffer in bytes. The specified size must be greater than
0 and less than or equal to 8128 bytes. The buffer must be within the task’s address space.
For SF.SMC, size is an even value.

2.4.16.1 Processing for TC.MAP, TC.MHU, TC.SSC, and TC.OOB

The characteristics, TC.MAP, TC.MHU, TC.SSC, and TC.OOB, require special processing and
buffers. The buffers are described in the following list and have the following form:

.BYTE characteristic name
.BYTE reserved

.WORD ...

TC.MHU This characteristic declares a modem hang-up AST. The buffer required for TC.MHU

TC.SSC

is shown in Figure 2-3. The buffer must contain the address of an AST that is
activated when the terminal driver detects that the carrier has been lost. A zero in
word 2 (AST address) clears this characteristic.

The buffer has the format shown in Figure 2-3.

The characteristic TC.SSC defines or redefines terminal switch characters. The buffer
required for TC.SSC is shown in Figure 2-4. The terminal must be attached before
you set this characteristic.

The buffer has the format shown in Figure 2-4.
When the AST address is 0, the switch characters are disabled.

If the terminal is in terminal management mode, both CTRL/C and switch characters
are treated as normal data. If the terminal is not currently in terminal management
mode and switch characters have been enabled, the terminal driver compares the input
characters against the specified switch characters. If there is a match, the terminal
driver cancels any pending read with a status of IS.TMM, flushes the type-ahead
buffer, executes the specified AST, and sets the terminal in terminal management
mode.

Full-Duplex Terminal Driver 2-63

TC.OOB The characteristic TC.OOB defines the out-of-band (OOB) character set for the
particular terminal. With this characteristic you can specify certain control characters
as OOB. To use TC.OOB, the task must attach the terminal and set up the TC.OOB
characteristic. After TC.OOB is set, and you enter a specified OOB character at the
terminal, the character causes an AST and the typed-in character is on the stack. You
specify the AST address when you set up the OOB characteristic.

Additionally, you can declare any of the OOB characters as a “clear OOB character.”
If the character is declared to be “clear,” it clears the type-ahead buffer and terminates
a pending read with a status of IS.OOB. Any character that is not a “clear” can be
specified as an “include character.” Such a character is included in the normal input
stream. “Clear OOB” may not be declared as “include.”

The buffer required for TC.OOB is shown in Figure 2-5. The terminal must be
attached before you set this characteristic.

Note the following items before using TC.OOB:

* Because all OOB are either HELLO or CLEAR, one set of bit masks may be used
for both. A 0-bit mask is a CLEAR. A 1-bit mask is a HELLO.

® Characters that are CLEAR OOB cannot also be used for INCLUDE OOB.

* To add a character to the OOB set, all the characters must be defined, not just
the one to be added.

The buffer has the format shown in Figure 2-5.

Figure 2-3: Buffer Required for TC.MHU

Octal Decimal
1 0 Reserved TC.MHU 0
3 AST Address or O 2
ZK-4081-85

Figure 2-4: Buffer Required for TC.SSC

Octal Decimal
1 O Reserved TC.SSC 0
3 AST Address or O 2
5 Switch Characters 4
ZK-4082-85

2-64 Full-Duplex Terminal Driver

Figure 2-5: Buffer Required for TC.OOB

Octal Decimal
1 O Reserved TC.00B 0
3 OOB AST Address or O 2
5 OOB Bit Mask 1 4
7 0OO0B Bit Mask 2 6
9 HELLO/CLEAR Bit Mask 1 8
1 HELLO/CLEAR Bit Mask 2 10
13 INCLUDE Bit Mask 1 12
15 INCLUDE Bit Mask 2 14
ZK-4084-85

2.4.16.2 Side Effects of Setting Characteristics

Certain terminal characteristics that a task may set or that an operator may set using MCR
or DCL commands can have undesirable side effects. In particular, the characteristics hold
screen (TC.HLD), disable lowercase-to-uppercase conversion (TC.SMR), and set switch characters
(TC.SSC) can have some undesirable or unexpected side effects. Their effects are described as

follows:
TC.HLD

TC.SMR

Unexpected behavior can result from a terminal in the hold-screen mode if its
reception rate is much greater than its transmission rate. (The DHV11 supports
split baud rates.) When it is in the hold-screen mode, the terminal automatically
sends a CTRL/S when an output stream is received and the screen is nearly
full. Output is resumed—another screenfull—when you type SHIFT/SCROLL (the
terminal generates CTRL/Q). Thus, no output is lost as a result of scrolling off the
screen before you can read it. However, if the terminal’s transmission rate is far
below its reception rate, some unread output may scroll out of sight before the
CTRL/S can be transmitted.

Note that some terminals and interfaces are hardware buffered. This can cause
obscure timing problems for tasks that attempt to invoke the hold-screen mode.

If this characteristic is asserted (lowercase-to-uppercase conversion is disabled),
octal characters 175 and 176 are interpreted as “right brace (})” and “tilde (~),”
respectively. If TC.SMR is not asserted, these characters are interpreted as an
ALTMODE (that is, they function as line terminators that do not advance the cursor
to a new line).

Full-Duplex Terminal Driver 2-65

TC.SSC Setting switch characters disables the normal function of CTRL/C in that it becomes

a normal data character. After typing switch characters and entering terminal
management mode, switch characters are normal data characters until the terminal
driver exits terminal management mode.
After you have entered the first switch character, the terminal driver must wait for
the second one before entering terminal management mode. If the second character
is not the second switch character, the terminal driver treats both entered characters
as normal data characters. Any character or combination of characters entered after
the two switch characters is considered data characters.

It is advisable to specify nonordinary characters as switch characters, for example,
non-system-specific CTRL/X combinations.

2.5 Status Returns

Most operating system error and status codes that are returned are byte values in the status
word. For example, the value for IS.SUC is 1, which is in the low byte in the first status word.
However, IS.CC, IS.CR, IS.ESC, and IS.ESQ are values in the first word of the status block.
When any of these codes are returned, the low byte indicates successful completion, and the
high byte shows what type of completion occurred.

To test for one of these word-value return codes, first test the low byte of the first word of the
IOSB for the value IS.SUC. Then, test the full word for IS.CC, IS.CR, IS.ESC, or IS.ESQ. (If the
full word is equal to IS.SUC, then its high byte is 0, indicating byte-count termination of the
read.)

The “error” return IE.EOF may be considered a successful read, because the characters returned
to the task’s buffer can be terminated by a CTRL/Z character.

The SF.GMC and SF.SMC functions, as described in Sections 2.4.15 and 2.4.16, return the
SE.xxx codes. When any of these codes are returned, the low byte in the first word in the IOSB
contains IE.ABO. The second word in the IOSB word contains an offset (starting from 0) to the
byte in error in the QIO’s stadd bulffer.

Table 2-10 lists error and status conditions that are returned by the terminal driver to the IOSB.

Table 2-10: Terminal Status Returns
Code Reason

IE.ABO Operation aborted
The specified I/O operation was canceled by IO.KIL while in progress or while in
the I/O queue. The second word of the IOSB indicates the number of bytes that
were put in the buffer before the kill was effected.

IE.BAD Bad parameter
The size of the buffer is too large.

2-66 Full-Duplex Terminal Driver

Table 2-10 (Cont.): Terminal Status Returns

Code

Reason

IE.BCC

IE.DAA

IE.DAO

IE.DNA

IE.DNR

IE.EOF

IE.IES

IE.IFC

Framing error

A framing error was hardware detected and returned by the controller. All characters
up to (but not including) the erroneous character are in the buffer. This condition
can occur if you press the BREAK key on some terminals or if there are hardware
problems.

Device already attached

The physical device unit specified in an IO.ATT function was already attached by the
issuing task. IE.DAA indicates that the issuing task has already attached the desired
physical device unit, not that the unit was attached by another task. The subfunction
bits TF.AST or TF.ESQ have no effect if IO.ATT specified them.

Data overrun error

A data overrun error was hardware detected and returned by the controller. All
characters up to (but not including) the erroneous character are in the buffer. This
error occurs when a hardware failure or incompatibility causes characters to be
received by the controller faster than they can be processed (that is, when an
incorrect serial I/0 baud rate or format exists).

Device not attached

The physical device unit specified in an IO.DET function was not attached by the
issuing task. This code has no bearing on the attachment status of other tasks.
Device not ready

The physical device unit specified in the QIO directive was not ready to perform
the desired 1/0 operation. This code is returned to indicate one of the following
conditions:

e A timeout occurred on the physical device unit. (That is, an interrupt was lost.)

e An attempt was made to perform a function on a remote DHV11 or DZV11 line
without carrier present. ’

Successful completion on a read with end-of-file

The line of input read from the terminal was terminated with the end-of-file character
CTRL/Z. The second word of the IOSB contains the number of bytes read before
CTRL/Z was seen. The input buffer contains the bytes read.

Invalid escape sequence

An escape sequence was started, but escape-sequence syntax was violated before the
sequence was completed (see Section 2.7). The character causing the violation is the
last character in the buffer.

Illegal function code

A function code specified in an I/0 request was invalid for terminals, or the function
code specified was a system generation option not selected for this system.

Full-Duplex Terminal Driver 2-67

Table 2-10 (Cont.): Terminal Status Returns
Code Reason

IENCD Buffer allocation failure

System dynamic storage has been depleted, resulting in insufficient space available
to allocate an intermediate buffer for an input request or an asynchronous system
trap (AST) block for an attach request.

IE.OFL Device off line

The physical device unit associated with the LUN specified in the QIO directive was
not on line. When the system was booted, a device check indicated that this physical
device unit was not in the configuration. The physical device unit could have been
configured off line.

IE.PES Partial escape sequence
An escape sequence was started, but read-buffer space was exhausted before the
sequence was completed. See Section 2.7.

IE.PRI Privilege violation
A nonprivileged task issued an I0.WBT to a terminal other than its TI or directed an
SF.SMC to a terminal other than its TI. This status return is also returned when a
nonprivileged task attempts to set its privilege bit.

IE.SPC Illegal address space
One or more of the following conditions may have occurred:

e The buffer specified for a read or write request was partially or totally outside
the address space of the issuing task.

* You specified a byte count of 0.
* You specified an odd or 0 AST address.
* You specified TF.XCC and ast2 in the same QIO$ request.

IE.VER Character parity error

A parity error was hardware detected and returned by the controller. All characters
up to (but not including) the erroneous character are in the buffer.

IS.CC Successful completion on a read
The line of input read from the terminal was terminated by a CTRL/C. The input
buffer contains the bytes read.

IS.CR Successful completion on a read
The line of input read from the terminal was terminated by a carriage return. The
input buffer contains the bytes read.

IS.ESC Successful completion on a read

The line of input read from the terminal was terminated by an ALTMODE character.
The input buffer contains the bytes read.

2-68 Full-Duplex Terminal Driver

Table 2-10 (Cont.): Terminal Status Returns
Code Reason

IS.ESQ Successful completion on a read
The line of input read from the terminal was terminated by an escape sequence. The
input buffer contains the bytes read and the escape sequence.

ISPND I/O request pending
The operation specified in the QIO$ directive has not yet been executed. The IOSB
is filled with zeros.

1S.SUC Successful completion

The operation specified in the QIO$ directive was completed succeszully. If the
operation involved reading or writing, you can examine the second word of the IOSB
to determine the number of bytes processed. The input buffer contains those bytes.

IS, TMO Successful completion on a read

The line of input read from the terminal was terminated by a timeout. (TF.TMO was
set and the specified time interval was exceeded.) The input buffer contains the bytes
read.

SE.BIN An invalid value for a binary characteristic was used in SF.SMC.

SE.FIX An attempt was made to change a fixed characteristic in a SF.SMC subfunction
request. (For example, an attempt was made to change the unit number.)

SE.JAA An invalid AST address was specified.
SE.NAT The terminal is not attached.

SE.NIH A terminal characteristic other than those listed in Table 2-8 was named in an
SF.GMC or SF.SMC request.

SE.NSC An attempt was made to change a characteristic that cannot be set. This error can
occur when an attempt is made to make a local-only line a remote line when the
controller does not support remote lines.

SE.SPD The new speed specified in an SF.SMC subfunction request was not valid for the
controller associated with the specified terminal.

SE.UPN There is not enough pool space for the terminal driver to allocate buffer space.

SE.VAL The new value specified in an SF.SMC request for the TC.TTP terminal characteristic
was not one of those listed in Table 2-8.

2.6 Control Characters and Special Keys

This section describes the meanings of special terminal control characters and keys for both
operating systems. Note that the driver does not recognize control characters and special keys
during a Read All request (IO.RAL) or a Read with Special Terminators (IO.RST).

Full-Duplex Terminal Driver 2-69

2.6.1 Control Characters

A control character is input from a terminal by holding the CTRL key down while pressing one
other key. Three of the control characters described in Table 2-11, CTRL/R, CTRL/U, and
CTRL/Z, are echoed on the terminal as "R, “U, and "Z, respectively.

Table 2-11:

Terminal Control Characters

Character

Meaning

CTRL/C

CTRL/I

CTRL/]

CTRL/K

Pressing CTRL/C causes unsolicited input on that terminal to be directed to
a command line interpreter (CLI), such as MCR. If CTRL/C abort is enabled,
CTRL/C aborts tasks active at the terminal. (For this text, the assumption is
that MCR is the CLI in use, although the terminal driver responds to other
CLIs in a similar manner.) The “MCR> " prompt is echoed when the terminal
driver is ready to accept an unsolicited MCR command line for input. When the
unsolicited input is terminated, the command line is passed to MCR.

If the last character typed on the terminal was a CTRL/S (suspend output),
CTRL/C restarts suspended output and directs subsequent input to MCR.

If the hold-screen mode system generation option has been selected and the
terminal is a VT5x or VT61 in hold-screen mode, typing a CTRL/C removes the
terminal from hold-screen mode.

CTRL/C characters can also be directed to a task if the task has attached a terminal
and has specified an unsolicited input-character AST (see Section 2.4.3). CTRL/C
characters are also passed to a task if you specify a TE.RPT, IO.RAL!TF.RPT or
IO.RST function, or if the task has set switch characters for the terminal.

Note

If the terminal driver receives a CTRL/C character during
a read operation (except during a read-pass-all operation,
during a read with special terminators operation, or when
the pass-through terminal characteristic (TC.PTH) has been
set), the read operation is terminated, the type-ahead buffer
is cleared, and an IS.CC status code is returned to the task.

CTRL/I or TAB characters initiate a horizontal tab, and the terminal spaces to
the next tab stop. Tabs at every eighth character position are simulated by the
terminal driver. CTRL/I or TAB have no special function if IO.RAL, IO.RST,
TF.RAL, TE.RST, or TE.RPT is enabled. That is, the TAB behaves as an ordinary
character.

CTRL/] is equivalent to a LINE FEED character. CTRL/] has no special function
if IO.RAL, IO.RST, TF.RAL, TE.RST, or TF.RPT is enabled. That is, it behaves as
an ordinary character.

CTRL/K initiates a vertical tab, and the terminal tabs to the next vertical tab
stop. For a CRT terminal, four LINE FEEDs are output. CTRL/K has no special
function if I0.RAL, IO.RST, TF.RAL, TF.RST, or TE.RPT are enabled. That is, it
behaves as an ordinary character.

2-70 Full-Duplex Terminal Driver

Table 2-11 (Cont.): Terminal Control Characters

Character

Meaning

CTRL/L

CTRL/M

CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/L initiates a form feed. If the terminal has hardware form-feed support,
the driver echoes "L. Otherwise, the driver simulates the form feed by outputting
enough line-feed characters to advance the next character position to the top of
the next page. If a CRT terminal is in use, four line feeds are output. CTRL/L has
no special function if IO.RAL, IO.RST, TF.RAL, TE.RST, or TE.RPT are enabled.
That is, it behaves as an ordinary character.

CTRL/M is equivalent to a carriage return character (see Section 2.6.2). CTRL/M
has no special function if IO.RAL, IO.RST, TE.RAL, TF.RST, or TE.RPT are
enabled. That is, it behaves as an ordinary character.

CTRL/O suppresses terminal output except if IO.RAL or TF.RAL is enabled or
the pass-through terminal characteristic (TC.PTH) has been set. For attached
terminals, CTRL/O remains in effect (output is suppressed) until one of the
following occurs:

® The terminal is detached.

* Another CTRL/O character is pressed.

¢ An IO.CCO or I0.WBT function is issued.
¢ Input is entered.

e JO.RPR is issued at the terminal.

For unattached terminals, CTRL/O suppresses output for only the current output
buffer (typically one line).

CTRL/Q resumes terminal output previously suspended by CTRL/S except if
IO.RAL or TE.RAL is enabled. This applies only to terminals for which TC.TSY
is enabled (XON/XOFF are processed). You can enable TTSYNC with the MCR
command SET /TTSYNC=TTnn or by setting the TC.TSY terminal characteristic
bit.

CTRL/R functions as a normal character if TF.RNF, IO.RAL, TF.RAL, IO.RST,
TE.RST, or TE.RPT are enabled. Otherwise, CTRL/R results in a carriage return
and a line feed being echoed, followed by the incomplete (unprocessed) input
line. Any tabs that were input are expanded and the effect of anything deleted
is shown. On hardcopy terminals, CTRL/R allows you to verify the effect of
a tab or a delete, or both, in an input line. CTRL/R is also useful for CRT
terminals when the CRT delete system generation option has been selected (see
Section 2.6.2). For example, after deleting the leftmost character on the second
displayed line of a wrapped input line, the cursor does not move to the right of
the first displayed line. In this case, CTRL/R brings the input line and the cursor
back together again.

CTRL/S suspends terminal output except if IO.RAL or TF.RAL is enabled.
(Output can be resumed by typing CTRL/Q or CTRL/C.) This applies only
to terminals for which TTSYNC is enabled. You can enable TTSYNC with
the MCR command SET /TTSYNC=TTnn or by setting the TC.TSY terminal
characteristic bit.

Full-Duplex Terminal Driver 2-71

Table 2-11 (Cont.): Terminal Control Characters

Character

Meaning

CTRL/U

CTRL/X

CTRL/Z

CTRL/U functions as a normal character if TF.RNF, IO.RAL, TF.RAL, IO.RST,
TF.RST, or TF.RPT are enabled. Otherwise, pressing CTRL/U before typing a
line terminator deletes previously typed characters back to the beginning of the
line. The system echoes this character as “U followed by a carriage return and a
line feed.

CTRL/X is treated as a normal character if IO.RAL, TF.RAL, IO.RST, TF.RST, or
TF.RPT is enabled. Otherwise, this character clears the type-ahead buffer.

CTRL/Z is treated as a normal character if IO.RAL, TE.RAL, IO.RST, TF.RST, or
TERPT are enabled. Otherwise, CTRL/Z indicates an end-of-file (EOF) for the
current terminal input. It notifies MAC, PIP, TKB, and other system tasks that
terminal input is complete, allowing the task to exit. The system echoes this
character as “Z, followed by a carriage return and a line feed.

2.6.2 Special Keys

The ESC, RETURN, and DELETE (or RUBOUT) keys have special significance for terminal input. A
line can be terminated by the ESC (or ALT) key, RETURN key, or the CTRL/Z characters, or by
completely filling the input buffer (that is, by exhausting the byte count before a line terminator
is typed). The standard buffer size for a terminal can be determined for a task by issuing a Get
LUN Information system directive and by examining Word 5 of the buffer. An operator can
obtain the same information with the MCR command SET /BUF-TI.

Table 2-12 describes the special significance of the ESC, RETURN, and DELETE (or RUBOUT)

keys.

Table 2-12: Special Terminal Keys

Key

Meaning

ESC

RETURN

ESC (the escape key) functions as a normal character if IO.RAL, TF.RAL,
or TE.RPT are enabled. Otherwise, if escape sequences are not recognized,
pressing the ESC or ALT (the ALTMODE key on some terminals) keys notifies
the terminal driver that there is no further input on the current line. This
line terminator allows further input on the same line, because the carriage or
cursor is not returned to the first column position.

If escape sequences are recognized, ESC signals the beginning of an escape
sequence. (See Section 2.7.)

Return functions as a normal character if IO.RAL, TF.RAL, or TF.RPT are
enabled. Otherwise, pressing the RETURN key terminates the current line and
causes the carriage or cursor to return to the first column on the next line.

2-72 Full-Duplex Terminal Driver

Table 2-12 (Cont.): Special Terminal Keys
Key Meaning

DELETE DELETE or RUBOUT functions as a normal character if TF.RNF (read no filter)

(or RUBOUT) is enabled. Otherwise, pressing the DELETE (or RUBOUT) key deletes the last
character typed on an input line. Only characters typed since the last line
terminator may be deleted. Several characters can be deleted in sequence by
pressing the DELETE or RUBOUT keys successively.

For example, on a printing terminal, the first DELETE (or RUBOUT) echoes
a backslash (\) followed by the character that has been deleted, even if the
terminal is in the no-echo mode. Subsequent DELETES (or RUBOUTS) cause
only the deleted character to be echoed. The next character typed that is
not a DELETE or RUBOUT causes another backslash to be printed, which is
followed by the new character. The non-RUBOUT character is not echoed
if the terminal is in the no-echo mode; however, a backslash is echoed in
response to the first non-RUBOUT character. The following example illustrates
rubbing out ABC and then typing CBA:

ABC\CBA\CBA

The second backslash is not displayed if a line terminator is typed after rubbing
out the characters on a line, as shown in the following example:

ABC\CBA

At system generation time, the “CRT rubout” feature can be selected. This
feature applies to a terminal only after a SET MCR directive has been issued
as follows:

SET /CRT=TI:

If the CRT DELETE (or RUBOUT) feature was selected, pressing the DELETE (or
RUBOUT) key causes the last typed character (if any) to be removed from the
incomplete input line and a backspace-space-backspace sequence of characters
for that terminal is echoed. If the last typed character was a tab, enough
backspaces are issued to move the cursor to the character position before the
tab was typed. If a long input line was split, or “wrapped,” by the automatic-
carriage-return option, and a DELETE (or RUBOUT) erases the last character
of a previous line, the cursor is not moved to the previous line. Your task
must use CTRL/R to resynchronize the current display with the contents of
the incomplete input line.

2.7 Escape Sequences

Escape sequences are strings of two or more characters beginning with an escape character.
Some terminals generate an escape sequence when a special key is pressed (for example, the
FCN key on the VT61). On any terminal, an escape sequence may be generated manually by
pressing the ESC key followed by the appropriate characters.

Full-Duplex Terminal Driver 2-73

2.7.

Escape sequences provide a way to pass input to a task without interpretation by the operating
system. This could be done with a number of read-all functions, but escape sequences allow
input to be read with I0.RLB requests.

1 Definition of Escape Sequence Format

The format of an escape sequence defined by American National Standards Institute’s X 3.41
(1974) and used in the VT100 is shown next.

Format
ESC ...F

Parameters

ESC
Specifies the introduced control character (033;) that is named escape.

Specifies the intermediate bit combinations that may or may not be present. These characters
are bit combination 40g to 57 inclusive in both 7- and 8-bit environments.

Specifies the final character. F characters are bit combinations 60g to 1765 inclusive in
escape sequences in both 7- and 8-bit environments.

The occurrence of a character in the inclusive range 0 to 373 is technically an error condition.
However, the recovery from the error occurs by immediately executing the function specified
by the character and then by continuing to execute the escape sequence. The exceptions to
continuing the escape sequence execution are as follows:

* The character ESC occurs, aborting the current escape sequence. A new escape sequence,
starting with the ESC just received, begins.

e The character CTRL/X (303) or the character CTRL/Z (324) occurs, aborting the current
escape sequence. This is the case with any control character.

There are five exceptions to this general syntax definition; these exceptions are discussed in
Section 2.7.5.

2.7.2 Prerequisites

There are prerequisites that must be satisfied before escape sequences can be received by a task.
First, the terminal must be declared capable of generating escape sequences. This may be done
using the DCL command SET as follows:

$ SET TERM/ESCAPE
After the preceding prerequisite is satisfied, one of the following prerequisites must be met:

®* You must attach the terminal with IO.ATT!TF.ESQ.

2-74 Full-Duplex Terminal Driver

e You must use the TE.RES modifier with the IO.EIO!TF.RLB function.

Note

The second method will enable escape character recognition for only the duration
of the read function.

If these prerequisites are not satisfied, the ESC character is treated as a line terminator. If
these prerequisites are satisfied, your task may use CTRL/SHIFT/O (0173) as an ALTMODE
character. However, this character does not act as an ALTMODE from a terminal that cannot
generate escape sequences.

An ALTMODE is a line terminator that does not cause the cursor to advance to a new line. On
terminals that cannot generate escape sequences, the ESC key acts as an ALTMODE. Characters
175 and 176 also function as ALTMODEs if the terminal has not been declared lowercase (DCL
command SET TERM/LOWERCASE).

2.7.3 Characteristics

Escape sequences always act as line terminators. That is, an input buffer may contain other
characters that are not part of an escape sequence, but an escape sequence always comprises
the last characters in the buffer.

Escape sequences are not echoed. However, if a non-CRT delete sequence is in progress, it is
closed with a backslash (\) when an escape sequence is begun.

Escape sequences are not recognized in unsolicited input streams or in a read all function
(subfunction bit TF.RAL). '
2.7.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 2.7.1 causes the driver to abandon the escape
sequence and to return an error (IE.IES).

2.7.4.1 Delete or Rubout (177)

The character DELETE or RUBOUT is not legal within an escape sequence. Pressing the DELETE
or RUBOUT key at any point within an escape sequence causes the entire sequence to be
abandoned and deleted from the input buffer. Therefore, use DELETE or RUBOUT to abandon
an escape sequence, if desired, once you have begun it.

2.7.4.2 Control Characters (0 to 037s)

The reception of any characters other than four characters in the range 0 to 037g is a syntax
violation that terminates the read with an error (IE.IES).

The four control characters that are allowed are: CTRL/Q, CTRL/S, CTRL/X, and CTRL/O.
These characters are handled normally by the operating system even when an escape sequence
is in progress. For example, entering the following command provides an 1/O status block
(IOSB) of line termination as shown in Figure 2-6:

ESC CTRL/S A

This command also provides the additional effect of turning off the output stream.

Full-Duplex Terminal Driver 2-75

Figure 2-6: 1/0 Status Block Line Termination

{OSB | IS.ESQ

2

ZK-5879-HC

Figure 2-7: 1/0O Status Block for Partial Escape Sequence

10SB IE.PES

2

ZK-5880-HC

2.7.4.3 Full Buffer

When an escape sequence is terminated because there is no more buffer space rather than
because you typed a final character, the error IE.PES is returned. For example, after a task
issues an IO.RLB with a buffer length of 2, and you type the following line, the buffer contains
“ESC !”, and the IOSB contains the I/O status block for partial escape sequence shown in
Figure 2-7:

ESC ! A

The “A” is treated as unsolicited input.

2.7.5 Exceptions to Escape Seguence Syntax

The following five “final characters” that normally terminate an escape sequence are treated as
special cases by the terminal driver for use with certain terminals:

ESC ?...
ESC O...
ESC P...
ESC Y...
ESC ...

Refer to documentation supplied with the specific terminal or terminals in use for correct use of
escape sequences.

2-76 Full-Duplex Terminal Driver

2.8 Vertical Format Control

Table 2-13 is a summary of all the characters that your task can use for vertical format control
on the terminal. Any one of these characters can be specified as the value of the vfc parameter
in the I0.WLB, I0.WVB, I0.WBT, 10.CCO, or IO.RPR functions.

Table 2-13: Vertical Format Control Characters

Octal

Value Character Meaning

040 Blank Single Space
Outputs one line feed, prints the contents of the buffer, and outputs a
carriage return. Normally, printing immediately follows the previously
printed line.

060 0 Double Space
Outputs two line feeds, prints the contents of the buffer, and outputs
a carriage return. Normally, the buffer contents are printed two lines
below the previously printed line.

061 1 Page Eject
If the terminal supports form feeds, it outputs a form feed, prints the
contents of the buffer, and outputs a carriage return. If the terminal does
not support form feeds, the driver simulates the form-feed character by
either outputting four line feeds to a CRT terminal, or by outputting
enough line feeds to advance the paper to the top of the next page on
a printing terminal.

053 + Overprint
Prints the contents of the buffer and outputs a carriage return, normally
overprinting the previous line.

044 $ Prompting Output
Outputs one line feed and prints the contents of the buffer. This mode
of output is used with a terminal on which a prompting message is
output and input is then read on the same line.

000 Null Internal Vertical Format

Prints the buffer contents without addition of vertical format control
characters. In this mode, more than one line of guaranteed contiguous
output can be printed for each I/O request.

All other vertical format control characters are interpreted as blanks (040).

2.9 Automatic Carriage Return

You can set individual terminals for wraparound, as desired, by using the MCR command
SET /WRAP, as follows:

>SET /WRAP=TTxx:

Full-Duplex Terminal Driver 2-77

Once you select wraparound, you can select the column at which wraparound occurs by using
the MCR command SET /BUF as follows:

>SET /BUF=TI:n
>

Your task can also use the MCR command SET /BUF without an argument to display the
current buffer width for a terminal as follows:

>SET /BUF=TI:
BUF=TI:00072.
>

A task can determine the buffer width by issuing a Get LUN Information directive and by
examining word 5 returned in the buffer.

After the MCR command SET /BUF has been entered, typing beyond the buffer width results
in a carriage return and line feed being output before the next character is echoed. Although
you may have typed only one line, it is displayed on two terminal lines.

You can lose track of where you are in the input buffer if wraparound is enabled for your
terminal. For example, while deleting text on a wrapped line, the cursor does not back up to
the previous line. To resynchronize the cursor with the contents of the incomplete input buffer,
type CTRL/R (if this option was selected during system generation).

2.10 Hard Receive Error Detection

All terminal interfaces supported by the full-duplex terminal driver are capable of detecting and
flagging hard receive errors. Hard receive errors include framing errors, enable character parity
error, and data overrun error.

The terminal driver handles hard receive errors as follows:

1. If a read request is being processed and the character can be processed immediately, the
read request is terminated with one of the following error codes returned in the status block:

Error
Code Hard Receive Error

IE.BCC Framing
IE.DAO Data overrun
IE.VER Character parity

2. If a command line is being input for a command line interpreter (CLI) task and the character
can be processed immediately, a CTRL/U is simulated, "U is echoed, and the input is
terminated. No command line is sent to the task.

3. If the character would normally cause an asynchronous system trap (AST) if no error was
detected, the character is ignored and no AST occurs.

2-78 Full-Duplex Terminal Driver

4. If the character cannot be processed immediately, it is stored in the type-ahead buffer. A
flag is set for the line, indicating that the last character in the type-ahead buffer has an
error, disabling further storage in the type-ahead buffer. When the character is retrieved
from the buffer, the appropriate action is taken, and the flag is cleared. Any characters
received in the meantime are discarded, and a bell is echoed for each character.

2.11 Task Buffering of Received Characters

When task buffering received characters, characters read from the terminal are sent directly to
the task’s buffer. Thus, there is no need to allocate a terminal driver buffer.

Task buffering of received characters does not necessarily reduce system overhead. For example,
each character must be mapped to the task’s buffer. However, if terminal driver buffering was
used, the system does the mapping only once for all characters to be transferred.

With the full-duplex terminal driver, output buffering is always performed.

Task buffering is overridden during checkpointing. If a task is checkpointable, a driver buffer
is allocated and the task is made eligible for checkpointing by any task, regardless of priority,
while the read operation is in progress. (Checkpointing occurs in this situation only when there
is another task that can be made active.) Because checkpointability is controlled by the task,
you retain control over this operation.

2.12 Type-Ahead Buffering

Characters received by the terminal driver are either processed immediately or stored in the type-
ahead buffer. The type-ahead buffer allows characters to be temporarily stored and retrieved
FIFO (first in, first out). The terminal driver uses the type-ahead buffer as follows:

1. Store in buffer

An input character is stored in the type-ahead buffer if one or more of the following
conditions are true:

® The driver is not ready to accept the character (fork process pending or in progress).
® There is at least one character presently in the type-ahead buffer.

® The character input requires echo, and the output line to the terminal is presently busy
outputting a character.

* No read request is in progress, no unsolicited input AST is specified, and the terminal
is either attached or slaved and attached.

Note

Depending on the terminal mode and the presence of a read function,
read subfunctions, and an unsolicited input AST, the CTRL/C, CTRL/O,
CTRL/Q, CTRL/S, and CTRL/X characters may be processed immediately
and not stored in the type-ahead buffer.

A character is not echoed when it is stored in the buffer. Echoing a character is deferred
until it is retrieved from the buffer, because the read mode (for example, read-without-echo)
is not known by the driver until then.

2. Retrieve from buffer

Full-Duplex Terminal Driver 2-79

When the driver becomes ready to process input, or when a task issues a read request, it
attempts to retrieve a character from the buffer. If the attempt is successful, the character
is processed and echoed, if required. The driver then loops, retrieving and processing
characters until either the buffer is empty, the driver becomes unable to process another
character, or a read request is finished with the terminal attached.

3. Flush the buffer
The buffer is flushed (cleared) when:
¢ CTRL/C is received.
* CTRL/X is received.
® A clear out-of-band (OOB) character is entered.
* Switch characters are detected.
¢ The terminal becomes detached.
* TC.TBF is written by SE.SMC.

* Exceptions: CTRL/C and CTRL/X do not flush the buffer if read-pass-all or read-with-
special-terminators is in effect. If the buffer becomes full, each character that cannot be
entered causes a BELL character to be echoed to the terminal.

If a character is input and echo is required, but the transmitter section is busy with an
output request, the input character is held in the type-ahead buffer until output (transmitter)
completion occurs.

2.13 Full-Duplex Operation

When a terminal line is in the full-duplex mode, the full-duplex driver attempts to service one
read request and one write request simultaneously. The 10.ATA, 10.ATT, I0.DET, and SF.SMC
functions are performed with the line in an idle state only (not executing a read or a write
request).

2.14 Private Buffer Pool

The driver has a private buffer pool for intermediate input and output buffers. Whenever the
driver needs dynamic memory, it first attempts to allocate a buffer in the private pool. If this
fails, it attempts to allocate a buffer in the system pool. If the allocation in the system pool fails
during command line input, a CTRL/U is simulated and echoed.

CLI task buffers are handled in a special way. When unsolicited input begins, a buffer is
allocated, as previously described, for the command line (a string of characters, followed by an
appropriate terminator character). When the input is completed, the contents of the buffer is
sent directly to the CLI task if the buffer was allocated in the system pool. However, if the
buffer was allocated in the driver’s private pool, it must first be moved into a buffer in the
system pool to provide access for the task.

2-80 Full-Duplex Terminal Driver

2.15 Intermediate Input and Output Buffering

Input buffering for checkpointable tasks with checkpointing enabled is provided in the private
pool. As each buffer becomes full, a new buffer is automatically allocated and linked to the
previous buffer. The Executive then transfers characters from these buffers to the task buffer,
and the terminal driver deallocates the buffers once the transfer has been completed.

If the driver fails to allocate the first input buffer, the characters are transferred directly into
the task buffer. If the first buffer is successfully allocated, but a subsequent buffer allocation
fails, the input request terminates with the error code IE.NOD. In this case, the IOSB contains
the number of characters actually transferred to the task buffer. The task may then update the
buffer pointer and byte count and reissue a read request to receive the rest of the data. The
type-ahead buffer ensures that no input data is lost.

All terminal output is buffered. As many buffers as required are allocated by the terminal driver
and linked to a list. If not enough buffers can be obtained for all output data, the transfer is
done as a number of partial transfers, using available buffers for each partial transfer. This is
transparent to the requesting task. If no buffers can be allocated, the request terminates with
the error code IE.NOD.

The unconditional output buffering serves three purposes:
1. It reduces time spent at interrupt level.
2. It enables long direct memory access (DMA) transfers for DH11 controllers.

3. It enables task checkpointing during the transfer to the terminal (if all output fits in one
buffer list).

2.16 Terminal-independent Cursor Control

Terminal-independent cursor control capability is provided during system generation. The
terminal driver responds to task I/O requests for cursor positioning without the task requiring
information about the type of terminal in use. 1/O functions associated with cursor positioning
are described in the following paragraphs.

Cursor position is specified in the vfc parameter of the IO.WLB or IO.RPR function. The
parameter is interpreted simply as a vfc parameter if the high byte of the parameter is 0.
However, if the parameter defines cursor position, the high byte must be nonzero, the low
byte is interpreted as column number (x-coordinate), and the high byte is interpreted as line
number (y-coordinate). Home position, the upper left corner of the display, is defined as (1/1).
Depending on terminal type, the driver sends to the terminal cursor-positioning commands
appropriate for the terminal in use that move the cursor to the specified position. If the most
significant bit of the line number is set, the driver clears the display before positioning the
cursor.

When defining cursor position in an I0.WLB function, you can use the TF.RCU subfunction to
save the current cursor position. When included in this manner, TF.RCU causes the driver first
to save the current cursor position, then to position the cursor and output the specified buffer,
and, finally, to restore the cursor to the original (saved) position once the output transfer has
been completed.

Full-Duplex Terminal Driver 2-81

2.17 Terminal Interfaces

This section summarizes the characteristics of the standard communication-line interfaces
supported by RSX-11M-PLUS and Micro/RSX. Refer to the DIGITAL Terminals and
Communications Handbook or Microcomputer Products Handbook for additional details.

2.17.1 DH11 Asynchronous Serial Line Multiplexer

The DH11 multiplexer interfaces up to 16 asynchronous serial communication lines for terminal
use. The DH11 supports programmable baud rates. Input and output baud rates may differ; the
input rate may be set to 0 baud, thus effectively turning off the terminal. The DM11-BB option
may be included to provide modem control for dial-up lines. These lines must be interfaced by
a full-duplex modem (for example, in the United States, a Bell 103A or equivalent modem).

2.17.2 DHU11 Asynchronous Serial Line Multiplexer

The DHU11 is a 16-line, UNIBUS asynchronous multiplexer with DMA. The DHU11 supports
program-selectable baud rates with the option of selecting split-speed operation. In addition,
full modem control is available on all 16 lines.

2.17.3 DHQ11 Asynchronous Serial Line Multiplexer

The DHQI11 is a 16-line, Q-bus asynchronous multiplexer with DMA. The DHU11 supports
program-selectable baud rates with the option of selecting split-speed operation. In addition,
full modem control is available on all 16 lines.

2.17.4 DHV11 Asynchronous Serial Line Multiplexer

The DHV11 multiplexer interfaces up to eight asynchronous serial communication lines for
terminal use. This multiplexer is the Q-bus version of the DHU11 UNIBUS multiplexer. The
DHV11 supports programmable baud rates with the option of selecting split-speed operation.
(Split-speed operation allows different transmit and receive speeds.) Also provided is modem
control for full-duplex, point-to-point operation.

2.17.5 DJ11 Asynchronous Serial Line Multiplexer

The DJ11 multiplexer interfaces as many as 16 asynchronous serial lines to the PDP-11 for
local terminal communications. The DJ11 does not provide a dial-up capability. Baud rates are
jumper selectable.

2.17.6 DL11 Asynchronous Serial Line Interface

The DL11 supports a single asynchronous serial line and handles communication between
the PDP-11 and a terminal. A number of standard baud rates are available to DL11 users.
However, because the DL11 does not have an input silo, baud rates greater than 1200 baud are
not recommended. Higher baud rates may cause input characters to be lost.

For hardware design reasons, a DL11 is susceptible to losing receiver-interrupt-enable in its
Receiver Status Register. The disabling of the receiver interrupt bit causes the terminal to print
output requests but not to respond to input (for example, the terminal does not echo input
characters). The terminal driver has no mechanism for recognizing the disabling of the receiver
interrupt bit. Therefore, it cannot recover. The bit must be reset with the MCR command
OPEN, the console switch register, or a periodically rescheduled task.

2-82 Full-Duplex Terminal Driver

2.17.7 DZ11 Asynchronous Serial Line Multiplexer

The DZ11 multiplexer interfaces up to eight asynchronous serial communication lines fcr use
with terminals. It supports programmable baud rates; however, transmit and receive baud rates
must be the same. The DZ11 can control a full-duplex modem in autoanswer mode.

2.17.8 DZQ11 Asynchronous Serial Line Multiplexer

The DZQ11 multiplexer interfaces up to four asynchronous serial data communication lines for
use with terminals. It supports programmable baud rates with limited modem control on each
line and provides both local and remote interconnection.

2.17.9 DZV11 Asynchronous Serial Line Mulitiplexer

The DZV11 is an asynchronous multiplexer interface that connects the Q-bus with up to four
serial communication lines for use with terminals. It supports program-selectable baud rates
with limited modem control on each line.

2.17.10 CXA16/CXB16 Asynchronous Multiplexers

The CXA16/CXB16 are LSI-11/Q-bus asynchronous multiplexers which provide 16 full duplex
serial data-only channels for use on the Q-bus BA200-series systems.

2.17.11 CXY08 Asynchronous Multiplexer

The CXY08 is a quad-height, Q-bus asynchronous multiplexer, which provides eight full
duplex serial data channels for use on the Q-bus BA200-series and DECSERVER 500 systems.
The CXY08 can be used for point-to-point operation over private lines. Modem control is
implemented by software in the host system.

2.18 Programming Hints

The following sections are supplied ‘as additional general information to enhance your use of
the full-duplex terminal driver.

2.18.1 Checkpointing During Terminal Input

If checkpointing during terminal input was selected as a system generation option, a
checkpointable task is stopped (and therefore eligible to be checkpointed) when trying to
read. Therefore, a program that issues a read function followed by a Mark Time directive does
not work. The intent might be to time out the read if input is not received in a reasonable
length of time. But the Mark Time directive is not issued until the read completes.

You can circumvent this behavior by disabling checkpointing for the read. This is not a desirable
solution because it forces a task to remain in memory during the entire read. This defeats the
purpose of selecting the checkpoint-during-terminal-input option.

Full-Duplex Terminal Driver 2-83

2.18.2 RT02-C Control Function

Because the screen of an RT02-C Badge Reader and Data Entry Terminal holds only one line of
information, special care must be taken when sending a control character (for example, vertical
tab) to the RT02-C. Use the IO.WAL (write all) function for this purpose.

It is recommended that your task use read without echoing when reading a badge with the
RT02-C. Use IO.RAL or IO.RNE functions, followed by the IO.WAL function, to echo the
information for display.

2.18.3 Remote DL11-E, DH11, and DZ11 Lines

Before a remote line is answered, the driver clears certain terminal characteristics (see Table 2-8)
that may have been set by the MCR command SET or by an SF.SMC function. The characteristics
cleared are: TC.SCP, TC.ESQ, TC.HLD, TC.SMR, TC.NEC, TC.FDX, TC.HFF, TC.HHT, TC.VFL,
TC.HFL, TC.TTP, TC.8BC, TC.PTH, and TC.BIN. (Clearing TC.TTP means that a terminal type of
“unknown” returns in an SF.GMC request.) The TC.ACR characteristic (automatic wraparound)
is set. Buffer size is set to 72.

A DZ11 remote line must be declared to be remote before the terminal driver can handle the
modem.

2.18.4 Modem Support
The terminal driver supports the following modem control operations:
* Local or remote operation
* Answer speed

* Autobaud speed detection

The characteristics bit that controls local or remote operation is TC.DLU. This bit can be set
with the MCR command SET /REMOTE (or SET /NOREMOTE for local operation). The DCL
command SET TERMINAL REMOTE (or SET TERMINAL LOCAL) can also be used.

When there is an incoming call on a remote line, the TC.ASP characteristic determines the baud
rate for the answering modem.

Split baud rates (different transmit and receive speeds) are not supported for answer speed.

The default answer speed is set during system generation. However, the answer speed can be
set on line using the MCR command SET /REMOTE=TTnn:speed. The Virtual Monitor Console
Routine (VMR) can also be used to set the answer speed.

The terminal driver can determine the speed of the incoming call by sampling the first input
character after dial-up for the following speeds:

110 150 300 600 1200 1800 2400 4800 9600

This is called autobaud speed detection. It is an option that you can select for each line by
using the MCR command SET /AUTOBAUD. When you set autobaud speed detection for a
given line, the terminal driver tries to sense the baud speed of the caller when the caller’s line
is set to remote and a call has been received. The terminal driver detects the baud rate as you
press the RETURN key (enter carriage returns) several times when you first establish the remote

2-84 Full-Duplex Terminal Driver

connection from your terminal to the remote computer. Press the RETURN key until the default
RSX prompt (>) is displayed.

The MCR command SET /AUTOBAUD sets the TC.ABD terminal characteristic.

Full-Duplex Terminal Driver 2-85

Chapter 3
Virtual Terminal Driver

3.1 Introduction to the Virtual Terminal

The virtual terminal driver supports offspring task use of virtual terminals in RSX-11M-PLUS
and Micro/RSX systems. Virtual terminals are not physical hardware devices; they are actually
implemented in software through the use of data structures created by the Executive. Virtual
terminals are created by the Executive when requested by parent tasks with the Create Virtual
Terminal directive. Virtual terminals are useful in batch processing and other processing
environments in providing noninteractive terminal 1/O support for offspring tasks, thereby
eliminating the need for operator intervention.

Offspring task or tasks “spawned” by or “connected” to the parent task that created the virtual
terminal can perform terminal I/O operations with the virtual terminal in the same manner as
with physical terminals. Virtual terminals differ from physical terminals in that they receive
input from or output to a program (the parent task), rather than from a keyboard or to a display
(or printer), respectively.

3.2 Get LUN Information Macro

Word 2 of the bulffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for virtual terminals. A setting of 1 indicates that the
described characteristic is true for virtual terminals.

Bit Setting Meaning

0 1 Record-oriented device
1 1 Carriage-control device
2 1 Terminal device

3 0 File-structured device
4 0 Single-directory device

Virtual Terminal Driver 3-1

Bit Setting = Meaning

5 0 Sequential device

6 0 Reserved

7 0 User-mode diagnostics supported

8 0 MASSBUS device

9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 0 Device mountable as a Files-11 volume
15 0 Device mountable

Words 3 and 4 are undefined. Word 5 specifies the maximum byte count (that is, maximum
buffer size) to which offspring requests will be truncated; this value is specified by the parent
task in the Create Virtual Terminal system directive, as described in the RSX-11M-PLUS and
Micro/RSX Executive Reference Manual.

3.3 Ql0$ Macro

Table 3-1 lists the standard and device-specific functions of the QIO macro that are valid for
virtual terminals.

Table 3-1: Standard and Device-Specific QIO Functions for Virtual Terminals

Format

Function

STANDARD FUNCTIONS:

QIO$C I0.ATT,...

QIO$C 10.DET,...

QIO$C IOKIL,...

QIO$C IO.RLB,..., <stadd,size>
QIO$C IO.RVB,..., <stadd,size>
QIO$C I0.WLB,..., <stadd,size, stat>
QIO$C I0.WVB,..., <stadd,size,stat>

3-2 Virtual Terminal Driver

Attach device

Detach device

Cancel 1/0 request

Read logical block

Read virtual block (effects IO.RLB)
Write logical block

Write virtual block (effects IO.WLB)

Table 3-1 (Cont.): Standard and Device-Specific QIO Functions for Virtual Terminals

Format Function

DEVICE-SPECIFIC FUNCTIONS:

QIO$C I0.STC,..., <cb,sw2,swl> Set terminal characteristics (enable/disable interme-
diate I/O buffering, or return I/O completion status
to offspring task)

QIO$C SF.GMC,..., <stadd,size> Get multiple characteristics
QIO$C 10.GTS,..., <stadd,size> Get terminal support
QIO$C IO.RPR,..., <stadd,size,[tmo], Read logical block after prompt
pradd,prsize,vfc>
QIO$C SF.SMC,..., <stadd,size> Set multiple characteristics
Parameters
size

Specifies the size of the data buffer in bytes (must be greater than 0). The buffer must be
located within the addressing space of the parent or offspring task issuing the I/O request.

stadd
Specifies the starting address of the data buffer. The address must be word aligned for
SF.GMC, 10.GTS, and SF.SMC; otherwise, it may be aligned on a byte boundary.

stat
Specifies the I/O completion status code, specified by the parent task, that is issued by
the virtual terminal driver in response to an offspring task’s read request upon successful
completion.

cb
Specifies the characteristic bits to be set, selecting the following virtual terminal functions:

cb Value Bits Set Function
0 None Enable intermediate buffering in the Executive pool
1 0 Return the specified virtual terminal I/O completion status to the
requesting offspring task
1 Disable intermediate buffering
3 0and 1 Return status for offspring write request

sW2
Specifies enable/disable intermediate I/O buffering.

Virtual Terminal Driver 3-3

swl
Specifies the I/O completion code for I/O completion status.

Note

The sw2 and sw1 parameters are valid in the I0.STC function only when
cb=1 or cb=3.

tmo
Specifies an optional timeout count (see Section 3.3.1.4).

vic
Specifies a character for vertical format control.

pradd
Specifies the starting address of the prompt buffer.

prsize
Specifies the size of the prompt buffer in bytes. The buffer must be located within the
address space of the offspring task issuing the I/O request.

3.3.1 Standard QIO Functions
The following sections describe the standard QIO funtions associated with the virtual terminal
driver.

3.3.1.1 I0.ATT
The I0.ATT function can be issued by offspring tasks to attach the virtual terminal. (It is illegal
for parent tasks to issue I0.ATT). Attaching a virtual terminal prevents other offspring tasks
from executing I/O operations with the virtual terminal. However, parent task I/O requests are
always serviced when issued.

3.3.1.2 |0.DET
The 10.DET function can be issued by offspring tasks to detach the virtual terminal, making it
available for use by other offspring tasks connected to the same parent task. (It is illegal for
parent tasks to issue I0.DET.)

3.3.1.3 IOKIL

3-4

Parent and offspring tasks can issue an IO.KIL function to cancel I/O requests. An offspring
task issuing IO.KIL can result in IE.ABO (operation aborted) being returned to the parent task.

Virtual Terminal Driver

3.3.1.4 IO.RLB, IO.RVB, |IO.WLB, and I0.WVB

These read and write functions execute the requested 1/O operations described in Chapter 2,
with the following two exceptions:

1. The virtual terminal driver returns the tmo parameter of an offspring task’s I0.RLB or
IO.RVB request, or it returns the vfc parameter of an offspring task’s I0.WLB or IO.WVB
request as a stack parameter on entry to the appropriate asynchronous system trap (AST)
for the parent task.

2. The virtual terminal driver returns I/O completion status to the offspring task in response
to successful completion of the offspring task’s IO.RLB or I0.RVB request; however, the
actual I/O completion status values returned are specified for data transfers in the third
parameter word of the parent task’s IO.WLB or I0O.WVB response, or in the second and
third parameters of the parent task’s I0.STC function response when no data transfer is
desired.

3.3.2 Device-Specific QIO Function (10.STC)

The I0.STC function can be issued by parent tasks to enable/disable offspring task 1/0 buffering
in secondary pool, or the function can be used to force an appropriate 1/O completion status for
an offspring task read I/O request when no data transfer is desired. Both of these applications
for the I0.STC function are described in the following paragraphs.

Parent tasks can use IO.STC to enable (or disable) intermediate buffering in secondary pool.
Intermediate buffering, when enabled, is performed on offspring task virtual terminal read and
write requests when the offspring task is checkpointable.

Thus, offspring tasks can be stopped for virtual terminal I/O and checkpointed in a manner
similar to the mannner used when you use physical terminals. Whenever the virtual terminal
driver determines that it should not use intermediate buffering, offspring tasks that issue terminal
requests become locked in memory until I/O completion; transfers occur directly between parent
task and offspring task buffers without intermediate buffering in secondary pool.

In addition to the conditions that permit intermediate buffering (when specified), one condition
can disable intermediate buffering of the parent task. If the buffer size specified in the Create
Virtual Terminal directive exceeds the maximum size spec1ﬁed at system generation time (51249
maximum), intermediate buffering is disabled.

The second application for I0.STC is to allow the virtual terminal driver to return an appropriate
1/O completion status in response to an offspring task read request. An I/O status returned in
this manner allows successful completion of the offspring task’s request when the parent task
determines that no data transfer is desired; this condition can occur, for example, when no data
is available for input to the offspring task by the virtual terminal driver. When you use the
I0.STC function in this manner, you must use the format shown next.

Format
QIO$C 10.STC ..., <cb,sw2,swl1>

Virtual Terminal Driver 3-5

Parameters

cb
Specifies a value of 1 to indicate that the I/O completion status returned to the offspring
task is desired.

Note
If the virtual terminal is operating in full-duplex mode, a cb value of 1

returns status for an offspring read request, and a cb value of 3 returns
status for an offspring write request.

sw2
Specifies the second word returned in the I/O completion status and indicates the number of
bytes read upon successful completion of an offspring task’s read request. However, because
no data transfer actually occurs, the value specified is 0. The byte count of 0 specified in
this function is legal (and desired); whereas, a byte count of 0 in write operations is illegal
(and results in an error being returned to the parent task).

swl
Specifies the status code to be returned to the offspring task by the virtual terminal driver
in the first word of the I/O completion status. This value is returned in the high byte and
a value of +1 is returned in the low byte of the status word. Typical values and the status
that each represents are listed as follows:

Code Value Completion Status Indicated

IS.sUC +1 Successful completion

IS.CR 15 Read terminated by carriage return
IS.ESC 33 Read terminated by an ALTMODE
ISESQ 233 Read terminated by an escape sequence

3.3.3 SF.GMC

The Get Multiple Characteristics function returns information on terminal characteristics. This
function can be issued by both the parent and the offspring tasks. The virtual terminal
driver returns the characteristics that were set by the previous corresponding SF.SMC request.
However, only the full-duplex mode (TC.FDX) characteristic affects the operation of the virtual
terminal driver. The SF.GMC function is provided only to maintain transparency to the offspring
task.

Valid virtual terminal characteristics are listed in Table 3-2.

3-6 Virtual Terminal Driver

3.3.4 10.GTS

The Get Terminal Support function returns a 4-word buffer of information that specifies which
features are a part of the virtual terminal driver. The virtual terminal driver provides the I0.GTS
function only to maintain transparency to the offspring task. Table 3-2 lists the options returned
by the full-duplex terminal driver. Of the options listed, the virtual terminal driver returns the
following;:

Word 1 F1.BUF, F1.RPR, F1.UTB, and F1.VBF
Word 2 F2.SCH and F2.GCH

3.3.5 IO.RPR

The Read After Prompt (IO.RPR) function can be issued only by the offspring task. When the
offspring task issues this function, the function appears to the parent task as a separate write
request followed by a read request.

IO.RPR has the same effect as IO.WLB (to write a prompt to the terminal) followed by IO.RLB.
However, IO.RPR differs in the following four ways from this combination of QIOs:

1. System overhead is lower because only one QIO is processed.

2. There is no “window” during which a response to the prompt may be ignored. Such a
window occurs if you use I0.WLB/IO.RLB, because no read may be posted at the time the
response is received.

3. If the issuing task is checkpointable, it is checkpointed during both the prompt and the
read.

4. A CTRL/O that may be in effect is canceled before the prompt is written.

The third argument that you can specify to IO.RPR, the tmo argument, is required for
compatibility with IAS. If supplied, it is ignored.

Subfunction bits may be ORed with IO.RPR to write the prompt as a Write All (TF.BIN) and
to send XOFF after the read (TF.XOF). In addition, you can use the three Read subfunction bits
(TE.RAL, TE.RNE, TF.RST) with IO.RPR.

3.3.6 SF.SMC

The SF.SMC function allows a task to set and reset the characteristics of a terminal. Both
the parent and the offspring tasks may issue this function. The parent task may set virtual
terminals to full-duplex operation by using the SF.SMC function with the characteristics bit
TC.FDX. When in full-duplex mode, the virtual terminal driver attempts to process the offspring
task’s read and write requests simultaneously. To ensure that these operations are overlapped,
the parent task should minimize the amount of time it spends in AST state.

Note
The virtual terminal driver defaults to half duplex mode.

Virtual Terminal Driver 3-7

Table 3-2 lists the characteristics that either the parent or the offspring task may set.

Table 3-2: Virtual Terminal Characteristics

Bit Name S:izle Meaning (If Asserted) Default Value

TC.FDX 64 Full-duplex mode 0

TC.SCP 12 Terminal is a scope 0

TC.SMR 25 Uppercase conversion dis- 0
abled

TC.TTP 10 Terminal type 0

3.4 Status Returns

The error and status conditions listed in Tables 3-3 and 3-4 are returned by the virtual terminal
driver. The SE.NIH error is returned by the SF.GMC and SF.SMC functions. For this error, the
low byte of the first word in the I/O status block (IOSB) contains IE.ABO. The second word
in the I/O status block contains an offset (starting at 0) pointing to the erroneous byte in the
stadd buffer.

Table 3-3: Virtual Terminal Status Returns for Offspring Task Requests
Code Reason

- Successful completion of an offspring task read request results in an I/O completion
status specified in a parent task QIO parameter being returned. Typically, the status
information returned simulates a subset of /O returns normally produced by the
terminal driver described in Chapter 2.

IS.SUC Successful completion
The operation specified in the QIO directive was completed successfully. The second
word of the IOSB indicates the number of bytes transferred on a write operation.

IEJFC Invalid function code
The offspring task attempted a read or a write function and the parent task did not
specify an AST address in its response to the requested 1/O function, or the offspring
task issued an I0.STC or other invalid function.

IE.ABO Request terminated
The offspring task issued IO.KIL or the parent task eliminated the virtual terminal
unit.

IESPC Illegal address space

Part or all of the buffer specified for a read or write request was outside of the task’s
address space, or a byte count of 0 was specified.

3-8 Virtual Terminal Driver

Table 3-3 (Cont.): Virtual Terminal Status Returns for Offspring Task Requests

Code Reason

IE.UPN Insufficient dynamic storage
The driver could not allocate an AST block to notify the parent task of an offspring
task request, or the driver could not allocate an intermediate buffer in the Executive
pool.

SENIH A terminal characteristic other than those listed in Table 3-2 was specified, or an

offspring task attempted to assert TC.FDX.

Table 3-4: Virtual Terminal Status Returns for Parent Task Requests

Code Reason

IS.SUC Successful completion
The operation specified in the QIO directive was completed successfully. The second
word of the IOSB indicates the number of bytes transferred on a read or write
operation.

IEEEOF End of file encountered
The 10.STC function was completed successfully.

IE.BAD Bad parameters
The parent task specified a buffer size that exceeded the system maximum specified
at system generation time.

[EDUN Device not attachable
An IO.ATT or I0.DET function was issued by the parent task.

IEIFC Invalid function code
A read, write, or IO.STC function was issued without a pending offspring task request.
This status can occur if the offspring task cancels a pending read or write request.
This function code is also returned when IO.STC is issued to enable intermediate
buffering on a virtual terminal unit whose buffer size, specified in the Create Virtual
Terminal directive, exceeds the system maximum specified at system generation time.

SEXNIH A terminal characteristic other than those listed in Table 3-2 was specified in an

SF.GMC or SF.SMC request.

Virtual Terminal Driver 3-9

Chapter 4
Disk Drivers

4.1 Introduction to Disk Drivers

The RSX-11M-PLUS and Micro/RSX disk drivers support the disks summarized in Table 4-1.
Subsequent sections describe these devices in greater detail.

All the disks described in this chapter are accessed in essentially the same manner. Up to eight
disks of each type (except RX01, RX02, RX33, RX50, RD51, RD52, RC25, RLO1, RLO2, RA60,
RAS80, or RA81) may be connected to their respective controllers. Disks and other file-structured
media are divided logically into series of 256-word blocks.

Table 4-1: Standard Disk Devices

Revolutions Bytes/ Decimal
Drive Per Minute Sectors Tracks Cylinders Drive Blocks
RS11 1800 - 1 128 524,288 1024
RS03 3600 64’ 1 64 524,288 1024
RS04 3600 64! 1 64 1,048,576 2048
RPRO02 2400 10 20 200 20,480,000 40,000
RPO3 2400 10 20 400 40,960,000 80,000
RMO02 2400 32 5 823 67,420,160 131,680
RMO03 3600 32 5 823 67,420,160 131,680
RMO05 3600 32 19 823 256,196,608 500,384
RP04,RP05 3600 22 19 411 87,960,576 171,798
RP06 3600 22 19 815 174,423,040 340,670

1The RS03 has 64 words per sector; the RS04 has 128 words per sector.

Disk Drivers 4-1

Table 4-1 (Cont.): Standard Disk Devices

Revolutions Bytes/ Decimal
Drive Per Minute Sectors Tracks Cylinders Drive Blocks
RPO7 3600 50 32 6302 516,096,000 1,008,000
RMS80 3600 31 14 5592 124,214,272 242,606
RK05 1500 12 2 200 2,457,600 4800
RLO1 2400 403 2 256 5,242,880 10,240
RLO2 2400 403 2 512 10,485,760 20,480
RK06 2400 22 3 411 13,888,512 27,126
RKO07 2400 22 3 815 27,810,800 53,790
RX01 360 26* 1 77 256,256 494
RX02 360 26* 1 77 512,512 988
RA80 3600 31 14 546 121,325,568 236,964
RA81 3600 51 14 1248 456,228,864 891,072
RA60 3600 42 4 2382 204,890,112 400,176
RC25 2850 31 2 796 26,061,824 50,902
RD31 - - - - - -
RD32 - - - - - -
RD51 3600 16 4 306 10,027,008 19,584
RD52 Manufacturer dependent 30,9657,60 60,480
RD53 - - - - - -
RD54 - - — - - -
RX50 300 10 1 80 409,600 800
RX33 360 15 160 615 1,228,800 2400

2The RP07 and the RM80 each have two additional CE cylinders.
3The RLO1 and RLO2 each have 128 words per sector.
4The RX01 has 64 words per sector; the RX02 has 128 words per sector.

4.1.1 RF11/RS11 Fixed-Head Disk

The RF11 controller/RS11 fixed-head disk provides random access bulk storage. It features fast
track-switching time and a redundant set of timing tracks.

4-2 Disk Drivers

4.1.2 RSO3 Fixed-Head Disk

The RS03 (RH11-RH70 controller/RS03 fixed-head disk) is a fixed-head disk that offers speed
and efficiency. With 64 tracks per platter and recording on one surface, the RS03 has a capacity
of 262,144 words.

The RS04 (RH11-RH70 controller/RS04 fixed-head disk) is similar to the RS03 disk and interfaces
to the same controller, but the RS04 provides twice the number of words per track by recording
on both surfaces of the platter, and thus has twice the capacity.

The RP11 controller/RP02 or RP03 disk pack consists of 20 data surfaces and a moving
read/write head. The RP03 has twice as many cylinders, and thus double the capacity of the
RP02. Only an even number of words can be transferred in a read/write operation.

4.1.3 RM02/RM03/RM05/RM80 Disk Pack

The RM02/RM03, RM05, and RM80 are MASSBUS disk drives and adapters that use the
existing MASSBUS controller. With a single head per surface, they provide a 1.2-Mb/s data
transfer rate. PDP-11/70 systems use the RM03, RM05, and RM80 with the RH70 controller
on PDP-11/70 systems. All other systems use the RM02 with the RH11 controller.

4.1.4 RPO4, RP05, RP06, and RP0O7 Disks

The RP04 or RP05 (RH11-RH70 controller/RP04 or RP05 disk packs) disk packs consist of 19
data surfaces and a moving read /write head. Both offer large storage capacity with rapid access
time. The RP06 disk pack has approximately twice the capacity of the RP04 or RP05. The
RP07 fixed-media disk has approximately three times the capacity of the RP06.

4.1.5 RK11/RK05 or RKO5F Cartridge Disks

The RK11 controller/RK05 DECpack cartridge disk is an economical storage system for medium-
volume, random-access storage. The removable disk cartridge offers the flexibility of large offline
capacity with rapid transfers of files between online and offline units without necessitating
copying operations. The RKO5F has twice the storage capacity of the RK05 and has a fixed
(nonremovable) disk cartridge.

4.1.6 RL11/RLO1 or RLO2 Cartridge Disk

The RLO1 is a low-cost, single-head-per-surface disk with a burst data transfer rate of 512-Kb/s.
The storage capacity of the RL02 is twice that of the RLO1.

4.1.7 RK611/RK06 or RKO7 Cartridge Disk

The RK611 controller/RK06 cartridge disk is a removable, random-access, bulk-storage system
with three data surfaces. The storage capacity is 6,944,256 words per disk pack. The system,
expandable to eight drives, is suitable for medium to large systems.

The RK611 controller /RKO07 cartridge disk is generally similar to the RK611/RK06, except storage
capacity is increased to approximately 13,905,400 words per disk pack. Both RK06 and RK07
disks can use the same RK611 controller; mixing RK06 and RK07 disks on the same controller
is permitted.

Disk Drivers 4-3

4.1.8 RX11/RX01 Flexible Disk

The RX11 controller/RX01 flexible disk is an economical storage system for low-volume, random-
access storage. Data is stored in twenty-six 64-word sectors per track; there are 77 tracks per
disk. Data may be accessed by physical sector or logical block. If logical or virtual block 1/0O is
selected, the driver reads four physical sectors. These sectors are interleaved to optimize data
transfer. The next logical sector that falls on a new track is skewed by six sectors to allow for
track-to-track switch time. Physical block I/O provides no interleaving or skewing and provides
access to all 2002 sectors on the disk. Logical or virtual I/O starts on track 1 and provides
access to 494 logical blocks.

4.1.9 RX211/RX02 Flexible Disk

4.1.

4.1.

44

The RX211 controller/RX02 flexible disk is an economical storage system for low-volume,
random-access storage. It is capable of operating in either an industry-standard, single-density
mode (as stated for the RX11/RX01 flexible disk), or a double-density mode (not industry
standard). In the single-density mode, each drive can store data exactly as stated in Section 4.1.8.
In the double-density mode, data is stored in twenty-six 128-word sectors per track; there are 77
tracks per disk. The RX211/RX02 operating in the single-density mode can read disks written
by an RX11/RX01 flexible disk system. In addition, disks written by the RX211/RX02 operating
in the single-density mode can be read by the RX11/RX01 flexible disk system.,

10 ML-11 Disk Emulator

The ML-11 is a fast, random-access, block-mode MOS memory system. The RSX-11M-PLUS
operating system treats the ML-11 as a disk. However, because it is not a disk, the statistics
in Table 4-1 do not apply. Unlike a disk, the number of bytes per drive varies. One ML-11
provides from 512 blocks to 8192 blocks of storage.

11 KDA50, UDA50/RA60/RA80/RA81 Disks

The KDA50 or UDAS50 controller is an intelligent disk controller that contains a high-speed
microprogrammed processor capable of performing all disk functions, including data handling,
error detection and correction, and optimization of disk drive activity and data transfers. The
controller optimizes disk activity by reordering QIO$s. Therefore, QIO$ macros may not
complete in the order in which they were issued. The types of drives that can be connected to
the KDAS50 or UDAS50 controllers are the RA60 disk drive, which has a removable disk pack,
and the RA80, RA81, and RAB82, all of which are fixed media drives. (For data capacities and
rates, see Table 4-1.) Up to four of these drives can be connected to a KDA/UDA, in any
desired combination.

The KDA/UDA controller can perform an extensive self-test on power-up or initialization.

Disk Drivers

4.1.

4.1.

4.1.

4.1.

12 RC25 Disk Subsystem

The RC25 disk subsystem consists of a fixed-media drive and a removable-media drive, both of
which revolve on the same spindle and share the same head mechanics. Each drive is a logical
unit, so each RC25 disk subsystem consists of two logical units.

The RC25 Subsystem combines, in one package, a controller and a single disk drive that has a
removable disk and a fixed disk. These disks reside in the drive as two separate logical units
on a single spindle. Their size is the same. Both are single 8-inch disks with two surfaces,
and both disks have the same data capacity. But mechanically they are different: One is a
removable front-loading cartridge disk, while the other cannot be removed from the drive. The
drive contains loadable Winchester heads.

RC25 subsystems are available in two types: a master drive that contains its own controller,
and a slave drive, which must be connected to an RC25 master drive. Each RC25 master drive
can support one RC25 slave drive. The added-on disk drive is a slave to the disk subsystem
that has the controller. A master-slave configuration would contain four logical units.

13 RD31 Fixed 5.25-Inch Disk

The RD31 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD31 is soft
sectored and field formattable. The maximum capacity of the RD31 is 20 Mb.

14 RX33 5.25-Inch Half-Height Disk

The RX33 disk drive is a half-height, 5.25-inch single flexible disk. It operates as a dual speed,
double-sided, diskette drive and has a maximum capacity of 1.2 Mb. The RX33 requires the
RQDX3 disk controller, supports RX33 formatting, and can perform read/write operations for
both RX33 and RX50 diskettes.

15 RDS51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk

This subsystem consists of a hard disk (RD51) and flexible disk (RX50) combination, and a
RQDX1/RQDX2 controller. In combination, they are a mass-storage medium for small systems.
The basic configuration for this subsystem is an RD51 fixed-disk drive and an RX50 flexible,
dual-disk drive. In this configuration, the RD51 is the system device and the RX50 is a data or
a backup device, or both. The RX50 dual disk is addressed as two separate units resulting in
a basic configuration of three disk units. Also, you can add another RD51 to increase storage
capacity. Some of the characteristics of the RD/RX drives are given in Table 4-1 and in the
following paragraphs.

The RD51 disk drive is a 5.25-inch fixed disk with Winchester-type heads. It has two disks with
four data surfaces. The RD51 is soft sectored and field formattable. The headers for each sector
contain the sector’s cylinder number, head number, and sector number. The sector number is
the logical sector number (0-15) that reflects the sector interleave of the disk.

The RX50 dual diskette drive is a compact, mass-storage drive with two access slots. Each slot
can hold a single-sided 5.25-inch flexible disk. These diskettes are firm sectored and are not
field formattable. Every track has sectors numbered from 1 to 10. The two diskettes share the
same head transport mechanism.

RSX-11M-PLUS and Micro/RSX also support the RUX50 UNIBUS interface for the RX50 dual
diskette drive and the RX180 IBM-compatible diskette drive.

Disk Drivers 4-5

4.1.

4.1.

4.1.

16 RD52 Fixed 5.25-Inch Disk

The RD52 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD52 is soft
sectored and field formattable. The maximum capacity of the RD52 is 31 Mb.

17 RD53 Fixed 5.25-Inch Disk

The RD53 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD53 is soft
sectored and field formattable. The maximum capacity of the RD53 is 71 Mb.

18 RD54 Fixed 5.25-Inch Disk

The RD54 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD54 is soft
sectored and field formattable. The maximum capacity of the RD54 is 159 Mb.

4.2 Get LUN Information Macro

4-6

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for disks (a bit setting of 1 indicates that the described
characteristic is true for disks):

Bit Setting Meaning

0 0 Record-oriented device
1 0 Carriage-control device
2 0 Terminal device
3 1 File-structured device
4 0 Single-directory device
5 0 Sequential device
6 1 Mass-storage device
7 X User-mode diagnostics supported (device dependent)
8 X Device supports 22-bit direct addressing
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 1 Device mountable as a Files-11 volume
15 1 Device mountable

Words 3 and 4 of the buffer contain the maximum logical block number. Note that the high
byte of U.CW2 is undefined. Your task should clear the high byte in the buffer before using
the block number. For DU-type disks, these two words are undefined until the device has been
mounted at least once. Word 5 indicates the default buffer size, which is 512 bytes for all disks.

Disk Drivers

4.3 QlIOS$ Macro

This section summarizes the standard and device-specific QIO functions for disk drivers.

4.3.1 Standard QIO$ Functions

Table 4-2 lists the standard functions of the QIO$ macro that are valid for disks.

Table 4-2: Standard QIO$ Functions for Disks

Format

Function

QIO$C I0.ATT,...
QIO$C IO.DET,...
QIO$C IOKIL,...
QIO$C IO.RLB,..., <stadd,size;,blkh,blkl>
QIO$C 10.RVB,..., <stadd,size, blkh,blkl1>
QIO$C 1I0.WLB,..., <stadd,size, blkh,blkl>
QIO$C I0.WLC,..., <stadd,size, blkh,blkl>
QIO$C I0.WVB,..., <stadd,size, blkh,blkl>

Attach device

Detach device

Kill 1/0!

Read logical block

Read virtual block

Write logical block

Write logical block followed by write-check?
Write virtual block

]In-progress disk operations are allowed to complete when IO.KIL is received because they take such a short time. 1/O requests that are queued
when IOKIL is received are killed immediately. An IE.ABO status is returned in the 1/O status doubleword.

2Not supported on RX01 or RX02 flexible disks.

Parameters
stadd

Specifies the starting address of the data buffer (must be on a word boundary).

size

Specifies the data buffer size in bytes (must be even, greater than 0, and, for the RP02 and

RP03, also a multiple of 4 bytes).

blkh/blkl

Specifies block high and block low, combining to form a double-precision number that
indicates the actual logical/virtual block address on the disk where the transfer starts; blkh
represents the high 8 bits of the address, and blkl represents the low 16 bits.

Disk Drivers 4-7

IO.RVB and IO.WVB are associated with file operations (see the RSX-11M-PLUS and Micro/RSX
1/0 Operations Reference Manual). For these functions to be executed, a file must be open on
the specified logical unit number (LUN) if the volume associated with the LUN is mounted.
Otherwise, the virtual I/O request is converted to a logical I/O request using the specified block
numbers.

Note

When writing a new file using QIOs, the task must explicitly issue .EXTND
File Control Services (FCS) library routine calls as necessary to reserve enough
blocks for the file, or the file must be initially created with enough blocks
allocated for the file. In addition, the task must put an appropriate value in
the File Descriptor Block (FDB) for the end-of-file block number (F.EFBK) before
closing the file. (Refer to the .EXTND routine description in the RSX-11IM-PLUS
and Micro/RSX 1/0 Operations Reference Manual.)

Each disk driver supports the subfunction bit IQ.X: inhibit retry attempts for error recovery.
You use this subfunction bit by using it in a logical OR with the desired QIO; for example:

QIO$C IO.WLB!IQ.X,..., <stadd,size, ,blkh,blkl>

The IQ.X subfunction permits you to specify retry algorithms for applications in which data
reliability must be high.

The overlapped seek drivers for RSX-11M-PLUS support subfunction bit 1Q.Q, which queues
the request immediately without doing a seek (that is, it uses implied seeks).

4.3.2 Device-Specific QIO$ Functions
The device-specific functions of the QIO$ macro are valid for the RX01/RX02/RL01/RL02 disk

drives only; they are shown in Table 4-3.

Table 4-3: Device-Specific Functions for the RX01/RX02, RLO1/RL02, and RX33 Disk Drives

Format Function
QIO$C IO.RPB,..., <stadd,size,,,pbn> Read physical block -
QIO$C I0.SEC.,... Sense diskette characteristics (RX02 only)
QIO$C I0.SMD,..., <density,, > Set media density (RX02 only)
QIO$C I0.WDD,..., <stadd,size,,pbn> Write physical block (with deleted data mark)
(RX01 and RX02 only)
QIO$C IO.WPB,..., <stadd,size,,,pbn> Write physical block
Parameters
stadd

Specifies the starting address of the data buffer (must be on a word boundary).

size
Specifies the data buffer size in bytes must be even and greater than 0).

4-8 Disk Drivers

pbn

Specifies the physical block number where the transfer starts (no validation will occur).

density

Specifies the media density as follows:
0 = single (RX01-compatible) density
2 = double density

4.3.3 Device-Specific QlIO$ Function for the DUDRV
The DU device driver (DUDRV) supports the device-specific QIO$ function shown in

Table 4-4.

Table 4-4: Device-Specific QIO$ Function for the DU: Device Driver

Format

Function

QIO$C IO.RLC,..., <stadd,size, blkh,blkl> Read Logical with Read Check modifier

The IO.RLC function is a read logical block followed by a read check. The disk is read twice.

4.4 Status Returns

The error and status conditions listed in Table 4-5 are returned by the disk drivers described in
this chapter.

Table 4-5: Disk Status Returns

Code Reason

IS.SUC Successful completion
The operation specified in the QIO$ directive was completed successfully. The second
word of the 1/0 status block (IOSB) can be examined to determine the number of
bytes processed, if the operation involved reading or writing.

IS.PND 1/0O request pending
The operation specified in the QIO$ directive has not yet been executed. The IOSB
is filled with zeros.

ISRDD Deleted data mark read
A deleted record was encountered while executing an IO.RPB function. The second
word of the IOSB can be examined to determine the number of bytes processed
(RX01 and RX02 only).

IE.ABO Request aborted
An I/0 request was queued (not yet acted upon by the driver) when an IO.KIL was
issued.

IE.ALN File already accessed on LUN

The task attempted to open a file on the physical device unit associated with the
specified LUN, but a file has already been opened by the issuing task on that LUN.

Disk Drivers 4-9

Table 4-5 (Cont.): Disk Status Returns
Code Reason

IE.BLK Illegal block number

An invalid logical block number (LBN) was specified. This code would be returned,
for example, if block 4800 were specified for an RK05 disk, on which legal block
numbers extend from 0 to 4799. IE.BLK would also be returned if an attempt was
made to write on the last track of an RK06 disk. (See Section 4.5.)

IE.BBE Bad block error
The disk sector (block) being read was marked as a bad block in the header word.
Data cannot be written on or read from a bad block.

IE.BYT Byte-aligned buffer specified
Byte alignment was specified for a buffer, but only word alignment is legal for disk.
Alternatively, the length of a buffer is not an appropriate number of bytes. For
example, all RP03 and RP02 disk transfers must be multiples of 4 bytes.

IE.DNR Device not ready
The physical device unit specified in the QIO$ directive was not ready to perform
the desired I/O operation.

[E.FHE Fatal hardware error
The controller is physically unable to reach the location where I/0 operation is to
be performed. The operation cannot be completed.

IEIFC Illegal function code
A function code was specified in an I/O request that is invalid for disks.

IE.NLN File not accessed on LUN

The task attempted to close a file on the physical device unit associated with the
specified LUN, but no file was currently open on that LUN.

IEXNOD Insufficient buffer space. Caller’s nodes exhausted

Dynamic storage space has been depleted, and there was insufficient buffer space
available to allocate a secondary control block. For example, if a task attempts to
open a file, buffer space for the window and file control block must be supplied
by the Executive. This code is returned when there is not enough space for this
operation.

IE.OFL Device off line
The physical device unit associated with the LUN specified in the QIO directive was
not on line.

IE.OVR Illegal read overlay request

A read overlay was requested, and the physical device unit specified in the QIO$
directive was not the physical device unit from which the task was installed. The
read overlay function can only be executed on the physical device unit from which
the task image containing the overlays was installed.

4-10 D_isk Drivers

Table 4-5 (Cont.): Disk Status Returns

Code Reason

IEPRI Privilege violation
The task that issued the request was not privileged to execute that request. For disk,
this code is returned if a nonprivileged task attempts to read or write a mounted
volume directly (that is, using IO.RLB or IO.WLB). Also, this code is returned if any
task attempts to attach a mounted volume.

IESPC Illegal address space
The buffer specified for a read or write request was partially or totally outside the
address space of the issuing task, or a byte count of 0 was specified.

IE.VER Parity error on device
After the system’s standard number of retries has been attempted upon encountering
an error, the operation still could not be completed. For disk, unrecoverable errors
are usually parity errors.

IEWCK Write-check error
An error was detected during the write-check portion of an operation.

IEWLK Write-locked device

The task attempted to write on a disk that was write-locked.

4.5 Programming Hints

The following sections describe programming hints you may find helpful for developing drivers
for disk devices.

4.5.1 UDA50 QIOSC I0.ATT Before GLUNS

The UDA50 dynamically updates the system database to reflect the characteristics of the
UDAS50. Therefore, your task should issue a QIO$ IO.ATT function before requesting the
device’s characteristics with the Get LUN directive.

4.5.2 RX02 QIO$C 10.SEC Before GLUNS

The RX02 driver (DYDRV) dynamically updates the system database to reflect the characteristics
of the media in the RX02 drive. Therefore, your task should issue a QIO$C IO.SEC (sense
characteristics) function before requesting the device’s media characteristics with the GLUN$

directive.

4.5.3 Bad Sector Track on Disks

For the RK611 controller/RK06 or RK07 disk, the RL11 controller/RLO1 or RL02 disk, RM02
disk, RM03 disk, RM05 disk, RM80 disk, and RP07 disk, the driver write-protects the last track
of the cartridge. This track contains the factory-recorded, bad-sector file.

Disk Drivers 4-11

4.5.4 Stalling Input and Output

Because two RC25 disk units revolve on the same spindle and share the same head mechanics,
you must spin down both units of a subsystem in order to spin down one unit. You cannot
access either unit until the subsystem is spun up again. Because you must spin down the drive
any time you want to insert or remove a disk from the removable-media unit, the device driver
(DUDRV) allows you to spin down the subsystem and still retain context on the fixed-media
unit, provided it is mounted as a Files-11 or foreign volume. It does this by postponing input
and output to the fixed-media unit until the subsystem is spun up again and the heads are
reloaded. This is called stalled I/0.

When the driver receives an I/O request that it cannot process because the drive is spun down,
it issues the following message to the console:

ddnn: - I/0 stalled

When the drive is spun up again and I/O to the device is resumed, the driver issues the
following message to the console:

ddnn: - I/0 resumed

Note that because the only reason you would want to spin down the disk on a running system
would be to replace the removable disk, and you would never specifically need to spin down
the fixed-media unit, I/O is never stalled to the removable-media unit. The removable-media
unit behaves like any other disk on an RSX-11M-PLUS or Micro/RSX system: if you spin it
down, context is lost.

Stalling 1/O to an RC25 subsystem affects the system’s performance. If you initiate an operation
requiring I/0 to a stalled unit, you will not receive a timely response to the request. Although
the 1/0 request is queued to the device driver, the driver ignores the request until the drive is
loaded and the unit is ready. The driver then resumes processing requests. Note, however, that
an operation can continue as long as it does not require access to the unit whose 1/0 is stalled.

Sometimes an operation that does not involve stalled-I/O units is delayed as well. For example,
assume that your system disk is in the fixed-media unit and that you spin down a subsystem in
order to change the disk pack in the removable-media unit. If a user then initiates an operation
requiring a task to be loaded from the fixed unit, the loader issues a queued 1/O request to
the fixed unit. However, the device driver does not respond to this request immediately, since
the subsystem is spun down. Also, because the loader cannot service additional tasks until it
loads the current task from the disk, load operations to other disks on the system remain in the
loader’s work queue until the current load operation completes.

Note

Like the loader, the Files-11 Ancillary Control Processor (Files-11 ACP or
F11ACP) is another single-threaded task that may delay response time when
I/0 is stalled to the RC25. To avoid this delay, you should always install a
unique ACP for the RC25 fixed-media units (see the MCR command MOU in
the RSX-11IM-PLUS MCR Operations Manual or the DCL command MOUNT
in the RSX-11M-PLUS Command Language Manual. Micro/RSX users may also
want to refer to the Micro/RSX User’s Guide, Volume 1).

System users may find it difficult to distinguish between system crashes and system delays due
to stalled I/O. Therefore, it is recommended that, before you spin down an RC25 subsystem,
you inform all system users of your intentions.

4-12 Disk Drivers

4.5.5 Dismounting the RC25

You dismount a unit on the RC25 in the same way you dismount a unit on other disk devices, by
using either the MCR or DCL command DISMOUNT. However, there are restrictions on using
the /UNLOAD qualifier to spin down the disk. Since context may be lost on the removable
disk if the subsystem is spun down, all spin down requests are ignored for the fixed unit of the
RC25. For the removable disk unit, you must be privileged in order to spin down the device
while dismounting it. The privileged status of DISMOUNT/UNLOAD is a safety measure to
control who is able to spin down the system disk.

If you are a privileged user, DISMOUNT/UNLOAD issues the following message when the
command executes properly:

Warning -- All units of multiunit drive will spin down <ddnn:>

If you are a nonprivileged user, DISMOUNT/UNLOAD refuses your request to spin down a
unit and issues the following message:

Warning -- Volume will not spin down <ddnn:>

Disk Drivers 4-13

Chapter 5

DECtape Il Driver

5.1 Introduction to the DECtape |I Driver

S.1.

The DECtape II (TU58) driver supports TU58 system hardware, providing low-cost, block-
replaceable mass storage.

1 TUS58 Hardware

Each TU58 DECtape II system consists of one or two TU58 cartridge drives, one tape drive
controller, and one DL11-type serial line interface. Each TUS58 drive functions as a random-
access, block-formatted, mass-storage device. Each tape cartridge is capable of storing 5129
blocks of 5121y bytes each. Access time averages 10 seconds. All I/O transfers (commands and
data) occur by means of the serial line interface at serial transmission rates of 9600 bps. All
read and write check operations are performed by the controller hardware that uses a 16-bit
checksum. The controller performs up to eight attempts to read a block, as necessary, before
aborting the read operation and returning a hard error; however, whenever more than one read
attempt is required for a successful read, the driver is notified so that it can report a soft error
message to the error logger.

5.1.2 TU58 Driver

The TU58 driver communicates with the TU58 hardware by means of a serial line interface
(DL11); no other interface is required. All data and command transfers between the PDP-11
system and the TUS58 are done with programmed I/O and interrupt-driven routines; non-
processor requests (NPRs) are not supported.

DECtape II Driver 5-1

5.2 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for the TU58 (a bit setting of 1 indicates that the
described characteristic is true for this device):

Bit Setting Meaning

0 0 Record-oriented device
1 0 Carriage-control device
2 0 Terminal device
3 1 File-structured device
4 0 Single-directory device
5 0 Sequential device
6 1 Mass-storage device
7 1 User-mode diagnostics supported
8 0 Device supports 22-bit direct addressing
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 1 Device mountable as a Files-11 volume
15 1 Device mountable

Words 3 and 4 of the buffer are a double-precision number specifying the total number of
blocks on the device; this value is 5121 blocks. Word 5 indicates the default buffer size, which
is 51210 bytes.

5.2.1 QIO MACRO

This section summarizes standard and device-specific QIO functions for the TU58.

5-2 DECtape II Driver

5.2.2 Standard QIO Functions

Table 5-1 lists the standard QIO system directive functions for the QIO macro that are valid
for the TUS5S.

Table 5-1: Standard QIO Functions for the TUS58

Format Function

QIO$C IO.ATT,... Attach device
QIO$C IO.DET,... Detach device
QIO$C IOKIL,... Cancel I/O requests!
QIO$C IO.RLB,..., <stadd,size,,lbn> Read logical block
QIO$C I0.WLB,..., <stadd,size,,lbn> Write logical block

1In-progress operations are allowed to complete when IO.KIL is received. 1/0 requests that are queued when IO.KIL is received are killed.

Parameters
stadd
Specifies the starting address of the data buffer (must be on a word boundary).

size
Specifies the data buffer size in bytes (must be even and greater than 0).

Ibn

Specfies the logical block number on the cartridge tape where the data transfer starts (must
be in the range of 0 to 511).

5.2.3 Device-Specific QIO Functions

The device-specific QIO system directive functions that are valid for the TU58 are shown in
Table 5-2.

Table 5-2: Device-Specific QIO Functions for the TU58

Format Function

QIO$C IO.WLC,..., <stadd,size,,lbn> Write logical block with check
QIO$C IO.RLC,..., <stadd,size,,lbn> Read logical block with check
QIO$C I0.BLS!IQ.UMD,..., <lbn> Position tape

QIO$C I0.DGN'IQ.UMD,... Run internal diagnostics

DECtape 1I Driver 5-3

Parameters
stadd
Specifies the starting address of the data buffer (must be on a word boundary).

size
Specifies the data buffer size in bytes (must be even and greater than 0).

Ibn
Specifies the logical block number on the cartridge tape where the data transfer starts (must
be in the range of 0 to 511).

Additional details for device-specific QIO functions are provided in the following paragraphs.

5.2.3.1 IO.WLC

The I0.WLC function writes the specified data onto the tape cartridge. A checksum verification
is then performed by reading the data just written; data is not returned to the task issuing the
function. An appropriate status, based on the checksum verification, is returned to the issuing
task.

5.2.3.2 IO.RLC
The I0.RLC function reads the tape with an increased threshold in the TU58’s data recovery
circuit. This is done as a check to ensure data read reliability.

5.2.3.3 10.BLS

You can use the IO.BLS function for diagnostic purposes to position the tape to the specified
logical block number (LBN). If you specify 10.BLS, you must use the IQ.UMD subfunction (see
Chapter 1).

5.2.3.4 I0.DGN

You can use the IO.DGN function for diagnostic purposes to execute the TU58’s internal
(firmware) diagnostics. Appropriate status information is returned to the issuing task by the
/O status block (IOSB). If you specify IO.DGN, you must use the IQ.UMD subfunction (see
Chapter 1).

5.3 Status Returns
Table 5-3 lists the error and status conditions that are returned by the TU58 driver.

5-4 DECtape Il Driver

Table 5-3: TU58 Driver Status Returns

Code

Reason

IS.5UC

IE.DNR

IE.IFC

IE.FHE
IE.TMO

IE.VER

IE.WLK

Successful completion

The operation specified in the QIO directive was completed successfully. The second
word of the IOSB can be examined to determine the number of bytes processed, if
the operation involved reading or writing. ’

Device not ready

The physical device unit specified in the QIO directive was not ready to perform the
desired I/O operation.

Illegal function code

A function code was specified in an I/O request that is illegal for the TUS8.

Fatal hardware error

Timeout error

The TU58 failed to respond to a function within the normal time specified by the
driver.

Parity error on device

After the system’s standard number of retries (8) has been attempted upon
encountering an error, the operation still could not be successfully completed.
Cartridge write-locked

The task attempted to write on a tape cartridge that is physically write-locked.

DECtape II Driver 5-5

Chapter 6
Magnetic Tape Drivers

6.1 Introduction to the Magnetic Tape Drivers

RSX-11M-PLUS and Micro/RSX support a variety of magnetic tape devices. However, note
that Micro/RSX supports only the following magnetic tape devices:

s TSV05
e TK25
e TK50

Table 6-1 summarizes these devices and subsequent sections describe them in greater detail.

Magnetic Tape Drivers 6-1

Table 6-1: Standard Magnetic Tape Devices
Recording
Recording Tape Maximum Transfer
Density Speed Data Method
Device (Frames/ (Inches/ Rate (Bytes/
Driver Channels Inch) Second) Units Second)
TE10 9 7-channel: 45 36,000 NRZI
TU10 7o0r9 200, 556
MTDRV or 800
’ 9-channel:
800
TE16,TU16 9 800/1600 45 800 bpi: NRZI or PE!
MMDRV 36,000
1600 bpi:
72,000
TU45 9 800/1600 75 800 bpi: NRZI or PE!
MMDRV 60,000
1600 bpi:
120,000
TU77 9 800/1600 125 800 bpi: NRZI or PE!
MMDRV 100,000
1600 bpi:
200,000
TS03 9 800 15 12,000 NRZI
MTDRV
TS11 9 1600 45 72,000 PE!
MSDRV
TU80 9 1600 25? 40,0007 PE!
MSDRV 100° 160,000°

I Phase encoded

2Low speed
3High speed

6-2 Magnetic Tape Drivers

Table 6-1 (Cont.): Standard Magnetic Tape Devices

Recording
Recording Tape Maximum Transfer
Density Speed Data Method
Device (Frames/ (Inches/ Rate (Bytes/
Driver Channels Inch) Second) Units Second)
TU81 9 1600/6250 252 40,000 PE!
MUDRV 753 120,000 PE!
252 156,000 GCR
753 469,000 GCR
TSVO05 9 1600 25 40,000 PE!
MSDRV
TK25 s.s.t 8000 55 55,000 Modified
MSDRV bit-serial GCR
data tracks
recorded
serial
serpentine
TK50 s.s.t 6667 75° 45,000 Modified
MUDRV bit-serial FM
data tracks
recorded
serial
serpentine

! Phase encoded
2Low speed
3High speed
4Gerial serpentine

5mn streaming mode

6.1.1 TE10/TU10/TS03 Magnetic Tape

The TE10/TU10/TS03 consists of a TM11 controller with a TE10, TU10, or TS03 transport. It
is a Jow-cost, high-performance system for serial storage of large volumes of data and programs
in an industry-compatible format. All recording is non-return to zero inverted (NRZI) format.

Magnetic Tape Drivers 6-3

6.1.2 TE16/TU16/TU45/TU77 Magnetic Tape

The TE16/TU16/TU45/TU77 consists of an RH11/RH70 controller, a TM02 or TM03 formatter,
and a TE16/TU16/TU45/TU77 transport. They are quite similar to the TE10/TU10 but are
MASSBUS devices, with a common controller, a specialized formatter, and drives. Recording is
either 800 bits per inch (bpi) NRZI or 1600 bpi phase encoded (PE).

6.1.3 T511/TU80 Magnetic Tape

The TS11 and TUSO are integrated subsystems. Each has a drive, a controller, and a formatter.
The hardware is microprocessor controlled for all operations, including I/O transfers and tape
motion, and it has comprehensive (internal) diagnostic test execution. Recording is 1600 bpi PE.

The TS11 operates in conventional start and stop mode while the TU80 operates at either low
speed (start and stop mode) or high speed (streaming mode). Tape speed is microprocessor
controlled.

6.1.4 TSV05 Magnetic Tape

The TSV05 tape subsystem is a Q-bus device. It is an integrated subsystem with a drive,
a controller, and a formatter. The hardware is microprocessor controlled for all operations,
including I/O transfers, tape motion, and it has comprehensive (internal) diagnostic test
execution. Recording is 1600 bpi PE. The TSV05 operates at 25 inches per second.

6.1.5 TK25 Magnetic Tape

The TK25 consists of a TKQ25 controller for the Q-bus and a TK25 streaming tape drive.
The integrated subsystem consists of a tape drive and controller/formatter. The TK25 uses
a DC600A 1/4-inch tape cartridge and stores data on serial data tracks in a serial serpentine
recording method. The TK25 has storage capacity of 60 megabytes (Mb) for 8-kilobyte (Kb)
data records. Data recording is an 8000 bpi, modified GCR (group cyclical recording) method.

6.1.6 TK50 Magnetic Tape

The TK50 is an integrated subsystem that consists of a controller for the Q-bus (TQKS50) or a
controller for the UNIBUS (TUK50), and a TK50 streaming tape drive. The controller handles
all error recovery and correction, and internally buffers multiple outstanding commands. The
tape drive reads and writes data on a 1/2-inch tape cartridge that is recorded at 6667 bpi on
serial data tracks in a serial serpentine recording (Modified Frequency Modulation) method. The
tape speed is 75 inches per second in streaming mode and the storage capacity is approximately
94 Mb irrespective of record size. There is one drive for each controller.

6.1.7 TU81 Magnetic Tape

The TUS81 is a 9-track streaming tape drive that reads and writes data at either 6250 bpi (GCR)
or 1600 bpi (PE) on 1/2-inch tape. The TU81 internally buffers multiple outstanding commands.
The tape transport speed is 25 or 75 inches per second and is microprocessor controlled. At
6250-bpi density, the drive can store up to 140 Mb on a standard 2400-foot reel. The TU81
has its own UNIBUS controller (one drive per controller).

6-4 Magnetic Tape Drivers

6.2 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for magnetic tapes (a bit setting of 1 indicates that the
described characteristic is true for magnetic tapes):

Bit Setting Meaning
0 Oorl Record-oriented device (0 if the tape is mounted Files-11, 1 if is not mounted
or if it is mounted foreign)
1 0 Carriage-control device
2 0 Terminal device
3 0 File-structured device
4 Oorl Single-directory device (0 if the tape is not mounted, 1 if it is)
5 1 Sequential device
6 1 Mass-storage device
7 Oorl User-mode diagnostics supported!
8 Oor1 MASSBUS device (set only for TE16, TU16, TU45, TU77 drives interfaced by
means of an RH70 controller)!
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 Oor1l Device mountable as a Files-11 volume!
15 Oorl Device mountable!

1System generation and device-dependent characteristic.

Word 3 is used by Digital Equipment Corporation for tape density information. Word 4 of the
buffer is undefined; word 5 indicates the default buffer size.

6.3 QI0$ Macro

This section summarizes standard and device-specific QIO$ functions for the magnetic tape
drivers.

Magnetic Tape Drivers 6-5

6.3.1 Standard QIO$ Functions
Table 6-2 lists the standard functions of the QIO$ macro that are valid for magnetic tape.

Table 6-2: Standard QIO$ Functions for Magnetic Tape

Format Function

QIO$C IO.ATT,... Attach device

QIO$C IO.DET,... Detach device

QIO$C IOKIL,... Cancel 1/0 requests

QIO$C IO.RLB,..., <stadd,size> Read logical block (read tape into buffer)

QIO$C IO.RVB,..., <stadd,size> Read virtual block (read tape into buffer)

QIO$C IO.WLB.,..., <stadd,size> Write logical block (write buffer contents to tape)

QIO$C IO.WVB,..., <stadd,size> Write virtual block (write buffer contents to tape)
Parameters
stadd

Specifies the starting address of the data buffer. It may be on a byte boundary for MSDRV
devices. Otherwise, it must be on a word boundary.

e Specifies the data buffer size in bytes. Size must be even, greater than 0, and, for a write,
must be at least 14 bytes. For MSDRV or MUDRYV devices, the data transfer size may be
an odd or even number of bytes.

6.3.1.1 IO.KIL

IO.KIL causes I/O termination upon the occurrence of:

e A select error (not applicable to TK50)

* Error recovery

¢ Interrupt servicing

¢ Driver timeout servicing

Select errors are not issued for MUDRV devices, but any I/O in progress is canceled by 10.KIL.

6-6 Magnetic Tape Drivers

6.3.2 Device-Specific QIO$ Functions

Table 6-3 lists the device-specific functions of the QIO$ macro that are valid for magnetic tape.
Additional details on certain functions appear in the paragraphs that follow.

Table 6-3: Device-Specific QIO$ Functions for Magnetic Tape

Format Function
QIO$C IO.DSE,... Data Security Erase (TK50/TU81 only)
QIO$C IO.EOF,... Write end-of-file (EOF) mark (tape mark)

QIO$C IO.ERS,... Erase (TE10, TU10, and TK50 are not supported.)
QIO$C IO.RLV,..., <stadd,size> Read logical block reverse (TE10 and TU10 are not
supported.)

QIO$C IO.RWD,... Rewind unit

QIO$C IO.RWU,... Rewind and turn unit off line

QIO$C I0.SEC,... Sense tape characteristics

QIO$C I0.SMO,...., <cb> Mount tape and set tape characteristics (Unit must be
ready with tape at load point.)

QIO$C IO.SPB,..., <nbs> Space blocks

QIO$C IO.SPF...., <nes> Space files

QIO$C I0.STC,..., <cb> Set tape characteristics

Parameters

stadd

Specifies the starting address of the data buffer. It may be on a byte boundary for MSDRV
devices; otherwise, it must be on a word boundary.

size
Specifies the size of the stadd data buffer in bytes. The size must be an even number of
bytes greater than 0, and it must be at least 14 bytes for a write. For MSDRV or MUDRV
devices, data transfers may be an odd or even number of bytes.

cb
Specifies the characteristic bits to set.

nbs
Specifies the number of blocks to space past (positive if forward, negative if reverse).

nes

Specifies the number of end-of-file (EOF) marks to space past (positive if forward, negative
if reverse).

Magnetic Tape Drivers 6-7

6.3.2.1 IO.RLY
The data appears in the specified buffer in a fashion identical with IO.RLB or IO.RVB, as long
as the data block has the same length as the buffer.

6.3.2.2 IO.RWD

Completion of IO.RWD means that the rewind has been initiated, except for MSDRV (MS)
devices. For MSDRYV devices, completion of IO.RWD indicates that the rewind to beginning-of-
tape (BOT) has completed. Additional requests for operations on that controller may then be
queued. However, a request for the same unit will be queued by the driver until load point
(BOT) is reached.

6.3.2.3 IO.RWU

You normally use IO.RWU when operator intervention is required (for example, to load a new
tape). The operator must turn the unit back on line manually before subsequent operations can
proceed.

6.3.2.4 10.ERS
IO.ERS causes an erase of 3 inches of (write blank) tape, effectively providing an extended
interrecord gap. (IO.ERS is not supported on TU10 and TE10.)

6.3.2.5 |0.DSE
IO.DSE causes the TK50 and TUS81 to erase from the current position to the physical end-of-tape
(EOT) and then to rewind the tape to beginning-of-tape (BOT).

6.3.2.6 10.SEC

IO.SEC causes a return of the tape characteristics in the second 1/O status word. The tape
characteristic bits are defined as follows:

Can Be Set by
Bit Meaning When Set 10.SMO and I0.STC

0 For TU10, 556-bpi density (7-channel). Reserved X
for TE16, TUle6, TU45, TU77, TU81, TS11,
TK25, and TK50.

1 For TU10, 200-bpi density (7-channel). X

For TS11, TU80, and TSV05, TSU05, TK25,
swap byte mode (read/write). Data buffer size
should be in even bytes.

Reserved for TE16, TU16, TU45, TK50, TU77,
and TUS81.

6-8 Magnetic Tape Drivers

Can Be Set by
Bit Meaning When Set 10.SMO and 10.STC

2 For TU10, core-dump mode (7-channel, see X
below). Reserved for TE16, TU16, TS11, TU45,
TU77, TUSO, TU81, TSVO05, TSUOS, TK25, and
TK50.

3 For TU10, even parity (default is odd). For X
others, odd parity. (Not selectable for TS11,
TK50, TU80, and TU8B1.)

4 Tape is past end-of-tape (EOT).

5 Last tape command encountered end-of-file
(EOF) in a forward tape direction.

6 Writing is prohibited. X

7 Writing with extended interrecord gap is pro- X
hibited (that is, no recovery is attempted after
write error).

8 Select error on unit (not on TK50 or TU81).
9 Unit is rewinding.
10 Tape is physically write-locked.
11 For TE10, TU10, TK50 and TS03, reserved. X

For the TU81, default 6250 bpi. If bit 11 is set,
1600 bpi.

For all other tapes, default is 800 bpi. If bit 1
is set, 1600-bpi density.

12 For TU10, drive is 7-channel. For all other
tapes, reserved.

13 Tape is at load point (BOT).
14 Tape is at end-of-volume (EOV).

15 Tape is past EOV (reserved for driver; always
0 when read by your task).

In core-dump mode (TU10 only, 800-bpi density, and 7-channel), each 8-bit byte is written on
two tape frames, 4 bits per frame. In other modes on 7-channel tape, only 6 low-order bits per
byte are written.

For the TS11/TU80/TSV05/TSU05 1600-bpi density is always selected (bit 11=1). Bit 11 cannot
be modified by either the I0.SMO or I10.STC functions. For drives that use the TM03 controller,
this bit can be either set or cleared; however, once the tape is moved from the load BOT position,
the device driver modifies this bit to reflect the actual density of the tape currently mounted.
You cannot change bit 11 once the tape is moved beyond BOT.

Magnetic Tape Drivers 6-9

6.3.2.7 10.SMO

Use the I0.SMO function as a combination of the sense (IO.SEC) and set (I0.STC) tape
characteristics functions. Unlike I0.STC, however, the I0.SMO function requires that the unit
be ready and the tape be at load point (BOT). If either of these conditions is not met, the
function returns an error status code of IE.FHE (refer to Table 6-4).

You should use the 10.SMO function to set the characteristics of a newly loaded tape. If the
IE.FHE error code is returned, the tape drive is not on line and is not at BOT.

6.4 Status Returns

The error and status conditions listed in Table 6-4 are returned by the magnetic tape drivers
described in this chapter.

Table 6-4: Magnetic Tape Status Returns
Code Reason

IS.SUC Successful completion

The operation specified in the QIO$ directive was completed successfully. The second
word of the I/O status block (IOSB) can be examined to determine the number of
bytes processed, if the operation involved reading or writing. This code is also
returned if nbs equals 0 in an I0.SPB function or if nes equals 0 in an I0.SPF
function.

ISPND I/O request pending
The operation specified in the QIO$ directive has not yet been completed. The I0SB
is filled with zeros.

IE.ABO Operation aborted
The specified I/O operation was canceled by IO.KIL while in progress or while still
in the I/O queue.

IE.BBE Bad block

A bad block was encountered while reading or writing and the error persisted after
nine retries. For TM11, IE.BBE may also indicate that a bad tape error (BTE) has
been encountered. The status return IE.BBE does not apply to MSDRV or MUDRV
devices.

IEBYT Byte-aligned buffer specified
Byte alignment was specified for a buffer, while only word alignment is legal for the
QIO. Alternatively, the length of a buffer is not an even number of bytes.
IEDAA Device already attached
The physical device unit specified in an 10.ATT function was already attached by
the issuing task. This code indicates that the issuing task has already attached the
desired physical device unit, and not that the unit was attached by another task.
IE.DAO Data overrun

On a read, a record exceeded the stated buffer size. The final portion of the buffer
is checked for parity but is not transferred into memory.

6-10 Magnetic Tape Drivers

Table 6-4 (Cont.): Magnetic Tape Status Returns

Code Reason

IEDNA Device not attached
The physical device unit specified in an IO.DET function was not attached by the
issuing task. This code has no bearing on the attachment status of other tasks.

IE.DNR Device not ready
The physical device unit specified in the QIO$ directive was not ready to perform
the desired 1/O operation. This code is returned to indicate one of the following
conditions:
* A timeout occurred on the physical device unit (that is, an interrupt was lost).
* A vacuum failure occurred on the magnetic tape drive.
* While trying to read or space, the driver detected blank tape.
* The LOAD switch on the physical drive was switched to the off position.
e The unit failed internal diagnostic tests (TS04 only).

IEEOF End-of-file encountered
An EOF (tapemark) was encountered.

IEEOT End-of-tape encountered
The EOT (physical end-of-volume) was encountered while the tape was moving in
the forward direction for a write or a write tape mark operation. The IE.EOT code
is returned continually in the IOSB until the EOT marker is passed in the reverse
direction. IE.EOT is not returned on a read operation.
A 10-foot length of tape extends past the EOT marker, which is useful for writing
data and markers, such as volume trailer labels.
The physical EOT for MUDRV (MU) devices is defined as the end of usable recorded
area, which is located in the tape trailer area. This area begins at the EOT marker
and extends through a length that depends on the tape format and is controller
dependent.

IEEEOV End-of-volume encountered (unlabeled tape)
On a forward space function, the logical end-of-volume (EOV) was encountered. An
end-of-volume (EOV) is two consecutive end-of-file marks (EOF) or a beginning-of-
tape mark (BOT) followed by an EOF. The tape is normally left positioned between
the two marks.

IE.FHE Fatal hardware error
Nonrecoverable hardware error; for example, the magnetic tape unit is not ready or
the tape is not at load point, or both, when 10.5MO is issued.

IEIFC Illegal function code

An invalid function (or subfunction bit) was specified in a magnetic tape I/O request.
Refer also to Section 6.4.3.

Magnetic Tape Drivers 6-11

Table 6-4 (Cont.): Magnetic Tape Status Returns

Code Reason

IE.OFL Device off line
The physical device unit associated with the logical unit number (LUN) specified in
the QIO$ directive was not on line. When the system was booted, a device check
indicated that this physical device unit was not in the configuration.

IESPC Illegal address space
The buffer specified for a read or write request was partially or totally outside the
address space of the issuing task. For magnetic tape, this code is also returned if a
byte count of 0 was specified or if your task attempted to write a block that was less
than 14 bytes long.

IE.VER Parity error on device
After the system’s standard number of retries had been attempted upon encountering
an error, the operation still could not be completed. For magnetic tape, this code is
returned in the case of cyclic redundancy check (CRC) or checksum errors or when
a tape block could not be read.

IEWLK Write-locked device

The task attempted to write on a magnetic tape unit that was physically write-locked.
Alternatively, tape characteristic bit 6 was set by the software to write-lock the unit
logically.

After processing a QIO$ request, the magnetic tape driver returns two status words. The first
word contains one of the I/O status codes listed in Table 6—4.

For successful QIO$ execution (IS.SUC) or read requests (IE.DAO), the second /O status word
may contain further information. The operations for which this is true, and the information
returned, are shown in Table 6-5. For all other cases this word is undefined.

Table 6-5:

Information Contained in the Second 1/O Status Word

I/0 Function

Information Returned

Code IS.SUC IE.DAO

IO.RLB Number of bytes transferred Number of bytes in tape record!
IO.RLV Number of bytes transferred Number of bytes in tape record!
IO.RVB Number of bytes transferred Number of bytes in tape record!
I0.SEC Tape characteristics word

10.SPB Number of records spaced over

IO.SPF Number of files spaced over

IO.WLB Number of bytes transferred

IO.WVB Number of bytes transferred

1Does not apply to MS devices.

6-12 Magnetic Tape Drivers

6.4.1 Select Recovery

If a request fails because the desired unit is off line, because no drive has the desired unit
number, or because the drive has its power off, the following message is output on the operator’s
console:

*x**% MTn: -- SELECT ERROR

or

*x%x%x MSn: -- SELECT ERROR

The n argument is the unit number of the specified drive.

The driver checks the unit for readiness and repeats the message every 15 seconds until the
requesting task is aborted or until the unit is made available. In the latter case, the driver then
proceeds with the request.

MUDRV devices (TK50) do not issue select errors. If the drive is taken off line, the condition
is treated as tape position lost. The cartridge must be unloaded and loaded in order to access
the tape again.

Warning

This action results in the tape unit rewinding to BOT. No recovery by the
application is possible in such an event. If the tape was mounted as an
American National Standards Institute (ANSI) tape, the tape context maintained
by MTAACP is invalid. The tape must be dismounted and remounted in order to
reinitialize the data structures used by MTAACP. If the tape was being accessed
in write mode, the file being written is incomplete and the tape may no longer
be in valid ANSI format.

6.4.2 Retry Procedures for Reads and Writes

If an error occurs during a read (for example, vertical parity error), the recovery procedure
depends on the type of magnetic tape in use. Read errors for an MT or MM device are retried
by backspacing one record and then by rereading the record in question. If the error persists
after nine retries, IE.VER is returned.

Read errors for the MSDRV (MS) devices are retried by rereading the block in error a
predetermined number of times. For MS devices, except for TK25, on every eighth reread
the block is passed by the tape cleaner blade. If the error persists after a predetermined number
of retries, IE.VER is returned.

Magnetic Tape Drivers 6-13

For MUDRYV devices (TK50/TU81), the controller handles error correction and recovery. Except
for MU devices, write recovery is the same for all devices. When a write operation fails, the
driver attempts the following error recovery procedure:

1. Re-positions the tape
2. Erases 3 inches of tape (resulting in an extended interrecord gap)
3. Retries the write operation

If the error persists after a predetermined number of retries, IE.VER is returned. The requesting
task can use I0.STC to prohibit writing with an extended interrecord gap. In this case, the tape
is backspaced and the write is retried.

6.4.3 Powerfail Recovery for Magnetic Tapes

If a power failure or loss of vacuum, or both, occurs on a magnetic tape drive, tape position is
lost. (Note that an initial system boot simulates a recovery from a power failure.) Additionally,
on autoload drives, the tape is positioned at BOT when the unit is turned on line.

To prevent accidental destruction of data currently on tape, the driver maintains a powerfail
status indicator. When this indicator is set, the driver disallows any data transfer or tape motion
commands until a rewind (I0.RWD), rewind unload (I0.RWU), or mount and set characteristics
(I0.SMO) function is issued. These functions clear the powerfail indicator and allow all tape
functions to be issued. It is also possible to issue the set and sense characteristics functions
(IO.STC and IO.SEC) while the powerfail indicator is set. These functions, however, do not
clear the bit.

All functions other than those just described are considered invalid and cause the return of
the IE.IFC (invalid function) error code to the requesting task. In situations where a tape is
currently a mounted volume, the tape should be dismounted and then remounted before use.
In doing this, the rewind command is issued, thereby clearing the powerfail indicator.

6.5 Programming Hints

This section contains important information about programming the magnetic tape drivers
described in this chapter.

6.5.1 Issue Powerfail QIOs for TM11 Before GLUNS

The TM11A/B device driver dynamically updates the system database to reflect the density
characteristics of the TE10/TU10. You should issue the QIO$ functions valid for powerfail
before requesting the device’s density characteristics with the GLUN$ directive.

6.5.2 Block Size

Each block must contain an even number of bytes: at least 14 for a write and at most 65,534.
However, tape usage is more efficient with a larger buffer.

6-14 Magnetic Tape Drivers

6.5.3 Importance of Resetting Tape Characteristics

A task that uses magnetic tape should always set the tape characteristics to the proper value
before beginning I/O operations. The task cannot be certain in what state a previous task
left these characteristics. It is also possible that an operator might have changed the magnetic
tape unit selection. If the selection switch is changed, the new physical device unit may not
correspond to the characteristics of the unit described by the respective Unit Control Block
(UCB).

6.5.4 Aborting a Task

If you abort a task while it waits for a magnetic tape unit to be selected, the magnetic tape
driver recognizes the abort request within 1 second.

If you abort a task while it waits for a magnetic tape unit to complete a space operation, the
magnetic tape driver may allow spacing to the next tape mark.

For the TK50, if you abort a task while it waits for a magnetic tape unit to complete a space
operation, the driver may have spaced over some or all of the requested number.

6.5.5 Writing an Even-Parity Zero-NRZI

If an even-parity zero was written normally, it would appear to the drive as blank tape. It
is therefore converted. If this conversion is undesirable, you must ensure that no even-parity
zeros are output on the tape.

6.5.6 Density Selection

The TMO3 controller imposes the following density selection restriction: You cannot mix
recording densities on any volume associated with the controller.

Density for write operations is selected when the tape is at the load (BOT) position. Hardware
selects the density for read operations during the first read (away from BOT); after the first read,
you can determine (sense) tape density by using the 10.SEC function.

6.5.7 End-of-Volume Status (Unlabeled Tape)

The magnetic tape driver detects end-of-volume (EOV) when it spaces over the second of two
consecutive tape marks. The tape is left positioned between the two tape marks.

The magnetic tape driver returns the IE.EOV status code only on space operations. IE.EOV is
never returned by read operations.

For the purpose of checking for EOV, the driver treats beginning-of-tape (BOT) as a tape mark.
Therefore, any forward space operation from BOT that immediately encounters a tape mark
returns IE.EOV.

If a space operation stops between two tape marks but does not space over the second one,
the driver returns end-of-file (EOF) rather than EOV. Any subsequent space operation from
this point that immediately spaces over the second tape mark returns EOV. During 10.SPF
operations, the driver considers all tape marks to be files except for BOT and for the second
tape mark spaced over at the EOV.

Note that both I0.SPF and IO.SPB operations leave the tape positioned after the tape mark in
the direction of travel.

Magnetic Tape Drivers 6-15

If you want to treat two consecutive tape marks as EOV on read operations, your application
must keep track of the tape marks. The magnetic tape driver does not support two consecutive
tape marks as EOV on read operations.

6.5.8 Resetting Tape Transport Status or Volume Check

For an MS device, if the tape transport status changes (goes on line or off line), further I/0O
operations are inhibited. A deliberate I/O sequencing must occur to reset the hardware volume
check (VCK) indicator and to allow physical 1/O to proceed. This sequencing is accomplished
by issuing a sucessful IO.RWD or I0.SMO QIO$ or by including /RW or /REW switches to
command requests (such as DMP).

Similarly, for a TK50 or TUS8I, if the tape transport status changes (goes on line or off line),
further I/O operations are inhibited. A deliberate I/O sequencing must occur to allow physical
I/O to proceed. This sequencing is done by issuing a successful IO.RWD or 10.SMO QIO$ or
by including /RW or /REW switches to command requests (such as DMP).

© 6.5.9 Issuing QIO$s
Users issuing QIO$s directly to MSDRV/MUDRYV must be aware of the following:
e Completion of an IO.RWD request occurs when the MS device reaches BOT.
¢ Completion of an IO.RWD request occurs when the MU device starts the rewind.

¢ When the MS or MU device changes status from offline to online or conversely, the MS
or MU device inhibits further physical I/O operations. After such a change, the user must
issue IO.RWD or I0.SMO requests that succeed before I/O can proceed.

* For the MS or MU device, read/write data transfer features include the following:
— The data buffer starting address must be on a word boundary.

— The data transfer size may be an odd or even byte count. The minimum must be 14
bytes.

— For the MSDRYV, you can swap odd and even data bytes by using the tape characteristic
bit 1 of I10.SMO or 10.STC requests. When bit 1 is set to 0, no byte swap occurs; when
it is set to 1, byte swap does occur. If you use byte swapping, it is recommended that
the data buffer size be an even byte count.

® For MU devices, issuing an IO.KIL terminates the “in-progress” 1/O operations in reverse
order.

Caution
The MU device handles QIO$ requests in a different manner than other
devices do. Multiple requests are queued in the controller itself; therefore,
the physical end-of-tape (EOT) may be reached before all requests are
processed. Thus, with multiple QIOS$s it is possible to pull tape off the
supply reel.

It is recommended that QIOWS$ be used, or that the total size of queued
records to be written is not longer than the ANSI standard for the tape
trailer size.

6-16 Magnetic Tape Drivers

The physical end-of-tape (EOT) for MUDRYV (MU) devices is defined as the
end of usable recorded area, which is located in the tape trailer area. This
area begins at the EOT marker and extends through a length that depends
on the tape format.

6.6 Block Size on Tapes Mounted /NOLABEL

Under certain conditions, if a file is written to a tape, its block size will be even and one more
than the value specified in the DCL command MOUNT. The conditions where this occurs are
as follows:

* The tape is mounted with the /NOLABEL qualifier specified.
® The MOUNT command specifies an odd record size.
¢ The MOUNT command specifies an odd block size.

File Control Services (FCS) adds the padding character, an octal 136 (") circumflex, to odd-sized
blocks due to a hardware restriction; some tape drives will not allow an odd number of bytes
to be transferred to or from tape. Therefore, blocks of data are padded with the circumflex
character so that blocks of data can be written to tape on any tape drive.

Magnetic Tape Drivers 6-17

Chapter 7
Line Printer Driver

7.1 Introduction to the Line Printer Driver

The RSX-11M-PLUS and Micro/RSX line printer driver supports the line printers summarized
in Table 7-1. Subsequent sections of this chapter describe these printers in greater detail.

Table 7-1: Standard Line Printer Devices

Controller Printer Column Width Character Set Lines per Minute
KMC11-A Auxiliary Processor

LP11-C LP14-C 132 64 890
LP11-D LP14-D 132 96 650
LP11-F LPO1-F 80 64 170-1110
LP11-H LP01-H 80 96 170-1110
LP11-] LP02-] 132 64 170-1110
LP11-K LP02-K 132 96 170-1110
LP11-R LP04-R 132 64 1110
LP11-S LP04-S 132 96 1110
LP11-V LP05-V 132 64 300
LP11-W LP05-W 132 96 300
LP11-Y LP06-Y 132 64 600
LP11-Z LP06-Z 132 96 460
LP11-GA LPO7 132 96 1200
LP11-EA LP26 132 64 600

Line Printer Driver 7-1

7.1.

Table 7-1 (Cont.): Standard Line Printer Devices

Controller Printer Column Width Character Set Lines per Minute
LP11-EB LP26 132 64/96 600/420
LP11-UA LP27 132 64/96 1200/800
LS11 LS11 132 62 60-200
LV11 LVO01 132 96 500
LA180 LA180 132 96 150
LNO1 LNO1 Variable - 600
LNO3 LNO03 Variable -1 600

15oftware-selectable fonts not supported by RSX.

1 KMC-11 Auxiliary Processor

The KMC-11 controller is a microcode-controlled printer controller that supports up to eight line
printers. Multiple KMC-11 controllers are allowed. The KMC-11 provides higher performance
printing than other controllers and, at the same time, uses fewer central processing unit (CPU)
resources. The use of the KMC-11 controller is a system generation option.

7.1.2 LP11 Line Printer

The LP11 is a high-speed line printer available in a variety of models. The LP11 model line
consists of band line printers and drum line printers. The drum line printers are impact printers
that use one hammer for each column and a revolving drum with uppercase and optional
lowercase characters. The LP11-R and LP11-S are fully buffered models that operate at a
standard speed of 1110 lines for each minute. The other LP11 drum models have 20-character
print buffers. These printers are able to print at full speed if the printed line is no longer than
20 characters. Lines that exceed this maximum are printed at a slower rate. You may use forms
with up to six parts. The band line printers are impact printers that have a flat steel belt with
raised metal characters on the face. The LP07, LP26, and LP27 offer speeds from 420 to 1200
lines per minute.

7.1.3 LS11 Line Printer

The LS11 is a medium-speed line printer. It has a 20-character print buffer, and lines of 20
characters or less are printed at a rate of 200 lines for each minute. Longer lines are printed at
a slower rate.

7.1.4 LV11 Line Printer

7-2

The LV11 is a fully buffered, electrostatic printer/plotter that operates at a standard rate of 500
lines for each minute.

Line Printer Driver

7.1.5 LA180 DECprinter

The LA180 is a 180-character-per-second, dot-matrix impact printer. It accepts multipart forms
and pages of various lengths and widths.

7.1.6 LNO1 Laser Printer

The LNO1 is a nonimpact page printer that uses laser imaging combined with xerographic
printing. This technology provides letter quality printing at line printer speeds with no noise.
Printing is done on standard 8-1 /2 inch by 11-inch paper at 12 pages for each minute, which
equates to 600 lines for each minute. Contributing to the high print quality is a printer
resolution of 300 by 300 dots for each inch. The LNO1 offers the speed of a line printer with
the advantages of a phototypesetting device.

7.2 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for line printers (a bit setting of 1 indicates that the
described characteristic is true for line printers):

Bit Setting Meaning

0 1 Record-oriented device
1 1 Carriage-control device
2 0 Terminal device
3 0 File-structured device
4 0 Single-directory device
5 0 Sequential device
6 0 Mass-storage device
7 0 User-mode diagnostics supported
8 0 Device supports 22-bit direct addressing
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 0 Device mountable as a Files~11 volume
15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the default size for the device and
for line printers the word indicates the width of the printer carriage (that is, 80 or 132 columns).

Line Printer Driver 7-3

7.3 QlOS Macro

Table 7-2 lists the standard functions of the QIO macro that are valid for line printers.

Table 7-2: Standard QIO Functions for Line Printers

Format Function
QIO$C 10.ATT,... Attach device
QIO$C I0.DET,... Detach device
QIO$C IOKIL,... Cancel 1/0 requests
QIO$C IO.WLB,..., < stadd size,vfc> Write logical block (print buffer contents)
QIO$C IO.WVB,..., < stadd,size,vic> Write virtual block (print buffer contents)
Parameters
stadd

Specifies the starting address of the data buffer (may be on a byte boundary).

size
Specifies the data buffer size in bytes (must be greater than 0).

vic
Specifies a vertical format control character from Table 7-4.

1O.KIL does not cancel an in-progress request unless the line printer is in an offline condition
because of a power failure or a paper jam, or because it is out of paper.

The line printer driver supports no device-specific functions.

7.4 Status Returns

Table 7-3 lists the error and status conditions that are returned by the line printer driver
described in this chapter.

Table 7-3: Line Printer Status Returns

Code Reason

ISSUC Successful completion
The operation specified in the QIO directive was completed successfully. The second
word of the I/O status block (IOSB) can be examined to determine the number of
bytes processed, if the operation involved writing.

ISPND 1/0 request pending

The operation specified in the QIO directive has not yet been executed. The IOSB is
filled with zeros.

7-4 Line Printer Driver

Table 7-3 (Cont.): Line Printer Status Returns

Code Reason
IE.ABO Operation aborted
The specified 1/O operation was canceled while in progress or while in the 1/0O
queue.
IEDAA Device already attached
The physical device unit specified in an IO.ATT function was already attached by
the issuing task. This code indicates that the issuing task has already attached the
desired physical device unit, and not that the unit was attached by another task.
IEDNA Device not attached
The physical device unit specified an 10.DET function was not attached by the issuing
task. This code has no bearing on the attachment status of other tasks.
IEIFC Illegal function code
A function code was specified in an I/O request that is invalid for line printers.
IE.OFL Device off line
The physical device unit associated with the LUN specified in the QIO directive was
not on line. When the system was booted, a device check indicated that this physical
device unit was not in the configuration.
IE.SPC Illegal address space

The buffer specified for a write request was partially or totally outside the address
space of the issuing task. Alternatively, a byte count of 0 was specified.

7.4.1 Ready Recovery

The driver determines that the line printer is off line if any of the following conditions occur:

e Paper jam

* Printer out of paper

e Printer turned off line

e Power failure

If the line printer is off line, the following message is output on the operator’s console:

**xLPn:

-- NOT READY

The argument n is the unit number of the line printer that is not ready.

The driver retries the function that encountered the error condition from the beginning, once
every second. It displays the message after m seconds. The value m is defined at system
generation to be a value less than 256. The default is 15. The messages occur until you make
the line printer ready. If a power failure occurs while printing a line, the entire line is reprinted
from the beginning when power is restored.

Line Printer Driver 7-5

7.5 Vertical Format Control

Table 7-4 summarizes the meaning of all characters that you can use for vertical format control
on the line printer. Any one of these characters can be specified as the vfc parameter in an
I0.WLB or IO.WVB function.

Table 7-4: Vertical Format Control Characters

Octal
Value Character

Meaning

040 Blank

060 Zero

061 One

053 Plus

044 Dollar
sign

000 Null

Single space

Output a line feed, print the contents of the buffer, and output a carriage
return. Normally, printing immediately follows the previously printed
line.

Double space

Output two line feeds, print the contents of the buffer, and output a
carriage return. Normally, the buffer contents are printed two lines
below the previously printed line.

Page eject

Output a form feed, print the contents of the buffer, and output a

carriage return. Normally, the contents of the buffer are printed on the
first line of the next page.

Overprint

Print the contents of the buffer and perform a carriage return, normally
overprinting the previous line.

Prompting output

Output a line feed and then print the contents of the buffer.

Internal vertical format

The buffer contents are printed without addition of vertical format
control characters. In this mode, more than one line of guaranteed
contiguous output can be printed for each 1/0 request.

All other vertical format control characters are interpreted as blanks (040g).

7.6 Programming Hints

This section contains important information about programming the line printer driver described

in this chapter.

7.6.1 RUBOUT Character

The line printer driver discards the American Standard Code for Information Interchange (ASCII)
character code 177 during output, because a RUBOUT on the LS11 printer causes a RUBOUT
of the hardware print buffer.

7-6 Line Printer Driver

7.6.2 Print Line Truncation

If the number of characters to be printed exceeds the width of the print carriage, the driver
discards excess characters until it receives one that instructs it to empty the buffer and return
to horizontal position 1. You can determine if truncation can occur by issuing a Get LUN
Information system directive and by examining word 5 of the information buffer. This word
contains the width of the print carriage in bytes.

7.6.3 Aborting a Task

If a task is aborted while waiting for the line printer to be readied, the line printer driver
recognizes this fact within 1 second.

Line Printer Driver 7-7

Chapter 8
Null Device Driver

8.1 Introduction to the Null Device Driver

RSX-11M-PLUS and Micro/RSX provide a driver for a software construct called the “null
device.” The mnemonic fo. the null device is NL, and its characteristics are as follows:

* A read from NL returns an end-of-file (EOF) error (IE.EOF).

* A write to NL immediately returns success (IS.SUC).

8.2 Null Device Function

The null device functions as a “black hole” to which your task can direct output, and from
which the data so directed never returns. It is particularly useful when you use it with an
indirect command file and the MCR command ASN as in the example that follows.

The following shows the contents of a Task Builder (TKB) command file called TESTBLD.CMD:

QU:TEST,MP : TEST=IN: [200,220] TEST
/

ASG=TI:2

//

This command file uses symbolic device names for the output file, map file, and input file.
These names may be reassigned at task-build time. In particular, the following example assigns
the map file to the null device and thus the map file is discarded:

>ASN SY:=0U:
>ASN NL:=MP: [RET
>ASN DK1:=IN:
>TKB QTESTBLD

Null Device Driver 8-1

Part ll: RSX-11M-PLUS Drivers

Chapter 9
Card Reader Driver

9.1 Introduction to the Card Reader Driver

The RSX-11M-PLUS card reader driver supports the CR11 card reader. This reader is a virtually
jam-proof device that reads Electronic Industries Association (EIA) standard 80-column punched
cards at the rate of 300 per minute. The hopper can hold 600 cards. This device uses a vacuum
picker that provides extreme tolerance to damaged cards and makes card wear insignificant.
Cards are riffled in the hopper to prevent sticking. The reader uses a strong vacuum to deliver
the bottom card. Because it has a very short card track, only one card is in motion at a time.

9.2 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for card readers (a bit setting of 1 indicates that the
described characteristic is true for card readers):

Bit Setting Meaning

0 1 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass-storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

Card Reader Driver 9-1

Bit Setting Meaning

9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 0 Device mountable as a Files-11 volume
15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the default buffer size, which is
80 bytes for the card reader.

9.3 QIOS$ Macro

This section summarizes standard and device-specific QIO functions for the card reader driver.

9.3.1 Standard QIO Functions

Table 9-1 lists the standard functions of the QIO macro that are valid for the card reader.

Table 9-1: Standard QIO Functions for the Card Reader

Format Function

QIO$C IO.ATT,... Attach device

QIO$C I0.DET,... Detach device

QIO$C IOKIL,... Cancel I/O requests

QIO$C IO.RLB,..., <staddsize> Read logical block (alphanumeric)

QIO$C IO.RVB,..., <stadd,size> Read virtual block (alphanumeric)
Parameters
stadd

Specifies the starting address of the data buffer (may be on a byte boundary).
size
Specifies the data buffer size in bytes (must be greater than 0).

IO.KIL does not cancel an in-progress request unless the card reader is in an offline condition
because of a pick, read, stack, or hopper check, because of power failure, or because the RESET
button has not been depressed.

9-2 Card Reader Driver

9.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro that are valid for the card reader are shown in
Table 9-2.

Table 9-2: Device-Specific QIO Function for the Card Reader

Format Function
QIO$C I0.ATA,..., <ast, addr> Attach for unsolicited card AST
QIO$C IO.RDB.,..., <stadd,size> Read logical block (binary)
Parameters
ast addr
Specifies the address of the asynchronous system trap (AST) processing routine for the
function.
stadd

Specifies the starting address of the data buffer (may be on a byte boundary).

size
Specifies the data buffer size in bytes (must be greater than 0).

9.4 Status Returns

A wide variety of error conditions and recovery procedures relate to the use of the card
reader. This section describes the following three major ways in which the system reports error
conditions: '

1. Lights and indicators on the card reader panel are turned on or off to indicate particular
operational problems such as read, pick, stack, or hopper checks. Switches are available
to turn the reader power on and off and to allow you to reset the error condition after
correcting it.

2. A message is output on the operator’s console if operational checks or power problems
occur.

3. An I/O completion code is returned in the low-order byte of the first word of the 1/0 status
block (IOSB) specified in the QIO macro to indicate success or failure on completion of an
I/0 function.

The following subsections describe each of these returns in detail.

Card Reader Driver 9-3

9.4.1 Card Input Errors and Recovery

Table 9-3 describes all external lights and switches on the reader that indicate to you that a
hardware problem has occurred and must be corrected. There are two classes of hardware
errors:

o Those requiring you to ready the reader and try the operation again

e Those requiring you to remove the last card from the output stacker, to replace it in the
input hopper, and to try the operation again

In the first case, the card reader was unable to read the current card. In the second, the card
was read incorrectly and had to be physically removed from the output stacker. The card reader
driver restarts a read operation within 1 second after the cards have been replaced in the input
hopper.

Table 9-3 summarizes the functions of lights and indicators on the front panel of the card
reader. It discusses common operational errors that might be encountered while reading cards

and recovery procedures associated with these error conditions.

Table 9-3: Card Reader Switches and Indicators

Indicator Description

POWER Pushbutton indicator switch (alternate action: pressed for both ON and OFF)

switch Action: Controls application of all power to the card reader.
When indicator is off, depressing switch applies power to the reader and causes
associated indicator to light.
When indicator is lit, depressing switch removes all power from the reader and causes
indicator to go out.
Recovery: Card may have been read incorrectly. If possible, restore power by
depressing the POWER switch; insert the card again as the first card in the input
hopper; and press the RESET switch. In some cases, it may be necessary to restart the
program.

READ White light

,CH.ECK Action: When lit, indicates that the card just read may be torn on the leading

indicator or trailing edges, or it may indicate that the card may have punches in the column
positions 0 or 81.
Because READ CHECK indicates an error condition, whenever this indicator is lit, it
causes the card reader to stop operation and extinguishes the RESET indicator.
Recovery: Card was read incorrectly. Duplicate the card if necessary, insert the card
again as the first card in the input hopper, and press the RESET switch.

PICK White light

.CH_ECK Action: When lit, indicates the card reader failed to move a card into the read station

indicator after it received a READ command from the controller.

Stops card reader operation and extinguishes the RESET indicator.

Recovery: Card could not be read. Press the RESET switch to try again, or remove
the cards from the input hopper smooth the leading edges, replace, and then press the
RESET switch.

9-4 Card Reader Driver

Table 9-3 (Cont.): Card Reader Switches and Indicators

Indicator Description
STACK White light
CHECK Action: When lit, indicates that the previous card was not properly seated in the
indicator output stacker and therefore may be mutilated.
Stops card reader operation and extinguishes RESET indicator.
Recovery: Card may have been read incorrectly and is not positioned properly in
the output stacker. Duplicate the card if it is damaged insert the card again as the first
card in the input hopper, and press the RESET switch.
HOPPER White light
CHECK Action: When lit, indicates that either the input hopper is empty or that the output
indicator stacker is full.
Recovery: Card may have been read incorrectly. Empty the stacker or fill the hopper,
insert the card again as the first card in the hopper, and press the RESET switch.
STOP Momentary pushbutton/indicator switch (red light)
switch Action: When depressed, immediately lights and drops the READY line, thereby
extinguishing the RESET indicator. Card reader operation then stops as soon as the
card currently in the read station has been read.
The switch has no effect on the system power; it only stops the current operation.
RESET Momentary pushbutton/indicator switch (green light)
switch

Action: When depressed and released, clears all error flip-flops and initializes card
reader logic. Associated RESET indicator lights to indicate that the READY signal is
applied to the controller.

The RESET indicator goes out whenever the STOP switch is depressed or whenever
an error indicator lights (READ CHECK, PICK CHECK, STACK CHECK, or HOPPER
CHECK).

9.4.2 Ready and Card Reader Check Recovery

The card reader driver determines that the card reader is not ready if any of the following
conditions occur:

Power failure
Reset switch not pressed (reader off line)

Timing error (Two columns were read before the card reader driver input the first column

from the card reader.)

The following message is then output on the operator’s console:

*%%x CRn:

~- NOT READY

When a timing error occurs, the operator can proceed with normal card reader operation by
performing the following steps:

1.

Placing the card reader off line by pressing the STOP button

2. Removing the last card read and inserting it where it is read as the next card

3. Placing the card reader on line by pressing the RESET button

Card Reader Driver 9-5

The driver determines that a card reader check has occurred if any of the following conditions

occurs:

¢ Pick error (PICK CHECK)

* Read error (READ CHECK)

® Output stacker error (STACK CHECK)

* Input hopper out of cards (HOPPER CHECK)
¢ Output stacker full (HOPPER CHECK)

The following message is then output on the operator’s console:

**x* CRn:

-~ READ FAILURE. CHECK HARDWARE STATUS

The n is the unit number of the card reader that is not ready. The operator should correct the
error and press the RESET button: The driver attempts the function from the beginning, once
every second. The driver displays the message once every m seconds (m is defined at system
generation as a value less than 256; the default is 15) until the card reader is readied. In all
cases, except pick error, the last card read should be reinserted in the input hopper, as described
in Section 9.4.1.

9.4.3 1/0O Status Conditions

The error and status conditions listed in Table 9-4 are returned by the card reader driver
described in this chapter.

Table 9-4: Card Reader Status Returns

Code

Reason

IS.SUC

IS.PND

IE.ABO

IE.DAA

IE.DNA

Successful completion

The operation specified in the QIO directive was completed successfully. The second
word of the IOSB can be examined to determine the number of bytes processed if
the operation involved reading.

I/O request pending

The operation specified in the QIO directive has not yet been executed. The IOSB is
filled with zeros.

Operation aborted

The specified 1/O operation was canceled while in progress or while still in the I/0
queue.

Device already attached

The physical device unit specified in an I0.ATT function was already attached by the
issuing task.

Device not attached

The physical device unit specified in an IO.DET function was not attached by the
issuing task. This code has no bearing on the attachment status of other tasks.

9-6 Card Reader Driver

Table 9-4 (Cont.): Card Reader Status Returns
Code Reason
IEEOF End-of-file encountered
An end-of-file (EOF) control card was recognized.
IEIFC Illegal function code
A function code was specified in an I/0O request that is illegal for card readers.

IE.NOD Buffer allocation failure

Dynamic storage space has been depleted, and there was insufficient buffer space
available to allocate a card buffer (that is, cards are read into a driver buffer, translated,
and then moved to your task’s buffer).

IE.OFL Device off line

The physical device unit associated with the logical unit number (LUN) specified in
the QIO directive was not on line. When the system was booted, a device check
indicated that this physical device unit was not in the configuration.

IESPC Illegal address space

The buffer specified for a read request was partially or totally outside the address
space of the issuing task. Alternatively, a byte count of 0 was specified.

9.5 Functional Capabilities

The card reader driver can perform the following functions:

* Read cards in DEC026 format and translate to American Standard Code for Information
Interchange (ASCII)

* Read cards in DEC029 format and translate to ASCII
* Read cards in binary format

If the QIO macro specifies the IO.RLB or IO.RVB function, the driver interprets all data as
alphanumeric (026 or 029 format). As explained in the next section, control characters indicate
whether 026 or 029 is desired. If the QIO macro specifies IO.RDB, the driver interprets all data,
including 026 and 029 control characters, as binary.

9.5.1 Control Characters

Table 9-5 lists the multipunched cards that the card reader driver recognizes as control characters.
They are never transferred to the buffer of your task or included in the count of transferred
bytes in alphanumeric mode. In binary mode, the only control card recognized is binary EOF.

DEC026 is the default translation mode when the system is bootstrapped. This mode remains
in effect until explicitly changed by a control card indicating that DEC029 cards follow. After
encountering a DEC029 control card, the driver translates all cards in DEC029 format unless
another DEC026 control card is encountered. This card overrides the 029 mode specification
and indicates that subsequent cards are to be translated in 026 format. Control characters are
addressed to the card reader itself, and they remain in effect even when the reader is attached
and subsequently detached.

Card Reader Driver 9-7

The default condition can easily be changed from DEC026 to DEC029 by reading a 029 control
card and then by saving the system with the MCR command SAV.

Table 9-5: Card Reader Control Characters

Punches Columns Meaning
12-11-0-1-6-7-8-9 1 EOF (alphanumeric)
12-11-0-1-6-7-8-9 (All 8 punches in the EOF (binary)

first 8 columns)
12-2-4-8 1 026-coded cards follow
12-0-2-4-6-8 1 029-coded cards follow

9.6 Card Reader Data Formats

The card reader reads data in either alphanumeric or binary format.

9.6.1 Alphanumeric Format (026 and 029)

Table 9-6 summarizes the translation from DEC026 or DEC029 card codes to ASCIL

9.6.2 Binary Format

In RSX-11M-PLUS binary format, the data are not packed, but are transferred exactly as read,
one card column per word. Because each word has 16 bits and each card column represents
only 12 bits, the data from the column are stored in the rightmost 12 bits of the word. The
word’s remaining 4 bits contain zeros. ‘

9.7 Programming Hints

9.7.

9-8

This section contains important information about programming the card reader driver described
in this chapter. Section 9.4 contains information on operational error-recovery procedures that
may be important for programming.

1 Input Card Limitation

Only one card can be read with a single QIO macro call. A request to read more than 80 bytes
or columns, the length of a single card, does not result in a multiple card transfer. Only 80
columns are processed. It is possible to read fewer than 80 columns of card input with a QIO
read function. For example, you can specify that only the first 10 columns of each card are to
be read.

Card Reader Driver

9.7.2 Aborting a Task

If a task waiting for the card reader to be readied is aborted, the card reader driver recognizes
this fact within 1 second.

Table 9-6: Translation from DEC026 or DEC029 to ASCII

Non- Non-
Parity Parity
Character ASCII DEC029 DEC026 Character ASCII DEC029 DEC026
173 12 0 12 0 ! 054 083 083
175 110 110 - 055 11 11
SPACE 040 None None 056 1283 1283
! 041 1287 1287 / 057 01 01
” 042 87 085 0 060 0 0
043 83 086 1 061 1 1
$ 044 11 8 11 8 3 2 062 2 2
% 045 084 087 3 063 3 3
AND 046 12 11 87 4 064 4 4
! 047 85 8 6 5 065 5 5
(050 1285 084 6 066 6 6
) 051 1185 1284 7 067 7 7
* 052 1184 1184 8 070 8 8
+ 053 1286 12 9 071 9 9
072 82 11 8 2 M 115 11 4 11 4
; 073 1186 082 N 116 115 115
074 1284 1286 (0] 117 11 6 11 6
= 075 8 6 83 P 120 117 11 7
> 076 08 11 86 Q 121 11 8 11 8
? 077 08 12 8 2 R 122 11 9 11 9
(@) 100 8 4 8 4 S 123 02 02
A 101 12 1 12 1 T 124 03 03
B 102 12 2 12 2 8] 125 04 04
C 103 12 3 12 3 \% 126 05 05
D 104 12 4 12 4 w 127 06 06

Card Reader Driver 9-9

Table 9-6 (Cont.):

Translation from DEC026 or DEC029 to ASCII

Non- Non-
Parity Parity
Character ASCII DEC029 DEC026 Character ASCII DEC029 DEC026
E 105 12 5 12 5 X 130 07 07
F 106 12 6 12 6 Y 131 08 08
G 107 12 7 12 7 z 132 09 09
H 110 12 8 12 8 [133 1282 1185
I 111 12 9 12 9 \ 134 082 87
] 112 111 111] 135 1182 1285
K 113 11 2 11 2) 136 1187 85
L 114 11 3 11 3 — 137 085 8 2

9-10 Card Reader Driver

Chapter 10
QIO DEUNA Driver

10.1 Introduction to the QIO DEUNA Driver

For systems without the DECnet software, the RSX-11M-PLUS QIO DEUNA driver allows
messages to be sent by using the DEUNA device. The DEUNA driver provides direct control
over a line, allowing you to send data over a line to another system. To use the DEUNA
driver, you issue the QIO$ macro to the XE device. The DEUNA driver is compatible with
the DECnet software’s Direct Line Access (DLX) interface, which permits easy migration to a
DECnet system.

Use of the DEUNA driver requires a thorough knowledge of the MACRO-11 assembler and
experience in writing real-time application programs. You must write tasks that synchronize
with each other before transferring data. If tasks are not synchronized, the data can be lost
during task-to-task communication. You must provide your own error-handling routines. The
DEUNA driver software informs your task of any errors, but your task must be written to
process error recovery. In addition, you must provide your own flow control over incoming
messages to avoid message loss. Furthermore, applications must be designed so that adjacent
nodes contain like routines for handling communications. For example, the driver does not, by
itself, handle communications with DECnet nodes.

You can use QIO$s to communicate between your program and a program on an adjacent
computer by using the Ethernet. In task-to-task communication between adjacent computers,
the RSX-11M-PLUS QIO DEUNA driver is an efficient user of the central processing unit (CPU)
and communication lines. You can build your own protocol that best suits the application.

Note

All messages are transmitted from your task’s buffer. However, the driver
buffers messages that it receives in a limited number of driver receive buffers.
Therefore, you should make sure that at least two or more receive requests are
outstanding at any given time to prevent messages from being lost. Unwanted
messages are discarded.

A glossary of DEUNA terms is included at the end of this chapter.

QIO DEUNA Driver 10-1

10.1.1 Parameters That You Can Tailor

The parameters that you can tailor are as follows:

Parameter Meaning

U$SNTS Number of transmit ring entries (suggested three). On systems with UNIBUS
Mapping Registers (UMRs) this parameter controls the number of UMRs the
driver may use. For each transmission, the driver uses one UMR during the
transfer.

U$$SNRS Number of receive ring entries (suggested eight).
U$$SNPC Number of ports per controller (suggested eight).
U$SNCT Number of controllers.

10.1.2 Requirements for Tasks Using the RSX-11M-PLUS QIO DEUNA Driver

To run programs that use the DEUNA driver, the following conditions are required:
¢ The DEUNA driver must be loaded.
e The logical unit number (LUN) must be assigned to the XE device.

10.1.3 Special Considerations for Ethernet User Tasks

Externally, Ethernet devices appear to be single-line, point-to-point controllers (for example,
UNA-0 and UNA-1). Internally, they are implemented as multipoint devices with each station
representing an available port onto the Ethernet. Each driver supports eight ports. The limitation
is due to the limited number of receive buffers available to the driver.

10.1.4 Messages on Ethernet

All messages on the Ethernet must include a destination address (48-bit) and a protocol type
(16-bit). There are two modes that determine how messages are transmitted: physical address
mode and multicast address mode.

Physical address mode defines a unique address for a single system on any Ethernet. Multicast
address mode defines a multidestination address of one or more systems on a given Ethernet.
With multicast addressing, any number of systems can be assigned a group address, so that
they are all able to receive the same data in a single transmission.

Before transmitting and receiving messages, you must define a specific mode. You can do this
by using the QIO$ 10.XSC macro, which sets characteristics. (See Section 10.3.2.)

10.1.5 Protocol and Address Pairs on Ethernet

Because the Ethernet allows multiuser tasks to access the physical link simultaneously, some
way must be used to deliver received messages to the correct user task. To do this, each
user task must enable unique protocol/address pairs to define which messages the task should
receive. For example, user task 1 may enable protocol A to addresses 1 and 2, while user task 2
may enable protocol B to addresses 3 and 4. It is possible for two or more user tasks to enable
the same protocol or addresses, providing that the protocol /address pairs are unique.

10-2 QIO DEUNA Driver

10.1.6 Opening Ethernet for Transmit and Receive
The Ethernet may be opened in the following three different modes (defined in EPMDF$):

Protocol Mode Meaning

LF$EXC Exclusive Your task has exclusive use of the specific protocol LFSEXC and
no other user may transmit or receive using this protocol. (DECnet
routing uses this mode.)

LF$DEF Default Your task should receive messages on the protocol LF$DEF,
which would otherwise be discarded because there was no
protocol/address pair set up.

Specified Normal You must specify the protocol/address pairs that are used for
communications.

10.1.7 Padding Messages on Ethernet

You may select padding for an Ethernet message (LF$PAD) that prefixes the message with
a 2-byte length field. The DEUNA pads the message out to the minimum Ethernet size on
transmit. On receive, the length field indicates the amount of data present.

10.1.8 Hardware Errors on Ethernet

When a hardware error is detected on the Ethernet controller, all protocol/address pairings and
multicast addresses are lost. After issuing the IO.XIN call to reinitialize the channel, you must
reenable all protocol/address pairs and the multicast addresses.

10.2 DEUNA Driver QIOS$s

Sections 10.2.1 to 10.2.4 describe some considerations for using QIO$ macros for the DEUNA
driver.

10.2.1 Standards and Access to QIOS Macros

The DEUNA driver conforms to normal RSX-11M-PLUS QIO$ standards. Standards for logical
unit numbers (LUNS), event flags, 1/0 status blocks (IOSBs), asynchronous system traps (ASTs),
and argument and parameter lists are observed. According to RSX-11M-PLUS standards, you
may use any one of the three QIO$ formats. You may also use the QIO$% and Wait macro
(QIOWS$) to suspend further execution of the program until the call completes.

The macros are defined in the RSX-11M-PLUS macro library (EXEMC.MLB). This library is
transferred to your system during system generation. The definitions and offsets that you use
in the macros are contained in two definition macros, DLXDF$ and EPMDF$, in DEUNA.MLB.

QIO DEUNA Driver 10-3

You must issue .MCALL statements and explicitly invoke the macro in your MACRO-11
assembler program. An example follows:

.MCALL DLXDF$,EPMDF$

DLXDF$
EPMDF$

Table 10-1 summarizes the QIO DEUNA driver function codes and their meaning.

Sections 10.3.1 to 10.3.7 describe each call, with its arguments and completion status codes.
10.2.2 Programming Sequence

Table 10-1 provides a list of the six steps required to transmit, receive, or read data on the

Ethernet via the RSX-11M-PLUS QIO DEUNA driver.

Table 10-1: RSX-11M-PLUS QIO DEUNA Driver Function Codes and Their Meaning
Step Code Ethernet Operation

1 IO.XOP Open the Ethernet device
I0.XSC Set characteristics

IO.XTM Transmit a message on the line

IO.XCL Close the line

2

3

4 IO.XRC Receive a message on the line

5

6 IO.XIN Initialize the line after an unrecoverable hardware error.

Note
The I0.XTL control function loads DEUNA microcode. The driver support task,

UML..., uses IO.XTL, which is a function you must not use.
10.2.3 Driver Installation
The system builds the driver at the time you perform a system generation.
To load the driver, enter the following MCR command:
>LOA XE: [/switches]

For RSX-11M-PLUS, you must perform the following additional steps to make the driver
operational:

>CON SET XEA VEC=vvv CSR=XXXXXX

>CON ONLINE XEA

>CON ONLINE XEO:
>INS UML

Note

UML... is the microcode loader support task to the DEUNA driver (XEDRV). If
you want the driver to bypass microcode loading, just remove the microcode
support task (UML) from the system.

10-4 QIO DEUNA Driver

Make sure that the correct microcode file for the DEUNA driver is present on
device LB in account [1,1].

10.2.4 QIO DEUNA Status Returns
Table 10-2 lists the status returns from QIO$ macros issued to the DEUNA driver.

Table 10-2: QIO DEUNA Driver Status Returns

Value
Code Decimal Octal Reason
1S.5UC 1 The line has been opened successfully.
IEALN -34 177736 The specified LUN is already in use.
IE.IFC -2 177776 The specified LUN is not assigned to XE. For those character-
istics blocks processed, return (XEDRYV).
IENSF -26 177646 Either you have entered an invalid controller identification

format or the specified controller is not in the system.

10.3 QlO$ Macros

This section summarizes standard and device-specific QIO$ functions for the RSX-11M-PLUS
QIO DEUNA driver.

10.3.1 10.XOP—Open the Ethernet Device

You issue the QIO$ I0.XOP macro to open a line for direct line access, message transfer, and
reception. The I0.XOP functions associate the specified LUN with the specified line. The line
is then used when you issue further QIO$s for transmitting or receiving. The LUN must have
been assigned to XE. To open the Ethernet device from the DEUNA driver, you issue this call
using a device-ID string such as “UNA-0.” The address of this string should be in pl. The
driver scans its port database for an available port and assigns it to your task.

Format
QIO$ IO.XOP lun,[efn],[status][ast], <pl,p2,p3>

QIO DEUNA Driver 10-5

Parameters

lun
Specifies the logical unit number associated with the line that you are opening.

efn
Specifies the optional event flag number set when the call completes.

status
Specifies the address of an optional 2-word status block that contains the completion status
of the call in the low-order byte of the first word.

ast
Specifies the entry point into an optional AST routine, which you wrote, to be executed
after this call completes.

—

pl
Specifies the address of an American Standard Code for Information Interchange (ASCII)
string that identifies the controller on which the line is to be opened. The syntax of this
string is as follows:

DEV-ctl
In this example, DEV (UNA) is the device mnemonic and ctl is the decimal value for the

controller number.

p2
Specifies the length of the line identification field.

p3
Specifies the timeout value for the call. The timeout value is the amount of time that the
receiver waits for a message to be transmitted. The low-order byte of the word designates
the receive timeout value as follows:

Timeout = 0 For no receive timer.

Timeout = <n> Where 7 is the timer value in seconds. The timer value n causes the
timeout to have a range of n-1 to n. The high-order byte of this word
is ignored.

10-6 QIO DEUNA Driver

10.3.2 10.XSC—Set Characteristics (Ethernet)

You use this Ethernet QIO$ to set up the protocol/address pairs and multicast addresses. This
function supplies a single characteristics buffer in parameters pl and p2. This buffer may
contain multiple characteristics blocks of the general format given in Section 10.3.2.1.

Format
QIO$ 10.XSC,lun,[efn], [status] [ast], <plp2>

Parameters

lun

Specifies the logical unit number associated with the line that you are setting for a
characteristics buffer.

efn
Specifies the optional event flag number set when the call completes.

status

Specifies the quantity processed on completion. The second word of the I/O status block
(IOSB) indicates how much of the characteristics buffer has been processed.

ast

Allows the entry point in an optional asynchronous system trap (AST) routine, which you
wrote, to be executed after this call completes.

pl
Specifies the address of the characteristics buffer.

p2
Specifies the length of the characteristics buffer.

QIO DEUNA Driver 10-7

10.3.2.1 The Set Characteristics Buffer—General Format

The set characteristics buffer format may contain multiple characteristics blocks.

characteristics block has the general format shown in Figure 10-1.

Figure 10-1: General Form of Characteristics Buffer

Characteristics Type

Size of Data Input

Reserved

Characteristics Status

Characteristics Data

The fields in the general form of the characteristics block have the following meanings:

C.TYP

C.DATI —

C.DATO

C.STAT

C.CHRL

ZK-4086-85

Each

Field Meaning

C.TYP Indicates the type of characteristics being set.

CDATI Indicates the size of data input (the number of bytes of characteristic data being

supplied).
C.DATO Unused for set characteristics.

C.STAT Set to indicate the success or failure of the characteristics function, for those

characteristics blocks processed.

C.CHRL Characteristic data.

Protocol flags are defined in EPMDF$ (LF$xxx).

10-8 QIO DEUNA Driver

Common error codes that are returned in C.STAT are ag follows:

Error Meaning
CE.UDF Undefined function.
CERTS Request too small (not enough data supplied).

CE.RTL Request too large (too much data supplied).

CE.RES Resource allocation failure.

Note

The address field or fields should not be present if LF$EXC or LF$DEF is
specified in the flags.

10.3.2.2 Set Charqcterisﬁcs—Semng Up Protocol/Address Pairs

Setting up protocol/address pairs allows transmission and reception of messages with the
specified protocol to or from any of the addresses in the list. Figure 10-2 shows the characteristics

Figure 10-2: Buffer for Setting Up Protocol/Address Pairs

Characteristics Type C.Typ
Size of Data Input C.DATI
Reserved C.DATO
Characteristics Status C.STAT
C.CHRL
Protocol Type
Protocol Flags Characteristics
Data
Address 1 4 + 6n
. Bytes
Address n
ZK-4087-85

QIO DEUNA Driver 10-9

The fields in the characteristics buffer for setting up protocol/ address pairs have the following
meaning:

Field Meaning

C.TYP Contains the characteristics type to set up protocol /address pairs: CC.DST = 200.

C.DATI Indicates the size of data input—the number of bytes of characteristic data being
supplied.

C.DATO Unused for set characteristics.

C.STAT Set, for those characteristics blocks processed, to indicate the success or failure of the
characteristics function.

C.CHRL Characteristics data.

Errors that are returned in C.STAT are shown in the following list:

Error Meaning

CE.PCN Indicates protocol usage conflict due to one of the following:
e Another user task has exclusive access to this protocol.

e There is already a default task using this protocol, and this request is attempting
to set up a new default user task.

e The padding status of this protocol does not match what is requested.

CE.IUM Indicates invalid use of multicast address; one of the addresses specified is multicast.

CE.ACN Indicates address usage conflicts; the protocol/address pair is already in use.

10.3.2.3 Characteristics—Setting Up a Multicast Address

Setting up a multicast address allows reception of messages that are sent to the specified
multicast address. The buffer for setting up a multicast address is shown in Figure 10-3.

The fields in the characteristics buffer for setting up a multicast address have the following
meaning:

10-10 QIO DEUNA Driver

Figure 10-3: Buffer for Setting Up a Multicast Address

Characteristics Type C.TYP
Size of Data Input C.DATI
Reserved C.DATO
Characteristics Status C.STAT
Multicast Address Characteristics
Data
6 Bytes

ZK-4088-85

Field Meaning

C.TYP Contains the characteristics type to set up a multicast address: CC.MCT = 201.

C.DATI Indicates the size of data input (the number of bytes of characteristic data being
supplied).

C.DATO Unused for set characteristics.

C.STAT Set, for those characteristics blocks processed, to indicate the success or failure of the
characteristics function.

C.CHRL Characteristics data.

Errors returned in C.STAT are as follows:

Error

Meaning

CE.NMA Not a multicast address.

CE.MCE

Multicast address already enabled.

10.3.3 10.XTM—Transmit a Message on the Line

When your task transmits a message on the Ethernet, it must specify the destination address or
the multicast address of this message along with the protocol type. It does specify the address
if you put the parameters for the optional auxiliary characteristics buffer in parameters p3 and

pi.

Format

QIO% 10.XTM, lun,[efn], [status] [ast], <p1,p2,p3,p4,[p5,p6]>

QIO DEUNA Driver 10-11

Parameters

lun
Specifies the logical unit number for the line on which you are transmitting data.

efn
Specifies the optional event flag number set when the call completes,

status
Specifies the address of an optional 2-word status block that contains the completion status
of the call in the low-order byte of the first word (see completion status in Section 10.3.3.3).

ast
Allows the entry point into an optional AST routine, which you wrote, to be executed after
this call completes.

pl
Specifies the address of the buffer in your task that contains the message to be transmitted.
Use the label specified in the DLXBUF macro call.

p2
Specifies the length of the message you are sending to the remote computer. Maximum
buffer size is 1498 bytes.

p3
Specifies the address of the auxiliary characteristics buffer destination addresses.

P4
Specifies the length of the auxiliary characteristics buffer.

p5
Specifies the diagnostic buffer (see Section 10.4).

pé
Specifies the diagnostic buffer size (see Section 10.4).
10.3.3.1 Auxiliary Buffer to Set the Destination Address

To transmit on a line, you must first set up the auxiliary characteristics buffer with the Ethernet
address. The auxiliary characteristics buffer has the same format as the set characteristics buffer
described in Section 10.3.2.1. The buffer is shown in Figure 10-4.

10-12 QIO DEUNA Driver

Figure 10-4: Buffer for Setting the Ethernet Address

Characteristics Type C.TYP
Size of Data Input C.DATI

Size of Data Output C.DATO

Characteristics Status C.STAT

Ethernet Address o
Characteristics

Data
6 Bytes

ZK-4089-85

QIO DEUNA Driver 10-13

The fields in the auxiliary characteristics buffer for setting the Ethernet address have the following
meaning:

Field Meaning

C.TYP Contains the characteristics type to set the Ethernet address: CC.ADR = 100.

C.DATI Indicates the size of data input (the number of bytes of characteristic data being
supplied).

C.DATO Unused for set characteristics.

C.STAT Set for those characteristics blocks processed, to indicate the success or failure of the
characteristics function.

C.CHRL Characteristics data.

10.3.3.2 Auxiliary Buffer to Set the Protocol Type

The protocol type must be transmitted along with the message. Use the auxiliary buffer shown
in Figure 10-5 for this purpose.

Figure 10-5: Buffer for Setting the Protocol Type

Characteristics Type C.TYP
Size of Data Input C.DATI
Size of Data Output C.DATO
Characteristics Status C.STAT
Characteristics
Protocol Type
P }Data 2 Bytes

ZK-4090-85

The fields in the auxiliary characteristics buffer for setting the protocol type are as follows:

Field Meaning

C.TYP Contains the characteristics type to set the protocol type: CC.PRO = 101.

C.DATI Indicates the size of data input (the number of bytes of characteristic data being
supplied).

C.DATO Unused for set characteristics.

C.STAT Set, for those characteristics blocks processed, to indicate the success or failure of the
characteristics function.

C.CHRL Characteristics data.

10-14 QIO DEUNA Driver

Transmit requests on Ethernet channels must include an auxiliary characteristics buffer including
both the destination address and protocol type. Failure to do so causes the transmit message to
be returned with an IE.BAD error.

10.3.3.3 Completion Status Codes for I10.XTM
QIO$ I0.XTM returns the following completion status codes:

Value

Code Decimal Octal Reason

IS.sUC 1 The message was transmitted to the remote system successfully.

I[EABO -15 177761 The transmission was aborted because an unrecoverable error
occurred in the hardware device. When a message transmission
completes with an IE.ABO code, the line is hung up. You
must either issue a QIO$ IO.XIN to initialize the line (see
Section 10.3.6) or close and reopen the line (see Sections 10.3.5
and 10.3.1, respectively) before you can use it again.

IE.IFC -2 177776 The LUN is not assigned to XE.
IENLN -37 177733 No line has been opened with the specified LUN.
IE.SPC -6. 177772 The transmit buffer is too large or too small.

10.3.4 10.XRC—Receive a Message on the Line

The QIO$ IO.XRC function receives a message on the Ethernet. When you receive a message
on the Ethernet, you must find out the source address for this message along with the protocol
type. You can do this by having an optional auxiliary characteristics buffer for receive messages
in parameters p3 and p4.

Format

QIO$ 10.XRClun,[efn],[status][ast], <pl,p2,p3,p4.[p5.p6]>

Parameters

lun
Specifies the logical unit number associated with the line on which you receive the message.

efn
Specifies the optional event flag number set when the call completes.

status
Specifies the address of an optional 2-word status block that contains the completion status
of the call in the low-order byte of the first word (see completion status in Section 10.3.4.4).

QIO DEUNA Driver 10-15

ast

Allows the entry point in an optional AST routine, which you wrote, to be executed after
this call completes.

pl
Specifies the address of the buffer in your task that receives the message.

p2
Specifies the length in bytes that you are allocating for the receive buffer. Maximum buffer
size is 1498 bytes.

p3
Specifies the address of the auxiliary characteristics buffer.

p4
Specifies the length of the auxiliary characteristics buffer.

p5
Specifies the diagnostic buffer (see Section 10.4).

pb
Specifies the diagnostic buffer size (see Section 10.4).

10.3.4.1 Buffer for Reading the Ethernet Address

The auxiliary characteristics buffer has the same format as the set characteristics buffer described
in Section 10.3.2.1. The buffer needed to provide for reading the Ethernet characteristics is
shown in Figure 10-6.

Figure 10-6: Buffer for Reading the Ethernet Address

Characteristics Type C.TYP
Size of Data Input C.DATI
Size of Data Output C.DATO

Characteristics Status C.STAT

Ethernet Address
Characteristics
Data

6 Bytes

ZK-4091-85

10-16 QIO DEUNA Driver

The fields in the auxiliary characteristics buffer for reading the Ethernet address are as follows:

Field Meaning

C.TYP Contains the characteristics type to read the Ethernet address: CC.ADR = 100.

C.DATI Indicates the size of data input (the number of bytes of characteristic data being
supplied).

C.DATO Unused for set characteristics.

C.STAT Set, for those characteristics blocks processed, to indicate the success or failure of the
characteristics function.

C.CHRL Characteristics data.

10.3.4.2 Buffer for Reading the Protocol Type

The buffer for reading the protocol type is shown in Figure 10-7.

Figure 10-7: Buffer for Reading the Protocol Type

—
Characteristics Type C.TYP
Size of Data Input C.DATI
Size of Data Output C.DATO
Characteristics Status C.STAT
Characteristics
Prot
rotocol Type } Data 2 Bytes

ZK-4092-85

The fields in the auxiliary characteristics buffer for reading the protocol type are as follows:

Field Meaning

C.TYP Contains the characteristics type to read the protocol type: CC.PRO = 101.

C.DATI Indicates the size of data input (the number of bytes of characteristic data being
supplied).

C.DATO Unused for set characteristics.

C.STAT Set, for those characteristics blocks processed, to indicate the success or failure of the
characteristics function.

C.CHRL Characteristics data.

QIO DEUNA Driver 10-17

10.3.4.3 Buffer for Reading the Destination Ethernet Address

The buffer for reading the destination Ethernet address is shown in Figure 10-8:

Figure 10-8: Buffer for Reading the Destination Ethernet Address

Characteristics Type

Size of Data Input

Size of Data Output

Characteristics Status

Destination
Ethernet Address

C.TYP
C.DATI
C.DATO

C.STAT

Characteristics
Data
6 Bytes

ZK-4093-85

The fields in the auxiliary characteristics buffer for reading the destination Ethernet address are

as follows:

Field Meaning

C.TYP Contains the characteristics type to read the destination Ethernet address:

CC.ADR = 102.

C.DATI Indicates the size of data input (the number of bytes of characteristic data being

supplied).
C.DATO Unused for set characteristics.

C.STAT Set, for those characteristics blocks processed, to indicate the success or failure of the

characteristics function.

C.CHRL Characteristics data.

10.3.4.4 Completion Status Codes for IO.XRC

QIO$ I0.XRC returns the following completion status codes:

10-18 QIO DEUNA Driver

Code

Value

Decimal

Octal

Reason

IS.5sUC

IE.ABO

IE.DAO

IE.IFC
IE.NLN
IE.TMO

IE.SPC

1

-15

-13

-6

177761

177763

177776
177733
177666

177772

You successfully received a message from the remote system.
The second word of the I/O status block (IOSB) contains the
number of bytes you actually received.

The receive function was aborted because an unrecoverable
error occurred in the hardware device. When a receive is
aborted, the line is hung up. You must either issue QIO$
IO.XIN to initialize the line (see Section 10.3.6) or close and
reopen the line (see Sections 10.3.5 and 10.3.1, respectively)
before you can use it again.

Either a message was received before a receive QIO$ was
issued and the data is lost (this applies only to normal mode
operations), or your task’s buffer was too small to receive all
the data. In the latter case, the message is truncated, and some
data is lost. (The length of your task’s buffer is contained in
the second word of the IOSB.)

The specified LUN is not assigned to XE.
No line has been opened with the specified LUN.

A timeout condition has occurred. No message was received
within the timer interval specified when you opened or
initialized the line.

The transmit buffer is too large or too small.

10.3.5 10.XCL—Close the Line

You issue the QIO$ IO0.XCL macro to close an open line and stop the protocol.

Format
QIO$

I0.XCL,lun,[efn], [status],[ast]

Parameters

lun

Specifies the logical unit number associated with the line that you are closing.

efn

Specifies the optional event flag number set when the call completes.

status

Specifies the address of an optional 2-word status block that contains the completion status
of the call in the low-order byte of the first word (see completion status in Section 10.3.5.1).

ast

Allows the entry point in an optional AST routine to be executed after this call completes.

QIO DEUNA Driver 10-19

10.3.5.1 Completion Status Codes for 10.XCL
QIO$ IO.XCL returns completion status codes as follows:

Value
Code Decimal Octal Reason
IS.sUC 1 The line has been successfully closed.
IE.IFC -2 177776 The specified lun is not assigned to XE.
IENLN -37 177733 No line has been opened with the specified LUN.

10.3.6 10.XIN—Initialize the Line
You issue the QIO$ IO.XIN macro to reinitialize a line after a fatal device error has occurred.
When you use this QIO$, you must reset the mode and timer values.
Format
QIO$ IO.XIN,lun,[efn], [status][ast], <pl>

Parameters
lun
Specifies the logical unit number associated with the line that you are initializing.

efn
Specifies the optional event flag number set when the call completes.

status
Specifies the address of an optional 2-word status block that contains the completion status
of the call in the low-order byte of the first word (see completion status in Section 10.3.6.1.)

ast
Allows the entry point into an optional AST routine, which you wrote, to be executed after
this call completes.

pl

Specifies the timer parameter. Use the same format as described for parameter p3 in I0.XOP.
(See Section 10.3.1.)

10.3.6.1 Completion Status Codes for |O.XIN

IO.XIN returns completion status codes as follows:

10-20 QIO DEUNA Driver

Value

Code Decimal Octal Reason
ISs.suC 1 The line has been successfully initialized.
IE.ABO -15 177761 The initialization attempt has been aborted. A hardware device

error or an attempt to initialize a line that did not require it
could cause this problem.

IE.IFC -2 177776 The specified LUN is not assigned to XE.
IENLN -37 177733 No line has been opened with the specified LUN.

10.3.7 10.XTL—Control Function

The QIO$ I0.XTL macro loads the microcode. 10.XTL is only valid when the driver is initializing
the DEUNA controller. This function is a privileged function. Using it does not require a line
to be open on the DEUNA.

Format
QIO$ IO.XTL+subfunction,lun,[efn], [status],[ast]

Subfunctions

sub=0
Loads microcode to DEUNA memory.

sub=1
Ends load.

sub=2
Aborts load.

Parameters

lun
Specifies the logical unit number.

efn
Specifies the optional event flag number set when the call completes.

status

Specifies the address of an optional 2-word status block that contains the completion status
of the call in the low-order byte of the first word (see completion status in Section 10.3.7.1).
The second word is the count of the number of bytes loaded.

ast

Allows the entry point into an optional AST routine, which you wrote, to be executed after
this call completes.

QIO DEUNA Driver 10-21

10.3.7.1 Completion Status Codes for |0.XTL

I0.XTL returns the following completion status codes:

Value
Code Decimal Octal Reason
1S.5UC 1 The load function was successful.
IE.IFC -2 177776 Invalid function.
IE.ABO -15 177761 A hardware device error or an invalid buffer format could
cause this error.
IE.SPC -6 177772 The microcode ECO buffer is too large.
IE.PRI -16 177760 Privilege violation.

10.4 Diagnostic Functions for 10.XTM/IO.XRC

Your task may execute a number of the port control block functions of the DEUNA driver by
using parameters p5 and p6. Parameter p5 is the address of the diagnostic buffer and parameter
p6 is the size of the diagnostic buffer.

This buffer provides diagnostic hooks in the DEUNA driver. However, some of this buffer is
needed for changing the DEUNA physical address, system ID, and so on.

Diagnostic function requests are passed to the driver in the same buffer format as the
characteristics functions (see Section 10.3.2).

The diagnostic buffer format may contain multiple function request blocks. Each diagnostic
request block is shown in Figure 10-9:

Figure 10-9: Diagnostic Request Block

10-22 QIO DEUNA Driver

Diagnostic Function C.TYP
Size of Data Input C.DATI —
Reserved C.DATO
Function Status C.STAT
Diagnostic Data C.CHRL
ZK-4094-85

Note

The status returned for the call does not reflect the status of the diagnostic
functions in the diagnostic buffer. You must test the C.STAT word of each
function request specified in the optional diagnostic buffer.

The valid function codes are noted in Table 10-3:

Table 10-3: Diagnostic Functions for 10.XTM/IO.XRC

Function Octal Buffer
Code Meaning Size in Words
0 NOP function 0
2 Read default physical address 3
4 Read physical address 3
5 Write physical address 3
6 Read multicast list from UNA 36
12 Read counters 100
13! Read and clear counters 100
14 Read UNA mode 1
15 Write UNA Mode 1
16 Read line status 10
17! Read and clear line status 10
22 Read system ID 144 Maximum
23! Write system ID 144 Maximum
24 Read load server address 3
25 Write load server address 3

IThis function code must be issued by a privileged task.

Note

The buffer sizes specified are in addition to the 4-word header, that is, the
function, input size, output size, function status, and data buffer.

10.5 Programming Hints

This section contains information on important programming considerations for tasks using the
DEUNA driver described in this chapter.

QIO DEUNA Driver 10-23

10.5.1 Information on the DEUNA Device

In order to fully understand the hardware capabilities and programming features of the DEUNA,
you should become familiar with the information contained in the DEUNA User’s Guide.

10.5.2 DEUNA Read/Write Mode Function

To change the DEUNA mode, you should read the mode first and combine the change with
the current mode by a logical OR function to prevent changing the other mode bits.

You cannot change the Transmit Message Pad Enable bit. The driver relies on the UNA to pad
short messages. The driver reenables this bit each time it performs a Write Mode function.

10.5.3 DLX Incompatibility

The RSX-11M-PLUS DEUNA driver is not 100% compatible with the DECnet software’s Direct
Line Access (DLX). Under the DECnet software’s DLX, the system ID, physical address, and
mode are set by using Network Management. Therefore, you must set these three characteristics
using the diagnostic functions (see Section 10.4).

10.5.4 Asynchronous |I/O

The order of request completion is not preserved by the driver, because the driver has no way
of knowing when a receive can be expected. Also, if you use diagnostic functions for a transmit
or receive, requests without diagnostic functions may complete out of order. Therefore, you
should use event flags to identify the request being completed.

10.5.5 Diagnostic Functions Without Data Transfer

To do diagnostic functions without data transfer, specify all the parameters correctly except for
the size of the auxiliary characteristics buffer, which must be set to zero. This is an invalid
buffer size and returns IE.SPC status for the call. However, the driver processes the diagnostic
buffer, if it is present.

10.5.6 Maximum and Minimum Buffer Size

The maximum buffer size the DEUNA driver permits is 15009 bytes. However, to provide the
padding option described in Section 10.1.7, the maximum buffer size is 2 bytes less than the
1500, bytes permitted by the DEUNA driver. The extra 2 bytes account for the byte count
word in the transfer.

The minimum buffer size is 64 bytes. However, the driver does not check for a buffer size
of less than 64; it assumes that the DEUNA driver always operates in padded mode. A small
transmit buffer could result in transmitting 20 bytes and in receiving 64 bytes, because the
DEUNA pads the buffer with zeros out to 64 bytes. Thus, the first 20 bytes will be data and
the rest will be null bytes.

10-24 QIO DEUNA Driver

10.5.7 Default Mode
The driver initializes the DEUNA driver with the following mode bits set:

DEUNA Pads short transmit messages.
H4000 Collision test is enabled.

Note

The “Enable Half Duplex” mode bit should be set where it is not desirable for
the DEUNA to receive its own transmissions.

10.5.8 Example of Connecting to a Remote Task

The following is a list of steps for a task to take to establish connection with a remote task by
using the RSX-11M-PLUS QIO DEUNA driver:

1.
2.

Open a line on the Ethernet device.

Set characteristics as specified in Section 10.3.2. Setting characteristics establishes the
protocol /address pairs that the system uses when it communicates with the remote systems
on the network. For example, if your task communicates with multicast address 101,252,38
and DEUNA address 304,404,100 by using protocol 10000, the characteristics buffer would
appear as follows:

.WORD 201 ; C.TYP - Set multicast address (CC.MCT)

.WORD 6 ; C.DATI - 6 bytes of address in buffer

.WORD © ; C.DATO - Output data size O (none)

.WORD O ; C.STAT - Characteristics status

.WORD 101 i C.CHRL - 1st word of multicast address buffer
.WORD 252 H - 2nd word of multicast address buffer
.WORD 38 ; - 3rd word of multicast address buffer
.WORD 200 ; C.TYP - Set protocol address pair

.WORD 10. : C.DATI - 10. bytes of characteristics data
.WORD 0 ; - Dutput data size O (none)

.WORD © ; C.STAT - Characteristics status

.WORD 10000 C.CHRL - Protocol type

.WORD O - Protocol flags (normal)

.BYTE 1,1 - 2nd word of address

.BYTE 304,0 ; - 18t word of address
.BYTE 100,0 ; 3rd word of address

Once the protocol/address pairs are set, you should issue two or more receive QIO$s in
anticipation of receiving a message on the Ethernet. In this way you can ensure that one
request may be completing and still have another request outstanding to the driver. Upon
completion of a receive request, your task must immediately issue another request before
any other action to prevent received messages from being lost. Note that the driver discards
unsolicited messages.

At this point, you may want to transmit a message to the participating systems, letting
them know of your presence on the network. The format of such a message exchange is
application dependent. Some sort of acknowledgment of the startup message may complete
the startup sequence.

QIO DEUNA Driver 10-25

5. Now, you are ready to transmit and receive messages. If you receive an abort notification
(IE.ABO) for a request, the line must be reinitialized via the QIO$ 10.XIN function before
further activity can be resumed. Another way to reinitialize the line is to close it and reopen
it. The auxiliary characteristics buffer for receives should have room for the address/protocol
pair of the originating system as follows:

.WORD 100 : C.TYP - Read Ethernet address (CC.ADR)
.WORD 6 . C.DATI - 6 bytes of address in buffer
.WORD O . C.DATO - Output data size (6)

.WORD O . C.STAT - Characteristics status

.BYTE 0,0 ; C.CHRL - Driver returns a

.BYTE 0,0 ; 3-word address

.BYTE 0,0 ; in these three words

.WORD 101 . C.TYP - Read protocol type (CC.PRO)
.WORD 2 . C.DATI - 2 bytes of protocol type
.WORD O . C.DATO - Output data size (2)

.WORD O : C.STAT - Characteristics status

.WORD O . C.CHRL - Contains protocol type

6. The auxiliary characteristics buffer for transmits must contain the destination
address /protocol pair as follows:

.WORD 100 . C.TYP - Set Ethernet address (CC.ADR)
.WORD 6 : C.DATI - 6 bytes of address in buffer
.WORD O . C.DATO - Output data size O

.WORD O . C.STAT - Characteristics status

.BYTE 304,0 ; C.CHRL - Task must pass

.BYTE 1,1 ; 3-word address

.BYTE 100,0 ; in these three words

.WORD 101 . C.TYP - Set protocol type (CC.PRO)
.WORD 2 . C.DATI - 2 bytes of protocol type
.WORD O . C.DATO - Output data size O

.WORD O : C.STAT - Characteristics status

.WORD 10000 . C.CHRL - Must contain protocol type

7. Upon completion of Ethernet 1/0, issue a close (I0.XCL) to release the line.

10.6 Glossary

Controller
A single piece of peripheral equipment of the system bus that communicates with one or
more external devices. A single DEUNA is a controller.

CSR
The control and status registers for a controller. These are the ports through which the
driver communicates with the device.

DEUNA
DIGITAL Equipment UNIBUS Network Adapter.

DLX
Direct Line Access (DLX) controller. Enables programs to have a direct, high-level interface
to a physical line on systems with DECnet support.

10-26 QIO DEUNA Driver

DNA

DIGITAL Network Architecture. A network architecture of protocols, interfaces, and
functions that enable DECnet network nodes to communicate.

Line
A communication path to another system. For example, a port on the Network Interconnect
(NI) is a line.

Multiaccess channel

The Ethernet is unlike other data links supported by DIGITAL communications software
products in that more than one user task may use a single circuit simultaneously.

NI

Network Interconnect is the group of DECnet products that implement the Xerox,! Intel,2
and DEC intercompany Ethernet specifications.

Protocol type
A unique 16-bit address that distinguishes each user task of the NI.

1 Xerox is a registered trademark of the Xerox Corporation
2 Intel is a trademark of the Intel Corporation
3 This function code must be issued by a privileged task.

QIO DEUNA Driver 10-27

Chapter 11

PCL11 Parallel Communications Link Drivers

11.1 Introduction to the PCL11 Parallel Communications Link
Driver

PCL11 Parallel Communications Link hardware is supported on RSX-11M-PLUS systems by
two drivers. One driver supports the transmitter function and the other driver supports the
receiver function. The PCL11-B is a hardware interface that functions as a time division
multiplexed (TDM) interface over which several PDP-11 computers can transfer data to each
other. Each PCL11-B consists of a transmitter, receiver, and master section. The transmitter
section can transfer parallel 16-bit words along the TDM bus to a receiver section of a separate
PCL11-B on a different PDP-11 computer’s UNIBUS. One of the PCL11-B units attached to the

TDM bus must have its master section enabled to effect the data transfer.

11.1.1 PCL11-B Hardware

Each PCL11-B transmitter and receiver section has a unique TDM bus address (hardware
configured). When a master section is enabled, it places a transmitter address on the TDM bus
for a period of time, called a timeslice. During the timeslice, the addressed transmitter can
address the desired receiver section and transmit one word; the transmitter waits for the receiver
to acknowledge the word or an indication that the word was not accepted. If the word is not
accepted, it normally retransmits the word on the next available timeslice. Thus, a message up
to 32K words long can be transmitted to a receiver one word at a time during the time in which

other similar TDM transactions are multiplexed for other PCL11-B devices.

11.1.2 PCL11 Transmitter Driver

The PCL11 transmitter driver provides two basic functions. First, it must receive data sent by
the attached task and store it in a buffer in the PCL11 hardware. Then, the driver passes
proper receiver address and command information to the PCL11 transmitter hardware to effect
the actual transfer over the TDM bus.

PCL11 Parallel Communications Link Drivers 11-1

11.1.3 PCL11 Receiver Driver

The PCL11 receiver driver also performs two basic functions. First, it must remove data from
the receiver buffer and send it to the connected task. In addition, the receiver driver must
acknowledge a transmitter when a data transmission is requested by that transmitter. Subsequent
requests by other transmitters on the TDM bus are ignored until all message transactions with
the current transmitter are completed.

11.2 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains the following information for the PCL11 transmitter and receiver drivers. A
setting of 1 indicates that the described characteristics are true for PCL11 transmitter and receiver
drivers.

Bit Setting Meaning

0 Record-oriented device

1 Carriage-control device

2 Terminal device

3 File-structured device

4 Single-directory device

5 Sequential device

6 Mass-storage device

7 User-mode diagnostics supported
8

9 Unit software write-locked

10
11
12
13
14
15

1

0

0

0

0

1

0

0

0 Device supports 22-bit direct addressing
0

0 Input spooled device

0 Output spooled device

0 Pseudo device

0 Device mountable as a communications channel
0 Device mountable as a Files-11 volume

0

Device mountable

Word 3 contains device driver-specific information, as follows:

Transmitter driver
The low byte of word 3 contains the number of transmit retries remaining after completing
the current data transmit function if the current data transmit function attempt is not
accepted by the addressed receiver. The high byte of word 3 is undefined.

11-2 PCL11 Parallel Communications Link Drivers

Receiver driver
The low byte of word 3 contains the index of the current state of the receiver driver. Use
these states primarily for diagnostic purposes as they are defined as follows:

Index Value = Meaning

0 No task is connected.
+2 Task is connected but not triggered.
+4 Task is triggered and waiting for IO.RTF or IO.ATF function.
+6 Task triggered and timed out while waiting for IO.RTF or IO.ATF function.
-2 IO.ATF function is in progress.
-4 Task is connected, not triggered, and has an I0.ATF function in progress.
-6 An IO.RTF function is in progress.

The high byte of word 3 is undefined. Word 4 is undefined. Word 5 is the default buffer size
in bytes. For the PCL11, this value is 64 bytes.

11.3 QIO Macro—PCL11 Transmitter Driver Functions

The following sections describe both the standard and device-specific QIO functions.

11.3.1 Standard QIO Functions

Table 11-1 lists the standard functions of the QIO macro that are valid for the PCL11 transmitter
driver.

Table 11-1: Standard QIO Functions for PCL11 Transmitters

Format Function
QIO$C I0.ATT,... Attach device
QIO$C 10.DET,... Detach device
QIO$C IOKIL,... Cancel I/O request

11.3.2 Device-Specific QIO Functions

Table 11-2 lists the device-specific functions of the QIO macro that are valid for the PCL11
transmitter driver.

PCL11 Parallel Communications Link Drivers 11-3

Table 11-2: Device-Specific QIO Functions for PCL11 Transmitters

Format Function

QIO$C IO.ATX,..., <stadd,size, Attempt message transmission
flagwd,id,retries,retadd>

QIO$C I0.SEC.,..., Sense master section status

QIO$C 10.STC,..., <stadd,size, Set master section characteristics

[state],[mode], retadd>

Parameters

stadd
Specifies the starting address of a data buffer. (Its description and function are dependent
upon the specific QIO function.)

size
Specifies the data buffer size in bytes. (Its description and function are dependent upon the
specific QIO function.)

flagwd
Specifies the value of the flagword that is to precede the message being sent. The flags
specify the desired receiver function as defined by your task’s protocol.

id
Specifies the identifier of the central processing unit (CPU) to which the message is to be
sent. This identifier is the desired receiver’s TDM bus address. It appears in the high byte
of the first word of the master section I/O status block (IOSB). The identifier number is
an octal value contained in the high byte of the parameter word. For example, receiver
number 1 is specified as 400, receiver number 2 is specified as 1000, and so forth.

retries
Specifies the number of retries that are attempted, following the first attempt, before
returning error status to the calling task. Retries occur because of the following conditions:
o The first attempt was unsuccessful.
e Transmission errors occurred.
e A master down condition occurred.

retadd

Specifies the starting address of a 7-word buffer into which the contents of the six transmitter
registers and the Transmitter Master/Maintenance Register (TMMR) are moved prior to
returning to the calling task. Information describing the contents of these registers can be
obtained by referring to the hardware documentation supplied with the PCL11 option.

11-4 PCL11 Parallel Communications Link Drivers

state
Specifies the desired state setting for the transmitter, as follows:

Parameter Specified State

S5.MAS TDM bus master

SS5.NEU Neutral (default state)
mode
Specifies the desired mode setting for allocating transmitter timeslices on the TDM bus, as
follows:
Parameter

Entered Mode
MS.AUT Autoaddressing (default mode)
MS.ADS Address silo

11.3.2.1 I0.ATX

The IO.ATX I/O function requests an attempt to transmit a message to a specified CPU. The
message to be transmitted is contained in a data buffer starting at the address specified in the
stadd parameter. This address must be on a word boundary. The data buffer size specified in the
size parameter must be an even, positive value. The flagword parameter contains information,
which you defined, that the receiving task uses to determine whether to accept or reject the
message. The id parameter is the receiver TDM bus address. The task uses this address to
direct a message to a specific CPU. Other parameters are as described in Section 11.3.2.

11.3.2.2 10.SEC

The IO.SEC function senses the master section status. Upon successful completion of this
function, the IOSB contains a typical I/O status code (IS.SUC) return in the low byte of the
first word, and current TMMR contents in the second word, as shown in Figure 11-1.

Figure 11-1: 10.SEC Status Block Contents

Status Code

Current TMMR Contents

ZK-5881-HC

Note
The optional isb parameter (see Chapter 1) must be included in this QIO request.

PCL11 Parallel Communications Link Drivers 11-5

11.3.2.3 10.STC

The 10.STC function sets the master section operational characteristics. 10.STC can be issued
only by a privileged task. Correct use of the function depends upon the current (or specified)
operating state of the master section and proper use of parameters. Use each parameter as
described in the following paragraphs. Refer to all parameters in the sequence shown for a
correct interpretation of parameter usage.

Parameters

state

Determines the overall function of the master section (and transmitter and receiver sections)
in the PCL11 communications link as it relates to the TDM bus. The neutral state (55.NEU)
places the master section in an inactive state where the unit sends and receives messages in
a normal manner, but the master section cannot control transmitter timeslice allocation on
the TDM bus. The master state (55.MAS) designates this unit as TDM bus master, enabling
control of transmitter unit timeslice allotments on the TDM bus; only one master section on
the TDM bus can be designated TDM bus master.

mode

Allows the TDM bus master to allocate transmitter timeslices in one of two ways: autoaddress
mode (MS.AUT) or address silo mode (MS.ADS). When operating in the autoaddress mode
(MS.AUT), which is the default mode for the TDM bus master, equal timeslice allotments are
given to each transmitter unit; transmitter unit addresses are sequentially put on the TDM
bus in descending order, one address for each timeslice. When operating in the address
silo mode, transmitter unit addresses are transmitted in a sequence, which you specified,
allowing up to 50% of the timeslices to be allocated to one transmitter unit, if desired.

The actual sequence of transmitter timeslice allocations for the address silo mode is set up
in your task data buffer referenced by the stadd parameter. Certain constraints must be
observed when specifying this information, as follows:

e Each entry in the buffer must be a byte containing a transmitter unit address.

e At least 20 entries, but not more than 50 entries, must be specified. If less than 20
entries are specified, the driver repeats the entire sequence, as specified, to attain the
required minimum of 20 addresses. If more than 50 addresses are specified, no change
in timeslice allocation is effected and an IE.VER error status is returned to the task.

e Identical transmitter addresses in either adjacent bytes or in first and last bytes should
be avoided. When identical addresses appear in adjacent bytes in this manner, the
driver inserts invalid “pad” transmitter addresses between identical addresses, effectively
resulting in no-operation timeslices.

e Transmitter addresses must be decimal values ranging from 1 to 32 (inclusive) that
correspond to addresses implemented on the actual transmitter unit hardware.

e The size parameter must correctly specify the number of address bytes contained in the
buffer referenced by the stadd parameter.

11-6 PCL11 Parallel Communications Link Drivers

11.4 PCL11 Transmitter Driver Status Returns

Table 11-3 lists PCL11 transmitter driver return status codes and probable reasons.

Table 11-3: PCL11 Transmitter Driver Status Returns

Code Reason
IS.SUC Successful completion

The QIO function was successfully completed. If an I0.ATX function was completed,

the second status word contains the number of bytes transferred; the message was

not truncated. If an 10.SEC function was completed, the second status word contains
the current contents of the master section’s TMMR.
ISTNC Successful transfer but message truncated

The I0.ATX function was completed, but the message was truncated by the receiver

(the receiver buffer is too small). The transmitter unit cannot determine how many

words were actually received by the receiver unit; the second word of the 1/O status

block (IOSB) contains the length of the requested transfer, rather than the actual
count of words successfully received in the receiver’s buffer.
IEBAD Bad parameter specification

A bad parameter specification was included in the IO.ATX function, or an invalid

state parameter or TDM bus timeslice allocation addressing mode was specified in

the I0.STC function.

This error status is also returned when an I0.STC function, issued to a TDM bus

master operating in the address silo mode, refers to a data buffer containing an

illegal series of transmitter addresses. An illegal series of addresses occurs when the
number of entries specified for the timeslice allocation, plus the required number of

pad addresses, either exceeds 50 or is less than 0.

IE.DNR Device not ready

This error status return occurs in response to an I0.ATX function when one of the

following occurs:

* Power failure occurs in this central processing unit (CPU).

® Device timeout occurs (no response from the addressed receiver).

* Receiver is too slow in accepting or rejecting the transfer request.

* The master section is inoperative. This error status is returned only after the
number of retries specified in the IO.ATX function have been attempted without
success.

IEVER Unrecoverable error
The IO.STC function state setting could not be achieved because the task is not
privileged or another device is TDM bus master.

IESPC Illegal user task buffer

The buffer address specified in the IO.ATF function is outside of the issuing task’s
address space.

PCL11 Parallel Communications Link Drivers 11-7

Table 11-3 (Cont.): PCL11 Transmitter Driver Status Returns
Code Reason

IE.RE]J Transfer rejected
The data transfer request specified in the IO.ATX function was rejected by the
addressed receiver based on the source CPU identifier of the task issuing the request
and flagword.

IEFLG Event flag already specified
An event flag was previously specified in an 10.STC function.

IE.BBE Transmission error
This error status is returned only after the number of retries specified in the I0.ATX
function have been attempted without a successful transmission. (Cyclic redundancy
check (CRC) errors or parity errors have been detected on each attempt.)

IE.ABO Request terminated
This status is returned when a pending 1/O function has been aborted in response
to an IO.KIL function being issued by the task.

IE.IFC Illegal function code
A function code was specified in an I/O request that is illegal for PCL11 transmitters.

11.5 QIO Macro—PCL11 Receiver Driver Functions

The following sections list the standard and device-specific QIO functions for driver to the
PCL11 receiver.

11.5.1 Standard QlO Functions
Table 11-4 lists the standard function of the QIO macro that is valid for the PCL11 receiver

driver.

Table 11-4: Standard QIO Functions for PCL11 Receivers

Format Function

QIO$C IOKIL,... Cancel I/0O request

11.5.2 Device-Specific QIO Functions

Table 11-5 lists the device-specific functions of the QIO macro that are valid for the PCL11
receiver driver.

11-8 PCL11 Parallel Communications Link Drivers

Table 11-5: Device-Specific QIO Functions for PCL11 Receivers

Format Function
QIO$C IO.CRX,..., <tef bufadd> Connect for reception
QIO$C 10.RTF,... Reject transfer
QIO$C IO.ATF,..., <stadd,size,retadd> Accept transfer
QIO$C IO.DRX,... Disconnect for reception
Parameters
tef

Specifies the number of a “trigger” event flag that is set whenever a flagword is received
over the TDM bus.

bufadd
Specifies the address of a 2-word buffer containing the transmitter ID, trigger status, and
the flagword.

stadd
Specifies the address of a data buffer to receive the message. This address must occur on a
word boundary (even address).

size
Specifies the data buffer size in bytes. The size specified must be an even, positive value.

retadd
Specifies the address of a 6-word buffer into which the contents of the six PCL11 receiver
hardware registers are returned upon successful completion of the function. Information
describing the contents of these registers can be obtained by referring to the hardware
documentation supplied with the PCL11 option.

11.5.2.1 10.CRX

The IO.CRX function connects the issuing task to the receiver if the receiver is not currently
connected to another task. When connected, this task is the only task capable of receiving
messages by means of the receiver on this CPU. The trigger event flag (a local, common,
or group-global event flag) informs the task when a message is pending. It is set when a
flagword is received over the TDM bus. When this happens, a significant event is declared and
the connected task is considered “triggered.” The flagword is the first word transmitted by a
transmitter when it attempts to send a message to the receiver unit.

The bufadd parameter must be included in this I/O function to specify the address of a 2-word
block, as shown in Figure 11-2.

PCL11 Parallel Communications Link Drivers 11-9

Figure 11-2: 10.CRX Status Block Contents

id sts

flagwd

ZK-5882-HC

In Figure 11-2, sts, id, and flagwd are defined as follows:

sts
Specifies the current trigger status.

id
Specifies the identification code of the transmitter attempting to send the message.

flagwd
Specifies the flagword transmitted to the connected receiver.

Based on the information contained in the flagword and the identification code of the transmitter
unit, the task can accept or reject the transfer. (Two I/O functions are provided for this purpose;
see Sections 11.5.2.2 and 11.5.2.3) The receiver must respond to the transmitter’s request within
approximately 1.5 seconds; otherwise, an IE.DNR error status is returned to the task attempting
the transmission.

11.5.2.2 IO.RTF

The IO.RTF function informs the transmitter device that the message is being rejected by the
receiver. Any attempt to issue this I/O function when the trigger event flag is not set is ignored,
and an IE.NTR error status is returned to the task.

11.5.2.3 IO.ATF

The IO.ATF function informs the transmitter device that the message is being accepted.
Parameters specify both the data buffer into which the received data is transferred and the
6-word buffer that receives the contents of the receiver section hardware registers upon successful
completion of the function.

Unlike the IO.RTF function, the IO.ATF function can be issued before the task is triggered.
When this process is used, the IO.ATF function is queued for reception of any flagword. When
the flagword is received, the receiver driver immediately executes the IO.ATF function; the
connected task is not triggered and the flagword is not made available to the task. This
approach is useful when it is not necessary to examine flagwords or to accept messages based
on the source.

11.5.2.4 10.DRX

This function is issued by a task to disconnect the receiver for use by other tasks.

11-10 PCL11 Parallel Communications Link Drivers

11.6 PCL11 Receiver Driver Status Returns

Table 11-6 lists PCL11 receiver driver return status codes and probable reasons.

Table 11-6: PCL11 Receiver Driver Status Returns

Code Reason

IS.SUC Successful completion
The 1/O function or triggering of the task was completed successfully. When this
status is returned upon completion of the IO.ATF function, the high-order byte of
the first word in the I/O status block contains (IOSB) the identification code of the
transmitter device that sent the flagword. The second word of the IOSB contains
the number of bytes transferred over the TDM bus. When this status is returned
as a result of an IO.CRX function, and the task being triggered, the IOSB contains
information that enables the task to accept or reject the message (see Section 11.5.2.1).

ISTNC Successful transfer but message truncated
This 1/0 status code is returned when the message is terminated because the receiver
task message buffer specified in the IO.ATF function is too small to contain the
message being received. The second word of the I/O status word contains the
number of bytes successfully transferred.

IEBAD Bad parameter specification
A bad parameter specification was included in the requested function.

IEDNR Device not ready
This error status return occurs in response to an IO.RTF or IO.ATF function when
one of the following occurs:
¢ Power failure occurs in this central processing unit (CPU).
* Device timeout occurs (no response from addressed receiver).
* Receiver is too slow in accepting or rejecting the transfer request.
® The master section is inoperative.

[E.SPC Illegal user task buffer
The buffer address specified in the IO.ATF function is outside of the issuing task’s
address space.

IEEDNA Task not connected for reception
The requested function cannot be executed because the task is not connected to the
receiver.

IEDAO Data overrun

This I/O status code is returned when the task is triggered, but the previous transfer
request has neither been accepted nor rejected. When the task issues an IO.RTF
or I0.ATF function, that function applies to the new (most recent) flagword; the
previous request is ignored.

PCL11 Parallel Communications Link Drivers 11-11

Table 11-6 (Cont.): PCL11 Receiver Driver Status Returns

Code Reason
IEDAA Device already connected for reception
This 1/O status code is returned in response to the I0.CRX function when the receiver
is already connected to this task or any other task. No operation is performed.
IENTR Task not triggered
This I/O status code is returned when a task attempts to issue an IO.RTF function
prior to the task being triggered.
IEBBE Transmission error
This error status is returned when an IO.ATF function is in progress and a cyclic
redundancy check (CRC) error or parity error has been detected.
IE.ABO Request terminated
This status code is returned when a pending I/O function has been aborted in
response to an IO.KIL function being issued by the task.
IE.FHE Fatal hardware error
The requested function cannot be executed because of a hardware failure.
IEIFC Illegal function code

A function code was specified in an I/O request that is illegal for PCL11 transmitters.

11-12 PCL11 Parallel Communications Link Drivers

Chapter 12
Laboratory Peripheral Accelerator Driver

12.1 Introduction to the Laboratory Peripheral Accelerator Driver

The Laboratory Peripheral Accelerator driver (LPA11-K) is an intelligent, direct memory access
(DMA) controller for DIGITAL's laboratory data acquisition I/0 devices. It is a fast, flexible, and
easy-to-use microprocessor subsystem that allows analog data acquisition rates up to 150,000
samples per second. The LPA11-K is for applications requiring concurrent data acquisition and
data reduction at high rates.

The LPA11-K is supported through a device driver and a set of program-callable routines. The
device driver supports multiple controllers and can be configured as resident or loadable. The
program-callable support routines are linked with your task at task-build time. These routines
are highly modular. Therefore, a particular task need only contain that code necessary for the
facilities that it actually uses.

The LPA11-K operates in two distinct modes: dedicated and multirequest. The subsections that
follow summarize each mode.

12.1.1 LPA11-K Dedicated Mode of Operation

In dedicated mode, only one task (that is, one request) can be active at a time and only analog
1/0 data transfers are supported. Up to two analog converters can be controlled simultaneously.
Sampling is initiated by an overflow of the real-time clock or by an externally supplied signal.

12.1.2 LPA11-K Multirequest Mode of Operation

In multirequest mode, sampling from all device types is supported. Up to eight user tasks can
be simultaneously active. The sampling rate for each user task is a multiple of the common
real-time clock rate. Independent rates can be maintained for each task. Both the sampling rate
and the device type are specified as part of each data transfer request.

Laboratory Peripheral Accelerator Driver 12-1

12.2 Get LUN Information Macro

If a Get LUN Information system directive is issued for a logical unit number (LUN) associated
with an LPA11-K, word 2 (the first characteristics word) contains all zeros, words 3 and 4
are undefined, and word 5 contains a 16-bit buffer preset value that controls the rate of the
real-time clock interrupts.

12.3 The Program Interface

A collection of program-callable subroutines provides access to the LPA11-K. The formats of
these calls are fully documented here for FORTRAN programs. MACRO-11 programmers access
these same subroutines either through the standard subroutine linkage or through the use of
two special-purpose macros. Optionally, MACRO-11 users can control an LPA11-K directly by
using device-specific QIO functions. Both FORTRAN and MACRO programs must contain at
least one 1/0 status block (IOSB) for retrieval of status information. The following subsections,
therefore, describe:

e The FORTRAN interface
e The MACRO-11 interface
e The IOSB

Note
The subroutines documented in this chapter represent the high-level interface to
the LPA11-K. Using these subroutines requires an understanding of hardware
capabilities, configuration details, and hardware status codes as described in the
LPA11-K Laboratory Peripheral Accelerator User’s Guide.
12.3.1 FORTRAN Interface
Table 12-1 lists the FORTRAN interface subroutines for accessing the LPA11-K.

The calling sequences of the routines listed in Table 12-1 are compatible with the K-series
support routines, described in Chapter 13, except as noted. The following subsections briefly
describe the function and format of each FORTRAN subroutine call.

Table 12-1: FORTRAN Subroutines for the LPA11-K

Subroutine Function

ADSWP Initiate synchronous analog-to digital (A/D) sweep
CLOCKA Set Clock A rate

CLOCKB Control Clock B

CVADF Convert A/D input to floating point

DASWP Initiate synchronous digital-to-analog (D/A) sweep
DISWP Initiate synchronous digital input sweep

DOSWP Initiate synchronous digital output sweep

12-2 Laboratory Peripheral Accelerator Driver

Table 12-1 (Cont.): FORTRAN Subroutines for the LPA11-K

Subroutine Function

FLT16 Convert unsigned integer to a real constant
IBFSTS Get buffer status

IGTBUF Return buffer number

INXTBF Set next buffer

IWTBUF Wait for buffer

LAMSKS Set masks buffer

RLSBUF Release data buffer

RMVBUF Remove buffer from device queue
SETADC Set channel information

SETIBF Set array for buffered sweep
STPSWP Stop sweep

XRATE Compute clock rate and preset

12.3.1.1 ADSWP—lInitiate Synchronous A/D Sweep

The ADSWP routine initiates a synchronous analog-to-digital (A/D) input sweep through an
LPS-11 or an AD11-K (and, if present, the AM11-K).

If differential input is desired for the AD11-K/AM11-K, the channel increment must be set to
2 by calling the SETADC routine. The default channel increment is 1 (single-ended input).
Format

CALL ADSWP (ibuf,Ibuf,[nbuf],[mode] [idwell] [iefn],[Idelay] [ichn],[nchn],[ind])

Parameters

ibuf
Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the IOSB.

Ibuf

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
lbuf must be greater than 5. In dedicated mode, Ibuf must be at least 257 words.

nbu

Specifies the number of buffers to be filled. If nbuf is omitted or set equal to 0, indefinite
sampling occurs. The STPSWP routine terminates indefinite sampling.

Laboratory Peripheral Accelerator Driver 12-3

mode
Specifies the sampling options. The default is 0. The mode bit values listed below that are
preceded by a plus sign (+) are independent and can be added or ORed together (assuming
that the sampling options are applicable to the mode of operation). Those values not
preceded by a plus sign are mutually exclusive and the task can use only one such value at
a time. All bit values not listed below are reserved.

The following values can be specified:

0 Absolute channel addressing (default). This mode allows your task to directly
access all 64 channels of an A/D converter.

+32 Dual A/D conversion serial/parallel. This option applies to dedicated mode only.
It is ignored in multirequest mode.

+64 Multirequest mode. If this value is not specified, the request is for dedicated
mode. If the request mode does not match the mode of the hardware (that
is, different microcode in the master microprocessor), the LPA11-K rejects the
request with an appropriate error code.

+512 External trigger (ST1). Use this mode when you want to use your own external
sweep trigger. The external trigger is supplied by a jumper connecting the
AD11-K External Start input to the KW11-K Schmitt Trigger 1 output. You can
use this external trigger connection only in dedicated mode. If you select mode
512, your task must specify a Clock A rate of -1 for proper A/D sampling. This
is non-clock-driven sampling.

+1024 Time stamp with Clock B (multirequest mode only).

+2048 Event marking (multirequest mode only). LAMSKS must be called to specify an
event mark channel and event mark mask.

+4096 Start method. If set, digital input start. If clear, immediate start. LAMSKS must
be called to specify a digital start channel and digital start mask (multirequest
mode only).

+8192 Dual A/D converter (dedicated mode only).

+16384 Data overrun NONFATAL/FATAL. If selected, data overrun is considered
nonfatal. The LPA11-K defaults to fill buffer 0. (See Section 12.4 for a discussion
of buffer management.)

idwell
Specifies the number of clock overflows (pulses) between data sample sequences. As an
example, if idwell is 20 and nchn is 3, the following occurs: after 20 pulses, 1 channel is
sampled on each of the next 3 pulses. Then, no sampling takes place for the next 20 pulses.
In multirequest mode, this facility permits different sample rates for the same hardware
clock rate and preset. In dedicated mode, the clock hardware rate controls sampling and
this idwell parameter is ignored.

If compatibility with K-series support routines is desired, your task must first establish the
clock preset by calling the CLOCKA routine. The sweep start command uses the default
idwell value of 1. For the K-series, this procedure sets the rate as desired.

12-4 Laboratory Peripheral Accelerator Driver

Note

This parameter is called iprset in the K-series support routines described in
Chapter 13. Its function is different from the idwell parameter described
here.

iefn
Specifies the event flag number (1 to 28, 30 to 96), the name of a completion routine, or 0.
If you use 0 or default this value, the driver uses event flag 30 for internal synchronization.
If you select an event flag with iefn, the driver sets the selected event flag as each
buffer is filled. Note that the LPA11-K support routines reserve event flag 29 for internal
synchronization. If iefn is greater than 96, the driver considers it to be a completion routine

that is called with a JSR PC. Such routines must return with an RTS PC (or a FORTRAN
RETURN statement).

FORTRAN completion routines must not contain any of the following:

* Any I/O through the FORTRAN run-time system

* Any use of virtual arrays

* Any use of floating-point operations

* Any errors, because error reporting is done through the FORTRAN run-time system
* Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable results.

If multiple sweeps are initiated, your task should specify different event flags. Adherence
to this limitation cannot be enforced by the software.

Idelay
Specifies the delay from the start event (DR11-K) until the first sample in irate units. This
feature is supported in multirequest mode only. Default or 0 indicates no delay.

ichn

Specifies the number of the first channel to be sampled. The default of 0 applies only if
ichn was not established in a prior call to the SETADC routine.

nchn
Specifies the number of channels to sample. The default is 1. The nchn parameter may be
set up with the SETADC routine. The number of channels specified are sampled at a rate
of 1 per clock interrupt. If nchn equals 1, the single channel bit is set in the mode word of
the start Request Descriptor Array (RDA).

ind
Receives a success or failure code as follows:
1 Indicates that the sweep was initialized successfully.

0 Indicates an illegal argument list, or SETIBF was not called prior to this call.
-1 Indicates a QIO directive failure. The directive error code is placed in IOSB(1) in IBUF.

Laboratory Peripheral Accelerator Driver 12-5

Note

The ind parameter is not supported by the K-series support routines. If
compatibility with K-series support routines is desired, this parameter must
be ignored.

12.3.1.2 CLOCKA—Set Clock A Rate
The CLOCKA routine sets the rate for Clock A. This routine is called by using the format shown
next.
Format
CALL CLOCKA (irate,iprset,[ind],[lun])

Parameters

irate
Specifies the clock rate. One of the following must be specified:

-1 Direct-coupled Schmitt Trigger 1 (used only for A/D sweeps in dedicated mode +512;
not supported by K-series support routines)

0 Clock B overflow or no rate
1 1 megahertz (MHz)
2 100 kilohertz (kHz)
3 10 kHz
4 1kHz
5 100 hertz (Hz)
6 Schmitt Trigger 1
7 Line frequency
iprset

Specifies two’s complement value for clock preset. The clock rate divided by the negative
clock preset value yields the clock overflow rate. For example, to obtain a clock overflow
rate of 10 kHz with a clock rate of 1 MHz, iprset equals -100 (minus 100,0). You can use
the XRATE routine to calculate a clock preset value.

ind
Receives a success or failure code as follows:

0 Indicates an illegal argument list or I/O error. Possible causes are: microcode not
loaded; driver not loaded; device off line or not in system.

1 Indicates Clock A set to start when sweep requested.

lun
Specifies the logical unit number (LUN). The default is 7.

12-6 Laboratory Peripheral Accelerator Driver

12.3.1.3 CLOCKB—Control Clock B
The CLOCKB routine gives your task control over the KW11-K Clock B.

Format
CALL CLOCKB ([irate],iprset,mode,[ind],[lun])

Parameters

irate

Specifies the clock rate. When irate is nonzero, the clock is set running at the selected rate
after the preset value specified by iprset is loaded. A 0 irate stops the clock. When irate is
0 or default, the iprset and mode parameters are ignored.

The following values are acceptable for irate:

0 Stop Clock B

1 1MHz

2 100 kHz

3 10kHz

4 1KkHz

5 100 Hz

6 Schmitt Trigger 3

7 Line frequency
iprset

Specifies the count by which to divide clock rate to yield overflow rate. You can use
overflow events to drive Clock A. The preset parameter must be specified as 0 or as a
negative number in the range -1 to -255. The value in iprset can be established by use of
the XRATE routine.

mode
Specifies options. The following mode bit values listed that are preceded by a plus sign (+)
are independent and can be added or ORed together. Those values not preceded by a plus
sign are mutually exclusive and you can use only one such value at a time. All bit values
not listed as follows are reserved:

1 Indicates Clock B operates in noninterrupt mode. The 16-bit clock is not incremented
or altered. This allows a greater than 10-kHz pulse to be sent to Clock A.

+2 Indicates that the feed B-to-A bit is set in the Clock B status register.

Laboratory Peripheral Accelerator Driver 12-7

ind
Receives a success or failure code as follows:

0 Indicates an illegal argument list or I/O error. Possible causes are: microcode not
loaded; driver not loaded; or device off line or not in system.

1 Indicates Clock B started.
lun
The logical unit number (LUN). The default LUN is 7.
12.3.1.4 CVADF—Convert A/D Input to Floating Point
The CVADF routine converts an analog-to-digital (A/D) input value to a floating-point number.
The routine can be invoked as a subroutine or a function by using the formats shown next.
Formats
CALL CVADF (ival,val)

val = CVADF(ival)

Parameters

ival

Specifies a value obtained from A/D input. Bits 12 to 15 are 0. Bits 0 to 11 represent the
value.

val

Specifies that a real constant (REAL*4) receives the converted value. The converted value
is calculated with the following formula:

val = (64*ival)/gain

12.3.1.5 DASWP—Initiate Synchronous D/A Sweep
The DASWP routine initiates synchronous digital-to-analog D/A output to an AA11-K.

Format
CALL DASWP (ibuf,Ibuf [nbuf],[mode] [idwell] [iefn] Idelay,[ichn] [nchn],[ind])

Parameters

ibuf

Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the /0O status block (IOSB).

tout

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
Ibuf must be greater than 5. In dedicated mode, lbuf must be at least 257 words.

12-8 Laboratory Peripheral Accelerator Driver

nbuf
Specifies the number of buffers to be emptied. If nbuf is omitted or set equal to 0, indefinite
sweeping occurs. The STPSWP routine terminates indefinite sweeping,

mode
Specifies the start criteria. Except where noted, the plus sign (+) preceding mode bit values
listed indicates that they are independent and can be added or ORed together. All bit values
not listed are reserved.

The following values can be specified:
0 Indicates immediate start. This is the default.

+64 Multirequest mode. If this value is not specified, the request is for dedicated
mode. If the request mode does not match the mode of the hardware (that is,
different microcode in master microprocessor), the LPA11-K rejects the request
with an appropriate error code.

+4096 Start method. If set, digital input start. If clear, immediate start. LAMSKS must
be called to specify a digital start channel and a digital start mask (multirequest
mode only).

+16384 Data overrun NONFATAL/FATAL. If selected, data overrun is ~considered
nonfatal. The LPA11-K empties buffer 0. (See Section 12.4 for a discussion
of buffer management.)

idwell
Specifies the number of clock overflows (pulses) between data sample sequences. For
example, if idwell is 20 and nchn is 3, the following occurs: After 20 pulses, 1 channel is
emptied on each of the next 3 pulses. Then, no emptying takes place for the next 20 pulses.
In multirequest mode, this facility permits different rates for the same hardware clock rate
and preset. In dedicated mode, the clock hardware rate controls sampling and idwell in the
sweep start command is ignored.

If compatibility with K-series support routines is desired, your task must first establish the
clock preset by calling the CLOCKA routine. You must use the default value (1) for the
idwell parameter in the sweep start command. For the K-series, this procedure sets the rate
as desired. For the LPA11-K, this procedure results in idwell in the sweep call defaulting
to 1, thus yielding the same clock rate.

Note
This parameter is called iprset in the K-series support routines described in

Chapter 13. Its function is different from the idwell parameter described
here.

iefn

Specifies an event flag number (1 to 28, 30 to 96), or the name of a completion routine, or
0. If you use 0 or default iefn, the driver uses event flag 30 for internal synchronization.
If you specify iefn as an event flag, the driver sets the event flag as each buffer is filled.
Note that the LPA11-K support routines reserve event flag 29 for internal synchronization.
If iefn is greater than 96, it is considered to be a completion routine that is called with a
JSR PC. Such routines must return with an RTS PC instruction (or a FORTRAN RETURN
statement).

Laboratory Peripheral Accelerator Driver 12-9

FORTRAN completion routines must not contain any of the following:

* Any I/O through the FORTRAN run-time system

* Any use of virtual arrays

e Any use of floating-point operations

* Any errors, because error reporting is done through the FORTRAN run-time system
* Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable results.

If multiple sweeps are initiated, your task should specify different event flags. This limitation
cannot be enforced by the LPA11 driver.

Idelay

Specifies the delay from start event (DR11-K) until the first sample in irate units. A minimum
delay of 150 microseconds is required (not verified by the LPA11 driver). This feature is
supported in multirequest mode only.

ichn
Specifies the first channel number. The default is channel number 0.

ncr“;peciﬁes the number of channels. The default is one channel.
ind
Receives a success or failure code as follows:
1 Indicates that the sweep was successfully initialized.
0 Indicates an illegal argument list, or SETIBF was not called prior to this call.
-1 Indicates a QIO directive failure. The directive error code is placed in IOSB(1) in IBUF.

Note

The ind parameter is not supported by the K-series support routines. If
compatibility with K-series routines is desired, this parameter must be ignored.

12.3.1.6 DISWP—Initiate Synchronous Digital Input Sweep
The DISWP routine initiates a synchronous digital input sweep through a DR11-K. It can be
called in multirequest mode only.
Format
CALL DISWP (ibuf,Ibuf,[nbuf],[mode] [idwell},[iefn],[Idelay],[iunit] [nchn],[ind])

Parameters
ibuf

Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the IOSB.

12-10 Laboratory Peripheral Accelerator Driver

Ibuf
Specifies the size in words of each data buffer. All data buffers must be equal in size and
lbuf must be greater than 5.

nbuf
Specifies the number of buffers to be filled. If nbuf is 0 or is the default, indefinite sampling
occurs. The STPSWP routine terminates indefinite sampling.

mode
Specifies the sampling options. The default is 0. The plus signs (+) preceding the mode bit
values listed indicate that they are independent and can be added or ORed together. All
bit values not listed as follows are reserved.

The following values can be specified:
0 Immediate start. This is the default mode.

+512 External trigger. The input sampling is triggered by interrupts generated by the
DR11-K’s external control lines, or its input bits if they are interrupt enabled.

+1024 Time-stamped sampling with Clock B. The doubleword consists of one data word
followed by the value of the 16-bit clock at the time of the sample. IOSB(2)
contains the number of 2-word samples in the buffer.

+2048 Event marking. LAMSKS must be called to specify an event mark word and an
event mark mask.

+4096 Start method. If specified, digital input start. If clear, immediate start. LAMSKS
must be called to specify a digital start channel and a digital start mask. The
digital start channel need not differ from the input channel (iunit).

+16384 Data overrun NONFATAL/FATAL. If selected, data overrun is considered
nonfatal. The LPA11-K fills buffer 0. (See Section 12.4 for a discussion of
buffer management.)

dwell
Specifies the number of clock overflows (pulses) between data sample sequences. As an
example, if idwell is 20 and nchn is 3, the following occurs: After 20 pulses, 1 channel is
sampled on each of the next 3 pulses. Then, no sampling takes place for the next 20 pulses.
In multirequest mode, this facility permits different sample rates for the same hardware
clock rate and preset.

If compatibility with K-series support routines is desired, your task must first establish the
clock preset by calling the CLOCKA routine. You must use the default value (1) for the
idwell parameter in the sweep start command. For the K-series, this procedure sets the rate
as desired. For the LPA11-K, this procedure results in idwell in the sweep call defaulting
to 1, thus yielding the same clock rate.

Note

This parameter is called iprset in the K-series support routines described in
Chapter 13. Its function is different from the idwell parameter described
here.

Laboratory Peripheral Accelerator Driver 12-11

iefn

Specifies an event flag number (1 to 28, 30 to 96), or the name of a completion routine,
or 0. If you specify 0 or default this value, the driver uses event flag 30 for internal
synchronization. If iefn is a valid event flag, the driver sets the selected event flag as
each buffer is filled. Note that the LPA11-K support routines reserve event flag 29 for
for internal synchronization. If iefn is greater than 96, it is considered to be a completion
routine that is called with a JSR PC. Such routines must return with an RTS PC instruction
(or a FORTRAN RETURN statement).

FORTRAN completion routines must not contain any of the following:

¢ Any I/O through the FORTRAN run-time system

* Any use of virtual arrays

* Any use of floating-point operations

* Any errors, because error reporting is done through the FORTRAN run-time system
* Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable results.

If multiple sweeps are initiated, your task should specify different event flags. This limitation
cannot be enforced by the LPA11 driver.

ldelay

Specifies the delay from start event (DR11-K) until the first sample in irate units. The
default or 0 indicates no delay.

junit

Specifies the DR11-K unit number. The default is unit number 0. Values 0 to 4 are valid.

nchn

Specifies the number of channels. The LPA11-K treats each DR11-K in its configuration as
one channel. The default is one channel.

ind

12-12

Receives a success or failure code as follows:

1 Indicates that the sweep was initialized successfully.

0 Indicates an illegal argument list, or SETIBF was not called prior to this call.

-1 Indicates a QIO directive failure. The directive error code is placed in IOSB(1) in IBUF.

Note

The nchn and ind parameters are not supported by the K-series support
routines. If compatibility with K-series support routines is desired, these last
two parameters must be ignored.

Laboratory Peripheral Accelerator Driver

12.3.1.7 DOSWP—Initiate Synchronous Digital Output Sweep

The DOSWP routine initiates a synchronous digital output sweep through a DR11-K. It can be
called in multirequest mode only.

Format
CALL DOSWP (ibuf,lbuf,[nbuf],[mode],[idwell],[iefn],ldelay,[iunit],[nchn],[ind])

Parameters
ibuf

Specifies a 40-word array initialized by the SETIBF routine, The first two words of the array
are the IOSB.

Ibuf

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
Ibuf must be greater than 5.

nbuf
Specifies the number of buffers to be emptied. If nbuf is 0 or is the default, indefinite
emptying occurs. The STPSWP routine terminates indefinite emptying.

mode
Specifies the start criteria.

The following values can be specified in the high-order byte of mode:
0 Immediate start. This is the default mode.

+512 External trigger. The output sampling is triggered by interrupts generated by the
DR11-K’s external control lines or its input bits if they are interrupt enabled.

+4096 Start method. If set, digital input start. If clear, immediate start. LAMSKS must
be called to specify a digital start channel and a digital start mask. The digital
start channel need not differ from the output channel (iunit).

+16384 Data overrun NONFATAL/FATAL. If selected, data overrun is considered
nonfatal. The LPA11-K fills buffer 0. (See Section 12.4 for a discussion of
buffer management.)

idwell
Specifies the number of clock overflows (pulses) between data sample sequences. For
example, if idwell is 20 and nchn is 3, the following occurs: After 20 pulses, 1 channel is
activated on each of the next 3 pulses. Then, no output takes place for the next 20 pulses.
In multirequest mode, this facility permits different output rates for the same hardware clock
rate and preset.

If compatibility with K-series support routines is desired, your task must first establish the
clock preset by calling the CLOCKA routine. You must use the default value (1) for the
idwell parameter in the sweep start command. For the K-series, this procedure sets the rate
as desired. For the LPA11-K, this procedure results in idwell in the sweep call defaulting
to 1, thus yielding the same clock rate.

Laboratory Peripheral Accelerator Driver 12-13

Note

This parameter is called iprset in the K-series support routines described in
Chapter 13. Its function is different from the idwell parameter described
here.

iefn

Specifies an event flag number (1 to 28, 30 to 96), or the name of a completion routine,
or 0. If you specify 0 or default this value, the driver uses event flag 30 for internal
synchronization. If iefn is a valid event flag, the driver sets the selected event flag as each
buffer is emptied. Note that the LPA11-K support routines reserve event flag 29 for internal
synchronization. If iefn is greater than 96, it is considered to be a completion routine
that is called with a JSR PC. Such routines must return with an RTS PC instruction (or a
FORTRAN RETURN statement).

FORTRAN completion routines must not contain any of the following:

e Any I/O through the FORTRAN run-time system

* Any use of virtual arrays

* Any use of floating-point operations

* Any errors, because error reporting is done through the FORTRAN run-time system
e Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable results.

If multiple sweeps are initiated, your task should specify different event flags. This limitation
cannot be enforced by the LPA11 driver.

Idelay

Specifies the delay from start event (DR11-K) until the first sample in irate units. A minimum
delay of 150 microseconds is required (not verified by the LPA11 driver).

iunit

Specifies the DR11-K unit number. The default is unit number 0. Values 0 to 4 are valid.

nchn

Specifies the number of channels. The LPA11-K treats each DR11-K in its configuration as
one channel. Default is one channel.

ind

12-14

Receives a success or failure code as follows:

1 Indicates that the sweep was initiated successfully.

0 Indicates an illegal argument list or SETIBF was not called prior to this call.

-1 Indicates a QIO directive failure. The directive error code is placed in IOSB(1) in IBUF.

Note

The nchn and ind parameters are not supported by the K-series support
routines. If compatibility with K-series support routines is desired, these last
two parameters must be ignored.

Laboratory Peripheral Accelerator Driver

12.3.1.8 FLT16—Convert Unsigned Integer to a Real Constant
The FLT16 routine converts an unsigned 16-bit integer to a real constant (REAL#4). It can be
invoked as a subroutine or a function.
Formats
CALL FLT16 (ival,val)

val=FLT16(ival[,val])

Parameters
ival
Specifies an unsigned 16-bit integer.

val
Specifies the converted (REAL*4) value.
12.3.1.9 IBFSTS—Get Buffer Status

The IBFSTS routine returns information on buffers being used in a sweep.

Format
CALL IBFSTS (ibuf,istat)

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.

istat
Specifies an array with as many elements as there are buffers involved in the sweep.
The maximum is eight. IBFSTS fills each element in the array with the status of the
corresponding buffer. The possible status codes are as follows:

+2 Indicates that the buffer is in the device queue. That is, RLSBUF has been called for
this buffer.

+1 Indicates that the buffer is in the task queue. That is, it is full of data (for input
sweeps) or is available to be filled (for output sweeps).

0 Indicates that the status of the buffer is unknown. That is, it is not the current buffer
nor is it in either the device or the user task queue.

-1 Indicates that the buffer is currently in use.

Laboratory Peripheral Accelerator Driver 12-15

12.3.1.10 IGTBUF—Return Buffer Number

The IGTBUF routine returns the number of the next buffer to use. This routine should be called
by your task’s completion routines to determine which is the next buffer to access. Do not use
it if an event flag was specified in the sweep-initiating call; if an event flag was specified, use
the IWTBUF routine.

IGTBUF can be invoked as a subroutine or a function.

Formats
CALL IGTBUF (ibuf,ibufno)

ibufno=IGTBUF(ibuf[,ibufno])

Parameters

ibuf
Specifies the 40-word array in the call that initiated a sweep.

ibufno
Receives the number of the next buffer to access. If there is no buffer in the queue, ibufno
contains -1.

On the return from a call to IGTBUF, the following are the possible combinations of ibufno
and I/0O status block (IOSB) contents:

ibufno IOSB(1) I0SB(2) Explanation

n 4004 (Word count) Normal buffer complete.

n 1 (Word count) Buffer complete. Sweep terminated. There may be
additional buffers in the queue filled and ready for
processing.

-1 0 0 No buffers in queue. Request still active.

-1 1 0 No buffers in queue. Sweep terminated.

-1 RSX-11M LPA11-K No buffers in queue. Sweep terminated due to

error code error code error condition. Note that the error is not returned
(decimal) (octal) until there are no more buffers in the task queue.

12.3.1.11 INXTBF—Set Next Buffer

The INXTBF routine alters the normal buffer selection algorithm. It allows your task to specify
the number of the next buffer to be filled or emptied.

INXTBF can be invoked as a subroutine or a function.

12-16 Laboratory Peripheral Accelerator Driver

Formats
CALL INXTBF (ibuf,ibufno[,ind])

ind = INXTBF(ibuf,ibufno[,ind])

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.

ibufno

Specifies the number of the next buffer your task wants filled or emptied. The buffer must
already be in the device queue.

ind
Receives an indication of the result of the operation as follows:
0 Indicates that the specified buffer was not in the device queue.

1 Indicates that the next buffer was set successfully.

12.3.1.12 IWTBUF—Wait for Buffer

The IWTBUF routine allows your task to wait for the next buffer to fill or empty. Use INTBUF
with the specification of an event flag in the sweep-initiating call. Do not use this routine if a
completion routine was specified in the call to initiate a sweep; when event flags are specified,
use the IGTBUF routine.

IWTBUF can be invoked as a subroutine or a function.

Formats
CALL IWTBUF (ibuf,[iefn],ibufno)

ibufno=IWTBUF(ibuf,[iefn],[ibufno])

Parameters

ibuf
Specifies the 40-word array in the call that initiated a sweep.

iefn
Specifies the event flag on which the task waits. This should be the same event flag as
specified in the sweep-initiating call. If you specify iefn as 0 or default this value, event
flag 30 is used.

ibufno
Receives the number of the next buffer to be filled or emptied by your task.

Laboratory Peripheral Accelerator Driver 12-17

On the return from a call to INTBUF, the following are the possible combinations of ibufno

and IOSB contents:

ibufno IOSB(1)

I0SB(2)

Explanation

n 4008

n 1

-1 1

-1 RSX-11M
error code
(decimal)

(Word count)
{(Word count)

0

LPA11-K
error code
(octal)

Normal buffer complete.

Buffer complete. Sweep terminated. There may be
additional buffers in the queue filled and ready for
processing.

No buffers in queue. Sweep terminated.

No buffers in queue. Sweep terminated due to
error condition. Note that the error is not returned
until there are no more buffers in the task queue.

12.3.1.13 LAMSKS—Set Masks Buffer

The LAMSKS routine initializes a task buffer containing a LUN, a digital start mask and event
mark mask, and channel numbers for the two masks. The routine then assigns the LUN. Each
DR11-K is considered to be one channel. Each channel has both input and output capabilities.

LAMSKS must be called if digital input starting or event marking is to be used, or if a LUN
other than the default LUN 7 is assigned to LA0. LAMSKS must also be called if your task
uses multiple LPA11-Ks. If LAMSKS is to be called, it must be called prior to calling SETIBF.
Unlike SETIBF, LAMSKS does not have to be called before each sweep initiation unless one or
more parameters are to be changed.

Format

CALL LAMSKS (lamskb,[lun},[iunit],[idsc],[iemc],[idsw],[iemw],[ind])

Parameters
lamskb

Specifies a 40-word array.

lun

Specifies a logical unit number. The default LUN is 7.

iunit

Specifies the physical unit number of the LPA11-K. The default physical unit number is

LAO.

idsc

Specifies the digital start word channel. The default is channel 0.

iemc

Specifies the event mark word channel. The default is channel 0.

idsw

Specifies the digital start word mask. The default is 0 (disable digital input starting).

12-18 Laboratory Peripheral Accelerator Driver

iemw

Specifies the event mark word mask. The default is 0 (disable event marking).
ind

Receives a success or failure code as follows:

1 Indicates successful initialization.

0 Indicates an illegal argument list.

-n Indicates a LUN assignment failure; n is the directive error code.

Note

If compatibility with K-series support routines is desired,
ignore this parameter.

For a discussion of event marking and digital starting, see the LPA11-K Laboratory Peripheral
Accelerator User's Guide.

12.3.1.14 RLSBUF—Release Data Buffer

The RLSBUF routine declares one or more buffers free for use by the interrupt service routine.

The RLSBUF routine must be called to release a buffer or buffers to the device queue before
the sweep is initiated. The device queue must always contain at least one buffer to maintain
continuous sampling. Otherwise, buffer overrun occurs (see Section 12.4 for a discussion of
buffer management). Note that RLSBUF does not verify whether the specified buffers are
already in a queue.

Format
CALL RLSBUF (ibuf,[ind],n0[,n1...,n7])

Parameters
ibuf

Specifies the 40-word array in the call that initiated a sweep.
ind

Receives a success or failure code as follows:

0 Indicates illegal buffer number specified, illegal number of buffers specified, or a double
buffer overrun has been detected.

1 Indicates the buffer or buffers successfully released.

no,n1,etc.

Specifies the numbers (0 to 7) of the buffers to be released. A maximum of eight can be
specified.

12.3.1.15 RMVBUF—Remove Buffer from Device Queue

The RMVBUF routine removes a buffer from the device queue

Laboratory Peripheral Accelerator Driver 12-19

Format
CALL RMVBUF (ibuf,n[,ind])

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.

Specifies the number of the buffer to remove.
ind
Receives a success or failure code as follows:
0 Indicates that the specified buffer was not in the device queue.

1 Indicates that the specified buffer was removed from the queue.

12.3.1.16 SETADC—Set Channel Information

The SETADC routine establishes channel start and increment information for all sweeps. The
SETIBF routine must be called to initialize the 40-word array (ibuf) before SETADC is called.

If, in the call to SETADC, nchn is 1 or inc is 0, the single channel bit is set in the mode word
of the start Request Descriptor Array (RDA) when the sweep start routine is called.

SETADC can be invoked as a subroutine or a function.

Formats
CALL SETADC (ibuf[iflag],[ichn],[nchn],[inc],[ind])

ind = ISTADC(ibuf,[iflag],{ichn],[nchn],{inc],[ind])

Parameters

ibuf
Specifies a 40-word array initialized by the SETIBF routine.

iffag
Ignored. It is included for compatibility with K-series support routines.

ichn
Specifies the first channel number. The default is 0. If inc equals 0 (or default), ichn is the
address of a random channel list. A random channel list is an array of n elements, where
each element is a channel number. The final element must have bit 15 set to indicate the
end of the list.

nchn
Specifies the number of samples to be taken per sequence. The default is one sample.

12-20 Laboratory Peripheral Accelerator Driver

inc
Specifies the channel increment. The default is 1. You should specify an increment of 2
for differential A/D input. If inc equals 0, ichn is an array of random channels to receive
input.

ind
Receives a success or failure code as follows:
0 Indicates an illegal channel number or SETIBF was not called prior to the SETADC call.

1 Indicates successful recording of channel information for the sweep call.

12.3.1.17 SETIBF—Set Array for Buffered Sweep

The SETIBF routine initializes an array required by buffered sweep routines. The SETIBF routine
must be called before every call to a buffered sweep routine.

Format
CALL SETIBF (ibuf,[ind],[lamskb],buf0[,bufl...buf7])

Parameters

ibuf
Specifies a 40-word array.

ind
Receives a success or failure code as follows:

0 Indicates a parameter or buffer error.

1 Indicates the array was initialized successfully.

lamskb
Specifies the name of a 40-word array. This array allows the use of multiple LPA11-Ks
within the same program because the LUN is specified in the first word of the array. Refer
to the description of the LAMSKS routine.

If you want compatibility with K-series software, use the default (LUN 7) lamskb parameter,
and LUN 7 is assigned to LAO in the task-build command file for your task.

buf0...buf7
Specifies the name of a buffer. A maximum of eight buffers can be specified. Any buffer
names in excess of eight are ignored. At least two buffers must be specified to maintain
continuous sampling.

Each buffer specified in the call to SETIBF is assigned a number ranging from 0 to 7.

The assignment of these numbers is based on the order in which buffer names appear in the
argument list. The first buffer whose name appears in the list is assigned number 0, the second
is assigned number 1, and so forth. In all subsequent calls to other routines involving the set
of buffers specified in a call to SETIBF, these numbers, rather than names, refer to particular
buffers.

Laboratory Peripheral Accelerator Driver 12-21

12.3.1.18 STPSWP—Stop Sweep
The STPSWP routine stops a sweep that is in progress.

Format
CALL STPSWP (ibuf|,iwhen],[ind])

Parameters
ibuf

Specifies the 40-word array in the call that initiated a sweep.
iwhen

Specifies when to stop the sweep as follows:

0 Stops the sweep and immediately aborts the sweep. This is the default stop method.
The sweep is stopped asynchronously by the LPA11-K hardware. When IOSB(1) equals
1, the sweep has been stopped. Call INTBUF continuously after calling STPSWP until
the sweep has actually been stopped. When stopping (aborting) a sweep in this
manner, the data contents of the current data buffer cannot be guaranteed.

+n (Any positive value) Stops the sweep at the end of the current buffer. This is considered
to be the normal means for stopping a sweep.

-n (Any negative value) Reserved. (Do not use.)
ind
Receives a success or failure code as follows:
1 Indicates that the sweep is stopped (at the time indicated by iwhen).
0 Indicates an illegal argument list.

-n Is a directive error code indicating that the stop sweep QIO failed.

12.3.1.19 XRATE—Compute Clock Rate and Preset

The XRATE routine allows your task to compute a clock rate and preset. The clock rate divided
by the clock preset yields the desired dwell (intersample interval).

Note

You can use the XRATE routine only on systems that have a FORTRAN or
BASIC-PLUS-2 compiler. This module is not included with the other LPA11-K
support routines in object module format. Rather, it is included in source code
format with the K-series source modules in directory [45,10] on the system disk.

XRATE can be invoked as a subroutine or a function.

Formats
CALL XRATE (dwell,irate,iprset,iflag)

adwell = XRATE(dwell,irate,iprset,iflag)

12-22 Laboratory Peripheral Accelerator Driver

Parameters

dwell

Specifies the intersample time desired by your task. The time is expressed in decimal
seconds (REAL*4).

irate
Receives the computed clock rate as a value from 1 to 5.

iprset
Receives the clock preset.

iflag
Specifies whether the computation is for Clock A or Clock B as follows:
0 Indicates the computation is for Clock A.

Nonzero Indicates the computation is for Clock B.

adwell
Specifies the actual dwell rate for the clock based on the irate and iprset parameters.
12.3.2 MACRO-11 Interface
The MACRO-11 interface to the LPA11-K consists of either the callable routines described in
Section 12.3.1 or a set of device-specific QIO functions.
12.3.2.1 Accessing Callable LPA11-K Support Routines

MACRO-11 programmers access the LPA11-K support routines through either of the following
two techniques:

* The standard subroutine linkage mechanism and the CALL operation code
® Special-purpose macros that generate an argument list and invoke a subroutine

These techniques are described in the following subsections.

12.3.2.2 Standard Subroutine Linkage and CALL Op Code

LPA11-K routines can be accessed through use of the standard subroutine linkage mechanism
and the CALL operation code. The format of this procedure is as follows:

.PSECT code
MOV #arglist,R6 ;ARGUMENT ADDRESS TO RS
CALL 1lsubr ;CALL LPA11-K ROUTINE
.PSECT data

arglist: .BYTE narg,0 ;NUMBER OF ARGUMENTS
.WORD addri ;FIRST ARGUMENT ADDRESS
.WORD addrn ;LAST ARGUMENT ADDRESS

Laboratory Peripheral Accelerator Driver 12-23

In this sample, the two program section (PSECT) directives are shown only to indicate the

noncontiguity of the code and data portions of the linkage mechanism. Within the argument

list, any argument that is to be defaulted must be represented by a -1 address (that is, 177777s).
12.3.2.3 Special-Purpose Macros

To facilitate the calling of LPA11-K support routines from a MACRO-11 program, two macros
are provided in file [45,10]LABMAC.MAC. These macros are as follows:

e INITS
e CALLS

INITS is an initialization macro. It must be invoked at the beginning of the MACRO-11 source
module.

CALLS invokes an LPA11-K support routine.

Format
CALLS Isubr, <argl,...,argn>

Parameters

Isubr
Specifies the name of an LPA11-K support routine.

argl,....argn
Specifies the arguments to be formatted into an argument list and to be passed to the
routine. Each argument can be either a symbolic name or a constant (interpreted as a
positive decimal number), or it can be defaulted.

Example

.TITLE EXAMPLE
.IDENT /01.00/

IBUF: .BLKW 40.
ISTAT: .BLKW 6
INITS ; INITIALIZATION

START:

12-24 Laboratory Peripheral Accelerator Driver

; FIND STATUS OF 5 SWEEP BUFFERS
; USED IN THE CURRENT SWEEP

CALLS IBFSTS(IBUF,ISTAT)

.END START

Ilustrates the use of special-purpose macros.

12.3.2.4 Device-Specific QIO Functions

Table 12-2 lists the device-specific functions of the QIO system directive macro that are
available for the LPA11-K. Programmers using these functions are entirely responsible for buffer
management (refer to Section 12.4) as well as all other interfaces (for example, the request
descriptor array). Little (if any) performance improvement over the use of FORTRAN support
routines can be expected by using QIOs. Therefore, you should use the routines described in
Section 12.3.1.

Table 12-2: Device-Specific QIO Functions for the LPA11-K
QIO Function Purpose

10.CLK Start clock

I0.INI Initialize LPA11-K
10.LOD Load microcode
10.5TA Start data transfer
1I0.STP Stop request

The MACRO-11 programmer must set up the appropriate Request Descriptor Array (RDA)
before the corresponding QIO request is issued. In the case of the IO.STA function (start data
transfer), the RDA is set up with buffer virtual addresses. The LPA11-K driver address checks
and relocates these buffers, changing them from single-word to doubleword addresses. The
RDA is fully described in the source code of the driver.

10.CLK—Start Clock

The I0.CLK function writes an image into the LPA11-K real-time clock control register and
issues a clock start command.

Format

QIO$C 10.CLK,..., <mode,ckesr,preset>

Laboratory Peripheral Accelerator Driver 12-25

Parameters
mode
Specifies the mode.

ckesr

Specifies the image to be written into the clock control register. To achieve the function
of clock rate -1 (see Section 12.3.1.2) for Clock A only, set a clock rate of 0 and set the
Schmitt Trigger 1 Interrupt Enable bit in the Clock A Status Register.

preset
Specifies the clock preset.
10.INI—Initialize the LPA11-K
The IO.INI function initializes the LPA11-K. The task issuing the QIO request must be privileged.

Format
QIO$C IO.INL,..., <irbuf,278.>

Parameter

irouf
Specifies a buffer containing an LPA11-K that initializes RDA. The buffer size must be at
least 2789 bytes.

10.LOD—Load Microcode

The 10.LOD function loads a buffer of LPA11-K microcode. The issuing task must be privileged.
The function verifies that there are no active tasks for the LPA11-K and resets the hardware. It
then loads and verifies the microcode, starts the LPA11-K, and enables interrupts. The function
returns to the issuing task when the Ready Interrupt message is posted.

Format

QIO$C IO.LOD,..., <mbuf,2048.>

Parameter

mbuf
Specifies a buffer containing microcode to be loaded. The buffer size must be 2048,¢ bytes.

10.STA—Start Data Transfer
The [IO.STA function issues an LPA11-K data transfer start command.

Format
QIO$C IO.STA,..., <bufptr,40.>

12-26 Laboratory Peripheral Accelerator Driver

Parameter

bufpir

Specifies a pointer to a buffer containing an LPA11-K sample start RDA. The buffer size
must be at least 40;y bytes.

The subfunction codes defined for the IO.STA function are as follows:

Bit0=0 Indicates that an asynchronous system trap (AST) is to be generated for every
buffer (if an AST is specified).

Bit0=1 Indicates that an AST is to be generated only for exception conditions.

10.STP—Stop Request

The IO.STP function stops a data transfer request. The issuing task must be the same task that
initiated the data transfer.

Format
QIO$C I0.STP,..., <userid>

Parameter

userid
Specifies the index number associated with the task whose request is to be stopped.

12.3.3 The I/O Status Block

Each active sweep must have its own I/O status block (IOSB). The IOSB is a 2-word array
allocated in your task. Use it to receive the status of a call to an LPA11-K support routine.
When your task calls a data sweep routine, the IOSB is always the first two words of the
40-word array specified as the first argument of the call. The first word of the IOSB contains
the status code, and the second word contains the buffer size in words.

Note

The LPA11-K driver does not directly use the 2-word IOSB. Instead, the driver
uses a 4-word IOSB for internal communications with support routines; this
4-word IOSB is completely transparent to those tasks that use FORTRAN
support routines. However, when issuing QIOs, it is the 4-word IOSB that
must be referenced.

The first two words of the 4-word IOSB function as a 2-word overall IOSB for
returning QIO completion status. The driver returns status such as sweep done,
system errors, and LPA11-K hardware errors with this 2-word portion of the
IOSB.

The remaining two words function as an intermediate IOSB for passing status
information during the data sweeps. MACRO-11 programs using QIO calls
always receive the correct 2-word portion of the IOSB in the AST generated by
the LPA11-K driver.

Laboratory Peripheral Accelerator Driver 12-27

The codes that can appear in the first word of an IOSB are in ISA-compatible format (with
the exception of the I/O pending condition). Table 12-3 lists all return codes (except 351; see
Section 12.5).

Table 12-3: Contents of First Word of 10SB

I10SB(1)

FORTRAN MACRO Meaning

0 IO.PND Operation pending; I/O in progress

1 IS.SUC Successful completion
301 IE.BAD Invalid arguments
302 IEIFC Invalid function code
303 [E.DNR Device not ready (See Section 12.7)
304 IE.VER Unrecoverable hardware error caused by powerfail
305 IE.ULN LUN not assigned to LPA11-K
306 IE.SPC Illegal buffer specification
309 IE.DUN Insufficient UNIBUS Mapping Registers (UMRs) available for

request

313! IE.DAO Data overrun
315! IE.ABO Request terminated; LPA11-K status code in [OSB(2)
316 IE.PRI Privilege violation
317 IE.RSU Resource in use (load microcode only)
320 IE.BLK Executive blocked driver waiting for UMRs
323 IENOD System dynamic memory exhausted
359! IE.FHE Fatal hardware error on device
366 IE.BCC LPA11-K load microcode error
397 IE.IEF Invalid event flag specified

1IOSB(Z) contains an LPA11-K status code. Refer to the LPA11-K User’s Manual for explanation of status code.

12.4 Buffer Management

The management of buffers for data transfers by LPA11-K support routines involves the use of
two FIFO (first-in/first-out) queues:

e The device queue (DVQ)
e The user task queue (USQ)

12-28 Laboratory Peripheral Accelerator Driver

The device queue (DVQ) contains the numbers of all buffers that your task has released to the
support routines in a call to RLSBUF. The buffers represented by these numbers are ready to be
filled with data (input sweeps) or to be emptied of data (output sweeps). Any buffer specified
in a call to INXTBF must already be in DVQ.

Your task queue (USQ) contains the numbers of buffers available to your task. For output
sweeps, this queue contains the numbers of buffers that have already been emptied by the
driver. For input sweeps, the buffers represented by USQ are those that are filled with data. In
both instances, your task determines the next buffer to use (that is, it extracts the first element
of USQ) by calling IGTBUF or IWTBUF.

Both the DVQ and USQ are initialized to -1—indicating no buffers—when your task calls the
SETIBF routine. Your task must call RLSBUF before initiating any sweep because at least one
buffer must be present in DVQ for the first input or output to occur.

For input sweeps, your task should call RLSBUF and specify the numbers associated with all
the buffers to be used in the sweep.

For output sweeps, your task can specify two buffers (for continuous sweeps) in the call to
RLSBUF. The first action then taken either in a completion routine or after a call to IWTBUF is
to release the next buffer. However, note that this approach does not represent true multiple
buffering because data overrun occurs if the second buffer is not released in time.

If a buffer overrun occurs, the LPA11-K normally aborts the affected sweep and returns an
appropriate error code. However, the option of having buffer overruns treated as nonfatal error
conditions can be selected by specifying the appropriate mode argument in any of the sweep
calls. Then, when a buffer overrun occurs, the LPA11-K defaults to buffer 0 for its next data
buffer. In this case, the following special considerations regarding buffer management must be
observed.

Call RLSBUF before calling any of the sweep control calls. However, if buffer overruns are
to be treated as nonfatal conditions, the task should not specify buffer 0 in the initial call to
RLSBUF. (It is assumed at the outset that buffer 0 is available for use in this manner and,
therefore, should not be released.)

Once a buffer overrun has occurred, the LPA11-K uses buffer 0 and places it on the task’s
queue just like any other data buffer. At this point, buffer 0 is no longer available for buffer
overruns. The task then removes buffer 0 from the task queue by IWTBUF or IGTBUF for
possible processing. It is the task’s responsibility to release buffer 0 for future buffer overruns
by specifying buffer 0 in a call to RLSBUF. Note that the task cannot determine that buffer
overrun occurred until it receives buffer 0 from IWTBUF or IGTBUF.

The LPA11-K always uses buffer 0 following a buffer overrun if that condition was specified
as nonfatal. Thus, when a second buffer overrun occurs before buffer 0 has been processed
and made available for that purpose, a condition called “double buffer overrun” occurs. In this
case, buffer 0 is not put on the task queue because the actual contents of buffer 0 cannot be
determined at this time, and buffer 0 may actually still be on that queue. The double buffer
overrun condition is detected when the task attempts to make buffer 0 available for future buffer
overruns with the call to RLSBUF. Note that this is the first time that the task is notified of the
condition. If a double buffer overrun condition is detected during the call to RLSBUF, the task
must be notified of the condition indicating that the previous processing of buffer 0 contents
may have been of no value (the LPA11-K probably changed the buffer’s contents while it was
being processed).

Laboratory Peripheral Accelerator Driver 12-29

12.5 Loading the LPA-11 Microcode

LAINIT is a privileged task that loads all versions of LPA11-K microcode. When called, LAINIT
issues an I0.LOD function in a QIO request, followed by IO.INI and IO.CLK function requests.
The 10.CLK function starts the clock with a default clock rate of 1 megahertz (MHz).

During system generation, Phase 1, a command file is generated with LPA11-K support
selected through operator response to system generation questions. During system generation,
Phase 2, the command file builds LAINIT by using additional information obtained through
operator response to system generation questions. This information further defines the LPA11-
K’s system environment and characteristics for your specific application.

Separate tasks are built during system generation that invoke LAINIT to load appropriate
LPA11-K microcode. These tasks are named LAINn, where n corresponds to unit number
(starting with unit number 0) for each LPA11-K unit in the system. Thus, you never directly
invoke LAINIT.

System generation generates command lines in SYSVMR.CMD that install LAINIT and LAINO;
LAIN1 and subsequent LPA11-K unit-numbered tasks are not included in the command file.
Thus, you must install these tasks (if they are required) with the Virtual Monitor Console
Routine (VMR) or the Monitor Console Routine (MCR).

Once LAINIT and LAINnR tasks have been installed, a particular version of LPA11-K microcode
for a specific unit can be loaded by running the corresponding LAINn task. For example, the
following command line executes LAIN2, loading microcode for LPA11-K unit 2:

>RUN LAIN2

When a powerfail recovery occurs, the LPA11-K driver terminates all outstanding activity and
requests execution of initiating the task or tasks (LAINn) for each unit. This provides powerfail
recovery for the LPA11-K microprocessor, provided the LAINIT and LAINn tasks are installed.
Note that when either the RSX-11M system is bootstrapped or the LPA11-K driver is loaded,
a simulated powerfail (resulting in driver powerfail recovery) occurs, loading microcode for
each LPA11-K unit. In addition, when the LPA11-K is brought on line on an RSX-11M-PLUS
system, a simulated powerfail occurs.

If the request for the initiating task (LAINn) fails or the loader fails to load the driver, the
LPA11-K unit does not become initialized. Any further attempt to use the LPA11-K fails, with
the “Device not ready” (IE.DNR) error code returned to the requesting task.

If there is no LPA-11K present at the default address, LAINx returns error code 351 in IOSB(1).
This failure occurs if there is more than one LPA-11K and the one at the default address is
removed. There must always be an LPA-11K at the default address.

All versions of LAINn set the real-time clock frequency to 1 MHz by default. The Unit Control
Block (UCB) device characteristics word 4 (U.CW4) contains a 16-bit buffer preset value that
controls the rate of ticks (that is, the rate at which the clock interrupts). This value can be set
dynamically or during system generation. The quotient resulting when this value is divided
into 1 MHz is the rate of ticks. For example, if U.CW4 contains the value 2, the tick rate is
500 kilohertz (kHz). Your task can issue a Get LUN Information system directive to examine
the preset value and the MCR command SET /BUF can modify the value while the system is
running. This modification takes effect the next time the LPA11-K is reloaded with microcode
by LAINX.

12-30 Laboratory Peripheral Accelerator Driver

12.6 Unloading the Driver

To attain maximum LPA11-K performance, the LPA11-K driver appears idle to the
RSX-11M-PLUS Executive. As a result, the potential problem exists that any privileged user
can unload the driver while the LPA11-K is servicing other users. Therefore, the privileged user
must first determine that the LPA11-K is not being used before he or she unloads the driver.

12.7 Timeout of the LPA11-K

The error code IO.DNR means that the LPA11-K timed out while processing your task request.
In dedicated mode, this condition can have special meaning.

The LPA11-K driver (LADRV) disables the timeout countdown following LPA11-K acknowledg-
ment of your task request. In all cases in multirequest mode, and in most cases in dedicated
mode, this acknowledgment is received almost immediately after your task request is passed to
the LPA11-K. The only case when this is not true is when your task requests that a data sweep
be started while in dedicated mode. In this case, the LPA11-K waits to transfer the first 256
words of data before acknowledging the sweep request.

If a task is sampling at extremely slow data rates in dedicated mode, the time to transfer the
first 256 words may exceed the timeout count for the device. This can be avoided by using the
multirequest mode.

If a task must use dedicated mode for high sampling rates, and the start of the sweep is delayed
for an extended period of time, the timeout count for the LPA11-K must be disabled. (Refer
to the note in LADRV describing this timeout problem and showing where the timeout can be
safely disabled for sweep calls.)

Note

This procedure disables the detection of real timeouts for sweep calls in dedicated
mode.

12.8 22-Bit Addressing Support

The LPA11-K driver supports 22-bit addressing on systems that have capability. When the
system employs 22-bit addressing, certain restrictions are imposed. As a result, tasks written
for use with earlier LPA11-K driver versions may not run without modifying your task. These
restrictions are discussed in the remainder of this section.

When the LPA11-K driver is executed on 22-bit systems, a certain contiguity of your task’s
data structures must be established. The task data transfer buffers and the IBUF array must
be contiguous. In addition, the task random channel list (if present) and the last data transfer
buffer must be contiguous. Thus, the correct sequence for your task data is the IBUF array,
followed by the task data transfer buffers, followed by the task random channel list. Failure to
structure your task’s data in this manner can result in illegal buffer specification errors (IE.SPC)
being returned or possible corruption of task address space by data sweeps.

Because the LPA11-K driver can potentially request more buffer space than there is UMR
mapping space, a limit must be specified on the total number of UMRs that the LPA11-K driver
can use at any time. You specify this limit during system generation, part 1, along with the
interrupt vector and control and status register (CSR) address for the LPA11-K.

Laboratory Peripheral Accelerator Driver 12-31

If a task’s UMR requirements cause the total number of UMRs currently in use by the LPA11-K
to exceed the limit specified during system generation, the task receives an “Insufficient UMRs
available for request” (IE.DUN) error code in IOSB(1) of the IBUF array.

This condition can be avoided by setting the UMR limit to the expected minimum number
required for smooth LPA11-K operation for all expected tasks. Because each UMR maps
8 kilobytes (Kb), each task’s requirements can be calculated as follows:

1. Each IBUF array requires 7659 bytes of UMR mapping.

2. Add this result to the byte length of all the contiguous transfer buffers to be used in the
sweep.

3. Add this result to the byte length of the random channel list (if it exists).

4. The number of UMRs your task needs is the total byte count divided by 8192 (8K) and
rounded up to the next 8K (if not an exact multiple of 8192).

Because there are only 31 UMRs available for the entire system, it is not desirable to allow
the LPA11-K driver (through the limit specified during system generation) to have access to
all or nearly all UMRs at any given time. Because other device drivers may also require UMR
mapping, the total allocation of UMRs by LADRV can slowly choke a system, and, for that
reason, allocation of UMRs must be carefully considered.

The UMR allocation limit for the LPA11-K can be changed by directly modifying the value in
the LPA11-K’s UCB word U.LAUB; it is not necessary to do another system generation. Use
the OPEN command to access and change the limit to the new value. Possible values can
range from 0 to 31. Then, make the required change. UNLOAD and then LOAD the LPA11-K
driver. If the LPA11-K driver is resident, the value in U.LAUB+2 must also be changed to the
new value.

Note
Be sure the LPA11-K is idle before attempting to access the UCB.

It is possible for a condition to exist where there may not be enough UMRs available for the
Executive to allocate to the driver at the time the request is made, even if the number of UMRs
necessary to map your task’s request are within the limit specified during system generation.
When this happens, the Executive blocks the driver until its UMR request can be granted.
Because this condition can introduce sweep timing errors, the current sweep is unconditionally
aborted and an appropriate error code (IE.BLK) is returned to the task in IOSB(1).

12.9 Sample Programs

The following sample program shows the basic flow for programming the LPA11-K in a high
level language.

12-32 Laboratory Peripheral Accelerator Driver

LPA11-K SAMPLE PROGRAM

SAMPLE SHOWS THE BASIC FLOW FOR PROGRAMMING THE LPA11-K IN A HIGHER
LEVEL LANGUAGE. IT IS EXPECTED THAT YOUR TASK TESTS I0SB RETURNS AND
ERROR INDICATORS (IND) AS NECESSARY. SYNCHRONOUS PROGRAM TERMINATION
IS SUGGESTED. NOTE: THIS SAMPLE PROGRAM DOES NOT EXECUTE CORRECTLY IN
22-BIT MODE

D/A DEDICATED MODE WITH CONTINUOUS SAMPLING

PROGRAM RUNS 3 LOOPS (BASED ON NCNT). ON FIRST LOOP,
STOPS SYNCHRONOUSLY AT END OF PRESENT BUFFER WHICH HAPPENS
TO BE BUFFER #3 BEING FILLED FOR THE 2ND TIME.

THE 2ND LOOP TERMINATES ASYNCHRONOUSLY (IWHEN=0).

THE 3RD LOOP TERMINATES ASYNCHRONOUSLY ALSO.

[tEsRsEsNeoNoNosENoNs NN NoNsNoNoNoNe)

DIMENSION IBUF(40),I0SB(2),NB(1024,8)
EQUIVALENCE (IBUF(1),I0SB(1))
EQUIVALENCE (NO,NB(1,1)),(N1,NB(1,2)),(N2,NB(1,3)), (N3,NB(1,4))
EQUIVALENCE (N4,NB(1,5)),(N5,NB(1,6)),(N6,NB(1,7)), (N7,NB(1,8))
CALL CLOCKA (4,-1)
IWHEN=1
NCNT=0

2 ICNT=1

5 CALL SETIBF(IBUF,IND,,NO,N1,N2,N3)

INITIALIZE BUFFERS TO ALL -2'S

aQaaQaa

DO 10 J=1,8
DO 10 K=1,1024
10 NB(K,J)=-2

CALL RLSBUF(IBUF,IND,1,2,3)
CALL DASWP(IBUF,1024,,,,20)

20 CALL IWTBUF (IBUF, 20, IBUFNO)
CALL RLSBUF (IBUF,IND,IBUFNO)
WRITE (1,300) IBUFNO,IOSB(1),I0SB(2),ICNT
IF (NCNT.EQ.3) GOTD 40
IF (ICNT.EQ.6) GOTD 2
ICNT=ICNT+1
IF (ICNT.NE.4) GOTO 20
CALL STPSWP (IBUF,IBUFNO)
IWHEN=0
NCNT=NCNT+1
GOTO 20

40 CALL IGTBUF (IBUF, IBUFNO)

WRITE (1,300) IBUFNO,IOSB(1),I0SB(2),ICNT
300 FORMAT (3X,I10,208,110)

STOP

END

Laboratory Peripheral Accelerator Driver 12-33

The following sample program tests the digital 1/O interface of the LPA11-K. It will execute
correctly in 22-bit mode.

PROGRAM TO TEST DIGITAL INPUT AND OUTPUT FOR LPA11-K
DIGITAL EQUIPMENT CORPORATION

THIS PROGRAM OUTPUTS A DATA BUFFER TO THE LPA11-K
DIGITAL I/0 INTERFACE AND AT THE SAME INSTANT, FOR EACH SAMPLE
WORD, READS THE RESULTS BACK. THE DATA BUFFERS ARE COMPARED TO
MAKE SURE THE TRANSFER IS COMPLETED SUCCESSFULLY.

sxkkkk NOTE! #kkrkk
THIS PROGRAM WORKS IF AND ONLY IF THE DIGITAL I/0 MODULE
UNIT SPECIFIED HAS THE MAINTENANCE JUMPER "WRAP-AROUND" CABLE
INSTALLED !!!!

RESERVE STORAGE FOR LPA11-K ROUTINES

THIS PROGRAM WORKS IN 22-BIT MODE

DATA BUFFERS

QOO0 a0 aaoaoaoaaqaaQaaoaaaa

INTEGER#2 IBUFI(40),INBUF(300,4)
INTEGER*2 COMMI (1240)

EQUIVALENCE (IBUFI(1),COMMI(1))
EQUIVALENCE (INBUF(1,1),COMMI(41))

INTEGER*2 IBUFO(40) ,0UTBUF (300,4)
INTEGER*2 COMMO(1240)

EQUIVALENCE (IBUFO(1) ,COMMO(1))
EQUIVALENCE(OUTBUF(1,1) ,COMMO(41))

C RESERVE STORAGE AND EQUIVALENCE FOR RSX I/0 STATUS BLOCKS
LOGICAL*1 INIOS(4),0UTIOS(4)
EQUIVALENCE (IBUFO0(1),0UTIOS(1)),(IBUFI(1),INIOS(1))

c
C SET BUFFER SIZE TO USE FOR THIS REQUEST - MAXIMUM OF 300 WITHOUT
C CHANGING THE DIMENSION STATEMENTS. MUST BE EVEN!
ISIZE=300
c
C INITIALIZE THE PASS COUNTER FOR THE LOOP
IPASS=1
c
C SET LPA11-K LOGICAL UNIT NUMBER AND ASSIGN IT TO LAO:
ILUN=7
CALL ASSIGN(ILUN,'LA:',0,ISTAT)
IF(ISTAT .LT. 0)GO TO 100
c
C INITIALIZE THE OUTPUT DATA BUFFER
D0 2 J=1.4
DO 2 I=1,ISIZE,2
QUTBUF (I,J)="125252
OUTBUF (I+1,J)="052525
2 CONTINUE

12-34 Laboratory Peripheral Accelerator Driver

STOP LPA11-K REAL TIME CLOCK "A" THIS ENSURES THAT
NOTHING HAPPENS WHEN WE INITIALIZE THE TWO SWEEPS.
CALL CLOCKA(0,0,ISTAT,ILUN)
IF(ISTAT .NE. 1)Go T0 110

e Neo¥e!

Qaoaacaa
=
~
o
(=]
=
B
=
=1
L)
[}
Q
=
=)
[
g
3
l=)
=
o
5
E
=
5
Q
=]
8
=
~
>
7]
Q
)
U
7]
2]
[~

DO 10 I=1,ISIZE
INBUF(I,J)=0
10 CONTINUE

C
C INITIALIZE DIGITAL OUTPUT SWEEP. THIS MUST BE DONE BEFORE INIT

c
C WANT TO OUTPUT BEFORE WE INPUT.
CALL SETIBF (IBUFQ, ISTAT, ,OUTBUF(1,1) +OUTBUF (1,2) , 0UTBUF (1 ,3),
1 OUTBUF(1,4))
IF(ISTAT .NE. 1)G0 To 120

RELEASE BUFFER FOR OUTPUT SWEEP

ALL FOUR BUFFERS -- INDEXES 0,1,2,3 -- ARE RELEASED
CALL RLSBUF(IBUFO,ISTAT,O,1,2,3)
IF (ISTAT .NE. 1)Go TO 130

Qaaan

QOQOOOQ
ot
S
]
1]
ol
B
E
<
3
g

. g-
o
2
g
2]
&
B
5
g
82

CALL DOSWP(IBUFD,ISIZE,4,0,1,14,30,0)

THE SAMPLING PARAMETERS
MUST BE THE SAME FOR BOTH THE INPUT AND OUTPUT SWEEP. WE WANT

occaaa
3
g
=
=
-
3
E
N
&
S
=~
o
=
a
]
=
&
=
g
g
3

CALL SETIBF(IBUFI,ISTAT.,INBUF(i,l),INBUF(1.2).INBUF(1.3).
1 INBUF(1,4))
IF(ISTAT .NE. 1)Gg T0 140

aQa

RELEASE THE INPUT BUFFERS
CALL RLSBUF(IBUFI,ISTAT.O,i,2.3)
IF(ISTAT .NE. 1)G0 Tp 150

"START DIGITAL QUTPUT SWEEP. AGAIN, NOTHING HAPPENS UNTIL

WE RESUME THE LPA11-K REAL TIME CLOCK.

EVENT FLAG 15 IS SPECIFIED TO SEPARATE THE INPUT AND QUTPUT SWEEPS.
CALL DISWP(IBUFI.ISIZE,4,0,1.15,30.0)

Qaoaaoa

Laboratory Peripheral Accelerator Driver 12-35

c

¢ NOw FOR THE BIG EVENT! WE START THE CLOCK AND SEE WHAT HAPPENS.
CALL CLOCKA(1,-150 ,ISTAT,ILUN)
IF(ISTAT .NE. 1)GO TO 150

C
C

C THE LPA11-K SHOULD NOW BEGIN TO TRANSFER DATA

C FIRST WE WAIT FOR THE DIGITAL QUTPUT SWEEP TO FINISH. IT WAS
C STARTED FIRST AND SHOULD FINISH FIRST. WE VERIFY THAT IT

C FINISHES CORRECTLY OR CHECK FOR ERRORS.

15 CALL IWTBUF(IBUFO,14,IBUFNO)

IF BUFFER NUMBER 15 0,1, OR 2, THEN CONTINUE
1F BUFFER NUMBER 1s 3, THEN FINISHED
IF (IBUFNO .LT. 0) GO TO 160

C

C IF BUFFER NUMBER IS -1, THEN ERROR
C

C

NOW WAIT FOR THE DIGITAL INPUT SWEEP TO FINISH. THE SAME ERROR
CONDITIONS APPLY.

CALL IWTBUF(IBUFI,lS,IBUFNO)

1F (IBUFNO .LT. 0)GO TO 170

1F (IBUFNO .LE. 2)G0 TO 15

e X2 K2

THE FACT THAT WE HAVE GOTTEN HERE SAYS THE LPA11-K HAS DONE ITS

aaaQ

THING.

C CHECK THE INPUT DATA BUFFERS AGAINST THE OUTPUT DATA BUFFERS
DO 20 J=1.4
Do 20 I=1,ISIZE
1F(INBUF(I,J) .NE. QUTBUF (I,J))G0 TO 180

20 CONTINUE

C
¢ SUCCESSFUL COMPLETION, LET EVERYONE KNOW. THEN GO BACK AND Do IT
C AGAIN.
WRITE(S,lOOO)IPASS
1000 FORMAT(' REQUEST COMPLETE!',ZX,I6)
TPASS=IPASS+1
GO TO 5

C

C REPORT ANY ERRORS THAT HAVE BEEN UNCOVERED IN THE EXAMPLE.
c

100 WRITE(5,1010)ISTAT

1010 FORMAT(//,' ERROR ASSIGNING LUN TO LPA11-K '.I6)

CALL EXIT
110 WRITE(5,1020) ISTAT
1020 FORMAT(//.' ERROR STOPPING LPA11-K CLOCKA ',16)

CALL EXIT
120 WRITE(5,1030) ISTAT
1030 FORMAT(//,' ERROR FROM SETIBF - OUTPUT BUFFER ',16)
CALL EXIT
130 WRITE(5.1040)ISTAT

12-36 Laboratory Peripheral Accelerator Driver

1040 FORMAT(//,' ERROR FROM RLSBUF - QUTPUT BUFFER ',I6)
CALL EXIT

140 WRITE(5,1050) ISTAT

10560 FORMAT(//,' ERROR FROM SETIBF - INPUT BUFFER ',I6)

CALL EXIT

150 WRITE(5,1060) ISTAT

1060 FORMAT(//,' ERROR FROM RLSBUF - INPUT BUFFER ',I6)
CALL EXIT

160 WRITE(5,1070) IBUFNO, (OUTIOS(I),I=1,4)
1070 FORMAT(//,' ERROR FROM DOSWP ',I2,4(3X,04))

c
C #*%* WARNING *** DISWP MIGHT STILL BE ACTIVE WHEN YOU EXIT
C

CALL EXIT
170 WRITE(5,1080) IBUFNO, (INIOS(I),I=1,4)
1080 FORMAT(//,' ERROR FROM DISWP ',I2,4(3X,04))

C
C *xx WARNING %% DOSWP MIGHT STILL BE ACTIVE WHEN YOU EXIT
C
CALL EXIT
180 WRITE(5,1090)I,J,0UTBUF(I,J),INBUF(I,J)

1090 FORMAT(//,' *DATA ERROR* - WORD # ',I4,2X,I4,4X,06,2X,08)

CALL EXIT
END

Laboratory Peripheral Accelerator Driver 12-37

Chapter 13
K-Series Peripheral Support Routines

13.1 Introduction to K-Series Peripheral Support Routines

K-series laboratory peripheral modules are supported through a set of program-callable routines
that are linked with your task at task-build time. These routines are highly modular. Therefore,
a particular task contains only that code necessary for the facilities that it actually uses.
Additionally, the support routines perform I/O operations through the Connect to Interrupt
Vector (CINT$) Executive directive. This directive allows your task to bypass normal QIO
processing and perform I/O nearly independent of the Executive.

The following subsections briefly describe the K-series laboratory peripherals, the features
provided by the K-series support routines, and the generation and use of these routines.

13.1.1 K-Series Laboratory Peripherals

The K-series peripheral support routines provide single-user, task-level support for the following
laboratory peripheral modules:

e AA11-K digital-to-analog (D/A) converter

e AD11-K analog-to-digital (A/D) converter

e AM11-K multiple gain multiplexer

* DRI11-K digital I/O interface

e KW11-K dual programmable real-time clock

e AAVI11-A D/A converter (LSI-11-bus compatible)

e ADVI11-A A/D converter (LSI-11-bus compatible)

e DRVI11 parallel line unit (LSI-11-bus compatible)

e KWVI11-A programmable real-time clock (LSI-11-bus compatible)

K-Series Peripheral Support Routines 13-1

The maximum supported hardware configuration consists of one KW11-K and 16 of each of the
AA11-K, AD11-K (with optional AM11-K), and DR11-K modules. The minimum configuration,
if synchronous sweeps are desired, would be one KW11-K and any one of the three other
modules. A single DR11-K supports nonclocked, interrupt-driven I/O sweeps or single digital
input or output. A single AD11-K supports single-word A/D input and nonclocked, overflow-
driven sampling (provided that the A/D conversion is started with the EXT start input on the
AD11-K). An AA11-K supports burst mode output and scope control.

13.1.1.1 AA11-K D/A Converter

The AA11-K includes four 12-bit digital-to-analog (D/A) converters and an associated display
control. The display control permits your task to display data in the form of a 4096 x 4096 dot
array. Under program control, a dot may be produced at any point in this array, and a series
of these dots may be programmed sequentially to produce graphic output. The display control
may output to chart or X/Y recorder or cathode-ray tube (CRT) display unit.

The AAV11-A is an LSI-11-bus-compatible D/A converter with characteristics similar to those
of the AA11-K.

13.1.1.2 AD11-K A/D Converter

The AD11-K is a 12-bit successive approximation converter that enables your task to sample
analog data at specified rates and to store the equivalent digital value for subsequent processing.
The basic subsystem consists of an input multiplexer (switch-selectable between 16-channel
single-ended or 8-channel differential), sample-and-hold circuitry, and a 12-bit A/D converter.
By changing jumpers, the analog inputs can be made bipolar or unipolar.

The ADV11-A is an LSI-11-bus-compatible D/A converter with characteristics similar to those
of the AD11-K.

13.1.1.3 AM11-K Multiple Gain Multiplexer

The AM11-K is a multiplexer expander that supplements the 16-channel, single-end (8-channel
differential) analog input multiplexer in the AD11-K. The expansion is done in three independent
groups on the AM11-K. Each group can be set to 16 single-ended or pseudo-differential or 8
differential input channels; each group can have a gain of 1, 4, 16, or 64 assigned to it by a
switch in the amplifier.

13.1.1.4 DR11-K Digital I/O Interface

The DR11-K is a general-purpose digital /O interface capable of parallel transfer of up to 16
bits of data, under program control, between a PDP-11 UNIBUS computer and an external
device (or another DR11-K).

The DRVI11 is an LSI-11-bus-compatible, general-purpose I/O interface with characteristics
similar to those of the DR11-K.

13-2 K-Series Peripheral Support Routines

13.1.1.5 KW11-K Dual Programmable Real-Time Clock
The KW11-K is a dual programmable real-time clock option that PDP-11 UNIBUS computers
use. The KWV11-A is an LSI-11-bus-compatible real-time clock with characteristics similar to
those of the KW11-K.
Clock A
Clock A features are as follows:
* A 16-bit counter
* A 16-bit programmable preset/buffer register
* Four modes of operation
* Two external inputs (Schmitt Triggers)
* Eight clock rates, program selectable
* Five clock frequencies, crystal controlled for accuracy

® Processor actions synchronized to external events

Clock B

Clock B features are as follows:

* An 8-bit counter

® An 8-bit programmable preset register
* Repeated interval mode of operation
* One external input (Schmitt Trigger)

® Seven clock rates, program selectable

* Five clock frequencies, crystal controlled for accuracy

13.1.2 Support Routine Features
The RSX-11M-PLUS program-callable K-series support routines provide the following features:
® Clock overflow or trigger-driven A/D sweep
® Clock overflow or interrupt-driven digital input sweep
* Clock overflow or interrupt-driven digital output sweep
® Clock overflow or burst mode D/A sweep
* Single digital input
* Single digital output
* Single A/D input
® Scope control

* Histogram sampling

K-Series Peripheral Support Routines 13-3

® Schmitt Trigger simulation

* Clock control

* A 16-bit software clock

* A/D input to real number conversion
e Buffer control

Immediate digital input or output can be performed at any time. Multiple clock-driven sweeps
can be initiated if this optional feature was selected during the K-series generation dialog (see
Section 13.1.3.1). Such sweeps, however, are subject to the following restrictions:

* Regardless of the number of controllers present, there can be only one active A/D sweep at
any point in time. The same restriction holds true for D/A sweeps. It is possible, however,
to perform digital input and digital output sweeps simultaneously, using the same DR11-K,
so long as this feature is selected during the generation dialog.

® There can be no conflict in clock rates among the sweeps.
® Only the first sweep can use the delay from start event.
* The interevent time data-gathering routine cannot run in parallel with any other clock-driven
sweeps.
13.1.3 Generation and Use of K-Series Routines

To use K-series support routines, you must do the following three things during system
generation:

* Reserve necessary vector space.
* Specify that the CINT$ Executive directive is to be included in the system.
* Specify that asynchronous system trap (AST) support is required.

After system generation, you must follow particular procedures for the generation of K-series
support routines and the program use of K-series routines

These two procedures are detailed in the following subsections.

13.1.3.1 Generation of K-Series Support Routines

An indirect command file, similar to those that system generation uses, generates the K-series
support routine library and other necessary facilities. You invoke this command file by entering
the following command line.

>@[200, 2001 SGNKLAB

The dialog initiated by this command determines the following:

* The device configuration of the subsystem

e The maximum number of buffers that are used on a per-sweep basis

* The inclusion or omission of optional features such as multiple clock-driven sweeps and
duplex digital I/O sweeps

13-4 K-Series Peripheral Support Routines

After this information is obtained, the command file creates the following:

1.
2.

A prefix file, [45,10]KPRE.MAC, for use during assembly of K-series support routines.

A database file, [45,10]KIODT.MAC, that contains control blocks needed to support the
devices.

A common block file, [45,10]KCOM.MAC, that allows your tasks to access the I/O page.
Use this file only on mapped systems.

On mapped systems only, two indirect command files:

a. A file, [45,24]KCOMBLD.CMD, which is a Task Builder (TKB) build file for the common
block

b. A file, [1,54]INSKCOM.CMD, that installs the common block

At your option, the K-series routines themselves can then be assembled and an object library
can be created. You can specify the name of this library or accept the following default file
specification:

LB: [1,1]KLABLIB.OLB

13.1.3.2 Program Use of K-Series Routines

The steps required for routine program use of K-series support routines are as follows:

1.

Compile or assemble the program. If the task is overlaid, you must ensure that both the
buffers used by the K-series support routines and that the support routines themselves reside
in the root section of the overlay structure.

Invoke TKB as follows:
a. On mapped systems only, use the /PR:0 switch to indicate that the task is privileged.

b. Include the following indirect command among the responses to the TKB prompt where
x is 0 for unmapped systems and 4 for mapped systems:

TKB>@[1,5x]LNK2KLAB

c. On mapped systems only, enter the following indirect command in response to the
prompt for options:

ENTER OPTIONS
©[1,54]LNK2KCOM

"
On mapped systems only, enter the following indirect command from a privileged terminal
before executing the program:

>@[1,54] INSKCOM

K-Series Peripheral Support Routines 13-5

Example

>F4P KTEST,KTEST/-SP=KTEST

>TKB

TKB>KTEST/PR:0,KTEST/-SP=KTEST, [1, 1] FAPOTS/LB
TKB>@[1,54]LNK2KLAB

TKB>/

ENTER OPTIONS

TKB>@[1,54] LNK2KCOM

TKB>// [RET]

13.2 The Program Interface

A collection of program-callable subroutines provides access to the K-series laboratory
peripherals. The formats of these calls are fully documented here for FORTRAN programs.
MACRO-11 programmers access these same subroutines either through the standard subroutine
linkage or through the use of two special-purpose macros. Both techniques are described in
Section 13.2.2. Both FORTRAN and MACRO programs must contain at least one I/O status
block (IOSB), described in Section 13.2.3, for retrieval of status information.

13.2.1 FORTRAN Interface

Table 13-1 lists the FORTRAN interface subroutines for accessing K-series laboratory peripherals.

Table 13-1: FORTRAN Subroutines for K-Series Laboratory Peripherals

Subroutine Function

ADINP Initiate single analog input

ADSWP Initiate synchronous A/D sweep
CLOCKA Set Clock A rate

CLOCKB Control Clock B

CVADF Convert A/D input to floating point
DASWP Initiate synchronous D/A sweep

DIGO Digital start event

DINP Digital input

DISWP Initiate synchronous digital input sweep
DOSWP Initiate synchronous digital output sweep
DOUT Digital output

FLT16 Convert unsigned integer to a real constant
GTHIST Gather interevent time data

13-6 K-Series Peripheral Support Routines

Table 13-1 (Cont.): FORTRAN Subroutines for K-Series Laboratory Peripherals
Subroutine Function

IBFSTS Get buffer status

ICLOKB Read 16-bit clock

IGTBUF Return buffer number

INXTBF Set next buffer

IWTBUF Wait for buffer

RCLOKB Read 16-bit clock

RLSBUF Release data buffer

RMVBUF Remove buffer from device queue
SCOPE Control scope

SETADC Set channel information
SETIBF Set array for buffered sweep
STPSWP Stop sweep

XRATE Compute clock rate and preset

The calling sequences of the routines listed in Table 13-1 are compatible with the routines for
the LPA-11, described in Chapter 12. The following subsections briefly describe the function
and format of each FORTRAN subroutine call.

13.2.1.1 ADINP—Initiate Single Analog Input
The ADINP routine obtains a single word as input from the A/D converter.

ADINP can be invoked as a subroutine or a function.

Formats
CALL ADINP ([iflag],[ichan],ival)

ival=IADINP ({iflag],{ichan],[ival])

K-Series Peripheral Support Routines 13-7

Parameters

iffag

Specifies the following gain options:

0

2
3
4
5

ichan

Absolute channel addressing (default). This is the only mode supported on the ADV11
(Q-bus).

Sample at a gain of 1. In modes 1, 2, 3, 4, and 5 each AD11-K/AMI11-K is treated as
16 channels with channels 17 to 63 strapped to gains 4, 16, and 64. The 48 multiplexer
channels are selected by the software according to the gain specification. Mode values
1, 2, 3, 4, and 5 are not supported on the ADV11 (Q-bus version).

Sample at a gain of 4.
Sample at a gain of 16.
Sample at a gain of 64.

Perform auto-gain ranging.

Selects the channel to be sampled. The default is 0.

ival

Receives the sample. The gain bits are inserted if iflag is nonzero.

13.2.1.2 ADSWP—Initiate Synchronous A/D Sweep

The ADSWP routine initiates a synchronous A/D input sweep through an AD11-K (and, if
present, the AM11-K). The analog input word placed in your task’s buffer consists of the
12 bits read from the A/D converter and (except when the mode parameter equals 0) the 2
gain bits read from the A/D status register. A value of 1777764 is returned for A/D timeout.
A value of 177777 is returned on an A/D conversion error. Such errors are typically caused
by conversions occurring too fast.

If differential input is desired, the channel increment must be set to 2 by calling the SETADC
routine. The default channel increment is 1 (single-ended input).

Format

Note
This routine expects to have the ST1 OUT from the KW11-K or similar trigger
jumped to EXT START on the AD11-K if mode 512 is desired. This also requires
the A EVENT OUT from the KW11-K clock trigger jumped to the KW overflow
on the AD11-K if clock driven sweeps are desired.

CALL ADSWP (ibuf Ibuf,[nbuf],[mode],[iprset],[iefn],[ldelay],{ichn],[nchn])

Parameters

ibuf

Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the I/O status block (I0SB).

13-8 K-Series Peripheral Support Routines

Ibuf

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
Ibuf must be greater than 0.

nbuf

Specifies the number of buffers to be filled. If nbuf is omitted or set equal to 0, indefinite
sampling occurs. The STPSWP routine terminates indefinite sampling.

mode

Specifies sampling options. The default is 0. The mode bit values in the following list that
are preceded by a plus sign (+) are independent and can be ADDed or ORed together.
Those values not preceded by a plus sign are mutually exclusive and you can use only one
such value at a time. All bit values that are not in the following list are reserved.

The following values can be specified:

0

G s LN

+256
+512

iprset

Absolute channel addressing (default). This mode allows your task to directly access
all 63 channels of an AD11-K/AM11-K combination. This is the only mode that is
LPA-11 compatible.

Sample with a gain of 1. In modes 1, 2, 3, 4, and 5 each AD11-K/AM11-K is treated
as 16 channels with channels 17 to 63 strapped to gains 4, 16, and 64. The 48
multiplexer channels are selected by the software according to the gain specification.
Mode values 1, 2, 3, 4, and 5 are not supported on the ADV11 (Q-bus version).

Gain of 4. See also mode value 1.
Gain of 16. See also mode value 1.
Gain of 64. See also mode value 1.

The driver executes auto-gain ranging to return the result with the most significance.
Note that using auto-gain ranging may require dual sampling and this impacts
performance. See also mode value 1.

The driver uses an interrupt routine that you supply. The routine must be named
ADINU and must follow the interrupt service routine coding conventions that this
subsystem uses. Refer to the source module KADIN5.MAC for an example of an
A/D interrupt routine.

External start (ST1).
Nonclock overflow sampling triggered by ST1.

Specifies the clock preset. The clock rate divided by the clock preset value yields the clock
overflow rate. You can use the XRATE subroutine to calculate a clock preset value. If you
omit the iprset argument from the ADSWP call, you must specify a mode value of +512.
Otherwise, the driver returns an error status code of 301 (invalid arguments) into the IOSB.

iefn

Specifies the event flag (1 to 96), a completion routine, or 0. If iefn is 0 or is de-
faulted, event flag 30 is used for internal synchronization. If iefn is an event flag (1 to 96),
the selected event flag is set as each buffer is filled. If iefn is greater than 96, it is considered

K-Series Peripheral Support Routines 13-9

to be a completion routine that is called with a jump to subroutine program counter (JSR
PC). Such routines must return with an RTS PC (or a FORTRAN RETURN statement).
Furthermore, FORTRAN completion routines must not do any I/O through the FORTRAN
run-time system because this may cause unpredictable results or fatal task errors.

If multiple sweeps are initiated, you should specify different event flags. Adherence to this
limitation cannot be enforced by the software.

Idelay
Specifies the delay from the start event (ST1) until the first sample in IRATE units. The
default or 0 indicates no delay.

ichn
Specifies the number of the first channel to be sampled. The default of 0 applies only if
ichn was not established in a prior call to the SETADC routine.

nchn
Specifies the number of channels to sample. The default is 1. The parameter nchn may be
set up with the SETADC routine. All nchn channels are sampled on one clock interrupt.

13.2.1.3 CLOCKA—Set Clock A Rate
The CLOCKA routine sets the rate for Clock A.

Format
CALL CLOCKA (irate,iprset,[ind],[lun])

Parameters

irate
Specifies the clock rate. One of the following must be specified:

0 Clock B overflow (not on Q-bus version) or no rate
1 1 megahertz (MHz)
2 100 kilohertz (kHz)
3 10 kHz
4 1kHz
5 100 hertz (Hz)
6 Schmitt Trigger 1
7 Line frequency
iprset

Specifies the clock preset. The clock rate divided by the clock preset value yields the clock
overflow rate. You can use the XRATE routine to calculate a clock preset value. The two’s
complement of this value is the one that you must supply.

13-10 K-Series Peripheral Support Routines

ind
Receives a success or failure code as follows:

0 Indicates illegal arguments.
1 Indicates Clock A is set to start when sweep requested.

lun

Specifies the logical unit number. The argument is ignored by the K-Series routines.
However, it is present for LPA-11 compatibility.

13.2.1.4 CLOCKB—Control Clock B

The CLOCKB routine gives you control over the KW11-K Clock B, which maintains a 16-bit
software clock. This feature is not available on LSI-11-bus versions. The 16-bit clock is
incremented once per Clock B interrupt. The maximum value of the clock is 65535.

Format

CALL CLOCKB ([irate],[iprset],[mode],[ind],[lun])

Parameters

irate

Specifies the clock rate. When irate is nonzero, the clock is set running at the selected rate
after the preset value specified by iprset is loaded. The 16-bit software clock is not altered
by starting the clock. The initial value of the 16-bit clock is 0 when the program is loaded.

When irate is 0, clock B is stopped but the 16-bit software clock is unaltered.
When irate is defaulted, the 16-bit software clock is zeroed but clock B continues to run.

The following are the acceptable values for irate:

0 Stop Clock B

1 1MHz

2 100 kHz

3 10 kHz

4 1kHz

5 100 Hz

6 Schmitt Trigger 3

7 Line frequency
iprset

Specifies the count by which to divide clock rate to yield overflow rate. You can use
overflow events to maintain the 16-bit software clock or to drive clock A, or both. The
default value is 1. The maximum practical overflow rate in interrupt mode is 10 kHz. The
range of iprset is 1 to 255. The value in iprset can be established by use of the XRATE
routine.

K-Series Peripheral Support Routines 13-11

mode
Specifies the options. Either of the following can be specified:

0 Indicates normal operations. This is the default. The 16-bit software clock is updated
on Clock B overflow. The overflow rate should not exceed 10 kHz. The software does
not check the overflow rate.

1 Indicates Clock B operates in noninterrupt mode. The 16-bit clock is not incremented
or altered. This allows a greater than 10-kHz pulse to be sent to Clock A.

ind
Receives a success or failure code as follows:
0 Indicates a failure to start Clock B.

1 Indicates Clock B started.

lun
Specifies the logical unit number. This argument is ignored by the K-series routines. It is
present for LPA-11 compatibility.

13.2.1.5 CVADF—Convert A/D Input to Floating Point

The CVADF routine converts an A/D input value to a floating-point number. The routine can
be invoked as a subroutine or a function.

Formats
CALL CVADF (ival,val)

val = CVADF(ival)

Parameters

ival
Specifies a value obtained from A/D input. Bits 12 to 15 are the gain. Bits 0 to 11 represent
the value.

val
Receives the converted value (REAL*4).

13.2.1.6 DASWP—Initiate Synchronous D/A Sweep
The DASWP routine initiates synchronous D/A output to an AA11-K.

Format
CALL DASWP (ibuf,lbuf,[nbuf],[mode] [iprset],[iefn],[Idelay],[ichn],[nchn])

13-12 K-Series Peripheral Support Routines

Parameters

ibuf

Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the 1/0 status block (IOSB).

lbuf

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
Ibuf must be greater than 0.

nbuf

Specifies the number of buffers to be emptied. If nbuf is omitted or set equal to 0, indefinite
emptying occurs. The STPSWP routine terminates indefinite emptying.

mode
Specifies the start criteria. Except where noted, the plus signs (+) preceding mode bit values
in the following list indicate that the values are independent and can be ADDed or ORed
together. All bit values that are not in the following list are reserved.

The following values can be specified:
0 Indicates immediate start. This is the default.

1 Indicates that a group of data words, whose number is specified by nchn, is preceded
by a scope control word (refer to Section 13.2.1.22 for a description of scope control
words). This bit setting is ignored if +512 is also specified. This feature is not
included in the Q-bus (AAV11) version.

The buffer size specified by lbuf must be a multiple of nchn+1 words. The DASWP
routine, however, does not enforce this restriction.

2 Sets the intensify bit after each pair of channels (nchn must be 2) have been output.
This feature is supported on the Q-bus version only. It assumes that bit 0 of DAC3
on the AAV11 is connected to the intensify input on the oscilloscope.

+256 Indicates external start (ST1).

+512 Indicates non-clock-overflow, non-interrupt-driven output (burst mode). This value
cannot be specified with either external start (+256) or a nonzero ldelay value. A
completion routine must be specified if nbuf is greater than the number of buffers
supplied or if continuous burst output is desired. If nbuf equals -1, burst mode
must be stopped by calling STPSWP from the completion routine.

iprset

Specifies the clock preset. The clock rate divided by the clock preset value yields the clock
overflow rate. You can use the XRATE subroutine to calculate a clock preset value.

If the iprset parameter is omitted, you must specify a mode value of +512. Otherwise, an
error status code of 301 (invalid arguments) is returned into the IOSB.

iefn
Specifies an event flag number (from 1 to 96), a completion routine, or 0. If you use 0 or
default this value, the driver uses event flag 30 for internal synchronization. If iefn is an
event flag from 1 to 96, the driver sets the selected event flag as each buffer is emptied.
If iefn is greater than 96, the driver considers it a completion routine and calls it with a

K-Series Peripheral Support Routines 13-13

JSR PC. Such routines must return with an RTS PC instruction (or a FORTRAN RETURN
statement). Furthermore, FORTRAN completion routines must not perform I/O through
the FORTRAN run-time system because this may cause unpredictable results or fatal task
errors.

If multiple sweeps are initiated, you should specify different event flags. This limitation
cannot be enforced by the software.

Idelay
Specifies the delay from start event (ST1) until the first sample in irate units. The default
or 0 indicates no delay.

ichn
Specifies the first channel number. The default is 0.

nchn
Specifies the number of channels. The default is 1. When nchn equals 2 and mode does
not contain +1, the size of data buffers specified in lbuf must be an even number. The
software does not check this requirement.

13.2.1.7 DIGO—Digital Start Event
The DIGO routine allows you to specify the digital input bits that, when set, cause the simulation
of an external start event and the start of a pending sweep.
Format
CALL DIGO ([iunit],[mask],[kount])

Parameters
iunit
Specifies the DR11-K unit number. The default is 0.
mask
Specifies a logical mask that specifies one or more start bits. If zero, a pending digital start

event request is immediately canceled. If mask is defaulted, an ST1 event is immediately
simulated and the current value of the 16-bit software clock is returned, if kount is specified.

kount
Receives the current value of the 16-bit software clock when the defaulting of mask causes
the simulation of an ST1 event.

13.2.1.8 DINP—Digital Input

The DINP routine inputs a single 16-bit word from a DR11-K. Bits read as a 1, can be masked
with a 1, which causes the clearing of the bit in the DR11-K input buffer.

During the K-series routines generation dialog, it is possible to select one of the following two
versions of the DINP routine:

e A slow version containing all functions described in the following sections

e A fast version that omits the functions provided by the mask, iosb, and input arguments

13-14 K-Series Peripheral Support Routines

The fast version of DINP can be invoked as a function (IDINP) only. The slow version of DINP
can be invoked as a subroutine or a function.
Formats

CALL DINP ([iunit],[mask],iosb,input)

ind = IDINP(iunit,[mask],iosb,[input])

Parameters

iunit
Specifies the DR11-K unit number. This argument is required for the fast version of DINP.
For the slow version, the default is 0.

mask

Specifies the bit mask that specifies which input bits are cleared in the digital input register.
The default is 177777;, which indicates all bits are cleared.

iosb
Specifies a 2-word 1/0 status block array (see Section 13.2.3).

input
Receives the data input from the DR11-K.
ind
Receives the data input from the DR11-K if DINP is invoked as a function.
13.2.1.9 DISWP—Initiate Synchronous Digital Input Sweep
The DISWP routine initiates a synchronous digital input sweep through a DR11-K.

Format
CALL DISWP (ibuf Ibuf,[nbuf],[mode],[iprset] [iefn],[Idelay],[iunit])

Parameters

ibuf
Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the IOSB.

Ibuf

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
Ibuf must be greater than 0.

nbuf

Specifies the number of buffers to be filled. If nbuf is 0 or is defaulted, indefinite sampling
occurs. The STPSWP routine terminates indefinite sampling.

K-Series Peripheral Support Routines 13-15

mode
Specifies the sampling options. The default is 0. The plus signs (+) preceding the mode bit
values in the following list indicate that the values are independent and can be added or
ORed together.

The following values can be specified:

0 Single-word sample, immediate start. This is the default mode.

+256 External start (ST1).

+512 Nonclock overflow interrupt-driven input. External start and delay are illegal.

+1024 Time-stamped sampling. The doubleword consists of one data word followed by
the value of the 16-bit software clock at the time of the sample. This option is not
available if you are not using the KW11-K clock (for example, on the Q-bus).

iprset
Specifies the clock preset. The clock rate divided by the clock preset value yields the clock
overflow rate. You can use the XRATE subroutine to calculate a clock preset value.

If the iprset argument is omitted, you must specify a mode value of +512. Otherwise, an
error status code of 301 (invalid arguments) is returned to the IOSB.

iefn

Specifies an event flag number (from 1 to 96), or a completion routine, or 0. If you use 0
or default this value, the driver uses event flag 30 for internal synchronization. If you use
iefn as an event flag from 1 to 96, the driver sets the selected event flag as each bulffer is
filled. If iefn is greater than 96, the driver considers the iefn a completion routine and calls
it with a JSR PC. Such routines must return with an RTS PC instruction (or a FORTRAN
RETURN statement). Furthermore, FORTRAN completion routines must not perform 1/0
through the FORTRAN run-time system because this may cause unpredictable results or
fatal task errors.

If multiple sweeps are initiated, you should specify different event flags. This limitation
cannot be enforced by the software.

idelay
Specifies the delay from start event (ST1) until the first sample in irate units. The default
or 0 indicates no delay.

iunit
Specifies the DR11-K unit number. The default is 0.

13.2.1.10 DOSWP—Initiate Synchronous Digital Output Sweep
The DOSWP routine initiates a synchronous digital output sweep through a DR11-K.

Format
CALL DOSWP (ibuf,Ibuf,[nbuf],[mode],[iprset][iefn] [Idelay],[iunit])

13-16 K-Series Peripheral Support Routines

Parameters
ibuf

Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the IOSB.

Ibuf

Specifies the size, in words, of each data buffer. All data buffers must be equal in size, and
Ibuf must be greater than 0.

nbuf

Specifies the number of buffers to be emptied. If nbuf is 0 or is defaulted, indefinite
emptying occurs. The STPSWP routine terminates indefinite emptying.

mode
Specifies the start criteria. The default is 0.

The following values can be specified in the high-order byte of mode:
0 Immediate start. This is the default.
+256 External event start (ST1).

+512 Nonclock overflow, interrupt-driven output. External start and delay are illegal.

iprset
Specifies the clock preset. The clock rate divided by the clock preset value yields the clock
overflow rate. You can use the XRATE subroutine to calculate a clock preset value.

If the iprset argument is omitted, you must specify a mode value of +512. Otherwise, an
error status code of 301 (invalid arguments) is returned into the IOSB.

iefn

Specifies an event flag number (from 1 to 96), a completion routine, or 0. If you use 0 or
default this value, the driver uses event flag 30 for internal synchronization. If iefn is an
event flag from 1 to 96, the driver sets the selected event flag as each buffer is emptied.
If iefn is greater than 96, the driver considers it a completion routine and calls it with a
JSR PC. Such routines must return with an RTS PC instruction (or a FORTRAN RETURN
statement). Furthermore, FORTRAN completion routines must not perform I/O through
the FORTRAN run-time system because this may cause unpredictable results or fatal task
errors.

If multiple sweeps are initiated, you should specify different event flags. This limitation
cannot be enforced by the software.

Idelay
Specifies the delay from start event (ST1) until the first sample in irate units. The default
or 0 indicates no delay.

iunit
Specifies the DR11-K unit number. The default is 0.

K-Series Peripheral Support Routines 13-17

13.2.1.11 DOUT—Digital Output

The DOUT routine outputs a single 16-bit word to a DR11-K. Only those bits in the output
word specified by corresponding bits in a mask field are altered.

During the K-series routines generation dialog, it is possible to select one of the following two
versions of the DOUT routine:

* A slow version containing all functions described in the following sections
* A fast version that omits the functions provided by the mask and iosb arguments
The slow version of DOUT can be invoked as a subroutine or a function. The fast version of
DOUT can be invoked as a subroutine only.
Formats
CALL DOUT ([iunit],[mask],iosb,idata)

iout = IDOUT([iunit],{mask]},iosb,idata)

Parameters

iunit
Specifies the DR11-K unit number. The default is 0.

mask
Selects which bits can be altered. The default is 1777773, indicating all bits.

losb
Specifies a 2-word 1/O status block (see Section 13.2.3).

idata
Specifies the 16-bit output value for the DR11-K. A 1 sets a corresponding bit. A 0 clears
the corresponding bit.

iout
Receives a copy of the DR11-K output register after it has been altered.

13.2.1.12 FLT16—Convert Unsighed Integer to a Real Constant

The FLT16 routine converts an unsigned 16-bit integer to a real constant (REAL*4). It can be
invoked as a subroutine or a function.

Formats
CALL FLT16 (ival,val)

val = FLT16(ival[,val])

13-18 K-Series Peripheral Support Routines

Parameters

ival
Specifies an unsigned 16-bit integer.

val
Specifies the converted (REAL*4) value.

13.2.1.13 GTHIST—Gather Interevent Time Data

The GTHIST routine initiates sampling to measure the elapsed time between events. The value
of the Clock A buffer/preset register at the time of ST2 firing is stored in a task buffer that you
provide.

GTHIST is an optional facility that must be explicitly selected during the K-series generation
dialog prior to its use in any program.

Format
CALL GTHIST (ibuf,lbuf [nbuf],[mode],[iprset],[iefn],[kount])

Parameters

ibuf

Specifies a 40-word array initialized by the SETIBF routine. The first two words of the array
are the I/O status block (IOSB).

ibut

Specifies the size, in words, of each data buffer. All data buffers must be equal in size and
Ibuf must be greater than 0.

nbuf

Specifies the number of buffers to be filled. If nbuf is 0 or is defaulted, indefinite sampling
occurs. The STPSWP routine terminates indefinite sampling.

mode
Specifies the following sampling options:

0 Indicates external event timing without zero base. This is the default.

1 Indicates external event timing with zero base. This is the only mode supported for the
KWV11.

iprset
Specifies a null argument. This parameter is present only to maintain compatibility with
other sweep routine calling sequences.

iefn
Specifies an event flag number (from 1 to 96), a completion routine, or 0. If you use 0
or default this value, the driver uses event flag 30 for internal synchronization. If iefn is
an event flag from 1 to 96, the driver sets the selected event flag as each buffer is filled.
If iefn is greater than 96, the driver considers it a completion routine and calls it with a
JSR PC. Such routines must return with an RTS PC instruction (or a FORTRAN RETURN

K-Series Peripheral Support Routines 13-19

statement). Furthermore, FORTRAN completion routines must not perform I/O through
the FORTRAN run-time system because this may cause unpredictable results or fatal task
errors.

If multiple sweeps are initiated, you should specify different event flags. This limitation
cannot be enforced by the software.

kount
Specifies a counter used by GTHIST, as described in the following paragraphs.

To take Post-Stimulus Time data, set mode to 0. ST1 signals the occurrence of a stimulus
and starts the clock (that is, no data is taken until the first ST1 occurs). Each response is
signaled by ST2, and the buffer/preset register contents are placed in your task’s buffer.
Each ST1 resets the counter register to 0, and increments kount by 1. Thus, kount keeps
track of the number of stimuli (ST1 events). Clock overflow stops the clock. The clock
waits for the next ST1 event before restarting. The maximum stimulus-response interval is
a function of the clock rate.

To obtain Inter-Stimulus-Interval data, set mode to 1. The time between successive events,
as signaled by ST2, is recorded. The maximum interevent time is a function of the clock
rate. When clock overflow occurs, the value returned on the next ST2 firing is 1777773 and
kount is incremented. Thus, kount represents the number of times the maximum interevent
time was exceeded. In general, the user should ignore values of 177777.

13.2.1.14 IBFSTS—Get Buffer Status

The IBFSTS routine returns information on buffers that the driver is using in a sweep.

Format
CALL IBFSTS (ibuf,istat)

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.

istat
Specifies an array with as many elements as there are buffers involved in the sweep.
The maximum is eight. IBFSTS fills each element in the array with the status of the
corresponding buffer. The possible status codes are as follows:

+2 Indicates that the buffer is in the device queue. That is, it is waiting to be filled or
emptied.

+1 Indicates that the buffer is in the task queue. That is, it is full of data (for input
sweeps) or is waiting to be filled (for output sweeps).

0 Indicates that the status of the buffer is unknown. That is, it is not the current buffer
nor is it in either the device or the user task queue.

-1 Indicates that a service routine is currently using the buffer.

13-20 K-Series Peripheral Support Routines

13.2.1.15 ICLOKB—Read 16-Bit Clock

The ICLOKB function returns the contents of the 16-bit software clock as an integer value to
your task.

Format
CALL itim = ICLOKB(0)

Parameter
itim
Receives the current value of the 16-bit software clock as an unsigned integer.

Note

MACRO-11 programmers need not establish an argument block for the ICLOKB
function. The current value of the software clock is returned in RO.

13.2.1.16 IGTBUF—Return Buffer Number

The IGTBUF routine returns the number of the next buffer to use. This routine should be called
by your task’s completion routines to determine the next buffer to access. Do not use it if an
event flag was specified in the sweep-initiating call. Rather, use the INTBUF routine with event
flags.

IGTBUF can be invoked as a subroutine or a function.

Formats
CALL IGTBUF (ibuf,ibufno)

ibufno = IGTBUF(ibuf[,ibufno})

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.

ibufno

Receives the number of the next buffer to access. If there is no buffer in the queue, ibufno
contains -1.

13.2.1.17 INXTBF—Set Next Buffer

The INXTBF routine alters the normal buffer selection algorithm. It allows your task to specify
the number of the next buffer to be filled or emptied.

INXTBF can be invoked as a subroutine or a function.

K-Series Peripheral Support Routines 13-21

Formats
CALL INXTBF (ibuf,ibufnol,ind])

ind = INXTBE(ibuf,ibufno[,ind])

Parameters
ibuf
Specifies the 40-word array specified in the call that initiated a sweep.

ibufno
Specifies the number of the next buffer that the task wants filled or emptied. The buffer
must already be in the device queue.

ind
Receives an indication of the result of the operation as follows:
0 Indicates that the specified buffer was already active or was not in the device queue.

1 Indicates that the next buffer was set successfully.

13.2.1.18 IWTBUF—Wait for Buffer

The IWTBUF routine allows your task to wait for the next buffer to fill or empty. Use it with
an event flag specified in in the sweep-initiating call. Do not use this routine if you specified
a completion routine in the call to initiate a sweep. Rather, use the IGTBUF routine with
completion routines.

IWTBUF can be invoked as a subroutine or a function.

Formats
CALL IWTBUF (ibuf,[iefn],ibufno)

ibufno = IWTBUF(ibuf,[iefn][ibufno))

Parameters

ibuf
Specifies the 40-word array in the call that initiated a sweep.

iefn
Specifies the event flag for which the task waits. This should be the same event flag as that
specified in the sweep-initiating call. If iefn equals 0 or is defaulted, the driver uses event
flag 30.

ibufno
Receives the number of the next buffer to be filled or emptied by your task.

13-22 K-Series Peripheral Support Routines

13.2.1.19 RCLOKB—Read 16-Bit Clock

The RCLOKB routine returns to your task the contents of the 16-bit software clock as a real
constant.

RCLOKB can be invoked as a subroutine or a function.

Formats
CALL RCLOKSB (rlast,time)

time=RCLOKB(rlast,time)

Parameters
time
Receives the current value of the 16-bit software clock as a real constant (REAL*4).

rlast
Specifies a value (REAL*4) to be subtracted from the current 16-bit software clock before it

is returned into the time field.
13.2.1.20 RLSBUF—Release Data Buffer
The RLSBUF routine declares one or more buffers free for use by the interrupt service routine.

The RLSBUF routine must be called to the release buffer or buffers to the device queue before
the sweep is initiated. The device queue must always contain at least one buffer to maintain
continuous sampling. Otherwise, buffer overrun occurs (see Section 13.3 for a discussion of
buffer management). Note that RLSBUF does not verify whether the specified buffers are
already in a queue.

Format

CALL RLSBUF (ibuf,ind,n0[,nl...,n7])

Parameters
ibuf

Specifies the 40-word array in the call that initiated a sweep.
ind

Receives a success or failure code as follows:

0 Indicates illegal buffer number specified.

1 Indicates buffer or buffers successfully released.

no,nl,....n7
Specifies the numbers of buffers to be released. A maximum of eight can be specified.

K-Series Peripheral Support Routines 13-23

13.2.1.21 RMVBUF—Remove Buffer from Device Queue

The RMVBUF routine removes a buffer from the device queue.

Format
CALL RMVBUF (ibuf,n[,ind])

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.

Specifies the number of the buffer to remove.
ind
Receives a success or failure code as follows:
0 Indicates that the specified buffer was not in the device queue.

1 Indicates that the specified buffer was removed from the queue.

13.2.1.22 SCOPE—Control Scope
The SCOPE routine allows you to control the status register of an AA11-K

Format
CALL SCOPE (iunit,icntrl,iosb)

Parameters
iunit

Specifies the AA11-K unit number.
icntrl

Specifies a combination of bit values as shown in Table 13-2. Any bits not listed in this
table are cleared before output to the AA11-K status register

iosb
Specifies a 2-word 1/O status block (see Section 13.2.3).

Table 13-2: Scope Control Word Values
Decimal Value Octal Value Function

4096 10000 Erase storage CRT
2048 4000 Set write-through mode
1024 2000 Set store mode
512 1000 A digital signal available in the AA11-K.

13-24 K-Series Peripheral Support Routines

Table 13-2 (Cont.): Scope Control Word Values
Decimal Value Octal Value Function

12 14 Intensify on X or Y
8 10 Intensify on Y
4 4 Intensify on X
2 2 Fast intensify enable
1 Intensify pulse

The values in Table 13-2 also create scope control words for calls to the DASWP routine with
a mode value of 1.

13.2.1.23 SETADC—Set Channel Information

The SETADC routine establishes channel start and increment information for an A/D sweep.

SETADC can be invoked as a subroutine or a function as follows:

Format
CALL SETADC (ibuf,[iflag],[ichn],[nchn],[inc],[ind])

Format
ind=ISTADC (ibuf [iflag],[ichn],[nchn],[inc],[ind]) 1

Parameters

ibuf
Specifies a 40-word array initialized by the SETIBF routine.

ifiag
Equals zero if you want absolute addressing and equals nonzero for programmable gain
addressing. The default is 0.

ichn
Specifies the first channel number. The default is 0.

nchn
Specifies the number of samples to be taken per interrupt. The default is 1.

inc ‘
Specifies the channel increment. The default is 1. You should specify an increment of 2 for
differential A/D input.

K-Series Peripheral Support Routines 13-25

ind
Receives a success or failure code as follows:

0 Indicates an illegal channel number.

1 Indicates successful recording of channel information for an A/D sweep.

13.2.1.24 SETIBF—Set Array for Buffered Sweep

The SETIBF routine initializes an array required by buffered sweep routines.

Format
CALL SETIBF (ibuf,[ind],[lamskb],bufO[buf1...buf7])

Parameters
ibuf
Specifies a 40-word array.

ind
Receives a success or failure code as follows:

0 Indicates an illegal number of buffers was specified. SETIBF initializes the array
according to the maximum number of buffers allowed. You specify this maximum
number of buffers during the K-series system generation dialog.

1 Indicates the array was initialized successfully.
lamskb

Specifies a 4-word array. It is present for compatibility with LPA-11 routines, but it is
ignored by K-series software.

bufo,...,buf7
Specifies the name of a buffer. A maximum of eight buffers can be specified. Any buffer
names in excess of eight are ignored. At least two buffers must be specified to maintain
continuous sampling.

Each buffer specified in the call to SETIBF is assigned a number from 0 to 7.

The assignment of these numbers is based on the order in which buffer names appear in
the argument list. The first buffer whose name appears in the list is assigned number 0, the
second is assigned number 1, and so forth. In all subsequent calls to other K-series routines
involving the set of buffers specified in a call to SETIBF, these numbers, rather than names,
refer to particular buffers.

13.2.1.25 STPSWP—Stop Sweep
The STPSWP routine allows your task to stop a sweep that is in progress.

Format
CALL STPSWP (ibuf]iwhen][ind])

13-26 K-Series Peripheral Support Routines

Parameters
ibuf
Specifies the 40-word array in the call that initiated a sweep.
iwhen
Specifies when to stop the sweep as follows:
0 Indicates the next sample. This is the default.
+n Indicates the end of the current buffer. (Any positive value)
-n Reserved. (Any negative value)
ind
Receives a success or failure code as follows:

0 Indicates that the sweep was not active or no sweep could be found that was associated
with the specified ibuf.

1 Indicates that the sweep is stopped (at the time indicated by iwhen).

13.2.1.26 XRATE—Compute Clock Rate and Preset

The XRATE routine computes an appropriate clock rate and preset that achieves a desired dwell
(intersample interval).

Note

You can use the XRATE routine only on systems that have a FORTRAN or
BASIC-PLUS-2 compiler.

XRATE can be invoked as a subroutine or a function as follows:

Format
CALL XRATE (dwell,irate,iprset,iflag)

Format
adwell=XRATE (dwell irate,iprset,iflag) 1
Parameters

dwell

Specifies the intersample time that you want. The time is expressed in decimal seconds
(REAL=*4).

irate
Receives the computed clock rate as a value from 1 to 5.

iprset
Receives the clock preset.

K-Series Peripheral Support Routines 13-27

iffag
Specifies whether the computation is for Clock A or Clock B as follows:
0 Indicates the computation is for Clock A.
Nonzero Indicates the computation is for Clock B.
adwell
Specifies the actual dwell rate for the clock based on the irate and iprset parameters.
13.2.2 MACRO-11 Interface

MACRO-11 programmers access the K-series support routines described in Section 13.2.1
through either of the following two techniques:

e The standard subroutine linkage mechanism and the CALL op code
e Special-purpose macros that generate an argument list and invoke a subroutine

These techniques are described in the following subsections.

13.2.2.1 Standard Subroutine Linkage and CALL Op Code

K-series routines can be accessed through use of the standard subroutine linkage mechanism
and the CALL op code. The format of this procedure is as follows:

.PSECT code
MOV #arglist,Rb ; ARGUMENT ADDRESS TO R5
CALL ksubr ;CALL K-SERIES ROUTINE
.PSECT data

arglist: .BYTE narg,0 ;NUMBER OF ARGUMENTS
.WORD addri ;FIRST ARGUMENT ADDRESS
.WORD addrn ;LAST ARGUMENT ADDRESS

In this sample, the two PSECT directives are shown only to indicate the noncontiguity of the
code and data portions of the linkage mechanism. Within the argument list, any argument that
is to be defaulted must be represented by a -1 (that is, 177777g).

13.2.2.2 Special-Purpose Macros

To facilitate the calling of K-series support routines from a MACRO-11 program, two macros
are provided in file [45,10]LABMAC.MAC. These macros are as follows:

INITS Specifies INITS is an initialization macro. It should be invoked at the beginning of
the MACRO-11 source module.

CALLS Invokes a K-series support routine.

Format

CALLS ksubr,ARGI,...,ARGN

13-28 K-Series Peripheral Support Routines

Parameters
ksubr
Specifies the name of a K-series support routine.

argl,...,argn
Specifies arguments to be formatted into an argument list and to be passed to the routine.
Each argument can be either a symbolic name or a constant (interpreted as a positive
decimal number), or the argument can be defaulted.

13.2.3 The I/0O Status Block

Each active sweep must have its own 1/O status block (IOSB). The IOSB is a 2-word array
allocated in your task. It receives the status of a call to a K-series support routine. When a data
sweep routine is called, the IOSB is always the first two words of the 40-word array specified as
the first argument of the call. The first word of the IOSB contains the status code. The second
word contains the buffer size in words.

The codes that can appear in the first word of an IOSB are in ISA-compatible format (with the
exception of the I/O pending condition). Table 13-3 lists all return codes.

Table 13-3: Contents of First Word of I0OSB
IOSB Word 1 Meaning

0 Operation pending; I/O in progress
1 Successful completion
301 Invalid arguments
305 Hardware or software option not present
306 Illegal buffer specification
313 Data overrun
315 Request terminated
317 Resource in use
397 Invalid event flag

13.3 Buffer Management

The management of buffers for data sweeps by K-series support routines involves the use of
the following two FIFO (first-in/first-out) queues:

* The device queue (DVQ)
® The user task queue (USQ)

K-Series Peripheral Support Routines 13-29

The device queue (DVQ) contains the numbers of all buffers that your task has released to the
support routines in a call to RLSBUF. The buffers represented by these numbers are ready to be
filled with data (input sweeps) or to be emptied of data (output sweeps). Any buffer specified
in a call to INXTBF must already be in DVQ.

The user task queue (USQ) contains the numbers of buffers available to your task. For output
sweeps, this queue contains the numbers of buffers that have already been emptied by the
driver. For input sweeps, the buffers represented by USQ are those buffers that are filled with
data. In both instances, your task determines the next buffer to use (that is, extracts the first
element of USQ) by calling IGTBUF or IWTBUF.

Both the DVQ and USQ are initialized to -1, indicating no buffers, when your task calls the
SETIBF routine. The task must call RLSBUF before initiating any sweep because at least one
buffer must be present in DVQ for the first input or output to occur.

For input sweeps, the best strategy is to call RLSBUF and specify the numbers associated with
all the buffers to be used in the sweep.

For output sweeps, one approach is to specify two buffers (for continuous sweeps) in the call
to RLSBUF. The first action then taken either in a completion routine or after a call to IWTBUF
would be to release the next buffer. Note, however, that this approach does not represent true
multiple buffering because data overrun occurs if the second buffer is not released in time.

13.4 Sample FORTRAN Programs

Two sample FORTRAN programs showing the use of K-series support routines are presented
in this section. The first program uses event flags for internal synchronization. The second
program demonstrates the use of a completion routine that you supply for synchronization.

Note
FORTRAN completion routines must not contain any of the following:

* Any I/O through the FORTRAN run-time system
® Any use of virtual arrays
* Any use of floating-point operations

® Any errors (error reporting is done through the FORTRAN run-time
system)

* Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable results.

13-30 K-Series Peripheral Support Routines

13.4.1 Sample Program Using Event Flag

The following example illustrates the use of an event flag within a program.

Qaa

aaoaaoaaan aaoaaa aaoaon aQaaQ aQaaaQ

aaoaaoaaa

IMPLICIT INTEGER (A-Z)
DIMENSION BUF(1024,8), IBUF (40), I0OSB(2)
EQUIVALENCE (IBUF(1),I0SB(1))

INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP

CALL SETIBF (IBUF,IND, , BUF(1,1), BUF(1,2), BUF(1,3),
* BUF(1,4), BUF(1,5), BUF(1,6), BUF(1,7), BUF(1,8))
WRITE (1, 900)

READ (1, 910) IRATE, IPRSET

SET THE CLOCK RATE AND PRESET FOR THE SWEEP

CALL CLOCKA (IRATE, IPRSET,IND)

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE
ROUTINE

CALL RLSBUF (IBUF,IND, 0,1,2,3,4,5,6,7)

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE
FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL (0).

CALL ADSWP (IBUF, 1024, -1, 256, IPRSET,
* 30, 0, 0, 1)

HERE WE COULD CHECK THE I/0 STATUS BLOCK TO ENSURE
THAT THE SWEEP IS ACTUALLY RUNNING.

IBFCNT=0

THIS IS THE TOP OF THE DATA PROCESSING LOOP. WE
WAIT FOR A BUFFER TO BE COMPLETED, AND THEN DUMP
THE FIRST 100 WORDS OF THE BUFFER TO LUN 1.

IBUFNO = IWTBUF (IBUF, 30)+1

IWTBUF RETURNS A POSITIVE BUFFER NUMBER
AS LONG AS THERE IS A BUFFER OF DATA AVAILABLE.
IF IND IS -1, WE PROBABLY HAD DATA OVERRUN, SO STOP.

IF (IBUFNO .EQ. O) STOP
IBFCNT=IBFCNT+1

WRITE (1,920) IBFCNT

WRITE (1,930) (BUF(I,IBUFNO), I=1,100)

K-Seties Peripheral Support Routines

13-31

RELEASE BUFFER FOR SERVICE ROUTINE TO REFILL

QaQ

CALL RLSBUF (IBUF,IND,IBUFNO-1)

GOTO 10
900 FORMAT (' ENTER IRATE, IPRSET:', $)
910 FORMAT (I, 0)
920 FORMAT (' DUMP OF BUFFER NUMBER ',I5,/)
930 FORMAT (1X,1007)

END

13.4.2 Sample Program Using Completion Routine

The following example illustrates the use of a completion routine in a program.

IMPLICIT INTEGER (A-Z)
EXTERNAL AST

DIMENSION BUF(1024,8), IBUF (40), IOSB(2)
COMMON /KDATA/ BUF, IBUF, IBFCNT
EQUIVALENCE (IBUF (1),I0SB(1))

C
C INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP
Cc
CALL SETIBF (IBUF,IND, , BUF(1,1), BUF(1,2), BUF(1,3),
* BUF(1,4), BUF(1,5), BUF(1,8), BUF(1,7), BUF(1,8))
WRITE (1, 900)
READ (1, 910) IRATE, IPRSET
c
c SET THE CLOCK RATE AND PRESET FOR THE SWEEP
C
CALL CLOCKA (IRATE, IPRSET,IND)
c
C THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE
c ROUTINE
c
CALL RLSBUF (IBUF,IND, O, 1, 2, 3, 4, 5, 6, 7)
C
c START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE
c FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL (0).
C

IBFCNT = 0
CALL ADSWP (IBUF, 1024, O, 256, IPRSET
* AST, 0, 0, 1)

13-32 K-Series Peripheral Support Routines

Qaaoaaa

aaaa

900
910

aQaaoaaoaaaan

20

aQaaoaQa

HERE WE COULD CHECK THE I/0 STATUS BLOCK TO ENSURE
THAT THE SWEEP IS ACTUALLY RUNNING.

CALL WAITFR (23)

WHEN EVENT FLAG 23 IS SET THE SWEEP IS COMPLETED.
WE MAY EXIT NOW.

STOP

FORMAT (' ENTER IRATE, IPRSET:', $)
FORMAT (I, 0)

END

SUBROUTINE AST

THIS SUBROUTINE IS CALLED AT AST LEVEL WHENEVER
A BUFFER IS COMPLETED. THIS ROUTINE PROCESSES
THE CONTENTS OF THE BUFFER AND THEN RELEASES
IT FOR THE SERVICE ROUTINE. IF THE SWEEP IS TO
TERMINATE (IOSB NON-ZERQ) THEN EVENT FLAG 23. IS
SET TO INDICATE TO THE MAINLINE CODE THAT WE ARE
DONE.

IMPLICIT INTEGER (A-Z)

DIMENSION BUF(1024,8), IBUF(40), I0OSB(2)

COMMON /KDATA/ BUF, IBUF, IBFCNT

EQUIVALENCE (IBUF(1),IO0SB(1))

IBUFNO = IGTBUF (IBUF) +1

IF (IBUFNO-1) .GE. O GOTO 20

IF (I0SB(1) .EQ. O) PAUSE 'INCONSISTENT STATE'
CALL SETEF (23)

RETURN

IBFCNT = IBFCNT + 1

HERE WE WOULD PROCESS THE DATA

RELEASE BUFFER FOR SERVICE ROUTINE

CALL RLSBUF (IBUF, IND, IBUFNO-1)
RETURN

END

K-Series Peripheral Support Routines

13-33

Chapter 14
UNIBUS Switch Driver

14.1 Introduction to the UNIBUS Switch Driver

The UNIBUS switch driver supports DT07 UNIBUS switch hardware on RSX-11M-PLUS
systems. UNIBUS switches are electronic devices that allow peripherals to be switched from
one central processing unit (CPU) to another, enabling CPUs to share peripheral devices.
UNIBUS switches also facilitate online system backup and allow dynamic reconfiguration of
systems in which high availability of certain peripherals is required.

14.1.1 DTO7 UNIBUS Switches

DTO07 UNIBUS switches can provide two, three, or four ports for connecting an external UNIBUS
run to one of two, three, or four CPUs.

Any CPU can request connection to a UNIBUS run and receive the connection immediately if
the requested UNIBUS run is in the neutral state (it is not connected to another CPU’s UNIBUS).
If the request is received when the UNIBUS run is connected to another CPU, an interrupt
is generated, informing the connected CPU of the pending request, and a watchdog timer is
started. The connected CPU normally acknowledges the request, indicating the UNIBUS is
still in use. In this case, the UNIBUS remains connected to the CPU. However, if the CPU
does not respond to the interrupt within the time limit imposed by the DT07’s watchdog timer,
the UNIBUS is switched to the requesting CPU. Thus, a CPU that is not operating remains
connected to the UNIBUS only until another CPU requests the UNIBUS.

Each DT07 UNIBUS switch port functions as an isolation circuit. When its power is off, it does
not affect any CPU operation.

UNIBUS Switch Driver 14-1

14.1.2 UNIBUS Switch Driver

The UNIBUS switch driver allows you to use the UNIBUS switch in one of the following two
ways:

* A CPU retains the UNIBUS until the task issuing the directives that connected the UNIBUS
to this CPU exits. This is normally accomplished when the task attaches the UNIBUS
switch (IO.ATT function) and issues the connect function (I0O.CON). When the task exits
(for any reason), the system detaches the UNIBUS switch (IO.DET) and performs an implicit
disconnect function (I0.DIS), releasing the UNIBUS switch for use by any other task.

The task that attaches the UNIBUS switch can be considered the manager of the UNIBUS
switch until the task exits. The task can receive asynchronous system traps (ASTs) for
certain conditions involving UNIBUS switching (see Section 14.3.1.1).

e A CPU retains the UNIBUS until a task is executed that explicitly disconnects the UNIBUS.
This is normally accomplished when a task issues the IO.CON function and no previous
I0.ATT was issued. Once the UNIBUS is connected, the task exits. The UNIBUS then
remains connected until either the CPU fails to respond to other CPU requests for the
UNIBUS, or a task is executed that explicitly disconnects the UNIBUS. Note that when
operating in this manner, no active task is required to retain the UNIBUS.

14.2 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information system directive (the first characteristics
word) contains all zeros. Words 3, 4, and 5 are undefined.

14.3 QI0O$ Macro

This section summarizes standard and device-specific QIO functions for UNIBUS switches.

14.3.1 Standard QIO Functions
Table 14-1 lists the standard functions of the QIO macro that are valid for UNIBUS switches.

Table 14-1: Standard QIO Functions for UNIBUS Switches

Format Function

QIO$C I0.ATT.,..., <[ast]> Attach device
QIO$C 10.DET,... Detach device
QIO$C IOKIL,... Cancel 1/0 requests
Parameter

ast

Specifies the address of an optional AST routine that is entered if certain conditions are
detected (see Section 14.3.1.1).

14-2 UNIBUS Switch Driver

IO.ATT does not connect the UNIBUS switch (see device-specific function 10.CON).

IO.DET detaches the UNIBUS switch from the task. If the UNIBUS switch was previously
attached by the I0.CON function, an implied disconnect (IO.DIS) function is performed.

The only I1/O requests that can be affected by the IO.KIL function are I0.CON and I0.DPT.
When IO.KIL is issued during an IO.CON function, further retries are canceled. When I0.KIL
is issued during an I0.DPT function, the timeout count is changed, forcing timeout (IE.TMO)
to occur.

14.3.1.1 IO.ATT

The I0.ATT QIO function attaches the UNIBUS switch to the task issuing the QIO directive.
An optional AST address parameter can be specified. However, if it is specified, it must remain
valid while the UNIBUS switch remains attached to the task.

The AST service routine for the UNIBUS switch is entered when one of the following conditions
occur:

* The UNIBUS switch has become connected to another CPU due to one of the following
conditions:

— The operator manually switched the UNIBUS to another CPU.

— This CPU failed to respond to another CPU’s request for the UNIBUS within the
specified time (the CPU must acknowledge the request by servicing an interrupt, as
described in Section 14.1.1).

UNIBUS switch condition code 1 is passed to the AST routine by the stack, indicating the
cause of the AST.

* The UNIBUS switch has disconnected from the CPU due to one of the following
conditions:

— A power failure occurred in this CPU (system power failure) and the UNIBUS switch
driver was unable to reconnect the bus

— A power failure occurred on the connected UNIBUS, causing the driver to disconnect
the UNIBUS

UNIBUS switch condition code 2 (for a system power failure) or condition code 3 (for a
UNIBUS power failure) is passed to the AST routine by the stack, indicating the cause of
the AST.

14.3.1.2 10.DET

The IO.DET function detaches the issuing task from the UNIBUS switch, and, in addition,
performs an implied disconnect for the issuing task if that task had connected the UNIBUS
switch. A detach function is generated by the Executive on behalf of an attached task if that
task exits (normally or abnormally) without explicitly detaching the device. For a switched
UNIBUS, this causes the UNIBUS to be disconnected if an attached connected task faults in
such a way as to cause the task to exit.

UNIBUS Switch Driver 14-3

14.3.1.3 10.KIL

The IO.KIL function cancels any outstanding I0.CON function that has a nonzero retry count
and any outstanding IO.DPT function that has not yet timed out. Other QIO functions in
progress are not affected by I0.KIL, and they are completed.

14.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro that are valid for UNIBUS switches are shown
in Table 14-2.

Table 14~2: Device-Specific QIO Functions for UNIBUS Switches

Format Function
QIO$C 1I0.CON,..., <[rcnt][cpu]> Connect UNIBUS switch
QIO$C I0.DIS,..., <[tout],[port]> Disconnect UNIBUS switch
QIO$C IO.DPT,..., <[tout][port]> Disconnect UNIBUS switch from specified CPU port
QIO$C 10.SWL,..., <cpu> Switch the UNIBUS from current CPU to specified
CPU
QIO$C I0.CSR,... Read UNIBUS switch control and status register (CSR)
Parameters
rent
Specifies the number of additional times the connect is attempted if the IO.CON fails to
complete.
cpu

Specifies the American Standard Code for Information Interchange (ASCII) letter designating
the CPU to receive the UNIBUS switch.

port
Specifies the port number, ranging from 0 to 3, of the target CPU that must request the
bus prior to the CPU that is currently connected to the UNIBUS actually completing the
disconnect. The port number corresponds to the four MANUAL CONNECT switch positions
(PORT 0 to PORT 3) marked on the DT07 control panel.

tout
Specifies the maximum time (in seconds) allowed (2539 maximum) for the function to be
completed before an error condition is reported.

Parameter details are included in the following sections.

14-4 UNIBUS Switch Driver

14.3.2.1 10.CON

The I0.CON (connect) function requests connection of a UNIBUS presently not connected to a
specified CPU. It can be issued either by a task previously attached with the I0.ATT function
or by a task that is not attached. The I0.CON function has four optional parameters. The use
of each parameter is described as follows:

rent

cpu

14.3.2.2 10.DIS

The retry count (rcnt) specifies the number of additional times the connect
function is attempted if the IO.CON fails to complete within the timeout
period of the UNIBUS switch. Retry count parameters used in this manner are
always nonzero positive values.

The I0.CON function is not completed until either the retry count expires
or the UNIBUS switch is connected successfully. Thus, the issuing task
having a nonzero retry count is not checkpointed until the I0.CON function
is completed.

When a retry count of 0 is specified, the connect function attempts to connect
the UNIBUS switch once (no retries) and immediately reports the directive
status to the issuing task.

When a retry count of 177,777 (-1) is specified, the connect function continues
to retry the connection until a successful connection is made or an 10.KIL
function is issued.

You can use the CPU parameter only with loosely coupled multiprocessor
systems to specify the CPU to which the UNIBUS switch should be connected.
A loosely coupled system is one in which memory resources are not shared
by more than one CPU. Use this function only when the UNIBUS switch is
presently not connected (you should use the I0.SWI function to disconnect
the UNIBUS switch from a connected closely coupled CPU and to connect it
to a specified closely coupled CPU). Specify the CPU by a single ASCII letter
(A, B, C, or D).

The IO.DIS function disconnects the switched UNIBUS from the currently connected CPU. Note
if your task issues the I0.DIS or IO.DPT function, it must determine that all devices on the
switched UNIBUS are inactive when it issues the function. The UNIBUS switch driver does
not check for active devices on the UNIBUS before completing either the 10.DIS or I0.DPT

function.

14.3.2.3 10.DPT

Use the I0.DPT function in a loosely coupled multiprocessor system to allow the UNIBUS to
be connected to another CPU on a specified port if the CPU requests connection within a spec-
ified time interval. A loosely coupled system is one in which memory resources are not shared

UNIBUS Switch Driver 14-5

by more than one CPU. The IO.DPT function has two optional parameters. The use of each
parameter is described as follows:

tmo The timeout parameter specifies the maximum time allowed for the function to
complete before an error is reported. Timeout specifications are positive, nonzero
values ranging from 1 to 254 seconds. The default timeout value is 2 seconds.
If the CPU parameter is included in the IO.DPT function, the driver waits for
the specified CPU to request the UNIBUS up to the specified timeout value. If
the CPU does not request the UNIBUS during this time, the UNIBUS remains
connected and the IE.TMO status is returned to the issuing task.
If a timeout value of 0 is specified, the I0.DIS function does not complete until
either the successful disconnect occurs or an IO.KIL function is issued.

port You can use the port parameter only with loosely coupled multiprocessor systems
to specify the port through which the UNIBUS switch should be connected to a
CPU. Specify the port by a number ranging from 0 to 3.

14.3.2.4 10.5WI

The I0.SWI function disconnects the UNIBUS switch from the currently connected CPU and
connects it to the specified CPU in a closely coupled system. The cpu parameter is required.

10.SWI is executed without the possibility of a third CPU taking control of the UNIBUS during
the switching process.

Use the CPU parameter in closely coupled multiprocessor systems to specify the CPU to which
the UNIBUS switch should be connected. Specify the CPU by a single ASCII letter (A, B, C,
or D).

14.3.2.5 10.CSR

The IO.CSR function reads maintenance information contained in the device CSR and returns
it in the second word of the 1/O status block (IOSB). Information returned is valid only if the
UNIBUS switch is connected. Limit the use of this function to diagnostic applications.

14.4 Powerfail Recovery

The following sections describe what action the UNIBUS switch driver takes when a power
failure occurs.

14.4.1 System Powerfail Recovery

During powerfail recovery, the driver attempts to restore the state of the system prior to
the actual power failure. If the UNIBUS switch is found to be disconnected during powerfail
recovery, the driver attempts to reconnect the switched UNIBUS. If the first attempt to reconnect
the UNIBUS is not successful, an entry is made in the error log and the attached task is notified
of the UNIBUS switch state by the AST specified in the IO.ATT function (if previously issued).

If an IO.CON function was in progress when the power failure occurred and a retry count was
pending, the UNIBUS switch driver attempts to successfully connect the UNIBUS switch until
the retry count expires.

If an 10.DIS or I0.DPT function was in progress when the power failure occurred, the UNIBUS
switch driver attempts to complete the operation.

14-6 UNIBUS Switch Driver

14.4.2 UNIBUS Powerfail Recovery

If an interrupt is received from the UNIBUS switch indicating a power failure has occurred on
the switched UNIBUS, the driver issues an immediate disconnect (I0.DIS). The attached task (if
any) is notified by the AST. Note that the system may be corrupted if some of the I/O devices
on the switched UNIBUS were active when the power failure occurred because the drivers for
those 1/O devices may attempt to access the device registers after the switched UNIBUS (and
I/O devices) has become disconnected.

14.5 Status Returns

Table 14-3 lists the error and status conditions that are returned by the UNIBUS switch driver.

Table 14-3: UNIBUS Switch Driver Status Returns

Code Reason

IS.SUC Successful completion
The operation specified in the QIO directive was completed successfully.

ISPND I/O request pending
The operation specified in the QIO directive has not been executed yet. The IOSB is
filled with zeros.

IE.ABO Request aborted
An 1/0 request was queued (not yet acted upon by the driver) when an I0.KIL was
issued.

IEBAD Bad parameters
The parameters specified in the QIO macro were in error.

IE.CNR Connect rejected
The connect function did not successfully connect the switched UNIBUS to the
specified CPU, and the retry count, if specified, has expired.

IEEDAA Device already attached
The device specified in an I0.ATT function was already attached by the issuing task.
This code indicates that the issuing task has already attached the desired physical
device unit, not that the unit was attached by another task.

IE.DNA Device not attached
The physical device unit specified in an IO.DET function was not attached by the
issuing task. This code has no bearing on the attachment status of other tasks.

IEIFC Illegal function code
A function code was specified in an I/O request that is illegal for the UNIBUS switch
driver.

IENOD Insufficient buffer space

Dynamic storage space has been depleted, resulting in insufficient buffer space
available to allocate either the I/O packet or the device list buffer.

UNIBUS Switch Driver 14-7

Table 14-3 (Cont.): UNIBUS Switch Driver Status Returns
Code Reason

IE.OFL Device off line

The physical device unit associated with the LUN specified in the QIO directive (the
UNIBUS switch) was not on line, or the CPU specified in the IO.CON or 10.SWI
was not on line.

IESPC Illegal address space
The buffer specified in the IO.CON function was partially or totally outside the
address space of the issuing task.

IETMO Timeout error

The timeout count expired during an IO.DPT operation before the target CPU
requested the UNIBUS. This error code is also returned when the DT03/DT07
hardware fails to respond to a request due to a hardware failure.

14.6 FORTRAN Usage

FORTRAN tasks can use all of the QIO functions described for the UNIBUS switch driver,
except AST support is not provided (IO.ATT function with an AST address specified). You can
write a macro subroutine, which the FORTRAN task can call, that specifies the AST address.

14-8 UNIBUS Switch Driver

Appendix A

Summary of I/O Functions

This appendix summarizes valid I/O functions for all device drivers described in this manual.
Both devices and functions are listed alphabetically. The meanings of the five parameters
represented by the ellipsis (...) are described in Chapter 1. The meanings of the function-
specific parameters shown below are discussed in the appropriate driver chapters. The user may
reference these functions symbolically by invoking the system macros FILIO$ (standard 1/0
functions) and SPCIO$ (special I/O functions), or by allowing them to be defined at task-build

time from the system object library.

A.1 Card Reader Driver

I0.ATT,...
I0.DET,...
IOKIL,...
IO.RDB,..., <stadd,size>
IO.RLB,..., <stadd,size>
IO.RVB,..., <stadd,size>

A.2 DECtape Il DRIVER

IO.ATT...
IO.DET,...
IOKIL,...
IO.RLB,..., <stadd,size,, lbn>
IO.WLB,..., <stadd,size,, Ibn>
IO.WLC,..., <stadd,size,,lbn>

Attach device

Detach device

Cancel 1/0 requests

Read logical block (binary)

Read logical block (alphanumeric)

Read virtual block (alphanumeric)

Attach device

Detach device

Cancel I/O requests

Read logical bleck

Write logical block

Write logical block with check

Summary of 1/O Functions A-1

IO.RLC,..., <stadd,size,, lbn>
I0.BLS,..., <lbn>
IO.DGN,...

A.3 DEUNA Driver

I0.XOP...., <pl,p2,p3>
10.XSC...., <pl,p2>

IO.XIN,..., <pl>

I0.XRC,..., <pl,p2,p3,p4.[p5,p6]>
[0.XTM,..., <p1,p2,p3,p4.[p5.p6]>
I0.XCL,...

I0.XTL+subfunction,...

A.4 Disk Driver

IO.RLB,..., <stadd,size,,blkh,blkl>
I0.RPB,..., <stadd,size,, pbn>
IO.RVB,..., <stadd,size, blkh,blkl >
I0.SEC.,..., <stadd,size,pbn>
I0.SMD,..., <density,,>
I0.WDD,..., <stadd,size,, pbn>
I0.WLB,..., <stadd,size, blkh,blkl>
I0.WLC,..., <stadd,size, blkh,blkl>
I0.WPB,..., <stadd,size,,,pbn>
I0.WVB,..., <stadd,size, blkh,blkl>

10.CLK...., <mode,ckcsr,preset>
I0.IN],..., <irbuf,278.>
10.LOD,..., <mbuf,2048.>
I0.STA,..., <bufptr,40.>
10.STP.,..., <userid>

A-2 Summary of 1/O Functions

Read logical block with check
Position tape

Run internal diagnostics

Open a line

Set characteristics (Ethernet)
Initialize the line

Receive a message on the line
Transmit a message on the line
Close the line

Control function

Read logical block

Read physical block

Read virtual block

Sense characteristics (RX02 only)

Set media density (RX02 only)

Write physical block (with deleted data mark)
Write logical block

Write logical block followed by write-check
Write physical block

Write virtual block

A.5 Laboratory Peripheral Accelerator Driver

Start clock
Initialize LPA11-K
Load microcode
Start data transfer

Stop request

A.6 Line Printer Driver

I0.ATT,...
10.DET,...
IOKIL,...
I0.WLB,..., <stadd,size,vfc>
I0.WVB,..., <stadd,size,vfc>

A.7 Magnetic Tape Driver

10.ATT,...

I0.DET,...

IO.DSE,...

I0.EOF,....

IO.ERS,...

IOKIL,...

IO.RLB,..., <stadd,size>
IO.RLV,..., <stadd,size>
IO.RVB,..., <stadd,size>
IO.RWD,...

I0O.RWU,...

10.SEC,...

I0.5MO...., <cb>
I0.SPB,..., <nbs>
I0.SPF,..., <nes>
I0.5TC,..., <cb>
I0.WLB.,..., <stadd,size>
IO.WVB,..., <stadd,size>

Attach device
Detach device
Cancel I/0 requests
Write logical block
Write virtual block

Attach device

Detach device

Data security erase (TK50/TU81 only)
Write end-of-file (EOF)(tape mark)
Erase (TE10 and TU10 not supported)
Cancel I/O requests

Read logical block

Read logical block reverse

Read virtual block

Rewind tape

Rewind and turn unit off line

Read tape characteristics

Mount tape and set tape characteristics
Space blocks

Space files

Set tape characteristics

Write logical block

Write virtual block

Summary of 1/O Functions A-3

Transmitter Driver Functions

A.8 Parallel Communication Link Drivers

10.ATX,..., <stadd,size,flagwd,id,retries,retadd> Attempt message transmission

10.STC,..., <stadd,size,[state],[mode], retadd>
IO.SEC,...,

Receiver Driver Functions

I0.CRX,..., <tef>

10.ATF,..., <stadd,size,retadd>
IO.RTE.,...

IO.DRX,...

A.9 Terminal Driver

I0.ATA,..., <ast,[parameter2],[ast2]>

I0.ATT,...

10.CCO...., <stadd,size,vfc>
I0.DET,...

IO.EIO!TE.RLB,..., <stadd,size>
I0.EIO!TF.WLSB,..., <stadd,size>
10.GTS,..., <stadd,size>
I0.HNG,...

IOKIL,...

IO.RAL,..., <stadd,size,[tmo]>
I0O.RLB,..., <stadd,size,[tmo]>
10.RNE,..., <stadd,size,[tmo]>
IO.RPR,..., <stadd,size,[tmo],pradd,prsize vic>
IO.RST,..., <stadd,size,[tmo]>
IO.RTT,..., <stadd,size, [tmo]table>

I0.RVB,..., <stadd,size,[tmo]>

A-4 Summary of 1/O Functions

Set master section characteristics

Sense master section status

Correct for reception
Accept transfer
Reject transfer

Disconnect from reception

Attach device, specify unsolicited-character
asynchronous system trap (AST)

Attach device

Write logical block, cancel CTRL/O
Detach device

Extended I/0O read functions
Extended I/O write functions

Get terminal support

Hang up remote line

Cancel 1/0 requests

Read logical block and pass all characters
Read logical block

Read logical block and do not echo
Read after prompt

Read with special terminators

Read logical block ended by specified special
terminators

Read virtual block

I0.WAL,..., <stadd,size,vfc>
I0O.WBT,..., <stadd,size,vfc>

I0O.WLB,..., <stadd,size,vfc>
I0O.WVB,..., <stadd,size,vfc>
SF.GMC,..., <stadd,size>
SE.SMC,..., <stadd,size>

Subfunction bits for terminal-driver
functions:

TF.AST
TE.BIN
TE.CCO
TE.ESQ
TE.NOT
TF.RAL
TE.RCU
TF.RDI
TF.RES

TE.RLB
TE.RLU

TF.RNE
TF.RNF
TF.RPR
TF.RPT

TF.RST
TE.RTT

TE.TMO
TF.WAL
TF.WBT

Write logical block and pass all characters

Write logical block and break through any
ongoing 1/0

Write logical block
Write virtual block

 Get multiple characteristics

Set multiple characteristics

Unsolicited-input-character AST

Binary prompt

Cancel CTRL/O

Recognize escape sequences

Unsolicited input AST notification

Read, pass all characters

Restore cursor position

Read with default input (I0.EIO function only)

Read with escape sequence processsing en-
abled (IO.EIO function only)

Read logical block (IO.EIO function only)

Read and convert from lowercase to uppercase
(IO.EIO function only)

Read with no echo
Read with no filter (IO.EIO function only)
Read after prompt (IO.EIO function only)

Read in pass-through mode (IO.EIO function
only)

Read with special terminators

Read with specified special terminator table
(IO.EIO function only)

Read with timeout
Write, pass all bits
Breakthrough write

Summary of 1/O Functions A-5

TEWIR
TEXCC

TE.XOF

A.10 UNIBUS Switch Driver

I0.ATT,..., <[ast]>
I0.DET,...

IOKIL,...

10.CON,..., <[rcnt],[cpu]>
QIO$C 10.DIS,...,
I0.DPT,..., <[tout],[port]>

I0.SWL...., <cpu>
IO.CSR,...

A.11 Virtual Terminal Driver

I0.ATT,...

I0.DET,...

IOKIL,...

IO.RLB,..., <stadd,size>
IO.RVB,..., <stadd,size>
I0.WLB,..., <stadd,size,stat>
I0.WVB,..., <stadd,size, stat>
10.STC,..., <cb,sw2,sw1>

A-6 Summary of 1/O Functions

Write with input redisplayed

CTRL/C starts a command line interpreter
(CLD)

Send XOFF

Attach device

Detach device

Cancel 1/0 requests
UNIBUS switch
Disconnect UNIBUS switch

Disconnect UNIBUS switch and connect to
specified central processing unit (CPU) port

Switch UNIBUS from current CPU to specified
CPU

Read UNIBUS switch CSR

Attach device
Detach device
Cancel 1/0 request
Read logical block
Read virtual block
Write logical block
Write virtual block

Set terminal characteristics (enable/ disable in-
termediate buffering, or return 1/O completion
status)

Appendix B

I/O Function and Status Codes

This appendix lists the numeric codes for all /O functions, directive status returns, and I/0
completion status returns. The lists are organized in the following sequence:

* I/0O completion status codes

® Directive status codes

* Device-independent I/O function codes
® Device-dependent I/O function codes

Device-dependent function codes are listed by device. Both devices and codes are organized in
alphabetical order.

For each code, the symbolic name is listed in form IO.xxx, IE.xxx, or IS.xxx. A brief description
of the error or function is also included. Both decimal and octal values are provided for all
codes.

B.1 1/O Completion Status Codes

B.1

This section lists error and success codes that can be returned in the IOSB upon completion of
an I/O function. The codes shown in the following sections may be referenced symbolically by
invoking the system macro IOERRS.

.1 1/0 Error Status Codes

Name Decimal Octal Meaning

IE.2DV 48 177720 Rename—two different devices
IE.ABO -15 177761 Operation aborted
IE.ALC -84 177654 Allocation failure

1/0O Function and Status Codes B-1

Name Decimal Octal Meaning

IE.ALN -34 177736 File already accessed on logical unit number (LUN)

IEBAD -01 177777 Bad parameter

IEBBE -56 177710 Bad block on device

IEBCC -66 177676 Block check error or framing error

IEBDI -52 177714 Bad directory syntax

IEBDR -50 177716 Bad directory file

IEBDV -55 177711 Bad device name

IE BHD -64 177700 Bad file header

IEBLB -70 177672 Bad logical buffer

IE.BLK -20 177754 Invalid block number; logical block number too large

IEBNM -54 177712 Bad file name

IEBTF -76 177664 Bad tape format

IEBTP -43 177725 Bad record type

IEBVR -63 177701 Bad version number

IEBYT -19 177755 Odd byte count (or virtual address); byte-aligned buffer
specified

IECKS -30 177742 File header checksum failure

IECLO -38 177732 File was not closed properly

IE.CNR -96 177640 Connection rejected

IE.CON -22 177752 Universal Digital Controller (UDC) connect error

IEDAA -08 177770 Device already attached

[EDAO -13 177763 Data overrun

IEDFU -24 177750 Device full

IEDIS -69 177673 Path lost to partner

IEDNA -07 177771 Device not attached

IE.DNR -03 177775 Device not ready

IEDSQ -90 177646 Disk quota exceeded

IEDUN -09 177767 Device not attachable

IEDUP -57 177707 Enter—duplicate entry in directory

IEEOF -10 177766 End-of-file encountered

IEEOT -62 177702 End-of-tape encountered

B-2 1/0 Function and Status Codes

Name Decimal Octal Meaning

IEEOV -11 177765 End-of-volume encountered

IEEEXP -75 177665 File expiration date not reached

IEFEX -49 177717 Rename a new file name already in use

IEFHE -59 177705 Fatal hardware error

IEFLG -89 177647 Event flag already specified

IEFLN -81 177657 Device already off line

IEFOP -53 177713 File already open

IEHFU -28 177728 File header full

IEICE -47 177721 Internal consistency error

IE.IES -82 177656 Invalid escape sequence

IE.IFC -02 177776 Invalid function code

IEIFU -25 177747 Index file full

IEILL -42 177726 Invalid operation on File Descriptor Block (FDB)

IEIQU -9 177645 Inconsistent qualifier usage

IEISQ -61 177703 Invalid sequential operation

IELCK -27 177745 Locked from read/write access

IE.MII -99 177635 Media inserted incorrectly

IEMOD -21 177753 Invalid UDC or ICS/ICR module

IENBF -39 177731 No buffer space available for file

IENBK -41 177727 File exceeds space allocated—no blocks

IENDA -78 177662 No data available

IENDR -72 177670 No dynamic space available

IENFI -60 177704 File ID was not specified

IENFW -69 177673 Path lost to partner

IENLK -79 177661 Task not linked to specified ICS/ICR interrupts

IENLN -37 177733 No file accessed on LUN

IENNC -77 177663 Not American National Standards Institute (ANSI) D format
byte count

IENNN -68 177674 No such node

IENNT -9%4 177642 Not a network task

IENOD -23 177751 Caller’s nodes exhausted; no dynamic memory available

1/0 Function and Status Codes B-3

Name Decimal Octal Meaning

IENSF -26 177746 No such file

IENST -80 177660 Specified task not installed

IENR] -74 177666 Network connection reject

IENTR -87 177651 Task not triggered

IEOFL -65 177677 Device off line

IEONL -67 177675 Device on line

IEONP -05 177773 Hardware option not present

IE.OVR -18 177756 Invalid read overlay request

IEPES -83 177655 Partial escape sequence

IEPRI -16 177760 Privilege violation

IERAC -44 177724 Invalid record access bits set

IERAT -45 177723 Invalid record attribute bits set

IE.RBG -40 177730 Invalid record size

IERCN -46 177722 Invalid record number—too large

IE.RE] -88 177650 Transfer rejected by receiving CPU

IERER -32 177740 File processor device read error

IERES -92 177644 Circuit reset during operation

IERNM -51 177715 Cannot rename old file system

IERSU -17 177757 Shareable resource in use

IESNC -35 177735 File ID, file number check

IESPC -06 177772 Invalid user buffer

IE.SPI -100 177634 Spindown ignored

IE.SQC -36 177734 File ID, sequence number check

IESRE -14 177762 Send/receive failure

IESTK -58 177706 Not enough stack space File Control Services (FCS) or
File Control Primitive (FCP)

IESZE -98 177636 Unable to size device

IETML -93 177643 Too many links to task

IETMO -95 177641 Timeout on request

IEUKN -97 177637 Unknown name

IEULK -85 177653 Unlock error

B-4 1/0 Function and Status Codes

Name Decimal Octal Meaning

IEUR] -73 177667 Connection rejected by user
IEVER -04 177774 Parity error on device

IEWAC -29 177743 Accessed for write

IEWAT -31 177741 Attribute control list format error
IEWCK -86 177652 Write-check error

IEWER -33 177737 File processor device write error
IEWLK -12 177764 Write-locked device

B.1.2 I/O Status Success Codes

Code Subcode Octal

Name (Low Byte) (High Byte) Word Meaning

IS.CR 1 15 006401 Successful completion with carriage
return

IS.CC 1 3 001401 Successful completion on read terminated
by CTRL/C

ISESC 1 33 015401 Successful completion with ESCAPE

ISESQ 1 233 115401 Successful completion with an escape
sequence

ISPND +00 000000 I/O request pending

ISRDD +02 000002 Deleted data mark read

IS.sUC +01 000001 Successful completion

ISTMO +02 000002 Successful completion on read terminated
by timeout

ISTNC 402 000002 Successful transfer but message truncated

(receiver buffer too small)

B.2 Directive Status Codes

This section lists error and success codes that can be returned in the Directive Status Word
(DSW) at symbolic location $DSW when a QIO directive is issued.

I/0 Function and Status Codes B-5

B.2.1 Directive Error Codes

Name Decimal Octal Meaning

IEACT -07 177771 Task not active

IE.ADP -98 177636 Invalid address

IE.ALG -84 177654 Alignment error

IE.AST -80 177660 Directive issued/not issued from AST
IECKP -10 177766 Issuing task not checkpointable
IE.FIX -09 177767 Task already fixed/unfixed

IEHWR -06 177772 Device handler not resident

IE.IBS -89 177647 Invalid send buffer size (.GT. 255;¢)
IEIDU -92 177644 Invalid device or unit

IE.IEF -97 177637 Invalid event flag (.GT. 644¢)

IEILU -96 177640 Invalid LUN

IEILV -19 177755 Invalid vector specified

IEINS -02 177776 Specified task not installed

IEIOP -83 177655 Window has I/O in progress

IEIPR -9 177641 Invalid priority (.GT. 250,()

IE.ITI -93 177643 Invalid time parameters

IE.ITP -88 177650 Invalid TI parameter

IE.ITS -08 177770 Directive inconsistent with task state
IE.IUI -91 177645 Invalid User Identification Code (UIC)
IELNL -90 177646 LUN locked in use

IEMAP -81 177657 Invalid mapping specified

IENSW -18 177756 No swap space available

IENVR -86 177652 Invalid region ID

IENVW -87 177651 Invalid address window ID

IEPNS -94 177642 Partition/region not in system
IEPTS -03 177775 Partition too small for task

IEPRI -16 177760 Privilege violation

IERBS -15 177761 Receive buffer is too small

[ERSU -17 177757 Resource in use

B-6 1/0 Function and Status Codes

Name Decimal Octal Meaning

IESDP -99 177635 Invalid Directive Identification Code (DIC) number or Directive
Parameter Block (DPB) size

IETCH -11 177765 Task is checkpointable

IEULN -05 177773 Unassigned LUN

IE.UNS -04 177774 Insufficient dynamic storage for send

IEUPN -01 177777 Insufficient dynamic storage

IEWOV -85 177653 Address window allocation overflow

B.2.2 Directive Success Codes

B.3 1/O Function Codes

B.3.

Name

Decimal

Octal

Meaning

IS.5UC

+01

000001

Directive accepted

This section lists octal codes for all device-independent I/O functions. In addition, individual
sections list octal codes for all device-dependent I/O functions.

1 Device-Independent I/O Function Codes
Symbolic Word Code Subcode

Name Equivalent (High Byte) (Low Byte) Meaning
IO.ATT 001400 3 0 Attach device
I0O.DET 002000 4 0 Detach device
IO.KIL 000012 0 12 Cancel I/0 requests
IO.RLB 001000 2 0 Read logical block
IO.RVB 010400 21 0 Read virtual block
IO.WLB 000400 1 0 Write logical block
IO.WVB 011000 22 0 Write virtual block

1/0 Function and Status Codes B-7

B.3.2 Specific DECtape Il I/O Function Codes

Symbolic Word Code Subcode

Name Equivalent (High Byte) (Low Byte) Meaning
IO.WLC 000420 1 20 Write logical block with check
IO.RLC 001020 2 20 Read logical block with check
I0.BLS 004010 10 10 Position tape
I0.DGN 004150 10 150 Run internal diagnostics

B.3.3 Specific Disk I/O Function Codes

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
IO.RPB 001040 2 40 Read physical block (RX01, RL01,
and RL02 only)
I0.SEC Sense characteristics (RX02 only)
000000 0 0 Single Density
040000 100 0 Double Density
10.SMD 002510 5 110 Set media density (RX02/RX33
only)
I0.WDD 000540 1 140 Write physical block with deleted
data mark (RX02 only)
IO.WLC 000420 1 20 Write logical block followed by
write-check (all except RX01 and
RX02)
10.WPB 000440 1 40 Write physical block (RX01, RX02,

RLO1, and RLO2 only)

B.3.4 Specific Magnetic Tape I/O Function Codes

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
10.DSE 003040 6 40 Data security erase (TK50/TU81
only)
I0.EOF 003000 6 0 Write end-of-file gap
IO.RLV 001100 ' 2 100 Read logical block (reverse)

B-8 1/0O Function and Status Codes

Symbolic Woerd Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
I0.RWD 002400 5 0 Rewind tape
IORWU 002540 5 140 Rewind and unload
10.SEC 002520 5 120 Sense characteristics
10.5SMO 002560 5 160 Mount and set characteristics
10.SPB 002420 5 20 Space blocks
10.SPF 002440 5 40 Space files
IOSTC 002500 5 100 Set characteristics

B.3.5 Specific Terminal I/0O Function Codes

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning

10.ATA 001410 3 10 Attach device, specify unsolicited-
input-character AST

10.CCO 000440 1 40 Write logical block and cancel
CTRL/O

IO.EIO 017400 37 0 Extended I/O

I0.GTS 002400 00 Get terminal support

10.HNG 003000 0 Hang up remote line

IO.RAL 001010 10 Read logical block and pass all
bits

IO.RNE 001020 2 20 Read with no echo

IO.RPR 004400 11 00 Read after prompt

IO.RST 001001 2 1 Read with special terminators

IO.RTT 005001 12 1 Read logical block ended by
specified special terminator (full-
duplex driver only)

I0.WAL 000410 1 10 Write logical block and pass all
bits

I0.WBT 000500 1 100 Write logical block and break
through ongoing 1/0

SF.GMC 002560 160 Get multiple characteristics

SF.SMC 002440 5 40 Set multiple characteristics

1/0 Function and Status Codes B-9

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning

Subfunction Bits:
With IO.RLB, I0.RPR:

TE.RST 000001
TE.BIN 000002
TF.RAL 000010
TF.RNE 000020
TE.XOF 000100
TE.TMO 000200
With 10.WLB:

TF.RCU 000001
TE.WAL 000010
TF.CCO 000040
TF.WBT 000100
TE.WIR 000200
With I0.ATT:

TE.XCC 000001
TE.NOT 000002
TF.AST 000010
TF.ESQ 000020
With 10.EIO:

TE.WLB 000001
TF.RCU! 000001
TF.CCO! 000040
TF.WAL! 000010
TF.WBT! 000100
TE.WIR! 000200

Modifiers of the 10.EIOITF.WLB subfunction. These are specified by you in the item-list buffer.

B-10 1/O Function and Status Codes

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning

TF.RLB 000002
TF.RLU? 000010
TF.RTT? 000400
TF.RST? 000001
TF.BIN? 000002
TF.RAL? 000010
TF.RNE? 000020
TF.XOF? 000100
TF.TMO? 000200
TF.RES? 010000
TF.RPR? 002000
TF.RPT? 004000
TF.RNF? 020000
TF.TNE? 040000
TF.RDI? 100000

2Modifiers of the I0.EIO!TF.RLB subfunction. These are specified by you in the item-list buffer.

B.3.6 Specific Virtual Terminal I/O Function Codes

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
10.STC 002500 5 100 Set terminal characteristics

B.3.7 Specific A/D Converter 1/O Function Codes—RSX-11M-PLUS Only

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
IO.RBC 003000 6 0 Initiate an analog-to-digital

(A/D) conversion

1/0 Function and Status Codes B-11

B.3.8 Specific Card Reader I/O Function Codes—RSX~-11M-PLUS Only

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
IO.RDB 001200 2 200 Read logical block (binary)

B.3.9 Specific Cassette I/O Function Codes—RSX-11M-PLUS Only

Symbolic Word Code Subcode

Name Equivalent (High Byte) (Low Byte) Meaning
IO.EOF 003000 6 0 Write end-of-file gap
IO.RWD 002400 5 0 Rewind tape
10.SPB 002420 5 20 Space blocks
I0.SPF 002440 5 40 Space files

B.3.10 Specific Communication (Message Oriented) I/O Function

Codes—RSX-11M-PLUS Only

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning

10.FDX 003020 6 20 Set device to full-duplex mode

I0.HDX 003010 6 10 Set device to half-duplex mode

IO.INL 002400 5 0 Initialize device and set device
characteristics

IO.RNS 001020 2 20 Read logical block, transparent
mode

I0.SYN 003040 6 40 Specify sync character

IO.TRM 002410 5 10 Terminate communication, dis-
connecting from physical channel

I0.WNS 000420 1 20 Write logical block with no sync

leader

B-12 1/O Function and Status Codes

B.3.11 Specific DECtape I/0O Function Codes—RSX-11M-PLUS Only

Symbolic Word Code Subcode

Name Equivalent (High Byte) (Low Byte) Meaning
I0.RLV 001100 2 100 Read logical block (reverse)
IO.WLV 000500 1 100 Write logical block (reverse)

B.3.12 Specific Parallel Communications Link 1/O Function
Codes—RSX-11M-PLUS Only

B.3.12.1 Transmitter Driver Functions

Symbolic Word Code Subcode

Name Equivalent (High Byte) (Low Byte) Meaning
10.ATX 000400 1 0 Attempt message transmission
10.STC 002500 5 100 Set master section characteristics
I0.SEC 002520 5 120 Sense master section status

B.3.12.2 Receiver Driver Functions

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning
1I0.CRX 014400 31 0 Connect for reception
IO.ATF 001000 2 0 Accept transfer
IO.RTF 015400 33 0 Reject transfer
IO0.DRX 001500 32 0 Disconnect from reception

1/0 Function and Status Codes B-13

B.3.13 Specific UNIBUS Switch |/O Function Codes—RSX-11M-PLUS Only

Symbolic Word Code Subcode
Name Equivalent (High Byte) (Low Byte) Meaning

10.CON 015400 33 0 Connect UNIBUS switch

10.DIS 016000 34 0 Disconnect UNIBUS switch

10.DPT 016010 34 10 Disconnect UNIBUS switch and
connect to specified central pro-
cessing unit (CPU) port

10.SWI 016400 35 0 Switch UNIBUS from current
CPU to specified CPU

I0.CSR 015000 32 0 Read UNIBUS switch control and

status register (CSR)

B-14 1/O Function and Status Codes

Appendix C

Error Codes

This appendix includes the source code for the following:
* /O error codes

® Directive Status Word (DSW) error codes

* I/0 function codes

This source code is located in [61,10]QIOMAC.MAC.

.TITLE QIOMAC - QIOSYM MACRO DEFINITION

; DATE OF LAST MODIFICATION:

RYAN CHRISTOPHER 16-Nov-1984

; **x%x* ALWAYS UPDATE THE FOLLOWING TWO LINES TOGETHER

.IDENT /0375/
QI.VER=0375

; COPYRIGHT (C) 1983, 1984

; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

; THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A

; SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
; INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
; ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
; MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
; SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
; TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN

; IN DEC.

Error Codes

C-1

; THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
; NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
; EQUIPMENT CORPORATION.

. DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
. ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

; SHANE MICHAEL 1-0CT-73

4

; MACRO TO DEFINE STANDARD QUEUE I/0 DIRECTIVE FUNCTION VALUES

: AND IOSB RETURN VALUES. TO INVOKE AT ASSEMBLY TIME (WITH LOCAL

; DEFINITION) USE:

; QIOSY$;DEFINE SYMBOLS

; TO OBTAIN GLOBAL DEFINITION OF THESE SYMBOLS USE:
R QIOSY$ DEF$G ;SYMBOLS DEFINED GLOBALLY

; THE MACRO CAN BE CALLED ONCE ONLY AND THEN
; REDEFINES ITSELF AS NULL.

.MACRO QIOSY$ $$$GBL,$$$MSG
.IIF IDN,<$$$GBL>,<DEF$G>, .GLOBL QI.VER
IF IDN,<$$$MSG>, <DEF$S>

$$$MAX=0

$$MSG=1

_IFF

$$MSG=0

.ENDC

.MCALL IOERR$

IOERR$ $$$GBL ;1/0 ERROR CODES FROM HANDLERS, FCP, FCS
_MCALL DRERR$

DRERR$ $$$GBL :DIRECTIVE STATUS WORD ERROR CODES
IF DIF,<$$$MSG>, <DEF$S>

_MCALL FILIO$

FILIO$ $$$GBL ;DEFINE GENERAL I/0 FUNCTION CODES
_MCALL SPCIO$

SPCIO$ $$$GBL :DEVICE-DEPENDENT I/0 FUNCTION CODES
_.MACRO QIOSY$ ARG, ARG1,ARG2 ;RECLAIM MACRO STORAGE
_ENDM QI0SY$

.ENDC

.ENDM QIosy$

C-2 Error Codes

; DEFINE THE ERROR CODES RETURNED BY DEVICE HANDLER AND FILE PRIMITIVES

IN THE FIRST WORD OF THE I/0 STATUS BLOCK
THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES (FCS) IN THE

; BYTE F.ERR IN THE FILE DESCRIPTOR BLOCK (FDB)

THE BYTE F.ERR+1 IS 0 IF F.ERR CONTAINS A HANDLER OR FCP ERROR CODE.

.ENABL
.MACRO
.MCALL

IF

...GBL=1

IFF

.. .GBL=0

.ENDC
IIF

LC

I0ERR$
.IOER. ,DEFINS
IDN,<$$$GBL>, <DEF$G>

$$$GBL

NDF, $$MSG , $$MSG=0

; SYSTEM STANDARD CODES, USED BY EXECUTIVE AND DRIVERS

.I0ER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.I0ER.
.ICER.
.IOER.
.IOER.
.IOER.
.IOER.
-IOER.
.I0ER.
.IOER.
.IOER.
.IOER.
.IOER.
.IDER.
.IOER.
.I0ER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.ICER.
.IOER.
.IOER.
.IDER.
.IOER.
.IOER.
.IOER.

IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.

IE

IE.
IE.

IE

IE.
IE.

IE

IE.

IE

IE.

IE

IE.

IE

IE.
IE.
IE.
IE.
IE.
IE.

IE

IE.

IE

IE.
IE.
IE.
IE.
IE.
IE.
IE.

BAD,-01.
IFC,-02.
DNR,-03.
VER,-04.
ONP,-05.
SPC,-06.
DNA,-07.
DAA,-08.
.DUN, -09.
EOF,-10.
EOV,-11.
.WLK,-12.
DAO,-13.
SRE,-14.
.ABO,-15.
PRI,-16.
.RSU,-17.
OVR,-18.
.BYT,-19.
BLK,-20.
.M0OD, -21.
CON,-22.
BBE,-56.
STK,-58.
FHE,-59.
EOT,-62.
OFL,-65.
.BCC,-66.
NFW,-69.
.DIS,-69.
PNT,-71.
NDR,-72.
TMO, -95.
CNR,-96.
MII,-99.

,<Bad parameters>

,<Invalid function code>

.<Device not ready>

,<Parity error on device>

,<Hardware option not present>

,<Illegal user buffer>

,<Device not attached>

,<Device already attached>

,<Device not attachable>

,<End of file detected>

,<End of volume detected>

,<Write attempted to locked unit>

,<Data overrun>

,<Send/receive failure>

,<Request terminated>

,<Privilege violation>

,<Shareable resource in use>

,<Illegal overlay request>

,<0Ddd byte count (or virtual address)>
,<Logical block number too large>

,<Invalid UDC module #>

,<UDC connect error>

,<Bad block on device>

,<Not enough stack space (FCS or FCP)>
,<Fatal hardware error on device>

,<End of tape detected>

,<Device off line>

»<Block check, CRC, or framing error>

,<Path lost to partner> ;THIS CODE MUST BE ODD
,<Path lost to partner> ;DISCONNECTED (SAME AS NFW)
,<Partition/Region not in system>

,<No dynamic space available> ; SEE ALSO IE.UPN
,<Timeout on request> ; see also IS.TMO
,<Connection rejected>

,<Media inserted incorrectly>

SPI,-100.,<Spindown ignored>
FER,-101. ,<Forced error mark encountered>

Error Codes

C-3

; FILE PRIMITIVE CODES

.IOER.
. I0ER.
. IOER.
.IOER.
.IOER.
.I0ER.
. IOER.
. I0ER.
. IOER.
. IOER.
. IOER.
.IOER.
. IOER.
. IDER.
.IOER.
.I0ER.
.IOER.
. IOER.
.IOER.
.IOER.
. IDER.
. IOER.
.IOER.
. IOER.
.I0ER.
.IOER.

IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.

IE

IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.

IE
IE

NOD,-23.
DFU,-24.
IFU,-25.
NSF,-26.
LCK,-27.
HFU,-28.
WAC,-29.
CKS,-30.
WAT,-31.
RER,-32.
.WER,-33.
ALN,-34.
SNC,-35.
SQC,-36.
NLN,-37.
CLO,-38.
DUP,-57.
BVR,-63.
BHD,-64.
EXP,-75.
BTF,-76.
ALC,-84.
.ULK,-85.
.WCK, -86
IE.

DsSQ,-90

,<Caller's nodes exhausted>

,<Device full>

,<Index file full>

,<No such file>

,<Locked from read/write access>
,<File header full>

,<Accessed for write>

,<File header checksum failure>
,<Attribute control list format error>
,<File processor device read error>
,<File processor device write error>
,<File already accessed on LUN>
,<File ID, file number check>

,<File ID, sequence number check>
,<No file accessed on LUN>

,<File was not properly closed>
,<ENTER - duplicate entry in directory>
,<Bad version number>

,<Bad file header>

,<File expiration date not reached>
,<Bad tape format>

,<Allocation failure>

,<Unlock error>

., <Write check failure>

.,<Disk quota exceeded>

IE.PI0,-104.,<Deaccessed failed due to pending I/0>

; FILE CONTROL SERVICES CODES

.IOER.
.IOER.
.IOER.
.IOER.
.IDER.
.IOER.
.IOER.
.IOER.
.IOER.
.I0ER.
.IOER.
.IDER.
.IOER.
.IOER.
.I0ER.
.I0ER.
.IOER.
.IOER.
.IOER.

IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.

NBF, -39
RBG, -40
NBK, -41
ILL,-42
BTP,-43
RAC,-44
RAT,-45
RCN, -46
2DV, -48
FEX, -49
BDR, -50
RNM, -51
BDI,-52
FOP,-53
BNM, -54
BDV,-55
NFI,-60
IsQ,-61
NNC, =77

., <symbol> (OPEN - no buffer space available for file)
., <symbol>(Illegal record size)

.,<symbol> (File exceeds space allocated, no blocks)

. ,<symbol>(Illegal operation on file descriptor block)
. ,<symbol>(Bad record type)

.,<symbol>(Illegal record access bits set)
.,<symbol>(Illegal record attributes bits set)
.,<symbol>(Illegal record number - to00 large)
.,<symbol>(Rename - 2 different devices)
.,<symbol>(Rename - new file name already in use)

. ,<symbol>(Bad directory file)

.,<symbol>(Can't rename old file system)
.,<symbol>(Bad directory syntax)

., <symbol>(File already open)

.,<symbol>(Bad file name)

. ,<symbol>(Bad device name)

.,<symbol>(File ID was not specified)

. ,<symbol>(Illegal sequential operation)

., <symbol>(Not ANSI 'D' format byte count)

. NETWORK ACP, PSI, AND DECDATAWAY CODES

C-4 Error Codes

.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.I0ER.
.I0ER.
.IOER.
.IOER.

; ICS/ICR ERROR

.IOER.
.IOER.
.IOER.

IE.
IE.
1IE.
IE.
1IE.
1IE.
IE.
1E.
1IE.
.UKN,-97. ,<Unknown name>
IE.
IE.

IE

NNN,-68.,<No such node>

BLB,-70.,<Bad logical buffer>
URJ,-73.,<Connection rejected by user>
NRJ,-74.,<Connection rejected by network>
NDA,-78.,<No data available>

IQU,-91. ,<Inconsistent qualifier usage>
RES,-92.,<Circuit reset during operation>
TML,-93.,<Too many links to task>
NNT,-94.,<Not a network task>

IRR,-102. ,<Insufficient resources at remote node>
SUI,-103.,<Service in use>

CODES

IE.
IE.
IE.

; TTY ERROR CODES

.I0OER.
.IOER.

IE.
IE.

NLK,-79.,<Task not linked to specified ICS/ICR interrupts>
NST,-80.,<Specified task not installed>
FLN,-81.,<Device offline when offline request was issued>

IES,-82.,<Invalid escape sequence>
PES,-83.,<Partial escape sequence>

; RECONFIGURATION CODES

.IOER.
.IOER.
.I0ER.

IE.
IE.
IE.

; PCL ERROR CODES

.IOER.
.I0ER.
.IOER.

IE.
IE.
IE.

ICE,-47.,<Internal consistency error>
ONL,-67.,<Device online>
SZE,-98. ,<Unable to size device>

NTR,-87.,<Task not triggered>
REJ,-88.,<Transfer rejected by receiving CPU>
FLG,-89.,<Event flag already specified>

; SUCCESSFUL RETURN CODES---

DEFIN$
DEFIN$
DEFIN$
DEFIN$
DEFIN$

DEFIN$

DEFIN$

IS.
IS.
IS.
IS.
IS.

IS.

IS.

PND, +00. ; OPERATION PENDING
SuC,+01. ;OPERATION COMPLETE, SUCCESS
RDD,+02. ;FLOPPY DISK SUCCESSFUL COMPLETION
;OF A READ PHYSICAL, AND DELETED
;DATA MARK WAS SEEN IN SECTOR HEADER
TNC,+02. ; (PCL) SUCCESSFUL TRANSFER BUT MESSAGE
; TRUNCATED (RECEIVE BUFFER TOO SMALL).
CHW,+04. ; (IBM COMM) DATA READ WAS RESULT OF
;IBM HOST CHAINED WRITE OPERATION
BV,+05. ; (A/D READ) AT LEAST ONE BAD VALUE
;WAS READ (REMAINDER MAY BE GOOD) .
;BAD CHANNEL IS INDICATED BY A
;NEGATIVE VALUE IN THE BUFFER.
DAO,+02. ; SUCCESSFUL BUT WITH DATA OVERRUN

; (NOT TO BE CONFUSED WITH IE.DAO)

Error Codes

; TTY SUCCESS CODES

3’

DEFINS
DEFINS
DEFINS
DEFIN$
DEFINS
DEFIN$
DEFIN$
DEFIN$
DEFINS
DEFIN$

I1S.CR,<15%400+1>
IS.ESC,<33*400+1>
15.CC,<3*400+1>
I1S.ESQ,<233*x400+1>
1S.PES, <200%400+1>
IS.EQT, <4%¥400+1>
IS.TAB,<11%400+1>
IS.TMO,+2.
I1S.00B,+3.
IS.TMM, +4.

;CARRIAGE RETURN WAS TERMINATOR

;ESCAPE (ALTMODE) WAS TERMINATOR
;CONTROL-C WAS TERMINATOR

;ESCAPE SEQUENCE WAS TERMINATOR
;PARTIAL ESCAPE SEQUENCE WAS TERMINATOR
;EOT WAS TERMINATOR (BLOCK MODE INPUT)
;TAB WAS TERMINATOR (FORMS MODE INPUT)

;REQUEST TIMED OUT
;0UT OF BAND TERMINATOR (TERM IN HIGH BYTE)
;READ COMPLETED, MANAGEMENT MODE SEQ RCVD

Professional Bisync Success Codes

DEFIN$
DEFIN$
DEFIN$

IS.RVI, +2.
IS.CNV,+3.
IS.XPT,+5.

; DATA SUCC.

XMITTED; HOST ACKED W/RVI

; DATA SUCC. XMITTED; HOST ACKED W/CONVERSATION
; DATA SUCC. RECVD IN TRANSPARENT MODE

Professional Bisync Abort Codes

These codes are returned in the high byte of the first word of the IOSB
when the low byte contains IE.ABO.

s kEkEk

DEFINS
DEFIN$
DEFIN$
DEFIN$
DEFIN$
DEFIN$
DEFIN$

*

SB.KIL,-1.
SB.ACK,-2.
SB.NAK,-3.
SB.ENQ,-4.
SB.BOF,-5.
SB.TMO,-6.
SB.DIS,-7.

; ABORTED
; ABORTED
; ABORTED
; ABORTED
; ABORTED
; ABORTED
; ABORTED

THE NEXT AVAILABLE ERROR NUMBER IS:

FTTT L]

.IF
-MACRO
.ENDM
.ENDC
.ENDM

EQ, $$MSG
IOERR$ A
I0ERR$

I0ERR$

C-6 Error Codes

BY IO.KIL

BECAUSE TOO MANY ACKS RECD OUT OF SEQ
BECAUSE NAK THRESHOLD EXCEEDED
BECAUSE ENQ THRESHOLD EXCEEDED
BECAUSE OF I0.RLB BUFFER OVERFLOW
BECAUSE OF TIMEOUT

BECAUSE HOST DISCONNECTED W/ DLE, EOT

-105.

’
’
3
’

; DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD

FILE CONTROL SERVICES (FCS) RETURNS THESE CODES IN THE BYTE F.ERR

.MACRO
.MCALL
.IF
...GBL=1
.IFF
...GBL=0
.ENDC
IIF

DRERR$
.QIOE. ,DEFIN$
IDN, <$$$GBL>, <DEF$G>

; OF THE FILE DESCRIPTOR BLOCK (FDB). TO DISTINGUISH THEM FROM THE
; OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE
; F.ERR+1 IN THE FDB WILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE.

$$$GBL

NDF, $$MSG, $$MSG=0

; STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS WORD

.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QICE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QICE.
.QIO0E.
.QIOE.
.QICE.
.QIOE.

IE

IE
IE
IE

IE.
IE.
IE.
IE.

IE

IE.
IE.
IE.
IE.
IE.

IE

IE.

.UPN,-01
IE.
IE.
.UNS, -04
.ULN,-05
.HWR,-06.
ACT, -07.
ITS,-08.
FIX,-09.
CKP,-10.
.TCH,-11.
RBS,-15.
PRI,-16.
RSU,-17.
NSW,-18.
ILV,-19.
.ITN,-20.
LNF,-21.

INS,-02
PTS,-03

.,<Insufficient dynamic storage> ; SEE ALSO IE.NDR
.,<Specified task not installed>
.,<Partition too small for task>
.,<Insufficient dynamic storage for send>
.,<Un-assigned LUN>

,<Device handler not resident>

,<Task not active>

,<Directive inconsistent with task state>
,<Task already fixed/unfixed>

,<Issuing task not checkpointable>

,<Task is checkpointable>

,<Receive buffer is too small>
,<Privilege violation>

,<Resource in use>

,<No swap space available>

,<Illegal vector specified>

,<Invalid table number>

,<Logical name not found>

Error Codes C-7

.QIOE.
.QIOE.
.QICE.
.QIOE.
.QIOE.
.QICE.
.QICE.
.QICE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.
.QICE.
.QIOE.
.QIOE.
.QIOE.
.QIOE.

IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.

AST,-80.
MAP,-81.
iop,-83.
ALG,-84.
Wov,-85.
NVR,-86.
NVW, -87.
ITP,-88.
1BS,-89.
LNL,-90.
IUI,-91.
IDU,-92.
ITI,-93.
PNS,-94.
IPR,-95.
ILU,-96.
IEF,-97.
ADP,-98.
SDP,-99.

,<Directive issued/not issued from AST>
,<Illegal mapping specified>

,<Window has I/0 in progress>
,<Alignment error>

,<Address window allocation overflow>
,<Invalid region ID>

,<Invalid address window ID>

,<Invalid TI parameter>

,<Invalid send buffer size (.GT. 255.)>
,<LUN locked in use>

,<Invalid UIC>

,<Invalid device or unit>

,<Invalid time parameters>
,<Partition/region not in system>
,<Invalid priority (.GT. 250.)>
,<Invalid LUN>

,<Invalid event flag (.GT. 64.)>
,<Part of DPB out of user's space>
,<DIC or DPB size invalid>

; SUCCESS CODES FROM DIRECTIVES - PLACED IN THE DIRECTIVE STATUS WORD

DEFINS
DEFIN$
DEFINS
DEFIN$

DEFIN$

IF

.MACRO
. ENDM
.ENDC
.ENDM

IS.
IS.
I8.
IS.

IS.

EQ,

CLR,0
SET,2
SPD, 2
SuUP,3

WAT,4

$$MSG

DRERR$ A
DRERR$

DRERR$

C-8 Error Codes

;EVENT FLAG WAS CLEAR

;FROM CLEAR EVENT FLAG DIRECTIVE
;EVENT FLAG WAS SET

;FROM SET EVENT FLAG DIRECTIVE
;TASK WAS SUSPENDED

;LOGICAL NAME SUPERSEDED

;OPERATION INITIATED, WAIT FOR COMPLETION
;FROM "VAX-11 RSX" RMS-21 ELEP$ DIRECTIVE

i DEFINE THE GENERAL I/0 FUNCTION CODES - DEVICE INDEPENDENT

.MACRO
.MCALL
IF

.IFF
...GBL=0
.ENDC

FILIO$ $$$GBL
.WORD. ,DEFIN$

IDN,<$$$GBL>, <DEF$G>

; GENERAL I/0 QUALIFIER BYTE DEFINITIONS

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.

; EXPRESS QUEUE
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.

IQ.X,001,000
IQ.Q,002, 000
IQ.8,004,000
IQ.UMD,004,000
IQ.LCK,200,000

COMMANDS

I0.KIL,012,000
I0.RDN,022,000
10.UNL, 042,000
I0.LTK, 050,000
I0.RTK, 060, 000
I0.SET, 030, 000

; GENERAL DEVICE DRIVER CODES

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.

10.WLB, 000,001
I0.RLB, 000,002
10.L0V,010,002
10.LDO, 110,002
I0.ATT,000,003
I0.DET, 000,004

; DIRECTORY PRIMITIVE CODES

.WORD.
.WORD.
-WORD.

I0.FNA,000,011
ID.RNA,000,013
I0.ENA,000,014

;NO ERROR RECOVERY

;QUEUE REQUEST IN EXPRESS QUEUE
;SYNONYM FOR IQ.UMD

;USER MODE DIAGNOSTIC STATUS REQUIRED
;MODIFY IMPLIED LOCK FUNCTION

;KILL CURRENT REQUEST

;1/0 RUNDOWN

;UNLOAD I/0 HANDLER TASK
;LOAD A TASK IMAGE FILE
;RECORD A TASK IMAGE FILE
ySET CHARACTERISTICS FUNCTION

;WRITE LOGICAL BLOCK

;READ LOGICAL BLOCK

;LOAD OVERLAY (DISK DRIVER)
;LOAD D-SPACE OVERLAY (DISK)
;ATTACH A DEVICE TO A TASK
;DETACH A DEVICE FROM A TASK

;FIND FILE NAME, IN DIRECTORY
;REMOVE FILE NAME FROM DIRECTORY
;ENTER FILE NAME IN DIRECTORY

Error Codes

C-9

; FILE PRIMITIVE CODES

.WORD. I0.CLN,000,007 ;CLOSE OUT LUN

.WORD. I0.ULK,000,012 ;UNLOCK BLOCK

.WORD. I0.ACR,000,015 ;ACCESS FOR READ
.WORD. I0.ACW,000,016 ;ACCESS FOR WRITE
.WORD. I0.ACE,000,017 ;ACCESS FOR EXTEND
.WORD. I0.DAC,000,020 ;DE-ACCESS FILE

.WORD. I0.RVB,000,021 ;READ VIRITUAL BLOCK
.WORD. I0.WVB,000,022 ;WRITE VIRITUAL BLOCK
.WORD. I0.EXT,000,023 EXTEND FILE

.WORD. I0.CRE,000,024 ;CREATE FILE

.WORD. I0.DEL,000,025 ;DELETE FILE

.WORD. I0.RAT,000,026 ;READ FILE ATTRIBUTES
.WORD. I0.WAT,000,027 ;WRITE FILE ATTRIBUTES
.WORD. I0.APV,010,030 ;PRIVILEGED ACP CONTROL
.WORD. I0.APC,000,030 ;ACP CONTROL

.MACRO FILIO$ A

.ENDM FILIO$

.ENDM FILIO$

; DEFINE THE I/0 FUNCTION CODES THAT ARE SPECIFIC TO INDIVIDUAL DEVICES

.MACRD SPCIO$ $$$GBL
.MCALL .WORD. ,DEFIN$

IF IDN, <$$$GBL>, <DEF$G>
...GBL=1

IFF

...GBL=0

.ENDC

; I/0 FUNCTION CODES FOR SPECIFIC DEVICE-DEPENDENT FUNCTIONS

.WORD. 10.WLV,100,001 ;(DECTAPE) WRITE LOGICAL REVERSE
.WORD. 10.WLS,010,001 ;(COMM.) WRITE PRECEDED BY SYNC TRAIN
.WORD. I10.WNS,020,001 ;(COMM.) WRITE, NO SYNC TRAIN

.WORD. I0.WAL,010,001 ;(TTY) WRITE PASSING ALL CHARACTERS
.WORD. I0.WMS,020,001 ;(TTY) WRITE SUPPRESSIBLE MESSAGE
.WORD. 10.CC0,040,001 ;(TTY) WRITE WITH CANCEL CONTROL-0
.WORD. I0.WBT,100,001 ;(TTY) WRITE WITH BREAKTHROUGH

.WORD. I0.WLT,010,001 ;(DISK) WRITE LAST TRACK

.WORD. I0.WLC,020,001 ;(DISK) WRITE LOGICAL W/ WRITECHECK
.WORD. I0.WPB,040,001 ;(DISK) WRITE PHYSICAL BLOCK

.WORD. 10.WDD,140,001 ;(FLOPPY DISK) WRITE PHYSICAL W/ DELETED DATA
.WORD. I0.RSN,140,002 ;(MSCP DISK) READ VOLUME SERIAL NUMBER
.WORD. I10.RLV,100,002 ;(MAGTAPE,DECTAPE) READ REVERSE
.WORD. I0.RST,001,002 ;(TTY) READ WITH SPECIAL TERMINATOR
.WORD. I0.RAL,010,002 ;(TTY) READ PASSING ALL CHARACTERS
.WORD. I0.RNE,020,002 ;(TTY) READ WITHOUT ECHO

.WORD. I0.RNC,040,002 ;(TTY) READ - NO LOWERCASE CONVERT
.WORD. I0.RTM,200,002 ;(TTY) READ WITH TIME-OUT

.WORD. I10.RDB,200,002 ;(CARD READER) READ BINARY MODE
.WORD. 10.SCF,200,002 ;(DISK) SHADOW COPY FUNCTION

.WORD. I0.RHD,010,002 ;(COMM.) READ, STRIP SYNC

C-10 Error Codes

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.

I0

I0

10

I0
I0

-RNS, 020,002
I0.
I10.
I0.
I0.
I0.
I0.
I0.
I0.
10.
I0.
10.
-RPL, 020,005
I0.
I0.
10.
.SEC, 120,005
10.
10.
I0.
I0.
10.
I0.
10.
I0.
I0.
I0.
I0.
I0.
I0.
I0.
10.
10.
I0.

CRC, 040,002
RPB, 040,002
RDF, 240,002
RLC,020,002
ATA, 010,003
GTS, 000,005
R1C, 000,005
INL,000,005
TRM, 010,005
RWD, 000, 005
SPB, 020,005

SPF, 040,005
STC, 100,005
SMD, 110,005

RWU, 140, 005
SM0, 160,005
HNG, 000, 006
HLD, 100,006
BRK, 200,006
RBC, 000, 006
MOD, 000, 006
HDX, 010,006
FDX, 020,006
SYN, 040,006
EOF, 000,006
ERS, 020, 006
DSE, 040,006
RTC, 000,007
SA0, 000,010
§80,000,011
RPR,000,011

.MS0,000,012
I0.
I0.
I0.
I0.
I0.
.8DI, 000,026
I0.
I0.
I0.
I0.
I0.

RTT,001,012
SL0, 000,013
MLO, 000,014
LED, 000,024
Sh0, 000,025

SCS, 000,026
REL, 000,027
MCS, 000,027
ADS, 000,030
CCI,000,030

.LOD, 000,030
.MDI, 000,031
I0.
I0.
HT.

DCI, 000,031
PAD, 000,031
RPP, 010,000

; (COMM.) READ, DON'T STRIP SYNC

; (COMM.) READ, DON'T CLEAR CRC

; (DISK) READ PHYSICAL BLOCK

; (DISK) READ DISK FORMAT

; (DISK,MAGTAPE) READ LOGICAL W/ READCHECK
; (TTY) ATTACH WITH ASTS

; (TTY) GET TERMINAL SUPPORT CHARACTERISTICS
; (AFC,ADO1,UDC) READ SINGLE CHANNEL

; (COMM.) INITIALIZATION FUNCTION

; (COMM.) TERMINATION FUNCTION

; (MAGTAPE ,DECTAPE) REWIND

; (MAGTAPE) SPACE "N" BLOCKS

; (DISK) REPLACE LOGICAL BLOCK (RESECTOR)
; (MAGTAPE) SPACE "N" EOF MARKS

;SET CHARACTERISTIC

; (FLOPPY DISK) SET MEDIA DENSITY

; SENSE CHARACTERISTIC

; (MAGTAPE ,DECTAPE) REWIND AND UNLOAD

; (MAGTAPE) MOUNT & SET CHARACTERISTICS
; (TTY) HANGUP DIAL-UP LINE

; (TMS) HANGUP BUT LEAVE LINE ON HOLD

; (PRO/TTY) SEND SHORT OR LONG BREAK
;READ MULTICHANNELS (BUFFER DEFINES CHANNELS)
; (COMM.) SETMODE FUNCTION FAMILY

; (COMM.) SET UNIT HALF DUPLEX

; (COMM.) SET UNIT FULL DUPLEX

; (COMM.) SPECIFY SYNC CHARACTER

; (MAGTAPE) WRITE EOF

; (MAGTAPE) ERASE TAPE

; (MAGTAPE) DATA SECURITY ERASE

;READ CHANNEL - TIME BASED

; (UDC) SINGLE CHANNEL ANALOG OUTPUT

; (UDC) SINGLE SHOT, SINGLE POINT

; (TTY) READ WITH PROMPT

; (UDC) SINGLE SHOT, MULTI-POINT

: (TTY) READ WITH TERMINATOR TABLE

; (UDC) LATCHING, SINGLE POINT

; (UDC) LATCHING, MULTI-POINT

; (LPS11) WRITE LED DISPLAY LIGHTS

; (LPS11) WRITE DIGITAL OUTPUT REGISTER
; (LPS11) READ DIGITAL INPUT REGISTER

; (UDC) CONTACT SENSE, SINGLE POINT

; (LPS11) WRITE RELAY

; (UDC) CONTACT SENSE, MULTI-POINT

; (LPS11) SYNCHRONOUS A/D SAMPLING

; (UDC) CONTACT INT - CONNECT

; (LPA11) LOAD MICROCODE

; (LPS11) SYNCHRONOUS DIGITAL INPUT

; (UDC) CONTACT INT - DISCONNECT

; (PSI) DIRECT CONTROL OF X.29 PAD

; (PSI) RESET PAD PARAMETERS SUBFUNCTION

Error Codes

C-11

.WORD. 10.XMT,000,031 ;(COMM.) TRANSMIT SPECIFIED BLOCK WITH ACK
.WORD. 10.XNA,010,031 ;(COMM.) TRANSMIT WITHOUT ACK
.WORD. 10.INI,000,031 ;(LPA11) INITIALIZE
.WORD. 10.HIS,000,032 ;(LPSi1) SYNCHRONOUS HISTOGRAM SAMPLING
.WORD. 1I0.RCI,000,032 ;(UDC) CONTACT INT - READ
.WORD. 10.RCV,000,032 ;(COMM.) RECEIVE DATA IN BUFFER SPECIFIED
.WORD. 10.CLK,000,032 ;(LPA11) START CLOCK
.WORD. 10.CSR,000,032 ;(BUS SWITCH) READ CSR REGISTER
.WORD. 10.MD0,000,033 ;(LPS11) SYNCHRONOUS DIGITAL OUTPUT
.WORD. 10.CTI,000,033 ;(UDC) TIMER - CONNECT
.WORD. 10.CON,000,033 ;(COMM.) CONNECT FUNCTION
;(VT11) - CONNECT TASK TO DISPLAY PROCESSOR
; (BUS SWITCH) CONNECT TO SPECIFIED BUS
; (COMM. /PRO) DIAL TELEPHONE AND ORIGINATE
.WORD. 10.0RG,010,033 ;(COMM.) INITIATE CONNECTION IN ORIGINATE MODE
.WORD. 1I0.ANS,020,033 ;(COMM.) INITIATE CONNECTION IN ANSWER MODE
.WORD. 10.STA,000,033 ;(LPA11) START DATA TRANSFER
; (XJDRV) - SHOW STATE
.WORD. 10.DTI,000,034 ;(UDC) TIMER - DISCONNECT
.WORD. 10.DIS,000,034 ;(COMM.) DISCONNECT FUNCTION
:(VT11) - DISCONNECT TASK FROM DISPLAY PROCESSOR
; (BUS SWITCH) SWITCHED BUS DISCONNECT
.WORD. I0.MDA,000,034 ;(LPS11) SYNCHRONOUS D/A OUTPUT
.WORD. 10.DPT,010,034 ;(BUS SWITCH) DISCONNECT TO SPECIF PORT NO.
.WORD. 10.RTI,000,035 ;(UDC) TIMER - READ
.WORD. 10.CTL,000,035 ;(COMM.) NETWORK CONTROL FUNCTION
.WORD. 10.STP,000,035 ;(LPS11,LPA11) STOP IN PROGRESS FUNCTION
; (VT11) - STOP DISPLAY PROCESSOR
.WORD. 10.SWI,000,035 ;(BUS SWITCH) SWITCH BUSSES
.WORD. I0.CNT,000,036 ;(VTi1) - CONTINUE DISPLAY PROCESSOR
; (XJDRV) - SHOW COUNTERS
.WORD. 10.ITI,000,036 ;(UDC) TIMER - INITIALIZE

; EXTENDED I/0 FUNCTION
.WORD. 10.EI0,000,037 ;(TTY) TSA EXTENDED I/0

; PRO 300 SERIES BITMAP FUNCTIONS

; NOTE: THESE FUNCTIONS ARE FOR DEC USE ONLY AND ARE SUBJECT TO CHANGE

.WORD. I10.RSD,030,014 ; READ SPECIAL DATA

.WORD. I0.WSD,010,013 ; WRITE SPECIAL DATA

DEFIN$ SD.TXT,O ; TEXT DATA TYPE FOR SPECIAL DATA
DEFIN$ SD.GDS,1 ; GIDIS DATA TYPE FOR SPECIAL DATA

: PROFESSIONAL 300 BISYNC DRIVER (XJDRV) FUNCTIONS

.WORD. SB.PRT,020,003 ; ATTACH AS A PRINTER

.WORD. SB.CLR,010,036 ; CLEAR COUNTERS (I0.CNT SUBFUNCTION)
.WORD. SB.RDY,010,033 ; SET DEVICE STATE READY (I0.STA SUBFUNC)
.WORD. SB.NRD,020,033 ; SET DEVICE STATE NOT READY

.WORD. 10.LBK,000,035 ; PERFORM LOOPBACK TEST

.WORD. SB.CBL,010,035 ; PERFORM CABLE LOOPBACK TEST

.WORD. SB.CLK,020,035 ; DEVICE PERFORMS LINE CLOCKING

C-12 Error Codes

’

; COMMUNICATIONS FUNCTIONS

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.

.CPR,010,033
.CAS,020,033
.CRJ,040,033
.CB0, 110,033
.CTR, 210,033
.GNI,010,035
.GLI, 020,035
.GLC,030,035
.GRI, 040,035
.GRC, 050,035
.GRN, 060,035
.CSM,070,035
.CIN, 100,035
.5PW,110,035
.CPW, 120,035
.NLB, 130,035
.DLB, 140,035

; ICS/ICR I/0 FUNCTIONS

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.

I0.
10.
.LDI,000,016
.UDI, 010,023
.LTI, 000,017
.UTI, 020,023
.LTY, 000,020
.UTY, 030,023
.LKE, 000,024
.UER, 040,023
-NLK, 000,023
.ONL,000,037
.FLN, 000,026
.RAD, 000,021

CTY, 000,007
DTY,000,015

; IP11 I/0 FUNCTIONS

’

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.

I0.

I0

10
10
10

MAOD, 010,007

.LEI, 010,017
I0.
I0.
10.
.UEI, 050,023
.USI,060,023
.CSI,000,026
10.
I10.
I0.
I0.

RDD, 010,020
RMT, 020,020
LSI,000,022

DSI, 000,027
RAM, 000,032
RLK,000,013
EBT,000,011

; PCL11 I/0 FUNCTIONS

;CONNECT NO TIME-QUTS
;CONNECT WITH AST

;CONNECT REJECT

;BOOT CONNECT -

; TRANSPARENT CONNECT

;GET NODE INFORMATION

;GET LINK INFORMATION

;GET LINK INFO CLEAR COUNTERS
;GET REMOTE NODE INFORMATION
;GET REMOTE NODE ERROR COUNTS
;GET REMOTE NODE NAME

;CHANGE SOLO MODE

;CHANGE CONNECTION INHIBIT
;SPECIFY NETWORK PASSWORD
;CHECK NETWORK PASSWORD

;NSP LOOPBACK

;DDCMP LOOPBACK

;CONNECT TO TERMINAL INTERRUPTS
;DISCONNECT FROM TERMINAL INTERRUPTS
;LINK TO DIGITAL INTERRUPTS

;UNLINK FROM DIGITAL INTERRUPTS

;LINK TO COUNTER MODULE INTERRUPTS
;UNLINK FROM COUNTER MODULE INTERRUPTS
;LINK TO REMOTE TERMINAL INTERRUPTS
;UNLINK FROM REMOTE TERMINAL INTERRUPTS
;LINK TO ERROR INTERRUPTS

;UNLINK FROM ERROR INTERRUPTS

;UNLINK FROM ALL INTERRUPTS

;UNIT ONLINE

;UNIT OFFLINE
;READ ACTIVATING DATA

;MULTIPLE ANALOG OUTPUTS

;LINK EVENT FLAGS TO INTERRUPT
;READ DIGITAL DATA

;READ MAPPING TABLE

;LINK TO DSI INTERRUPTS
;UNLINK EVENT FLAGS

;UNLINK FROM DSI INTERRUPTS
;CONNECT TO DSI INTERRUPTS
;DISCONNECT FROM DSI INTERRUPTS
;READ ANALOG MAPPING TABLES
;READ RESOURCE LINKAGES

;CHECK EBIT STATUS

Error Codes

C-13

.WORD. I0.ATX,000,001 ;ATTEMPT TRANSMISSION
.WORD. IO0.ATF,000,002 ;ACCEPT TRANSFER

.WORD. I0.CRX,000,031 ;CONNECT FOR RECEPTION
.WORD. I0.DRX,000,032 ;DISCONNECT FROM RECEPTION
LWORD. IO.RTF,000,033 ;REJECT TRANSFER

.MACRO SPCIO$ A
.ENDM SPCIOS
.ENDM SPCIO$

DEFINE THE I/0 CODES FOR USER-MODE DIAGNOSTICS. ALL DIAGNOSTIC
FUNCTIONS ARE IMPLEMENTED AS A SUBFUNCTION OF I/0 CODE 10 (OCTAL).

s wr we -

.MACRO UMDIO$ $$$GBL
.MCALL .WORD. ,DEFIN$
.IF IDN <$$$GBL>,<DEF$G>
...GBL=1
.IFF
...GBL=0
.ENDC

; DEFINE THE GENERAL USER-MODE I/O QUALIFIER BIT.

.WORD. 1Q.UMD,004,000 ;USER-MODE DIAGNOSTIC REQUEST

; DEFINE USER-MODE DIAGNOSTIC FUNCTIONS.

.WORD. 10.HMS,000,010 ;(DISK) HOME SEEK OR RECALIBRATE

.WORD. 10.BLS,010,010 ;(DISK) BLOCK SEEK

.WORD. 10.0FF,020,010 ;(DISK) OFFSET POSITION

.WORD. 10.RDH,030,010 ;(DISK) READ DISK HEADER

.WORD. 10.WDH,040,010 ;(DISK) WRITE DISK HEADER

.WORD. 10.WCK,050,010 ;(DISK) WRITECHECK (NONTRANSFER)

.WORD. 10.RNF,080,010 ; (DECTAPE) READ BLOCK NUMBER FORWARD
.WORD. 10.RNR,070,010 ; (DECTAPE) READ BLOCK NUMBER REVERSE
.WORD. 10.LPC,100,010 ;(MAGTAPE) READ LONGITUDINAL PARITY CHAR
.WORD. I0.RTD,120,010 ;(DISK) READ TRACK DESCRIPTOR

.WORD. 10.WTD,130,010 ;(DISK) WRITE TRACK DESCRIPTOR

.WORD. 10.TDD,140,010 ;(DISK) WRITE TRACK DESCRIPTOR DISPLACED
.WORD. 10.DGN,150,010 ;DIAGNOSE MICRO PROCESSOR FIRMWARE
.WORD. 10.WPD,160,010 ;(DISK) WRITE PHYSICAL BLOCK

.WORD. 10.RPD,170,010 ;(DISK) READ PHYSICAL BLOCK

.WORD. I0.CER,200,010 ;(DISK) READ CE BLOCK

.WORD. 10.CEW,210,010 ;(DISK) WRITE CE BLOCK

; MACRO REDEFINITION TO NULL

.MACRO UMDIO$ A
.ENDM

C-14 Error Codes

.ENDM

HANDLER ERROR

UMDIO$

CODES RETURNED IN I/0 STATUS BLOCK ARE DEFINED THROUGH THIS

MACRO, WHICH THEN CONDITIONALLY INVOKES THE MESSAGE-GENERATING MACRO
FOR THE QIOSYM.MSG FILE

.MACRO
DEFIN$
IF

.MCALL
. IOMG.
.ENDC
.ENDM

.IOER. SYM,LO,MSG
SYM,LO

GT, $$MSG

.IOMG.

SYM, L0, <symbol> (MSG)

.IOER.

1/0 ERROR CODES ARE DEFINED THROUGH THIS MACRO, WHICH THEN INVOKES THE

ERRQR MESSAGE-

GENERATING MACRO; ERROR CODES -129 THROUGH -256

ARE USED IN THE QIOSYM.MSG FILE

.MACRO
DEFIN$
IF

.MCALL
. IOMG.
.ENDC
.ENDM

CONDITIONALLY

.MACRO
.WORD
.ENABL
.ASCIZ
.DSABL
.EVEN
.IIF
.ENDM

.QIOE. SYM,LO,MSG
SYM,LO

GT, $$MSG)

.IOMG.

SYM,<L0-128.>, <symbol> (MSG)

.QIOE.

GENERATE DATA FOR WRITING A MESSAGE FILE

.IOMG. SYM,LO,MSG
-~0<symbol>(L0)

LC

“MSG*

LC

LT, “0<symbol>($$$MAX+<symbol>(L0)) , $$$MAX=-"0<symbol>(LO)
.I0MG.

DEFINE THE SYMBOL SYM WHERE LO IS THE LOW-ORDER BYTE, HI IS THE HIGH BYTE

.MACRO
DEFINS$
.ENDM

.DSABL

.WORD. SYM,LO,HI

SYM, <symbol> (HI*400+L0)
.WORD.

LC

Error Codes C-15

Index

A

A/D converter
function code list, B-11
AA11-K D/A converter, 13-2
AAV11-A D/A converter, 13-2
AD11-K converter, 13-2
Address
multicast mode (XEDRYV), 10-2
pairs
Ethernet (XEDRYV), 10-2
physical mode (XEDRYV), 10-2
Addr parameter
DIR$ macro, 1-16
ADINP: subroutine
initiating single analog
output (K-series), 13-7
ADSWP: subroutine
initiating synchronous A/D sweep
K-series, 13-8
LADRYV, 12-3
ADV11-A D/A converter, 13-2
Adwell parameter
XRATE: subroutine
K-series, 13-28
LADRV, 12-23
ALUNS directive
example, 1-18
LUN assignment, 1-4
ALUNS$ macro, 1-15, 1-17
AM11-K multiple gain multiplexer, 13-2
Answer speed
TTDRV
determining for modem, 2-84
Argl parameter
CALLS
calling macro (LADRYV), 12-24
macro (K-series), 13-29

Array
setting for buffered
sweep (K-series), 13-26
ASG TKB option
LUN assignment, 1-4
ASR-33 teletypewriter, 2-4
ASR-35 teletypewriter, 2-4
ASSIGN command
LUN
assignment, 1-4
redirection, 1-3
AST, 1-9, 1-10
blocking, 1-11
interrupt routine, 1-10
I0.ATA function (TTDRV), 2-22
processing, 1-11
queue, 1-11
recognition
disable, 1-11
enable, 1-11
service
exit routine, 1-11
termination, 1-24
unsolicited input (TTDRYV), 2-20
using,
event flag, 1-11
Ast2 parameter, 2-12
IO.ATA function (TTDRYV), 2-24
ast addr parameter
device-specific (CRDRYV), 9-3
Ast parameter
general (TTDRV), 2-12
I/O completion, 1-36
IO.ATA function (TTDRYV), 2-23
IO.ATT function, 1-27
10.CCO function (TTDRYV), 2-26
IO.DET function, 1-28
I0.EIO function (TTDRYV), 2-28

Index-1

Ast parameter (cont’d.)

I0.GTS function (TTDRYV), 2-35
IO.HNG function (TTDRV), 2-38
IO XIL function, 1-30
I0.RAL function (TTDRV), 2-38
IO.RLB function, 1-30
IO.RNE function (TTDRV), 2-40
IO.RPR function (TTDRV), 2-43
IO.RST function (TTDRV), 2-45
IO.RTT function (TTDRV), 2-47
I0.RVB function, 1-31
10.SMC function (TTDRV), 2-62
I0.WAL function (TTDRV), 2-49
I0.WBT function (TTDRV), 2-51
I0.WLB function, 1-32
I0.WVB function, 1-33
IO.XCL function (XEDRYV), 10-19
IO.XIN function (XEDRV), 10-20
I0.XOP function (XEDRV), 10-6
I0.XRC function (XEDRYV), 10-16
10.XSC function (XEDRV), 10-7
I0.XTL function (XEDRV), 10-21
I0.XTM function (XEDRV), 10-12
QIOS$ basic syntax, 1-5, 1-9
SF.GMC function (TTDRV), 2-53
standard function
(UNIBUS switch driver), 14-3
ASTX$S directive, 1-11
ASTX$S macro, 1-15, 1-24
Asynchronous I/0
XEDRYV, 10-24
Asynchronous System Trap
See AST
Autobaud speed detection
TTDRV, 2-84
Autocall
enabling for modem (TTDRV), 2-55
Auxiliary buffer
XEDRV
transmitting, 10-12

B

Badge Reader hint
TTDRYV, 2-84
Bad sector
track (disk driver), 4-11
Baud rate
list (TTDRYV), 2-60
split
modem support (TTDRV), 2-84

Index-2

Binary prompt

TTDRYV, 2-14, 2-29, 2-43
22-bit addressing
LADRYV, 12-31, 12-32
Blkh parameter
standard function (disk driver), 4-7
Block
size (tape driver), 6-14
nolabel tape, 6-17
Breakthrough write
TTDRYV, 2-18, 2-20
nonprivileged task, 2-20
privileged task, 2-20
Buf0 parameter
SETIBF: subroutine
K-series, 13-26
LADRYV, 12-21
Bufadd parameter
device-specific function
receiving (LRDRV), 11-9
Buffer
diagnostic (XEDRV), 10-22
full escape sequence (TTDRV), 2-76
intermediate (TTDRV), 2-81
item list 1 structure (TTDRV), 2-32
item list 2 structure
IO.EIO function (TTDRV), 2-34
load microcode
10.LOD function (LADRV), 12-26
management
call RLSBUF (LADRYV), 12-29
device queue (LADRYV), 12-29
input sweep (LADRYV), 12-29
K-series, 13-29, 13-30
LADRYV, 12-28, 12-29
output sweep (LADRYV), 12-29
overrun (LADRV), 12-29
task queue (LADRV), 12-29
pool
private (TTDRV), 2-80
protocol /address pair (XEDRV), 10-9
read
protocol type (XEDRV), 10-17
reading
destination address (XEDRV), 10-18
Ethernet address (XEDRV), 10-16
protocol type (XEDRV), 10-17
received character (TTDRV), 2-79
removing from device
queue (K-series), 13-24
set
multicast address (XEDRYV), 10-10

Buffer
set (cont’d.)

protocol type (XEDRYV), 10-14
setting
destination address (XEDRV), 10-12
characteristics (XEDRV), 10-8
size
maximum, 10-24
minimum, 10-24
remote line (TTDRV), 2-84
task
checkpointing (TTDRV), 2-79
type-ahead (TTDRV), 2-79
Buffer auxiliary characteristic
zero size, 10-24
Buf parameter
GLUNS$ macro, 1-22
Bufpir parameter
I0.STA function (LADRYV), 12-27

C

C.CHRL
XEDRV
destination address, 10-14
multicast address, 10-11
protocol /address buffer, 10-10
reading
destination address, 10-18
Ethernet address, 10-17
protocol type, 10-17
set characteristics buffer, 10-8
C.DATI
XEDRV
destination address, 10-14
multicast address, 10-11
protocol /address buffer, 10-10
protocol type, 10-14
reading
destination address, 10-18
Ethernet address, 10-17
protocol type, 10-17
set characteristics buffer, 10-8
C.DATO
XEDRV
destination address, 10-14
multicast address, 10-11
protocol /address buffer, 10-10
protocol type, 10-14
reading
Ethernet address, 10-17
protocol type, 10-17

C.DATO
XEDRV (cont'd.)

set characteristics buffer, 10-8
C.STAT
XEDRV
destination address, 10-14
multicast address, 10-11
protocol/address buffer, 10-10
protocol type, 10-14
reading
destination address, 10-18
Ethernet address, 10-17
protocol type, 10-17
set characteristics buffer, 10-8
C.TYP
XEDRV
multicast address, 10-11
protocol/address buffer, 10-10
protocol type, 10-14
reading
destination address, 10-18
Ethernet address, 10-17
protocol type, 10-17
set characteristics buffer, 10-8
setting destination address, 10-14
CALL macro
special-purpose (K-series), 13-28
CALL op code
standard (K-series), 13-28
CALLS
calling macro example (LADRV), 12-24
special calling macro (LADRV), 12-24
Cancel I/O
VTDRYV, 3-4
Card reader (CRDRYV), 9-1
checks
pick, 9-4
read, 9-4
recovery, 9-5
stack, 9-5
console message, 9-5, 9-6
control character, 9-7, 9-8
formats
alphanumeric, 9-8
binary, 9-8
data, 9-8
function, 9-7
code list, B-12
indicator, 9-4, 9-5
input card limitation, 9-8
input error, 9-4
programming hint, 9-8

Index-3

Card reader (CRDRYV) (cont'd.)

ready message, 9-5
switches, 9-4, 9-5
power, 9-4
reset, 9-5
stop, 9-5
Carriage return
automatic (TTDRYV), 2-77
CTRL/R (TTDRYV), 2-71
Cassette
function code list, B-12
Cathode-ray tube

See CRT
Cb parameter
device-specific function
tape driver, 6-7
VTDRYV, 3-3
I0.STC function (VTDRYV), 3-6
CE.ACN address protocol/pair
XEDRYV, 10-10
CE.IUM address protocol/pair
XEDRYV, 10-10
CE.MCE multicast error
XEDRYV, 10-11
CE.NMA multicast error
XEDRY, 10-11
CE.PCN protocol usage conflict
XEDRYV, 10-10
CE.RES error code
XEDRYV, 10-9
CE.RTL error code
XEDRYV, 10-9
CE.RTS error code
XEDRYV, 10-9
Channel
definition
multiaccess (XEDRV), 10-27
set information (K-series), 13-25
Character
control
CRDRYV, 9-7, 9-8
TTDRV, 2-69 to 2-72
padding (tape driver), 6-17
receive buffer (TTDRV), 2-79
unprocessed (TTDRV), 2-61
Characteristic
resetting
importance of (tape driver), 6-15
set
tape driver, 6-10

Index-4

Characteristics
buffer

XEDRYV, 10-8
zero size, 10-24
clearing on remote (TTDRV), 2-84
multiple (VIDRV), 3-6
obtaining (tape driver), 6-8
physical (disk driver), 4-1
setting
Ethernet, 10-7
protocol /address (XEDRV), 10-9
side effect (TTDRV), 2-65
terminal (VTDRYV), 3-7
XEDRYV multicast address, 10-10
table (VIDRYV), 3-8
terminal
get multiple (TTDRV), 2-20, 2-53
set multiple (TTDRV), 2-20
Checkpointing
during prompt (TTDRYV), 2-16, 2-42
during read (TTDRV), 2-30
task (VIDRV), 3-5
task buffer (TTDRYV), 2-79
terminal
input TTDRV, 2-83
Check recovery
CRDRYV, 9-5
Ckesr parameter
I0.CLK function (LADRV), 12-26
Clock
computing rate and presetting (K-series),
13-27
CLOCKA: subroutine
setting clock A rate
K-series, 13-10
LADRY, 12-6
Clock B
controlling (K-series), 13-11
CLOCKB: subroutine
controlling clock B
K-series, 13-11
LADRYV, 12-7
Clock start command
LADRYV, 12-25
Communication
function code list, B-12
parallel link, B-13
Control and status register
See CSR
Control character
TTDRV
escape sequence, 2-75

Controller
definition (XEDRV), 10-26
Conversion
A/D input to floating
point (K-series), 13-12
unsigned integer (K-series), 13-18
Cpu parameter
UNIBUS switch driver
device-specific, 14-4
I0.CON function, 14-5
CR11 card reader, 9-1
CRT, 2-7
rubout (TTDRV), 2-21
CSR
definition (XEDRV), 10-26
CTRL/C character
TTDRYV, 2-15, 2-70
aborting, 2-70
abort task, 2-19
directed to task, 2-70
excluding, 2-19
hold screen mode, 2-70
terminate read, 2-70
TF.RPT, 2-16
TF.RST, 2-17
CTRL/I character
TTDRV, 2-70
CTRL/J character
TTDRYV, 2-70
CTRL/K character
TTDRV, 2-70
CTRL/L character
TTDRV, 2-71
CTRL/M character
TTDRYV, 2-71
CTRL/O character
TTDRYV, 2-15, 2-16, 2-71
canceling, 2-18, 2-20, 2-25, 2-29, 2-30,
2-50, 2-52
canceling on breakthrough write, 2-27
IO.RPR, 2-42
state, 2-61
TF.RPT, 2-16
TF.RST, 2-17
CTRL/Q character
TTDRYV, 2-15
resume output, 2-71
state, 2-61
TE.RPT, 2-16
TE.RST, 2-17
CTRL/R character
TTDRYV, 2-16, 2-71

CTRL/R character
TTDRYV (cont'd.)

carriage return, 2-71
line feed, 2-71
prompt, 2-16
redisplay, 2-27
automatic, 2-18
input, 2-20
retype, 2-20
TE.RPR, 2-16, 2-30
TF.RST, 2-17
CTRL/S character
TTDRYV, 2-15, 2-71
breakthrough write, 2-20
state, 2-61
suspend output, 2-71
TF.RPT, 2-16
TE.RST, 2-17
CTRL/U character
TTDRYV, 2-16, 2-72
delete start of line, 2-72
prompt, 2-16
TF.RPR, 2-16, 2-30
TF.RST, 2-17
CTRL/X character
TTDRYV, 2-72, 2-74
clear type-ahead, 2-72
CTRL/Z character
TTDRYV, 2-15, 2-72, 2-74
exit task, 2-72
TE.RPT, 2-16
Cursor
control (TTDRV)
terminal-independent, 2-21, 2-81
position (TTDRV), 2-15
restore, 2-29, 2-48, 2-50
save, 2-29, 2-48, 2-50
CVADF: subroutine
converting A/D input to floating point
K-series, 13-12
LADRYV, 12-8
CXA16 serial line multiplexer
TTDRYV, 2-83
CXB16 serial line multiplexer
TTDRYV, 2-83
CXY08 serial line multiplexer
TTDRYV, 2-83

Index-5

D

DASWP: subroutine
initiating synchronous D/A sweep
K-series, 13-12
LADRYV, 12-8
DDDRY, 5-1
DECtape
function code list, B-8, B-13
Dedicated mode
LADRYV,, 12-1
DELETE key
TTDRYV, 2-73
Density
bit 11 characteristic (tape driver), 6-9
parameter
device-specific (disk driver), 4-9
selection (tape driver), 6-15
DEUNA driver
See XEDRV
DEV-ctl parameter
10.XOP function (XEDRYV), 10-6
Device
atttaching, 1-27
characteristic (tape driver), 6-1
detaching, 1-28
list of supported, 1-42, 1-43
name
nonphysical, 1-20
physical, 1-19, 1-20
pseudo, 1-20
REASSIGN command, 1-20
REDIRECT command, 1-20
TI
pseudo, 1-21
virtual, 1-21
Device-specific QI0$
LADRYV, 12-25
Dev parameter
ALUNS$ macro, 1-18
DH11 multiplexer
TTDRYV, 2-82
DH11 serial line multiplexer
TTDRV
remote line, 2-84
DHQ11 multiplexer
TTDRV, 2-82
DHU11 multiplexer
TTDRYV, 2-82
DHV11 multiplexer
TTDRYV, 2-82

Index-6

Diagnostic
buffer
p5 address, 10-22
pé6 size, 10-22
XEDRYV, 10-22
function
I0.DGN (DDDRYV), 5-4
I0.XRC, 10-22, 10-23
I0.XTM, 10-22, 10-23
no data transfer (XEDRV), 10-24
request block (XEDRYV), 10-22
user-mode function, 1-34, 1-35
Digital input
K-series, 13-14
Digital output
K-series, 13-18
Digital start event
K-series, 13-14
DIGO: subroutine
digital start event (K-series), 13-14
DINP: subroutine
digital input (K-series), 13-14
DIR$ macro, 1-15, 1-16
example, 1-16
format, 1-16
Directive condition, 1-37
Directive Parameter Block
See DPB
Directive status, 1-37
Direct line access
See DLX
Disk
function code list, B-8
powerfail, 1-42
Disk driver, 4-1 to 4-13
physical characteristic, 4-1
programming hints, 4-11
QIO$ macro, 4-7
DISWP: subroutine
initiating synchronous digital input sweep
K-series, 13-15
LADRYV, 12-10
DJ11 multiplexer
TTDRYV, 2-82
DL11-E serial line multiplexer
TTDRV
remote line, 2-84
DL11 serial line interface
TTDRYV, 2-82
DLX
XEDRV
definition, 10-26

DLX
XEDRV (cont’d.)
incompatibility, 10-24
DLXDF$ macro
XEDRYV, 10-3
DNA
XEDRYV, 10-27
DOSWP: subroutine
initiating synchronous digital output
sweep
K-series, 13-16
LADRYV, 12-13
DOUT: subroutine
digital output (K-series), 13-18
DPB, 1-12, 1-15
diagnostic, 1-35
word data, 1-35
dynamic creation, 1-15
example, 1-12
DPBS$, 1-14
DR11-K digital 1/0O interface, 13-2
DRERR$ macro
I/O completion code, 1-37
DRV11 digital I/O interface, 13-2
DSAR$S directive, 1-11
DSWS$ status code return, 1-37
DTO07 UNIBUS switch, 14-1
DV.UMD bit
UCB
set for diagnostic, 1-34
Dwell parameter
XRATE: subroutine
K-series, 13-27
LADRYV, 12-23
DZ11 serial line multiplexer
TTDRV, 2-83
remote line, 2-84
serial line,
with modem, 2-84
DZQ11 serial line multiplexer
TTDRYV, 2-83
DZV11 serial line multiplexer
TTDRYV, 2-83

E

.EXTEND routine
disk driver, 4-8
Efn parameter
general (TTDRV), 2-12
I0.ATA function (TTDRV), 2-23
IO.ATT function, 1-27

Efn parameter (cont'd.)

10.CCO function (TTDRV), 2-26
IO.DET function, 1-28

I0.EIO function (TTDRV), 2-28
I0.GTS function (TTDRV), 2-35
I0.HNG function (TTDRYV), 2-37
IOKIL function, 1-29

IO.RAL function (TTDRV), 2-38
IO.RLB function, 1-30

IO.RNE function (TTDRV), 2-40
IO.RPR function (TTDRV), 2-42
IO.RST function (TTDRV), 2-45
IO.RTT function (TTDRYV), 2-47
10.RVB function, 1-31

10.SMC function (TTDRV), 2-62
I0.WAL function (TTDRV), 2-49
I0.WBT function (TTDRYV), 2-51
I0.WLB function, 1-32

I0.WVB function, 1-33

I0.XCL function (XEDRV), 10-19
I0.XIN function (XEDRV), 10-20
I0.XOP function (XEDRYV), 10-6
I0.XRC function (XEDRV), 10-15
I0.XSC function (XEDRV), 10-7
I0.XTL function (XEDRYV), 10-21
I0.XTM function (XEDRV), 10-12
QIO$ basic syntax, 1-7

SF.GMC function (TTDRV), 2-53
WTSE$ macro, 1-24

ENARS$S directive, 1-11
EPMDF$ macro

XEDRYV, 10-3

Error

code
file operations, C-1
detection
hard receive (TTDRV), 2-21, 2-78
hardware (XEDRV)
Ethernet, 10-3
retry (tape driver), 6-13
return
CRDRYV, 9-3, 9-6
LPDRYV, 7-4
receiver (LRDRV), 11-11, 11-12
tape driver, 6-10
transmitter (LRDRV), 11-7
UNIBUS switch driver, 14-7
XEDRYV, 10-5
I0.XCL function, 10-20
IO.XIN function, 10-20
I0.XRC function, 10-18
IO.XTL function, 10-22

Index-7

Error
return F

XEDRYV (cont’d.) F1.xxx bit, 2-36

I0.XTM function, 10-15 F11ACP stall I/O performance
select (tape driver), 6-13 disk driver, 4-12
Err parameter F2 .xxx bit, 2-36
ASTX$ macro, 1-24 File operation
DIR$ macro, 1-16 error codes, C-1
ESCAPE key Flagwd parameter
TTDRYV, 2-72 device-specific function
Escape sequence transmitting (LRDRV), 11-4
TTDRYV, 2-14, 2-73 to 2-76 FLT16: subroutine
characteristic, 2-75 converting unsigned integer to real
control character, 2-75 constant
error, 2-75 K-series, 13-18
DELETE character, 2-75 LADRYV, 12-15
format, 2-74 Fnc parameter
full buffer, 2-76 QIO$ basic syntax, 1-6
handling, 2-20 Form feed
interrupt, 2-20 TTDRYV, 2-71
prerequisite, 2-74 FORTRAN
RUBOUT character, 2-75 interface
syntax exception, 2-76 K-series, 13-6 to 13-28
syntax violation, 2-75 LADRYV, 12-2
Ethernet routine list (K-series), 13-6
XEDRV sample program (K-series), 13-30 to 13-33
address completion routine, 13-32
auxiliary buffer, 10-12 with event flag, 13-31
device consideration, 10-2 subroutine
hardware error, 10-3 LADRYV, 12-2
message, 10-2 Full-duplex operation
padding, 10-3 TTDRYV, 2-80
protocol
LF$DEF, 10-3 G

LF$EXC, 10-3
receive, 10-3
transmit, 10-3

GLUN$ macro, 1-15, 1-21

buffer, 2-9

example, 1-21 to 1-23

get information
CRDRY, 9-1
DDDRYV, 5-2
disk driver, 4-6
information table (TTDRYV), 2-9

Event
significant, 1-36
Event flag, 1-9
ast, 1-11
common, 1-9, 1-10
group-global, 1-9

none, 1-8 LADRYV, 12-2
number, 1-9 LPDRY, 7-3
task, 1-9 LRDI;Y, 11-2 5
i - tape dniver, 6-
V‘;:;t ?étre;ii/gﬁ; 11_12?1 UNIBUS switch driver, 14-2
Extended 1/O (TTDRV), 2-21, 2-27 VTDRY, 3-1

information returned, 1-22

Index-8

GTHIST: subroutine

gathering interevent time
data (K-series), 13-19

H

Hardware configuration
K-series, 13-2

I/0

asynchronous (XEDRV), 10-24
buffer

disable (VTDRYV), 3-5

enable (VTDRYV), 3-5
canceling, 1-29

VTDRYV, 3-4
completion, 1-8, 1-9, 1-11, 1-36
completion status (VIDRV), 3-6
device

attaching, 1-27

detaching, 1-28
device-dependent, 1-1
directive

condition, 1-37

status, 1-37
error

status list, B-1
extended

TTDRYV, 2-27

subfunction modifier (TTDRV), 2-28
failure, 1-37
in progress

disk driver, 4-7
issuing requests, 1-4
kill I/0O, 1-29
macro

QIO$C form, 1-14

QIO$ form, 1-13

QIO$S form, 1-14
outstanding

before LUN reassignment, 1-3
overlapped (disk driver), 4-8
overview, 1-1
packet, 1-13
read logical block, 1-30
read virtual block, 1-31
related macro, 1-13

form, 1-13
request

issuing, 1-15
return code, 1-36

I/O (cont’d.)
second status word (tape driver), 6-12
stall (RC25), 4-12
standard function, 1-26
as a no-op, 1-26
code list, B-7
success, 1-37
status list, B-5
terminating (tape driver), 6-6
write logical block, 1-32, 1-33
1/0 function
code
basic syntax, 1-6
identical, 1-7
list, B-7
introduction, 1-1
summary, A-1
card reader, A-1
DECtape II, A-1
DEUNA, A-2
disk, A-2
lab peripheral accelerator, A-2
line printer, A-3
magnetic tape, A-3
parallel communication, A-4
terminal, A-4
UNIBUS switch, A-6
virtual terminal, A-6
I/O parameter
basic, 1-5
I/0O status, 1-36
block, 1-8, 1-11, 1-36, 1-38
CRDRYV, 9-3
error test, 1-39
example, 1-38
first word content
K-series, 13-29
LADRYV, 12-28
K-series, 13-6, 13-29
LADRYV, 12-2, 12-27
LPDRYV, 7-4
LRDRY, 11-4, 11-5, 11-11
return status (TTDRYV), 2-66
UNIBUS switch driver, 14-7, 14-8
VTIDRY, 3-8
4-word (LADRYV), 12-27
XEDRYV, 10-21
block
different content (TTDRYV), 2-53, 2-62
SF.GMC different (TTDRV), 2-53,
2-62
code, 1-37

Index-9

I/0O status
code (cont’d.)

binary value, 1-37
list, B-1
condition, 1-38
table, 1-40
CRDRY, 9-6
return
completion, 1-36
DDDRYV, 5-4
disk driver, 4-9
TTDRYV, 2-66
VTDRY, 3-5
word
tape driver, 6-12
I/0 subfunction
bit, 1-26
example, 1-26
unsupported, 1-26
summary
terminal, A-5
IBFSTS: subroutine
get buffer status
K-series, 13-20
LADRYV, 12-15
Ibufno parameter
IGTBUF: subroutine
K-series, 13-21
LADRYV, 12-16
INXTBE: subroutine
K-series, 13-22
LADRYV, 12-17
IWTBUE: subroutine
K-series, 13-22
LADRYV, 12-17
Ibuf parameter
ADSWP: subroutine
K-series, 13-8
LADRYV, 12-3
DASWP: subroutine
(K-series), 13-13
LADRYV, 12-8
DISWP: subroutine
K-series, 13-15
LADRYV, 12-10
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-13
GTHIST: subroutine (K-series), 13-19
IBFSTS: subroutine
K-series, 13-20
LADRY, 12-15

Index-10

Ibuf parameter (cont’d.)

IGTBUF: subroutine
K-series, 13-21
LADRYV, 12-16
INXTBE: subroutine
K-series, 13-22
LADRYV, 12-17
ISTADC: subroutine (K-series), 13-25
IWTBUF: subroutine
K-series, 13-22
LADRYV, 12-17
RLSBUF: subroutine
K-series, 13-23
LADRYV, 12-19
RMVBUF: subroutine
K-series, 13-24
LADRYV, 12-20
SETADC: subroutine (LADRYV), 12-20
SETIBF: subroutine
K-series, 13-26
LADRYV, 12-21
STPSWP: subroutine
K-series, 13-27
LADRYV, 12-22
Ichan parameter
ADINP: subroutine (K-series), 13-8
Ichn parameter
ADSWP: subroutine
K-series, 13-10
LADRYV, 12-5
DASWP: subroutine
K-series, 13-14
LADRYV, 12-10
ISTADC: subroutine (K-series), 13-25
SETADC: subroutine (LADRV), 12-20
ICLOKB: subroutine
read 16-bit clock (K-series), 13-21
Ientrl parameter
SCOPE: subroutine (K-series), 13-24
Idata parameter
DOUT: subroutine (K-series), 13-18
Id parameter
device-specific function
transmitting (LRDRV), 11-4
Idsc parameter
LAMSKS: subroutine (LADRV), 12-18
Idsw parameter
LAMSKS: subroutine (LADRYV), 12-18
Idwell parameter
ADSWP: subroutine (LADRV), 12-4
DASWP: subroutine (LADRYV), 12-9
DISWP: subroutine (LADRYV), 12-11

Idwell parameter (cont’d.) IE.DNA error return (cont’d.)

DOSWP: subroutine (LADRV), 12-13 CRDRYV, 9-6
IE.ABO error return, 1-40 LPDRV, 7-5
CRDRY, 9-6 receiver (LRDRYV), 11-11
disk driver, 4-9 tape driver, 6-11
LPDRYV, 7-5 TTDRYV, 2-67
receiver (LRDRV), 11-12 UNIBUS switch driver, 14-7
tape driver, 6-10 IE.DNR error return, 1-41
transmitter (LRDRYV), 11-8 DDDRYV, 5-5
TTDRYV, 2-66 diagnostic
UNIBUS switch driver, 14-7 device not ready message, 1-35
VTDRYV, 3-8 disk driver, 4-10
XEDRY, 10-19, 10-22 powerfail, 1-42
line error receiver (LRDRV), 11-11
initializing, 10-21 tape driver, 6-11
transmitting, 10-15 transmitter (LRDRV), 11-7
IE.ADP error return, 1-37 TTDRYV, 2-67
IE.ALN error return, 1-40 IE.DOA error return
disk driver, 4-9 receiver (LRDRV), 11-11
XEDRYV, 10-5 IE.DUN error return
IE.BAD error return, 1-40 VTDRYV, 3-9
receiver (LRDRV), 11-11 IE.EOF error return, 1-41
transmitter (LRDRV), 11-7 CRDRV, 9-7
TTDRYV, 2-66 tape driver, 6-11
UNIBUS switch driver, 14-8 TTDRYV, 2-67
VTDRY, 3-9 VTDRYV, 3-9
IE.BBE error return, 1-40 IE.EOT error return
disk driver, 4-10 tape driver, 6-11
receiver (LRDRYV), 11-12 IE.EOV error return
tape driver, 6-10 tape driver, 6-11
transmitter (LRDRV), 11-8 IE.FHE error return, 1-41
IE.BCC error return DDDRYV, 5-5
TTDRYV, 2-67 disk driver, 4-10
IE.BLK error return, 1-40 receiver (LRDRV), 11-12
disk driver, 4-10 tape driver, 6-11
IE.BYT error return, 1-40 IE.FLG error return
disk driver, 4-10 transmitter (LRDRYV), 11-8
tape driver, 6-10 IE.IEF error return, 1-38
IE.CNR error return IE.IES error return
UNIBUS switch driver, 14-8 TTDRYV, 2-67
IE.DAA error return, 1-40 IE.IFC error return, 1-41
CRDRY, 9-6 CRDRYV, 9-7
LPDRY, 7-5 DDDRYV, 5-5
receiver (LRDRV), 11-12 disk driver, 4-10
tape driver, 6-10 LPDRYV, 7-5
TTDRY, 2-67 receiver (LRDRV), 11-12
UNIBUS switch driver, 14-8 tape driver, 6-11
IE.DAO error return transmitter (LRDRV), 11-8
tape driver, 6-10 TTDRV, 2-67
TTDRYV, 2-67 UNIBUS switch driver, 14-9
XEDRYV, 10-19 VTDRYV, 3-8, 3-9
IE.DNA error return, 1-41 XEDRYV, 10-5, 10-15, 10-19, 10-20, 10-22

Index-11

IE.IFC error return
XEDRYV (cont’d.)

IO.XIN function, 10-21
IE.ILU error return, 1-38
IE.NLN error return, 1-41

disk driver, 4-10
XEDRYV, 10-15, 10-19, 10-20
I0O.XIN function, 10-21
IE.NOD error return, 1-41
CRDRYVY, 9-7
disk driver, 4-10
TTDRYV, 2-68
UNIBUS switch driver, 14-9
IE.NSF error return
XEDRY, 10-5
IE.NTR error return
receiver (LRDRV), 11-12
IE.OFL error return, 1-41
CRDRYVY, 9-7
disk driver, 4-10
LPDRYV, 7-5
tape driver, 6-12
TTDRYV, 2-68
UNIBUS switch driver, 14-9
IE.OVR error return, 1-41
disk driver, 4-10
IE.PES error return
TTDRYV, 2-68
IE.PRI error return, 1-41
disk driver, 4-11
TTDRYV, 2-68
XEDRYV, 10-22
IE.RE] error return
transmitter (LRDRV), 11-8
IE.SDP error return, 1-38
IE.SPC error return, 1-42
CRDRY, 9-7
disk driver, 4-11
LPDRYV, 7-5
receiver (LRDRYV), 11-11
tape driver, 6-12
transmitter (LRDRV), 11-7
TTDRYV, 2-68
I0.ATA function, 2-24
UNIBUS switch driver, 14-8
VTDRY, 3-8
XEDRYV, 10-15, 10-19, 10-22
IE.TMO error return
DDDRYV, 5-5
UNIBUS switch driver, 14-9
XEDRYV, 10-19
IE.ULN error return, 1-38

Index-12

IE.UPN error return, 1-38
VTDRY, 3-9
IE.VER error return, 1-42
DDDRYV, 5-5
disk driver, 4-11
tape driver, 6-12
transmitter (LRDRV), 11-7
TTDRYV, 2-68
IE.WCK error return, 1-42
disk driver, 4-11
IE.WLK error return, 1-42
DDDRYV, 5-5
disk driver, 4-11
tape driver, 6-12
lefn parameter
ADSWP: subroutine
K-series, 13-9
LADRY, 12-5
DASWP: subroutine
K-series, 13-13
LADRY, 12-9
DISWP: subroutine
K-series, 13-16
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-14
GTHIST: subroutine (K-series), 13-19
IWTBUF: subroutine
K-series, 13-22
LADRYV, 12-17
Iemc parameter
LAMSKS: subroutine (LADRV), 12-18
Iemw parameter
LAMSKS: subroutine (LADRV), 12-19
Iflag parameter
ADINP: subroutine (K-series), 13-8
ISTADC: subroutine (K-series), 13-25
SETADC: subroutine (LADRV), 12-20
XRATE: subroutine
K-series, 13-28
LADRYV, 12-23
IGTBUF: subroutine
return buffer number
K-series, 13-21
LADRYV, 12-16
Inc parameter
ISTADC: subroutine (K-series), 13-25
SETADC: subroutine (LADRV), 12-21
Ind parameter
ADSWP: subroutine (LADRYV), 12-5
CLOCKA: subroutine
K-series, 13-11

Ind parameter
CLOCKA.: subroutine (cont’d.)

LADRY, 12-6
CLOCKB: subroutine
K-series, 13-12
LADRY, 12-8
DASWP: subroutine (LADRYV), 12-10
DINP: subroutine (K-series), 13-15
DISWP: subroutine (LADRV), 12-12
DOSWP: subroutine (LADRYV), 12-14
INXTBE: subroutine
K-series, 13-22
LADRYVY, 12-17
ISTADC: subroutine (K-series), 13-26
LAMSKS: subroutine (LADRV), 12-19
RLSBUF: subroutine
K-series, 13-23
LADRYV, 12-19
RMVBUF: subroutine
K-series, 13-24
LADRYVY, 12-20
SETADC: subroutine (LADRV), 12-21
SETIBF: subroutine
K-series, 13-26
LADRYVY, 12-21
STPSWP: subroutine
K-series, 13-27
LADRYV, 12-22
INITS macro
calling example (LADRV), 12-24
special calling (LADRV), 12-24
special-purpose (K-series), 13-28
Input
buffer
intermediate (TTDRV), 2-81
checkpoint
terminal (TTDRV), 2-83
default read (TTDRV), 2-15
line
delete start (TTDRV), 2-72
parameter
DINP: subroutine (K-series), 13-15
unsolicited (TTDRV), 2-15, 2-58, 2-70
Interface
terminal (TTDRV), 2-82
INXTBEF: subroutine
set next buffer
K-series, 13-21
LADRYVY, 12-16
10.ATA function
TTDRYV, 2-22
IO0.ATF function

IO.ATF function (cont’d.)

receiving (LRDRV), 11-10
IO.ATT function
before GLUNS, (RX02), 4-11
standard function, 1-27
UNIBUS switch driver, 14-3
VTDRYV, 3-4
10.ATX function
transmitter (LRDRV), 11-5
I0.BLS function
DDDRYV, 5-4
10.CCO function
TTDRYV, 2-25
VFEC (TTDRV), 2-77
I0.CLK function
LADRYV, 12-25
IO.CON function
device-specific (UNIBUS switch driver),
14-5
I0.CRX function
receiving (LRDRV), 11-9
IO.CSR function
device-specific (UNIBUS switch driver),
14-6
I0.DET function
standard function, 1-28
UNIBUS switch driver, 14-3, 14-4
VTDRYV, 3-4
I0.DGN function
diagnostic (DDDRYV), 5-4
10.DIS function
device-specific (UNIBUS switch driver),
14-5
I0.DPT function
device-specific (UNIBUS switch driver),
14-5, 14-6
10.DRX function
receiving (LRDRV), 11-10
I0.DSE function
tape driver, 6-8
I0.EIO function
TTDRYV, 2-27
item list 1 buffer, 2-32
item list 2 buffer, 2-34
remote terminal, 2-27
I0.ERS function (tape driver), 6-8
10.GTS function
support
returned (TTDRYV), 2-36
TTDRYV, 2-20, 2-35
VTDRYV, 3-7

Index-13

IO.HNG function

TTDRYV, 2-37
I0.INI function
LADRYVY, 12-26
IO KIL function
CRDRYV, 9-2
LPDRYV, 7-4
standard function, 1-29
tape driver, 6-6
UNIBUS switch driver, 14-4
VTDRY, 3-4
I0.LOD function
LADRYV, 12-26
IO.RAL function
Badge Reader (TTDRV), 2-84
TTDRYV, 2-38
IO.RLB function
ignoring prompt (TTDRYV), 2-30
standard function, 1-30
tape driver, 6-8
VTDRY, 3-5
IO.RLC function
DDDRYV, 5-4
IO.RNE function
Badge Reader (TTDRV), 2-84
TTDRYV, 2-40
IO.RPR function
TTDRYV, 2-42
VFC (TTDRYV), 2-77
VTDRY, 3-7
I0.RST function
TTDRYV, 2-45
successful completion, 2-45
IO.RTF function
receiving (LRDRYV), 11-10
IO.RTT function
TTDRYV, 2-46
IO.RVB function
operation (disk driver), 4-8
standard function, 1-31
VTDRY, 3-5
IO0.RWD function
tape driver, 6-8
I0.RWU function
tape driver, 6-8
I0.SEC function
before GLUN$ (RX02), 4-11
tape driver, 6-8
transmitter (LRDRV), 11-5
10.SMC function
TTDRYV, 2-62
I10.SMO function

Index-14

[0.SMO function (cont’d.)
tape driver, 6-10
I0.STA function
data transfer start (LADRV), 12-26
10.STC function
LRDRV
transmitter, 11-6
parameters, 11-6
VTDRY, 3-5
IO.STP function
data transfer stop (LADRV), 12-27
10.SWI function
device-specific (UNIBUS switch driver),
14-7
IO.WAL function
TTDRYV, 2-48
IO.WBT function
TTDRYV, 2-51
VFC (TTDRV), 2-77
IO.WLB function
ignoring prompt (TTDRV), 2-30
standard function, 1-32
VEC (TTDRV), 2-77
VTDRYV, 3-5
I0.WLC function
DDDRYV, 5-4
I0.WVB function
operation (disk driver), 4-8
VEC (TTDRV), 2-77
VTDRYV, 3-5
I0.XCL function
XEDRYV, 10-4, 10-19
error return, 10-20
status return, 10-20
syntax, 10-19
IO.XIN function
XEDRYV, 10-4, 10-20
error return, 10-20
status return, 10-20
syntax, 10-20
I0.XOP function
XEDRYV, 10-4, 10-5
syntax, 10-5
I0.XRC function
XEDRYV, 10-4, 10-15
diagnostic, 10-22
error return, 10-18
status return, 10-18
syntax, 10-15
I0.XSC function
XEDRYV, 10-4, 10-7
syntax, 10-7

IO.XTL function
XEDRYV, 10-21
error return, 10-22
status return, 10-22
syntax, 10-21
I0.XTM function
XEDRYV, 10-4, 10-11
diagnostic, 10-22
error return, 10-15
status return, 10-15
syntax, 10-11
IOERR$ macro, 1-8
I/O completion code, 1-37
IOSB line termination
TTDRV
control characters, 2-75
lIosb parameter
K-series
DINP: subroutine, 13-15
DOUT: subroutine, 13-18
SCOPE: subroutine, 13-24
fout parameter
DOUT: subroutine (K-series), 13-18
Iprset parameter
ADSWP: subroutine (K-series), 13-9
CLOCKA: subroutine
K-series, 13-10
LADRYV, 12-6
CLOCKB: subroutine
K-series, 13-11
LADRY, 12-7
DASWP: subroutine (K-series), 13-13
DISWP: subroutine (K-series), 13-16
DOSWP: subroutine (K-series), 13-17
GTHIST: subroutine (K-series), 13-19
XRATE: subroutine
K-series, 13-27
LADRYV, 12-23
1Q.Q function
disk driver, 4-8
1Q.UMD bit
diagnostic function, 1-34
1Q.X function
disk driver,, 4-8
Irate parameter
CLOCKA: subroutine
K-series, 13-10
LADRY, 12-6
CLOCKB: subroutine
K-series, 13-11
LADRY, 12-7

Irate parameter (cont'd.)
XRATE: subroutine

K-series, 13-27
LADRYV, 12-23
Irbuf parameter
IO.INI function (LADRYV), 12-26
IS.CC status return
TTDRYV, 2-68
IS.CR status return, 1-39
TTDRYV, 2-68
VTDRYV, 3-6
IS.ESC status return, 1-39
VTDRYV, 3-6
IS.ESQ status return
TTDRYV, 2-69
VTDRYV, 3-6
IS.PND status return, 1-40
CRDRYV, 9-6
disk driver, 4-9
LPDRYV, 7-4
TTDRYV, 2-69
UNIBUS switch driver, 14-8
IS.RDD status return
disk driver, 4-9
IS.SEC status return
TTDRYV, 2-68
1S.SUC success return, 1-37, 1-40
CRDRYV, 9-6
DDDRYV, 5-5
diagnostic success, 1-35
disk driver, 4-9
initializing line
IO.XIN function, 10-21
line message status
receiving, 10-19
transmitting, 10-15
load microcode (XEDRYV), 10-22
LPDRYV, 7-4
receiver (LRDRYV), 11-11
tape driver, 6-10
transmitter (LRDRV), 11-7
TTDRYV, 2-69
UNIBUS switch driver, 14-8
VTDRYV, 3-6, 3-8, 3-9
XEDRYV, 10-5, 10-20
IS.TMO status return
TTDRYV, 2-69
IS.TNC status return
LRDRV
transmitter, 11-7
IS.TNC status return (LRDRV)
receiver, 11-11

Index-15

Isb parameter
general (TTDRV), 2-12
I/O completion, 1-36
I0.ATA function (TTDRV), 2-23
IO.ATT function, 1-27
[0.CCO function (TTDRV), 2-26
IO.DET function, 1-28
I0.EIO function (TTDRV), 2-28
10.GTS function (TTDRV), 2-35
IO.HNG function (TTDRYV), 2-37
[IOKIL function, 1-29
IO.RAL function (TTDRYV), 2-38
IO.RLB function, 1-30
IO.RNE function (TTDRV), 2-40
IO.RPR function (TTDRV), 2-42
IO.RST function (TTDRV), 2-45
IO.RTT function (TTDRV), 2-47
I0.RVB function, 1-31
10.SMC function (TTDRYV), 2-62
I0.WAL function (TTDRV), 2-49
I0.WBT function (TTDRV), 2-51
I0.WLB function, 1-32
I0.WVB function, 1-33
omitted, 1-38
QIO$ basic syntax, 1-8
SF.GMC function (TTDRYV), 2-53
Istat parameter
IBFSTS: subroutine
K-series, 13-20
LADRYV, 12-15
Itim parameter
ICLOKB: subroutine (K-series), 13-21
Tunit parameter
DIGO: subroutine (K-series), 13-14
DINP: subroutine (K-series), 13-15
DISWP: subroutine
K-series, 13-16
LADRYV, 12-12
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-14
DOUT: subroutine (K-series), 13-18
LAMSKS: subroutine (LADRYV), 12-18
SCOPE: subroutine (K-series), 13-24
Ival parameter
ADINP: subroutine (K-series), 13-8
CVADEF: subroutine
K-series, 13-12
LADRYV, 12-8
FLT16: subroutine
K-series, 13-19
LADRY, 12-15

Index-16

Iwhen parameter
STPSWP: subroutine
K-series, 13-27
LADRYV, 12-22
IWTBUE: subroutine
wait for buffer
K-series, 13-22
LADRY, 12-17

K

KDAS5O0 disk controller, 4-4
Keys

special (TTDRYV), 2-69

table, 2-72, 2-73

KMC-11 auxiliary processor, 7-2
Kount parameter

DIGO: subroutine (K-series), 13-14

GTHIST: subroutine (K-series), 13-20
Ksubr parameter

CALLS macro (K-series), 13-29
KW11-K dual programmable

real-time clock, 13-3

L

LA100 DECprinter, 2-5
LA120 DECwriter, 2-5
LA12 portable terminal, 2-4
LA12 teletypewriter, 2-4
LA180 DECprinter, 7-3
LA180S DECprinter, 2-5
LA210 letter printer, 2-6
LA30 DECwriter, 2-5
LA34 DECwriter, 2-5
LA36 DECwriter, 2-5
LA38 DECwriter, 2-5
LA50 personal printer, 2-6
LA75 personal printer, 2-6
Laboratory peripheral
K-series, 13-1
Laboratory peripheral accelerator
See LADRV
LADRYV, 12-1
Unloading, 12-31
LAINIT
microcode loader (LADRV), 12-30
Lamskb parameter
LAMSKS: subroutine (LADRV), 12-18
SETIBF: subroutine
K-series, 13-26
LADRYV, 12-21

LAMSKS: subroutine

set masks buffer (LADRV), 12-18
Lbn parameter
device-specific function
DDDRYV, 5-4
standard function
DDDRYV, 5-3
Lbuf parameter
ADSWP: subroutine
K-series, 13-9
LADRYV, 12-3
DASWP: subroutine
K-series, 13-13
LADRYV, 12-8
DISWP: subroutine
K-series, 13-15
LADRYV, 12-11
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-13
GTHIST: subroutine (K-series), 13-19
Ldelay parameter
ADSWP: subroutine
K-series, 13-10
LADRYV, 12-5
DASWP: subroutine
K-series, 13-14
LADRY, 12-10
DISWP: subroutine
K-series, 13-16
DISWP: subroutine (LADRV), 12-12
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-14
Line definition
XEDRYV, 10-27
Line feed
CTRL/R (TTDRYV), 2-71
Line printer
physical feature list, 7-1
Line printer driver
See LPDRV
LNO1 laser printer, 7-3
LNO3 laser printer, 2-6
LNO3 PLUS laser printer, 2-6
Logical /physical association, 1-2
Logical block
reading (TTDRV), 2-45
Logical 1/0, 1-2
Logical OR
changing mode (XEDRV), 10-24
Logical unit, 1-2

Logical unit number

See LUN
Logical unit table

See LUT
LP11 line printer, 7-2
LPA1l
22-bit addressing, 12-31, 12-32
data transfer start (LADRV), 12-26
data transfer stop (LADRV), 12-27
initializing, 12-26
I0.STA function (LADRYV), 12-26
I0.STP function (LADRYV), 12-27
sample programs, 12-32 to 12-37
LPDRYV, 7-1
programming hint, 7-6
LQPO?2 letter-quality printer, 2-5
LQPO3 letter-quality printer, 2-6
LRDRV
device-specific QIO$
transmitting, 11-3
message
receiving, 11-11
rejecting, 11-10
transmitting, 11-5
standard function
transmitting, 11-3
timeslice constraints
transmitting, 11-6
LS11 line printer, 7-2
Lsubr parameter
CALLS calling macro (LADRYV), 12-24
LUN, 1-2
assigning, 1-17
assignment
ALUNS directive, 1-4
ASSIGN command, 1-4
change, 1-4
dynamic change, 1-4
REASSIGN command, 1-4
get information, 1-21
CRDRY, 9-1
DDDRYV, 5-2
disk driver, 4-6
LADRYV, 12-2
LPDRYV, 7-3
LRDRV
receiving, 11-3
transmitting, 11-2
tape driver, 6-5
UNIBUS switch driver, 14-2
VTIDRYV, 3-1

Index-17

LUN (cont’'d.)
identical

I0.DET/IO.ATT, 1-29
information table, 1-22
logical /physical association, 1-17
number, 1-7
physical

logical, 1-21
QIO$ basic syntax, 1-5
reassigning, 1-3
redirection

ASSIGN command, 1-3
table, 1-3
TTDRV

get information, 2-9
valid number, 1-3

Lun parameter

ALUNS, 1-17
CLOCKA: subroutine

K-series, 13-11

LADRYVY, 12-6
CLOCKB: subroutine

K-series, 13-12

LADRY, 12-8
general (TTDRV), 2-12
GLUN$ macro, 1-22
IO.ATA function (TTDRV), 2-23
10.ATT function, 1-27
10.CCO function (TTDRYV), 2-25
IO.DET function, 1-28
I0.EIO function (TTDRYV), 2-28
I0.GTS function (TTDRV), 2-35
I0.HNG function (TTDRYV), 2-37
IO.XIL function, 1-29
I0.RAL function (TTDRV), 2-38
I0.RLB function, 1-30
IO.RNE function (TTDRYV), 2-40
IO.RPR function (TTDRYV), 2-42
I0.RST function (TTDRYV), 2-45
IO.RTT function (TTDRV), 2-47
IO.RVB function, 1-31
10.SMC function (TTDRV), 2-62
IO.WAL function (TTDRYV), 2-49
I0.WBT function (TTDRYV), 2-51
I0.WLB function, 1-32
I0.WVB function, 1-33
I0.XCL function (XEDRV), 10-19
10.XIN function (XEDRYV), 10-20
10.XOP function (XEDRV), 10-6
I0.XRC function (XEDRYV), 10-15
10.XSC function (XEDRV), 10-7
I0.XTL function (XEDRYV), 10-21

Index-18

Lun parameter (cont’d.)

I0.XTM function (XEDRV), 10-12
LAMSKS: subroutine (LADRV), 12-18
QIOS$ basic syntax, 1-7
SF.GMC function (TTDRYV), 2-53
LUT, 1-7
contents, 1-3
defined, 1-3
specifying, 1-3
LV11 line printer, 7-2

M

Macro
CALL (K-series), 13-28
CALLS (LADRYV), 12-24
INITS
K-series, 13-28
LADRYV, 12-24
MACRO-11
interface
K-series, 13-28, 13-29
LADRYV, 12-23
support routine (LADRV), 12-23
Magnetic tape
driver, 6-1
function code list, B-8
Mask parameter
DIGO: subroutine (K-series), 13-14
DINP: subroutine (K-series), 13-15
DOUT: subroutine (K-series), 13-18
Mbuf parameter
10.L.OD function (LADRYV), 12-26
MCALL directive, 1-17
for QIO, 1-4
.MCALL macro, 1-15
example, 1-17
Microcode loading
LADRYV, 12-30
LPA1l (LADRYV), 12-30
XEDRYV, 10-21
ML-11 disk emulator, 4-4
Mode
change (XEDRV), 10-24
default bit (XEDRV), 10-25
Modem
TTDRYV, 2-84
autobaud, 2-84
autocall enable, 2-55
default answer speed, 2-21, 2-84
DZ11 remote line, 2-84
setting answer speed, 2-84

Mode parameter
ADSWP: subroutine
K-series, 13-9
LADRYV, 12-4
CLOCKB: subroutine
K-series, 13-12
LADRYV, 12-7
DASWP: subroutine
K-series, 13-13
LADRY, 12-9
device-specific function
transmit (LRDRYV), 11-5
DISWP: subroutine
K-series, 13-16
LADRY, 12-11
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-13
GTHIST: subroutine (K-series), 13-19
10.CLK function (LADRV), 12-26
10.STC function
transmitter (LRDRV), 11-6
MS.ADS address silo
transmitter (LRDRV), 11-5
MS.AUT autoaddressing
transmitter (LRDRV), 11-5
Multirequest mode
LADRY, 12-1

N

NO parameter
RLSBUE: subroutine
K-series, 13-23
LADRY, 12-19
Nbs parameter
device-specific function (tape driver), 6-7
Nbuf parameter
ADSWP: subroutine (K-series), 13-9
DASWP: subroutine
K-series, 13-13
LADRY, 12-9
DISWP: subroutine
K-series, 13-15
LADRYV, 12-11
DOSWP: subroutine
K-series, 13-17
LADRYV, 12-13
GTHIST: subroutine (K-series), 13-19
Nbu parameter
ADSWP: subroutine (LADRV), 12-3

Nchn parameter
ADSWP: subroutine
K-series, 13-10
LADRYV, 12-5
DASWP: subroutine
K-series, 13-14
LADRYV, 12-10
DISWP: subroutine (LADRYV), 12-12
DOSWP: subroutine (LADRV), 12-14
ISTADC: subroutine (K-series), 13-25
SETADC: subroutine (LADRYV), 12-20
NCT
TTDRYV, 2-21
Nes parameter
device-specific function (tape driver), 6-7
Network Command Terminal
See NCT
NI definition
XEDRYV, 10-27
NLDRYV, 8-1
example, 8-1
function, 8-1
Nolabel tape block size
tape driver, 6-17
N parameter
RMVBUF: subroutine
K-series, 13-24
LADRYV, 12-20
NRZI even parity (tape driver), 6-15
Null device driver
See NLDRV

O

Object module library, 1-7
Offspring task
enabling (VIDRYV), 3-5
VTDRY, 3-1
OOB
TTDRV
clear, 2-64
hello, 2-64
include, 2-64
Open line
XEDRYV, 10-5
Output
buffer
intermediate (TTDRV), 2-81
initiating
single analog (K-series), 13-7
resuming by CTRL/Q (TTDRYV), 2-71
suppressing (TTDRYV), 2-71

Index-19

Output (cont’d.)
suspending by CTRL/S
TTDRYV, 2-71
Overhead system TF.RPR
TTDRYV, 2-16
Overlapped 1/0
disk driver, 4-8
Overprint
VFC (LPDRYV), 7-6

P

P1 parameter
XEDRV
I0.XIN function, 10-20
I10.XOP function, 10-6
IO.XRC function, 10-16
10.XSC function, 10-7
I0.XTM function, 10-12
P2 parameter
XEDRV
10.XOP function, 10-6
I0.XRC function, 10-16
10.XSC function, 10-7
I0.XTM function, 10-12
P3 parameter
XEDRV
I0.XOP function, 10-6
I0.XRC function, 10-16
10.XTM function, 10-12
P4 parameter
XEDRV
I0.XRC function, 10-16
I0.XTM function, 10-12
P5 parameter
XEDRV
IO.XRC function, 10-16
I0.XTM function, 10-12
P6 parameter
XEDRV
10.XRC function, 10-16
IO.XTM function, 10-12
Pad character
tape driver, 6-17
Pad enable bit
XEDRV
transmitting, 10-3
Page eject
VFC (LPDRYV), 7-6
Parallel communication link driver
See PCL11

Index-20

Parameter

QIOS$ basic syntax
function-dependent, 1-6
optional, 1-6
required argument, 1-6

Parameter2 parameter
TTDRYV, 2-12
10.ATA function, 2-23
Parent task
VTDRY, 3-1
Pbn parameter
device-specific (disk driver), 4-9
PCL11

See also LRDRV

hardware, 11-1

receiver driver, 11-2

transmitter driver, 11-1

Performance
stall I/O (disk driver), 4-12
Peripheral support routine
K-series, 13-1
Physical/logical association, 1-2
Physical /0O, 1-2
p lefn parameter

DISWP: subroutine (LADRV), 12-12

p IS.PND status return
tape driver, 6-10
p K-series supported hardware, 13-1
Pn parameter
IO.RLB function, 1-30
IO.RVB function, 1-32
10.WLB function, 1-32
I0.WVB function, 1-34
Pool
buffer
private (TTDRYV), 2-80
Port parameter
UNIBUS switch driver
device-specific, 14-4
I0.DPT function, 14-6
Position tape
DDDRYV, 5-4
Powerfail
disk, 1-42
QIO%
valid (TM11), 6-14
recovery
tape driver, 6-14
UNIBUS switch driver, 14-7
tape, 1-42
Power switch
CRDRYV, 9-4

Pradd parameter
device-specific
VTDRYV, 3-4
TTDRYV, 2-12
IO.RPR function, 2-43
Preset parameter

I0.CLK function (LADRV), 12-26

Pri parameter
I0.ATT function, 1-27
IO.DET function, 1-28
IOKIL function, 1-29
IO.RLB function, 1-30
IO.RVB function, 1-31
I0.WLB function, 1-32
I0.WVB function, 1-33
QIO$ basic syntax, 1-8
TTDRYV, 2-13
I0.ATA function, 2-23
I0.CCO function, 2-26
I0.EIO function, 2-28
I0.GTS function, 2-35
I0.HNG function, 2-37
IO.RAL function, 2-38
IO.RNE function, 2-40
IO.RPR function, 2-42
IO.RST function, 2-45
IO.RTT function, 2-47
I0.SMC function, 2-62
IO.WAL function, 2-49
I0.WBT function, 2-51
SE.GMC function, 2-53
Program interface subroutine
LADRYV, 12-2
Programming hint
CRDRYV, 9-8
disk driver, 4-11
LPDRYV, 7-6
tape driver, 6-14
TTDRYV, 2-83
XEDRYV, 10-23
Programming sequence
XEDRYV, 10-4
Prompt
binary (TTDRV), 2-43

checkpointing (TTDRV), 2-16, 2-42

CTRL/O (TTDRV), 2-16

ignoring (TTDRV), 2-16, 2-42

pass all (TTDRV), 2-29
read with (TTDRV), 2-20
redisplay (TTDRV), 2-30

send and read (TTDRYV), 2-42

send pass all (TTDRV), 2-14

Prompting output

VFC (LPDRV), 7-6

Protocol

Ethernet
LF$DEF, 10-3
LF$EXC, 10-3
type definition (XEDRYV), 10-27

Prsize parameter

Q

device-specific
VTDRYV, 3-4
TTDRYV, 2-13
IO.RPR function, 2-43

QIO$C macro, 1-15
QIO$ function

device-specific
TTDRYV, 2-19

UNIBUS switch driver, 14-4

directive error status list, B-6
directive success status list, B-7

standard (UNIBUS switch driver), 14-2

TTDRYV, 2-21

QIO$ macro, 1-15

CRDRYV, 9-2

DDDRYV, 5-2

device-specific function
CRDRYV, 9-3
DDDRYV, 5-3
disk driver, 4-8
DUDRYV, 4-9
LADRYV, 12-25
receiving (LRDRV), 11-8
tape driver, 6-7

transmitting (LRDRV), 11-3

TTDRYV, 2-10, 2-19
list, 2-22

VTDRYV, 3-2, 3-5

XEDRYV, 10-4, 10-5
disk driver, 4-7
event flag, 1-4
Executive function, 1-4
format

basic, 1-5, 1-6
general (XEDRV), 10-3
introduction, 1-1
I0.ATT function, 1-27
IO.DET function, 1-28
IO.KIL function, 1-29
I0.RLB function, 1-30
I0.RVB function, 1-31

Index-21

QIO$% macro (cont’d.)

I0.WLB function, 1-32
I0O.WVB function, 1-33
issuing hint (tape driver), 6-16
library (XEDRV), 10-3
LPDRYV, 7-4
null argument, 1-5
omitting comma in syntax, 1-5
powerfail, 1-42
standard function
CRDRYV, 9-2
DDDRYV, 5-3
disk driver, 4-7
LPDRYV, 7-4
receiving (LRDRV), 11-8
tape driver, 6-6
transmitting (LRDRYV), 11-3
TTDRYV, 2-9, 2-10
VTIDRY, 3-2, 3-4
XEDRYV, 10-5
standard 1/0O format (TTDRV), 2-10
syntax element, 1-6
tape driver, 6-5
TTDRYV, 2-9
UNIBUS switch, 14-2
valid powerfail (TM11), 6-14
VTDRYV, 3-2
XEDRYV, 10-3, 10-5
QIO$S macro, 1-15
QIO$ syntax
P1,P2,...P6 parameter, 1-9
QIO DEUNA driver
See XEDRV
QIOW$ macro, 1-15, 1-16
format, 1-16
task synchronization, 1-5

R

RA60 disk, 4-4
RAS80 disk, 4-4
RAS81 disk, 4-4
RC25 disk, 4-5
dismounting, 4-13
RCLOKB: subroutine
read 16-bit clock (K-series), 13-23
Rent parameter
device-specific (UNIBUS switch driver),
14-4
RD31 disk, 4-5
RD51 disk, 4-5
RD52 disk, 4-6

Index-22

RD53 disk, 4-6
RD54 disk, 4-6
RDAF$ directive, 1-7
RDXF$ directive, 1-7
Read 16-bit clock
K-series, 13-21, 13-23
Read function
after prompt
TTDRYV, 2-30, 2-42
TTDRYV, 2-16, 2-20
VTDRY, 3-7
all characters (TTDRV), 2-15, 2-29, 2-38,
2-41, 2-44, 2-46, 2-48
checking (CRDRYV), 9-4
checkpointing (TTDRV), 2-16
converting lowercase (TTDRV), 2-15, 2-29
DDDRYV, 5-4
default input (TTDRYV), 2-15, 2-29
destination address (XEDRV), 10-18
error (tape driver), 6-13
Ethernet address (XEDRV), 10-16
logical block, 1-30
TTDRYV, 2-15
special terminator, 2-45
no echo (TTDRYV), 2-16, 2-29, 2-31, 2-40,
2-44, 2-46, 2-48
TF.RNE, 2-39
no filter (TTDRYV), 2-16, 2-29
pass through (TTDRYV), 2-16, 2-30
process escape sequence (TTDRYV), 2-15,
2-29
protocol type (XEDRV), 10-17
special terminator (TTDRV), 2-17, 2-30,
2-44
TF.RNE, 2-39
tape driver, 6-8
terminator (TTDRYV)
CTRL/C, 2-70
no echo, 2-17
table, 2-17, 2-46
timeout
TE.TMO (TTDRYV), 2-39
TTDRYV, 2-17, 2-31, 2-44, 2-46, 2-48
virtual block, 1-31
Ready recovery
LPDRYV, 7-5
REASSIGN command
device, 1-20
LUN assignment, 1-4
Receiver disconnect
LRDRYV, 11-10

Recovery check RMVBUF: subroutine

CRDRYV, 9-5 removing buffer from device queue
REDIRECT command K-series, 13-24
device, 1-20 LADRYV, 12-19
Release data buffer RPO2 disk, 4-3
K-series, 13-23 RPO3 disk, 4-3
Remote line RP04 disk, 4-3
clearing characteristic (TTDRV), 2-84 RPO5 disk, 4-3
Remote terminal RPO6 disk, 4-3
I0.EIO (TTDRYV), 2-27 RP11/RP02 or RP03 disk packs, 4-3
Reset switch RP11 disk controller, 4-3
CRDRY, 9-5 RSO3 disk, 4-3
Retadd parameter RS04 fixed-head disk, 4-3
device-specific function RS11 disk, 4-2
receiving (LRDRYV), 11-9 RSEF$ directive, 1-7
transmitting (LRDRV), 11-4 RTO02 Alphanumeric Display Terminal, 2-7
Retries parameter RUBOUT character
device-specific function LPDRYV, 7-6
transmitting (LRDRV), 11-4 TTDRV
Retry count parameter CRT, 2-21
UNIBUS switch driver RUBOUT key
I0.CON function, 14-5 TTDRYV, 2-73
Retry procedure RUX50 UNIBUS interface, 4-5
tape driver, 6-13 RX01 disk, 4-4
Return buffer number RXO02 disk, 4-4
K-series, 13-21 RX11 disk controller, 4-4
RETURN character RX180 disk drive, 4-5
TTDRY, 2-71 RX211 disk controller, 4-4
RETURN key RX33 disk, 4-5
TTDRYV, 2-72 RX50 disk, 4-5
RF11 disk controller, 4-2 S
RKO5 disk, 4-3 .
RKOSF disk, 4-3 SCOPE: subroutine
RKO06 disk, 4-3 control scope (K-series), 13-24
RKO7 disk, 4-3 SE.BIN error return
RK11 disk controller, 4-3 TTDRV, 2-69
RK611 disk controller, 4-3 SE.FIX error return
RLO1 disk, 4-3 TTDRYV, 2-69
RLO2 d}sk, 4-3 SE.IAA error return
RL11 disk controller, 4-3 TTDRYV, 2-69
Rlast parameter SE.NAT error return
RCLOKB: subroutine (K-series), 13-23 TTDRYV, 2-69
RLSBUF: subroutine SE.NIH error return
release data buffer TTDRYV, 2-69
K-series, 13-23 VTDRYV, 3-9
LADRYV, 12-19 SE.NSC error return
RMO2 disk, 4-3 TTDRV, 2-69
RMO03 d}sk, 4-3 SE.SPD error return
RMO5 disk, 4-3 TTDRV, 2-69

RMS80 disk, 4-3

Index-23

SE.UPN error return

TTDRYV, 2-69
SE.VAL error return
TTDRYV, 2-69
Select error function
tape driver, 6-13
Select recovery function
tape driver, 6-13
Send XOFF function
TTDRYV, 2-19, 2-32, 2-39, 2-44, 2-46
Sense status
LRDRY, 11-5
SETADC: subroutine
set channel information
K-series, 13-25
LADRYV, 12-20
Set clock A rate
K-series, 13-10
SETIBF: subroutine
setting array for buffered sweep
K-series, 13-26
LADRYV, 12-21
Set next buffer
K-series, 13-21
Set operational characteristic
LRDRY, 11-6
SF.GMC function
TTDRYV, 2-20, 2-53
VTDRYV, 3-6
SF.SMC function
TTDRYV, 2-20, 2-61
VTDRYV, 3-7
Significant event, 1-9
declaration, 1-13
Size parameter
device-specific
CRDRY, 9-3
DDDRYV, 5-4
disk driver, 4-8
receiving (LRDRV), 11-9
tape driver, 6-7
transmitting (LRDRV), 11-4
VTDRYV, 3-3
general (TTDRV), 2-13
10.CCO function (TTDRYV), 2-26
I0.EIO function (TTDRV), 2-28
I0.GTS function (TTDRYV), 2-35
I0.RAL function (TTDRYV), 2-39
I0.RLB function, 1-30
IO.RNE function (TTDRYV), 2-40
IO.RPR function (TTDRYV), 2-43
IO.RST function (TTDRYV), 2-46

Index-24

Size parameter (cont’d.)

IO.RTT function (TTDRV), 2-47
IO.RVB function, 1-31
10.SMC function (TTDRV), 2-63
IO.WAL function (TTDRYV), 2-49
IO.WBT function (TTDRYV), 2-52
I0.WLB function, 1-32
IO.WVB function, 1-33
SF.GMC function (TTDRV), 2-54
standard function
CRDRYV, 9-2
DDDRYV, 5-3
disk driver, 4-7
LPDRV, 7-4
tape driver, 6-6
Special key table
TTDRV, 2-72 to 2-73
SS.MAS state setting
transmitter (LRDRV), 11-5
SS.NEU state setting
transmitter (LRDRV), 11-5
SST routine
interrupt, 1-10
Stack check
card reader (CRDRV), 9-5
Stadd parameter
device-specific
CRDRYV, 9-3
DDDRYV, 5-4
disk driver, 4-8
receiving (LRDRV), 11-9
tape driver, 6-7
transmitting (LRDRV), 11-4
VTDRY, 3-3
general (TTDRV), 2-13
10.CCO function (TTDRV), 2-26
I0.EIO function (TTDRV), 2-28
10.GTS function (TTDRV), 2-35
IO.RAL function (TTDRYV), 2-39
IO.RLB function, 1-30
IO.RNE function (TTDRYV), 2-40
IO.RPR function (TTDRYV), 2-43
IO.RST function (TTDRYV), 2-45
IO.RTT function (TTDRV), 2-47
IO.RVB function, 1-31
I0.SMC function (TTDRYV), 2-62
[O.WAL function (TTDRV), 2-49
I0.WBT function (TTDRYV), 2-52
1I0.WLB function, 1-32
I0O.WVB, 1-33
SF.GMC function (TTDRV), 2-53

Stadd parameter (cont’d.)
standard function

CRDRYV, 9-2
DDDRYV, 5-3
disk driver, 4-7
LPDRYV, 7-4
tape driver, 6-6
Stall I/O
F11ACP performance (disk driver), 4-12
RC25, 4-12
system performance (disk driver), 4-12
Standard function list
TTDRYV, 2-21
State parameter
device-specific function
transmitting (LRDRV), 11-5
10.STC function
transmitter (LRDRYV), 11-6
State setting
transmitter (LRDRV), 11-5
Stat parameter
device-specific function (VIDRV), 3-3
Status
completion (VIDRYV), 3-6
end-of-volume
unlabeled tape (tape driver), 6-15
[/0, 1-36
completion (VIDRV), 3-5
condition, 1-38
CRDRYV, 9-6
directive, 1-37
10.XOP function (XEDRV), 10-6
resetting transport (tape driver), 6-16
returning (TTDRYV), 2-66
Status block
I/0, 1-5, 1-8, 1-11, 1-26, 1-29, 1-36 to
1-39
CRDRYV, 9-3, 9-6
DDDRYV, 5-5
disk driver, 4-9
first word content
K-series, 13-29
LADRYV, 12-28
K-series, 13-6, 13-29
LADRV, 12-2, 12-27
LPDRV, 7-4
LRDRV, 11-4, 11-5, 11-7, 11-11
tape driver, 6-10, 6-11

TTDRYV, 2-12, 2-45, 2-53, 2-62, 2-66,

2-76, 2-78, 2-81
UNIBUS switch driver, 14-7, 14-8
VTDRYV, 3-8, 3-9

Status block
[/O (cont’d.)
4-word (LADRYV), 12-27
XEDRYV, 10-6, 10-7, 10-12, 10-15,
10-19 to 10-21
Status code
binary value, 1-37
Status parameter
XEDRV
IO.XCL function, 10-19
IO.XIN function, 10-20
IO.XRC function, 10-15
10.XSC function, 10-7
IO.XTL function, 10-21
[I0.XTM function, 10-12
Status return
CRDRYV, 9-3, 9-6, 9-7
DDDRYV, 5-4
disk driver, 4-9
I0.XCL function (XEDRV), 10-20
IO.XIN function (XEDRV), 10-20
IO.XRC function (XEDRV), 10-18
IO.XTL function (XEDRV), 10-22
IO.XTM function (XEDRYV), 10-15
LPDRYV, 7-4
receiver (LRDRV), 11-11, 11-12
tape driver, 6-10
transmitter (LRDRV), 11-7
UNIBUS switch driver, 14-7, 14-8
VTDRYV, 3-8
XEDRYV, 10-5
Stop switch
card reader (CRDRYV), 9-5
STPSWP: subroutine
stop sweep
K-series, 13-26
LADRYV, 12-22
STSES$ directive, 1-10
Subfunction
TTDRV
allowing, 2-21
list
device-specific, 2-22
standard, 2-21
modifier,
extended I/0, 2-28
Subfunction bit
TTDRV, 2-14
Subroutine linkage
K-series, 13-28
standard MACRO-11 (LADRYV), 12-23

Index-25

Support routine

feature list (K-series), 13-3
generation (K-series), 13-4, 13-5
interface (K-series), 13-6
invoking (K-series), 13-28
MACRO-11 (LADRYV), 12-23
program use (K-series), 13-5, 13-6
use (K-series), 13-4
Swl parameter
device-specific function (VIDRV), 3-4
I0.STC function (VIDRYV), 3-6
Sw2 parameter
device-specific function (VIDRYV), 3-3
[0.STC function (VIDRYV), 3-6
Sweep
initiating A/D
synchronous (K-series), 13-8
stopping (K-series), 13-26
Symbol
local
defining (TTDRV), 2-36
obtaining, 1-7
Synchronous trap, 1-10
System
object library, 1-37
object module library, 1-8
overhead (TTDRV), 2-16, 2-30, 2-42
performance
stall I/O (disk driver), 4-12
powerfail
recovery (UNIBUS switch driver),
14-7
System generation
option (TTDRV), 2-20
System Macro Library, 1-4

T

Tab character
TTDRYV, 2-70
vertical, 2-70
Table parameter
TTDRV
general, 2-13
Table parameter
TTDRV
IO.RTT function, 2-48
Tape
density, 6-9
nolabel
block size (tape driver), 6-17
position (DDDRV), 5-4

Index-26

Tape (cont’d.)
" powerfail, 1-42
Tape driver, 6-1
consecutive tape mark, 6-16
data security
erase, 6-8
device characteristic, 6-1
programming hint, 6-14
resetting transport status, 6-16
rewinding, 6-8
Unloading, 6-8
Task
aborting
CRDRY, 9-9
LPDRYVY, 7-7
tape driver, 6-15
blocked, 1-10
checkpoint (VIDRYV), 3-5
disable offspring (VTDRYV), 3-5
event driven, 1-11
exiting
CTRL/Z (TTDRYV), 2-72
nonprivileged
breakthrough write (TTDRV), 2-18
offspring (VIDRYV), 3-1
parent (VIDRYV), 3-1
privileged
breakthrough write (TTDRV), 2-18,
2-20
XEDRYV connection, 10-25
TC.8BC characteristic
TTDRY, 2-58
TC.ABD characteristic
TTDRYV, 2-54
TC.ACD characteristic
TTDRYV, 2-54
TC.ACR characteristic
TTDRYV, 2-54
TC.ANI characteristic
TTDRYV, 2-54
TC.ASP characteristic
TTDRY, 2-54, 2-60
baud rate
modem support, 2-84
TC.AVO characteristic
TTDRY, 2-54
TC.BIN characteristic
TTDRYV, 2-54
TC.BLK characteristic
TTDRYV, 2-54
TC.CLN characteristic
TTDRYV, 2-54

TC.CTS characteristic
TTDRYV, 2-54, 2-61
TC.DEC characteristic
TTDRYV, 2-54
TC.DLU characteristic
TTDRYV, 2-55
modem support, 2-84
TC.EDT characteristic
TTDRYV, 2-55
TC.EPA characteristic
TTDRYV, 2-55
TC.ESQ characteristic
TTDRYV, 2-55
TC.FDX characteristic
TTDRYV, 2-55
VTDRYV, 3-7, 3-8
TC.HFF characteristic
TTDRYV, 2-55
TC.HFL characteristic
TTDRYV, 2-55
TC.HHT characteristic
TTDRYV, 2-55
TC.HLD characteristic
TTDRYV, 2-55, 2-60
side effect, 2-65
TC.HSY characteristic
TTDRYV, 2-55
TC.ICS characteristic
TTDRYV, 2-55
TC.ISL characteristic
TTDRYV, 2-56
TC.LPP characteristic
TTDRYV, 2-56
TC.MAP characteristic
TTDRYV, 2-56
processing, 2-63
TC.MHU characteristic
TTDRYV, 2-56
buffer, 2-63
processing, 2-63
TC.NBR characteristic
TTDRYV, 2-56
TC.NEC characteristic
TTDRYV, 2-56
TC.OOB characteristic
TTDRYV, 2-56
buffer, 2-64
processing, 2-63, 2-64
TC.PAR characteristic
TTDRYV, 2-56
TC.PPT characteristic
TTDRYV, 2-56

TC.PRI characteristic
TTDRYV, 2-56
TC.PTH characteristic
TTDRYVY, 2-56
TC.QDP characteristic
TTDRYV, 2-56
TC.RAT characteristic
TTDRYV, 2-56
TC.RGS characteristic
TTDRYV, 2-56
TC.RSP characteristic
TTDRYV, 2-57, 2-60
TC.SCP characteristic
TTDRYV, 2-57
VTDRYV, 3-8
TC.SFC characteristic
TTDRYV, 2-57
TC.SLV characteristic
TTDRYV, 2-57
TC.SMR characteristic
TTDRYV, 2-57
side effect, 2-65
VTDRYVY, 3-8
TC.SSC characteristic
TTDRYV, 2-57
buffer, 2-64
processing, 2-63
side effect, 2-66
TC.SXL characteristic
TTDRYV, 2-57
TC.TBF characteristic
TTDRYV, 2-57, 2-61
TC.TBM characteristic
TTDRYV, 2-57
TC.TBS characteristic
TTDRYV, 2-57
TC.TLC characteristic
TTDRYV, 2-57
TC.TMM characteristic
TTDRYV, 2-57
TC.TPP characteristic
TTDRV

terminal type value, 2-58

TC.TSY characteristic
TTDRYV, 2-58
TC.TTP characteristic
TTDRYV, 2-58, 2-61
VTDRYVY, 3-8
TC.VFL characteristic
TTDRYV, 2-58
TC.WID characteristic
TTDRYV, 2-58

Index-27

TC.XSP characteristic
TTDRYV, 2-58, 2-60
TE10 magnetic tape unit, 6-3, 6-4
TE16 magnetic tape unit, 6-4
Tef parameter
device-specific function
receive (LRDRYV), 11-9
Teletypewriter, 2-4
ASR-33, 2-4
ASR-35, 2-4
Terminal
attaching (VIDRYV), 3-4
characteristic
get multiple
TTDRYV, 2-53
VTDRYV, 3-6
implicit (TTDRV), 2-61
setting
TTDRYV, 2-61
VTIDRYV, 3-7
table
TTDRYV, 2-54
VTDRYV, 3-8
cursor control (TTDRV), 2-81
detaching (VIDRV), 3-4
disconnect (TTDRV), 2-37
driver
virtual, 3-1

full-duplex operation (TTDRV), 2-80

function code list, B-9
get support
TTDRYV, 2-20, 2-35
return, 2-36
input
checkpointing TTDRV, 2-83
interface (TTDRV), 2-82
programming hint (TTDRV), 2-83
status return (TTDRYV), 2-66
support
TTDRYV, 2-2
VTDRYV, 3-7
suppressing output (TTDRV), 2-71
type value (TTDRV), 2-58
virtual, 3-1
function code list, B-11
Terminal driver
full-duplex
See TTDRV
Terminal interface
support, 2-3
Terminal monitoring
TTDRYV, 2-15

Index-28

TF.AST subfunction
TTDRYV, 2-14
TF.BIN subfunction
TTDRYV, 2-14
IO.EIO function, 2-29
IO.RPR function, 2-43
TF.CCO subfunction
Cancel CTRL/O, 2-14
TTDRYV, 2-14
I0.EIO function, 2-29
I0.WAL function, 2-50
IO0.WBT function, 2-52
TF.ESQ subfunction
TTDRYV, 2-14
I0.ATA function, 2-24
TE.NOT subfunction
TTDRYV, 2-15
I0.ATA function, 2-23, 2-25
TE.RAL subfunction
TTDRYV, 2-15
I0.EIO function, 2-29
IO.RNE function, 2-41
IO.RPR function, 2-44
IO.RST function, 2-46
IO.RTT function, 2-48
TF.RCU subfunction
TTDRYV, 2-15
IO.EIO function, 2-29
IO.RTT function, 2-48
I0.WAL function, 2-50
IO.WBT function, 2-52
TF.RDI subfunction
TTDRY, 2-15
I0.EIO function, 2-29
TF.RES subfunction
TTDRYV, 2-15
I0O.EIO function, 2-29
TF.RLB subfunction
TTDRYV, 2-15
TF.RLU subfunction
TTDRYV, 2-15
I0.EIO function, 2-29
TF.RNE subfunction
TTDRYV, 2-16
I0.EIO function, 2-29
IO.RAL function, 2-39
IO.RPR function, 2-44
IO.RST function, 2-46
IO.RTT function, 2-48
TF.RNF subfunction
TTDRYV, 2-16
10.EIO function, 2-29

TF.RPR subfunction
TTDRYV, 2-16
ignoring prompt, 2-30
I0.EIO function, 2-30
TF.RPT subfunction
TTDRY, 2-16
I10.EIO function, 2-30
TF.RST subfunction
TTDRYV, 2-17
10.EIO function, 2-30
I0.RAL function, 2-39
IO.RNE function, 2-41
IO.RPR function, 2-44
TF.RTT subfunction
TTDRYV, 2-17
10.EIO function, 2-30
TE.RAL subfunction, 2-17
TF.RNF subfunction, 2-17
TF.TNE subfunction, 2-17
TF.TMO subfunction
TTDRYV, 2-17
10.EIO function, 2-31
I0.RAL function, 2-39
IO.RNE function, 2-39, 2-41
IO.RPR function, 2-44
IO.RST function, 2-46
IO.RTT function, 2-48
TFE.TNE subfunction
TTDRY, 2-17
10.EIO function, 2-31
TF.WAL subfunction
TTDRYV, 2-18
10.CCO function, 2-26
I0.EIO function, 2-31
IO.WBT function, 2-52
TF.WBT subfunction
TTDRYV, 2-18
breakthrough write, 2-20, 2-27
10.CCO function, 2-27
10.EIO function, 2-31
I0.WAL function, 2-50
TFE.WIR subfunction
TTDRYV, 2-18
10.EIO function, 2-32
TF.WLB subfunction
TTDRYV, 2-18
TF.XCC subfunction
TTDRYVY, 2-19, 2-23
I0.ATA function, 2-25
TF.XOF subfunction
TTDRYV, 2-19
10.EI0O function, 2-32

TF.XOF subfunction
TTDRV (cont’d.)

10.RNE function, 2-41
IO.RPR function, 2-44
I0.RST function, 2-46
Time data
K-series
gathering interevent, 13-19
Timeout
LADRYV, 12-31
reading (TTDRV), 2-31
unsolicited input (TTDRV), 2-21
Timeout count
TTDRYV, 2-17
Timeout parameter
UNIBUS switch driver
I0.DPT function, 14-7
Time parameter
RCLOKB: subroutine (K-series), 13-23
TK25 magnetic tape unit, 6-4
TK50 magnetic tape unit, 6-4
TMO2 formatter, 6-4
TMO03 formatter, 6-4
Tmo parameter
device-specific function
VTIDRY, 3-4
TTDRYV, 2-13
IO.RAL function, 2-39
IO.RNE function, 2-40
IO.RPR function, 2-43
IO.RST function, 2-46
IO.RTT function, 2-48
VTDRY, 3-5
Tout parameter
device-specific (UNIBUS switch driver),
14-5
Track
bad sector (disk driver), 4-11
Transmit speed
TTDRYV, 2-60
Trap
system, 1-10
asynchronous, 1-10, 1-11
synchronous, 1-10
Truncation
print line (LPDRV), 7-7
TS03 magnetic tape unit, 6-3
TS11 magnetic tape unit, 6-4
TSV05 magnetic tape unit, 6-4
TTDRYV, 2-1
features, 2-1
input line length, 2-4

Index-29

TTDRYV (cont’d.)

interface support, 2-3
programming hint, 2-83
subfunction bit, 2-14
terminal support, 2-2
TTSYM system module
TTDRYV, 2-36
TTSYNC
TTDRY, 2-71
TU10 magnetic tape unit, 6-3, 6-4
TU16 magnetic tape unit, 6-4
TU45 magnetic tape unit, 6-4
TU58 DECtape II, 5-1
TU77 magnetic tape unit, 6-4
TU80 magnetic tape unit, 6-4
TU81 magnetic tape unit, 6-4
Type-ahead buffer
TTDRYV, 2-79

U

U$$NCT parameter
XEDRYV, 10-2
U$$NPC parameter
XEDRYV, 10-2
U$$NRS parameter
XEDRYV, 10-2
U$SNTS parameter
XEDRYV, 10-2
UDAS5O disk controller, 4-4
UMDIOS$ diagnostic function, 1-34
UNIBUS switch driver, 14-1
AST
CPU disconnect, 14-3, 14-5
failed CPU response, 14-3
other CPU connect, 14-3
power failure, 14-3
switched to other CPU, 14-3
attaching task, 14-2
error return, 14-8
FORTRAN usage, 14-9
function code list, B-14
standard functions, 14-2
status return, 14-7, 14-8
system powerfail recovery, 14-6
UNIBUS powerfail recovery, 14-7
use, 14-2
Unlabeled tape
end-of-volume (tape driver), 6-15
Unt parameter
ALUNS$ macro, 1-18

Index-30

Userid parameter
IO.STP function (LADRV), 12-27

\

Val parameter
CVADF: subroutine
K-series, 13-12
LADRYV, 12-8
FLT16: subroutine
K-series, 13-19
LADRYV, 12-15
Value parameter
I0.SMC function (TTDRYV), 2-63
Vertical format control
See also Vfc parameter

See VFC
VEC
LPDRYV, 7-6
character, 7-6
double space, 7-6
format
internal vertical, 7-6
internal, 7-6
overprint, 7-6
page eject, 7-6
prompting output, 7-6
single space, 7-6
TTDRYV, 2-77
character table, 2-77
double space, 2-77
internal vertical format, 2-77
overprint, 2-77
page eject, 2-77
prompting output, 2-77
single space, 2-77
Vfc parameter
QIO$ macro (VIDRV), 3-4
standard function (LPDRV), 7-4
TTDRV
IO.RPR function, 2-43
TTDRV
general, 2-13
10.CCO function, 2-26
IO.WAL function, 2-49
IO0.WBT function, 2-52
Virtual 1/0, 1-2
Virtual terminal driver
See VTDRV
VTO05B terminal, 2-7
VT100 terminal, 2-8
VT101 terminal, 2-8

VT102 terminal,
VT105 terminal,
VT131 terminal,
VT220 terminal,
VT240 terminal,
VT241 terminal,
VT50H terminal,
VT50 terminal, 2-7
VT52 terminal, 2-7

2-7

2-7

2-8
2-8
2-8
2-8
2-8
2-8

2-7

VT55 terminal,
VT61 terminal,
VTDRY, 3-1

W

Wait-for buffer
K-series, 13-22
Wraparound
automatic
remote line (TTDRV), 2-84
Write function
all character
TTDRYV, 2-18, 2-26, 2-31, 2-52
breakthrough write
TF.WBT (TTDRYV), 2-27, 2-31
TTDRYV, 2-18, 2-20, 2-27, 2-50, 2-51
nonprivileged, 2-18
privileged, 2-18
DDDRYV, 5-4
error (tape driver), 6-14
logical block, 1-32, 1-33
TTDRYV, 2-18, 2-48
NRZI (tape driver), 6-15
pass all (TTDRV), 2-31, 2-48
redisplay input (TTDRV), 2-18, 2-32
Write image
clock control register (LADRV), 12-25
WTSES$ directive, 1-4, 1-10
WTSE$ macro, 1-15, 1-16, 1-24
example, 1-24

X

XEDRV
address pairs
Ethernet, 10-2
asynchronous 1/0, 10-24
auxiliary buffer
transmitting, 10-12
buffer
diagnostic, 10-22
protocol /address pair, 10-9

XEDRV

buffer (cont’d.)
reading

destination address, 10-18
Ethernet address, 10-16
protocol type, 10-17
set characteristics, 10-8
setting
destination address, 10-12
multicast address, 10-10
protocol type, 10-14
change mode, 10-24
closing line, 10-19
connecting to task, 10-25
default mode bit, 10-25
definition, 10-1
macro
DLXDF$, 10-3
EPMDF$, 10-3
diagnostic
buffer, 10-22
no data transfer, 10-24
DLX incompatibility, 10-24
driver installation, 10-4
error return
IO.XIN function, 10-20
IO.XRC function, 10-18
I0.XTM function, 10-15
Ethernet
address pairs, 10-2
device consideration, 10-2
LF$DEF protocol, 10-3
LF$EXC protocol, 10-3
message, 10-2
padding, 10-3
protocol, 10-2
receiving, 10-3
set characteristics, 10-7
transmitting, 10-3
function code, 10-4
glossary, 10-26 to 10-27
10.XCL function, 10-4
IO.XIN function, 10-4
I0.XOP function, 10-4, 10-5
I0.XRC function, 10-4, 10-15
10.XSC function, 10-4
IO.XTL function, 10-21
microcode, 10-4
I0.XTM function, 10-4
line message
transmitting, 10-11
load, 10-4

Index-31

XEDRYV (cont'd.) XOFF bit

macro library TTDRYV, 2-71
DEUNA.MLB, 10-3 XOFF send
microcode loader TTDRYV, 2-19, 2-32, 2-39, 2-44
UML..., 10-4 XON bit
multicast address mode, 10-2 TTDRYV, 2-71
opening line, 10-5 xp I0.WLB function
pad enable bit standard function, 1-33
transmitting, 10-24 XRATE: subroutine
physical adddress mode, 10-2 computing clock rate and preset
programming K-series, 13-27
hint, 10-23 LADRYV, 12-22
sequence, 10-4
protocol

Ethernet, 10-2
QIO$% macro, 10-3
general, 10-3
QIO$ macro libary
EXEMC.MLB, 10-3
reading
destination address
buffer, 10-18
Ethernet address
buffer, 10-16
protocol type
buffer, 10-17
receiving message, 10-15
set characteristics
Ethernet, 10-7
setting
destination address
buffer, 10-12
multicast address
buffer, 10-10
protocol type
buffer, 10-14
setting characteristics
buffer, 10-8
size
maximum, 10-24
minimum, 10-24
status return, 10-5
IO.XIN function, 10-20
I0.XRC function, 10-18
I0.XTM function, 10-15
task requirement, 10-2
transmitting message, 10-11
U$$NCT parameter, 10-2
U$SNPC parameter, 10-2
U$$NRS parameter, 10-2
U$SNTS parameter, 10-2
use, 10-1

Index-32

RSX-11M-PLUS and Micro/RSX
I/0O Drivers

Reference Manual
AA-JS11A-TC

READER’S Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
COMMENTS and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? — Programmer — Nonprogrammer

Years of experience as a computer programmer/user:

Name Date

Organization

Street

City State ______ Zip Code
or Country

-—— Do Not Tear - Fold Here and Tape ———————————————————mpgqoqr—————""""—"——————

No Postage

™ Necessary
t if Mailed

in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

—-—— Do Not Tear - Fold Her¢ ——————————————————————————————— — —

