40033 10

VAXELN Runtime Facilities Guide

Order Number: AA-JM81E-TE

This manual is a guide to using the VAXELN runtime facilities.

Revision/Update Information: = This manual supersedes the VAXELN Runtime
Facilities Guide, AA-JM81D-TE.

Operating System and Version: VMS, Version 4.7 or higher
Software Version: VAXELN, Version 4.1

digital equipment corporation
maynard, massachusetts

DATATRIEVE
DDCMP

DEC

DECnet
DECnet-VAX
DECwindows
DELUA
DEQNA
DEUNA
DHB32
DRB32

DRQ

DSSI
Industrial VAX
IVAX

Revised, March 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license. No respon-
sibility is assumed for the use or reliability of software or equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227—-7013.

© Digital Equipment Corporation 1986, 1987, 1988, 1989, 1990
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

KA rtVAX VAX DEC/MMS

KDA50 RX VAX DEC/Test Manager
KDB50 ThinWire VAX DOCUMENT
Local Area VAXcluster TK VAXELN

MASSBUS TU VAX FORTRAN
MicroVAX UDA VAX Rdb/ELN

MS ULTRIX VAX Rdb/VMS

P/OS ULTRIX-32m VAX Realtime Accelerator
Q-bus UNIBUS VAX RMS

Q22-bus VAX VAXstation

RA VAXBI VMS

RD VAX C vT

RRD40 VAXcluster XMI

RSTS VAXconsole XUI

RSX VAX DEC/CMS "

RT dlillitlal!]

UNIX® is a registered trademark of American Telephone & Telegraph
Company.

X Window System, Version 11 and its derivations (X, X11, $1339

X Version 11, X Window System) are trademarks of the Massachusstts
Institute of Technology.

This document was prepared with VAX DOCUMENT, Version 1.2.

Contents

PREFACE xxv
CHAPTER 1 RUNTIME FACILITIES OVERVIEW 1-1
1.1 VAXELN RUNTIME ENVIRONMENT 1-2
1.2 VAXELN PROGRAMMING CONCEPTS 1-7
1.2.1 Processes: Execution Agents for Programs and
Program Parts 1-8
1.2.2 Jobs: Families of Processes 1-8
1.2.3 Concurrency: Processes Sharing Processor
Resources 1-9
1.2.3.1 Multitasking * 1-10
1.23.2 Multiprogramming « 1-10
1.2.3.3 Multiprocessing * 1-10
1.3 VAXELN RUNTIME FACILITIES 1-14
1.3.1 Kernel 1-14
1.3.2 Network Services 1-15
1.3.3 LAT Host Services 1-15
1.3.4 - Authorization Service 1-16
135 File Service 1-16
1.3.6 Device Drivers 1-17
13.7 DECwindows Support 1-17
CHAPTER 2 THE VAXELN KERNEL 2-1
2.1 KERNEL OBJECTS 2-2
2.1.1 AREA Objects 2-4
2.1.2 DEVICE Objects 2-6
2-7

2.1.3 EVENT Objects

2.1.4 MESSAGE Objects 2-8

215 NAME Objects 2-9

2.1.6 PORT Objects 2-10

217 PROCESS Objects 2-12

2.1.8 SEMAPHORE Objects 2-13

2.1.9 Kernel Object Implementation 2-14

22 OPTIMIZED DATA STRUCTURES 2-15
2.2.1 AREA_LOCK_VARIABLE Data Structure 2-16

2.2.2 MUTEX Data Structure 2-17
CHAPTER 3 JOB, PROCESS, AND MEMORY MANAGEMENT 3-1
3.1 JOB ACTIVATION AND TERMINATION 3-3
3.2 SUBPROCESS ACTIVATION AND TERMINATION 34
33 SCHEDULING 3-6
3.3.1 Processes and Process States 3-6

3.3.2 Job and Process Scheduling 3-9

3.3.3 Initialization Programs and System Start-Up 3-12

3.34 Loading Programs 3-13

3.35 Scheduling in Multiprocessing Configurations 3-14

34 KERNEL SERVICES FOR PROCESSES AND JOBS 3-14
3.4.1 CREATE_JOB Procedure 3-15

3.4.2 CREATE_PROCESS Procedure 3-15

3.4.3 CURRENT_PROCESS Procedure 3-16

344 DELETE Procedure 3-16

345 DISABLE_SWITCH Procedure 3-16

3.4.6 ENABLE_SWITCH Procedure 3-17

3.4.7 EXIT Procedure 3-17

3.4.8 KER$GET_JCB Procedure 3-17

349 KER$GET_USER Procedure 3-18

3.4.10 INITIALIZATION_DONE Procedure 3-18

34.1 KER$NAME_OBJECT Procedure 3-18

34.12 KER$RAISE_PROCESS_EXCEPTION Procedure 3-19

3.4.13 RESUME Procedure

3-19

3.4.14 Setting a Job’s Processor Eligibility 3-19
3.4.15 SET_JOB_PRIORITY Procedure 3-20
3.4.16 SET_PROCESS_PRIORITY Procedure 3-21
3.4.17 KER$SET_USER Procedure 3-22
3.4.18 SIGNAL Procedure 3-22
3.4.19 SUSPEND Procedure 3-22
3.4.20 WAIT_ANY and WAIT_ALL Procedures 3-23
3.5 MEMORY MANAGEMENT 3-23
3.5.1 Managing Stack Usage 3-27
3.5.2 ~ Allocating Memory 3-29
3.5.2.1 ALLOCATE_MEMORY Procedure « 3—29
3522 KER$ALLOCATE_SYSTEM_REGION
Procedure « 3—30
3.5.2.3 FREE_MEMORY Procedure * 3—-31
3.5.24 KER$FREE_SYSTEM_REGION
Procedure « 3-31
3525 KER$MEMORY_SIZE Procedure « 3-31
3.5.3 Loading VAXELN System Images onto KA800
Processors 3-32
CHAPTER 4 SYNCHRONIZATION 41
4.1 SYNCHRONIZING PROCESS EXECUTION 4-2
4.2 USING TIME VALUES TO SYNCHRONIZE PROCESS EXECUTION 4-6
4.2.1 Walting on Time 4-6
42,2 Retrieving and Setting the System Time 4-8
43 SYNCHRONIZING PROCESS EXECUTION BASED ON PROCESS
COMPLETION 4-9
44 USING SEMAPHORES TO SYNCHRONIZE PROCESS EXECUTION 4-10
4.4.1 Creating Semaphores 4-11
44.2 Waiting On and Signaling Semaphores 4-12
4-14

4.4.3 Deleting Semaphores

4.4.4 Using Mutexes to Optimize Waiting and Signhaling

Operations 4-14
45 USING EVENTS TO SYNCHRONIZE PROCESS EXECUTION 4-15
4.5.1 Creating Events 4-16
4.5.2 Waiting On, Signaling, and Clearing Events 4-16
4.53 Deleting Events 4-18
CHAPTER 5 COMMUNICATION 51
5.1 SHARING MODULE-LEVEL DATA 5-1
5.2 SHARING PACKETS OF DATA USING QUEUES 5-4
53 PASSING MESSAGES 5-10
5.3.1 Messages 5-11
5.3.2 Message Ports 5-12
5.33 Named Message Ports 513
5.3.4 Message Transmission 5-14
5.34.1 Expedited Messages « 5-15
5.3.5 Datagrams and Circuits 5-16
5.3.6 Programming with Circuits 5-17
5.3.7 Port Limits and Flow Control 5-21
5.3.7.1 Flow Control with Unconnected Ports « 5-21
53.7.2 Flow Control with Circuits « 5-22
5.3.8 Programming Considerations for Message
Communication 5-22
5.3.9 Kernel Services for Message Transmission 5-23

vi

5.3.0.1 ACCEPT_CIRCUIT Procedure « 5-23
5.3.9.2 CONNECT_CIRCUIT Procedure * 5-24
5.3.9.3 CREATE_MESSAGE Procedure * 5-25
5.3.94 CREATE_NAME Procedure « 525
5.3.9.5 CREATE_PORT Procedure » 5-25
5.3.9.6 DELETE Procedure * 5-26

5.3.9.7 DISCONNECT_CIRCUIT Procedure « 5-26
5.3.9.8 JOB_PORT Procedure ¢ 5-26

5.3.9.9 RECEIVE Procedure * 5-26

5.3.8.10 SEND Procedure » 5-27

5.3.9.11 TRANSLATE_NAME Procedure 5-27

5.3.9.12 WAIT_ANY and WAIT_ALL Procedures ¢ 5-27

54 SHARING MEMORY AREAS 5-28
5.4.1 Creating Areas 5-30
54.2 Synchronizing Access to Areas with Events 5-33
543 Synchronizing Access to Areas with Semaphores 5-39

5.4.4 Using Area Lock Variables to Optimize Waiting and
Signaling Operations 540
5.4.5 Using Areas to Synchronize Job Execution 5-41
5.4.6 Deleting Areas 5-46
CHAPTER 6 DEVICE HANDLING 6—1
6.1 CREATING AND DELETING DEVICE OBJECTS 6-3
6.2 HANDLING DEVICE INTERRUPTS 6-5
6.2.1 Waiting for an ISR to Service a Device interrupt 6-5
6.2.2 Signaling the DEVICE Object After Service Completion 6-5

6.3 SYNCHRONIZING ACCESS TO THE DEVICE COMMUNICATION
REGION 66
6.4 SETTING A DRIVER JOB’S PROCESSOR ELIGIBILITY 6-8
6.5 READING AND WRITING REGISTER DATA 6-9
6.6 CONTROLLING DMA DEVICES 6-10
6.6.1 Alliocating, Loading, and Freeing Map Registers 6-10
6.6.2 Allocating and Freeing Buffered Data Paths 6-11
6.6.3 Mapping and Unmapping Memory Buffers 6-12
6.6.4 Returning a Variable’s Physical Address 6-13
6.7 CODING VAXBI BUS DEVICE DRIVERS 6-13
6.8 EXECUTING ROUTINES IN KERNEL MODE 6-14

vii

6.9

HANDLING POWER-FAILURE RECOVERY

6-17

CHAPTER 7 EXCEPTION HANDLING

viil

7.1

7.2

7.3

74

7.5

7.6

VAX STACK ARCHITECTURE

EXCEPTIONS IN VAXELN SYSTEMS

7.2.1
7.2.2
7.23
724

Exception-Handler Arguments
Continue and Resignal Operations
Unwind Operation

Multiple Concurrent Exceptions

RAISING EXCEPTIONS

7.3.1
7.3.2

Kernel Procedure Failure Exceptions
Asynchronous Exceptions

EXCEPTION-HANDLING PROCEDURES

7.4.1
7.4.2
7.4.3
744
7.4.5

DISABLE_ASYNCH_EXCEPTION Procedure
ENABLE_ASYNCH_EXCEPTION Procedure
RAISE_EXCEPTION Procedure
KER$RAISE_PROCESS_EXCEPTION Procedure
KER$UNWIND Procedure

STATUS CODES

USING RUNTIME MESSAGES IN APPLICATION PROGRAMS

7.6.1
7.6.2
7.6.3
7.64
7.6.5

VAXELN Message Files
Constructing Messages
Using Message Files with Application Programs

. Retrieving Message Text

Displaying VAXELN Message Text on VMS Systems

-7-1

7-1

7-4
7-5
7-7
7-8
7-1

7-11
7-11
7-1

7-12
7-12
7-12
7-13
7-13
7-13

7-13

7-14
7-15
7-18
7-19
7-21
7-23

CHAPTER 8 ETHERNET/IEEE 802 DATALINK DRIVERS 8-1

8.1 ETHERNET/IEEE 802 DATAGRAM SERVICE 8-4
8.2 RETRIEVING A CSMA/CD LAN CONFIGURATION 8-7
8.2.1 Ethernet Controlier Device Types 8-8
8.2.2 Ethernet Controller Device Names 8-9
8.23 Ethernet Controlier Control Ports 8-9
8.24 Ethernet Controller Data Ports 8-9
8.3 RETRIEVING ETHERNET CONTROLLER ATTRIBUTES 8-10
8.3.1 Ethernet Controlier Physical Addresses 8-11
8.3.2 Ethernet Controller Hardware Addresses 8-12

8.4 CONNECTING AND DISCONNECTING AN ETHERNET/IEEE 802

PROTOCOL 8-12
8.4.1 Portals 8-14
8.4.2 Dispatch Ports 8-15
8.4.3 Message Format and Multiplexing 8-15
8.4.4 User Data 8-17
8.4.5 Promiscuous Mode 8-17
8.4.6 Multicast Addresses 8-18
8.4.7 Group SAPs 8-18
8.4.8 LLC Classes 8-18
8.4.9 Padded Ethernet Protocols 8-19
8.5 TRANSMITTING AND RECEIVING MESSAGES 8-19
8.5.1 Allocating a Message Buffer 8-20
8.5.2 Transmitting Messages 8-21
8.5.3 Retrieving Transmitted Messages 8-23
8.5.4 Receiving Messages 8-25

8.6 SETTING UP AN ETHERNET/IEEE 802 DATAGRAM SERVICE
ENVIRONMENT 8-27

CHAPTER 9 DECNET NETWORK SERVICES

9.1 NETWORK SERVICE PROTOCOLS

9.2 MESSAGE TRANSMISSION SERVICES

9.3 NAME SERVICE

9.3.1
9.3.2
9.33

Name Server
Kernel and Name Service Interaction
Name Server Election

9.4 NETWORK MANAGEMENT SERVICES

9.4.1

9.4.2
9.4.3

9.4.4

Managing VAXELN DECnet Systems from a VMS Host

System

Testing the Network Service

Using the Network Management Service

9.4.3.1 Initializing DECnet Node Addresses at
Runtime 9-13

9.4.3.2 Stopping and Starting DECnet Software to
Reduce Network Overhead « 9-14

9.4.33 Switching DECnet Software Between Ethernet
Controliers » 8-16

Using the Down-Line Load Service

9.4.4.1 Establishing Circuits for Down-Line Load
Service Communication + 9-20

9442 Managing and Monitoring Data Base Node
Entries « 9-21

9.44.3 Managing and Monitoring Data Base Line
Entries + 9-28

9444 Managing Target-initiated Down-Line Load
Requests » 9-35

9.445 Trigger Booting a VAXELN Target Node = 9-36

8.4.4.6 Down-Line Loading VAXELN Systems « 8-40

9.5 SERVICES FOR COMMUNICATING WITH VMS NODES

9.5.1

9.5.2

Specifying Nodes

9.5.1.1 Using Node Names and Node Numbers in
VMS « 9-46

9.5.12 Using Node Numbers in VAXELN « 947

Requesting Connections from VAXELN Systems

9-1

9-2

£LEE

9-10
9-11

9-18

9.5.3 Accepting Connections on VMS Systems 9-48
9.54 Requesting Connections from VMS Systems 9-48
9.5.5 Accepting Connections on VAXELN Systems 9-48
9.5.6 Using DECnet Object Numbers in Connection
Requests 949
9.6 REMOTE TERMINAL UTILITY 9-49
CHAPTER 10 INTERNET SERVICES 10-1
10.1 INTERNET SERVICE CONCEPTS 10-2
10.1.1 Client-Server Model 10-3
10.1.2 internet Architecture 10-3
10.1.2.1 Internet Protocol » 10-5
10.1.22 User Datagram Protocol « 10-6
10.1.23 Transmission Control Protocol « 10-7
10.1.3 Internet Addresses 10-9
10.1.3.1 Network Classes » 10-9
10.1.3.2 Network Mask » 10-12
10.1.3.3 Broadcast Mask * 10-13
10.1.4 Ports as Internet Communication Endpoints 10-14
10.1.5 Sockets 10-15
10.1.5.1 Connection Socket Communication « 10-16
10.1.5.2 Connectionless Socket '
Communication « 10-17
10.1.6 Routing 10-18
10.1.7 Fragmentation 10-23
10.2 CONFIGURING INTERNET SERVICES 10-23
10.3 CONTROLLING INTERNET SERVICES 10-25
10.3.1 Managing the ARP Cache 10-25

10.3.1.1 Adding and Deleting ARP Cache
Entries «+ 10-26

10.3.1.2 Retrieving Ethernet Addresses from the ARP
Cache « 10-27

10.3.1.3 Retrieving ARP Cache Entries « 1028

xi

xii

104

10.5

10.6

10.7

10.3.2

10.3.3

10.3.4
10.3.5

Managing the Internet Routing Table

10.3.2.1 Adding and Deleting Routing Table
Entries » 10-31

10.3.2.2 Checking the Status of Routing Table
Entries »+ 10-34

10.3.2.3 Retrieving Routing Table Entries » 10-37

Managing Internet Network Interfaces

10.3.3.1 Setting Internet Network Interfaces « 10—40

10.3.3.2 Retrieving Internet Network Interface
Characteristics » 10-42

Retrieving Internet Performance and Error Data

Retrieving TCP Connection Data

CONVERTING THE BYTE ORDER OF NETWORK AND HOST
BINARY DATA

MANIPULATING INTERNET ADDRESSES

PROGRAMMING INTERNET COMMUNICATION

10.6.1
10.6.2
10.6.3
10.6.4

10.6.5

10.6.6
10.6.7
10.6.8

10.6.9

Creating Sockets

Binding Names to Sockets

Controlling Socket Characteristics

Establishing Connections for Socket Communication

10.6.4.1 Initiating Socket Connections 10-62

10.6.4.2 = Creating a Queue for Pending Connection
Requests » 1064

10.6.4.3 Accepting Socket Connections * 10-65

Transferring Data

10.6.5.1 Sending Data to Sockets + 10-66

10.6.5.2 Receiving Data from Sockets * 10-70

10.6.56.3 Polling Sockets for /O Activity » 10-73

Shutting Down Sockets

Closing Sockets

Programming Socket Communication for a UDP

Application

Programming Socket Communication for a TCP/IP

Application

RETRIEVING AND SETTING SOCKET CHARACTERISTICS

10.7.1

Retrieving Socket Names

10-31

10-40

10-44
10-48

10-53

10-54

10-55
10-57
10-58
10-60
10-62

10-66

10-75
10-76

10-77

10-84

10-91
10-91

10.7.2 Setting Socket Characteristics

10-82

10.7.3 Retrieving Socket Options 10-93
CHAPTER 11 LAT HOST SERVICES 11-1
11.1 LAT HOST SERVICES OVERVIEW 11-1
11.2 ESTABLISHING CIRCUITS FOR LAT COMMUNICATION 114
11.2.1 Connecting to a LAT Control Port 11-5
11.2.2 Creating a VAXELN LAT Port 11-7
11.2.3 Connecting to a DDA Port 11-9
11.3 MANAGING VAXELN SERVICE NODES -~ 11-12
11.3.1 Retrieving and Setting Service Node Characteristics 11-12
11.3.1.1 Node Names « 11-14
11.3.1.2 Node Identification Strings * 11-15
11.3.1.3 LAT Network Groups ¢« 11-15
11.3.1.4 Multicast Timer « 11-16 .
11.3.1.5 Service Node States « 11-16
11.3.2 Managing Service Node Services 11-17
11.3.2.1 Creating and Deleting Services « 11-17
11.3.2.2 Changing Service Characteristics + 11-20
11.3.2.3 Advertising Services * 11-21
11.3.3 Retrieving LAT Port Characteristics 11-23
11.3.3.1 LAT Port Names « 11-24
11.3.3.2 Queue Statuses « 11-25
11.3.3.3 Remote Server Names * 11-25
11.3.3.4 Remote Port Names * 11-25
11.3.4 Retrieving Terminal Server Characteristics 11-25
11.3.5 Monitoring LAT Network Performance and Error
Statistics 11-27
114 SETTING UP A DEDICATED SERVICE ENVIRONMENT 11-29
115 SETTING UP AN APPLICATION DEVICE ENVIRONMENT 11-36
11.6 RETRIEVING AND SETTING TERMINAL CHARACTERISTICS 1143

xiil

CHAPTER 12 SYSTEM SECURITY 12-1

121 SECURITY FEATURES OVERVIEW 12-1
122 USER NAMES AND IDENTIFICATION CODES 12-2
123 AUTHORIZATION SERVICE 12-3
12.3.1 Including the Authorization Service 12-6
123.2 Authorization Service Utility Procedures 12-7
123.3 Establishing Circuits for Authorization Service

Communication 12-8
12.3.4 Adding Users to the Authorization Data Base 12-9
123.5 Modifying Records in the Authorization Data Base 12-11

12.3.6 Removing User Records from the Authorization Data
Base 12-13
123.7 Retrieving Authorization Data Base Information 12-14
124 USER IDENTITIES 12-16
125 FILE SERVICE SECURITY 12-19
CHAPTER 13 FILE SERVICE 13-1
13.1 DEVICE SPECIFICATIONS 13-2
132 VOLUME NAMES 13-3
13.3 FILE SPECIFICATIONS ‘ 13-5

134 PROCEDURE FOR MOUNTING MULTIPLE VOLUMES WITH
IDENTICAL VOLUME LABELS 13-6

13.5 DISK$DEFAULT_VOLUME DEVICE NAME 13-8

xiv

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

FILE ACCESS LISTENER
FILE SERVICE VOLUMES FROM VMS
FILE SERVICE OPERATIONS

FILE UTILITY PROCEDURES

13.9.1 ELN$COPY_FILE Procedure

13.9.2 ELN$CREATE_DIRECTORY Procedure
139.3 ELN$DELETE_FILE Procedure

13.9.4 ELN$DIRECTORY_CLOSE Procedure
13.9.5 ELN$DIRECTORY_LIST Procedure

13.9.6 ELN$DIRECTORY_OPEN Procedure

13.9.7 ELN$PROTECT_FILE Procedure

13.9.8 ELN$RENAME_FILE Procedure

13.9.9 ELN$SET_DEFAULT_FILESPEC Procedure

DISK UTILITY PROCEDURES

13.10.1 ELN$DISMOUNT_VOLUME Procedure
13.10.2 ELNS$INIT_VOLUME Procedure
13.10.3 ELN$MOUNT_VOLUME Procedure

TAPE UTILITY PROCEDURES

13.11.1 ELN$DISMOUNT_TAPE_VOLUME Procedure
13.11.2 ELNS$INIT_TAPE_VOLUME Procedure
13.11.3 ELN$MOUNT_TAPE_VOLUME Procedure

FILE SERVICE INTERFACE FOR DISK AND TAPE DRIVERS

DATA ACCESS PROTOCOL

13.13.1 DAP General Principles

13.13.2 Action Routines and DAP$SERVER
13.13.3 DAP Data Types

13.13.4 DAP Constants

13.13.5 DAP Wildcard Functions

13-9

13-10

13-10

13-11
13-11
13-12
13-12
13-13
13-13
13-13
13-14
13-15
13-15

13-15
13-16
13-16
13-17

13-17
13-18
13-18
13-18

13-19

13-21
13-24
13-25
13-26
13-26
13-27

XV

CHAPTER 14 VAXELN DEVICE DRIVERS

xvi

14.1

14.2

14.3

14.4

DISK DRIVERS
14.1.1 Logical VO
14.1.2 Disk Specifications
14.1.3 Disk Driver Interface to the File Service
14.1.4 Recovery from Power Fallure
14.1.5 Direct Device Access for Disk Devices
14.1.5.1 Establishing Circuits for the DDA Disk
Interface * 14-8
14.1.56.2 Reading Data from and Writing Data to a
Local Disk « 149
14.1.5.3 Reading Logical Blocks from an Unmounted
Disk « 14-12
14.1.5.4 Reading Logical Blocks from a Mounted
Disk ¢ 14-15
14.1.6.5 Transferring Data to a System Region « 14-20
14.1.6 Virtual-Memory Disk Driver

TAPE DRIVER
14.2.1 Logical VO
14.2.2 Tape Specifications

14.2.3 Tape Driver Interface to the File Service
14.24 Recovery from Power Failure
14.2.5 Recovery from Errors

PRINTER DRIVERS
14.3.1 Accessing Printer Devices
14.3.2 Printer Driver Characteristics

TERMINAL DRIVERS

14.4.1 Terminal VO

14.4.2 Type-Ahead and Synchronization

14.4.3 Terminating Lines of Input

14.4.4 Setting Up Point-to-Point DDCMP Communication

14-1

14-1
14-3
14-3
14-6
14-7
14-7

14-24

14-27
14-27
14-28
14-28
14-29
14-29

14-29
14-30
14-31

14-32
14-35
14-35
14-36
14-36

14.5

144.5 Direct Device Access for Serial-Line Devices 14-39
14.45.1 Establishing Circuits for Serial-Line
Communication « 14—41
14.45.2 Retrieving and Setting Terminal
Characteristics » 1441
14.453 Reading Data from and Writing Data to a
Serial Line * 14-48
14.454 Setting a Serial Line to the Spacing
State « 14-57
14.455 Monitoring the Use of Out-of-Band
Characters « 14-59
14.4.6 Using Control Characters 14-62
14.4.7 Using Escape and Control Sequences 14-64
14471 Using VT52-Type Escape Sequences « 1466
14.4.8 Using Modem Control 14-66
14.4.81 Retrieving and Setting Modem
Characteristics *« 14-68
14482 Monitoring Modem Events « 14-69
14.4.9 Performing Parallel I/O 14-73
SMALL COMPUTER SYSTEM INTERFACE DRIVER 14-73
14.5.1 Using the VAXELN SCSI Disk Class Driver 14-76
14.5.2 Using the VAXELN SCSI Generic Class Driver 14-77
14.52.1 Connecting to the Generic Class
Driver » 14-78
14.5.22 Requesting SCSI Bus Configuration
Data 14-80
145623 Connecting to SCSI Devices « 14-83
14.56.24 Issuing SCSI Commands « 14-85
14625 Programming a Generic Class Driver Message
interface Application + 1491
14.5.3 Developing User-Defined SCSI Class Drivers 14-110
14.5.3.1 Modifying the SCSI Driver Start-Up
Module « 14114
14.5.32 Programming SCSI Class Drivers * 14-116
14.5.3.2.1 Defining Device Locks * 14-119
14.56.3.2.2 Setting Up an Entry Point » 14-120
14.5.3.2.3 Checking for Devices to Service ¢ 14—121
14.5.3.2.4 Setting the Current Connection
Flag « 14-121
14.5.3.2.5 Allocating /O Request Packets for

Devices * 14-122

14.5.3.2.6 Mapping Data Buffers for /O
Requests « 14-123
14.56.3.2.7 Issuing SCSI Commands « 14-125
14.5.3.2.8 Initializing a SCSI Device
Controller « 14-127
14.5.3.3 Compiling and Linking the SCSI Driver
Modules » 14-128

146 REALTIME DEVICE DRIVERS 14-128
14.6.1 ADQ32 DMA Analog-to-Digital Converter 14-130
14.6.2 ADV11-C/AXV11-C Analog-to-Digital Converter 14-131
14.6.3 ADV11-D DMA Analog-to-Digital Converter 14-133
14.6.4 DLVJ1 Asynchronous Serial-line Controller 14-134
14.6.5 DRB32 DMA Parallel-Line Interface 14-136
14.6.6 DRQ3B DMA Parallel-Line Interface 14-140
14.6.7 DRV11—J Parallel-Line Interface 14-142
14.6.8 DRV11-W DMA Parallel-Line Interface 14-144
14.6.9 IEQ11-A and IEU11-A Dual IEC/IEEE Instrument Bus
Interfaces 14-146
14.6.10 KWV11-C Realtime Clock 14-150
APPENDIX A STATUS VALUES/EXCEPTION NAMES A-1
APPENDIX B MACHINE-CHECK STACK FRAMES B-1
B.1 OBTAINING A MACHINE-CHECK STACK FRAME B-2
B.2 MACHINE-CHECK STACK FRAME FOR MICROVAX | PROCESSORS B4
B3 MACHINE-CHECK STACK FRAME FOR MICROVAX 1l AND 2000,
VAXSTATION 1l AND 2000, AND KA800 PROCESSORS B-6
B4 MACHINE-CHECK STACK FRAME FOR RTVAX 300, MICROVAX
3NNN SERIES, VAXSTATION 3100, 3200, AND 3500, AND VAX
6000-2NN AND 6000-3NN SERIES PROCESSORS B-7

xviii

B.5 MACHINE-CHECK STACK FRAME FOR VAX 6000-4NN SERIES
PROCESSORS B-10
B.6 MACHINE-CHECK STACK FRAME FOR VAX 8200 AND 8250
PROCESSORS B-12
B.7 MACHINE-CHECK STACK FRAME FOR VAX 8500, 8550, 8700, 8800,
AND 8810 PROCESSORS B-13
B.8 MACHINE-CHECK STACK FRAME FOR VAX-11/730 PROCESSORS B-15
B.9 MACHINE-CHECK STACK FRAME FOR VAX-11/750 PROCESSORS B-17
APPENDIX C VMS EMULATION ROUTINES C-1
C.1 VMS EMULATION ROUTINE SUMMARY C-1
C.2 CALLING VMS EMULATION ROUTINES c4
Cc3 VMS SYSTEM SERVICE EMULATION ROUTINE DESCRIPTIONS c-7
C4 LIB$ EMULATION ROUTINE DESCRIPTIONS c-9
C5 STR$ EMULATION ROUTINE DESCRIPTION Cc-25
APPENDIX D SCSI PORT DRIVER INTERFACE ROUTINES D-1
PORT$ALLOCATE_DEVICE D-3
PORTS$EXIT_HANDLER D-7
PORT$FREE_DEVICE D-10
PORTSINITIALIZE_CONTROLLER D-13
PORT$ISSUE_COMMAND D-16
PORT$MAP_BUFFER D-20
PORT$UNMAP_BUFFER D-24

xix

INDEX Index-1
EXAMPLES
5-1 Using Queues for Process Communication 5-6
5-2 Disconnecting the Partner Port After a Disconnect Operation 5-20
5-3 Synchronizing Access to Areas with Events 5-34
54 Synchronizing Job Execution with Semaphores 542
6-1 Using the KER$ENTER_KERNEL_CONTEXT Procedure 6-16
7-1 Using Message Files 7-20
8-1 Sample Network Interface Application 8-29
9-1 Managing and Monitoring Down-Line Load Data Base Node
Entries 9-24
9-2 Managing and Monitoring Down-Line Load Data Base Line Entries 9--31
8-3 Trigger Booting a VAXELN Target Node 9-39
94 Down-Line Loading a VAXELN System Image 9-43
10-1 Sample UDP Server 10-78
10-2 Sample UDP Client 10-82
10-3 Sample TCP/IP Server 10-85
104 Sample TCP/IP Client 10-88
11-1 LAT Dedicated Service 11-31
11-2 LAT Application Service 11-38
14-1 Reading Logical Blocks from an Unmounted Disk 14-12
14-2 Reading Logical Blocks from a Mounted Disk 14-15
14-3 Transferring Data to a System Region 14-21
144 Using the Virtual-Memory Driver 14-25
14-5 Reading and Writing Serial-Line Data 14-52
146 Reading and Writing Serial-Line Data Using a User-Defined
Message 14-54
14-7 Monitoring the Use of Out-of-Band Characters 14-61
14-8 Monitoring Modem Events 14-71
148 Programming a SCSI Generic Class Driver Message Interface
Application 14-92
14-10 Modifying the SCSI Driver Start-Up Module 14-115

FIGURES
1-1
1-2
1-3
1-4
1-5
1-6
1-7

2-1
3-1
3-2
3-3

35
3-6
37
7-1
7-2
7-3
7-4
7-5
8-1
9-1
9-2

10-1
10-2
10-3
104
11-1
11-2

A VAXELN Application 1-2
VAXELN System Software 14
Runtime Environment 1-5
Process Family 1-9
Loosely Coupled Multiprocessing Configuration 1-11
Tightly Coupled Symmetric Multiprocessing Configuration _______ 1-12
Closely Coupled Symmetric Multiprocessing Configuration with

VAXELN Primary System 1-13
Closely Coupled Symmetric Multiprocessing Configuration with

VMS Primary System 1-13
PORT Value Representation 2-11
Valid Process State Transitions 3-8
Job and Process Priorities ’ 3-10
Combined Priority Representation 3-11
Memory Allocation 3-24
System Region 3-25
Program Region 3-25
Control Region 3-27
A Procedure’s Stack Frame 7-3
A Frame Structure After a Procedure Call 7-3
Call Frame Block : 7-4
Signal Arguments _ 7-6
Mechanism Arguments 7-7
A Two-Node VAXELN Network USing the Datagram Service 8-5
A Two-Node VAXELN Network Using the Network Service 94
Target-Initiated Down-Line Load Request 9-35
Trigger Boot Request 9-37
Down-Line Load Request 9-40
Client-Server Model 10-3
Internet Layers 104
Routing Table 10-19
Routing Algorithm 10-20
Sample VAXELN LAT Configuration 11-3
VAXELN LAT Port 11-9

xxi

11-3 Dedicated Service Environment 11-30
11-4 Application Device Environment 11-37
12-1 Authorization Service Example 124
12-2 Protection Mask 12-20
13-1 DAP Message Transmission (Read Request) 13-22
14-1 A VAXELN Serial DDCMP Link 14-37
14-2 SCSI Class/Port Driver Architecture 14-75
14-3 SCSI Device Markers 14-114
B-1 Machine-Check Stack Frame for MicroVAX | Processors B4
B-2 Machine-Check Stack Frame for MicroVAX Il and 2000, VAXstation Il

and 2000, and KA800 Processors B-6
B-3 Machine-Check Stack Frame for rtVAX 300, MicroVAX 3nnn Series,

VAXstation 3100, 3200, and 3500, and VAX 6000-2nn and 6000-3nn

Series Processors B-8
B-4 Machine-Check Stack Frame for VAX 6000—4nn Series Processors B-10
B-5 Machine-Check Stack Frame for VAX 8200 and 8250 Processors _. B-12
B-6 Machine-Check Stack Frame for VAX 8500, 8550, 8700, 8800, and ;

8810 Processors B-13
B-7 Machine-Check Stack Frame for VAX-11/730 Processors B-15
B-8 Machine-Check Stack Frame for VAX-11/750 Processors B-17

TABLES

1-1 Runtime System Components 1-6
2-1 Kernel Objects 2-4
2-2 Optimized Data Structures 2-16
3-1 Process States 3-7
6-1 Interrupt Priority Levels 6-6
7-1 VAXELN Message Files 7-16
8-1 EtherneVIEEE 802 Datalink Drivers 8-2
8-2 Ethernet Controller Device Types 8-8
8-3 Portal Message Formats 8-15
84 Portal Multiplexing Fields 8-17
9-1 Down-Line Load Data Base Node Characteristics 9-21
9-2 Down-Line Load Data Base Line Characteristics 9-29
10-1 UDP Characteristics 10-6
10-2 TCP Characteristics 10-8

xxii

14-10
14-11
1412
14-13
14-14

Network Class Number Ranges 10-11

Broadcast Addresses 10-14
Socket Protocol Types 10-16
Calling Sequence for Socket Communication 10-56
Socket-Level Socket Options 10-92
Storage Device Types 13-3
Disk Drivers 14-1
Disk Devices 14-3
Tape Specifications 14-28
Printer Drivers 14-29
Printer Driver Characteristics 14-31
Terminal Drivers 14-32
Terminal Driver Characteristics 14-41
Control Characters : . 14-63
Modem Control Signals 14-67
Modem Characteristics 14-68
SCSI Device Characteristics 14-80
VAXELN SCSI Driver Components 14-111
SCSI Bus Configuration Data 14-112
Realtime Devices 14-128
Status Values/Exception Names A-1
Machine-Check Type Codes for MicroVAX | Processors B-5
Machine-Check Type Codes for MicroVAX Il and 2000, VAXstation i

and 2000, and KA80O Processors B-7

Machine-Check Type Codes for rtVAX 300, MicroVAX 3nnn Series,
VAXstation 3100, 3200, and 3500, and VAX 6000-2nn and 6000-3nn

Series Processors B-9
Machine-Check Type Codes for VAX 6000-4nn Series Processors . B-11
Machine-Check Stack Frame Contents for VAX 8500, 8550, 8700,

8800, and 8810 Processors B-14
Machine-Check Error Type Codes for VAX-11/730 Processors B-15
Machine-Check Error Codes for VAX-11/750 Processors ______ B-18
VMS System Service Emulation Routines c-2
VMS Runtime Library Emulation Routines c-2

xxiii

Preface

The VAXELN Runtime Facilities Guide describes the VAXELN runtime
software and explains how to use it to produce dedicated, realtime
VAXELN systems.

The manual provides a language-independent discussion of the
VAXELN Toolkit’s runtime facilities. It explains VAXELN program-
ming concepts and describes runtime features that you program and
build into VAXELN systems. For information about developing and
monitoring VAXELN systems, see the VAXELN Development Utilities
Guide.

Intended Audience

This manual is for programmers and students who have a working
knowledge of Pascal, C, or FORTRAN. Knowledge of the VMS operating
system and a cursory understanding of the Digital command language
(DCL) is recommended. Some information in this manual requires

a more extensive understanding of the VMS operating system. In
such cases, this manual directs you to appropriate documentation for
additional information.

Document Structure

xxvi

This manual consists of 14 chapters and 4 appendixes, organized as
follows:

Chapter 1, Runtime Facilities Overview, provides general infor-
mation about the runtime facilities and their role in an executing
application.

Chapter 2, The VAXELN Kernel, introduces the VAXELN Kernel
and describes the kernel data structures.

Chapter 3, Job, Process, and Memory Management, explains how
VAXELN application programs can manage processes, jobs, and
memory. The kernel’s roles in scheduling and memory allocation
are discussed in this chapter.

Chapter 4, Synchronization, explains how to use kernel objects,
optimized structures, and related procedures to synchronize pro-
cesses.

Chapter 5, Communication, explains how to use kernel objects and
related procedures to program interprocess and interjob communi-
cation.

Chapter 6, Device Handling, explains how to use the kernel
DEVICE object, related kernel procedures, and interrupt service
routines in programs that handle device interrupts. This chap-
ter also discusses recovery from power failure and direct memory
access UNIBUS and Q-bus device handling.

Chapter 7, Exception Handling, explains how to handle exceptions
from your VAXELN programs. This chapter also discusses status
codes and message-processing features that handle the conversion
of status codes into message text.

Chapter 8, Ethernet/IEEE 802 Datalink Drivers, describes the
Ethernet/IEEE 802 datalink drivers and Datagram Service and
explains how to use the Datagram Service.

Chapter 9, DECnet Network Services, describes the VAXELN
Network Service.

¢ Chapter 10, Internet Services, explains how to use the VAXELN
Internet Services.

¢ Chapter 11, LAT Host Services, explains how to establish virtual
circuits for local area transport communication, manage VAXELN
service nodes, and set up dedicated service and application device
environments.

¢ Chapter 12, System Security, explains how to include security
features in your VAXELN systems for protecting resources and
data.

* Chapter 13, File Service, describes the VAXELN File Service and
explains how to use file, disk, and tape utility procedures in your
application programs.

¢ Chapter 14, VAXELN Device Drivers, describes the disk, virtual
memory, tape, printer, terminal, and realtime device drivers that
VAXELN supplies.

* Appendix A, Status Values/Exception Names, lists the status
values/exception names that VAXELN defines.

e Appendix B, Machine-Check Stack Frames, explains how to man-
ually obtain and interpret a machine-check stack frame, in case
a machine check occurs on a VAXELN target processor in an
application that does not include the error-logging service.

¢ Appendix C, VMS Emulation Routines, identifies the VMS runtime
library and system service emulation routines that the VAXELN
Toolkit supports.

¢ Appendix D, SCSI Port Driver Interface Routines, describes the
VAXELN SCSI port driver interface routines that you can use
to program user-written SCSI class drivers for third-party SCSI
devices. :

Conventions

The following conventions are used in this manual:

Convention Meaning

UPPERCASE VMS, VAXELN, and language-specific reserved words and
characters identifiers are printed in uppercase characters.

xxvil

xxviil

Convention Meaning
italic The following items are printed in italic characters:
characters
¢ Elements for which you supply a value. For example:
nodename::"TASK=portname"
® User-defined elements in code examples when these
elements are used in text. For example:
The get_attributes argument . . .
¢ System Builder menu entry values when they appear in
text. For example:
Select Yes for the Console entry on the System
Characteristics Menu.
¢ First occurrence of a new term.
bold The following items are printed in bold characters:
characters
e System Builder menu entries when they appear in text.
For example:
Select Yes for the Console entry on the System
Characteristics Menu.
¢ Case-sensitive C language elements, such as keywords,
macros, modules, and procedures, when they appear in
text. For example:
The definition module $vaxelnec . ..
red In interactive examples, elements for which you must supply
characters input. For example: ‘
$ SHOW NETWORK
[1 Square brackets enclose optional items. For example:

SHOW NODE rode-id [SUMMARY] [COUNTERS]

Square brackets are also used in the syntax of a directory
name in a VMS file specification and in user identification
code (UIC) specifications.

When an item is followed by horizontal ellipsis points, you
can repeat the item one or more times.

Vertical ellipsis points in a figure or example indicate that
not all the information the system displays is shown or that
not all the information a user is to supply is shown.

Convention Meaning

indicates a control key sequence. Press the key la-

beled Ctr] while you simultaneously press another key. For
example:

n and x When used in items such as names, the variables n and x

represent numeric and nonnumeric characters, respectively.
For example:

VAX 6000-2nn series systems

Associated Documents

The following documents are relevant to programming VAXELN appli-
cations using the VAXELN runtime facilities:

VAXELN Documents:

VAXELN Release Notes

VAXELN Installation Guide

Introduction to VAXELN

VAXELN Development Utilities Guide

VAXELN Runtime Facilities Guide

VAXELN Application Design Guide

VAXELN Pascal Language Reference Manual
VAXELN Pascal Runtime Library Reference Manual
VAXELN C Reference Manual

VAXELN C Runtime Library Reference Manual
VAXELN FORTRAN Runtime Library Reference Manual
VAXELN Pocket Reference

VAXELN Messages Manual

VAXELN Guide to DECwindows

VAXELN Master Index and Glossary

XXix

VAX Documents:

* VAX Architecture Reference Manual
e VAX Hardware Handbook

* Guide to VAX Language-Sensitive Editor and VAX Source Code
Analyzer

VMS Documents:

* Guide to Creating VMS Modular Procedures

* Guide to Maintaining a VMS System

* Introduction to VMS

e Introduction to the VMS Run-Time Library

¢ Introduction to VMS System Management

e Introduction to VMS System Services

* VMS Authorize Utility Manual

* VMS DCL Dictionary

* VMS Error Log Utility Manual

¢ VMS I/0 User’s Reference Volume

* VMS Librarian Utility Manual

* VMS License Management Ulility Reference Manual
* VMS Linker Utility Manual

* VMS Message Utility Manual

* VMS Network Control Program Reference Manual
* VMS Networking Manual

e VMS RTL Library (LIB$) Manual

®* VMS RTL String Manipulation (STR$) Manual

* VMS Run-Time Library Routines Volume

* VMS System Services Reference Manual

DECnet Documents:

¢ DECnet DIGITAL Network Architecture General Description
* DECnet-VAX System Manager’s Guide

* DECnet-VAX User’s Guide

* Guide to DECnet-VAX Networking

Hardware Documents:

ADQ@32 A /D Converter Module User’s Guide
DLV11-J User’s Guide

DRB32 Hardware Manual

DRB32 Technical Manual

DRQ3B Parallel DMA I/0 Module User’s Guide
DR11-W Direct Memory Access Interface User’s Guide
IEU11-A/IEQ11-A User’s Guide

IEX11-A IEC/IEEE Bus Interface

KFQSA Installation Guide

MicroVAX I Owner’s Manual

MicroVAX IT Owner’s Manual

LSI-11 Analog System User’s Guide

@-bus DMA Analog System User’s Guide

American National Standard for Information Systems—Small

Computer System Interface-2 (SCSI-2)

Small Computer System Interface: An Overview

Small Computer System Interface: A Developer’s Guide
VAX 8800 Console Manual

VAX 8nnn Console Manual

VAX RTA Documents:
VAX Real-Time Accelerator Hardware [Software Installation Guide

VAX Real-Time Accelerator Software User’s Guide

The VAXELN Internals and Data Structures manual is also available

as a separate document. This manual describes the internal data

structures and operations of the VAXELN Kernel and its associated
subsystems.

Chapter 1
Runtime Facilities Overview

The VAXELN Toolkit is a VMS layered product that provides software
for developing dedicated, realtime software applications that run on
VAX processors. A dedicated application uses a computer to solve a
specific problem or set of related problems. A typical dedicated appli-
cation takes advantage of VAXELN realtime capabilities, which give
prompt, predictable responses to time-critical events. The VAXELN
Toolkit’s low-overhead design caters to these application needs by ap-
plying the VAX processor’s speed and responsiveness. Typical examples
of dedicated, realtime applications include the following:

¢ Computer integrated manufacturing

* Process control

* Simulations

¢ Data acquisition and analysis

¢ File and print servers

¢ Communication switching systems

* Multifaceted professional workstations

VAXELN systems are only as complex as they need to be; they are
statically defined and include only those services necessary to support
the functions required by your application.

You develop a VAXELN application on a VAX host processor using
VMS software and VAXELN development tools. The resulting VAXELN
system includes user and Digital program images that reside in the
memory of and run independently on a supported VAX target processor.
Figure 1-1 shows a typical VAXELN application.

Runtime Facilities Overview 1-1

Figure 1-1: A VAXELN Application

VAX Targst Processor

M " Kernel
ass Storage 2
S S

< Ethemet >
MLO-004265

Terminals

User Devices

This chapter provides information about the following:

¢ The VAXELN runtime environment, Section 1.1

¢ Basic VAXELN programming concepts, Section 1.2

¢ Facilities provided by VAXELN runtime software, Section 1.3

For information about the VAXELN development and utility features,
see the VAXELN Development Utilities Guide.

1.1 VAXELN Runtime Environment

A VAXELN runtime environment consists of one or more VAX target
processors running a VAXELN system image. The system image
executes on the target processor as a dedicated application under the
control of the kernel (see Section 1.3.1) and supplied services.

The runtime hardware requirements include the following:

* At least one of the target processors that the VAXELN Toolkit
supports. For a list of supported target processors, see the help
text for the System Builder’s Target Processor Menu, or the latest
VAXELN Toolkit System Support Addendum (SSA) or Software
Product Description (SPD).

1-2 Runtime Facilities Overview

¢ Ethernet hardware if an application requires down-line loading,
remote debugging, remote error logging, VAXELN Performance
Utility, or remote VAXELN Command Language Utility support.

s Application-specific peripheral devices, such as disks, terminals,
communications hardware, and special interfaces that Digital, a
third party, or the programmer supplies.

The target processor can exist as a standalone system or can be dis-
tributed on a local area network.

A VAXELN system image includes user application program images
and program images that Digital supplies. Typical user application
programs, which you write in high-level languages, include data ac-
quisition and reduction programs, process control supervisors, and
user-written device drivers. The program images that Digital supplies
include the VAXELN Toolkit’s highly optimized kernel executives and
images of the following:

* Runtime libraries

* Device drivers

* Services

* A server

* Runtime utilities

* A local debugger component

Using the toolkit’s System Builder, you combine the application pro-
gram images and the program images that Digital supplies into a
VAXELN system. When building the system, you can specify the pro-
grams that are to start executing as soon as you load and boot the
system.

Figure 1-2 presents the system image components in a hierarchical
diagram.

The diagram shows that the kernel executive is the heart of a VAXELN
system; it schedules and controls an application’s execution and access
to system resources. The second tier of the diagram represents optional
user and Digital software that provides kernel extensions. You tailor
your VAXELN system by including only those services and utilities that

Runtime Facilities Overview 1-3

APPLICATION CODE

Runtime
Libraries

Debugger

Utilities Device
Drivers

Servers Services

MLO-004266

your application requires. The outermost tier represents a VAXELN
system’s highest level of code: your application program images.

After building your VAXELN system image, you can load and boot it
onto the target processor from disk, tape, or read-only memory (ROM).
If you have an optional DECnet—VAX license and the appropriate
Ethernet hardware, you can down-line load the system image from the
host processor to the target processor. The system image executes on
the target processor independently under the control of the VAXELN
Kernel and runtime services.

Figure 1-3 shows a typical VAXELN runtime environment, and
Table 1-1 briefly describes the system components that Digital sup-
plies.

1-4 Runtime Facilities Overview

Figure 1-3: Runtime Environment

Target
VAX
Processor ‘
Kernel* User-Supplied Drivers
Runtime Libraries User Modiule 1
Drivers Supplied by Digital User Module 2
. Systemn
Network Service Image
File Service
Display Utility
Local Debugger Component**
VAXELN Toolkit Components User-Written Components
* Required component
**Usually not included in final system MLO-004267

Runtime Facilities Overview 1-5

Table 1-1:

Runtime System Components

Component

Description

Kernel®

Runtime Libraries

Drivers

Network Service

Ethernet/IEEE 802 Datagram
Service

Internet Services

File Service

Error Logging Service

LAT Host Services

DECwindows Server

Controls the sharing of the target processor’s
resources. The System Builder includes the
appropriate kernel for your target processor.

Contain object modules and shareable im-
ages that support realtime, I/O, math,
DECwindows, and other routines called
from VAXELN Pascal, VAX C, and VAX
FORTRAN programs.

Control communication between application
programs and external devices.

Controls data transmission between network
nodes, manages a network name table, and
provides a runtime interface for managing a
DECnet network.

Provides network interface routines that
VAXELN application programs can use to
communicate over a Carrier Sense Multiple
Access/Collision Detect (CSMA/CD) LAN.

Provide an Ethernet network interface that
VAXELN applications can use to communi-
cate with other applications in an Internet
network.

Provides support for file-oriented disk and
tape I/O operations and remote file access.

Writes data that identifies hardware errors,
volume changes, and system events to an
error log file that exists on the local target
system or on a remote system over the
Ethernet.

Provide an interface that application pro-
grams can use to communicate with devices
attached to terminal servers.

Provides a common means for DECwindows
applications to interact with graphics work-
stations.

1A required component

1-6 Runtime Facilities Overview

Table 1-1 (Cont.): Runtime System Components

Component Description

DECwindows User-Environment Provide Window Manager and terminal
Components emulator support.

Command Language Utility Provides an interactive interface you can
(ECL) use to maintain files, execute programs, and

control the runtime system environment.

Display Utility (EDISPLAY) Displays system-level and job-specific re-
source information on a target system video

terminal.

Performance Utility Collector Collects application program performance
data.

Remote Terminal Utility Lets you connect to a remote computer

system from a terminal on another computer
system by using a SET HOST command

LAT Control Program Utility Provides an interactive interface you can

(LATCP) use to manage and monitor local area trans-
port (LAT) service node characteristics and
activities

Local Debugger Component? Lets you debug a VAXELN application from
the target processor’s console terminal.

2Usually not included in final system

1.2 VAXELN Programming Concepts

A VAXELN application’s design and development are based on the
concept of concurrency, the simultaneous execution of multiple pro-
grams and parts of programs. Concurrency is a proven approach for
applications that require cooperation among programs to solve specific
problems quickly and efficiently.

VAXELN programs execute as jobs. A typical VAXELN application
consists of multiple jobs that each have functionally independent
components called processes.

Runtime Facilities Overview 1-7

1.2.1 Processes: Execution Agents for Programs and Program Parts

A process is a functionally independent entity that provides the exe-
cution context for a program image or part of a program image. Each
process in a VAXELN system represents a specialized task. The main
section of program code (the program block for VAXELN Pascal pro-
grams, the main routine for C programs, and the main program for
FORTRAN programs) executes as the master process. The kernel
creates this process implicitly when the program starts executing.

1.2.2 Jobs: Families of Processes

Collectively, the processes associated with a running program constitute
a job. A job consists of a master process and zero or more subprocesses
that can execute concurrently.

A job can be thought of as a family of processes. A job’s master pro-
cess and subprocesses create other subprocesses dynamically. Once
created, a process stays active until it exits, another process deletes
it, its master process terminates, it encounters an error from which it
cannot recover, or it finishes executing the associated code segment.
A programmed exit (see Section 3.2) is the most controlled means of
forcing process termination.

Figure 14 illustrates the creation and dependency paths for a process
family consisting of a master process and five subprocesses.

When a master process terminates under any circumstances, the kernel
removes the corresponding job, its master process and associated
subprocesses, and shared data from the system and replenishes the
system’s memory resources.

1-8 Runtime Facilities Overview

Figure 1-4: Process Family

Subprocess
2

Subprocess
4

Master
Job J Process Subprsocess
1

. - Subprocess
5

“a| Subprocess
6

— Creation Path

----=-# Dependency Path MLO-004268

1.2.3 Concurrency: Processes Sharing Processor Resources

To take advantage of the VAXELN Toolkit’s realtime efficiency, you de-
sign applications with the concept of concurrency in mind. Concurrency
is built into the VAXELN software so that cooperating processes can
share processor resources. While some processes wait for an event to
occur or a resource to become available, other processes can execute.
The kernel manages system resources so that all jobs and processes
appear to execute simultaneously, although only one process actually
executes on a processor at a time.

You determine whether jobs and processes should execute concur-
rently when designing your application. Concurrent programming has
numerous system design advantages, including improved performance.

The VAXELN Kernel supports three levels of concurrency — multitask-
ing, multiprogramming, and multiprocessing — which are described in
Sections 1.2.3.1, 1.2.8.2, and 1.2.3.3, respectively.

Runtime Facilities Overview 1-9

1.2.3.1 Multitasking

Multitasking lets you divide an application program’s functionality into
a set of smaller, focused tasks that can execute concurrently. Each
task executes as a separate dedicated process. For example, a program
controlling a wing in an aircraft flight simulation application might
consist of processes that specialize in tasks such as surface control and
engine fire-up.

1.2.3.2 Multiprogramming

Multiprogramming is the concurrent execution of entire programs,
including multitasking programs. The programs execute as jobs that
may or may not run cooperatively; that is, Job A may or may not
depend on Job B. However, the jobs of most VAXELN systems work
together to accomplish mutual goals. For example, in an aircraft
flight simulation application, a collection of cooperating jobs might
emulate major components of an airplane, such as cockpit controls and
instrumentation, navigation equipment, and left and right wings.

1.2.3.3 Multiprocessing

A VAXELN application’s jobs can reside on one processor or they can be
distributed among multiple processors. The concurrent execution of a
VAXELN application’s parts on multiple processors is called multipro-
cessing. The VAXELN Kernel supports the following multiprocessing
configurations:

e Loosely coupled symmetric multiprocessing
* Tightly coupled symmetric multiprocessing
* Closely coupled symmetric multiprocessing
In a loosely coupled symmetric configuration, an Ethernet device links

the processors, as shown in Figure 1-5. Each processor runs its own
system image with its own jobs.

1-10 Runtime Facilities Overview

Figure 1-5: Loosely Coupled Multiprocessing Configuration

Processor 1 Processor 2 Processor 3
Job A Job E
Job B Job D
Job C Job F
VAXELN VAXELN VAXELN
< Ethemet >
MLO-004269

In a tightly coupled symmetric configuration, the hardware supports
multiple processors on the same CPU bus, as shown in Figure 1-6.
VAXELN supports tightly coupled symmetric multiprocessing on VAX
6000 series and VAX 8800 multiprocessor configurations. All processors
share a copy of the VAXELN runtime components and application
images. A job can execute on any processor (the default) or you can
limit it to a specific subset of processors.

A closely coupled symmetric configuration consists of a VAX 6000
series, 8500, 8530, 8550, 8700, or 8800 primary system and one or
more KA800 single-board computers (SBCs). The primary system can
be a single processor or a tightly coulpled symmetric multiprocessing
configuration. Each KA800 system is connected to the primary system’s
VAXBI bus and has its own copy of the VAXELN runtime components
and application images.

Closely coupled configurations provide limited data sharing capabilities.
Data in the primary system’s memory is shareable and can be accessed
by the attached KA800Q systems. However, the primary system cannot
gain access to data that is in the memory of the KA800 systems.

Runtime Facilities Overview 1-11

Figure 1-6: Tightly Coupled Symmetric Multiprocessing Configuration

Processor 1 Shared Memory Processor 2
Application
Job A Images Job B
VAXELN
< CPU Memory Bus >
MLO-004270

As shown in Figures 1-7 and 1-8, the primary processor in a closely
coupled environment can run a VAXELN or VMS system. When the

primary processor is running a VAXELN system, you down-line load

VAXELN systems into the KA800 processors by using a configuration
file, a runtime procedure call, or an ECL command.

When the primary processor is running a VMS system, you use VAX
Real-time Accelerator (RTA) software to load, control, and communicate
with VAX RTA KA800 processors. For information about VAX RTA, see
the VAX Real-Time Accelerator Hardware [Software Installation Guide
and VAX Real-Time Accelerator Software User’s Guide.

A common application for closely coupled multiprocessing is to dis-
tribute realtime I/0 functions. You can achieve superior performance
by offloading interrupt-intensive tasks to KA800 processors, freeing
the primary processor for other functions. The KA800 processors can
directly control the DRB32 direct memory access (DMA) parallel port
device to distribute I/O control for high-speed data transfers and fast,
predictable interrupt response time.

1-12 Runtime Facilities Overview

Figure 1-7: Closely Coupled Symmetric Multiprocessing Configuration with
VAXELN Primary System

User Device
VAX 8800 KA800 Global KA800 [——] KAs00
Application Job A Memory JobB | DRB3® @ Job G
Images
AB00 Job D Shared High— Job F
Data
Job E Speed
Loader Job C VA Paraliel Job H
VAXELN VAXELN Buffers VAXELN Interface VAXELN
VAXBI Bus {ET
4 d

MLO-004271

Figure 1-8: Closely Coupled Symmetric Multiprocessing Configuration with VMS
Primary System

User Device
VAX 8800 KA800 Global KA800 1 KA800
Application Job A Memory sbs | pmez il | Jobe
Images
Job D Shared High— Job F
Data

VAX RTA Job E Speed

Job C DMA Parallel Job H

VMS VAXELN Buffers VAXELN Interface VAXELN
VAXBI Bus s
s 7

MLO-004272

Runtime Facilites Overview 1-13

1.3 VAXELN Runtime Facilities

The VAXELN runtime components provide a rich software environment
for programming dedicated realtime applications. These components
consist of a kernel executive and a variety of runtime services that
provide support for:

* Networking, Section 1.3.2

* Local area transport (LAT) communication, Section 1.3.3

¢ System security, Section 1.3.4

* File oriented disk and tape 1/0, Section 1.3.5

® Device drivers, Section 1.3.6

e DECwindows, Section 1.3.7

1.3.1 Kernel

The VAXELN Kernel defines a set of objects that it uses to control the
sharing of resources and to synchronize communication between the
jobs in a system. The kernel manipulates these objects in response to
procedure calls that are issued from application programs. In addition,
the kernel provides the following types of facilities to both user and
system programs:

¢ Process, job, and memory management

® Process synchronization

¢ Communication

¢ Device and interrupt handling

¢ Exception handling

Chapter 2 describes the kernel data structures and the operations in
which they can be used. Chapter 3 explains how the kernel manages
processes, jobs, and memory. Chapters 4 to 7 discuss synchronization,
communication, device handling, and exception handling, respectively.

1-14 Runtime Facilities Overview

1.3.2 Network Services

The VAXELN Toolkit includes Ethernet/IEEE 802 datalink drivers for
supported network devices. Each of the datalink drivers supports the
VAXELN Ethernet/IEEE 802 Datagram Service, VAXELN Network
Service, and VAXELN Internet Services. The Datagram Service pro-
vides network interface routines that VAXELN systems can use to
communicate with other types of systems using system-independent
communications protocols.

The Network Service is a supplied program image that controls mes-
sage transmission between network nodes, manages a network name
table, and provides a runtime interface for managing a DECnet net-
work. You configure a Network Service for each target node used in
a multinode application. The Network Service preserves the methods
for sending and receiving messages, whether jobs communicate on the
same node or between nodes; data transmission across network nodes
is transparent to your programs.

The VAXELN Internet Services support Internet networking protocols
over an Ethernet medium. The services consist of runtime routines
that applications can use to control the Internet Services, convert byte
order of Internet and host physical addresses, manipulate Internet
addresses, communicate over the Internet using sockets, and retrieve
and set socket characteristics.

Chapter 8 describes the datalink drivers and explains how to use the
Datagram Service. Chapters 9 and 10 describe VAXELN DECnet and
Internet Services, respectively.

1.3.3 LAT Host Services

The local area transport (LAT) host services enable VAXELN system
nodes running LAT host services to communicate with devices attached
to dedicated terminal server nodes running LAT server services. Using
these services, VAXELN applications can perform terminal I/O op-
erations and can use control interfaces to manage and monitor LAT
environments. In addition, the LAT host services support a utility
that you can use to manage and monitor a VAXELN LAT environment
interactively.

See Chapter 11 for more information.

Runtime Facilities Overview 1-15

1.3.4 Authorization Service

The VAXELN Toolkit includes an optional Authorization Service that
provides system security for network applications. The Authorization
Service protects system resources and data by maintaining a data base
of a system’s authorized users and identifying users who issue network
requests.

The Network Service and File Service use the Authorization Service to
protect the resources and data that they control. The Network Service
running on a particular node accepts circuit connections only from
users who are listed in the Authorization Service’s data base. The File
Service provides read, write, and delete protection for files on disks that
it controls. Likewise, your application programs can use the service to
protect their resources and data.

See Chapter 12 for more information.

1.3.5 File Service

The File Service is a set of system disk and tape driver services that
enable VAXELN application programs to perform file-oriented disk and
tape I/0 operations. The File Service consists of a disk File Service and
a tape File Service and provides for remote file access.

The disk File Service uses FILES—11 On-Disk Structure Level 2 ser-
vices and is compatible with the VMS, Version 4.4, file system and
the VMS record management services (RMS). Files are sequentially
organized. Programs can use sequential or random access for creating,
reading, and writing sequential disk files.

The tape File Service is based on Version 3 of the ANSI-standard
magnetic tapes and is compatible with the VMS, Version 4.4, tape file
system. You can use this service to transport files to and from VMS
systems.

See Chapter 13 for more information.

1-16 Runtime Facilities Overview

1.3.6 Device Drivers

The VAXELN Toolkit simplifies VAX device support by providing
pregenerated device drivers that you can include in your VAXELN
systems. These drivers provide support for a variety of disk, tape,
printer, terminal, Ethernet, and realtime devices.

See Chapter 14 for more information.

1.3.7 DECwindows Support

The VAXELN Toolkit provides DECwindows support for creating
network transparent distributed applications that perform two-
dimensional, integer coordinate drawing and windowing operations.
The toolkit includes the following DECwindows software:

* A DECwindows server image that you can build into VAXELN
systems that run on the following workstations:

VAXstation II/GPX

VAXstation 2000

VAXstation 3100 series (color video option)
VAXstation 3200 (color video option)
VAXstation 3500

¢ The DECwindows runtime libraries and tools you need to develop
VAXELN DECwindows client applications

* A Window Manager and terminal emulators that enhance the user
environment for VAXELN DECwindows client applications

See VAXELN Guide to DECwindows for more information.

Runtime Facilities Overview 1-17

Chapter 2

The VAXELN Kernel

The VAXELN Kernel is a small, realtime executive that controls target
hardware resources and the execution of VAXELN system software.
VAXELN applications typically require fast, predictable responses to
interrupts. To meet this crucial need, the highly optimized kernel takes
advantage of the VAX architecture and imposes minimal overhead
between the application code and the hardware.

The kernel recognizes and operates on a set of realtime programming
data structures, which it uses to control the sharing of resources and
to synchronize communication between the jobs in a system. These
structures include a set of kernel objects and two specialized structures
called mutexes and area lock variables. The objects represent ongoing
activities, such as process execution, and hardware and software
resources, such as devices, memory regions, events, and messages.
Mutexes and area lock variables are optimizations of kernel objects.
Table 2—1 describes the kernel objects, and Table 2—-2 describes the
optimized structures..

Each VAXELN Kernel data structure is associated with a corresponding
set of operations that are implemented as procedure calls. The kernel
manipulates the structures and the resources associated with them

in response to procedure calls that you issue from your application
programs. Your high-level language programs call the kernel proce-
dures directly to synchronize processes, to communicate between jobs
or processes, and to handle device interrupts.

The kernel also handles system scheduling and memory allocation

and maintains information about the entire VAXELN system and each
system component — that is, the context for the system image and each
program image.

The VAXELN Kernel 2-1

This chapter describes and summarizes the kernel operations for the
following: '

¢ Kernel objects, Section 2.1
¢ Optimized data structures, Section 2.2

Chapters 3 to 6 describe the operations that the kernel performs in
more detail.

2.1 Kernel Objects

The VAXELN Kernel objects represent ongoing activities, such as
process execution, and hardware and software resources, such as
devices, memory regions, events, and messages.

To guarantee the integrity of a kernel object, its fields are not directly
accessible to a program. Instead, when the program calls the kernel to
create a new object, the kernel dynamically allocates a block of memory
for the object and returns an identifying value for it. You then refer

to the object by specifying the identifying value in subsequent calls to
kernel procedures. When you no longer need the object, you specify the
identifying value in a call to the DELETE procedure.

In the VAXELN Pascal language, predeclared data types represent
the kernel objects’ identifying values. These predeclared types are
AREA, DEVICE, EVENT, MESSAGE, NAME, PORT, PROCESS, and
SEMAPHORE. To create and use an object, a program declares a
variable of the object’s type, calls the appropriate CREATE_object_type
kernel procedure, and saves the returned, object value in the variable.
The variable then assumes the object’s identifying value, which you
can use throughout the program to name the object. For example, the
following lines of code declare a variable of type SEMAPHORE, create
a SEMAPHORE object, and save the returned identifying value in the
variable main_lock:

2-2 The VAXELN Kernel

VAR
main_lock : SEMAPHORE;

BEGIN
CREATE_SEMAPHORE (main_lock);

END.
You can then wait on or signal the semaphore anywhere in the program
by using the variable to reference the object as follows:

WAIT_ANY (main_lock);

SIGNAL (main lock);

When the program no longer needs the object, you can delete it with a
call to the DELETE procedure as follows:

DELETE (main_lock) ;

The VAXELN Toolkit also provides kernel interfaces for VAX C and
VAX FORTRAN programming. The data type definitions for the two
languages are provided in the following definition modules:

Language Module

C $vaxelnc in VAXELNC.TLB

FORTRAN ’ELN$:FORTRAN_DEFS.FOR’

NOTE

Except for PORT values and AREA values for jobs on the
same node, an object’s identifying value is valid only within a
job, even when the object is known in more than one job.

Table 2-1 summarizes the kernel objects. Sections 2.1.1 to 2.1.8 de-
scribe the objects in detail.

The VAXELN Kernel 2-3

Table 2-1: Kernel Objects

Object

Description

AREA

DEVICE

EVENT

MESSAGE

NAME

PORT

PROCESS

SEMAPHORE

Represents a region of physical memory accessible to all jobs
executing on the same node in a local area network.

Represents a channel to an I/O device and associates an inter-
rupt service routine (ISR) with the device’s interrupt. DEVICE
objects synchronize ISR and device driver process execution.

Represents a flag that identifies the occurrence of a realtime
event. Events synchronize process execution and access to
shared data.

Represents data that is transmitted between processes.
Messages can be sent between two processes, two jobs, or
two nodes in a local area network.

Represents an entry in a name table that associates a character
string name with a message port or process. Port names can
be local (known only on its own node) or universal (known on
any node in the local area network).

Represents a system-maintained store for messages being sent
or waiting to be received. Only the processes in the job that
creates the port can receive messages from that port. However,
any process in any job can send a message to the port. A
program can connect two ports in the same or different jobs to
form a circuit, which simplifies and increases the reliability of
communication between jobs.

Represents a functionally independent entity that provides the
execution context for a program image or part of a program
image. The main program executes as a master process, which
can control zero or more subprocesses. Collectively, a master
process and its subprocesses constitute a job.

Represents a synchronization gate that controls access to a
shared resource. Binary semaphores enforce exclusive access
to a resource. Counting semaphores permit metered access,
allowing a specified number of processes simultaneous access
to units of a resource.

2.1.1 AREA Objects

An AREA object represents a region of memory or another type of
shared resource that can be shared among jobs on a single node in a
VAXELN network. An AREA object contains an event or semaphore
that can be used by the sharing jobs to synchronize access to the area’s

2-4 The VAXELN Kernel

data. Areas with a size of 0 are valid and represent only the event or
semaphore.

An AREA object has the following properties:

¢ A character string name of up to 31 characters that supplies a
name for the area '

* A signaled or cleared state if the area is associated with an event

¢ A count of the number of processes that can gain access to the area
(or resource) without waiting for some other process to signal the
area if the area is associated with a semaphore

¢ The maximum allowed value for the count, which is the maximum
number of processes that can gain access to the area (or resource)
simultaneously, if the area is associated with a semaphore

* A list of processes waiting for access to the area
® The associated region of memory

Chapter 5 discusses these properties and the kernel procedures that
affect AREA objects.

AREA values are represented internally as 32-bit longwords. The
kernel uses the longwords to locate AREA objects and their properties.

An AREA object occupies one block (128 bytes) of kernel pool.

The kernel allocates the region of memory associated with an area from
physically contiguous 512-byte pages of physical memory and maps
the region into the creating job’s PO virtual address space. The region
occupies an integral number of memory pages and is aligned on a page
boundary.

The following table lists the operations for which you can use AREA
values and the procedures an application calls to perform the opera-
tions:

Operation Procedure

Create an area or map an existing area, CREATE_AREA
return an identifying AREA value and pointer CREATE_AREA EVENT
to the area, and associate the area with an CREATE_AREA_SEMAPHORE

-event or semaphore.

Gain exclusive access to an area by waiting WAIT_ALL
for that area to be signaled. WAIT ANY

The VAXELN Kernel 2-5

Operation Procedure

Signal the event or semaphore that is associ- SIGNAL
ated with an area.

Clear an event associated with an area. CLEAR_EVENT
Delete an area. DELETE

2.1.2 DEVICE Objects

A DEVICE object represents a channel to an I/0 device and associates
an interrupt service routine (ISR) with the device’s interrupt. When the
device issues an interrupt, the kernel calls the device’s ISR to service
the device.

A DEVICE object has the following properties:

* A set of device characteristics established with the System Builder

* A communication region that lets a device driver and its ISR share
data

¢ An ISR, which the kernel invokes when an appropriate interrupt
occurs and to which the kernel passes the DEVICE value and
communication region

Chapter 6 discusses these properties and the kernel procedures that
affect DEVICE objects.

DEVICE values are represented internally as 32-bit longwords. The
kernel uses the longwords to locate the DEVICE objects and their
properties, such as the address of its communication region. DEVICE
values are valid only within their own job.

A DEVICE object occupies one block (128 bytes) of kernel pool. If
an ISR is connected, it also requires one block of pool or a page of
communication region for its dispatcher.

The following table lists the operations for which you can use DEVICE
values and the procedures an application calls to perform the opera-
tions:

2-6 The VAXELN Kernel

Operation Procedure
Create a DEVICE object and return an identi- CREATE_DEVICE

fying DEVICE value.

Wait for an ISR to signal a DEVICE object. WAIT_ALL
WAIT_ANY

Signal a DEVICE object from an ISR. SIGNAL_DEVICE

Delete a DEVICE object. DELETE .

2.1.3 EVENT Objects

An EVENT object represents a flag that identifies the occurrence of
a realtime event. Events synchronize process execution and access to
shared data. An EVENT object records events in real time and stores
that information until explicitly cleared by a program.

An EVENT object has the following properties:

* Either a signaled or a cleared state
¢ A list of processes waiting for the event to be signaled

Chapter 4 discusses these properties and the kernel services that affect
EVENT objects.

EVENT values are represented internally as 32-bit longwords. The
kernel uses the longwords to locate EVENT objects and their proper-
ties, such as the object state. An EVENT value is valid only within its
own job unless the value is associated with an area (see Section 2.1.1).

An EVENT object occupies one block (128 bytes) of system pool.

The following table lists the operations for which you can use EVENT
values and the procedures an application calls te perform the opera-

tions:

Operation ~ Procedure
Create an event and return an identifying CREATE_EVENT
EVENT value.

Wait for the signaling of an event. WAIT_ALL

WAIT_ANY

The VAXELN Kernel 2-7

Operation Procedure

Signal an event. SIGNAL
Clear an event. CLEAR_EVENT
Delete an event. DELETE

2.1.4 MESSAGE Objects

A MESSAGE object represents data that is transmitted between
processes. Messages can be sent between two processes, two jobs, or
two nodes in a local area network.

A MESSAGE object has the following properties:

* Message data
* Message length

Chapter 5 discusses these properties and the kernel procedures that
affect MESSAGE objects.

MESSAGE values are represented internally as 32-bit longwords.
The kernel uses the longwords to locate MESSAGE objects and their
properties. MESSAGE objects are valid only within their own job.

The associated message data is allocated in contiguous 512-byte pages
of physical memory and is mapped by the creating or receiving job’s P0
virtual address space. Therefore, the data always occupies an integral
number of memory pages and is aligned on a page boundary. (These
characteristics suit the message data well for a VAX DMA-device I/O
buffer.) Since PO address space is used, all processes in a job can share
the message data.

The following table lists the operations for which you can use
MESSAGE values and the procedures an application calls to perform
the operations:

Operation Procedure

Create a message, map its data into the job’'s = CREATE_MESSAGE
PO address space, and return an identifying
MESSAGE value and a pointer to the data.

2-8 The VAXELN Kernel

Operation Procedure

Send a message to a message port and remove SEND
the message data from the sending job’s
address space.

Remove a message from a message port, map RECEIVE
the message data into the receiving job’s

PO address space, and return an identifying

MESSAGE value and a pointer to the message

data.

Delete a message. DELETE

2.1.5 NAME Objects

A NAME object represents an entry in a name table that associates a
character string name with a message port or process.

Name objects have the following properties:

® A character string of up to 31 characters that names an existing
message port or process

¢ The value of the message port or process being named

¢ For port name objects, the property local or universal

Port name objects and their associated character strings are stored in
either a local or a universal name table. The kernel maintains the local
name table for name objects used within a node. The Network Service
helps to maintain the universal name table; it contains valid name
objects for nodes in the local area network.

NOTE

The processors in a closely coupled symmetric multiprocess-
ing configuration constitute one Ethernet node and share the
same local name table. Therefore, the images running on the
processors must create unique local names.

A NAME object for a process is not kept in a name table; it is associated
with a PROCESS object.

Chapter 5 discusses these properties and the kernel procedures that
affect NAME objects for processes and message ports, respectively.

The VAXELN Kernel 2-9

Identifying NAME values are 32-bit longwords that are valid only
within their own job. A NAME object occupies one block (128 bytes)
of kernel pool. A universal name also requires 64 bytes of dynamic
memory in the local Network Service and 64 bytes in the system
acting as the network’s current name server. (See Chapter 9 for more
information.)

The following table lists the operations for which you can use NAME
values and the procedures an application calls to perform the opera-

tions:

Operation Procedure

Create a name and an identifying NAME CREATE_NAME
value.

Return the PORT value associated with a TRANSLATE_NAME

name (not valid for process names).

Name a process by creating a unique NAME KER$NAME_OBJECT
object that associates a character string with (Pascal only)
a process.

Delete a name. DELETE

2.1.6 PORT Objects

A PORT object represents a system-maintained store for messages
being sent and waiting to be received. Only processes in the job that
creates a port can receive messages from that port. However, any
process in any job can send messages to a port.

Each executing job in a system has a unique message port, or job
port, created when the first process in the job is started. A job can
use its job port to receive messages from other jobs. Programs can
create additional message ports dynamically with the CREATE_PORT
procedure.

A PORT object has the following properties:

¢ The maximum number of queued messages

* A list of queued messages, to be removed from the port by the
RECEIVE procedure

* The state of the port’s circuit: unconnected, connected, or in a
special state during the establishment of a connection

2-10 The VAXELN Kernel

e If connected, the PORT value identifying the port to which the port
object is connected

Chapter 5 discusses these properties and the kernel procedures that
affect the state of PORT objects.

PORT values are 128-bit values that identify a message port as shown
in Figure 2-1.

Figure 2-1: PORT Value Representation

31 0
Port Table Index
Network Number
Ethernet Node
“Reserved Address
127
MLO-004273

Each PORT object occupies one block (128 bytes) of kernel pool and
requires one entry in the kernel’s port address table.

The following table lists the operations for which you can use PORT
values and the procedures an application calls to perform the opera-
tions:

Operation Procedure

Create a port and return an identifying PORT CREATE_PORT
value.

Return a unique PORT value for the calling JOB_PORT
job for communicating between jobs.

The VAXELN Kernel 2-11

Operation Procedure

Wait to receive a message. WAIT_ALL
WAIT_ANY
Connect and disconnect circuit ports. CONNECT_CIRCUIT
DISCONNECT_CIRCUIT
Let the calling process wait for a circuit ACCEPT_CIRCUIT
connect request on a port.
Delete a port. DELETE

When a message arrives at a port, any process waiting on that port can
continue if its wait conditions are satisfied. The receiver process calls
the RECEIVE procedure to get the message. Only processes in the job
that creates a port can receive messages from that port with RECEIVE.

2.1.7 PROCESS Objects

A PROCESS object represents a functionally independent entity that
provides the execution context for a program image or a part of a
program image. The main program executes as a master process,
which can control zero or more subprocesses. Collectively, a master
process and its subprocesses constitute a job. A job can contain any
number of processes within a limit of 4096 objects for each job.

A PROCESS object has the following properties:
* One of 16 levels of process priority

* One of the process states running, ready, waiting, or suspended
¢ A user name and a user identification code (UIC)

Chapter 4 discusses these properties and the kernel services that affect
PROCESS objects.

PROCESS values are represented internally as 32-bit longwords. They
are valid only within their own job.

The following table lists the operations for which you can use
PROCESS values and the procedures an application calls to perform
the operations:

2-12 The VAXELN Kernel

Operation Procedure

Create a process and return an identifying CREATE_PROCESS

PROCESS value.

Get the PROCESS value of the calling process. CURRENT_PROCESS

Set a process’s priority. SET_PROCESS_PRIORITY

Suspend a process’s execution. SUSPEND

Resume execution of a process. RESUME

Wait for another process to terminate. WAIT ALL
WAIT_ANY

Force another process into an exception SIGNAL

condition.

Exit from a process. EXIT

Delete a process. DELETE

2.1.8 SEMAPHORE Objects

A SEMAPHORE object represents a synchronization gate that controls
access to a shared resource. Binary semaphores enforce exclusive
access to a resource. Counting semaphores permit metered access,
allowing a specified number of processes simultaneous access to units
of a resource.

A SEMAPHORE object has the following properties:

* A count of the number of processes that can gain access to the
resource without waiting for some other process to signal the
semaphore :

¢ The maximum allowed value for the count, which is the maxi-
mum number of processes that can gain access to the resource
simultaneously

* A list of processes waiting for the semaphore to be signaled

Chapter 4 discusses these properties and the kernel procedures that
affect SEMAPHORE objects.

A SEMAPHORE object occupies one block (128 bytes) of system pool.

The VAXELN Kernel 2-13

SEMAPHORE values are represented internally as 32-bit longwords.
The kernel uses the longwords to locate SEMAPHORE objects and their
properties, such as its current count. A SEMAPHORE value is valid
only within its own job unless the value is associated with an area (see
Section 2.1.1).

The following table lists the operations for which you can use
SEMAPHORE values and the procedures an application calls to
perform the operations:

Operation Procedure
Create a semaphore and return an identifying CREATE_SEMAPHORE
SEMAPHORE value.
Wait for the signaling of a semaphore. WAIT_ALL
WAIT_ANY
Signal a semaphore. SIGNAL
Delete a semaphore. DELETE

2.1.9 Kernel Object Implementation

Although it is usually not necessary for a VAXELN programmer to
know the details of the kernel’s implementation of objects, the following
points are useful in answering system configuration questions:

* The kernel allocates all objects, except PROCESS objects, from a
pool of fixed-length blocks of memory. The number of blocks in the
pool is set with the System Builder. When the system is booted,
the kernel initializes the pool, maps the blocks into system space,
and links the blocks into a list of free blocks. The fixed size of the
blocks makes allocating and deallocating objects efficient.

¢ The identifying value returned by the kernel for a newly created
object is not the virtual address of the object. Instead, it is a 32-bit
value consisting of two indexes. The indexes are used to look up
the address of the object in a two-level table maintained by the
kernel for each job. These values are thus unique for each job in
the system.

2-14 The VAXELN Kernel

* The object table grows dynamically as the job creates more objects.
The kernel allocates the table from system memory and pool blocks.
The top-level table is allocated in a 512-byte page of memory that
can hold pointers to 128 second-level tables. Each second-level
table occupies one 128-byte pool block that can hold up to 32 object
addresses. Thus, you can create up to 4096 objects for a job.

The preceding description applies to all objects except ports. Because
a PORT value is valid anywhere in the network, it also includes the
DECnet or Ethernet node address and additional fields reserved for
future use. Thus, a PORT value is 128 bits long. Also, the indexes in
a PORT value are used for a table that describes all the ports in the
system, rather than just the ports in a job. The size of the port table
is also set with the System Builder, and the table is allocated by the
kernel when the system is booted.

Although the kernel’s method for representing identifying values might
seem complicated, it allows you to validate identifying values in a few
VAX instructions. Furthermore, the method of representation is not
important for VAXELN programming.

2.2 Optimized Data Structures

The kernel also recognizes and operates on two specialized data struc-
tures: mutexes and area lock variables. These structures are optimiza-
tions of kernel objects; locking a mutex can be faster than waiting on
a mutual exclusion semaphore, and locking an area synchronization
variable can be faster than waiting on a shareable memory area.

The locations of the MUTEX and AREA_LOCK;VARIABLE data type
definitions are as follows:

Language Module

VAXELN Pascal $MUTEX in the RTLOBJECT.OLB
c $mutex in the VAXELNC.TLB
FORTRAN : ’ELN$:FORTRAN_DEFS.FOR’

Table 2-2 summarizes the optimized structures. Sections 2.2.1 and
2.2.2 describe the structures in detail.

The VAXELN Kernel 2-15

Table 2-2: Optimized Data Structures
Structure Description

AREA_LOCK_VARIABLE Represents a variable that resides in an area ob-
ject for synchronizing job access to the associated
area. Using this variable, a process can lock an
area to gain exclusive access. When the process
locks the area, the process does not have to issue
a wait before accessing the associated area unless
the area is already locked.

MUTEX Represents an optimized binary semaphore. A
process can lock a mutex to gain exclusive access
to a shared resource. When the process locks the
mutex, the process does not have to issue a wait
before accessing the resource unless the mutex is
already locked.

2.2.1 AREA_LOCK_VARIABLE Data Structure

The AREA_LOCK_VARIABLE data structure provides an alternative
means for synchronizing access to areas between jobs. Area lock
operations can be used to improve the performance of AREA wait and
signal operations.

Area-locking operations enable jobs to synchronize access to an area by
using a synchronization variable of type AREA_LOCK_VARIABLE in
the area’s data portion. You can use an area lock variable only if the
area is created with an associated binary semaphore that is properly
initialized. You can do this with CREATE_AREA, and its implied
binary semaphore, or with CREATE_AREA_SEMAPHORE with initial
and maximum counts of 1. No error status is returned if you use an
AREA_LOCK_VARIABLE with an area that is not associated with a
binary semaphore.

Area-locking operations can be more efficient than calling the WAIT _
ANY and SIGNAL procedures with areas. When a process locks an
area to gain exclusive access, the process does not have to call a WAIT _
ANY procedure unless some other process has already locked the area.

The following table lists the operations for which you can use area
lock variables and the procedures an application calls to perform the
operations:

2-16 The VAXELN Kernel

Operation Procedure

Initialize (unlock) a synchronization vari- ELNS$INITIALIZE AREA_LOCK
able (of type AREA_LOCK_VARIABLE)
in the data portion of an area.

Lock (wait on) an area. ELN$LOCK_AREA
Unlock (signal) an area. ELN$UNLOCK_AREA

An area lock variable is represented internally as a 16-bit counter. The
variable must be within an area’s data portion. A single process in
the application calls ELNSINITIALIZE_AREA_LOCK to initialize the
counter to —1.

Once an area lock variable is initialized, subsequent calls to the
ELN$LOCK_AREA and ELN$UNLOCK_AREA procedures increment
and decrement the counter, respectively.

¢ When ELN$LOCK_AREA increments the counter and the result
is greater than 0, the area has already been locked by another
process. Thus, the procedure calls the WAIT_ANY procedure to
wait for the area to be unlocked.

* When ELN$UNLOCK_AREA decrements the counter and if the
result is greater than or equal to 0, another process is waiting for
the area. To satisfy that wait, ELNSUNLOCK_AREA calls the
SIGNAL procedure to unlock the area.

2.2.2 MUTEX Data Structure

The MUTEX data structure is an optimization of a binary semaphore.
The meanings of mutex operations are similar to the comparable
operations on binary semaphores. The difference is that when a process
locks a mutex to gain access to a shared resource, the process does not
have to call the WAIT ANY procedure unless some other process has
already locked the mutex. The result is significantly more efficient
than that obtained using WAIT_ANY and SIGNAL procedures on
binary semaphores.

The following table lists the operations for which you can use mutexes
and the procedures an application calls to perform the operations:

The VAXELN Kernel 2-17

Operation Procedure

Initialize (unlock) a mutex and create an ELN$CREATE_MUTEX
associated semaphore.

Lock (wait on) a mutex. ELN$LOCK_MUTEX
Unlock (signal) a mutex. ELN$UNLOCK_MUTEX
Delete the semaphore created for a mutex. ELN$DELETE_MUTEX

A mutex is represented internally as a 6-byte record containing a 16-bit
counter and a SEMAPHORE value. A call to ELNSCREATE_MUTEX
initializes the counter to —1 and the SEMAPHORE value to a binary
semaphore with an initial count of 0.

Once a mutex is initialized, subsequent calls to the ELN$LOCK_
MUTEX and ELN$UNLOCK_MUTEX procedures increment and
decrement the counter, respectively.

¢ When ELNSLOCK_MUTEX increments the counter and the result
is greater than 0, the mutex has already been locked by another
process. Thus, the procedure calls the WAIT_ANY procedure to
wait for the mutex to be unlocked.

¢ When ELN$UNLOCK_MUTEX decrements the counter and the
result is greater than or equal to 0, another process is waiting for
the mutex. To satisfy the wait, ELN$UNLOCK_MUTEX calls the
SIGNAL procedure to unlock the mutex.

Deleting a mutex with the ELN$DELETE_MUTEX procedure sets the
counter to 0, indicating that the mutex is locked. If you try to lock or
unlock a mutex after it has been deleted, the internal call to WAIT_
ANY fails and returns the status value KER$_BAD_VALUE.

2-18 The VAXELN Kernel

Chapter 3

Job, Process, and Memory
Management

The VAXELN Kernel manages jobs, processes, and system memory.
The programs that comprise a VAXELN application execute as jobs.
When you build a VAXELN system, the kernel creates a job for each
program image that you specify; the images execute automatically
when the system starts on the target hardware. The kernel also
creates jobs in response to calls to the CREATE_JOB procedure and
when you issue appropriate VAXELN debugger or ECL commands.

An application can use the CREATE_JOB procedure to create a job
dynamically or to create a job after dynamically loading a program
image with the dynamic program loader (see Section 3.3.4). A program
image is a copy of all the code and initial data necessary to run the
program.

A job consists of one master process that executes the program’s main
routine (program block, main function, or main program, depending on
the language) and zero or more subprocesses that execute concurrently
with the master process and with each other. The master process and
subprocesses synchronize their activities by using the kernel objects,
mutexes, and area lock variables and the associated procedures that
manipulate them. The procedures create, delete, or otherwise affect the
state of the structures represented by the data types AREA, AREA_
LOCK_VARIABLE, DEVICE, EVENT, MESSAGE, MUTEX, NAME,
PORT, PROCESS, and SEMAPHORE.

Job, Process, and Memory Management 3-1

A program creates subprocesses by calling the CREATE_PROCESS preo-
cedure. Each subprocess executes a routine that defines the executable
code and data available to one or more dynamically created processes.
In VAXELN Pascal, C, and FORTRAN, these routines are called process
blocks, functions, and integer functions, respectively.

A job can be thought of as a process family. The way processes are cre-
ated implies a hierarchy: the CREATE_JOB procedure or the System
Builder creates a job and a corresponding master process that runs a
program; that program then can call the CREATE_PROCESS proce-
dure to create subprocesses to execute the program’s process blocks and
functions. The subprocesses can also call CREATE_PROCESS to create
subprocesses. Execution of the master process holds the object values
of all subprocesses; thus, if the master process exits, all subprocesses
and the memory and objects created by the job are deleted.

The processes in a job can share data that is declared externally (outer-
level data). Jobs on a single node in a VAXELN network can share data
by using AREA objects.

You can combine any number of jobs with the VAXELN runtime soft-
ware to form a VAXELN system image. The VAXELN Kernel keeps
track of the current jobs in a system. Therefore, if a program calls
CREATE_JOB and then exits, the created job continues executing.
With this procedure, a VAXELN program can create a new process fam-
ily, in which the main program can be any program that was originally
configured into the system or loaded with the dynamic program loader.
The new job is independent of other jobs and has its own data and
code. Similarly, multiple proceses within a job can execute the same
code segment.

When you build a system, you can specify any number of programs to
execute when you load the system onto the target processor. A running
VAXELN application can contain any combination of multitasking,
multiprogramming, and multiprocessing job configurations.

A job remains active until the master process finishes executing its
main routine code. A process remains active until it exits, another
process deletes it, its master process terminates, it encounters an error
from which it cannot recover, or it finishes executing the associated
code segment. The exit operation provides the most controlled means of
forcing process termination.

A process can delete itself or any other process within the same
job. You cannot restart a deleted process; in general, you should use
SIGNAL or EXIT to force a process to terminate.

3-2 Job, Process, and Memory Management

When a job or master process terminates, the kernel deletes all the
job’s subprocesses and shared data from the system.

This chapter provides information about programming job, process, and
memory management. The topics discussed include the following:

¢ Job activation and termination, Section 3.1

® Subprocess activation and termination, Section 3.2

¢ Scheduling, Section 3.3

¢ Kernel procedures for processes and jobs, Section 3.4

¢ Memory management, Section 3.5

3.1 Job Activation and Termination

The VAXELN Kernel creates a job implicitly when you select the Run
option for a program image that you specify in the System Builder’s
Program Description Menu. The image executes automatically when
the system starts on the target hardware. If you do not select the Run
option, you can load a program and create jobs dynamically. You can
load a program image by using one of the following:

¢ System Builder

e ELNS$LOAD_PROGRAM procedure

* LOAD PROGRAM debugger command

¢ LOAD/PROGRAM or RUN ECL command (RUN also creates the
job)
After the prograrh image is loaded, you can:

* TUse the CREATE_JOB procedure to create a job dynamically, using
a program that was loaded with the System Builder

¢ Use the CREATE_JOB procedure after dynamically loading a
program image with the ELNSLOAD_PROGRAM procedure

* Use the CREATE JOB debugger command to create a job
¢ TUse the EXECUTE/WAIT ECL command to create a job

The LOAD PROGRAM and CREATE JOB debugger commands and

the LOAD/PROGRAM, EXECUTE/WAIT, and RUN ECL commands are
described in the VAXELN Development Utilities Guide.

Job, Process, and Memory Management 3-3

When a job is created, the kernel establishes the job’s PO address
space and the P1 address space (stack) for the job’s master process (the
program block). The processes in a job, including the master process
and subprocesses, share the PO space. Program arguments are stored
in PO space so that the PROGRAM_ARGUMENT function and the I/O
runtime routines (for opening files) can access them.

The System Builder and Program Loader detect oversized jobs and
issue appropriate warning messages. If you receive such a message,
make sure you have allocated enough PO virtual address space for each
Jjob in your system. The kernel will delete a job if not enough PO space
is available to create the job.

No files are open initially. However, you can implicitly open an input
file, an output file, or a file named in the program block’s header with
the first I/0 operation on that file.

The kernel activates the program block’s routine body. It initializes
data, using the program block’s declaration section; then it executes the
block’s compound statement (BEGIN ... END).

A job terminates when the main routine’s code completes execution,
when the job’s master process is terminated by the DELETE or EXIT
procedure, or when an unhandled exception occurs (such as an unhan-
dled QUIT exception caused when another process signals this process).
When a job terminates, its existing subprocesses terminate, open files
are closed, and the job’s resources are returned to the kernel. If files
are closed due to job termination, data in buffers can be lost. If you
want the kernel to send a termination message to a specified port, use
the NOTIFY parameter with the CREATE_JOB procedure.

You can use VAXELN utility procedures to establish an exit handler to
perform cleanup operations following the termination of a job with the
EXIT procedure (see Chapter 7).

3.2 Subprocess Activation and Termination

When a process in a job calls CREATE_PROCESS, the kernel creates a
subprocess, establishes a new stack (P1 virtual address space) for the
process, and prepares it for execution, beginning at the first statement
in a process’s routine code. The new process is in the ready state; it
begins actual execution immediately or later, depending on its priority
and the scheduling algorithms. (For information about process states
and scheduling, see Section 3.3.)

3-4 Job, Process, and Memory Management

A subprocess terminates when one of the following occurs:

¢ Execution of the main routine code terminates.
¢ The process calls the EXIT procedure.
¢ The process is deleted by a call to the DELETE procedure.

¢ An unhandled exception occurs in the process. (For example, an
unhandled QUIT exception can occur when another process signals
this process.)

* The job’s master process terminates.

When a subprocess terminates, the kernel frees its P1 virtual address
space (stack space) and the kernel pool space associated with the
subprocess’s activation. Objects it created and did not delete remain
active, since the kernel cannot detect whether the object is in use by
more than one process in the job. These objects are acquired by the
job’s processes that are deleted only when the job’s master process is
deleted. :

NOTE

Be careful when using the DELETE procedure to delete a
process. Processes terminated by DELETE are not termi-
nated in an orderly way and cannot be restarted. Deletion
of a process is intended as an emergency method to stop
a process; ordinarily, you should use SIGNAL or EXIT to
terminate a process in an orderly way.

When terminating a process, the kernel also takes action so that:

¢ If another process of the job is currently waiting for the process to
terminate, the wait is satisfied.

e If the call to CREATE_PROCESS that activated the process spec-
ified an exit_status argument, the exit status of the terminated
process is stored in the designated data item.

These actions are not taken if the subprocess terminates because the
master process terminated.

Processes are terminated in an orderly way with the SIGNAL or EXIT
procedure or when they return from the outermost procedure block.
(See Chapter 7 for a discussion of VAX stack architecture and call
frames.)

Job, Process, and Memory Management 3-5

The orderly termination of a process has two special consequences:

¢ The debugger notifies the user that the process is going away, if the
debugger is active in the process.

e If the process is a master process (that is, if the job is terminating),
the kernel activates an exit handler feature so that resources can
be cleaned up by the code that allocated them.

When a process signals another process to quit, the quitting process can
handle the raised exception KER$_QUIT._SIGNAL (see Section 3.4.18).
The exception handler can perform special operations for the process,
such as cleaning up resources, before the process exits.

A program can set up an exit handler by using the toolkit’s exit utility
procedures, ELN$DECLARE_EXIT HANDLER and ELN$_CANCEL_
EXIT_HANDLER. The ELN$DECLARE_EXIT _HANDLER procedure
causes a program-defined exit handler routine to be called when the
job terminates. When the exit handler routine is no longer needed, the
program can delete it with a call to ELN$_CANCEL_EXIT HANDLER.

3.3 Scheduling

The VAXELN Kernel schedules an application’s execution based on a
preemptive priority scheduling scheme that is driven by states and
priorities of a system’s jobs and processes. This scheduling scheme is
described in Sections 3.3.1 to 3.3.5.

3.3.1 Processes and Process States

A process is a code segment that the kernel can schedule and execute
independently as part of a VAXELN job. A process is created statically
when you build your system or dynamically at runtime and remains
active until it terminates. While active, a process is always in one of
four process states: run, ready, wait, or suspend. Table 3—1 describes
these states, and Figure 3-1 illustrates valid state transitions.

3-6 Job, Process, and Memory Management

Table 3—-1: Process States

State Description

Run The process has control of the processor and is currently executing.

Ready The process is not executing but is ready to execute as soon as the

scheduler allows. When an application creates a process, the process
enters the ready state.

Wait The process is waiting for a specified set of conditions to be satisfied,

such as an amount of time to elapse, an event or series of events to
occur, or the receipt of a message. A process enters the wait state
by calling one of the following procedures:

o WAIT_ANY — Wait for any of the listed conditions to be satis-
fied.

e WAIT _ALL — Wait for all the listed conditions to be satisfied.

¢ RESUME — Reenter the wait state if the process was wait-
ing prior to being suspended with a call to the SUSPEND
procedure. Another process must issue the call to RESUME.

Suspend The process cannot reenter the ready state until another process in

the same job reactivates the suspended process with a call to the
RESUME procedure. A process can put itself or any other process
in the same job into the suspend state with a call to the SUSPEND
procedure.

The rules for process state transitions are as follows:

Ready is the initial state for a process.

When a process’s wait conditions are satisfied, it enters the ready
state. If the scheduling state of the system is such that the process
should run immediately, the process enters the run state.

The scheduler selects a ready process to enter the run state based
on the system’s jobs and process priorities.

A process in the run state enters the ready state when the process
is preempted by a higher priority process.

A process in the run state enters the wait state when the process
issues a call to WAIT_ANY or WAIT_ALL that blocks due to the
wait conditions not being satisfied.

Job, Process, and Memory Management 3-7

Figure 3—1: Valid Process State Transitions

MLO-004274

¢ If a process is in the run or ready state when it is suspended, it
enters the ready state when it is resumed. If the scheduling state
of the system is such that the process should run immediately, the
process enters the run state when it is resumed.

¢ If a process is in the wait state when it is suspended and not all
the wait conditions are satisfied when the process is resumed, it
reenters the wait state. If the scheduling state of the system is
such that the process should run immediately, the process enters
the run state when it is resumed.

¢ If a process was in the wait state when it was suspended and all
the wait conditions are satisfied when the process is resumed, it
enters the ready state.

3-8 Job, Process, and Memory Management

3.3.2 Job and Process Scheduling

The order in which processes enter the run state depends on job and
process scheduling. The VAXELN Kernel selects a process to run
based on a preemptive, priority scheduling scheme; round-robin and
time-sliced scheduling are not available.

To accommodate preemptive priority scheduling, you must assign a
priority to each job and process in a VAXELN system. You can assign
the priorities when you build the system, or you can change them
dynamically with the procedures SET_JOB_PRIORITY and SET_
PROCESS_PRIORITY. Job priorities can range from 0 to 31 (0 is the
highest and 16 is the default). Process priorities can range from 0

to 15 (0 is the highest and 8 is the default). Therefore, within a job,
processes can have 16 levels of priority independent of the job’s priority.

Figure 3-2 illustrates the structure of job and process scheduling
priorities.

The VAXELN driver jobs run at higher priorities. For example, the
datalink driver normally runs at job priority 1, the console driver runs
at job priority 2, and the disk and tape drivers run at job priority 5.
If an application includes one or more jobs that need to run at a job
priority higher than that of the datalink driver and the jobs can run at
the same job priority, you can set their job priorities to 0 and vary the
process priorities.

The kernel scheduler considers a job ready to execute if one or more
processes in that job are in the ready state. The kernel scheduler
gives preference to the ready jobs and processes that have the highest
priorities. The scheduler identifies the job with the highest priority and
then selects that job’s highest priority process for execution. The jobs
in a system, whether they are executing or idle, are rescheduled when
one or more of a job’s processes enters the ready state.

Job rescheduling is illustrated by the following example, in which JOB1
has a higher priority than JOB2:

1. JOBI1 has only one process, the master process; at a certain point,
it executes WAIT_ANY to wait for a message to arrive at its job
port.

Job, Process, and Memory Management 3-9

Figure 3-2: Job and Process Priorities

Job 1 Process 1
(Priority 0-31) (Priority 0-15)
Process 2
(Priority 0-15)
Process 3

(Priority 0-15)

Job 2 Process 1
(Priority 0-31) (Priority 0-15)

. Process 2
(Priority 0-15)

Process 3

(Priority 0-15)

MLO-004275

2. JOB1 now has no processes in the ready state, so JOB2 is given
control (assuming that at least one of its processes is ready).

3. When a message arrives at JOB1’s port, the wait condition is
satisfied, and JOB1’s master process becomes ready again. Since
JOBI’s priority is higher, it is given control of the CPU again,
preempting JOB2.

When two or more jobs have equal priority, the scheduler gives control
to the ready process that has the highest priority among those jobs,
preempting lower-priority processes.

When a job is preempted and one or more jobs in the ready queue
have the same job priority and the same highest priority ready process
as that of the preempted job, the scheduler’s action depends on the
job preemption algorithm in effect. The default algorithm rotates the
preempted job by placing it in the ready queue behind the jobs of equal
job and process priority. However, if you selected No for the Rotating
job preempt entry on the System Builder’s System Characteristics

3-10 Job, Process, and Memory Management

Menu when you built your system, the scheduler places the preempted
job in the ready queue ahead of the jobs of equal job and process
priority.

The scheduler’s use of 32 job priorities and 16 process priorities might
imply that the job and process priorities are unified to form one of
512 possible combined priority values and that the processes are
scheduled against each other using this combined value. Rather, jobs
are scheduled first followed by processes; the overall priority of a
process, therefore, is limited by the priority of its job.

Figure 3-3 illustrates the internal representation of the combined job
and process priority values.

Figure 3-3: Combined Priority Representation

15 87 0

Job Priority Process Priority

MLO-004276

Process rescheduling, or switching, within a job can be enabled and
disabled with the procedures ENABLE_SWITCH and DISABLE_
SWITCH. When switching is disabled, no other process in the current
job can run. This feature provides a mechanism by which, for example,
a process can control the access to a data set. (A finer mechanism is
the use of semaphores, discussed in Chapter 4.)

Since process rescheduling is automatic and predictable, you can
design systems that execute without noticeable delays — even though
programs sit idle while others execute. In principle, the execution
speed of an application is the speed of the slowest thread of execution.

The definition of important delay is essentially the definition of real-
time performance for your application. It is impossible to exactly syn-
chronize a computer or computer program with external phenomena.
Instead, to satisfy the practical definition of realtime, the system must
contain processes, which — given control of the CPU — can respond

Job, Process, and Memory Management 3-11

to external events in an acceptable amount of time. Furthermore, the
processes should have high enough priority to ensure that they are not
preempted while they are reacting to important external events.

Generally, realtime systems work best if the processes in charge of
specific events are properly designed for, and synchronized with, those
events. Only then should process priorities enter in, as a fine-tuning
mechanism; priorities are not a means of synchronization. Chapter 4
summarizes issues related to synchronizing processes with each other
or with external events.

For information about scheduling in multiprocessing configurations, see
Section 3.3.5.

3.3.3 Initialization Programs and System Start-Up

When you use the System Builder to configure your program images,
you can specify Yes for the Init required entry (see the VAXELN
Development Utilities Guide). This characteristic means that the
program is an initializing program that will be created and made
eligible to run — along with other initializing programs, in order of
job priority — when the system is started. Start-up of initializing
programs precedes that of noninitializing programs.

While an initializing program runs, no jobs of lower priority are started
until the program either calls the INITIALIZATION_DONE procedure
or terminates. The INITIALIZATION_DONE procedure informs the
kernel that the calling program has completed an initialization se-
quence, and other programs can be created and made eligible to run.
(The calling program continues to run until some other occurrence
causes it to block.)

The INITIALIZATION_DONE procedure makes it possible to synchro-
nize the start of several programs in a system. For example, suppose a
system has descriptions of the following programs:

programl Run, Init required, Priority 5
program?2 Run

program3 Run, Init required, Priority 6
program4 Norun

3-12 Job, Process, and Memory Management

When the resulting system is started, the initializing programs are
created and made eligible to run, one at a time, in the order of their job
priorities, followed by the noninitializing programs. Here, programl is
started first. (Remember that with job priorities, low numbers mean
high priorities.) When program1 calls INITIALIZATION_DONE, other
initializing programs, beginning with programa3, can be created and
made eligible to run; meanwhile, programl continues running until
some other occurrence causes it to block. If programl does not call
INITIALIZATION_DONE, it must run to completion before program3
or any other program is started.

Program?2 is not started until both initializing programs have run or
called INITIALIZATION_DONE. Program4 is not started automati-
cally; it must be activated by a CREATE_JOB call from one of the other
programs, a debugger CREATE JOB command, or an ECL EXECUTE
or RUN command.

3.3.4 Loading Programs

Normally, the programs that are available to run using the CREATE _
JOB procedure are specified with the System Builder. To allow the
system to react to new situations without being rebooted, however,
VAXELN provides utility procedures that can be used to dynamically
load and unload program images after the initial system is built. After
a program image is dynamically loaded, CREATE_JOB is used to
execute the program image.

The $LOADER_UTILITY module provides the following procedures:

e ELNS$LOAD_PROGRAM, which loads a specified image file into a
running system. The file is opened in the context of the caller, so
the file name must be specified in enough detail to correctly identify
the file. The file can reside on the system or on a remote node; you
do not need to have a file system on the node to which the program
is being loaded. Arguments specify the initial stack size, job and
process priority, and whether or not the debugger should be given
control when the program starts.

¢ ELN$UNLOAD_PROGRAM, which unloads the specified program
from the system.

Job, Process, and Memory Management 3-13

One restriction is that shareable images that the dynamically loaded
program references must be included in the system at system

build time. The Guaranteed image list entry on the Edit System
Characteristics Menu allows you to specify the images that are needed
by the dynamically loaded programs. These specified images are
merged with those needed by other programs, and the System Builder
resolves any interdependencies.

Ancther entry on the same menu, Dynamic program space, specifies
the number of memory pages that can be used by dynamically loaded
programs. The number is a quota and does not cause the pages to be
allocated until the program is actually loaded. (For more information,
see the VAXELN Development Utilities Guide.)

3.3.5 Scheduling in Multiprocessing Configurations

Each processor involved in a loosely or closely coupled multiprocessing
configuration (see Figures 1-5, 1-7, and 1-8) executes its own copy of
a VAXELN system image. Thus, the kernel uses the single-processor
scheduling rules to schedule the jobs and processes on each processor
participating in these configurations.

However, in a tightly coupled symmetric multiprocessing configuration
(see Figure 1-6), application components running on different proces-
sors share a single copy of the VAXELN system image, including the
kernel. In this case, the kernel can select a ready job to run on any
available processor. Once a job begins to run on a processor, all its
subprocesses run on that processor also. If the job is not eligible to run
on the selected processor, the kernel reschedules the job for execution
on a valid processor. The scheduling of a job for a particular processor
may preempt the processor’s execution of a lower-priority job.

3.4 Kernel Services for Processes and Jobs

The kernel services affecting the state of PROCESS objects are summa-
rized in Sections 3.4.1 to 3.4.20.

3-14 Job, Process, and Memory Management

3.4.1 CREATE_JOB Procedure

The CREATE_JOB procedure creates a new job that executes a speci-
fied program image. The procedure returns the new job port value. The
caller can use this value to send messages to the new job. The same
value can be obtained within the new job by the JOB_PORT procedure.
For program images that require arguments, you can specify the argu-
ments as strings in an optional argument list. The argument list must
specify all required argument values for the specified program image.

An optional argument identifies a port to be notified of the created job’s
termination. If this argument is present, a termination message is sent
to the port when the new job terminates. The termination message is
the integer completion status of the created job’s master process. If the
argument is omitted, no message is sent.

The job’s master process can return an explicit status with the EXIT
procedure; if it specifies no status and completes successfully, the
default status returned in the termination message is 1 (success). An
unhandled exception condition causes the value of the exception to be
returned.

CREATE_JOB runs a program image already built into the system
(with the System Builder), or it executes program images that are
loaded dynamically with the ELN$LOAD_PROGRAM procedure after
the initial system is built.

3.4.2 CREATE_PROCESS Procedure

The CREATE_PROCESS procedure creates a new subprocess running
the specified process block or function, returning the new PROCESS
value that identifies the process. An optional list of up to 31 arguments
can be passed to the created process.

An optional integer variable receives the final (exit) status of the
created process. The variable must be in shared space. Such a value
can be returned by the created process with the EXIT procedure. If
the argument is omitted, no such status is returned. An unhandled
exception condition causes the value of the exception to be returned.

Job, Process, and Memory Management 3-15

3.4.3 CURRENT_PROCESS Procedure

The CURRENT_PROCESS procedure returns a PROCESS value that
identifies the calling process.

3.4.4 DELETE Procedure

The DELETE procedure removes the PROCESS object from the sys-
tem. When a process is deleted, if another process is waiting for its
termination, that aspect of its wait condition is satisfied permanently.

When a master process is deleted, all subprocesses in the same job are
deleted, along with the data and kernel objects created by processes in
the job. The exit status of a deleted process is KER$_NO_STATUS.

3.4.5 DISABLE_SWITCH Procedure

The DISABLE_SWITCH procedure disables process switching for the
job from which it is called. The calling process continues executing,

regardless of the priorities of other processes in the job, until switching
is reenabled with ENABLE_SWITCH.

If the process that calls DISABLE_SWITCH blocks and requires action
from another process in the same job before it can resume, deadlock
results — that is, the blocked process cannot unblock.

NOTE

Process switching is reenabled automatically if the process
calls EXIT or deletes itself.

DISABLE_SWITCH is necessary only when a process must perform
an operation with assurance that it will not be preempted by other
processes in the job.

3-16 Job, Process, and Memory Management

3.4.6 ENABLE_SWITCH Procedure

The ENABLE_SWITCH procedure restores preemptive process schedul-
ing, or switching, for the calling job. When process switching is en-
abled, the control of the CPU is given to the highest-priority process

in the job that is ready to run. The procedures ENABLE_SWITCH
and DISABLE_SWITCH count the number of times they are called;
switching is enabled only if the number of calls to ENABLE_SWITCH
is equal to the number of calls to DISABLE_SWITCH for a particular
process.

3.4.7 EXIT Procedure

The EXIT procedure causes an immediate exit from the calling process.
The procedure is similar to deleting the current process, except that

it can optionally return an exit status to the process that created it.
Process switching, if disabled by the process, is reenabled automatically,
so control goes to the highest-priority process in the job that is ready to
run. If the calling process is the master process, all the objects it owns,
including subprocesses, are deleted; all open files are closed.

3.4.8 KERS$GET_JCB Procedure

The KER$GET_JCB procedure returns a job control block (JCB) ad-
dress. In a tightly coupled symmetric multiprocessing configuration —
for example, the VAX 8800 multiprocessor — the procedure saves the
current interrupt priority level (IPL), raises the IPL to 4 so that the
job will not be switched to run on another processor, gets the JCB ad-
dress, and restores the initial IPL. (In a single-processor configuration,
the procedure accesses the JCB address without raising the IPL.) The
returned address can then be used to read fields in the JCB.

User-mode programs in a tightly coupled multiprocessing configuration
must use this procedure to access fields of the JCB. Kernel-mode
programs in the same configuration can either use this procedure or
perform the equivalent set of operations, including raising the IPL to
4. The ability to use this procedure in single-processor configurations,
where it is not necessary to protect against a job being switched to a
different processor, is provided so that the same source code can be
used in all configurations without modification.

Job, Process, and Memory Management 3-17

3.4.9 KER$GET_USER Procedure

The KER$GET_USER procedure returns the user identity of either
the calling process or the partner process connected by a circuit to
the caller’s port. An optional argument specifies a port connected in
a circuit; if this argument is supplied, the port must be connected in
a circuit that the caller has accepted with the ACCEPT_CIRCUIT
procedure. Valid information is not returned if the caller initiated
the connection with CONNECT_CIRCUIT; that is, KER$GET_USER
can provide information only about the object of a connection, not the
subject.

Other optional arguments return the user name string and the UIC
of either the calling process or the partner process. If the circuit is
from a remote user, but there is no Authorization Service available
in the system — that is, the Authorization required entry on the
System Builder’s Edit Network Node Characteristics Menu is No —
KER$GET_USER returns 0 for the UIC parameter.

3.4.10 INITIALIZATION_DONE Procedure

The INITIALIZATION_DONE procedure informs the kernel that the
calling program has completed an initialization sequence and that other
programs can be created and made eligible to run. This procedure does
not cause the calling job to block. The calling job continues to run until
some other occurrence causes it to block.

The INITIALIZATION_DONE procedure is exclusively for programs
that have the System Builder Init required program attribute.

NOTE

Context switching is disabled during initialization.

3.4.11 KER$NAME_OBJECT Procedure

The KER$NAME_OBJECT procedure names a specified process by
creating a unique NAME object that associates a character string with
the process. The procedure helps you identify the process when you use
the remote debugger and other VAXELN development utilities.

3-18 Job, Process, and Memory Management

This procedure is similar to the CREATE_NAME procedure that
creates names for message ports (see Chapter 5), except that process
names do not have the local or universal attribute that is associated
with port names.

NOTE

KER$NAME_OBJECT is used only in Pascal programs; to
get the equivalent process-naming feature in C, you call
KER$CREATE_NAME with a special set of arguments.
See the VAXELN C Runtime Library Reference Manual for
details.

3.4.12 KERS$RAISE_PROCESS_EXCEPTION Procedure

The KER$RAISE_PROCESS_EXCEPTION procedure raises the asyn-
chronous exception KER$_PROCESS_ATTENTION in the specified
process.

3.4.13 RESUME Procedure

The RESUME procedure resumes the execution of a suspended process.
A resumed process is ready to run but is not necessarily running. If
the process was waiting when it was suspended, the wait is repeated
when it is resumed. Asynchronous exceptions that occurred during the
suspension are raised when the process runs, including the exception
KER$_QUIT_SIGNAL that results from signaling the process itself.

3.4.14 Setting a Job’s Processor Eligibility

A job’s processor eligibility is determined when the job is ready to run
based on information in the job’s job control block (JCB). An applica-
tion program can alter this eligibility information while executing by
calling the KER$SET_JOB_ELIGIBILITY procedure. An argument
supplies Boolean values that indicate job eligibility for each processor
in your target configuration. TRUE means a job is eligible to run on
a processor; FALSE means a job is not eligible to run on a processor.
Whether the master process or a subprocess calls the procedure, the
call changes the processor eligibility for the entire job. If a job’s new
eligibility makes the job ineligible to run on its current processor, the

Job, Process, and Memory Management 3-198

kernel reschedules the job for execution on a valid processor; otherwise,
no rescheduling takes place.

The KER$SET_JOB_ELIGIBILITY procedure is most useful for pro-
grams that run in multiprocessor configurations. However, code that
includes the procedure can run on both single-processor and multi-
processor configurations. On a single-processor system, the procedure
changes the job’s eligibility mask but has no other effect, even if the
user argument specifies ineligibility for the single processor.

In multiprocessor configurations, jobs are initially eligible to run on
any available processor. If the configuration includes a VAX 8800
multiprocessor and a device driver job calls the CREATE_DEVICE
procedure, the kernel ties the job to the processor that handles the
device’s interrupts. This lets the driver raise the processor’s IPL with
a call to DISABLE_INTERRUPT to synchronize access to the device
communication region. Synchronization using an elevated IPL is not
possible if interrupts are being handled by the other processor.

For multiprocessor configurations that let devices interrupt any proces-
sor (such as the VAX 62nn multiprocessor), you can use the KER$SET_
JOB_ELIGIBILITY procedure to make a user-created job eligible on

a specified set of processors. (This is also true for a driver running

on a VAX 8800 multiprocessor, as long as the driver does not use an
elevated IPL to synchronize access to the device communication region.)
However, the procedure affects only the job for which the call is made;
it does not keep other jobs, including system jobs such as the debug-
ger and drivers that Digital supplies, from running on the specified
processors.

In a tightly coupled multiprocessor configuration, at least one available
processor must be eligible to run the job. If the job cannot run on any
of the processors that are up and running as part of the configuration,
the kernel returns the status value KER$BAD_VALUE.

3.4.15 SET_JOB_PRIORITY Procedure

The SET_JOB_PRIORITY procedure resets the scheduling priority of
the current job to an integer in the range 0 to 31. Priority 0 is the
highest. The initial priority for a job can be set by the System Builder
as part of a program description or by the ELN$LOAD_PROGRAM
procedure; the default is 16. Raising job priority causes the calling job
to continue execution at the higher job priority. Lowering job priority
allows a ready job with higher (or equal) combined job and process

3-20 Job, Process, and Memory Management

priority, if there is one, to gain control of the processor; otherwise, the
calling job continues execution at the lower job priority.

Jobs and processes in a VAXELN system are scheduled on a preemp-
tive priority basis. When scheduling an idle processor or arbitrating
possible job preemption, the scheduler allocates the processor to the
ready job with the highest combined job and process priority. That is,
the scheduler selects the job with the highest job priority or, among
jobs of equally high job priority, the job with the highest-priority ready
process. Preemption occurs when a process entering the ready state
becomes the highest-priority ready process in its job, such that the
ready job then has a higher combined job and process priority than the
running job.

The scheduling scheme can be extended to allow a running job to give
up control to a ready job of equal combined job and process priority,
without lowering its own priority. If running job a issues a call to SET_
JOB_PRIORITY that specifies its current priority, one of the following
occurs:

¢ If another job, b, of the same combined priority is ready, job b is
placed in the running state. The voluntarily preempted job a is
placed in the ready queue behind remaining jobs of equal combined
priority.

¢ If no other job of the same combined priority is ready, the running
job continues in the running state.

3.4.16 SET_PROCESS_PRIORITY Procedure

The SET_PROCESS_PRIORITY procedure resets the scheduling pri-
ority of a process to an integer in the range 0 to 15. Priority 0 is the
highest. The initial priority for the processes in a job can be set by the
System Builder as part of a program description or by the ELN$LOAD_
PROGRAM procedure; the default is 8.

When arbitrating possible process preemption within a job, the sched-
uler selects the process with the highest process priority. Preemption
occurs within a job when a process becomes ready with higher priority
than the job’s current process.

The scheduling scheme can be extended to allow a running process to
give up control to a ready process of equal priority within the same job,
without lowering its own priority.

Job, Process, and Memory Management 3-21

If process switching is enabled and process a issues a a call to SET_
PROCESS_PRIORITY that specifies its own process value and its
current priority, one of the following occurs:

¢ If another process, b, of the same priority within the same job is
ready, process b is placed in the running state. The voluntarily
preempted process a is placed in the ready queue behind remaining
processes of equal priority within the same job.

¢ If no other process of the same priority within the same job is
ready, the running process continues in the running state.

3.4.17 KERS$SET_USER Procedure

The KER$SET_USER procedure sets the user identity of the current
process. A string of up to 20 characters specifies the user name to be
associated with the process. An integer supplies the user identification
code (UIC) to be associated with the process.

3.4.18 SIGNAL Procedure

Signaling a process with a call to SIGNAL raises the exception KER$_
QUIT_SIGNAL for that process. If the process needs to perform
special operations, such as deallocating resources, before exiting, it
must have established an exception handler to handle the KER$_
QUIT_SIGNAL exception. If the process does not have an established
exception handler or if the exception handler resignals the exception,
the kernel forces the process to exit. The exception handler should
resignal the exception if the job is to exit after the special operations
are completed.

3.4.19 SUSPEND Procedure

The SUSPEND procedure suspends the execution of a process. If the
process is waiting, as a result of a WAIT_ANY or WAIT ALL call, it is
removed immediately from the waiting state and then suspended. If
the process is resumed later, the wait is repeated.

3-22 Job, Process, and Memory Management

3.4.20 WAIT_ANY and WAIT_ALL Procedures

The WAIT procedures make a process wait for 0 to 250 wait conditions
(conditions pertaining to the state of objects) to be satisfied. WAIT_
ANY allows the invoking process to continue if a wait condition is
satisfied; WAIT_ALL requires that all the conditions be satisfied
simultaneously. A wait for a PROCESS object is satisfied when the
process terminates.

Waiting causes no modification to a PROCESS object, and all waiting
processes continue if their wait conditions are otherwise satisfied. Both
procedures can specify a timeout argument, which defines either a
time interval or absolute time after which the waiting process proceeds
regardless of the states of the objects.

3.5 Memory Management

VAXELN uses the VAX memory management hardware to map jobs in
a virtual address space. Although knowledge of VAX memory manage-
ment is not essential for understanding this section, you may find it
more useful if you are already familiar with VAX memory management
terminology. Figure 34 illustrates a typical mapping.

Each job created by VAXELN executes a program image. You build
program images into the system image with the System Builder or load
them dynamically with the program loader. The shareable runtime
library modules and kernel are not included as part of a program image
but are images themselves.

When a VAXELN system is booted, the kernel maps the system image
(kernel, program, and shareable runtime images) into the S0 virtual
address space (the system region). The system region maps the system
image and kernel data, as shown in Figure 3-5.

Job, Process, and Memory Management 3-23

Figure 3-4: Memory Allocation

SYSTEM
REGION

$0<

Kernel Image

Program 1 Image

Program 2 Image

Program n Image

Shareable
Runtime image

Dynamic Memory

PROGRAM
REGION

P1<

CONTROL

(Master Process Code

Gilobal Data Subprocess 1 Code
Program Image ——~< | Subprocess 2 Code
Dynamic Memory
Subprocess n Code
>
Job Context Page
< Job Heap Data

Subprocess n
Local Data

Subprocess 2
Local Data

.

Master Process

REGION

Subprocess 1
Local Data

Local Data

Job Message Buffer
\

User Stack

No Access Page

Kernel Stack

Process Context Page

N

MLO-004277

When the kernel creates a job, it generates a PO page table and maps
the job’s program image, data, and message buffers into PO virtual
address space (the program region) as shown in Figure 3—6. If multiple
jobs in a system use the same program image, the kernel makes a copy
of the image’s read/write data for each job and lets all jobs share the
same read-only code and data.

3-24 Job, Process, and Memory Management

Figure 3-5: System Region

Kernel Image :80000000

Program 1 Image

Program 2 Image

Program n Image

Shareable Runtime Images

Kernel Pool and Data

Unmapped ‘BFFFFFFC

MLO-004278

Figure 3-6: Program Region

Program Image :00000000

Job Context Page

Job Dynamic Memory
Job Heap Data
Job Message Buffsrs

Unmapped BFFFFFFC

MLO-004279

Job, Process, and Memory Management 3-25

The kernel uses PO virtual address space for static variables and
message text. The kernel makes a copy of the read/write data, although
no copy is made of read-only code and data. If multiple jobs in a system
run the same program, only one copy of the read-only code and data
exists, with as many copies of the read/write data, message data, and
heap data as jobs running the program. Since the runtime library
uses heap data for many of its data structures, the kernel also maps
the context of open file variables into PO address space so the runtime
libraries can use the variables for their data structures.

A job’s processes share its PO page table and PO address space. Thus,
the processes can access the same job-level data. The processes can co
ordinate their access to this data by using synchronization techniques.
A pointer to a data item in the PO address space can be passed to any
process in the job. A pointer cannot be passed to a process in another
job, since the pointer refers to a different data item in that job’s PO
region.

In addition to setting up static memory mapping, the kernel manages
the data associated with dynamically created processes. When the
kernel creates a process, it generates a P1 page table and maps a
kernel and user stack into P1 virtual address space (the control region).
Each process in a job, including the master process, has its own pair
of stacks, which store process-specific data, such as local variables and
procedure call frames.

The kernel uses P1 virtual address space exclusively for dynamic
memory; it does not map any of the program image. Kernel procedures
and kernel mode programs use the fixed-sized kernel stack. The kernel
expands the user stack as necessary, enabling programs to start out
with minimal stack space. This feature saves space that can be wasted
when memory is preallocated.

The kernel stack for a user-mode process occupies two pages. The stack
is used by the VAXELN Kernel when executing kernel procedures and
dispatching exceptions.

Kernel-mode processes have only a fixed-size kernel stack that is used
by both the process and the VAXELN Kernel procedures. If the kernel-
mode stack overflows, the fatal exception KER$_KERNEL_STACK is
returned. When this exception is delivered, the kernel stack pointer
is reset to the base of the original stack, and the previous contents of
the stack are lost. The size of the kernel-mode stack is specified as a
program attribute.

3-26 Job, Process, and Memory Management

In addition to the stacks, the P1 address space contains process context
data. This data represents context information that is used by the
VAXELN Kernel, debugger, and runtime library routines. Figure 8-7
shows the P1 region of the VAX virtual address space.

Figure 3—7: Control Region

Unmapped 140000000

User Stack

No Access Page
Kernel Stack
Process Context Data ‘7FFFFFFC

MLO-004280

3.5.1 Managing Stack Usage

When the kernel creates a process, it generates a P1 page table and
maps a kernel and user stack into P1 virtual address space (the control
region). Each process in a job (including the master process) has

its own pair stacks, which store process-specific data, such as local
variables and procedure call frames.

For most programs, VAXELN manages stack usage sufficiently. Kernel
procedures and kernel-mode programs use the fixed-size kernel stack.

The kernel expands the user stack as necessary, enabling programs to
start out with minimal stack space. This feature saves space that can

be wasted when memory is preallocated.

Jab, Process, and Memory Management 3-27

You may need to control stack usage in the following cases:

* When stack usage varies widely during process execution. The
kernel extends user stacks as necessary. However, since the kernel
knows nothing about a program’s behavior, it does not trim stacks.
Thus, if the stack space allocated for a process significantly exceeds
the amount of space that the process requires at a certain point
during execution, space is wasted.

* When the stack size that you specify for a kernel-mode program
causes stack space to be wasted. The kernel allocates the size that
you specify to each process in the program’s job. Again, if the stack
usage for each process varies significantly, stack space may be
wasted,

¢ When kernel stack overflows occur. Kernel stack overflows may
occur because kernel stacks are not dynamically extended as are
user stacks.

Your programs can control these conditions by calling the
ELN$DEALLOCATE_STACK and ELN$ALLOCATE_STACK pro-
cedures. These procedures extend and contract the stacks during
program execution. Use the ELN$DEALLOCATE_STACK procedure to
trim a stack by a specified number of bytes, without trimming beyond
the page containing the current stack pointer (SP). If the stack does
not contain the specified space, the kernel trims the stack to the page
in which the procedure is running. Thus, you can trim the stack to the
currently needed size by specifying an overly large number.

Use the ELNSALLOCATE_STACK procedure to verify the availability
of an amount of stack space. If the stack space is not available, the
procedure allocates the additional space needed to satisfy the request.
This procedure is most useful for allocating stack space for kernel-mode
programs that demand more stack space than was allocated when

the system was built. This procedure is not as useful for user-mode
programs because the kernel automatically extends the stack as needed
by the process.

If a program produces an exception that indicates an invalid kernel
stack; you should suspect inadequate stack size (kernel stack overflow)
-as a possible cause. For an example of how a kernel stack overflow
can occur, consider the following situation. When a program running
in kernel mode issues a call to WRITELN, the procedure’s arguments
.(and other information) are pushed onto the kernel stack allocated for
that program. The WRITELN procedure in turn calls a routine in the
runtime library, which pushes yet more information onto the stack.
Since kernel stacks are not automatically extended at runtime, this

3-28 Job, Process, and Memory Management

single call to WRITELN can cause the stack to overrun its allotted size
and result in system failure.

Any kernel-mode program that calls nested subroutines can encounter
kernel stack overflows. To prevent such overflows, you must allocate
adequate kernel stack space for kernel-mode programs. If you suspect
that kernel stack overflows are occurring, specify a larger kernel stack
size in the program’s description; then rebuild the system. To avoid
or correct the problem at runtime, call the ELN$ALLOCATE_STACK
procedure from the offending program.

3.5.2 Allocating Memory

The procedures summarized in Sections 3.5.2.1 to 3.5.2.5 allocate and
free memory. '

3.5.2.1 ALLOCATE_MEMORY Procedure

The ALLOCATE_MEMORY procedure allocates physical memory pages
(not necessarily contiguous) into contiguous virtual address space of
the job that calls it. The allocated memory can be placed at a specified
virtual address or at a virtual address selected by the kernel. The
procedure returns the address at which the memory is allocated.

The caller specifies the size of the needed memory in bytes, but allo-
cation is done in units of memory pages (512-byte pages). The size is
rounded up to page-sized units before the allocation. Allocation always
begins on a page boundary.

If the allocation virtual address was selected by the kernel, the address
will be in the PO or shared region of the job’s virtual memory. The
caller can specify any virtual address, so it is possible to allocate
memory in the P1 or stack region, as well as at a particular memory
location in PO.

Most high-level languages provide a higher level and more controlled
means of allocating and freeing dynamic memory — for instance, the
Pascal NEW procedure and the C calloc or malloc functions. Use
these procedures if you do not need to allocate memory at a specific
location, or if you need to allocate memory in different units than a
page (512 bytes). The smallest unit you can allocate with NEW is 8
bytes.

Job, Process, and Memory Management 3-29

Use the ALLOCATE_MEMORY procedure for large temporary memory
allocations or to allocate memory at a specific virtual or physical
address. ALLOCATE_MEMORY is a low-level operation that is used by
programs that need direct control of memory allocation or is used as a
building block to provide a higher-level service.

The ALLOCATE_MEMORY procedure also allows a kernel-mode caller
to specify the exact physical address at which to start the allocation. If
you specify a physical starting address, the memory allocated is phys-
ically contiguous. This feature is intended for specialized applications,
for example, multiported memory or video bitmap memory. The kernel
does not restrict the use of this parameter and does not check that
the value is consistent with the state of the system. Therefore, it is
possible to accidentally double map pages of memory that are already
in use.

3.5.2.2 KERS$ALLOCATE_SYSTEM_REGION Procedure

The KER$ALLOCATE_SYSTEM_REGION procedure allocates memory
in system (S0) address space. The memory allocated is virtually and
physically contiguous, and the virtual addresses come from the system
region you specify on the System Builder’s System Characteristics
Menu.

This procedure can be called only by programs running in kernel mode.

You might use KERSALLOCATE_SYSTEM_REGION to map a device’s
I/0 space control status registers (CSRs) into SO virtual address space.
Typically, the kernel maps the I/O space for a system’s device CSRs into
S0 address space at initialization time, and calls to CREATE_DEVICE
return a pointer to the first CSR for a device. The kernel does not do
this mapping for all devices. For example, the mapping is not done for
devices on systems that use an integral bus. Device drivers for such
devices can map the registers into SO address space by specifying the
appropriate physical address and size in a call to KERSALLOCATE_
SYSTEM_REGION.

When you finish using an area of SO space, use KER$FREE_SYSTEM_
REGION to free it; deleting a process or job does not free SO space.

3-30 Job, Process, and Memory Management

3.5.2.3 FREE_MEMORY Procedure

The FREE_MEMORY procedure frees the physical memory pages that
are mapped to particular virtual addresses in the caller’s address
space. The caller specifies a base virtual address and a size in bytes.
The procedure frees memory pages in the inclusive range from the base
to the top.

NOTE

Be careful when you free memory that was not explicitly
allocated by the caller, since it is difficult to determine the
use of the virtual address range. For instance, deleting the
process’s stack can have unpredictable results.

Dynamically allocated memory is normally freed with the language-
specific runtime library procedures provided by Pascal and C, that is,
the Pascal DISPOSE procedure and the C free or cfree functions.
Pointers to the freed memory become invalid.

3.5.2.4 KER$FREE_SYSTEM_REGION Procedure

The KER$FREE_SYSTEM_REGION procedure frees memory in SO ad-
dress space that was previously allocated with the KERSALLOCATE_
SYSTEM_REGION procedure. The memory is freed from the system
region you specify on the System Builder’s System Characteristics
Menu.

This procedure can be called only by programs running in kernel mode.

When you are finished using an area of S0 space, use KER$FREE_
SYSTEM_REGION to free it; deleting a process or job does not free SO
space.

3.5.2.5 KERSMEMORY_SIZE Procedure

The KER$SMEMORY_SIZE procedure scans the kernel memory data
base and returns the initial main memory, the current free memory,
and the current largest free memory block size (in 512-byte pages). The
largest free block size is the size of the largest physically contiguous
block of free memory. This value is useful if you need to create large
MESSAGE or AREA objects, because these objects require contiguous
memory for their data buffers.

Job, Process, and Memory Management 3-31

While the KER$MEMORY_SIZE procedure performs the memory scan,
other kernel operations are stopped; therefore, call this procedure only
when necessary.

3.5.3 Loading VAXELN System Images onto KA800 Processors

One way of setting up a closely coupled symmetric multiprocessing
environment is to use the ELN$LOAD_KA800_PROCESSOR proce-
dure. By calling this procedure, a VAXELN application program can
dynamically load VAXELN system images from a VAX 8nnn primary
processor into the memory of KA800 processors attached to the primary
processor’s VAXBI bus. The ELN$LOAD_KA800_PROCESSOR proce-
dure provides a runtime interface to the KA800 loader, ELN:KAS800_
LOADER.EXE. At runtime, the loader waits on a port for load requests.

To use the ELN$LOAD_KA800_PROCESSOR procedure, you must
build the KA800 loader’s program image into the system that is to
run on the primary processor. You must also include modules from the
runtime libraries, as appropriate for the programming language you
are using.

A call to the ELN$LOAD_KAS800_PROCESSOR procedure must specify
the VAXBI number and adapter number of the processor into which
the system is to be loaded, the file specification of the system image

to be loaded, and a variable that receives the load status. An optional
argument lets you specify whether the kernel debugger is to be invoked
when the system image is loaded. If you specify TRUE for the debugger
argument, you must build the local debugger into the system image
from which the ELN$LOAD_KA800_PROCESSOR call is made.

The system image that is being loaded into a KA800Q processor can
reside on the primary processor or on a remote node. If you specify a
system image file that resides on a remote node, you must identify the
node in the specification as follows:

area.node_number

The following program calls ELN$LOAD_KA800_PROCESSOR to load
the remote system image 1.10::RTDISK:[CCSMP_APP]JCCSMP.SYS
into the memory of a KA800 processor with local debugging enabled.

3-32 Job, Process, and Memory Management

MODULE load_ka800;
INCLUDE $KA800_LOAD_UTILITY;
PROGRAM load_sys (INPUT, OUTPUT) ;

VAR
load_stat : KA800_CODE;

BEGIN
ELN$LOAD_KA800_ PROCESSOR (BI_NUMBER := 0,

ADAPTER NUMBER := 7,
FILE_ SPEC := ’1.10::RTDISK:[CCSMP_APP]CCSMP.SYS’
LOAD_STATUS := load_stat,
KDEBUG := TRUE);

END;

END.

You can use the ELN$LOAD_KA800_PROCESSOR procedure to reboot
a previously booted KA80Q processor.

You can also load a system image into the memory of a KA800 processor
by entering a configuration file for the Argument(s) entry on the
KAB800 loader’s Program Description Menu. VAXELN Development
Utilities Guide explains the configuration file and how to load and
boot a KA80Q processor in a closely coupled symmetric multiprocessing
configuration.

Job, Process, and Memory Management 3-33

Chapter 4
Synchronization

In addition to performing scheduling and memory management tasks,
the kernel coordinates the operations on kernel data structures. One
category of such operations is process synchronization. Process synchro-
nization is a mechanism for coordinating the concurrent execution of
two or more processes. Using kernel procedures you can synchronize
processes in the same job or processes in different jobs.

You must synchronize processes when they share a resource, depend on
the completion of another process’s execution, or wait for an external
event to occur. The ability of a process to gain exclusive access to a
shared resource is called mutual exclusion. The ability of a process to
coordinate its activities with other processes is called event response.

To attain controlled access to limited resource units or coordinate event
response, processes wait for one or more conditions to exist by calling
the WAIT _ALL or WAIT_ANY kernel procedure. These procedures
provide a method by which processes wait and define the condition
under which processes can proceed again.

Section 4.1 provides a general overview of how to synchronize process
execution. The rest of this chapter explains how to use VAXELN Kernel
procedures to synchronize processes based on the following:

* A specified time, Section 4.2

* Process completion, Section 4.3

¢ Signaling of a semaphore or mutex, Section 4.4
¢ The occurrence of an event, Section 4.5

Synchronization 41

4.1 Synchronizing Process Execution

You synchronize execution of an application’s processes by doing the
following:

¢ Creating AREA, DEVICE, EVENT, PORT, PROCESS, and
SEMAPHORE kernel objects for which the processes can wait

* Using the WAIT_ANY or WAIT_ALL kernel procedure to make
processes wait for the kernel objects

* Defining the way processes are to resume after waiting

The WAIT_ANY and WAIT _ALL procedures accept a list of up to 250
AREA, DEVICE, EVENT, PORT, PROCESS, or SEMAPHORE values
(including various combinations of object types). When using the
WAIT_ANY procedure, the calling process waits until any one of the
specified objects is signaled. When using the WAIT_ALL procedure,
the calling process waits until all the specified conditions are satisfied
simultaneously. When an object is signaled and all other specified
conditions are satisfied, the wait is otherwise satisfied. Once a wait is
satisfied (or otherwise satisfied), the process returns to the ready state
and can continue executing. An optional result argument receives the
number of the argument that satisfied the wait for a call to WAIT_ANY.
You can also supply a timeout argument, which defines either a time
interval or absolute time after which the waiting process can proceed,
regardless of the states of specified objects.

NOTE

When you specify more than four objects in calls to WAIT_
ALL and WAIT_ANY, you should account for the following
additional overhead that is incurred:

e Additional pool blocks are required to wait for the speci-
fied objects. When creating a process, the kernel allocates
one pool block for the control structures that allow the
process to wait for four objects. For example, if you spec-
ify five to eight objects, the kernel allocates an additional
pool block to support the wait. If you specify nine ob-
jects, the kernel permanently allocates two additional
pool blocks to the process. The second pool block could
support waits for nine to twelve objects.

4-2 Synchronization

¢ Additional time needed to process waits. As the number
of objects increases, the time required to process, test,
and satisfy a wait increases.

Specifying a large number of objects may also affect the
process latency of driver processes that run at high job
priorities. Such processes require quick response time to
device interrupts. For more information, see Chapter 6.

Each call to WAIT_ANY or WAIT_ALL causes the calling process to
wait for a resource or event as follows:

Waiting on an AREA, EVENT, or SEMAPHORE object means
waiting for the object to be signaled.

Waiting on a DEVICE object means waiting for the connected
interrupt to be signaled by an interrupt service routine (ISR).

Waiting on a PORT object means waiting for a message to arrive at
that port.

Waiting on a PROCESS object means waiting for the identified
process to terminate.

Wait operations affect the kernel objects and the processes waiting on
those objects in the following ways:

Satisfying a wait on a SEMAPHORE object causes the kernel to
decrement the semaphore count. At most, one process continues
when a semaphore is signaled.

Satisfying a wait on an EVENT, PORT, or PROCESS object causes
no modification to the object, and all waiting processes continue if
their wait conditions are satisfied.

Satisfying a wait on an AREA object depends on whether the area
is associated with an event or semaphore. If the area is associated
with an event, the object is not modified and all waiting processes
continue if their wait conditions are satisfied. If the area is associ-
ated with a semaphore, the kernel decrements the semaphore count
and at most, one process continues. Areas associated with events
provide a mechanism for interjob event synchronization.

Satisfying a wait on a DEVICE object causes the object to be
cleared if the wait is satisfied by an ISR signaling the object. Only
one process continues as a result of the action of an ISR.

Synchronization 4-3

The WAIT procedures return immediately with an error if one of the
argument objects does not exist or is deleted. Both procedures also
return immediately if the necessary conditions were satisfied before the
call was made.

Since the WAIT_ALL procedure waits for a number of conditions to be
simultaneously satisfied, deadlock cannot occur. Deadlock occurs when
two or more processes wait for the same set of resources, each holding
onto some resources while waiting for others to become available, such
that no process can get all the resources it needs to continue. Since
WAIT_ALL does not lock up some resources while waiting for others
to become available, deadlock is not a problem, provided that all the
conditions (events, semaphores, and so forth) are known and are listed
in a single call. WAIT_ALL is also a more efficient way to wait for two
or more objects, which need to be satisfied simultaneously, than using
multiple calls to WAIT_ANY.

To program process synchronization, you can use the WAIT_ALL and
WAIT_ANY procedures along with the following routines:

Routine Description

CLEAR_EVENT Sets the state of an event or an area’s
event to EVENT$CLEARED.

CREATE_AREA Creates a new area or maps an exist-

ing area of memory into the calling
job’s PO virtual address space and
associates the area with a binary
semaphore.

CREATE. AREA_EVENT Creates a new area or maps an exist-
ing area of memory into the calling
job’s PO virtual address space and
associates the area with an event.

CREATE_AREA_SEMAPHORE Creates a new area or maps an exist-
ing area of memory into the calling
job’s PO virtual address space and
associates the area with a semaphore.

CREATE_EVENT Creates an event.
CREATE_MUTEX Creates a mutex.
CREATE_PROCESS Creates a process.
CREATE_SEMAPHORE Creates a semaphore.

4-4 Synchronization

Routine Description

CURRENT _PROCESS Gets the identifier for the current
process.

DELETE Deletes an area, event, semaphore, or
process.

DELETE_MUTEX Deletes a mutex.

GET_TIME Returns a processor’s system time.

KER$GET UPTIME Returns a time interval indicating the
time that has elapsed since system
initialization.

LOCK_MUTEX Locks a mutex.

SET_TIME Sets a processor’s system time.

SIGNAL Signals an event, a semaphore, or an
area’s associated event or semaphore.

UNLOCK_MUTEX Unlocks a mutex.

The rest of this chapter explains how to use the preceding routines and
WAIT_ALL and WAIT_ANY to synchronize process execution using the
following:

¢ Time values, Section 4.2

® Process completion, Section 4.3
* Semaphores, Section 4.4

¢ Events, Section 4.5

For descriptions of the routines, see the VAXELN Pascal Runtime
Library Reference Manual, VAXELN C Runtime Library Reference
Manual, or VAXELN FORTRAN Runtime Library Reference Manual.

AREA, MESSAGE, and PORT objects are used for programming
process and job communication, and DEVICE objects are used for
programming application device handling. For information about
using areas, ports, and the wait procedures to program process and job
communication, see Chapter 5. Chapter 6 explains how to use device
objects and the wait procedures to program VAXELN device handlers.

Synchronization 4-5

4.2 Using Time Values to Synchronize Process Execution

You can synchronize process execution by waiting for a specified date

and time to occur or for a time interval to elapse. An application can

wait on a time value in addition to or instead of kernel objects. If you
synchronize processes using time values, you may need to get and set
the system time. Section 4.2.1 explains how to synchronize processes

by waiting on time and Section 4.2.2 explains how to retrieve and set
the system time.

4.2.1 Waiting on Time

To wait on time, a process must issue a call to WAIT_ALL or WAIT_
ANY that specifies a signed, 64-bit time value. A time value can be an
absolute time (a specific date and time) that indicates when the process
can continue or a time interval relative to the current system time that
indicates how long the process must wait before continuing.

You specify an absolute time in the following format:
’dd-mmm-yyyy hh:mm:ss.cc’

The following table defines the absolute time value components:

Component Meaning Value Range
dd Day of the month 1to31

mmm Month JAN to DEC
yyyy Year 1858 to 9999
hh Hours 0 to 23

mm Minutes 0 to 59

ss Seconds 0 to 59

ce Hundredths of a second 0 to 99

You specify a time interval as follows:
’dddd hh:mm:ss.cc’

4-6 Synchronization

The following table defines the time interval value components:

Component Meaning Value Range
dddd Days 0 to 9999

hh Hours 0 to 23

mm Minutes 0 to 59

ss Seconds 0 to 59

ce Hundredths of a second 0 to 99

By convention, positive time values represent absolute time; negative
time values represent time intervals.

If you do not specify a time value, the calling process unblocks only
when the specified wait object conditions are otherwise satisfied.

You can issue a conditional wait that will not block, by specifying a
timeout value of 0. Specifying 0 ensures that the WAIT procedures
check for satisfied conditions and then return immediately. If the
returned wait result is 0, the wait condition specified by the objects was
not satisfied.

The kernel expects and returns time values in 64-bit time value format.
Thus, applications must convert absolute time and time interval format
strings to and from 64-bit time value format, as appropriate. Runtime
routines for converting time value formats are available in Pascal, C,
and FORTRAN. See the VAXELN Pascal Runtime Library Reference
Manual, VAXELN C Runtime Library Reference Manual, or VAXELN
FORTRAN Runtime Library Reference Manual for more information.

The VAXELN Pascal, C, and FORTRAN language runtime libraries
provide routines for dealing with time values conveniently. For exam-
ple, you can use the routines to convert a time value to an ASCII string
for printing, or an ASCII string in an absolute or interval time format
to a time value for time value operations. '

Synchronization 4~7

4.2.2 Retrieving and Setting the System Time

Before specifying an absolute time value in a call to WAIT_ANY or
WAIT_ALL, you should set the system time. The system time is abso-
lute and is maintained by the VAXELN Kernel as a 64-bit binary num-
ber. The system time is interpreted as the number of 100-nanosecond
intervals since the base time, 00:00:00.00, November 17, 1858. The
kernel uses the system’s interval timer to maintain the system time.
Thus, the system time is in effect for all jobs running on that system.

You can set and get a system’s time by using the SET TIME, GET_
TIME, and KER$GET UPTIME procedures.

A processor’s system time is not necessarily preserved across power
failures and is not set to a default value by the kernel or other system
software. Thus, you should use SET_TIME to initialize the system
time in an initialization job (see the VAXELN Development Utilities
Guide) and in a handler for the KER$_POWER_SIGNAL exception.
For example:

SET_TIME (TIME_VALUE (/10-MAR-1990 00:00:60"));

You can also set the system time with the debugger and ECL command
SET TIME. You can display the system time using the debugger and
ECL command SHOW TIME. For information about the SET TIME
and SHOW TIME commands, see the VAXELN Development Utilities
Guide. ‘

If you set the system time while a wait that specifies an absolute
timeout value is pending, one of the following effects occurs:

* If you set the system time back, the timeout period is increased by
the amount you set the time back.

* If you set the system time forward to a time that does not exceed
the absolute timeout value, the waiting time is reduced to the
difference between the new system time and the original timeout
value.

* If you set the system time forward to a time that exceeds the
absolute timeout value, the timeout occurs immediately.

If a wait with an interval timeout value is pending, resetting the
system time does not change the remaining timeout period.

4-8 Synchronization

To retrieve the system time, use the GET_TIME or KER$GET_
UPTIME procedure. GET_TIME returns the current system time.
KER$GET _UPTIME returns a time interval indicating the time that
has elapsed since system initialization. The negative value represent-
ing the time interval decreases continuously regardless of system time
resets.

The following example illustrates the use of SET_TIME, GET_TIME,
and KER$GET UPTIME:

MODULE time;

INCLUDE $KERNEL;

PROGRAM time;

VAR
set_time value,
get_time value,
uptime_value : LARGE_INTEGER;
time_str : VARYING STRING(23);

BEGIN

WRITE (/Enter date and time (dd-mmm-yyyy hh:mm:ss.cc): 7);
READLN (time_str);

set_time value := TIME VALUE (time_str);
SET_ TIME (set_time_value); { Set the system time. }
GET_TIME (get_time value); { Get the current system time. }
time str := TIME STRING (get_time value);
WRITELN (' The time is now ’/, time str);
KERSGET UPTIME (,uptime value); { Get the elapsed system time. }
time_str := TIME STRING (uptime_value);
WRITELN (' The system uptime is ’/, time_str);

END;

END.

4.3 Synchronizing Process Execution Based on Process
Completion
Waiting for a process means waiting until the process has terminated.
When one process waits for another, the second process is usually

created by the waiting process, which needs it to complete some task
before the waiting process can continue.

Synchronization 4-9

The actions of the two processes are synchronized in the following way:

1. The first process (Process A) creates the process it must wait for
(Process B).

2. Process A then calls WAIT _ALL or WAIT_ANY to wait for Process
B.

3. Process B executes its process block until it terminates.

4, The termination of Process B satisfies the wait condition for Process
A.

5. Process A continues its execution with the line of code following its
call to WAIT_ALL or WAIT_ANY.

To wait for a process, the process that wishes to wait (Process A) must
specify the PROCESS variable associated with the process to be waited
for (Process B) in a call to the WAIT _ALL or WAIT_ANY procedure.
When Process A creates Process B and then waits for it, the same
PROCESS variable is used in both the CREATE_PROCESS and the
WAIT calls. When Process A does not create Process B, Process B’s
PROCESS variable must be globally accessible or must have been
passed to Process A as an argument when Process A was created or in
a message.

The CREATE_PROCESS procedure has an optional EXIT parameter
that allows the creating process to receive an exit status from the
created process when the latter exits, if it terminates its execution with
the EXIT procedure. The created process can supply the EXIT _STATUS
value to indicate whether it has accomplished its task successfully.
This EXIT_STATUS value is returned to the creating process in the
variable passed as the EXIT argument to CREATE_PROCESS. When
its wait has been satisfied by the termination of the created process, the
creating process can check the EXIT status and take the appropriate

- action, based on the success or failure of the process it created.

4.4 Using Semaphores to Synchronize Process Execution

Semaphores act as gates that control access to resources such as global
variables, hardware resources, or the CPU. A semaphore maintains a
count of the available units of a resource, such as the number of disk
drives available, the number of gates available at an airport, or, for a
railroad semaphore, the number of tracks (0 or 1) available to a train
going in a particular direction.

4-10 Synchronization

A semaphore’s count value changes as processes wait on and signal
the semaphore or area. As the value changes, it controls the execu-
tion of waiting processes, letting at most one process enter the ready
state when a semaphore or area associated with a semaphore is sig-
naled. When a process signals a semaphore or area associated with

a semaphore, the semaphore count is incremented. When a process
waits on a semaphore or an area associated with a semaphore, the
process waits until the semaphore count is greater than . When the
count exceeds 0 (and, for WAIT_ALL, if all other wait conditions are
satisfied) the process unblocks. When the kernel selects the process to
execute, the procedure call returns and the process proceeds. If a wait
is satisfied when the semaphore is signaled, the kernel decrements the
semaphore count.

The following sections explain how to do the following:
* Create semaphores, Section 4.4.1

* Wait on and signal semaphores, Section 4.4.2

¢ Delete semaphores, Section 4.4.3

¢ Use mutexes, Section 4.4.4

4.4.1 Creating Semaphores

An application creates and initializes a semaphore with a call to
CREATE_SEMAPHORE, A call to CREATE_SEMAPHORE must
specify initial and maximum count integer values.

The kernel also creates a semaphore when an application calls
CREATE_AREA or CREATE_AREA_SEMAPHORE. When an appli-
cation calls one of these procedures, the kernel creates an area and
an associated semaphore. Like calls to CREATE_SEMAPHORE, callg
to CREATE_AREA_SEMAPHORE must specify initial and maxi-
mum count integer values. In the case of CREATE_AREA, the kernel
automatically initializes the initial and maximum count values to 1.

Depending on the maximum count value that you specify, semaphores
are either binary or counting. A binary semaphore has a maximum
count of 1. You use a binary semaphore to guard a single item — often,
a shared variable — from access by more than one process. The binary
semaphore acts as a gate, letting only one process at a time get through
to the resource behind it. When you signal a binary semaphore, the
gate opens for one process and then closes.

Synchronization 4-11

A semaphore that has a maximum count greater than 1 is a counting
semaphore. A counting semaphore is like a gate that lets multiple
processes through or a meter that keeps count of a finite resource’s
available units.

In both cases, the initial semaphore count determines the initial -
disposition of processes that issue a wait for the semaphore or area,
independent of any signaling processes.

A SEMAPHORE value created by a call to CREATE_SEMAPHORE
can be used only within the job that creates it. The value identifies
the same semaphore throughout the job. Multiple processes in the
job can use the semaphore by sharing a variable or by passing the
SEMAPHORE value as a process argument.

SEMAPHORE values that the kernel associates with areas are valid in
different jobs running on the same node. Thus, an application can use
such an area to synchronize job execution. For information about using
areas associated with semaphores, see Section 5.4.

4.4.2 Waiting On and Signaling Semaphores

A process that wants to use a controlled resource waits on the
semaphore or area by calling WAIT _ALL or WAIT_ANY. If the
semaphore count is greater than 0, the count is decremented, and

the process enters the ready state. If the count is 0, the process waits
until another process signals the semaphore or area. If several pro-
cesses wait for the same semaphore, the kernel places them in a queue
in the order in which they call WAIT_ANY or WAIT_ALL.

A process signals a semaphore or area when it no longer requires a
resource. The SIGNAL procedure increments the semaphore count
and, at most, one process unblocks if the wait is otherwise satisfied.
If a process unblocks, the count is decremented. Thus, a semaphore’s
maximum count represents the available units of the resource being
controlled.

An application that needs to meter access to a 10-unit disk driver is
an example of an application that might use a counting semaphore.
The following Pascal example creates such a semaphore, initializes the
semaphore such that all units are available initially, and places the
SEMAPHORE value in the variable unit_available:

4-12 Synchronization

VAR
UNIT AVAILABLE: SEMAPHORE;

BEGIN
CREATE_SEMAPHORE (UNIT_ AVAILABLE,10,10);

After a process creates the semaphore, other processes needing disk
drives wait on the semaphore by specifying unit_available in a call to
WAIT_ANY or WAIT_ALL. Because the initial count is 10, the first

10 processes that wait on the semaphore continue immediately, and
each time a process continues, the kernel decrements the count. When
the count reaches 0 (assuming no process has released its drive in the
meantime), the kernel places all processes that wait on the semaphore
in the waiting state. These processes remain in the waiting state until
a process releases its drive.

The semaphore uses its count to meter disk drive availability. When a
process is through using its drive, it can return the drive to the pool of
available drives by signaling unit_available. The process at the head
of the semaphore’s queue can then access a drive and continue. If the
queue is empty, the next process to wait on the semaphore accesses the
free drive.

The following scenario illustrates the use of a binary semaphore to
guard a shared data base:

¢ A central data base is shared by a family of transaction-processing
processes. When the master process begins execution, it creates a
semaphore with maximum and initial counts equal to 1.

¢ The master process then creates worker subprocesses, as the need
arises, to handle incoming data base inquiries.

* Each subprocess waits on the semaphore before accessing the
shared data base and signals the semaphore when it is finished.

Since the maximum value of the binary semaphore is 1, only one
process can access the data base at a given time. Other processes
must wait until the current worker signals the semaphore. When the
semaphore is signaled, the next process can access the data base.

Synchronization 4-13

4.4.3 Deleting Semaphores

A process can delete a semaphore by specifying its value in a call to
the DELETE procedure. When a process deletes a semaphore, the
kernel unblocks all processes that are waiting on that semaphore and
returns the completion status KER$_BAD_VALUE. When a process
deletes an area that has an associated semaphore, the kernel removes
all processes waiting on the area in the same job from the waiting state
and returns KER$_BAD_VALUE.

4.4.4 Using Mutexes to Optimize Waiting and Signaling Operations

You can improve the performance of binary semaphore waiting and
signaling operations by using a mutex. (Mutex is an abbreviation for
mutual exclusion semaphore.) Mutexes allow you to achieve the same
effect as a binary semaphore without calling a kernel service unless
contention exists.

You can create, delete, lock, and unlock mutexes by using mutex
procedures. To use these procedures, you must include one of the
following modules:

Language Module

VAXELN Pascal $MUTEX from RTLOBJECT.OLB
o] $mutex from VAXELNC.TLB
FORTRAN "ELN$:FORTRAN_DEFS.FOR"

You create and initialize a mutex by specifying a variable of type
MUTEX in a call to the ELNSCREATE_MUTEX procedure. The
procedure initializes the mutex counter to —1, creates a SEMAPHORE
object with an initial count of 0 and maximum count of 1, and stores
the semaphore’s identifying value in one of the mutex variable’s fields.
In addition to specifying a variable for the mutex, you can specify a
variable that receives the completion status.

Once you create a mutex, you can use the ELN$LOCK_MUTEX and
ELN$UNLOCK_MUTEX procedures to lock and unlock the mutex.
ELN$LOCK_MUTEX provides the calling process with exclusive access
to a shared resource. Generally, when a process locks a mutex, the
process does not need to issue a wait before accessing the resource. The
kernel issues a wait only if the mutex is already locked.

4-14 Synchronization

A process can relinquish exclusive access to a shared resource by
calling ELN$UNLOCK_MUTEX. This procedure signals the semaphore
if a process is waiting for access.

If a binary semaphore is open (count = 1) and the semaphore is sig-
naled, a count overflow error occurs. In contrast, the locking and
unlocking of mutexes is not protected by this exception-raising mech-
anism. Under certain circumstances, in which two or more processes
contend for a mutex, unlocking an already unlocked mutex can cause
the calling process to block indefinitely. Therefore, when using mu-
texes, you should adhere to the following guidelines:

¢ You must make sure the first operation on an initialized mutex is a
lock operation.

* You must pair lock and unlock operations within the code of the
processes using the mutex.

When a process is finished using a mutex, it can delete it by calling
ELN$DELETE_MUTEX. This procedure deletes the mutex and the
semaphore associated with it. A call to ELN$DELETE_MUTEX must
specify the mutex you are deleting. You can also specify a variable to
receive the completion status.

4.5 Using Events to Synchronize Process Execution

An EVENT object represents the occurrence of an application-defined,
realtime event. An event can be in one of two states: signaled or
cleared. You can specify an event’s initial state when you create the
event.

The following sections explain how to do the following:

* Create events, Section 4.5.1
* Wait on, signal, and clear events, Section 4.5.2
¢ Delete events, Section 4.5.3

Synchronization 4-15

4.5.1 Creating Events

An application creates and initializes an event with a call to CREATE_
EVENT. A call to CREATE_EVENT must specify the event’s initial
state: EVENT$CLEARED or EVENT$SIGNALED.

The kernel also creates an event when an application calls CREATE _
AREA_EVENT. When an application calls this procedure, the kernel
creates an area and an associated event. Like calls to CREATE_
EVENT, calls to CREATE_AREA_EVENT must specify the event’s
initial state — EVENT$CLEARED or EVENT$SIGNALED.

4.5.2 Waiting On, Signaling, and Clearing Events

An event’s state changes as processes clear and signal the event or
area. Processes wait on an event by specifying the event’s value in
calls to WAIT_ANY or WAIT_ALL. If the event is in a signaled state,
the processes continue immediately. Otherwise, the processes wait for
another process to signal the event or area. Once the event is signaled,
all waiting processes unblock if their wait conditions are otherwise
satisfied.

An EVENT value created by a call to CREATE_EVENT is valid only
within the job that creates it. The value identifies the same event
throughout the job. Multiple processes in the job can use the event
by sharing a variable or by passing the EVENT value as a process
argument.

EVENT values that the kernel associates with areas are valid in
different jobs running on the same node. Thus, an application can use
such an area to synchronize job execution. For information about using
areas that are associated with events, see Section 5.4.

The particular realtime event represented by an EVENT object is
application-specific. The conditions under which the EVENT object

is signaled define its relationship to a realtime, real-world event.

To the VAXELN Kernel, however, the EVENT object has only the
properties signaled and cleared; nothing intrinsic in the EVENT object
determines which process can signal it or what the signal means to
waiting processes. The application designer must ensure that event
signal and wait operations occur in a manner appropriate to the event’s
real-world meaning. For example, the following Pascal code fragment
creates the EVENT object lights_on, and after determining that the

4-16 Synchronization

lights are on, signals the event for processes that may be waiting for it.

VAR
lights_on: EVENT;

BEGIN
CREATE_EVENT (lights_on, EVENT$CLEARED);

/* Check whether lights are on. */

SIGNAL(lights_on);

The satisfied wait condition has no effect on the event’s state. Once an
event is signaled, it remains signaled until a process clears it with a
call to the CLEAR_EVENT procedure. Processes waiting on the event
have that part of their wait condition satisfied immediately.

The CLEAR_EVENT procedure sets the state of an event or an area’s
event to EVENT$CLEARED.

The following scenario illustrates the use of events:

¢ A family of processes executes a series of steps that controls the
operation of a chemical plant. One master process controls the
sequencing of several other worker subprocesses. Each subprocess
executes independently until it completes a step, at which time it
must synchronize its execution with the master process.

* The master process is the first to execute, and it creates two events
with initial states of cleared, that is, not signaled. The master
process then creates each subprocess and gives it a control step to
perform.

* The subprocesses race each other to complete their assigned work,
and as each one finishes, it executes a WAIT procedure, specifying
the first of the two events.

¢ When the master process determines it is time to perform the
next control step, the master process signals the first event, which
causes all the waiting subprocesses to continue.

* As the subprocesses finish the second control step, they éga.in
execute a WAIT procedure, but this time they specify the second
event.

Synchronization 4-17

* After the appropriate amount of time, the master process clears
the first event and then signals the second event. The worker

subprocesses again continue, and so it goes until the work is
finished.

4.5.3 Deleting Events

A process can delete an event by specifying its value in a call to the
DELETE procedure. When a process deletes an event, the kernel
unblocks all processes that are waiting on that event and returns the
completion status KER$_BAD_VALUE. When a process deletes an area
that has an associated event, the kernel unblocks all processes waiting
on the area in the same job and returns KER$_BAD_VALUE.

4-18 Synchronization

Chapter 5
Communication

Processes and jobs exchange information by applying interprocess and
interjob communication techniques. Processes in the same job commu-
nicate by using module-level variables and queues. Jobs communicate
by passing messages and sharing areas of memory. Message-passing
allows jobs to communicate whether or not they execute on the same
node; sharing memory areas restricts communication to jobs executing
on the same node.

This chapter explains how to do the following:

¢ Share module-level data, Section 5.1

* Share packets of data using queues, Section 5.2
¢ Pass messages, Section 5.3

¢ Share memory areas, Section 5.4

5.1 Sharing Module-Level Data

A job’s processes can communicate by sharing data. Most data is
potentially shareable. However, a routine’s local variables and value
parameters are not shareable; the kernel stores this data in process-
specific P1 virtual address space. Thus, the addresses of such data are
meaningful only within the process allocating the data.

The processes in a job can share module-level data that you declare
outside routines: constants, variables, procedures, functions, and
process blocks. The kernel makes this data available to all processes
in a job by storing the data in the job’s PO virtual address space. Since
concurrently executing processes compete for the global data, you
control access by using semaphores and mutexes.

Communication 5-1

Processes can share the following entities by name (more than one
process can refer to the variable by its name):

e Pascal outer-level variables

* C variables declared with the attribute extern, globaldef, global-
ref, or static

* FORTRAN global commons

Sharing can also be accomplished with pointers and, in Pascal, with
process block variable parameters.

Sharing constant data, including variables declared with the Pascal
attributes READONLY or VALUE or the C attribute readonly, pre-
sents no programming problems. However, the sharing of data that
is modified by one or more processes must be carefully managed to
prevent unpredictable program behavior.

In Pascal, you can use the following constructs to process data shared
by processes within a job:

* The READ_REGISTER and WRITE_REGISTER routines. (They
are not restricted to operations on actual device registers.)

* The procedures INSERT_ENTRY and REMOVE_ENTRY, when
used on the head and tail entries of a queue.

¢ The ADD_INTERLOCKED function.

In C, the add_interlocked function is the only atomic (indivisible)
function you can use safely to process data shared by a job’s processes.
(For information about sharing packets of data in C, see Section 5.2.)

If you perform more complicated operations on shared data, you must
synchronize access to the data. While one process is executing code that
can modify the data, no other process can execute code that has access
to the data. The synchronization must be done with kernel procedures
or with the mutex routines (which call the kernel procedures when
necessary).

NOTE

Failure to synchronize access to shared data results in
unpredictable program behavior. A program that works on
one processor model can fail on another; a change to the
VAXELN system might cause program failure.

5-2 Communication

Additional guidelines regarding shared data follow:

Dynamic variables. Data allocated by the Pascal NEW procedure
or the C calloc, malloc, or realloc function can be shared. The

Pascal NEW and DISPOSE procedures and the C calloe, malloc,
realloc, free, and cfree functions operate on single data items.

File variables and file pointer variables. Pascal file variables

and C file pointer variables (and the associated internal-file data
structures) are subject to the same rules as other data. Most
operations that use these variables are modify operations. Failure
to synchronize access to a file can result in scrambled input or
output data or in a runtime error (in Pascal if the runtime routines
detect simultaneous access).

Initialization of shared data. You should 1mt1ahze shared Pascal
outer-level variables, C external variables, and FORTRAN global
commons in the master process before creating subprocesses.
Otherwise, you might forget that the initialization operation must
be synchronized. For example, you must initialize a mutex variable
with a call to ELN$CREATE_MUTEX before you lock or unlock the
mutex.

Record locking. Programs that use shared data often must protect
data that is more complicated than single variables. For example,
if multiple processes are updating records in a File Service file,
they must synchronize access to the shared data and protect (or
lock) records in the file. Otherwise, two read/write sequences on
the same record can become interleaved.

Shared messages. A message and its associated pointer can be
manipulated by more than one process in a job, but the operations
must be properly synchronized. For example, if process A deletes a
message while process B is preparing to send it, the program may
produce unpredictable results, such as the following:

* Process B might receive the status KER$_BAD_VALUE from
the SEND procedure because the message value is no longer
valid.

¢ Process B might incur an exception when it tries to access the
message’s buffer,

¢ Process B might access new, unrelated data by using the
address of the original message buffer.

Communication regions. The communication region of an interrupt

service routine (ISR) is shared between the ISR and the device

driver processes. The program logic of the device driver must
ensure that nonatomic operations are synchronized.

Communication 5-3

* Device registers. Device registers are not shared data in the sense
used in the preceding guidelines. However, an ISR and device
driver processes may need to synchronize access to the registers.
In some cases, the registers symbolize the responses of a device to
events that occur on a bus, such as read and write requests. The
only routines you can use to ensure predictable operations on device
registers are the Pascal READ_REGISTER and WRITE_REGISTER
routines, the C read_register and write_register routines, or the
FORTRAN ELN$READ_REGISTER and ELN$WRITE_REGISTER

routines.

5.2 Sharing Packets of Data Using Queues

In addition to sharing global data, a job’s processes can communicate
by using queues. Queues provide an efficient, highly structured means
for a job’s processes to exchange large packets of information. This
section discusses the use of absolute queues — queues that use links
that contain the absolute address of an entry to which it points. If you
are programming in C, you have the option of using self-relative queues
— queues that use links that contain a displacement from the present
queue entry. Self-relative queues let two separate processes address
the same queue, with each process able to treat the queue as residing
at a different location in its virtual address space. For information
about using self-relative queues, see the VAXELN C Runtime Library
Reference Manual.

VAXELN provides the predeclared data types and procedures you need
to create and maintain queue structures. The procedures for inserting
and removing queue entries use VAX machine instructions specifically
designed to synchronize queue operations automatically. Thus, two
processes can access a queue simultaneously: one can insert an entry
while the other removes an entry.

Use the queue data types (QUEUE_ENTRY and QUEUE_POSITION)
and procedures (START_QUEUE, INSERT_ENTRY, and REMOVE_
ENTRY) to pass data messages between two or more processes within
a job. Using queues this way is more efficient within a job than using
the SEND and RECEIVE procedures. Although you can use SEND
and RECEIVE to send messages between processes in the same job,
they are better suited to passing messages between jobs on the same or
different systems in a network (see Section 5.3).

5-4 Communication

Typically, you use a semaphore with each queue to signal the transition
of the queue from an empty state to a nonempty state. The INSERT_
ENTRY procedure and the INSQUE instruction give information that
allows you to synchronize queue operations. Therefore, the queue and
the semaphore can work together to maintain lists and synchronize and
schedule processes.

Example 5-1 shows how you can use queues as a structured and
efficient means of communicating between processes. The module
consists of an initialization procedure and two process blocks. The
procedure initializes the queues free_list and done_list; creates the
semaphores free_list_has_entry and done_list_has_entry for metering
the content of each queue; and fills the free_list queue with entries.

The process blocks, producer and consumer, communicate by inserting
entries onto and removing entries from the two queues. The processes
producer_process_1 and producer_process_2 share the producer process
block, which removes available entries from the free_list queue, fills
the entries with data, and inserts the filled entries onto the done_list
queue. After a producer process inserts the first entry onto the done_
list queue, the process signals the done_list_has_eniry semaphore to let
the consumer process know that a done_list queue entry is available.

The consumer process block removes available entries from the done_
list queue, writes the entry’s buffer data, and inserts the empty entries
onto the free_list queue. After the consumer process inserts the first
entry onto the free_list queue, the process signals the free_list_has_
entry semaphore to let the producer processes know that a free_list
queue entry is available.

Communication 5-5

Example 5-1: Using Queues for Process Communication

MODULE producer consumer;

{ This module uses queues with semaphores to communicate between
processes. }

TYPE { A record type that represents }
entry = RECORD { a queue entry. }
links : QUEUE_ENTRY; { The entry’s flink and blink. }
ident : INTEGER; { Producer identifier. }
buffer : LARGE_INTEGER; { A user data buffer. }

END;

CONST
producer_max = 25;
consumer max = 50;

VAR
free_list, done_list : QUEUE_ENTRY; { Declare queue headers. }
free_list_has_entry : SEMAPHORE; { Declare semaphores. }
done_list_has_entry : SEMAPHORE;

PROCEDURE initialize;

{ This procedure initializes the free_list and done_list queues,
creates the semaphores free_list_has entry and done_list_has_entry,
and fills the free list queue with entries. }

CONST
initial_ free count = 10; { Declare a maximum of 10 free entries. }
VAR
entry ptr : “entry; { Declare a pointer to an entry. }
first_entry : BOOLEAN; { Declare the first entry flag. }
entry counter : INTEGER; { Declare an entry counter. }

Example 5-1 Cont’d on next page

5-6 Communication

" Example 5-1 (Cont.): Using Queues for Process Communication

BEGIN
WRITELN (' Initializing queues...’);
START QUEUE (free_ list); { Initialize queues. }

START QUEUE (done_list);
WRITELN (/Creating semaphores...’);
CREATE_SEMAPHORE (free_list_has_entry, 0, 1);
CREATE SEMAPHORE (done_list_has entry, 0,:1);

WRITELN (‘Filling the free list queue with entries...’);
FOR entry_counter := 1 TO initial free count DO
BEGIN

NEW (entry_ptr);
INSERT ENTRY (free_list,
entry ptr”~.links,
first_entry,
QUEUESTAIL) ;

IF first_entry THEN { If this is the first entry, }
SIGNAL (free list has entry); { let the producer process }
{ know that an entry is }
{ available. }
END;
WRITELN(/Initialization done...’);
WRITELN;

END; { initialize }
PROCESS_BLOCK producer (producer_ number : INTEGER) ;

{ This process block removes entries from the free_ list queue, fills
the entries with data, and inserts them on the done_list queue for
the consumer process block. }

VAR
entry ptr : “entry; { Declare a pointer to an entry. }
first_entry, empty : BOOLEAN; { Declare first entry and empty
flags. }
producer loop counter : INTEGER := 0; { Declare a loop counter. }
BEGIN
empty := TRUE;
REPEAT
IF empty THEN { Is the free_list queue empty?

{ entry and let the consumer

}

WAIT ANY (free_list_has_entry); { If it’'s empty, wait for an }
}

{ continue. }

Example 5-1 Cont’'d on next page

Communication 5-7

Example 5-1 (Cont.): Using Queues for Process Communication

REMOVE_ENTRY (free_list,
entry ptr::“QUEUE_ENTRY,
empty,
QUEUESHEAD) ;
GET_TIME (entry ptr”.buffer);
entry ptr*.ident := producer_ number;
INSERT ENTRY (done list,
entry ptr*.links,
first_entry,
QUEUVES$TAIL) ;

IF first_entry THEN { If this is the first entry, }
SIGNAL(done_list_has _entry); { 1let the consumer process }
- { know that an entry is }
{ available. }
producer_ loop_counter := producer_ loop counter + 1;

UNTIL producer_ loop counter = producer max;
END; { producer } :

PROCESS_BLOCK consumer;

{ This process block removes,entries from the. done_list queue,
operates on the data, and inserts the entries on the free list
queue for the producer process block. }

VAR -
entry ptr : “entry; { Declare a pointer to an entry. }
first_entry, empty : BOOLEAN; { Declare first entry and empty
flags. }
consumer_loop counter : INTEGER := 0; { Declare a loop counter. }

Example 5-1 Cont’d on next page

5-8 Communication

Example 5-1 (Cont.): Using Queues for Process Communication

BEGIN
empty := TRUE;
REPEAT
IF empty THEN { Is the done_ list queue empty? }
WAIT ANY(done list_has entry); { If it’s empty, wait for an
. { entry and let the producer
{ process continue.

e

REMOVE_ENTRY (done_list,
entry_ptr'-AQUEUE ENTRY,
empty,
QUEUESHEAD) ; :
WRITELN (' Data received from Producer '/, entry_ptr“.identzl,
! =--- buffer value = ', entry ptr”.buffer::INTEGER);
INSERT ENTRY (free_list,
entry_ptrA links,
first_entry,
QUEUESTAIL) ;
IF first_entry THEN { If this is the first entry,
SIGNAL (free_list_has_entry); { let the producer process
{ know that an entry is
: { available.
consumer_loop counter := consumer_loop_counter + 1;
UNTIL consumer_ loop_counter = consumer_ max;
END; { consumer }

e

PROGRAM queue communication (OUTPUT);

VAR
main : PROCESS;
producer_ process_1, producer_ process_2 : PROCESS;
consumer process : PROCESS;

BEGIN { main }
initialize;
CREATE_PROCESS (producer_process_1, producer, 1);
CREATE_PROCESS(producer_process_Z, producer, 2);
CREATE_PROCESS (consumer_ process, consumer);
WAIT ALL(producer process_1,
producer_ process_2,
consumer_process);
WRITELN (’/ Finished producing and consuming...’});
WRITELN (/Program exiting...’};
EXIT;
END; { main }

END; { producer_consumer }

Communication 5-9

5.3 Passing Messages

A message is a block of contiguous bytes of memory that is transmitted
between processes in the same or different jobs. The kernel maps
message data into a job’s unique, protected PO virtual address space,
making the data available to all processes in that job. Within a single
processor, the kernel uses VAX memory management hardware to
distinguish the virtual address space for each job. Within a local area
network, the virtual address space for each job resides in the memory
of a different target processor. By passing messages, the jobs in a
VAXELN system can use the same mechanism to share data efficiently
and transparently in both single-processor and network configurations.

Processes send messages to and receive messages from system-
maintained queues called ports. The portsin a system store messages
that are waiting to be sent or received. Calls to the CREATE_PORT
procedure create ports dynamically and associate them with unique
PORT values that can be used throughout the application: within the
creating job, within other jobs on the same node, or within jobs on other
network nodes.

One of the principal reasons for dividing an application into separate
jobs is to distribute an application’s jobs across a local area network
(LAN). To allow interjob communication and to make the distribution
of applications across LANs transparent, you can use the CREATE_
NAME procedure to associate port values with port names. When ports
are associated with names, a process can call the TRANSLATE_NAME
procedure to look up a name in a table and use the returned port value
to communicate with other processes and jobs. Port names can be

up to 31 characters long and can be either local or universal. Local
names are known only to processes and jobs on the node on which they
are created. Universal names are known to processes and jobs on all
VAXELN nodes in the local area network.,

VAXELN systems can pass messages by using datagrams or virtual cir-
cuits. The datagram method, which uses the DECnet-VAX datagram,
requires no explicit connection sequence and provides fast communi-
cation with low overhead. However, this method cannot guarantee
message delivery or sequence (although the probability of received
messages being correct is extremely high). Using datagrams, a process
can obtain the value of any named port in the system, whether the port
is on the same node or on a different node on the Ethernet.

5-10 Communication

The virtual circuit method, which uses the network services protocol
within the VAXELN Network Service, is the preferred method for
VAXELN systems to pass messages. Virtual circuits require two
ports, usually in different jobs, to be connected as a pair. Despite
the overhead of setting up and handling a virtual circuit connection,
circuits offer the following advantages:

* Guaranteed delivery and sequence
¢ Flow control

* Message size is not limited by the underlying physical media
characteristics due to automatic message segmentation and recon-
struction

When a job sends a message to another job on the same node, the
kernel unmaps the message buffer’s address from the sending job’s
virtual address space and maps the address to the receiving job’s
address space. If the jobs are on different Ethernet nodes, the VAXELN
Network Service transports the data across the network and places it in
the receiving job’s virtual address space. (Network configurations limit
message size to the maximum imposed by relevant network devices.)

In addition to moving data, applications can use message-passing to
synchronize and coordinate multiple processes and jobs. Most of the
VAXELN services use message-passing to organize their work.

5.3.1 Messages

A message, as recognized by most network devices, is a block of contigu-
ous bytes of memory. Usually, network devices, particularly Ethernet
devices, impose a maximum size on a message. A network message also
typically requires a number of bytes at the beginning of the message (a
protocol header) to identify the rest of the message.

The kernel provides a MESSAGE object to describe a block of memory
that can be moved from one job’s virtual address space to another’s.
The block of memory is called the message data and is allocated
dynamically by the kernel. A MESSAGE object and its data are created
by calling the CREATE_MESSAGE procedure.

Message data is allocated by the kernel from physically contiguous,
page-aligned blocks of memory, which allows the kernel to store the
complete description of a message of reasonable length in a single
MESSAGE object. Message data is mapped into a job’s PO virtual

Communication 5-11

address region, so it is potentially accessible to all the processes in the
job.

5.3.2 Message Ports

A PORT object represents a system-maintained message queue. A port
is unique in that its identifying value is valid within all application
jobs, not just within a particular job or jobs on a particular node.

In other words, PORT values can be passed as arguments, sent in
messages, or obtained from the RECEIVE procedure with certainty
that they identify a unique destination for messages, somewhere in the
application network. PORT values can be used with WAIT_ANY and
WAIT_ALL to synchronize programs with the receipt of messages.

A message port can hold a maximum number of messages, specified
when the port is created (the default is four). Messages are removed
from a port by the RECEIVE procedure in first-in/first-out (FIFO) order.
If more messages than the maximum are sent, they may be lost. (For
exceptions, see Section 5.3.7.) A large message limit requires no more
overhead than a small limit. Only the messages themselves determine
the amount of memory consumed.

PORT values are assigned dynamically by the kernel to identify a
particular message port. New values are returned by the CREATE_
PORT procedure and are valid until used with the DELETE procedure
to explicitly delete the port. For example, the following Pascal code
fragment creates a new message port, limited to 10 messages, and puts
the PORT value in the variable newport. The identifier newport is then
used in later SEND, RECEIVE, and other message operations that
require a PORT value.

VAR
newport: PORT;

BEGIN
CREATE_PORT (newport, LIMIT := 10);

5-12 Communication

5.3.3 Named Message Ports

To facilitate communication between jobs, the kernel provides a NAME
object, a name table entry that associates character string names with
message ports. Names are represented as separate objects to allow a
port to have multiple names, if desired.

A process in the application that expects to communicate with processes
outside its job can broadcast the necessary information about one or
more of its message ports by creating names for them. If the process
needs to communicate with a process on a different network node,

it creates a universal name; if all communication occurs within a
single node, a local name suffices. A local name is guaranteed to be
unique within the local node. Universal names are guaranteed to be
unique throughout the local area network. The translation and other
maintenance of universal names is a function of the Network Service,
as described in Chapter 9.

NOTE

The processors in a closely coupled symmetric multiprocess-
ing configuration constitute one Ethernet node and share the
same local name table. Therefore, the images running on the
processors must create unique local names.

These names are created with the CREATE_NAME procedure and can
be deleted with DELETE. A NAME value specifies a name string of 1 to
31 characters for an associated port. The name string is used to obtain
the PORT value of the associated port with the TRANSLATE_NAME
procedure. That is, a program can look up a name in the name table
and use the resulting PORT value to communicate with other jobs or
processes.

Applicationwide services, such as disk drivers, commonly use such
names. The disk driver makes names available for its message ports
(for example, DUAO) so that another job or process can quickly trans-
late the name into a PORT value for use in sending messages. In the
case of a disk, program I/0 is typically done with language-specific
I/O procedures, whose runtime software performs the necessary name
translation and message transmission for you.

When designing a system and writing the programs for it, you decide
which processes are the communicators and create names appropri-
ately. You then develop the programs and test the communication to
your satisfaction. If you later decide to reconfigure the application
— for example, by moving all the programs onto a single network

Communication 5-13

node or, conversely, distributing programs among several newly added
nodes — only the final program development step, system building,
must be repeated, to describe the new hardware/software configura-
tion. No changes to the programs themselves are necessary, because
calls to TRANSLATE_NAME in the new application will obtain port
information based on the new configuration.

Name strings can also be used directly (for example, as a parameter to
the CONNECT _CIRCUIT procedure), in which case the translation is
done by the procedure. ‘

5.3.4 Message Transmission

To send a message, you must declare a pointer to the type of data you
want to send, specify the size of the message buffer (C and FORTRAN),
supply the pointer to CREATE_MESSAGE, use the pointer to fill in the
message data, and supply the MESSAGE value to the SEND procedure.
The following Pascal code example sends a message:

VAR mtext: ~VARYING STRING(80);

command: MESSAGE;
destination: PORT;

BEGIN

CREATE_MESSAGE (command, mtext) ;

mtext” := ’START’;

SEND (command, destination);
END.

An application can send a message as it was created or can send part
of a message. To send part of a message, the call to SEND must specify
a message size, indicating the length in bytes of the message data to be
sent.

The SEND procedure removes the message data from your job’s address
space and places the MESSAGE object in the destination port. The
SEND procedure also provides the following information to the receiver:

* The value of the sending process’s job port or optionally, a different
reply port specified by the sender

* The value of the destination port

5-14 Communication

* The size of the message sent

The receiver process waits for a message to arrive on its port and then
uses the RECEIVE procedure to obtain it. The RECEIVE procedure
automatically maps the message data into the receiver’s address space,
returns a MESSAGE value for the receiver’s use, and optionally returns
the identification of the reply port and destination port.

To reply to the message’s originating job, the receiver uses the value of
the reply port from RECEIVE, formulates an answer, and sends a reply
to the reply port. (The receiver can use the same message data to form
the reply; it need not create a new message.)

The receiver process must know beforehand the formats of the mes-
sages it can receive. That is, the sender and receiver must have
established a message protocol. Defining a protocol is the basic design
task in interjob communication.

For example, if the receiver is a server, it must know a set of predefined
commands to which it will respond; it can return an error message to
the sender (in most cases, an operator’s terminal) if it receives a
message that does not contain a valid command.

5.3.4.1 Expedited Messages

A distinct form of message, called an expedited message, is recognized
by the kernel and the Network Service. An expedited message can
bypass the normal, sequential flow control provided by the system.

For example, a transmitting process may have sent many messages

to a receiving process, but before all the messages are received by

the receiver, the transmitter may decide that the previous messages
should be ignored, if possible. In this case, the transmitter can send an
expedited message telling the receiver to halt.

Most applications do not need to use expedited data messages, because
expedited data messages are restrictive, and there is no guarantee that
an expedited message will be received before normal data messages.
However, remote expedited data messages provide an interface to the
DECnet Network Services Protocol interrupt message service, which is
used by established protocols, such as the Data Access Protocol.

The following facilities and restrictions apply to expedited data mes-
sages:

¢ An expedited data message is sent by specifying a Boolean value to
the EXPEDITE parameter of the SEND procedure.

Communication 5-15

An expedited data message can contain a maximum of 16 bytes of
data.

Only one unreceived expedited message is allowed in a port. If
a second expedited message is sent before the first is received, it
has the same effect as a normal data message when the port is
at its message limit; that is, either an error status is returned
or an exception is raised, or the sending process waits until the
first message has been received, depending upon the setting of
the FULL_ERROR parameter when the circuit is connected or
accepted.

An expedited data message is received using the normal RECEIVE
procedure but returns the alternate success status value, KER$_
EXPEDITED. Therefore, if a receiver process needs to know if a
message is an expedited or a normal message, and the protocol
being used does not indicate which it is, the receiving process can
compare the status to KER$_EXPEDITED.

Expedited data messages queued to a port are received by the
RECEIVE procedure before any normal data messages are received.

5.3.5 Datagrams and Circuits

Ports and messages can be used in two ways to transmit data:

In the datagram method, one process can obtain the value of a
port anywhere in the local area network, and can send the port a
message with the SEND procedure.

In the circuit method, any two ports can be bound into pairs called
circuits. After establishing the circuit, the sending process has

one port of its own bound to another port, which usually is in a
different job or on a different network node. The sender sends the
message to its own port, and the message is routed automatically to
the other port in the circuit. Processes can both send to and receive
from a circuit port.

In either method, a process can use the WAIT_ALL or WAIT_ANY
procedure to wait for the receipt of a message on a port.

The datagram method requires no connection sequence, but correct
delivery of datagrams to the destination is not guaranteed. (However,
the datagram method guarantees with high probability that received
messages are correct.) Also, datagram transmissions cannot be sent

5-16 Communication

and received in a guaranteed order; that is, two messages sent to the
same destination port can arrive in a different order.

Although circuits incur setup and handling costs, they offer the follow-
ing advantages over the basic datagram method:

¢ Guaranteed delivery and sequence. Messages sent through circuits
are guaranteed with high probability to be delivered — if the
physical connection is intact — and to be delivered in the same
sequence in which they are sent. The circuit method guarantees
that the message arrives at the destination port regardless of its
location or, if the message fails to arrive, that the sender is notified
that the message could not be delivered.

¢ Flow control. Options of the procedures ACCEPT_CIRCUIT and
CONNECT_CIRCUIT allow you to control the flow of messages
through a circuit. That is, you can prevent a sending process from
sending too many messages to a slower receiving process.

* Segmentation. Messages can have any length, and, if the trans-
mission is across the network, the network services will divide the
message into segments, transmit the segments in sequence, and
reassemble them at the destination node.

¢ A user interface through Pascal I/O routines. The OPEN procedure
permits you to open a circuit as if it were a file and to use the I/O
routines, such as READ and WRITE, to transmit messages.

No performance penalty is incurred with the circuit method for mes-
sages transmitted on the same network node and only a small penalty
is incurred over the network. For full generality, programs should
assume that the sending and receiving jobs may be distributed on dif-
ferent nodes in a network. The circuit method is preferred for sending
messages in almost every instance.

5.3.6 Programming with Circuits

You establish circuits between two ports by using the CONNECT_
CIRCUIT and ACCEPT_CIRCUIT procedures. Options let you control
the flow of messages through a circuit. For example, you can prevent a
sending process from sending too many messages to a slower receiving
process.

Communication 5-17

A process aimed to establish a circuit calls CONNECT_CIRCUIT and
designates a destination port in another process. A connection-request
message is sent to the designated port. Consider the following Pascal
example:

CONNECT_CIRCUIT (myport, DESTINATION NAME := ’request_server’);

The variable myport is an existing port in the calling process that
forms its half of the circuit. The string request_server’ specifies the
destination name. CONNECT_CIRCUIT translates this name to
designate the destination port.

The call to CONNECT _CIRCUIT causes a process to wait for the
connection request to be accepted. The interval between the time

the connection request is initiated for a port and the time the circuit

is accepted should be no greater than the interval specified for the
Connect time entry on the System Builder’s System Characteristics
Menu. For example, if the connect time is 45 seconds, the circuit should
be accepted no later than 45 seconds after the call to CONNECT_
CIRCUIT initiates the connection request. A longer delay may cause
the circuit to go into a bad state.

Elsewhere, the accepting process calls the ACCEPT_CIRCUIT proce-
dure to wait for a connection-request message on the designated port.
For example:

VAR
server : NAME;
receiver_port : PORT;

CREATE PORT (receiver_ port, LIMIT := 10);
CREATE_NAME (server, ' request_server’,h receiver_ port);

{

{ Wait for a connection request. When the wait is satisfied, a
{ circuit is established between the requestor and receiver_port.

{}

ACCEPT_CIRCUIT (receiver port);

You can request multiple connections on the same port, but you must
distribute connections to other ports as they are received.

5-18 Communication

Consider the following Pascal example:

VAR
server : NAME;
receiver port, connect_port : PORT;
BEGIN
CREATE PORT (receiver_port, LIMIT := 10);
CREATE_PORT (connect_port) ;
CREATE_NAME (server, ’request_server’, receiver_port);
ACCEPT_CIRCUIT (receiver_ port, CONNECT := connect_port);

{ Wait for a connection request. When the wait is satisfied, a
circuit is established between the requestor and connect_ port. }

At this point, the acceptor can take a variety of actions to communicate
with the requestor. For example, the acceptor can create a subprocess
to continue the dialog and pass the subprocess the port value (connect_
port) identifying its half of the circuit. The ACCEPT_CIRCUIT proce-
dure can notify you of error conditions, such as an unreceived message
in receiver_port or another connection request for which acceptance is
pending.

When a process issues a call to ACCEPT_CIRCUIT, the kernel issues

a call to the WAIT_ANY procedure for that process. When a message
arrives at the port, the port is signaled and the kernel issues a call

to RECEIVE, assuming that a connection request message is in the
port. If the message is not a connection request, the kernel reissues
the wait. For this reason, you cannot use the SIGNAL or KER$RAISE_
PROCESS_EXCEPTION procedure to signal a process waiting for a
circuit to be accepted; nor can you use the debugger to halt the process.
To avoid this behavior, wait on the port and accept the circuit after the
wait is satisfied.

Circuits are broken when either partner calls the DISCONNECT._
CIRCUIT procedure. The SEND and RECEIVE procedures notify
their callers if the designated port was disconnected by returning the
status value KER$_DISCONNECT. As part of the corrective action for
this condition, an application program must call the DISCONNECT_
CIRCUIT procedure to disconnect the partner port. If appropriate, the
program can then try to reestablish the circuit connection. Consider
Example 5-2.

Communication 5-19

Example 5-2: Disconnecting the Partner Port After a Disconnect
Operation

MODULE msg_symbol ex;
INCLUDE $KERNELMSG;
PROGRAM use_msg_symbol(INPUT, OUTPUT) ;

VAR
one_second : LARGE_INTEGER;
data port : PORT;
dest_port name : VARYING STRING(8);
msg : MESSAGE;
stat : INTEGER;

BEGIN

CREATE PORT (data_port);
REPEAT
WAIT ANY(TIME := one_second);
CONNECT_CIRCUIT (data_port,
DESTINATION_NAME := dest_port_pame,

STATUS := stat);
UNTIL stat := KER$_SUCCESS;
SEND (msg, data port, STATUS := stat),

{ If the send operation fails because the circuit was disconnected

{ by the partner process, the sender process must clean up by

{ disconnecting the port on its end of the circuit. Once both ports
{ are disconnected, reestablish the circuit connection and try

{ to send the message again.

{}

IF stat = KER$_ DISCONNECT THEN
BEGIN

{ Disconnect the port before trying to reestablish the
{ connection.

{}
DISCONNECT CIRCUIT (data port);

Example 5-2 Cont’d on next page

5-20 Communication

Example 5-2 (Cont.): Disconnecting the Partner Port After a
Disconnect Operation

CONNECT_CIRCUIT (data_port,
DESTINATION_NAME := dest_port_name,
STATUS := stat);
SEND (msg, data port, STATUS := stat),
END;

END.
END;

If the disconnect condition exists, the call to DISCONNECT_CIRCUIT
cleans up and prepares data_port for another connection.

5.3.7 Port Limits and Flow Control

An advantage of using a circuit for a message exchange is that the
kernel and Network Service provide a function called flow control.
Under flow control, the flow of messages from a transmitting process to
a receiving process is controlled to ensure that unreceived messages do
not consume excessive memory in the system.

When a process sends a message with SEND, the message is queued
in a specified destination port. If the transmitting process can produce
messages faster than the receiving process can consume them and if
no limit is placed on the number of messages that can be queued, the
messages might use all the available memory. To avoid that situation,
ports have a limit on the number of unreceived messages that can be
queued at a time; the limit is specified when the port is created.

5.3.7.1 Flow Control with Unconnected Ports

If a port that is not connected in a circuit is full and an application
sends a message to the port, the call to SEND returns a failure status
or exception. If the port is not on the same node, the message can be
lost. '

Communication 5-21

5.3.7.2 Flow Control with Circuits

If a circuit-connected port is full, the sender is, by default, put into
the waiting state until the port is no longer full. The transmission is
then successfully completed. The implicit waiting performed by the
SEND procedure evens the flow of messages between the transmitting
process and receiving process without having to explicitly program for
the condition.

Since some applications may not need implicit waiting, an argument to
the ACCEPT_CIRCUIT and CONNECT_CIRCUIT procedures allows
the calling process to specify that it wants a SEND call to return an
error status or exception rather than to wait.

5.3.8 Programming Considerations for Message Communication

When programming message communication, consider the following:

When programs use circuits to communicate, you must ensure that
the programs cooperate. One program is to call the CONNECT_
CIRCUIT procedure, and the other program is to call the ACCEPT_
CIRCUIT procedure. If the programs do not cooperate, various
results are possible, including loss of pool blocks used for the
connect request, return of the KER$_CONNECT_TIMEOUT status
value, unexpected satisfied waits, or the circuit entering a bad
state.

When a program issues a call to CONNECT_CIRCUIT for a port,
an ACCEPT_CIRCUIT for that port must be pending, or the
interval between the time the connection request is initiated

and the time the circuit is accepted should be no greater than
the interval specified for the Connect time entry on the System
Builder’s System Characteristics Menu. A longer delay may cause
the circuit to go into a bad state.

A program cannot operate on a port while the port is being used
in an ACCEPT_CIRCUIT or CONNECT_CIRCUIT operation.
When a program calls the ACCEPT_CIRCUIT and CONNECT._
CIRCUIT procedures to establish a circuit connection, the kernel
and Network Services perform a sequence of operations. This
sequence may satisfy a wait request issued by another process in
the job unexpectedly.

5-22 Communication

* Once a program establishes a circuit connection, multiple processes
can perform simultaneous SEND and WAIT/RECEIVE operations.
In this situation, the WAIT can be satisfied even if the call to
RECEIVE returns the status value KER$_NO_MESSAGE. The
combination of the wait being satisfied and the status value being
returned results when a program uses multiple receivers or when
the SEND procedure resumes after a flow control suspension. In
the multiple receiver case, another receiver process may have
received the message. In the flow control case, internal flow control
mechanisms may have unblocked all processes waiting on the port.
If a process receives a KER$_NO_MESSAGE status from a call to
RECEIVE after a WAIT is satisfied, it should WAIT on the port
again.

5.3.9 Kernel Services for Message Transmission

The kernel services affecting the state of MESSAGE, PORT, and NAME
objects are summarized in Sections 5.3.9.1 to 5.3.9.12.

5.3.9.1 ACCEPT_CIRCUIT Procedure

The ACCEPT_CIRCUIT procedure causes the invoking process to
wait for a circuit connection. On successful completion, the circuit is
established between two ports. ‘

The invoker’s half of the circuit can be the port used to wait for the
connection request or, optionally, a different port. This optional param-
eter allows a program, such as a resource service, to create a name for
its connection-request port but to use a different port for the connection
itself; in this way, the server could create a name for the first port to
establish simultaneous circuits with several different processes or jobs.
The only valid message that can be received at the connection-request
port is the kernel’s internal connection request; other messages are
discarded by the system.

By default, when a process sends a message on a circuit with SEND,
the operation waits if the partner port is full, a method called flow
control. When you accept a circuit connection, you have the option of
specifying that you want an error status or the corresponding exception
instead of the implicit wait.

Communication 5-23

An optional argument supplies a data value that is received by the
process requesting the circuit connection in its CONNECT_CIRCUIT
call. Another optional argument receives data passed by the requesting
process in its CONNECT_CIRCUIT call. These data values are called
connect data and accept data, respectively, and are strings of up to 16

bytes.

5.3.9.2 CONNECT_CIRCUIT Procedure

5-24

The CONNECT_CIRCUIT procedure connects a port to a specified des-
tination port and causes the invoking process to wait for the connection
request to be accepted.

If a process calls ACCEPT_CIRCUIT with the destination port, the
two ports are bound in a circuit. The destination port can be specified
by using a name string established by the CREATE_NAME procedure
or by using a PORT value giving the destination for the connection
request.

By default, when a process sends a message on a circuit, the SEND
procedure performs an implicit wait if the partner port is full — that
is, contains its limit of unreceived messages; this type of flow control
is usually used with circuits. With CONNECT_CIRCUIT, you have the
option of disabling the implicit wait, causing SEND to receive an error
gtatus or raise an exception if the partner port is full.

An optional argument supplies data to the process receiving the con-
nection request. Another optional argument receives data supplied by
the accepting process in its ACCEPT_CIRCUIT call.

NOTE

The interval between the time a connection request is initi-
ated for a port and the time the circuit is accepted should be
no greater than the interval specified for the Connect time
entry on the System Builder’s System Characteristics Menu.
For example, if the connect time is 45 seconds, the circuit
should be accepted no later than 45 seconds after the call
to CONNECT_CIRCUIT initiates the connection request. A
longer delay may cause the circuit to go into a bad state.

Communication

5.3.9.3 CREATE_MESSAGE Procedure

The CREATE_MESSAGE procedure creates a MESSAGE object and
allocates and maps its message data into the job’s PO address space for
use by the SEND and RECEIVE procedures, returning the MESSAGE
value that identifies the message and a pointer to the allocated message
data. A program can use the pointer to the message data to store data
that is to be moved to another job’s address space.

5.3.9.4 CREATE_NAME Procedure

The CREATE_NAME procedure creates a name string of 1 to 31
characters for a specified port as an entry in a name table and returns
the NAME value that identifies that name. An optional argument
specifies that the new name is local (known only on its own node),
universal (known on any node in the local area network), or both; local
is the default. If the Name Service is not present in the system, all
names are placed in the local name table, even if you specify universal
or both. (For information about the Name Service, see Chapter 9.)

Names created by this procedure are guaranteed to be unique within
the specified name space: local or universal. If you try to create a name
that is not unique, the procedure does not create a NAME object and
returns an error status.

When you create a universal name in a local area network configu-
ration, the Name Service on each node in the local area network can
translate universal names created by other nodes in the local area
network.

5.3.9.5 CREATE_PORT Procedure

The CREATE_PORT procedure creates a message port, returning the
PORT value that identifies the port. An optional integer expression
 supplies the maximum number of messages that can be queued to the
port at one time. If the maximum is exceeded, the sender is notified;

the default value is 4.

Communication 5-25

5.3.9.6 DELETE Procedure

The DELETE procedure removes the MESSAGE, PORT, or NAME
object from the system.

When a message is deleted, it is unavailable for sending or receiving,
and pointers to the message data become invalid.

When a port in a circuit is deleted, the connected port is disconnected,
messages at the port are deleted, and the wait conditions of any waiting
processes are satisfied with the completion status KER$_BAD_VALUE.

When a universal name is deleted, the Network Service on each node
ensures that the deletion is reflected in the list of universal names. The
deletion of local names is performed by the kernel on the local node and
does not involve the Network Service.

5.3.9.7 DISCONNECT_CIRCUIT Procedure

The DISCONNECT_CIRCUIT procedure breaks the circuit connection
between two ports. If a process is waiting for either port in the circuit,
its wait condition is satisfied. A request for connection can be rejected
by first calling ACCEPT_CIRCUIT and then calling DISCONNECT._
CIRCUIT.

5.3.9.8 JOB_PORT Procedure

The JOB_PORT procedure returns a PORT object value identifying the
caller’s job port. A unique job port is created whenever a job is started.

5.3.9.9 RECEIVE Procedure

The RECEIVE procedure removes a message from a message port.
The procedure maps the message data into the receiver job’s virtual
address space, returns a MESSAGE value identifying the message,
and optionally returns PORT values identifying the reply port and
destination port. The value is normally the same value supplied by the
sender for the receiver’s port.

An integer argument, optional for Pascal, receives the size in bytes of
the message data.

5-26 Communication

5.3.9.10 SEND Procedure

The SEND procedure removes a message buffer from the sender’s
address space and then places the MESSAGE object describing the
buffer in the destination message port. If the message is being sent
through a circuit, the destination message port you specify is the
sender’s port, and the message arrives at the receiver’s port.

By default, when a process sends a message on a circuit, the SEND
procedure performs an implicit wait if the partner port is full, a method
called flow control. When you accept a circuit connection, you have the
option of specifying that you want an error status or the corresponding
exception instead of the implicit wait.

Other SEND arguments, optional for Pascal, specify the length in bytes
of the message data to be sent, specify a reply PORT value, and specify
whether to expedite the message. The size of an expedited message
must not exceed 16 bytes.

5.3.9.11 TRANSLATE_NAME Procedure

The TRANSLATE_NAME procedure returns a value identifying a
named port. The specified name string is used to search for a NAME
object with a matching string. If the NAME object is found, a value for
the named port is returned.

You can specify that a name is to be looked up in the local name table,
the universal name table, or both; the local name table is searched first
if both are specified.

The Name Service provides the universal name table. Therefore, to
translate universal names, the Name Service must be present in the
system. An attempt to translate a universal name without the Name
Service present causes the service to try to translate the name using
the local name table. For more information about the Name Service,
see Chapter 9.

5.3.9.12 WAIT_ANY and WAIT_ALL Procedures

A wait for a port, including a port in a circuit, is satisfied when it
has a message in it. Waiting for a port causes no modification to the
port, and all waiting processes continue if their wait conditions are
otherwise satisfied. Both procedures can specify a timeout argument,
which defines a time interval or absolute time after which the waiting
process proceeds regardless of the states of the objects.

Communication 5-27

Normally, a process must call a WAIT procedure, then call RECEIVE,
Calling RECEIVE without first calling a WAIT procedure may return a
no-message status.

If a process needs to accept a circuit connection and wait for one or
more other objects at the same time, it can call a WAIT procedure
specifying the port and the other objects. When the wait is satisfied
because a message is received (the PORT object is returned as the wait
result), the process can call ACCEPT_CIRCUIT.

5.4 Sharing Memory Areas

Jobs executing on the same node can communicate by sharing an
area, a common region of physically contiguous memory. Each job that
shares an area must create it. When a job creates an area, the kernel
maps the physical memory associated with the area to the job’s PO
virtual address space. The first time an application creates an area,
the kernel also associates the area with an event or semaphore. Jobs
can use the event or semaphore to synchronize access to the area.

Once an application creates an area, the area remains available until
all jobs sharing the area terminate or delete their references to the
area.

VAXELN applications can use the following procedures to create and

use areas:

Procedure Description

CLEAR_EVENT Sets the state of an area’s event to
EVENT$CLEARED.

CREATE_AREA Creates a new area or maps an exist-
ing area of memory into the creating
job’s PO virtual address space and
associates the area with a binary
semaphore.

CREATE_AREA_EVENT Creates a new area or maps an exist-

ing area of memory into the creating
job’s PO virtual address space and
associates the area with an event.

5-28 Communication

Procedure

Description

CREATE_AREA_SEMAPHORE

DELETE

ELNS$INITIALIZE AREA_LOCK
ELN$LOCK_AREA

SIGNAL

ELN$SUNLOCK_AREA
WAIT_ALL and WAIT_ANY

Creates a new area or maps an exist-
ing area of memory into the creating
job’s PO virtual address space and
associates the area with a semaphore.

Deletes an area.
Initializes an area lock variable.
Locks an area for exclusive access.

Signals an area. If the area is asso-
ciated with an event, the kernel sets
the event to a signaled state. If the
area is associated with a semaphore,
the kernel increments the semaphore’s
count.

Unlocks an area.

Waits on an area. If the area is
associated with an event, the kernel
lets the calling job access the area
or causes the job to wait, depending
on whether the event is signaled or
cleared. If the area is associated with
a semaphore, the kernel checks the
semaphore’s count, and based on the
count value lets the calling job access
the area or causes the job to wait. If
the count is greater than zero, the
kernel decrements the count and
lets the calling job access the area.
Otherwise, the job waits.

The following sections explain how applications can use these proce-

dures to do the following:

® Create areas, Section 5.4.1

¢ Synchronize access to areas using events, Section 5.4.2

* Synchronize access to areas using semaphores, Section 5.4.3
* Use area lock variables to optimize waiting and signaling opera-

tions, Section 5.4.4

* Use areas to synchronize job execution, Section 5.4.5

Communication 5-29

* Delete areas, Section 5.4.6
NOTE

The systems in a closely coupled symmetric multiprocess-
ing configuration cannot use areas as a means of sharing
memory. To share memory, such systems must use the
ALLOCATE_MEMORY routine to allocate memory at a phys-
ical address on the primary system; which is accessible to all
Processors.

5.4.1 Creating Areas

An application can create a new area or map an existing area of
memory into a job’s PO virtual address space by calling the CREATE_
AREA, CREATE_AREA_EVENT, or CREATE_AREA_SEMAPHORE
procedure. A procedure call that creates a new area associates the area
with an event or semaphore as follows:

Procedure Object Type
CREATE_AREA Binary semaphore
CREATE_AREA_EVENT Event

CREATE_AREA_SEMAPHORE Binary or counting semaphore

The event or semaphore controls access to the area. An application that
uses one job to wrife to an area and lets several jobs read from that
area might use an event to control area access. A counting semaphore
lets an application specify a maximum number of jobs (maximum count
value) that can access an area at a given time. A binary semaphore
provides exclusive access to an area.

An application uses an area’s event or semaphore to control access

by changing the event or semaphore’s state. The state of an event
changes when the application signals or clears an area. The state of a
semaphore changes when an application signals or waits on an area.
Sections 5.4.2 and 5.4.3 explain how to synchronize area access.

Calls to the CREATE_AREA, CREATE_AREA_EVENT, and CREATE_
AREA_SEMAPHORE procedures must specify an area variable, a data
pointer, the size of the area (C and FORTRAN), and an area name.
The area variable receives a value that identifies the area. You use

5-30 Communication

this variable to identify the area in calls to other routines, such as
CLEAR_EVENT, SIGNAL, WAIT_ALL, and WAIT_ANY.

The data pointer receives the area’s base virtual address. A VAXELN
Pascal data pointer also implicitly defines the area’s size. The data
pointer can be of any type except AANYTYPE and the procedure uses
the size of that argument’s type to determine the area’s size. For C and
FORTRAN applications, you must specify the area size in bytes. The
value you specify is increased to the next multiple of 512. Specify a size
of 0 to use an area only as a mechanism for synchronizing job execution
(see Section 5.4.5).

A string of 1 to 31 characters specifies an area’s name. The name must
be unique within the application. :

Calls to the CREATE_AREA_EVENT and CREATE_AREA_
SEMAPHORE procedures also must specify arguments that ini-
tialize the event or semaphore that the procedure creates. You

can initialize the state of an area’s event to EVENT$CLEARED or
EVENT$SIGNALED. You must specify initial count and maximum
count values for a semaphore that CREATE_AREA_SEMAPHORE
creates. (The CREATE_AREA procedure automatically initializes the
initial and maximum count values to 1.)

Procedure calls that create an existing area only map the area to

the calling job’s PO virtual address space. The use of a shared area,
whether it is associated with an event or semaphore, must remain
consistent throughout an application. When you create an area that

is associated with an event, subsequent create area procedure calls
specifying that area must be CREATE_AREA_EVENT calls and they
must specify the same initial event state. Likewise, if you create an
area that is associated with a semaphore, subsequent create area pro-
cedure calls specifying that area must be CREATE_AREA or CREATE _
AREA_SEMAPHORE calls and they must specify the same initial and
maximum count values. For example, if a call to CREATE_AREA_
SEMAPHORE creates a new area named common_area and specifies 0
and 38 as the semaphore’s initial and maximum counts, all subsequent
calls to CREATE_AREA_SEMAPHORE that specify common_area must
also specify 0 and 3 as the semaphore count values.

An optional virtual address argument lets you specify the starting job
PO virtual address at which the specified area is to be mapped. You
can specify this argument in calls to CREATE_AREA, CREATE_AREA_
EVENT, or CREATE_AREA_SEMAPHORE. If you do not specify an
address, the kernel allocates a free range of PO virtual addresses.

Communication 5-31

The following C example creates a 5000-byte area that has an asso-
ciated semaphore with an initial value of 1 and a maximum count of
2:

#module cr_area semaphore
#include $vaxelnc

maiﬁ()

{

int completion status, size, init_count, max_count;
AREA areal
char * areal ptr

static $DESCRIPTOR (name_stringl, "AREA 1");

init_count = 1;
max count = 2;

size = 5000;
ker§creat_area_ semaphore (écompletion status,
&areal,
&areal prt,
size,

&name_stringl,
init_count,
max_count,
NULL) ;

}

Once you have created an area, subsequent calls to CREATE_AREA,
CREATE_AREA_EVENT, or CREATE_AREA_SEMAPHORE that
specify the area you created map that area to the PO virtual address
space of each calling job. If you specified a virtual address in the
procedure call that initially created an area, subsequent calls that
specify that area must specify the same virtual address.

¢ When a shared area is mapped to the same virtual address for each
sharing job, the area is position-dependent and pointer values are
equivalent in each job’s address space. Thus, the sharing jobs can
place absolute and relative pointers in the area.

* When a shared area is mapped to different virtual addresses by
different jobs because no virtual address was specified, the area is
position-independent and the sharing jobs can place only relative
pointers in the area.

5-32 Communication

In all cases absolute and relative pointers within an area must point to
other addresses within the area if they are to be used by different jobs.

Jobs that share an area can map none, some, or all of the area’s
memory, depending on the area size that you specify. If a job shares
part of an area, the shared part begins at the start of the area.

5.4.2 Synchronizing Access to Areas with Events

Jobs can synchronize access to a shared area that is associated with an
event by waiting on, signaling, and clearing the area. Jobs can access
the area so long as the event is in a signaled state.

To wait on an area, you must specify its AREA variable in the object
value list of a call to the WAIT_ALL or WAIT_ANY procedure. A wait
operation for an area that is associated with an event causes the calling
job to wait for the area to be signaled. If the area’s event is already in
the signaled state, jobs calling the WAIT ALL or WAIT_ANY procedure
can access the area immediately. If an area’s event is in the cleared
state, calling jobs block and wait for another job to signal the area with
a call to the SIGNAL procedure. The call to SIGNAL changes the state
of the area’s event to EVENT$SIGNALED and unblocks all waiting -
jobs.

An area’s event remains in the signaled state until a job clears the
event with a call to CLEAR_EVENT. The call to CLEAR_EVENT must
specify the AREA object with which the event is associated.

Example 5-3 shows two modules that use an area associated with an
event. The first module, area_writer, contains a job that writes data
to the area. The area_writer module also creates two jobs, using the
second module, area_reader. The reader jobs read data from the area,
using the area’s associated event as a synchronization mechanism.
Messages synchronize the writer’s ability to gain access to the area.

Communication 5-33

Example 5-3: Synchronizing Access to Areas with Events

/**/

/*

Writer Module

*/

/**/

#module writer prog

#include $vaxelnc
#include descrip

/*
* Declare external variables.
*/
static int exit_status;
main ()
{
/*
* Declare master process local variables.
*/
int completion_ status, area size, i;
char *n, a ch, ch[10];
’ char * area ptr;
AREA area with event;

static $DESCRIPEOR(a;ea_name_string, "Shared_Area");

PORT

another port3;

NAME

port_name2, port_ name3;

job_portl, job_port2, job port3, another port2,

static $DESCRIPTOR {port_name_string2, "Port_For Job2");
static $DESCRIPTOR (port_name_ string3, "Port_For_ Job3");
static $DESCRIPTOR(reader program name, “"reader_prog");

printf("This is
area_size = 50;

/*

* Create an area of size 50 bytes and associate that area with

from Job 1.");

* a cleared event.

*/

kerscreate_area_event(NULL,

&area with event, /*
&area ptr, /*
area_ size, /*
&area_name string, /*

EVENT$CLEARED, /¥

NULL) ; /*

Longword containing area ID

Data pointer

Area size

string - name of area
Initial state ~ clear
Virtual address

printf("\n Area created of size %4 bytes", area_size);

*/

*/
*/

*/

Example 5-3 Cont'd on next page

5-34 Communication

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

ker$create port (NULL,
&another port2,
NULL) ;

ker$create name (NULL,
&port_name2,
&port_name_ string2,
&another port2,
NAMES$LOCAL) ;

ker$create_port (NULL,
&another port3,
NULL) ;

ker$create name (NULL,
&port_name3,
&port_name string3,
&another_ port3,
NAMES$LOCAL) ;

printf ("\n\n Now create Job 2.\n\n");

ker$create_job (NULL,
&job_port2,
&éreader program name,
NULL,
ra2ty;

printf ("\n\n Now create Job 3.\n\n");

ker$create job (NULL,

&job_port3,
&éreader program name,
NULL,
13');
/%
* 1Initialize the area to all 'A’s.
*/

for (n = area ptr; n < &area ptr[area size];)

*n++ = '\A’;
}
/*
* Print out the area contents.

*/

Example 5-3 Cont’d on next page

Communication 5-35

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

for (n = area ptr; n < &area ptr[area_sizel];)
{
a_ch = *n++;
printf("\n ch = %c \n", a_ch);
}
/*
* Signal area with_event to let the reader jobs use the data.
Once the area is signaled, all reader jobs can gain access to
* the area.

*/

ker$signal (NULL, area_with event);

*

for (i =1; i <= 4; i++)
{

/*

* Use a mechanism to synchronize the two reader jobs finishing
* with the area.

*

* Wait for messages from the two reader jobs. The messages

* indicate that the reader jobs are finished using the area.
*/

/*

* Lock the area for exclusive access by clearing the area’s
* event. The writer job can then modify the data.

*/
ker$clear_event (NULL, area with event);

/*

* Send messages to the two reader jobs. The messages indicate
* that the reader jobs are finished using the area and that the

* area is locked by this job.
*/

/*
* Modify the area’s contents.

*/

Example 5-3 Cont’d on next page

5-36 Communication

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

for (n = area ptr; n < &area_ptrl[area_sizel];)

{
*n++= *n + 1;
}
/* .
* Print the new contents
*/
{ ‘
for (n = area_ptr; n < garea ptrlarea_sizel];)
{
a_ch = *n++;
printf("\n\n ch = %c \n\n", a_ch);
} .
/* ‘
* Signal the area so the reader jobs can read the new data.
*/
ker$signal (NULL, area;yith_gvent);
}
/%

* Mark the area and its associated event for deletion when it
* 1is no longer needed.

*/
ker$delete (NULL,my_areal);

A T Y
/* Reader Module */

/**********************'k***‘k***/

#module reader prog
#include $vaxelnc
#include descrip

main ()
{
int completion_status, area size, i;
char *n, ch[50];
char * area ptr;
AREA area_with_event;
void subprocess_code () ;

static $DESCRIPTOR(area_pame_string, "Shared Area");

area size = 50;

Example 5-3 Cont’d on next page

Communication 5-37

Example 5-3 (Cont.): Synchronizing Access to Areas with Events

/%
* Map area with_event to the PO virtual address space for the

* reader jobs. The call must specify the same argument data as
* was specified in the call that initially created the area.

*/

ker$create_ area event (NULL,
&area_with _event, /*Longword containing area ID */

&area ptr, /* Data pointer */
area_size, /* Area size */
&area_name_string, /* String - name of area */
EVENT$CLEARED, /* Initial state - clear */
NULL) ; /* virtual address */
for (i = 1; 1i <= 5 ; i++)
{
/%
* Wait for the writer job to signal the area.
*/
ker$wait_any (NULL,
NULL,
NULL,
area with event);
/% '
* Use the data in the area, send a message to the writer job
* indicating that we are finished using the area, and wait for
* a message from the writer job, indicating that all reader
* Jjobs are finished.
*/
}
/%

* Mark the area and its associated event for deletion when it
* is no longer needed.
*/
ker$delete (NULL, area with event);
}

Communication

5.4.3 Synchronizing Access to Areas with Semaphores

Jobs can synchronize access to a shared area that is associated with
a semaphore by waiting on and signaling the area. A job gains access
to the area by waiting on it. When the job no longer needs access, it
should signal the area, allowing other sharing jobs to gain access.

To wait on an area, you must specify the area’s value in the object
value list of a call to the WAIT_ALL or WAIT_ANY procedure. A wait
operation for an area that is associated with a binary semaphore gives
the calling job exclusive access to the area. If an area is associated
with a counting semaphore, the semaphore’s maximum count indicates
the number of jobs that can wait on, and thus access, an area for read
operations simultaneously. For example, if the maximum count value
is 3, up to three jobs can access the area simultaneously. The kernel
decrements the semaphore’s count value by one for each satisfied wait
on the area. When the semaphore’s count value equals 0, subsequent
calls to WAIT_ALL or WAIT_ANY that specify the area cause the
calling jobs to block and wait for the area to be signaled. The kernel
places the waiting jobs in a queue in the order in which they issued the
calls to WAIT_ALL or WAIT_ANY.

NOTE

If multiple jobs can gain simultaneous access to an area, the
application should ensure the integrity of the shared data by
allowing the jobs to only read the data. A job that writes to a
shared area must have exclusive access.

Primarily, areas associated with counting semaphores are for synchro-
nizing access to available units of a shared resource. In such a case,
the area has a size of 0. For more information about using areas in this
way, see Section 5.4.5.

When a job no longer needs to access an area that is associated with
a semaphore, it can inform the kernel by specifying the area in a

call to the SIGNAL procedure. The call to SIGNAL increments the
semaphore’s count value by one. If one or more jobs are waiting to
access the area, the kernel lets the first waiting job in the semaphore’s
queue access the area and then decrements the semaphore’s count by
one. The next job in the queue waits for the next signal operation.

Communication 5-39

5.4.4 Using Area Lock Variables to Optimize Waiting and Signaling
Operations

You can improve the performance of area access synchronization by
using an area lock variable. An application can use an area lock
variable only if the area is created with an associated binary semaphore
that is properly initialized. Area lock variables allow you to achieve
the same effect as an area with an associated binary semaphore (with
initial and maximum counts of 1) without calling a kernel service
unless contention exists. Generally, when a process locks an area to
gain access to a shared resource, the process does not have to call the
WAIT_ALL or WAIT_ANY procedure. The kernel issues a wait only if
area is already locked.

To use an area lock variable, you must declare a variable of type
AREA_LOCK _VARIABLE and place that variable in the data por-

tion of the area. You then initialize the variable using a call to the
ELNSINITIALIZE_AREA_LOCK procedure and then synchronize ac-
cess to the area with calls to ELNSLOCK_AREA (instead of WAIT ANY
or WAIT ALL) and ELN$UNLOCK_AREA (instead of SIGNAL).

To use the area-locking procedures in Pascal applications, you must
include the module $MUTEX from the RTLOBJECT library. To use
them in C programs, you must include the module $mutex from
VAXELNC.TLB.

The ELNS$INITIALIZE_AREA_LOCK procedure waits on the AREA ob-
ject. When the wait is satisfied, the kernel places the area’s semaphore
in a closed state for subsequent lock and unlock operations, and then
the procedure sets the area lock variable’s initial state to unlocked.
(The area semaphore’s state changes only when lock contention exists.)

An area lock variable should be initialized only once by one process; no
error status is returned if the variable is initialized more than once.

A job locks an area for exclusive access by calling the ELN$LOCK_
AREA procedure. A call to this procedure must specify the area to be
locked and the lock variable that controls access to the area. If the area
is already locked, the calling job waits on the area. Generally, when a
job locks an area, the job does not need to issue a wait before accessing
the area. The kernel issues a wait only if the area is already locked.

A job can unlock an area by calling the ELN$UNLOCK_AREA proce-
dure. This procedure releases an area and signals processes that are
waiting to access it. A call to this procedure must specify the area to be
unlocked and the lock variable that controls access to the area.

5-40 Communication

If a binary semaphore is open (count = 1) and the semaphore is sig-
naled, a count overflow error occurs. In contrast, the locking and
unlocking of areas is not protected by this exception-raising mecha-
nism. Under certain circumstances (in which two or more jobs contend
for an area) unlocking an already unlocked area can cause the calling
job to block indefinitely. Therefore, when using area lock variables, you
should adhere to the following guidelines:

¢ The first operation on an initialized area lock variable must be a
lock operation.

¢ You must pair lock and unlock operations within the code of the
jobs using the area.

5.4.5 Using Areas to Synchronize Job Execution

You can use an area of size 0 to synchronize job execution. In such
cases, the AREA object represents an interjob event or semaphore or

a user-defined resource. As an interjob synchronizing mechanism, an
area functions the same as events and semaphores used to synchronize
processes in the same job. Instead of synchronizing processes that
execute as parts of the same job, you synchronize processes that
execute as parts of different jobs. For more information about using
semaphores and events to synchronize processes, see Sections 4.4 and
4.5.

An area can also represent the available units of a shared user-defined
resource that is application-specific. The printers available on a system
are an example of such a resource. The event or semaphore associated
with the area serves as a resource access control mechanism.

Example 54 shows two modules that use an area associated with a
counting semaphore to control the ability of three jobs to gain access to
two shared resources. The first module does the following:

¢ (Creates the area with an initial count of 1 and a maximum count of
2

* Waits on the area to gain access to a resource

* Initializes the two resources

* Signals the area twice to let two jobs gain access to the resource
* Creates two other jobs

Communication 5-41

* Allows the three jobs to use the two resources five times each, with
only two of the jobs using the resources at a time.

The second module, which is executed by the two created jobs, maps
the area to its PO space, waits until the resource is available, uses the
resource, and signals the area when the resource is no longer needed.

All three jobs use the area’s semaphore to synchronize access to the
shared resources.

Example 5-4: Synchronizing Job Execution with Semaphores

{ ************************’***}

* . Module 1 *
L L L)

MODULE cr_area_sema_1;
PROGRAM c¢r_area sema_ progl (INPUT, OUTPUT) ;

CONST
area size = 0;

TYPE
area_type = string(area size);

VAR
i : INTEGER;
completion_status : INTEGER;
resource : AREA;
resource_ ptr : “area_type;
job2_port, job3_port : PORT;

BEGIN
writeln (’Create resource area...’);

Create an area of size 0 and associate that area with a counting
semaphore that has initial and maximum count values of 1 and 2.
As many as two jobs can gain access to the resource without
waiting.

P e e ey

Example 54 Cont'd on next page

5-42 Communication

Example 54 (Cont.): Synchronizing Job Execution with Semaphores

CREATE_AREA SEMAPHORE (

resource, { Longword containing area ID }
resource_ptr, { Data pointer }
’Shared Area’, { String - name of area }
1, { Initial count }
2, { Maximum count }
completion status); { Status }

{ .
{ Wait on the area. Since the initial count was 1, this job gains
{ access immediately.

{}
WAIT ANY (resource);

{ Set up the shared resource. }

Signal the area’s semaphore. When the area is signaled, the

kernel increments the semaphore count so that another job can
use the area. We signal the area twice to make the resource

available to two jobs.

o ey

{}

SIGNAL (resource);
SIGNAL (resource);

{ Create the other two jobs. }

{ Create the second job and pass it the program argument ’2’. }
CREATE_JOB(job2_port, ’cr_area sema prog2’, '', '/, 727);
{ Create the third job and pass it the program argument ’3’. }
create_job(job3_port, ’cr_area_sema prog2’, ', ’’, ’3');

FOR i := 1 TO 5 DO
BEGIN

Wait on the area until the resource is available. If the
semaphore count is greater than 0, the job gains access to
the area. If the count is 0, the job waits.

e e R N e

Example 54 Cont’d on next page

Communication 5-43

Example 54 (Cont.): Synchronizing Job Execution with Semaphores

WAIT_ANY (resource);

{ Determine which resource is available and use it. }

.

Signal the area’s semaphore to indicate that the resource is
no longer in use. When the area is signaled, the kernel
increments the semaphore count so that another job can use
the area.

e e ey e

{3

SIGNAL (resource);
END;

WRITELN ('’ Job 1 has used a resource 5 times.’);

{
{ Mark the area and its associated semaphore for deletion when
{ they are no longer needed.

{}

DELETE (resource);
END.
END;

{***}

{* Module 2 *}
[RFRkk ok ko k Rk ke ok kA ok kA ARk ko ok ok ke ok ko ek ok)

MODULE cr_area_sema_2;

PROGRAM cr_area_sema prog2 (INPUT,OUTPUT);

CONST
area_size = 0;

TYPE
area_type = STRING (area_size);

VAR
i, j : INTEGER;
completion_status : INTEGER;
job number : STRING(1);
resource : AREA;
resource_ptr : “area_type;

Example 54 Cont'd on next page

5-44 Communication

Example 5-4 (Cont.): Synchronizing Job Execution with Semaphores

BEGIN
job_number := PROGRAM ARGUMENT(3); { Get the job number. }

{

{ Map the area of size 0 for the cr_area_sema prog2 job.

{}
CREATE_AREA_SEMAPHORE (

resource, { Longword containing area ID }
resource ptr, { Data pointer }
’Shared Resource’, { String - name of area }
1, - { Initial count }
2, { Maximum count }

{ }

completion status); Status

FOR j := 1 TO 5 DO
BEGIN

{

{ Wait on the area until the area is signaled. If the
{ semaphore count is greater than 0, the job gains access to
{ the resource. If the count is 0, the job waits.

{}
WAIT_ANY (resource);

{ Determine which resource is available and use it. }

Signal the area’s semaphore to indicate that the resource is
no longer in use. When the area is signaled, the kernel
increments the semaphore count so that another job can use
the area.

e e R Re Ra)

{3

SIGNAL (resource);
END;

WRITELN (' Job ’, job_number, ’ has used a resource 5 times’);

{

{ Mark the area and its associated semaphore for deletion when it
{ 1is no longer needed.

{}

Example 54 Cont'd on next page

Communication 5-45

Example 5-4 (Cont.): Synchronizing Job Execution with Semaphores

DELETE (resource) ;
END.
END;

5.4.6 Deleting Areas

You can delete an area by specifying the area’s identifier in a call to
the DELETE procedure. When you specify an area identifier with
this procedure, it removes the calling job’s reference to the area and
unmaps the data from its PO virtual address space. Any process in the
job. that created or mapped the area can delete it. The AREA object

is not actually deleted until the last job that uses the area deletes its
reference to the area.

5-46 Communication

Chapter 6
Device Handling

Device drivers are programs that control communication between
application programs and external devices. In the case of realtime
applications, most external devices are interrupt-driven — they com-
municate with the application only when they need service. A device
requests service by sending an interrupt signal to the processor. The
processor recognizes the signal, stops what it is doing, and services the
request by executing a block of driver code called an interrupt service
routine (ISR).

Once you decide on your application’s device requirements, you build
the relevant devices and drivers into your VAXELN system by specify-
ing device characteristics on the System Builder’s Device Description
Menu (see the VAXELN Development Utilities Guide).

The VAXELN Toolkit provides a highly productive environment for de-
veloping application-specific device drivers. Using high-level languages,
you can implement drivers for devices that have one or more units per
controller. In addition, the toolkit supplies prototype driver code that
you can study, and perhaps use, while programming device drivers.

You can design a device driver so that it executes as a job or as a
callable routine. As a job, a device driver is a shareable resource
available to all program images in a system. If a driver does not need
to be shareable, you can code it as a callable routine. As a routine, a
driver reduces overhead by eliminating job context switching.

Typically, a device driver job executes in kernel mode at a higher
priority than jobs running other application programs and executes
concurrently with the other jobs that use the related device.

Device Handling 6-1

A driver’s activity depends on the characteristics and actions of the
device it controls. However, you program a driver’s general interface by
declaring a variable of type DEVICE (which represents the hardware
device) and an ISR. You then call VAXELN procedures that perform the
following types of operations:

* Set up communication for I/O requests

¢ Associate a device with an ISR and a driver program
¢ Handle device interrupts

* Synchronize access to a device communication region

* Read data from and write data to a device’s control status register
(CSR) or data buffer

A driver’s ISR provides an interface for handling device interrupts and
power-failure recovery. When an interrupt occurs, the kernel executes
the necessary machine instructions, and then calls the ISR to service
the device. While servicing the device, the ISR communicates with the
driver code by sharing an area of memory called the communication
region. For example, an ISR might use this region to return device
register data to the driver program.

A driver establishes a communication region when it creates a DEVICE
object with a call to CREATE_DEVICE. All communication regions

are potentially accessible to all ISRs. For example, for handling mul-
tivector devices, you can create two communication regions (with two
CREATE_DEVICE calls) and then store a pointer to one region in

the other’s region. (For an example, see the VAXELN source module
YCDRIVER.PAS.)

You synchronize a driver job’s processes with an ISR by identifying a
DEVICE object in calls to the WAIT and SIGNAL_DEVICE procedures.
Driver processes wait on the DEVICE object while the ISR services

a device interrupt. If multiple processes wait on the same object, the
kernel queues them in the order in which the WAIT_ALL or WAIT _
ANY procedure calls executed. Once the interrupt is serviced, the ISR
satisfies the wait of the first process in the queue by signaling the
DEVICE object with SIGNAL_DEVICE. This priority-based process
scheduling eliminates the need for fork processing.

This chapter provides information about writing /O device driver pro-
grams for handling device interrupts and power recovery. Specifically,
the chapter explains how to do the following:

* Create and delete DEVICE objects, Section 6.1
¢ Handle device interrupts, Section 6.2

6-2 Device Handling

¢ Synchronize access to the device communication region, Section 6.3
* Set a driver job’s processor eligibility, Section 6.4

* Read and write register data, Section 6.5

¢ Control DMA devices, Section 6.6

¢ Code VAXBI bus device drivers, Section 6.7

¢ Execute routines in kernel mode, Section 6.8

¢ Handle power-failure recovery, Section 6.9

6.1 Creating and Deleting DEVICE Objects

A device driver program, running in kernel mode, can create DEVICE
objects by calling the CREATE_DEVICE procedure. The procedure as-
sociates a physical device with a driver program and an ISR. Once you
create a DEVICE object, you can use its value as a binary semaphore
to synchronize execution of the driver’s ISR with the execution of other
driver processes.

A call to CREATE_DEVICE must specify the device’s name and a
variable of type DEVICE that is to receive the DEVICE object’s iden-
tifier. The device name must be one of the 1- to 30-character names
established with the System Builder. The procedure uses the name to
retrieve the device’s characteristics.

The DEVICE variable can be a single variable or an array of 1 to 64
DEVICE elements. If you specify an array, the procedure creates an
array of DEVICE objects and places the corresponding identifiers in the
appropriate array elements.

Use an array if an ISR needs to communicate with multiple-unit
devices, such as a 32-bit parallel port or dual-drive disk controller.
In the case of a 32-bit parallel port, an ISR might use an array of 32
DEVICE elements to process the data that it receives on each port.
Based on condition or bit information that the ISR receives, it can
signal appropriate objects and make the associated driver processes
eligible for execution.

A call to CREATE_DEVICE also can specify the name of the ISR that
is to be associated with the DEVICE object or array of DEVICE objects.
If you omit the argument, you drive the device by polling rather than
with interrupts.

Device Handling 6-3

An optional relative vector argument specifies which vector of a
multiple-interrupt-vector device should be connected to the ISR.

(The base vector address appears on the System Builder’s Device
Characteristics Menu.) If you omit this argument, it defaults to 1 (the
first vector). If you specify this argument in multiple calls to CREATE_
DEVICE within a program, the vector value for each call must be
unique; specifying the same value a second time causes the subsequent
call to CREATE_DEVICE to return the status value KER$_DEVICE_
CONNECTED. For example:

CREATE_DEVICE ('DUAO’, first_device, VECTOR_NUMBER := 1);
CREATE_DEVICE (/DUAl’, second_device, VECTOR NUMBER := 2);

CREATE_DEVICE (/DUA2’, third device, VECTOR_NUMBER := 3);

Other arguments that you can specify receive pointers to the device
communication region, the first device control status register (CSR),
the first adapter control register, and the interrupt vector in the system
control block. In C and FORTRAN, you can also specify the size of the
communication region.

You can also specify arguments that receive the device’s interrupt
priority level (IPL) and the name of a power-failure recovery routine.
The recovery routine is called before any process or ISR is restarted if
the processor enters a power-fail recovery sequence.

If your target configuration includes a VAX 8800 multiprocessor, a

call to CREATE_DEVICE forces a driver job to run on the processor
that handles the device’s interrupts. It forces driver jobs for devices
on VAXBI buses 2 and 3 to run on the primary processor and forces
driver jobs for devices on VAXBI buses 0 and 1 to run on the secondary
processor. If necessary, you can declare the job eligible to run on either
processor with a call to KER$SET_JOB_ELIGIBILITY (see Section 6.4).

6—4 Device Handling

When a program is finished using a DEVICE object, it can delete

the object with a call to the DELETE procedure. The kernel frees

the memory used for the DEVICE object’s communication region
(invalidates pointers to that memory) and disconnects the ISR from the
interrupt vector. Waiting processes are removed from their wait states
immediately and receive the status value KER$_BAD_VALUE.

6.2 Handling Device Interrupts

After the CREATE_DEVICE procedure associates a device with an ISR,
the kernel calls the ISR each time the device interrupts the processor.
The ISR services the interrupt, using the device register pointer to gain
access to the device registers. Typically, with devices that interrupt for
several reasons, the ISR can examine the device’s CSR to determine
the reason for the interrupt.

An ISR uses the device communication region to supply a program with
values that it receives from device registers. Only the data placed in
the communication region is available to an ISR.

An ISR and the driver program synchronize their execution by waiting
on and signaling a DEVICE object.

6.2.1 Waiting for an ISR to Service a Device Interrupt

Driver processes wait to be signaled while an ISR services a device
interrupt. To initiate the wait, a process specifies the appropriate
DEVICE identifier in a call to WAIT_ALL or WAIT_ANY. The ISR
satisifies the wait when it finishes servicing the interrupt. If multiple
processes are waiting on the same DEVICE object, the kernel queues
them in the order in which the WAIT procedure calls execute. Once the
interrupt is serviced, the ISR satisfies the wait of the first process in
the queue.

6.2.2 Signaling the DEVICE Object After Service Completion

When an ISR finishes servicing a device interrupt, it signals the appro-
priate driver processes by specifying the appropriate DEVICE identifier
in calls to SIGNAL_DEVICE. These calls unblock the processes that
are waiting on the specified DEVICE object. An optional argument lets
you identify an element in a DEVICE array.

Device Handling 6-5

6.3 Synchronizing Access to the Device Communication
Region

While servicing a device, a driver program and an ISR communicate
by sharing the device communication region. Since the communication
region is a shared resource, access to the region must be synchronized.
The driver program can synchronize access to the region by setting the
processor’s interrupt priority level (IPL).

VAX processors define 32 IPLs. IPL 0 is the lowest priority; IPL 31 is
the highest. Table 61 lists the IPLs at which various system events
occur.

Table 6—1: Interrupt Priority Levels

IPL (decimal) Events

Hardware:

31 Machine check; kernel stack not valid

30 Power failure

25-29 Processor, memory, or bus error

24 Clock (except MicroVAX, which is IPL 22)

16-23 Device IPLs, with 20-23 corresponding to UNIBUS or
Q22-bus request levels 47, respectively

Software:

9-15 Unused

8 DEVICE signal

7 Timer process

6 Closely coupled symmetric multiprocessing interrupt

5 Kernel debugger

4 Job scheduler

3 Process scheduler

2 Deliver asynchronous exception

1 Unused

0 User process level

6-6 Device Handling

You should consider a device’s interrupt priority and job priority when
synchronizing device driver programs. The default interrupt priority
for the supplied device drivers is 5. You can change the interrupt
priority for the supplied drivers and set the priority for user-written
drivers by editing the value for the Interrupt priority entry on

the System Builder’s Device Description Menu. The priority values
range from 4 to 7, with 4 being the highest priority. These values
correspond to the VAX interrupt priority levels 14 (hexadecimal) to 17
(hexadecimal).

You can get the resulting interrupt priority by specifying a priority
argument in the call to CREATE_DEVICE.

When synchronizing a device driver program, you should also consider
the program’s job priority. The default job priority for most supplied
device drivers is 4. The default for supplied terminal drivers is 2. You
can adjust the job priority for supplied drivers and set the priority for
user-written drivers by calling the SET_JOB_PRIORITY procedure.
However, you can use this mechanism only if you select No for the
Autoload driver entry when you edit the System Builder’s Device
Description Menu. For more information about setting job priorities,
see Section 3.3.2.

Setting the processor IPL provides synchronization because when the
processor IPL is set to a certain level, interrupts assigned to that level
and below (and their corresponding service routines) are disabled. This
form of synchronization, though somewhat difficult to use, is efficient.

Depending on your target configuration, a driver program can use
either the DISABLE_INTERRUPT and ENABLE_INTERRUPT proce-
dures or the KER$LOCK_DEVICE and KER$UNLOCK_DEVICE pro-
cedures to raise and lower the processor’s IPL. To use these procedures,
the program must be running in kernel mode.

Use DISABLE_INTERRUPT and ENABLE_INTERRUPT if your
target is a single processor or a VAX 8800 multiprocessor. DISABLE_
INTERRUPT prevents entry to an ISR when a device interrupt occurs
by raising the processor’s IPL to the IPL of the device. While interrupts
are disabled, no kernel procedures can be called; doing so causes
unpredictable results.

For a driver job to use DISABLE_INTERRUPT on a VAX 8800 multi-
processor, the job must be running on the processor that handles the
device’s interrupts. If necessary, you can request specific processor
eligibility while the driver job is executing by issuing a call to the
KER$SET_JOB_ELIGIBILITY procedure (see Section 6.4).

Device Handling 6-7

To reenable device interrupts, lower the processor’s IPL by calling
ENABLE_INTERRUPT.

Use KERSLOCK_DEVICE and KER$UNLOCK_DEVICE if your target
configuration includes a multiprocessor that lets devices interrupt any
processor (such as a VAX 6000-3nn multiprocessor). KER$LOCK_
DEVICE prevents entry to an ISR when a device interrupt occurs

by raising the processor’s IPL to the IPL of the device and setting a
spin lock. The procedure locks out the ISR. If an interrupt for the
device comes in on another processor while the spin lock is set, that
processor spins on the lock until the driver clears it with a call to
KER$UNLOCK_DEVICE.,

NOTE

If your target configuration may include a VAX multiproces-
sor that lets devices interrupt any processor, you should use
the KER$LOCK_DEVICE and KER$UNLOCK_DEVICE pro-
cedures instead of DISABLE_INTERRUPT and ENABLE_
INTERRUPT to synchronize the device communication
region.

A VAX processor’s current IPL is part of its processorwide state.
Disabling interrupts of a certain priority also disables other system
activities that occur at or below that priority level. If a process raises
the processor’s IPL to block device interrupts, that process is the only
activity (other than ISRs) that can execute on that processor until
the process lowers the priority by calling ENABLE_INTERRUPT or
KER$UNLOCK_DEVICE.

If the power fails while interrupts are disabled, the kernel sets the
IPL to O before it raises the exception KER$_POWER_SIGNAL. This
exception is handled like other asynchronous exceptions; however,
continuing from the exception with interrupts enabled may produce
unpredictable results.

6.4 Setting a Driver Job’s Processor Eligibility

When a device driver job executes on a VAX 8800 tightly coupled mul-
tiprocessing system, calls to the CREATE_DEVICE procedure force the
driver job to run on the processor that handles the device’s interrupts.
This binding lets the driver job raise the processor’s IPL with a call

to DISABLE_INTERRUPT to synchronize access to the device com-
munication region. If necessary, the driver job can undo this binding
by calling the KER$SET JOB_ELIGIBILITY procedure. Using a call

6-8 Device Handling

to this procedure, a driver job can dynamically change its processor
eligibility and make itself eligible to run on either processor. However,
keep in mind that you cannot use an elevated IPL to synchronize access
to the device communication region if the driver job is not executing on
the processor that handles the device’s interrupts.

When calling the KER$SET_JOB_ELIGIBILITY procedure, specify
the job’s new eligibility mask. The procedure replaces the eligibility
mask in the job’s job control block (JCB) with the mask you specify.
The mask supplies Boolean values that indicate job eligibility for each
processor in your target configuration. TRUE means the job is eligible
to run on a processor, and FALSE means the job is not eligible to run
on a processor. Whether the master process or a subprocess calls the
procedure, the call changes the processor eligibility for the entire job.

At least one available processor must be eligible to run the driver job.
If the job cannot run on any available processor, the kernel returns the
status value KER$BAD_VALUE.

For information about synchronizing access to the device communica-
tion region, see Section 6.3.

6.5 Reading and Writing Register Data

Driver programs and ISRs can read data from and write data to device
and processor registers by calling the READ_REGISTER, WRITE_
REGISTER, MFPR, and MTPR routines.

The READ_REGISTER and WRITE_REGISTER routines operate on
device registers. The READ_REGISTER function returns the value of a
variable reference, and the WRITE_REGISTER procedure loads a value
or group of values into a specified target variable reference. These read
and write operations are performed by single machine instructions and
are not affected by compiler optimizations. The READ_REGISTER and
WRITE_REGISTER routines are the only safe methods for reading
data from and writing data to a device register. These routines also can
be used safely to read and write a shared variable.

READ_REGISTER and WRITE_REGISTER should always be used,
instead of direct assignments, to read and write the fields in a device
register. This is required because the VAX architecture does not allow
the use of variable-length bit-field instructions to read or write device
registers. Using READ_REGISTER and WRITE_REGISTER ensures
that the compiler generates only valid instructions.

Device Handling 6-9

The MFPR and MTPR routines operate on processor registers. The
MFPR function returns the contents of a VAX processor register. The
MTPR procedure moves a specified value into a specified VAX internal
processor register. To call these routines, a program must be running
in kernel mode.

NOTE

Processor registers are a privileged system resource.
Changing the contents of processor registers while a system
is running may cause an unhandled exception.

6.6 Controlling DMA Devices

The VAXELN Toolkit provides utility procedures that device driver
programs can use to perform the following direct memory access (DMA)
device operations:

* Allocate, load, and free map registers, Section 6.6.1

* Allocate and free UNIBUS buffered data paths, Section 6.6.2

* Map and unmap memory buffers, Section 6.6.3

¢ Return a variable’s physical address, Section 6.6.4

6.6.1 Allocating, Loading, and Freeing Map Registers

Device driver programs can allocate, load, and free UNIBUS or Q22-
bus map registers. The KERSALLOCATE_MAP procedure allocates
a contiguous block of UNIBUS or Q22-bus map registers for use by
a program fo map VAX memory to UNIBUS or Q22-bus memory
addresses, respectively.

The procedure returns a pointer to the first register allocated and
returns the starting map register number (0 to 495 for a UNIBUS, 0
to 8175 for a Q22-bus). Optionally, the procedure returns a pointer to
the base address of the system page table (SPT). Arguments supply the
number of registers to allocate and the DEVICE value that identifies
the device for which the registers are to be used.

Once a driver has allocated the appropriate map registers, it can call
the ELNSLOAD_UNIBUS_MAP procedure to load the registers for use
by a DMA UNIBUS or Q22-bus device.

6-10 Device Handling

The ELNSLOAD_UNIBUS_MAP procedure is an alternative to the
more commonly used ELN$UNIBUS_MAP procedure.

The procedure assumes that the calling program has called the
KER$ALLOCATE_MAP procedure to allocate sufficient map regis-
ters. ELN$UNIBUS_MAP allocates them for the caller. ELN$LOAD_
UNIBUS_MAP also assumes that an additional map register, beyond
the number actually necessary to map the buffer, has been allocated for
use as an invalid wild-transfer-stopper.

Arguments supply a pointer to the first UNIBUS or Q22-bus map
register allocated by KERSALLOCATE_MAP, the I/O buffer, and the
buffer size. An optional argument is a pointer to the SPT; if this
argument is not specified, a device communication region (or any
system space buffer) cannot be mapped.

Another optional argument supplies a UNIBUS data path for the
transfer. If that argument is not supplied, data path 0, the direct data
path, is used.

When the map registers are no longer needed, the driver program

can free them by calling the ELN$FREE_MAP procedure. Pointers to
the freed registers become invalid. Arguments supply the number of
contiguous .map registers to be freed, the number of the first register,
such as the one returned by KER$ALLOCATE_MAP, and the DEVICE
value that identifies the device for which the registers are freed.

The KER$ALLOCATE_MAP and KER$FREE_MAP procedures can be
called only from programs running in kernel mode. ‘

6.6.2 Allocating and Freeing Buffered Data Paths

A driver program can allocate and free UNIBUS adapter buffered
data paths by calling the KERSALLOCATE_PATH and KER$FREE_
PATH procedures. The KER$SALLOCATE_PATH procedure allocates a
UNIBUS adapter buffered data path for use by a DMA UNIBUS device.

The procedure returns a pointer to the allocated data path register
and the allocated data path register number. An argument supplies
the DEVICE value that identifies the device for which the data path is
allocated.

Device Handling 6-11

A buffered data path can optimize the use of memory by a DMA device
that performs strictly sequential address transfers. (For additional
information on buffered data paths, see the VAX Hardware Handbook.)
The VAX-11/750, and VAX 8800, 8700, 8550, 8530, and 8500 processors
that are configured with UNIBUS adapters, support UNIBUS buffered
data paths. For the VAX-11/750, each UNIBUS adapter has three
buffered data paths. For the VAX 8nnn processors, each UNIBUS
adapter has five buffered data paths.

To use a buffered data path for a DMA transfer, the allocated data path
number must be loaded into the UNIBUS map registers being used
for the transfer. The ELN$UNIBUS_MAP and ELN$LOAD_UNIBUS_
MAP procedures accept an optional data path number for loading into
the UNIBUS map registers.

When a UNIBUS buffered data path is used for a DMA transfer, the
data path must be purged when the transfer has completed. You purge
by writing a value of 1 to the data path register, identified by the
returned register pointer.

The driver program can free allocated data paths by calling the
KER$FREE_PATH procedure. Arguments supply the data path regis-
ter number, such as the one returned by KERSALLOCATE_PATH, and
the DEVICE value that identifies the device for which the data path is
freed.

The KERSALLOCATE_PATH and KER$FREE_PATH procedures can
be called only from programs running in kernel mode.

6.6.3 Mapping and Unmapping Memory Buffers

6-12

Device driver programs can map and free memory buffers for

DMA operations on UNIBUS and Q22-bus devices by calling the
ELN$UNIBUS_MAP and ELN$UNIBUS_UNMAP procedures, respec-
tively. The ELN$UNIBUS_MAP procedure maps a specified buffer into
UNIBUS or Q22-bus address space and returns the 18-bit UNIBUS
address or the 22-bit Q22-bus address of the mapped buffer.

Arguments supply the DEVICE value identifying the device that

will use the mapped memory, the I/O buffer, and the buffer size. An
optlonal argument specifies the UNIBUS data path to use; the default
is 0, specifying the direct data path.

Device Handiing

NOTE

The procedure allocates the correct number of map registers
by calling KER$ALLOCATE_MAP. The procedure then
converts the virtual address of each page of the buffer to a
physical address and stores and validates the physical page
numbers in the allocated map registers. If a data path other
than 0 is specified, it is stored in the map registers as well.
Although the map registers are allocated by ELN$UNIBUS_
MAP before use, a nonzero data path number is assumed not
to be in use by any other device.

When the driver program no longer needs the memory buffers, it can
free them by calling ELN$UNIBUS_UNMAP. This procedure unmaps
previously mapped memory buffers. The procedure deallocates the
correct number of map registers by calling KER$FREE_MAP.

Arguments supply the DEVICE value identifying the device that was
using the mapped memory, the I/O buffer and the buffer size, and the
18-bit UNIBUS address or the 22-bit Q22-bus address of the mapped
buffer.

6.6.4 Returning a Variable’s Physical Address

A device driver program can use the ELN$PHYSICAL_ADDRESS func-
tion for DMA devices on MicroVAX processors to return the physical
address of an identified variable. Programs using this function must
include the module $PHYSICAL_ADDRESS.

6.7 Coding VAXBI Bus Device Drivers

The VAXELN Toolkit provides the utility procedures ELN$BI_NODE_
MASK and ELN$BI_STOP for coding device drivers that interface with
a VAXBI bus. A VAXBI device driver must call the ELN$BI_NODE_
MASK procedure to get the mask identifying the VAXBI node number
to which the device should direct its inputs. The driver must load the
returned identification into the device’s INTR Destination Register.
(The alternative, hard-coding the mask, limits the driver’s portability.)

For example, in a VAX 8800 or VAX 6000-2nn system, the returned
mask has a bit set for the VAXBI node number of the NBIB/XBIB bus

adapter. In a KA800 system, the mask has a bit set for the processor’s
VAXBI node number.

Device Handling 6-13

The ELN$BI_STOP procedure issues a VAXBI STOP bus transaction
to place a device in a stopped node state. The procedure’s meaning and
usefulness for a device depends on the device.

Pascal and C programs that use these procedures must include the
modules $VAXBI and $vaxelnc, respectively.

6.8 Executing Routines in Kernel Mode

A number of VAXELN routines must execute in kernel mode. If a pro-
gram includes a call to one of these routines or a user-declared routine
that requires kernel mode, you have two options. You can execute
the entire program in kernel mode, or you can use the KERSENTER_
KERNEL_CONTEXT procedure to execute only that routine in kernel
mode.

To execute an entire program in kernel mode, select kernel mode when
you build the program into your VAXELN system or when you load the
program image. Device driver programs are typical examples of entire
programs that run in kernel mode.

If it is not desirable to execute an entire program in kernel mode, use
calls to KER$ENTER_KERNEL_CONTEXT to execute specific routines
in kernel mode; the rest of the program runs in user mode. You specify
the KERSENTER_KERNEL_CONTEXT procedure with the address of
the routine that is to be called in kernel mode. You can also specify a
status argument and the address of a VAX argument list to be passed
to the called routine. The argument list is a block of longwords in
standard VAX format: the first byte of the first longword supplies the
argument count, and the block contains an additional longword for each
of the arguments.

VAXELN routines that require kernel mode include most of the
VAXELN driver utility procedures and the following:

ALLOCATE_MEMORY (with the physical_address argument)
CREATE_DEVICE

DISABLE_INTERRUPT

ELN$LOAD_UNIBUS_MAP

ENABLE_INTERRUPT

KER$ALLOCATE_MAP
KER$ALLOCATE_SYSTEM_REGION

KER$FREE_MAP

KER$FREE_SYSTEM_REGION

KER$LOCK_DEVICE

6-14 Device Handling

KER$UNLOCK_DEVICE
MFPR
MTPR

Example 6—1 uses KER$ENTER_KERNEL_CONTEXT to exe-
cute a function that calls DISABLE_INTERRUPT and ENABLE _
INTERRUPT.

The call to KERSENTER_KERNEL_CONTEXT in Example 6-1 es-
tablishes the kernel context needed to execute calls to DISABLE_
INTERRUPT and ENABLE_INTERRUPT. It replaces a function call
that might otherwise appear as follows:

return status := raise_ipl(4);

Each argument in the call to KER$ENTER_KERNEL_CONTEXT cor-
responds to the components of the preceding function call. The first
argument in the call to KER$ENTER_KERNEL_CONTEXT, return_
status, receives the function’s completion status, assuming the function
is returning an integer status value. (If the KER$ENTER_KERNEL_
CONTEXT procedure cannot access a specified argument, the proce-
dure returns the status KER$_NO_ACCESS to return_status.) The
second and third arguments identify the function and its arguments,
respectively.

NOTE

When you call KER$ENTER_KERNEL_CONTEXT, the
kernel checks for a completion status. Therefore, you must
specify the KERSENTER_KERNEL_CONTEXT procedure’s
status argument. If the specified routine is a function,
alternatively, that function can explicitly return a status
value. If you do not specify the status argument in the call
to KER$ENTER_KERNEL_CONTEXT or a function that
returns a status value, the call to KERSENTER_KERNEL _
CONTEXT may produce unpredictable results.

Device Handling 6-15

Example 6-1: Using the KER$ENTER_KERNEL_CONTEXT Procedure

MODULE kernel_context_example;
INCLUDE S$KERNEL;

TYPE
argument_block type = RECORD
argument_count : INTEGER;
priority : INTEGER;

END;
VAR
argument_block : argument_block_type;
return_status : INTEGER;

PROGRAM change_context (INPUT, OUTPUT);

BEGIN

argument_block.argument_count := 1;

argument_block.priority := 4; { Priority }
WRITELN (’Entering kernel context...’);
KER$ENTER KERNEL CONTEXT (return status, { Routine return status }

ADDRESS (raise_ipl), { Routine to execute }
ADDRESS (argument_block)); { Routine args }
WRITELN ('Exiting kernel context...’);

.

.

END.
FUNCTION raise_ipl (priority : INTEGER) : INTEGER;

{ While in kernel mode, raise the processor’s IPL to value of priority. }

BEGIN
WRITELN(’In kernel context...’):;
DISABLE_INTERRUPT (priority); { Raise the IPL }
ENABLE_INTERRUPT; { Lower IPL to O }
raise ipl := 1; { Returned in return_status}
END;

END; {MODULE kernel context_example}

6-16 Device Handling

6.9 Handling Power-Failure Recovery

Devices normally need special attention following a power failure.
When the necessary speed and synchronization requirements cannot
be met by the general power-recovery exception (KER$_POWER_
SIGNAL), you can specify, in a CREATE_DEVICE call, the name of
an ISR that is to be called when the processor enters its power-failure
recovery sequence. Such a routine is called before any other process or
ordinary ISR is restarted. Typically, for a processor to recover from a
power failure, an application must perform the following sequence of
operations:

1. Reinitialize the device controller to a known state.

2. Ensure that no partially completed I/O operations are started, since
the device has been reinitialized.

3. Signal processes that are waiting for device interrupts, since no
interrupts will occur now that the device has been reinitialized.

These operations can be performed by a power-failure recovery routine.
Since power-failure recovery occurs at unpredictable times, the ISR

and main program must synchronize themselves with the action of the
power-failure recovery routine to retry operations that were in progress.

The VAX architecture defines a power-failure interrupt at IPL 30 (see
Table 6-1). Therefore, a process can set the processor’s IPL to 30 and
block the interrupt, allowing the process to synchronize itself with the
power-failure recovery routine. Once a power-failure interrupt has been
posted, the processor has approximately 4 milliseconds before power is
shut down. So the interrupt should not be disabled for more than a few
instructions.

Device Handling 6-17

- Chapter 7
ExceptionHandling

This chapter discusses VAXELN exceptions and exception-handling
procedures. The chapter discusses the following topics:

® VAX stack architecture, Section 7.1

¢ Exceptions in VAXELN systems, Section 7.2

¢ Raising exceptions, Section 7.3

¢ Exception-handling procedures, Section 7.4

¢ Status codes, Section 7.5

* Using runtime messages in application programs, Section 7.6

For language-specific information concerning exception handling, see
the VAXELN Pascal Runtime Library Reference Manual, VAXELN C
Runtime Library Reference Manual, or VAXELN FORTRAN Runtime
Library Reference Manual.

7.1 VAX Stack Architecture

This section contains a brief review of the VAX stack architecture.

Whenever a program is executing on a VAX processor, the stack pointer
(SP) and frame pointer (FP) hardware registers describe an active
stack environment. The system software always sets up the initial
stack environment for a process. Usually the memory for the stack is
in the high virtual addresses of the process’s memory, the P1 region.
(See Chapter 3 for a discussion of VAX memory management and the
definition of the P1 region.) '

Exception Handling 7-1

Stacks are good structures to record items in a defined order and
then play the items back in the reverse order. Stacks are helpful
in performing recursive operations, but in many cases they are best
used as a record of the implicit state of a program. The call history
of the procedures activated up to a point in the program is a typical
application of this stack feature.

The VAX architecture uses the stack environment in the processing

of many VAX instructions. The simple cases are instructions such as
PUSHAL, which pushes an address on the stack. The action of pushing
is a 2-step process: subtract a constant from the SP register, then use
the new SP value as the address at which to place the data. Popping
the stack is the reverse: use the value of SP to address the data, then
add a constant to the stack.

The constant is dependent upon the operation. For PUSHAL, a long-
word is placed on the stack. In other contexts, different-sized objects
are pushed or popped from the stack. VAX stacks grow downward in
address as they expand. Nothing can be assumed regarding the align-
ment of SP on a particular memory-length boundary, although some
instructions, such as CALL, implicitly align the stack. Most high-level
languages manage the stack environment for the programmer; it is not
necessary to manipulate the SP value explicitly.

At any given time, the value in the FP register contains the address

of the active stack call frame, a small data structure, defined by the
VAX hardware, that contains information about the current procedure
invocation and the state of the procedure that called it. At the same
time, the value of the SP register is equal to or less than (that is, below)
the FP value. The memory between the SP and FP values is referred to
as the local storage of the procedure activation; together, the SP and FP
values are referred to as the procedure’s stack frame, as illustrated in
Figure 7-1. Pascal and C use this space to store procedure temporaries
or variables.

The VAX CALLS, CALLG, and RET instructions affect the values of
SP and FP to dynamically create and destroy the frame structure.
For instance, with the stack in the state pictured in Figure 7-1, if a
procedure call is performed, the stack would look like Figure 7-2.

7-2 Exception Handling

Figure 7-1:

A Procedure’s Stack Frame

Procedure Local Storage }(SP)
Active Call Frame (FP)
MLO-004281

Figure 7-2: A Frame Structure After a Procedure Call

Stack
Frame

Stack
Frame

Procedure Local Storage

{(SP)

Active Call Frame

(FP)

Procedure Local Storage

Previous Call Frame

MLO-004282

Internally, the call frame block looks like Figure 7-3.

In Figure 7-3, Return PC contains the address of the first instruction
after the CALL instruction that called this currently active procedure.
Previous FP contains the address of the previously active frame: The
Handler Address location is either 0 or the address of an established
condition handler procedure. (For a more detailed description of the
frame contents, see the VAX Architecture Reference Manual.)

By examining the current frame at the FP address, the history of the
call sequence can be extracted by following the Previous FP values
until the top of the stack is reached. This trail of frames is the key to
understanding what happens when an exception occurs.

Exception Handling 7-3

Figure 7-3: Call Frame Block

Handler Address (FP)
Register Mask | Previous PSW { :(FP)+4
Previous AP (FP)+8
Previous FP (FP) + 12
Retum PC (FP) + 18
Saved Registers (FP) + 20
MLO-004283

7.2 Exceptions in VAXELN Systems

The term exception describes programming events that occur during
the execution of a program. Exceptions can be either synchronous or
asynchronous:

¢ Synchronous exceptions occur at the same place in the program
given a set of circumstances, for example, dividing by 0.

¢ Asynchronous exceptions are triggered by an event outside the
control of the program, for example, power failure.

Some exceptions are generated by hardware events, and some are
solely the result of a software event. VAXELN programs can experience
these types of exceptions:

¢ Hardware-detected arithmetic problems, for instance, division by 0
or integer overflow

* Hardware-detected access problems, for instance, nonexistent
memory

¢ Hardware-detected events, for instance, power failure
* Software-detected events, for instance, a signal of a process
* Software-detected conditions, for instance, a Pascal range violation

7-4 Exception Handling

* Software-detected conditions in the runtime library, for instance, a
problem with opening a file

* Software-detected conditions in the VAXELN Kernel when a pro-
gram has requested a kernel service that must return an error
status but the program did not specify a status parameter

When an exception occurs, you have two options: ignore it or handle
it. An exception might or might not be important for a program and
it might or might not be expected. You must decide if a particular
problem or exception condition is important or fatal to the program
execution.

The VAXELN Kernel exception-processing software notifies a running
program of an exception by temporarily stopping the normal execution
of the program and calling a specially defined exception handler routine
defined by the program. Exception handlers are procedures that are
established during the execution of a program to handle one or more
of the potential exception conditions that can occur. For example, a
programmer might know that an integer overflow could occur during

a particular section of code and establish a special handler for that
region.

All of the VAX programming languages allow the programmer to
dynamically establish exception or condition handlers. For transporta-
bility, the VAXELN exception mechanism is almost identical to the
VMS exception mechanism.

7.2.1 Exception-Handler Arguments

When an exception occurs, the VAXELN Kernel exception logic builds
an argument list that describes the exception. The kernel then
searches the current list of stack frames to find a frame that con-
tains a nonzero condition handler address. When one is found, the
handler procedure is called.

If no handler is found, the kernel takes a default action. If the debug-
ger is present in the system, a special debugger handler is called. The
debugger handler acts as the condition handler, giving the programmer
a chance to look at the state of the program. If no handler is found and
the debugger is not present, the kernel deletes the process.

Exception Handling 7-5

The argument list for an exception handler routine contains two values.
The first argument value is the address of another data block that
contains information about the exception that occurred. This block is
the signal argument block. The signal arguments are illustrated in
Figure 7-4.

Figure 7-4: Signal Arguments

Number of Longwords Following | :Signal Arguments

Name of the Exception :Signal Arguments + 4

Additional Exception—Dependent
Information

PC of the Exception

PSL at the Exception Point

MLO-004284

Each exception has a distinct argument list that provides information
about the exception. Sometimes, as in the case of division by 0, no
additional information is needed or present. Such exceptions have
the same names as the corresponding status values, as described in
Appendix A, Status Values/Exception Names.

The second argument value is the address of a data block that con-
tains information needed to recover from the exception. This block is
called the mechanism argument block. The mechanism arguments are
illustrated in Figure 7-5.

The frame depth value is the number of frames searched while the
gystem 1is looking for the exception handler address.

7-6 Exception Handling

Figure 7-5: Mechanism Arguments

4

FP of Established Handler

Frame Depth

RO at Exception

R1 at Exception

:Mechanism Arguments
:Mschanism Arguments + 4
:Mechanism Arguments + 8
:Mechanism Arguments + 12

:Mechanism Arguments + 16

MLO-004285

7.2.2 Continue and Resignal Operations

When the exception handler routine is called, it has the responsibility
of locking at the exception name value and deciding what to do. The
routine then returns a Boolean value to the kernel exception handler
logic. If the Boolean value is TRUE (low bit of RO = 1) the kernel
resumes execution of the program at the point of the exception; the
condition is handled. If the Boolean value is FALSE (low bit of RO = 0)
the kernel continues to search the stack frame list for another handler
to call; the condition is not handled. These two actions are referred to
as continuing and resignaling.

Many high-level languages provide an explicit method for exiting a
routine, such as an up-level GOTO in Pascal and the longjmp function
in C, which you should use to exit an exception handler. When you use
a Pascal up-level GOTO or a C longjmp, the language runtime library
does an implicit continue on behalf of the program.

As explained previously, if no handler is found that handles the excep-
tion, the kernel deletes the process and returns the exception name as
the status. Each potential exception has an individual status code de-
fined for it (see Section 7.5). The exception name value can be used to
associate a descriptive text message with the status code, as explained

in Section 7.6.

Exception Handling 7-7

An exception handler may handle one or more individual exception
conditions. Some programs have handlers that handle all exceptions
and display a message if something unexpected occurs. Since the stack
frame is searched backward in the call history, a handler established in
the program’s main routine would be the last to be called in the event
of an exception and could act as the catch-all handler.

In addition to the typical continue or resignal options, the program
can also modify the exception state information and continue under
different conditions. For instance, if an integer overflow occurs on a
statement, the handler can modify the variables involved and continue.
As another example, changing the value of the saved PC in the signal
argument list has the effect of continuing the program at a different
place. Remember, though, that the program continues with the stack
state as it was at the exception. This means that the new PC must be
in the routine that experienced the exception.

7.2.3 Unwind Operation

As mentioned previously, some languages provide an explicit method
for exiting the condition handler. Using such a method has the effect
of continuing at a different location and possibly in a different stack
environment. The act of exiting cleanly from one stack environment
and reestablishing another stack environment is called unwinding.
Because the stack discipline and modification are complex, a VAXELN
Kernel procedure performs the unwinding operation. Normally, the

unwind occurs automatically when an application exits an exception
handler.

If you use the KER§UNWIND procedure directly, it provides several
options. You can specify KERSUNWIND with two parameters: a new
frame pointer (FP) and an optional new program counter (PC) . The
new FP argument specifies the target FP to which the stack will be
unwound, or a value in the range 0 to 32767 that specifies the number
of stack frames to be unwound (the frame depth). You can use a frame
depth value only if you call KERSUNWIND from an exception handler
or a routine called by an exception handler. Otherwise, the status
value/exception SS$_NOSIGNAL is returned.

When specified as frame depths, the values 0 and —1 have special
meanings. The value 0 causes KER§UNWIND to unwind to the frame
of the caller of the routine that established the handler. If you specify
;1 for the frame depth, KERSUNWIND does not unwind any call
rames.

7-8 Exception Handling

The PC argument specifies the new PC at which execution should
resume within the call frame specified by the new FP argument. If you
do not specify a new PC, the kernel uses the return PC that is already
established for the target call frame.

The KERSUNWIND procedure has the effect of returning back through
some number of subroutines without executing any code in the subrou-
tines that are skipped.

Unwinding allows a program to handle the exception by skipping back
to a particular call point in the stack history, for instance, the caller of
the routine that got the exception.

As an unwind operation takes place, if a frame has a handler estab-
lished, the handler is called with a special unwind exception condition.
This exception is to notify the handler that the active frame is being
skipped and that any necessary cleanup should be performed. The
unwind handler is assumed to complete, returning the Boolean TRUE
value that specifies continue.

One final feature can be used when an unwind is performed. Most
procedures that return a simple value return that value in R0 and
R1. Most VAX languages adhere to this standard. You can, therefore,
change the value of the saved RO and R1 in the mechanism argument
block and then unwind. The effect is to set the value of a function and
return.

The following program calls procedures to a frame depth of three. The
procedure at level three establishes an exception handler that unwinds
the call stack two frames to the main procedure level.

MODULE handler_ test;

INCLUDE $KERNEL, $SSMSG;

PROGRAM handler test;

FUNCTION cond handler OF TYPE EXCEPTION_ HANDLER;

VAR
status : INTEGER;
unwind depth : “ANYTYPE;

Exception Handling 7-9

BEGIN
IF SIGNAL ARGS.NAME <> SSS_UNWIND THEN
BEGIN
WRITELN (’Inside condition handler.’);
WRITELN (’/Unwinding ’, mech_args.depth:1, ’ frames’);
WRITELN (‘to return to the main procedure.’);
unwind_depth::INTEGER := mech_args.depth;
KERSUNWIND (status,
NEW_FP := unwind_ depth);

cond_handler := TRUE
END
ELSE
cond_handler := FALSE
END;

PROCEDURE level 3;

VAR
i, j, k : INTEGER;

BEGIN
WRITELN (’Process is in level-3.7);
WRITELN (’/Now raising an exception to test KERSUNWIND.’);
RAISE_EXCEPTION (1);

WRITELN (’/Should not execute this statement.’);

END; :

PROCEDURE level 2;

BEGIN

WRITELN (/Process is in level-2.7);

WRITELN (/Now calling level-3.’);

level 3;

WRITELN (’Should not execute this statement.’ });
END;

BEGIN
WRITELN (/This is the main program -- level 1.7);
WRITELN (/Establishing a condition handler.’});
ESTABLISH (cond_handler);
WRITELN (’Now calling level-2.7);
level_ 2;
WRITELN (/Control is back in level 1 after the unwind.’);
WRITELN (’/Main routine is done.’);
END.
END;

In the preceding example, active handlers are called during the un-
wind operation. Thus, the handler in the example checks whether
an unwind operation is already in progress. If not, the handler calls
KER$UNWIND. If an unwind operation is in progress, the handler
resignals. When the unwind operation is complete, control returns to
the main routine.

7-10 Exception Handling

7.2.4 Multiple Concurrent Exceptions

When an exception signal is in progress, other exceptions can still
occur. These exceptions also cause the stack to be searched for an
active handler, but a special action takes place. Any frames that were
previously tested for having an exception handler are not tested again.

That is, when the exception occurs, the frames from the exception
frame through the original condition handler are tested, then the
frames between the handler’s frame and the frame that activated the
handler are skipped. The search resumes with the frame preceding the
one that established the handler. This prevents handlers from being
recursively entered; once active, a handler cannot be reactivated.

7.3 Raising Exceptions

VAXELN provides the RAISE_EXCEPTION kernel procedure, which
can be used to generate exceptions. The result is much like an ex-
ception caused by a hardware condition. Sections 7.3.1 and 7.3.2
provide information about kernel procedure failure exceptions and
asynchronous exceptions, respectively.

7.3.1 Kernel Procedure Failure Exceptions

Each VAXELN Kernel procedure accepts an optional status variable.
The final status of the operation is placed in the variable as one of
the last things done by the kernel procedure. If the program does
not specify a status variable and the status is some sort of failure,
an exception is generated, with the status as the exception name.
This feature provides a means of handling unexpected failures for the
programmer who expects kernel procedures to succeed.

7.3.2 Asynchronous Exceptions

Asynchronous exceptions do not occur as a result of a program action
but as a result of an external event that cannot be predicted. The
result of an asynchronous exception is identical to that of any other
exception, with one notable difference. While one of these exceptions is
signaled, other asynchronous exceptions are prevented from occurring

Exception Handling 7-11

until a handler returns the BOOLEAN TRUE value that specifies
continue. However, other synchronous exceptions can still occur.

In addition, VAXELN provides two kernel procedures for controlling the
occurrence of these exceptions. Normally the exceptions are enabled,
but calling DISABLE_ASYNCH_EXCEPTION prevents the delivery

of the exceptions to the calling process until ENABLE_ASYNCH_
EXCEPTION is called. These procedures mimic the action of having an
asynchronous exception signal in progress.

Several types of asynchronous exceptions are generated by VAXELN:

¢ KER$ POWER_SIGNAL. If a job is specified during system build
as desiring power-recovery signals, the kernel generates an excep-
tion when the power recovery takes place.

e KER$_QUIT_SIGNAL. Signaling a process object causes the target
process to receive this exception.

e KER$_PROCESS_ATTENTION. This exception occurs when
a process calls the kernel procedure KER$RAISE_PROCESS_
EXCEPTION.

7.4 Exception-Handling Procedures

The kernel procedures relating to exception handling are summarized
in Sections 7.4.1 to 7.4.5.

7.4.1 DISABLE_ASYNCH_EXCEPTION Procedure

DISABLE_ASYNCH_EXCEPTION prevents the delivery of asyn-
chronous exceptions to the calling process.

7.4.2 ENABLE_ASYNCH_EXCEPTION Procedure

ENABLE_ASYNCH_EXCEPTION allows the delivery of asynchronous
exceptions to the calling process. Asynchronous exceptions are enabled
by default and must be reenabled only after being explicitly disabled.
They also are disabled while an asynchronous exception is being
handled.

7-12 Exception Handling

7.4.3 RAISE_EXCEPTION Procedure

RAISE_EXCEPTION causes a particular software exception in the
calling process. You can specify a list of 0 or more additional exception
arguments, which will be made available to the exception handler in
the array of additional arguments.

NOTE

Some exception names, such as SS$_ACCVIO, are used to
identify specific system or hardware events (in this case, a
virtual memory access violation); do not raise one of these
exceptions.

7.4.4 KERS$RAISE_PROCESS_EXCEPTION Procedure

KER$RAISE_PROCESS_EXCEPTION raises the asynchronous excep-
tion KER$_PROCESS_ATTENTION in the specified process.

7.4.5 KERS$SUNWIND Procedure

The KER§UNWIND procedure unwinds the call stack to a new location.
Arguments supply the target frame pointer (FP) and the new program
counter (PC) at the new FP.

7.5 Status Codes

Status codes returned by VAXELN routines follow the VAX convention
in which edd-numbered integers signify success and even values failure,
though not necessarily fatal. The details of the convention are as
follows:

* Bits 0 to 2 define the severity: 0 means warning, 1 means success,
2 means error, 3 means informational, and 4 means severe or fatal
error.

¢ Bits 3 to 31 of the integer form a status ID.

Exception Handling 7-13

Typically, an informational status is similar to success but is qualified
in some way. For example, a command interpreter might use it to
inform a user that although a delete command was understood and
processed successfully, no objects were deleted. Similarly, warning
and, sometimes, error severity imply that operation of a system is still
possible, whereas fatal severity implies that it is not.

NOTE

For the exit status of a process, you can return any integer,
although Digital recommends that you follow the convention
just explained.

The creator of a job has the option of receiving a special termination
message when the created job completes. This message contains an
integer making up the completion, or exit, status of the created job’s
master process. If the master process specifies no status of its own and
completes successfully, the default status code is 1.

NOTE

The successful completion of a process can be represented by
more than one exit status, for example, status code 1 or 3.
Therefore, to check for success in your programs, you should
check for an odd value (bits 0 to 2 equal 1 for success, or 3
for success with an informational message).

7.6 Using Runtime Messages in Application Programs

The VMS system contains message-processing features that application
programs can use to perform error checking and to handle the conver-
sion of status codes into meaningful message text. These features are
supported by the VMS Message Utility and the VMS system service
$GETMSG. Using the Message Utility, you can construct messages for
use with your application programs. The $GETMSG system service ex-
tracts message text from system and user-created message data bases
generated by the Message Utility.

The VAXELN Toolkit includes message files generated from the VMS
Message Utility. You can use the contents of these files in your appli-
cation programs to check and handle errors. Additionally, the toolkit
provides two runtime routines that return message text associated

- with a status code: the system service SYS$GETMSG, which is similar

7-14 Exception Handling

to the VMS $GETMSG routine, and a high-level language equivalent
named ELN$GET _STATUS_TEXT.

Sections 7.6.1 to 7.6.4 identify the VAXELN message files and explain
how to create application-specific messages, use message files in ap-
plication programs, and retrieve message text associated with status
codes.

7.6.1 VAXELN Message Files

The VAXELN Toolkit provides message source files and object modules
used by the VAXELN software components for error checking and
handling. The message source files reside in the general VAXELN
runtime library. They consist of message definition statements and
directives that define message text, status codes, and message symbols.
You may want to examine them before or use them as templates while
you create your own message files.

Message object modules reside in the RTLOBJECT.OLB and RTL.OLB
object module libraries. These modules are compiled message files.
The RTLOBJECT message modules contain message symbols. Message
symbols are global symbols that provide a convenient way for programs
to refer to status codes (see Section 7.6.4). A message symbol consists
of a prefix that identifies the facility and a symbol name that is defined
in the message definition. An example of a message symbol defined for
the VAXELN Kernel is KER$_NO_SUCH_PORT. The prefix is KER$_,
and the message symbol is NO_SUCH_PORT.

The RTL.OLB library contains two sets of message modules that are
named facility$MSGDEF_TEXT and facility$MSGDEF. The facil-
ity$MSGDEF_TEXT modules contain message text. You link these
modules with application programs that call the ELN$GET_STATUS_
TEXT procedure to access message text at runtime.

The facility$MSGDEF modules in the RTL.OLB library define message
symbols as linker global values for use with programs written in
languages other than VAXELN Pascal.

Table 7-1 summarizes the VAXELN message files.

Exception Handling 7-15

Table 7-1: VAXELN Message Files

RTLOBJECT
Source File Module RTL Modules Description
CMSG.MSG $CMSG C$MSGDEF_TEXT Messages gen-
C$MSGDEF erated by the
VAXELN C run-
time library
ELNDECW_DWTMSG.MSG ELNDECW_DWT$MSGDEF_ Messages gen-
TEXT erated by
ELNDECW_DWT$MSGDEF the VAXELN
DECwindows XUI
Toolkit routines
ELNDECW_XLIBMSG.MSG ELNDECW_XLIB$MSGDEF_ Messages gen-
TEXT erated by
ELNDECW_XLIB$MSGDEF the VAXELN
DECwindows Xlib
routines
ELNMSG.MSG $ELNMSG ELN$MSGDEF_TEXT Messages gen-
ELN$MSGDEF erated by the
VAXELN Pascal
compiler and
other runtime
components
FORMSG.MSG $FORMSG FOR$MSGDEF_TEXT FORTRAN-
FOR$MSGDEF specific messages
generated by
the VAXELN
FORTRAN run-
time library
KERNELMSG.MSG $KERNELMSG KER$MSGDEF_TEXT Messages gen-
KER$MSGDEF erated by the
VAXELN Kernel
LIBMSG.MSG $LIBMSG LIB$MSGDEF_TEXT General runtime
LIB$MSGDEF library messages

7-16 Exception Handling

generated by
the VAXELN
FORTRAN run-
time library

Table 7-1 (Cont.):

VAXELN Message Files

Source File

RTLOBJECT
Module

RTL Modules

Description

MTHMSG.MSG

OTSMSG.MSG

PASCALMSG.MSG

SSMSG.MSG

STRMSG.MSG

$MTHMSG

$0TSMSG

$PASCALMSG

$SSMSG

$STRMSG

MTH$MSGDEF_TEXT
MTH$MSGDEF

OTS$MSGDEF_TEXT
OTS$MSGDEF

PAS$MSGDEF_TEXT
PAS$MSGDEF

SS$MSGDEF_TEXT
SYS$SSDEF

STR$MSGDEF_TEXT
STR$MSGDEF

Math runtime
library messages
generated by
the VAXELN
and VAXELN
FORTRAN run-

time libraries

Language-
independent run-
time library mes-
sages generated
by the VAXELN
and VAXELN
FORTRAN run-
time libraries

Messages gen-
erated by the
VAXELN Pascal
runtime library

System Service
runtime messages
generated by the
VMS emulation
routines and other
VAXELN routines

String runtime
library messages
generated by
the VAXELN
FORTRAN run-
time library

In addition to the modules listed in the preceding table, the VAXELN
Toolkit includes the message image files ELNDECW_DWTMSG.EXE,
ELNDECW_XLIBMSG.EXE, ELNCMSG.EXE, and ELNMSG.EXE
and VAXELN Pascal compiler messages. The VAXELN installation
procedure places the images ELNDECW_DWTMSG.EXE, ELNDECW_
XLIBMSG.EXE, and ELNCMSG.EXE in the VAXELN directory ELN$.

Exception Handiing 7-17

The ELNDECW_DWTMSG.EXE and ELNDECW_XLIBMSG.EXE
images provide message text for the VAXELN DECwindows XUI
Toolkit and Xlib runtime routines. The ELNCMSG.EXE image file
provides message text for the VAXELN C runtime routines.

The image file ELNMSG.EXE and the VAXELN Pascal compiler mes-
sages are used by software that runs on a VMS system. The VAXELN
installation procedure places the image ELNMSG.EXE in the VMS
directory SYS$MESSAGE.

7.6.2 Constructing Messages

To construct application-specific messages, do the following:

1. Create a message source.

2. Compile the source file using the VMS Message Utility.

3. Include the resulting message object module when you link your
application program.

A sample message source file follows:

FACILITY RTAPPLICATION, 1 /PREFIX=RTAPP$_
.SEVERITY ERROR

SYNTAX <Syntax error in string ’!AS’>/FAO=1l
ERRORS <Errors occurred during processing>
.END

Consult the message source files that reside in the general runtime
library for more elaborate examples.

After you create the source file, use the MESSAGE command to compile
it. Specify the command in the following format:

$ MESSAGE file-specl, . ..]

The default file type for message source files is MSG. The following ex-
ample compiles the message source file RTAPPMSG.MSG and produces
the message object module RTAPPMSG.OBJ:

$ MESSAGE RTAPPMSG

You can then link the message object file with your application pro-
gram. For example:

¢ LINK/NOSYSSHR RTAPPLICATION+RTAPPMSG+ELN$:RTLSHARE/LIB+RTL/LIB

7-18 Exception Handling

For more information about the VMS Message Utility, see the VMS
Message Utility Manual.

7.6.3 Using Message Files with Application Programs

You can use VAXELN and application-specific message symbols in
your application programs to check for and handle various conditions at
runtime. A program can compare a message symbol with a status value
returned by a routine call to check whether an operation completed
successfully or whether a particular error occurred.

To use message symbols, a program must import them with a language-
dependent include statement. Alternatively, you can include message
symbols by specifying a message module, such as KER$MSGDEF_
TEXT, from RTL.OLB when you link the application. You can include
the same set of object modules for each application program or you
can set up the application such that all jobs share the message text
shareable image ELN$:SHARED_STATUS_TEXT.EXE. This shareable
image contains the status text for the following toolkit components:

* Kernel

¢ VAXELN runtime library

¢ C runtime library

¢ VAXELN Pascal runtime library

e FORTRAN runtime library

¢ General runtime library (LIB)

* Language-independent runtime library (OTS)

¢ String runtime library (STR)

For information about building the message text shareable image into

a VAXELN system or tailoring the shareable i 1mage, see the VAXELN
Development Utilities Guide.

Example 7-1 imports the message symbols from the message module
$KERNELMSG. The program then uses the symbols KER$_SUCCESS
and KER$_DISCONNECT to check for success and error conditions.

Exception Handling 7-19

Example 7-1: Using Message Files

MODULE msg_symbol ex;
INCLUDE $KERNELMSG; { Import the kernel message symbols. }
PROGRAM use msg_symbol (INPUT, OUTPUT);

VAR
one_second : LARGE_INTEGER;
data_port : PORT;
dest_port_name : VARYING STRING(8);
msg : MESSAGE;
stat : INTEGER;

BEGIN

{ Create a port and then use that port to establish a connection to
{ another port. Repeat the connection request until a connection
{ is made. Use the KER$_SUCCESS message symbol to check for success.

{3

CREATE_PORT (data_port);
REPEAT
WAIT ANY (TIME := one_second);
CONNECT CIRCUIT (data port,
DESTINATION NAME := dest_port_ name,
STATUS := stat);
UNTIL stat := KER$_ SUCCESS;

{ Now, send a message over the circuit. }
SEND (msg, data port, STATUS := stat),

{ If the send operation failed because the circuit was disconnected
{ by the partner process, reestablish a circuit connection and try
{ to send the message again. Use the KER$_DISCONNECT message symbol
{ to check for this condition.

{}

IF stat = KERS_DISCONNECT THEN
BEGIN
DISCONNECT_CICUIT (data_port);
CONNECT_CIRCUIT (data port,

DESTINATION NAME := dest_port_ name,
STATUS := stat);
SEND (msg, data port, STATUS := stat),

END;

Example 7-1 Cont’d on next page

7~-20 Exception Handling

Example 7-1 (Cont.): Using Message Files

{ If the operation failed again, terminate this job. Use the
{ ODD function to check for an odd status code (success or
{ informational).

{}
IF NOT (ODD (stat)) THEN

BEGIN
WRITELN (Exiting, status is: ’, stat:l);
EXIT (EXIT_STATUS 1= gtat);
END;
END.
END;

If the INCLUDE statement was omitted from this program, you could
include the $KERNELMSG module with the following EPASCAL
command line:

$ EPASCAL/DEBUG MSG_SYMBOL_EX,ELN$:RTLOBJECT/LIB/INCLUDE=$KERNELMSG

7.6.4 Retrieving Message Text

The VAXELN runtime libraries provide two message-processing rou-
tines: SYS$GETMSG and ELN$GET_STATUS_TEXT. These routines
retrieve the message text associated with a specified status code. An
application can use these routines to retrieve message text from system
message files or user-created message files.

SYS$GETMSG is a system service that is similar to the VMS system
service $GETMSG. It locates and returns message text associated
with a specified status code into the caller’s buffer. You must specify
the status code, a longword to receive the message length, and buffer
address arguments. Optional arguments let you specify the message
components to be returned and the address of a four-byte array that
receives other message-specific data. For more information, see the
VMS System Services Reference Manual.

Exception Handling 7-21

The VAXELN Toolkit provides the ELN$GET_STATUS_TEXT proce-
dure for easier use with high-level languages. This procedure searches
for a specified status code in the message text modules that you include
with the program image. If the procedure does not find the status
code in the image, the procedure searches for the code in the system’s
message text shareable image. When the procedure finds the specified
status code, it returns the code’s message text. If you specify the op-
tional format control string, the procedure returns only the message
components identified in the string.

To use the ELN$GET_STATUS_TEXT procedure, you must include the
following modules:

Language Module

VAXELN Pascal $GET_MESSAGE_TEXT from the RTLOBJECT.OLB
(o] $GET_MESSAGE_TEXT from ELN$:VAXELNC.TLB
FORTRAN ELN$:MESSAGES.FOR

The call to ELN$GET_STATUS_TEXT in the following example returns
the message text associated with the message symbol KER$_BAD_
COUNT to the variable output_string:

VAR
output_string

BEGIN

{ Get the message text. }

ELN$GET_STATUS_TEXT (KER$_BAD_COUNT,
[STATUS$FACILITY, STATUS$SEVERITY, STATUSSIDENT,
STATUSS$TEXT]
output_string);

{ Now write it. }

WRITELN (output_string);

7-22 Exception Handiing

{ %KERNEL-F-BAD_ COUNT, Bad parameter count

{
{ would be written to SYS$OUTPUT

{}

END.

Since the ELNS$GET_STATUS_TEXT procedure retrieves message text
at runtime, the appropriate facility$MSGDEF_TEXT message modules
must be linked with your application programs or included as part

of the system’s message text shareable image. You can include these
message modules when you specify the RTL.OLB library module in the
LINK command line, or when you select Yes for the Shared status
text entry on the System Builder’s System Characteristics Menu.

When using the remote debugger, you can also retrieve runtime mes-
sage text by using the SHOW MESSAGE debugger command. For
information on the SHOW MESSAGE debugger command, see the
VAXELN Development Utilities Guide.

7.6.5 Displaying VAXELN Message Text on VMS Systems

While developing VAXELN applications on a VMS system, you may
want the system to display the message text associated with the
hexadecimal values reason masks or reason values, reported in the
context of exceptions. Such values are returned by the local debugger
component. To retrieve the message text, specify the appropriate
message image files with the DCL command SET MESSAGE. The
image files that the toolkit supplies include the following:

ELNDECW_DWTMSG.EXE Provides message text for the VAXELN
DECwindows XUI Toolkit runtime routines

ELNDECW_XLIBMSG.EXE Provides message text for the VAXELN
DECwindows Xlib runtime routines

ELNCMSG.EXE Provides message text for the VAXELN C
runtime routines
ELNMSG.EXE Provides message text for the VAXELN run-

time routines

Exception Handling 7-23

" The following command lines show how to enable message text for the
VAXELN and VAXELN C runtime routines, where hhhhhhhh is the
hexadecimal value of interest:

$ SET MESSAGE SYS$MESSAGE:ELNMSG
$ EXIT %xhhhhhhhh

$§ SET MESSAGE ELNS:ELNCMSG
$ EXIT %xhhhhhhhh

You must enable message text while debugging DECwindows applica-
tions. The following command lines enable DECwindows message text,
where hhhhhhhh is the hexadecimal value of interest:

$ SET MESSAGE ELNS$:ELNDECW_DWTMSG
$§ EXIT %xhhhhhhhh

$ SET MESSAGE ELN$:ELNDECW_XLIBMSG
$ EXIT %xhhhhhhhh

7-24 Exception Handling

Chapter 8

Ethernet/IEEE 802 Datalink Drivers

The VAXELN Toolkit includes Ethernet/IEEE 802 datalink drivers for
supported network devices. Each of the datalink drivers supports the
the VAXELN Ethernet/IEEE 802 Datagram Service, VAXELN Network
Service, and VAXELN Internet Services.

* The Datagram Service provides an interface that VAXELN systems
can useé to communicate with other types of systems using system-
independent communications protocols.

¢ The Network Service routes messages sent between two network
nodes, manages the list of universal names for the network, and
provides a runtime interface for managing a DECnet network.

¢ The Internet Services provide an Ethernet network interface that
VAXELN systems can use to communicate with other applications
in an Internet network.

The VAXELN datalink drivers support multiple Ethernet controllers.
VAXELN systems can include up to eight Ethernet controllers of the
same type, and can participate in homogeneous or heterogeneous net-
working environments. Although DECnet software can run on only one
controller at a time, you can implement other private Ethernet proto-
cols that can run on other available controllers. That is, if your system
is configured with two Ethernet controllers, one can run DECnet while
the other controller runs your private Ethernet protocol.

Using network management routines, applications can start and stop
the DECnet software on a controller and can switch the DECnet
software from one controller to another (see Section 9.4.3).

Ethernet/IEEE 802 Datalink Drivers 8-1

8-2

The VAXELN Ethernet/IEEE 802 datalink drivers are self-contained
program images that perform networking services. Table 8-1 lists the
datalink drivers with the devices they support.

Table 8—-1: EthernetIEEE 802 Datalink Drivers
Driver Supported Network Devices

ESDRIVER Integrated Ethernet controllers for the MicroVAX 2000, 3300,
and 3400 and the VAXstation 2000 and 3100 series processors
(ESA) :

ETDRIVER DEC LANcontroller 200 (BNI)

EZDRIVER Integrated Ethernet controller for rtVAX 300 processor (EZA)
XBDRIVER DEBNA VAXBI Ethernet adapter (BNT)

XEDRIVER DELUA or DEUNA UNIBUS adapter (UNA)

XQDRIVER DELQA or DEQNA Q-bus adapter (QNA)

You build a datalink driver into a VAXELN system image by select-
ing appropriate System Builder menu entries on the Network Node
Characteristics Menu and the Device Description Menu. To build

a datalink driver into a system for using the Network Service or
Datagram Service, you must select the following values on the Network
Node Characteristics Menu:

* Enabled or Disabled for the Network service entry

* The Network device entry value that indicates the type of net-
work device on your system

If you select Enabled, the System Builder includes the Network Service
in your system such that it runs at system start-up. If you select
Disabled, the System Builder includes the Network Service in your
system, but the service remains idle until the system enables it dynam-
ically at runtime (see Section 9.4.3.1).

When you finish editing the Network Node Characteristics Menu, the
System Builder prompts you for a device configuration by displaying
the Device Description Characteristics Menu.

Applications that do not require VAXELN DEChnet services but require
other network services, such as the Datagram Service or Internet
Services, must include the appropriate VAXELN datalink driver and
device description to support these alternative network protocols. To
add Ethernet device support for such an application, you must edit

EthernetIEEE 802 Datalink Drivers

the Network Node Characteristics and Device Description menus as

follows:

Select No for the Network service, Name service, and File
access listener entries on the Network Node Characteristics
Menu.

Add a device description for the system’s Ethernet controller on the
Device Description Menu, as follows:

Name the device according to the device tables in the VAXELN
Development Utilities Guide, using the formm XnB. In other
words, do not use the letter A as the third letter in the device
name. Instead, use the letter B (or any other letter). For
example, instead of specifying the device name XQA, specify
the name as XQB; instead of specifying the name XBA, specify
XBB.

Not using a device name in the form XnA prevents the System
Builder from inappropriately deleting the device description

if you reedit the Network Node Characteristics Menu. The
System Builder treats device names in the form XnA specially.

If your system contains multiple Ethernet controllers, name
subsequent controllers beginning with the letter C, and specify
No for the Autoload entry.

Use the appropriate values as specified in the device tables

for the Register address, Vector address, and Interrupt
priority entries.

Select Yes for the Autoload entry. This selection allows the
System Builder to load the correct Ethernet datalink driver into
the system image.

After building the system image, you can examine the map file for the
system to confirm that the correct device driver was included in the

system image.

NOTE

If you build the ESDRIVER into a VAXELN system that is to
run on a MicroVAX 3300 or 3400 processor, you must specify
an additional 128 pages for the system’s system region size.

- The System Builder includes the Network Service in an enabled state
implicitly when you select the remote debugging option for a system
under development.

EtherneV/IEEE 802 Datalink Drivers 8-3

This chapter provides an overview of the Ethernet/IEEE Datagram
Service (see Section 8.1) and explains how an application can use the
Datagram Service to do the following:

* Retrieve a CSMA/CD LAN configuration, Section 8.2

¢ Retrieve Ethernet controller attributes, Section 8.3

* Connect and disconnect an Ethernet/IEEE 802 protocol, Section 8.4
¢ Transmit and receive messages, Section 8.5

¢ Set up an Ethernet/IEEE 802 Datagram Service environment,
Section 8.6

For more information about building the datalink drivers into VAXELN
systems, see the VAXELN Development Utilities Guide. For more
information about the VAXELN Network Service, see Chapter 9. For
more information about the VAXELN Internet Services, see Chapter 10.

8.1 Ethernet/IEEE 802 Datagram Service

VAXELN systems cannot exchange user-level datagrams transpar-
ently with other operating systems. However, two such systems can
communicate in a nontransparent manner by using the VAXELN
Ethernet/IEEE 802 Datagram Service. This service provides network
interface routines that VAXELN application programs can use to
communicate over a Carrier Sense Multiple Access/Collision Detect
(CSMA/CD) LAN. Using this service, VAXELN systems can communi-
cate with other types of systems using system-independent communi-
cations protocols. The systems send messages to and receive messages
from the datalink driver without Network Service intervention.

The VAXELN and VMS datalink drivers provide multiplexing through
the Ethernet protocol type, IEEE 802 service access points (SAPs), and
the IEEE SNAP SAP with a protocol identification (extended version of
SAP), that provides access to multiple users.

Figure 8-1 shows a 2-node VAXELN network that is using the
Ethernet/IEEE 802 Datagram Service.

8-4 Ethernet/IEEE 802 Datalink Drivers

Figure 8-1: A Two-Node VAXELN Network Using the Datagram

Service
Target VAX 1 Target VAX 2
Job A [Kernel Job B I Kemel
Datalink Datalink
Driver Driver
[
i i Py
Ethemet 5
o 7
MLO-004286

Job A transmits a message to Job B by using the datalink driver’s
network interface routines. The routines retrieve the CSMA/CD LAN
configuration, connect to an Ethernet protocol, allocate a buffer for
transmitting the message, and then transmit the message. Job B, on
Target VAX 2, waits on a dispatch port. When a message arrives, the
job calls a routine that receives the message.

Ethernet/IEEE 802 Datagram Service provides the following network
interface routines:

EtherneVIEEE 802 Datalink Drivers 8-5

Routine

Description

ELN$NI_ALLOCATE_BUFFER

ELN$NI_CONNECT

ELN$NI_DISCONNECT

ELN$NI_GET ATTRIBUTES

ELN$NI_GET_CONFIGURATION

ELN$NI_RECEIVE

ELN$NI_TRANSMIT

ELN$NI_TRANSMIT _STATUS

Allocates a buffer for transmitting a
message over a CSMA/CD LAN.

Connects a process to an
Ethernet/IEEE 802 protocol.

Disconnects a process from an
Ethernet/IEEE 802 protocol.

Gets information about the CSMA/CD
LAN controller.

Gets information about the CSMA/CD
LAN configuration.

Receives a message from a CSMA/CD
LAN dispatch port.

Transmits a message over a CSMA/CD
LAN.

Retrieves a message that was trans-
mitted by a previous call to ELN$NI_
TRANSMIT.

The following sections explain how to use the network interface rou-

tines to do the following:

¢ Retrieve the CSMA/CD LAN configuration, Section 8.2

¢ Retrieve Ethernet controller attributes, Section 8.3

* Connect and disconnect an Ethernet/IEEE 802 protocol, Section 8.4
* Transmit and receive messages over the CSMA/CD LAN,

Section 8.5

To use the network interface routines, you must include the appropriate
modules from the VAXELN runtime libraries.

Language Module

VAXELN Pascal $NI_UTILITY

C $vaxelnc and $ni_utility
FORTRAN ELN$:NI_UTILITY.FOR

8-6 Ethernet/IEEE 802 Datalink Drivers

NOTE

The network interface routines are in the shareable image
NISHR.EXE. If you dynamically load programs that use

the network interface routines into a VAXELN system, you
should specify ELN$:NISHR.EXE in the Guaranteed image
list entry on the System Builder’s System Characteristics
Menu when you build that system.

For descriptions of these routines, see the VAXELN Pascal Runtime
Library Reference Manual, VAXELN C Runtime Library Reference
Manual, or VAXELN FORTRAN Runtime Library Reference Manual.

Section 8.6 shows how to set up your application environment for
Ethernet/IEEE 802 Datagram Service communication.

8.2 Retrieving a CSMA/CD LAN Configuration

To use the Ethernet/IEEE 802 Datagram Service for message com-
munication, you must first retrieve information about the system’s
Ethernet controller configuration by calling the network interface rou-
tine ELN$NI_GET_CONFIGURATION. This routine stores the version
number of the network interface routines and the following information
for each Ethernet/IEEE 802 controller:

* Device type

¢ Device name

¢ Control port value
¢ Data port value

Once the configuration record is filled in, the application program can
access it and retrieve data concerning the active controllers on the
system.

A call to ELN$NI_GET_CONFIGURATION must specify a count
argument that receives the current number of active controllers and an
argument that specifies the configuration record. For example:

EtherneVIEEE 802 Datalink Drivers 8~7

VAR
status : INTEGER;
config count : INTEGER;
config_data : ELN$NI_CONFIGURATION;

BEGIN

ELNSNI GET_ CONFIGURATION (STATUS := status,
COUNT := config_count,
CONFIG := config data);

control port := config data.clist[l].control_port;
data_port := config data.clist[1l].data port;

END.

This section of code fills in the controller configuration record and then
accesses the fields containing the controller’s control port and data port
values. The controller count field can receive a value ranging from 1 to
8.

Sections 8.2.1 to 8.2.4 provide more information about Ethernet con-
troller device types, names, control ports, and data ports.

8.2.1 Ethernet Controller Device Types
The VAXELN datalink drivers categorize the supported Ethernet

controller devices by type. Table 8-2 lists these types with the corre-
sponding devices.

Table 8-2: Ethernet Controller Device Types

Device Type Supported Devices

ELN$K_NI_DEBNA DEBNA or DEBNT VAXBI Ethernet adapter
ELN$K_NI_DEBNI DEC LANCcontroller 200
ELNS$K_NI_DELQA DELQA Q-bus adapter

ELN$K_NI_DEQNA DEQNA Q-bus adapter

ELN$K_NI_DEUNA DELUA or DEUNA UNIBUS adapter

8-8 EtherneVIEEE 802 Datalink Drivers

Table 8-2 (Cont.): Ethernet Controller Device Types
Device Type Supported Devices

ELN$K _NI_LANCE Integrated Ethernet controllers for MicroVAX
2000, 3300, and 3400 and the VAXstation 2000
and 3100 series systems

ELN$K_NI_SGEC Second generation Ethernet controller for
rtVAX 300 systems

8.2.2 Ethernet Controller Device Names

Each Ethernet controller device in a CSMA/CD LAN configuration has
a device name that consists of 1 to 32 ASCII characters. The names in
a LAN must be unique within the same logical Ethernet. Examples of
such names follow:

Device Type Device Name
ELN$K NI_DEBNA XBAO
ELN$K _NI_DELQA XQA0
ELN$K NI_DEUNA XEAO

8.2.3 Ethernet Controller Control Ports

The datalink drivers create a VAXELN control port for each CSMA/CD
LAN controller. The control port provides an interface for accessing an
Ethernet/IEEE 802 driver process. A program must specify a control
port’s value in subsequent calls to the ELN$NI_CONNECT, ELN$NI_
DISCONNECT, and ELN$NI_GET_ATTRIBUTES routines.

8.2.4 Ethernet Controller Data Ports

The datalink drivers create a VAXELN data port for each CSMA/CD
LAN controller. The data port receives messages that are transmit-
ted over the LAN. A program must specify a data port’s value in
subsequent calls to the ELN$NI_TRANSMIT routine.

EtherneVIEEE 802 Datalink Drivers 8-9

8.3 Retrieving Ethernet Controller Attributes

You can also retrieve information about each CSMA/CD LAN controller
by calling the network interface routine ELN$NI_GET_ATTRIBUTES.
This routine allocates a controller attributes record that stores the
version number of the network interface routines and the following
controller information:

* Device type

* Name

¢ Physical address
* Hardware address

Once the attributes record is allocated, the application program can
access it and retrieve controller attributes.

A call to ELN$NI_GET_ATTRIBUTES must specify a control port
returned in the controller configuration record and a pointer that is to
point to the controller attributes record. For example:

VAR
status : INTEGER;
config count : INTEGER;
config data : ELN$NI_ CONFIGURATION;
attributes_record : ~ELN$NI_ATTRIBUTES;

BEGIN

ELN$NI_GET_CONFIGURATION(STATUS := status,
COUNT := config count,
CONFIG := config data);

control_port := config data.clist[l].control_port;
data_port := config_ data.clist[l].data port;

ELN$NI_GET ATTRIBUTES (CONTROL_PORT := control_port,
ATTRIBUTES_PTR := attributes_record);

8-10 EthernetIEEE 802 Datalink Drivers

WITH attributes record” DO
BEGIN
WRITELN ('Device type = /, DEV_TYPE);
WRITELN (' Device name = ’, DEVICE_NAME);
WRITELN(/Physical address = ');
FOR i :=1 TO 6 DO
WRITE (HEX (PHYSICAL ADDRESS::ELN$NI_DATALINK ADDRESS_BYTE[I],2));
WRITELN (' Hardware address = ’);
FOR i :=1 TO 6 DO
WRITE (HEX (HARDWARE_ADDRESS: :ELNSNI_DATALINK_ADDRESS_BYTE [T1,2)):
END;
DISPOSE (attributes_record) ;

This section of code allocates the controller attributes record of the first
Ethernet/IEEE 802 controller and then accesses the fields containing
the controller’s device type, name, physical address, and hardware
address.

Deallocate the attributes record when the record is no longer needed.

Sections 8.2.1 and 8.2.2 provide more information about Ethernet
controller device types and names. Sections 8.3.1 and 8.3.2 provide
more information about Ethernet controller physical and hardware
addresses. '

8.3.1 Ethernet Controller Physical Addresses

An Ethernet controller’s physical address is an Ethernet address that
consists of 48 bits (4 bits per hex digit) and has the following format:

nn-nn-nn-nn-nn-nn

This is the format that the ELNSNI_GET_ATTRIBUTES routine uses
to store a physical address in a controller’s attributes record.

The controller’s physical address defaults to the hardware address until
DECnet starts. When DECnet software is enabled, the address is the
value AA-00-04-00 followed by the DECnet node and area addresses
enabled on the controller board. The AA-00-04—-00 address resides in
the low order 32 bits and the DECnet node and area addresses reside
in the high order 16 bits.

Ethernet/IEEE 802 Datalink Drivers 8-11

An application that starts to run with the DECnet software disabled
can set the DECnet node address and start the DECnet software
dynamically by calling the ELN$NETMAN_START _NETWORK routine
(see Section 9.4.3).

For more information about Ethernet controller physical addresses, see
the VAXELN Development Utilities Guide.

8.3.2 Ethernet Controller Hardware Addresses

An Ethernet controller’s hardware address is the default 48-bit address
of the controller hardware. This address resides in the medium access
control (MAC) address ROM on the controller. You cannot change this
address.

8.4 Connecting and Disconnecting an Ethernet/IEEE 802
Protocol

Before an application program can transmit or receive datagrams over
a CSMA/CD LAN, it must connect a process to an Ethernet/IEEE

802 protocol. To make this connection, the application must create a
VAXELN message port and pass that port as an argument in a call to
the ELN$NI_CONNECT routine. The VAXELN message port serves as
a dispatch port, receiving data from the datalink driver. You create the
dispatch port by calling the CREATE_PORT kernel procedure.

You must also specify the CSMA/CD LAN controller’s control port in
the call to ELN$NI_CONNECT. The Ethernet/IEEE 802 Datagram
Service returns the values of the control ports for all active controllers
on the system when you use the ELN$NI_GET_CONFIGURATION
procedure to get the CSMA/CD LAN configuration (see Section 8.2).
The ELN$NI_CONNECT routine uses the control port to pass the
connection request to the datalink driver.

The call to ELN$NI_CONNECT creates a portal, which represents the
Ethernet/IEEE 802 connection. Once the portal is established, you can
transmit and receive datagrams over a CSMA/CD LAN using other
network interface routines.

8-12 EtherneVIEEE 802 Datalink Drivers

In addition to specifying a control port and dispatch port, a call to
ELN$NI_CONNECT must specify an argument that receives an integer
identifying the portal and a form argument that specifies the message
format and the multiplexing data to be accepted on behalf of the portal.
You can further customize a network interface connection by specifying
the following:

¢ User data value

* Whether promiscuous mode (deliver all messages) is enabled
¢ Multicast count

¢ JEEE 802 group service access point (SAP) count

¢ JEEE 802 logical link control (LLC) sublayer class

* Multicast addresses
e IEEE 802 group LLC SAPs
¢ Whether the portal is to operate a padded Ethernet protocol

When an application program has finished using an Ethernet/IEEE 802
protocol, the program can disconnect it using a call to the ELN$NI_
DISCONNECT routine. A call to ELN$NI_DISCONNECT must specify
the connection’s portal identification number and the control port. The
portal identification must be the value that was returned by a call to
ELN$NI_CONNECT. The control port must be the same control port
that was used in the call to the ELN$NI_CONNECT for this portal.

The following section of code creates a dispatch port, establishes a
portal in promiscuous mode, and disconnects the portal:

VAR
status : INTEGER;
config count : INTEGER;
config data : ELN$NI__CONFIGURATION;
dispatch_pprt : PORT;
portal_id : INTEGER;
format_and mux : ELN$NI_FORMAT AND_ MUX;
user_data : INTEGER;
prom : BOOLEAN;

BEGIN

ELN$NI_GET_CONFIGURATION (STATUS := status,
COUNT := config_count,
CONFIG := config_data);

EtherneVIEEE 802 Datalink Drivers 8-13

control port := config data.clist[l].control port;
data_port := config data.clist[l].data port;

CREATE PORT (dispatch_port);

prom := TRUE;
user data := 12345;

ELN$NI_CONNECT(STATUS := status,
PORTAL_ID := portal_ id,
CONTROL_PORT := control_ port,
DISPATCH_PORT := dispatch port,
FORM := format_and mux,
USER_DATA := user_data,
PROMISCUOUS := prom);

ELN$NI_DISCONNECT(STATUS := status,

PORTAL_ID := portal_id,
CONTROL_PORT := control_port);
END.

The following sections provide more information about the following

topics:

* DPortals, Section 8.4.1

¢ Dispatch ports, Section 8.4.2

* Message format and multiplexing, Section 8.4.3
* User data, Section 8.4.4

* Promiscuous mode, Section 8.4.5

* Multicast addresses, Section 8.4.6

* Group SAPs, Section 8.4.7

¢ LLC classes, Section 8.4.8

¢ Padded Ethernet Protocols, Section 8.4.9

8.4.1 Portals

The ELN$NI_CONNECT routine creates a portal and returns the
portal’s identification number if your process connects to the specified
protocol successfully. The portal represents the Ethernet/IEEE 802
connection, and the unique identification number identifies that con-
nection. You use this value to identify the connection in subsequent

transmit and disconnect operations.

8-14 EtherneVIEEE 802 Datalink Drivers

8.4.2 Dispatch Ports

A dispatch port is a VAXELN message port that receives messages
from a VAXELN datalink driver. You create the dispatch port with a
call to the CREATE_PORT kernel procedure prior to calling ELN$NI_
CONNECT. If the connection is successful, the datalink driver sends
messages that match the multiplexing criteria specified in the connec-
tion request to the dispatch port.

The datalink driver sends messages to the dispatch port. To receive
the messages, your program must wait on the port and then call the
ELN$NI_RECEIVE routine (see Section 8.5.4).

If a dispatch port reaches its message limit, the datalink driver dis-
cards new messages until the application removes messages from the
port.

8.4.3 Message Format and Multiplexing

The form argument that you specify in a call to the ELN$NI_
CONNECT routine is a 2-field structure that identifies the message
format and multiplexing data the datalink driver is to use for a por-
tal. You can specify the message format using one of four values:
ELNK_NI_PTT, ELNK_NI_SAP, ELN$K_NI_SNAP, and ELN$K_NI_
UNUSED. Table 8-3 describes the message formats that these values
enable,

Table 8-3: Portal Message Formats
Format Description

ELN$K NI_PTT Ethernet formatted frames. You can use a padded
Ethernet protocol by specifying the pad argument
in the call to ELN$NI_CONNECT. The PTT
(Ethernet Protocol Type) value in the multiplexing
field defines the Ethernet protocol type to be used.
Only one user can use a particular protocol at any
given time. If a user tries to use a busy protocol,
the connection fails and the routine returns an
error.

Ethernet/IEEE 802 Datalink Drivers 8-15

Table 8-3 (Cont.): Portal Message Formats

Format Description
ELNS$K_NI _SAP IEEE 802 formatted frames. The DSAP (destina-

tion SAP) value in the multiplexing field identifies
the SAP to be accepted. The DSAP value is an
8-bit number of which the low-order bit must be
0. The high-order 7 bits of DSAP identify the
SAP. Only one user can use a particular SAP at
any given time. If a user tries to use a busy SAP,
the connection fails and the routine returns an
error.

ELN$K _NI_SNAP IEEE 802 format with SNAP SAP and protocol
identification. This format is an extended version
of the IEEE 802 SAP format. It increases the
number of allowable protocols in the IEEE 802
frame format by using a 5-byte protocol identi-
fication field in addition to the SAP field during
frame dispatching. When the datalink driver re-
ceives frames addressed to the SNAP SAP, it uses
the 5-byte protocol identification as the filtering
criteria. The PROTID value in the multiplexing
field identifies the protocol identification to be
accepted.

ELN$K_NI_UNUSED No multiplexing field is specified. This format in-
dicates that the multiplexing field is not specified
for the connection request. Use this value when
you want to do the following:

¢ Use promiscuous mode (see Section 8.4.5)

¢ Enable group SAPs without having to enable
an individual SAP (see Section 8.4.7)

This is the default.

You specify the type of multiplexing to be used by specifying values for
the DSAP, PROTID, PTT, SAP, and SSAP fields of the form argument’s
multiplexing field. Table 84 describes the multiplexing fields.

8-16 Ethernet/IEEE 802 Datalink Drivers

Table 8—4: Portal Multiplexing Fields
Field Description

DSAP Destination SAP. An 8-bit value that specifies the SAP.
The low-order bit must be 0. You must specify a value
for this field if you specify the format ELN$K_NI_SAP.

PROTID SNAP protocol identification. A 5-byte value that spec-
ifies an Ethernet protocol that specifies the filtering

criteria. You must specify a value for this field if you
specify the format ELN$K NI SNAP.

PTT Ethernet Protocol Type. A value that specifies an
Ethernet protocol type. You must specify a value for
this field if you specify the format ELN$K_NI_PTT.

SAP Not applicable.
SSAP Not applicable.

You must also specify a form argument in calls to the ELN$NI_
RECEIVE and ELN$NI_TRANSMIT routines. However, the ELN$K_
NI_UNUSED format value does not apply. In the case of ELN$NI_
RECEIVE, the argument receives the format and multiplexing in-
formation. The ELN$NI_TRANSMIT routine specifies format and
multiplexing information for a particular message.

8.4.4 User Data

You can associate a user-defined integer value with a portal by spec-
ifying a user data argument in the call to ELN$NI_CONNECT. The
integer value is returned with each message sent to the portal’s dis-
patch port. You might use such data to distinguish between messages
sent to a dispatch port when the same dispatch port is specified in
separate calls to ELN$NI_CONNECT.

8.4.5 Promiscuous Mode

By default, the datalink driver delivers only those messages matching
the multiplexing information enabled for a network interface portal.
If you want the datalink driver to deliver a copy of each message
transmitted on the Ethernet, you must enable promiscuous mode for
the portal by setting the promiscuous Boolean argument in the call to
ELN$NI_CONNECT to TRUE.

Ethernet/IEEE 802 Datalink Drivers 8-17

Only one user can use promiscuous mode at any given time. If a second
user tries to enable this mode, the connection fails and the driver
returns an error.

8.4.6 Multicast Addresses

A multicast address is a 48-bit CSMA/CD LAN destination address.

If you want messages that have such addresses to be dispatched to a
portal, you must enable the addresses explicitly in the call to ELN$NI_
CONNECT. You can specify a set of up to eight multicast addresses for
a portal. If you specify a set of multicast addresses, you indicate the
number of addresses in the set by specifying a multicast address count
value. By default, the physical address of the node is accepted for each
portal.

8.4.7 Group SAPs

In addition to or instead of specifying a single SAP address for a portal,
as you do when you use the IEEE 802 formatted frames message
format, you can specify up to four group SAPs. The datalink driver
dispatches the individual SAP and the group SAPs to the same portal.

You specify an 8-bit value for each group SAP. The low-order bit must
be 1. The high-order 7 bits specify a SAP address.

If you specify group SAPs, you indicate the number of SAPs being
specified by supplying a group SAP count value.

Multiple portals can enable the same group SAP.

8.4.8 LLC Classes

A portal’s LLC class determines the types of messages that are sent to
an enabled SAP. The class can be either ELN$K_NI_CL1 or ELN$K_
NI_USER_SUPPLIED. If the class is ELNSK_NI_CL1 class, the
datalink driver handles IEEE 802 exchange identification (XID) and
test (TEST) messages and sends unnumbered information protocol (UI)
messages to the user. If the class is ELN$K_NI_USER_SUPPLIED, the
driver sends all messages addressed to the enabled SAP t{o the user. In
this case, you must supply the IEEE 802 control field as part of your
user data when you do a transmit operation. The IEEE 802 control
field is also returned as message user data in receive operations, and

8-18 Ethernet/IEEE 802 Datalink Drivers

you must process it. The default LLC class is ELN$K_NI_USER_
SUPPLIED.

8.4.9 Padded Ethernet Protocols

Portals can operate a padded Ethernet protocol. When using a padded
format, the datalink driver adds a padding field length of two bytes
to each message that it transmits and removes that field from each
message that it receives. You can enable the padded format by setting
a Boolean argument in the call to ELN$NI_CONNECT to TRUE.

Keep in mind that if one user uses the padded format of a particular
protocol, all users using that protocol must also use the padded format.
Otherwise, the padding field may be missing or interpreted as user
data.

8.5 Transmitting and Receiving Messages

Once your application program establishes a network interface con-
nection, it can use that connection to transmit and receive messages
over the CSMA/CD LAN. To transmit a message, you use the network
interface routines to do the following:

¢ Allocate a buffer for transmitting the message (ELN$NI_
ALLOCATE_BUFFER)
¢ Transmit the message (ELN$NI_TRANSMIT)

* Retrieve the transmitted message and status (optional) (ELN$NI_
TRANSMIT STATUS)

To receive messages, a job waits on the dispatch port. When a message
arrives, the job calls the ELN$NI_RECEIVE routine to receive the
message.

Sections 8.5.1 to 8.5.3 explain how to allocate a message buffer, trans-
mit messages, and retrieve transmitted messages and status values.
Section 8.5.4 explains how to receive messages.

EtherneVIEEE 802 Datalink Drivers 8-19

8.5.1 Allocating a Message Buffer

Before an application program can transmit a message over the
CSMA/CD LAN, the program must call the ELN$NI_ALLOCATE_
BUFFER routine to allocate a buffer for the message. A call to
ELN$NI_ALLOCATE_BUFFER must specify an integer indicating
the number of bytes of user data to be allocated, the MESSAGE vari-
able that is to receive the new message, and a pointer to the first byte
of the data to be transmitted.

The size of the buffer that you allocate must be less than or equal to
the maximum allowable amount of user data for the format in which
the message is to be transmitted. Maximum allowable amounts for

various formats are as follows: ‘ '

Format Maximum Size
IEEE 802 SNAP 1492 bytes
IEEE 802 with 1-byte control field 1497 bytes
IEEE 802 with 2-byte control field 1498 bytes
Ethernet protocol type (padding enabled) 1498 bytes

Ethernet protocol type (padding disabled) 1500 bytes

The data pointer argument receives a pointer to the first byte of the
data to be transmitted in the buffer. The pointer is passed unmodified
to ELN$NI_TRANSMIT. (Your program should not modify the pointer,
just the buffer to which the pointer points.)

The call to ELN$NI_ALLOCATE_BUFFER in the following example
allocates a buffer for a 36-character string:

TYPE
message_1_ type = STRING(36);

VAR
status : INTEGER;
data_pointer : “message 1_type;
user_ data_size : INTEGER;
msg : MESSAGE;

BEGIN
user data_size := SIZE (message_l_type);

8-20 EtherneVIEEE 802 Datalink Drivers

ELNSNI_ALLOCATE_BUFFER (STATUS := status,
USER_DATA SIZE := user data_ size,
MESSAGE_OBJECT := msg,
DATA POINTER := data _pointer);

NOTE

If the portal is enabled with the IEEE 802 user-supplied LLC
class, you must allocate space for the IEEE 802 control field
in the user buffer area.

8.5.2 Transmitting Messages

After you allocate a message buffer, you can transmit messages over
the CSMA/CD LAN by calling the ELN$NI_TRANSMIT routine. A call
to ELN$NI_TRANSMIT must specify the following:

The portal identification received in the call to ELN$NI_CONNECT

A data port in the configuration record obtained by the call to
ELN$NI_GET_CONFIGURATION

The data pointer received in the call to ELN$NI_ALLOCATE_
BUFFER

The message value that was reckeived in the call to ELN$NI_
ALLOCATE_BUFFER

The size of the message to be transmitted
The message’s destination address

The form (message format and multiplexing values) of the message
being transmitted

NOTE

The value for the size argument can be smaller than the
value specified in the call to ELN$NI_ALLOCATE_BUFFER.
If the value is larger, the result of the transmit operation is
unpredictable.

The destination address must be a 48-bit address. It can be a multicast
address or an individual address.

Ethernet/IEEE 802 Datalink Drivers 8-21

The form argument is a 2-field structure that identifies the message
format and type of multiplexing the datalink driver is to use for the
portal. As described in Section 8.4.3, you can specify the message
format using one of three values: ELNK_NI_PTT, ELNK_NI_SAP,
or ELN$K_NI_SNAP. You specify the type of multiplexing (message
header information) to be used by specifying values for the DSAP,
PROTID, PTT, and SSAP fields of the form argument’s multiplexing
field. The format values and multiplexing fields are described in
Table 8-3 and Table 84.

The following section of code shows how you might transmit a message
over a CSMA/CD LAN:

TYPE
message type = STRING (36);

VAR
status : INTEGER;
config count : INTEGER;
config data : ELN$NI_CONFIGURATION;
dispatch _port : PORT;
portal id : INTEGER;
format_and mux : ELNSNI FORMAT AND MUX;
user_data : INTEGER;
prom : BOOLEAN;
data_pointer : “message_l_type;
user_data size : INTEGER;
msg : MESSAGE;
remote_ address : ELN$NI_DATALINK~ADDRESS;
sap_number : INTEGER;

BEGIN

ELNSNI_GET_CONFIGURATION(STATUS := status,
COUNT := config_count,
CONFIG := config_data);

control_port := config data.clist[l].control port;
data_port := config data.clist[1l].data port;

CREATE_PORT (dispatch_port);

format_and_mux.format i= ELN$K_NI~SAP;
format_and _mux.dsap := sap_number * 2;
format_and_mux.ssap := sap_number * 2; { Remote address filled }

{ in here also. }
class 802 := ELN$K NI CLl;

8-22 EtherneVIEEE 802 Datalink Drivers

ELN$NI_CONNECT (STATUS := status,
PORTAL_ID := portal_id,
CONTROL_PORT := control_ port,
DISPATCH_PORT := dispatch port,
FORM := format_and mux,

CLASS 802 := class_802);

user data_size := SIZE (message_l_type);
ELN$NI_ALLOCATE_BUFFER(STATUS := status,
USER_DATA SIZE := user data size,

MESSAGE_OBJECT := msg,
DATA POINTER := msq_data_pointer);

data_pointer® := 'Transmitted message...’;

ELNSNI_TRANSMIT(STATUS := status,
PORTAL ID := portal id,
DATA PORT := data_port,
DATA POINTER := data pointer,

MESSAGE_OBJECT := msg,

USER_DATA SIZE := user data_size,
DEST_ ADDRESS := remote_ address,
FORM := format_and mux);

END.

8.5.3 Retrieving Transmitted Messages

By default, the datalink drivers delete a message after a transmit
operation. However, you can instruct the driver to keep these messages
by specifying a reply port in the call to the ELN$NI_TRANSMIT
procedure. When you specify a reply port, the datalink driver sends
the message to that port upon completion of a transmit operation.

You can then extract the message from the reply port with a call to
the ELN$NI_TRANSMIT STATUS routine and use the message in a
subsequent call to ELN$NI_TRANSMIT or delete it. For example:

TYPE
message_type = STRING(36);

EtherneVIEEE 802 Datalink Drivers 8-23

VAR
status : INTEGER;
config count : INTEGER;
config data : ELN$NI_CONFIGURATIQN;
dispatch_port : PORT;
portal_id : INTEGER;
format_and_mux : ELNSNI_FORMAT_AND_MUX;
user_data : INTEGER;
prom : BOOLEAN;
data pointer : “message 1 type;
user data size : INTEGER;
msg : MESSAGE;
remote address : ELN$NI_DATALINK ADDRESS;
reply port : PORI;
sap number : INTEGER;

BEGIN

ELN$NI_GET CONFIGURATION (STATUS := status,
COUNT := config count,
CONFIG := config data);

control port := config data.clist[l].control_ port;.
data_port := config data.clist[l].data port;

CREATE_PORT (dispatch_port);

format_and_mux.format = ELN$BLNI_§AP;
format_and mux.dsap := sap_number * 2;
class_802 := ELN$K NI_CL1;
ELN$NI_CONNECT (STATUS := status,
PORTAL_ID := portal_id,
CONTROL_PORT := control_ port,
DISPATCH PORT := dispatch_port,
FORM := format_and mux,
CLASS 802 := class_802);

user data size := SIZE (message_ 1 type);
CREATE PORT (reply port);

ELN$NI_ALLOCATE_BUFFER(STATUS := status,
USER_DATA SIZE := user data_size,
MESSAGE_OBJECT := msg,
DATA_POINTER := msg_data_ pointer);

data_pointer” := ’‘Transmitted message...’;

8-24 EtherneVIEEE 802 Datalink Drivers

ELNSNI_TRANSMIT(STATUS :
PORTAL ID :=
DATA PORT :=
DATA POINTER :=
MESSAGE_OBJECT
USER DATA SIZE
DEST ADDRESS

format_and mux

FORM :=

status,
portal id,
data_port,

data_pointer,

= msg,

:= user_data_size,

:= remote address,

REPLY_PORT : reply_port),
WAIT ANY (reply port);
ELNSNI TRANSMIT STATUS (STATUS := status,

REPLY PORT := reply port,
MESSAGE_OBJECT t= msqg);

DELETE (msg) ;

END.

The call to ELN$NI_TRANSMIT_STATUS must specify the reply
port and message object that were specified in the call to ELN$NI_
TRANSMIT. You can also specify an argument that is to receive a
pointer to the beginning of the user data portion of the message.

You then can use the message object and data pointer values in a
subsequent call to ELN$NI_TRANSMIT.

8.5.4 Receiving Messages

To receive a message on a CSMA/CD LAN, a program must wait on
the dispatch port that was specified in the call to ELN$NI_CONNECT
and then call the ELN$NI_RECEIVE routme The ELN$NI_RECEIVE

routine does the following:

* Receives a message in your program’s address space

Strips the header fields from the message and sends them back to
to you as parameters

Returns a pointer to the beginning of the message’s user data
If requested, returns the size of the message’s user data

A call to ELN$NI RECEIVE must specify the dispatch port that was
specified in the call to ELN$NI_CONNECT, the MESSAGE variable
that is to receive the message, and a vanable that is to receive a
pointer that points to the beginning of the message’s user data. You
can also specify variables that receive the following:

The size of user data in the message

EtherneVIEEE 802 Datalink Drivers 8-25

* The message’s destination address
* The message’s source address
* The message’s form (message format and multiplexing type)

® User data (unique integer established in a call to ELN$NI_
CONNECT)

* The portal identification whose format and multiplexing data match
that of the received message

The destination and source addresses that the routine receives are
48-bit addresses.

The form argument receives a 2-field structure that identifies the
message format and the message’s protocol data. As described in
Section 8.4.3, the message format can be one of three formats: ELN$K_
NI_PTT, ELN$K NI_SAP, or ELN$K_NI_SNAP. Values for the DSAP,
PROTID PTT, and SSAP fields of the form argument’s multiplexing
field 1ndlcate the protocol data in the message header. The format
values and multiplexing fields are described in Tables 8-3 and 8—4.

The following section of code shows how an application program might
receive messages over a CSMA/CD LAN:

TYPE
message_type = STRING(36);

VAR
status : INTEGER;
config count : INTEGER;
config_data H ELN$NI_CONFIGURATION;
dispatch port : PORT;
portal_id : INTEGER;
format_and_mux : ELN$NI_FORMAT_AND_MUX;
user_data : INTEGER;
prom : BOOLEAN;
data_pointer : “message 1 type;
user_ data_size : INTEGER;
msg : MESSAGE;
reply port : PORT;
dest_address : ELNS$NI DATALINK _ADDRESS;

src_address : ELN$NI_DATALINK ADDRESS;

8-26 EtherneVIEEE 802 Datalink Drivers

BEGIN

ELN$NI_GET_CONFIGURATION(STATUS

:= status,

:= config count,
:= config data);

control port := config data.clist[l].control port;
data_port := config_data.clist[l].data port;

CREATE_ PORT (dispatch port);

prom := TRUE;
user_data := 12345;

ELN$NI_CONNECT (STATUS :=
PORTAL_ID

CONTROL_PORT :
DISPATCH_PORT

:= portal id,
control port,
:= dispatch_port,

FORM := _format_and_mux ’

USER_DATA :
PROMISCUOUS

WAIT_ANY (dispatch_port);
ELNSNI_RECEIVE(STATUS =

DISPATCH_PORT
RECEIVED MESSAGE
DATA_ POINTER

DATA_SIZE

DEST_ADDRESS
SRC ADDRESS

user_data,
1= prom);

:= dispatch port,

:= msg,

;= data_pointer,
user data_size,
:= dest_address,
src_address,

FORM := format_and mux,

USER_DATA :

END.

user_data);

8.6 Setting Up an Ethernet/IEEE 802 Datagram Service

Environment

This section uses the sample application module sample_ni_app and
callout text to illustrate the use of the network interface routines.
The module consists of a main program that gets the CMSA/CD LAN
configuration and calls three procedures: get_attributes, transmit_msg,

and receive_msg.

EtherneVIEEE 802 Datalink Drivers 8-27

The get_attributes procedure calls the ELN$NI_GET_ATTRIBUTES
routine to create a controller attributes record. The procedure then
accesses the record to extract the controller’s device name, physical
address, and hardware address.

The transmit_msg procedure transmits messages over a CMSA/CD
LAN and retrieves the messages that are sent by doing the following:
1. Creating a dispatch port

2. Specifying the message format, multiplexing type, and class

3. Establishing a promiscuous mode portal by passing the dispatch
port in a connection request

Creating a reply port

Allocating a buffer for transmitting the messages
Transmitting the messages

Waiting on the reply port

Retrieving the transmitted messages

PN o

The procedure also disconnects the process from the promicuous mode
portal when it is finished using the connection.

The receive_msg procedure receives messages over a CMSA/CD LAN by
doing the following:

1. Creating a dispatch port

2. Specifying the message format

3. Establishing a connection with a CSMA/CD LAN Ethernet protocol
by connecting the dispatch port to a controller’s control port

4. Waiting on the dispatch port
5. Receiving the messages

This procedure also disconnects the process from the CSMA/CD LAN
Ethernet protocol when it is finished using the connection.

Example 8-1 shows a sample network interface application. The
example assumes that an Ethernet/IEEE 802 driver is built into the
VAXELN system. The discussion that follows is keyed to the numbered
callouts in the example.

8-28 EtherneVIEEE 802 Datalink Drivers

Example 8-1: Sample Network Interface Application

MODULE sample ni_app;
{

{ This module contains the sender program for the datalink external
{ interface.

{}
INCLUDE $NI_UTILITY, S$KERNELMSG, $ELNMSG;

PROGRAM ni_example;

VAR
config data : ELN$NI_CONFIGURATION;
config:count : INTEGER;
control port : PORT;
data_port : PORT;
status : INTEGER;
remote_address : ELN$NI_DATALINK ADDRESS;
pass_number : INTEGER;
sap number : INTEGER;

PROCEDURE get_attributes;
{

{ Get controller attributes.

{}

VAR
status : INTEGER;
i : INTEGER;
controller attributes_pointer : “ELNSNI_ATTRIBUTES;

BEGIN
ELN$NI_GET_ATTRIBUTES(STATUS := status, ‘)
CONTROL_PORT := control port,
ATTRIBUTES_PTR := controller_attributes_pointer);

WITH controller_ attributes_pointer” DO
BEGIN
WRITELN (' Device name = ’, device name);
WRITELN (' Physical address = ');
FOR i := 1 TO 6 DO

WRITE (HEX (PHYSICAL ADDRESS::ELNS$NI_ DATALINK_ADDRESS BYTE[I],2));

WRITELN (’/ Hardware address = 7);
FOR i :=1 TO 6 DO

WRITE (HEX (HARDWARE ADDRESS::ELNS$NI_DATALINK ADDRESS BYTE[I],2));

END;

DISPOSE (controller attributes_pointer);
END;

Example 8-1 Cont’d on next page

EtherneVIEEE 802 Datalink Drivers 8-29

Example 8-1 (Cont.): Sample Network Interface Application

PROCEDURE transmit_msg;
{

{ Transmit messages using IEEE 802 formatted frames and a SAP

{ address.

{}

TYPE
message_ 1 _type = STRING (36);

VAR
status : INTEGER;
portal id : INTEGER;
sap_port : PORT;
format_and_mux : ELN$NI_EORMAT_AND_MUX;
user_data size : INTEGER;
msg : MESSAGE;
data_pointer : “message 1l type;
reply port : PORT;
i : INTEGER;
class 802 : ELNSNI_BYTE;

BEGIN
format_and mux.format := ELN$K NI_SAP;
format_and mux.mux.dsap := sap number * 2;

class_802 := ELN$K NI CLl1;
CREATE_PORT (sap_port);

ELN$NI_CONNECT (STATUS := status,
PORTAL_ID := portal_id,

CONTROL_PORT := control port,
DISPATCH_PORT := sap port,
FORM := format_and_ mux,
CLASS 802 := class_ 802);

CREATE_PORT (reply_ port);

FOR i := 1 TO 100 DO

BEGIN
user_data size := SIZE (message 1 type);

ELNSNI_ALLOCATE BUFFER(STATUS := status

USER_DATA_SIZE
MESSAGE_OBJECT

~

user_data_size,

¢ t= msg,

DATA POINTER := data_pointer);
data _pointer” := 'This is the message...’;
format_and mux.mux.ssap := sap_number * 2;

(~

Example 8-1 Cont’d on next page

8-30 EtherneVIEEE 802 Datalink Drivers

Example 8-1 (Cont.): Sample Network Interface Application

ELN$NI_TRANSMIT(STATUS := status, i’
PORTAL_ID := portal_id,
DATA PORT := data_port,
DATA_POINTER := data pointer,
MESSAGE_OBJECT := msg,

USER_DATA SIZE := user data size,
DEST_ADDRESS := remote_address,
FORM := format_and mux,

REPLY PORT := reply_port);
WAIT_ANY (reply port); 0

ELN$NI_TRANSMIT STATUS (STATUS := status, c’
REPLY PORT := reply port,
MESSAGE_OBJECT := msg);

DELETE (msqg) ;
END;

ELN$NI_PISCONNECT(STATUS := status, ﬂD
PORTAL_ID := portal id,
CONTROL_PORT := control_port);
DELETE (sap_port);
DELETE (reply port);
END;

PROCEDURE receive_msg;
{

{ Receive messages that are transmitted over a CSMA/CD LAN.

{}

VAR
dispatch_port : PORT;
format_and mux : ELNSNI_FORMAT aND MUX;
prom : BOOLEAN;
i : INTEGER;
user_data_out : INTEGER;
user_data_in : INTEGER;
portal_id : INTEGER;
msg : MESSAGE;
data pointer : *BYTE_DATA(1500);
data_size : INTEGER;
da, sa : ELNSNI_PATALINK ADDRESS;
status : INTEGER; -

BEGIN

CREATE_PORT (dispatch port); @

Example 8-1 Cont’d on next page

EtherneVIEEE 802 Datalink Drivers

Example 8-1 (Cont.):

Sample Network Interface Application

format_and mux.format

prom := TRUE;
user_ data_ out

:= ELN$K_NI_UNUSED;

:= 12345;

ELN$NI_CONNECT (STATUS := status,

PORTAL_ID
CONTROL_PORT :=

1= portal_id,
control_port,

DISPATCH_PORT := dispatch port,

FORM := format_and mux,
USER_DATA := user_data_ out,
PROMISCUQUS := prom);
FOR i := 1 to 100 DO
BEGIN

user_data__in 1= 0;

WAIT ANY (dispatch port);

ELN$NI_RECEIVE (STATUS := status,

DISPATCH PORT := dispatch port,
RECEIVED MESSAGE := msg,
DATA_POINTER := data_pointer,
DATA SIZE := data_size,

DEST ADDRESS := da,
SOURCE_ADDRESS := sa,

FORM :=

format_and mux,

USER_DATA := user_data_in);

END;

ELN$NI_DISCONNECT (STATUS :=
PORTAL_ID
CONTROL_PORT :=

status,
:= portal id,
control port);

DELETE (dispatch_port);

END;

{
{ Main

{}

BEGIN
pass_number := 0;
REPEAT

pass_number

;= pass_number + 1;

Example 8—1 Cont’d on next page

8-32 EtherneVIEEE 802 Datalink Drivers

Example 8-1 (Cont.): Sample Network Interface Application

sap_number := (sap_number + 1) MOD 128;

IF (sap_number = ((ELN$_SNAP SAP DIV 2) DIV 2))
OR (sap_number = (ELNS_SNAP SAP DIV 2))
OR (sap_number = 0)

THEN
sap number := sap number + 1;

WRITELN (’ SAP number =’, sap number);

WRITELN (‘Get the configuration...’);

Get the CSMA/CD LAN configuration and assign the control
port and data port values to control port and data port,

e e

respectively.
}
ELN$NI_GET__CONFIGURATION {STATUS := status, @
COUNT := config count,
CONFIG := config data);
control port := config data.clist[l].control_port; ﬂ)
data_port := config_data.clist[l].data port;

WRITELN (/Get the controller attributes...’);
get_attributes;

WRITELN (' Transmit messages...’);
transmit_msg;

WRITELN (' Receive messages...’);
receive msg;

WRITELN (/Pass =’, pass_number);

UNTIL FALSE;
END.
END;

@ Get the controller attributes. Get the controller attributes by
calling the ELN$NI_GET_ATTRIBUTES routine. The routine
stores the version number of the network interface routines being
used and the device type, name, physical address, and hardware
address of the controller whose control port value is control_port
(see step 18). The get_attributes procedure then extracts the con-
troller’s device name, physical address, and hardware address. For
more information about retrieving Ethernet controller attributes,
see Section 8.3.

Ethernet/I[EEE 802 Datalink Drivers 8-33

® Create a dispatch port for the SAP. Use the CREATE_PORT
procedure to create a dispatch port for the SAP. The sample mod-
ule creates the dispatch port sap_port. The module will connect
the dispatch port to the first controller’s control port. For more
information about dispatch ports, see Section 8.4.2.

© Specify the message format, multiplexing type, and LLC
class. If necessary, specify the message format, type of multi-
plexing, and LLC class. The sample module specifies IEEE 802
formatted frames for the message format by assigning the value
ELNS$K_NI_SAP to the variable format_and_mux.format. The
value calculated from the expression sap_number * 2 is assigned to
the DSAP multiplexing field format_and_mux.mux.dsap. Thus, the
datalink driver will deliver messages addressed to the SAP identi-
fied by format_and_mux.mux.dsap to the dispatch port dispatch_
port.

The sample module specifies that the LLC class ELN$K_NI_CL1
is to be used. This indicates that the datalink driver is to handle
IEEE 802 XID and TEST messages and send Ul messages to the
user.

O Establish the dispatch port for the portal. Establish the
dispatch port by specifying it in a call to the ELN$NI_CONNECT
routine. A call to this routine must specify a portal identification
number, control port, dispatch port, and message form.

The call to ELN$NI_CONNECT in the sample module establishes
the dispatch port sap_port. The variable portal_id receives an
integer value identifying the connection.

The format_and_mux and class_802 arguments specify the message
format, multiplexing type, and LLC class to be accepted on behalf
of the specified portal. These values were specified in step 2.

O Create a reply port. Use the CREATE_PORT procedure to
create a reply port. This port is specified in the calls to ELN$NI_
TRANSMIT and ELN$NI_TRANSMIT STATUS for returning
transmitted messages and their status values.

O Allocate the message buffer. Allocate a message buffer for
transmitting the messages by calling the ELN$NI_ALLOCATE_
BUFFER routine. A call to this routine must specify the number of
bytes of data to be allocated, a variable of type MESSAGE that is to
receive the messages, and a pointer variable that receives a pointer
to the first byte of the message’s user data.

8-34 Ethernet/IEEE 802 Datalink Drivers

The sample module allocates space for a 36-character string. The
arguments msg and data_pointer receive the message data and
data pointer, respectively.

Transmit a message. Transmit a message by calling the ELN$NI_
TRANSMIT routine. The call to ELN$NI_TRANSMIT must specify
the portal’s identification number, the controller’s data port, the
message’s data pointer and object value, the user data size, the
destination address, and the form argument.

The call to ELN$NI_TRANSMIT specifies the portal identification
number that the portal_id argument received in step 4 and the
controller’s data port value (see step 18). The data_pointer points
to the beginning of the message’s user data. The message data is
transmitted using the SAP address that results from the computa-
tion sap_number * 2. The computation shifts the SAP number left
by one bit, making the low-order bit 0. This indicates that the SAP
is an individual DSAP.

The optional reply_port argument lets you retrieve the messages
that are transmitted and their status values.

For more information about transmitting messages, see Section 8.5.2.

Wait on the reply port. Wait on the reply port by specifying the
port in a call to the WAIT_ANY procedure. The sample module
waits on reply_port.

Retrieve the transmitted message. Retrieve a message on
the reply port by specifying the port in a call to the ELN$NI_
TRANSMIT_STATUS routine. You must also specify the message
object. The call to ELN$NI_TRANSMIT STATUS in the sample
module retrieves the message msg from reply_port.

Disconnect the portal. Disconnect the portal after all messages
are transmitted. The sample module disconnects the connection
identified by portal_id.

Create a dispatch port. Use the CREATE_PORT procedure to
create a dispatch port. The sample module creates the dispatch
port dispatch_port. The module will establish the dispatch port for
the created portal. For more information about dispatch ports, see
Section 8.4.2.

Specify the message format. If necessary, specify the message
format, multiplexing information, and LLC class to be used. The
sample module specifies the unused message format so that promis-
cuous mode can be used. When in promiscuous mode, the datalink
driver delivers a copy of each message transmitted on the Ethernet.

EtherneVIEEE 802 Datalink Drivers 8-35

® Establish the dispatch port for the portal. Establish the
dispatch port by calling the ELN$NI_CONNECT routine. A call
to this routine must specify a portal identification number, control
port, dispatch port, and message form. -

The call to ELN$NI_CONNECT in the sample module estab-
lishes the dispatch port dispatch_port for the specified portal.
The variable portal_id receives an integer value identifying the
connection.

The format_and_mux argument specifies the message format to be
used. This value was specified in step 12.

The user_data_out and prom arguments specify the integer value
that is to be returned in each call to ELN$NI_RECEIVE and a
Boolean that enables promiscucus mode.

@ Wait on the dispatch port. Wait on the dispatch port by speci-
fying the port in a call to the WAIT_ANY procedure. The sample
module waits on dispatch_port.

® Receive a message. Receive a message by calling the ELN$NI_
RECEIVE routine. The call to ELN$NI_RECEIVE must specify the
dispatch port, a variable of type MESSAGE to receive the message,
and a pointer variable to receive a pointer to the beginning of the
message’s user data. The call to ELN$NI_RECEIVE in the sample
module includes these arguments and arguments that receive the
size of the message’s user data, destination address, source address,
the message format, and the user data value that was defined in
the call to ELN$NI_CONNECT.

® Disconnect the dispatch port from the control port.
Disconnect the dispatch port from the control port after all mes-
sages are received. The sample module disconnects the connection
identified by portal_id.

@ Get the system’s CSMA/CD LAN configuration. Get the
system’s CSMA/CD LAN configuration by calling the ELN$NI_
GET_CONFIGURATION routine. The call to ELN$NI_GET_
CONFIGURATION stores the version number of the network in-
terface routines and the device types, device names, control port
values, and data port values for all active CSMA/CD LAN con-
trollers. You must retrieve this information before you can use the
other network interface routines. The sample module returns the
configuration record to config_data.

8-36 EtherneVIEEE 802 Datalink Drivers

® Extract the control port and data port values from the con-
troller configuration record. Once you retrieve the controller
configuration record, extract the control and data port values.
You must specify a control port in calls to ELN$NI_CONNECT,
ELN$NI_DISCONNECT, and ELN$NI_GET_ATTRIBUTES. You
must specify a data port in calls to ELN$NI_TRANSMIT. The
sample module extracts the port values for the first controller and
assigns them to conérol_port and data_port, respectively.

Ethernet/IEEE 802 Datalink Drivers 8-37

Chapter 9
DECnet Network Services

The VAXELN Toolkit’'s DECnet Network Service routes messages sent
between two DECnet network nodes, manages the list of universal
names for the network, and provides a runtime interface for managing
local system DECnet software. The Network Service calls the datalink
driver to transmit messages; in turn, the datalink driver calls the
Network Service to dispatch received messages.

When a process gets a value for a port that is not on the process’s node,
the kernel and the Network Service on the local node cooperate to route
the message to the destination, through the Network Service on the
receiver’s node. Once received at the destination, the message has the
same format as any message. The methods for receiving a message and
replying to it are always the same.

When a process attempts to translate a universal name, the Network
Service and the kernel cooperate to obtain the translation. The
Network Service also provides for communication with other DECnet
network nodes and implements functions for managing nodes in the
network.

You configure multinode VAXELN systems with a Network Service

at each node. However, the methods by which a program sends and
receives messages are the same whether jobs communicate between
nodes or within a single node. Data transmission between network
nodes is transparent.

NOTE

The processors configured for a closely coupled symmetric
multiprocessing system constitute one Ethernet node.

DECnet Network Services 9-1

This chapter describes the protocols that the Network Service employs
(see Section 9.1). The rest of the chapter provides information about
the following DECnet Network Service services:

¢ Message transmission services, Section 9.2

¢ Name service, Section 9.3

¢ Network management services, Section 9.4

* Services for communicating with VMS Nodes, Section 9.5

* Remote Terminal Utility, Section 9.6

9.1 Network Service Protocols

The Network Service employs the following Phase IV DECnet protocols:
* Routing protocol, Version 2.0

Network services protocol (NSP), Version 4.0

* Session control protocol (SCP), Version 1.0

¢ Data access protocol (DAP), Version 7.1

The routing protocol routes system-level datagrams between VAXELN
nodes and other DECnet nodes. The protocol provides Ethernet end-
node routing. Although end-node routing limits a VAXELN system to
only one Ethernet datalink controller, such as a DEUNA or DEQNA,
the routing capabilities let the VAXELN system communicate directly
over the Ethernet with any DECnet node on the same Ethernet. If a
full routing system is present on the Ethernet, for example, a VMS
system, the VAXELN system can communicate through the routing
system to any node on the entire network.

NSP and SCP support transparent application-level circuits that are
connected to remote nodes. Such circuits are also known as logical
links. They connect two remote application- or session-level ports.
Therefore, a call to the VAXELN CONNECT_CIRCUIT procedure
that specifies a remote destination port causes the VAXELN Network
Service to create an NSP logical link with the specified destination.
Likewise, the ACCEPT_CIRCUIT procedure lets the calling program
accept logical links from remote destination ports. Once the circuits
(logical links) are established, the NSP uses the routing protocol to
deliver messages to remote systems.

9-2 DECnet Network Services

VAXELN uses DAP in all communications tasks within an applica-
tion, not just for message-passing. For example, console and disk I/O
use DAP as their highest-level interface. All VAXELN drivers have
DAP front ends to facilitate transparent multiprocessing in local area
network configurations.

In addition, the VAXELN Toolkit uses direct device access (DDA) to
perform local disk and terminal I/O functions that the DAP architecture
does not define. DDA provides an interface for disk and serial-line read
and write operations. This protocol also provides an interface for
dynamically setting serial-line characteristics, setting serial lines to
the spacing state, monitoring the use of out-of-band characters, and
controlling modem signals.

9.2 Message Transmission Services

The Network Service uses Phase IV DECnet protocols to add trans-
parent network extensions to the message-paséing kernel procedures
ACCEPT_CIRCUIT, CONNECT_CIRCUIT, DISCONNECT_CIRCUIT,
RECEIVE, and SEND. When an application uses these procedures to
pass messages between two network nodes, the kernel and Network
Service on each node cooperate to ensure message delivery. When

a process sends a message, the kernel checks whether the specified
port value is known to the executing node. If it is not, the kernel
and Network Service route the message through the receiving node’s
Network Service to the destination port. The receiving process receives
and replies to the message as though executing on the same node as
the sending process.

Applications that include the Network Service can pass messages be-
tween nodes explicitly by using the SEND procedure and implicitly
through I/O operations that use services, drivers, or hardware on a dif-
ferent node. The system that runs on each node in such an application
must include the Network Service.

Figure 9—1 shows a 2-node VAXELN network. When Job A sends a
message to Job B, the Network Service on Target VAX 1 delivers a
formatted message to the datalink driver on that system.

DECnet Network Services 9-3

Figure 9-1: A Two-Node VAXELN Network Using the Network

Service
Target VAX 1 Target VAX 2
Job A | Kemnel Job B | Kernel

Network Network
Service Service

¥
Datalink Datalink

Driver Driver
¥

Ethemet

<4>

1)

MLO-004287

Part of the formatted message is the 48-bit Ethernet address of the
destination node, Target VAX 2. The datalink driver on Target VAX
2 recognizes its Ethernet address in the message and forwards the

message to the Network Service on its machine. The Network Service

then delivers the message to a message port in the destination job, Job

B.

Neither the sending nor the receiving job communicates directly with
the Network Service. Instead, the kernel on each node determines
whether an outgoing message is destined for a message port on the

local node or a remote node.

9-—-4 DECnet Network Services

NOTE

When jobs on the same target processor send messages to
each other, the Network Service is not involved. Therefore,
you can omit the Network Service from such systems.

The use of circuits is recommended, especially in network applications.
However, the Network Service functions the same way when messages
are sent between two unconnected message ports on different nodes.

Circuits are recommended because, whether or not you use a network,
they guarantee message delivery if the physical connection is intact.
(The Ethernet does not guarantee intact connections.) Circuits also
guarantee that messages are delivered in the correct sequence and that
messages of any length will be split, or segmented, into messages of the
maximum size supported by the hardware. The message segments are
reassembled into messages of the original size.

Generally, these guarantees are especially important in networks. If
your application requires communication without circuits, you probably
will have to program guarantees, such as message delivery, yourself.

An alternative to using circuits is to send data as a datagram remote
port. However, the Ethernet and general DECnet networks impose a
limit on message size. This limit restricts the size of datagrams that
you can send to a remote port to 1500 bytes: the maximum Ethernet
message size (1514 bytes) minus the size of the message header (14

bytes).

9.3 Name Service

When you build the Network Service into a VAXELN system, you

can also include the Name Service. The Name Service adds network
extensions to the CREATE_NAME, TRANSLATE_NAME, and DELETE
procedures. These extensions let jobs access and maintain a table of
universal port names (port names that are known to all nodes in a
VAXELN local area network). Using universal port names, jobs can
identify message destinations without having to know or maintain
other jobs’ PORT values.

If you include the Name Service in a VAXELN system, your application
programs can do the following:
* Use the CREATE_NAME procedure to create universal names

* Use the TRANSLATE_NAME procedure to translate universal
names

¢ Use the DELETE procedure to delete universal names

DECnet Network Services 9-5

Universal port names are the key to distributed applications. By using
universal port names, a VAXELN system can move a job or disk file to
another node without your having to modify code. The Network Service
ensures the validity of the communications path. Thus, a job running
on one node can open, read, and write files that are located on another
node, while the use of multiple nodes remains transparent to the user.

Each target system in a VAXELN network application retains a list of
the universal names it creates and sends a copy of those names to the
universal Name Service. One of these target systems acts as a name
server and manages the universal name table.

NOTE

The set of universal names in a VAXELN local area network
is known only to the VAXELN nodes in that network. That
set of names is not known to nodes running other systems,
such as VMS, nor to other VAXELN nodes not directly
connected to the local area network’s Ethernet.

9.3.1 Name Server

A VAXELN network’s name server is the VAXELN system that is
responsible for managing the network’s universal name table. The
name server is elected from the pool of VAXELN systems that include
the Name Service. If your VAXELN system includes the VAXELN
Command Language Utility (ECL), you can display the name of the
current name server node by issuing the SHOW NAME_SERVER
command. If the name server is a remote node, this command displays
the node’s Ethernet address and DECnet area and node number. If
the local node is the name server, the command displays a message to
inform you.

9.3.2 Kernel and Name Service Interaction

The kernel and Name Service on each node in a VAXELN network
communicate with each other and with the name server. Messages are
sent, between the Name Service on each node and name server until

a valid reply is received. Kernel and Name Service interaction can be
summarized as follows:

¢ Name Creation

9-6 DECnset Network Services

When a job creates a universal name, the kernel on its node sends
a message to its node’s Name Service. The Name Service then
sends the name and its PORT value to the name server. The
name server enters the universal name in its table and sends an
acknowledgment back to the Name Service. The Name Service
waits for the acknowledgment from the name server (a message
indicating the success or failure of the name creation) and forwards
the reply back to its local kernel. The completion status is returned
to the program that initiated the name creation.

¢ Name Deletion

When a job deletes a universal name, the kernel informs its local
Name Service of the deletion, and the Name Service informs the
name server. The name server removes the name from the table,
unless it has been already deleted, and replies to the Name Service.
The completion status is returned to the program that initiated the
name deletion.

* Name Translation

When a job translates a universal name, the local kernel sends a
message to each node’s Name Service. The Name Service forwards
. the translation request to the name server. The name server
translates the name to a PORT value, which the name server
returns to the Name Service in its reply. The completion status is
returned to the program that initiated the name translation.

9.3.3 Name Server Election

The Name Service preserves universal names if the current name
server shuts down and at least one other system in the VAXELN
network has the Name Service. Each VAXELN system in a VAXELN
network that includes the Name Service is eligible to serve as the
network’s name server. Each of these nodes can nominate itself as the
name server, but it will not necessarily be one.

The protocol for electing a name server is as follows:

®* The current name server periodically broadcasts its Ethernet
address to inform the other nodes that it is the current name
server.

¢ If you build the Name Service into a system, the service retains a
list of the universal names that the system creates.

DECnet Network Services 9-7

* Nodes that have the Name Service listen for the name server’s
periodic broadcast. If a timeout interval elapses with no broadcast,
another node is elected as the current name server, and each
system that includes the Name Service sends its list of universal
names to the new server.

Assuming that a name server is elected, the preceding protocol ensures
that a system’s universal port names are available to the other nodes.
Thus, the failure of one node does not prevent other nodes from using
universal names.

To ensure the integrity of a network’s universal name table, include
the Name Service in a sufficient number of systems. If necessary, you
can include the service in systems that use only local names. However,
keep in mind that as the size of a network and the number of systems
that include the Name Service increase, the amount of overhead that
results from the election process increases.

9.4 Network Management Services

The Network Service provides services for managing VAXELN DECnet
nodes. The Network Service supports a subset of the Phase IV network

- management protocol (NMP). Thus, you can manage VAXELN DECnet
nodes from a VMS host system by using the DECnet—VAX network
control program (NCP). You can use the NCP to invoke functions of the
following facilities:

* Network management listener (NML), Version 4.0. Monitors the
network and controls DECnet systems.

* Loopback Mirror. Tests the Network Service and its ability to
communicate with other nodes on the network.

The Network Service also provides the following services for managing
VAXELN DECnet nodes from VAXELN target systems:

¢ Network Management Service. Provides a routine interface for
dynamically starting and stopping DECnet software at runtime.

¢ Down-Line Load Service. Provides a runtime routine interface for
down-line loading VAXELN system images to other VAXELN target
nodes.

9-8 DECnet Network Services

Section 9.4.1 explains how to use NML to manage VAXELN DECnet
systems from a VMS host system. Section 9.4.2 explains how to use the
Loopback Mirror to test the Network Service. Sections 9.4.3 and 9.4.4
explain how to use the Network Management Service and Down-Line
Load Service.

9.4.1 Managing VAXELN DECnet Systems from a VMS Host System

You can monitor and control DECnet systems from a VMS host system
by using NML. You invoke NML functions by using NCP. For informa-
tion about using NCP, see the DECnet-VAX System Manager’s Guide.
This section explains NCP features that the VAXELN Toolkit supports
remotely.

To use the NCP to invoke the VAXELN NML, you must first define the
VAXELN system’s node name and address in the VMS system’s net-
work node data base. This definition is usually established when the
network is installed, but you should check that each node in your net-
work has a unique address and name. The following VMS commands
define a VAXELN system for use by the network management services:

$ RUN SYSSSYSTEM:NCP
NCP> DEFINE NODE FRED ADDRESS 5§
NCP> SET NODE FRED ALL

Once you define the node, you can verify its existence in the network
node data base by using the NCP SHOW NODE and SHOW CIRCUIT
commands. (The circuit that you specify in the NCP command is a
datalink-level circuit between nodes, not the application-level circuit
referred to in VAXELN programs.)

NCP> SHOW NODE FRED

Node Volatile Summary as of 8-MAR-1990 12:44:41

Node State Active Delay Circuit Next Node
Links

5 (FRED) reachable UNA-O 5 (FRED)

To invoke the VAXELN NML through the NCP, use the NCP SET
EXECUTOR command or the TELL prefix. The following example
shows how to use the SET EXECUTOR command:

DECnet Network Services 9-9

NCP> SET EXECUTOR NODE FRED
NCP> SHOW EXECUTOR

Node Volatile Summary as of 8~MAR-1990 10:48:00
Executor node = 5 (FRED)

State = on
Identification = VAXELN V4.1

The VAXELN NML supports the following NCP commands and options.
Brackets identify optional items, which in most cases are mutually

exclusive.

e LOOP NODE node-id [WITH block-type] [COUNT count] [LENGTH
length]

¢ SHOW EXECUTOR [SUMMARY] [STATUS] [CHARACTERISTICS]
[COUNTERS]

e SHOW KNOWN CIRCUIT [SUMMARY] [COUNTERS]
e SHOW KNOWN LINE [SUMMARY] [COUNTERS]

* SHOW NODE node-id [SUMMARY] [COUNTERS]

s ZERO EXECUTOR

¢ ZERO KNOWN CIRCUIT

e ZERO KNOWN LINE

¢ ZERO NODE node-id

9.4.2 Testing the Network Service

You can test a VAXELN system’s Network Service from a VMS system

or another VAXELN system by using the Loopback Mirror facility. The
mirror passively loops messages sent to it, using the NCP LOOP NODE
command.

The mirror is a good test of the Network Service and its ability to
communicate with other nodes on the network. Therefore, you should
use the LOOP NODE command whenever communication between
systems is in doubt. For example, to test the communication between
a remote VAXELN system and the local VMS system, use a command
similar to the following:

NCP> LOOP NODE ENODE COUNT 100

9-10 DECnet Network Services

To test communication between two VAXELN systems, use a command
similar to the following:

NCP> TELL ENODE LOOP NODE ENODE2 COUNT 100

9.4.3 Using the Network Management Service

The Network Service provides network management routines that an
application can use to modify the state of its DECnet software. An
application can start and stop DECnet software at runtime by calling
the ELNSNETMAN_START_NETWORK and ELN$NETMAN_STOP_
NETWORK routines.

Calls to the ELNSNETMAN_START _NETWORK routine can specify

a node name, node address, and line name. A fields argument points
to an aggregate that identifies which arguments you are specifying.

If you are using Pascal or C, you can identify the arguments that are
to be used individually, using Boolean values, or collectively, using a
bit mask value. For FORTRAN applications you must use a bit mask
value. If you choose the Boolean method, you set the Boolean value for
each argument that you are going to specify to TRUE. When using the
bit mask method, you specify the sum of the appropriate mask values.
The argument fields and mask values are defined as follows:

Argument Field Name Mask Name Mask Value
Node name node_name_field NETMANS$NODE_NAME_ 1
MASK
Node address node_address_field NETMAN$NODE_ADDRESS_ 2
MASK
Line name line_name_field NETMANSLINE_NAME_MASK 4

For each field that you set, you must specify a value for a corresponding
argument. For example, to specify a line name, you must set the bit for
the line name in the fields argument and specify a line name for the
line name argument. For the fields that you choose not to set, you can
specify a null string for the corresponding argument.

The line name argument identifies the Ethernet controller over which
the DECnet software is to run. If you do not specify a line name, the
Network Service starts DECnet on the default Ethernet controller. If
the call to ELN$NETMAN_START NETWORK starts DECnet for the
first time, the default controller is the Ethernet controller that you

DECnet Network Services 98-11

specified on the Network Node Characteristics Menu when you built
the system. Otherwise, the default controller is the last controller on
which DECnet successfully started.

If a system image is built with DECnet software disabled and that
system calls ELNSNETMAN_START_NETWORK for the first time, the
routine call can also specify the node address and node name that the
DECnet software is to use. The values that you specify in the routine
call override the node address and node name that may have been
specified previously when the system was built or down-line loaded.

¢ If the call to ELNSNETMAN_START NETWORK is starting
DECnet for the first time and you do not specify a node address
and node name, DECnet uses the address and name that were
specified when the system was built or down-line loaded.

¢ If a call to ELNSNETMAN_START NETWORK specifies a node
address and node name and the call is not starting DECnet for the
first time, the routine returns an error.

The universal Name Service is not available to systems on which
DECnet software is disabled. If the Name Service was built into a
system, the universal Name Service becomes available when DECnet
starts on that system.

When an application calls the ELN$SNETMAN_STOP_NETWORK
routine to stop the DECnet software, the Network Service aborts
existing network logical links, shuts down the universal name service,
and stops all DECnet operations. Although DECnet operations stop,
the Ethernet/IEEE 802 Datagram Service continues to run. Thus,
applications can continue to use the Datagram Service’s network
interface routines for networking operations.

To use the Network Management Service routines, a program must
include the appropriate include files. The include modules vary for
each language. For Pascal programs you must include the modules
$NETMAN_UTILITY and $NET_DEFINITIONS. If you are program-
ming in C, you must include the modules $vaxelnc and $netman_
utility. For FORTRAN programs, you must include the definition file
ELN$:NETMAN_UTILITY.FOR.

For descriptions of Down-Line Load Service routines, see the VAXELN
Pascal Runtime Library Reference Manual, VAXELN C Runtime
Library Reference Manual, or VAXELN FORTRAN Runtime Library

Reference Manual.

9-12 DECnet Network Services

The sections that follow explain how to use the ELNSNETMAN_
START_NETWORK and ELN$NETMAN_STOP_NETWORK routines
to do the following:

¢ Initialize DECnet addresses at runtime, Section 9.4.3.1

¢ Start and stop DECnet to temporarily reduce network overhead,
Section 9.4.3.2

* Switch the Ethernet controller on which DECnet is to run,
Section 9.4.3.3

9.4.3.1 Initializing DECnet Node Addresses at Runtime

You can use the ELNSNETMAN_START NETWORK routine to initial-
ize the local node’s DECnet node address at runtime. A VAXELN ap-

- plication configuration that requires the loading of the same VAXELN
system image onto multiple targets could benefit from such initializa-
tion. Some ROM-based applications use such configurations. You can
load a VAXELN system image that has DECnet disabled onto multiple
targets and then start DECnet at runtime on each system, specifying
the appropriate DECnet node address. This may be more appropriate
than hard-coding DECnet node addresses into multiple versions of a
system image that is the same otherwise.

If the system images are to be down-line loaded or if the DECnet
node addresses were supplied when the systems were built, you can
specify the calls to ELNSNETMAN_START_NETWORK without the
node addresses and node names. When you omit these arguments,
the routine uses the address and name that were specified when the
system was built or down-line loaded.

If the image is not down-line loaded and the DECnet node information
is not supplied when a system is built, the application must retrieve
the information. The task of retrieving the node address and node
name that needs to be specified in the call to ELN$NETMAN_START_
NETWORK is left to the application designer. Three approaches are as
follows:

* Create a user-defined Ethernet/IEEE 802 protocol that determines
a system’s node address.

* Include a table in the application that maps DECnet node ad-
dresses with CPU identification numbers or Ethernet controller
hardware addresses.

* Prompt for the information at the console at system start-up.

DECnet Network Services 9-13

8.4.3.2 Stopping and Starting DECnet Software to Reduce Network Overhead

VAXELN networking applications can use the ELNSNETMAN_STOP_
NETWORK and ELNSNETMAN_START NETWORK routines to tem-
porarily shut down DECnet operations to reduce network overhead for
time-critical tasks. You can eliminate the following types of overhead
by stopping DECnet:

* Connection requests

¢ End-node routing announcement messages
* Periodic network timer

® Universal Name Service operations

Although applications retain the overhead incurred from user-defined
Ethernet/IEEE 802 protocols and datalink-level system identification
messages (sent by ESA, EZA, and QNA device drivers), the reduction
in overhead that you gain from shutting down DECnet operations may
provide a significant contribution to system performance when it is
most needed.

A VAXELN application that collects time-critical data and sends that
data to other systems for processing is an example of an application
that can benefit by temporarily shutting down DECnet operations.
Such an application might stop DECnet, collect the time-critical data,
and then start DECnet again to transmit the collected data to another
system for processing.

To use ELNSNETMAN_START NETWORK and ELN$NETMAN_
STOP_NETWORK in such an application, you do the following:

1. Build the system image with DECnet enabled.

2. At a time-critical point in the application, call the ELNSNETMAN_
STOP_NETWORK routine to stop DECnet.

3. Perform the time-critical task.

4, Call the ELN$NETMAN_START NETWORK routine to start
DECnet.

5. Communicate with other systems over the network.

9-14 DECnet Network Services

The following code shows how you might program this in an applica-
tion:

MODULE stop_n_start_decnet;
INCLUDE $NETMAN UTILITY, $NET_DEFINITIONS;
PROGRAM stop_n_start (INPUT, OUTPUT);

VAR
stat : INTEGER;
specified_fields : NETMAN$INFORMATION_EIELDS;
node address : NET$NODE_ADDRESS;
node name : NET$NODE_NAME;
line name : VARYING STRING (32);

BEGIN

{
{ Stop DECnet
{}

ELNSNETMAN_ STOP_NETIWORK;

Perform the time-critical task and then restart DECnet using the
default node address, node name, and line name.

Set specified fields to zero to use the current settings for the
node name, node address, and line name.

P e T e S~ ST S R
-

—~

specified_ fields.mask value := 0;

ELN$NETMAN_START_NETWORK(stat,
specified fields,
node_addr;ss,
node name,
line name);

DECnet Network Services 9-15

9.4.3.3 Switching DECnet Software Between Ethernet Controllers

The VAXELN datalink drivers can support up to eight Ethernet con-
trollers, only one of which can run DECnet software at a given time.
If a VAXELN networking application employs a multiple Ethernet con-
troller configuration, it can use the ELNSNETMAN_STOP_NETWORK
and ELN$NETMAN_START NETWORK routines to switch DECnet
from one controller to another.

An application might use multiple controllers to maintain DECnet
networking integrity if a communications path is broken. If an applica-
tion can switch DECnet to another controller dynamically at runtime,
another controller can take over if the communications path to the
controller running DECnet fails.

The task of preparing a mechanism that determines whether a com-
munications path has failed is left to the application designer. One
approach is to program an application to do the following:

1. Check for the KER$_DISCONNECT status value. The SEND and
RECEIVE procedures return this status value to notify their callers
when a port was disconnected.

2. Call the DISCONNECT_CIRCUIT procedure to disconnect the
partner port.

3. Call ELNSNETMAN_STOP_NETWORK to stop DECnet. The
Network Service aborts existing logical links, shuts down the
universal name service, and stops all network operations.

4, Close all connections to the datalink driver (established with the
ELN$NI_CONNECT routine) running on the controller to which
the DECnet software is to be switched.

5. Restart DECnet on the other controller with a call to ELN$NETMAN _
START_NETWORK, specifying the controller’s line name.

6. Reestablish connections to the datalink driver.
7. Reestablish the circuit.

The following section of code shows this approach:
‘MODULE switch_controllers;
INCLUDE $NETMAN UTILITY, $NET DEFINITIONS;

PROGRAM switch (INPUT, OUTPUT);

9-16 DECnet Network Services

VAR

data port : PORT;

stat : INTEGER;

specified fields : NETMANsINFORMATION_FIELDS;
node_address : NET$NODE ADDRESS;

node_name : NET$NODE_NAME;

line name : VARYING_STRING(32);

{ Check for and handle a disconnected circuit. }

IF stat = KER$_DISCONNECT THEN
BEGIN

{ Disconnect the port before trying to reestablish the connection.
DISCONNECT CIRCUIT (data_port);

{ Stop DECnet. }

ELN$NETMAN STOP_NETWORK;

{ Start DECnet on another controller. }

specified fields.mask value := NETMAN$LINE_NAME_MASK;

node_address.area := 0;
node_address.node := 0;
node name := '7;

line name := ’'XOBO’;

ELNSNETMAN_START_NETWORK(stat,
node_address,
node name,
line_name);

{ Reestablish the connection. }

CONNECT_CIRCUIT (data_ port,
DESTINATION NAME := dest_port_ name,
STATUS := stat);

SEND (msg, data port, STATUS := stat);

END;

For more information about programming circuits, see Section 5.3.6.

Another approach is to program an application to implement a user-
defined Ethernet/IEEE 802 protocol that periodically multicasts
datagrams to other nodes on a LAN. Based on information that the
application gathers from sending the datagrams, it can determine
which nodes are available on the LAN. If nodes are not available on
that LAN, the application can use ELNSNETMAN_STOP_NETWORK
and ELN$NETMAN_START NETWORK to switch DECnet operations

DECnet Network Services 9-17

to another controller (and LAN) that provides communications paths to
all the necessary nodes.

9.4.4 Using the Down-Line Load Service

The VAXELN Down-Line Load Service handles VAXELN system load
requests and provides runtime interface routines. Using the interface
routines, VAXELN applications can configure, manage, and monitor a
memory-resident down-line load data base. Applications can also use
routines to trigger boot or down-line load VAXELN systems to remote
VAXELN target nodes.

You build the Down-Line Load Service into a VAXELN system as a
program image, and it runs as a system job. When the job starts
executing, it creates and starts a process for each Ethernet controller
on the local system. The process for a controller handles all load
requests sent to and from that controller. The master process waits for
data base, trigger, and load requests.

When you build the Down-Line Load Service into a VAXELN system,
you can specify that it is to start when the system begins executing
by selecting Yes for the Run entry on the System Builder’s Program
Description Menu. Alternatively, you can activate the Down-Line Load
Service at runtime by using one of the following:

¢ A call to the CREATE_JOB procedure from an application program
* The EXECUTE/WAIT ECL command

® The RUN ECL command

* The CREATE JOB debugger command

The down-line load data base can store information about remote
VAXELN target nodes and physical lines known to the local node. An
application can set up the data base for a local node, using the supplied
routines. Alternatively, you can create a down-line load data base script
file and specify the file as a program argument for the Down-Line Load
Service job. You can specify the script file when you build the service
into the system image or when you activate the service at runtime.

The data base can contain an aggregate for each node and line, with
the aggregate fields identifying specific node or line characteristics.
The Down-Line Load Service uses the characteristics in the data base
as defaults for information not supplied in load requests.

9-18 DECnet Network Services

An application can keep the data base current by adding new entries,
modifying existing entries, clearing duplicate information, and so on.
An application can also obtain current information from the data base.

An application communicates with the Down-Line Load Service by
using the following routines:

Routine Description

ELN$DLL _CLEAR_LINE Clears or resets down-line load data base line
entries.

ELN$DLL _CLEAR_NODE Clears down-line load data base node entries.

ELN$DLL_GET _LINE Returns line information from the down-line
load data base.

ELN$DLL_GET NODE Returns node information from the down-line
load data base. :

ELN$DLL_LOAD Loads a VAXELN system onto another
VAXELN target node.

ELN$DLL_SET LINE Adds information to or modifies information in
down-line load data base line entries.

ELN$DLL_SET NODE Adds information to or modifies information in
down-line load data base node entries.

ELN$DLL_TRIGGER Trigger boots a VAXELN system.

To use these routines, a program must include the appropriate include
files and establish a connection with the Down-Line Load Service’s
control port. Before calling some of the routines, you must also get the
line name for an Ethernet device.

The include modules vary for each language. For Pascal programs you
must include the modules $DLL_UTILITY and $NET _DEFINITIONS.
If you are programming in C, you must include the modules $vaxelnc
and $d1l_utility. For FORTRAN programs, you must include the
definition file ELN$:DLL_UTILITY.FOR.

Sections 9.4.4.1 to 9.4.4.6 explain how to use the runtime interface.
Section 9.4.4.1 explains how to establish a circuit for Down-Line Load
Service communication. Sections 9.4.4.2 to 9.4.4.6 explain how to use
the Down-Line Load Service routines to do the following:

¢ Manage and monitor data base node entries

®* Manage the monitor data base line entries

¢ Trigger boot VAXELN target nodes

DECnet Network Services 9-19

¢ Down-line load VAXELN system images

For descriptions of Down-Line Load Service routines, see the VAXELN
Pascal Runtime Library Reference Manual, VAXELN C Runtime
Library Reference Manual, or VAXELN FORTRAN Runtime Library
Reference Manual.

For information about building the Down-Line Load Service into
VAXELN systems, activating the service at runtime, and setting up
script files, see the VAXELN Development Utilities Guide.

For information about down-line loading system images from VMS host
nodes, see the VAXELN Development Utilities Guide.

9.4.4.1

9-20

Establishing Circuits for Down-Line Load Service Communication

An application program communicates with the Down-Line Load
Service using a VAXELN virtual circuit. A program must establish the
circuit connection by getting its job port value and connecting that port
with the Down-Line Load Service control port $DLL_CONTROL. The
following example shows how to establish such a connection:

MODULE test_dll;

INCLUDE $NI_UTILITY, S$ELNMSG,
$DLL UTILITY, $NET DEFINITIONS;

PROGRAM do_down_line load (INPUT,OUTPUT);

VAR
application_job_port, dll port : PORT;
stat : INTEGER;

BEGIN
TRANSLATE NAME (d11l_port, ’$DLL CONTROL’, NAME$LOCAL, STATUS := stat);

{ Get job port. }
JOB_PORT (application_job_ port);
{ Connect the job port to the Down-Line Load Service. }

CONNECT_CIRCUIT (application_job_port, DESTINATION_PORT := dll port);

END.
END;

DECnet Network Services

Once the connection between application_job_port and the Down-Line
Load Service port is established, the program can call the Down-Line
Load Service routines, specifying application_job_port as a circuit
argument.

9.4.4.2 Managing and Monitoring Data Base Node Entries

An application can use Down-Line Load Service routines to set up the
local host’s initial data base node configuration or update an existing
configuration. The data base should identify remote VAXELN nodes
that the local node might trigger boot or to which the local node might
down-line load a VAXELN system image.

The data base node entries include the node’s name and DECnet
address. Optionally, an entry can specify the hardware address, a
line name, a VAXELN system image file, a secondary load file, and
a tertiary load file. The line name identifies the controller on the
local node to be used for trigger boot and down-line load operations.
All other node entry information pertains to a remote target node.
Table 9-1 summarizes these characteristics.

Table 9-1: Down-Line Load Data Base Node Characteristics

Characteristic Description

Node name The name of the target node.

Node address The DECnet node address of the target node.

Hardware address The hardware address of the Ethernet con-
troller on the target node.

Line name The name of the line device on the local node
to be used for down-line load operations for
the target node.

Image file name The name of the VAXELN system image file to

be down-line loaded to the target node.

Secondary loader file name The name of the secondary loader file. The
secondary loader is a small image that a
system’s primary loader may request. In turn,
the secondary loader may request a tertiary
loader.

DECnet Network Services 9-21

Table 91 (Cont.): Down-Line Load Data Base Node Characteristics
Characteristic Description

Tertiary loader file name The name of the tertiary loader file. The ter-
tiary loader is a larger image that a system’s
secondary loader may request. In turn, the
tertiary loader may request the VAXELN
system image file.

When you trigger boot or down-line load an image, the Down-Line Load
Service uses the data that you specify in the routine call and gets any
missing information from the data base. Thus, if a call to ELN$DLL,_
LOAD specifies only a node name, the Down-Line Load Service looks
for a line name, image file, secondary loader file, and tertiary loader file
in the data base. If necessary, the service also tries to derive a physical
address from the DECnet node address stored in the data base.

An application can modify and monitor the data base by calling the
ELN$DLL_SET NODE, ELN$DLL_CLEAR_NODE, and ELN$DLL,_
GET _NODE routines. ELN$DLL_SET NODE adds or modifies data
base entries. ELN$DLL_CLEAR_NODE clears the information stored
in the entries. ELN$DLL_GET _NODE returns target node information
from the data base.

Calls to these routines must specify the port connected in a circuit to
the $DLL_CONTROL port. The routines use the connected circuit to
communicate with the Down-Line Load Service.

Calls to ELN$DLL_CLEAR_NODE and ELN$DLL_GET_NODE must
also identify the node for which information is to be cleared or returned.
The node identifier must be a string representing the node’s name (for
example, BNODE) or DECnet node address (for example, 12.2). You
can specify a wildcard string (**’) to indicate that the routine is to clear
or return information from all node entries in the data base.

To set or clear a node’s characteristics, an application must also specify
a fields argument. This argument indicates that the corresponding
value in the data base aggregate is to be set or cleared. You can set
or clear the node name, node address, hardware address, line name,
image file, secondary loader file, and tertiary loader file.

You can specify the aggregate fields to be set or cleared individually,
using Boolean values, or collectively, using a bit mask value. If you
choose the Boolean method, you set the Boolean value for each char-
acteristic that you want to set or clear to TRUE. If you choose the bit

9-22 DECnet Network Services

mask method, you specify the sum of the appropriate mask values in
the mask value field. The characteristic fields and mask values are
defined as follows:

Characteristic Field Name Mask Name Mask Value
Node name node_name_field DLL$NODE_NAME_MASK 1
Node address node_address_field DLL$NODE_ADDRESS MASK 2
Hardware ad- hardware_address_field DLL$HARDWARE_ADDRESS_ 8
dress MASK
Line name line_name_field DLLS$LINE_NAME_MASK 16
System image image_file_field DLL$IMAGE_FILE_MASK 64
file name
Secondary load sec_loader_file_field DLL$SEC_LOADER_FILE_ 128
file name MASK
Tertiary load file tert_loader_file_field DLL$TERT_LOADER_FILE_ 256
name MASK

NOTE

The mask values 4 and 32 are for use with the ELN$DLL_
LOAD and ELN$DLL_TRIGGER routines; the values do
not represent node characteristics that you can set or clear.
The value 4 indicates that you specified a node identifier
(name or DECnet address). The value 32 indicates whether
you specified a physical address. For more information, see
Sections 9.4.4.5 and 9.4.4.6.

You can set or clear fields without changing other fields in the aggre-
gate. However, for each field that you set, you must specify a value
for a corresponding argument. For example, to set a node name, you
must set the bit for the node name field in the fields argument and
specify the name of a target node for the node name argument. For the
fields that you choose not to set, you can specify a null string for the
corresponding argument.

If a node entry that you want to modify contains a node name but no
address and you specify only the node address in the call to ELN$DLL_
SET_NODE, the routine creates a new entry, using the node address as
the node’s identification. When this happens, you should combine the
information in the two entries for that node to avoid conflicts between
the original and updated information. To combine the entries, clear the

DECnet Network Services 9-23

data in one entry and set the information from the cleared entry in the
second entry.

To return node information from the data base, an application must
specify the name of a user-defined show node routine. ELN$DLL_
GET_NODE invokes the show node routine if it finds the specified node
in the data base. If you specify the string ™ for the node identifier,
ELN$DLL_GET NODE calls your routine once for each node in the
data base and returns all user-specified node information.

Example 9-1 adds a node entry to the down-line load data base, clears
the hardware address for that entry, and then returns the information
stored in the entry.

Example 9—1: Managing and Monitoring Down-Line Load Data Base
Node Entries

MODULE manage dll node entries;

INCLUDE $NI_UTILITY, $ELNMSG,
$DLL UTILITY, $NET_DEFINITIONS;

PROGRAM manage nodes (INPUT, OUTPUT) ;

VAR
app_job_port, dll port : PORT;
set_status, clear_status, get_status : INTEGER;
new_fields, clear_fields : DLL$NODE_INFORMATION_EIELDS;
node name : NETSNODE NAME;
node address : NET$NODE_ADDRESS;
node_identifier : NET$NODE_NAME ADDRESS;
hardware_address : NET$ETHERNET ADDRESS;
line_name : VARYING STRING(32);
image_file : VARYING STRING (255);
sec_loader file : VARYING_STRING(255);
tert loader file : VARYING STRING (255);
dll msg : MESSAGE;

BEGIN

{ Get the values for the Down-Line Load Service control port and the
{ program’s job port and establish a connection.

{}

JOB_PORT (app_job_port); (1]

CONNECT CIRCUIT (app job port,
DESTINATION_NAME := ’$DLL_CONTROL’);

Example 9—1 Cont'd on next page

9-24 DECnet Network Services

Example 9-1 (Cont.): Managing and Monitoring Down-Line Load
Data Base Node Entries

{ Add an entry to the down-line load data base.
{}

new_fields.mask value := 0; ‘g
new_fields.node name_ field := TRUE;
new_fields.node_ address field := TRUE;
new_fields.hardware_address_field := TRUE;
new_fields.line_name_field := TRUE;

new_fields.image file field := TRUE;

node_name := ’'BNODE’;

node_address.area :='12;

node_address.node = 1;

line _name := ’'XQOA0’;

hardware_address.address := '’ (%X00, %X00, %X11, %X00, %X22, %X33);
image file := 'BNODE::DUAO: [DLL]IMAGEFILE.SYS';

sec_loader file :='7;

tert_loader_file =17,

EL.$DLL_SET_NODE (set_status, G)

app_job port,
new_fields,
node_name,
node_address,
hardware address,
line_name,
image_file,
sec_loader file,
tert_loader_file);

WRITELN (' Status of data base set operation: ’, set_status);

{ Clear the new entry’s hardware address.

{}

clear fields.mask value := 0; C)
clear_ fields.hardware address field := TRUE;
ELN$DLL_CLEAR NODE (clear_status, 5]

app_job_port,
clear fields,

’BNODE’) ;
WRITELN (/ Status of data base clear operation: ’, clear status);

{ Display the information in the data base entry.
{1

Example 9—1 Cont'd on next page

DECnet Network Services 9-25

Example 9—1 (Cont.): Managing and Monitoring Down-Line Load

Data Base Node Entries

ELN$DLL GET_ NODE (get_status, (6
app job_port,
r12.1r7,
show_node) ;

WRITELN (’ Status of

data base get operation: ’, get_status);

DISCONNECT CIRCUIT (app_Jjob_port); i?

END;

PROCEDURE show_node of type ELN$DLL SHOW_NODE_ROUTINE; ()

BEGIN

{ Return information from the fields that are set.

{}

WITH node info_ptr:

BEGIN

:*DLL$NODE_INFORMATION“ DO

WRITELN(’************************************’)

WRITELN (’

IF node_ flag set.

WRITELN (/

IF node_flag_set.

BEGIN
WRITELN (’
WRITELN (/

END;

IF node_flag_ set.

WRITELN (’

IF node_ flag_set.

WRITELN (’

IF node_flag_set.

WRITELN (’

IF node_flag_set
WRITELN (’

IF node flag set
WRITELN (/

Version = '/, version);
node_name_field THEN

Node name =’, node name);
node_address field THEN

Node address area =', node_address.area);
Node address node =’, node_address.node);

hardware_ address_field THEN

Hardware address =’, hardware_ address.address);
line_name_field THEN

Line name =’, line_name);
image_file field THEN

System image file =’, image_file);

.sec_loader file field THEN

Secondary loader file =’, sec_loader file);

.tert_loader file field THEN

Tertiary loader file =’, tert_loader_ file);

WRITELN(’************************************')

END;

END;
END.

9-26 DECnet Network Services

© Connect to the Down-Line Load Service control port. Get the
value of the program’s job port and connect that port in a circuit
to the Down-Line Load Service control port. The sample module
connects the job port app_job_port in a circuit to the local control
port $DLL_CONTROL. For information about connecting to the
Down-Line Load Service control port, see Section 9.4.4.1.

0O Set up the data base aggregate for a new node entry. Set
up the data base aggregate for a new node entry by clearing
the new fields mask value, setting the appropriate fields in the
aggregate, and assigning values to the corresponding arguments.
The sample module uses the Boolean method to set the node name,
node address, line name, hardware address, and image file fields
to TRUE. Alternatively, the module could have set the fields by
assigning a mask value of 91 (the sum of the mask values 1, 2,
8, 16, and 64) to the mask value field. The module then assigns
appropriate values to the node_name, node_address, line_name,
hardware_address, and image_file arguments. Null strings are
assigned to the sec_loader_file and tert_loader_file arguments
because those fields are not being set. Although, you do not have to
specify values for fields that are not being set; the arguments are
ignored. :

©® Add a new node entry to the data base. Add a new node entry
to the down-line load data base by calling ELN$DLL_SET_NODE.
A call to this routine must specify the port connected in a circuit to
the $DLL_CONTROL port and a value for the new fields argument.
The call must also specify values for arguments representing the
node’s name, DECnet address, and hardware address; the name of
the line on the local node to be used for load operations; and the
name of the system image file, secondary load file, and tertiary
load file to be loaded. The new_fields argument identifies the node
characteristics the application will be setting. The routine call
in the sample application sets the node name, node address, line
name, hardware address, and image file name.

O Set up the data base aggregate for a clear operation. Set
up the data base aggregate for a clear operation by clearing the
clear fields mask value and setting the appropriate fields in the
aggregate. The sample module uses the Boolean method to set the
hardware address field to TRUE. Alternatively, the module could
have assigned a mask value of 8 to the mask value field.

DECnet Network Services 9-27

© Clear node information from the data base. Clear node infor-
mation from the down-line load data base by calling ELN$DLL_
CLEAR_NODE. You must specify the port connected in a circuit
to the $DLL_CONTROL port, a value for the clear_fields argu-
ment, and a node identifier. The routine call in the sample module
specifies that the hardware address for node BNODE be cleared.
Alternatively, the node identifier could have been specified as "12.1".

O Return node information from the data base. To check
the data that is in the down-line load data base, issue a call to
ELN$DLL_GET_NODE. The call must specify the port connected
in a circuit to the $DLL_CONTROL port, a node identifier, and the
name of a user-defined show node routine. The call to ELN$DLL_
GET_NODE in the sample module returns information about the
node whose DECnet node number is 12.1. Alternatively, the node
identifier could have been specified as 'BNODE’.

@ Disconnect the application job port from the Down-Line
Load Service control port. Disconnect the application job port
from the Down-Line Load Service control port when the circuit is
no longer needed. The sample module disconnects the connection
identified by app_job_port.

O Define the show node routine to be invoked by ELN$SDLL,_
GET_NODE. The user-defined routine show_node displays infor-
mation that is in the aggregate fields that are set. For BNODE, the
routine will display the node name, node address, line name, and
system image file name.

9.4.4.3 Managing and Monitoring Data Base Line Entries

An application can use Down-Line Load Service routines to update
the local host’s data base line configuration. The data base should
identify the physical Ethernet lines on the local node that can be used
for trigger boot and down-line load operations.

The data base line entries include the line name. Optionally, an entry
can specify the line’s state, retry count, and service timer. Table 92
summarizes these characteristics.

9-28 DECnet Network Services

Table 9-2: Down-Line Load Data Base Line Characteristics

Characteristic Description

Down-line load enabled Flag that specifies whether the line is enabled for
trigger boot and down-line load operations.

Retry count The number of times the Down-Line Load Service
is to send an unacknowledged load request to
the target node. The service abandons the load
attempt when the number of tries exceeds the
count value. :

Service timer The amount of time the Down-Line Load Service
is to wait for a response message from a target
node during a down-line load operation before
resending the load message.

When you trigger boot or down-line load an image, the Down-Line Load
Service uses the line characteristics that are in the data base for the
specified line. Thus, if a call to ELN$DLL_LOAD specifies the line
name XQAOQ, the Down-Line Load Service looks for the characteristics
for XQAOQ in the data base.

An application can modify and monitor the data base by calling the
ELNDLL_SET_LINE, ELNDLL_CLEAR_LINE, and ELN$DLL_
GET_LINE routines. ELN$DLL_SET LINE modifies data base entries.
ELN$DLL_CLEAR_LINE resets the information stored in the entries.
ELN$DLL_GET _LINE returns local node line information from the
data base. v

Calls to ELNDLL_SET_LINE, ELNDLL_CLEAR_LINE, and
ELN$DLL_GET_LINE must specify the port connected in a circuit
to the $DLL_CONTROL port and a line name. The routines use the
connected circuit to communicate with the Down-Line Load Service.
The line name is a string that identifies a physical line on the local
node (for example, XQAO0). You can get the names of available lines
from controller configuration aggregates returned by ELN$NI_GET_
CONFIGURATION (see Section 8.2) or by using the ECL command
SHOW DEVICES.

When calling ELN$DLL_CLEAR_LINE or ELN$DLL_GET_LINE
you can specify a wildcard string (*’) for the line name argument.
The wildcard string indicates that the routine is to reset or return
information from all line entries in the data base.

DECnet Network Services 9-29

To set or clear a line’s characteristics, an application must also specify
a fields argument. This argument identifies the fields in the data base
for the line that you intend to set or clear. You can set or clear the
down-line load enabled flag, the retry count, and service timer. When
you clear the retry count or service timer, ELN$DLL_CLEAR_LINE
resets the values to 5 and 4000 milliseconds, respectively.

You can specify the aggregate fields to be set or cleared individually,
using Boolean values, or collectively, using a bit mask value. If you
choose the Boolean method, you set the Boolean value for each char-
acteristic that you want to set or clear to TRUE. If you choose the bit
mask method, you specify the sum of the appropriate mask values in
the mask value field. The characteristics fields and mask values are
defined as follows:

Characteristic Field Name Mask Name Mask Value
Down-line load dll_enabled_field DLL$DLL_ENABLED_MASK 1

enabled

Retry count retry_count_field DLL$RETRY_COUNT_MASK 2

Service timer service_timer_field DLL$SERVICE_TIMER_MASK 4

You can set or clear fields without changing other fields in the aggre-
gate. However, for each field that you set, you must specify a value for
a corresponding argument. For example, to set the retry count, you
must set the bit for the retry count field in the fields argument and
specify a count value for the retry count argument. For the fields that
you choose not to set, you can specify a null string for the corresponding
argument.

NOTE

The fields argument is ignored if you specify a wildcard
string for the line name in a call to ELN$DLL_CLEAR_
LINE.

To return node information from the data base, an application must
specify the name of a user-defined show line routine. ELN$DLL_
GET_LINE invokes the show line routine if it finds the specified line
in the data base. If you specify a wildcard string for the line name,
ELN$DLL_GET_LINE calls your routine once for each line in the data
base and returns the name of the line, state of the down-line load
enabled flag, retry count value, service timer value, and the hardware
address of the local node’s Ethernet controller with which the line is
associated.

9-30 DECnet Network Services

Example 9-2 resets the retry count and service timer for a line entry
that is in the down-line load data base and returns the information
stored in that entry.

Example 9-2: Managing and Monitoring Down-Line Load Data Base
Line Entries

MODULE manage_dll_line_entries;

INCLUDE $NI_UTILITY, S$ELNMSG,
$DLL UTILITY, $NET DEFINITIONS;

PROGRAM manage_lines (INPUT, OUTPUT);

VAR
app_job_port, dll_port : PORT;
status : INTEGER;
set_status, clear_status, get_status : INTEGER;
new_fields, clear fields : DLLSLINE INFORMATION FIELDS;
dll_enabled : BOOLEAN;
retry count : INTEGER;
service_timer : LARGE_ INTEGER;
line name : VARYING_STRING(32);
hardware address : NETSETHERNET ADDRESS;
config : ELN$NI CONFIGURATION := ZERO;
line count : INTEGER;

BEGIN

{ Get the values for the Down-Line Load Service control port and
{ the program’s job port and establish a connection.

{}
JOB_PORT (app_job_port) ; (1]

CONNECT_CIRCUIT (app job_port,
DESTINATION NAME := ’ $DLL_CONTROL') ;

{ sSet the retry count and service timer for line XQaO0.
{}

ELN$NI_GET_CONFIGURATION(status, e;
line count,
config);

IF ODD (status) THEN
line name := config.clist[1].name;

new_fields.mask_value := 0; (3]

Example 9-2 Cont’d on next page

DECnet Network Services 9-31

Example 8—-2 (Cont.): Managing and Monitoring Down-Line Load
Data Base Line Entries

new_fields.retry_count_field := TRUE;
new_fields.service_timer_field := TRUE;

retry count := 10;
service timer := TIME VALUE(’0 00:00:207);

ELN$DLL_SET LINE (set_status, (4]
app_job port,
new_fields,
line_name,
dll enabled,
ret;y_count,
service_timer);

WRITELN (/' Status of data base set operation: ’, set status);

{ Reset the entry’s retry count and service timer.

{}

clear_ fields.mask value := 0; ‘3
clear fields.retry count field := TRUE;

clear fields.service_timer field := TRUE;
ELN$DLL_§LEAR_LINE(clear_status, C)

app_job port,
clear_ fields,
line name);

WRITELN (’ Status of data base clear operation: ’, clear status);

{ Display the information in the data base entry.

{}

ELN$DLL_GET_LINE (get_status, ii

app_job_port,
line name,
show_line);

WRITELN(’Status of data base get operation: ’, get_status);

DISCONNECT CIRCUIT (app_job_port) ; (’
END;

Example 9-2 Cont’d on next page

9-32 DECr_\et Network Services

Example 9-2 (Cont.): Managing and Monitoring Down-Line Load
Data Base Line Entries

PROCEDURE show_line of type ELN$SDLL_SHOW_LINE ROUTINE; G)

BEGIN
WITH line_info_ptr” DO
BEGIN
WRITELN(’ EREIKARARKRAKR AR KA RAAKRAKRKA IR AXAA A kAKX *khkhkkk/) 2
WRITELN (/ Version = /, version);
WRITELN (/ Line name =’, line_name);
WRITELN (/ Down-line load enabled =’, dll_enabled);
WRITELN (’ Retry count =’, retry count);
WRITELN (’/ Service timer =’, TIME STRING (service_ timer));
WRITELN (’/ Hardware address =’, hardware address.address);
WRITELN (’ ************************************IT
END;
END;
END.

O Connect to the Down-Line Load Service control port. Get the

value of the program’s job port and connect that port in a circuit
to the Down-Line Load Service control port. The sample module
connects the job port app_job_port in a circuit to the local control
port $DLL_CONTROL. For information about connecting to the
Down-Line Load Service control port, see Section 9.4.4.1.

Get the name of a line. Use a call to the ELN$NI_GET_
CONFIGURATION routine to get the controller aggregates that
describe the Ethernet controller on the local node. From the ag-
gregates, you can extract the names of the controllers and specify
the names for the line name argument in calls to ELN$DLL_SET _
LINE, ELN$DLL_CLEAR_LINE, and ELN$DLL_GET_LINE. The
sample module extracts the name of the first controller and assigns
that name to line_name.

Set up the data base aggregate for the line entry. Set up the
data base aggregate for the line entry by clearing the new fields
mask value, setting the appropriate fields in the aggregate, and
assigning values to the corresponding arguments. The sample
module uses the Boolean method to set the retry count and service
timer fields to TRUE. Alternatively, the module could have set the
fields by assigning a mask value of 6 (the sum of the mask values
2 and 4) to the mask value field. The module then assigns the

DECnet Network Services 9-33

values 10 and 5000 to the retry_count and service_timer arguments,
respectively.

O Modify a line entry in the data base. Modify a line entry in the
down-line load data base by calling ELN$DLL_SET _LINE. A call
to this routine must specify the port connected in a circuit to the
$DLL_CONTROL port and a value for the new_fields argument.
The call must also specify values for arguments representing the
line’s down-line load enabled flag, retry count, and service timer.,
The new_fields argument identifies the line characteristics the
application will set. The routine call in the sample application sets
the retry count and service timer.

6 Set up the data base aggregate for a clear operation. Set
up the data base aggregate for a clear operation by clearing the
clear fields mask value and setting the appropriate fields in the
aggregate. The sample module uses the Boolean method to set the
retry count and service timer fields to TRUE. Alternatively, the
module could have assigned a mask value of 6 to the mask value
field.

O Clear line information from the data base. Clear line infor-
mation from the down-line load data base by calling ELN$DLL_
CLEAR_LINE. You must specify the port connected in a circuit to
the $DLL_CONTROL port, a value for the clear_fields argument,
and a line name. The routine call in the sample module specifies
that the retry counter and service timer for line_name be cleared.

@ Return line information from the data base. To check the data
that is in the down-line load data base, issue a call to ELN$DLL,_
GET_LINE. The call must specify the port connected in a circuit to
the $DLL_CONTROL port, a line name, and the name of a user-
defined show_line routine. The call to ELN$DLL_GET_LINE in the
sample module returns information about line_name.

© Disconnect the application job port from the Down-Line
Load Service control port. Disconnect the application job port
from the Down-Line Load Service control port when the circuit is
no longer needed. The sample module disconnects the connection
identified by app_job_port.

© Define the show line routine to be invoked by ELN$DLL_
GET_LINE. The user-defined routine show_line displays infor-
mation that is in the aggregate fields. The show-line routine in
the sample module displays the version number of the Down Line
Load Service and the name, down-line load flag value, retry count,
service timer, and hardware address for line_name.

9-34 DECnet Network Services

9.4.44 Managing Target-Initiated Down-Line Load Requests

A VAXELN system can set up a down-line load data base for ser-
vicing load requests by calling routines to set, clear, and retrieve
information from data base entries. The VAXELN Down-Line Load
Service services both application- and target-initiated down-line load
requests. Application-initiated requests are trigger boot and down-line
load requests that result from calls to the ELN$DLL_TRIGGER and
ELN$DLL_LOAD routines. Trigger booting and down-line loading are
discussed in Sections 9.4.4.5 and 9.4.4.6, respectively.

A target-initiated load request is an unsolicited request that a target
node transmits in response to a console BOOT command. A target
node might direct the load request to a specific node or to a multicast
address.

Figure 9-2 shows the load request message flow that might result from
a console BOOT command.

Figure 9-2: Target-Initiated Down-Line Load Request

VAXELN Host Node VAXELN Target Node
Down-Line Load Primary Bootstrap
Service - Loader

Load Request
MLO-004156

The Down-Line Load Service listens for load requests on lines for which
it is enabled. After receiving such a request, the service creates a
process that reads and processes the request.

The Down-Line Load Service extracts the data in the load request and
determines whether a request is directed to a multicast address or
the local node. If the request is for a multicast address, the service
volunteers to perform the load if a node entry in the down-line load
data base matches the target node’s hardware address.

DECnet Network Services 9-35

The service volunteers by sending a message to the requesting node.
If the target node does not respond, the service drops the initial load
request. Otherwise, it continues to service the request.

When servicing the remainder of a multicast load request or a request
directed to the local node, the Down-Line Load Service checks for
other information that may have been supplied in the load request.

If the request includes additional information, it is used to service
the request. If the load request does not supply all the necessary
information, the Down-Line Load Service searches the down-line
load data base for information it needs. When the service has all the
required information, it performs the load operation.

The typical load sequence for a target-initiated load request begins with
the primary bootstrap loader running on the target node. Typically, this
program executes directly from the target node’s bootstrap ROM, or it
is in the microcode of the load device. After the primary loader is
triggered, the target node sends a message requesting a program load
to an eligible host node. (The host node may be a specific node defined
by the target node, or any node on the Ethernet.) Usually, the primary
loader requests a secondary loader program, which may request a
tertiary loader. The tertiary loader may then request a VAXELN
system image file.

9.4.4.5 Trigger Booting a VAXELN Target Node

A VAXELN application can trigger boot another VAXELN target node
by calling the ELN$DLL_TRIGGER routine. This routine triggers

a remote node’s bootstrap ROM, causing the target node to issue a
request for a load operation. Depending on how the target node’s
primary bootstrap loader is programmed, a system image is loaded
from a specific host, any host on the LAN, or a local disk.

To trigger boot a target node, an application sends a trigger request
message to that node. The trigger request must specify the name of
the line over which the trigger and load requests are to be sent and the
target node’s Ethernet address.

Depending on how a target node’s primary bootstrap loader is pro-
grammed, a target node might respond to a trigger request by sending
a load request message back to the host VAXELN system. The Down-
Line Load Service running on the host system extracts the load infor-
mation it needs from the message; if information is missing, the service
searches the down-line load data base for the missing information.

| The host system then uses the information to down-line load (copy) a
system image over the Ethernet to the target node.

9-36 DECnet Network Services

Figure 9-3 shows the message flow that might result from a trigger
boot operation.

Figure 9-3: Trigger Boot Request

VAXELN Host Node VAXELN Target Node
Trigger Request -
Down-Line Load Primary Bootstrap
Service - Loader
Load Request

MLO-004157

An application initiates a trigger boot with a call to ELN$DLL_
TRIGGER. A call to this routine must specify the port connected in

a circuit to the $DLL_CONTROL port. The routine uses the connected
circuit to communicate with the Down-Line Load Service.

A call to ELN$DLL_TRIGGER must also identify the name of the

line to be used for the operation and the Ethernet address of the
target node. You can identify the line name and Ethernet address by
specifying a node identifier or a line name and physical address. If you
specify a node identifier, the Down-Line Load Service searches for the
required information in the down-line load data base.

The Down-Line Load Service uses the node identifier to get information
needed to derive a physical Ethernet address. The service derives a
physical Ethernet address from the DECnet node address that you
specify as a node identifier or that is stored in the data base. In
addition to trying to derive the physical address, the service searches
the node’s data base entry for a hardware address. If both addresses
are available, both are used to trigger the target node. The target node
responds to the address that is appropriate for the target node’s state
(running or not running). If only one of the addresses is available, the
service tries to trigger boot the target node using that address.

- DECnet Network Services 9-37

The information that you specify in the routine call overrides the
data in the data base. Thus, if you specify a node identifier, line
name, and physical address, the Down-Line Load Service uses the line
name and physical address specified in the routine call; corresponding
information in the data base is ignored. Specifically, if you specify a
physical address in the call to ELN$DLL_TRIGGER, the Down-Line
Load Service uses only that address to trigger the target node. An
available hardware address will not be used.

A fields argument points to an aggregate that identifies which argu-
ments you are specifying. You can identify the arguments that are to
be used individually, using Boolean values, or collectively, using a bit
mask value. If you choose the Boolean method, you set the Boolean
value for each argument that you will be specifying to TRUE. If you
choose the bit mask method, you specify the sum of the appropriate
mask values in the mask value field. The argument fields and mask
values are defined as follows:

Status Field Name Mask Name Mask Value
Node identifier node_name_address_ DLL$NODE_NAME_ADDRESS_ 4
field MASK
Ethernet ad- physical_address_field DLL$PHYSICAL_ADDRESS_ 16
dress MASK :
Line name line_name_field DLL$LINE_NAME_MASK 32

For each field that you set, you must specify a value for a corresponding
argument. For example, to specify a line name and Ethernet address,
you must set the bits for the line name and Ethernet address fields in
the fields argument and specify a line name and Ethernet address for
the line name and physical address arguments. For the fields that you
choose not to set, you can specify a null string for the corresponding
argument.

Example 9-3 shows how a VAXELN application might trigger boot
another VAXELN target node.

9-38 DECnet Network Services

Example 9-3: Trigger Booting a VAXELN Target Node

MODULE manage dll_line entries;

INCLUDE $NI_UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM manage lines (INPUT,OUTPUT);

VAR
app_job port, dll port : PORT;
status : INTEGER;
specified_fields : DLL$NODE_INFORMATION_FIELDS;
node_identifier : NET$NODE NAME ADDRESS;

BEGIN
{ Get the values for the Down-Line Load Service control port and
{ the program’s job port and establish a connection.

{}
JOB_PORT (app_Jjob_port) ;
CONNECT_CIRCUIT (app_ job_port,

DESTINATION NAME := ’$DLL CONTROL’);
specified fields.mask_value := 0;
specified_fields.node name_address_field := TRUE;
node_identifier := /BNODE’;
line name := '’/;
physical address := '’;

ELNSDLL_TRIGGER(status,
app_job_port,
specified fields,
node identifer,
line name,
physical address);

WRITELN (’ Status of trigger operation: ’, status):

.

DISCONNECT_CIRCUIT (app_job_port);
END;
END.

The call to ELN$DLL_TRIGGER in Example 9-3 boots the target node
identified by the node name BNODE. The Down-Line Load Service
uses the specified node identifier, BNODE, to find the appropriate line
name and Ethernet address for the trigger operation in the down-line

DECnet Network Services 9-39

load data base. If the service does not find a line name and Ethernet
address for BNODE, the trigger request is dropped.

NOTE

If a VAXELN system is to be trigger booted with the Down-
Line Load Service, you must build that system with trigger
booting enabled. To enable trigger booting, you must select
Yes for the Node triggerable entry on the Network Node
Characteristics Menu. trigger booting on) The target node
does not need to be running the Down-Line Load Service.
You can specify Disk, ROM, or Downline for Boot method.

9.4.4.6 Down-Line Loading VAXELN Systems

A VAXELN application can down-line load a VAXELN system image to
another VAXELN target node by calling the ELN$DLL_LOAD routine.

This routine tries to down-line load a system image to a remote target

node. You supply the load information as arguments in the routine call.
The Down-Line Load Service gets any unspecified information from the
down-line load data base. If the service cannot find all the information
it needs to service the request, an error status value is returned.

A down-line load request must specify the name of the line over which
the load requests are to be sent, the target node’s Ethernet address,
and the name of the file to be loaded.

Figure 9—4 shows the message flow that might result from a down-line
load operation.

Figure 9-4: Down-Line Load Request

VAXELN Host Node VAXELN Targst Node
Load Request

Down-Line Load
Service

Primary Bootstrap

MLO-004158

9-40 DECnet Network Services

The Down-Line Load Service can accept multiple load requests.
However, the service can perform only one load operation for a par-
ticular target at a given time. A load request to a particular target
node overrides preceding requests to that node. However, if the ser-
vice receives a request to trigger a node during a load operation of
that node, the service honors the trigger request, overriding the load
operation.

An application initiates a down-line load operation with a call to
ELN$DLL_LOAD. A call to this routine must specify the port con-
nected in a circuit to the $DLL_CONTROL port. The routine uses the
connected circuit to communicate with the Down-Line Load Service.

A call to ELN$DLL_LOAD must also identify the name of the line to
be used for the operation, the Ethernet address of the target node, and
the name of the system image file to be loaded. Some target nodes also
require secondary and tertiary loader files. You can identify this data
by specifying it in the routine call or by specifying a node identifier. If
you specify a node identifier, the Down-Line Load Service searches for
the required information in the down-line load data base.

The Down-Line Load Service uses the node identifier to get information
needed to derive a physical Ethernet address. The service derives a
physical Ethernet address from the DECnet node address that you
specify as a node identifier or that is stored in the data base. In
addition to trying to derive the physical address, the service searches
the node’s data base entry for a hardware address. If both addresses
~are available, both are used to load the system image. The target node
responds to the address that is appropriate for the target node’s state
(running or not running). If only one of the addresses is available, the
service tries to down-line load the system image using that address.

The information that you specify in the routine call overrides the
data in the data base. Thus, if you specify a node identifier, line
name, and physical address, the Down-Line Load Service uses the line
name and physical address specified in the routine call; corresponding
information in the data base is ignored. Specifically, if you specify a
physical address in the call to ELN$DLL_LOAD, the Down-Line Load
Service uses only that address to down-line load the system image. An
available hardware address will not be used.

A fields argument points to an aggregate that identifies which argu-
ments you are specifying. You can identify the arguments that are to
be used individually, using Boolean values, or collectively, using a bit
mask value. If you choose the Boolean method, you set the Boolean
value for each argument to be specified to TRUE. If you choose the bit

DECnet Network Services 9-41

mask method, you specify the sum of the appropriate mask values in
the mask value field. The argument fields and mask values are defined
as follows:

Argument Field Name . Mask Name Mask Value

Node identifier node_name_address_ DLL$NODE_NAME_ADDRESS_ 4
field MASK

Ethernet ad- physical_address_field DLL$PHYSICAL_ADDRESS_ 16

dress MASK

Line name line_name_field DLL$LINE_NAME_MASK 32

Load file image_file_field DLL$IMAGE_FILE_MASK 64

Secondary sec_loader_file_field DLL$SEC_LOADER_FILE_ 128

loader file MASK

Tertiary loader tert_loader_file_field DLLS$TERT_LOADER_FILE_ 256

file MASK

For each field that you set, you must specify a value for a corresponding
argument. For example, to specify a line name and Ethernet address,
you must set the bits for the line name and Ethernet address fields in
the fields argument and specify a line name and Ethernet address for
the line name and physical address arguments. For the fields that you
choose not to set, you can specify a null string for the corresponding

argument.

Example 94 shows how a VAXELN application might down-line load a
VAXELN system image to another VAXELN target node.

9-42 DECnet Network Services

Example 9—4: Down-Line Loading a VAXELN System image

MODULE manage_dll line entries;

INCLUDE $NI_UTILITY, $ELNMSG,
$DLL_UTILITY, $NET_DEFINITIONS;

PROGRAM manage_lines (INPUT,OUTPUT);

VAR
app_job_port, dll_port : PORT;
status : INTEGER;
specified fields : DLL$NODE INFORMATION_ FIELDS;
node_identifier : NET$NODE_ NAME _ADDRESS;
1mage_f11e : VARYING STRING(255),
sec_loader file : VARYING STRING(255);
tert_loader_file : VARYING_ STRING (255);

.

.

BEGIN

{ Get the values for the Down-Line Load Service control port and
{ the program’s job port and establish a connection.

{}
JOB_PORT (app_job port);
CONNECT_CIRCUIT (app_job_port,

DESTINATION_NAME := ’$DLL_CONTROL’);
specified_fields.mask_value 1= 0;
specified fields.node_name_address field := TRUE;
specified fields.image | flle field := TRUE;
node_identifier := ’/BNODE’;
line name := ’’;
physical address := '/;
image file := ’HNODE::DUAO: [DLL]IMAGEFILE.SYS’;
sec_loader. file := '/;
tert_loader_ file := ’7;

ELNSDLL_LOAD(Status,
app_job port,
specified fields,
node_identifer,
line_ name,
physical address,
image_ file,
sec_loader_ file,
tert_loader_file);

Example 9—4 Cont’d on next page

DECnet Network Services 9-43

Example 94 (Cont.): Down-Line Loading a VAXELN System Image

WRITELN (/' Sstatus of down-line load operation: ’, status);

DISCONNECT CIRCUIT (app job_port);
END;
END.

The call to ELN$DLL_LOAD in Example 9—4 down-line loads the
image IMAGEFILE.SYS to the target node identified by the node name
BNODE. The Down-Line Load Service uses the specified node identifier,
BNODE, to find the appropriate line name and Ethernet address for
the trigger operation in the down-line load data base. If the service
does not find a line name and Ethernet address for BNODE, the load
request is dropped.

NOTE

A VAXELN system that the Down-Line Load Service is to
load must be built with down-line loading enabled. To enable
down-line loading, select Downline for the Boot method
entry on the System Characteristics Menu. down-line loading
on)

9.5 Services for Communicating with VMS Nodes

VAXELN and VMS systems can communicate transparently or non-
transparently. Using transparent communication, VAXELN and VMS
programs can exchange information with standard I/0 statements
over the network as if the programs were running on the same system.
Transparent communication offers the basic mechanism for establishing
a connection, exchanging messages, and breaking the connection.

Nontransparent communication allows VMS programs to use network-
specific features to handle the message exchange. The features avail-
able are a superset of those available in the transparent case but
require more knowledge of DECnet operation and more sophisti-
cated programming. (For example, a VAXELN program can use the

9-44 DECnet Network Services

ACCEPT_DATA and CONNECT _DATA parameters of the kernel’s cir-
cuit procedures to exchange up to 16 bytes of data with a remote VMS
program as part of the NSP connection requests and acceptances.)

When using nontransparent communication, VMS systems use mail-
boxes to handle multiple connection requests and the $QIO function
codes I0$_ACPCONTROL and I0$_ACCESS to establish names and
accept connections from multiple VAXELN processes. (For more infor-
mation and examples, see the DECnet-VAX User’s Guide.)

A complete explanation of VMS network 1/0 is beyond the scope of
this manual. The following sections provide information specific to the
VAXELN Toolkit about the following:

* Specifying nodes, Section 9.5.1

* Requesting connections from VAXELN systems, Section 9.5.2

* Accepting connections on VMS systems, Section 9.5.3

* Requesting connections from VMS systems, Section 9.5.4

® Accepting connections on VAXELN systems, Section 9.5.5

* Using object numbers in connection requests, Section 9.5.6

For more information, see the DECnet-VAX User’s Guide.

9.5.1 Specifying Nodes

When nodes running VAXELN systems and nodes running other
operating systems are connected to the same network, you need to be
able to identify them to each other. This allows VAXELN systems to
operate on files stored on all systems, to establish circuits to the other
system, and so on.

You do not need to use node specifications to identify VAXELN nodes
to each other. For example, a VAXELN program on one node can use a
file stored on another node without giving a node identifier in the file
specification. The network locations of VAXELN jobs are transparent
to one another. Node specifications are needed only for communication
between VAXELN nodes and nodes running other operating systems.

In DECnet networks, nodes are identified by node name and by node
number; either is a unique identification of a node. A node name has a
maximum of six characters, and a node number is an integer. The VMS
command SHOW NETWORK displays both the name and number of
the nodes known to the DECnet—VAX software.

DECnet Network Services 9-45

VAXELN systems use node numbers to access a remote node. Other
operating systems can use either node numbers or node names (assum-
ing node names are supported on the particular system) to access a
VAXELN node.

You can use the network control program (NCP) on a VMS system to
assign node names and numbers to VAXELN nodes as usual. (For a
brief introduction to NCP, see Section 9.4.1.)

Once you use NCP to establish the VAXELN node in the DECnet—VAX
data base, you can use the SHOW NETWORK command to display the
node any time the node is running and its system image includes the
Network Service.

9.5.1.1 Using Node Names and Node Numbers in VMS

You can use a VAXELN node name or number from another operating
system to display directories, perform other directory- or file-related
operations on File Service volumes, and perform network management
operations. Suppose you want to display a directory that resides on

a VAXELN file-server node named ENODE, If you enter the SHOW
NETWORK command on the VMS system, the system might display
something like the following:

$ SHOW NETWORK

Node Links Cost Hops Next Hop to Node
10 RVAXAA O 0 0 (Local)
12 ENODE 1 3 1 UNA-0

Here, RVAXAA is the node from which you want to access a file on
ENODE. You can use either of the following VMS commands to dis-
play the directory [ANALOG.DATA] on disk volume DISK$A on node
ENODE (12):

$ DIR ENODE: :DISK$A: [ANALOG.DATA]

$ DIR 12::DISKSA: [ANALOG.DATA]

If you have used this feature on VMS before, you will be familiar
with this syntax for network file and directory operations. The name

or number preceding the double colon (::) is the node containing the
specified directory or file.

9-46 DECnet Network Services

9.5.1.2 Using Node Numbers in VAXELN

When working from a VAXELN node, you specify a remote node (such
as a VMS node) by number. Suppose you want to open a file on the
VMS node RVAXAA. The SHOW NETWORK command on the VMS
system might display something like the following:

$ SHOW NETWORK

Node Links Cost Hops Next Hop to Node
10 RVAXaa O 0 0 (Local)
3 ELN1 1 3 1 UNA-0

Here, ELN1 is the node from which you want to access a file on
RVAXAA. You can open the file as usual, with the OPEN procedure
appropriate to the language, and the node number of RVAXAA in the
file specification. For example, you specify a call to the Pascal OPEN
procedure as follows:

OPEN (pasvar, FILE NAME := 710::SYSSLIBRARY:DIGITAL.DAT’);
You specify the C equivalent as follows:

#include stdio

FILE *file ptr;

file ptr=fopen("10::SYS$LIBRARY:DIGITAL.DAT","z");

The FORTRAN equivalent would look like the following:

OPEN(FILE = ’10::SYS$LIBRARY:DIGITAL.DAT’, TYPE = 'NEW/, UNIT = 100);

9.5.2 Requesting Connections from VAXELN Systems

You can use the CONNECT_CIRCUIT procedure to request a connec-
tion with a VMS program on the same DECnet network by specifying
the destination_name argument in the following format:

’nodenumaber::objeciname’

The nodenumber is a network node number (as described in
Section 9.5.1), and objectname is the name of the object on the VMS
system that will handle the connection.

Set up a command procedure that runs the desired VMS program im-
age, name the procedure objectname.COM, and place it in the default
DECnet directory on the VMS system. The command procedure exe-
cutes when the DECnet-VAX software gets a request for a connection
to the specified object. The VMS image then handles the connection.

DECnet Network Services 9-47

9.5.3 Accepting Connections on VMS Systems

A VMS program image has two ways of waiting for and accepting a
connection from a VAXELN system:

* You can use an operation that is comparable to using the VAXELN
ACCEPT_CIRCUIT procedure.

* You can specify the name SYS$NET in a high-level language OPEN
procedure (or equivalent).

(In a VAX MACRO program, you can use the $ASSIGN system service.)

You can break the connection by calling the DISCONNECT_CIRCUIT
procedure from your VAXELN program or by performing a close opera-
tion in the VMS program.

9.5.4 Requesting Connections from VMS Systems

A VMS program can request a connection with a VAXELN program by
using a high-level language OPEN procedure or the $ASSIGN system
service with a name of the form:

nodename:."TASK=portname"

The nodename is the name of the VAXELN network node, and the
portname is the character string name of the port created by the
VAXELN program.

9.5.5 Accepting Connections on VAXELN Systems

The VAXELN program does nothing special to accept a connection
from a remote VMS program. The VAXELN program needs only to
create a PORT object and a NAME object for the port and then call the
ACCEPT_CIRCUIT procedure to await the connection request.

948 DECnet Network Services

9.5.6 Using DECnet Object Numbers in Connection Requests

A VAXELN program can connect and accept connections using requests
that specify DECnet object numbers instead of names. This feature is
useful only for compatibility with existing DECnet applications.

To connect to a port or object by number, specify a string with this
format for the DESTINATION_NAME parameter of CONNECT._
CIRCUIT:

’nodenumber::objectnumber’

To accept a connection for an object by number, create a port name of
the form:

'NET$OBJECT objectnumber’

Here, objectnumber is the object number in ASCII. Once the name is
created, connections can be accepted as usual.

9.6 Remote Terminal Utility

The Network Service provides a Remote Terminal Utility that lets
you connect to a remote computer system from a terminal on another
computer system by using a SET HOST command. For example, you
can connect to a VAXELN system from a VMS system terminal by
using the DCL SET HOST command, or you can connect to a VMS
system from a VAXELN system terminal by using the ECL SET HOST
command. Once connected to a remote system, you can log in, use
operating system commands (such as DCL and ECL commands),
receive messages, and interact with programs that run on that system.

To use the Remote Terminal Utility, you must build it into your
VAXELN system with the outbound, inbound, or outbound/inbound
capability. The outbound capability lets you connect to computer sys-
tems from your VAXELN system. The inbound capability lets you
connect to your VAXELN system from other systems.

For more information about the Remote Terminal Utility and the ECL
SET HOST command, see the VAXELN Development Ultilities Guide.

DECnet Network Services 9-49

Chapter 10
Internet Services

You can use the VAXELN Internet Services for VAXELN applications
that need to communicate between two computer hosts that reside
on the same or on different networks. The hosts are the sources and
destinations of transferred data. The Internet Services provide the
protocols necessary for VAXELN applications to transfer data over an
Internet. .

An Internet is a set of connected networks. Higher-level software hides
the underlying Internet architecture and makes a collection of networks
appear as a single large network. The hosts on a network are physi-
cally connected and networks on the Internet are physically connected.
Applications can communicate across intermediate networks even
though the networks are not connected to the source or destination
host. The hosts that connect and transfer messages between networks
are called gateways.

NOTE

Although VAXELN systems can use gateways for Internet
communication, they cannot function as gateways.

The VAXELN Internet Services provide the following:

¢ Connectionless or end-to-end connection-oriented packet delivery
service

* Packet delivery service that is independent of the communications
medium over which data is transmitted

¢ Communications environment that supports a variety of computer
platforms

¢ Communications protocol standards

Internet Services 10-1

This chapter explains Internet Service concepts in Section 10.1, how
to configure a VAXELN system that uses the Internet Services in
Section 10.2, and how an application can use runtime routines to do
the following:

¢ Control the Internet Services, Section 10.3

¢ Convert the byte order of Internet and host physical addresses,
Section 10.4

¢ Manipulate Internet addresses, Section 10.5
¢ Communicate over the Internet, Section 10.6
¢ Retrieve and set socket characteristics, Section 10.7

NOTE

The VAXELN Internet Services currently support a C lan-
guage runtime interface only.

10.1 Internet Service Concepts

Before using the VAXELN Internet Services, you should understand
the following Internet Service concepts:

¢ (Client-server model

¢ Internet architecture

* Internet addresses

¢ Ports as Internet communication endpoints
* Sockets

¢ Routing

¢ Fragmentation

Sections 10.1.1 to 10.1.7 explain these concepts.

10-2 Internet Services

10.1.1 Client-Server Model

The hosts in a network environment communicate through processes.
A process that offers a service over the network to another process is
known as a server. Servers accept requests from other processes known
as clients. A client sends requests and waits for the results from the
server. Figure 10-1 represents a client-server model.

Figure 10-1: Client-Server Model

Host 1 ‘ Host 2
Requests
Client Process ~ 1| Server Process
Results

MLO-004159

A process name on a host cannot be used as the destination for message
communication for the following reasons:

¢ Heterogeneous operating systems define processes differently.

* Not all processes that send data have enough information to iden-
tify a process on another host.

* Process IDs can change.

Therefore, the hosts on the Internet identify communication endpoints
using ports (see Section 10.1.4). Internet protocols that comprise the
Internet architecture allow communication between the client and
server endpoints.

10.1.2 Internet Architecture

The Internet architecture consists of four layers of protocol that allow
two-way interprocess data flow between hosts, gateways, and net-
works. The architecture includes an application layer, host-to-host
protocol layer, Internet Protocol (IP) layer, and network protocol layer.
Figure 10-2 illustrates the Internet layers.

Internet Services 10-3

104

The host-to-host layer supports two protocols: the User Datagram
Protocol (UDP) and the Transmission Control Protocol (TCP).

Figure 10-2: Internet Layers

Application Layer | Application Code
[) 4
i
Host-to—Host Protocol Layer UDP TCP
[
vy Y
Internet Protocol Layer P
[}
y
Network Protocol Layer Datalink Driver

-4—————— Communications Medium ——————»~

MLO-004160

Processes on a host transmit data by passing it to the lower protocol

layers. A process at the application layer passes the data to the host-

to-host protocol layer. The host-to-host protocol layer then packages
the data according to protocol functions. For example, TCP adds a

header that ensures reliable communication. Then the protocol sends
the packaged data to the IP layer. The IP also adds a header and sends

the data to the local datalink driver.

Sections 10.1.2.1, 10.1.2.2, and 10.1.2.3 describe IP, UDP, and TCP,

respectively.

Internet Services

10.1.2.1

internet Protocol

The Internet Protocol (IP) is a protocol that is used for data com-
munication in a packet-switched computer network. IP implements
mechanisms for connecting networks and gateways into a system that
can deliver network packets from source to destination.

IP saves applications from addressing network specifics by doing the
following:

* Routing packets to destinations through networks
* Keeping track of routes for hosts and networks
* Accounting for incompatibilities

The protocol packages message data and a header in blocks called
datagrams. The header provides fixed-length source and destination
Internet addresses, a protocol number that identifies the host-to-

host protocol being used, and a checksum value. The datagrams

are encapsulated in the network packets that are delivered between
the source and destination hosts. IP can fragment and reassemble
datagrams if necessary to accommodate requirements of smaller packet
networks,

IP is specifically limited to delivering datagrams, without provisions
for reliability, flow control, sequencing, or other services found in
host-to-host protocols.

In addition to handling datagram fragmentation, IP implements ad-
dress mapping, and transmits control and error messages by using the
following protocols:

¢ Address Resolution Protocol (ARP). Dynamically maps Internet
addresses to physical Ethernet addresses and stores the address
pairs in an ARP cache. Using this protocol, an application can
determine a target host’s physical (built-in) Ethernet address.
Section 10.1.8 provides more information about Internet ad-
dresses. For more information about managing the ARP cache,
see Section 10.3.1.

* Internet Control Message Protocol (ICMP). Transmits error
and control messages to a destination host’s IP when an IP data-
gram delivery fails. ICMP provides routing information and notifies
hosts when a datagram cannot reach its destination or when a
datagram’s keep-alive time reaches zero.

Internet Services 10-5

* Reverse Address Resolution Protocol (RARP). Determines a
diskless host’s Internet address at start-up so that the host can
operate in an Internet network. A host can broadcast a message
that specifies its physical Ethernet address to all hosts in a local
area network (LAN). A host running an RARP server searches
its address data base and responds by returning the appropriate
Internet address. See Section 10.1.3 for more information about
Internet addresses.

10.1.2.2 User Datagram Protocol

The User Datagram Protocol (UDP) is layered on IP and provides
host-to-host datagram communication for applications that do not re-
quire streamed communication. UDP adds multiplexing to IP, letting
multiple processes use the protocol to send and receive data indepen-
dently. The protocol achieves mutliplexing by using ports to identify
the processes executing on a host.

UDP lets application programs send messages to programs running
on other hosts in a network using minimal protocol. The protocol is
transaction oriented, and it does not guarantee delivery or duplicate
protection.

UDP accepts a message from an application, places the message in a
datagram, and tries to deliver the datagram. The datagrams may not
arrive at the destination or may arrive out of order. Because UDP does
not provide a reliable service, applications generally add reliability by
including error and sequence control.

Table 10-1 summarizes UDP characteristics:

Table 10-1: UDP Characteristics
Protocol Characteristic UDP Specifics

Initial setup Not required

Transmisgsion path Datagram

Error handling Done by application

Remote address Remote. address may be specified on each
transmission

End-to-end flow control Not provided

Data sequencing Passed in order of arrival

10-6 Internet Services

Table 10—1 (Cont.): UDP Characteristics
Protocol Characteristic UDP Specifics

Checksum computation Provided

The VAXELN Toolkit provides a Boot Protocol (BOOTP) that is based
on UDP. Like RARP, BOOTP determines a diskless host’s Internet
address at start-up so that the host can operate in an Internet network.
A host can broadcast a message that specifies its physical address to all
hosts in a LAN. A host running a BOOTP server searches its address
data base and responds by returning the appropriate Internet address.

10.1.2.3 Transmission Control Protocol

The Transmission Control Protocol (TCP) is layered on IP and provides
host-to-host, connection-oriented communication in a network environ-
ment. TCP adds multiplexing, checksum computations, connectivity,
and reliability to IP. TCP provides for reliable interprocess communica-
tion between pairs of processes executing on host computers attached
to distinct but interconnected networks. Although TCP is layered on
IP, TCP does not require reliability of the underlying IP and datalink
driver.

TCP uses virtual circuits for data transmission. The virtual circuits
provide automatic sequencing, error control, and flow control.

Applications that use TCP must establish a virtual circuit connec-
tion before transferring data. Once an application establishes the
connection, the application can use data transfer calls to send data
to a destination without specifying a destination address. When the
connection is no longer needed, the application must explicitly shut it
down.

TCP provides the following functions:

¢ Transfers a continuous stream of bytes in each direction between
a source and destination. TCP breaks up a message into bytes,
packages the bytes into segments for transmission through the
Internet, and reassembles the message at the destination. TCP
ensures that all data is transferred.

Internet Services 10-7

Recovers lost, duplicated, or out-of-order data by assigning a se- .
quence number to each octet (eight bits) transmitted, and requiring
a positive acknowledgment (ACK) from the receiving TCP. If the
ACK is not received within a timeout interval, the data is retrans-
mitted. The receiver’s TCP uses the sequence numbers to reorder
segments that are received out of order and to eliminate duplicates.
TCP handles damaged data by adding a checksum to each trans-
mitted segment, checking it at the receiver end, and discarding
damaged segments.

Handles flow control. TCP controls data flow by returning a sliding
window (message buffer size) with every ACK indicating a range of
acceptable sequence numbers beyond the last segment successfully
received. The window identifies the number of octets that the
sender can transmit before receiving an ACK.

Provides for multiplexing. Using ports, multiple processes running

on a host can use TCP simultaneously.

¢ Establishes connections using unique device interfaces that spec-
ify connection-related information, such as status information,
sequence numbers, and window sizes.

TCP establishes a connection by using a handshaking mechanism
with initial sequence numbers to avoid connection initialization
errors. An application should terminate a connection and free
resources when the connection is no longer needed.

Table 10—2 summarizes TCP characteristics:

Table 10-2: TCP Characteristics

Protocol Characteristic

TCP Specifics

Initial setup
Transmission path
Error handling

Remote address
End-to-end flow control
Data sequencing
Checksum computation

Required

Virtual circuit

Transparent to application

Remote address is required at setup
Provided

Pasgsed in order sent

Provided

10-8 Internet Services

10.1.3

Internet Addresses

For a source host to communicate with a destination host, it must know
the Internet address of the destination host. An Internet address is a
32-bit (four octets) address that identifies a network and a host.

32 0

Network Identifier Host Identifier

MLO-004161

The network identifier must be the same for all hosts connected to
the same network, and no two networks can have the same network
identifier if they are connected in any way.

No two hosts on the same network can have the same host identifier.

The notation used to represent a 32-bit Internet address consists of four
decimal integer fields separated by periods. The value in each field can
range from 0 to 255. A sample Internet address might be represented
as 5.0.2.10.

An Internet address can fall into one of three network classes and can
identify subnetworks (see Section 10.1.6). A network mask informs a
system which bits of an Internet address to interpret as the network,
subnetwork, and host addresses. A broadcast mask interprets an
Internet address as a broadcast address. Sections 10.1.3.1, 10.1.3.2,
and 10.1.3.3 provide more information about network classes, network
masks, and broadcast masks, respectively.

10.1.3.1

Network Classes

In addition to providing a network identifier, the network part of an
Internet address identifies a network class. The Internet supports
three network classes: Class A, Class B, and Class C. The network
configuration determines a network’s class type.

The four Internet address fields are used in different ways to specify
the network class, network number, and host number. The high-order
bits in an Internet address designate the network class of the address.
The first high-order bits for each class are defined as follows:

Internet Services 10-9

10-10

Class High-Order Bits
A 0

B 10

C 110

For a Class A network, the first field specifies the network number
and class and the remaining three fields specify a subnet number, if
subnetworks are being used (see Section 10.1.6), and the host number.
The following figure shows such an Internet address:

32 24 16 8 0
Network Host Host Host
identifier ldentifier Identifier Identifier

MLO-004162

The value in the first field can range from 1 to 126, inclusive. By
convention, 127 is reserved as the loopback address. Loopback is used
for testing the connectivity to a specific host in the network.

NOTE

Currently, the VAXELN Internet Services do not use 127 as
the loopback address.

For a Class B network, the first two fields specify the network number
and class, and the remaining two fields specify a subnet number, if
subnetworks are being used, and the host number. The value in the
first field can range from 128 to 191 and the value in the second field
can range from 1 to 254. The following figure shows the Internet
address format for a Class B network:

32 24 16 8 0
Network Network Host Host
Identifier Identifier Identifier Identifier

MLO-004163

Internet Services

For a Class C network, the first three fields specify the network number
and class, and the remaining field specifies the host number, as shown
in the following figure:

32 24 16 8 0

Network Network Network Host
Identifier Identifier Identifier Identifier

MLO-004164

The value in the first field can range from 192 to 223, the value in
the second field can range from 0 to 255, and the value in the third
field can range from 1 to 254. Subnet routing is not generally used
with a Class C network because there are only eight bits in the host
field. Table 10-3 lists the ranges of the network numbers for the three
network classes.

Table 10-3: Network Class Number Ranges

Class Number

A 1.—126.

B 128.1—191.254

C 192.0.1—223.255.254

To determine which network class to use, you must consider the num-
ber of network hosts and the number of Internet networks.

The Class A network is best suited for sites with a few networks but
numerous hosts, because it has 24 bits in the host part of its Internet
address. The 24 bits allow for the most host-number combinations. In
this case, the network part of the Internet address consists of seven
usable bits, leaving 126 usable network-number combinations (0 and
127 are reserved).

The Class B network is best suited for sites where the number of
networks is about equal to the number of hosts, because the 32 bits of
the Internet address are evenly divided between the network and the
host part of the address. The network part uses 16 bits and the host
part uses 16 bits.

Internet Services 10-11

The Class C network is best suited for sites with numerous networks
but few hosts, because the network part of the Internet address has
21 usable bits. The 21 bits allow up to 2,097,152 network-number
combinations, while the eight bits of the host part of the Internet
address can have only up to 254 host-number combinations.

If you are planning to set up a LAN, you should obtain a registered
Internet address. This way, if you choose to connect your network with
another network, you will not have to change your Internet addresses.
You can obtain a registered Internet address by calling the Network
Information Center at 1-800-235-3155 from inside the United States.

10.1.3.2 Network Mask

10-12

A network mask is a 32-bit number that informs the system which bits
of the Internet address to interpret as the network, subnetwork, and
host addresses. A one-to-one correspondence exists between the 32 bits
in the network mask and the 32 bits in the Internet address.

For each bit in the network mask that is set (binary 1), the correspond-
ing bit position in the Internet address is interpreted as part of the
network and subnetwork address.

The decimal number 255 is 11111111 in binary notation. The value 255
means that an entire 8-bit field is set because each bit position is a 1.
Generally, an 8-bit field is either set (255) or cleared (0). Values other
than 255 and 0 can be used, but by using 255 or 0 you make it easier
to differentiate between the network, subnetwork, and host fields.

If the network mask bit position is part of the host field and is set, the
corresponding bit in the Internet address is interpreted as part of the
subnetwork address. If the network mask bit position is part of the
host field and is cleared, the corresponding bit in the Internet address
is interpreted as part of the host address.

Each bit in the first (leftmost) field of the network mask must be set
(decimal value of 255, binary value of 11111111), because the first field
of the Internet address must always be interpreted as the network
address regardless of whether subnetworks exist. If a bit in the first
field of the network mask is cleared, part of the network field of the
Internet address is interpreted as part of the host address. This may
cause errors.

The second and third fields are usually 255 or 0, depending on how
the Internet address is to be interpreted. The fourth field is usually 0,
indicating that it represents the host address.

Internet Services

A Class A network mask is usually 255.255.0.0 or 255.255.255.0. When
the network mask is 255.255.0.0, the first octet is the network address,
the second octet is the subnet address, and the third and fourth octets
are the host address. If the network mask is 255.255.255.0, the first

- octet is the network address, the second and third octets are the subnet
address, and the fourth octet is the host address.

If a Class B network uses 255.255.255.0 for a network mask, the first
and second octets are the network address, the third octet is the subnet
address, and the fourth octet is the host address.

Normally, Class C networks do not have subnetworks, because only
eight bits are allocated for the host part of the Internet address. Eight
bits may not be enough to divide between a subnetwork address and a
host address.

The default network masks for each class are as follows:

Class Default Network Mask
A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

10.1.3.3 Broadcast Mask

A broadcast mask interprets an Internet address as a broadcast ad-
dress. Using the broadcast address, a process can send messages to all
hosts on the network that have the same Internet broadcast address at
the same time.

The format of the broadcast address consists of the network number
followed by all ones (1).

NOTE

Some operating systems, such as UNIX BSD 4.2 and
ULTRIX-32 prior to Version 1.2, require that the Internet
broadcast address be the network number followed by all
zeros (0). Currently, the VAXELN Internet Services support
only the default format.

The network number includes the subnet, if there is one.

Internet Services 10-13

If you know the Internet address and the network mask for a particular
host, you can calculate the broadcast mask by using the following
formula:

(NOT networkmask) OR (internetaddress)

For example, if a host has an Internet address of 128.50.100.100 and
the network mask 255.255.0.0 (the default), the host’s broadcast mask
is 128.50.255.255. The NOT of the host’s network mask is 0.0.255.255.
You then substitute the first two fields of the Internet address for the
two zeros to get the broadcast mask.

Table 104 lists examples of broadcast addresses.

Table 10-4: Broadcast Addresses

Host Internet Host Network Network Network Mask Broadcast
Address Number Class Number (Subnet Mask) Address
3.0.0.10 10 A 3. 255.0.0.0 3.255.255.255
11.1.0.12 12 A 11.1. 255.255.0.0 11.1.255.255
129.39.0.15 15 B 129.39. 255.255.0.0 129.39.255.255
128.45.2.8 8 B 128.45.2. 255.255.255.0 128.45.2.255
192.0.1.8 8 C 192.0.1. 255.255.255.0 192.0.1.255
192.0.1.223 223 C 192.0.1. 255.255.255.0 192.0.1.255

10.1.4 Ports as Internet Communication Endpoints

While Internet addresses identify source and destination hosts, ports
represent the endpoints of a communications link between two pro-
cesses. Like the messages sent to a VAXELN port, Internet mes-
sages sent to a port are queued until another process extracts them.
Processes that are waiting for messages are blocked until a message
arrives.

To send data to a port on another host, a process uses a destination
host’s Internet address and a port number. The Internet address
identifies a network and a host. The port number identifies a particular
destination on the host. A process also specifies a source port when it
sends a message. The process that receives the message can use the
source port to return a reply.

10-14 Internet Services

Integers identify the communications ports. The source and destination
ports are not necessarily identified with the same port number. TCP/IP
and UDP/IP use port numbers that range from 1 to 65535.

Port numbers ranging from 1 to 1023 identify privileged ports.
Privilege means something different for each operating system. In
general, when a host receives a message from a privileged port, you
can assume that the destination host has done some level of checking
against the application using the port.

The port numbers ranging from 1 to 255 are reserved to provide a
service contact point to known callers. Digital honors these assigned
ports as implemented in the Department of Defense (DoD) and Defense
Advanced Research Projects Agency (DARPA) Internet communities.

Before an application can use UDP/IP or TCP/IP for communication, a
process must be bound to a port. An application binds a process to a
port by specifying an Internet address and port number in a call to the
bind function (see Section 10.6.2).

NOTE

To bind a process to a privileged port, the calling program
must be authorized with a system group UIC (that is, a UIC
less than or equal to %X0008FFFF or [10, 177777]).

10.1.5 Sockets

A socket is a communication endpoint abstraction that allows two peers
to communicate. The peers can be entities such as two programs, two
processes within a program, or a program itself.

Sockets have the following properties:
¢ Communication domain

¢ Protocol type
* Protocols

A communication domain is the collective common properties of pro-
cesses communicating through sockets. One such property would be the
naming scheme of the sockets. The VAXELN Internet Services support
the Internet (AF_INET) domain.

Internet Services 10—-15

Protocol types are the communication properties that are visible to the
user. Normally, processes communicate only between sockets of the
same protocol type. Three protocol types are available as defined in
Table 10-5.

Table 10-5: Socket Protocol Types
Protocol Type Description

Stream Provides bidirectional, reliable, sequenced, and undupli-
cated data flow without record boundaries. The receiving
processes are guaranteed to receive messages, in order,
without duplication.

Datagram Provides bidirectional data flow that does not guarantee
that messages will be received in sequence, without du-
plication, or at all. The record boundaries of the data are
preserved.

Raw Provides access to underlying communications protocols
that support sockets. Raw sockets are not intended for the
general user; they are mainly available for developing new
communications protocols.

The stream, datagram, and raw protocol types map to the protocols
TCP, UDP, and IP, respectively. These protocols are described in
Section 10.1.2.

Before a process can use a socket, the process must bind a name
(Internet destination) to the socket. A socket name consists of an
Internet address (network and host) and port number (process on the
host). Once a socket has a name, an application can use the socket
for connection or connectionless communication. Sections 10.1.5.1 and
10.1.5.2 provide more information about these two modes of communi-
cation.

10.1.5.1

10-16

Connection Socket Communication

After a process binds a name to a socket, the process can use that
socket to establish a connection and communicate with another process
over the Internet. One process can function as a client and the other
as a server. Once a socket is created, the server listens to its socket
for service requests. The client requests services from the server by
initiating a connection request.

Internet Services

If the client process’s socket is unnamed at the time of a connection
request, the Internet software assigns a name to the socket. If the
connection is successful, the socket is associated with the server and
data can be transmitted. If the connection is unsuccessful, an error is
returned (the name that the system binds to the socket remains).

A connection may be unsuccessful for one of the following reasons:

* A lack of resources on the source or destination host
* An application problem such as:

— Conventions not being followed

— The incorrect port number being specified

— A privileged port number being required

After binding the socket, the server can receive a client’s connection
request if the following conditions exist:

* Server is listening for the connection request

¢ Maximum number of outstanding connections that can be queued
to the server’s port has not been reached

If a client requests a connection when the queue is full, the messages
that comprise the request are ignored and the client retries the request.
Once a connection is established, data can be exchanged between the
two sockets.

For communication to take place between the source and destination
hosts, the socket at each endpoint must be bound to a name. The
application program on the source host must provide its Internet
address and the destination socket name. The source port number
is optional. If the application program omits the port number, the
Internet software on the source host selects a port number.

10.1.5.2 Connectionless Socket Communication

Sockets can also support connectionless communication typical of
datagram facilities found in packet-switched networks. While processes
are still likely to have a client-server relationship, applications do

not need to establish connections. Instead, each message includes a
destination address.

You create datagram sockets the same way that you create sockets for
connection-oriented communication. However, you must bind a name to
each datagram socket to identify the message sender and receiver.

Internet Services 10-17

For source and destination hosts to communicate, applications must
specify the source and destination socket names. The application
program on the source host must provide its Internet address and the
destination socket name. The source port number is optional. If the
application program omits the port number, the Internet software on
the source host selects a port number.

10.1.6 Routing

10-18

A route is the path over the Internet that information takes to get
from one host to another. A route can be a path to either a host or a
network. IP uses routes to hosts for sending packets to a remote host
and uses routes to networks for sending packets to any host in a remote
network.

A subnetwork is a set of hosts within a network that are organized into
a logical group. A network can be made up of several subnetworks.

A host on another network can access a host on a subnetwork if a
gateway connects the networks. The data from the host on the other
network is routed through the gateway to the network and onto the
appropriate subnetwork, where the destination host ultimately receives
the data. A subnet mask identifies the bits in an Internet address to be
used for the network and subnet addressing.

The VAXELN Internet Services support static routing. This method of
routing employs a table that pairs destination Internet addresses with
Internet addresses that specify routes. Each table entry also contains

flags that specify the following:

¢ Whether IP should use only the network portion of an Internet ad-
dress or an entire Internet address when searching for a matching
destination Internet address in the routing table

¢ Whether the route for a destination Internet address is to a host on
the local network or to a gateway on the local network

* Whether the route is locked to prevent ICMP from updating the
route with redirect messages

Internet Services

The destination Internet address identifies a host or network. The
Internet address that specifies a route can identify a host or gateway
on the local network. The Internet address for a gateway is an inter-
mediate destination for datagrams being sent to the network identified
in the table entry. Figure 10-3 shows the routing table format.

Figure 10-3: Routing Table

Flags Destination Routs
Network or Local? Destination Gateway or Local
Locked? Internet Address Internet Address
MLO-004165

IP uses the routing table to determine the appropriate path for a
datagram. The protocol extracts the destination Internet address from
the datagram and searches for a matching destination Internet address
in the routing table, extracting the network portion of the address as
necessary.

Figure 104 provides an overview of the routing algorithm.

Internet Services 10-19

10-20

Figure 10-4: Routing Algorithm

Extract internet
address from datagram

Broadcast datagram over the
Ethernet using the address
FF——FF—~FF--FF--FF--FF

Broadcast
address?

Local
host's Internet
address?

Yes Loop datagram back to
port on local host

Local network Transmit on the
address? local network
Search routing table for
destination Internet address
‘ MLO-004166

Figure 104 Cont’d on next page

Internet Services

Figure 104 (Cont.):

Routing Algorithm

Neiwork flag
bit set?

Search for match using network
portion of destination
Intemet address

Search for match using
entire destination
Internet address

Found entry?

Local flag
bit set?

Use destination Intarnet
address to transmit datagram

Use gateway Intemet

address to transmit datagram
Found
default Yes Use default gateway
gateway? - address fo ransmit datagram

Discard datagram

MLO-004167

Internet Services 10-21

IP first checks whether the destination Internet address equals a
broadcast address, or the local host’s Internet address. If the ad-
dress is a broadcast address, IP broadcasts the datagram over the
Ethernet using the FF-FF-FF-FF-FF-FF Ethernet address. A desti-
nation Internet address is considered a broadcast address if one of the
following conditions applies:

¢ The address is 255.255.255.255

* The network part of the address matches the network part of the
local host’s Internet address and the logical OR of the destination
address and the network mask equals 255.255.255.255

* The address is local and the logical OR of the address and the
subnet mask equals 255.255.255.255

NOTE

IP cannot check for a broadcast address if it has not yet
determined the local Internet address.

If the destination Internet address is equal to the local host’s Internet
address, IP loops the datagram back to a port on the local host.

If the destination Internet address is not a broadcast address or the
local host’s Internet address, IP checks whether the address is local
and if so, sends the datagram to a node on the local network., The
destination Internet address is local if one of the following applies:

¢ The subnet mask is 0

¢ The logical AND of the destination Internet address and the subnet
mask equals the logical AND of the local host’s Internet address
and the subnet mask

If the destination Internet address is not local, IP searches the routing
table for a matching address. If the network flag is set, IP uses only the
network portion of the address when checking for a match. Otherwise,
IP uses the entire address for the search.

If IP finds an entry for the address, the protocol checks the state of the
local flag. If the flag is set, IP uses the destination Internet address
to route the datagram to a host on the local network. Otherwise, IP
uses the gateway address in the table entry to route the datagram to a
gateway on the local network.

If IP does not find an entry in the routing table for the destination
address, IP checks the table for a default gateway. If IP does not find a
default, the protocol discards the datagram.

10-22 Internet Services

An application can manage a routing table at runtime by using Internet
service routines. For more information, see Section 10.3.2.

10.1.7 Fragmentation

IP fragments a datagram when a datagram originates in a local net-
work that allows a large packet size and must traverse a local network
that limits packets to a smaller size to reach its destination, IP may
also fragment a datagram when no gateway exists and applications
send messages that are greater in length than the network layer
supports.

A gateway can fragment an Internet datagram into smaller Internet
datagrams. The gateway produces a set of Internet datagrams, each
carrying a fragment. If necessary, subsequent gateways can break
down the fragments into smaller fragments.

The fragment format is designed so that the destination IP can re-
assemble fragments into datagrams.

10.2 Configuring Internet Services

To use the Internet Services, you must build the appropriate datalink
driver and the Internet Services into your VAXELN system. You
configure the Internet Services for a system by selecting the Edit
Internet Service Characteristics entry on the System Builder’s
Main Menu. When you select this entry, the System Builder displays
two menu options: Edit Internet Characteristics and Edit Internet
Network Description. The Internet Characteristics Menu lets you
define systemwide Internet characteristics. You must use the Internet
Network Description Menu to provide an Internet network description
for the Ethernet controller that is to use the Internet Services.

You include the Internet Services in a VAXELN system by selecting
Yes for the Internet Services entry on the Internet Characteristics
Menu. This menu defines the following general systemwide Internet
characteristics:

* Maximum number of ARP cache entries
¢ Maximum number of routing table entries
¢ Maximum number of bytes in an Internet datagram

Internet Services 10-23

10-24

* Default gateway

You also can use the Internet Characteristics Menu to define the
following systemwide TCP characteristics:

¢ Maximum number of octets in a segment

* Default number of octets in the sliding window

¢ Maximum number of octets in the sliding window

¢ Number of seconds to wait for a connection

¢ Number of seconds a connection should linger after it is closed
¢ Number of seconds to wait for a connection acknowledgment

¢ Number of seconds to wait for message acknowledgments

¢ Maximum number of message resends

You provide an Internet network interface description for an Ethernet

controller in your system by editing the Internet Network Description

Menu. Using this menu, you specify the following controller informa-

tion:

* Name

¢ Internet address

¢ Internet network mask

* Broadcast mask

¢ Address resolution method

e Whether the Internet Services are to determine the network mask

¢ Number of seconds to wait for the Internet address before timing
out (0 indicates no timeout)

¢ Number of seconds to wait for the Internet network mask before
timing out (0 indicates no timeout)

If you include the Internet Services in a VAXELN system, an applica-
tion program can use runtime routines to control the Internet Services,
convert byte order Internet and host physical addresses, communicate
over the Internet, and retrieve and set socket characteristics.

For descriptions of the Internet Service routines, see the VAXELN
C Reference Manual and VAXELN C Runtime Library Reference
Manual. For more information about building the Internet Services
into VAXELN systems, see the VAXELN Development Utilities Guide.

Internet Services

10.3 Controlling Internet Services

A VAXELN application can use Internet Service control routines to
manage the ARP cache, routing table, and Internet network interfaces
dynamically at runtime. Control routines also provide a means for
retrieving IP, UDP, and TCP statistics and connection information.

10.3.1 Managing the ARP Cache

ARP maps Internet addresses to Ethernet addresses and stores the
address pairs in an ARP cache. A host searches its ARP cache for an
Internet address binding. If the host does not find the binding, the
host broadcasts the target host’s Internet address to all hosts on the
network. The target host recognizes its Internet address and responds
by returning its physical address to the requesting host.

The VAXELN Internet Services provide the following Internet network
control routines for managing a host’s ARP cache:

Routine Description

ELNSINET DELETE_ARP_ENTRY Deletes an entry from the ARP
cache.

ELNS$INET FIND_ARP_ENTRY Returns an Ethernet address from
the ARP cache.

ELNS$INET SET_ARP_ENTRY Adds an entry to the ARP cache.

ELN$INET SHOW_ARP_ENTRIES Returns the entries currently

stored in the ARP cache.

For information about Internet addresses, see Section 10.1.3. Sections
10.3.1.1 to 10.3.1.3 explain how to use the Internet control routines to
do the following:

¢ Add and delete ARP cache entries

¢ Retrieve Ethernet addresses from the ARP cache

¢ Retrieve ARP cache entries

Internet Services 10-25

10.3.1.1 Adding and Deleting ARP Cache Entries

An application can add entries to and delete entries from a host’s ARP
cache by calling the ELN$INET_SET_ARP_ENTRY and ELNS$INET
DELETE_ARP_ENTRY routines.

A call to ELNSINET_SET_ARP_ENTRY maps an Internet address

to an Ethernet address and places the mapping in the cache. The
call must specify an Internet address, Ethernet address, and an ARP
option. The Internet address must be the Internet address of the host
on which the Internet interface resides. The Ethernet address is the
target interface address that the routine maps to the Internet address.
The Ethernet address cannot be a multicast address.

The option argument specifies whether an entry is permanent. A
permanent entry can be deleted only with a call to the ELN$SINET_
DELETE_ARP_ENTRY routine. However, ARP requests can continue
to update entries marked with this option.

You can set or clear the permanent option using a Boolean or bit mask
value. If you choose the Boolean method, set the permanent field of the
INET$SET_ROUTE_OPTIONS aggregate to TRUE. When using the
bit mask method, specify the mask name INET$ARP_PERMANENT
MASK for the aggregate’s mask value field.

You should delete an ARP cache entry when the entry is no longer
needed. To delete an entry from the ARP cache, specify the host
Internet address of the entry to be deleted in a call to the ELN$INET
DELETE_ARP_ENTRY routine. If ARP does not find a cache entry for
the specified Internet address, the routine returns an error.

NOTE

The Internet address that you specify in a call to
ELNS$INET_SET_ARP_ENTRY or ELN$INET DELETE_
ARP_ENTRY cannot be the Internet address of a network
interface.

10-26 Internet Services

The following function adds and deletes an ARP cache entry:

#include $vaxelnc
#include $internet utility

void add_and delete_arp entry()

{
long int status;
INET$INTERNET ADDRESS internet_address;
INETSETHERNE T_ADDRESS ethernet_addres s;
INET$SET_ARP OPTIONS options;

/* Get an Internet address, Ethernet address, and options. */

internet_address.S_un.S_addr = get_ia("Internet address: ");
get_epa ("Ethernet address: ", ðernet_address);
options.mask_value = get_ulong("Options (1=NODELETE): ");

/* Add the input to the ARP cache. */

eln$inet set arp entry(é&status,
&internet_address,
ðernet_address,
&options);
if (! (status & 1))
disp_status(status);

/* When the entry is no longer needed, delete it. */

eln$inet delete_arp entry (&status,
&internet_address);

if (! (status & 1))
disp_status(status);

10.3.1.2 Retrieving Ethernet Addresses from the ARP Cache

An application can retrieve the Ethernet address that corresponds to
an Internet address by calling the ELNSINET FIND_ARP_ENTRY
routine. A call to this routine must specify an Internet address and
the variable that is to receive the corresponding Ethernet address. If
ARP does not find a cache entry for the specified Internet address, the
routine returns an error.

The following function retrieves the Ethernet address that corresponds
to a specified Internet address:

Internet Services 10-27

#include $vaxelnc
#include $internet_utility

void find arp_entry()

{
long int status;
INET$INTERNET_ADDRESS internet_address;
NET$ETHERNET ADDRESS ethernet_address;

/* Get an Internet address. */
internet_address.S_un.S_addr = get_ia("Internet address: ");
/* Find the entry for the specified address. */

eln$inet_find arp entry(s&status,
&internet_address,
ðernet_address);

if (! (status & 1))
disp_status (status);
else
{
printf ("\nArp entry for %s", format_ia(internet_address));
printf (" is %s\n\n", format_epa (ðernet_address));

}

10.3.1.3 Retrieving ARP Cache Entries

An application can retrieve all the cache entries currently stored in a
host’s ARP cache by calling the ELNSINET SHOW_ARP_ENTRIES
routine. A call to this routine must specify the name of a user-defined
routine that returns ARP entry information. ELNSINET_SHOW_ARP_
ENTRIES invokes the user-defined routine once for each entry in the
cache. If the ARP cache is empty, ELNSINET SHOW_ARP_ENTRIES
returns an error.

The user-defined routine returns the cache data to an aggregate called
INET$ARP_ENTRY. A program can then extract the following informa-
tion:

¢ Internet address

¢ Ethernet address

* ARP status information

10-28 Internet Services

The ARP status information is returned to a flag field of bits that
indicate whether the entry is permanent, in use, and complete. An
application can set the permanent bit in calls to ELNSINET SET_
ARP_ENTRY. ARP sets the in use bit when the host broadcasts an
entry’s Internet address. When a target host returns its physical
address to the requesting host, ARP sets the complete bit.

Once the ARP entry data is returned, a program can examine and
manipulate the data using the field names internet_address, ethernet_
address, and arp_status. You can examine the ARP status bits individ-
ually using Boolean values, or collectively, using bit mask values. If
you choose the Boolean method, examine the bits using aggregate field
names. When using the bit mask method, specify one or more mask
values. The status fields and mask values are defined as follows:

Statﬁs : Field Name Mask Name Mask Value
Permanent permanent_field ARP_PERMANENT_MASK 1
In use inuse_field ARP_INUSE_MASK 2
Complete complete_field ARP_COMPLETE_MASK 4

You can also manipulate groups of status values by specifying the sum
of the appropriate mask values for the mask_value field.

The following code shows an example of how an application might use
ELNS$INET_SHOW_ARP_ENTRIES:

#include $vaxelnc
#include $internet utility

void show_arp_entries()
{

char ch;

long int status;

FUNCTION_ DESCRIPTOR fn_de sc;
void show_arp entry();

version_displayed = FALSE;
/* Show the entries that are in the ARP cache. */

eln$inet_show_arp_entries(&status,
ELN$PASS FUNCTION DESCRIPTOR(fn_desc, show_arp entry)):

Internet Services 10-29

if (! (status & 1))

disp_status(status);
else

¢h = get_char ("\nPress <RETURN> to continue.\n");
} .

INET$SHOW_ARP ENTRY (show_arp entry)

{
BOOLEAN parenthesis _displayed = FALSE;

if (!version_displayed)
{
version_displayed = TRUE;
printf ("ARP Information version number is: %d\n\n", version);

}

printf ("%s", format_ia(entry->internet_address));
printf (" => %s", format_epa (&entry->ethernet_address));

if (entry->arp status.mask_value)
{
if (entry->arp status.fields.permanent_field)
{
parenthesis_displayed = TRUE;
printf (" (PERM");
}

if (entry->arp status.fields.inuse_field)
{
if (parenthesis displayed)
printf (", INUSE");
else

{
parenthesis_displayed = TRUE;
printf(" (INUSE");
}
}

if (entry->arp status.fields.complete field)

{
if (parenthesis_displayed)
printf (", COMPL");
else

{
parenthesis displayed = TRUE;

printf (" (COMPL");
}

}
printf (")");

}
printf ("\n");

10-30 Internet Services

10.3.2 Managing the Internet Routing Table

IP maps Internet routes (addresses) to host and network addresses
and stores the address pairs in a routing table. The VAXELN Internet
Services provide the following Internet network control routines for
managing the Internet routing table:

Routine Description

ELNSINET CHECK _ROUTE Searches for a route to a specified
Internet address.

ELNS$INET DELETE_ROUTE Deletes an entry from the routing
table.

ELNS$INET_SET_ROUTE Adds an entry to the routing table.

ELNS$INET SHOW_ROUTES Returns the entries currently stored
in the routing table.

For more information about routing, see Section 10.1.6. Sections
10.3.2.1 to 10.3.2.3 explain how to use the Internet control routines to
do the following:

¢ Add and delete routing table entries
¢ Checking the status of routing table entries
¢ Retrieve routing table entries

10.3.2.1 Adding and Deleting Routing Table Entries

An application can add entries to and delete entries from an Internet
routing table by calling the ELN$INET_SET_ROUTE and ELNS$INET_
DELETE_ROUTE routines.

A call to ELN$INET SET_ROUTE maps a routing path to a host or
network and places the mapping in the table. The call must specify
an Internet address, gateway address, and route options. The Internet
address must be the host or network destination address. The gateway
address is the Internet address of the gateway host.

The options argument is an aggregate of bit fields that specify the
following:

* Whether the entry is for a network or host route
* Whether the route is to a host or gateway

Internet Services 10-31

¢ Whether the route is locked (can be updated by ICMP redirect
messages)

You can set or clear the route entry options individually, using Boolean
values, or collectively, using bit mask values. If you choose the Boolean
method, you set the Boolean value for the appropriate aggregate fields

to TRUE or FALSE, as appropriate. When using the bit mask method,

specify the sum of the appropriate mask values in the mask field. The

option fields and mask values are defined as follows:

Mask
Option Field Name Mask Name Value
Search for network network_field INET$ROUTE_NETWORK _ 1
address MASK
Local route local_field INET$ROUTE_LOCAL_MASK 2
Lock route lock_field INET$ROUTE_LOCK_MASK 4

If you do not specify options, the entry identifies a host route.

You can specify multiple route options by specifying the sum of the
mask values for the desired options in the mask_value field. For
example, to specify a network route that cannot be updated by ICMP
redirect messages, use a mask value of 5 (the sum of mask values
INET$ROUTE_NETWORK_MASK and INET$ROUTE_LOCK_MASK).

NOTE

You cannot add a route to the static routing table until the
Internet address and Internet network mask are known.

You should mark a routing table entry for deletion when the entry is
no longer needed. Once an entry is marked, the Internet software can
delete the entry when it is no longer in use. The Internet software
uses a reference count to determine whether an entry is being used. A
reference count is maintained for each entry in the routing table.

To mark an entry for deletion, specify the Internet address of the entry
to be deleted in a call to the ELNSINET _DELETE_ROUTE routine. If
the Internet software does not find an entry for the specified Internet
address, the routine returns an error.

You must also specify an option argument in calls to ELNSINET_
DELETE_ROUTE. The route option indicates whether the Internet
software is to delete a network or host route.

10-32 Internet Services

The following function adds a route to the routing table and then
deletes the route when it is no longer needed:

#include $vaxelnc
#include $internet_utility

void. set_route()

{

long int status;
INETSINTERNET_ADDRESS internet_address;
INETSINTERNET ADDRESS gateway_address;

INETSSET_ROUTE;OPTIONS set_options;
INET$DELETE_ROUTE_OPTIONS del_options;

/* Get an Internet address, gateway address, and the options to */
/* be set. */

internet_address.S_un.S_addr = get_ia("Internet address: ");
gateway address.S_un.S_addr = get_ia("Gateway address: ");
set_options.mask_value =

get_ulong ("Options BITMASK (1=NETWRK, 2=LOCAL, 4=LOCK): ");

/* Add the input to the routing table. */

eln$inet_set route(sstatus,
&internet_address,
&gateway address,
&set_options);

.

/* When the routing table entry is no longer needed, mark it for */
/* deletion. */

del options.mask value = get_ulong("Options BITMASK (1=NETWRK): ");

eln$inet_delete_route(&status,
&internet_address,
&del options);

Internet Services 10-33

10.3.2.2 Checking the Status of Routing Table Entries

An application can check the status of a routing table entry by calling
the ELN$SINET _CHECK_ROUTE routine. Using this routine an appli-
cation can check whether an entry contains a network or local route,
can be updated by ICMP redirect messages, or is marked for deletion
but is still in use.

A call to ELN$INET_CHECK_ROUTE must specify an Internet ad-
dress, a credit value, a routing table entry returned by a previous call
to ELN$SINET_CHECK_ROUTE, and variables that are to receive the
gateway address and the routing table entry status value.

The Internet address identifies the entry for which the Internet soft-
ware is to return the status information. If the Internet software does
not find an entry for the specified Internet address, the routine returns
an error.

The Internet software uses reference counts for the table entries to
prevent a route from being deleted while it is being used. The credit
argument specifies whether or not the table entry’s reference count is
to be updated. You must specify one of the following credit values:

Credit Value Effect

0 Reference count remains unchanged.
1 Increments reference count.

-1 Decrements reference count.

If you specify a credit value of —1, ELNSINET_CHECK_ROUTE
uses the routing table entry argument. This argument specifies an
entry returned by a previous call to ELNS$INET CHECK_ROUTE and
receives the table entry number for the specified Internet address’s
route upon successful completion.

The gateway address and route status arguments receive the destina-
tion Internet address and the route status, respectively.

The route status indicates whether the entry is for a network route,
whether the route is to a host, whether ICMP redirect messages

can update the entry, and whether the entry is marked for deletion.
The status information is returned as an aggregate of bits. You can
examine and manipulate the status bits individually, using aggregate
field names, or collectively, using one or more mask values. The status
fields and mask values are defined as follows:

10-34 Internet Services

Mask

Status Field Name Mask Name Value
Searched for network network_field INET$ROUTE_NETWORK_ 1
address MASK

Used host route local_field INET$ROUTE_LOCAL_MASK 2
Route is locked lock_field INET$ROUTE_LOCK_MASK 4
Route is marked for deleted_field INET$ROUTE_DELETED_ 8
deletion MASK

If multiple status values apply to an entry, the Internet software adds
the mask values of the appropriate status values and returns the sum.

The following function checks the status of a routing table entry and
displays the status information:

#include $vaxelnc
#include $internet_utility

void check_route ()
{
long int status;
INET$INTERNET ADDRESS internet_address;
INET$INTERNET_ADDRESS gateway address;
INET$ROUTE_STATUS route_status;
short int credit;
unsigned long int rte;
BOOLEAN parenthesis_displayed = FALSE;

credit = 0;
rte = 0;

/* Get an Internet address. */
internep_address.s_un.S_addr = get_;a(“Internet address: ");
/* Search the routing table for an entry for the specified address.

eln$inet_check route (&status,
&internet_address,
credit,
&rte,
&gateway address,
&route_status);

Internet Services 10-35

*/

10-36

/* If an entry is found, display the data. */

if (! (status & 1))
disp_ status(status);
else
{
printf ("Route for %s", format_ia(internet_address));
printf (" is %s", format_ia(gateway address));
if (route_status.mask_value)
{
if (route_status.fields.network_field)
{
parenthesis_displayed = TRUE;
printf (" (NETWRK")
}

if (route status.fields.local_field)
{
if (parenthesis_displayed)
printf (", LOCAL") ;
else
{
parenthesis_displayed = TRUE;
printf (" (LOCAL");
}
}

if (route status.fields.lock field)
{
if (parenthesis_displayed)
printf (", LOCKED") ;
else
{
parenthesis_displayed = TRUE;
printf (" (LOCKED");

}

if (route_status.fields.deleted field)
{
if (parenthesis displayed)
printf (", DELETED") ;
else
{
parenthesis_displayed = TRUE;
printf(" (DELETED");
}
}

printf (")");
}

printf ("\n");
}

Internet Services

10.3.2.3 Retrieving Routing Table Entries

An application can retrieve all the entries in the Internet routing table
by calling the ELN$INET _SHOW_ROUTES routine. A call to this
routine must specify the name of a user-defined routine that returns
routing table entry information. ELN$INET_SHOW_ROUTES invokes
the user-defined routine once for each entry in the table. If the table is
empty, ELNSINET SHOW_ROUTES returns an error.

The user-defined routine returns the routing data to an aggregate
called INET$ROUTE_ENTRY. A program can then extract the follow-
ing information:

* Destination Internet address

¢ Gateway address

. Route status

¢ Reference count
¢ Usage count

The route status information is returned to a flag field of bits that
indicate whether IP is to search for a match using only the network
portion of the destination Internet address, the route is to a host, the
route is locked, and the route is marked for deletion. An application
can set the deleted bit in calls to ELN$INET SET_ROUTE. IP sets the
deleted bit when an application calls ELN$INET DELETE_ROUTE.

Once the route entry data is returned, a program can examine and ma-
nipulate the data using the field names destination_address, gateway_
address, route_status, reference_count, and use_count. You can examine
the route status bits individually, using Boolean values, or collectively,
using bit mask values. If you choose the Boolean method, examine the
bits using aggregate field names. When using the bit mask method,
specify one or more mask values. The status fields and mask values
are defined as follows:

Mask
Status Field Name Mask Name Value
Searched for network network_field INET$ROUTE_NETWORK _ 1
address MASK
Used host route local_field INET$ROUTE_LOCAL_MASK 2

Internet Services 10-37

Mask

Status Field Name Mask Name Value
Route is locked lock_field INET$ROUTE_LOCK_MASK 4
Route is marked for deleted_field INET$ROUTE_DELETED_ 8
deletion MASK

You can also manipulate groups of status values by specifying the sum
of the appropriate mask values for the mask_value field.

The following function shows the contents of the routing table:

#include $vaxelnc
#include $internet_utility

void show_routes ()

{
char ch;
long int status;
FUNCTION DESCRIPTOR fn_desc;
void show_route entry();
version displayed = FALSE;

/* Show the routing table entries. */

eln$inet_show_routes (&status,
ELN$PASS_FUNCTION DESCRIPTOR (fn_desc,
show_route_entry));

if (! (status & 1))
disp status (status);
else
ch = get_char("\nPress <RETURN> to continue.\n");

}

INET$SHOW _ROUTE_ENTRY (show_route_entry)

{
BOOLEAN parenthesis_displayed = FALSE;

if (!version_displayed)
{
version_displayed = TRUE;
printf ("Route information version number is: %d\n\n", version);

}

printf ("%s", format_ia(entry—>destination_address));

printf (" => %s", format ia (entry->gateway address)):;

printf (" REFCNT: %d USECNT: %d", entry->reférence_count,
entry->use_count);

10-38 Internet Services

if (entry->route status.mask value)

{
if (entry->route_status.fields.network_field)

{
parenthesis_displayed = TRUE;
printf (" (NETWRK");

}

if (entry->route_status.fields.local field)
{
if (parenthesis_displayed)
printf (", LOCAL");
else
{
parenthesis displayed = TRUE;
printf(" (LOCAL");
}
}

if (entry->route status.fields.lock field)
{
if (parenthesis displayed)
printf(",LOCKED");
else
{
parenthesis_displayed = TRUE;
printf (" (LOCKED");
}
}

if (entry->route_status.fields.deleted_field)
{
if (parenthesis_displayed)
printf (", DELETED") ;
else
{
parenthesis_displayed = TRUE;
printf(" (DELETED");
}
printf (")");
}
printf ("\n");

Internet Services 10-39

10.3.3 Managing Internet Network Interfaces

The VAXELN Internet Services provide the following Internet network
control routines for managing Internet network interfaces:

Routine Description

ELNSINET _SET_INTERFACE Associates an Internet address with the
name of an Internet network interface
that resides on the VAXELN target
system.

ELN$INET SHOW_INTERFACE Returns the Internet network charac-
teristics for Internet interfaces.

For more information about setting up Internet network interfaces
for VAXELN systems, see the VAXELN Development Utilities Guide.
Sections 10.3.3.1 and 10.3.3.2 explain how to use the Internet control
routines to do the following:

* Set an Internet network interface dynamically at runtime
¢ Retrieve Internet network interface characteristics

10.3.3.1

1040

Setting Internet Network Interfaces

If you did not specify an Internet address for an Internet network
interface when you built your system, you can do so at runtime by
calling the ELNSINET _SET_INTERFACE routine. You can also use
this routine to set an interface’s broadcast and network masks once.

A call to ELNSINET _SET_INTERFACE must specify the name of

the communication interface that is to be associated with an Internet
address. You must also specify a new fields argument and values for
the Internet address, broadcast mask, and network mask arguments.

The new fields argument is an aggregate that identifies characteristics
that you intend to set. You set characteristics by setting the appro-
priate bits in the aggregate. You can specify the aggregate fields to be
set individually, using Boolean values, or collectively, using a bit mask
value. If you choose the Boolean method, you set the Boolean value for
aggregate fields to TRUE, as appropriate. If you choose the bit mask
method, you specify the sum of the appropriate mask values in the
mask value field. The interface characteristics fields and mask values
are defined as follows:

Internet Services

Characteristic

Field Name Mask Name Mask Value

Internet address

Broadcast ad-
dress

Network mask

internet_address_ INET$INTERNET_ADDR_ 1
field MASK

broadcast_address_. INET$BROADCAST MASK 2
field

network_mask_field INET$NETWORK_MASK 4

You can set fields without changing other fields in the aggregate.
However, for each field that you set, you must specify a value for a
corresponding argument. For example, to set the Internet address, you
must set the bit for the Internet address field in the fields argument
and specify the Internet address for the Internet address argument.
For the fields that you choose not to set, you can specify a null string
for the corresponding argument.

The following section of code shows how an application might use
ELNS$INET _SET _INTERFACE:

#include $vaxelnc
#include $internet_utility

void show _interface()

{
char ch;
int status;
VARYING_STRING(32) interface_name;
INET$SET INTERFACE FIELDS new f:l.elds,
INET$INTERNET ADDRESS internet _address;
INET$INTERNET ADDRESS network mask
INETsINTERNET ADDRESS broadcast _mask;
INETS$SET INTERFACE _OPTIONS options;

/* Get interface input. */

new_fields.mask value = 0;
get_varying string("Interface to set: ", 32, &interface name);

ch = get char("Set Interface address? Y or N: [N] ");
if (toupper(ch) == ’Y’)
{

new_fields.mask value += INETSINTERNET ADDR MASK;
internet address S_un.S_ addr = get ia (“Internet address: ");

}

Internet Services 10-41

ch = get_char ("Set Address (subnet) mask address? Y or N: [N] ");
if (toupper(ch) == ’Y’)
{
new_fields.mask value += INET$NETWORK MASK;
network _mask.S_un.S_addr = get_ia ("Address mask: ");

}

ch = get_char ("Set Broadcast mask address? Y or N: [N] ");
if (toupper(ch) == ’Y’)
{
new_fields.mask value += INET$BROADCAST MASK;
broadcast_mask.S_un.S_addr = get_ia ("Broadcast mask: ");

}

options.mask_value = get_ulong("Interface options (reserved) : ");
/* Set the interface. */

eln$inet_set interface(&status,
&interface_name,
&new_fields,
&internet_address,
&network mask,
&broadcast_mask,
&options);

if (! (status &1))
disp status (status);

}

You must also specify an interface options argument. This argument is
reserved for future use.

10.3.3.2 Retrieving Internet Network Interface Characteristics

10-42

An application can retrieve the characteristics for all Internet network
interfaces on a VAXELN system by calling the ELNSINET_SHOW_
INTERFACES routine. A call to this routine must specify the name of
a communication interface and the name of a user-defined routine.

The interface name identifies the interface for which information is to
be returned. To return information about all network interfaces, specify
an asterisk (*). If you specify a name that has not been defined, the
routine returns an error.

The user-defined routine returns the network interface information.
ELNS$INET_SHOW_INTERFACES invokes the user-defined routine for
the specified interface. If you specify an asterisk, ELN$INET_SHOW_
INTERFACES invokes the routine once for each interface defined for
the system. If no interfaces are defined, ELN$INET_SHOW_ROUTES

returns an error.

Internet Services

Once the program retrieves the interface data, it can extract the
following information:

¢ Interface name

* Interface state

¢ Internet address

¢ Ethernet address

* Network mask

* Broadcast mask

¢ Number of IP datagrams received

¢ Number of IP datagrams transmitted

¢ Number of trailer datagrams received

¢ Number of trailer datagrams transmitted
¢ Number of ARP datagrams received

¢ Number of ARP datagrams transmitted

¢ Number of ICMP datagrams received

¢ Number of ICMP datagrams transmitted
¢ Number of receive errors

¢ Number of transmit errors

The following code shows the characteristics for a specified interface:

#include $vaxelnc
#include $internet utility
void show_interface ()
{
char ch;
int status;
FUNCTION_DESCRIPTOR fn_desc;
void show_interface_entry();
VARYING_STRING(32) interface_name;

/* Get the name of an interface. */

get_varying string("Interface name: [* for all] ",
32,
&interface_pame);

eln$inet_show_interface(&status,
&interface name,
ELN$PASS FUNCTION_ DESCRIPTOR (fn_desc, show_interface_entry));

Internet Services 10-43

if (! (status & 1))
disp_status (status);
}

INETSSHOW_INTERFACE_ENTRY(show_interface_entry)
{

char ch;

printf ("\nInterface: %.*s\n",
entry->interface name.string length,
&éentry->interface name.string text);
printf ("Interface State: %d\n",
entry->interface state.mask value);
printf("Internet Address: %s\n",
format_ia(entry->internet_address));
printf ("Ethernet Address: %s\n",
format_epa (&entry->ethernet address));

printf ("Address Mask: %s\n",
format_ia(entry->network mask));
printf("Broadcast Mask: %$s\n",

format_ia(entry->broadcast_mask));
printf("\n\n Counters: (version %d):\n\n", version);

printf (" RECEIVED TRANSMITTED\n") ;

printf ("IP Packets %10u %10u\n", entry->ip recvd,entry->ip xmit);
printf ("IP Trailer 1 %10u -=-\n", entry->trailerl rcvd);
printf("IP Trailer 2 %10u --\n", entry->trailer2 rcvd);

printf ("ARP Packets %10u $%10u\n", entry->arp_rcvd, entry->arp xmit);

printf ("ICMP Packets %10u’ %10u\n", entry->icmp rcvd, entry->icmp_xmit);

printf("Errors %10u %10u\n", entry->errors_rcvd,
entry->xmit_errors);

ch = get_char ("\nPress <RETURN> to continue.\n");

10.3.4 Retrieving Internet Performance and Error Data

The VAXELN Internet Services provide the following Internet network
control routines for retrieving data concerning performance and errors:

Routine Description

ELN$INET SHOW_IP_STATISTICS Returns performance and error
statistics for IP.

ELNS$INET_SHOW_TCP_STATISTICS Returns performance and error
statistics for TCP.

ELNS$INET _SHOW_UDP_STATISTICS Returns performance and error

statistics for UDP.

10-44 Internet Services

The ELN$INET_SHOW_IP_STATISTICS, ELNSINET_SHOW_UDP_
STATISTICS, and ELN$INET_SHOW_TCP_STATISTICS routines
return performance and error statistics for IP, UDP, and TCP, respec-
tively. These routines allocate a statistics aggregate for the appropriate
protocol. The application program can then extract the following

information from the aggregate:

w UDP

TCP

Transmission time in seconds Transmission time in seconds

Number of packets received Datagrams transmitted

IP datagram received Datagrams received

Received IP datagram has bad Invalid transmit

size
Received IP datagram has bad Invalid receive

checksum

Received IP datagram has bad
destination address

Datagrams received but not
delivered

Received IP datagram includes
disabled IP protocol

Received IP datagram frag-
mented

Received IP datagram fragments
dropped

Received fragmented IP data-
gram reassembled

ICMP datagram received

Received ICMP datagram has
bad size

Received ICMP datagram has
bad checksum

ARP datagram received
Received ARP datagram replies
Received ARP datagram requests

Transmission time in sec-
onds

Connection requests for-
warded

Connections accepted

Connection requests issued
Open connections
Connections reset
Segments transmitted
Segments retransmitted
Segments received

Invalid segments received
Out-of-sequence segments

received

Concatenated record de-
scriptor buffers

Internet Services 10-45

P UDbP

TCP

Trailers received

Trailers received invalid

Packets transmitted

Packet trasmissions that failed
Transmitted IP datagram invalid

Transmitted IP datagram has
bad destination address

IP datagram transmitted

Transmitted IP datagram frag-
mented

Transmitted IP datagram frag-
ments

ICMP datagram transmitted
ARP datagram transmitted

Transmitted ARP datagram
replies

Transmitted ARP datagram
requests

A call to ELNSINET _SHOW_IP_STATISTICS, ELN$INET _SHOW_
UDP_STATISTICS, or ELNSINET_SHOW_TCP_STATISTICS must
specify a Boolean flag that indicates whether counters are to be cleared
after they are read and variables that receive a version number and

a pointer to the appropriate protocol statistics aggregate. The version
number identifies the version of the statistics aggregate that the
routine returns to the statistics argument.

When you finish accessing a statistics record, you must use the free
function to deallocate it.

The following code shows how an application might retrieve TCP

statistics:

10-46 Internet Services

#includek$vaxelnck
#include $internet_ utility

void show_tcp_statistics()

{

int status;

int version;

char ch;

BOOLEAN clear_counters = FALSE;
INETSTCP_STATISTICS *statistics;

/* Check whether counters should be cleared. */

ch = get_char("Clear Counters? Y or N: [N] ");
if (toupper(ch) == ’Y’) .
clear_ counters = TRUE;

/* Show all TCP statistics. */

eln$inet show_tcp statistics(&status,
clear counters,
&version,
&statistics);

if (status & 1)
{

printf ("TCP Statistics Version %10u\n",
version);

printf ("Seconds %10u\n",
statistics->seconds); N

printf ("Connections forwarded: %$10u\n",
statistics—>connects_forwarded);

printf ("Connections accepted: %10u\n",
statistics~->connects_accepted);

printf ("Connections issued: %$10u\n",
statistics->connects_issued);

printf ("Connections opened: %$10u\n",
statistics->connects_opened);

printf ("Connections reset: %$10u\n",
statistics->connects_;eset);

printf ("Segments transmitted: %10u\n",
statistics->segments_xmit);

printf ("Segments retransmitted: %10u\n",

. statistics->segments_rexmit);
printf ("Segments received: %$10u\n",

statistics->segments_ rcvd);

printf ("Invalid segments received: %10u\n",
statistics~>invalid revd);

printf ("Out of sequence received: %10u\n",
statistics->out_of sequence_ rcvd);

printf ("Concatenated messages: %10u\n",
statistics->concatenated rdbs);

Internet Services

1047

free(statistics);
ch = get_char ("\nPress <RETURN> to continue\n");
}

else
disp status (status);

10.3.5 Retrieving TCP Connection Data

10-48

An application can retrieve data concerning active TCP connections
by calling the ELN$INET_SHOW_CONNECTIONS routine. This rou-
tine does not report information about listening servers (applications
waiting on a connection).

A call to ELN$INET_SHOW_TCP_CONNECTIONS must specify the

name of a user-defined routine to be invoked by ELN$INET SHOW_

TCP_CONNECTIONS once for each active TCP connection. The user-
defined routine returns the connection information. If no connections

exist, ELNS$INET SHOW_TCP_CONNECTIONS returns an error.

Once the program retrieves the connection data, it can extract the
following information:

¢ Local Internet address

* Local port number

¢ Remote Internet address
* Remote port number

¢ Connection state

* Connection options

* Number of messages in the receive queue

* Number of messages in the send queue

* Number of urgent messages received

* Number of urgent messages sent

¢ Number of messages in the receive window
¢ Number of messages in the send window

* Send sequence number

* - Acknowledgment sequence number

¢ Retransmit timer value

¢ Persist timer value

Internet Services

¢ Keep-alive timer value
¢ Maximum linger timer value
¢ Number of retransmissions

The connection state and connection options information is returned to
flag bit fields. For the connection state, the bits indicate whether:

* The connection is open

* The connection is listening

¢ The connection is waiting for a matching connection request

* The connection is waiting for a connection request ACK message
after having received and transmitted a connection request

¢ The connection is established

* The connection is waiting for a connection termination request from
a remote peer or an ACK message for the connection termination
request previously sent ‘

* The connection is waiting for a connection termination request from
a remote peer

¢ The wait is closed

* The connection is being closed

¢ The last ACK has been sent

¢ The wait time expired

For the connection options, the bits indicate whether the connection is
to have a linger time and keep-alive time.

A program can examine and manipulate the connection data using
field names. You can examine or manipulate the state and option
bits individually using Boolean values, or collectively, using bit mask
values. If you choose the Boolean method, examine the bits using
aggregate field names. When using the bit mask method, specify one
or more mask values. The state fields and mask values are defined as
follows:

Internet Services 10-49

Mask

State Field Name Mask Name Value
Connection is closed closed_field INET$TCP_STATE_CLOSED_ 1
MASK
Connection is listening listen_field INET$TCP_STATE_LISTEN_ 2
for requests : MASK
Waiting for matching syn_sen_field INET$TCP_STATE_SYN_SENT_ 4
connection request ‘ MASK
Waiting for ACK mes- syn_rcvd_field INET$TCP_STATE_SYN_ 8
sage after receive and RCVD_MASK
transmit
Connection is estab- established_field INET$TCP_STATE_ 16
lished ESTABLISHED_MASK
Waiting for connection fin_wait_1_field INET$TCP_STATE_FIN_WAIT 82
termination request 1_MASK
from remote peer
Waiting for connection fin_wait_2_field INET$TCP_STATE_FIN_WAIT 64
termination request 2 MASK
from remote peer
Wait is closed close_wait_field INET$TCP_STATE_CLOSE_ 128
WAIT _MASK
Connection is being closing_field INET$TCP_STATE_CLOSING_ 256
closed MASK :
Last ACK has been last_ack_field INET$TCP_STATE_LAST ACK_ 512
received : MASK .
Time to wait for connec- last_ack_field INET$TCP_STATE_TIME_ 1024
tion expired WAIT_MASK
The option fields and mask values are defined as follows:
Mask
Option Field Name Mask Name Value
No linger time nolinger_field INET$TCP_OPT_NOLINGER_ 1
MASK
Linger time linger_field INET$TCP_OPT_LINGER_ 2

10-50 Internet Services

MASK

Mask

Option Field Name Mask Name Value

No keep alive time nokeepalive_field INET$TCP_OPT._ 4
NOKEEPALIVE_MASK

Keep alive time keepalive_field INET$TCP_STATE_ 8

KEEPALIVE_MASK

You can also examine groups of status values by specifying the sum of
the appropriate mask values for the mask_value field.

The following function shows how an application might use
ELNS$INET_SHOW_TCP_CONNECTIONS to retrieve information
about active TCP connections:

#include $vaxelnc
#include $internet_utility

void show_tcp_ connections ()
{
char ch;
int status;
FUNCTION_DESCRIPTOR fn_desc;
void show_tcp_connection_entry():

/* Clear error in version displayed flag. */
con_ver err dspld = FALSE;

eln$inet_show_tcp_connections(&status,
ELN$PASS_FUNCTION_DESCRIPTOR(fn_desc,
: show_tcp_connection_entry));

if (! (status & 1))

disp status(status);
else . :
ch = get_char ("\nPress <RETURN> to continue.\n");

Internet Services 10-51

INET$SHOW_TCP_CONNECTION_ENTRY (show_tcp_connection_entry)
{
if (version != INET$TCP_CONNECTION_VERSION)
{
if (! (con_ver_ err dspld))
{
printf ("TCP connection entry version number is
unrecognized.\n");
con_ver_err dspld = TRUE;
}
return;
}
else
{
printf ("TCP Connection version: %$10u\n", version);
printf ("Local IA: %s Local PN: %u\n",
format_ia (entry->local_ internet_address),
entry->local_ port_ number);
printf ("Remote IA: %s Remote PN: %u CCB ID: %X (hex)\n",
format_ia (entry->remote internet_address),
entry->remote_port number,
entry->ccb_id);
printf ("TCP state: %s, Options: %s\n",
format_tcp_state (entry->state),
format_options (entry->options));
printf ("Receive: Q: %8u, Urg: %8u, Window: %6u\n",
entry->recv_dqueue,
entry->recv_urgent,
entry->recv_window);
printf ("Send: Q: %8u, Urg: %8u, Window: %6u\n",
entry->send queue,
entry->send urgent,
entry->send window);
printf ("Timers: Rexmit: %u, Prst: %u, Keep: %u, MSL: %u\n",
entry->rexmit_tmr,
entry->persist_tmr,
entry->keep tmr,
entry->msl_tmr);
printf ("Rexmit value: %u, Snd seq: %12u, Ack seq: %12u\n",
entry->rexmit_value,
entry->snd_seq,
entry->ack_seq);

Internet Services

10.4 Converting the Byte Order of Network and Host Binary
Data

Not all hosts store bits the same way. To enable different types of
hosts to communicate, regardless of how bits are represented, the
Internet Services define a standard byte order for Internet packet
binary fields. The standard network byte order places the byte with the
most significant bits at the lower addresses. All hosts must use this
format when sending data.

The VAXELN Internet Services provide the following routines for
converting the byte order of network and host binary data:

Routine Description

htonl Converts a 32-bit unsigned integer from host byte order to
network byte order.

htons Converts a short integer from host byte order to network byte
order.

ntohl Converts a 32-bit unsigned integer from network byte order to
host byte order.

ntons Converts s short integer from network byte order to host byte
order.

Before sending a message, a host must convert the byte order of
binary data from its local representation to the standard network
representation. An application can convert data to network byte

order by calling htonl or htons. You specify htonl and htons with

a longword or short integer, as appropriate, in host byte order. The
functions return a longword or short integer in network byte order. You
cannot use integers in network byte order for arithmetic computations
on VAX systems.

When a host receives a message, it must convert the byte order of the
message data to its byte-order representation. To convert data to the
host’s representation, call ntohl and ntons. Specify these functions
with a longword or short integer, as appropriate, in network byte order.
The functions return a longword or short integer in host byte order.

For descriptions of the conversion routines, see the VAXELN C
Reference Manual.

Internet Services 10-~53

10.5 Manipulating Internet Addresses

10-54

The VAXELN Internet Services provide a set of routines for manipulat-
ing Internet addresses. An application might use these routines while
managing an ARP cache or for programming socket communication.
The routines are as follows:

Routine Description

inet_addr Converts an Internet address in the standard text
Internet “.” notation to a numeric (binary) Internet
address in network byte order.

inet_lnaof Returns the local network (subnet) portion of an
Internet address.

inet_makeaddr Returns an Internet address given a network address
and local (subnet and host) address on that network.

inet_netof Returns the network portion of an Internet address.

inet_network Converts an Internet address in the standard text

Internet “.” notation to a numeric (binary) Internet
address in host byte order.

inet_ntoa Converts an Internet address to a text string rep-
resenting the addess in the standard Internet “.”
notation.

The inet_makeaddr and inet_addr functions provide a means for
deriving an Internet address in network byte format given appropriate
Internet address information. In the case of inet_makeaddr, you
specify the network and local portions of an Internet address in host
byte order. You specify inet_addr with a pointer to an ASCIZ NULL-
terminated text string that identifies an Internet address in standard
Internet “.” notation. If the argument does not point to a valid Internet
address, the function returns —1.

If you have an Internet address in network byte order, you can use
the inet_netof, inet_lnaof, or inet_ntoa function to get the network
portion, local portion, or string representation of an Internet address.
The inet_netof and inet_Inaof functions return the network and local
portions of the specified Internet address in byte host order. To get a
pointer to a text string that identifies an Internet address in standard
Internet “.” notation, specify the network byte order Internet address
in a call to inet_ntoa.

Internet Services

To convert the string representation of an Internet address to a numeric
(binary) Internet address in host byte order, use the inet_network
function. Specify a pointer to an ASCIZ NUL-terminated text string
that identifies an Internet address in standard Internet “.” notation. If
the argument does not point to a valid Internet address, the function
returns —1.

For descriptions of the Internet address manipulation routines, see the
VAXELN C Reference Manual.

10.6 Programming Internet Communication

You program Internet communication using socket interface routines.
You can use the routines to program connectionless communication,
sending datagrams to specified destinations, or you can use them to
program connection-oriented communication. The VAXELN Toolkit
provides the following socket interface routines:

Routine Description

accept Accepts a connection on a socket.

bind Bihds a name to a socket.

close Closes a socket.

connect Initiates a connection on a socket.

listen Sets the maximum limit of outstanding connection requests for
a connection-oriented socket.

read Reads bytes from a file or connected socket and places them in
a buffer. '

recv Receives bytes from a connected socket and places them in a
buffer.

recvfrom Receives bytes for a socket from any source.

recvmsg Receives bytes from a socket and places them in scattered
buffers.

select Polls and checks a group of sockets for I/O activity.

send Sends bytes through a socket to its connected peer.

sendmsg Sends gathered bytes through a socket to any other socket.

sendto Sends bytes through a socket to any other socket.

Internet Services 10-55

10-56

Routine Description

shutdown Shuts down a socket.

socket Creates a socket and returns the socket’s descriptor.
vaxc$get_ Returns a socket device descriptor.

sde

vaxc$socket_ Sets socket characteristics.

control

write Writes bytes from a buffer to a file or connected socket.

Table 10-6 lists the calling sequence for programming connection-
oriented and connectionless socket communication.

Table 10-6: Calling Sequence for Socket Communication

Connection-
Connectionless Oriented
Task (IP and UPD/IP) (TCP/1P)
Create a socket. socket socket
Bind a name to the socket. bind bind
Define the socket as a listener. listen
Client: Send a connection request. connect
Server: Accept a connection request. accept
Send data. ‘ sendto write
sendmsg send
sendto
sendmsg
Receive data. recvfrom read
recvmsg recv
recvirom
recvmsg
Shut down the socket. shutdown shutdown
Close (delete) the socket. close close

Sections 10.6.1 to 10.6.7 explain how to use the socket communication
routines. Sections 10.6.1 and 10.6.2 explain how to create and bind
names to sockets. Section 10.6.4 explains how to establish connections
for TCP/IP communication. Section 10.6.5 explains how applications

Internet Services

can use sockets to transfer data. Sections 10.6.6 and 10.6.7 explain
how fo shut down and close sockets, respectively. .

For descriptions of the socket communication routines, see the VAXELN
C Reference Manual.

10.6.1 Creating Sockets

An application creates sockets by calling the socket function. A call to
socket must specify an address format, type, and protocol. The address
format argument defines the address format to be used in subsequent
operations that use the socket. The VAXELN socket routines support
Internet (AF_INET) addresses.

A socket’s type and protocol affect the way the socket operates and
how an application uses it. The type argument specifies whether the
socket operates as a stream, datagram, or raw data transmission mech-
anism. Sockets of type SOCK_STREAM are for reliable, sequenced,
two-way connection-based communication that can handle out-of-band
data. Sockets of type SOCK_DGRAM are for connectionless communi-
cation. Sockets of type SOCK_RAW provide access to internal network
interfaces, and are available only to programs authorized with a sys-
tem group UIC (that is, a UIC less than or equal to %X0008FFFF or
[10,177777]).

The protocol argument specifies the protocol to be used with the socket.
Normally, only one protocol supports a particular socket type using a
given address format. Generally, the stream, datagram, and raw socket
types map to the protocols TCP, UDP, and IP, respectively. However,
multiple protocols can exist for a socket type. If so, you must specify

a protocol. The protocol number you need to specify depends on the
communication domain in which the socket is to be used.

The following call to socket creates a stream socket and returns a
socket descriptor to socket_2:

Internet Services 10-57

#$include types
#include socket
#include in

main(arge, argv)

int arge;
char **argv;
{
int socket_2;

socket_2 = socket (AF_INET, SOCK_STREAM, 0)

}

You can gain more control over how a socket operates by using the
setsockopt function to set the following socket options:

¢ Let local addresses be reused

¢ Keep connections alive

* Do not apply routing on outgoing messages
* Linger on close operations if data is present
* Let broadcast messages be sent

For more information about setting socket options, see Section 10.7.2.

10.6.2 Binding Names to Sockets

10-58

When an application creates a socket, the socket exists in an address
family’s name space but has no name (direct address) assigned. To use
the socket, the application must bind a name to it, using a call to the
bind function. A call to bind must specify a socket descriptor returned
by socket, a name, and the length of the name.

The name argument specifies the address of a structure that defines

a name for the socket. The structure must define the name using the
socket’s address format. The VAXELN socket interface defines two such
structures: sockaddr and sockaddr_in. The sockaddr structure
defines names for sockets that use a general address format. Members
of this structure identify the socket’s address family and a data string
of up to 14 bytes of direct address. The sockaddr_in structure defines

Internet Services

names for sockets that use the Internet address format. This structure
defines a name that includes the socket’s address family (AF_INET),

a port number in network byte order, an Internet address in network
byte order, and an 8-byte field that contains all zeros.

The name length argument must specify the size of the name structure
in bytes.

The following code binds an Internet address name socket_2_name to
the socket socket_2:

#include types
#include socket
#include in

.

main(arge, argv)

int argc;
char **argv;
{
int socket_2;

static struct sockaddr in socket_2_name;

/%
* Fill in the name structure.

*/

socket 2 name.sin_ family = AF_INET;
socket 2 name.sin port = htons(atoi(argvi{l]));
socket 2 name.sin addr.S_un.S_addr = inet_addr("5.0.0.1");

/*
* Bind the name to the socket.
*/

return_val = bind(socket_2, &socket_2 name, sizeof(socket_2 name));

}

Once a socket has a name, an application can use the socket for either
connection-oriented or connectionless communication.

Internet Services 10-59

10.6.3 Controlling Socket Characteristics

The VAXELN Internet software provides the routines vaxc$get_sde
and vaxc$socket_control for controlling certain socket characteris-
tics. The vaxc$get_sdc routine returns the socket device descriptor
associated with a specified socket descriptor. Once an application has
the socket device descriptor, it can specify that descriptor in calls to
vaxc$socket_control to do the following:

* Set the socket to a blocking or nonblocking state

* Determine whether the socket’s read pointer is pointing at the
out-of-band data marker

A blocking socket waits for the current operation to complete, while a
nonblocking socket does not block if the requested operation takes a
considerable amount of time.

Calls to the vaxc$socket_control must specify a socket device de-
scriptor returned by vaxc$get_sde, a request, and an argument
pointer. The request argument specifies the characteristic to be set or
returned. The argument pointer specifies the address of a buffer that
supplies information to or receives characteristics from the routine.

To set a socket to the blocking or nonblocking state, you must specify
FIONBIO as the request. If you specify FIONBIO and the specified
buffer contains 0, the socket is set to the blocking state. Otherwise, it
is set to the nonblocking state.

To determine whether a socket’s read pointer is pointing at the out-of-
band data marker in the data stream, specify SIOCATMARK as the
request. When you specify this request, the routine returns the value 1
to the specified buffer if the next read is to return data after the mark.

The following example shows how you might use vaxc$get_sde and
vaxc$socket_control to create an I/0 control function that is similar
to the UNIX ioctl function.

/ *

** TInclude files

*/

$include inetdef

10-60 Internet Services

~
*

* I/0 control functions have the command encoded in the lower word

* and the size of the input and output parameters in the upper word.

* The high two bits of the upper word are used to encode the

* parameter’s I/O status. For now, we restrict parameters to at most

* 128 bytes.

*

* The IOC VOID field of 0x20000000 is defined so that new I/0 control

* functions can be distinguished from old I/O control functions.

*/

#ifndef _IO

#define IOCPARM MASK Ox7f /* Parameters are < 128 bytes */
#define IOC_VOID (int)0x20000000 /* No parameters */
#define IOC_OUT (int) 0x40000000 /* Copy output parameters */
#define IOC_IN (int) 0x80000000 /* Copy input parameters */
#define IOC_INOUT (int) (IOC_IN|IOC_OUT)
#define _Io(x,¥) (int) (IOC_VOID]| (' x/<<8) {y)
#define IOR(x,y,t) (int) (I0C_OUT| ((sizeof (t) SIOCPARM MASK)<<16) | ('x’<<8) |y)
#define _IOW(x,y,t) (int) (IOC_IN| ((sizeof(t)&sIOCPARM MASK)<<16) | ('x’<<8) |y)
f#define _IOWR(x,y,t) (int) (IOC_INOUT| ((sizeof (t) &IOCPARM MASK)<<16) | ('x’<<8)|y)
#endif _IO

#define ODD(s) (s & 01)

int ioctl(d, request, argp)

int d, request;
char *argp;

/* Arguments:

*%
*k
*%
hok
*ok
*/
{

d - Specifies the socket descriptor
request - Specifies the characteristics; either FIONBIO or
SIOCATMARK

argp - Points to the buffer that specifies input to or
receives output from the routine

int sdd; /* Socket device descriptor */
int retval; /* Return value */
/*

** Get the socket device descriptor.
** If failure, then errno will contain error number.

*/
sdd = vaxcfget_sdc(d);
/*

** Do socket control.
** Tf failure, then errnc will contain error number.

*/

Internet Services

10-61

if (sdd) {
retval = vaxc$socket_control(sdd,

request,
argp) ;
return (retval);
}
else
return (-1); /* Return failure */

For descriptions of the vaxc$get_sdc and vaxe$socket_control, see
the VAXELN C Reference Manual.

10.6.4 Establishing Connections for Socket Communication

To use sockets for TCP communication, an application must establish
a connection between client and server sockets. A client initiates a
connection by sending a connection request to a server’s socket. A
server waits for connection requests, and depending on the state and
characteristics of its socket, receives the requests, places the requests
in a queue, or rejects the requests.

The following sections explain how to establish socket connections.
Sections 10.6.4.1 and 10.6.4.3 explain how to send and accept socket
connection requests. Section 10.6.4.2 explains how to associate a socket
with a queue for pending connection requests.

10.6.4.1 Initiating Socket Connections

10-62

A client initiates a- connection on a socket by calling the connect
function. The function call must specify a socket descriptor returned by
socket, the name of a remote socket, and the length of the name.

The socket descriptor can be of type SOCK_DGRAM or SOCK_
STREAM. If the socket is of type SOCK_DGRAM, the call perma-
nently specifies the peer to which data is to be sent. If the socket is
of type SOCK_STREAM, the function sends a connection request to
another socket.

The name argument specifies the address of a structure that names
the remote socket to which the specified socket is to connect. The
structure must define the name using the remote socket’s address
format. Section 10.6.2 provides information about the VAXELN socket
address structures and binding names to sockets.

Internet Services

NOTE

If an application does not bind an Internet address (name)
to a socket before calling the connect function, the function
uses the local Internet address. If the Internet address is
not defined when the application calls connect, the function
blocks until the Internet address is set.

The name length argument must specify the size of the name structure
in bytes.

The following code fragment connects the socket socket_I to the remote
socket named socket_2_name:

$#include types

#include socket
#include in

main(arge, argv)

int argc;
char **argv;
{
int socket_1;

static struct sockaddr_in socket_ 2 name;

/*

* Fill in the name structure for the remote socket.

*/

socket_2 name.sin family = AF_INET;

socket_2 name.sin_port = htons(atoi(argv{2]));

socket 2 name.sin_addr.S un.S addr = inet_addr("5.0.0.5");

/*
* Connect socket_1 to socket_2 name.

*/

return_val = connect (socket_1, &socket_ 2 name, sizeof(socket_2 name));

Internet Services 10-63

10,6.4.2 Creating a Queue for Pending Connection Requests

10-64

Before a server can accept a connection on a socket, it must create
and associate the socket with a queue that stores pending connection
requests. The socket uses the queue to listen for requests. If the server
is busy when a request arrives, the request is queued. If the queue is
empty when the server is ready to service a request, the server waits
on the queue for a new request.

To create a queue for a socket, call the listen function. The function
call must specify a socket descriptor of type SOCK_STREAM returned
by socket and an integer in the range 1 to 5 that specifies the maxi-
mum number of pending connections that may be queued for the socket
at any given time. If a connection request arrives when the queue is
full, the client receives an error.

- The call to listen in the following example creates a connection request

queue for socket_2. The queue entry limit is set to 5.
#include types

#include socket
#$include in

main (arge, argv)

int arge;
char **argv;
{
int socket_2;
/- |
* Listen on socket_2 for connection requests.
*/

return val = listen(socket_2, 5);

Internet Services

10.6.4.3 Accepting Socket Connections

A server accepts a connection on a socket by calling the accept func-
tion. A call to aceept must specify a socket descriptor of type SOCK _
STREAM returned by socket, a variable that receives the address of
the connecting entity, and an argument that specifies and receives the
length of the connecting entity’s address in bytes. The socket descriptor
that you specify must be bound to a name and listening for connection
requests.

The address of the connecting entity is filled in as it is known to the
communication layer. The format of the structure to which the address
points is determined by the communication domain. The VAXELN
Internet Services support the Internet (AF_INET) domain.

The address length argument should specify the size of the structure
to which the address argument points. When the function returns,
the argument contains the actual length of the structure that the
communication layer places in the address argument.

The accept function completes the first connection on the socket’s con-
nection pending queue, creates a new socket with the same properties
as the specified socket, and allocates and returns a new descriptor for
the socket. If no connections are pending and the socket is not marked
as nonblocking, the function blocks the calling process until a connec-
tion request is present. If the socket is marked as nonblocking and no
connections are pending, the function returns an error. The original
socket continues to listen for other connection requests.

The following code accepts a connection from socket_2 and places the
accepted connection on socket_3:

Internet Services 10-65

#include types
#include socket
#include in

main(arge, argv)

int argc;

char **argv;

{
int socket_2, socket_3;

static struct sockaddr_in socket 2 name;
int socket_;_pamelen;

/-

* Accept connection request from socket 2.
* Accepted connection will be on socket_3.

*/

socket_2 namelen = sizeof (socket_2 name);
socket_3 = accept (socket 2, &socket_ 2 name, &socket_2 namelen);

10.6.5 Transferring Data

A variety of socket communication routines are available for trans-
ferring data between sockets. Sections 10.6.5.1 and 10.6.5.2 ex-
plain how to use the routines to send and receive data, respectively.
Section 10.6.5.3 explains how to poll sockets for I/0O activity while
programming data transfers between sockets.

10.6.5.1

10-66

Sending Data to Sockets

Internet applications can send data from sockets by calling the write,
send, sendto, or sendmsg function. You can use any of these func-
tions to send data in connection-oriented communication. You must use
sendto or sendmsg to send data in a connectionless environment.

The write function writes a buffer of data to a connected socket or
file. You specify write with a destination socket or file descriptor,
the address of contiguous storage from which the output data is to be
taken, and the maximum number of bytes to be written.

Internet Services

The send function provides an alternative method of sending data
between connected sockets. A call to send must specify a socket
descriptor, the address of the buffer containing the data to be sent, the
length (in bytes) of the data being sent, and an out-of-band character
flag. In the case of send, the socket descriptor specifies a source socket
— the socket from which data is sent — that is connected to another
socket. The function sends bytes of data through the specified socket
to its connected peer and returns an integer indicating the number of
bytes of data that were sent.

The out-of-band character flag that you specify with send can be 0

or MSG_OOB. If you specify MSG_OOB, data can be received before
other pending data on the receiving socket if the receiver also specifies
MSG_OOB.

The following code uses a call to send to send a message to socket_2:
#include types

#include socket
#include in

main(arge, argv)

int arge;
char **argv;
{ .
int socket_1;
static struct sockaddr in socket_2 name;
int socket_2 namelen;
/%
* Fill in the name structure for the remote socket.
*/

socket 2 name.sin_family = AF '_INET;

socket T2 _name.sin port = htons(at01(argv[2])),
socket_2_name‘sin_addr S_un.S_addr = inet_addr("5.0.0. 5"),
/* :

* Connect socket 1 to socket_2. name.

*/

socket 2 namelen = sizeof (socket_2 name);
return val = connect (socket_1, &socket _2 name, &socket 2 namelen);

/% :
* Send message to socket_ 2.

*/

Internet Services 10-67

10-68

flag = 0;
return val = send(socket_l, message, sizeof(message), flag);

}

If your application uses connectionless socket communication, you can
send data by calling the sendto or sendmsg function. These functions
send data to any other socket. The sendto function sends bytes of data
through a socket to any other socket. The sendmsg function sends
gathered bytes of data through a socket to any other socket.

Like calls to send, calls to sendto must specify a socket descriptor,
the address of the buffer containing the data to be sent, the length
(in bytes) of the data being sent, and an out-of-band character flag.
In addition, you must supply the destination socket by specifying the
address of the destination socket’s address structure and the length of
that structure.

The call to sendto in the following code fragment sends data between
unconnected sockets:

#include types
#include socket
#include in

main(arge, argv)
int argce;
char **argv;
{
int sendlength, tolength;

static char sendbuf[] = "Hi.";
int flag;
int return~val;

statie struct sockaddr_in socket 2 name;

/*

* Fill in the address structure for socket 2.

*/

socket 2 name.sin_ family = AF INET;

socket 2 name.sin port = htons(atoi(argv([2]));

socket 2 name.sin addr.S un.S_addr = inet_addr("5.0.0.5");
/*

* Initialize send block.

*/

Internet Services

sendlength = sizeof (sendbuf);
tolength = sizeof(socket_2 name);

flag =0;

/*

* Send message from socket 1 to socket 2.

*/ - -

return _val = sendto(socket_1l, sendbuf, sendlength, flag, &socket_2 name,

tolength);

}

When you use the sendmsg function, you must specify a socket de-
scriptor created by socket, a message argument, and an out-of-band
character flag.

The message argument specifies the address of a message header
structure of type msghdr that contains the message to be sent. The
message header structure lets the sendmsg function gather data from
several user transmit buffers before sending a message. Members of
the msghdr structure identify the following:

¢ The address of the destination socket if the source socket is not
connected.

¢ The length of the message name field.

¢ An array of I/O buffer pointers of the iovec structure form. Each of
the buffer pointers specifies the address of a buffer and that buffer’s
length.

¢ The number of buffers in the message array.

* The address of a buffer containing access rights sent with the
message.

¢ The length of the access rights buffer.

The sendmsg function sends the data in the msg_iovec field of the
msghdr structure to the socket whose address is specified in the msg_
name field of msghdr. The receiving socket can then receive the data.
If the array specifies multiple buffers, sendmsg gathers the data from
all specified buffers before sending the message.

If blocking is enabled for a socket, send, sendto, and sendmsg will
block if the receiving end of a socket connection does not have enough
space to buffer the data being sent. However, if the sending socket is
defined as nonblocking, an error results and the send operation fails.

Internet Services 10-69

The send operation will fail also if the sending socket is of type SOCK_
DGRAM and the message is too large to be sent in one piece.

10.6.5.2 Receiving Data from Sockets

10-70

Internet applications can receive data from sockets by calling the
read, recv, recvfrom, or recvmsg function. You can use any of these
functions for receiving data in connection-oriented communication. You
must use recvirom or recvmsg to receive data in a connectionless
environment.

The read function reads data from a connected socket or file and places
the data in a buffer. You specify read with the descriptor of a socket
or file opened for reading, address of contiguous storage in which the
input data is to be placed, and the maximum number of bytes to be
read. The function returns the number of bytes actually read and
placed in the buffer.

The recv function provides an alternative means of receiving data
between connected sockets. A call to recv must specify a socket de-
scriptor, the address of the buffer into which received data is to be
placed, the length (in bytes) of the specified buffer, and a flags argu-
ment. In the case of read, the socket descriptor specifies a destination
socket — the socket from which data is received — that is connected to
another socket. The function receives bytes of data through the spec-
ified socket from its connected peer and returns an integer indicating
the number of bytes of data received and placed in the buffer.

The flags argument is a bit mask that specifies whether the function
should receive out-of-band characters and be allowed to peek at data
before it is read. The out-of-band character flag can be 0 or MSG_OOB.
If you specify MSG_OOB, available out-of-band data will be read before
any other available data. The peek flag can be 0 or MSG_PEEK.

The following code uses a call to recv to receive a message from socket_
2:

Internet Services

#include types
#$include socket
#include in

main(arge, argv)

int argc;
char **argv;
{
int socket_2, socket_3;

static char message [BUFSIZ];

static struct sockaddr in socket_2 name;
int socket_2 namelen;
int flag;

/*
* Accept connection request from socket 2.
* QAccepted connection will be on socket 3.

*/.

socket_2 namelen = sizeof (socket_2 name);
socket_3 = accept (socket_2, &socket_ 2 name, &socket 2 namelen);

/*

* Receive message from socket 1.
*/ -
flag = 0;

retval = recv(socket_ 3, message, sizeof(message), flag);

}

If your application uses connectionless socket communication, you can
receive data by calling the recvfrom or recvmsg function. These
functions receive data from another source. The recvfrom function
receives bytes of data on a socket from any source. The recvmsg
function receives bytes of data on a socket and places them in scattered
buffers.

Like calls to recv, calls to recvfrom must specify a socket descriptor,
the address of the buffer into which received data is to be placed, the
size of the buffer, and a flags argument. In addition, you must supply a
source and source length. The source argument can be zero or nonzero.
If nonzero, the argument points to the buffer into which recvfrom is to
place the address structure of the socket from which data is received.
If you specify zero, the address is not returned. The source length
argument points to an integer that indicates the buffer’s size. When

Internet Services 10-71

10-72

the function returns, the size is modified such that it contains the
actual length of the socket address returned.

The call to recvfrom in the following code fragment receives data from
an unconnected socket:

#include types
#include socket
$include in

main(argec, argv)
int arge;
char **argv;
{
int buflength, fromlength;

static char recvbuf[] = "Hi.";
int flag;
int return_val;

static struct sockaddr_in socket 2 name;

.

/*
* Receive data from socket_1 on socket_ 2.
*/

buflength = sizeof (recvbuf);
fromlength = sizeof (socket 1 name);
flag = 0;

return_val = recvfrom(socket_ 2, recvbuf, buflen, flag, &socket_ 1l name,
&fromlength) ;

}

When you use the recvmsg function, you must specify a socket descrip-
tor created by socket, a message argument, and a flags argument.

The message argument specifies the address of a message header struc-
ture of type msghdr into which the received message is to be placed.
The message header structure lets the recvmsg function scatter data
to several user transmit buffers after a message is received. Members
of the msghdr structure identify the following:

* The address of the destination socket if the source socket is not
connected.

¢ The length of the message name field.

Internet Services

® An array of I/O buffer pointers of the iovec structure form. Each of
the buffer pointers specifies the address of a buffer and that buffer’s
length.

® The number of buffers in the message array.

* The address of a buffer containing access rights sent with the
message.

* The length of the access rights buffer.

The recvmsg function scatters a message into several user buffers
if such buffers are available. The data is scattered into the message
array buffers as specified by the iovec structure.

When recvmsg receives a message, the message is split among buffers
by filling the first buffer in the list, then the second, and so on, until all
the buffers are full or no more data is available.

If blocking is enabled for a socket, recv and recvto block and wait
for data to arrive if no data is available at the time of the function
call. However, if the sending socket is defined as nonblocking, an error
results and the receive operation fails.

10.6.5.3 Polling Sockets for I/O Activity

While programming data transfers to and from sockets, you may want
to poll the sockets for I/O activity. By polling the sockets, you can check
which sockets are ready to receive or send data, or which sockets have
a pending exception.

To poll sockets for I/O activity, use the select function. This function
determines the I/O status of the sockets specified in various mask
arguments. The function returns when a socket is ready to receive or
send data, or when a timeout value expires.

A call to select must specify the highest numbered socket descriptor
for which the function must search; pointers to arrays of bits that
indicate which sockets should be checked for read or write readiness
or for exceptions; and a timeout value. The first argument improves
efficiency by specifying the highest numbered bit +1 to be checked. A
descriptor is represented by l<<s (1 shifted to the left s times). If you
are not sure what the highest numbered descriptor is, you can safely
specify a number less than 64.

Internet Services 10-73

10-74

The read, write, and exception fields arguments are pointers to arrays
of bits, organized as integers (each integer describes 32 descriptors)
that you can examine. If bit n of a bit array is set, the function checks
to see if socket descriptor n is ready to be read from, is ready to be
written to, or has any pending exceptions. All bits in the bit masks
must correspond to socket descriptors.

On return, the bit array to which each of the fields arguments points
contains a bit mask of sockets that are ready for reading, are ready for
writing, or have exceptions pending. Only bits that are set on entry to
select can be set on exit.

The timeout argument is a timeval structure that specifies the max-
imum interval to wait for a selection to be completed. The timeval
structure consists of members that specify the number of seconds and
number of microseconds to wait. If one of the sockets specified in the
bit masks is ready for I/O, the function returns before the timeout
expires.

The following code fragment selects a socket to receive a message:

#include types
#include socket
#include in

main(arge, argv)
int arge;
char **argv;
{
unsigned long rmask, wmask, emask;
int socket_2;
int return val;
static struct sockaddr in socket_ 2 name;
struct timeval timeout;

/*

* Select socket to receive message.
*/
emask = wmask = 0;
rmask = (l<<socket_2); /* Set read mask */

timeout.tv_sec = 30;
timeout.tv_usec = 0;

return_val = select(32, &rmask, &wmask, &emask, &timeout);

Internet Services

switch (return val)

{

case -1: perror("select error");

break;
case 0: printf("Select timed out with status 0.\n");
break;
default: if ((rmaské& (l<<socket 2)) == 0)
printf("Select not reading on socket_2.\n");
break;

} /* switch */

}

If a call to select blocks a process while waiting for input from a socket
and the sending process closes the socket, select notes this as an event
and unblocks the process. The descriptors are modified on return if
select returns because of a timeout.

10.6.6 Shutting Down Sockets

When an application no longer needs a socket, it should use the shut-
down function to shut down the socket. An application can shut down
a socket completely or shut down the socket’s ability to receive or send
data. You might use this function to program a more controlled shut-
down. The shutdown function is also useful for setting up one-way
(half-duplex) communication rather than normal two-way (full-duplex)
communication.

A call to shutdown must specify a socket descriptor and an integer in
the range 0 to 2 that indicates how the socket is to be shut down. If
you specify 0, the socket can no longer receive data. If you specify 1,
the socket can no longer send data. The value 2 prevents the socket
from receiving or sending data.

In the following example, shutdown shuts down socket_1 completely:

Internet Services 10-75

#include types
#include socket
#include in

main(arge, argv)

int argce;
char **argv;
{
int socket 1;
int return val;
/*
* Shut down socket 1.
*/

return val = select (socket_1, 2);

}

10.6.7 Closing Sockets

When a socket is no longer being used, the application should close

it. To close a socket, call the close function. If the socket is a con-
nected socket, the function breaks the connection and then deletes the
socket’s descriptor from the appropriate reference table. Otherwise, the
function just deletes the descriptor. If the close operation is the last
reference to the socket, the socket is deactivated.

The following code fragment shuts down and closes the socket socket_I:
#include types

#include socket
#include in

main(arge, argv)

int argce;
char **argv;
{
int socket_1;
int return_val;
/-
* Shut down and close socket_ 1.
*/

10-76 Internst Services

return val = shutdown(socket 1, 2);
return val = close(socket_1);

}

10.6.8 Programming Socket Communication for a UDP Application

This section shows an example of how you might use the socket com-
munication routines to program a UDP application. The example
consists of a UDP server (see Example 10-1) and a UDP client (see
Example 10-2). The server creates a socket of type SOCK_DGRAM
(UDP), binds it, and selects to receive a message on the socket. The
server program expects the number of the port where it is waiting for
requests. The client creates a socket of type SOCK_DGRAM (UDP),
binds it, and sends a message to a specified destination address. The
client program expects the name of a remote host and the port number
where the remote host is waiting.

To run the sample application you must do the following:

¢ Pass 7 as the fourth program argument for both the server and
client programs. The first argument (program name) is not sup-
ported by the VAXELN Toolkit, and the stdin, stdout, and stderr
arguments are not used.

* Set the priority of the server to a higher priority than that of the
client if the server and client are to run on the same node.

¢ The Internet address in the example code must match the Internet
address that you specify for the Internet address entry on the
System Builder’s Internet Network Description menu.

Internet Services 10-77

Example 10-1:

Sample UDP Server

/*

* Include Files

*/

#include
#include
#include
#include
#include
#include
#include

main(arge,

int
char

{

static
static

$vaxelnc
errno
types
stdio
socket
in
inet
argv)
arge;
**arg-v;

unsigned long read mask, write mask, exception_ mask;

int
int
char
struct
struct
int
int
int
struct

/*
* Check input parameters.
*/

if (arge != 2)

socke;_Z;

buflen, fromlen;

recvbuf [BUFSIZ];
sockaddr_in socket_ 1l name;
sockaddr_in socket_2_ name;
namelength;

retval;

flag;

timeval timeout;

/* Socket 2 descriptor.

*/

/* Address structure for Socket 1.
/* Address structure for Socket 2.

printf("Usage: server port number.\n");

exit (),
}
/*

* Create a datagram socket (SOCK_DGRAM) that is to use Internet

* addresses.

Return the socket descriptor to socket_ 2.

*/
if ((socket_2 = socket (AF_INET, SOCK DGRAM, 0)) == -1)
{
perror("socket error");
exit();
}

*/
*/

Example 10-1 Cont’d on next page

10-78

Internet Services

Example 10-1 (Cont.): Sample UDP Server

/*
* Build the address structure for socket_2.

*/

socket_ 2 name.sin family = AF INET;

socket 2 name.sin port = htons(atoi(argv([l]));

socket_2 name.sin addr.S_un.S_addr = inet_addr("5.0.0.5");

/*

* Bind socket_ 2 to the name structure socket_2 name.

*/ - -

retval = bind(socket_2, &socket 2 name, sizeof(socket_2_name));
if (retval)

{

perror ("bind error");
cleanup (socket_2);
}
/*
* Set the read mask and poll socket 2 for read requests. Use
* a timeout value of 30 seconds.

*/
exception_mask = write_mask = 0;
read mask = (l<<socket_2); /* Set read mask */

timeout.tv_sec = 30;
timeout.tv_usec = 0;

Example 10—t Cont’d on next page

Internet Services 10-79

Example 10-1 (Cont.): Sample UDP Server

retval = select (32, &read;pask, &write mask,
&exception mask, é&timeout);
switch (retval) :
{
case -1:
{
perror ("select error");
cleanup (socket_2);
}
break;
case 0:
{
printf("Select timed out with status 0.\n");
cleanup (socket_2);
}
break;
default:
if ((read_mask & (l<<socket_2)) == 0)
{
printf("Select not reading on socket_2.\n");
cleanup (socket_2);
}
} /*switch*/

/*
* Initialize the receive buffer.

*/

buflen = sizeof (recvbuf);
fromlen = sizeof(socket_1l_name);
flag = 0; /* Flag can be MSG_OOB or MSG_PEEK */

/*
* Receive data from a socket named socket 1 name, using
* socket_2, and place the data in the buffer recvbuf.

*/

retval = recvfrom(socket_2, recvbuf, buflen, flag,
&socket_1 name, &fromlen);

if (retval == -=]1)
perrorxr ("recvfrom error");
else

printf (" %s\n", recvbuf);

Example 10-1 Cont’d on next page

10-80 Internet Services

Example 10-1 (Cont.): Sample UDP Server

/*
* Call cleanup to shut down and close socket 2.
*/

cleanup (socket_2);

} /* end main */

/*---_-_---_--- ________ - ———-

cleanup (socket)
int socket;
{
int retval;
/*
* sShut down socket completely.
*/

retval = ghutdown (socket,2);
if (retval m= =-1)
perror ("udp_server shutdown error");

/*
* Close the socket.
*/
retval = close(socket);
if (retval)
perror ("close error");

exit ()

} /* end cleanup */

——/

Internet Services 10-81

Example 10-2: Sample UDP Client

/*
* Include Files

*/

#include $vaxelnc
#include errno
#include types
#include stdio
#include socket
#include in
$include inet

main(argec, argv)

int arge;
char **argv;
{
int socket_1; /* Socket descriptor for Socket 1 */
int sendlen, tolen;
static char sendbuf[] = "Have a nice day.";
static struct sockaddr_in socket_2 name; /* Address structure for Socket 2 */
int namelength;
int flag;
int retval;
/*
* Check input parameters.
*/

if (argec != 2)
{

printf ("Usage: port number.\n");
exit ();
}
/* .
* Create a datagram socket (SOCK DGRAM) that is to use Internet
* addresses. Return the socket descriptor to socket 1.
*/
if ((socket_1 = socket (AF_INET, SOCK DGRAM, 0)) == =-1)
{
perror ("socket error");
exit();
}
/%
* Build an address structure for socket_2 for receiving the
* message.

*/

Example 10-2 Cont'd on next page

10-82 Internet Services

Exampile 10-2 (Cont.): Sample UDP Client

socket_2 name.sin_ family = AF INET;
socket_2_ name.sin_port = htons(atoi(argv([l]));
socket_2 name.sin addr.S_un.S_addr = inet_addr("5.0.0.5");

/*
* Initialize the send buffer.

*/

sendlen = sizeof (sendbuf);
tolen = sizeof (socket_2 name);
flag = 0; /* Flag may be MSG_OOB */

/%
* Send data from the buffer sendbuf using socket_1 to
* a socket named socket_2_ name.
*/
retval = sendto(socket_1, sendbuf, sendlen, flag,
&socket 2 name, tolen);
if (retval == -1) '
{ o
perror ("sendto error");
cleanup (socket_1);
}
/*
* Call cleanup to shut down and close socket 1.

*/

cleanup (socket_1);

/* end main */

/K e e e e mm e e e ——————— */
cleanup (socket)
int socket;
{
int retval;
/%
* sShut down socket completely.
*/
retval = shutdown (socket, 2);
if (retval == -1)

perror ("udp_client shutdown error");

Example 10-2 Cont’d on next page

Internet Services

10-83

Example 10-2 (Cont.): Sample UDP Client

/*
* Close the socket.

*/

retval = close(socket);
if (retval)
perror("close error");

exit();

} /* end cleanup */

10.6.9 Programming Socket Communication for a TCP/IP Application

This section shows an example of how you might use the socket com-
munication routines to program a TCP/IP application. The example
consists of a TCP/IP server (see Example 10-3) and a TCP/IP client (see
Example 10—4). The server creates a socket of type SOCK_STREAM
(TCP), binds it, listens on it, receives a message, and closes it. The
server program expects the number of the port where it is listening.
The client creates a socket of type SOCK_STREAM (TCP), initiates

a connection to the remote host, sends a message to the remote host,
and closes the connection. The client program expects the name of the
remote host port where the remote host (server) is listening. -

To run the sample application you must do the following:

® Pass 7 as the fourth program argument for both the server and
client programs. The first argument (program name) is not sup-
ported by the VAXELN Toolkit, and the stdin, stdout, and stderr
arguments are not used.

¢ Set the priority of the server to a higher priority than that of the
client if the server and client are to run on the same node.

® The Internet address in the example code must match the Internet
address that you specify for the Internet address entry on the
System Builder’s Internet Network Description menu.

10-84 Internet Services

Example 10-3: Sample TCP/IP Server

/*

* Include Files
.*/

#include $vaxelnc
#include errno
#include types
#include stdio
#include socket
$include in
$include inet

main(argc,argv)

int argc;
char **argv;
{
int socket_2, socket_3; /* Socket descriptors for */
/* Socket 2 and Socket 3. */
static char message [BUFSIZ];
static struct sockaddr_in socket 2 name; /* Address structure for socket 2 */
static struct sockaddr in retsocket_2 name; /* Address structure for socket_ 2 */
int flag;
int retval;
int namelength;
/%
* Check input parameters.
*/

if (arge != 2)
{
printf("Usage:. server port number.\n");
exit();
}
/*
* Create a stream socket (SOCK_STREAM) that is to use Internet
* addresses. Return the socket descriptor to socket 2.
*/
if ((socket_2 = socket (AF_INET, SOCK_STREAM, 0)) == -1)
{ .
perror ("socket error");
exit():

}

Example 10-3 Cont’d on hext page

Internet Services 10-85

Example 10-3 (Cont.): Sample TCP/IP Server

/*
* Build an address structure for socket_ 2.

*/

socket_2_pame.sin_family = AF_INET;
socket_2 name.sin_port = htons(atoi(argv[l])):
socket_2 name.sin addr.S un.S_addr = inet_addr("5.0.0.5");

/*
* Bind socket_2 to the name structure socket 2 name.

*/

retval = bind(socket_ 2, &socket_2 name, sizeof(socket_2 name));
if (retval)
{
perror ("bind error");
cleanup(l, socket_2, 0);
}

/*
* Create and associate socket_2 with a queue for pending connection
* requests. The socket uses the queue to listen for requests.

*/

retval = listen(socket 2, 5);
if (retval)
{
perror("listen error");
cleanup(l, socket_2, 0);
}

/*
* Accept a connection request from socket_ 2. Place accepted
* requests on socket 3.

*/

namelength = sizeof (socket_2 name);
socket_3 = accept (socket_ 2, &socket_ 2 name, &namelength);
if (socket_3 == -1)
{
perror ("accept error");
cleanup (2, socket_2, socket_3);

}

Example 10-3 Cont’d on next page

10-86 Internet Services

Example 10-3 (Cont.): Sample TCP/IP Server

/*
* Receive data from socket_ 1, using socket_3, and place the
* data in the buffer message.

*/
flag = 0; /* Can be 0, MSG_OOB, or MSG_PEEK. */

retval = recv(socket_3, message, sizeof (message), flag);
if (retval == =1)
{
perror ("receive error");
cleanup (2, socket_2, socket 3);

}

else
printf (" %s\n", message);

/*

* Call cleanup to shut down and close the sockets.
*/

cleanup (2, socket_2, socket_3);

} /* end main */

/e memmcme e meccecceummmecmea s e ccmc—scccse—mmm—— s ——————— */
cleanup(how_many, socket_1, socket_ 2)
int how_many;
int socket_1, socket_2;
{
int retval;
/*
* shut down and close socket_1 completely.
*/
retval = shutdown (socket 1, 2);
if (retval == -1)

perror ("tcp_server shutdown error, socket _1");

retval = close(socket_1);
if (retwval)
perror ("close error");

Example 10-3 Cont’d on next page

Internet Services

10-87

Example 10-3 (Cont.): Sample TCP/IP Server

/*
* If given, shut down and close socket_ 2.
*/
if (how_many == 2)
{
retval = shutdown (socket_2, 2);
if (retval == =-1)
perror ("tcp_server shutdown error, socket_2");

retval = close(socket_ 2);
if (retval)
perror ("close error");

}
exit ();

} /* end cleanup*/

Example 10-4: Sample TCP/IP Client

/*
* Include Files

*/

$include Svaxelnc
#include errno
#include types
#include stdio
#include socket
#include in
#include inet

main(argc,argv)

int argce;
char **argv;
{
int socket_1; /* Socket descriptor for Socket 1 */
static char message[] = "Have a nice day."; ‘
static struct sockaddr_in socket_2_ name; /* Address structure for Socket 2 */
int flag;
int retval;

int shut = FALSE; /* Flag to cleanup */

Example 10—4 Cont’d on next page

10-88 Internet Services

Example 104 (Cont.): Sample TCP/IP Client

/*
* Check input parameters.
*/
if (argec != 2)
{
printf ("Usage: port number.\n");
exit ();
}
/*

* Create a stream socket (SOCK STREAM) that is to use Internet
* addresses. Return the socket descriptor to socket_ 1.
*/
if ((socket_1 = socket (AF_INET, SOCK STREAM, 0)) == -1)
{
perror ("socket error");
exit();
)
/*
* Build an address structure for socket 2.
*/
socket_2 name.sin_family = AF INET;
socket_2 name.sin port = htons(atoi(argv[l]));
socket_2 name.sin_addr.S_un.S_addr = inet_addr("5.0.0.5");

/*
* Connect socket_1 to the remote socket named socket_2 name.
*/
retval = connect (socket_l, &socket_2 name, sizeof (socket_2 name));
if (retval)
{
perror ("connect error");
cleanup (shut, socket_1);
}

Example 10-4 Cont’d on next page

Internet Services 10-89

Example 10-4 (Cont.): Sample TCP/IP Client

/*
* Send data from the message buffer, using socket_1, to
* the connected socket.

*/

flag = 0; /* Can be 0 or MSG_OOB. */

retval = send(socket_l, message, sizeof (message), flag);

if (retval < 0)

{
perror ("send error");
shut = TRUE;

}

/*

* Call cleanup to shut down and close the socket.
*/

cleanup (shut, socket_1);

} /* end main */

JE e e e e m e e m e e m e e — e e ——— *x/
cleanup (shut, socket)
int shut;
int socket;
{
int retval;
/%
* Shut down socket completely if it was connected.
*/
if (shut)

{
retval = shutdown(socket, 2);

if (retval == -1)
perror ("tcp client shutdown error");

Example 104 Cont’d on next page

10-80 Internet Services

Example 104 (Cont.): Sample TCP/IP Client

/*
* Close the socket.

*/

retval = close(socket);
if (retval)
perror ("close error");

exit();

} /* end main */

10.7 Retrieving and Setting Socket Characteristics

The VAXELN Toolkit also provides routines for retrieving and setting
socket characteristics. These routines include the following:

Routine Description

getpeername Returns the name of a socket’s connected peer.
getsockname Returns the name associated with a socket.
getsockopt Returns the options set for a socket.
setsockopt Sets options for a socket.

Sections 10.7.1 and 10.7.3 explain how to retrieve socket names and
options. Section 10.7.2 explains how to set socket options.

10.7.1 Retrieving Socket Names

An application can retrieve a socket name by calling the getsockname
or getpeername routine. The getsockname routine returns the name
associated with a socket. The getpeername routine returns the name
of a socket’s connected peer.

You must specify these routines with a socket descriptor that was
previously created with socket, a pointer to a buffer in which the name
is to be returned, and the size of the name buffer. The socket descriptor
that you specify in a call to getsockname must be bound to a name.

Internet Services 10-91

The routines return the socket name and update the name length
argument with the name’s actual size.

10.7.2 Setting Socket Characteristics

To set options on a socket, an application must call the setsockopt
routine. A call to setsockopt must specify a socket descriptor, the
protocol level for which the options are to be modified, the options to
be set, the address of a buffer that contains option parameters, and the
size of the option parameter buffer.

Options can exist at multiple protocol levels. However, options are
always present at the uppermost socket level. To set options at the
socket level, you specify the level SOL_SOCKET. To set options at
any other level, specify the number of the protocol that controls the
option. For example, to specify that an option be interpreted by the
TCP protocol, specify the TCP protocol number IPPROTQO_TCP). See
the module in.h for a list of the protocol values.

The interpretation of the options you specify is based on the protocol
level. Table 10-7 lists the options that are available at the socket level:

Table 10-7: Socket-Level Socket Options

Option Description

SO_BROADCAST Lets the socket broadcast messages.

SO_DONTROUTE Specifies that messages sent through the socket are
to bypass the routing facilities. Messages are directed
to the appropriate network interface according to the
network portion of the destination address.

SO_KEEPALIVE Lets a connected socket transmit messages periodically.
If a connected peer fails to respond to the messages, the
connection is considered broken and the processes using
the socket receive an error.

SO_REUSEADDR Specifies that reused local addresses can be supplied in
calls to bind. '

SO_LINGER Delays the deletion of transmitted data when a socket is
closed until the data is transmitted or the device times
out (approximately eight minutes).

10-92 Internet Services

You must specify all socket-level options except SO_LINGER with
an integer parameter. Specify a nonzero value if the option is to be
enabled. Specify zero to disable the option.

When you use the SO_LINGER option, you must specify the address
of a linger structure that indicates the state of the option (on or off)
and the linger interval. The linger interval indicates the number of
seconds to linger. If the linger interval is zero, the value specified
for the linger time when the system was built is used. The linger
structure is defined as follows:

struct linger {
int 1 _onoff; /* option on/off */
int 1_linger; /* linger time */

}:

If the value of [_onoff is nonzero, the system does not delete the socket
until the socket is able to transmit the data or until the socket times
out. If the value of I_onoff is zero, the system processes a close opera-
tion as quickly as possible.

10.7.3 Retrieving Socket Options

An application can check which options are set for a socket by calling
the getsockopt routine. A call to getsockopt must specify a socket
descriptor, the protocol level for which the options are to be returned,
the option to be returned, the address of a buffer into which the option
value is to be placed, and the size of the option value buffer.

To retrieve options at the socket level, specify the level SOL_SOCKET.
To retrieve options at any other level, specify the number of the protocol
that controls the option. For example, to specify that an option or the
TCP protocol be returned, specify the TCP protocol number (IPPROTO_
TCP). See the module in.h for a list of the protocol values.

The interpretation of the options you specify is based on the protocol
level. See Table 10-7 for a list of the socket level options.

Internet Services 10-93

Chapter 11

LAT HostServices

The VAXELN Toolkit includes local area transport (LAT) host services
that VAXELN systems can use to communicate with devices attached
to terminal servers, such as the DECserver 500. This chapter provides
an overview of the LAT host services (see Section 11.1) and explains
how to use the services to do the following:

¢ Establish circuits for LAT communication, Section 11.2

¢ Manage VAXELN service nodes, Section 11.3

* Set up a dedicated service environment, Section 11.4

¢ Set up an application device environment, Section 11.5

®* Retrieve and set terminal characteristics, Section 11.6

11.1 LAT Host Services Overview

LAT is a communications protocol that lets system nodes running
LAT host services communicate with dedicated terminal server nodes
running LAT server services. The collection of system nodes and
terminal server nodes in a local area network (ILAN) constitutes a LAT
network.

The VAXELN LAT host services support the following:

* Terminal server communication
¢ Terminal 1/0

* A control interface that LAT application programs can use to
manage and monitor the LAT environment on a VAXELN system

LAT Host Services 11-1

* An interactive utility you can use to manage and monitor the LAT
environment on a VAXELN system

A VAXELN system that includes the LAT host services is a VAXELN
service node. A service node can offer services to or request access to
services offered by a terminal server. By default, a service node offers
VAXELN Command Language Utility (ECL) as a service. You can
access that service from an interactive terminal attached to a terminal
server.

The LAT host services let application programs:

* Manage and monitor a VAXELN service node’s characteristics and
activities by calling VAXELN LAT utility procedures

¢ Set up dedicated service environments
¢ Set up application device environments

You can initiate communication between a service node and terminal
server from an interactive terminal attached to the terminal server or
from an application program running on the service node. From an
interactive terminal, you establish a session with a service offered by
the service node. The service can be ECL or a user-created dedicated
service that is built into your VAXELN system and that executes as a
job.

An application program running on a service node can establish a
session with a remote application device or service attached to a
terminal server. An application device offers a service to VAXELN
service nodes in a LAT network. For example, a printer would offer
printing services; a terminal device might offer display services.

Figure 11-1 shows a sample VAXELN LAT configuration.

11-2 LAT Host Services

Figure 11-1:

Sample VAXELN LAT Configuration

VAXELN Service Nodes
VAXELN VAXELN
LAT LAT
Host Services Host Services

=%

=L

Ethemet] >
{} Terminal Servers {

LAT Terminal LAT Terminal
Server Services Server Services

O

Interactive terminal accessing a dedicated service

O Application device

Interactive terminal accessing ECL

MLO-004288

To include the LAT host services, you build the VAXELN LAT driver
(LTDRIVER) into your VAXELN system by selecting ACTIVE or
INACTIVE for the LAT host services option on the System Builder’s
Network Node Characteristics Menu. If you specify ACTIVE, the
driver’s LAT protocol becomes active when your system starts execut-
ing. When the LAT protocol is active, the driver periodically multicasts
a message to the terminal servers in the LAN, advertising the services
that it offers. If a terminal server user tries to connect to one of the
services, the service node accepts the connection request.

LAT Host Services 11-3

When the LAT protocol is inactive, the LAT driver does not multicast
advertising messages to or accept connection requests from terminal
servers. However, you can activate the protocol at run time with a
utility command or a runtime procedure call. By using an initial
inactive state, an application program can set up a LAT service node
environment before the driver establishes connections with terminal
servers. For example, you can set the service node’s characteristics,
or you can create ports for establishing connections with dedicated
services or application devices.

A VAXELN application program can manage and monitor a LAT service
node environment by calling LAT utility procedures. For descriptions
of the utility procedures, see the VAXELN Pascal Runtime Library
Reference Manual, VAXELN C Runtime Library Reference Manual, or
VAXELN FORTRAN Runtime Library Reference Manual.

The LAT driver also supports a LAT Control Program (LATCP) Utility
that lets you manage and monitor LAT service node characteristics
and activities interactively by entering LATCP commands. For more
information about the LATCP Utility, see the VAXELN Development
Utilities Guide.

The rest of this chapter explains how to do the following:

e Establish circuits for LAT communication, Section 11.2
e Manage VAXELN service nodes, Section 11.3

* Set up a dedicated service environment, Section 11.4

* Set up an application device environment, Section 11.5
® Retrieve and set terminal characteristics, Section 11.6

11.2 Establishing Circuits for LAT Communication

The LAT driver relies on VAXELN virtual circuits for communicating
with application programs. Therefore, an application program must
establish the appropriate circuit connections before it can call the
VAXELN LAT utility procedures. Sections 11.2.1, 11.2.2, and 11.2.3
explain how to establish these connections.

11-4 LAT Host Services

11.2.1 Connecting to a LAT Control Port

LAT host service utility procedures manage the LAT environment on
a VAXELN service node. Before an application program can call these
procedures, it must create a VAXELN message port and connect that
port in a circuit to a LAT control port.

When the LAT driver starts executing, it creates two control ports and
two corresponding port names: the local port name $LAT CONTROL
and a universal PORT name of the form node_name$LAT _CONTROL.
For example, if the LAT driver starts executing on the service node
RTNODE, the driver names the control ports $LAT_CONTROL and

' RTNODES$LAT_CONTROL. The $LAT_CONTROL port makes the host
service utility procedures available to application programs running
on the local node; the node_name$LAT_CONTROL port makes the
procedures available to programs running on remote nodes.

The following example shows how you might connect to the local LAT
control port:

MODULE create_a_lat_port;

INCLUDE $LAT UTILITY;

PROGRAM create_ lat port;

VAR
lat_ctrl port : PORT;

BEGIN
{ Create a VAXELN message port. }
CREATE PORT (lat_ctrl port);

{ Connect that message port in a circuit to the local LAT control
port. 1}

CONNECT CIRCUIT(lat ctrl port, DESTINATION NAME := ’$LAT CONTROL’);
{ Now call a LAT host service utility procedure. }

ELN$LAT_CREATE_PORT (CIRCUIT := lat_ctrl_port,
PORT_NAME = 'LTAOQ’,
PORT_TYPE := LAT$APPLICATION);

END.
END;

LAT Host Services 115

Once a program connects to a control port, the program specifies the
port on its end of the connection in calls to the LAT host service utility
procedures. In the preceding example, the port lat_ctrl_port connects to
the local control port $LAT_CONTROL. Thus, lat_ctrl_port can be used
in the subsequent call to ELN$LAT_CREATE_PORT.

You must specify a LAT control port in calls to the following LAT host
service utility procedures,

Routine Description

ELNS$LAT CLEAR_COUNTERS Clears a VAXELN service node’s coun-
ters.

ELN$LAT CREATE_PORT Creates a VAXELN LAT port on a
VAXELN service node.

ELNSLAT CREATE_SERVICE Creates a service to be offered by a
VAXELN service node.

ELNS$LAT DELETE_PORT Deletes a VAXELN LAT port.

ELNSLAT DELETE_SERVICE Deletes a service that is offered by a
VAXELN service node.

ELN$LAT SET _NODE Sets a VAXELN service node’s charac-
teristics.

ELNS$LAT SET_PORT Associates a dedicated LAT port with

application service; or associates an
application LAT port on a VAXELN
service node with a remote port on a
terminal server.

ELNS$LAT SET SERVICE Sets the characteristics of a service
being offered by a VAXELN service
node.

ELN$SLAT SHOW_CHAR Returns a VAXELN service node's
characteristics.

ELNSLAT SHOW_COUNTERS Returns performance and error statis-

tics for a VAXELN service node or for
all terminal servers connected to a
VAXELN service node.

ELNS$LAT SHOW_PORT Returns the characteristics of a
VAXELN service node’s LAT ports.

11-6 LAT Host Services

Routine Description

ELNS$LAT SHOW_SERVERS Returns the characteristics of terminal
servers known to a VAXELN service
node.

ELNS$LAT START NODE Activates the LAT protocol on a
VAXELN service node.

ELN$LAT STOP_NODE Stops the LAT protocol on a VAXELN

service node.

To use these procedures, you must also include the appropriate modules
from the VAXELN runtime libraries.

Language Module

VAXELN Pascal $LAT UTILITY

c $vaxelnc and $lat_utility
FORTRAN ’ELN$FORTRAN_DEFS.FOR’

NOTE

The LAT utility procedures are in the shareable image
LATSHR.EXE. If you dynamically load programs that use
LAT utility procedures into a VAXELN system, you should
specify ELN$:LATSHR.EXE in the Guaranteed image list
entry on the System Builder’s System Characteristics Menu
when you build that system.

For descriptions of the LAT utility routines, see the VAXELN Pascal
Runtime Library Reference Manual, VAXELN C Runtime Library
Reference Manual, or VAXELN FORTRAN Runtime Library Reference
Manual.

11.2.2 Creating a VAXELN LAT Port

A VAXELN LAT port is a service node structure for terminal I/O
operations. The VAXELN LAT driver supports three types of LAT
ports: interactive, dedicated, and application. The driver dynamically
creates interactive LAT ports that offer the ECL service to terminal
server users. A dedicated LAT port offers an application service (a
service other than ECL) to terminal server users. An application LAT
port lets application programs running on the service node gain access

LAT Host Services 11-7

to a remote terminal’s dedicated or application LAT port by using the
LATCP command CREATE PORT or a call to the ELN$LAT CREATE_

PORT procedure.

A call to ELN$LAT _CREATE_PORT must specify the port connected in
a circuit to a LAT control port, a LAT port name, and a LAT port type.
The following call to ELNS$LAT_CREATE_PORT creates an application
LAT port named LTAQ:

MODULE create_a_lat_port;

INCLUDE SLAT_UTILITY;

PROGRAM create_lat_port;

VAR
lat_ctrl port : PORT;

BEG&N
{ Create a VAXELN message port. }
CREATE_PORT (lat_ctrl_port);
{ Connect that message port in a circuit to the local LAT control port. }
CONNECT_CIRCUIT(1at_ctrl_Port, DESTINATION NAME := ’$LAT_CONTROL’);
{ Create an application LAT port named LTAO. }

ELNSLAT CREATE_PORT (CIRCUIT := lat_ctrl port,
PORT_NAME "LTAO’,
PORT_TYPE := LAT$APPLICATION);

END.
END;

The LAT driver associates two VAXELN message ports with each
LAT port that it creates: a DAP port for file- and record-oriented
I/0O and a DDA port for accessing serial line devices and managing
connections between VAXELN LAT ports and remote terminal server
ports. In the case of interactive LAT ports, the driver associates the
DAP port with the name LTArn and associates the DDA port with
the name LTAn$ACCESS, where n identifies a unique port name.
When you create a dedicated or application LAT port, the driver
associates the DAP port with the port name you specify with the
CREATE PORT command or ELNSLAT _CREATE_PORT procedure.
The driver also associates the DDA port with a port name of the form
port-name$ACCESS, where port-name is the name of the DAP port.

11-8 LAT Host Services

Figure 11-2 distinguishes a VAXELN LAT port from its DAP and DDA
VAXELN message ports.

Figure 11-2: VAXELN LAT Port

VAXELN LAT Port
DAP Port
DAP Port Name
Kernel
DDA Port Objects
DDA Port Name
MLO-004289

The LAT host services include a set of port utility procedures for
managing a connection between a VAXELN LAT port and a remote port
or service on a terminal server. To use these procedures, an application
program must connect to a LAT port’s DDA port (see Section 11.2.3).

11.2.3 Connecting to a DDA Port

To use the VAXELN LAT port utility procedures, an application must
create a port and connect that port in a circuit to a VAXELN LAT
port’s DDA port. The DDA port provides an interface for accessing
serial line devices. The following example builds upon the example in
Section 11.2.1 by showing how you might connect to a DDA port:

LAT Host Services 11-9

MODULE map_a_dda_port;
INCLUDE $LAT_UTILI TY;
PROGRAM map_ddg_port;

VAR
lat_ctrl port, dda_interface port : PORT;

BEGIN
{ Create a VAXELN message port. }

CREATE PORT(lat_ctrl port);

{ Connect that port in a circuit to the local LAT control port. }

CONNECT_CIRCUIT(lat ctrl port, DESTINATION NAME := ’$LAT CONTROL');
{ Create VAXELN LAT port named LTAO. Driver creates DAP and DDA }
{ ports named LTA0 and LTAOSACCESS, respectively. }
ELNSLAT CREATE_PORT (CIRCUIT := lat_ctrl port,

PORT_NAME := 'LTAO’,

PORT_TYPE := LAT$APPLICATION) ;

{ Create a VAXELN message port for connecting to the DDA port. }
CREATE PORT (dda_interface_port);

{ Connect that port in a circuit to the LAT port’s DDA port. }
CONNECT_CIRCUIT (dda_interface port, DESTINATION NAME := ' LTAOSACCESS’)
{ Now call a port utility procedure. }

ELN$LAT MAP PORT (CIRCUIT := dda_interface port,
NEW_FIELDS := [LATSET_NODE, LATSET QUEUED_ STATUS,
LAT$SET PORT],
QUEUED_STATUS := TRUE,
REMOTE_SERVER_NAME := ‘LAT100',
REMOTE_PORT NAME := 'PORT_2’,
SERVICE NAME := '');

.

END.
END;

Once a program connects a circuit to the LAT port’s DDA port, the
program specifies the port on its end of the connection in calls to
the port utility procedures. The preceding example connects the port
dda_interface_port to the DDA port named LTAO$ACCESS. Thus,
the subsequent call to the ELNSLAT _MAP_PORT procedure can
associate the LAT port LTAQ with the remote port named PORT_2
on the terminal server named LAT100.

11-10 LAT Host Services

You must specify a LAT port’s DDA port in calls to the following port

utility procedures:

Routine

Description

ELNS$LAT_CONNECT_PORT

ELN$LAT_DISCONNECT

ELNSLAT MAP_PORT

ELN$LAT_SHOW_PORT_MAPPING

ELNS$LAT WAIT FOR_CONNECTION

Connects an application LAT port
on a VAXELN service node to a
remote port or service offered by
a terminal server.

Disconnects a VAXELN LAT port
from a remote port offered by a
terminal server.

Associates (maps) a dedicated
LAT port with a service offered
by a VAXELN service node; or
associates an application LAT
port on a VAXELN service node
with a remote port or service
offered by a terminal server.

Returns mapping information for
a LAT port on a VAXELN service
node.

Waits for a connection to be
established between a dedicated
LAT port on a VAXELN service
node and a remote device port
or service offered by a terminal
server.

To use these procedures, you must also include the appropriate modules

from the VAXELN runtime libraries.

Language Module

VAXELN Pascal $LAT UTILITY

C $vaxelnc and $lat_utility

FORTRAN 'ELN$FORTRAN_DEFS.FOR’
NOTE

The LAT utility procedures are in the shareable image
LATSHR.EXE. If you dynamically load programs that use
LAT utility procedures into a VAXELN system, you should

LAT Host Services 11-11

specify ELN$:LATSHR.EXE in the Guaranteed image list
entry on the System Builder’s System Characteristics Menu
when you build that system.

For descriptions of these routines, see the VAXELN Pascal Runtime
Library Reference Manual, VAXELN C Runtime Library Reference
Manual, or VAXELN FORTRAN Runtime Library Reference Manual.
For more information about DDA or establishing a circuit with a DDA
port, see Section 14.4.5.

11.3 Managing VAXELN Service Nodes

You can manage a VAXELN service node’s characteristics and activities
by calling LAT host service utility procedures from an application
program. The procedures let you:

* Retrieve and set service node characteristics, Section 11.3.1

¢ Manage service node services, Section 11.3.2

¢ Retrieve port characteristics, Section 11.3.3

¢ Retrieve terminal server characteristics, Section 11.3.4

* Monitor a LAT environment’s performance and error statistics,
Section 11.3.5

11.3.1 Retrieving and Setting Service Node Characteristics

The LAT driver stores a service node’s characteristics in a character-
istics record. The values in this record identify the following node
characteristics:

* Name

* Identification string

* Enabled LAT network groups

* Service announcement message time interval
® LAT driver state (active or inactive)

¢ LAT protocol version

11-12 LAT Host Services

An application program can retrieve a service node’s characteristics by
calling the ELNSLAT_SHOW_CHAR procedure. and ELN$TTY_GET_
CHARACTERISTICS procedures This procedure allocates a character-
istics record that the application program can access to retrieve service
node characteristics. A call to ELN$LAT_SHOW_CHAR must specify
the port connected in a circuit to a LAT control port, an argument that
receives the version number of the characteristics record, and a pointer
that points to the service node’s characteristics record. For example:

VAR
lat_ctrl_port : PORT;
char record version, status : INTEGER;
char record : “LAT$NODE_CHAR;
one_shown : BOOLEAN := FALSE;

BEGIN
CREATE_PORT (lat_ctrl_port);
CONNECT CIRCUIT (lat_ctrl port, DESTINATION NAME := ’$LAT CONTROL’);

ELN$LAT_SHOW_CHAR(CIRCUIT : lat_ctrl_port,
VERSION := char record version,
CHARACTERISTICS := char_record);

WITH char_ record” DO
BEGIN
WRITELN (' Node name = ’, NAME);
WRITELN (' Groups enabled =)’;
FOR i := LAT$GROUPO TO LATS$GROUP255 DO
IF i IN GROUPS THEN
BEGIN
IF one_shown THEN WRITE(',');
WRITE(i:1);
one_shown := TRUE;
END;
WRITELN(’)’);
END;
DISPOSE (char_ record);

END.

This section of code allocates a service node’s characteristics record and
then accesses the fields containing the service node’s name and enabled
LAT network groups.

Deallocate the characteristics record when the record is no longer
needed.

LAT Host Services 11-13

An application program can also change a service node’s characteristics
by calling the ELNSLAT_SET_NODE procedure. You can use this
procedure to change all characteristics but the LAT driver’s state and
the LAT protocol version. The call to ELN$LAT_SET_NODE in the
following section of code changes a service node’s name, identification
string, and enabled groups:

VAR
lat_ctrl port : PORT;
msg_interval : LAT$MULTICAST;
disable_grps : LATSGROUPS;
status : INTEGER;

BEGIN
CREATE_PORT (lat_ctrl_port);
CONNECT_CIRCUIT (lat_ctrl port, DESTINATION NAME := /$LAT_CONTROL’);

ELN$LAT SET NODE (CIRCUIT := lat_ctrl_port,
NEW_FIELDS := [LAT$SET NODE, LAT$SET_ IDENT,
LAT$ENABLE_GROUPS],
NODE_NAME := 'RTNODE’,
NODE_IDENT := 'VAXELN Service Node -- RTNODE’,
SECONDS := msg_interval,
ENABLE_GROUPS := [0,4,7],
DISABLE_GROUPS := disable grps);

END.

Sections 11.3.1.1 to 11.3.1.5 provide more information about VAXELN
service node names, identification strings, network groups, multicast
timers, and LAT driver states.

11.3.1.1 Node Names

A LAT service node must have a node name that consists of 1 to 16
ASCII characters and is unique within the LAT network.

If a service node is part of a DECnet network, the LAT service node
name should be the same as the DECnet node name. The DECnet
node name must be unique within the same logical Ethernet and
must be unique within the entire DECnet network. If a node name
is not defined for a service node, the LAT driver uses a node name of
the form LAT-nnnnnnnnnnnn, where nnnnnnnnnnnn represents the
hexadecimal string for the Ethernet controller’s address.

11-14 LAT Host Services

11.3.1.2 Node Identification Strings

A node identification string is a string of up to 64 ASCII characters
that describes a LAT service node. When the LAT driver is active, it
advertises the string by including it in periodic service announcement
messages it sends to terminal servers.

If you do not specify a node identification string, the default is the
VAXELN system identification string.

11.3.1.3 LAT Network Groups

You can distribute a LAT network among LAT network groups. Groups
help manage the size of terminal server data bases by limiting the
number of service nodes for which the server maintains information.

By controlling groups, you can restrict message traffic between the
terminal servers and service nodes in a LAT network. For a terminal
server to establish a connection with a service node, the server must
share at least one group with that service node. A terminal server
ignores the messages it receives from service nodes that are not in one
of the server’s groups.

For example, suppose a LAT configuration consists of two terminal
servers, TS1 and TS2, and the service node RTNODE. Assume that the
following groups are enabled for each:

Device Groups Enabled

TS1 1,7
TS2 0,6
RTNODE 0

Initially, terminal server TS2 can communicate with service node
RTNODE because the group 0 is enabled for both devices. If you
use the LATCP command SET NODE or the ELNSLAT SET NODE
procedure to enable group 7 for RTNODE, both terminal servers can
communicate with that service node.

Group 0 is enabled by default for all service nodes and terminal servers.
If you do not want group 0 enabled, you must disable it.

LAT Host Services 11-15

11.3.1.4 Multicast Timer

The multicast timer determines the time between a service node’s
service announcement messages. Service nodes send announcement
messages to terminal servers to advertise the services that they offer.
The messages include the following information:

¢ Node name

¢ Identification string

* Group designations

* Service names

* Service identification strings
* Service ratings

By default, the LAT driver sends the announcement messages every 60
seconds. However, the time interval can range from 10 to 255 seconds.

If you specify a larger value for the multicast timer, the LAT driver
sends service announcement messages less frequently. Thus, a larger
value minimizes network overhead but causes terminal server users
to wait longer for services to become available after a server reboot,
or after recovering from a network problem. Infrequent message
announcements can also affect a server’s load balancing.

Smaller multicast time values cause the LAT driver to consume more
network resources because it sends service announcement messages
more frequently.

Multicast service announcement messages broadcast service node
characteristic changes. When you change a service node’s characteris-
tics, the LAT driver notifies the servers in the LAN by including the
changed information in the service node’s announcement messages.

11.3.1.5 Service Node States

A service node can be active or inactive. When active, the service node
periodically sends service announcement messages to terminal servers
in the LAT network. An active service node can also accept connection
requests from terminal servers. For example, you can issue a connect

request from an interactive terminal.

11-16 LAT Host Setrvices

When inactive, a service node driver does not send service announce-
ment messages to or accept connection requests from terminal servers
until you start the LAT protocol with the LATCP command START
NODE or a call to the ELN$LAT _START_NODE procedure. By using
an initial inactive state, an application program can set up a service
node before the LAT driver establishes connections with terminal
servers. For example, an application program can set the service
node’s characteristics or create ports for establishing connections with
dedicated services or application devices.

11.3.2 Managing Service Node Services

A service is a resource offered by a VAXELN service node or a terminal
server on the LAT network. A VAXELN service node can offer up to
eight uniquely named services, with each service offering all of the
node’s resources.

You can manage a service node’s services by calling LAT host service
utility procedures from an application program. The procedures let
youw:
* Create and delete services
* Change service characteristics

~ ® Advertise services

11.3.2.1 Creating and Deleting Services

To add services to and delete services from a service node’s list of
offerings, use the ELN$LAT CREATE_SERVICE and ELN$LAT_
DELETE_SERVICE procedures, respectively. Each service offered by a
service node has a name, identification string, and rating. The terminal
server uses the service rating to balance the loads of service nodes in a
LAT network.

When you create a service, you must specify the port connected in a
circuit to a LAT control port, a service name, a service identification
string, and a Boolean value indicating whether you want the driver
to use a service rating that you specify or the service rating that

it generates. You must also specify a link argument; however, this
argument is reserved for future use.

LAT Host Services 11-17

The following call to ELNS$LAT_CREATE_SERVICE creates a service
named RT_SERVICE:

VAR
lat_ctrl port : PORI;
service_rating : LAT$SERVICE_RATING;
link_count, status : INTEGER;
link names : LAT$LINK NAME LIST;

BEGIN
CREATE PORT (lat_ctrl port);
CONNECT_CIRCUIT (lat_ctrl_port, DESTINATION NAME := /$LAT CONTROL’);

ELN$LAT CREATE_SERVICE (CIRCUIT := lat_ctrl port,
SERVICE_NAME := 'RTSERVICE’,
SERVICE_IDENT := 'Real Time Service -- RTSERVICE’,

STATIC_SERVICE_RATING := FALSE,
SERVICE_RATING := service_ rating,
LINK _COUNT := link count,

LINK NAMES link_names);

END.

The value FALSE specified for the static service rating tells the driver
to use a dynamically determined service rating and to ignore any
user-specified service rating.

When you delete a service, you only need to specify the port connected
in a circuit to the LAT control port and the name of the service you
want to delete.

The following sections provide more information about VAXELN service
names, identification strings, and ratings.

Service Names

Service names are strings that can consist of up to 16 of the following
ASCII characters:

* Alphanumeric characters — A to Z, a to z, and 0 to 9

¢ A subset of the international character set — decimal character
values 192(10) to 253(10)

11-18 LAT Host Services

* Punctuation characters — dollar sign ($), hyphen (-), period (.), and
underscore (_)

The names of services that a service node offers must be unique.
However, multiple service nodes in a LAT network can share a service
name. Having multiple service nodes in a LAT network offer the same
service provides for failover.

Failover is a terminal server service that takes over if a session is
disrupted because a service node becomes unavailable. When a session
is disrupted, the terminal server uses the automatic failover service to
search for other nodes that offer the service that was being used by the
disrupted session. If the server finds one or more such nodes, it tries to
connect to the service on the node that is least busy.

When the LAT driver executes, it creates a default service representing
the name of the VAXELN service node. If no name is defined for

the service node, the driver uses a node name and service name of
the form LAT-nnnnnnnnnnnn, where nnnnnnnnnnnn represents the
hexadecimal string for the Ethernet controller’s address.

Service Identification Strings

A service identification string is a string of up to 64 ASCII characters
that describes a service offered by a service node. The service node
includes service identification strings in its service announcement
messages.

If you do not specify a service identification string, the default is the
'VAXELN system identification string.

Service Ratings

Service ratings provide a system load balancing feature. The LAT
driver running on each service node that offers a particular service can
dynamically calculate a service rating for that service. If a service’s
rating is calculated dynamically, the driver recalculates the rating
every time the multicast timer expires. Thus, the rating reflects the
availability of resources on the service node.

A service rating can range from 0 to 255, where 0 indicates that a
service is not available and 255 indicates that a service is highly avail-
able. Dynamic service ratings are based on a service node’s activity and
processor type. Generally, services offered by nodes experiencing high
levels of activity receive low ratings to inhibit new connections,

LAT Host Services 11-19

Terminal servers use service ratings to balance the load among service
nodes that offer the same service; servers establish connections with a
service on the least busy service node that offers that service.

11.3.2.2 Changing Service Characteristics

An application program can change a service’s characteristics by calling
the ELNSLAT_SET_SERVICE procedure. A call to this procedure
must specify the port connected in a circuit to the LAT control port,

a value for a new fields argument, and values for characteristics you
want to change: name, identification string, and rating. The new
fields argument identifies the characteristics you will be changing. You
must also specify two link arguments. However, these arguments are
reserved for future use.

Normally, the LAT driver generates adequate service ratings. However,
you can override the driver’s rating by assigning a static service rating
to a service. For example, suppose a service needs to run on a service
node that is not busy. An application program could let the LAT driver
set up the service’s initial service rating and then adjust the rating

to inhibit new connections. The following call to ELN$LAT SET_
SERVICE changes a service’s service rating:

VAR
lat_ctrl port : PORT;
service_ident : LATSIDENT STRING;
link count, status : INTEGER;
link names : LAT$LINK NAME LIST;

BEGIN
CREATE_PORT (lat_ctrl port);
CONNECT_CIRCUIT (lat_ctrl port, DESTINATION NAME := ’/$LAT CONTROL’);

{ Lower service rating to inhibit new connections. }

11-20 LAT Host Services

ELNSLAT_SET*SERVICE(CIRCUIT = lat_ctrl_port,
NEW FIELDS := [LATS$SET STATIC RATING],
SERVICE NAME := 'RTSERVICE’,
SERVICE_IDENT := service ident,
SERVICE_RATING := 10,
LINK_COUNT := 0,
LINK NAMES := link names);

END.

When you specify a static service rating, you disable a dynamic service
rating.

11.3.2.3 Advertising Services

All of the service nodes in a LAT network advertise their services by

multicasting service announcement messages to all terminal servers in
the LAN. A service node starts multicasting these messages as soon as
it becomes active. You can activate a service node from an application
program by calling the ELNSLAT_START_NODE procedure as follows:

VAR
lat_ctrl_port : PORT;
link_names : LAT$LINK NAME LIST;
status : INTEGER;

BEGIN
CREATE_PORT (lat_ctrl port);
CONNECT_CIRCUIT (lat_ctrl_port, DESTINATION NAME := /$LAT_CONTROL');

ELN$LAT START NODE (CIRCUIT := lat_ctrl_ port,
LINK_COUNT := O,
LINK NAMES link names);

.

END.

A call to ELN$LAT START NODE must specify the port connected
in a circuit to a LAT control port and two link arguments. The link
arguments are reserved for future use.

LAT Host Services 11-21

As a terminal server receives service announcement messages, it
checks whether the service nodes sending the messages share one of its
enabled LAT network groups. If a service node and a terminal server
share a group, the server accepts the message and adds the name of
the service node and the names of the services the node offers to its
services data base.

To shut down a VAXELN service node, call the ELN$LAT _STOP_NODE
procedure. You should precede the call with a call to ELNSLAT_SET_
NODE and identify the reason for the shut-down in its node_ident
argument. For example:

VAR
lat_ctrl _port : PORT;
seconds : LAT$MULTICAST
disable_grps, enable_grps : LAT$GROUPS;
link names : LAT$LINK NAME LIST;
status : INTEGER;

BEGIN
CREATE_PORT (lat_ctrl port);
CONNECT_CIRCUIT(1at_;trl_port, DESTINATION_NAME 1= ’$LAT_§ONTROL');

ELN$LAT SET_ NODE (CIRCUIT 1= 1 at_ctrl_port,

NEW_FIELDS := [LAT$SET_IDENT],

NODE_NAME := ’'RTNODE’,

NODE_IDENT := ’'RTNODE shutting down for PM...’,
SECONDS := seconds,

ENABLE_GROUPS := endable grps,
DISABLE GROUPS := disable grps);

ELN$LAT STOP_NODE (CIRCUIT := lat_ctrl_port,
LINK_COUNT :=.0,
LINK NAMES := LAT$LINK NAME_LIST);

END.

11-22 LAT Host Services

11.3.3 Retrieving LAT Port Characteristics
A VAXELN LAT port has the following characteristics:

¢ Port name

¢ Port type

* Queue status

* Remote server name

¢ Remote port name

¢ Service name

¢ Actual remote server name
¢ Actual remote port name

An application program can retrieve a LAT port’s characteristics

by calling the ELN$LAT_SHOW_PORT procedure. This procedure
allocates a characteristics record from which the application program
can retrieve the characteristics.

A call to ELN$LAT SHOW_PORT must specify the port connected
in a circuit to a LAT control port, the name of the LAT port whose
characteristics record is to be accessed, a LAT port type, and the name
of a user-specified procedure to be invoked by ELNSLAT SHOW_PORT.

For example:

VAR
lat_ctrl_port : PORT;

BEGIN
CREATE_PORT (lat_ctrl_port);
CONNECT__CIRCUIT (la.t_Ctrl _port, DESTINATION NAME := ' $LAT_CONTROL’)i

ELN$LAT SHOW_PORT (CIRCUIT := lat_ctrl port,
PORT_NAME := ‘LTA0’,
PORT TYPES := [LAT$APPLICATION, LAT$DEDICATED,
- LAT$INTERACTIVE],
SHOW_PORT := show_lat port);

END.
PROCEDURE show_lat_port OF TYPE LAT$SHOW__PORT__ROU1‘INE;

LAT Host Services 11-23

BEGIN
WITH port_characteristics”® DO

BEGIN
WRITELN (/Port name = ’, name);
WRITE (‘Port type = '};

CASE port_type OF
LATSRESERVED_PORT : WRITELN (’Reserved’);
LATS$APPLICATION : WRITELN (’/Application’);
LATSDEDICATED : WRITELN (/Dedicated’);
LAT$INTERACTIVE : WRITELN (' Interactive’);
OTHERWISE WRITELN (/ Unknown’);

END;

END;
END;

The ELN$LAT_SHOW_PORT procedure invokes the user-specified
procedure only if the driver finds a characteristics record for the
specified LAT port. When the call to ELN$LAT_SHOW_PORT in the
preceding example executes, the driver searches for a characteristics
record for the LAT port named LTAQ. If it finds one, the user-defined
procedure show_lat_port is invoked.

You can also access a LAT port’s mapping information by calling the
port utility procedure ELNSLAT SHOW_PORT_MAPPING. A call to
this procedure specifies a port connected in a circuit to the LAT port’s
DDA port. Other arguments receive the LAT port’s name, type, and
queue status, and depending on the port’s mapping, a remote terminal
server name, a remote port name, and a service name.

The following sections give more information about LAT port names,
queue statuses, remote server names, and remote port names. For
information about service names, see Section 11.3.2.1.

11.3.3.1 LAT Port Names

VAXELN LAT port names are strings that can consist of up to 16 of the
following ASCII characters:

¢ Alphanumeric characters —Ato Z, atoz,and 0to 9

¢ A subset of the international character set — decimal character
values 192 to 253

¢ Punctuation characters — dollar sign ($), hyphen (-), period (.), and
underscore ()

A service node’s LAT port names must be unique.

11-24 LAT Host Services

11.3.3.2

Queue Statuses

A LAT port’s queue status indicates whether connection requests to a
remote device port or service are to be queued. If the remote port is
busy and queuing is enabled on the terminal server and the VAXELN
service node, the remote request is queued. If queuing is disabled, the
terminal server rejects connection requests when the device or service
is busy.

11.3.3.3 Remote Server Names
A remote server name is a string of up to 255 characters that identifies
a terminal server that supports an application device or service. You
get a remote server name from the terminal server manager.

11.3.3.4 Remote Port Names

A remote port name is a string of up to 255 characters that identifies a
terminal server port that supports an application device or service. You
get a remote port name from the terminal server manager.

11.3.4 Retrieving Terminal Server Characteristics

When an application program establishes a virtual circuit with a
remote terminal server, the server becomes known to the service node.
The LAT driver creates a terminal server characteristics record for each
known terminal server. A terminal server characteristics record stores
the following characteristics:

¢ Name

¢ State (active or inactive)

¢ Address

¢ Number of active users

¢ Link name
An active terminal server is connected to a VAXELN service node.

Inactive servers are known to the service node, but are not connected
to the node,

LAT Host Services 11-25

An application program can retrieve the characteristics of terminal
servers known to a service node by calling the ELN$LAT SHOW_
SERVERS procedure. This procedure allocates a characteristics record
from which the application program can retrieve the characteristics.

A call to ELNSLAT SHOW_SERVERS must specify the port connected
in a circuit to a LAT control port, a Boolean value that indicates
whether the driver is to return characteristics for active and inactive
servers, and the name of a user-specified procedure to be invoked by
ELN$LAT SHOW_SERVERS. For example:

VAR
lat_ctrl_port : PORT;

BEGIN
CREATE_PORT (lat_ctrl port);
CONNECT_CIRCUIT (lat_ctrl port, DESTINATION NAME := /$LAT_ CONTROL’);

ELN$LAT SHOW_SERVERS (CIRCUIT := lat_ctrl port,
INACTIVE := TRUE,
SHOW_SERVER := show_lat_server);

END.
PROCEDURE show_lat_server OF TYPE LAT$SHOW_PORT_ROUTINE;

BEGIN
WITH server_characteristiecs”® DO
BEGIN
WRITELN (' Server name = ’/, SERVER NAME);
WRITE (' Sexver is ’);
IF active THEN WRITELN (’active’) ELSE WRITELN (’/inactive’);

END;

END;

The ELN$LAT_SHOW_SERVERS procedure invokes the user-specified
procedure for all known servers or only active servers, depending

on the value of the inactive argument. When the call to ELN$LAT._
SHOW_SERVERS in the preceding example executes, the driver uses

11-26 LAT Host Services

the show_lat_server procedure to return server characteristic records
for known terminal servers.

11.3.5 Monitoring LAT Network Performance and Error Statistics

The LAT driver maintains performance and error counters for a service
node and the terminal servers logically connected to a service node.
The LAT driver stores the following counters in node, server, and
device counter records:

Node Counters Server Counters Device Counters

Circuit timeouts Invalid messages Line name

Discarded output bytes Invalid slots Seconds since last
zeroed

Last transmit failure Out-of-sequence frames Receive frames

No transmit buffer Receive frames Receive multicast

: frames

Protocol errors Retransmissions Receive errors

Protocol bit mask Server name Bytes received

Receive frames Transmit frames Multicast bytes received

Receive errors Data overruns

Receive duplicates ' Local buffer errors

Resource errors Transmit frames

Retransmissions Transmit multicast
frames

Solicitation failures Frames sent, multiple
collisions

Transmit frames Frames sent, single
collision

Transmit errors Frames sent, initially
deferred

Unit timeouts Bytes sent

Multicast bytes sent

Transmit errors

LAT Host Services 11-27

Node Counters Server Counters Device Counters

Transmit collisions
detect check failure

Unrecognized frame
destination

User buffer unavailable
Receive errors bit mask

Transmit errors bit
mask

An application program can monitor these counters by calling the
ELN$LAT CLEAR_COUNTERS and ELN$LAT SHOW_COUNTERS
procedures. Use the ELN$SLAT _CLEAR_COUNTERS procedure to
initialize the node counters. You can then call ELN$LAT SHOW_
COUNTERS at various points in the program to retrieve various
counter values.

The ELN$LAT_SHOW_COUNTERS procedure allocates a record for
the type of counter the application program is to access. A call to the
procedure must specify the port connected in a circuit to a LAT control
port, a counter type, a Boolean value that indicates whether the driver
is to return counters for active and inactive servers (if you specify the
server counter type), and the name of a user-specified procedure to be
invoked by ELN$LAT_SHOW_COUNTERS. For example:

VAR
lat_ctrl port : PORT;
1 ink__name : LAT$LINK NAME;

BEGIN
CREATE_PORT (lat_ctrl_port);
CONNECT_CIRCUIT(lat_ptrl_port, DESTINATION_NAME 1= ’$LAT_CONTROL’);

ELN$LAT SHOW_COUNTERS (CIRCUIT := lat_ctrl_ port,
COUNTER TYPE := LAT$SERVER,
INACTIVE := FALSE,
LINK := link name,
SHOW_COUNTER := show_server counters);

END.

11-28 LAT Host Services

PROCEDURE show_server_counters OF TYPE LAT$SHOWJ:OUNTER_ROUTINE;

BEGIN
WITH server_counters” DO
BEGIN
WRITELN (/ Server name = /, SERVER_NAME);

END;

END;

When the call to ELNSLAT SHOW_COUNTERS in the preceding
example executes, the driver uses the show_server_counters procedure
to return server counter records for active terminal servers.

If you specify the counter type LAT$NODE, the ELN$LAT _SHOW_
COUNTERS procedure invokes the user-declared procedure to return a
service node counter record. Similarly, if you specify the counter type
LAT$DEVICE, the procedure invokes the user-declared procedure to
return device counter records.

11.4 Setting Up a Dedicated Service Environment

The VAXELN LAT host services provide support that lets a VAXELN
service node offer user-created dedicated services, such as data entry
and on-line status programs, to terminal server users. When you
create a service on a VAXELN service node, that service offers ECL by
default. To offer a dedicated service instead of ECL, you must associate
the service with a dedicated port.

You initiate a connection to a dedicated service running on a VAXELN
service node from a device attached to a terminal server, as shown in
Figure 11-3.

To make a service other than ECL available to a terminal attached to a
terminal server, you must do the following:

1. Connect to a LAT control port
2. Create a service
3. Create a dedicated LAT port

LAT Host Services 11-29

Figure 11-3: Dedicated Service Environment

VAXELN Service Node
VAXELN
LAT
Host Services
- Dedicated
LAT Port

7
Ethemet s
v s

Terminal | LAT Terminal
Server | Server Services

Interactive terminal accessing
a dedicated service

T Direction of

connection request MLO—004290

4. Associate the dedicated LAT port with the service
5. Access the dedicated LAT port from an application program
6. Request notification of a terminal server connection (optional)

The rest of this section uses the sample application module sample_
lat_dedic_srvc and callout text to illustrate these steps. The module
executes as one job of a two-job application that offers the VAXELN
Display Utility as a dedicated service to terminal server users. The
sample module creates a LAT service named EDISPLAY and the
dedicated LAT port LTAO. The module then associates the LAT port
with the service EDISPLAY.

Once the port/service association is made, the module activates the
LAT protocol. Using the protocol, the LAT driver multicasts service
announcement messages to terminal servers in the LAT network, ad-
vertising the EDISPLAY service. While the driver multicasts these
messages, the application module waits for a terminal server user to

11-30 LAT Host Services

connect to the service. When a connection is established, the applica-
tion module creates the EDISPLAY job and then waits for that job to
execute. When the terminal server user exits the Display Utility, the
application module waits for another connection request.

Example 11-1 assumes that the LAT driver is built into the VAXELN
system with the LAT protocol inactive. It also assumes that the LAT
application module sample_lat_dedic_srvc is built into the system
with the initial state set to RUN and that EDISPLAY is built into the

system with the initial state set to NORUN.

Example 11-1: LAT Dedicated Service

MODULE sample_lat_dedic_srvc;
INCLUDE $LAT UTILITY, S$KERNELMSG;
PROGRAM example (INPUT, OUTPUT);

VAR
lat_control port, dda_ interface_port : PORT;
job_port, edisplay exit port : PORT;
link names : LAT$LINK NAME LIST;
stat : INTEGER; ‘
mid : MESSAGE;
mptr : ~INTEGER;

BEGIN

{ Create a VAXELN message port, then connect that port in a circuit to
{ a LAT control port.
{}

CREATE PORT (lat_control port); "
CONNECT_CIRCUIT(lat _control_ port,
DESTINATION__NAME = 7 SLAT_CONTROL') ;
{ Create the LAT service that is to offer EDISPLAY. }
ELN$LAT CREATE_ SERVICE (CIRCUIT := lat_control port, 12
SERVICE_NAME := 'EDISPLAY’,
SERVICE_IDENT := ’VAXELN Display Utility’,
STATIC_SERVICE_RATING := FALSE,
SERVICE_RATING := 0,
LINK_COUNT := O,
LINK NAMES := link names);

{ Create a dedicated LAT port. }

Example 11—1 Cont’'d on next page

LAT Host Services

11-31

Example 11-1 (Cont.): LAT Dedicated Service

ELN$LAT CREATE_PORT (CIRCUIT := lat_control_port, G)
PORT_TYPE := LATSDEDICATED,
PORT NAME := 'LTAO’) ;

{ Associate the dedicated LAT port LTAO0 with the LAT service EDISPLAY.

ELNSLAT SET_ PORT (CIRCUIT := lat_control_ port, (’
NEW_FIELDS := [LAT$SET_SERVICE],
PORT_NAME := ‘LTA0/,
QUEUE := TRUE,
REMOTE_SERVER_NAME := '/,
REMOTE_PORT NAME := /7,
SERVICE_NAME := 'EDISPLAY’,
LINK_NAME := rry;

{ Activate the LAT protocol to advertise service. }

ELNSLAT START NODE (CIRCUIT := lat_control_port, (3
LINK_COUNT := 0,
LINK NAMES := link names);

{ Access the LAT port. }

CREATE_PORT (dda_interface port); ‘3
CONNECT_CIRCUIT (dda_interface port,

DESTINATION NAME := ’LTAO$ACCESS’,

STATUS := stat);

{ Create a port to be notified when EDISPLAY exits. }
CREATE_PORT (edisplay exit port);

WHILE TRUE DO
BEGIN

{ Wait for a terminal server user to connect to the EDISPLAY service.

ELN$LAT WAIT FOR CONNECTION (CIRCUIT := dda_interface_port, ii
STATUS := stat);

If the wait fails because the terminal server user
disconnected the session, reestablish a circuit connection
with the LAT port’s DDA port.

P e e R

}

Example 11-1 Cont’d on next page

11-32 LAT Host Services

Example 11-1 (Cont.): LAT Dedicated Service

IF stat = KER$_DISCONNECT THEN
BEGIN

DISCONNECT CIRCUIT (dda_ interface_port);

CONNECT CIRCUIT(dda_interface port,
DESTINATION NAME := ' LTAOS$ACCESS’,
STATUS := stat);

ELNSLAT WAIT FOR CONNECTION(CIRCUIT := dda_interface port,

STATUS := stat);

END;
{ If an error occurs, terminate this job. }

IF NOT(ODD (stat)) THEN

BEGIN
WRITELN (/Exiting, status is: 7, stat:l1);
EXIT(EXIT_STATUS := stat);

END;

{ Run EDISPLAY on the VAXELN LAT port and wait for it to complete. }

IF ODD(stat) THEN

CREATE_JOB (job_port, C)
’EDISPLAY’,
'LTAQ:’, { Program argument 1 }
'LTAO:/, { Program argument 2 }
'LTAOQ:’, { Program argument 3 }
NOTIFY := edisplay exit_port,
STATUS := stat);

IF ODD(stat) THEN
BEGIN

{ Wait for the EDISPLAY job to terminate. }

WAIT ANY (edisplay exit port); ‘;
RECEIVE (mid, mptr, edisplay exit port, STATUS := stat});
DELETE (mid, STATUS := stat);

{ Disconnect the session with the terminal server user. }

ELN$LAT_DISCONNECT_PORT(CIRCUIT 1= dda_interface_port, ﬂ)
STATUS := stat);
END;
END;
END. { Program }
END; { Module }

LAT Host Services 11-33

© Connect to a LAT control port. Create a VAXELN message
port and connect that port in a circuit to a LAT control port. The
sample module creates the message port lat_control_port and
connects that port in a circuit to the local control port $LAT_
CONTROL. For information about connecting to a LAT control port,
see Section 11.2.1,

@ Create a service. Create a service to be offered by the service
node by calling the ELNSLAT_CREATE_SERVICE procedure. The
sample module creates the service named EDISPLAY. The proce-
dure call specifies FALSE for the static service rating argument.
Thus, the LAT driver will calculate the service rating dynamically.
For information about services, see Section 11.3.2.

© Create a dedicated LAT port. Create a dedicated LAT port by
calling the ELN$LAT_CREATE_PORT procedure with the port type
LAT$DEDICATED. The sample module creates a dedicated LAT
port named LTAQ. The LAT driver creates a DAP message port
and a DDA message port for the LAT port and associates the ports
with the names LTAO and LTAO$ACCESS. For information about
creating LAT ports, see Section 11.2.2,

O Associate the dedicated LAT port with the service. Associate
the dedicated LAT port with the service by calling the ELN$LAT_
MAP_PORT or ELN$LAT _SET PORT procedure. Use ELN$LAT_
SET_PORT to make the association using the LAT control interface.
Use ELNSLAT MAP_PORT to associate the port and service using
the DDA interface.

A call to the ELNSLAT SET PORT procedure must specify the port
connected in a circuit to a LAT control port, the name of a LAT
port, and a value for a new fields argument. You can change the
LAT port’s queue status, remote server name, remote port name,
and service name. The new fields argument identifies the LAT port
characteristics you will be changing.

You must also specify a link argument. This argument is reserved
for future use.

The call to ELNS$LAT SET PORT in the sample module associates
the LAT port LTAO with the service EDISPLAY,

A call to the ELNSLAT MAP_PORT procedure must specify the
port connected in a circuit to a LAT port’s DDA port and a value for
a new fields argument. You can also change the LAT port’s queue
status, remote server name, remote port name, and service name.
The new fields argument identifies the LAT port characteristics you
will be changing.

11-34 LAT Host Services

The following procedure call makes the same association using the
LAT port’s DDA interface:

ELNSLAT MAP PORT (CIRCUIT := dda_interface_port,
NEW_FIELDS := [LAT$SET_ SERVICE],
QUEUED_STATUS := TRUE,
REMOTE_SERVER_NAME := /',
REMOTE_PORT NAME := /7,
SERVICE_NAME := ’EDISPLAY’);

Activate the LAT protocol. Advertise the service node’s services
by activating the LAT protocol with a call to ELNSLAT START
NODE. When you activate the protocol, the driver starts adver-
tising services in announcement messages that it multicasts to
the terminal servers in the LAT network. The call to ELN$LAT
START_NODE in the sample module causes the LAT driver to
activate the LAT protocol. The driver then starts advertising the
service EDISPLAY,

You can skip this step if the LAT protocol is already active.

Access the dedicated LAT port from the application pro-
gram. An application program running on the service node can
access a dedicated LAT port by using a call to a language-dependent
open statement or a call to CONNECT_CIRCUIT. Use a call to an
open statement to perform file- and record-oriented 1/O operations.
Your application program accesses the LAT port’s DAP port to
process these I/0 requests.

Use a call to CONNECT_CIRCUIT to connect to the LAT port’s
DDA port. You need to connect to the DDA port to perform op-
erations that involve accessing serial line devices or managing a
VAXELN LAT port connection to a remote terminal server port.

The sample module uses a call to CONNECT _CIRCUIT to es-
tablish a circuit connection with the DDA port LTAO$ACCESS.
For information about connecting to a LAT port’s DDA port, see
Section 11.2.3.

Request notification of a terminal server connection. A
dedicated service application program can request notification of

a terminal server connection by calling the ELN$WAIT FOR_
CONNECTION port utility procedure. A call to this procedure
causes your program to wait for a connection to be established
between a dedicated LAT port and a terminal server port. The
application program unblocks when the terminal server connects to
the service node.

LAT Host Services 11-35

A call to ELN$LAT WAIT FOR_CONNECTION procedure must
specify a port connected in a circuit to the LAT port’s DDA port.
Since the sample module established a circuit between the port
dda_interface_port and the DDA port LTAO$ACCESS, it can call
ELN$WAIT FOR_CONNECTION by specifying the port dda_
interface_port.

© Create a job for the service. The sample module creates a job for
EDISPLAY, specifying the LAT port name as program arguments.

O Wait for the job to terminate. Wait for the job to terminate by
specifying the service’s exit port in a WAIT_ANY procedure call.
The sample module waits on the exit port edisplay_exit_port.

@ Disconnect the session between the service.node and ter-
minal server. A session between a dedicated LAT port and a
terminal server’s device port terminates when one of the following
oceurs:

* The terminal server user disconnects the session (for example,
by logging out).

¢ All open files to the dedicated LAT port are closed, and all DDA
circuit connections to the dedicated LAT port are disconnected.

* The application program forces a disconnection by calling the
ELN$LAT_DISCONNECT_PORT port utility procedure.

An application program can force a session to disconnect a dedi-
cated LAT port from a remote terminal server port by calling the
ELN$LAT DISCONNECT PORT port utility procedure. The pro-
cedure call must specify the port connected in a circuit to the LAT
port’s DDA port.

When a session terminates, all open files are closed and all DDA
circuit connections between application programs and the dedicated
LAT port on the service node are terminated.

11.5 Setting Up an Application Device Environment

The VAXELN LAT driver supports access to remote application devices
attached to terminal servers. For example, application programs
running on VAXELN service nodes in a LAT network can share a
remote printer.

11-36 LAT Host Services

To access an application device, an application program associates a
remote terminal server port with an application LAT port. As shown in
Figure 11-4, once a program running on a service node makes the port
association, it can initiate a connection to the terminal server to which
the application LAT port is associated.

Figure 11-4: Application Device Environment

VAXELN Service Node
VAXELN
LAT
Host Services
< Application
LAT Port

7
Ethemet s
rard

Terminal'| LAT Terminal
Server | Server Services

CB Application device

MLO-004291

Direction of
connection request

To communicate with a remote application device, you must do the
following:

1. Create an application LAT port

2. Access the application LAT port from the application program

3. Associate the application LAT port with a terminal server device
port or service

4. Issue a connection request to establish a session with the remote
terminal server port

LAT Host Services 11=-37

The rest of this section uses the sample application module sample_
lat_app_device and callout text to illustrate these steps. The module
executes as one job of a two-job application. This application uses

a terminal attached to a terminal server as a device that displays
VAXELN Display Utility output. The sample module creates the
application LAT port LTAQ. The module then accesses the LAT port by
connecting to the LAT port’s DDA port. '

The module then associates the application LAT port with a port on a
terminal server. Once the port/device association is made, the module
activates the LAT protocol, allowing the service node and terminal
server to communicate.

Example 11-2 assumes that the LAT driver is built into the VAXELN
system with the LAT protocol inactive. It also assumes that the LAT
application module sample_lat_dedic_srvc is built into the system
with the initial state set to RUN and that EDISPLAY is built into the
system with the initial state set to NORUN.

Example 11-2: LAT Application Service

MODULE sample_lat_app_device;
INCLUDE $LAT UTILITY;
PROGRAM example (INPUT, OUTPUT);

VAR
lat_control_port, dda_interface_ port : PORT;
job_port, edisplay exit port : PORT;
link_names : LATSLINK_NAME LIST;
stat, reject_reason : INTEGER;
mid : MESSAGE;
mptr : ~INTEGER;

BEGIN

{ Create a VAXELN message port, then connect that port in a circuit
{ to a LAT control port.
{}

CREATE_PORT (lat_control_port); "
CONNECT_CIRCUIT(lat_control port,
DESTINATION__NAME 1= 7 $LAT_CONTROL’)

{ Create an application LAT port. }

Example 11-2 Cont’d on next page

11-38 LAT Host Services

Example 11-2 (Cont.): LAT Application Service

ELN$LAT~§REATE_EORT(CIRCUIT := lat_control_port, ‘9
PORT_TYPE := LAT$APPLICATION,
PORT_NAM:E‘. := 'LTAO0"); .

{ Activate the LAT protocol. }

ELN$LAT_START_NODE(CIRCUIT i= lat_control_port, €>
LINK_COUNT := 0,
LINK_NAMES := link names);

{ Access the LAT port. }

CREATE PORT (dda_interface port); "
CONNECT_CIRCUIT (dda_ interface port, .

DESTINATION_NAME := ’LTAOSACCESS/,

STATUS := stat);

{ Create a port to be notified when EDISPLAY exits. }
CREATE_PORT (edisplay exit_port);

{ Associate the application LAT port LTAO with the remote terminal
{ server port PORT 2.
{}

ELN$LAT MAP_PORT (CIRCUIT := dda_interface port, 5
NEW_FIELDS := [LATSET_QUEUED_STATUS, LATSET_PORT] ,
QUEUED_STATUS := TRUE,
REMOTE_SERVER _NAME := ’LAT100’,
REMOTE_PORT NAME := /PORT 2’,
SERVICE_NAME := ’’'});

{ Issue a connection request to connect the application LAT port
{ with a remote terminal server port.

{}

ELNSLAT CONNECT PORT (CIRCUIT := dda_interface_port, @
REJECT_REASON := reject_reason,
STATUS := status);

IF ODD(stat) THEN
BEGIN

{ If the connection was established, execute the Display
{ Utility on the application LAT port.
{}

Example 11-2 Cont’d on next page

LAT Host Services 11-39

Example 11-2 (Cont.): LAT Application Service

CREATE_ JOB (job port,
EDISPLAY’,

'LTAQ:’, { Program argument 1 }
'LTAQ:/, { Program argument 2 }
'LTAO:7, { Program argument 3 }
NOTIFY := edisplay exit port,

STATUS := stat);

IF ODD(stat) THEN
BEGIN

{ An EDISPIAY job was created successfully. Wait for it
{ to complete.
{}

WAIT ANY (edisplay exit_port);
RECEIVE (mid, mptr, edisplay exit port, STATUS := stat);
DELETE (mid, STATUS := stat);

{ Disconnect the session with the terminal server. }

ELN$LAT_DISCONNECT_PORT (CIRCUIT := dda_interface_port, 0
STATUS := stat);
END;
END;
END. { Program }
END; { Module }

© Connect to a LAT control port. Create a VAXELN message
port and connect that port in a circuit to a LAT control port. The
sample module creates the message port lat_control_port and
connects that port in a circuit to the local control port $LAT
CONTROL. For information about connecting to a LAT control port,
see Section 11.2.1.

® Create an application LAT port. Create an application LAT
port by calling the ELN$LAT_CREATE_PORT procedure with
the port type LATSAPPLICATION. The sample module creates
an application LAT port named LTAQ. The LAT driver creates a
DAP message port and a DDA message port for the LAT port and
associates the ports with the names LTAO and LTA0$ACCESS. For
information about creating LAT ports, see Section 11.2.2.

11-40 LAT Host Services

© Activate the LAT protocol. Activate the LAT protocol with a
call to ELNSLAT_START NODE. When you activate the protocol,
the driver starts advertising services in service announcement
messages that it multicasts to the terminal servers in the LAT
network. The call to ELN$LAT START NODE in the sample
module causes the LAT driver to activate the LAT protocol.

You can skip this step if the LAT protocol is already active.

O Access the application LAT port from the application pro-
gram. Use a call to CONNECT_CIRCUIT to connect the VAXELN
message port to the LAT port’s DDA port. The DDA port provides
an interface for operations that access serial line devices or manage
a VAXELN LAT port.

The sample module creates the VAXELN message port dda_
interface_port, then uses a call to CONNECT_CIRCUIT to connect
that port in a circuit to the DDA port LTAO$ACCESS. For informa-
tion about connecting to a LAT port’s DDA port, see Section 11.2.3.

6 Associate the application LAT port with the remote device.
Associate an application LAT port with a remote device port or
service on a terminal server by calling the ELN$LAT MAP_PORT
or ELNSLAT SET PORT procedure. Use ELN$LAT SET PORT
to make the association using the LAT control interface. Use
ELNS$LAT MAP_PORT to associate the port and service using the
DDA interface.

A call to the ELNSLAT MAP_PORT procedure must specify the
port connected in a circuit to a LAT port’s DDA port and a value for
a new fields argument. You can also change the LAT port’s queue
status, remote server name, remote port name, and service name.
The new fields argument identifies the LAT port characteristics you
will be changing.

The call to ELN$LAT MAP_PORT in the sample module associates
the LAT port LTAQ with the remote device port named PORT_2 on
the terminal server LAT100.

A call to the ELNSLAT SET PORT procedure must specify the
port connected in a circuit to a LAT control port, the name of a
LAT port, and a value for a new fields argument. You can also
change the LAT port’s queue status, remote server name, remote
port name, and service name. The new fields argument identifies
the LAT port characteristics you will be changing.

Get the names of the remote terminal server and remote port by
using the terminal server manager.

LAT Host Services 1141

You must also specify a link argument. This argument is reserved
for future use.

The following procedure call makes the same association from the

LAT control port:
ELNsLAT_SET_PORT (CIRCUIT := lat_control_port,

NEW_FIELDS := [LATS$SET QUEUE_STATUS, LAT$SET_PORT],
PORT_NAME := /LTAQ’,
QUEUE := TRUE,
REMOTE_SERVER_NAME := ’LAT100/,
REMOTE_PORT_NAME := /PORT 2/,
SERVICE NAME := '/,
LINK NAME := ’’);

O Connect to the application device. You can issue a connection
request from the application LAT port to the remote device port on
a terminal server with a call to the ELN$LAT CONNECT_PORT
procedure. In the procedure call, you specify the port connected in
a circuit to the LAT port’s DDA port. The sample module connects
the LAT port LTAOQ to the device port PORT_2.

A call to ELN$LAT _CONNECT_PORT causes the LAT driver to
send a request to a terminal server to establish a session between
the service node and a terminal server device port or service. If
the terminal server establishes a session, the LAT port is ready
to be used for I/O and DDA operations. If the server rejects the
connection request or if the request times out, the server returns
an error code that identifies the reason for the connection failure.

The LAT driver initiates connection requests automatically when
an application program performs read and write operations, if an
application LAT port is associated with a terminal server and is not
already connected in a session. However, if an automatic connection
attempt fails, the I/O operation returns the status value ELN$DNR.
It does not identify the reason for the connection failure.

@ Disconnect the session between the service node and termi-
nal server. An application program disconnects a session between
an application LAT port and a terminal server’s device port by
calling the ELN$LAT_DISCONNECT_PORT port utility procedure.
The procedure call must specify the port connected in a circuit to
the LAT port’s DDA port.

When a session terminates, all open files are closed and all DDA
circuit connections between application programs and the applica-
tion LAT port on the service node are terminated.

11-42 LAT Host Services

A session is also terminated if all open files are closed and all DDA
circuit connections are disconnected.

11.6 Retrieving and Setting Terminal Characteristics

The VAXELN LAT driver supports the DDA interface procedures
ELN$TTY_GET_CHARACTERISTICS and ELN$TTY_SET._
CHARACTERISTICS. An application program can use a VAXELN LAT
port’s DDA port in a call to ELN$TTY_GET_CHARACTERISTICS to
retrieve the following characteristics for that LAT port:

* Terminal type

¢ Speed

¢ Parity

¢ Parity type

* Display type

¢ Escape recognition

e Echo
® Passall
¢ Eight-bit

* Display type

* Character size

¢ Terminal synchronization
* Modem

¢ DDCMP

Similarly, a program can use a VAXELN LAT port’s DDA port in a call
to ELN$TTY_SET CHARACTERISTICS to set the following subset of
these characteristics, which includes escape recognition, echo, passall,
eight-bit, display type, and terminal synchronization.

For more information about retrieving and setting terminal character-
istics, see Section 14.4.5.2.

LAT Host Services 11—43

Chapter 12

System Security

The VAXELN Toolkit includes system security features that protect
system resources and data from unauthorized use, examination, or
modification. Since VAXELN is primarily for developing and running
dedicated applications, the security features are disabled by default for
programs running on a single system. You might use these features,
however, to protect an application from inexperienced or malicious
users.

This chapter provides an overview of the security features that the
VAXELN Toolkit supplies (see Section 12.1) and describes the following:

¢ User names and identification codes, Section 12.2
¢ Authorization Service, Section 12.3

* User identities, Section 12.4

¢ File service security, Section 12.5

12.1 Security Features Overview

The VAXELN Toolkit provides security features that application de-
signers must explicitly include and enable. If, for example, a VAXELN
system is to be included as part of a larger network of systems, the
system would normally include the security features.

Since VAXELN is not intended to provide a multiuser time-sharing
environment, no protection is enforced among programs running on a
single system. That is, although the VAX memory management ensures
that incorrectly coded programs cannot accidentally modify the memory
allocated to other programs, the VAXELN kernel and runtime services
do not attempt to dictate which programs can run in kernel mode,

System Security 12-1

alter priorities, stop and start program execution, or, in general, fairly
distribute the resources of the single-node system.

The programs running on a system control the resources of the system.
Therefore, if a VAXELN application is potentially vulnerable to inexpe-
rienced or even malicious users, you should ensure that the application
and the system are protected. Also, if protection of system resources is
required, users should not be allowed to run their own programs.

Many VAXELN systems are part of a larger network. Programs must
protect the resources of these systems from use or abuse by other
users of the network. In particular, programs that accept requests
from other network nodes need to somehow determine the identity of
the requestor. An example of a program with this requirement is the
File Service, which needs to provide protection for the disk files that it
services.

The most basic security feature of a VAXELN system, therefore, pro-
vides the capability for a program to determine the identity of a user
issuing a network request. This feature is provided by an optional
service called the Authorization Service. The Authorization Service
maintains a data base of the users authorized to use a particular
VAXELN system or network of systems. When an application program
accepts a circuit connection to handle a request, the program can query
the data base to determine the identity of the requestor.

Other VAXELN facilities use the Authorization Service to protect the
resources and data that they control. The Network Service running
on a particular node accepts incoming circuit connections only from
authorized users in the Authorization Service’s data base. The File
Service provides read, write, and delete protection for files on disk
volumes that it controls. The Authorization Service itself uses the data
base to protect the data base. Likewise, application programs can use
the service to protect their resources and data.

12.2 User Names and ldentification Codes

Each process in a VAXELN system has an associated user name string
and a user identification code (UIC). These two values are maintained
by the kernel and are inherited by a process from the process or job
that created it. A process can also set its own user name and UIC to
desired values by calling the KER$SET_USER kernel procedure (see
Section 12.4).

12-2 System Security

The UICs are integer values that provide a shorthand way of identi-
fying a user or group of users. UICs can then be used by application
programs to protect their resources. For example, the File Service
stores a UIC with each file that is created. The File Service then uses
the stored UIC, called the owner UIC, to determine whether a requestor
should be allowed to access the file.

The VAXELN use of UICs is compatible with the VMS use. On
VAXELN and VMS, UIC values are 32-bit longwords, partitioned

into two 16-bit words. The least significant word is called the member
number, and the most significant word is called the group number.
UIC values are normally displayed in octal, in the format [group-
number,member-number] — for example, [1,4], [11,32], [200,200].

The partitioning of the value into group/member fields allows groups
of values to be associated with each other for protection. Also, group
numbers less than or equal to octal 10 are considered part of the system
groups. The use of UICs is explained in Section 12.5.

A process can determine its own user name and UIC by calling the
KER$GET_USER kernel procedure. Since, as just described, the
security features in VAXELN are based upon validating network
requests, a process can also determine the user name and UIC of the
process from which it has accepted a circuit connection. This capability
is also provided by calling KER$GET_USER, although the port object
connected in the circuit is then one of the arguments.

12.3 Authorization Service

The Authorization Service is the key component of the VAXELN secu-
rity facilities. It protects system resources and data by maintaining
a data base of a system’s authorized users and identifying users who
issue network requests.

A target system can include local or network authorization services.
When a system includes the network authorization services, it handles
authorization for the nodes in a local area network that do not have
their own service. At least one node in a local area network must in-
clude this service. If multiple nodes include the network authorization
service and all nodes in the local area network use the same data base
file, one target system acts as an authorization server and manages the
data base while the other nodes serve as backups. By designating mul-
tiple authorization servers, you can preserve the application’s security
if the acting server shuts down.

System Security 12-3

The Authorization Service’s primary task is to determine the identity
of the requestor of a network connection request. The service gets the
requestor’s host system user name and node name and looks them up
in the authorization data base. The service can also accept a specific
user name and password, or access control string, and look them up in
the data base.

Figure 12-1 and the accompanying text illustrate and explain how the
service works.

Figure 12—1: Authorization Service Example

DEPOTH1 DOCK2
SRSEB —— Application Application
Network and Network and
Authorization Authorization
Services Services

/"FRED,DEPOT1"/

MLO-004292

In Figure 12-1, a user named FRED is executing a program on a
VAXELN node named DEPOT1. FRED issues a request for a service
on another node named DOCKZ2, so the Network Service on node
DEPOT1 sends a connection request message that identifies FRED
and DEPOT1 to DOCK2. The DOCK2 Network Service then sends a
request to its Authorization Service to verify that user FRED on node
DEPOT1 is authorized to use the services provided by node DOCK2.
The Authorization Service replies to the Network Service with a Yes or
No indication; if Yes, the Authorization Service returns the UIC with
which the user is to be identified.

124 System Security

This type of authorization is termed proxy access control. Since FRED
is authorized to use the resources of node DEPOTI, his DEPOT1 name
is sent, by network proxy, to determine if he can use the resources of
node DOCK2.

The other type of authorization provided by the Authorization Service is
called destination authorization. It is used when a connection request
or open file operation specifies a user name and password, or access
control string, with the connection request. Destination authorization
provides a means of assuming a new identity on the remote system.

Proxy access control and destination authorization are provided in

a compatible manner by the VMS operating system. Other Digital
operating systems support only the destination authorization provided
with access control strings.

The CONNECT_CIRCUIT procedure allows you to specify a remote
destination as a string by using the optional DESTINATION_NAME
parameter. Like other DECnet systems, the node specification for
CONNECT_CIRCUIT can include a user name and password, which
can be optionally enclosed in quotes and separated from each other by
a space.

To specify the remote destination by object name, use a string of one of
the following forms:

’nodenumber::objectname’
’nodenumber'username password'::objectname’
‘nodenumber"username":.objectname’
’nodenumber"[ggg,mmm] password"::objectname’

For example, the following call connects to object TESTOR on node
number 3, using a user name of FRED and a password of SWIZ