

PROjVENIXTM
for the Professional

Document Processing Guide

Developed by:

VenturCom, Inc.
215 First Street

Cambridge, MA 02142

Digital Equipment Corporation
Maynard, MA 01754

First Printing

The software described in this manual is distributed as part of Digital
Equipment Corporation's Digital Classified Software (DCS) Program.
This program enables software developers to submit their software prod­
ucts to Digital for testing according to Digital quality standards for third
party software. This software product has met the DCS standard speci­
fied in the software product description (SPD) for this product. You
should refer to the SPD for information about these standards, the hard­
ware and software required to run this product, and warranties (if any
warranty is available).

The software described in this manual is furnished under a license and
may only be used or copied in accordance with the terms of that license.
This manual is reproduced with the permission ofVenturCom, Inc.

Copyright:5:; 1983, by Western Electric. All Rights Reserved.

Portions Copyright © 1984 VenturCom, Inc. All Rights Reserved.

Except as may be stated in the SPD for this product, no responsibility is
assumed by Digital or its affiliated companies for use or reliability of this
software, or for errors in this manual or in the software. Additional sup­
port and/or warranty services may be available from the developer of
this software product. Digital has no connection with, and assumes no
responsibility or liabilities in connection with these services.

This manual is subject to change without notice and does not constitute a
commitment by Digital.

VENIX is a trademark of VenturCom, Inc.
UNIX is a trademark of AT&T Technology, Inc.

The following are trademarks of Digital Equipment Corporation:

DEC DECwriter Professional VAX
DECmate DIBOL Rainbow VMS
DECnet MASSBUS RSTS VT
DECsystem-lO PDP RSX Work Processor
DECSYSTEM-20 P/OS UNIBUS ~DmDDmD
DECUS

The PRO/VENIXt Documentation Set

The PRO/VENIX documentation set consists of the following manuals:

PRO/VENIX Installation and System Manager's Guide

The set up and maintenance of PRO/VENIX are described in the
installation sections. Other articles explain the UNIX-to-UNIXt
communications systems. The "System Maintenance Reference
Manual" contains reference pages for devices and system maintenance
procedures (sections (7) and (8».

PRO/VENIX User Guide

The User Guide contains tutorials for newcomers to PRO/VENIX,
covering basic use of the system, the editor vi and use of the
command language interpreters.

PRO/VENIX Document Processing Guide

The line and screen editors and nroff-related text formatting utilities
are described in the Document Processing Guide. Topics include: line
editor ed, and stream editor sed; the text formatter nroff; the nroff­
preprocessors tbl and neqn.

PRO/VENIX Programming Guide

The chapters in the Programming Guide explicate the different
programming languages for VENIX.

t VENIX is a trademark of VenturCom, Inc.

t UNIX is a trademark of Bell Laboratories.

PROIVENIX Support Tools Guide

This guide includes tools for programming, such as the compiler­
writing languages Yacc and Lex, the M4 Macro processor, the
program development utility Make, and the desk calculator programs
DC and BC.

PROIVENIX User Reference Manual

This is a complete and concise reference for the PRO/VENIX system.
This volume contains write-ups on all PRO/VENIX commands.

PROIVENIX Progammer Reference Manual

The reference pages in this volume include system calls, library
functions, file formats, miscellaneous functions and games.

CONTENTS

INTRODUCTION

Chapter 1. ADVANCED EDITING ON VENIXt

Chapter 2. SED - A NON-INTERACTIVE TEXT EDITOR

Chapter 3. USING THE -MS MACROS

Chapter 4. NROFF TUTORIAL

Chapter 5. NROFF USER'S MANUAL

Chapter 6. NROFF TERMINAL DESCRIPTOR TABLE

Chapter 7. TABLE FORMATTING PROGRAM

Chapter 8. MATHEMATICS TYPESETTING PROGRAM

CONTENTS

1.1 INTRODUCTION .. 1-1

1.2 SPECIAL CHARACTERS .. 1-1

1.3 LINE ADDRESSING IN THE EDITOR 1-19

1.4 GLOBAL COMMANDS .. 1-27

1.5 CUT AND PASTE WITH VENIX COMMANDS 1-30

1.6 CUT AND PASTE WITH THE EDITOR 1-34

1.7 SUPPORTING TOOLS ... 1-40

Chapter 1

ADVANCED EDITING ON VENIXt

1.1 INTRODUCTION
Although VENIX provides remarkably effective tools for text editing, some gen­
eral knowledge of the VENIX system will assist you to use the editors most
effectively. This chapter assumes that you have some familiarity with the ed
editor. If you are a novice user, consult VENIX FOR BEGINNERS in the User
Guide for some background information. Further information on all com­
mands discussed here can be found in the User Reference Manual.

Topics covered include special characters in searches and substitute commands,
line addressing, the global commands, and line moving and copying. There are
also brief discussions of effective use of related tools, like those for file manipu­
lation, and those based on ed, like grep and sed.

A word of caution. There is only one way to learn to use something, and that
is to use it. Reading a description is no substitute for trying something. This
chapter should give you ideas about what to try, and then you can experiment
on your own.

1.2 SPECIAL CHARACTERS
The editor ed is the primary interface to the system for many people, so it is
worthwhile to know how to get the most out of ed for the least effort.

The next few sections will discuss shortcuts and labor-saving devices. Not all of
these will be instantly useful to anyone person, of course, but a few will be,
and the others should give you ideas to store away for future use.

1-1

ADVANCED EDITING

1.2.1 The List command 'I'

ed provides two commands for printing the contents of the lines you're editing.
For example, p, in combinations like

1,$p

will print all the lines you're editing, or

s/abc/def/p

will change 'abc' to 'def' on the current line and print it. The list command, I
(the letter '1'), gives slightly more information than p. In particular, I makes
visible characters that are normally invisible, such as tabs and backspaces. If
you list a line that contains some of these, I will print each tab as ;;.. and each
backspace as <E. This makes it much easier to correct the sort of typing mis­
take that inserts extra spaces adjacent to tabs, or inserts a backspace followed
by a space.

The I command also 'folds' long lines for printing - any line that exceeds 72
characters is printed on multiple lines; each printed line except the last is termi­
nated by a backslash \, so you can tell it was folded. This is useful for printing
long lines on short terminals.

Occasionally the I command will print in a line a string of numbers preceded by
a backslash, such as \07 or \16. These combinations are used to make visible
characters that normally don't print, like form feed or vertical tab or bell.
Each such combination is a single character. When you see such characters, be
wary - they may have surprising meanings when printed on some terminals.
Often their presence means that your finger slipped while you were typing; you
almost never want them.

1.2.2 The Substitute Command's'

Most of the next few sections will be taken up with a discussion of the substi­
tute command s. Since this is the command for changing the contents of indi­
vidual lines, it probably has the most complexity of any ed command, and the
most potential for effective use.

1-2

ADVANCED EDITING

As the simplest place to begin, recall the meaning of a trailing g after a substi­
tute command. With

s/this/that/

and

s/this/that/g

the first one replaces the first 'this' on the line with 'that'. If there is more
than one 'this' on the line, the second form with the trailing g changes all of
them.

Either form of the s command can be followed by p or I to 'print' or 'list' (as
described in the previous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/thatl gp
s/this/that/gl

are all legal, and mean slightly different things. Make sure you know what the
differences are.

Of course, any s command can be preceded by one or two 'line numbers' to
specify that the substitution is to take place on a group of lines. Thus

1 ,$sl mispell/misspelli

changes the first occurrence of 'mispell' to 'misspell' on every line of the file.
But

1 ,$s/mispell/misspelli g

changes every occurrence in every line (and this is more likely to be what you
wanted in this particular case).

You should also notice that if you add a p or I to the end of any of these sub­
stitute commands, only the last line that got changed will be printed, not all the
lines. We will talk later about how to print all the lines that were modified.

1-3

ADVANCED EDITING

1.2.3 The Undo Command 'u'

Occasionally you will make a substitution in a line, only to realize too late that
it was a ghastly mistake. The 'undo' command u lets you 'undo' the last sub­
stitution: the last line that was substituted can be restored to its previous state
by typing the command

u

1.2.4 The Metacharacter '.'

As you have undoubtedly noticed when you use ed, certain characters have
unexpected meanings when they occur in the left side of a substitute command,
or in a search for a particular line. In the next several sections, we will talk
about these special characters, which are often called 'metacharacters'.

The first one is the period '.'. On the left side of a substitute command, or in
a search with '/000/" '.' stands for any single character. Thus the search

/x.y/

finds any line where 'x' and 'y' occur separated by a single character, as in

and so on. (We will use D to stand for a space whenever we need to make it
visible.)

Since '0' matches a single character, that gives you a way to deal with funny
characters printed by I. Suppose you have a line that, when printed with the I
command, appears as

th\07is

and you want to get rid of the \07 (which represents the bell character, by the
way).

1-4

ADVANCED EDITING

The most obvious solution is to try

s/\0711

but this will fail. (Try it.) The brute force solution, which most people would
now take, is to re-type the entire line. This is guaranteed, and is actually quite
a reasonable tactic if the line in question isn't too big, but for a very long line,
re-typing is a bore. This is where the metacharacter '.' comes in handy. Since
'\07' really represents a single character, if we say

s/th.is/thisl

the job is done. The" matches the mysterious character between the 'h' and
the 'i', whatever it is.

Bear in mind that since '.' matches any single character, the command

sl.!,1

converts the first character on a line into a ',', which very often is not what you
intended.

As is true of many characters in ed, the '.' has several meanings, depending on
its context. This line shows all three:

.s/.!.!

The first '.' is a line number, the number of the line we are editing, which is
called 'line dot'. The second '.' is a metacharacter that matches any single
character on that line. The third '.' is the only one that really is an honest lit­
eral period. On the right side of a substitution, '.' is not special. If you apply
this command to the line

Now is the time.

the result will be

.ow is the time.

1-5

ADVANCED EDITING

which is probably not what you intended.

1.2.5 The Backslash '\'

Since a period means 'any character', the question naturally arises of what to
do when you really want a period. For example, how do you convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash turns off any special meaning that
the next character might have; in particular, '\.' converts the '.' from a 'match
anything' into a period, so you can use it to replace the period in

Now is the time.

like this:

s/\.I?1

The pair of characters '\.' is considered by ed to be a single real period.

The backslash can also be used when searching for lines that contain a special
character. Suppose you are looking for a line that contains

.PP

The search

I.PPI

isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the'.' matches the letter 'A'. But if you say

I\.PPI

you will find only lines that contain' .PP'.

1-6

ADVANCED EDITING

The backslash can also be used to turn off special meanings for characters other
than '.'. For example, consider finding a line that contains a backslash. The
search

IV

won't work, because the '\' isn't a literal '\', but instead means that the second
'/' no longer delimits the search. But by preceding a backslash with another
one, you can search for a literal backslash. Thus

I\V

does work. Similarly, you can search for a forward slash' /' with

IVI

The backslash turns off the meaning of the immediately following 'I' so that it
doesn't terminate the / .. ./ construction prematurely.

As an exercise, before reading further, find two substitute commands each of
which will convert the line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each works as advertised.

s/\ \ \./ /
s/x .. /xl
s/ .. y/yl

A couple of miscellaneous notes about backslashes and special characters. First,
you can use any character to delimit the pieces of an s command: there is noth­
ing sacred about slashes. (But you must use slashes for context searching.) For

1-7

ADVANCED EDITING

instance, in a line that contains a lot of slashes already, like

/ /exec / /sys.fort.go / / etc ...

you could use a colon as the delimiter. To delete all the slashes, type

s:/::g

Second, if # and @ are your character erase and line kill characters, you have
to type \ # and \@; this is true whether you're talking to ed or any other pro­
gram.

When you are adding text with a or i or c, backslash is not special, and you
should only put in one backslash for each one you really want.

1.2.6 The Dollar Sign '$'

The next metacharacter, the '$', stands for 'the end of the line'. As its most
obvious use, suppose you have the line

Now is the

and you wish to add the word 'time' to the end. Use the $ like this:

s/$/Otime/

to get

Now is the time

Notice that a space is needed before 'time' in the substitute command, or you
will get

Now is thetime

As another example, replace the second comma in the following line with a
period without altering the first:

Now is the time, for all good men,

1-8

ADVANCED EDITING

The command needed is

s/,$I./

The $ sign here provides context to make specific which comma we mean.
Without it, of course, the s command would operate on the first comma to pro­
duce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Now is the time?

as we did earlier, we can use

s/.$/?I

Like'.', the '$' has multiple meanings depending on context. In the line

$s/$I$1

the first '$' refers to the last line of the file, the second refers to the end of that
line, and the third is a literal dollar sign, to be added to that line.

1.2.7 The Circumflex ,~,

The circumflex (or hat or caret) 'A' stands for the beginning of the line. For
example, suppose you are looking for a line that begins with 'the'. If you sim­
ply say

Ithel

you will in all likelihood find several lines that contain 'the' in the middle
before arriving at the one you want. But with

1-9

ADVANCED EDITING

you narrow the context, and thus arrive at the desired one more easily.

The other use of ,~, is of course to enable you to insert something at the begin­
ning of a line:

places a space at the beginning of the current line.

Metacharacters can be combined. To search for a line that contains only the
characters

.PP

you can use the command

/~\.PP$/

1.2.8 The Star '*'

Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some indeterminate number of
spaces between the x and the y. Suppose the job is to replace all the spaces
between x and y by a single space. The line is too long to retype, and there are
too many spaces to count. What now?

This is where the metacharacter '*' comes in handy. A character followed by a
star stands for as many consecutive occurrences of that character as possible.
To refer to all the spaces at once, say

s/xD*y/xDy/

The construction '0 *' means 'as many spaces as possible'. Thus 'xD *y'
means 'an x, as many spaces as possible, then a y'.

1-10

ADVANCED EDITING

The star can be used with any character, not just space. If the original example
was instead

text x--------y text

then all '-' signs can be replaced by a single space with the command

s/x-*y/xDyl

Finally, suppose that the line was

text x y text

Can you see what trap lies in wait for the unwary? If you blindly type

s/x.*y/xDyl

what will happen? The answer, naturally, is that it depends. If there are no
other x's or y's on the line, then everything works, but it's blind luck, not good
management. Remember that '.' matches any single character? Then'. *'
matches as many single characters as possible, and unless you're careful, it can
eat up a lot more of the line than you expected. If the line was, for example,
like this:

text x text x••.......•• y text y text

then saying

s/x.*y/xDyl

will take everything from the first 'x' to the last 'y', which, in this example, is
undoubtedly more than you wanted.

The solution, of course, is to turn off the special meaning of '.' with '\.':

s/x\.*y/xDyl

Now everything works, for '\. *' means 'as many periods as possible'.

1-11

ADVANCED EDITING

There are times when the pattern '. *' is exactly what you want. For example,
to change

Now is the time fOf all good men

into

Now is the time.

use'. *, to eat up everything after the 'for':

s/Dfof.*/'/

There are a couple of additional pitfalls associated with '*' that you should be
aware of. Most notable is the fact that 'as many as possible' means zero or
more. The fact that zero is a legitimate possibility is sometimes rather surpris­
ing. For example, if our line contained

text xy text x y text

and we said

s/xD*y/xDy/

the first 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a
'y' . The result is that the substitute acts on the first 'xy', and does not touch
the later one that actually contains some intervening spaces.

The way around this, if it matters, is to specify a pattern like

which says 'an x, a space, then as many more spaces as possible, then a y', in
other words, one or more spaces.

The other startling behavior of '*' is again related to the fact that zero is a
legitimate number of occurrences of something followed by a star. The com­
mand

1-12

ADVANCED EDITING

s/x*/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason for this behavior
is that zero is a legal number of matches, and there are no x's at the beginning
of the line (so that gets converted into a 'y'), nor between the 'a' and the 'b'
(so that gets converted into a 'y'), nor ... and so on. Make sure you really
want zero matches; if not, in this case write

'xx*' is one or more x's.

1.2.9 The Brackets '[]'

Suppose that you want to delete any numbers that appear at the beginning of all
lines of a file. You might first think of trying a series of commands like

1,$s/~h/ /
1,$s/~2*/ /
1,$s/~3*/ /

and so on, but this is clearly going to take forever if the numbers are at all
long. Unless you want to repeat the commands over and over until finally all
numbers are gone, you must get all the digits on one pass. This is the purpose
of the brackets [and].

The construction

[0123456789]

matches any single digit - the whole thing is called a 'character class'. With a
character class, the job is easy. The pattern '[0123456789]*' matches zero or
more digits (an entire number), so

1-13

ADVANCED EDITING

1,$s/~[OI23456789]*/ /

deletes all digits from the beginning of all lines.

Any characters can appear within a character class, and just to confuse the issue
there are essentially no special characters inside the brackets; even the backslash
doesn't have a special meaning. To search for special characters, for example,
you can say

Within [...], the '[' is not special. To get a '1' into a character class, make it
the first character.

It's a nuisance to have to spell out the digits, so you can abbreviate them as
[0-9]; similarly, [a-z] stands for the lower case letters, and [A-Z] for upper
case.

As a final frill on character classes, you can specify a class that means 'none of
the following characters'. This is done by beginning the class with a '~':

stands for 'any character except a digit'. Thus you might find the first line that
doesn't begin with a tab or space by a search like

/ ~[~(space)(tab)]I

Within a character class, the circumflex has a special meaning only if it occurs
at the beginning. Just to convince yourself, verify that

finds a line that doesn't begin with a circumflex.

1-14

ADVANCED EDITING

1.2.10 The Ampersand '&'

The ampersand '&' is used primarily to save typing. Suppose you have the line

Now is the time

and you want to make it

N ow is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the 'the'. The '&' is used to eliminate the
repetition. On the right side of a substitute, the ampersand means 'whatever
was just matched', so you can say

s/the/ & best!

and the '&' will stand for 'the'. Of course this isn't much of a saving if the
thing matched is just 'the', but if it is something long, or if it is something like
'. *, which matches a lot of text, you can save some tedious typing. There is
also much less chance of making a typing error in the replacement text. For
example, to parenthesize a line, regardless of its length,

s/.* /(&) /

The ampersand can occur more than once on the right side:

s/the/ & best and & worst/

makes

Now is the best and the worst time

and

s/.*/&? &!!/

converts the original line into

1-15

ADVANCED EDITING

Now is the time? Now is the time!!

To get a literal ampersand, naturally the backslash is used to turn off the special
meaning.

s/ ampersand/\&/

converts the word into the symbol. Notice that '&' is not special on the left
side of a substitute, only on the right side.

1.2.11 Substituting Newlines

ed provides a facility for splitting a single line into two or more shorter lines by
'substituting in a newline'. As the simplest example, suppose a line has gotten
unmanageably long because of editing (or merely because it was unwisely typed).
If it looks like

text xy text

you can break it between the 'x' and the 'y' like this:

s/xy/x\
y/

This is actually a single command, although it is typed on two lines. Bearing in
mind that '\' turns off special meanings, it seems relatively intuitive that a '\' at
the end of a line would make the newline there no longer special.

You can in fact make a single line into several lines with this same mechanism.
As a large example, consider underlining the word 'very' in a long line by split­
ting 'very' onto a separate line, and preceding it by the roff or nroff formatting
command '. ul' .

text a very big text

The command

1-16

s/OveryO/\
.ul\
very\
/

ADVANCED EDITING

converts the line into four shorter lines, preceding the word 'very' by the line
'.ul', and eliminating the spaces around the 'very', all at the same time.

When a newline is substituted in, dot is left pointing at the last line created.

1.2.12 Joining Lines

Lines may also be joined together, but this is done with the j command instead
of s. Given the lines

Now is
Othe time

and supposing that dot is set to the first of them, then the command

j

joins them together. No blanks are added, which is why we carefully showed a
blank at the beginning of the second line.

All by itself, a j command joins line dot to line dot + 1, but any contiguous set
of lines can be joined. Just specify the starting and ending line numbers. For
example,

1,$jp

joins all the lines into one big one and prints it.

1.2.13 Rearranging a Line with \(... \)

Recall that '&' is a shorthand that stands for whatever was matched by the left
side of an s command. In much the same way you can capture separate pieces
of what was matched; the only difference is that you have to specify on the left
side just what pieces you're interested in.

1-17

ADVANCED EDITING

Suppose, for instance, that you have a file of lines that consist of names in the
form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and
error-prone. (It is instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pattern (in this case, the last name,
and the initials), and then rearrange the pieces. On the left side of a substitu­
tion, if part of the pattern is enclosed between \(and \), whatever matched that
part is remembered, and available for use on the right side. On the right side,
the symbol '\1' refers to whatever matched the first \(... \) pair, '\2' to the sec­
ond \(... \), and so on.

The command

although hard to read, does the job. The first \(... \) matches the last name,
which is any string up to the comma; this is referred to on the right side with
'\1'. The second \(... \) is whatever follows the comma and any spaces, and is
referred to as '\2'.

Of course, with any editing sequence this complicated, it's foolhardy to simply
run it and hope. The global commands g and v provide a way for you to print
exactly those lines which were affected by the substitute command, and thus
verify that it did what you wanted in all cases.

1-18

ADVANCED EDITING

1.3 LINE ADDRESSING IN THE EDITOR
The next general area we will discuss is that of line addressing in ed, that is,
how you specify what lines are to be affected by editing commands. We have
already used constructions like

1,$s/x/yl

to specify a change on all lines. And most users are long since familiar with
using a single newline (or return) to print the next line, and with

Ithingl

to find a line that contains 'thing'. Less familiar, surprisingly enough, is the
use of

?thing?

to scan backwards for the previous occurrence of 'thing'. This is especially
handy when you realize that the thing you want to operate on is back up the
page from where you are currently editing.

The slash and question mark are the only characters you can use to delimit a
context search, though you can use essentially any character in a substitute com­
mand.

1.3.1 Address Arithmetic

The next step is to combine the line numbers like 'e', '$', '1 .. ,/' and '?.?' with
, +' and '-'. Thus

$-1

is a command to print the next to last line of the current file (that is, one line
before line '$'). For example, to recall how far you got in a previous editing
session,

$-5,$p

prints the last six lines. (Be sure you understand why it's six, not five.) If there
aren't six, of course, you'll get an error message.

1-19

/

ADVANCED EDITING

As another example,

.-3,.+3p

prints from three lines before where you are now (at line dot) to three lines
after, thus giving you a bit of context. By the way, the' +' can be omitted:

.-3,.3p

is absolutely identical in meaning.

Another area in which you can save typing effort in specifying lines is to use
'-' and '+' as line numbers by themselves.

by itself is a command to move back up one line in the file. In fact, you can
string several minus signs together to move back up that many lines:

moves up three lines, as does '-3'. Thus

-3,+3p

is also identical to the examples above.

Since '-' is shorter than '. - 1 " constructions like

- ,.s/bad/good/

are useful. This changes 'bad' to 'good' on the previous line and on the current
line.

'+' and '-' can be used in combination with searches using '/ .. ./' and '7 ... 7',
and with '$'. The search

/thing/- -

finds the line containing 'thing', and positions you two lines before it.

1-20

1.3.2 Repeated Searches

Suppose you ask for the search

Ihorrible thingl

ADVANCED EDITING

and when the line is printed you discover that it isn't the horrible thing that you
wanted, so it is necessary to repeat the search again. You don't have to re-type
the search, for the construction

II

is a shorthand for 'the previous thing that was searched for', whatever it was.
This can be repeated as many times as necessary. You can also go backwards:

??

searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can use 'II' as the left side of a
substitute command, to mean 'the most recent pattern'.

Ihorrible thing I
.... ed prints line with 'horrible thing' ...

sllgood/p

To go backwards and change a line, say

??sllgoodl

Of course, you can still use the '&' on the right hand side of a substitute to
stand for whatever got matched:

Ilsll&D&/p

finds the next occurrence of whatever you searched for last, replaces it by two
copies of itself, then prints the line just to verify that it worked.

1-21

ADVANCED EDITING

1.3.3 Default Line Numbers and the Value of Dot

One of the most effective ways to speed up your editing is always to know what
lines will be affected by a command if you don't specify the lines it is to act on,
and on what line you will be positioned (Le., the value of dot) when a com­
mand finishes. If you can edit without specifying unnecessary line numbers,
you can save a lot of typing.

As the most obvious example, if you issue a search command like

Ithingl

you are left pointing at the next line that contains 'thing'. Then no address is
required with commands like s to make a substitution on that line, or p to print
it, or I to list it, or d to delete it, or a to append text after it, or c to change it,
or i to insert text before it.

What happens if there was no 'thing'? Then you are left right where you were
- dot is unchanged. This is also true if you were sitting on the only 'thing'
when you issued the command. The same rules hold for searches that use
'? ... ?'; the only difference is the direction in which you search.

The delete command d leaves dot pointing at the line that followed the last
deleted line. When line '$' gets deleted, however, dot points at the new line '$'.

The line-changing commands a, c and i by default all affect the current line, if
you give no line number with them, a appends text after the current line, c
changes the current line, and i inserts text before the current line.

a, c, and i behave identically in one respect. When you stop appending, chang­
ing or inserting, dot points at the last line entered. This is exactly what you
want for typing and editing on the fly. For example, you can say

1-22

a
text .. .
botch .. .

s/botch/ correct/
a

... more text ...

ADVANCED EDITING

(minor error)

(fix botched line)

without specifying any line number for the substitute command or for the sec­
ond append command. Or you can say

a
text ...
horrible botch ... (major error)

c (replace entire line)
fixed up line

You should experiment to determine what happens if you add no lines with a, c
or i.

The r command will read a file into the text being edited, either at the end if
you give no address, or after the specified line if you do. In either case, dot
points at the last line read in. Remember that you can even say Or to read a
file in at the beginning of the text. (You can also say Oa or Ii to start adding
text at the beginning.)

The w command writes out the entire file. If you precede the command by one
line number, that line is written, while if you precede it by two line numbers,
that range of lines is written. The w command does not change dot: the current
line remains the same, regardless of what lines are written. This is true even if
you say something like

/" \.AD/ ,/" \.AE/w abstract

which involves a context search.

1-23

ADVANCED EDITING

Since the w command is so easy to use, you should save what you are editing
regularly as you go along just in case the system crashes, or in case you do
something foolish, like clobbering what you're editing.

The least intuitive behavior, in a sense, is that of the s command. The rule is
simple - you are left sitting on the last line that got changed. If there were no
changes, then dot is unchanged.

To illustrate, suppose that there are three lines in the buffer, and you are sitting
on the middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line, which is the last one changed. But if the three lines had
been

xl
y2
y3

and the same command had been issued while dot pointed at the second line,
then the result would be to change and print only the first line, and that is
where dot would be set.

1.3.4 Semicolon ';'

Searches with '1 .. ,/' and '?.?' start at the current line and move forward or
backward respectively until they either find the pattern or get back to the cur­
rent line. Sometimes this is not what is wanted. Suppose, for example, that the
buffer contains lines like this:

1-24

ADVANCED EDITING

ab

be

Starting at line 1, one would expect that the command

la/,/b/p

prints all the lines from the 'ab' to the 'be' inclusive. Actually this is not what
happens. Both searches (for 'a' and for 'b') start from the same point, and
thus they both find the line that contains 'ab'. The result is to print a single
line. Worse, if there had been a line with a 'b' in it before the 'ab' line, then
the print command would be in error, since the second line number would be
less than the first, and it is illegal to try to print lines in reverse order.

This is because the comma separator for line numbers doesn't set dot as each
address is processed; each search starts from the same place. In ed, the semico­
lon ';' can be used just like comma, with the single difference that use of a
semicolon forces dot to be set at that point as the line numbers are being evalu­
ated. In effect, the semicolon 'moves' dot. Thus in our example above, the
command

la/;/b/p

prints the range of lines from 'ab' to 'be', because after the 'a' is found, dot is
set to that line, and then 'b' is searched for, starting beyond that line.

This property is most often useful in a very simple situation. Suppose you want
to find the second occurrence of 'thing'. You could say

Ithingl
II

1-25

ADVANCED EDITING

but this prints the first occurrence as well as the second, and is a nuisance when
you know very well that it is only the second one you're interested in. The
solution is to say

/thing/;/ /

This says to find the first occurrence of 'thing', set dot to that line, then find
the second and print only that.

Closely related is searching for the second previous occurrence of something, as
in

?something?;??

Printing the third or fourth or ... in either direction is left as an exercise.

Finally, bear in mind that if you want to find the first occurrence of something
in a file, starting at an arbitrary place within the file, it is not sufficient to say

l;/thing/

because this fails if 'thing' occurs on line 1. But it is possible to say

O;/thing/

(one of the few places where 0 is a legal line number), for this starts the search
at line 1.

1.3.5 Interrupting the Editor

As a final note on what dot gets set to, you should be aware that if you hit the
interrupt or '~C' or break key while ed is doing a command, things are put
back together again and your state is restored as much as possible to what it
was before the command began. Naturally, some changes are irrevocable. If
you are reading or writing a file or making substitutions or deleting lines, these
will be stopped in some clean but unpredictable state in the middle (which is
why it is not usually wise to stop them). Dot mayor may not be changed.

1-26

ADVANCED EDITING

Printing is more clear cut. Dot is not changed until the printing is done. Thus
if you print until you see an interesting line, then hit '-C', you are not sitting
on that line or even near it. Dot is left where it was when the p command was
started.

1.4 GLOBAL COMMANDS
The global commands g and v are used to perform one or more editing com­
mands on all lines that either contain (g) or don't contain (v) a specified pat­
tern.

As the simplest example, the command

g/VENIX/p

prints all lines that contain the word 'VENIX'. The pattern that goes between
the slashes can be anything that could be used in a line search or in a substitute
command; exactly the same rules and limitations apply.

As another example, then,

prints all the formatting commands in a file (lines that begin with'. ').

The v command is identical to g, except that it operates on those line that do
not contain an occurrence of the pattern. (Don't look too hard for mnemonic
significance to the letter 'v'.) So

prints all the lines that don't begin with '.' - the actual text lines.

The command that follows g or v can be anything:

deletes all lines that begin with '.', and

1-27

ADVANCED EDITING

deletes all empty lines.

Probably the most useful command that can follow a global is the substitute
command, for this can be used to make a change and print each affected line
for verification. For example, we could change the word 'Venix' to 'VENIX'
everywhere, and verify that it really worked, with

g/Venixl sl IVENIXI gp

Notice that we used 'I I' in the substitute command to mean 'the previous pat­
tern', in this case, 'Venix'. The p command is done on every line that matches
the pattern, not just those on which a substitution took place.

The global command operates by making two passes over the file. On the first
pass, all lines that match the pattern are marked. On the second pass, each
marked line in turn is examined, dot is set to that line, and the command exe­
cuted. This means that it is possible for the command that follows a g or v to
use addresses, set dot, and so on, quite freely.

g/~\.PPI +

prints the line that follows each '.PP' command (the signal for a new paragraph
in some formatting packages). Remember that' +' means 'one line past dot'.
And

g/topic/? ~ \.SH?1

searches for each line that contains 'topic', scans backwards until it finds a line
that begins' .SH' (a section heading) and prints the line that follows that, thus
showing the section headings under which 'topic' is mentioned. Finally,

g/~\.EQI + ,/~\.EN/-p

prints all the lines that lie between lines beginning with '.EQ' and '.EN' format­
ting commands.

1-28

ADVANCED EDITING

The g and v commands can also be preceded by line numbers, in which case the
lines searched are only those in the range specified.

1.4.1 Multi-line Global Commands

It is possible to do more than one command under the control of a global com­
mand, although the syntax for expressing the operation is not especially natural
or pleasant. As an example, suppose the task is to change 'x' to 'y' and 'a' to
'b' on all lines that contain 'thing'. Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The '\' signals the g command that the set of commands con­
tinues on the next line; it terminates on the first line that does not end with '\'.
(As a minor blemish, you can't use a substitute command to insert a newline
within a g command.)

You should watch out for this problem: the command

g/x/s//y/\
s/a/b/

does not work as you expect. The remembered pattern is the last pattern that
was actually executed, so sometimes it will be 'x' (as expected), and sometimes
it will be 'a' (not expected). You must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i commands under a global command; as
with other multi-line constructions, all that is needed is to add a '\' at the end
of each line except the last. Thus to add a '.nf' and' .sp' command before each
'.EQ' line, type

g/~\.EQ/i\

.nf\

.sp

1-29

ADVANCED EDITING

There is no need for a final line containing a '.' to terminate the i command,
unless there are further commands being done under the global. On the other
hand, it does no harm to put it in either.

1.5 CUT AND PASTE WITH VENIX COMMANDS
One editing area which is very useful is 'cut and paste' operations - changing
the name of a file, making a copy of a file somewhere else, moving a few lines
from one place to another in a file, inserting one file in the middle of another,
splitting a file into pieces, and splicing two or more files together.

The next several sections talk about cut and paste. We will begin with the
VENIX commands for moving entire files around, then discuss ed commands
for operating on pieces of files.

1.5.1 Changing the Name of a File

You have a file named 'memo' and you want it to be called 'paper' instead.
How is it done?

The VENIX program that renames files is called mv (for 'move'); it 'moves' the
file from one name to another, like this:

mv memo paper

That's all there is to it: mv from the old name to the new name.

mv oldname newname

Warning: if there is already a file around with the new name, its present con­
tents will be silently clobbered by the information from the other file. The one
exception is that you can't move a file to itself -

mv x x

is illegal.

1-30

ADVANCED EDITING

1.5.2 Making a Copy of a File

Sometimes what you want is a copy of a file. This might be because you want
to work on a file, and yet save a copy in case something gets fouled up.

The way to make a copy is with the cp command. (cp stands for 'copy'.) Sup­
pose you have a file called 'good' and you want to save a copy before you
make some dramatic editing changes. Choose a name - for instance
'savegood' - then type

cp good savegood

This copies 'good' onto 'savegood', and you now have two identical copies of
the file 'good'. (If 'savegood' previously contained something, it gets overwrit­
ten.)

Now if you decide at some time that you want to get back to the original state
of 'good', you can say

mv savegood good

(if you're not interested in 'savegood' any more), or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp makes a duplicate copy. Both of them
clobber the 'target' file if it already exists, so you had better be sure that's what
you want to do before you do it.

1.5.3 Removing a File

If you decide you are really done with a file forever, you can remove it with the
rm command:

rm savegood

throws away (irrevocably) the file called 'savegood'.

1-31

ADVANCED EDITING

1.5.4 Putting Two or More Files Together

The next step is the familiar one of collecting two or more files into one big
one. This will be needed, for example, when the author decides that several sec­
tions need to be combined into one. There are several ways to do it, of which
the cleanest is a program called cat. cat is short for 'concatenate', which is
exactly what we want to do.

Suppose the job is to combine the files 'filel' and 'file2' into a single file called
'bigfile'. If you say

cat file

the contents of 'file' will get printed on your terminal. If you say

cat file1 file2

the contents of 'filel' and then the contents of 'file2' will both be printed on
your terminal, in that order.

cat combines the files, but it's not much help to print them on the terminal -
we want them in 'bigfile'. Fortunately, there is a way. You can tell the system
that instead of printing on your terminal, you want the same information put in
a file. The way to do it is to add to the command line the character > and the
name of the file where you want the output to go. Then you can say

cat file 1 file2 > bigfile

and the job is done. (As with cp and mY, you're putting something into
'bigfile', and anything that was already there is destroyed.)

This ability to 'capture' the output of a program is one of the most useful
aspects of the VENIX system. Fortunately it's not limited to the cat program
- you can use it with any program that prints on your terminal. We'll see
some more uses for it in a moment.

Naturally, you can combine several files, not just two:

cat file1 file2 file3 > bigfile

1-32

ADVANCED EDITING

collects a whole bunch.

Question: is there any difference between

cp good savegood

and

cat good > savegood

Answer: for most purposes, no. You might reasonably ask why there are two
programs in that case, since cat is obviously all you need. The answer is that
cp will do some other things as well, as documented in the User Reference Man­
ual. For now we'll stick to simple usages.

1.5.5 Adding Something to the End of a File

Sometimes you want to add one file to the end of another. We have enough
building blocks now to do it. We can use cp, mv and cat to add the file
'good!' to the end of the file 'good'.

One method is

cat good
mv temp

goodl
good

> temp

which is probably most direct. You should also understand why

cat good goodl > good

doesn't work. (Don't practice with a good 'good'!)

The easy way is to use a variant of >, called > >. In fact, > > is identical to
> except that instead of overwriting the old file, > > simply appends the new
material at the end of the old file. Thus you could say

cat goodl > > good

in order to add 'good!' to the end of 'good'. (And if 'good' didn't exist, this
makes a copy of 'good!' called 'good'.)

1-33

ADVANCED EDITING

1.6 CUT AND PASTE WITH THE EDITOR
Now we move on to manipulating pieces of files, individual lines or groups of
lines.

1.6.1 Filenames

The first step is to ensure that you know the ed commands for reading and
writing files. Of course you can't go very far without knowing rand w.
Equally useful, but less well known, is the 'edit' command e. Within ed, the
command

e newfile

says '1 want to edit a new file called newfile, without leaving the editor.' The e
command discards whatever you're currently working on and starts over on
newfile. It's exactly the same as if you had quit with the q command, then re­
entered ed with a new file name, except that if you have a pattern remembered,
then a command like / / will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subsequent e, r or w commands
that don't contain a filename will refer to this remembered file. Thus

ed filel
(editing)

w (writes back in filel)
e file2 (edit new file, without leaving editor)

(editing on file2) ..•
w (writes back on file2)

(and so on) does a series of edits on various files without ever leaving ed and
without typing the name of any file more than once.

You can find out the remembered file name at any time with the f command;
just type f without a file name. You can also change the name of the remem­
bered file name with f; a useful sequence is

1-34

ed precious
f junk

..• (editing)

ADVANCED EDITING

which gets a copy of a precious, then uses f to guarantee that a careless w com­
mand won't overwrite the original.

1.6.2 Inserting One File into Another

Suppose you have a file called 'memo', and you want the file called 'table' to
be inserted just after the reference to Table 1. That is, in 'memo' somewhere is
a line that says

Table 1 shows that •..

and the data contained in 'table' has to go there, probably so it will be format­
ted properly by nroff. Now what?

This one is easy. Edit 'memo', find 'Table 1', and add the file 'table' right
there:

ed memo
ITable 11
Table 1 shows that ... [response from edj
.r table

The critical line is the last one. As we said earlier, the r command reads a file;
here you asked for it to be read in right after line dot. An r command without
any address adds lines at the end, so it is the same as $r.

1.6.3 Writing Out Part of a File

The other side of the coin is writing out part of the document you're editing.
For example, maybe you want to put into a separate file that table from the
previous example, so it can be formatted and tested separately. Suppose that in
the file being edited we have

.TS
••. [lots of stuff]

.TE

1-35

ADVANCED EDITING

which is the way a table is set up for the tbl program. To isolate the table in a
separate file called 'table', first find the start of the table (the '. TS' line), then
write out the interesting part:

/~\.TS/

. TS fed prints the line it found]

.,/~\.TE/w table

and the job is done. If you are confident, you can do it all at once with

/~\.TS/;/~\.TE/w table

The w command can write out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like; just give one line number
instead of two. For example, if you have just typed a complicated line and you
know that it (or something like it) is going to be needed later, then save it,
don't re-type it. An example of this feature is

a
.. .Iots of stuff .. .
.. . horrible line .. .

. w temp
a
... more stuff ...

. r temp
a
•.. more stuff ...

1.6.4 Rearranging Test

Suppose you want to move a paragraph from its present position in a paper to
the end. How would you do it?

1-36

ADVANCED EDITING

Let's assume that each paragraph in the paper begins with the formatting com­
mand '.PP'. One method is to write the paragraph onto a temporary file,
delete it from its current position, then read in the temporary file at the end.
Assuming that the editor is sitting on the '.PP' command that begins the para­
graph, this is the sequence of commands:

.,/~\.PP/-w temp

.,//-d
Sr temp

That is, from where you are now ('. ') until one line before the next '.PP' (' /
\.PP/ - ') write onto 'temp'. Then delete the same lines. Finally, read 'temp'
at the end.

Often, an easier way is to use the move command m that ed provides. It lets
you do the whole set of operations at one crack, without any temporary file.

The m command is like many other ed commands in that it takes up to two line
numbers in front that tell which lines are to be affected. It is also followed by
a line number that tells where the lines are to go. Thus

line1, line2 m line3

says to move all the lines between 'line1' and 'line2' after 'line3'. Naturally,
any of 'line1' etc., can be patterns between slashes, $ signs, or other ways to
specify lines.

Suppose again that the editor is sitting at the first line of the paragraph. Then
you can say

.,/~\.PP/-mS

That's all that's needed.

As another example of a frequent operation, you can reverse the order of two
adjacent lines by moving the first one to the end of the second. Suppose that
you are positioned at the first. Then

1-37

ADVANCED EDITING

m+

accomplishes this switch. It says to move line dot to the end of the one line
following line dot. If you are positioned on the second line,

m--

does the interchange.

As you can see, the m command is more succinct and direct than writing, delet­
ing and re-reading. The main difficulty with the m command is that when using
patterns to specify both the lines you are moving and the target, you must spec­
ify them properly, or you may move the wrong lines accidently. The result of a
botched m command can be a ghastly mess. Doing the job a step at a time
makes it easier for you to verify at each step that you accomplished what you
wanted to. It's also a good idea to issue a w command before doing anything
complicated; then if you make a mistake, it's easy to back up to where you
were before the mistake was made.

1.6.5 Marks

ed provides a facility for marking a line with a particular name so you can later
reference it by name regardless of its actual line number. This can be handy for
moving lines, and for keeping track of them as they move. The mark command
is k; the command

kx

marks the current line with the name 'x'. A line elsewhere in the file can be
marked by preceding k with a line number. (The mark name must be a single
lower case letter.) Now you can refer to the marked line with the address

'x
Marks are useful for moving text around. Find the first line of the block to be
moved, and mark it with 'a. Then find the last line and mark it with 'b. Now
place the editor where the block is to go and say

'a,'bm.
Bear in mind that only one line can have a particular mark name associated
with it at any given time.

1-38

ADVANCED EDITING

1.6.6 Copying Lines

We mentioned earlier the idea of saving a line that was hard to type or used
often, so as to cut down on typing time.

ed provides another command, called t (for 'transfer') for making a copy of a
group of one or more lines at any point. This is often easier than writing and
reading.

The t command is identical to the m command, except that instead of moving
lines it simply duplicates them at the place you named. Thus

1,t
duplicates the entire contents that you are editing. A more common use for t is
for creating a series of lines that differ only slightly. For example, you can say

a

t.
s/x/y/
t.
s/y/z/

and so on.

x ..•....•. (long line)

(make a copy)
(cbange it a bit)
(make tbird copy)
(cbange it a bit)

1.6.7 Tbe Temporary Escape 'I'

Sometimes it is convenient to be able to temporarily escape from the editor to
do some other VENIX command without actually leaving the editor. The
'escape' command I provides a way to do this.

If you say

lany VENIX command
your current editing state is suspended, and the VENIX command you asked for
is executed. When the command finishes, ed will signal you by printing another
I; at that point you can resume editing.

You can really do any VENIX command, including another ed. (This is quite
common, in fact.) In this case, you can even do another !.

1-39

ADVANCED EDITING

1.7 SUPPORTING TOOLS
There are several tools and techniques that go along with the editor, all of
which are relatively easy once you know how ed works, because they are all
based on the editor. In this section we give some cursory examples of these
tools, more to indicate their existence than to provide a complete tutorial.
More information on each can be found in the User Reference Manual.

1.7.1 Grep

Sometimes you want to find all occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their presence or absence. It may be
possible to edit each file separately and look for the pattern of interest. In
cases where there are many files, this can get very tedious, and if the files are
very big, it may be impossible because of limits in ed.

The program grep was invented to get around these limitations. The search pat­
terns that we have described in the paper are often called 'regular expressions',
and 'grep' stands for

g/re/p
grep prints every line in a set of files that contains a particular pattern. Thus

grep I thing I file1 file2 file3 ...
finds 'thing' wherever it occurs in any of the files 'filel', 'file2', etc. grep also
indicates the file in which the line was found, so you can later edit it if you
like.

The pattern represented by 'thing' can be any pattern you can use in the editor,
since grep and ed use exactly the same mechanism for pattern searching. It is
wisest always to enclose the pattern in the single quotes I ... ' if it contains any
non-alphabetic characters, since many such characters also mean something spe­
cial to the VENIX command interpreter (the 'shell'). If you don't quote them,
the command interpreter will try to interpret them before grep gets a chance.

There is also a way to find lines that don't contain a pattern:

grep - v I thing I file1 file2 ...
finds all lines that don't contain 'thing'. The -v must occur in the position
shown. Given grep and grep - v, it is possible to do things like selecting all
lines that contain some combination of patterns. For example, to get all lines

1-40

ADVANCED EDITING

that contain 'x' but not 'y':

grep x file... I grep - v y
(The notation I is a 'pipe', which causes the output of the first command to be
used as input to the second command; see VENIX FOR BEGINNERS in the
User Guide.)

1.7.2 Editing Scripts

If a fairly complicated set of editing operations is to be done on a whole set of
files, the easiest thing to do is to make up a 'script', i.e., a file that contains the
operations you want to perform, then apply this script to each file in turn.

For example, suppose you want to change every 'Venix' to 'VENIX' and every
'Unix' to 'UNIX' in a large number of files. Then put into the file 'script' the
lines

g/Venix/sllVENIX/g
g/Unix/sllUNIX/g
w
q

Now you can say

ed filel < script
ed file2 < script

This causes ed to take its commands from the prepared script. Notice that the
whole job has to be planned in advance.

And of course by using the VENIX command interpreter, you can cycle through
a set of files automatically, with varying degrees of ease.

1.7.3 Sed

sed ('stream editor') is a version of the editor with restricted capabilities but
which is capable of processing unlimited amounts of input. Basically, sed cop­
ies its input to its output, applying one or more editing commands to each line
of input.

1-41

ADVANCED EDITING

As an example, suppose that we want change every 'Venix' to 'VENIX', as was
done above, but without rewriting the files. Then the command

sed ' s/Venix/VENIX/ g' file1 file2 ...
applies the command 's/Venix/VENIX/g' to all lines from 'filel', 'file2', etc.,
and copies all lines to the output. The advantage of using sed in such a case is
that it can be used with input too large for ed to handle. All the output can be
collected in one place, either in a file or perhaps piped into another program.

If the editing transformation is so complicated that more than one editing com­
mand is needed, commands can be supplied from a file, or on the command
line, with a slightly more complex syntax. To take commands from a file, for
example,

sed - f cmdfile input-files ...

sed has further capabilities, including conditional testing and branching, which
we cannot go into here; (see SED - A NON-INTERACTIVE TEXT EDITOR,
chapter 2).

1-42

CONTENTS

2.1 INTRODUCTION .. 2-1

2.2 OVERALL OPERATION .. 2-2

2.3 ADDRESSES: SELECTING LINES FOR EDITING 2-4

2.4 FUNCTIONS .. 2-6

Chapter 2

SED - A NON-INTERACTIVE TEXT EDITOR

2.1 INTRODUCTION
sed is a non-interactive context editor designed to be especially useful in three
cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too com­
plicated to be comfortably typed in interactive mode;

3) To perform multiple 'global' editing functions efficiently in one pass
through the input.

Since only a few lines of the input reside in core at one time, and no temporary
files are used, the effective size of file that can be edited is limited only by the
requirement that the input and output fit simultaneously into available second­
ary storage.

Complicated editing scripts can be created separately and given to sed as a com­
mand file. For complex edits, this saves considerable typing, and its attendant
errors. sed running from a command file is much more efficient than other
interactive editors, even if that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of rel­
ative addressing (because of the line-at-a-time operation), and lack of immediate
verification that a command has done what was intended.

2-1

SED

sed is a lineal descendant of the VENIX editor, ed. Because of the differences
between interactive and non-interactive operation, considerable changes have
been made between ed and sed. The most striking family resemblance between
the two editors is in the class of patterns ('regular expressions') they recognize.

2.2 OVERALL OPERATION
sed by default copies the standard input to the standard output, perhaps per­
forming one or more editing commands on each line before writing it to the
output. This behavior may be modified by flags on the command line.

The general format of an editing command is:

[address1,address2][function][arguments]

One or both addresses may be omitted; the format of addresses is given in the
section "Addresses" Any number of blanks or tabs may separate the addresses
from the function. The function must be present; the available commands are
discussed in the section "Functions." The arguments may be required or
optional, according to which function is given; again, they are discussed in
"Functions" under each individual function.

Tab characters and spaces at the beginning of lines are ignored.

2.2.1 Command-line Flags

Three flags are recognized on the command line:

-n: tells sed not to copy all lines, but only those specified by p functions or p
flags after s functions;

- e: tells sed to take the next argument as an editing command;

- f: tells sed to take the next argument as a file name; the file should contain
editing commands, one to a line.

2-2

SED

2.2.2 Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the
editing commands are compiled into a form which will be moderately efficient
during the execution phase (when the commands are actually applied to lines of
the input file). The commands are compiled in the order in which they are
encountered; this is generally the order in which they will be attempted at execu­
tion time. The commands are applied one at a time; the input to each com­
mand is the output of all preceding commands.

The default linear order of application of editing commands can be changed by
the flow-of-control commands, t and b. Even when the order of application is
changed by these commands, it is still true that the input line to any command
is the output of any previously applied command.

2.2.3 Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pat­
tern space is one line of the input text, but more than one line can be read into
the pattern space by using the N command.

2.2.4 Examples

Examples are scattered throughout the text. Except where otherwise noted, the
examples all assume the following input text:

In Xanadn did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement
on Coleridge.)

Example:

The command

2q

2-3

SED

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2.3 ADDRESSES: SELECTING LINES FOR EDITING
Lines in the input file(s) to which editing commands are to be applied can be
selected by addresses. Addresses may be either line numbers or context
addresses.

The application of a group of commands can be controlled by one address (or
address-pair) by grouping the commands with curly braces ('{ n.

2.3.1 Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line­
number counter is incremented; a line-number address matches (selects) the
input line which causes the internal counter to equal the address line-number.
The counter runs cumulatively through multiple input files; it is not reset when
a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.3.2 Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes ('I').
The regular expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular
expression, and matches that character.

2) A circumflex ,~, at the beginning of a regular expression matches the null
character at the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null char­
acter at the end of a line.

2-4

SED

4) The characters '\n' match an imbedded newline character, but not the
newline at the end of the pattern space.

5) A period '.' matches any character except the terminal newline of the
pattern space.

6) A regular expression followed by an asterisk '*' matches any number
(including 0) of adjacent occurrences of the regular expression it follows.

7) A string of characters in square brackets '[]' matches any character in
the string, and no others. If, however, the first character of the string is
circumflex '~', the regular expression matches any character except the
characters in the string and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which
matches the concatenation of strings matched by the components of the
regular expression.

9) A regular expression between the sequences '\(' and '\)' is identical in
effect to the unadorned regular expression, but has side-effects which are
described under the s command below and specification 10) immediately
below.

10) The expression '\d' means the same string of characters matched by an
expression enclosed in '\(' and '\)' earlier in the same pattern. Here d is
a single digit; the string specified is that beginning with the dth occur­
rence of '\(' counting from the left. For example, the expression
'~\(. *\)\1' matches a line beginning with two repeated occurrences of the
same string.

11) The null regular expression standing alone (e.g., 'f f') is equivalent to the
last regular expression compiled.

To use one of the special characters C $. * [] \ f) as a literal (to match an
occurrence of itself in the input), precede the special character by a backslash
'\'.

For a context address to 'match' the input requires that the whole pattern
within the address match some portion of the pattern space.

2-5

SED

2.3.3 Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each
command the maximum number of allowed addresses is given. For a command
to have more addresses than the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line ip the input.

If a command has one address, it is applied to all lines which match that
address.

If a command has two addresses, it is applied to the first line which matches the
first address, and to all subsequent lines until (and including) the first subse­
quent line which matches the second address. Then an attempt is made on sub­
sequent lines to again match the first address, and the process is repeated.

Two addresses are separated by a comma.

Examples:

lanl
lan.*anl
Fanl
1,/
1\,/
Ir*anl
I\(an \). *\1/

2.4 FUNCTIONS

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines
matches all lines
matches line 5
matches lines 1,3, 4 (number
matches line 1

zero!)

All functions are named by a single character. In the following summary, the
maximum number of allowable addresses is given enclosed in parentheses, then
the single character function name, possible arguments enclosed in angles «
», an expanded English translation of the single-character name, and finally a
description of what each function does. The angles around the arguments are
not part of the argument, and should not be typed in actual editing commands.

2-6

SED

2.4.1 Whole-line Oriented Functions

(2)d

(2)n

(1)a\

delete lines

The d function deletes from the file (does not write to the output) all
those lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line
is read from the input, and the list of editing commands is re-started
from the beginning on the new line.

next line

The n function reads the next line from the input, replacing the current
line. The current line is written to the output if it should be. The list of
editing commands is continued following the n command.

<text>
append lines

The a function causes the argument < text> to be written to the output
after the line matched by its address. The a command is inherently
multi-line; a must appear at the end of a line, and < text> may contain
any number of lines. To preserve the one-command-to-a-line fiction, the
interior newlines must be hidden by a backslash character ('\') immedi­
ately preceding the newline. The < text> argument is terminated by the
first unhidden newline (the first one not immediately preceded by back­
slash).

Once an a function is successfully executed, < text> will be written to
the output regardless of what later commands do to the line which trig­
gered it. The triggering line may be deleted entirely; < text> will still be
written to the output.

The < text> is not scanned for address matches, and no editing com­
mands are attempted on it. It does not cause any change in the line­
number counter.

2-7

SED

(l)i\

<text>

(2)c\

insert lines

The i function behaves identically to the a function, except that < text>
is written to the output before the matched line. All other comments
about the a function apply to the i function as well.

<text>
change lines

The c function deletes the lines selected by its address(es), and replaces
them with the lines in < text> . Like a and i, c must be followed by a
newline hidden by a backslash; and interior new lines in < text> must be
hidden by backslashes.

The c command may have two addresses, and therefore select a range of
lines. If it does, all the lines in the range are deleted, but only one copy
of < text> is written to the output, not one copy per line deleted. As
with a and i, < text> is not scanned for address matches, and no editing
commands are attempted on it. It does not change the line-number
counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subse­
quently changed, the text inserted by the c function will be placed before
the text of the a or r functions.

Note: Within the text put in the output by these functions, leading blanks and
tabs will disappear, as always in sed commands. To get leading blanks and tabs
into the output, precede the first desired blank or tab by a backslash; the back­
slash will not appear in the output.

Example:

The list of editing commands:

2-8

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

SED

In this particular case, the same effect would be produced by either of the two
following command lists:

n n
i\ c\
XXXX XXXX
d

2.4.2 Substitute Function

One very important function changes parts of lines selected by a context search
within the line.

(2)s < pattern> < replacement> < flags> - substitute
The s function replaces part of a line (selected by < pattern» with
< replacement>. It can best be read:

Substitute for < pattern>, < replacement>

The < pattern> argument contains a pattern, exactly like the patterns in
addresses. The only difference between < pattern> and a context
address is that the context address must be delimited by slash ('f') char­
acters; <pattern> may be delimited by any character other than space or
newline.

By default, only the first string matched by < pattern> is replaced, but
see the g flag below.

The < replacement> argument begins immediately after the second

2-9

SED

delimiting character of < pattern>, and must be followed immediately by
another instance of the delimiting character. (Thus there are exactly
three instances of the delimiting character.)

The < replacement> is not a pattern, and the characters which are spe­
cial in patterns do not have special meaning in < replacement>. Instead,
other characters are special:

& is replaced by the string matched by < pattern >

\d (where d is a single digit) is replaced by the dth substring matched
by parts of < pattern> enclosed in '\(' and '\)'. If nested
substrings occur in < pattern>, the dth is determined by counting
opening delimiters ('\(').

As in patterns, special characters may be made literal by preceding
them with backslash ('\').

The < flags> argument may contain the following flags:

g - substitute < replacement> for all (non-overlapping) instances of
< pattern> in the line. After a successful substitution, the scan
for the next instance of < pattern> begins just after the end of
the inserted characters; characters put into the line from < replace­
ment> are not rescanned.

p - print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a substitu­
tion was actually made by the s function. Notice that if several s
functions, each followed by a p flag, successfully substitute in the
same input line, multiple copies of the line will be written to the
output: one for each successful substitution.

w < filename> -
write the line to a file if a successful replacement was done. The
w flag causes lines which are actually substituted by the s function
to be written to a file named by < filename> . If < filename>
exists before sed is run, it is overwritten; if not, it is created.

A single space must separate w and < filename> .

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

2-10

SED

A maximum of 10 different file names may be mentioned after w
flags and w functions (see below), combined.

Examples:

The following command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&* Igp

produces:

A stately pleasure dome decree*P:*
Where Alph*P, * the sacred river*P, * ran
Down to a sunless sea*P. *

Finally, to illustrate the effect of the g flag, the command:

IX/s/anl AN/p

produces (assuming no copy mode):

In XANadu did Kubhla Khan

and the command:

2-11

SED

IXlslanl AN/gp

produces:

In XANadu did Kubhla KhAN

2.4.3 Input-output Functions

(2)p - print
The print function writes the addressed lines to the standard output file.
They are written at the time the p function is encountered, regardless of
what succeeding editing commands may do to the lines.

(2)w < filename> - write on < filename>
The write function writes the addressed lines to the file named by
< filename>. If the file previously existed, it is overwritten; if not, it is
created. The lines are written exactly as they exist when the write func­
tion is encountered for each line, regardless of what subsequent editing
commands may do to them.

Exactly one space must separate the wand < filename> .

A maximum of ten different files may be mentioned in write functions
and w flags after s functions, combined.

(l)r < filename> - read the contents of a file
The read function reads the contents of < filename>, and appends them
after the line matched by the address. The file is read and appended
regardless of what subsequent editing commands do to the line which
matched its address. If r and a functions are executed on the same line,
the text from the a functions and the r functions is written to the output
in the order that the functions are executed.

Exactly one space must separate the rand < filename>. If a file men­
tioned by a r function cannot be opened, it is considered a null file, not
an error, and no diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simulta­
neously, care should be taken that no more than ten files be mentioned in w
functions or flags; that number is reduced by one if any r functions are present.
(Only one read file is open at one time.)

2-12

Examples:

Assume that the file 'note!' has the following contents:

Note: Kubla Kban (more properly Kublai Kban; 1216-1294)
was tbe grandson and most eminent successor of Gengbiz
(Cbingiz) Kban, and founder of tbe Mongol dynasty in Cbina.

Then the following command:

IKubla/r note1

produces:

In Xanadu did Kubla Kban

Note: Kubla Kban (more properly Kublai Kban; 1216-1294)
was tbe grandson and most eminent successor of Gengbiz
(Cbingiz) Kban, and founder of tbe Mongol dynasty in Cbina.

A stately pleasure dome decree:
Wbere Alpb, tbe sacred river, ran
Tbrougb caverns measureless to man
Down to a sunless sea.

2.4.4 Input-line Functions

SED

Three functions, all spelled with capital letters, deal specially with pattern spaces
containing imbedded new lines; they are intended principally to provide pattern
matches across lines in the input.

(2)N - Next line
The next input line is appended to the current line in the pattern space;
the two input lines are separated by an imbedded newline. Pattern
matches may extend across the imbedded newline(s).

2-13

SED

(2)D - Delete first part of the pattern space
Delete up to and including the first newline character in the current pat­
tern space. If the pattern space becomes empty (the only newline was the
terminal newline), read another line from the input. In any case, begin
the list of editing commands again from its beginning.

(2)P - Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there
are no imbedded new lines in the pattern space.

2.4.5 Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h - hold pattern space
The h functions copies the contents of the pattern space into a hold area
(destroying the previous contents of the hold area).

(2)H - Hold pattern space
The H function appends the contents of the pattern space to the contents
of the hold area; the former and new contents are separated by a
newline.

(2)g - get contents of hold area
The g function copies the contents of the hold area into the pattern space
(destroying the previous contents of the pattern space).

(2)G - Get contents of hold area
The G function appends the contents of the hold area to the contents of
the pattern space; the former and new contents are separated by a
newline.

(2)x - exchange
The exchange command interchanges the contents of the pattern space
and the hold area.

2-14

Example:

The commands

Ib
lsi did.*1 I
Ix
G
s/\nl :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Wbere Alpb, tbe sacred river, ran :In Xanadu
Tbrougb caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

2.4.6 Flow-of-Control Functions

SED

These functions do no editing on the input lines, but control the application of
functions to the lines selected by the address part.

(2)! - Don't
The Don't command causes the next command (written on the same line),
to be applied to all and only those input lines not selected by the address
part.

(2){ - Grouping
The grouping command '{' causes the next set of commands to be
applied (or not applied) as a block to the input lines selected by the
addresses of the grouping command. The first of the commands under
control of the grouping may appear on the same line as the '{' or on the
next line.

The group of commands is terminated by a matching 'J' standing on a
line by itself.

Groups can be nested.

2-15

SED

(0): < label> - place a label
The label function marks a place in the list of editing commands which
may be referred to by band t functions. The < label> may be any
sequence of eight or fewer characters; if two different colon functions
have identical labels, a compile time diagnostic will be generated, and no
execution attempted.

(2)b < label> - branch to label
The branch function causes the sequence of editing commands being
applied to the current input line to be restarted immediately after the
place where a colon function with the same < label> was encountered.
If no colon function with the same label can be found after all the edit­
ing commands have been compiled, a compile time diagnostic is pro­
duced, and no execution is attempted.

A b function with no < label> is taken to be a branch to the end of the
list of editing commands; whatever should be done with the current input
line is done, and another input line is read; the list of editing commands
is restarted from the beginning on the new line.

(2)t < label> - test substitutions
The t function tests whether any successful substitutions have been made
on the current input line; if so, it branches to < label>; if not, it does
nothing. The flag which indicates that a successful substitution has been
executed is reset by:

1) reading a new input line, or

2) executing a t function.

2.4.7 Miscellaneous Functions

(1) = - equals
The = function writes to the standard output the line number of the line
matched by its address.

(1)q - quit
The q function causes the current line to be written to the output (if it
should be), any appended or read text to be written, and execution to be
terminated.

2-16

CONTENTS

3.1 INTRODUCTION .. 3-1

3.2 PARAGRAPHS .. 3-1

3.3 COVER SHEETS AND FIRST PAGES 3-2

3.4 PAGE HEADINGS .. 3-2

3.5 HEADINGS .. 3-3

3.6 INDENTED PARAGRAPHS ... 3-5

3.7 EMPHASIS .. 3-8

3.8 FOOTNOTES ... 3-9

3.9 DISPLAYS AND TABLES .. 3-9

3.10 KEEPING BLOCKS TOGETHER 3-10

3.11 NROFF COMMANDS ... 3-10

3.12 DATE ... 3-11

3.13 SIGNATURE LINE .. 3-11

3.14 REGISTERS .. 3-11

3.15 ACCENTS ... 3-12

3.16 USE ... 3-13

3.17 REFERENCES AND FURTHER STUDy 3-13

APPENDIX A ... 3-15

Chapter 3

USING THE - MS MACROS

3.1 INTRODUCTION
This chapter describes the - ms macro package of commands for producing
documents on the VENIX system with the Broff formatting programs. As with
other roff derived programs, text is prepared with formatting commands inter­
spersed. However, this package, which is written in Broff commands, provides
higher-level commands than those in the basic Broff program. The - ms com­
mands available are listed in Appendix A. Note that they are always written in
uppercase letters, while nroff commands are in lowercase.

3.2 PARAGRAPHS
To create a new indented paragraph when entering text, type the command .PP
on the line preceding the sentences to be formatted. .PP indents the first line 5
spaces and leaves one line between paragraphs. Alternatively, the command
.LP, which was used here, produces a left-aligned (block) paragraph with one
line between paragraphs. Paragraph spacing can be changed: see below under
"Registers. "

Note: you can't just begin a document with a line of text. Some - ms com­
mand must precede any text input. When in doubt, use .LP to get proper ini­
tialization, although any of the commands .PP, .LP, .TL, .SH, .NH are appro­
priate.

3-1

-MS MACROS

3.3 COVER SHEETS AND FIRST PAGES
The first command of a document can signal the general format of the first
page. In particular, .RP is an overall formatting command that produces a
cover sheet with title, author, author's institution, abstract and the current date.
It is not necessary to have all these headings on your cover sheet, but whatever
information you do use must be entered in the order specified above and pre­
ceeded by the proper macro (e.g., .TL on the line before the title, and .AU
before the author's name). To omit any of these sections just leave out the
information and its corresponding macro.

In general - ms is arranged so that only one form of a document needs to be
stored, containing all information. Usually the first command determines the
format, and unnecessary items for that format are ignored. However, generat­
ing the cover sheet is a special process and other data and commands placed in
this section may not behave as you expect. There should not be any extraneous
material between the title and the end of the abstract to avoid creating format
problems.

3.4 PAGE HEADINGS
By default, the - ms macros will print a page header with a page number (if
greater than 1). A default page footer is also provided, where the date is used.
The user can make minor adjustments to the page headerlfooter by redefining
the strings LH, CH, and RH which are the left, center and right portions of the
page headers, respectively; and the strings LF, CF, and RF, which are the left,
center and right portions of the page footer. For more complex formats, the
user can redefine the macros PT and BT, which are invoked respectively at the
top and bottom of each page. The margins (taken from registers HM and FM
for the top and bottom margin respectively) are normally 1 inch; the page
header and footer are in the middle of that space. When redefining these mac­
ros, be careful not to change parameters such as font without resetting them to
default values.

3-2

-MS MACROS

3.4.1 MULTI-COLUMN FORMATS

If you place the command ".2e" in your document, the document will be
printed in double column format beginning at that point. (However, if you
have a very small amount of text to be printed in double columns you may need
to specify a large footer margin to insure that the text will be divided between
two columns, and not just printed in one left-hand column.) The command
" .1 e" will go back to one-column format and also skip to a new page. The
".2e" command is actually a special case of the command

.MC [column width [gutter width]]

which makes multiple columns with the specified column and gutter width; as
many columns as will fit across the page are used. Thus triple, quadruple, ...
column pages can be printed. Whenever the number of columns is changed
(except going from full width to some larger number of columns) a new page is
started. Note that multi-column output may not be possible to put directly on
your output terminal without filtering it through col (see col (1)). If the output
terminal is a printer, you should always filter the output of nroff through the
col utility program, and specify the type of printer by using the - T option.

3.5 HEADINGS
To produce a special heading, there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section headings (1, 2, 3, ...). For exam­
ple,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads

3-3

-MSMACROS

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors

Headings may contain more than one line of text. Every section heading, of
either type, should be followed by a paragraph beginning with .PP or .LP, indi­
cating the end of the heading.

The .NH command also supports more complex numbering schemes. If a
numerical argument is given, it is taken to be a "level" number and an appro­
priate sub-section number is generated. Larger level numbers indicate deeper
sub-sections, as in this example:

.NH
Erie-Lackawanna
.NH2
Morris and Essex Division
.NH3
Gladstone Branch
.NH3
Montclair Branch
.NH2
Boonton Line

generates:

3-4

-MS MACROS

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2 Boonton Line

An explicit ".NH 0" will reset the level numbering to one, as here:

.NH 0
Penn Central

1. Penn Central

3.6 INDENTED PARAGRAPHS
Indented paragraphs, or paragraphs with hanging numbers, are often used for
references. For example, the sequence:

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed .
. IP [2]
Text for second paragraph, ...

produces

[1] Text for first paragraph, typed normally for as long
as you would like on as many lines as needed.

[2] Text for second paragraph, ...

. IP does not automatically number the items; 1, 2, etc. need to be specified.

A series of indented paragraphs may be followed by an . ordinary paragraph
beginning with .PP or .LP, depending on whether you wish indenting or not.
The command .LP was used here.

3-5

-MSMACROS

More sophisticated uses of .IP are also possible. If the label is omitted, for
example, a plain block indent is produced .

. IP
This material will
just be turned into a
block indent suitable for quotations or
such matter .
. LP

will produce

This material will just be turned into a block indent
suitable for quotations or such matter .

.IP produces a paragraph that is indented 5 spaces from the document's left
margin. If a non-standard amount of indenting is required, it may be specified
after the label (in character positions) and will remain in effect until the next
.PP or .LP. Thus, the general form of the .IP command contains two addi­
tional fields: the label and the indenting length. For example,

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs .
. IP second:
And so forth .
. LP

produces this:

first: Notice the longer label, requiring larger indenting
for these paragraphs.

second: And so forth.

It is also possible to produce multiple nested indents; the command .RS indi­
cates that the next .IP starts from the current indentation level. Each .RE will
eat up one level of indenting so you should balance .RS and .RE commands.

3-6

-MSMACROS

The .RS command should be thought of as "move right" and the .RE com­
mand as "move left." As an example

.IP 1.
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

All of these variations on .IP leave the right margin untouched. Sometimes, for
purposes such as setting off a quotation, a paragraph indented on both right
and left is required.

3-7

-MSMACROS

A single paragraph like this is obtained by preceding it with
.QP. More complicated material (several paragraphs) should be
bracketed with .QS and .QE.

3.7 EMPHASIS
To get "italics," which comes out as underlining on the terminal, say

.1
as much text as you want
can be typed here
.R

The .R command restores the normal (usually Roman) font. If only one word
is to be italicized, it may be just given on the line with the .1 command,

.1 word

and in this case no .R is needed to restore the previous font. Boldface (if avail­
able on your terminal) can be produced by

.B
Text to be set in boldface
goes here
.R

As with .1, a single word can be placed in boldface by placing it on the same
line as the .B command. Alternatively, the constructions '\fB', '\fI', and '\fR'
can be inserted anywhere on a line to change to one of these three fonts.

\fBThese words will be bold\fR and \fIthese will be italicized\fR.

produces

These words will be bold and these will be italicized.

3-8

-MSMACROS

3.8 FOOTNOTES
Material placed between lines with the commands .FS (footnote start) and .FE
(footnote end) - but not on the same line as the commands - will be col­
lected, remembered and placed at the bottom of the current page*. However,
there is no automatic numbering or marking of footnotes. If you want an aster­
isk to mark the footnote you must insert it into your paragraph text and again
at the beginning of the sentence following the .FS command. By default, foot­
notes are 11/12th the length of normal text, but this can be changed using the
.FL register (see below, in "Registers").

3.9 DISPLAYS AND TABLES
To prepare displays of lines, such as tables, in which the lines should not be re­
arranged, enclose them in the commands .DS and .DE

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are indented and left-adjusted. You can
also center lines, or retain the left margin. Lines bracketed by .DS C and .DE
commands are centered (and not re-arranged); lines bracketed by .DS Land
.DE are left-adjusted, not indented, and not re-arranged. A plain .DS is equiv­
alent to .DS I, which indents and left-adjusts. Thus,

* Like this.

these lines were
preceded by .DS C and followed by

a .DE command;

3-9

-MS MACROS

whereas

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a variant .DS B that makes the dis­
play into a left-adjusted block of text, and then centers that entire block. Nor­
mally a display is kept together, on one page. If you wish to have a long dis­
play which may be split across page boundaries, use .CD, .LD, or .ID in place
of the commands .DS C, .DS L, or .DS I respectively. An extra argument to
the .DS I or .DS command is taken as an amount to indent. Note: it is tempt­
ing to assume that .DS R will right adjust lines, but it doesn't work.

3.10 KEEPING BLOCKS TOGETHER
If you wish to keep a table or other blocks of text together on a page, there are
"keep - release" commands. If a block of text, preceded by .KS and followed
by .KE, does not fit on the remainder of the current page it will be placed on a
new page. Lines bracketed by .DS and .DE commands are automatically kept
together this way. There is also a "keep floating" command: if the block to be
kept together is preceded by .KF instead of .KS and does not fit on the current
page, it will be moved down through the text until the top of the next page.
Thus, no large blank space will be introduced in the document.

3.11 NROFF COMMANDS
Here are some useful commands from the basic formatting program nroff which
can be used safely with the ms macros:

.bp - begin new page .

. br - "break", stop running text
from line to line .

. sp n - insert n blank lines .

. na - don't adjust right margins.

3-10

-MS MACROS

3.12 DATE
By default, documents have the current date at the bottom of each page. To
force no date, say ".ND" at the beginning of your input text. To specify the
date and the exact format for printing it, use the command .DA, e.g .. DA July
4, 1776. The specified date will appear at the bottom of each page. The com­
mand

.ND May 8, 1945

in the ".RP" format places the specified date on the cover sheet and nowhere
else. This command line must be placed before the title.

3.13 SIGNATURE LINE

You can obtain a signature line by placing the command .SO in the document.
The author's name and space for a signature will be generated by the .SO line.
An argument to .SO is used as a typing identification line and placed after the
signature. The .SO command is ignored in ".RP" format.

3.14 REGISTERS
Some of the registers used by - ms can be altered to change their default set­
tings. They should be changed with .m commands, as with

.nr VS 9p

to make the default line spacing 9 points. (Don't forget to use the scale indica­
tor: p for points, m for ems (character widths), i for inches, etc.) Normally,
these will not come into effect until the next paragraph or page. To force
immediate changes in line spacing or lengths, use the corresponding nroff com­
mand, such as:

.vs 9p

for vertical spacing, or

.11 12m

for line length.

3-11

-MSMACROS

Takes Nroff
Register Defines effect Default command

VS line spacing next para. 12 pts .vs
LL line length next para. 6" .Il
LT title length next para. 6" .It
PD para. spacing next para. 0.3 VS
PI para. indent next para. 5 ems
FL footnote length next FS 11112 LL
CW column width next 2C 7/15 LL
OW intercolumn gap next 2C 1115 LL
PO page offset next page 26/27" .po
HM top margin next page I"
FM bottom margin next page I"

You may also alter the strings LH, CH, and RH which are the left, center and
right headers respectively; and similarly LF, CF and RF which are strings in the
page footer. A '0/0' in these strings will be replaced by the page number, which
is taken on output from register PN to permit changing its output style. For
example, saying

.ds CH Typing Documents on the VENIX System

.ds CF - % -

prints headers and footers centered on each page.

For more complicated headers and footers the macros PT and BT can be rede­
fined, as explained earlier.

3.15 ACCENTS

To simplify typing certain foreign words, strings representing common accent
marks are defined. They precede the letter over which the mark is to appear.
Here are the strings:

3-12

In~t Input Output
*' e *-a a
*'e e *Ce

v
e

-MS MACROS

*:u u *,c C
*~e e

3.16 USE
After your document is prepared and stored on a file, you can print it on a ter­
minal with the command*

nroff - ms filename

(many options are possible). If your document is stored in several files, just list
all the filenames where we have used "filename." If equations or tables are
used, neqn and/or fbi must be invoked as preprocessors (see the User Reference
Manual for command line examples).

3.17 REFERENCES AND FURTHER STUDY
If you have to do Greek or mathematics, see neqn (chapter 8 in this volume) for
equation setting. To aid neqn users, - ms provides definitions of .EQ and .EN
which normally center the equation and set it off slightly. An argument on .EQ
is taken to be an equation number and placed in the right margin near the equa­
tion. In addition, there are three special arguments to EQ: the letters C, I, and
L indicate centered (default), indented, and left adjusted equations, respectively.
If there is both a format argument and an equation number, give the format
argument first, as in

.EQ L (1.3a)

for a left-adjusted equation numbered (l.3a).

• If .2e was used, and your output terminal is not capable of reverse­

linefeeds, have the nroff output piped automatically through col; make the

first line of the input" .pi lusr/bin/col".

3-13

-MS MACR.OS

Similarly, the macros .TS and .TE produce output in table format, centered,
and set off from the rest of the text. A very long table with a heading may be
broken across pages by beginning it with . TS H instead of . TS, and placing the
command . TH in the table data after the heading. If the table has no heading
repeated from page to page, just use the ordinary .TS and .TE macros. (See
chapter 7.)

To learn more about nroff see chapter 4, NROFF TUTORIAL, and chapter 5,
NROFF USER'S MANUAL, for the full details. Information on related
VENIX commands is in the User Reference Manual. For jobs that do not seem
well-adapted to - ms, consider other macro packages or writing your own mac­
ros. It is often far easier to write a specific macro package for tasks such as
imitating particular journals than to try to adapt - ms.

3-14

-MSMACROS

Appendix A

List of Commands

IC Return to single column format. LO Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
AI Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, ID).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SO Insert signature line.
Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

3-15

-MSMACROS

Register Names

The following register names are used by - ms internally. Independent use of
these names in one's own macros may produce incorrect output. Note that no
lower case letters are used in any - ms internal name.

Number registers used in -ms

DW GW HM IQ LL NA OJ PO T. TV
#T EF HI HT IR LT NC PD PQ TB VS
.T FC H2 IF IT MF ND PE PS TC WF
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 1M L1 MN NS PI RO TN YY
CW FP H5 IP LE MO 01 PN ST TQ ZN

String registers used in - ms

A5 CB DW EZ I KF MR RI RT TL
AB CC DY FA 11 KQ ND R2 SO TM
AE CD EI FE 12 KS NH R3 SI TQ
AI CF E2 FJ I3 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT
B CM E4 FN 15 LG OD RC SH UL

IC BG CS E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C D EL FS 1M MF PT RH SY WT
A2 CI DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

3-16

CONTENTS

4.1 INTRODUCTION .. 4-1

4.2 LINE SPACING .. 4-2

4.3 FONTS .. 4-4

4.4 INDENTS AND LINE LENGTHS 4-6

4.5 LOCAL MOTIONS: DRAWING LINES

AND CHARACTERS ... 4-10

4.6 STRINGS ... 4-13

4.7 INTRODUCTION TO MACROS 4-14

4.8 TITLES, PAGES, AND NUMBERING 4-16

4.9 NUMBER REGISTERS AND ARITHMETIC 4-20

4.10 MACROS WITH ARGUMENTS 4-22

4.11 CONDITIONALS ... 4-25

4.12 ENVIRONMENTS .. 4-27

4.13 DIVERSIONS .. 4-28

APPENDIX A ... 4-30

Chapter 4

NROFF TUTORIAL

4.1 INTRODUCTION
nroff is a text-formatting program for producing quality printed output on prin­
ters. nroff allows the user to simulate fonts and full control of character posi­
tions, as well as the usual features of a formatter - right-margin justification,
automatic hyphenation, page titling and numbering, etc.

This chapter is an introduction to the most basic use of nroff. It presents
enough information to enable the user to do simple formatting and to make
changes to the existing packages of nroff commands.

For two special applications, there are programs that provide an interface to
nroff for the majority of users. neqn provides an easy to learn language for
formatting mathematics; the neqn user does not need to know any nroff to for­
mat mathematics. tbl provides the same convenience for producing tables.

For producing straight text (which may well contain mathematics or tables),
there is a 'macro package' called - ms that defines formatting rules and opera­
tions for specific styles of documents, and reduces the amount of direct contact
with nroff. (See chapter 3, USING THE -MS MACROS.) Typically you will
find this package easier to use than nroff.

For the few cases where existing packages don't meet all your needs, it is not
necessary to write an entirely new set of nroff instructions. You can make small
changes to adapt packages that already exist.

4-1

NROFF TUTORIAL

To use nroff you have to prepare not only the actual text you want printed, but
some information that tells how you want it printed. For nroff, the text and
the formatting information are often intertwined quite intimately. Most com­
mands to nroff are placed on a line separate from the text itself, beginning with
a period (one command per line). For example,

Some text .
. sp 5
Some more text.

will insert five spaces in between the two lines, like this:

Some text.

Some more text.

Occasionally, though, something special occurs In the middle of a line. For
example, to produce

Area = 11" r2

you have to type

Area = \(*p r\u2\d

(which we will explain shortly). The backslash character \ is used to introduce
nroff commands and special characters within a line of text. As is often the
case, the - T option should be used here to invoke nroff.

4.2 LINE SPACING
The spacing between the lines is set by default to 116 inch. It can be adjusted
through the . vs command to be whatever you want (within the resolution of
your output terminal, of course).

4-2

NROFF TUTORIAL

For example,

.vs .12Si

sets the vertical spacing to one eighth of an inch, like this. After a few lines of
text at this density, you will agree that things are rather cramped. The default
line spacing is really quite adequate for most things you want to do.

You can also adjust the number of line spaces between each line with .Is. The
command .Is 2 sets line-spacing to twice its normal.

If you just want to leave a few blank lines somewhere in your text, use the .sp
command. Without an argument, it will give you one extra blank line (one .vs,
whatever that has been set to). Typically, that's more or less than you want,
so .sp can be followed by information about how much space you want -

.sp 2i

and

.sp 2

means 'two vertical spaces' - two of whatever .vs is set to (this can also be
made explicit with .sp 2v); oroff also understands decimal fractions in most
places, so

.sp 1.Si

is a space of 1.5 inches. These same scale factors can be used after .vs to
define line spacing, and in fact after most commands that deal with physical
dimensions.

It should be noted that all size numbers are converted internally to 'machine
units', which are 11432 inch and plenty of resolution. The situation is not quite
so good vertically, where resolution is 11144 inch (but again, this is usually
much better than needed).

4-3

NROFF TUTORIAL

4.3 FONTS
nroff knows about three basic fonts: the regular ("Roman") font, "italic font",
and "bold" font. Text in the "italic" font is normally underlined. "Bold"
font type mayor may not be different than that in the regular font. If your
output terminal is capable of automatically emboldening characters, and your
terminal descriptor table tells nroff how to control it, then you can get bold
face type.. (Otherwise, you may wish to construct a filter to go between nroff
and your printer, which recognizes some agreed-upon code and simulates bold
font by over striking each character.)

nroff prints in Roman unless told otherwise. To switch into bold, use the .ft
command

.ft B

and for italics,

.ft I

To return to roman, use .ft R; to return to the previous font, whatever it was,
use either .ft P or just .ft. The 'underline' command

.01

causes the next input line to be underlined (producing the same output as the
command for italic font). .01 can be followed by a number to indicate how
many input lines are to be underlined.

Fonts can also be changed within a line or word with the in-line command \f:

boldface text

is produced by

\fBbold\fIface \fR text

If you want to do this so the previous font, whatever it was, is left undisturbed,
insert extra \fP commands, like this:

4-4

NROFF TUTORIAL

\mbold\fP\fIface \fP\fR text\fP

Because only the immediately previous font is remembered, you have to restore
the previous font after each change or you can lose it.

Special characters have four-character names beginning with \(, and they may
be inserted anywhere. For example,

tVENIX is a trademark . .

is produced by

\(dgVENIX is a trademark ...

In particular, greek letters are all of the form \(* -, where
lower case roman letter reminiscent of the greek. Thus to get

I:(a X (3) - 00

in bare nroff we have to type

\(*S(\(*a\(mu\(*b) \(- > \(if

That line is unscrambled as follows:

\(*S I:
((
\(*a a
\(mu X

\(*b (3
))
\(->
\(if 00

is an upper or

(These characters are only going to come out as well as the printer and its
descriptor table can make them.)

In neqn the same effect can be achieved with the input

SIGMA (alpha times beta) - > inf

4-5

NROFF TUTORIAL

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a single character as far as nroff is con­
cerned - the 'translate' command

.fr \(dg\(em

is perfectly clear, meaning

.fr t-
that is, to translate t into -.

4.4 INDENTS AND LINE LENGTHS
nroff starts with a line length of 6.5 inches which may not be exactly what you
want. To reset the line length, use the .11 command, as in

.11 6i

As with .sp, the actual length can be specified in several ways; .11 70, for exam­
ple, sets the line length to 70 ems (character-widths).

If you want to move the entire text over to the right, use the .po (page offset)
command .

. po li

sets the offset one inch over.

The indent command .in causes the left margin to be indented by some specified
amount from the page offset. (The total indentation, then, is equal to the page
offset plus the given indent.) If we use .in to move the left margin in, and .11 to
move the right margin to the left, we can make offset blocks of text:

4-6

.in 2i

.11 -2i
text to be set into a block
.11 +2i
.in -2i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat
voluntas tua, sicut in caelo, et in terra.

NROFF TUTORIAL

Amen.

Notice the use of '+' and' -' to specify the amount of change. These change
the previous setting by the specified amount, rather than just overriding it. The
distinction is quite important: .11 + 2i makes lines two inches longer; .11 2i makes
them two inches long.

With .in, .11 and .po, the previous value is used if no argument is specified.

To indent a single line, use the 'temporary indent' command .ti. For example,
all paragraphs in this memo effectively begin with the command

.ti 3

Three of what? The default unit for .ti, as for most horizontally oriented com­
mands (.11, .in, .po), is ems; an em is equal to the width of one character. (In
high-quality typesetting, where characters are of slightly different widths, an em
is roughly equal to the width of the letter 'm' - hence the name.) You may
find it easier to deal in character-width units than inches.

Lines can also be indented negatively if the indent is already positive:

.ti -3m

causes the next line to be moved back three character-widths. Thus to move a
heading number back from a paragraph, we move the number back with a .ti
command:

4-7

NROFF TUTORIAL

1. The committee first voted, fifteen to twelve, that
the sun shall rise at precisely 6:35 in the morning, and
set at 6:02 in the evening, except on Sundays and days beginning
with Q.

2. A movement was then made for . . .

The above paragraphs began

.in 3

.ti -3m
1. \ The committee first voted . . .

The \ after the 1. is necessary to force a single space there (otherwise it could
have been padded to more).

Lines can also be centered with a .ce command .

. ce

centers the next line, and

.ce n

centers the next n lines, like this:

these lines
are centered using a .ce 2 command

Blank lines, or lines with commands on them, do not count as part of the line
count given .ce.

The command .ce 0 stops the centering of lines even if a .ce command above
requested it. Thus, to center a block of lines, it is easier to write

.ce 999

.ce 0

4-8

NROFF TUTORIAL

With this approach, you don't have to count the number of lines you want cen­
tered.

4.4.1 TABS

Tabs (the ASCII 'horizontal tab' character) can be used to produce output in
columns, or to set the horizontal position of output. Typically tabs are used
only in unfilled text. Tab stops are set by default every half inch from the cur­
rent indent, but can be changed by the .ta command. To set stops every inch,
for example,

.ta li 2i 3i 4i 5i 6i

The stops are left-justified by default (as on a typewriter); to right-justify or
center the text between tabs, follow each number in the ta command with R or
C, respectively. If you have many numbers, or if you need a more complicated
table layout, don't use oroff directly; use the tbl program described in chapter
7.

For a handful of numeric columns, you can do it this way:

.of

. ta liR 2iR 3iR
tab 1 tab 2 tab 3
tab 40 tab 50 tab 60
tab 700 tab 800 tab 900
.fi

to produce

1
40

700

2
50

800

3
60

900

It is also possible to fill up tabbed-over space with some character other than
blanks by setting the 'tab replacement character' with the .tc command:

4-9

NROFF TUTORIAL

.ta 1.Si 2.Si

.tc \(ru (\(ru is n _ ")

Name tab Age tab

produces

Name ____________ _ Age

To reset the tab replacement character to a blank, use .tc with no argument.
(Lines can also be drawn with the \1 command, described in the next section.)

nroff also provides a very general mechanism called 'fields' for setting up com­
plicated columns. (This is used by tbI).

4.5 LOCAL MOTIONS: DRAWING LINES AND CHARACTERS
Remember "Area = 7r r2". How is the super-script done? nroff provides a
host of commands for placing characters· of any size at any place. You can use
them to draw special characters or to tune your output for a particular appear­
ance. (See also NROFF TERMINAL DESCRIPTOR TABLE FORMAT, chap­
ter 6.) Most of these commands are straightforward, but messy to read and
tough to type correctly.

If you aren.'t using neqn, subscripts and superscripts are most easily done with
the half-line local motions \u and \d. To go back up the page half a line-size,
insert a \u at the desired place; to go down, insert a \d. (\u and \d should
always be used in pairs, as explained below.) Thus

Area = \(*p r\u2\d

produces

Area 2 = 7r r

Sometimes the space given by \u and \d isn't the right amount. The \v com­
mand can be used to request an arbitrary amount of vertical motion. The in­
line command

4-10

NROFF TUTORIAL

\v'(amount)'

causes motion up or down the page by the amount specified in For example, we
could create a superscript with 7\v'-.li'3\v' .li' = 343. to get

l = 343

A minus sign causes upward motion, while no sign or a plus sign means down
the page. Thus \v'-.li' causes an upward vertical motion of a tenth of an inch.

There are many other ways to specify the amount of motion -

\v'2'
\v'-O.5m'
\v' +2i'

and so on are all legal. Notice that the scale specifier i or m goes inside the
quotes. Any character can be used in place of the quotes; this is also true of all
other nroff commands described in this section.

Since nroff does not take within-the-line vertical motions into account when fig­
uring out where it is on the page, output lines can have unexpected positions if
the left and right ends aren't at the same vertical position. Thus \v, like \u and
\d, should always balance upward vertical motion in a line with the same
amount in the downward direction.

Arbitrary horizontal motions are also available - \h is quite analogous to \ v,
except that the default scale factor is ems instead of line spaces. As an exam­
ple,

\h' -O.li'

causes a backwards motion of a tenth of an inch. As a practical matter, con­
sider printing the mathematical symbol '> > '. The default spacing is too wide,
so neqn replaces this by

> \h' -O.3m' >

to produce > > .

4-11

NROFF TUTORIAL

Frequently \h is used with the 'width function' \ w to generate motions equal to
the width of some character string. The construction

\w'thing'

is a number equal to the width of 'thing' in machine units (1/432 inch). All
nroff computations are ultimately done in these units. To move horizontally the
width of an 'x', we can say

\h'\w'x'u'

As we mentioned above, the default scale factor for all horizontal dimensions is
m, ems, so here we must have the u for machine units, or the motion produced
will be far too large. nroff is quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As an example of this kind of construction, it is possible to bold face type
through overstriking a character with a slight offset. To embolden the word
"bold", for example, you could say

bold\h' - \w'bold'u'\h'lu' .sp

That is, put out 'bold', move left by the width of 'bold', move right 1 unit, and
print 'bold' again. (Of course there is a way to avoid typing that much input
for each bold word, which we will discuss in Section 11.)

There are also several special-purpose nroff commands for local motion. There
is \(blank), which is an unpaddable character the width of a character.
'Unpaddable' means that it will never be widened or split across a line by line
justification and filling. Another one is \&, which does nothing and has zero
width. This is useful, for example, in entering a text line which would other­
wise begin with a '.'.

The command \0, used like

\0 "set of characters"

causes (up to 9) characters to be overstruck, centered on the widest. This is
nice for accents, as in

4-12

NROFF TUTORIAL

syst\o He\(ga Hme t\o He\(aa '1\0 He\(aa Hphonique

which makes

systeme teIephonique

The accents are \(ga and \(aa, or \' and \'; remember that each is just one
character to nroff.

nroff also provides a convenient facility for drawing horizontal and vertical lines
of arbitrary length with arbitrary characters. \1' 1i' draws a line one inch long,
like this: . The length can be followed by the character to use
if the _ isn't appropriate; \1' O.Si.' draws a half-inch line of dots:
The construction \L is entirely analogous, except that it draws a vertical line
instead of horizontal.

4.6 STRINGS
Obviously if a paper contains a large number of occurrences of a grave accent
over a letter 'e', typing \oHe\'H for each e would be a great nuisance.

Fortunately, nroff provides a way in which you can store an arbitrary collection
of text in a 'string', and thereafter use the string name as a shorthand for its
contents. Strings are one of several nroff mechanisms whose judicious use lets
you type a document with less effort and organize it so that extensive format
changes can be made with few editing changes.

A reference to a string is replaced by whatever text the string was defined as.
Strings are defined with the command .ds. The line

defines the string e to have the value e

String names may be either one or two characters long, and are referred to by
*x for one character names or *(xy for two character names. Thus to get
telephone, given the definition of the string e as above, we can say
t\ *el\ *ephone.

4-13

NROFF TUTORIAL

If a string must begin with blanks, define it as

.ds xx II text

The double quote signals the beginning of the definition. There is no trailing
quote; the end of the line terminates the string.

A string may actually be several lines long; if oroff encounters a \ at the end of
any line, it is thrown away and the next line added to the current one. So you
can make a long string simply by ending each line but the last with a backslash:

.ds xx this \
is a very \
loog striog

Strings may be defined in terms of other strings, or even in terms of themselves.

4.7 INTRODUCTION TO MACROS
Before we can go much further in oroff, we need to learn a bit about the macro
facility. In its simplest form, a macro is just a shorthand notation quite similar
to a string. Suppose we want every paragraph to start in exactly the same way
- with a space and a temporary indent of two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse these into one shorthand line, so
that an oroff 'command' like

.PP

would be treated by oroff exactly as

.sp

.ti. +2m

.PP is called a macro. The way we tell oroff what .PP means is to define it
with the .de command:

4-14

.de pp

.sp

.ti +2m

NROFF TUTORIAL

The first line names the macro (we used '.PP' for 'paragraph', and upper case
so it wouldn't conflict with any name that nroff might already know). The last
line.. marks the end of the definition. In between is the text, which is simply
inserted whenever nroff sees the 'command' or macro call

.PP

A macro can contain any mixture of text and formatting commands.

The definition of .PP has to precede its first use; undefined macros are simply
ignored. Macro names are restricted to one or two characters.

Using macros for commonly occurring sequences of commands is critically
important. Not only does it save typing, but it makes later changes much eas­
ier. Suppose we decide that the paragraph indent is too small, the vertical space
is much too big, and roman font should be forced. Instead of changing the
whole document, we need only change the definition of .PP to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

and the change takes effect everywhere we used .PP.

\" is an nroff command that causes the rest of the line to be ignored. We use
it here to add comments to the macro definition (a wise idea once definitions
get complicated).

As another example of macros, consider these two which start and end a block
of offset, unfilled text, like most of the examples in this paper:

4-15

NROFF TUTORIAL

.de BS \" start indented

.sp

.nf

.in +O.3i

.de BE \" end indented

.sp

.fi

.in -O.3i

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

block

block

by the commands .BS and .BE, and it will come out as it did above. Notice
that we indented by .in + O.3i instead of .in O.3i. This way we can nest our
uses of .BS and .BE to get blocks within blocks.

If later on we decide that the indent should be O.5i, then it is only necessary to
change the definitions of .BS and .BE, not the whole paper.

4.8 TITLES, PAGES, AND NUMBERING
This is an area where things get tougher, because nothing is done for you auto­
matically. Of necessity, some of this section is a cookbook, to be copied liter­
ally until you get some experience.

Suppose you want a title at the top of each page, saying just

left top center top right top-

You have to say what the actual title is (easy); when to print it (easy enough);
and what to do at and around the title line (harder). Taking these in reverse
order, first we define a macro .NP (for 'new page') to process titles and the like
at the end of one page and the beginning of the next:

4-16

.de NP
'bp
'sp O.Si
.tl 'left top'ceDter top'right top'
, sp O.3i

NROFF TUTORIAL

To make sure we're at the top of a page, we issue a 'begin page' command ' bp,
which causes a skip to top-of-page (we'll explain the ' shortly). Then we space
down half an inch, print the title (the use of .tl should be self explanatory;
later, we will discuss parameterizing the titles), space another 0.3 inches, and
we're done.

To ask for .NP at the bottom of each page, we have to say something like
'when the text is within an inch of the bottom of the page, start the processing
for a new page.' This is done with a 'when' command .wh:

.wh -Ii NP

(No '.' is used before NP; this is simply the name of a macro, not a macro
call.) The minus sign means 'measure up from the bottom of the page', so
'-Ii' means 'one inch from the bottom'.

The .wh command appears in the input outside the definition of .NP; typically
the input would be

.de NP

.wh -Ii NP

Now what happens? As text is actually being output, Droff keeps track of its
vertical position on the page, and after a line is printed within one inch from
the bottom, the .NP macro is activated. (In the jargon, the .wh command sets
a trap at the specified place, which is 'sprung' when that point is passed.) .NP
causes a skip to the top of the next page (that's what the 'bp was for), then
prints the title with the appropriate margins.

4-17

NROFF TUTORIAL

Why I bp and I sp instead of .bp and .sp? The answer is that .sp and .bp, like
several other commands, cause a break to take place. That is, all the input text
collected but not yet printed is flushed out as soon as possible, and the next
input line is guaranteed to start a new line of output. If we had used .sp or .bp
in the .NP macro, this would cause a break in the middle of the current output
line when a new page is started. The effect would be to print the left-over part
of that line at the top of the page, followed by the next input line on a new
output line. This is not what we want. Using I (an apostrophe) instead of .
for a command tells nroff that no break is to take place - the output line cur­
rently being filled should not be forced out before the space or new page.

Note that since the apostrophe character has special meaning to nroff, you
should be careful not to begin a line of plain text with it (for example, when
placing an item in single-quotes), or nroff will try to interpret it as a no-break
command. If you begin a single-quoted item with a grave accent (which looks
like an open single-quote), and close it with the apostrophe (a close single­
quote), you will tend to avoid this problem.

The list of commands that cause a break is short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you use a. or a
really need a break, add a .br command at the appropriate place.

If you

One other thing to beware of - if you're changing fonts a lot, you may find
that if you cross a page boundary in an unexpected font, your titles come out in
that font instead of what you intended. Furthermore, the length of a title is
independent of the current line length, so titles will come out at the default
length of 6.5 inches unless you change it, which is done with the .It command.

There are several ways to fix the problems of fonts in titles. For the simplest
applications, we can change .NP to set the proper font for the title, then restore
the previous values, like this:

4-18

.de NP
'bp
'sp O.Si
.ft R \" set title font to roman
.It 6i \" and length to 6 inches
.tl 'Ieft'center'right'
.ft P \" and to previous font
'sp O.3i

NROFF TUTORIAL

This version of .NP does not work if the fields in the .tI command contain font
changes. To cope with this situation, we need nroff's 'environment' mechanism,
which we will discuss in the section "Environments."

To get a footer at the bottom of a page, you can modify .NP so it does some
processing before the 'bp command, or split the job into a footer macro
invoked at the bottom margin and a header macro invoked at the top of the
page. These variations are left as exercises.

Output page numbers are computed automatically as each page is produced
(starting at 1), but no numbers are printed unless you ask for them explicitly.
To get page numbers printed, include the character % in the .t1 line at the posi­
tion where you want the number to appear. For example

.tI - % -

centers the page number inside hyphens. You can set the page number at any
time with either .bp n, which immediately starts a new page numbered n, or
with .pn n, which sets the page number for the next page but doesn't cause a
skip to the new page. Again, .bp + n sets the page number to n more than its
current value; .bp means .bp + 1.

4-19

NROFF TUTORIAL

4.9 NUMBER REGISTERS AND ARITHMETIC
nroff has a facility for doing arithmetic, and for defining and using variables
with numeric values, called number registers. Number registers, like strings and
macros, can be useful in setting up a document so it is easy to change later.
And of course they serve for any sort of arithmetic computation.

Like strings, number registers have one or two character names. They are set
by the .nr command, and are referenced anywhere by \nx (one character name)
or \n(xy (two character name).

There are quite a few pre-defined number registers maintained by nroff, among
them % for the current page number; nl for the current vertical position on the
page; dy, mo and yr for the current day, month and year; and .s and .f for the
current size and font. (The font is a number from 1 to 4.) Any of these can be
used in computations like any other register, but some, like .s and .f, cannot be
changed with .Dr.

As an example of the use of number registers, in the -ms macro package, most
significant parameters are defined in terms of the values of a handful of number
registers. These include the vertical spacing, and the line and title lengths. To
set the vertical spacing for the following paragraphs, for example, a user may
say

.Dr VS 11

The paragraph macro .PP is defined (roughly) as follows:

.de PP

.vs \\n(VSp

.ft R

.sp 0.5v

.ti +3m

\" reset spacing
\" font
\" half a line

This sets the font to Roman and the line spacing to whatever value is stored in
the number register VS.

4-20

NROFF TUTORIAL

Why are there two backslashes? This is the eternal problem of how to quote a
quote. When oroff originally reads the macro definition, it peels off one back­
slash to see what's coming next. To ensure that another is left in the definition
when the macro is used, we have to put in two backslashes in the definition. If
only one backslash is used, the vertical spacing will be frozen at the time the
macro is defined, not when it is used.

Protection by an extra layer of backslashes is only needed for \0, \ *. \$ (which
we haven't come to yet), and \ itself. Things like \s, \f, \h, \v, and so on do
not need an extra backslash, since they are converted by oroff to an internal
code immediately upon being seen. The general rule is that registers used in
macros must have the double backslash; otherwise, the register value interpo­
lated is the value when the macro is first read and defined, not (as you probably
want) the value when the macro is used. If you're not careful, this can be the
source of many hard-to-find bugs.

Arithmetic expressions can appear anywhere that a number is expected. As a
trivial example,

.or VS \ \o(VS - 2

decrements VS by 2. Expressions can use the arithmetic operators +, -, *, /,
0/0 (mod), the relational operators >, > =, <, < =, =, and ! = (not equal),
and parentheses.

Although the arithmetic we have done so far has been straightforward, more
complicated things are somewhat tricky. First, number registers hold only inte­
gers. oroff arithmetic uses truncating integer division, just like Fortran. Sec­
ond, in the absence of parentheses, evaluation is done left-to-right without any
operator precedence (including relational operators). Thus

7*-4+3/13

becomes '- l' . Number registers can occur anywhere in an expression, and so
can scale indicators like p, i, m, and so on (but no spaces). Although integer
division causes truncation,each. number and its scale indicator is converted to
machine units (1/432 inch) before any arithmetic is done, so lil2u evaluates to
O.5i correctly.

4-21

NROFF TUTORIAL

The scale indicator u often has to appear when you wouldn't expect it in
particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

.11 7/2i

would seem obvious enough - 3.5 inches. Sorry. Remember that the default
units for horizontal parameters like .11 are ems. That's really '7 ems I 2
inches', and when translated into machine units, it becomes zero. How about

.11 7i12

Sorry, still no good - the '2' is '2 ems', so '7i12' is small, although not zero.
You must use

.11 7i12u

So again, a safe rule is to attach a scale indicator to every number, even con­
stants.

For arithmetic done within a .nr command, there is no implication of horizontal
or vertical dimension, so the default units are 'units', and 7i12 and 7i12u mean
the same thing. Thus

.nr II 7i12

.11 \ \nOlu

does just what you want, so long as you don't forget the u on the .11 command.

4.10 MACROS WITH ARGUMENTS
The next step is to define macros that can change from one use to the next
according to parameters supplied as arguments. To make this work, we need
two things: first, when we define the macro, we have to indicate that some parts
of it will be provided as arguments when the macro is called. Then when the
macro is called we have to provide actual arguments to be plugged into the defi­
nition.

4-22

NROFF TUTORIAL

Let us illustrate by defining a macro .SM that will print its argument in italics
(i.e. underlined). That is, the macro call

.SM NROFF

will produce NROFF.

The definition of .SM is

.de SM
\fI\ \$I\fP

Within a macro definition, the symbol \\$0 refers to the nth argument that the
macro was called with. Thus \ \$1 is the string to be placed in the italic font
when .SM is called.

As a slightly more complicated version, the following definition of .SM permits
optional second and third arguments that will be printed in the regular font:

.de SM
\ \$3\fI\ \$1 \fR\ \$2

Arguments not proyided when the macro is called are treated as empty, so

.SM NROFF),

produces NROFF), while

.SM NROFF). (

produces (NROFF). It is convenient to reverse the order of arguments because
trailing punctuation is much more common than leading.

By the way, the number of arguments with which a macro was called is avail­
able in number register .$.

4-23

NROFF TUTORIAL

The following macro .BD can be used to make bold-face text. It combines hor­
izontal motions, width computations, and argument rearrangement.

.de BD
\&\ \$3\f1\ \$I\b' - \w'\ \$I'u + lu'\ \$I\fP\ \$2

The \b and \w commands need no extra backslash, as we discussed above. The
\& is there in case the argument begins with a period.

Two backslashes are needed with the \ \$n commands, though, to protect one of
them when the macro is being defined. Perhaps a second example will make
this clearer. Consider a macro called .SH which produces section headings
rather like those in this paper, with the section numbered automatically, and the
titles in bold in a smaller size. The use is

.SH "Section title ... "

(If the argument to a macro is to contain blanks, then it must be surrounded by
double quotes, unlike a string, where only one leading quote is permitted.)

Here is the definition of the .SH macro:

.Dr SH 0 \" initialize section number

.de SH

.sp O.3i

.ft B

.nr SH \ \n(SH + 1 \" increment number
\ \n(SH. \ \$1 \" number. title
.sp O.3i
.ft R

The section number is kept in number register SH, which is incremented each
time just before it is used. (A number register may have the same name as a
macro without conflict but a string may not.)

4-24

NROFF TUTORIAL

We used \ \n(SH instead of \n(SH. If we had used \n(SH, we would get the
value of the register at the time the macro was defined, not at the time it was
used. If that's what you want, fine, but not here.

As an example that does not involve numbers, recall our .NP macro which had
a

.t1 'left' center' right'

We could make these into parameters by using instead

.tl '\ \ *(LT'\ \ *(CT'\ \ *(RT'

so the title comes from three strings called LT, CT and RT. If these are empty,
then the title will be a blank line. Normally CT would be set with something
like

.ds CT - 0J0 -

to give just the page number between hyphens, but a user could supply private
definitions for any of the strings.

4.11 CONDITIONALS

Suppose we want the .SH macro to leave two extra inches of space just before
section 1, but nowhere else. The cleanest way to do that is to test inside the
.SH macro whether the section number is 1, and add some space if it is. The
.if command provides the conditional test that we can add just before the head­
ing line is output:

.if \ \n(SH = 1 .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, the rest of the
line is treated as if it were text - here a command. If the condition is false, or
zero or negative, the rest of the line is skipped.

4-25

NROFF TUTORIAL

It is possible to do more than one command if a condition is true. Suppose
several operations are to be done before section 1. One possibility is to define a
macro .SI and invoke it if we are about to do section 1 (as determined by an
.if) .

. de SI
processing for section 1 ---..

. de SH

.if \ \n(SH = 1 .SI

An alternate way is to use the extended form of the .if, like this:

.if \ \n(SH = 1 \{--- processing
for section 1 ----\}

The braces \{ and \} must occur in the positions shown or you will get unex­
pected extra lines in your output. nrolf also provides an 'if-else' construction,
which we will not go into here.

A condition can be negated by preceding it with !; we get the same effect as
above (but less clearly) by using

.if !\ \n(SH> 1 .SI

There are a handful of other conditions that can be tested with .if. For exam­
ple, is the current page even or odd?

.if e .tl "even page title"

.if 0 .tl "odd page title"

gives facing pages different titles when used inside an appropriate new page
macro.

4-26

NROFF TUTORIAL

Finally, string comparisons may be made in an .if .

.if 'stringl'string2' stuff

does 'stuff' if string] is the same as string2. The character separating the
strings can be anything reasonable that is not contained in either string. The
strings themselves can reference strings with \ *, arguments with \$, and so on.

4.12 ENVIRONMENTS

As we mentioned, there is a potential problem when going across a page bound­
ary: a parameter like font for a page title may well be different than that in
effect in the text when the page boundary occurs. nroff provides a very general
way to deal with this and similar situations. There are three 'environments',
each of which has independently settable versions of many of the parameters
associated with processing. The parameters include line spacing, font, line and
title lengths, fill/no fill mode, tab stops, and even partially collected lines. Thus
the titling problem may be readily solved by processing the main text in one
environment and titles in a separate one with its own suitable parameters.

The command .ev n shifts to environment n; n must be 0, 1 or 2. The com­
mand .ev with no argument returns to the previous environment. Environment
names are maintained in a stack, so calls for different environments may be
nested and unwound consistently.

Suppose we say that the main text is processed in environment 0, which is where
nroff begins by default. Then we can modify the new page macro .NP to proc­
ess titles in environment 1 like this:

.de NP

.ev 1

.It 6i

.ft R

\" shift to new environment
\" set parameters here

... any other processing

.ev \" return to previous environment

4-27

NROFF TUTORIAL

It is also possible to initialize the parameters for an environment outside the
.NP macro, but the version shown keeps all the processing in one place and is
thus easier to understand and change.

4.13 DIVERSIONS
There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most
obvious example: the text of the footnote usually appears in the input well
before the place on the page where it is to be printed is reached. In fact, the
place where it is output normally depends on how big it is, which implies that
there must be a way to process the footnote at least enough to decide its size
without printing it.

nroff provides a mechanism called a diversion for doing this processing. Any
part of the output may be diverted into a macro instead of being printed, and
then at some convenient time the macro may be put back into the input.

The command .di xy begins a diversion - all subsequent output is collected
into the macro xy until the command .di with no arguments is encountered.
This terminates the diversion. The processed text is available at any time there­
after, simply by giving the command

.xy

The vertical size of the last finished diversion is contained in the built-in number
register du.

As a simple example, suppose we want to implement a 'keep-release' operation,
so that text between the commands .KS and .KE will not be split across a page
boundary (as for a figure or table). Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find out how big it is. Then when
a .KE is read, we decide whether the diverted text will fit on the current page,
and print it either there if it fits, or at the top of the next page if it doesn't.
So:

4-28

NROFF TUTORIAL

.de KS \H start keep

.br \H start fresh line

.ev 1 \H collect in new environment

.fi \H make it filled text

.di XX \H collect in XX

.de KE \ H end keep

.br \ H get last partial line

.di \ H end diversion

.if \ \n(dn > = \ \n(.t .bp \ H bp if doesn't fit

.nf \ H bring it back in no-fill

.XX \H text

.ev \ H return to normal environment

Recall that number register nl is the current position on the output page. Since
output was being diverted, this remains at its value when the diversion started.
dn is the amount of text in the diversion; .t (another built-in register) is the dis­
tance to the next trap, which we assume is at the bottom margin of the page.
If the'diversion is large enough to go past the trap, the .if is satisfied, and a .bp

> is issued. In either case, the diverted output is then brought back with .XX. It
is essential to bring it back in no-fill mode so nroff will do no further process­
ing on it.

This is not the most general keep-release, nor is it robust in the face of all con­
ceivable inputs, but it would require more space than we have here to write it in
full generality. This section is not intended to teach everything about diver­
sions, but to sketch out enough that you can read existing macro packages with
some comprehension.

4-29

NROFF TUTORIAL

APPENDIX A:

Character Set

The following characters have special four-character names. They will come out
more or less successfully, depending on your terminal. To get the one on the
left, type the four-character name on the right. For an explanation of what
each character is, see table 2 of the NROFF USER'S MANUAL, chapter 5.

ff \(ff fi \(fi fl \(fl ffi \(Fi
ill \(Fl \(ru \(em Y<I \(14
Yz \(12 % \(34 ¢ \(ct \(hy
© \(co 0 \(de t \(dg \(fm
® \(rg • \(bu 0 \(sq * \(**

+ \(pl \(mi X \(mu \(di
= \(eq - \(= = ~ \(> = :s; \« =
=I=- \(! = ± \(+- -, \(no / \(sl

\(ap =:: \('= oc \(pt V' \(gr
\(-> \(<- \(ua ! \(da
\(is iJ \(pd 00 \(if .J \(sr

C \(sb ~ \(sp U \(cu n \(ca
£:: \(ib 2 \(ip E \(mo /' \(es

\(aa \(ga 0 \(ci @ \(bs
§ \(sc t \(dd ,. \(lh rtF' \(rh

r \(It I \(rt I \(lc l \(rc

l \(lb j \(rb L \(If J \(rf

~ \(lk }- \(rk I \(bv s \(ts
-

I \(br I \(or \(ul \(rn

4-30

NROFF TUTORIAL

These four characters also have two-character names. The' is the apostrophe
on terminals; the' is the other quote mark.

\' \' \-

For greek, precede the roman letter by \(* to get the corresponding greek; for
example, \(*a is a.

abgdezyh
a{3'Yo E t"1J(J

k I
L X ~

m nco p r stu f x q w
p, /I~07rpaTvf/>x1/;w

ABGDEZYHIKLMNCOP RS TUF XQW
A B r ~ E Z Y elK A M N Z 0 IT P ~ T T ~ X ~ 0

4-31

CONTENTS

5.1 INTRODUCTION .. 5-1

5.2 USAGE .. 5-1

5.3 SUMMARY AND INDEX ... 5-3

5.4 GENERAL EXPLANATION 5-14

5.5 FONTS ... 5-17

5.6 PAGE CONTROL .. 5-17

5.7 TEXT FILLING, ADJUSTING, AND CENTERING 5-19

5.8 VERTICAL SPACING .. 5-21

5.9 LINE LENGTH AND INDENTING 5-23

5.10 MACROS, STRINGS, DIVERSION, AND

POSITION TRAPS ... 5-24

5.11 NUMBER REGISTERS ... 5-29

5.12 TABS, LEADERS, AND FIELDS 5-31

5.13 INPUT/OUTPUT CONVENTIONS AND

CHARACTER TRANSLATIONS 5-33

5.14 LOCAL MOTIONS AND THE WIDTH FUNCTION 5-36

5.15 OVERSTRIKE, BRACKET, LINE-DRAWING,

AND ZERO-WIDTH FUNCTIONS 5-37

5.16 HYPHENATION .. 5-39

5.17 THREE PART TITLES ... 5-40

5.18 OUTPUT LINE NUMBERING 5-41

5.19 CONDITIONAL ACCEPTANCE OF INPUT 5-42

5.20 ENVIRONMENT SWITCHING 5-44

5.21 INSERTIONS FROM THE STANDARD INPUT 5-45

5.22 INPUT/OUTPUT FILE SWITCHING 5-46

5.23 MISCELLANEOUS .. 5-46

5.24 OUTPUT AND ERROR MESSAGES 5-47

TABLE I ... 5-49

Chapter 5

NROFF USER'S MANUAL

5.1 INTRODUCTION
Nroff is a text processor that formats text for typewriter-like terminals. It
accepts lines of text interspersed with lines of format control information and
formats the text into a printable, paginated document having a user-designed
style. Nroff offers unusual freedom in document styling, including: arbitrary
style headers and footers; arbitrary style footnotes; multiple automatic sequence
numbering for paragraphs, sections, etc; multiple column output; dynamic font
and point-size control; arbitrary horizontal and vertical local motions at any
point; and a family of automatic over striking , bracket construction, and line
drawing functions.

Conditional input is provided that enables the user to embed input expressly
destined for either program. Nroff can prepare output directly for a variety of
terminal types and is capable of utilizing the full resolution of each terminal.

5.2 USAGE
The general form of invoking Nroff at the command level is

nroff options files

where options represents any of a number of option arguments and files repre­
sents the list of files containing the document to be formatted. An argument
consisting of a single minus (-) is taken to be a file name corresponding to the
standard input. If no file names are given input is taken from the standard
input. The options, which may appear in any order so long as they appear
before the files, are:

5-1

NROFF USER'S MANUAL

Option

-olist

-oN

-sN

-mname

-raN

-h

-i

-q

-Tname

-e

-z

Effect

Print only pages whose page numbers appear in list, which consists
of comma-separated numbers and number ranges. A number
range has the form N - M and means pages N through M; a initial
- N means from the beginning to page N; and a final N - means
from N to the end.

Number first generated page N.

Stop every N pages. Nroff will halt prior to every N pages
(default N = 1) to allow paper loading or changing, and will resume
upon receipt of a newline.

Prepends the macro file /usr/lib/tmac.name to the input files.

Register a (one-character) is set to N.

Output tabs used during horizontal spacing to speed output as well
as reduce output byte count. Device tab setting assumed to be
every 8 nominal character widths. The default settings of input
(logical) tabs is also initialized to every 8 nominal character widths.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

Specifies the name of the output terminal type. Currently defined
names are 37 for the (default) Model 37 Teletype@ , tn300 for the
GE TermiNet 300 (or any terminal without half-line capabilities),
300S for the DASI-300S, 300 for the DASI-300, and 450 for the
DASI-450 (Diablo Hyterm).

Produce equally-spaced words in adjusted lines, using full terminal
resolution.

Efficiently suppresses formatted output. Only message output will
occur.

Each option is invoked as a separate argument; for example,

nroff -04,8-JO -T300S -mabc fileJ file2

5-2

NROFF USER'S MANUAL

requests formatting of pages 4, 8, 9, and 10 of a document contained in the
files named filel and file2, specifies the output terminal as a DASI-300S, and
invokes the macro package abc.

Various pre- and post-processors are available for use with Nroff. These
include the equation preprocessors neqn and the table-construction preprocessor
tbl A reverse-line postprocessor col is available for multiple-column Nroff out­
put on terminals without reverse-line ability; col expects the Model 37 Teletype
escape sequences that Nroff produces by default.

The remainder of this chapter consists of: a Summary and Index, and a Refer­
ence section.

5.3 SUMMARY AND INDEX

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT NOTES# EXPLANATION

5.3.1 Font and Character Size Control

.ssN 12136 em ignored E Space-character size set to
N/36em.t

.csFNM off P Constant character space (width)
mode (font F). t

.bdFN off P Embolden font F by N -1 units. t

.bd SF N off P Embolden Special Font when cur-
rent font is F. t

.ft F Roman previous E Change to font F = x, xx, or
1-4. Also \fx, \f(xx, \fN.

Notes are explained at the end of 5.3.17

5-3

NROFF USER'S MANUAL

.fpNF R,I,B,S ignored

5.3.2 Page Control

.pl±N 11 in 11 in v

.bp ±N N=l Bt,v

. pn ±N N=l ignored

.po ±N 0;26127 in previous v

.neN N=lV D,v

• mkR none internal D

.rt ±N none internal D,v

5.3.3 Text Filling, Adjusting, and Centering

. br B

.fi fill B,E

.nf fill B,E

t No effect in Nroff.

Font named F mounted on physi­
cal position 1 sNs4.

Page length.

Eject current page; next page
number N.

Next page number N .

Page offset.

Need N vertical space (V = verti­
cal spacing) .

Mark current vertical place in
register R.

Return (upward only) to marked
vertical place.

Break .

Fill output lines.

No filling or adjusting of output
lines.

t The use of " ' " as control character (instead of ".") suppresses the

break function.

5-4

NROFF USER'S MANUAL

.ad c adj,both adjust E Adjust output lines with mode c.

.na adjust E No output line adjusting.

.ce N off N=l B,E Center following N input text
lines.

5.3.4 Vertical Spacing

.vs N 1I6in;12pts previous E,p Vertical base line spacing (V).

.Is N N=l previous E Output N-l V s after each text
output line.

.spN N=lV B,v Space vertical distance N in either
direction.

.sv N N=lV v Save vertical distance N.

. os Output saved vertical distance .

.ns space D Turn no-space mode. on.

.rs D Restore spacing; turn no-space
mode off.

5.3.5 Line Length and Indenting

.11 ±N 6.5in previous E,m Line length.

.in ±N N=O previous B,E,m Indent.

.ti ±N ignored B,E,m Temporary indent.

5-5

NROFF USER'S MANUAL

5.3.6 Macros, Strings, Diversion, and Position Traps

.de xx yy ·yY=··

. am xx yy .yy= .•

.ds xx string - ignored

. as xx string - ignored

.rm xx ignored

.rn xx yy ignored

. di xx end

. da xx end

.wh N xx

• ch xx N

.dt N xx off

. it N xx off

. emxx none none

5.3.7 Number Registers

.nr R±NM -

D

D

v

v

D,v

E

u

5-6

Define or redefine macro xx; end
at call of yy.

Append to a macro .

Define a string xx containing
string .

Append string to string xx.

Remove request, macro, or
string.

Rename request, macro, or string
xx to yy .

Divert output to macro xx.

Divert and append to xx .

Set location trap; negative is
w.r.t. page bottom.

Change trap location .

Set a diversion trap.

Set an input-line count trap .

End macro is xx .

Define and set number register R;
auto-increment by M.

.af R c arabic

. rr R

5.3.8 Tabs, Leaders, and Fields

.ta Nt ... 0.8; 0.5in none

.tc c none none

.Ic c none

.fc a b off off

E,rn

E

E

NROFF USER'S MANUAL

Assign format to register R
(c= 1, i, I, a, A).

Remove register R .

Tab settings; left type, unless
t=R(right), C(centered).

Tab repetition character.

Leader repetition character .

Set field delimiter a and pad
character b.

5.3.9 Input and Output Conventions and Character Translations

.ec c \

.eo on

• Ig N -;on

. ul N off

• cuN off

.uf F Italic

. cc c

.c2 c

.tr abcd.... none

\

on

N=l E

N=l E

Italic

E

E

0

5-7

Set escape character.

Turn off escape character mech­
anism.

Ligature mode on if N> O .

Underline N input lines .

Continuous underline .

Underline font set to F (to be
switched to by ul).

Set control character to c .

Set no break control character to
c.

Translate a to b, etc. on output.

NROFF USER'S MANUAL

5.3.10 Hyphenation

.nh hyphenate E

.hy N hyphenate hyphenate E

.he c \ 070 \% E

. hw wordl... ignored

5.3.11 Three Part Titles

• tI 'left' center' right'

.pc c % off

.It ±N 6.5in previous E,m

5.3.12 Output Line Numbering

.nm ±NMS/- off E

.nnN N=l E

5.3.13 Conditional Acceptance of Input

.if c anything

.if !c anything

.if N anything u

5-8

No hyphenation.

Hyphenate; N = mode.

Hyphenation indicator character
c.

Exception words .

Three part title .

Page number character.

Length of title.

Number mode on or off, set
parameters.

Do not number next N lines.

If condition c true, accept any­
thing as input, for multi-line use
\ {any thing \}.

If condition c false, accept any­
thing.

If expression N > 0, accept any­
thing.

.if !N anything u

. if 'string]' string2 'anything -

.if ! 'string 1 'string2 ' anything -

.ie c anything u

• el anything

5.3.14 Environment Switching

.ev N N=O previous

5.3.15 Insertions from the Standard Input

.rdprompt prompt = BEL -

.ex

5.3.16 Input/Output File Switching

. so filename

.nx filename end-of-file

.pi program

5.3.17 Miscellaneous

.mc eN off E,m

5-9

NROFF USER'S MANUAL

If expression N ::5 0, accept any­
thing .

If string1 identical to string2,
accept anything.

If string 1 not identical to string2,
accept anything.

If portion of if-else; all above
forms (like if).

Else portion of if-else .

Environment switched (push
down).

Read insertion.

Exit from Nroff.

Switch source file (push down) .

Next file.

Pipe output to program.

Set margin character c and sepa­
ration N.

NROFF USER'S MANUAL

.tm sIring newline Print sIring on terminal (UNIX
standard message output).

. ig YY ·YY=·· Ignore till call of yy .

.pm I all Print macro names and sizes; if I
present, print only total of sizes.

.fI B Flush output buffer.

Notes-
B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
P Mode must be stilI or again in effect at the time of physical output.
v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ad 3 de 6 ft 1 mc 17 pI 2 sv 4
af 7 di 6 hc 10 mk 2 pm 17 ta 8
am 6 ds 6 hw 10 na 3 pn 3 tc 8
as 6 dt 6 hy 10 ne 2 po 3 ti 5
bd ec 9 ie 13 nf 3 ps 2 tI 11
bp 2 el 13 if 13 nh 10 rd 15 tm 17
br 3 em 6 ig 17 nm 12 rm 6 tr 9
c2 9 eo 9 in 5 nn 12 rn 6 uf 9
cc 9 ev 14 it 6 nr 7 rr 7 I 9
ce 3 ex 15 Ie 8 ns 4 urs 4 vs 4
ch 6 fc 8 Ig 9 nx 16 rt 2 wh 6
cs 1 fi 3 II 5 os 4 so 16
cu 9 ft 17 Is 4 pc 11 sp 4
da 6 fp 1 It 11 pi 16 ss

5-10

NROFF USER'S MANUAL

5.3.18 Escape Sequences for Characters, Indicators, and Functions

Sequence

\\
\e
\'
\'
\-
\.
\(space)
\0
\
\A

\&
\!
\"
\$N
\OJo
\(xx
*x, *(xx
\a
\b'abc ... '
\c
\d
\fx, \f(xx, \fN
\h'N'
\Iex
\1 'Nc'
\L'Nc'
\nx,\n(xx
\o'abc ... '
\p
\r
\sN, \s±.N
\t
\u

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
, (acute accent); equivalent to \(aa
, (grave accent); equivalent to \(ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in Nrofl)
1/12 em half-narrow space character (zero width in Nrofl)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument lsNs9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1!2em vertical motion (112 line in Nrofl)
Change to font named x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in Nrofl)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1!2em vertical motion (1/2 line in Nrofl)

5-11

NROFF USER'S MANUAL

\v'N'
\w'string'
\x'N'
\zc
\{
\}
\(newline)
\X

Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \ \, \., \", \$, \ *, \a, \n, \t, and \(newline) are interpre­
ted in copy mode.

5-12

NROFF USER'S MANUAL

5.3.19 Predefined General Number Registers

Register
Name Description

"10 Current page number.
ct Character type (set by width function).
dl Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.
dw Current day of the week (1-7).
dy Current day of the month (1-31).
bp Current horizontal place on input line.
In Output line number.
mo Current month (1-12).
nl Vertical position of last printed text base-line.
sb Depth of string below base line (generated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.

5.3.20 Predefined Read-Only Number Registers

Register
Name Description

.$ Number of arguments available at the current macro level.

.A Set to 1 .

. R Available horizontal resolution in basic units .

. P Contains the current line spacing parameter .

. P Set to 1 if the current page is being printed, and zero otherwise .
• T Set to 1 if - T option used;
.V Available vertical resolution in basic units .
. a Post-line extra line-space most recently utilized using \x' N' .
. c Number of lines read from current input file .
. d Current vertical place in current diversion; equal to nl, if no diversion .
. f Current font as physical quadrant (1-4) .
. j A number representing the current adjustment mode and type.

5-13

NROFF USER'S MANUAL

.k Contains the horizontal size of the text portion of the current partially
collected output line .

. h Text base-line high-water mark on current page or diversion .

. i Current indent.

.I Current line length .
• n Length of text portion on previous output line .
• 0 Current page offset.
.p Current page length .
. s Current point size .
• t Distance to the next trap .
. u Equal to 1 in fill mode and 0 innofill mode .
. v Current vertical line spacing .
• w Width of previous character .
• x Reserved version-dependent register .
• y Reserved version-dependent register.
.z Name of current diversion.

5.4 GENERAL EXPLANATION

5.4.1 Form of Input

Input consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing.
Control lines begin with a control character - normally . (period) or ' (acute
accent) - followed by a one or two character name that specifies a basic
request or the substitution of a user-defined macro in place of the control line.
The control character ' suppresses the break function - the forced output of a
.partially filled line - caused by certain requests. The control character may be
separated from the request/macro name by white space (spaces and/or tabs) for
esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of
an escape character, normally \. For example, the function \nR causes the
interpolation of the contents of the number register R in place of the function;
here R is either a single character name as in \n.x, or left-parenthesis-introduced,
two-character name as in \n(xx.

5-14

NROFF USER'S MANUAL

5.4.2 Formatter and Device Resolution

Nroff internally uses 240 units/inch, corresponding to the least common multiple
of the horizontal and vertical resolutions of various typewriter-like output
devices. Nroff rounds numerical input to the actual resolution of the output
device indicated by the - T option (default Model 37 Teletype).

5.4.3 Numerical Parameter Input

Nroff accepts numerical input with the appended scale indicators shown in the
following table, where S is the current type size in points, V is the current verti­
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale
Indicator Number of basic units

Inch
c Centimeter 240 X 50/127
P Pica = 1/6 inch 240/6
m Em = S points C
n En = Em/2
p Point = 1/72 inch 240/72
u Basic unit 1
v Vertical line space V

none Default, see below

In Nroff, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1/10 and 1/12 inch. Actual char­
acter widths in Nroff need not be all the same and constructed characters such
as - > (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions II, in, ti, ta, It, po, mc, \h, and \1;
Vs for the vertically-oriented requests and functions pi, wh, ch, dt, sp, sv, ne,
rt, \v, \x, and \L; p for the vs request; and u for the requests nr, if, and ie.
All other requests ignore any scale indicators. When a number register contain­
ing an already appropriately scaled number is interpolated to provide numerical
input, the unit scale indicator u may need to be appended to prevent an addi­
tional inappropriate default scaling. The number, N, may be specified in
decimal-fraction form but the parameter finally stored is rounded to an integer
number of basic units.

5-15

NROFF USER'S MANUAL

The absolute position indicator - may be prepended to a number N to generate
the distance to the vertical or horizontal place N. For vertically-oriented
requests and functions, -N becomes the distance in basic units from the current
vertical place on the page or in a diversion to the the vertical place N. For all
other requests and functions, -N becomes the distance from the current horizon­
tal place on the input line to the horizontal place N. For example,

.sp - 3.2c

will space in the required direction to 3.2 centimeters from tile top of the page.

5.4.4 Numerical Expressious

Wherever numerical input is expected an expression involving parentheses, the
arithmetic operators +, -, /, *, 070 (mod), and the logical operators <, >,
< =, > =, = (or = =), & (and), : (or) may be used. Except where controlled
by parentheses, evaluation of expressions is left-to-right; there is no operator
precedence. In the case of certain requests, an initial + or ~ is stripped and
interpreted as an increment or decrement indicator respectively. In the presence
of default scaling, the desired scale indicator must be attached to every number
in an expression for which the desired and default scaling differ. For example,
if the number register x contains 2 and the current point size is 10, then

.11 (4.25i + \nxP + 3) /2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

5.4.5 Notation

Numerical parameters are indicated in this manual in two ways. ±N means
that the argument may take the forms N, + N, or - N and that the correspond­
ing effect is to set the affected parameter to N, to increment it by N, or to dec­
rement it by N respectively. Plain N means that an initial algebraic sign is not
an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For exam­
ple, most requests expect to set parameters to non-negative values; exceptions
are sp, wh, ch, or, and if. The requests ft, po, vs, Is, II, in, and It restore the
previous parameter value in the absence of an argument.

5-16

NROFF USER'S MANUAL

Single character arguments are indicated by single lower case letters and one/
two character arguments are indicated by a pair of lower case letters. Character
string arguments are indicated by multi-character mnemonics.

5.5 FONTS
The default mounted fonts are Roman (R), Italic (I), (underline) and Bold (B).

5.6 PAGE CONTROL

Top and bottom margins are not automatically provided; it is conventional to
define two macros and to set traps for them at vertical positions 0 (top) and
- N (N from the bottom). A pseudo-page transition onto the first page occurs
either when the first break occurs or when the first non-diverted text processing
occurs. Arrangements for a trap to occur at the top of the first page must be
completed before this transition. In the following, references to the current
diversion mean that the mechanism being described works during both ordinary
and diverted output (the former considered as the top diversion level).

The physical limitations on Nroff output are output-device dependent.

REQUEST INITIAL

FORM VALUE

.pl ±N 11 in

.bp ±N N=1

IF NO

ARGUMENT NOTES EXPLANATION

11 in v Page length set to ±N. The
internal limitation is about 136
inches. The current page length
is available in the .p register.

B* ,v Begin page. The current page is
ejected and a new page is begun.
If ±N is given, the new page
number will be ±N. Also see
request os.

* The use of " , " as control character (instead of ".") suppresses the

break function.

5-17

NROFF USER'S MANUAL

.pn ±N N=l ignored

.po ±N o previous v

.neN N=lV n,V

.rnk R none internal n

.rt ±N none internal n,V

5-18

Page number. The next page
(when it occurs) will have the
page number ±N. A pn must
occur before the initial pseudo­
page transition to effect the page
number of the first page. The
current page number is in the 0J0
register.
Page offset. The current left
margin is set to ±N. The maxi­
mum (line-length) + (page-offset)
is about 7.54 inches. The current
page offset is available in the .0

register.
Need N vertical space. If the dis­
tance, D, to the next trap posi­
tion is less than N, a forward
vertical space of size D occurs,
which will spring the trap. If
there are no remaining traps on
the page, D is the distance to the
bottom of the page. If D < V,
another line could still be output
and spring the trap. In a diver­
sion, D is the distance to the
diversion trap, if any, or is very
large.
Mark the current vertical place in
an internal register (both associ­
ated with the current diversion
level), or in register R, if given.
See rt request.
Return upward only to a marked
vertical place in the current diver­
sion. If ±N (w.r.t. current
place) is given, the place is ±N
from the top of the page or
diversion or, if N is absent, to a
place marked by a previous rnk.

NROFF USER'S MANUAL

Note that the sp request may be
used in all cases instead of rt by
spacing to the absolute place
stored in an explicit register; e. g.
using the sequence .mk Rsp
l\oRu.

5.7 TEXT FILLING, ADJUSTING, AND CENTERING

5.7.1 Filling and Adjusting

Normally, words are collected from input text lines and assembled into an out­
put text line until some word doesn't fit. An attempt is then made hyphenate
the word in effort to assemble a part of it into the output line. The spaces
between the words on the output line are then increased to spread out the line
to the current line length minus any current indent. A word is any string of
characters delimited by the space character or the beginning/end of the input
line. Any adjacent pair of words that must be kept together (neither split across
output lines nor spread apart in the adjustment process) can be tied together by
separating them with the unpaddable space character "\ " (backslash-space).
In Nroff, they are normally nonuniform because of quantization to character­
size spaces; however, the command line option -e causes uniform spacing with
full .output device resolution. Filling, adjustment, and hyphenation can all be
prevented or controlled. The text length on the last line output is available in
the .n register, and. text base-line position on the page for this line is in the nl
register. The text base-line high-water mark Oowest place) on the current page
is in the .h .register.

An input text line ending with ., ?, or ! is taken to be the end of a sentence,
and an additional space character is automatically provided during filling. Mul­
tiple inter-word space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a
break at the end of the word and have the resulting output line spread out to
fill the current line length.

5-19

NROFF USER'S MANUAL

A text input line that happens to begin with a control character can be made to
not look like a control line by prefacing it with the non-printing, zero-width
filler character \&. Still another way is to specify output translation of some
convenient character into the control character using tr.

5.7.2 Interrupted Text

The copying of a input line in nofill (non-fill) mode can be interrupted by termi­
nating the partial line with a \c. The next encountered input text line will be
considered to be a continuation of the same line of input text. Similarly, a
word within filled text may be interrupted by terminating the word (and line)
with \c; the next encountered text will be taken as a continuation of the inter­
rupted word. If the intervening control lines cause a break, any partial line will
be forced out along with any partial word.

REQUEST INITIAL

FORM

.br

.ft

.nf

.ad c

VALUE

fill on

fill on

adj,both

IF NO

ARGUMENT NOTES EXPLANATION

B

B,E

B,E

adjust E

5-20

Break. The filling of the line
currently being collected is
stopped and the line is output
without adjustment. Text lines
beginning with space characters
and empty text lines (blank lines)
also cause a break.
Fill subsequent output lines. The
register . u is 1 in fill mode and 0
in nofill mode.
Nofill. Subsequent output lines
are neither filled nor adjusted.
Input text lines are copied
directly to output lines without
regard for the current line length.
Line adjustment is begun. If fill
mode is not on, adjustment will
be deferred until fill mode is back
on. If the type indicator c is pre­
sent, the adjustment type is
changed as shown in the follow­
ing table.

Indicator

.na adjust

.ceN off

I
r
c

b or n
absent

N=l

5.8 VERTICAL SPACING

5.8.1 Base-line Spacing

NROFF USER'S MANUAL

Adjust Type
adjust left margin only
adjust right margin only
center
adjust both margins
unchanged

E

B,E

Noadjust. Adjustment is turned
off; the right margin will be rag­
ged. The adjustment type for ad
is not changed. Output line
filling still occurs if fill mode is
on.
Center the next N input text lines
within the current (line-length
minus indent). If N = 0, any
residual count is cleared. A
break occurs after each of the N
input lines. If the input line is
too long, it will be left adjusted.

The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request. The current V is available in the .v register. Multiple­
V line separation (e. g. double spacing) may be requested with Is.

5.8.2 Extra Line-space

If a word contains a vertically tall construct requiring the output line containing
it to have extra vertical space before and/or after it, the extra-line-space func­
tion \x' N ' can be imbedded in or attached to that word. In this and other
functions having a pair of delimiters around their parameter (here '), the
delimiter choice is arbitrary, except that it can't look like the continuation of a
number expression for N. If N is negative, the output line containing the word
will be preceded by N extra vertical space; if N is positive, the output line

5-21

NROFF USER'S MANUAL

containing the word will be followed by N extra vertical space. If successive
requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.8.3 Blocks of Vertical Space

A block of vertical space is ordinarily requested using sp, which honors the no­
space mode and which does not space past a trap. A contiguous block of verti­
cal space may be reserved using sv.

REQUEST INITIAL

FORM

.vsN

.lsN

.sp N

.sv N

VALUE

1/6in

N= 1

IF NO

ARGUMENT NOTES EXPLANATION

previous E,p

previous E

N=IV B,v

N=IV v

5-22

Set vertical baseline spacing size
V. Transient extra vertical space
available with \x' N' (see above).
Line spacing set to ±N. N-l
V s (blank lines) are appended to
each output text line. Appended
blank lines are omitted, if the
text or previous appended blank
line reached a trap position.
Space vertically in either direc­
tion. If N is negative, the
motion is backward (upward) and
is limited to the distance to the
top of the page. Forward (down­
ward) motion is truncated to the
distance to the nearest trap. If
the no-space mode is on, no
spacing occurs (see os, and rs
below).
Save a contiguous vertical block
of size N. If the distance to the
next trap is greater than N, N
vertical space is output. No­
space mode has no effect. If this
distance is less than N, no verti­
cal space is immediately output,
but N is remembered for later

. os

.ns space D

.rs space D

Blank text line.

NROFF USER'S MANUAL

output (see os). Subsequent sv
requests will overwrite any still
remembered N.
Output saved vertical space .
No-space mode has no effect.
Used to finally output a block of
vertical space requested by an
earlier sv request.
No-space mode turned on. When
on, the no-space mode inhibits sp
requests and bp requests without
a next. page number. The no­
space mode is turned off when a
line of output occurs, or with rs.
Restore spacing. The no-space
mode is turned off.
B Causes a break and output of
a blank line exactly like sp 1.

5.9 LINE LENGTH AND INDENTING

The maximum line length for fill mode may be set with II. The indent may be
set with in; an indent applicable to only the next output line may be set with ti.
The line length includes indent space but not page offset space. The line-length
minus the indent is the basis for centering with ceo The effect of II, in, or ti is
delayed, if a partially collected line exists, until after that line is output. In fill
mode the length of text on an output line is less than or equal to the line length
minus the indent. The current line length and indent are available in registers .I
and .i respectively. The length of three-part titles produced by tI is indepen­
dently set by It.

5-23

NROFF USER'S MANUAL

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT

.11 ±N 6.5in previous

.in ±N N=O previous

.ti ±N ignored

NOTES

E,m
B,E,m

B,E,m

EXPLANATION

Line length is set to ±N.
Indent is set to ±N. The
The indent is prepended to each
output line.
Temporary indent. The next
output text line will be indented a
distance ± N with respect to the
current indent. The resulting
total indent may not be negative.
The current indent is not
changed.

5.10 MACROS, STRINGS, DIVERSION, AND POSITION TRAPS

5.10.1 Macros and Strings

A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline charac­
ter, that may be interpolated by name at any point. Request, macro, and string
names share the same name list. Macro and string names may be one or two
characters long and may usurp previously defined request, macro, or string
names. Any of these entities may be renamed with rn or removed with rm.
Macros are created by de and di, and appended to by am and da; di and da
cause normal output to be stored in a macro. Strings are created by ds and
appended to by as. A macro is invoked in the same way as a request; a control
line beginning .xx will interpolate the contents of macro xx. The remainder of
the line may contain up to nine arguments. The strings x and xx are interpo­
lated at any desired point with *x and *(xx respectively. String references
and macro invocations may be nested.

5-24

NROFF USER'S MANUAL

5.10.2 Copy Mode Input Interpretation

During the definition and extension of strings and macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

• The contents of number registers indicated by \n are interpolated.

• Strings indicated by * are interpolated.

• Arguments indicated by \$ are interpolated.

• Concealed newlines indicated by \(newline) are eliminated.

• Comments indicated by \ H are eliminated.

• \t and \a are interpreted as ASCII horizontal tab and SOH respectively.

• \ \ is interpreted as \.

• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since
\ \ maps into a \, \ \n will copy as \n which will be interpreted as a number reg­
ister indicator when the macro or string is reread.

5.10.3 Arguments

When a macro is invoked by name, the remainder of the line is taken to contain
up to nine arguments. The argument separator is the space character, and argu­
ments may be surrounded by double-quotes to permit imbedded space charac­
ters. Pairs of double-quotes may be imbedded in double-quoted arguments to
represent a single double-quote. If the desired arguments won't fit on a line, a
concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is completely
read and the previous level is restored. A macro's own arguments can be inter­
polated at any point within the macro with \$N, which interpolates the Nth
argument (1 sN s9). If an invoked argument doesn't exist, a null string
results. For example, the macro xx may be defined by

5-25

NROFF USER'S MANUAL

.de xx \ "begin definition
Today is \ \$1 the \ \$2.

\ "end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The num­
ber of currently available arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation.
Because string referencing is implemented as a input-level push down, no argu­
ments are available from within a string. No arguments are available within a
trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct refer­
ence to a long string (interpolated at copy time) and it is advisable to conceal
string references (with an extra \) to delay interpolation until argument refer­
ence time.

5.10.4 Diversions

Processed output may be diverted into a macro for purposes such as footnote
processing or determining the horizontal and vertical size of some text for con­
ditional changing of pages or columns. A single diversion trap may be set at a
specified vertical position. The number registers dn and dl respectively contain
the vertical and horizontal size of the most recently ended diversion. Processed
text that is diverted into a macro retains the vertical size of each of its lines
when reread in nofill mode regardless of the current V. Constant-spaced (cs) or
emboldened (bd) text that is diverted can be reread correctly only if these modes
are again or still in effect at reread time. One way to do this is to imbed in the
diversion the appropriate cs or bd requests with the transparent mechanism.

5-26

NROFF USER'S MANUAL

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top non-diversion level may be thought of
as the Oth diversion level). These are the diversion trap and associated macro,
no-space mode, the internally-saved marked place (see mk and rt), the current
vertical place (.d register), the current high-water text base-line (.h register), and
the current diversion name (.z register).

5.10.5 Traps

Three types of trap mechanisms are available-a page trap, a diversion trap,
and an input-line-count trap. Macro-invocation traps may be planted using wh
at any page position including the top. This trap position may be changed
using ch. Trap positions at or below the bottom of the page have no effect
unless or until moved to within the page or rendered effective by an increase in
page length. Two traps may be planted at the same position only by first plant­
ing them at different positions and then moving one of the traps; the first
planted trap will conceal the second unless and until the first one is moved. If
the first one is moved back, it again conceals the second trap. The macro asso­
ciated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bot­
tom of a page springs the top-of-page trap, if any, provided there is a next
page. The distance to the next trap position is available in the .t register; if
there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using
dt. The.t register works in a diversion; if there is no subsequent trap a large
distance is returned. For a description of input-line-count traps, see it below.

REQUEST INITIAL

FORM VALUE

• de xx yy

IF NO

ARGUMENT NOTES EXPLANATION

.yy= ..

5-27

Define or redefine the macro xx .
The contents of the macro begin
on the next input line. Input
lines are copied in copy mode
until the definition is terminated
by a line beginning with .yy,
whereupon the macro yy is
called. In the absence of yy, the

NROFF USER'S MANUAL

.am xx yy .yy= ..

.ds xx string - ignored

. as xx string - ignored

.rm xx ignored

.rn xx yy ignored

.di xx end

.daxx end

.whNxx

D

D

v

5-28

definition is terminated by a line
beginning with " .. ". A macro
may contain de requests provided
the terminating macros differ or
the contained definition termina­
tor is concealed. " .. " can be
concealed as \ \ .. which will copy
as \ .. and be reread as " .. ".
Append to macro (append ver­
sion of de).
Define a string xx containing
string. Any initial double-quote
in string is stripped off to permit
initial blanks .
Append string to string xx
(append version of ds).
Remove request, macro, or
string. The name xx is removed
from the name list and any
related storage space is freed.
Subsequent references will have
no effect.
Rename request, macro, or string
xx to yy. If yy exists, it is first
removed.
Divert output to macro xx. Nor­
mal text processing occurs during
diversion except that page
offsetting is not done. The diver­
sion ends when the request di or
da is encountered without an
argument; extraneous requests of
this type should not appear when
nested diversions are being used.
Divert, appending to xx (append
version of di).
Install a trap to invoke xx at
page position N; a negative N
will be interpreted with respect to

.ch xx N

.dt N xx off

.it N xx off

.emxx none none

5.11 NUMBER REGISTERS

v

D,v

E

NROFF USER'S MANUAL

the page bottom. Any macro
previously planted at N is
replaced by xx. A zero N refers
to the top of a page. In the
absence of xx, the first found
trap at N, if any, is removed.
Change the trap position for
macro xx to be N. In the
absence of N, the trap, if any, is
removed.
Install a diversion trap at posi­
tion N in the current diversion to
invoke macro xx. Another dt
will redefine the diversion trap.
If no arguments are given, the
diversion trap is removed.
Set an input-line-count trap to
invoke the macro xx after N lines
of text input have been read
(control or request lines don't
count). The text may be in-line
text or text interpolated by inline
or trap-invoked macros.
The macro xx will be invoked
when all input has ended. The
effect is the same as if the con­
tents of xx had been at the end
of the last file processed.

A variety of parameters are available to the user as predefined, named number
registers (see Summary and Index). In addition, the user may define his own
named registers. Register names are one or two characters long and do not
conflict with request, macro, or string names. Except for certain predefined
read-only registers, a number register can be read, written, automatically incre­
mented or decremented, and interpolated into the input in a variety of formats.
One common use of user-defined registers is to automatically number sections,

5-29

NROFF USER'S MANUAL

paragraphs, lines, etc. A number register may be used any time numerical input
is expected or desired and may be used in numerical expressions.

Number registers are created and modified using nr, which specifies the name,
numerical value, and the auto-increment size. Registers are also modified, if
accessed with an auto-incrementing sequence. If the registers x and xx both
contain N and have the auto-increment size M, the following access sequences
have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n + (xx xx incremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal
with leading zeros, lower-case Roman, upper-case Roman, lower-case sequential
alphabetic, or upper-case sequential alphabetic according to the format specified
byaf.

REQUEST INITIAL

FORM VALUE

.nrR±NM -

.af R c arabic

IF NO

ARGUMENT NOTES EXPLANATION

u

5-30

The number register R is
assigned the value ±N with
respect to the previous value, if
any. The increment for auto­
incrementing is set to M.
Assign format c to register R.
The available formats are:

.rr R

NROFF USER'S MANUAL

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

O,i,ii,iii,iv, v, ...
I O,I,II,III,IV,V, ...
a O,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

ignored

An arabic format having N digits
specifies a field width of N digits
(example 2 above). The read­
only registers and the width func­
tion are always arabic.
Remove register R. If many reg­
isters are being created dynami­
cally, it may become necessary to
remove no longer used registers
to recapture internal storage
space for newer registers.

5.12 TABS, LEADERS, AND FIELDS

5.12.1 Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH (hereafter known as
the leader character) can both be used to generate either horizontal motion or a
string of repeated characters. The length of the generated entity is governed by
internal tab stops specifiable with tao The default difference is that tabs generate
motion and leaders generate a string of periods; tc and Ie offer the choice of
repeated character or motion. There are three types of internal tab stops-left
adjusting, right adjusting, and centering. In the following table: D is the dis­
tance from the current position on the input line (where a tab or leader was
found) to the next tab stop; next-string consists of the input characters follow­
ing the tab (or leader) up to the next tab (or leader) or end of line; and W is
the width of next-string.

5-31

NROFF USER'S MANUAL

Tab
type
Left

Right
Centered

Length of motion or
repeated characters

D
D-W

D-W/2

Location of
next-string

Following D
Right adjusted within D
Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated
character string cannot be. Repeated character strings contain an integer num­
ber of characters, and any residual distance is prepended as motion. Tabs or
leaders found after the last tab stop are ignored, but may be used as next-string
terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a
non-interpreted tab and leader respectively, and are equivalent to actual tabs
and leaders in copy mode.

5.12.2 Fields

A field is contained between a pair of field delimiter characters, and consists of
sub-strings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next
tab stop. The difference between the total length of all the sub-strings and the
field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding is allowed to be nega­
tive. For example, if the field delimiter is # and the padding indicator is ~,

rxxx~right # specifies a right-adjusted string with the string xxx centered in the
remaining space.

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT NOTES EXPLANATION

.ta Nt ... 0.8; 0.5in none E,rn Set tab stops and types. t = R,
right adjusting; t = C, centering; t
absent, left adjusting. Nroff
every 0.8in. The stop values are
separated by spaces, and a value
preceded by + is treated as an
increment to the previous stop
value.

5-32

.tc c none none

.Ic c none

.fc a b off off

E

E

NROFF USER'S MANUAL

The tab repetition character
becomes c, or is removed specify­
ing motion.
The leader repetition character
becomes c, or is removed specify­
ing motion.
The field delimiter is set to a; the
padding indicator is set to the
space character or to b, if given.
In the absence of arguments the
field mechanism is turned off.

5.13 INPUT/OUTPUT CONVENTIONS AND
CHARACTER TRANSLATIONS

5.13.1 Input Character Translations

The ASCII control characters horizontal tab, SOH, and backspace are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ,
ACK, and BEL are accepted, and may be used as delimiters or translated into a
graphic with tr. All others are ignored.

The escape character \ introduces escape sequences-causes the following char­
acter to mean another character, or to indicate some function. A complete list
of such sequences is given in the Summary and Index. \ should not be con­
fused with the ASCII control character ESC of the same name. The escape
character \ can be input with the sequence \ \. The escape character can be
changed with ec, and all that has been said about the default \ becomes true for
the new escape character. \e can be used to print whatever the current escape
character is. If necessary or convenient, the escape mechanism may be turned
off with eo, and restored with ec.

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT NOTES EXPLANATION

.ec c \ \ Set escape character to \, or to c,
if given.

.eo on Turn escape mechanism off.

5-33

NROFF USER'S MANUAL

5.13.2 Ligatures

.Five ligatures are available in the NR character set - fi, fI, If, fIi, and m. They
may be input by \(fi, \(fI, \(If, \(Fi, and \(FI respectively. The ligature mode is
normally on in Troff, and automatically invokes ligatures during input.

REQUEST INITIAL

FORM

.Ig N

VALUE

off

IF NO

ARGUMENT NOTES EXPLANATION

on Ligature mode is turned on if N
is absent or non-zero, and turned
off if N=O. If N=2, only the
two-character ligatures are auto­
matically invoked.

5.13.3 Backspacing, Underlining, Overstriking, etc.

Unless in copy mode, the ASCII backspace character is replaced by a backward
horizontal motion having the width of the space character.

Nroff automatically underlines characters in the underline font, specifiable with
uf. In addition to ft and \fF, the underline font may be selected by ul and cu.
Underlining is restricted to an output-device-dependent subset of reasonable
characters.

REQUEST INITIAL

FORM

.ul N

VALUE

off

lFNO

ARGUMENT NOTES EXPLANATION

N=l E

5-34

Underline in Nroff the next N
input text lines. Actually, switch
to underline font, saving the cur­
rent font for later restoration;
other font changes within the
span of a ul will take effect, but
the restoration will undo the last
change. Output generated by tl
is affected by the font change,
but does not decrement N. If
N > 1, there is the risk that a
trap interpolated macro may pro­
vide text lines within the span;

.cuN off N=l

.uf F Italic Italic

5.13.4 Control Characters

E

NROFF USER'S MANUAL

environment switching can pre­
vent this.
A variant of ul that causes every
character to be underlined in
Nroff.
Underline font set to F. In
Nroff, F may not be on position
1 (initially Roman).

Both the control character . and the no-break control character ' may be
changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the change, and particularly of any trap-invoked
macros.

REQUEST INITIAL

FORM VALUE

.cc e

.c2 e

IF NO

ARGUMENT NOTES EXPLANATION

E

E

The basic control character is set
to e, or reset to ".".
The nobreak control character is
set to e, or reset to "'''.

5.13.5 Output translation

One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place character. The graphic
translation occurs at the moment of output (including diversion).

REQUEST INITIAL

FORM VALUE

. tr abed.... none

lFNO

ARGUMENT NOTES EXPLANATION

o Translate a into b, e into d, etc .

5-35

H an odd number of characters is
given, the last one will be
mapped into the space character.
To be consistent, a particular
translation must stay in effect
from input to output time.

NROFF USER'S MANUAL

5.13.6 Transparent Throughput

An input line beginning with a \! is read in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware of the line's
presence. This mechanism may be used to pass control information to a post­
processor or to imbed control lines in a macro created by a diversion.

5.13.7 Comments and Concealed Newlines

An uncomfortably long input line that must stay one line (e. g. a string
definition, or nofilled text) can be split into many physical lines by ending all
but the last one with the escape \. The sequence \(newline) is always ignored­
except in a comment. Comments may be imbedded at the end of any line by
prefacing them with \". The newline at the end of a comment cannot be con­
cealed. A line beginning with \ II will appear as a blank line and behave like .sp
1; a comment can be on a line by itself by beginning the line with • \ ".

5.14 LOCAL MOTIONS AND THE WIDTH FUNCTION

5.14.1 Local Motions

The functions \v'N' and \h'N' can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive directions are
rightward and downward. A local motion is one contained within a line. To
avoid unexpected vertical dislocations, it is necessary that the net vertical local
motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are sum­
marized in the following table.

Vertical Effect in Horizontal Effect in
Local Motion Nroff Local Motion

\vN' Move distance N \hN' Move distance N
\u Y2 line up \(space) Unpaddable space-size space
\d Y2 line down \0 Digit-size space
\r 1 line up

5-36

NROFF USER'S MANUAL

5.14.2 Width Function

The width function \w'string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not
affect the current environment. For example, .ti - \w'l. 'u could be used to
temporarily indent leftward a distance equal to the size of the string "1. ".

The width function also sets three number registers. The registers st and sb are
set respectively to the highest and lowest extent of string relative to the baseline;
then, for example, the total height of the string is \n(stu - \n(sbu. 0 means that
all of the characters in string were short lower case characters without descend­
ers (like e); 1 means that at least one character has a descender (like y); 2 means
that at least one character is tall (like H); and 3 means that both tall characters
and characters with descenders are present.

5.14.3 Mark Horizontal Place

The escape sequence \kx will cause the current horizontal position in the input
line to be stored in register x. As an example, the construction \kxword\h'l
\nxu + 2u'word will embolden word by backing up to almost its beginning and
overprinting it, resulting in word.

5.15 OVERSTRIKE, BRACKET, LINE-DRAWING,
AND ZERO-WIDTH FUNCTIONS

5.15.1 Overstriking

Automatically centered overstriking of up to nine characters is provided by the
overstrike function \0' string' . The characters in string overprinted with centers
aligned; the total width is that of the widest character. string should not con­
tain local vertical motion. An example is \0' e\" produces e.

5.15.2 Zero-width Characters

The function \zc will output c without spacing over it, and can be used to pro­
duce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce
~, and \(br\z\(rn\(ul\(br will produce the smallest possible constructed box D.

5-37

NROFF USER'S MANUAL

5.15.3 Large Brackets

The Special Mathematical Font contains a number of bracket construction pieces
(r l I j ~ ~ I L J il) that can be combined into various bracket styles.
The function \b'string' may be used to pile up vertically the characters in string
(the first character on top and the last at the bottom); the characters are verti­
cally separated by 1 line and the total pile is centered 112 line above the current
baseline. For example, \b' \(Ic\(If 'E\ \b' \(rc\(rf' \x' -0.5m' \x'O.5m' pro-

duces [E] .

5.15.4 Line Drawing

The function \ I' Nc' will draw a string of repeated c's towards the right for a
distance N. (\1 is \(lower case L). If c looks like a continuation of an expres­
sion for N, it may insulated from N with a \&. If c is not specified, the _
(underline character) is used. If N is negative, a backward horizontal motion of
size N is made be/ore drawing the string. Any space resulting from N !(size of
c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that a~ designed to be connected such as baseline-rule _,
underrule_, and root-en ,the remainder space is covered by over-lapping. If
N is less than the width of c, a single c is centered on a distance N. As an
example, a macro to underscore a string can be written

.de us
\\$1\1' O\(ul'

or one to draw a box around a string

.de bx
\(br\ \\$1\ \(br\ I' O\(rn'\ I' O\(ul'

such that

.ul "underlined words"

and

.bx "words in a box"

5-38

NROFF USER'S MANUAL

yield underljned words and I words in a box I.

The function \L' Nc' will draw a vertical line consisting of the (optional) char­
acter c stacked vertically 1 line apart, with the first two characters overlapped, if
necessary, to form a continuous line. The default character is the box rule 1

(\(br); the other suitable character is the bold vertical 1 (\(bv). The line is
begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn
upward. After the line is drawn no compensating motions are made; the instan­
taneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination
to produce large boxes. The zero-width box-rule and the Y2-em wide underrule
were designed to form corners when using i-em vertical spacings. For example
the macro

.de eb

.sp -1 \ "compensate for next automatic base-line spacing

.nf \ "avoid possibly overflowing word buffer
\b' - .5n'\L' I \ \nau -1'\1'\ \n(.lu + 1n\(ul'\L' - 1\ \nau + 1'\1' I Ou - .5n\(ul' \ "draw box
.fi

will draw a box around some text whose beginning vertical place was saved in
number register a (e. g. using .mk a) as done for this paragraph.

5.16 HYPHENATION

The automatic hyphenation may be switched off and on. When switched on
with hy, several variants may be set. A hyphenation indicator character may be
imbedded in a word to specify desired hyphenation points, or may be prepended
to suppress hyphenation. In addition, the user may specify a small exception
word list.

Only words that consist of a central alphabetic string surrounded by (usually
null) non-alphabetic strings are considered candidates for automatic hyphena­
tion. Words that were input containing hyphens (minus), em-dashes (\(em), or
hyphenation indicator characters-such as mother-in-Iaw-are always subject to
splitting after those characters, whether or not automatic hyphenation is on or
off.

5-39

NROFF USER'S MANUAL

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT NOTES EXPLANATION

.Dh hyphenate E Automatic hyphenation is turned
off.

.hyN on,N=1 on,N=1

.he c \% \ 070

.hw word] ... ignored

5.17 THREE PART TITLES

E

E

Automatic hyphenation is turned
on for N~ 1, or off for N= O.
If N = 2, last lines (ones that will
cause a trap) are not hyphenated.
For N = 4 and 8, the last and
first two characters respectively of
a word are not split off. These
values are additive; i. e. N == 14
will invoke all three restrictions.
Hyphenation indicator character
is set to c or to the default \ %.
The indicator does not appear in
the output.
Specify hyphenation points in
words with imbedded minus
signs. Versions of a word with
terminal s are implied; i.e. dig - it
implies dig - its. This list is
examined initially and after each
sux stripping. The space avail­
able is small-about 128 charac­
ters.

The titling function tl provides for automatic placement of three fields at the
left, center, and right of a line with a title-length specifiable with It. tl may be
used anywhere, and is independent of the normal text collecting process. A
common use is in header and footer macros.

5-40

NROFF USER'S MANUAL

REQUEST INITIAL lFNO

FORM VALUE ARGUMENT NOTES EXPLANATION

• tl 'left' center' right' The strings left, center, and right
are respectively left-adjusted, cen-
tered, and right-adjusted in the
current title-length. Any of the
strings may be empty, and over-
lapping is permitted. If the
page-number character (initially
070) is found within any of the
fields it is replaced by the current
page number having the format
assigned to register 070. Any
character may be used as the
string delimiter.

.pe c 070 off The page number character is set
to c, or removed. The page
number register remains 070.

.It ±N 6.5in previous E,m Length of title set to ± N. The
line-length and the title-length are
independent. Indents do not
apply to titles; page-offsets do.

5.18 OUTPUT LINE NUMBERING
Automatic sequence numbering of output lines may be requested with om.
When in effect, a three-digit, arabic number plus a digit-space is prepended

3 to output text lines. The text lines are thus offset by four digit-spaces, and
otherwise retain their line length; a reduction in line length may be desired
to keep the right margin aligned with an earlier margin. Blank lines, other

6 vertical spaces, and lines generated by tl are not numbered. Numbering can
be temporarily suspended with 00, or with an .om followed by a later .om
+ O. In addition, a line number indent I, and the number-text separation S

9 may be specified in digit-spaces. Further, it can be specified that only those
line numbers that are multiples of some number M are to be printed (the
others will appear as blank number fields).

5-41

NROFF USER'S MANUAL

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT NOTES EXPLANATION

• om ±NMSI off E Line number mode . If ±N is
given, line numbering is turned
on, and the next output line
numbered is numbered ±N.
Default values are M = 1, S = 1,
and 1= o. Parameters corre-
sponding to missing arguments
are unaffected; a non-numeric
argument is considered missing.
In the absence of all arguments,
numbering is turned off; the next
line number is preserved for pos-
sible further use in number regis-
ter 10.

.00 N N=1 E The next N text output lines are
not numbered.

12 As an example, the paragraph portions of this section are numbered with
M = 3: .om 1 3 was placed at the beginning; .om was placed at the end of
the first paragraph; and .om + 0 was placed in front of this paragraph; and

15 .om finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .om + 5 5 x
3 which turns on numbering with the line number of the next line to be 5

18 greater than the last numbered line, with M = 5, with spacing S untouched,
and with the indent I set to 3.

5.19 CONDITIONAL ACCEPTANCE OF INPUT
In the following, c is a one-character, built-in condition name, ! signifies not, N
is a numerical expression, string] and string2 are strings delimited by any non­
blank, non-numeric character not in the strings, and anything represents what is
conditionally accepted.

5-42

NROFF USER'S MANUAL

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT NOTES EXPLANATION

.if e anything

.if !e anything

.if N anything u

.if !N anything u

.if 'string]' string2 'Ianything

.if ! 'string] 'string2' anything

.ie e anything u

• el anything

If condition e true, accept any­
thing as input; in multi-line case
use \{anything\}.
If condition e false, accept any­
thing.
If expression N > 0, accept any-
thing.
If expression N ::5 0, accept any­
thing .
If string] identical to string2,
accept anything.
If string] not identical to string2,
accept anything.
If portion of if-else; all above
forms (like if).
Else portion of if-else .

The built-in condition names are:

Condition
Name

o
e
n

True If
Current page number is odd
Current page number is even
Formatter is Nroff

If the co~dition e is true, or if the number N is greater than zero, or if the
strings compare identically (induding motions and character size and font), any­
thing is accepted as input. If a ! precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped
over. The anything can be either a single input line (text, macro, or whatever)
or a number of input lines. In the multi-line case, the first line must begin with
a left delimiter \{ and the last line must end with a right delimiter \}.

5-43

NROFF USER'S MANUAL

The request ie (if-else) is identical to if except that the acceptance state is
remembered. A subsequent and matching el (else) request then uses the reverse
sense of that state. ie - el pairs may be nested.

Some examples are:

.if e • tl ' Even Page Ofo'"

which outputs a title if the page number is even; and

.ie \n% > 1 \[\
'sp O.5i
.tl ' Page %'"
'sp 1.2i \}
.el .sp 2.5i

which treats page 1 differently from other pages ..

5.20 ENVIRONMENT SWITCHING
A number of the parameters that control the. text processing are gathered
together into an environment, which can be switched by the user. The environ­
ment parameters are those associated with requests noting E in their NOTES
column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion­
oriented parameters, number registers, and macro and string definitions. All
environments are initialized with default parameter values.

REQUEST INITIAL

FORM

.evN

VALUE

N=O

lFNO

ARGUMENT NOTES EXPLANATION

previous Environment switched to environ­
ment Os.Ns.2. Switching is

5-44

done in push-down fashion so
that restoring a previous environ­
ment must be done with .ev
rather than specific reference.

NROFF USER'S MANUAL

5.21 INSERTIONS FROM THE STANDARD INPUT
The input can be temporarily switched to the system standard input with rd,
which will switch back when two new lines in a row are found (the extra blank
line is not used). This mechanism is intended for insertions in form-letter-like
documentation. On UNIX, the standard input can be the user's keyboard, a
pipe, or a file.

REQUES1' INITIAL

FORM VALUE

.rd prompt -

.ex

IF NO

ARGUMENT NOTES EXPLANATION

prompt = BEL - Read insertion from the standard
input until two new lines in a row
are found. If the standard input
is the user's keyboard, prompt
(or a BEL) is written onto the
user's terminal. rd behaves like a
macro, and arguments may be
placed after prompt.
Exit from Nroff. Text processing
is terminated exactly as if all
input had ended.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option - q will turn off the echoing
of keyboard input and prompt only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the
insertions for all the copies in one file to be used as the standard input, and
causing the file containing the letter to reinvoke itself using nx; the process
would ultimately be ended by an ex in the insertion file.

5-45

NROFF USER'S MANUAL

5.22 INPUT/OUTPUT FILE SWITCHING

REQUEST INITIAL

FORM VALUE

.so filename

.ox filename

.pi program

IF NO

ARGUMENT NOTES EXPLANATION

end-of-file

Switch source file. The top input
(file reading) level is switched to
filename. The effect of an so
encountered in a macro is not felt
until the input level returns to the
file level. When the new file
ends, input is again taken from
the original file. so's may be
nested.
Next file is filename. The current
file is considered ended, and the
input is immediately switched to
filename.
Pipe output to program. This
request must occur before any
printing occurs. No arguments
are transmitted to program.

5.23 MISCELLANEOUS

REQUEST INITIAL

FORM VALUE

.me eN

IF NO

ARGUMENT NOTES EXPLANATION

off E,m

5-46

Specifies that a margin character
e appear a distance N to the right
of the right margin after each
non-empty text line (except those
produced by tl). If the output
line is too-long (as can happen in
nofill mode) the character will be
appended to the line. If N is not
given, the previous N is used; the

.tm string newline

.ig yy .yy= ..

.pm t all

.ft B

NROFF USER'S MANUAL

initial N is 0.2 inches. The mar­
gin character used with this para­
graph was a 12-point box-rule.
After skipping initial blanks,
string (rest of the line) is read in
copy mode and written on the
user's terminal.
Ignore input lines. ig behaves
exactly like de except that the
input is discarded. The input is
read in copy mode, and any
auto-incremented registers will be
affected.
Print macros. The names and
sizes of all of the defined macros
and strings are printed on the
user's terminal; if t is given, ohly
the total of the sizes is printed.
The sizes is given in blocks of
128 characters.
Flush output buffer. Used in
interactive debugging to force
output.

5.24 OUTPUT AND ERROR MESSAGES
The output from tm, pm, and the prompt from rd, as well as various error mes­
sages are written onto UNIX's standard message output. The latter is different
from the standard output, where Nroff formatted output goes. By default, both
are written onto the user's terminal, but they can be independently redirected.

Various error conditions may occur during the operation of Nroff. Certain less
serious errors having only local impact do not cause processing to terminate.
Two examples are word overflow, caused by a word that is too large to fit into
the word buffer (in fill mode), and line overflow, caused by an output line that
grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the
point of truncation with an asterisk *. The philosophy is to continue process­
ing, if possible, on the grounds that output useful for debugging may be

5-47

NROFF USER'S MANUAL

produced. If a serious error occurs, processing terminates, and an appropriate
message is printed. Examples are the inability to create, read, or write files, and
the exceeding of certain internal limits that make future output unlikely to be
useful.

5-48

Char

•
0

\4
Y2
%

NROFF USER'S MANUAL

Table I

Input Naming Conventions for " ',and
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Name Name Char Name Name

close quote fi \(fi fi
open quote fl \(fl fl

\(em 3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi

\(hy hyphen ill \(FI ill
\- current font minus 0 \(de degree
\(bu bullet t \(dg dagger
\(sq square \(fm foot mark
\(ru rule ¢ \(ct cent sign
\(14 1/4 ® \(rg registered
\(12 1/2 © \(co copyright
\(34 3/4

5-49

NROFF USER'S MANUAL

N on-ASCII characters and " " _, +, , -,

The ASCII characters @, #, ", " " <, >, \, {,), -, ~, and _ exist only on the
special font and are printed as a I-em space if that font is not mounted. The
following characters exist only on the special font except for the upper case
Greek letter names followed by t which are mapped into upper case English let­
ters in whatever font is mounted on font position one (default Times Roman).
The special math plus, minus, and equals are provided to insulate the appear­
ance of equations from the choice of standard fonts.

Char
+

=

* §

/
a
(3

'Y
a
E

s­
TJ
(j

Input
Name
\(pl
\(mi
\(eq
\(**
\(sc
\(aa
\(ga
\(ul
\(sl
\(*a
\(*b
\(*g
\(*d
\(*e
\(*z
\(*y
\(*h
\(*i

Character
Name
math plus
math minus
math equals
math star
section
acute accent
grave accent
underrule
slash (matching backslash)
alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota

5-50

Char
T
<I>

X
W
n
-J

x

Input
Name
\(*U
\(*F
\(*X
\(*Q
\(*W
\(sr
\(rn
\(> ==
\« =
\(= =
\(=
\(ap
\(! =
\(- >
\« -
\(ua
\(da
\(mu

Character
Name
Upsilon
Phi
Chit
Psi
Omega
square root
root en extender
>=
<=
identically equal
appro x =

approximates
not equal
right arrow
left arrow
up arrow
down arrow
multiply

NROFF USER'S MANUAL

\(*k kappa \(di divide
\(*1 lambda ± \(+- plus-minus
\(*m mu U \(cu cup (union)
\(*n nu n \(ca cap (intersection)
\(*c Xl C \(sb subset of
\(*0 omicron =:> \(sp superset of
\(*p pi ~ \(ib improper subset
\(*r rho ;2 \(ip improper superset
\(*s sigma 00 \(if infinity
\(ts terminal sigma a \(pd partial derivative
\(*t tau V \(gr gradient
\(*u upsilon -, \(no not
\(*f phi \(is integral sign
\(*x chi oc \(pt proportional to
\(*q psi !l) \(es empty set
\(*w omega E \(mo member of
\(*A Alphat I \(br box vertical rule
\(*B Betat t \(dd double dagger
\(*G Gamma -- \(rh right hand
\(*D Delta -- \(lh left hand
\(*E Epsilont @ \(bs Bell System logo
\(*Z Zetat I \(or or
\(*Y Etat 0 \(ci circle
\(*H Theta (\(It left top of big curly bracket
\(*1 Iotat l \(lb left bottom
\(*K Kappat I \(rt right top
\(*L Lambda j \(rb right bot
\(*M Mut ~ \(lk left center of big curly bracket
\(*N Nut ~ \(rk right center of big curly bracket
\(*C Xi I \(bv bold vertical
\(*0 Omicront L \(If left floor (left bottom of big
\(*P Pi square bracket)
\(*R Rhot J \(rf right floor (right bottom)
\(*S Sigma I \(lc left ceiling (left top)
\(*T Taut l \(rc right ceiling (right top)

5-51

Chapter 6

NROFF TERMINAL DESCRIPTOR TABLE FORMAT

The nroff terminal driver tables describe the various characteristics of possible
output terminals for nroff. The nroff flag - Ttname will cause the descriptor
table lusr/lib/term/tabtname to be used.

The terminal table source is a C language file containing a single structure. It is
compiled into a binary form through the cc(1) compiler (with the -c flag, since
no linking needs to be done). The format of the table is as follows:

struct [
int bset;
int breset;
int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;

6-1

NROFF TERMINAL DESCRIPTOR TABLE FORMAT

char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[2S6-32];
int ZZZ;

J;

1. The bset and breset numbers are used to set the terminal driver modes on
the output terminal. When the terminal is opened, an ioctl(2) is done to
set the terminal mode state. The state set is based on the previous mode
and the bset and breset values:

new mode = old mode & -breset I bset

The chapter VENIX PROGRAMMING in the Programming Guide
describes these modes in detail. You should probably set the terminal to
RAW mode to avoid unwanted conversions being done. When processing
is finished, the original mode is restored.

2. Hor and Vert are the resolution of the terminal in basic units, where one
inch equals 240 basic units. Newline is the length of one linefeed up or
down; Halfline is the length of a halfline up or down. Char, Em and Adj
are the width of a single character (internally, they have subtly different
meaning to nroff, but in practice are all equivalent). All these numbers
are in basic units.

6-2

NROFF TERMINAL DESCRIPTOR TABLE FORMAT

3. Twinit and twrest are character strings which are sent out to initialize and
reset the output terminal, respectively, at the beginning and end of output.
Any initialization codes particular to your output terminal can be placed
here. Twnl is the string which is sent out at the end of every line, and
normally contains a simple newline character.

4. Hlr, hlf, and fir are strings containing the control codes used to do a
reverse half-linefeed, a forward half-linefeed, and a reverse full-line feed
respectively. If the terminal is not capable of doing half-linefeeds, a full­
linefeed code is probably the next best thing; however, make sure that the
Halfline value above reflects the actual height (which would be equal to
Newline if the half-line feed and full linefeed codes are identical). If your
terminal can not do reverse line feeds , you will probably wish to set those
strings null.

5. The bdon and bdoff strings contain control codes used to turn on and off
the bold mode, if any, on the output terminal. In nroff input, bold mode
can be turned on and off with .ft or \f commands; the bdon and bdoff
strings are then sent to the terminal to actually put bold modes on and off.
Many terminals do not have this capability; however it is possible to con­
struct a filter which can simulate bold face by overstriking the same char­
acter twice (or even better, striking a character, moving slightly to the right
and hitting the same character again). If this is done, the bdon and bdoff
strings can contain unique codes which the bold filter will intercept and use
as signals to enter and exit the overstriking mode.

6. The ploton and plotoff strings are used to move into and out of graphics
mode. In this mode, the up, down, right and left strings are then used to
move one unit in the best resolution possible (as indicated by Hor and Vert
above).

7. The codetab array contains a list of strings used to define each ASCII
character and to simulate non-ASCII characters. A standard set is given in
/usr/lib/term/code.300 which will be adequate for most purposes, and a
good starting point if you wish to custom-design your own.

The first character in each line is a character descriptor number. Bit 0200
is set if the character actually be underlined in underline mode (punctua­
tion characters, for example, would normally not have this bit set). The
bits masked by 0177 indicate the width of the character, which will nor­
mally be one unless fancy characters are used.

6-3

NROFF TERMINAL DESCRIPTOR TABLE FORMAT

The rest of the string is the printable portion. For standard ASCII charac­
ters, this will be simply the character used; for others, several characters
(possibly with imbedded backspaces to cause them to be overstriked) can
be used to create more complex characters.

8. To do fancier characters (as in Greek letters), it is possible to imbed plot­
ting instructions within a character's codetab definition. Plotting instruc­
tions are in the form of '\nnn', and are octal values greater than 200 (to
distinguish them from standard ASCII). The high three bits (masked by
0340) indicate motion in one of the four directions, corresponding to
or'ing in the following octal values:

0340 up
0300 down
0240 left
0200 right

The lower five bits (masked by 034) specify the number of times to move
in that direction, in the best possible resolution.

9. Note that plotting mode is turned on (string ploton sent) by the first plot
code, and only turned off (plotoff) at the end of the string; for doing the
plotting, control strings up, down, right, and left are written). Characters
inserted between these plotting commands are sent to the output terminal,
and handled by that terminal in plotting mode. For example, to construct
the character 1r (indicated in nroff source as \(*p):

"\001\303'\203'\243\341'\203'\243\341-\201-\201-\201-\341\243",

As described above, the first \001 indicates that the character can not be
underlined, and will be one em in width. The following codes are the
character definition, and are interpreted as:

6-4

NROFF TERMINAL DESCRIPTOR TABLE FORMAT

\303 plotting mode on, mode down 3 units
write an apostrophe

\203 move right 3 units
write an apostrophe

\243 left 3 units
\341 up 1 unit

The \341\243 at the end moves the correct number of units back to the
original position.

10. Finally, zzz at the end of the table is a dummy variable.

6-5

CONTENTS

7.1 INTRODUCTION .. 7-1

7.2 INPUT COMMANDS ... 7-3

7.3 USAGE .. 7-11

Chapter 7

TABLE FORMATTING PROGRAM

7.1 INTRODUCTION
The tbl program is a document formatting preprocessor for the nroff formatter
that makes fairly complex tables easy to specify and enter. Tables consist of
columns which may be independently centered, right-adjusted, left-adjusted, or
aligned by decimal points. Headings may be placed over single columns or
groups of columns. A table entry may contain equations or consist of several
rows of text. Horizontal or vertical lines may be drawn as desired in the table,
and any table or element may be enclosed in a box.

A description of a table is translated by the tbl program into a list of nroff for­
matter requests that will produce the table. The tbl program isolates a portion
of a job that it can successfully handle (text between the .TS and .TE delimiting
macros) and leaves the remainder for other programs. Thus, tbl may be used
with the equation formatting program (neqn) and/or various formatter layout
macro packages without function duplication.

This chapter is divided into two parts and a reference list. The first part covers
the rules for preparing tbl input; the second part shows several exmples of how
to use the program. The description of rules is precise but technical, so the
novice user may find it easier to look over the examples first to see some com­
mon table arrangements and the instructions that created them. At the end of
the chapter there is a list of tbl command characters and words which is useful
as a reference guide.

7-1

TABLE FORMATTING PROGRAM

The input to tbl is text for a document, with tables preceded by a ". TS" (Table
Start) command and followed by a ". TE" (Table End) command. tbl processes
only the tables, generating nroff formatting commands. The". TS" and". TE"
lines are copied, too, so that nroff page layout macros can use these lines to
delimit and place tables as they see fit. In particular, any arguments on the
". TS" or ". TE" lines are copied but otherwise ignored, and may be used by
document layout macro commands.

The format of the input is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information followed by
the data to be entered in the table. The formatting information, which
describes the individual columns and rows of the table, may be preceded by a
few options that affect the entire table.

TABLE FORMATTING PROGRAM

7.2 Input Commands
As indicated above, a table contains, first, global options, then a format section
describing the layout of the table entries, and then the data to be printed. The
format and data are always required, but not the options. The various parts of
the table are entered as follows:

1. OPTIONS. There may be a single line of options affecting the whole
table. If present, this line must follow the • TS line immediately and must
contain a list of option names separated by spaces, tabs, or commas, and
must be terminated by a semicolon. The allowable options are:

center - center the table (default is left-adjust);

expand - make the table as wide as the current line length;

box - enclose the table in a box;

allbox - enclose each item in the table in a box;

doublebox - enclose the table in two boxes;

tab (x) - use x instead of tab to separate data items.

linesize (n) - set lines or rules (e.g. from box) in n point type;

delim (xy) - recognize x and y as the neqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appro­
priate "need" (.ne) commands. These requests are calculated from the
number of lines in the tables, and if there are spacing commands embed­
ded in the input, these requests may be inaccurate; use normal nroff proce­
dures, such as keep-release macros, in that case. The user who must have
a multi-page boxed table should use macros designed for this purpose, as
explained below under "Usage."

2. FORMAT. The format section of the table specifies the layout of the col­
umns. Each line in this section corresponds to one line of the table (except
that the last line corresponds to all following lines up to the next • T&, if
any - see below), and each line contains a key-letter for each column of
the table. It is good practice to separate the key letters for each column
by spaces or tabs. Each key-letter is one of the following:

7-3

TABLE FORMATTING PROGRAM

L or I

R or r

C or c

N or n

A or a

S or s

to indicate a left-adjusted column entry;

to indicate a right-adjusted column entry;

to indicate a centered column entry;

to indicate a numerical column entry, to be aligned with
other numerical entries so that the units digits of numbers
line up;

to indicate an alphabetic subcolumn; all corresponding entries
are aligned on the left, and positioned so that the widest is
centered within the column;

to indicate a spanned heading, i.e. to indicate that the entry
from the previous column continues across this column (not
allowed for the first column, obviously); or

to indicate a vertically spanned heading, i.e. to indicate that
the entry from the previous row continues down through this
row. (Not allowed for the first row of the table, obviously).

When numerical alignment is specified, a location for the decimal point is
sought. The rightmost dot (.) adjacent to a digit is used as a decimal
point; if there is no dot adjoining a digit, the rightmost digit is used as a
units digit; if no alignment is indicated, the item is centered in the column.
However, the special non-printing character string \& may be used to over­
ride unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dot normally would, and then disappears from the final
output. In the example below, the items shown at the left will be aligned
(in a numerical column) as shown on the right:

13 13
4.2 4.2
26.4.12 26.4.12
abc abc
abc\& abc
43\&3.22 433.22
749.12 749.12

7-4

TABLE FORMATTING PROGRAM

Note: If numerical data is used in the same column with wider L or r type table
entries, the widest number is centered relative to the wider L or r items (L is
used instead of I for readability; they have the same meaning as key-letters).
Alignment within the numerical items is preserved. This is similar to the behav­
ior of a type data, as explained above. However, alphabetic sub columns
(requested by the a key-letter) are always slightly indented relative to L items; if
necessary, the column width is increased to force this. This is not true for n
type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by
spaces. The end of the format section is indicated by a period. The layout of
the key-letters in the format section resembles the layout of the actual data in
the table. Thus a simple format might appear as:

c s s
Inn.

which specifies a table of three columns. The first line of the table contains a
heading centered across all three columns; each remaining line contains a left­
adjusted item in the first column followed by two columns of numerical data.
A sample table in this format might be:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines
A key-letter may be replaced by '_' (underscore) to indicate

a horizontal line in place of the corresponding column entry,
or by '=' to indicate a double horizontal line. If an adja­
cent column contains a horizontal line, or if there are vertical
lines adjoining this column, this horizontal line is extended to

7-5

TABLE FORMATTING PROGRAM

Vertical lines

meet the nearby lines. If any data entry is provided for this
column, it is ignored and a warning message is printed.

A vertical bar may be placed between column key-letters.
This will cause a vertical line between the corresponding col­
umns of the table. A vertical bar to the left of the first key­
letter or to the right of the last one produces a line· at the
edge of the table. If two vertical bars appear between key­
letters, a double vertical line is drawn.

Space between columns
A number may follow the key-letter. This indicates the

amount of separation between ihis column and the next col­
umn. The number normally specifies the separation in "ens"
(one en is about the width of the letter "n"). * If the
"expand" option is used, then these numbers are multiplied
by a constant such that the table is as wide as the current line
length. The default column separation number is 3. If the
separation is changed the worst case (largest space requested)
governs.

Vertical spanning

Font changes

Normally, vertically spanned items extending over several
rows of the table are centered in their vertical range. If a
key-letter is followed by t or T, any corresponding vertically
spanned item will begin at the top line of its range.

A key-letter may be followed by a string containing a font
name or number preceded by the letter f or F. This indicates
that the corresponding column should be in a different font
from the default font (usually Roman). All font names are
one or two letters; a one-letter font name should be separated

* More precisely, an en is a number of points (1 point = 1172 inch) equal

to half the current type size.

7-6

TABLE FORMATTING PROGRAM

from whatever follows by a space or tab. The single letters
B, b, I, and i are shorter synonyms for fB and fl. Font
change commands given with the table entries override these
specifications.

Point size changes
A key-letter may be followed by the letter p or P and a

number to indicate the point size of the corresponding table
entries. The number may be a signed digit, in which case it
is taken as an increment or decrement from the current point
size. If both a point size and a column separation value are
given, one or more blanks must separate them.

Vertical spacing changes
A key-letter may be followed by the letter v or V and a

number to indicate the vertical line spacing to be used within
a multi-line corresponding table entry. The number may be a
signed digit, in which case it is taken as an increment or dec­
rement from the current vertical spacing. A column separa­
tion value must be separated by blanks or some other specifi­
cation from a vertical spacing request. This request has no
effect unless the corresponding table entry is a text block (see
below).

Column width indication
A key-letter may be followed by the letter w or Wand a

width value in parentheses. This width is used as a minimum
column width. If the largest element in the column is not as
wide as the width value given after the w, the largest element
is assumed to be that wide. If the largest element in the col­
umn is wider than the specified value, its width is used. The
width is also used as a default line length for included text
blocks. Normal nroff units can be used to scale the width
value; if none are used, the default is ens. If the width speci­
fication is a unitless integer the parentheses may be omitted.
If the width value is changed in a column, the last one given
controls.

7-7

TABLE FORMATTING PROGRAM

Equal width columns
A key-letter may be followed by the letter e or E to indi­

cate equal width columns. All columns whose key-letters are
followed by e or E are made the same width. This permits
the user to get a group of regularly spaced columns.

Note: The order of the above features is immaterial; they need not
be separated by spaces, except as indicated above to avoid
ambiguities involving point size and font changes. Thus a
numerical column entry in italic font and 12 point type with
a minimum width of 2.5 inches and separated by 6 ens from
the next column could be specified as

np12w(2.5i)fI 6

Alternative notation

Default

Instead of listing the format of successive lines of a table
on consecutive lines of the format section, successive line for­
mats may be given on the same line, separated by commas,
so that the format for the example above might have been
written:

c s s, Inn.

Column descriptors missing from the end of a format line
are assumed to be L. The longest line in the format section,
however, defines the number of columns in the table; extra
columns in the data are ignored silently.

3. DATA. The data for the table are typed after the format. Normally, each
table line is typed as one line of data. Very long input lines can be bro­
ken: any line whose last character is \ is combined with the following line
(and the \ vanishes). The data for different columns (the table entries) are
separated by tabs, or by whatever character has been specified in the
option tabs option. There are a few special cases:

7-8

TABLE FORMATTING PROGRAM

nroff commands within tables
An input line beginning with a '.' followed by anything but

a number is assumed to be a command to nroff and is
passed through unchanged, retaining its position in the table.
So, for example, space within a table may be produced by
".sp" commands in the data.

Full width horizontal lines
An input line containing only the character "_" (under­

score) or = (equal sign) is taken to be a single or double
line, respectively, extending the full width of the table.

Single column horizontal lines
An input table entry containing only the character "_" or

= is taken to be a single or double line extending the full
width of the column. Such lines are extended to meet hori­
zontal or vertical lines adjoining this column. To obtain
these characters explicitly in a column, either precede them by
\& or follow them by a space before the usual tab or
newline.

Short horizontal lines
An input table entry containing only the string "_" is

taken to be a single line as wide as the contents of the col­
umn. It is not extended to meet adjoining lines.

Vertically spanned items

Text blocks

An input table entry containing only the character string \~
indicates that the table entry immediately above spans down­
ward over this row. It is equivalent to a table format key­
letter of ' A '.

In order to include a block of text as a table entry, pre­
cede it by "T[" and follow it by "T]". Thus the sequence

•.• T{
block of
text
T} •..

is the way to enter, as a single entry in the table, something

7-9

TABLE FORMATTING PROGRAM

Warnings:

that cannot conveniently be typed as a simple string between
tabs. Note that the "T)" end delimiter must begin a line;
additional columns of data may follow after a tab on the
same line. If more than twenty or thirty text blocks are used
in a table, various limits in the Droff program are likely to be
exceeded, producing diagnostics such as 'too many string/
macro names' or 'too many number registers.' Text blocks
are pulled out from the table, processed separately by nroff,
and replaced in the table as a solid block. If no line length is
specified in the block of text itself, or in the table format,
the default is to use Lx C/(N + 1) where L is the current line
length, C is the number of table columns spanned by the
text, and N is the total number of columns in the table. The
other parameters (point size, font, etc.) used in setting the
block of text are those in effect at the beginning of the table
(induding the effect of the". TS" macro) and any table for­
mat specifications of size, spacing and font, using the p, v
and f modifiers to the column key-letters. Commands within
the text block itself are also recognized, of course. However,
Droff commands within the table data but not within the text
block do not affect that block.

Although any number of lines may be present in a table,
only the first 200 lines are used in calculating the widths of
the various columns. A multi-page table, of course, may be
arranged as several single-page tables if this proves to be a
problem. Other difficulties with formatting may arise
because, in the calculation of column widths all table entries
are assumed to be in the font and size being used when the
". TS" command was encountered, except for font and size
changes indicated (a) in the table format section and (b)
within the table data (as in the entry \s + 3\fIdata\fP\sO).
Therefore, although arbitrary nroff requests may be sprinkled
in a table, care must be taken to avoid confusing the width
calculations; use requests such as '.ps' with care.

7-10

TABLE FORMATTING PROGRAM

4. ADDITIONAL COMMAND LINES. If the format of a table must be
changed after many similar lines, as with sub-headings or summarizations,
the ". T &" (table continue) command can be used to change column para­
meters. The outline of such a table input is:

.TS
options;
format.
data

.T&
format.
data
.T&
format.
data
.TE

as in some of the examples in the second section. Using this procedure,
each table line can be close to its corresponding format line.

Warning: it is not possible to change the number of columns, the space
between columns, the global options such as box, or the selection of col­
umns to be made equal width.

7.3 Usage
On VENIX tbl can be run on a simple table with the command

tbl input-file I nroff

but for more complicated use, where there are several input files, and they con­
tain equations and ms memorandum layout commands as well as tables, the
normal command would be

tbl file-l file-2 ..• I neqn I nroff -ms

and, of course, the usual options may be used on the nroff and neqn com­
mands. See nroff(1) and neqn(l) in the User Reference Manual

7-11

TABLE FORMATTING PROGRAM

For the convenience of users employing line printers without adequate driving
tables or post-filters, there is a special -TX command line option to tbl which
produces output that does not have fractional line motions in it. The only other
command line options recognized by tbl are - ms and - mm which are turned
into commands to fetch the corresponding macro files; usually it is more con­
venient to place these arguments on the nroff part of the command line, but
they are accepted by tbl as well.

Note that when neqn and tbl are used together on the same file tbl should be
used first. If there are no equations within tables, either order works, but it is
usually faster to run tbl first, since neqn normally produces a larger expansion
of the input than tbI. However, if there are equations within tables (using the
delim mechanism in neqn) , tbl must be first or the output will be scrambled.
Users must also beware of using equations in n-style columns; this is nearly
always wrong, since tbl attempts to split numerical format items into two parts
and this is not possible with equations. The user can defend against this by giv­
ing the delim(xx) table option; this prevents splitting of numerical columns
within the delimiters. For example, if the neqn delimiters are $$, giving
delim($$) a numerical column such as "1245 $ + - 16$" will be divided after
1245, not after 16.

tbllimits tables to twenty columns; however, use of more than 16 numerical col­
umns may fail because of limits in nroff, producing the 'too many number reg­
isters' message. nroff number registers used by tbl must be avoided by the user
within tables; these include two-digit names from 31 to 99, and names of the
forms #x, x+, x \, AX, and X-, where X is any lower case letter. The names
#, # -, and r are also used in certain circumstances. To conserve number
register names, the n and a formats share a register; hence the restriction above
that they may not be used in the same column.

For aid in writing layout macros, tbl defines a number register TW which is the
table width; it is defined by the time that the ". TE" macro is invoked and may
be used in the expansion of that macro. More importantly, to assist in laying
out multi-page boxed tables the macro T # is defined to produce the bottom
lines and side lines of a boxed table, and then invoked at its end. By use of
this macro in the page footer a multi-page table can be boxed. In particular,
the ms macros can be used to print a multi-page boxed table with a repeated
heading by giving the argument H to the ". TS" macro. If the table start
macro is written

7-12

TABLE FORMATTING PROGRAM

.TS H

a line of the form

.TH

must be given in the table after any table heading (or at the start if none),
Material up to the ". TH" is placed at the top of each page of table; the
remaining lines in the table are placed on several pages as required. Note that
this is not a feature of tbl, but of the ms layout macros.

Examples

Here are some examples illustrating features of tbl. The symbol ® in the
input represents a tab character.

7-13

TABLE FORMATTING PROGRAM

Input:

.TS
box;
c c c
I I I.
Language ® Authors ® Runs on

Fortran ® Many ® Almost anything
PL/1 ® IBM ® 360/370
C ® BTL ® 11/45,H6000,370
BLISS ® Carnegie-Mellon ® PDP-10,11
IDS ® Honeywell ® H6000
Pascal ® Stanford ® 370
.TE

Output:

Language

Fortran
PLil
C
BLISS
IDS
Pascal

Authors

Many
IBM
BTL
Carnegie-Mellon
Honeywell
Stanford

Runs on

Almost anything
360/370
11!45,H6000,370
PDP-lO,ll
H6000
370

7-14

Input:

.TS
allbox;
c s s
c c c
n n n.
AT&T Common Stock
Year ® Price ® Dividend
1971 ® 41- 54 ® $2.60
2 ® 41-54 ® 2.70
3 ® 46-55 ® 2.87
4 ® 40-53 ® 3.24
5 ® 45-52 ® 3.40
6 ® 51-59 ® .95*
.TE
* (first quarter only)

Output:

AT&T Common Stock

Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70

3 46-55 2.87
4 40-53 3.24

5 45-52 3.40

6 51- 59 .95*
* (first quarter only)

TABLE FORMATTING PROGRAM

7-15

TABLE FORMATTING PROGRAM

Input:

.TS
box;
c s s
clclc
I II I n.
Major New York Bridges
=
Bridge ® Designer ® Length

Brooklyn ® J. A. Roebling ® 1595
Manhattan ® G. Lindenthal ® 1470
Williamsburg ® L. L. Buck ® 1600

Queensborough ® Palmer & ® 1182
® Hornbostel

® ® 1380
Triborough ® O. H. Ammann ® _
® ® 383

Bronx Whitestone ® O. H. Ammann ® 2300
Throgs Neck ® O. H. Ammann ® 1800

George Washington ® O. H. Ammann ® 3500
.TE

Output: Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queensborough Palmer &

Hornbostel

Triborough O. H. Ammann

Bronx Whitestone O. H. Ammann
Throgs Neck O. H. Ammann
George Washington O. H. Ammann

7-16

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

TABLE FORMATTING PROGRAM

Input:

.TS
cc
np-2 I n I .
® Stack
®

1 ® 46

®-
2 ® 23
®

3 ® 15
®

4 ® 6.5
®

5 CD 2.1
®

.TE

Iuput:

.TS
box;
LLL
LL_
L L I LB
LL_
L L L.
january ® february ® march
april ® may
june ® july ® Months
august ® september

Output:

Stack
46

2 23

3 15

4 6.5

5 2.1

Output:

january
april
june
august
october

october ® november ® december
.TE

7-17

february march
may
july I Months
september
november december

TABLE FORMATTING PROGRAM

Input:

.TS
box;
cfB s s s.
Composition of Foods

.T&
c I c s s
c I c s s
c I c I c I c.
Food ® Percent by Weight
\~ ®-
\~ ® Protein ® Fat ® Carbo­
\~ ® \~ ® \~ ® hydrate

.T&
I I n I n I n.
Apples ® .4 ® .5 ® 13.0
Halibut ® 18.4 ® 5.2 ® ...
Lima beans ® 7.5 ® .8 ® 22.0
Milk ® 3.3 ® 4.0 ® 5.0
Mushrooms ® 3.5 ® .4 ® 6.0
Rye bread ® 9.0 ® .6 ® 52.7
.TE

Output:

Composition of Foods

Food Percent by Weight

Protein Fat Carbo-
hydrate

Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

7-18

TABLE FORMATTING PROGRAM

Input:

.TS
allbox;
cn s s
c cw(1i) cw(1i)
Ip9 Ip9 Ip9.
New York Area Rocks
Era ® Formation ® Age (years)
Precambrian ® Reading Prong ® > 1 billion
Paleozoic ® Manhattan Prong ® 400 million
Mesozoic ® T{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T} ® 200 million
Cenozoic ® Coastal Plain ® T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
• ad
T}
.TE

New York Area Rocks

Output: Era Formation Age (years)

Precambrian Reading Prong > 1 billion

Paleozoic Manhattan Prong 400 million

Mesozoic Newark Basin, 200 million
inc!. Stockton,
Lockatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.

Cenozoic Coastal Plain On Long Island
30,000 years;
Cretaceous sedi-
ments redepos-
ited by recent
glaciation.

7-19

TABLE FORMATTING PROGRAM

Input:

.EQ
delim $$
.EN

.TS
doublebox;
c c
I I.
Name ® Definition
.sp
.vs +2p
Gamma ® $GAMMA (z) = int sub 0 sup inf t sup (z -1) e sup - t dt$
Sine ® $sin (x) = 1 over 2i (e sup ix - e sup - ix)$
Error ® $ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup (-t sup 2) dt$
Bessel ® $ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta ® $ zeta (s) = sum from k = 1 to inf k sup - s -(Re-s > 1)$
.vs -2p
.TE

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

00

r(z)= 10 tZ-1e-tdt
1· .

sin(x) = 2i(e IX - e- IX)

2 z 2
erf(z)= I J e- t dt

'V7f 0
1 1r

J o(z) = - r cos(z sinO)d 0
7f Jo

00

t(s) = E k -s (Re s > 1)
k=1

7-20

Input:

.TS
box, tab(:);
cb s s s s
cp-2ssss
cllclclclc
cllclclclc
r2 II n2 I n2 I n2 I n.
Readability of Text

TABLE FORMATTING PROGRAM

Line Width and Leading for lO-Point Type

Line: Set: I-Point": 2-Point: 4-Point
Width: Solid: Leading: Leading: Leading

9 Pica: \-9.3: \-6.0: \-5.3: \-7.1
14 Pica: \-4.5: \-0.6: \-0.3: \-1.7
19 Pica: \-5.0: \-5.1: 0.0: \-2.0
31 Pica: \-3.7: \-3.8: \-2.4: \-3.6
43 Pica: \-9.1: \-9.0: \-5.9: \-8.8
.TE

Output:

Readability of Text
Line Width and Leading for lO-Point Type

Line Set I-Point 2-Point 4-Point
Width Solid Leading Leading Leading

9 Pica -9.3 -6.0 -5.3 -7.1
14 Pica -4.5 -0.6 -0.3 -1.7
19 Pica -5.0 -5.1 0.0 -2.0
31 Pica -3.7 -3.8 -2.4 -3.6
43 Pica -9.1 -9.0 -5.9 -8.8

7-21

TABLE FORMATTING PROGRAM

Input:

.TS
c s
cip-2 s
I n
an.
Some London Transport Statistics
(Year 1964)
Railway route miles ® 244
Tube ® 66
Sub-surface ® 22
Surface ® 156
.sp .5
.T&
I r
a r.
Passenger traffic \- railway
Journeys ® 674 million
Average length ® 4.55 miles
Passenger miles ® 3,066 million
.T&
I r
a r.
Passenger traffic \- road
Journeys CD 2,252 million
Average length ® 2.26 miles
Passenger miles CD 5,094 million
.T&
I n
an .
. sp .5
Vehicles ® 12,521
Railway motor cars ® 2,905
Railway trailer cars ® 1,269
Total railway ® 4,174
Omnibuses ® 8,347

7-22

.T&
In
an •
. sp .5
Staff ® 73,739
Administrative, etc. T5,582
Civil engineering ® 5,134
Electrical eng. ® 1,714
Mech. eng. \- railway ® 4,310
Mech. eng. \- road ® 9,152
Railway operations ® 8,930
Road operations ® 35,946
Other ® 2,971
.TE

Output:

TABLE FORMATTING PROGRAM

Some London Transport Statistics
(Year 1964)

Railway route miles 244
Tube 66
Sub-surface 22
Surface 156

Passenger traffic - railway
Journeys 674 million
Average length 4.55 miles
Passenger miles 3,066 million

Passenger traffic - road
Journeys 2,252 million
Average length 2.26 miles
Passenger miles 5,094 million

Vehicles 12,521
Railway motor cars 2,905
Railway trailer cars 1,269
Total railway 4,174
Omnibuses 8,347

Staff 73,739
Administrative, etc. 5,582
Civil engineering 5,134
Electrical eng. 1,714
Mech. eng. - railway 4,310
Mech. eng. - road 9,152
Railway operations 8,930
Road operations 35,946
Other 2,971

7-23

TABLE FORMATTING PROGRAM

Input:

.ps 8

.vs lOp

.TS
center box;
c s s
ci s s
c c c
IB I n.
New Jersey Representatives
(Democrats)
.sp .5
Name CD Office address CD Phone
.sp .5
James J. Florio ® 23 S. White Horse Pike, Somerdale 08083 ® 609-627-8222
William J. Hughes ® 2920 Atlantic Ave., Atlantic City 08401 ® 609-345-4844
James J. Howard ® 801 Bangs Ave., Asbury Park 07712 ® 201-774-1600
Frank Thompson, Jr. ® 10 Rutgers Pl., Trenton 08618 ® 609-599-1619
Andrew Maguire ® 115 W. Passaic St., Rochelle Park 07662 ® 201-843-0240
Robert A. Roe ® U.S.P.O., 194 Ward St., Paterson 07510 ® 201-523-5152
Henry Helstoski ® 666 Paterson Ave., East Rutherford 07073 ® 201-939-9090
Peter W. Rodino, Jr. ® Suite 1435A, 970 Broad St., Newark 07102 ® 201-645-3213
Joseph G. Minish ® 308 Main St., Orange 07050 ® 201-645-6363
Helen S. Meyner ® 32 Bridge St., Lambertville 08530 ® 609-397-1830
Dominick V. Daniels ® 895 Bergen Ave., Jersey City 07306 ® 201-659-7700
Edward J. Patten ® Natl. Bank Bldg., Perth Amboy 08861 ® 201-826-4610

7-24

.sp .5

.T&
ci s s
IB I n.
(Republicans)
.sp .5v

TABLE FORMATTING PROGRAM

Millicent Fenwick ® 41 N. Bridge St., Somerville 08876 ® 201-722-8200
Edwin B. Forsythe ® 301 Mill St., Moorestown 08057 ® 609-235-6622
Matthew J. Rinaldo ® 1961 Morris Ave., Union 07083 ® 201-687-4235
.TE
.ps 10
.vs 12p

Output:

New Jersey Representatives
(Democrats)

Name Office address Phone

James J. Florio 23 S. White Horse Pike, Somerdale 08083 609-627 -8222
William J. Hughes 2920 Atlantic Ave., Atlantic City 08401 609-345-4844
James J. Howard 801 Bangs Ave., Asbury Park 07712 201-774-1600
Frank Thompson, Jr. 10 Rutgers Pl., Trenton 08618 609-599-1619
Andrew Maguire 115 W. Passaic St., Rochelle Park 07662 201-843-0240
Robert A. Roe U.S.P.O., 194 Ward St., Paterson 07510 201-523-5152
Henry Helstoski 666 Paterson Ave., East Rutherford 07073 201-939-9090
Peter W. Rodino, Jr. Suite 1435A, 970 Broad St., Newark 07102 201-645-3213
Joseph G. Minish 308 Main St., Orange 07050 201-645-6363
Helen S. Meyner 32 Bridge St., Lambertville 08530 609-397-1830
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306 201-659-7700
Edward J. Patten Natl. Bank Bldg., Perth Amboy 08861 201-826-4610

(Republicans)

Millicent Fenwick 41 N. Bridge St., Somerville 08876 201-722-8200
Edwin B. Forsythe 301 Mill St., Moorestown 08057 609-235-6622
Matthew J. Rinaldo 1961 Morris Ave., Union 07083 201-687-4235

This is a paragraph of normal text placed here only to indicate where the left
and right margins are. In this way the reader can judge the appearance of cen­
tered tables or expanded tables, and observe how such tables are formatted.

7-25

TABLE FORMATTING PROGRAM

Input:

.TS
expand;
c s s s
c c c c
II n n.
Bell Labs Locations
Name ® Address ® Area Code ® Phone
Holmdel ® Holmdel, N. J. 07733 ® 201 .® 949-3000
Murray Hill ® Murray Hill, N. J. 07974 ® 201 ® 582-6377
Whippany ® Whippany, N. J. 07981 ® 201 ® 386-3000
Indian Hill ® Naperville, Illinois 60540 ® 312 ® 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

7-26

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

Input:

.TS
box;
cb s s s
c I c I c s
ltiw(li) I Itw(2i) I Ip8 I Iw(1.6i)p8.
Some Interesting Places

Name ® Description ® Practical Information

T{
American Museum of Natural History
T}® T{

TABLE FORMATTING PROGRAM

The collections fill 11.5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world's largest star sapphire (stolen in 1964).
T} ® Hours ® 10-5, ex. Sun 11-5, Wed. to 9
\' ® \' ® Location ® T[
Central Park West & 79th St.
T}
\' ® \' ® Admission ® Donation: $1.00 asked
\' ® \' ® Subway ® AA to 81st St.
\' ® \' ® Telephone ® 212-873-4225

Bronx Zoo ® T[
About a mile long and .6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds
of meat a day while a sea lion eats 15 pounds of fish.
T} ® Hours ® T{
10 -4:30 winter, to 5:00 summer
T}
\' ® \' ® Location ® T{
185th st. & Southern Blvd, the Bronx.
T}
\' ® \' ® Admission ® $1.00, but TU,We,Th free
\' ® \' ® Subway ® 2, 5 to East Tremont Ave.
\' ® \' ® Telephone ® 212-933-1759

Brooklyn Museum ® T{
Five floors of galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station.
T} ® Hours ® Wed-Sat, 10-5, Sun 12-5
\' ® \' ® Location ® T{
Eastern Parkway & Washington Ave., Brooklyn.
T}
\' ® \' ® Admission ® Free
\' ® \' ® Subway ® 2,3 to Eastern Parkway.
\' ® \' ® Telephone ® 212-638-5000

T[
New-York Historical Society
T} ® T{
All the original paintings for Audubon's
.1
Birds of America

7-27

TABLE FORMATTING PROGRAM

.R
are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights.
T] ® Hours ® T[
Tues-Fri & Sun, 1-5; Sat 10-5
T]
\' ® \' ® Location ® T{
Central Park West & 77th St.
T]
\' ® \' ® Admission ® Free
\' ® \' ® Subway ® AA to 81st St.
\' ® \' ® Telephone ® 212-873-3400
.TE

Output:

Some Interesting Places
Name Description

American Mus- The collections fill 11.5 acres Hours

eum of Natural (Michelin) or 25 acres (MT A) Location

History of exhibition halls on four Admission

floors. There is a full-sized re- Subway

plica of a blue whale and the Telephone

world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hours

wide, this is the largest zoo in Location

America. A lion eats 18 Bronx.

pounds of meat a day while a Admission

sea lion eats 15 pounds of fish. Subway

Telephone

Brooklyn Museum Five floors of galleries contain Hours

American and ancient art. Location

There are American period
rooms and architectural orna- Admission

ments saved from wreckers, Subway

such as a classical figure from Telephone

Pennsylvania Station.
New- York Histor- All the original paintings for Hours

ical Society Audubon's Birds of America are Location

here, as are exhibits of Ameri- Admission

can decorative arts, New York Subway

history, Hudson River school Telephone

paintings, carriages, and glass
paperweights.

7-28

Practical Information
10--5, ex. Sun 11-5, Wed. 1

Central Park West & 79th St

Donation: $1.00 asked

AA to 81st St.

212-873-4225

10-4:30 winter, to 5:00 sum

185th St. & Southern Blvd, tl

$1.00, but TU,We,Th free

2, 5 to East Tremont Ave.

212-933-1759

Wed-Sat, 10-5, Sun 12-5

Eastern Parkway & Washingt

Ave., Brooklyn.

Free

2,3 to Eastern Parkway,

212-638-5000

Tues - Fri & Sun, 1 - 5; Sat 1

Central Park West & 77th St.

Free

AA to 81st St.

212-873-3400

TABLE FORMATTING PROGRAM

7.4 List of Tbl Command Characters and Words

Command Meaning Section
aA Alphabetic subcolumn 2
allbox Draw box around all items
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width 1
fF Font change 2
i I Italic item 2
IL Left adjusted column 2
nN Numerical column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{T} Text block 3
vV Vertical spacing change 2
wW Minimum width value 2
.xx Included nroff command 3

I Vertical line 2

II Double vertical line 2
Vertical span 2

\" Vertical span 3
= Double horizontal line 2,3

Horizontal line 2,3
\- Short horizontal line 3
\Rx Repeat character 3

7-29

CONTENTS

8.1 INTRODUCTION .. 8-1

8.2 USAGE .. 8-2

8.3 DISPLAYED EQUATIONS ... 8-2

8.4 INPUT SPACES .. 8-3

8.5 OUTPUT SPACES .. 8-4

8.6 SYMBOLS, SPECIAL NAMES, AND GREEK ALPHABET 8-4

8.7 SUBSCRIPTS AND SUPERSCRIPTS 8-5

8.8 BRACES .. 8-7

8.9 FRACTIONS .. 8-8

8.10 SQUARE ROOTS .. 8-9

8.11 SUMMATIONS, INTEGRALS,

AND SIMILAR CONSTRUCTIONS 8-9

8.12 DIACRITICAL MARKS .. 8-10

8.13 QUOTED TEXT ... 8-11

8.14 ALIGNING EQUATIONS .. 8-12

8.15 BIG BRACKETS .. 8-13

8.16 PILES .. 8-14

8.17 MATRICES ... 8-15

8.18 IN-LINE EQUATIONS .. 8-16

8.19 DEFINITIONS ... 8-17

8.20 LOCAL MOTIONS ... 8-18

8.21 PRECEDENCES .. 8-19

8.22 TROUBLESHOOTING .. 8-21

Chapter 8

MATHEMATICS TYPESETTING PROGRAM

8.1 INTRODUCTION
Mathematics is known in the publishing trade as "penalty copy" because it is
slower, more difficult, and more expensive to set in type than any other kind of
copy normally occurring in books and journals.

One difficulty with mathematical text is the multiplicity of characters, sizes, and
fonts. Typesetting such expressions by traditional methods is still essentially a
manual operation.

A second difficulty is the two-dimensional character of mathematics. This is
illustrated by the following example which shows line-drawing, built-up charac­
ters (such as braces and radicals), and a spectrum of positioning problems:

b I

b 3
a2+----

a3+ ...
The neqn software for typesetting mathematics has been designed to be easy to
learn and to use by people who know neither mathematics nor typesetting. The
language can be learned in an hour or so since it has few rules and few excep­
tions. The syntax of the language is specified by a small content-free grammar.

neqn can be used on devices which have forward and reverse half-line motions.
The equations produced by using this type of device in conjunction with neqn
will not be high-quality, since they cannot provide for a variety of characters,
sizes, and fonts; however, this output is usually adequate for proofreading.

8-1

NEQN

8.2 USAGE
On the VENIX system, neqn is a preprocessor for the nroff formatting pro­
gram. To set the mathematical text stored in your files, the following command
is issued:

neqn files I nroff

The vertical bar connects or "pipes" the output of the neqn process to the input
of the nroff process. Any nroff formatter options (like a macro package) are
located following the nroff formatter part of the command. For example:

neqn files I nroff - ms

To use a specific terminal as the output device, the following command is used:

neqn files I nroff - Tx

where x is the terminal type you are using, such as 1620 or LA50.

The neqn program c~n be used with the tbl program for setting tables that con­
tain mathematics. Use tbl before neqn, like this:

tbl files neqn nroff

8.3 DISPLAYED EQUATIONS
To tell neqn where a mathematical expression begins and ends, mark it with
lines beginning .EQ and .EN. Thus if you type the lines

.EQ
x=y+z
.EN

your output will look like

x=y+z

8-2

NEQN

The .EQ and .EN are copied through untouched; they are not otherwise pro­
cessed by neqn. This means that you have to take care of things like centering,
numbering, and so on yourself. The most common way is to use the nroff
macro package package' -ms', which allows you to center, indent, left-justify
and number equations.

With the' -ms' package, equations are centered by default. To left-justify an
equation, use .EQ L instead of .EQ. To indent it, use .EQ I. Any of these can
be followed by an arbitrary "equation number" which will be placed at the
right margin. For example, the input

.EQ I (3.1a)
x = f(y/2) + y/2
.EN

produces the output

x = f (y /2) + Y /2

8.4 INPUT SPACES

Input is free-form. Spaces and newlines in the input are used to separate pieces
of the input; they are not used to create space in the output. Thus, between .EQ
and .EN, in the following examples:

x=y+z

and

x y + z

and

x y
+ z

all produce the same output

x=y+z

8-3

NEQN

8.5 OUTPUT SPACES
Extra white space can be forced into the output by several characters of various
sizes. A "-" gives a space equal to the normal word spacing in the text; a cir­
cumflex gives half this much, and a tab character spaces to the next tab stop.
Spaces, tildes, circumflexes, and tabs also serve to delimit pieces of the input.
For example:

x-:::: -y- +-z

produces

x = y + z

8.6 SYMBOLS, SPECIAL NAMES, AND GREEK ALPHABET
neqn knows some mathematical symbols, some mathematical names, and the
Greek alphabet. For example,

x:::: 2 pi int sin (omega t)dt

produces

x =211" J sin(wt)dt

Here the spaces in the input are necessary to tell neqn that "int", "pi", "sin"
and "omega" are separate entities that should get special treatment. The sin,
digit 2, and parentheses are set in roman type instead of italic; pi and omega
are made Greek; and int becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A very com­
mon error is to type

f(Pi)

without leaving spaces on both sides of the pi. As a result, neqn does not
recognize pi as a special word, and it appears as f(pi) instead of f(1I").

8-4

NEQN

The only way neqn can deduce that some sequence of letters might be special is
if that sequence is separated from the letters on either side of it. This can be
done by surrounding a special word by ordinary spaces (or tabs or newlines), as
we did in the previous section.

You can also make special words stand out by surrounding them with tildes or
circumflexes:

is much the same as the last example, except that the tildes not only separate
the magic words like sin, omega, and so on, but also add extra spaces, one
space per tilde:

x = 2 7r 1 sin (w t) dt

Special words can also be separated by braces [l and double quotes
which have special meanings that we will see soon.

8.7 SUBSCRIPTS AND SUPERSCRIPTS
Subscripts and superscripts are obtained with the words sub and sup.

x sup 2 + Y sub k

gives

" " ... ,

neqn takes care of all the size changes and vertical motions needed to make the
output look right. The words sub and sup must be surrounded by spaces. For
example:

x sub2

will give you

8-5

NEQN

x sub2 instead of x2

Furthermore, don't forget to leave a space (or a tilde, etc.) to mark the end of
a subscript or superscript. A common error is to say something like

y = (x sup 2) + 1

which causes

y = (x 2)+1

instead of the intended

Subscripted subscripts and superscripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same thing are printed one above the other if
the subscript comes first:

x sub i sup 2

is

8-6

NEQN

8.8 BRACES
Normally, the end of a subscript or superscript is marked simply by a blank (or
tab or tilde, etc.) What if the subscript or superscript is something that has to
be typed with blanks in it? In that case, you can use the braces (and} to mark
the beginning and end of the subscript or superscript:

e sup (i omega t}

is

Rule: Braces can always be used to force neqn to treat something as a unit, or
just to make your intent perfectly clear. Thus:

x sub (i sub I} sup 2

is

with braces, but

x sub i sub I sup 2

is

which is rather different.

Braces can occur within braces if necessary:

e sup (i pi sup (rho + I}}

is

8-7

NEQN

The general rule is that anywhere you could use some single thing like x, you
can use an arbitrarily complicated thing if you enclose it in braces. neqn will
look after all the details of positioning it and making it the right size.

In all cases, make sure you have the right number of braces. Leaving one out
or adding an extra will cause neqn to complain bitterly.

Occasionally you will have to print braces. To do this, enclose them in double
quotes, like "[". Quoting is discussed in more detail in section 14.

8.9 FRACTIONS
To make a fraction, use the word over:

gives

a + b over 2c = 1

a+b =1
2c

The line is made the right length and positioned automatically. Braces can be
used to make clear what goes over what:

is

{alpha + beta} over {sin (x)}

a+(3
sin(x)

What happens when there is both an over and a sup in the same expression? In
such an apparently ambiguous case, neqn does the sup before the over, so

-b sup 2 over pi

-b2 2
is -- instead of - b". The rules which decide which operation is done first

7r

in cases like this are summarized in section 2. When in doubt, however, use
braces to make clear what goes with what.

8-8

NEQN

8.10 SQUARE ROOTS

To draw a square root, use sqrt.

sqrt a+ b + lover sqrt {ax sup 2 + bx+cJ

is

Va +b + 1
Vax2+bx+c

Warning - square roots of tall quantities look lousy, because a root-sign big
enough to cover the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2J

is

Big square roots are generally better written as something to the power \12:

which is

(a sup 2 /b sub 2) sup half

8.11 SUMMATIONS, INTEGRALS,
AND SIMILAR CONSTRUCTIONS

Summations, integrals, and similar constructions are easy:

sum from i=O to {i= iufJ x sup i

produces

8-9

NEQN

Notice that we used braces to indicate where the upper part i = inf begins and
ends. No braces were necessary for the lower part i = 0, because it contained no
blanks. The braces will never hurt, and if the "from" and "to" parts contain
any blanks, you must use braces around them.

The from and to parts are both optional, but if both are used, they have to
occur in that order.

Other useful characters can replace the sum in our example:

int prod union inter

become, respectively,

II u n
Since the thing before the "from" can be anything, even something in braces,
from-to can often be used in unexpected ways:

lim from [n - > inf} x sub n =0

is

limxn =0
n - 00

8.12 DIACRITICAL MARKS
Diacritical marks, a problem in traditional typesetting, are straightforward in
neqn. There are several words:

x dot x
x dotdot x
x hat x
x tilde x
x vec x
x dyad x
x bar x
x under x

8-10

NEQN

The diacritical mark is placed at the right height. The bar and under are made
the right length for the entire construct, as in x+ y+z bar; other marks are cen­
tered.

8.13 QUOTED TEXT
Any input entirely within quotes (" ... ") is not subject to any of the font
changes and spacing adjustments normally done by the equation setter. This
provides a way to do your own spacing and adjusting if needed:

italic "sin(x)" + sin (x)

is

sin(x) + sin(x)

Quotes are also used to get braces and other neqn keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman "{ size alpha } "

is

{ size alpha}

8-11

NEQN

The construction "'"~ is often used as a place-holder when grammatically neqn
needs something, but you don't actually want anything in your output. For
example, to make 2He, you can't just type:

sup 2 roman He

A sup has to be a superscript on something. Thus you must say

"" sup 2 roman He

To get a literal quote use "\ \ "".

8.14 ALIGNING EQUATIONS
Sometimes it's necessary to line up a series of equations at some horizontal
position, often at an equals sign. This is done with two operations called mark
and lineup.

The word mark may appear once at any place in an equation. It remembers the
horizontal position where it appeared. Successive equations can contain one
occurrence of the word lineup. The place where lineup appears is made to line
up with the place marked by the previous mark if at all possible. Thus, for
example, you can say

.EQ I
x+y mark z
.EN
.EQ I
x lineup 1
.EN

to produce

x+y =Z

x =1

8-12

NEQN

When you use neqn and' -ms', use either .EQ I or .EQ L. mark and lineup
don't work with centered equations. Also bear in mind that mark doesn't look
ahead;

x mark =1

x+y lineup =z

isn't going to work, because there isn't room for the x + y part after the mark
remembers where the x is.

8.15 BIG BRACKETS
To get big brackets [], braces [}, parentheses (), and bars I I around things,
use the left and right commands:

is

left [a over b + 1 right }
- = - left (cover d right)
+ left [e right I

The resulting brackets are made big enough to cover whatever they enclose.
Other characters can be used besides these, but they are not likely to look very
good. One exception is the floor and ceiling characters:

left floor x over y right floor
< = left ceiling a over b right ceiling

produces

8-13

NEQN

Several warnings about brackets are in order. First, braces are typically bigger
than brackets and parentheses, because they are made up of three, five, seven,
etc., pieces, while brackets can be made up of two, three, etc. Second, big left
and right parentheses often look poor, because the character set is poorly
designed.

The right part may be omitted: a "left something" need not have a correspond­
ing "right something". If the right part is omitted, put braces around the thing
you want the left bracket to encompass. Otherwise, the resulting brackets may
be too large.

If you want to omit the left part, things are more complicated, because techni­
cally you can't have a right without a corresponding left. Instead you have to
say

left '''' . .. right)

for example. The left " " means a "left nothing". This satisfies the rules with­
out hurting your output.

8.16 PILES

There is a general facility for making vertical piles of things; it comes in several
flavors. For example:

A - = - left [
pile { a above b above c }
- - pile { x above y above z }

right]

will make

The elements of the pile (there can be as many as you want) are centered one

8-14

NEQN

above another, at the right height for most purposes. The keyword above is
used to separate the pieces; braces are used around the entire list. The elements
of a pile can be as complicated as needed, even containing more piles.

Three other forms of pile exist: Ipile makes a pile with the elements left­
justified; rpile makes a right-justified pile; and cpile makes a centered pile, just
like pile. The vertical spacing between the pieces is somewhat larger for 1-, r­
and cpiles than it is for ordinary piles.

roman sign (x)- =­
left {

Ipile {1 above 0 above -1}
Ipile

{if -x>O above if -x=O above if -x<O}

makes

sign(x) =

if x>O

if x=O

if x<O

Notice the left brace without a matching right one.

8.17 MATRICES
It is also possible to make matrices. For example, to make a neat array like

you have to type

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 J

8-15

NEQN

This produces a matrix with two centered columns. The elements of the col­
umns are then listed just as for a pile, each element separated by the word
above. You can also use leol or reol to left or right adjust columns. Each col­
umn can be separately adjusted, and there can be as many columns as you like.

The reason for using a matrix instead of two adjacent piles, by the way, is that
if the elements of the piles don't all have the same height, they won't line up
properly. A matrix forces them to line up, because it looks at the entire struc­
ture before deciding what spacing to use.

A word of warning about matrices - each column must have the same number
of elements in it. The world will end if you get this wrong.

8.18 IN-LINE EQUATIONS
In a mathematical document, it is necessary to follow mathematical conventions
not just in display equations, but also in the body of the text, for example by
making variable names like x italic. Although this could be done by surround­
ing the appropriate parts with .EQ and .EN, the continual repetition of .EQ
and .EN is a nuisance. Furthermore, with '-ms', .EQ and .EN imply a dis­
played equation.

neqn provides a shorthand for short in-line expressions. You can define two
characters to mark the left and right ends of an in-line equation, and then type
expressions right in the middle of text lines. To set both the left and right char­
acters to dollar signs, for example, add to the beginning of your document the
three lines

.EQ
delim 070070

.EN

Having done this, you can then say things like

Let %alpha sub i% be the primary variable,
and let %beta% be zero.
Then we ean show that %x sub 1% is % > = 0%.

This works as you might expect - spaces, newlines, and so on are significant in

8-16

NEQN

the text, but not in the equation part itself. Multiple equations can occur in a
single input line.

Enough room is left before and after a line that contains in-line expressions that
n

something like 1: Xi does not interfere with the lines surrounding it.
i=1

To turn off the delimiters,

.EQ
delim off
.EN

Warning: don't use braces, tildes, circumflexes, or double quotes as delimiters;
chaos will result.

8.19 DEFINITIONS

neqn provides a facility so you can give a frequently-used string of characters a
name, and thereafter just type the name instead of the whole string. For exam­
ple, if the sequence

x sub i sub 1 + Y sub i sub 1

appears repeatedly throughout a paper, you can save re-typing it each time by
defining it like this:

define xy 'x sub i sub 1 + Y sub i sub l'

This makes xy a shorthand for whatever characters occur between the single
quotes in the definition. You can use any character instead of quote to mark
the ends of the definition, so long as it doesn't appear inside the definition.

Now you can use xy like this:

.EQ
f(x) xy ...
. EN

and so on. Each occurrence of xy will expand into what it was defined as. Be

8-17

NEQN

careful to leave spaces or their equivalent around the name when you actually
use it, so neqn will be able to identify it as special.

There are several things to watch out for. First, although definitions can use
previous definitions, as in:

.EQ
define
define
.EN

xi 'x sub i '
xit 'xi sub 1 '

don't define something in terms of itself. A favorite error is to say:

define X 'roman X '

This is a guaranteed disaster, since X is now defined in terms of itself. If you
say

define X 'roman "X" ,

however, the quotes protect the second X, and everything works fine.

neqn keywords can be redefined. You can make / mean over by saying

define / 'over'

or redefine over as / with

define over '/'

8.20 LOCAL MOTIONS
Although neqn tries to get most things at the right place on the paper, it isn't
perfect, and occasionally you will need to tune the output to make it just right.
Small extra horizontal spaces can be obtained with tilde and circumflex. You
can also say backn and fwdn to move small amounts horizontally. n is how far
to move in 1/100's of an em (an em is about the width of the letter 'm'.) Thus
back50 moves back about half the width of an m. Similarly you can move

8-18

NEQN

things up or down with upn and down n. As with sub or sup, the local
motions affect the next thing in the input, and this can be something arbitrarily
complicated if it is enclosed in braces.

8.21 PRECEDENCES
If you don't use braces, neqn will do operations in the order shown in this list.

dyad vee under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical words
are converted to Roman font when encountered:

sin
max
Re

cos tan
min lim

1m and

sinh cosh tanh
log In exp

if for det

arc

These character sequences are recognized and translated as shown.

8-19

NEQN

>= ~

<= S

-
!= '*
+- +-
-> ->
<- <-
« «
» »
inf 00

partial a
half Y2
prime
approx :::::

nothing
cdot
times x
del V
grad V

, ... , , ... ,
sum E
int J
prod II
union U
inter n

To obtain Greek letters, simply spell them out in whatever case you want:

8-20

NEQN

DELTA ..::1 iota
GAMMA r kappa x
LAMBDA A lambda A
OMEGA {} mu JL
PHI ~ nu p

PI II omega w
PSI ir omicron 0

SIGMA E phi ¢
THETA e pi 11"

UPSILON T psi 1/;
XI :e rho p

alpha a sigma (J

beta fj tau T

chi X theta ()

delta 0 upsilon v
epsilon f xi ~
eta 11 zeta r
gamma 'Y

8.22 TROUBLESHOOTING
If you make a mistake in an equation, like leaving out a brace (very common)
or having one too many (very common) or having a sup with nothing before it
(common), neqn will tell you with the message

syntax error between lines x and y, file z

where x and y are approximately the lines between which the trouble occurred,
and z is the name of the file in question. The line numbers are approximate -
look nearby as well. There are also self-explanatory messages that arise if you
leave out a quote or try to run neqn on a non-existent file.

If you want to check a document before actually printing it

neqn files >/dev/null

8-21

NEQN

will throwaway the output but print the messages.

If you use something like dollar signs as delimiters, it is easy to leave one out.
This causes very strange troubles. The program cbeckeq checks for misplaced
or missing dollar signs and similar troubles.

In-line equations can only be so big because of an internal buffer in nroff. If
you get a message "word overflow", you have exceeded this limit. If you print
the equation as a displayed equation this message will usually go away. The
message "line overflow" indicates you have exceeded an even bigger buffer.
The only cure for this is to break the equation into two separate ones.

On a related topic, neqn does not break equations by itself - you must split
long equations up across multiple lines by yourself, marking each by a separate
.EQEN sequence. neqn does warn about equations that are too long to fit
on one line.

8-22

