

Organization of Schema Files

C.9 SCH SCHEMA LINE
The SCH SCHEMA line contains information about the schema such as the number of sub-schemas, number of
areas, and the journal's FILE line. It is used to create the in-core SCHEMA block. The format of the SCH SCHEMA
line is shown in Figure ColO.

o

2

3

4

5

6

7

8

10

II

12

13

o

1--

'II,

.,..

fll

(II 1/

ASR

SYSTEM AREA NAME ID

HINMID

H1TID

NUMBER OF AREAS

EDIT

RUN

LAST SUB·SCHEMA

JOURNAL

CHECKPOINT

EXCEPTION ACTION FLAGS
(I,

'ff

Figure C-IO SCH SCHEMA Line

ASR contains an Area Status Record like the one in a DBS file.

35

SYSTEM AREA NAME ID contains the numeric identifier of the area that contains the system record.

HINMID contains the number that is the highest name ID used.

HITID contains the number that is the highest record type ID used.

NUMBER OF AREAS contains the number of areas defined for the schema.

EDIT contains the number of the last edit to the schema.

RUN contains the number of times the schema has been used by run-units.

LAST SUB-SCHEMA contains the number of the last sub-schema declared. The highest possible value is 36.

JOURNAL contains the database key of the journal's ALE line.

CHECKPOINT contains checkpointing flags:
bit 34 - VER flag (checkpointing by command)
bit 35 �~� TR flag (checkpointing by transaction)

EXCEPTION ACTION FLAGS is two half words of flags. The left half is for NOTE exceptions; the right half is for
INTERCEPT exceptions. The relevant bits are:
bits 13 and 30 - SYS flag (system exceptions will be noted/intercepted)
bits 14 and 31 - ALL flag (all exceptions will be noted/intercepted)
bits 15 and 33 - BIND flag (exceptions during binding will be noted/intercepted)
bits 16 and 34 - CALL flag (exceptions during calls will be noted/intercepted)
bits 17 and 35 - UPD flag (exceptions during updating will be noted/intercepted)

C-14

Organization of Schema Files

C.10 SCH SUB-SCHEMA LINE
An SCH SUB-SCHEMA line is created for each sub-schema using the schema. Its format is shown in Figure C-ll.

o
1

2

3

4

5

6

7

8

o 35

MASK

PRIV ACY LOCK

NAME LENGTH

SUB-SCHEMA NAME

Figure C-l1 SCH SUB-SCHEMA Line

MASK contains a mask that is ORed with other SCH lines. If the result is non-zero, the line is used in the sub-schema.

PRIVACY LOCK contains the privacy lock for the sub-schema if one exists.

NAME LENGTH contains the length of the sub-schema name.

SUB-SCHEMA NAME contains the sub-schema name in ASCII. The name can be up to 30 characters long.

C-lS

Organization of Schema Files

C.11 scn TEXT LINE
One or more TEXT lines are createdJor each data-aggregate in the schema. Figure C-I2 shows the format of an SCH
TEXT line.

o

2

3

4

5

o

~

~

-- - - - -...r-

35

SUB-SCHEMA

TEXT LENGTH

TEXT

- ".. -- ---~ ~ -

~~----~~~--~~~ ~ ~_J~'-____ ~ __ ~~~ __ ~~~ ___ ~_~-,-___ ~~_~~
17 -
18
~--

19
1----

20
f----

21 L-__ ~

Figure C-I2 SCH TEXT Line

SUB-SCHEMA contains the numbers of the sub-schema in which the text is defined. Each bit of the word represents
a sub-schema.

TEXT LENGTH contains the number of characters in the text.

TEXT contains the text in ASCII. The text can be up to 100 characters long.

C-16

Organization of Schema Files

C.12 scn VIA LINE
A SCH VIA line is created for each member that has a sort control key or a set occurrence selection key. If the
member has both keys, a VIA line is created for each. The VIA line points to the CONTROL lines for the sub-keys
in the key. The SCH VIA line is one word long and is shown in Figure C-13.

35 o [8
OI~ ___________ N_K_E_Y ____________ ~ _____________ T_YP __ E ____________ -J

Figure C-13 SCH VIA Line

NKEY contains the numbers of subkeys in each key.

TYPE contains the type of the key:
I - DIRECT key used in set occurrence selection
2 - CALC key used in set occurrence selection
3 - VIA key used in set occurrence selection
4 - SORTED key used in sort control

C-17

Organization of Schema Files

C.13 SCH WITHIN LINE
An SCH WITHIN line is created for each record that can be in each area. It contains the record-type and its page
ranges. Figure C-14 illustrates this line.

35 o p8
----------------------------+------------------------------,

O~~ ___________ R_E_C_O,_R_D ____________ I ____________ A_R_E_A __ N_M_ID ___________ ~ ,_ FIRST PAGE
LAST PAGE

Figure C-14 SCH WITHIN Line

RECORD contains -1 if the record type appeared in a page range clause for the area. If it does not, RECORD con
tains O.

AREA NMID contains the numeric identifier of the area to which this line is connected.

FIRST PAGE contains the number of the first page of the range specified for the record. If you did not specify a
range, the first page of the area is used.

LAST PAGE contains the number of the last page of the range specified for the record. If you did not specify a
range, the last page of the area is used.

C-18

APPENDIX D

DATA ORGANIZATION AND ACCESS

As stated in Chapter 2, SCHEMA creates a DBS file for each area in the schema. The data base is composed of these
DBS files. This appendix describes the format of a page in a DBS file, the in-core representation of the data base,
and the overhead involved in accessing the DBS files.

D.I FORMAT OF A PAGE
A page in a DBS file contains a page header and lines containing records. The format of a page header is shown in
Figure D-l.

0 11 8 35

0 PAGE NUMBER

I HIGHEST USED#(i) I FIRST FREE# U)

2 CALC-CHAIN HEADERS

n

n + I DATA WORD

j - I LAST DATA WORD

j FIRST FREE WORD

p i LINE HEADER

p LINE !lEADER

Figure D-l Format of a Page Header

PAGE NUMBER contains the number of this page.

HIGHEST USED contains the highest line number used so far on this page.

FIRST FREE contains the offset of the first word on the page on which tnere is no data.

CALC CHAIN HEADERS is 0 or more words (depending on the value specified in the CALC RPP clause). Each
word is the database key of the first record in each (non-empty) CALC chain.

D-l

Data Organization and Access

Each line on a page begins and ends on a word boundary and covers as many words as necessary to contain the data.
Lines cannot cross page boundaries. Each line contains a line header, set pointers, and the data. The format of a
line header is shown in Figure 0-2.

o 35

RECORD SIZE TID OFFSET

Figure 0-2 Format of a Line Header

RECORD SIZE contains the size of the record occurrence on the line.

TID contains the record type 10 of the record occurrence.

OFFSET contains the offset from the beginning of the page to the first word of data in the record.

For each set link associated with the record occurrence on a line, DBCS includes a set pointer on the line. Each
pointer is one word, which is the database key of the line to which it points. A database key is the combination of
the number of the line and the number of the page on which a record resides. Figure 0-3 shows the format of a
database key.

35 o 127
1sT PAGE NUMBER D. _____________________________ ~ __________ ~ LINE NO.

Figure 0-3 Format of a Database Key

S is the sign of the key.

PAGE NUMBER contains the page number.

LINE NO contains the line number.

The first line of the first page in an area is the Area Status Record. Its format is shown in Figure 0-4.

o 35

Figure 0-4 Format of an Area Status Record

STATUS contains the status of the area. If the area is in a state of flux (Le., opened for update), this word is set to
-1. If the area is open and the run-unit accessing it aborts, the -1 indicates that the area is in an undefined
state. If the area is closed and available for normal use, this word is set to O.

D.2 IN-CORE BLOCKS
When an application program invokes a sub-schema, OBCS builds the in-core blocks for the data base according to
the SCH lines for the schema. These in-core blocks contain the descriptions of the records, sets, and areas in the
sub-schema. Each block is described below on a separate page.

Several of the blocks contain AOBJ pointers that point to tables. The tables consist of single-word entries. Each
table has its own format, but all the AOBJ pointers have the same format. The left half contains a negative count
of the entries in the table and the right half contains the pointer to the table.

0-2

Data Organization and Access

D.2.1 In-Core AREA Block
An AREA block is written in memory for each area known to the invoked sub-schema. Its format appears in
Figure D-5.

o

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

o
CURRENT OF AREA

JFN

USAGE MODE

LAST ALLOCATED PAG E

BUFFER POINTER

AREA'S FILE SPECIFICATION

BUFFER FOR TEMP AREA

JFN FOR TEMP AREA

LAST TEMP PAGE ALLOCATED

INITIAL TEMP PAGE ALLOCATED

FIRST PAGE

LAST PAGE

PAGE SIZE

NUMBER OF BUFFERS

RECORDS-PER-PAGE

NUMBER OF CALC LISTS

IMAGE TYPES

LOCKS

POINTER TO NAME TABLE

LENGTH OF AREA-NAME

AREA-NAME

Figure D-S In-Core AREA Block

CURRENT OF AREA contains the database key of the current record occurrence of this area.

JFN contains the JFN of the file to which this area belongs.

35

USAGE MODE refers to the USAGE MODE specified for the OPEN statement. The values and the modes they
represent are:

o - RETRIEVAL
1 - UPDATE
2 - PROTECTED RETRIEVAL
3 - PROTECTED UPDATE
4 - EXCLUSIVE RETRIEVAL
5 - EXCLUSIVE UPDATE

D-3

Data Organization and Access

LAST ALLOCATED PAGE contains the number of the last page allocated to the area.

BUFFER POINTER contains an AOBJ pointer to the list of buffer pointers for this area. The list of buffer pointers
contains as many words as there are buffers for this area. The right half of each word contains the pointer to
each buffer.

AREA'S FILE SPECIFICATION contains the pointer to the FILE block for the area.

BUFFER FOR TEMP AREA contains the address of an extra buffer allocated for the temporary area's directory.

JFN FOR TEMP AREA contains an additional JFN needed if the area is opened as temporary.

LAST TEMP PAGE ALLOCATED contains the number of the last page allocated in the temporary area.

INITIAL TEMP PAGE ALLOCATED contains the number of the initial last allocated page in the data base file.

FIRST PAGE is the number of the first page in the area.

LAST PAGE contains the number of the last defined page in the area.

PAGE SIZE contains the number of words in a page.

NUMBER OF BUFFERS contains the number of buffers that are allocated for this area.

RECORDS-PER-PAGE contains the maximum number of records that can be stored on a page.

NUMBER OF CALC-CHAINS contains the number of CALC-chains that are allowed on each page.

IMAGE TYPES contains the type of page images being written in the journal file. The value can be one of:
o - none
1 - AFTER images
2 - BEFORE images
3 - both BEFORE and AFTER images

LOCKS contains the text of all the privacy locks declared for this area.

POINTER TO NAME TABLE contains a pointer to the list of area name IDs.

LENGTH OF AREA NAME contains the length of the area-name.

AREA-NAME contains the area-name (in ASCII). It is a variable-length field up to 30 characters long.

0-4

Data Organization and Access

0.2.2 In-Core DATA Block
An in-core DATA Block is created for each 02 data-name belonging to a record in an invoked sub-schema. The
DATA block is created from the SCH DATA line. The format of a DATA block is shown in Figure D-6.

o

2

3

4

0 18

RECORD ID OCCURS

CASE

POINTER TO UW A

SIZE OF DATA

OFFSET OF ITEM IN RECORD

Figure D-6 In-Core DATA Block

127

I
KEY TYPE

RECORD ID contains the record type ID of the record in which the data-item belongs.

TYPE

OCCURS contains the number of times the data-item occurs as specified in an OCCURS clause.

TYPE contains the data type of the item:
o - no data type, i.e., the item is a data-aggregate
1 - the type is numeric, FIXED BINARY REAL
2 - the type is numeric, FLOAT BINARY REAL
3 - the type is numeric, FIXED DECIMAL REAL
4 - RESERVED
5 - RESERVED
6 - the type is numeric, FLOAT BINARY COMPLEX
7 - RESERVED
8 - RESERVED
9 - the type is database key

10 - the type is alphanumeric, DISPLAY-6
11 - the type is alphanumeric, DISPLA Y-7
12 - the type is alphanumeric, DISPLAY-9

CASE contains one of the following values:
o - the data-item is not a key (sort or set occurrence selection)
1 - the database key of the actual record is its key
2 - the database key of the record as encoded in the index list is the key
3 - the record type ID of the record is the key
4 - the record type ID as encoded in the index list is the key

KEY TYPE contains one of the following values:
Bit 30 the data-item is the entire key
Bit 31 the key controls a member not in the current sub-schema
Bit 32 the data-item is a CALC key
Bit 33 the data item is a range key
Bit 34 the key is in descending sequence
Bit 35 the key is in ascending sequence

Word 1 (CASE and KEY TYPE) is set to 0 if the data-item is not a key.

POINTER TO UW A contains a byte pointer to the data-item as it exists in the UW A.

35

SIZE OF DATA contains the size of the data-item in the applicable unit (e.g., characters, words, depending on the
data-type). This number is the product of the size of the data-item times the number of times it occurs.

OFFSET OF ITEM IN RECORD contains a byte pointer to the data item's offset in the record.

D-5

Data Organization and Access

D.2.3 In-Core FILE Block
A FILE block is created in memory for each DBS file and for the journal file. It is created from the SCH FILE line.
The format of a FILE block is shown in Figure D-7.

o
1

2

3

4

5

6

o 35

DEVICE

CNT

DIRECTORY

FILENAME

EXTENSION

PROTECTION

FILESIZE

Figure D-7 In-Core FILE Block

D-6

Data Organization and Access

0.2.4 In-Core MEMBER Block
A MEMBER block is created from the SCH MEMBER line for each member record in every set. Figure D-8 shows
the format of a MEMBER block.

o
I

2

3

4

0 JI8 121 124

OWNER OFFSET

PRIOR OFFSET

NEXT OFFSET

I MEM I SOS I
SOS CTL I

Figure D-8 In-Core MEMBER Block

po 35

ORO I oUP

KEYCTL

OWNER OFFSET contains the offset in the record of the OWNER pointer. This is 0 if you did not specify LINKED
TO OWNER.

PRIOR OFFSET contains the offset in the record of the PRIOR pointer. This is 0 if you did not specify LINKED
TO PRIOR.

NEXT OFFSET contains the offset in the record of the NEXT pointer.

MEM contains the type of membership - AUTOMATIC or MANUAL and MANDATORY or OPTIONAL.

SOS contains the form of set occurrence selection:
1 - CURRENT or SET
2 - LOCATION MODE OF OWNER

ORD contains the set order:
1 FIRST
2 LAST
3 - NEXT
4 - PRIOR
5 - SORTED
6 - SORTED BY DATABASE-KEY
7 - SORTED WITHIN
8 - RESERVED
9 - SORTED WITH USER KEYS

10 - RESERVED
11 - SORTED WITHIN WITH USER KEYS
12 - SORTED WITH USER KEYS AND DUPLICATES ALLOWED

DUP contains the description of how duplicate keys are treated:
o - duplicates are allowed
1 - duplicates are first
2 - duplicates are last
3 - duplicates are not allowed

SOS CTL contains a pointer to the VIA block for the set occurrence selection key.

KEY CTL contains pointers to the VIA blocks for the sort control keys.

0-7

Data Organization and Access

D.2.5 In-Core OWNER Block
An in-core OWNER block is created from the SCH OWNER line for each set referenced in the sub-schema. An
OWNER block is variable in length and its format is shown in Figure D-9.

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

o

r-----

r-----

OWNER DB KEY

PRIOR OFFSET

NEXT OFFSET

INDEX OFFSET

SIZE OF INDEX BLOCK

INDEX NODE SIZE

CURRENT VERB INDEX

OWNER RECORD BLOCK

CURRENT OF SET

NO CURRENT OF SET

POINTER TO MEMBERS

SYMBOL NODE

NAME LENGTH

SET·NAME

Figure D-9 In-Core OWNER Block

OWNER DBKEY contains the database key of the owner of the current set occurrence.

35

PRIOR OFFSET contains the offset in the owner record of its PRIOR pointer. If you did not specify LINKED TO
PRIOR, it is O.

NEXT OFFSET contains the offset in the owner record of its NEXT pointer.

INDEX OFFSET contains the offset to the pointer to the head of an index structure if the set is sorted.

SIZE OF INDEX BLOCK contains the number of words in the index block for the set.

INDEX NODE SIZE contains the size of a node in the index block.

CURRENT VERB INDEX is for error recovery purposes.

OWNER RECORD BLOCK contains the address of the RECORD block for the owner record of the set.

CURRENT OF SET contains the database key of the current record of the set.

NO CURRENT OF SET contains the canonical next of set if the current record was deleted or removed from the set.

POINTER TO MEMBERS contains an AOBJ pointer to a table of member blocks. Each word of the table contains
a pointer to the RECORD block of each member and a pointer to the MEMBER block of each member.

SYMBOL NODE contains a pointer to the symbol node.

D-8

Data Organization and Access

NAME LENGTH contains the length of the set-name.

SET NAME contains the set-name (in ASCII). It is a variable-length field up to 30 characters long.

0-9

Data Organization and Access

0.2.6 In-Core RECORD Block
A RECORD block is created in memory for each record type used in the sub-schema. The in-core RECORD block
is derived from the SCH RECORD line. The format of an in-core RECORD block is shown in Figure D-10.

o

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

0

LOC MODE

DOFF

~

~

~

~

~

~

18

FLAGS

TOTAL SIZE

DBKEY OF CURRENT RECORD

RECORD ID

PTR TO AREA TABLE

PTR TO DATA TABLE

PTR TO OWNER TABLE

PTR TO MEMBER TABLE

LOCATION INFORMATION

UW A LOCATION FOR

AREA-ID

SYMBOL NODE

NAME LENGTH

RECORD-NAME

Figure D-10 In-Core RECORD Block

LOC MODE contains the location mode:
o - none, i.e., the record is the system record
1 - DIRECT
2 - CALC
3 - VIA

FLAGS contains the following:
Bit 34 - record cannot be deleted because a set in which it belongs is not in the sub-schema.

35

Bit 35 - record cannot be stored/deleted because the set owned by the record is not in the sub-schema.

DOFF contains the data offset.

TOTAL SIZE contains the total number of words in the record.

DB KEY OF CURRENT RECORD contains the database key of the current occurrence of this record type.

RECORD ID contains the record type 10 of the record.

PTR TO AREA TABLE contains an AOBJ pointer to a table. Each word in the table contains two pointers. The
pointer in the right half points to an area in which the record can reside. The pointer in the left half points
to the WITHIN block associated with this area/record pair.

PTR TO DATA TABLE contains an AOBJ pointer to a table. Each word in the table contains a pointer in the right
half that points to each DATA block associated with the record.

0-10

Data Organization and Access

PTR TO OWNER TABLE contains an AOBJ pointer to a table. Each word in the table contains a pointer in the
right half to the owner block for the record.

PTR TO MEMBER TABLE contains an AOBJ pointer to a table. Each word in the table contains two pointers.
The pointer in the left half points to the MEMBER blocks for the record. The pointer in the right half points
to the OWNER blocks of the sets in which the record is a member.

LOCATION INFORMATION contains information that depends on the location mode:
If it is CALC - AOBJ pointer to a table of CALC keys.
If it is VIA - database key of the OWNER block of the set named in the VIA phrase.
If it is DIRECT - UW A address of the DIRECT identifier.

UWA LOCATION FOR AREA-ID contains a string pointer to the UWA location for the area-ID if one exists.

SYMBOL NODE contains a pointer to the symbol node that contains the record-name.

NAME LENGTH contains the length of the record-name.

RECORD-NAME contains the record-name in ASCII. It is a variable-length field up to 30 characters long.

D-II

Data Organization and Access

0.2.7 In-Core VIA Block
A VIA block is created in memory for each sort key or set occurrence selection key. It is created from the SCH VIA
line. The format of an in-core VIA block is shown in Figure 0-11.

o 35

°llr-____________________ ~ __ R_T_O __ DA_T_A __ SO_R_T __ FI_E_L_D_S ____________________ ~
. ~R TO INDEX SORT FIELDS

Figure 0-11 In-Core VIA Block

PTR TO OAT A SORT FIELDS contains an AOBJ pointer to a table. Each word in the table contains two values.
The value in the left half is the type of the key. The value in the right half is a pointer to the key in the record.

PTR TO INDEX SORT FIELDS contains an AOBJ pointer to a table. Each word in the table contains two values.
The value in the left half is the type of the key and the value in the right half is a pointer to the key in the
index node.

0-12

Data Organization and Access

0.2.8 In-Core WITHIN Block
For each area in which a record can reside, a WITHIN block is created in memory. Figure 0-12 shows this block.

o 35

°l~ ___ F_I_R_ST _____ P_A_G_E __ ~

. LAST PAGE

Figure 0-12 In-Core WITHIN Block

FIRST PAGE contains the number of the first page of the range of the record in the area. If you did not specify
a range, the first page of the area is used.

LAST PAGE contains the number of the last page of the range of the record in the area. If you did not specify a
range, the last page of the area is used.

0-13

Data Organization and Access

0.3 OVERHEAD
DBMS requires a certain amount of overhead to hold in memory such information as the linkages, the page headers,
and the line headers. You can estimate overhead in terms of records (lines), pages, files, and run-units.

0.3.1 Record Overhead
For each record type defined for the data base, you can use the following to determine the amount of overhead in
words for each record occurrence:

1. location mode is CALC 1 word
2. owner of set types
3. member of set types
4. LINKED TO OWNER in set types
5. LINKED TO PRIOR in set types

1 word per set
1 word per set
1 word per set
1 word per set

Add to the calculation 1 word for the line header, and you have found the overhead for each occurrence of this
record type. Consider the following examples:

EXAMPLE 1

The record type INVENTORY-RECORD is a CALC record, is the owner of 4 sets, participates as a member in
5 sets, is LINKED TO OWNER in 3 of these, and is LINKED TO PRIOR in one of them. Using the above overhead
determination you can calculate the record overhead as:

1 (for CALC chain)
4 (for owner of 4 sets)
5 (for member of 5 sets)
3 (for OWNER links)
1 (for PRIOR link)

14

Adding the word for the line header gives a total of 15 words of overhead for each occurrence of this record type.

EXAMPLE 2

The record type SUPPLIER-RECORD is a DIRECT record, and owns only one set. The line (record) overhead for
this record type would be one word for the line header and one word for being an owner. Thus each line on which
this record type appeared would have 2 words of overhead.

A stand-alone record - - i.e., one with no set linkages - - will have a minimum of two words of overhead.

There will be times when you will have to decide whether to repeat a certain item of data in more than one record
or to create a set to eliminate the data redundancy. If the redundant data would take up less than three or four
words in storage, the justification of set-link overhead would be questionable. That is, questionable from the point
of view of efficient use of storage. This has to be traded off against the undesirable aspect of having to update two
or more records in the data base.

D.3.2 Page Overhead
Page overhead consists of the number of words that compose the page header. In general, this overhead can be
calculated using the formula:

Page Overhead = 2 + number of CALC chains

The 2 is for the two fixed words in the page header. In Example 1, the page overhead would be 3 words; in
Example 2, it would be 2 words.

0-14

Data Organization and Access

D.3.3 File Overhead
In addition to page and line overhead, every OBS file has a three-word sector on the first page of the file used to
store the Area Status Record. This overhead is inherent to the system and cannot be altered.

If you have specified OWNER IS SYSTEM at all, overhead for the file will be increased by the number of pointers
in the system set.

D.3.4 Run-unit Overhead
For each run-unit, overhead depends on the number of sub-schemas invoked plus a fixed amount for OBCS. The
overhead consists of:

l. A OBCS internal control area (currently about 200 words).
2. An in-core data base (see Section 0.2) for each sub-schema. The size of this data base depends on the

number of blocks needed for the sub-schema.
3. A UWA for each sub-schema.
4. Buffers for each area opened at some time during execution of the run-unit. If an area is temporary, an

additional buffer is required for that area.

D.4 STORE ALGORITHM
As described in Section 2.2.3.2, OBCS uses the location mode specified for a record to locate the approximate page
on which to store a record. Once OBCS locates the approximate page, it stores a record in the same manner regard
less of its location mode. That is, the location mode only specifies the algorithm that OBCS uses to find the page on
which to try to store the record occurrence. It tries to store a record occurrence on the first empty line on that page.
If there is no more room on the page, OBCS tries to store the record on the next page. If there is no room on that
page, OBCS calculates the next page on which to look for room by adding a prime number to the page number of
the last page it checked. It continues to do this (cycling back through the area from its beginning if necessary) until
either room is found for the record or all pages have been checked and there is no room, in which case OBCS returns
an exception code.

When OBCS finds an empty line for the record occurrence, it sets the record's pointers and, in the case of a CALC
record, adds the record to the CALC-chain on the page it originally calculated.

0-15

Abstract,
information in journal, 640
journal, 6-30, 6-33, 6-36

ABSTRACT DBMEND command, 6-36
Accessing the data base, 1-6
Activity,

status of data base, 2-15
Advantages of DBMS, 1-1
AFTER images, 1-9,2-11,3-10,6-28,6-46
Algorithm,

STORE, D-15
ALIAS phrase, 4-22
ALL exceptions, 3-4
Alphanumeric data-items,

elementary, 4-8
APPEND DBINFO command, 6-3
Appending to journal, 6-29
Area, 1-5

SYSTEM, 2-3, 3-8
AREA block,

in-core, D-3
Area entry,

schema, 4-3
sub-schema, 5-3

AREA line,
SCH, C-3

AREA SECTION statement, 5-3
AREA statement, 4-3
Area status record,

adjusting, 6-28, 6-34, 6-43
format, D-2

AREA TEMPORARY clause, 4-3
area-ID,2-7,4-7
Areas,

buffer in, 2-4,3-11
CALC-chains in, 2-4, 3-12
file specification of, 2-3, 3-8
naming, 2-2, 4-3
page ranges in, 2-3, 3-13
page sizes in, 2-3,3-14
privacy locks for, 2-2,4-3
record limits in, 2-3, 3-6, 3-9
record ranges in, 2-5, 3-15
sub-schema temporary, 5-3
temporary, 2-3,4-3
usage-modes of, 2-2,4-3

Areas (DBINFO),
closing, 6-4
opening, 6-6

INDEX

Index-1

Areas (DBMEND),
closing, 6-38
excluding, 6-42
forcing open, 6-43
opening, 6-48

Areas for records, 2-7, 4-7
Areas in sub-schemas, 5-3
ASCENDING/DESCENDING phrase, 4-21
ASSIGN statement, 3-8
AUTOMATIC set membership, 2-10, 4-19

Backup,
data base, 2-12, 3-3, 3-10, 6-28

Backup during a run-unit, 1-7
BACKUP statement, 3-1 °
BEFORE image, 1-7,2-11,3-10,6-28,6-46
Beginning of journal,

positioning at, 6-49
BIND exceptions, 3-4
Block,

format of a journal
information, 6-59

format of a journal label, 6-59
Block header,

format of a journal, 6-59
Boundaries,

journal, 6-56
Boundary,

end journal, 6-41, 6-56
leftmost journal, 6-53, 6-56
rightmost journal, 6-41, 6-56
start journal, 6-53, 6-56

BUFFER COUNT statement, 3-11
Buffers in areas, 2-4, 3-11
BUILD DBMEND command, 6-37

CALC location mode, 2-6, 4-6
CALC statement, 3-12
CALC-chains in areas, 2-4, 3-12
CALL exceptions, 34
CHAIN set mode, 2-7, 4-1 3
Changing the schema, 2-14
Characteristics,

set occurrence, 1-5
set type, 1-5

Clause,
AREA TEMPORARY, 4-3
LINKED TO OWNER, 4-20
LOCATION MODE, 4-6

CJause (Cont.),
MODE, 4-13
ORDER, 4-14
OWNER, 4-17
PICTURE, 4-8
PRIVACY, 4-3
RECORD NAME, 4-5
SET NAME, 4-12
SIZE, 4-8
TYPE, 4-8
WITHIN, 4-7

CLOSE DBINFO command, 6-4
CLOSE DBMEND command, 6-38
CLOSE DML statement, 1-7
Closing areas (DBINFO), 6-4
Closing areas (DBMEND), 6-38
Closing current journal, 6-55
COBOL DBMS module, 1-2
COBOL programs, 1-6
Command,

ABORT DAEMDB, 6-71
ABSTRACT DBMEND, 6-36
APPEND DBINFO, 6-3
BUILD DBMEND, 6-37
CLOSE DBINFO, 6-4
CLOSE DBMEND, 6-38
COMPLETE DBMEND, 6-39
CREATE DAEMDB, 6-72
CURRENT DAEMDB, 6-73
DISPLA Y DBINFO, 6-5
DISPLA Y DBMEND, 6-40
END DBMEND, 6-41
EXCLUDEDBMEND, 642
EXIT DAEMDB, 6-74
FORCEOPEN DBMEND, 6-43
GO DAEMDB, 6-75
HELP DAEMDB, 6-76
JOURNAL DBMEND, 644
LABEL DBMEND, 6-45
MERGE DBMEND, 646
MOUNT DAEMDB, 6-77
NOTRACE DBMEND, 6-47
OPEN DBINFO, 6-6
OPEN DBMEND, 6-48
PAGES DBINFO, 6-7
POLL DAEMDB, 6-78
POSITION DBMEND, 6-49
REELS DBMEND, 6-50
RESET DAEMDB, 6-79
RETRY DAEMDB, 6-80
REWIND DBMEND, 6-51

INDEX (Cont.)

Index-2

Command (Cont.),
SCHEMA DBINFO, 6-10
SCHEMA DBMEND, 6-52
SHUTDOWN DAEMDB, 6-81
SS DBINFO, 6-8
START DBMEND, 6-53
STOP DAEMDB, 6-82
SUPERSEDE DBINFO, 6-9
THRESHOLD DAEMDB, 6-83
TRACE DBMEND, 6-54
UNLOAD DBMEND, 6-55
WHAT DAEMDB, 6-84

Command units,
journal, 2-12

Commands,
DAEMDB, 6-71
DBINFO, 6-1
DBMEND, 6-33
image ordering by, 2-12, 3-3

COMPLETE DB MEND command, 6-39
Components of DBMS, 1-1
Concepts of DBMS, 1-2
Contents of journals, 6-29
CONTROL line,

SCH, C-5
/CREATE switch, 2-13
Creating the data base, 2-1
Current journal,

closing, 6-55
Current journal reel,

unloading, 6-55
CURRENT OF SET set occurrence selection,

2-11, 4-22

DAEMDB,
and temporary journal file, 6-66
as a timesharing job, 6-68
in teraction codes, 6-67
messages, 6-86
under PTYCON, 6-68

DAEMDB commands,
ABORT, 6-71
CREATE, 6-72
CURRENT, 6-73
EXIT, 6-74
GO, 6-75
HELP, 6-76
MOUNT, 6-77
POLL, 6-78
RESET, 6-79
RETRY, 6-80

DAEMDB commands (Cont.),
SHUTDOWN, 6-81
STOP, 6-82
THRESHOLD, 6-83
WHAT, 6-84

Data base, 1-1
accessing the, 1-6
backup, 2-12, 3-3, 6-28
creating the, 2-1
designing the, 2-1
getting information about, 6-5
10 cking the, 2-1 5
merging images into the, 6-29, 6-46
recovery, 2-12, 3-3, 6-28, 6-46
restoring the, 6-46

Data base abstracts, 6-33
Dat a base accessing language, 1-6
Data base activity,

status of, 2-15
Data base control system, 1-7
Data base description, 1-6
Data base design, 2-15
Data base line header,

format, D-l
Data Base Management System, 1-1
Data base page,

format, D-1
Data base resource, 2-15
Data base/run-unit interaction, 1-7
DATA block,

in-core, D-5
Data definition process, 2-14
Data description language,

schema, 1-6, 4-1
sub-schema, 1-6, 5-1

Data entry,
schema, 4-8

DATA line,
SCH, C-6

Data manipulation language, 1-6
Data-aggregate, 1-2,2-7,4-8,4-9
Data-items, 1-2

elementary alphanumeric, 4-8
elementary numeric, 4-9
precision of numeric, 4-9
scale factor of numeric, 4-9

Data-items in records, 2-7,4-8
Data-items in sub-schemas, 5-5
Database key, 1-5, 4-9

format, D-2
DBCS, 1-2, 1-7

INDEX (Cont.)

Index-3

DBINFO,
closing areas, 6-4
opening areas, 6-6
specifying page ranges for, 6-7
specifying schemas for, 6-10
specifying sub-schemas for, 6-8
using, 6-1

DBINFO commands, 6-1
APPEND, 6-3
CLOSE, 6-4
DISPLAY, 6-5
OPEN, 6-6
PAGES, 6-7
SCHEMA, 6-10
SS, 6-8
SUPERSEDE, 6-9

DBINFO error messages, 6-11
DBINFO example, 6-12
DBINFO output file,

specifying, 6-3, 6-9
DBINFO program, 1-2,2-15,6-1
DBMEND,

closing areas, 6-38
excluding areas, 6-42
forcing areas open, 6-43
identifying schema to, 6-52
opening areas, 6-48
stopping tracing during, 6-47
tracing during, 6-54

DBMEND commands, 6-34
ABSTRACT, 6-36
BUILD, 6-37
CLOSE, 6-38
COMPLETE, 6-39
DISPLA Y, 6-40
END, 6-41
EXCLUDE, 6-42
FORCEOPEN, 6-43
JOURNAL, 6-44
LABEL, 6-45
MERGE, 6-46
NOTRACE, 6-47
OPEN, 6-48
POSITION, 6-49
REELS, 6-50
REWIND, 6-51
SCHEMA, 6-52
START, 6-53
TRACE, 6-54
UNLOAD, 6-55

DBMEND error messages, 6-61

DBMEND error recovery, 6-64
DBMEND functions, 6-30
DBMEND program, 1-1, 2-15, 6-28
DBMS, 1-1

advantages of, 1-1
components of, 1-1
concepts of, 1-2

DBMS module,
COBOL, 1-2

DBMS object-time system, 1-7
DBMS utilities, 2-15,6-1
.DBS files, 2-3, 2-13

area status record, 6-28, 6-34, 6-43
DDL,

schema, 1-6, 4-1
sub-schema, 2-11, 5-1

Default transactions, 2-16
DELETE DML statement, 1-7
Designing the data base, 2-1
Device media control language, 1-6, 3-1
DIRECT location mode, 2-6, 4-6
Direction in the journal, 6-57
Directories, E-l
DISPLAY DBINFO command, 6-5
DISPLAY DBMEND command, 6-40
DISPLAY usage~mode, 4-9
DISPLA Y-6 usage-mode, 4-9
DISPLA Y-7 usage-mode, 4-9
DISPLA Y-9 usage-mode, 4-9
DMCL, 1-6,3-1
DMCL area entry, 3·7
DMCL environment entry, 3-2
DMCL INTERCEPT statement, 2-13
DMCL NOTE statement, 2-13
DML, 1-6
DML statement, 1·7

CLOSE, 1-7
DELETE, 1-7
FIND, 1-7
GET, 1-7
INSERT, 1-7
INVOKE, 1-7
OPEN, 1-7
REMOVE, 1-7
STORE, 1-7

DUPLICATES phrase, 4-14,4-21

Elementary alphanumeric data-items, 4-8
Elementary numeric data·items, 4-9
END DBMEND command, 6-41
End journal boundary, 6-41, 6-56

INDEX (Cont.)

Index-4

End of the journal,
marking, 6-39

END·SCHEMA statement, 5-8
Ending schemas, 5-8
ENQUEUE/DEQUEUE, 2-15
Error messages,

DBINFO, 6-11
DBMEND, 6-61
SCHEMA, B·l

Error recovery,
DBMEND, 6-64

Example,
DBINFO, 6-12
schema, 5-9
sub-schema, 5-9

Exception handling, 1-9
Exception interception, 1-9,2-13,3-4
Exceptions,

ALL, 34
BIND, 34
CALL, 3·4
SYSTEM, 34
UPDATE, 3-4

EXCLUDE DBMEND command, 642
Excluding areas (DBMEND), 6-42
EXCLUSIVE RETRIEVAL usage-mode, 2-2, 4-3
EXCLUSIVE UPDATE usage-mode, 2-2,4-3
Exception,

types of, 2-13

FILE block,
in-core, D-6

FILE line,
SCH, C-8

File overhead, D-15
File specification of areas, 2-3, 3-8
Files,

DBINFO output, 6-3, 6-9
.DBS, 2-3, 2-13
journal, 1-7,2-11,3-3,3-5,6-28
journal image-mode, 6-37
journal TMP, 6-61
opening journal, 6-44
.sCH, 2-13, C-1

FIND DML statement, 1-7
FIRST PAGE statement, 3-13
FIRST set order, 2-10,4-14
FORCEOPEN DBMEND command, 6-43
FORDML program, 1-2
Format of an area status record, D-l
Format of a data base line header, D-2

INDEX (Cont.)

Format of a data base page, D-l
Format of a database key, D-2
Format of a journal block header, 6-59
Format of a journal information block, 6-59
Format of a journal label block, 6-60
Format of a journal page, 6-58
Format of the journal, 6-58
FORTRAN programs, 1-6
FORTRAN usage-mode, 4-9

GET DML statement, 1-7
Getting information about data bases, 6-5

Header,
format of a journal block, 6-59

Host language, 1-6

Identifying schema to DBMEND, 6-52
Image ordering by command, 2-12, 2-16, 3-3
Image ordering by transaction, 2-12, 2-16, 3-3
Images,

AFTER, 1-9,2-11,3-10,6-28,6-46
BEFORE, 1-7,2-11,3-10,6-28,6-46

Images into the data base,
merging, 6-29, 6-46

IMAGES statement, 3-3
Including areas in sub-schemas, 5-3
Including data-items in sub-schemas, 5-5
Including records in sub-schemas, 5-4
Including sets in sub-schemas, 5-7
In-core blocks, D-2

AREA, D-3
DATA, D-5
FILE, D-6
MEMBER, D-7
OWNER, D-8
RECORD, D-I0
VIA, D-12
WITHIN, D-1 3

Information about data bases, 6-5
Information block,

format of a journal, 6-59
Information in journal abstracts, 6-40
INSERT DML statement, 1-7
INTERCEPT statement,

DMCL, 2-13, 3-4
Interception,

exception, 2-13, 3-4
Interleaving unit, 2-15
INVOKE DML statement, 1-7
ITEM line,

SCH, C-9

Index-5

Journal, 6-28
disk, 6-28, 6-66
magnetic tape, 6-66

Journal abstract, 6-28, 6-36, 6-40
Journal block header,

format of a, 6-59
Journal boundary, 6-56

end, 6-41, 6-56
leftmost, 6-53, 6-56
rightmost, 6-41, 6-56
start, 6-53, 6-56

Journal command units, 2-12
JOURNAL DBMEND command, 6-44
Journal files, 1-7,2-11,3-3,3-5,6-28

closing the current, 6-55
contents of, 6-29
direction in the, 6-57
format of the, 6-58
marking end of the, 6-39
motion in the, 6-57
opening, 6-44
positioning at beginning of, 6-51
positioning in the, 6-49, 6-58
rewinding the, 6-50
sharing the, 2-1 5
specifying, 6-29
temporary, 6-66

Journal image-mode file, 6-37
Journal information block,

format of a, 6-59
Journal label block,

format of a, 6-60
Journal label information, 6-45
Journal page,

format of a, 6-58
Journal reels,

specifying number of, 6-50
unloading current, 6-55

JOURNAL statement, 3-5
Journal TMP files, 6-61
Journal transaction units, 2-12

Keys,
database, 1-5, 4-9
range, 4-21
sort, 2-11, 4-20

Label block,
format of a journal, 6-60

LABEL DBMEND command, 6-45
Label information,

journal, 6-45

Language,
data base accessing, 1·6
data manipulation, 1·6
device media control, 1·6, 3·1
host, 1·6
schema data description, 1·6, 4·1
sub·schema data description, 5·1

LAST PAGE statement, 3·13
LAST set order, 2·10, 4·14
Leftmost journal boundary, 6·53, 6·56
Line in an area, 1·5
LINKED TO OWNER clause, 4·19
Location mode, 4·6

CALC, 2·6, 4·6
DIRECT, 2·6,4·6
VIA, 2·6, 4·6

Location mode of owner set occurrence
selection, 2·11, 4·22

Magnetic·tape journal, 6·66
page recovery with, 6·65
specifying, 6·66

MANDATORY set membership, 2·10,4·18
MANUAL set membership, 2·10,4-18
Marking end of the journal, 6·39
MEMBER block,

in·core, D· 7
Member entry,

schema, 4·17
MEMBER line,

SCH, C·10
Members,

naming, 4·17
set, 4-17

Membershi p,
AUTOMATIC set, 2-10,4·18
MANDATORY set, 2·10,4·18
MANUAL set, 2·10,4-18
OPTIONAL set, 2·10, 4·18

MERGE DBMEND command, 6·46
Merging images into the data base, 6-29, 646
Messages,

DAEMDB, 6-86
DBINFO error, 6-11
DBMEND error, 6-61
SCHEMA error, B-1

MODE clause, 4·13
Motion in the journal, 6·57

Naming areas, 2·2, 4·3
Naming members, 4-17

INDEX (Cont.)

Index·6

Naming owners, 4·16
Naming records, 2·6, 4·5
Naming schemas, 4-1
Naming sets, 2.7, 4-12
Naming sub·schemas, 5·2
Netword structure, 1-3
NEXT pointers, 2·8, 4·13
NEXT set order, 2·10, 4·14
/NOCREA TE switch, 2·13
NOTE statement, 34

DMCL, 2·13
NOTRACE DBMEND command, 6-47
Number of journal reels, 6·50
Numeric data·items,

e Ie men tary , 4·9
precision of, 4·9
scale factor of, 4-9

Object-time system,
DBMS, 1·7

Occurren ces,
record, 1·2
set, 1-3

OPEN DBINFO command, 6-6
OPEN DBMEND command, 6·48
OPEN DML statement, 1-7
OPEN JOURNAL statement, 6-29
Opening areas (DBINFO), 6·6
Opening areas (DBMEND), 6·48
Opening journal files, 6·44
OPTIONAL set membership, 2·10, 4-18
ORDER clause, 4·14
Output me,

DBINFO, 6-3, 6-9
Overhead, D-14

file, D·15
page, D·14
record, D-14
run-unit, D·15

OWNER block,
in-core, D·8

OWNER clause, 4-16
LINKED TO, 4-20

OWNER line,
SCH, C-l1

OWNER pointers, 2·8, 4-20
Owners,

naming, 4-16
set, 1·3,2·10,4-16

Page, 1-5
format of a journal, 6-58
logical, 3-14
physical, 3-14

Page overhead, D-14
Page ranges for DBINFO, 6-7
Page ranges in areas, 2-3, 3-13
PAGE SIZE statement, 3-14
Page sizes in areas, 2-3, 3-14
PAGES DBINFO command, 6-7
Phrase,

ALIAS, 4-22
ASCENDING/DESCENDING, 4-21
DUPLICATES, 4-14,4-21
SET OCCURRENCE SELECTION, 4-22
USING, 4-22

PICTURE clause, 4-8
Pointers,

NEXT, 2-8,4-13
OWNER, 2-8, 4-20
PRIOR, 2-8, 4-13
set, 1-3

POSITION DBMEND command, 6-49
Positioning at beginning of journal, 6-51
Positioning in the journal, 6-49, 6-58
Precision of numeric data-items, 4-9
PRIOR pointers, 2-8, 4-13
PRIOR set order, 2-10,4-14
PRIVACY clause, 4-3
Privacy locks,

areas, 2-2, 4-3
sub-schema, 2-11, 5-2

Program,
DAEMDB, 6-66
DBCS, 1-2
DBINFO, 1-2,2-15,6-1
DBMEND, 1-1,2-15,6-28
FORDML, 1-2'
SCHEMA, 1-1,2-13
TRANSL, E-1

Programs,
COBOL, 1-6
FORTRAN, 1-6

Project-programmer numbers, E-1
PROTECTED RETRIEVAL usage-mode,

2-2,4-3
PROTECTED UPDATE usage-mode, 2-2,2-15

Range keys, 4-20
RANGE statement, 3-15

Ranges in areas,
page, 2-3,3-13
record, 2-5, 3-15

RECORD block,
in-core, D-l °

Record en try,
schema, 4-4
sub-schema, 5-4

Record limits in areas, 2-3,3-6,3-9
RECORD line,

SCH, C-12
RECORD NAME clause, 4-5
Record occurrences, 1-2
Record overhead, D-14
Record ranges in areas, 2-5,3-15
RECORD SECTION statement, 5-4
Record type IDs, 2-6,4-5

in schema file, C-1
Record types, 1-2
Records, 1-2

areas for, 2-7,4-7
data-aggregates in, 2-7,4-8
data-items in, 2-7,4-8
location modes of, 2-6,4-6
naming, 2-6,4-5

Records in sub-schemas, 5-4
RECORDS-PER-PAGE statement, 3-6,3-9
Recovery,

data base, 2-12,3-3,6-28,6-46
DBMEND error, 6-64
during a run-unit, 1-7

Index-7

Reels,
specifying number of journal, 6-50
unloading current journal, 6-55

REELS DBMEND command, 6-50
REMOVE DML statement, 1-7
Reserved words, A-I
Restoring the data base, 6-46
RETRIEVAL usage-mode, 2-2, 2-15, 4-3
REWIND DBMEND command, 6-51
Rewinding the journal, 6-51
Rightmost journal boundary, 6-41,6-56
Ring structure, 1-3
Running DAEMDB, 6-67

as a timesharing job, 6-68
under PTYCON, 6-68

Running SCHEMA program, 2-13
Run-unit, 1-6

backup during a, 1-7
overhead, 0-15
recovery during a, 1-7

Run-unit IDs, 6-29,6-40,6-41

Scale factor of numeric data-items, 4-9
SCH files, 2-13, C-l
SCH lines, C-l

AREA, C-3
CONTROL, C-5
DATA, C-6
FILE, C-8
ITEM, C-9
MEMBER, C-10
OWNER, C-11
RECORD, C-12
SCHEMA, C-14
SUB-SCHEMA, C-15
TEXT, C-16
VIA, C-17
WITHIN, C-18

Schema, 1-6
changing the, 2-14
ending the, 5-8
naming the, 4-2

Schema area entry, 4-3
Schema data description language, 1-6,4-1
Schema data entry, 4-8
SCHEMA DBINFO command, 6-10
SCHEMA DBMEND command, 6-52
Schema DDL, 4··1
Schema entry, 4-2
SCHEMA error messages, B-1
Schema example, 5-9
Schema me, 2-13, C-l

set relationships in, C-2
SCHEMA line,

SCH, C-14
Schema member entry, 4-17
SCHEMA program, 1-1

running, 2-13
Schema record entry, 4-4
Schema record type IDs, C-l
Schema set entry, 4-10
SCHEMA statement, 4-2
Set, 1-2

naming, 2-7,4-12
singular, 1-5
SYSTEM, 1-5

Set entry,
schema, 4-10
sub-schema, 5-7

Set members, 2-10,4-17
Set membership, 2-10,4-18

AUTOMATIC, 2-10,4-18
MANDATORY, 2-10,4-18

INDEX (Cont.)

Index-8

Set membership (Cont.),
MANUAL, 2-10,4-18
OPTIONAL, 2-10,4-18

Set mode,
CHAIN, 2-7,4-13

SET NAME clause, 4-12
Set occurrence selection, 2-11

CURRENT OF SET, 2-11,4-21
LOCATION MODE OF OWNER, 2711,4-21

SET OCCURRENCE SELECTION phrase, 4-21
Set occurrence, 1-3

characteristics, 1-5
Set order, 2-10,4-14

ARST, 2-10,4-14
LAST, 2-10,4-14
NEXT, 2-10,4-14
PRIOR, 2-10,4-14
SORTED, 2-10, 4-14

Set owners, 1-3,2-10,4-16
Set pointers, 1-3
Set relationships in schema file, C-2
SET SECTION statement, 5-7
Set types, 1-3

characteristics, 1-5
Sets in sub-schemas, 5-7
Simultaneous-update, 2-15

design considerations, 2-15
ENQUEUE/DEQUEUE, 2-16
usage-modes, 2-15
using, 2-15

Singular set, 1-5
SIZE clause, 4-8
Sort keys, 2-11,4-20
SORTED set order, 2-10,4-14
Specifying DBINFO output file, 6-3,6-9
Specifying journals, 6-29
Specifying number of journal reels, 6-49
Specifying page ranges for DBINFO, 6-7
Specifying schemas for DBINFO, 6-10
Specifying sub-schemas for DBINFO, 6-8
SS DBINFO command, 6-8
START DBMEND command, 6-53
Start journal boundary, 6-53,6-56
Statement,

AREA, 4-3
AREA SECTION, 5-3
ASSIGN, 3-8
BACKUP, 3-10
BUFFER COUNT, 3-11
CALC, 3-12
CLOSE DML, 1-7

INDEX (Cont.)

Statement (Cont.),
DELETE DML, 1·7
DML, 1·7
END·SCHEMA, 5·8
FIND DML, 1·7
FIRST PAGE, 3·13
GET DML, 1·7
IMAGES, 3·3
INSERT DML, 1·7
INTERCEPT, 2·13,34
INVOKE DML, 1· 7
JOURNAL, 3·5
LAST PAGE, 3·13
NOTE, 2-13, 34
OPEN DML, 1-7
PAGE SIZE, 3-14
RANGE, 3-15
RECORD SECTION, 54
RECORDS-PER-PAGE, 3-6,3·9
REMOVE DML, 1-7
SCHEMA,4-2
SET SECTION, 5-7
STORE DML, 1-7
SUB-SCHEMA, 5-2

STATS subprogram, 2-15
Status of data base activity, 2-15
Stopping tracing during DBMEND, 647
STORE algorithm, D-15
STORE DML statement, 1-7
Structure,

netword, 1-3
ring, 1-3
tree, 1-3

Sub-schema, 1-6
Sub-schema area entry, 5-3
Sub-schema data description language, 2-11, 5-1
Sub-schema DDL, 2·11, 5-1
Sub-schema entry, 5-2
Sub-schema example, 5-9
SUB-SCHEMA line,

SCH, C-15
Sub-schema privacy locks, 2-11, 5-2
Sub-schema record entry, 54
Sub-schema set entry, 5-7
SUB-SCHEMA statement, 5-2
Sub-schema temporary areas, 5-3
Sub-schemas, 2·11

including areas in, 5-3
including data-items in, 5-5
including records in, 54
incl uding sets in, 5-7
naming, 5-2

Sub·schemas for DBINFO,
specifying, 6·8

Subprogram,
STATS, 2-15

SUPERSEDE DBINFO command, 6-9
Switch (SCHEMA),

/CREATE, 2·13
/NOCREATE, 2-13

SYSTEM area, 2·3,3-8
System communication locations, 1-7
SYSTEM exceptions, 34
SYSTEM record, 4-17
SYSTEM set, 1·5

Temporary areas, 2-3,4·3
sub-schema, 5-3

TEMPORARY clause,
AREA, 4-3

TEXT line,
SCH, C-16

TMP files,
journal, 6-61

TRACE DBMEND command, 6-54
Tracing during DBMEND, 6-54

stopping, 647
Transaction,

default, 2-16
image ordering by, 2·12,2-15,3-3
with simultaneous-update, 2-15

Transaction units,
journal, 2-12

TRANSL program, E-1
Tree structure, 1-3
TYPE clause, 4-8
Types,

Index-9

record, 1-2
set, 1-3

Types of exceptions, 2-13,34

UNLOAD DBMEND command, 6-55
Unloading current journal reel, 6-55
UPDATE exceptions, 2-15,34
Usage-mode,

DISPLAY, 4-9
DISPLAY·6, 4-9
DISPLAY·7, 4-9
DISPLAY-9, 4-9
EXCLUSIVE RETRIEVAL, 2-2,4-3
EXCLUSIVE UPDATE, 2-2, 4-3
PROTECTED RETRIEVAL, 2-2,4-3

Usage-mode (Cont.),
PROTECTED UPDATE, 2-2,2-15
RETRIEVAL, 2-2, 4-3, 2-15

Usage-modes,
FORTRAN, 4-9

Usage-modes of areas, 2-2,4-3
User working area, 1-7
Using DBINFO, 6-1
USING phrase, 4-22
Using project-programmer numbers, E-1
Utilities,

DBMS, 2-18,6-1
UWA, 1-7

INDEX (Cont.)

VIA block,
in-core, D-12

VIA line,
SCH, C-17

VIA location mode, 2-6,4-6
Volume-id, 6-68

WITH block,
in-core, D-13

WITHIN clause, 4-7
WITHIN line,

SCH, C-18

Index-l0

Q)

I::

I~
I:§
I§
~
.....
::3
u

READER'S COMMENTS

DECsystem-lO
Data Base Management
System Administrator's
Procedures Manual
AA-0899C-TB

NOTE: This form is for document comments only. Problems with software should be reported on a Software
Performance Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Q)
til ro
Q) Please indicate the type of user/reader that you most nearly represent. ee

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Non-programmer interested in computer concepts and capabilities

Name Date ____________________ _

Organization _____________________________________ _

Street ______________________________________ ~ ____________ __

City ___________________ State _______ _ Zip Code _________ _

or
Country

If you require a written reply, please check here. D

---Fold lIere--

-- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation

200 Forest Avenue MRI-2/E37

Marlboro, Massachusetts 01752

FIRST CLASS

PERMIT NO. 152

MARLBORO, MASS.

