RSX-11M-PLUS
Guide to Writing an I/O Driver
Order No. AA-H267B-TC

RSX-11M-PLUS Version 2.0

digital equipment corporation - maynard, massachusetts

First Printing, October 1979
Revised, March 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (c) 1979, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem~-10 MASSBUS VMS

DECSYSTEM-20 PDP VT
DECUS PDT Eﬂgnan
DECwriter RSTS

ZK2150

HOW TO ORDER ADDITIONAL DOCUMENTATION

n Continentat USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
n New Hampshire, Alaska. and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
n Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (alt other Canadian) Attn: A&SG Business Manager

JIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.0O. Box CS2008 A&SG Business Manager

Nashua. New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with ihe local Digital subsidiary (809-754-7575)

nternal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Jorporation. Northboro, Massachusetts 01532

CONTENTS

PREFACE

SUMMARY OF TECHNICAL CHANGES

CHAPTER

—

RSX-11M-PLUS I/O DRIVERS

SERVICE ROUTINES o
Executive and Driver Layout

Driver Contents

The Driver Process

e e
.
N

W WWN NN -
.
N =

Block .« ¢« ¢ ¢ o« « & . .

.
W

Nonsense Interrupt Entry Po
ADVANCED DRIVER FEATURES . .
Overlapped Seek I/0 . . .
Dual-Access Support . . .
Delayed Controller Access
Controller Reassignment and
Common Interrupt Dispatchin
Subcontroller Devices . .
Full Duplex Input/Output .
Buffered Input and Output
I/0 Queue Optimization . .
DISTRIBUTED I/O0 . « « « .
UNIBUS Run Mask
Conditional Fork

OO dWN -

. .

~ QYU O UT UL D DD D DD D DWW
o
w N =

= b b e b e b b e e o
. . L[]

INTO RSX-11M-PLUS
SPR SUPPORT . « « « « « « &

—
.

CHAPTER DEVICE DRIVER I/O STRUCTURES

N

I/0 STRUCTURES
Controller Table (CTB) . .
Controller Request Block (K
Device Control Block (DCB)
Unit Control Block (UCB) .
Status Control Block (SCB)

DRIVER DISPATCH TABLE (DDT)
I/0 Initiation . « « « . &
Cancel I/0 v ¢ ¢ o« o o o o
Device Timeout
Device Power Failure . . .
Controller and Unit Status
Device Interrupt Addresses

TYPICAL CONTROL RELATIONSHIPS

e ® o o & o o e s o @
o o o e o o o e
AU BWN = Vb WwWwN -

DN DNDNODNDNODNNDNNODND NN
WNN NN NN
.

e o o

iii

EXECUTIVE AND DRIVER INTERACTION .

ints

. . .

Load
g . .

Processor-Specific Functions
OVERVIEW OF INCORPORATING A USER—WRITTEN

. . .

RB) .

Interrupt Servicing and Fork Process

VECTORS AND CONTROL AND STATUS REGISTERS

.

Sharing

DRIVER

.

Interrupt Dispatching and the Interrupt Control

Page

ix

xiii

| L]

NN NN ONNDDNDNDND DN
|

1
ANV N W WN

CHAPTEP

CHAPTER

w

WwWwwwwww w

=Y

L= = = o

LI Y

L = i i i R Y S S e S e I S SN - N O S S S S S SR

« o

e e o o & o
N NN N

. .

e o e & s & s 8 s e e e e ¥ ® e s T e & e s & s e 8 s e @

N

VUt UTUT GTUT U U S b b D DB D DD W WWWWWwWWNNNDDNDND

* e . . .

. .
U W N =

o e o ¢ o @

« s e e e s+ .
OO WWwN

. e

HEHERFR YOOI WN

N = O

« s .

N

& W N

N -

YN DS W N

.
—

CONTENTS

Multiple Units per Controller, Serial Unit
Operation . ¢ ¢ ¢« v ¢ ¢« ¢ & ¢ ¢ 2 o o o
Single Controller, Serial Operation . . .
Parallel Unit Operation
Multiple-Access (Dual-Access) Operation .
OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

LI R I 4

EXECUTIVE SERVICES AND DRIVER PROCESSING

FLOW OF AN I/0 REQUEST . v & ¢ « ¢ o « o o o o o &
Predriver Initiation Processing
Driver Processing e o s s o e e = e

EXEC._TIVE SERVICES AVAILABLE TO A DRIVFR
Get Packet (SGTPKT) & o « o o o o o o « o o o &
Interrupt Save (SINTSV) . & ¢ ¢ o ¢ o o o o o &
Create Fork Process (SFORK) =« ¢ & ¢ o & o o « &
I/0 Done (SIODON or S$IOALT) e o e o & o o o o =

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

PROGRAMMING STANDARDS . . & & ¢ ¢ o o o o o o o &
Programming Protocol Summary . .« « « « « o o o« &
Accessing Driver Data Structures

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA

BASES . ¢ ¢ & ¢ ¢ o s o o o o . . « o e
General Labeling and Ordering of Data Structures
Device Control Block Labeling
Unit Control Block Ordering -
Status Control and Controller Request Blocks ..
Controller Table . . « . ¢« ¢ ¢« & ¢ & o ¢« o o« o

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE .
Generate Driver Dispatch Table Macro Call - DDTS
Get Packet Macro Call - GTPKTS . . « « « « « o .
Interrupt Save Macro Call - INTSVS
Usage of UCBSV Argument in Macro Calls
Specifying a Loadable Driver « . .
Loadable Driver Entry Points for LOAD and UNLOAD

DRIVER DATA STRUCTURE DETAILS . . ¢ ¢ o« « & «
The I/0 Packet o ¢ ¢ ¢ ¢ & o « o o o o o o o =
The QIO Directive Parameter Block (DPB) e e .
The Device Control Block (DCB) . . . « « « . .

Establishing I/0 Function Masks
The Unit Control Block (UCB) . . .« ¢« « « &+ o .
The Status Control Block (SCB) « . & o ¢ &« + &
The Controller Request Block (KRB)
Continuous Allocation of the SCB and KRB . . .
Controller Tablz (CTB) . « o ¢ o o« o o o o o &

DRIVER CODE DETAILS . & ¢ o & o o o o o « s o
Driver Dispatch Table Format
I/0 Initiation Entry Point
Cancel Entry Point ¢« .« « « « « « « o+ .
Device Timeout Entry Point
Next Command Entry Point « « + .« &
Queue Optimization Entry Point
Deallocation Entry Point . . . « & & & « « .«
Power Failure Entry Point
Controller Status Change Entry Point
Unit Status Change Entry Point
Interrupt Entry Point « . . + o o .
Volume Valid Processing . . . « « « « « « . .

iv

Page

[

WWwWwwwww w
[
AU UT N

|

NN NGFN
|
N

i I I
H O WWWWND D WWWwWWNN

ey

PO D D DD DD DD DS S
i

S
1
—

CHAPTER

CHAPTER

CHAPTER

CONTENTS

Page
5 INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS
5.1 GUIDELINES FOR INCORPORATING A DRIVER 5-1
5.1.1 Incorporating a Driver at System Generation . . 5-1
5.1.2 Incorporating a Loadable Driver with a Loadable
Data Base After System Generation 5-2
5.2 WHAT THE SYSTEM GENERATION PROCEDURE DOES FOR YOU 5-3
5.2.1 Assembling the Driver and Data Base 5-3
5.2.2 Inserting the Driver and Data Base Modules in
the Library . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o « « 5-4
5.2.3 Task Building the Driver ¢« « . . . 5-4
5.2.4 Loading the Driver e o o o o o o o o & 5-5
5.2.5 Making the Devices Acce551b1e e o o o o o o o o 5-6
5.2.5.1 Setting Vector and CSR Assignments 5-6
5.2.5.2 Placing a Controller and Units(s) On-Line . . 5-7
5.2.5.3 CSR and Vector Assigment Errors . . . « . « . 5-8
5.3 USER-SUPPLIED DRIVER SYSTEM GENERATION DIALOGUE
SUMMARY . & ¢ & o s o o o o o s o o o o o o o « o« 5=9
5.3.1 Choosing Executive Options « ¢« . . « . 5=-9
5.3.2 Choosing Peripheral Configuration 5-10
5.4 LOAD PROCESSING . . . e o & o e o o o o o o o 5-11
5.4.1 LOAD Operations and D1agnost1c Checks 5-11
Ded.2 Use of /CTB in LOAD . ¢ & ¢ « s o o ¢ o o« o« o« 5-14
6 DEBUGGING A USER-SUPPLIED DRIVER
6.1 CRASH DUMP ANALYSIS SUPPORT ROUTINE 6-1
6.2 THE EXECUTIVE DEBUGGING TOOL . . +« « « ¢ s o o« o o 6-1
6.2.1 XDT CommandsS . « o« o « o » o o s = o o o o o « o 6-2
6.2.2 XDT Start UP v v o o o o o o o o o o o s o o o o« 6-2
6- 2.3 XDT ReStriCtionS 6"3
6.2.4 XDT General Operation e ¢ o o 6-4
6.2.5 XDT and Debugging a User- Supplled Drlver e« o o 6-4
6.3 FAULT ISOLATION . ¢ o o o o o o s o o o o s o o« o 6-5
6.3.1 Immediate Servicing . e o e o s o s s o s o « Bb-5
6.3.1.1 The System Traps to XDT e o o o o s o o o o o 6-6
6.3.1.2 The System Reports a Crash & .« o 6-6
6.3.1.3 The System Halts but Displays No Informatlon . 6-6
6.3.1.4 The System Is in an Unintended Loop 6-6
6.3.2 Pertinent Fault Isolation Data . . + + &« « « + . 6-=7
6.4 TRACING FAULTS 4 & « o o « o o o o o o s o o o o o 6=7
6.4.1 Tracing Faults Using the Executive Stack and
Register DUMP . & &« o« o « o o o o o« o & . .« 6-10
6.4.2 Tracing Faults When the Processor Halts wlthout
DiSPlay « o o o« o o o o o o o s o o o o o o «» 6-11
6.4.3 Tracing Faults After an Unintended Loop . . . 6-12
6.4.4 Additional Hints for Tracing Faults 6-12
6.5 REBUILDING AND REINCORPORATING A LOADABLE DRIVER 6-13
7 EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER
7.1 SYSTEM~STATE REGISTER CONVENTIONS . . . ¢ ¢ « o« o« 7-1
7.2 THE ADDRESS DOUBLE WORD . ¢ ¢ ¢« o« o « « & e o 7-1
7.3 DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY e o 1=2
7.3.1 Calling $STMAP and $MPUBM or $STMPl and $MPUBl . 7-3
7.3.1.1 Allocating a Mapping Register Assignment Block 7-3
7.3.1.2 Calling $STMAP or $STMPl . . ¢« ¢« ¢« & « « o « o+ 71-3
7.3.1.3 Calling SMPUBM or $SMPUBl . . . ¢« &« « ¢ ¢ « « o 71-3
7.3.2 Calling $ASUMR and $DEUMR e e o o 1-4
7.3.3 Statically Allocating UMRs During System
Generation .« . ¢« ¢ ¢ ¢ 4t 4 e e e o e s e o o o 1-4
7.4 SERVICE CALLS . & 2 o o o o s o o o o o o s o o o 1-5
7.4.1 Address CheCk « ¢ ¢ ¢ o o o o o o o o o o o o o 1=7

CONTENTS

Page
.4. Allocate Core Buffer e e o o o o o o o 1-8
.4. Assign UNIBUS Mapping Reglsters e e e e s e . o 19
.4. Check Logical Block . . e s o o o o s a o o 1-10
.4. Move Block of Data . . ¢« v ¢« o o ¢ o« o o o « o 1-11
. 4. Check I/O Buffer . ¢« o« o o o ¢ o o o o o o o o« 1-12
. 4. Clock Queue Insertion . . ¢ o ¢ ¢ o o o &« o« » 171-13
.4. Convert Logical Block Number 7-14
.4. Deallocate Core Buffer ¢« . « « « . 7-15
.4. Deassign UNIBUS Mapping Registers 7-16
.4. Device Message Output . . . ¢« ¢ « ¢ o o o« o o 7-17
4. FOrK o« & o o o o o o o o o o o o o o o o« « « « 1-18

.
.
.
.

.
~
|
—
(o]

Forkl . & o o o o o o o o o o o o
Get BYEE o o ¢ 4 o o o o o o o o o o o o o o o 1=20
Get Packet e e s e o o e o o o o o 1-=21
Get WOrd . +o ¢« v o o o o o o o o o + o o o o o 1=23
Initiate I/0 Buffering . « ¢« ¢ ¢« o « o o o o« o 7-24
Interrupt Save . ¢« ¢« ¢ ¢ 1+ o o o o o s s o s » 1=25
Interrupt Exit e s s s e e o o o » o 1-26
I/0 Done Alternate Entry and I/0 Done 7-27
I/O Finish o ¢ ¢ ¢ ¢« ¢ ¢ o ¢ o o o o o o o « o« 1-28
Map UNIBUS to Memory e o o o 1-29
Map UNIBUS to Memory (Alternate Entry) e o o o 1-30
Put Byte o « ¢ ¢ ¢ ¢ & o ¢ o o o o o o o« « & o 1-31
Put Word e e o s o e e o o o o o o o 1-32
Queue Insertion by Priority . « ¢« ¢ ¢ o« o« o« o 7-33
Relocate e ¢ o o o o e e s o s« e« o 1-34
Relocate UNIBUS Phy51ca1 Address « « o« o o o o 1-35
Queue Kernel AST to Task « « ¢« « « ¢ « o « o o« 1-36
Set Up UNIBUS Mapping Address . . . « « « « o 7-37
Set Up UNIBUS Mapping Address (Alternate Entry) 7-38
Test if Partition Memory Resident for Kernel

AST & v ¢ o o o o s s o o o o o o o o o o o o 1-39
7.4.33 Test for I/0 Buffering . . « « &« ¢« ¢« &« « « « o« 17-40

® e o 2 e s s s & s e e e e s s e »
e o T - S~ A S g N N SN S Y s N T T T Y N N N N N N
LI . L I I) ¢ . . * 0 . . e . ¢« o

WWWNNONNNNNMNNNONNNNNHHEHEERHEEFERFREREREWOOIAD WN

N OWOIOAUNTDBWNNHOOWOIAUTLD WNHO

NN NNNNNN NN N GOSN NN NN N NN N NN I NN

CHAPTER 8 SAMPLE DRIVER CODE
8.1 SAMPLE DRIVER DATA BASE . ¢ ¢ ¢ ¢ o o o« o o o o« « 8-1
8.2 SAMPLE DRIVER CODE . . . ¢ o &« o o o « o « « o« « « 8-3
8.3 HANDLING SPECIAL USER BUFFERS . . . ¢« &« « o« « o 8-12

APPENDIX A RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC

DEFINITIONS

APPENDIX B CONVERTING A USER-SUPPLIED RSX-11M DRIVER
B.1 ASSUMPTIONS AND GENERAL APPROACH « . . . B-1
B.2 MODIFYING THE DATA BASE CODE . . « ¢« « « « « « « o B-1
B.2.1 Unit Control Block Changes . « « « « o « o o« o« » B=2
B.2.2 Status Control Block Changes« . « . « . . B-2
B.2.3 The Controller Table ¢« ¢« ¢« « . « « « . B-3
B.3 MODIFYING THE DRIVER CODE . . . ¢« « « « « « » . . B-4
B.3.1 Conditional Symbols . . « ¢« ¢« ¢« ¢« ¢« « « & . «. o B-4
B.3.2 Controller-Dependent Code . « « « » o o+ o « o« o B-4
B.3.3 Driver Dispatch Table . . ¢« « ¢« ¢« ¢ ¢« ¢« « « « » B-4
B.3.4 Reconfiguration Support . . . ¢« « ¢ « « ¢« « « o B=5
B.3.5 Volume Valid Processing ¢« « . « « « B-5
B.3.6 Converting Logical Block Numbers B-6
B.3.7 Interrupt Entry Processing . . « « « ¢« « « « « . B-6

INDEX

vi

FIGURE

TABLE

[T I I | |
HEOONOWUMB WNHUILEWN

BB B D D B D DR NN N
|

4-19

| I I I |

U?UJWUIW??\IG\O\O\ONG\
AU WNHH UL WN

b SR [ST N S N N SO O SN
|
= PO b WN -

CONTENTS

FIGURES

Virtual to Physical Mapping for the Executive

Interrupt Dispatching for a Resident Driver
Interrupt Dispatching for a Loadable Driver
Interrupt Dispatchiig for Common Interrupt
Devices & ¢ ¢ ¢ ¢ o o o o o e o o o o o
Mul_iple Units per Controll~r, Serial Unit
Operation . . e e e o o o s e o o o o o
Single Controller, Serial Operation . . .
Parallel Unit Operation (Overlapped Seek)
Dual-Access Operation . . . « « ¢ ¢« &« « &
Composite I/0 Data Structures
I/0 Packet Format
QIO Directive Parameter Block (DPB) .
Device Control Block . ¢« ¢« « ¢ « & o &
D.PCB and D.DSP Bit Meanings . . .
Unit Control Bloc% . . + ¢ & ¢ ¢ o o &
Unit Control Byte . . . « v « .« &
Unit Status Byte « . « « . . .
Unit Status Extension 2 . . e e e
Status Control Block . « ¢ ¢ ¢ o ¢ o o« &
Controller Status Extension 3
Controller Status Extension 2
Controller Request Block . « ¢« ¢ & o « « &
Controller Status Word . . . « ¢ &« & « o« &
Continuous KRB/SCB Allocation . « . « «
Controller Table . . ¢ ¢ « ¢ ¢ ¢ o o« o o &
Common Interrupt Table and Table of DCB Add
Controller Table Status Byte . . ¢« « « .« &
Driver Dispatch Table Format
Sample Interrupt Address Block in the DDT
Interaction of Task Header Pointers . . .
Task Header . . o« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o » &
Stack Structure: Internal SST Fault . . .
Stack Stucture: Abnormal SST Fault
Stack Structure:Data Items on Stack . . .
Mapping Register Assignment Block
Contiguous KRB/SCB for DLDRV . . . +« « .«
Controller Table (CTB) for DLDRV
Register Pass Routine (REGPAS)
Typical Handling of Volume Valid
RSX-11M Logical Block Number Conver51on .

e ¢ o ¢ o * o @
.

RSX-11M-PLUS Logical Block Number Conversion

TABLES

System Macro Calls for Driver Code
DDT$ Macro Call Arguments
GTPKTS Macro Call Arguments . . o & « « &
INTSVS Macro Call Arguments . . « « « « &
Mask Values for Standard I/0 Functions . .
Mask Word Bit Settings for Disk Drives

Mask Word Bit Settings for Magnetic Tape Drives

¢ o o o o o

.
ess

Mask Word Bit Settings for Unit Record Devices

Labels Required for the Driver Dispatch Table

Standard Labels for Driver Entry Points .
Summary of Executive Calls for Drivers . .
Summary of System Data Structure Macros .

vii

.oooomooo

Page

PREFACE

MANUAL OBJECTIVES

The primary goal of this manual is to introduce RSX-11M-PLUS physical
I/0 concepts, define Executive and I/0 service routine protocol,
describe system I/O data structures, and prescribe I/0 service routine
ceding procedures. This information is in sufficient detail to allow
you to:

e Prepare software that 1interfaces with the Executive and
supports a conventional I/0O device

e Incorporate the user-written software into an RSX-11IM-PLUS
system

e Detect typical errors that cause the system to crash

e Use Executive service routines that an I/0 service routine
typically employs

A secondary objective is to introduce advanced hardware and software
features and sophisticated Executive facilities, and to describe both
the conventional and advanced features of I/0 data structures and
mechanisms. Knowledge of advanced features should facilitate the
understanding of conventional I/0 processing and eliminate some of the
confusion inherent in seeing data structures without knowing their
usage.

The manual does not describe how to write software that incorporates
advanced driver features. The only complete package of such
information is DIGITAL-supplied software, such as DVINT.MAC and
DBDRV.MAC (for overlapped seek, dual access, and common interrupt
handling); IOSUB.MAC and TTDRV.MAC (for full duplex 1I/0); and
MMDRV.MAC (for subcontroller device operation). The manual also does
not describe how to attach hardware to the PDP-11], how to perform
diagnostic functions to uncover hardware faults, nor how to
incorporate DIGITAL-standard error-reporting functions in user-written
software.

INTENDED AUDIENCE

This manual is written for the senior-level system programmer who |is
familiar with the hardware characteristics of both the PDP-11 and the
device that the user-written software supports. The programmer should
also be knowledgeable about DIGITAL peripheral devices and experienced
in using the software supplied with an RSX-11M-PLUS system. The
manual neither describes general Executive concepts nor defines
general system structures. The manual does describe I/0 concepts, the
Executive role in processing I/0 requests, and some pertinent aspects
of I/0 processing done by DIGITAL-supplied software. Therefore, with

ix

PREFACE

a firm understanding of hardware characteristics and real-time system
software, a senior-level system programmer should be able to
apprec .ate how user-written software interfacing with the Executive
can affect overall system performance.

STRUCTURE OF THIS DOCUMENT

This dccument is structured to be self-contained so that you need not
refer to any other manual to build and incorporate a user-written
driver into your system. The manual has three types of information:
conceptual, procedural, and reference. The following are abstracts of
the chapters in the document:

e Chapter 1, "RSX-11M-PLUS I/0 Drivers," introduces terms and
concepts fundamental to understanding physical I/O0 1in
RSX-11M-PLUS, and describes the protocol that a driver must
follow to preserve system integrity. It summarizes advanced
driver features and RSX-11M-PLUS capabilities helpful in
becoming acquainted with overall Executive and driver

interaction.

e Chapter 2, "Device Driver 1I/0 Structures," continues the
conceptual discussion begun in Chapter 1. It introduces on a
general 1level the software data structures involved in
handling I/0 operations at the device level; examines typical
arrangements of data structures that are necessary for
controlling hardware functions; and presents a macroscopic
software configuration that summarizes the logical
relationships of the I/0 data structures.

e Chapter 3, "Executive Services and Driver Processing," ends
the conceptual presentation. It summarizes how an I/0 request
originates; how the Executive processes the request; and how
a driver would wuse Executive services to satisfy an I/0
request.

e Chapter 4, "Programming Specifics for Writing an I/0O Driver,"
provides the detailed reference information necessary to code
a conventional 1I1I/0 driver. Included 1is a summary of
programming standards and protocol; an introduction to the
programming facilities and requirements for both the driver
data base itself and the executable code that constitutes the
driver; and an extensive elaboration of the driver data base
and of the driver code.

e Chapter 5, "Incorporating A User-Supplied Driver into
RSX-11M-PLUS," supplies the ©procedural information that you
need to assemble and build a loadable driver image, 1load it
into memory, and make accessible the devices that the driver
supports. Also 1included are a summary of the system
generation dialogue concerning including user-supplied drivers
and a description of the loading mechanism and the diagnostic
operations performed during loading.

e Chapter 6, "Debugging A User-Supplied Driver," summarizes
software features provided to help you uncouver faults in
drivers and gives procedures to follow that might prove
successful in isolating faults in drivers.

e Chapter 7, "Executive Services Available to An I/O Driver,"
gives general coding information relating to the PDP-11 and
RSX-11M-PLUS Executive service routines.

PREFACE

e Chapter 8, "Sample Driver Code," shows the source code for the
data base and driver of a conventional device and an excerpt
of source code from a driver that handles special user
buffers.

e Appendix A, "System Data Structures and Symbol Definitions,"
lists the source code of system macro calls that define system
device structures, driver-related structures, and system-wide
symbolic offsets needed to access those structures.

e Appendix B, "Converting a User-Supplied RSX-11M Driver,"
describes the modifications that you must make to enable an
RSX-11M user-supplied driver to run on an RSX-11M-PLUS system.

ASSOCIATED DOCUMENTS

Accompanying your RSX-11M-PLUS system are documents that describe both
the software and hardware on the system. The software documents are
listed and described in the RSX-11M-PLUS 1Information Directory and
Index. Consult the directory for concise summaries of
software-related publications. Processor and peripherals handbooks
sumrarize hardware information published in wvarious maintenance,
installation, and operator manuals that are provided with your system.

Xi

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-11M-PLUS Guide to Writin an I/0 Driver
incorporates the following technical changes and additions:

1
Le

2.

Two new arguments (BUF and OPT) have been added to the DDT$
macro call in Chapter 4.

The I/0 Function Masks for Mass Storage, Magtape, and Unit
Record Devices have been added in Chapter 4.

Additions have been made to the UCB in Chapter 4 as follows:

e A new symbolic name U.MUP has been added (redefinition of
U.CLI)

e The DV.MXD offset to U.CW1l has been renamed to DV.MSD for
mass storage.

e U.UCBX has been added for mass storage errorlogging
devices.

New status control block extension bit definitions (S2.0PT,
S$2.0P1, S2.0P2, and S3.0PT) have been added to the SCB in
Chapter 4.

New controller bit definitions (KS.MOF, KS.EXT and KS.SLO)
have been added to the KRB in Chapter 4.

The Queue Optimization entry point, Deallocation entry point
and the Next command entry point have been added to Chapter
40

New tracing faults of $HEADR have been added to Chapter 6.

Some Executive routines listed in Chapter 7 have been moved
to new Executive modules and 12 have been added. The
following is a list of the affected modules and subroutines,
plus the additions:

Routine 01d Module New Module
SACHKB IOSUB EXSUB
SACHCK I0SUB EXSUB
$ASUMR I0SUB MEMAP
$BLKCK I0SUB MDSUB
SBLKC1 (new) MDSUB
$BLKC?2 (new) MDSUB
$SBLXIO (new) BFCTL
SCKBFI (new) EXESB
SCKBFR (new) EXESB
SCKBFW (new) EXESB
SCKBFB (new) EXESB
$CVLBN I0SUB MDSUB
SDEUMR I0SUB MEMAP

xiii

SUMMARY OF TECHNICAL CHANGES

Routine 01d Module New Module

SINIBF (new) 10SUB
$SMPUBM 10SUB MEMAP
$MPUB1 I0SUB MEMAP
$SRELOC 10SUB MEMAP
$RELOP I0SUB MEMAP
SREQUE (new) 10SUB
SREQU1 (new) I0SUB
$STMAP 10SUB MEMAP
$STMP1 10SUB MEMAP
STSPAR (new) REQSB
$TSTBF (new) 10SUB

xiv

CHAPTER 1

RSX-11M-PLUS I/O DRIVERS

Device drivers on RSX-11M-PLUS are the primary method of interfacing
Executive software with_ hardware attached to the computer. Most
DIGITAL-supplied hardwarel is supported by drivers accompanying the
remaining software that the wuser receives with the system. This
chapter introduces the concept of device drivers and explains driver
operations and features.

1.1 VECTORS AND CONTROL AND STATUS REGISTERS

A device controller has a unique address on the PDP-11 UNIBUS that
identifies itself and distinguishes it from other hardware attached to
the computer., At this unique address is usually a control and status
register (CSR) containing data elements that allow software to operate
and interrogate the related device. The CSR resides 1in physical
address space that is reserved for device registers and is referred to
as the I1/0, or peripheral, page. Other registers associated with the
device are placed in contiguous addresses lower and/or higher than the
CSR address. Software usually controls a device by accessing the CSR
to enable interrupts, 1initiate a function, and respond to the
resulting interrupt to continue or finish the function.

Associated with many devices can be one or more 2-word areas called
interrupt vectors. A vector provides a connection between the device
and the software that services the device. A vector allows a device
to trigger certain software actions because of some external condition
related to the device. When -~ device interrupts, it sends the
processor the address of the interrupt vector. The first word of the
interrupt vector contains the address of the interrupt service routine
for that device. The processor uses the second word of the vector as
a new Processor Status Word. Thus, when the processor services the
interrupt, the first word of the vector is taken as the new Program
Counter (PC) and the second word is the new PS.

Space is reserved on the PDP-11 for the interrupt vectors. This space
is in the low part of Kernel I-space. The vectors are considered to
be in Kernel mode virtual address space and are thus mapped by the
Executive. Because the interrupt vector is 1in Kernel space, the
Executive receives control of the processor on every interrupt. On a
multiprocessor system, each central processor unit has its own vector
space.

1. The CINT$ directive enables a privileged task to gain control when
a device interrupts and thereby to access device registers. The
K-series Laboratory modules use this feature to perform 1I/0. The
CINTS directive is a secondary but equally viable method of
interfacing software to hardware.

RSX-11M-P7.US I/0 DRIVERS

1.2 SERVICE ROUTINES

The service routine that is entered to process an interrupt 1is most
frequertly in the device driver. Device drivers vary in complexity
depending on the capabilities of the type of device and the number of
device units they service. A driver can reside with the Executive
itself or can be separated from it. The former driver is resident and
the latter is loadable.

The distinction between resident and loadable drivers is mainly one of
flexibility. A resident driver is built in during system generation
as a permanent part of the Executive.l It resides in the Executive
address space and cannot be removed. A resident driver responds to
interrupts slightly faster than a loadable driver. Although 1linked
into the Executive structures, a loadable driver resides in memory
outside the virtual address space of the Executive. A user can add or
remove a loadable driver by means of an MCR or VMR command. In
addition, any driver not required for a period of time need not be
loaded. The space normally occupied by the unloaded driver can hold
user tasks or another driver. On a system without Executive data
space support, making a driver loadable frees virtual space in the
Executive which can be used for additional pool.

1.2.1 Executive and Driver Layout

A device driver is a logical extension of the Executive that need not
be contiguous in physical memory with the Executive code. Active Page
Registers (APRs) 0 through 4 map the Executive, whereas APR 7 is
reserved to map the I/0 page.2 Resident drivers are mapped within the
Executive space. Loadable drivers reside in a separate partition of
memory and are mapped by APR 5. Therefore, a loadable driver is by
default restricted to the 4K words of space mapped by APR 5 unless it
controls its own mapping with APR 6 to gain access to an extra 4K
words.

The virtual to physical mapping on a system with Kernel data space
support is shown in Figure 1-1.

Virtual addresses 0 through 4K words (APR 0) of I and D space overmap
the same physical memory. The mapped area contains the interrupt
vectors, processor stack, processor-specific memory 1locations, and
interrupt control block (ICB) pool space as well as some Executive
code, I-space virtual addresses 4K through 20K words (APR1 through
APR 4) map the remaining Executive code, which is therefore limited to
16K words. D-space virtual addresses 4K through 20K words (APR 1
through APR 4) map the dynamic storage region (or pool) and system
data structures to a maximum of 16K words.

1. On systems with Executive data space support, all drivers must be
loadabl-=.

2. Active Page Register is a term referring to the KT1ll Memory
Management register pair (Page Address Register (PAR) and Page
Descriptor Register (PDR).) Refer to the relevant processor handbook
for information on hardware mapping and memory management. Refer to
the RSX-11M/RSX-11M-PLUS Task Builder Manual for a description of
mapping and APR assignments by software.

1-2

RSX-11M-PLUS 1I/0 DRIVERS

Physical Memory
Address Space

/ 1/0 Page
Virtual Virtual
Kernel / Kernel
32K Words D-Space / \\ Space 32K Words

APR 7 L APR 7

28K Words _— — - Privileged Task — - — - 28K Words
or \
-— — — Driver x Y — — -
APR 5 - T T APR 5

20K Words .. — — — . — — — | 20K Words

T 1

Processor n
Specific 1

—_ APR 1
Dynamic Storage —_ — - 4K Words
Region

APR O

|
-
o

4K Words

0K Words 0K Words

System Resident
1/0 Data Base

| 1]

Executive U
Code

Processor 0
Specific

1On multiple processor systems, each additional processor requires its own processor-specific area in the CPU partition.
ZK-245-81

Figure 1-1 Virtual to Physical Mapping for the Executive

Virtual addresses 20K through 28K words (APR 5 and APR 6) of I and D
space overmap the same physical memory, which is reserved to map
loadable drivers and privileged tasks in Kernel mode. (Although APR5
and APR6 are reserved for drivers, the Executive maps only APR5 when
it calls a driver.) Finally, virtual addresses 28K through 32K words
(APR 7) of I and D space overmap the I/0 page.

Thus, a device driver is mapped with the Executive code and the 1I/0
page. When a driver has control, it can access the device registers
in the I/0 page to perform its operations. It also has available all
the Executive service routines to help it process I/0 requests.

Because of the layout of the Executive and device drivers, many common
functions related to I/0 are centralized in the Executive as service
routines., This commonality eliminates the inclusion of repetitive
coding 1in each and every driver. Coding in each driver is therefore
reduced to handling the specific functions of the device supported.

RSX-11M-PLUS I/O DRIVERS

1.2.2 Driver Contents 3

A dev.ce driver consists of two parts. One part 1is the executable
instructions of the driver itself. This part has the entry points to
the driver. The entry points are those places where the Executive
calls the driver to perform a specific action, and their addresses are
established in the driver dispatch table (DDT). The table contains
addresses of routines in a fixed orde:r so that the Executive can enter
the driver at the appropriate place for a given action.

The other part of a device driver is the data structures forming the
data base that describes the controllers and units supported by the
driver. Two structures, the controller table (CTB) and the controller
request block (KRB), describe the controller of the device being
supported. Because the CTB supplies generic information about the
contrcllier type, only one CTB need exist for each controller type on a
systen. The KRB holds information related to a specific controller
and therefore each controller has its associated KRB.

Three structures in the driver data base--the device control block
(DCB)Y, the unit control block (UCB), and the status control block
(SCB) --describe the device as a logical entity. The DCB contains
information related to the type of device, whereas the UCB holds
inforration specific to an individual unit of the device. The SCB is
used mainly to store data (driver context) concerning an operation in
progress on the device unit.

The code of a driver must be in one continuous portion of main memory.
Because the Executive is designed to respond to real-time activities,
the driver code must run as fast as possible. Therefore, it cannot be

overlaid.

The driver data structures are tailored to the number of controllers
on the system, the number of units attached to each controller, and
the types of features the devices support. The structures increase in
complexity as the number of supported features increases.

1.3 EXECUTIVE AND DRIVER INTERACTION

The Exa2cutive and a driver interact by accessing and manipulating
common data structures. An I/O activity typically begins when a task
generates a request for input or output. The Executive performs
preliminary processing of that request before it initiates the driver.
This preliminary processing, called predriver 1initiation, 1is common
for all drivers and eliminates a great deal of code from all drivers.

In periorming predriver initiation, the Executive accesses the driver
data structures to assess the 1legality of the I/O request. For
example, cells in the device control block (DCB) define the functions
that :he driver supports. If the function specified in the I/0
reques: 1s not supported by the driver, the Executive need not call
the driver. The driver is not aware of the I/0 request. Therefore,
the Executive calls the driver only when the predriver initiation
warrants it.

1.3.1 The Driver Process

When the Executive does call the driver to process an I/0 request, the
driver begins I/0 initiation. Once an I/0 request is created, a
driver process is initiated. The Executive has queued to the driver
an I/0 packet that must be processed to satisfy the request.
Potentially there exist on the system as many driver processes as

1-4

RSX-11M-PLUS I/0 DRIVERS

there are distinct wunits capable of being active simultaneously.
(Moreover, some drivers supporting advanced features can have multiple
I/0 requests simultaneously active for a given unit. 1In this case,
each active I/0 request is part of a separate driver process. Refer
to Section 1.4.7 for more information.)

Central to a full understanding of a driver and the I/O structure is
the difference between a driver process and the driver code. The
driver code, which is pure instructions, invokes an Executive routine
called SGTPKT to get an I/0O packet to process. This activity
generates data for the request being processed and the unit doing the
processing. The driver process, once initiated, starts the proper I/0
function, waits for a completion interrupt, posts I/0 status, and
requests another I/0 packet. This sequence of execution steps
continues until the I/0 queue 1is empty. The driver process then
terminates.

Because a driver may be capable of servicing several I/0 requests in
parallel, it 1is possible that, for a single driver, many driver
processes exist at the same time. However, there is only one copy of
driver code. The driver process is reentrant code and the data that
defines the state of the code is stored in the driver data base when
the process 1is not executing (for example, when it is waiting for an
interrupt). The driver process executes driver code for a particular
device type on behalf of a specific unit. 1If independent units of a
particular device type are concurrently active, several driver
processes are also active at the same time, each with its own set of
data.

1.3.2 Interrupt Dispatching and the Interrupt Control Block

Once a driver starts an I/0 function, it must await the I/0 completion
interrupt. When a device interrupt occurs, the processor pushes the
current PS and PC onto the current stack and loads the new PS and PC
from the device controller interrupt vector. By convention, the PS in
the interrupt vector is preset with a priority of 7 and the number of
the controller associated with the vector. (The controller number is
in the low-order four bits.)

Because an interrupt must be serviced in Kernel address space, how the
interrupt is handled depends on whether the driver is resident or
loadable. A resident driver, being mapped with the Executive in
Kernel address space, handles the interrupt directly (that is, the
entry point address of the driver is the PC word of the interrupt
vector) . For a resident driver, then, the hardware dispatches
directly to the interrupt service routine in the driver. Figure 1-2
shows this mechanism.

RESIDENT
CONTROLLER DRIVER
NUMBER
INTERRUPT
VECTOR

ZK-246-81

Figure 1-2 1Interrupt Dispatching for a Resident Driver

RSX-11M-PLUS I/O DRIVERS

When tle interrupt service routine in the resident driver gains
control, it runs at priority 7, which locks out further interrupts.
The driver is therefore uninterruptable and, because the system must
respo?c to real-time events, processing at this level cannot take too
long.

To ensure that a driver does not lock out other interrupts on the
system or destroy the context of any interrupted process, a protocol
has been established. By system convention, no process should run at
an uninterruptable 1level for more than 100 microseconds. A common
Executive coroutine, called interrupt save ($SINTSV), exists to 1lower
the priority 1level of the driver process to that of the interrupting
device and to save two registers of the interrupted process.
Therefore, by system convention, all resident drivers call the $INTSV
coroutine, which saves the PS and extracts the controller number.
Because: most instructions change the PS bits that encode the
controller number, under most circumstances the driver can do very
little else witbout saving the controller number.

The SINTSV coroutine saves two registers, R4 and R5, which are
therearter free for the driver to use. These registers are typically
used by drivers to hold addresses of the data blocks containing wunit
status and control information, the SCB and UCB. (Most Executive
routines assume these two registers hold pointers to the two
structures. If the driver needs to use more registers, it saves them
on the stack and restores them when it finishes.) When the interrupt
save coroutine returns to the driver, the driver runs at the interrupt
level of the device that it is servicing and has two free registers
that it can use. This protocol makes the driver partially
interruptable (that 1is, interruptable by devices with a higher
priority) and preserves the context of the interrupted process.

The dr .ver may then run for a short interval at the partially
interruptable level. By convention, this interval should not exceed
500 microseconds. When the driver finishes processing the interrupt,
it mav execute a RETURN instruction to transfer control back to the
corout ne which gives control of the CPU to the next process.2

For a loadable driver, the hardware cannot dispatch directly to the
interrupt service routine in the driver because the driver is mapped
outside the address space of the Executive. Therefore, some code in
the Executive must 1nitially handle the interrupt, load the mapping
context of the driver, and dispatch to the proper driver. This code
resides in the Executive in a structure called an interrupt control
block ICB). Figure 1-3 shows this mechanism.

The ICB actually contains a JSR instruction to an Executive interrupt
save 1outine (SINTSI) and some data cells that enable the routine to

do the following:

e Save R4 and RS

e Save the Kernel mapping (APR 5)

l. On a multiprocessor system, a driver running at priority 7 is
interruptable by a device of the same type on another CPU. To handle
this s tuation, the driver being interrupted does not have to do any
special. processing beyond what is described in this manual.

2. An BExecutive interrupt exit rout.ne, .LNTXT, exists to standardize

the way a driver exits from an interrupt. However, on RSX-11IM-PLUS
system: this routine is simply a RETURN instruction.

1-6

RSX-11M-PLUS I/0 DRIVERS

e Load APR 5 to map the driver
e Transfer control to the driver
® Restore the mapping after return from the driver

e Restore R4 and R5

Thus, the interrupt vector for a controller serviced by a 1loadable
driver points to an ICB rather than to the driver. Accordingly, the
loadable driver does not (and must not) call the $INTSV routine as the
resident driver does because the $INTSI routine saves the context on
behalf of the loadable driver. When it gains control, the 1loadable
driver 1is also partially interruptable as if it had called the $INTSV
routine. After it gains control, the loadable driver is exactly 1like
the resident driver. (That 1is, it must also observe the protocols
established on the system.)

! INTERRUPT
CONTROL
BLOCK
CONTROLLER (ICB)
NUMBER
INTERRUPT LOADABLE
VECTOR DRIVER

ZK-247-81

Figure 1-3 1Interrupt Dispatching for a Loadable Driver

The ICB allows up to 128 controllers of the same type on a system.
The 1low-order four bits in the PS of the interrupt vector restricts
the number of controllers to 16. In the ICB, the system maintains a
controller group number and the PS bits describe the controller number
within the group. To obtain the real controller number, the Executive
interrupt service routine adds the controller group number in the ICB
and the controller number in the PS. (Note that, because a resident
driver does not wuse the ICB mechanism, there <can be at most 16
controllers of one type if the driver is resident. Furthermore, only
the LOAD command in VMR supports more than 16 controllers of one

type.)

The simplest case in handling an interrupt is that 1in which a
controller can have only one unit active at any one time. Multiple
controllers may be active concurrently, yet only one unit per
controller may be active. When an interrupt occurs, the driver can
determine the number of the saved controller from information encoded
in the 1low-order four bits of the PS. The interrupt service routine
in the driver uses the number to index a table in the CTB and to
access the proper unit data and context.

The more complex case in dispatching an interrupt is that in which a
controller can have multiple units operating in parallel. This is an
advanced driver feature called overlapped seek I/0 and is described in
Section 1.4.1.

RS5X-11M-PLUS I/0 DRIVERS

1.3.3 Interrupt Servicing and Fork Process

A driver (whether resident or 1loadable) handling an interrupt and
operating at the partially interruptable level may need to (l) access
Structures in its data base or (2) call centralized Executive service
routines which may access structures in the data base. Because a
driver may have more than one process active simultaneously, the
driver itself may need to access structures in the data base shared
among separate, unrelated processes. A method must exist to
coordinate access to the data structures shared among the processes

and the Executive.

The mechanism that coordinates access to the shared structures is
called the fork process. An Executive routine, called fork ($FORK),
causes the driver to be placed in a queue of processes waiting for
access to the shared data structures, to run at processor priority
level 0, and to be completely interruptable.l A driver must therefore
call the fork routine before it calls any other Executive service
routine (except for $INTSV), or before it accesses any device-specific
(nonpr .vate) structures in its data base. If a driver doés not follow
this protocol, it will corrupt the system data base and will

eventually cause a system crash.

A driver that calls the fork routine requests the Executive to
transform it into a fork process. The routine saves a snapshot of the
proces:s in a fork block. The snapshot is the context of the driver
process—--the PC of the process and the contents of R4 and R5. The
fork b’ ock itself resides in the I/0 data structure holding the status
information of the device being serviced (that is, the status control
block, or SCB). The Executive maintains a list of fork blocks in FIFO
order. A new fork block is added to the list after the last block in

the 1list.

When the driver calls $FORK, the CPU priority is lowered to 0, which
allows other interrupts to be serviced. When there are no more
pending interrupts (they have either been dismissed or the drivers
have «called $FORK), the Executive checks to see whether the first
interrupt preempted a priority 0 Executive process. If a preemption
occurred, the Executive process 1is continued from where it was
interrupted. If no priority 1level 0 Executive process was
interrupted, the Executive executes the process at the head of the
fork list. The Executive restores the saved context of the process
from the SCB and returns control to the driver at the statement
immediately following the call to the fork routine. The process is
unaware that a pause of indeterminate length has elapsed.

Fork processes thereby are granted FIFO access to the common I/O data
structures. Once granted such access, a fork process has control of
the structures until it exits. The protocol guarantees that the
driver process has wunrestricted access to shared system data
structures. As one fork process exits, the next 1in the 1list is
eligible to run and access the data structures. ' Thus, the fork
mechanism allows both controlled access to the common data structures
and sufficient time to process an interrupt without locking up the

system.

1. By convention, drivers may operate at a partially interruptable
level for no more than 500 microseconds. Some drivers conceivably
could need more time than this convention allows. Thus, an additional
reason for the fork mechanism is to preserve the response time of the
system and not lock out interrupts from lower-priority levels.

1-8

RSX-11M~PLUS I/0 DRIVERS

The status of a fork process lies between an interrupting routine and
a task requesting system resources. Interrupt routines are run first
and can be interrupted only by higher-priority interrupts. Processes
in the fork list run after other system processes either terminate or
call $FORK themselves. Because system processes save and restore
registers, a fork process can use all registers. The fork processes
are completely interruptable. Tasks run only when the fork 1list |is
empty.l

The fork mechanism establishes linear, or serial, access to the shared
data structures. For example, an Executive routine that completes I/O
processing ($IODON) manipulates the I/O queue to deallocate an I/0
packet that the driver processed. If multiple processes were allowed
to alter the queue at random times, the queue pointers could become
disarranged. Without the fork mechanism, any process could be
interrupted by a higher-priority process and not be able to complete
its manipulation. Because the Executive completes a currently active
fork process before it starts the next fork process in the queue, the
integrity of the I/0 data structures is maintained if all routines
that call $IODON run at fork level.

Between the time that a driver process calls $FORK and the Executive
starts the process at fork level, the driver cannot call $FORK again
for that same device. If the $FORK routine is called again before the
first process starts, context stored in the fork block for the first
fork process is overwritten. However, once a fork process starts, the
data in the fork block is stale and the process may call $FORK again
while it is at fork level, 1If the driver does not ensure against
unexpected interrupts, it may double fork as described above. As a
result of the double fork, the driver may either miss an interrupt
from the device or miss interrupts from several devices. As a further
consequence, code after the call to $FORK is executed twice for the
same context with generally catastrophic results. For example,
calling $SIODON twice for the same I/0 packet eventually causes the
system to crash.

If all drivers adhere to the interrupt protocol, the integrity of the
I/0 data structures 1is preserved. Thus, when a device interrupt
occurs while a fork process is executing, the protocol demands that
the service routine handling the interrupt not destroy any of the
registers. The registers are part of the context of the fork process.
After the driver dismisses the interrupt or itself becomes a fork
process, the interrupted fork process can safely resume execution with
its proper context. If any driver wviolates the ©protocol, the
integrity of the I/0 data structures is endangered. (That 1is, the
system crashes in mysterious ways.)

1.3.4 Nonsense Interrupt Entry Points

All vectors for off-line devices and vectors for which there are no
devices contain the addresses of Executive nonsense interrupt entry
points. Code at these special entry points exists to properly dismiss

1. On a multiprocessor system, the fork list is not necessarily empty
when the Executive returns control to a task. The Executive processes
only those fork blocks that are to run on the current processor. To
ensure that fork blocks remaining in the list are readily processed,
the Executive running on one processor interrupts (using the
interprocessor interrupt hardware) any other processor that has fork
blocks waiting for processing.

1-9

RSX-11M-PLUS I/0 DRIVERS

unexpected interrupts from these devices. If error logging is active,
any unexpected interrupts are recorded as undefined interrupt errors.
This feature helps in detecting faulty hardware.

1.4 ADVANCED DRIVER FEATURES

Advanced drivers have certain optional and built-in special features.
This section introduces these features so that you <can better
unders+=and the structures described in the remainder of the manual.

1.4.1 Overlapped Seek 1/0

Some disk devices allow multiple device units attached to the same
controller to execute operations in parallel. This 1is called
overlanped seek suvport and is a software option designed to take
advantige of a hardware feature found in most advanced disk drives.
This feature allows any or all drives attached to the same controller
to ex=2cute a seek function simultaneously. Each unit may perform a
seek oweration .ndependent of what another unit may be doing. Only
one data transfer <can occur at any one time. Some types of drives
allow seek functions to overlap a data transfer function, whereas
other :ypes do not.

The increased difficulty for overlapped seek devices stems from
determining whether the controller or the unit generated the
interrrupt. Most control functions 1issued to the drive unit
(including the positioning commands SEEK and SEARCH) terminate with a
unit interrupt. The controller reports the physical wunit number of
the interrupting unit in its attention summary register. A controller
interrapt indicates the termination of a function (usually a data
transfer command) that changes the controller status from busy to
ready. Only one unit may issue a data transfer complete notification
to a particular controller at any one time because only one data
transfar can be in progress at any one time. Most hardware defers
seek termination interrupts until the current data transfer |is
complete.

To handle interrupts for a device that supports overlapped seek
operations, a device-specific interrupt service routine built into the
Executive examines the device registers to determine whether the
interrupt was initiated by the controller or the drive unit. Using
the coatroller number retrieved from the PS in the interrupt vector,
the routine forms an index (called the controller index) to use as an
offset into a table of addresses in a structure (called the controller
table >r CTB) in the I/0 data base. The routine accesses the table to
determine the address of the I/0 data structure of the controller
(called the controller request block or KRB) that generated the
interrupt. Accessing the KRB yields the address of the CSR of that
controller and having the CSR address allows the routine to examine
the device registers.

If thas controller 1itself initiated the interrupt, the routine
determines the data base structure of the unit that is active. This
determination is possible because such a controller interrupt relates
to a termination of a data transfer, and only one such unit can be
active for a data transfer. A cell in the KRB has the address of the
data structure describing the active unit (the unit control block or
UCB) . The routine can then determine the address of the driver
dispatch table and transfer control to the driver.

RSX-11M-PLUS I/0 DRIVERS

If a device unit initiated the interrupt, the routine retrieves its
unit number from the Attention Summary Register. Using the physical
unit number, the routine indexes a table at the end of the KRB to
yield the address of the related UCB. The driver is entered through
the driver dispatch table.

1.4.2 Dual-Access Support

Some devices have multiple-access paths for both control and data
transfer functions. Such devices are <called dual access. A
dual-access unit is connected to two controllers at one time and may
be accessed from either controller at the option of the system
software., Since a single device unit may have only one physical unit
number, a dual-access wunit must have the same unit number for both
controllers. A dual-access unit may be accessed only from one port at
a time. The system supports dual-access operation for those devices
~quipped with the necessary hardware capability. This feature is most
useful on a multiprocessor system where each access path is to a
different central processor unit.

To support dual-access operations, the I/0O data structures must
reflect the existence of alternate controllers. Particularly, the
driver process context for I/0 on a unit can be associated with either
of two controllers. To decide which controller will provide access to
the drive unit, the driver must call an Executive routine to request
access to a particular controller. When the Executive grants access,
the driver process context for a unit is associated with the assigned
controller. A driver must have access to the assigned controller
before actually changing the registers in the I/0 page.

When a driver and a unit are given access to a controller, the
controller status 1is set to busy. The unit becomes the device owned
by the controller for the operation. A controller without an owned
unit is considered a free controller. By this ownership mechanism,
controller interrupts are sent to the <correct unit for processing.
After the operation completes, the driver requests the Executive to
release the controller and thus frees it.

1.4.3 Delayed Controller Access

Drivers that support overlapped seeks also must request access to a
controller before executing a function on an independent unit and must
release access after completing the function. To take maximum
advantage of simultaneous operation of units on one controller, the
system delays controller access when the controller is busy.

The Executive maintains a request queue for the controller. Whenever
a driver process requests access to a controller and must wait for
access to the controller, the Executive places the associated fork
block in the controller request queue. When a driver releases a
controller, the Executive automatically grants access to the next
driver process waiting for access. Precedence is given to positioning
requests over requests for data transfer. The controller request
queue thereby provides the means for the Executive to synchronize
access.

1.4.4 Controller Reassignment and Load Sharing

Controller assignment for dual-access devices is dynamic. 1If one port
(access path) to a device is busy, the system can request access on

1-11

RSX-11M-PLUS I/O DRIVERS

the other port. This switching between ports allows the system to
share the load between the two controllers.

NOTE

A dual-access device has both ports
attached to the same system. DIGITAL
does not support systems loosely coupled
through a peripheral.

The system also maintains an I/0 count for each controller to
deterrine how busy it 1is. If one controller is not as busy as the
other, the system can queue the access requests to the 1less busy
contrcller. Whenever load sharing is done on a dual-access unit, the
Executive makes any reassignment necessary before actually requesting
access to the controller.

1.4.5 Common Interrupt Dispatching

To handle interrupts from a controller that supports more than one
type of device, the Executive uses a mechanism called common interrupt
dispatching. The RH70 MASSBUS controller can have different types of
devices (RP04, RP05, and RP06 moving head disks; RMO02, RM03, RMOS,
moving head disks; RM80 and RP07 fixed media disks; ML11
non-rotating memory; RS03 and RS04 fixed head disks; and TEl6, TU45,
and TU77 magnetic tape drives) connected to the same type of
controller. Interrupt dispatching for such devices is more difficult
than for standard interrupt devices because associated with one set of
interrupt vectors are multiple drivers. To dispatch interrupts,
therefore, a routine in the Executive must intervene. Figure 1-4
shows an example of common interrupt dispatching.

- ™1 D8
Driver
¢ | | Common - DS
Interrupt Driver
Dispatch
Routine
(SRHALT)
L i MM
Driver

RH70 Interrupt

Vectors
ZK-248-81

Figure 1-4 1Interrupt Dispatching for Common Interrupt Devices

The wvectors for such controllers point to a common interrupt
dispatching routine in the Executive module DVINT. This common
routine avoids having to duplicate code in drivers. This routine, in
essence acting like an RH70 controller driver or a sophisticated ICB,
determines which driver will receive control upon an interrupt.
Operating like the routine that handles interrupts for overlapped seek
devices, this routine determines the type of device that interrupted
and dispatches to the proper driver.

1-12

RSX-11M-PLUS I/0 DRIVERS

1.4.6 Subcontroller Devices

Certain devices have 2-level controllers, such as magtapes, where a
TM03 connects to an RH70 MASSBUS controller and also connects to TE1l6
magtape drives. 1In such an arrangement, the TM03 is a subcontroller,
or master wunit, that controls slave units; a register in the master
unit reports the number of the slave unit that generates an interrupt.

A subcontroller is associated with a data structure called a
subcontroller request block (KRBl) that serializes access to the
subcontroller. Therefore, a driver must request and receive access to
both the subcontroller and the controller for a unit before executing
any operations. The KRBl is a subset of the KRB and every unit on the
subcontroller points to the KRBl of the subcontroller to which it is
attached.

1.4.7 Full Duplex Input/Output

In certain circumstances it may be necessary for a driver to handle
more than one I/O request on a unit at the same time. Typically a
driver processes only one I/0 packet per unit at any one time. In
normal operation the driver calls the Executive routine S$GTPKT to get
an I/0 packet to process. When $GTPKT returns an I/0 packet, it marks
the device busy and does not allow additional I/0 until the first 1/0
activity completes. Therefore, only one 1I/0O process can be in
progress at the same time on a device. Full duplex operation allows
more than one I/0 process to be in progress on a device at the same
time.

To allow full duplex operation, the $GTPKT routine has a special entry
point called $GSPKT. A driver calling $GSPKT specifies an acceptance
routine, to which $GSPKT returns control when an eligible packet is
found. The acceptance routine determines whether to accept or reject
the packet. The criteria that the acceptance routine applies could be
that a write request is accepted if a write has just completed or that
a read request is accepted if a read has Jjust completed. If the
routine rejects the packet, it indicates so to $GSPKT, which continues
to search for another packet. 1If the acceptance routine accepts the
packet, SGSPKT dequeues the packet and passes it to the driver but
does not modify U.BUF and U.CNT in the unit control block (UCB) nor
does it mark the device busy. As a result, during full duplex
operation the device appears idle even while it is processing an 1I/0
request.

To complete an I/0 request under full duplex operation, the driver
calls the S$IOFIN routine rather than the $IOALT or $IODON routine.
SIOFIN does final processing without making the device look 1idle, as
$IOALT and $IODON attempt to do. In full duplex operation, a unit
will always appear idle to the system and the driver acceptance
routine will determine whether the device can handle an I/0 request.

A driver handling full duplex operations requires augmented data base
structures. The conventional data base structures are defined for
only one I/0 request in progress per unit. Because the driver has to
keep more information concerning a unit that allows two I/O requests
in progress, you may have to alter the UCB and other data base
structures to provide additional offsets. The DIGITAL-supplied full
duplex terminal driver not only uses a 1lengthened UCB and a
nonstandard SCB, but also connects to a dynamically allocated UCB
extension when the device is configured on-line.

A driver that handles full duplex operations provides a specific

example of software that handles concurrent I/0 for individual units.
Some devices, such as the DIGITAL-supplied LPA11-K

1-13

RSX~-11M-PLUS I/0 DRIVERS

microprocessor-based laboratory subsystem, can handle a number of
simultaneously active I/0 requests. The software to handle such
concurrent I/0 may require augmented driver data base structures so
that the context of each 1I/0 process remains distinct and
controllable. The driver for the LPAll-K relies on an extended user
control block (UCB) to preserve the context of a maximum of eight
simulteneously active I/0 processes. User-written software for such a
device must properly synchronize fork processing to prevent
substituting the I/0 context of one process for that of another.
Moreover, the S$SGSPKT routine also might be used as described above to
make a unit appear idle when it is busy.

1.4.8 Buffered Input and Output

Typically, data for input and output requests are transferred directly
to and from task memory. To allow the successful transfer of data,
the task cannot be checkpointed until the transfer is complete. For
most high-speed devices, the transfer occurs quickly enough so that a
task does not occupy memory for too 1long a time. For slow-speed
devices, however, some mechanism must be available tu avoid binding
memory to a task for too long a time while the task is performing I/O.

Using the routines S$TSTBF, S$SINIBF, and $SQUEBF in the Executive module
IOSUB, a driver can execute an I/0 request for a slow-speed device and
allow the task to be checkpointed while the request 1is 1in progress.
To perform the I/0 request, the driver buffers the data in memory
allocated to the driver while the task is checkpointed and the 1I/O
request is in progress.

To test whether a task is in a proper state to initiate I/O buffering,
the driver <calls the $TSTBF routine and passes it the address of the
I/0 packet. By extracting the address of the task control block (TCB)
from the I/O packet, $STSTBF can examine various task attributes. For
example, if the task is checkpointable, buffered I/O can be performed.
STSTBF returns to the driver and indicates whether buffered I/0 can be
performed.

If buffered I/0 can be performed, the driver performs two operations.
First, it establishes the buffering conditions. For an output
request, it copies the task buffers to dynamically allocated pool
space. For an 1input request, it allocates sufficient pool space to
receive the incoming data. Second, the driver calls the $INIBF
routine to initiate the I/0 buffering. $INIBF decrements the task I/0
count, increments the task's buffered I/0 count in T.TIO, and releases
the tésk for checkpointing and shuffling. If the task is currently
blockec, the task state is transformed into a "stopfor" state until
the task is unblocked, buffered I/O completes, or both. Checkpointing
the task is subject to the normal requirements of an active or
"stopfcr" state as described in the RSX-11M/M-PLUS Executive Reference
Manual.

After the driver transfers the data, it calls the $QUEBF routine to
queue the buffered I/0 for completion. SQUEBF sets up a kernel
asynchronous system trap (AST) for the buffered I/0 request and if
necessery, unstops the task. When the task is active again, a routine
in the Executive module SYSXT notices the outstanding AST and
processes it. (If the request is for input, the routine copies the
buffered data to task memory.) This mechanism occurs transparently to
the tacsk, thus the name kernel AST. The routine then calls the driver
to deallocate the buffer from pool. S$IOFIN completes the processing.

RSX-11M-PLUS I/O DRIVERS

1.4.9 I/0 Queue Optimization

Without I/0 queue optimization, the operating system groups input and
output requests in the queue by highest priority on a first-in,
first-out basis. The first request at the highest priority appears
first in the queue and is processed first. Other requests within that
priority are then processed sequentially until the 1last request at
that priority is serviced.

With I/0 queue optimization, however, the next I/0 request at the
highest priority is not necessarily the next sequential request to be
processed. 1I/0 queue optimization allows the queue to be scanned, and
each request to be examined. The I/0 request, according to the method
of optimization then in effect, is the next one dequeued and passed to
the I/0 driver for processing. The highest priority requests are
still serviced first; however, throughpu: 1is improved by the
reordering of requests within a priority.

There are three methods of I/0 queue optimization available:
e Nearest Cylinder
e Elevator

e Cylinder Scan

The Nearest Cylinder method processes the I/O request that is closest
to the one at which the disk head is currently positioned. The
Elevator method processes requests as the disk head moves from the
perimeter to the innermost track of the disk. Once the disk head
reaches the innermost track, the direction is reversed and requests
are processed along the disk as the head moves back to the perimeter.
The Cylinder Scan method operates similar to the Elevator method,
except requests are only processed as the disk head moves from the
perimeter to the innermost track. Once at the innermost track, the
disk head returns to the perimeter and begins processing new requests.

The method you choose for vyour system 1is dependent upon the 1I/O
processing requirement of your application, the frequency with which
tasks access certain data areas on the disk, and the physical location
of data on the disk. Refer to the RSX-11M/M-PLUS System Management
Guide for information on selecting I/0 queue optimization methods.

Before an I/0 request can be queued to the driver, all three queue
optimization methods require the starting cylinder number of the I/0
request. To find the cylinder number, the logical block number (LBN)
of each I/0 request is converted to cylinder, track, and sector form.
The routine $DRQRQ in the Executive module DRSUB begins this
conversion. Because the cylinder, track, and sector form is specific
to the device geometry, this conversion must be completed by a
separate routine in the driver. The routine S$DRQRQ locates the
conversion routine in the driver through offset D.VCHK in the driver
dispatch table.

The routine $DRQRQ calls the conversion routine for all I/0 requests.
However, if the functions are not logical transfer functions, such as
ACP functions or Attach and Detach operations, the conversion routine
does not complete the conversion, but rather returns to S$SDRQRQ.

Drivers without queue optimization call the routine $BLKCK 1in the
Executive module MDSUB to check the limits of the I/0 request. If
SBLKCK locates an error, the routine SIOALT in the Executive module
IOSUB is called for the I/0 reque:t and the driver is returned to the
initiation entry point. If you chose queue optimization, a return to
the initiation entry point 1is not desirable because the necessary
functions of $DRQRQ will not be completed. Therefore, your completion

1-15

RSX-11M-PLUS I/O DRIVERS

routine must call the routine $BLKC2 in the Executive module MDSUB
instead of SBLKCK to ensure the correct return to $DRQRQ if an error
is de:ected.

The routine S$GTPKT in the Executive module IOSUB performs the actual
optim.zation. The driver calls the Executive routine S$GTPKT for an
I/0 request to process. SGTPKT scans the queue of 1I/0 packets to
select those of the highest priority. The routine then chooses the
correct packet within that priority based on the optimization method
currently in effect, dequeues that packet, and returns control to the
driver to process that I/0 request.

1.5 DISTRIBUTED I/O

On a multiprocessor system, a task may issue an I/O request to any
device on any processor. The Executive must be responsible for
distributing the I/O request to the correct processor. To ascertain
to which processor a device is attached and to have the driver execute
on tte correct processor, the Executive must perform some
processor—-specific functions. The following sections introduce the
data structure and the processing routines used by the Executive for
processor-specific functions.

1.5.1 UNIBUS Run Mask

To help describe devices attached to a processor, the software relies
on a concept called UNIBUS run. A UNIBUS run consists of a group of
distinct devices, all of which are electrically connected to the same
UNIBUS and are not separated by any bus reconfiguration devices. Each
UNIBUS run is attached to the same processor at the same time because
of the way the devices are physically attached to the UNIBUS.
(Devices attached to a MASSBUS of a processor are also on the
processor's UNIBUS run.) The UNIBUS run, then, 1is the smallest
fragment of a particular UNIBUS capable of being switched (or not
switched) between processors.,

Essential to understanding UNIBUS runs is the concept of a switched
bus. A switched bus is a portion of a UNIBUS that can be physically
connected to one of multiple UNIBUSes. A device on the UNIBUS, called
the DTO07 UNIBUS switch, controls the connection and allows a switched
bus to be connected to any one of a maximum of four UNIBUSes. Any
UNIBUS device or devices except a processor or another bus switch may
be coniected to a switched bus. Moreover, because of the electrical
delay 1issociated with the bus switch, some high-speed devices (such as
the DM:2-11) cannot be on a switched bus.

In a miltiprocessor system, the DT07 allows the switched bus to be
physically switched from the UNIBUS of one processor to the UNIBUS of
anothe: processor. When the switch 1is connected to a particular
processor's UNIBUS, all peripherals on the switched bus operate as if
they were permanently connected to that UNIBUS. By means of
reconf .guration software, a switched bus can be disconnected from one
UNIBUS and be available for connection to another processor's UNIBUS.
Because a wuser task can direct an I/O request to any device on the
system. the Executive must be able to perform the operation on the
specif:c processor to which the device is connected.

A UNIBUS run is represented in a cell called a UNIBUS run mask (or
URM) . The URM 1is a 16-bit word containing a bit for every possible
UNIBUS run. UNIBUS runs are numbered from 0 to 15, and the system Iis
restricted to a maximum of 16 UNIBUS runs. There are four UNIBUS runs
reserved for the maximum of four processors. The numbering allows a

1-16

RSX-11M-PLUS 1/0 DRIVERS

maximum of 12 switched buses. However, a switched UNIBUS cannot be
connected to another switched UNIBUS. A primary UNIBUS run would
contain a processor, its UNIBUS, and the peripherals directly attached
to its UNIBUS; and a secondary run would consist of a switched bus
and the devices attached to it.

In the I/0 data structures for each controller in the multiprocessor
system 1is an associated UNIBUS run mask. The bit set in the URM
defines the UNIBUS run to which the controller is attached. In the
Executive, there is a table of connectivity masks, one UNIBUS run mask
for each processor in the system. The table represents the UNIBUS
runs to which each processor is attached. A bit set in the table mask
word for a processor indicates that the UNIBUS run 1is currently
associated with that processor.

To ascertain whether a controller 1is attached to the current
processor, the Executive compares the controller URM with the mask for
the processor in the connectivity table. If the same bit 1is set in
both words, the controller is attached to the current processor. 1If a
bus is switched from one processor to another, the system need alter
only the connectivity masks of the processors affected.

1.5.2 Conditional Fork

The conditional fork routine ($SCFORK) 1is the method by which the
Executive distributes 1I/0 requests to devices connected to another
processor. In a multiprocessor system, peripheral devices are
generally accessible to only one UNIBUS run. Devices that do have
dual-access capability are not necessarily accessible from every
UNIBUS. The Executive ensures that, when a driver accesses a
controller, the driver process executes under control of the processor
in whose 1I/0 space the controller registers reside. An exception is
the Executive passing control to a driver for special processing of an
I/0 packet. 1In this case, the driver is responsible for ensuring that
the process executes on the correct CPU. See the discussion of the
UC.QUE bit in Section 4.4.4.

The conditional fork routine is necessary because the system allows
processors to remain anonymous as far as task execution is concerned.
The system does not restrict execution of a user task to the processor
associated with a device to which the task directs I/0. Basically it
is the driver processes that need to execute on specific processors.

1.5.3 Processor-Specific Functions

When the Executive calls a driver to initiate I/0, the driver may not
be executing on the processor associated with the device unit to which
I/0 is directed. When the driver requests an I/0 packet to process,
the Executive must ensure that the driver executes on the correct
processor because the driver may access the I/0 page. Therefore, the
Executive routine (SGTPKT) that dequeues an I/0 packet for the driver
performs a conditional fork. A cell in the fork block for the device
unit contains a UNIBUS run mask that defines the processor to which
the unit's controller 1is attached. The conditional fork routine
accesses this cell to ascertain what action to take.

The URM of the device to which the I/0 request is directed therefore
determines whether the driver may execute on the current processor.
If the URM of the device intersects the current processor URM, the
conditional fork routine returns and the I/0 packet is immediately
passed to the driver. The driver then normally proceeds to start the
proper I/0 function. If execution must be continued on another

1-17

RSX-11M-PLUS I/0 DRIVERS

processor, the conditional fork routine performs a fork (that |is,
calls the $FORK routine). The driver has no indication that it has
become a fork process (that is, the action 1is transparent to the

driver' .

To ensure that the driver executes on the correct processor, the fork
routine does two operations. First, it creates and queues a fork
block :ior the processor on which the driver must execute. Second, it
returns to the driver in such a manner as to force the driver to
dismiss itself. As soon as possible, the fork processor restarts the
driver process executing on the appropriate processor.

For devices that do not have an assigned controller, the system may
defer determining whether the driver executes on the current
processor. Therefore, for overlapped seek and dual-access devices,
the <conditional fork routine is entered after the Executive routine
that assigns the controller.

1.6 OYERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO RSX-11M-PLUS

How yolul incorporate a user-written driver 1into the system depends
mainly on whether you make your driver loadable or resident. If your
driver is loadable, its data base can be either loadable or resident.
If your driver is resident, both 1its data base and its code are
resident. Thus, because you build the Executive image during system
generation, you can include any resident driver elements in the
Execut .ve image only during system generation. If your driver |is
loadab e and has a loadable data base, you can incorporate it at any
time a:iter you build the Executive under which the driver will run.

During system generation, you answer questions concerning the types
and quantity of peripheral devices on your system. Based on your
answer:, the system generation software creates the device data base
source files. The file SYSTB.MAC contains the data base definitions
for al. the DIGITAL-supplied devices that were generated with resident
data bases. The files xxXxTAB.MAC, where xx is the device mnemonic,
contain the data base definitions for each of the DIGITAL-supplied
devices that were generated with 1loadable data bases. The files
xxDRV.MAC, where xx is the device mnemonic, contain the driver code to
support the devices. The system generation software assembles and
task builds these modules. The resident driver and data base modules
are 1 nked 1into and become a permanent part of the Executive. The
loadab.e driver and data base modules are task built separately for
loading into memory after the Executive has been built.

A priv .leged system task called LOAD is responsible for 1loading into
memory a driver that is not resident. LOAD creates the necessary
interrupt control blocks (ICBs) for accessing a driver and establishes
the 1'nkage between the data base structures in the system device
tables and the driver code being loaded. Another system task «called
CON initializes the interrupt vectors to point to the ICBs and
actually places the devices on~line. CON can also change the vector

and CSR address assignments in a device's data base. Another
privileged system task called UNLOAD can remove a loadable driver from
memory . (Although UNLOAD removes a loadable driver, it does not

remove a loadable data base.)

To incorporate a user-written driver into RSX-11M-PLUS, vyou first
create two modules, one in which you define the data base and the
other 'n which you include the driver code itself. You then must
integrute vyour driver data base and driver code modules into the
system device tables. TIf your data base 1is resident, the 1linkages
that +our data base module must satisfy are: (1) the link of the
contro. ler table (CTB) list; and (2) the link of the device control

1-18

RSX-11M-PLUS I/O DRIVERS

block (DCB) 1list. The linkage for the driver code connects the DCB
for the device that your driver supports to the driver dispatch table
(DDT) . If your driver and data base are loadable, you must supply in
your code symbols and labels that LOAD needs. VYour device interrupt
vectors are initialized and the devices are placed on-line by CON.

Because the data base for a loadable driver can be loadable, the LOAD
task also loads a data base. When you load a driver, LOAD checks to
see whether a data base is resident for the type of device whose
driver 1is being 1loaded. 1If a data base is not resident, LOAD reads
the driver symbol definition file to find the start and end of the
data base in the driver image. (Thus, if your driver data base is to
be loadable, you must have defined its start and end in the data base
source code.) Knowing the start and end, LOAD reads the data base from
the driver image. LOAD places the data base in the system pool so
that it resides 1in Executive address space, accordingly relocates
pointers and 1links within the data base to be wvalid Executive
addresses, and also connects the CTB and DCB(s) in the data base to
the system device tables. Moreover, so that the system device tables
are not corrupted by an incorrect data base, LOAD performs many
consistency and validity checks on the data base being loaded.

If your driver is loadable and has a 1loadable data base, you will
build (1) a loadable image containing the driver code module followed
by the driver data base module and (2) a symbol definition file on
which LOAD depends to find critical data base and driver locations.
You will link the driver image to the Executive under which the driver
will run. However, the driver 1image will be separate from the
Executive image. LOAD is responsible for 1loading both vyour driver
data base and driver code, for connecting the data base to the system
device tables, and for connecting your driver code to the data base.

If your driver is loadable but has a resident data base, you will have
to perform a system generation and build the Executive under which the
driver will run to link your driver data base module(s) into the
system device tables. This "operation makes your driver data base
resident with the system device tables. You will also build (1) a
loadable image containing the driver code and (2) a symbol definition
file which LOAD will use to locate the driver dispatch table. LOAD is
responsible for 1loading your driver «code and for connecting your
driver code to the data base that is resident with the system device
tables.

If your driver is resident, vyou will have to perform a system
generation and build the Executive to link the driver data base into
the system device tables and to 1include the driver code 1in the
Executive image.

Whatever type your driver is, you will use the CON task to 1initialize
the device interrupt vectors and place the devices on-line.

Because LOAD provides consistency and validity checks on a data base
being 1loaded, DIGITAL recommends that you make your driver and its
data base loadable. (Additional rationale for making your driver
fully 1loadable is given in Section 1.7.) Furthermore, with a loadable
driver and loadable data base, you can more easily modify your driver
and its data base. You need not rebuild your Executive and privileged
tasks. To change the driver code, you need only build a new driver
image, unload the current version, and reload the new version. To
change the driver data base, you must build a new driver image (which
incorporates the modified data base module), rebootstrap your system,
and load the new driver which causes the modified data base to be
loaded. (You must bootstrap vyour system to change the data base
because UNLOAD does not unload a data base, and because LOAD does not
load a data base for a driver if one is currently loaded for that
driver.)

RSX-11M-PLUS I/0 DRIVERS

Using a loadable driver with a loadable data base saves work in the
long term. During debugging, data base inconsistencies are likely to
be caught by LOAD. Thus, you prevent many such errors from later
creating system problems.

A resident driver or a loadable driver with a resident data base is
more difficult to debug and to modify. LOAD does not perform
consistency and validity checks on a resident data base. Thus, a
valuable debugging aid is not available. Moreover, to modify such
drivers, you must rebuild the Executive, which generally implies
rebuilding the privileged tasks.

1.7 SPR SUPPORT

The capability to incorporate a user-written driver into your system
is a supported feature of RSX-11M-PLUS. Because a user-written driver
is considered a system modification, DIGITAL may not support the
system that results after you incorporate your driver. Being a part
of the Executive, your driver can subtly corrupt it. Therefore,
DIGITAL cannot guarantee support which entails debugging user-written
drivers.

Fixingy a problem in a system is largely a matter of being able to
reproduce the problem reliably. 1If a problem on your system can be
shown to have no relation to your driver and DIGITAL can reproduce the
probl2m, SPR support can be provided. A good reason for using a
loadahle driver with a loadakle data base is that you can more easily
attain an unmodified system by not loading your driver and its data
base. You can then reproduce a suspected problem in an unmodified
system and can submit an SPR that DIGITAL can answer. Therefore, your
attempting to recreate a suspected problem on your system without your
driver and its data base saves both you and DIGITAL time in answering
the SPR.

CHAPTER 2

DEVICE DRIVER I/0 STRUCTURES

This chapter deals mainly with structures at the block 1level, their
relationship to the hardware configuration and functionality
supported, and their relationships to each other. The precise
description of each structure is given in Chapter 4.

2.1 1I/0 STRUCTURES

The main elements in the driver I/O environment essentially define the
logical and physical characteristics of the supported hardware and
establish the links and connections by which routines can access and
manipulate driver data. The following subsections describe the
control blocks that a driver data base module defines, and explaln in
general terms the purposes for each block.

2.1.1 Controller Table (CTB)

A controller table defines a unique controller type on the system. A
CTB must exist for each physical controller type. All controller
tables are linked together, in a list, with the head of the 1list
SCTLST in the Executive common area. The list of the controller
tables is one of the threads through the system data base to provide
access to all device-related data. The link in the last CTB in the
list has a value of zero.

Associated with each CTB is a 2-character ASCII controller name which
must be unique throughout the system. This unique name allows the
Executive to find the correct CTB for the controller type. For
example, the RH11/70 controller has the name RH instead of DB, DS, DR,
or MM.

A CTB is a static structure created during system generation. Any
user-written driver data base, therefore, must have its own CTB. The
user-created controller table must also be linked into the system CTB
list.

A CTB has generic status information, links, and pointers to other
structures on the system. The table of KRB addresses in the CTB is
the means by which the Executive handles interrupts for the controller
type and dispatches to the correct driver routine.

2.1.2 Controller Request Block (KRB)

The controller request block is the means by which the Executive
maintains controller- or hardware-specific information and accesses

DEVICE DRIVER I/0 STRUCTURES

the correct information for a unit which 1its associated controller
owns. One KRB exists for each device controller in the configuration.
It stores such data as vector and CSR location, status, and UNIBUS run
mask.

In a configuration where a device has only one access path to a
controller and the controller allows only one operation at a time, the
KRB is combined with another structure called the status control block
(SCB) . (The SCB holds context for a unit while an operation is in
progress.) Because only one access path 1is possible in such a
configuration, wunit context is always associated with the same
controller. Moreover, because only one operation is possible at a
time, the same context storage area can be used for all units attached
to the —controller. Thus, in a conventional driver operating
environment, the context storage is merely an extension of the
controller request block.

In a configuration where multiple operations in parallel on the same
controller are possible, the controller context is separate from each
independent unit context. Therefore, each unit capable of operating
independently on a controller has the context of the current I/O
operation stored in an SCB separate from the controller KRB. In such
an operating environment, any unit can access the controller while
other operations are pending, but only one unit can have access at a
time. The KRB, then, indicates which unit owns the controller for the
current operation, and synchronizes access among driver processes on
the same controller.

Where multiple operations in parallel are allowed on a controller,
there must be some way to delay access to the controller when it is
busy. Therefore, in the KRB the Executive holds the head of a list of
access requests called the controller request queue. The 1list
contains fork blocks for driver processes awaiting controller access.
The queue is the means by which the Executive serializes access to the
controller.

When a controller allows parallel operations, the software must have a
means of determining which of several units generated an interrupt.
The KRR, therefore, contains a table of addresses which associate the
controller with all the units connected to it. This table, indexed by
physical unit number, must appear 1if the controller in question
supports overlapped seek operations. When a device has multiple-
access paths, the controller-specific information in the KRB is
separate from each independent unit context. In a situation where a
device accesses alternate controllers, a driver must request the
Executive to assign the wunit to a specific controller. The unit
assignment involves temporarily associating unit context with the KRB
of the specific controller. The SCB, then, holds information
connecting it to the KRB of the currently assigned controller.

The KRE also holds the configuration status of the controller. 1If the
KRB indicates that the controller is off-line, no activity can take
place on any unit connected to the controller.

2.1.3 Device Control Block (DCB)

The device control block describes the static characteristics of a
device type and of units associated with a certain device type. The
DCB is the means of access to the driver dispatch table and thus to
the driver. At least one DCB exists for each logical type of device
on a system. There may be more than one DCB for a device type. For
example, there are two device control blocks for the device TT: on a
system that supports terminals connected by both DL11 and DZ11
interfeces.

DEVICE DRIVER I/O STRUCTURES

A cell in each device control block forms a link in a forward-linked
list, with the head of the list starting in a cell ($DEVHD) in the
Executive common area. This list, as with the CTB 1list, 1is a main
thread through the system data structures to device-related data. The
link in the last DCB in the list has a value of zero.

The static data in the DCB gives such information as the generic
device name, wunit quantity and 1links to individual unit data, the
address of the driver dispatch table, and types of 1I/0 functions
supported by the driver. Typically, the Executive QIO directive
processing code and not the driver code accesses the DCB.

2.1.4 Unit Control Block (UCB)

The unit control block holds much of the static information about an
individual device wunit and contains a few dynamic parameters.
Although unit control blocks need not be any prescribed 1length for
different devices, all wunit control blocks for the same device type
must be of equal length. (The UCB length is stored 1in the device
control block.) This condition allows the UCB to contain varying
amounts of unit- and device-independent data for different types of
devices.

A UCB, one of which exists for each device unit, enables a driver to
access most of the other structures in the I/0 environment. A UCB
provides access to most of the dynamic data associated with I/0
operations. Given the address of a UCB, a driver may readily find
most of the other data structures in which it 1is interested because
the proper 1links exist. Because of this access information, the UCB
is a key control block in the driver I/O structure.

The static data in the UCB includes pointers to other I/0 structures,
definitions of unit control bits which regulate directive processing,
definitions of unit status bits which describe operational conditions,
and definitions of wunit- and device-dependent characteristics and
storage cells.

Data in the UCB is accessed and modified by both the Executive and the
driver.

2.1.5 Status Control Block (SCB)

The status control block holds driver context for operations on a
device unit. In the SCB are stored such data as the pointer to the
head of the queue of input/output requests; the 1link to the fork
blocks queued for the unit; the fork process context; timeout, unit
status, and error 1logging information; and the address for the
controller request block (KRB) representing the device controller (if
the device has a controller).

The Executive accesses the SCB to set up an I/0 request, to store
context while a request 1is in progress, and to post results and
status. When the driver accesses the SCB, it 1is wusually for read

access only.

The number of status control blocks depends on the processing support
in the Executive. If the controller itself cannot handle parallel
operations, only one SCB is needed for each controller. In such a
case, a controller can have only one unit processing a command at one
time, and there is no need to store context for more than one unit at

DEVICE DRIVER I/0 STRUCTURES

a tire. There is also no need for a physically separate controller
request block (KRB) to separate generic data from unit context.
Therefore, the driver data base contains the required KRB cells in the

status control block.

If the controller allows parallel operations and the Executive
supports this feature, there must be one SCB to store context for each
unit capable of operating independently on the controller. In such a
configuration, a cell in each SCB points to the KRB of the controller

to which the units are connected.

2.2 DRIVER DISPATCH TABLE (DDT)
The driver dispatch tablel contains the entry points to and the
interrupt entry addresses for the driver. An entry point is the
location at which the Executive calls the driver to perform a specific
function. An interrupt entry address is a location to which the
central processor or the Executive transfers control within the driver
for servicing hardware interrupts. The pointer to the interrupt entry
address resides either in an interrupt control block if the driver is
loadable or in the device interrupt vector in the system common area
of the Executive if the driver is resident.
Every driver has four conventional entry points as follows:

9 I/O0 initiation

® cancel I/0

® device timeout

device powerfail

Two more entry points are added for controller and unit on-line and
off-line status changes:

o KRB status change
o UCB status change

For many devices, these status change entry points are merely a return
to the Executive calling routine.

There are two additional entry points that have been added for advance
driver features:

¢ Deallocate buffers and next command (FDX TTDRV)

¢ Address checking and conversion (queue optimization disk
drivers)

1. The DDT is not a structure in the strict sense of the word because
it is defined 1in the instruction part of the driver code. However,
because it contains addresses for dispatching code, it is included in
the data structure description.

DEVICE DRIVER I/O STRUCTURES

2,2.1 I/0 Initiation

The Executive transfers control to this entry point to inform the
driver that work for it is waiting to be done. To make work for the
driver, the Executive performs predriver-initiation processing.
(Predriver initiation 1is described in Chapter 3). 1If, at the end of
predriver processing, the Executive has I/0 packets queued for the
driver, it calls the driver at this entry point.

When the driver gets control at its I/0 initiation entry point, RS
contains the address of the UCB for the unit on which the request is
to be processed. To establish access to the I/0O packet, the driver
calls an Executive routine that either returns information in
registers concerning both the packet to be processed and the
associated data in order to gain access to the data structuresl or
causes the driver to dismiss itself. (There may be no packet to
process or the driver may already be busy.)

Once control is returned to a driver and there 1is a request to
process, the driver must extract the information from the registers,
establish data within the control blocks, and process the request.
This means that the driver proceeds with an I/0 request until it sets
the GO bit on the device, which physically initiates the 1I/0
operation.

Typically a driver is called at this entry point when there 1is a
packet in the I/0O gqueue. However, a driver can be called before a
packet is placed in the I/O queue. Refer to the description of the
U.CTL control flag UC.QUE in Section 4.4.4 for information on queueing
an 1/0 packet to the driver.

2.2.2 Cancel 1/0

To terminate an in-progress I/0 operation, the system flushes the 1I/0
queue and calls the driver at this entry. There are many situations
in which a task must terminate I/0. When such a termination becomes
necessary, a task issues an Executive request and the Executive relays
the request to the driver by calling it at this entry point.

The driver 1is responsible for <checking that the 1I/0O operation
in-progress was issued from the task that is forcing the termination,
and for completing or terminating the operation before returning to
the caller.

Typically, a driver is called at this entry point only when an 1I/O

operation 1is in progress. A driver can be called even if the unit
specified is not busy. Refer to the description of the U.CTL control
flag UC.KIL in Section 4.4.4 for information on unconditional

cancelling of I/0.

2,2.3 Device Timeout

When a driver initiates an I/0O operation, it can establish a timeout
count. If the operation fails to complete within the specified
interval, the Executive notes the lapse and calls the driver at this

l. The $GTPKT routine, which gets a packet for the driver to process,
is described in Chapter 7.

DEVICE DRIVER I/0 STRUCTURES

entry point. Using this facility, a driver can wait for an interrupt
but need not hang up if the interrupt never occurs. Thus, no driver
should ever stall on a request because a hardware failure prevented an
expected interrupt from happening.

2.2.4 Device Power Failure

The Executive calls the power failure entry point when power is
restored after a failure any time the controller is busy (that is,
when I/0 is in progress). Typically, a driver responds to a power
failure in the same manner it responds to a timeout. In such cases,
the power failure entry point may simply be a return to the caller
because recovery will occur by means of the timeout entry point. The
driver is called for both controller and unit power failure unless the
driver 1is associated with a common interrupt controller. For common
interrupt controllers, the driver is called at this entry point only
for unit power failure and is called at a special entry defined in the
common interrupt table for controller power failure.

A driver can be called when power is restored regardless of the
existence of an outstanding I/0 operation. Refer to the description
of the U.CTL control flag UC.PWF in Section 4.4.4 for information on
unconditional call on power failure.

2.2.5 Controller and Unit Status Change

Two entry points are required for configuration status changes of the
controller and units. The Executive enters one entry point to put the
controller on-line and take it off-line. The other entry point,
called once for each unit whose status changes, is for putting units
on-line and taking them off-line. The driver must show successful
completion of the on-line or off-line request or the Executive will
not effect the status change. The driver has 60 seconds to perform
whatever synchronization it requires before returning to the
Executive. In most cases, however, the driver will return
immediately.

2.2.6 Device Interrupt Addresses

Control passes to an interrupt address when a device, previously
initiated by the driver, completes an I/0 operation and causes an
interrupt in the central processor. A device may have associated with
it more than one interrupt entry. For example, a full duplex device
such as a terminal will have two interrupt addresses. The interrupt
entry differs from an entry point in that the connections between the
device and the driver is more direct--the Executive is not involved.

The interrupt addresses are arranged in a block in the DDT. The
arrangement is general enough to support multicontroller drivers such
as the terminal driver. The block defines the address or addresses to
include 1in the vector for the driver. There is no restriction on the
number of vectors each controller has, and the number of vectors 1is
implied by the number of addresses in the interrupt address block.

2.3 TYPICAL CONTROL RELATIONSHIPS

This section presents different arrangements of the control structures
that are found 1in RSX-11M-PLUS. The section concentrates on the

2-6

DEVICE DRIVER I/O STRUCTURES

relationships among device control, unit control, status control, and
controller request blocks and controller tables based on hardware and
functions supported. Descriptions of the detailed contents of the
structures is 1left to Chapter 4, where the coding requirements are
presented. Some of the arrangements are not conventional but are
shown to convey the flexibility you can find in a system. Section 2.4
shows how such arrangements fit into the overall system I/0O data
structure.

The arrangements described in this section illustrate the strategy in
offering a flexible I/O data structure. There need be only one
controller table for each controller type. Multiple-device control
blocks for a single device type reflect the capability to handle
varying characteristics. The existence of one or more status control
blocks depends on the degree of parallelism possible: one SCB for
each controller servicing several units (no parallelism); or one for
each device unit combination on the same controller (unit operation in
parallel).

The I/0 data structure reflects the hardware configuration that the
data structures describe, The flexibility 1in the data structure
arrangements provide flexibility in configuring I/0 devices. The
information density in the structures themselves reduces the coding
requirements for the associated drivers.

2.3.1 Multiple Units per Controller, Serial Unit Operation

A typical arrangement of structures for a user-written driver is shown
in Figure 2-1. The arrangement could represent an RK0OS5J controller
with two RKO5 drives attached. A single controller table (CTB)
defines the existence of the controller type on the system. One
device control block (DCB) establishes the characteristics for the
type of device running on the controller.

The status control block (SCB) and controller request block (KRB) are
contiguous in this arrangement because the software does not allow
another I/0 operation to begin while the controller 1is busy. A
separate unit control block (UCB) describes each unit attached to the
controller. The UCBs are associated with the SCB, which contains the
context of the operation currently in progress.

2.3.2 sSingle Controller, Serial Operation

Another typical conventional arrangement of structures for a
user-written driver is shown in Figure 2-2, which could represent two
LPl1l controllers, one with an LP04 and the other with an LPO05
attached. It represents the simplest case of driver processing.
Figure 2-2 shows what is required for a controller that allows only a
single 1I/0 operation for each controller. A single controller table
defines the existence of the <controller type on the system. One
device <control block establishes the characteristics for the type of
device running on the controller.

The status control and controller request blocks are contiguous in
this arrangement because, while the controller is busy, another I/O
operation cannot begin. Only one SCB 1is necessary to store the
context of the wunit operation. The UCB points to the SCB, which in
turn points to the KRB of the unit's controller. Because the system
must handle interrupts from multiple controllers, the controller table
points to the KRB of each controller present.

DEVICE DRIVER I/O STRUCTURES

DCB__ CTB
List 1} List
Y \
DCB CTB
- .
A
KRB
ucCB SCB »
A
ucCB

ZK-249-81

Figure 2-1 Multiple Units per Controller, Serial Unit Operation

2.3.3 Parallel Unit Operation

Some devices, such as the RK06, allow multiple units to have seek
operations in progress at the same time. 1In particular, the RKO06
allows such operations to overlap a data operation. Figure 2-3 shows
the arrangement needed in the software structures to support parallel
operations on one controller.

Two additional structural changes are required from the serial
operation arrangement, First, because more than one unit may have an
operation pending at the same time, a structure is needed to store
unit ~ontext. Therefore, for each unit (and each unit control block)
there is a separate status control block. Second, because interrupts
can come from more than one unit, some way must exist to access the
proper unit. As a result, the controller request block contains a
table of unit control block addresses that allows the driver to find
the structures for the unit generating an interrupt.

DEVICE DRIVER I/O STRUCTURES

DCB cTB

D — ——— —_——— ——————————

List List

\ |
DCB . CTB
KRB
— UCB SCB o
ucB |

KRB
SCB

ZK-250-81

Figure 2-2 Single Controller, Serial Operation

DCB cTB

- -
UCB SC8

“ KRB
ucs SCB

_ - ucB

Table

ZK-251-81

Figure 2-3 Parallel Unit Operation (Overlapped Seek)

2.3.4 Multiple-Access (Dual-Access) Operation

Some devices, such as the RK06, have a dual port option that provides
multiple-access paths to units. On the RK06, dual ports on the unit
enable a single wunit to be electronically switched between two
controllers. Figure 2-4 shows the several changes in the structures
needed to support dual-access operations.

2-9

DEVICE DRIVER I/0 STRUCTURES

Common
Interrupt
Table
-4 el
DCB CTB
Current
PU—
KRB ——
Pointer
Ji-- —o
SCB
KRB
Table PortB KRB
Current
UCB uUCB
KRB Table
o Pointer
SCB
Port A KRB
KRB -
Table Port B
ucsB
Table

JK-252.81

Figure 2-4 Dual-Access Operation

Separate status control blocks are needed for each unit because, if
one controller is currently busy, the alternate controller can be idle
and allow the operation to proceed. The difference in the dual-access
structure is that the SCB no longer points to the same controller
request block all the time as in the overlapped seek arrangement. The
Executive can change the SCB pointer to a KRB to reflect the
capability to electronically switch a unit between two controllers.

To enable the software to differentiate which controllers may access a
unit, the SCB has a table of KRB addresses. For dual-access disks,
the table contains two entries: the addresses of the controller
request. blocks for each <controller between which the unit can be
switched,

2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

This section presents an overview of the relationships among the
user-written driver data structures previously introduced in this
chapter and the Executive I/0 structures and DIGITAL-supplied driver
structures. The goal of the section is to convey the general manner
in which user-written structures and code link into the system I/0
scheme and to describe generally the use to which the system puts the
structures. The specific wuser-written structures are simplified
somewhat so that the emphasis is placed on the linkages with other
parts of the system rather than on the details of user-written
structural relationships.

DEVICE DRIVER I/O STRUCTURES

This section should be used with Section 2.3 to understand the general
structural concepts. For example, Section 2.3 describes various
arrangements of unit control, status control, and controller request
blocks based on hardware functions the software structures support.
This section treats such arrangements as an engineering black box that
is oriented in the general I/0 environment. Thus, in the generalized
I1/0 data structure depicted in this section, the pointers in the KRB
table of the SCB are not shown and the table is simply marked KRB
Table.

Figure 2-5, which provides the basis for the presentation of the 1I/0
data structure, shows the individual elements and the important link
fields within them. The numbers in the fiqure correspond to the
numbers in the lead paragraphs of the text to simplify the discussion
and to guide you through the data structures.

1. The location represented by the Executive symbol $DEVHD is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all device control
blocks in the system. The first word in each DCB is a link
to the next DCB.

The list of device control blocks is one of the two threads
through the system data tables for device-related
information. For example, the list is the means by which
executive routines scan the data structures to determine what
devices are on the system and what is the status of units.
User-written device control blocks must be linked into the
list of system defined DCBs.

2. Every loadable driver is associated with a partition control
block (PCB). The PCB defines the characteristics of the
memory area into which the.driver is loaded. The Executive
and tasks such as LOA and UNL reference the data in the PCB.
A driver is not concerned with the PCB.

3. 1I1f a task is attached to a unit, the UCB has a pointer to the
task control block (TCB) of that task.

4. The task header is an independent entity in the 1I/0 data
structure and the driver never accesses it. A copy of the
task header is taken from the task partition and stored in
the Executive dynamic storage region whenever the task is
actually in memory. This copy is then used by the Executive.

A logical unit table (LUT) entry in the task header has two
items of interest: a pointer to an associated unit control
block and, if a file is being accessed, a pointer to a window
block. The Executive accesses the logical unit table of a
task during a QIO request and indexes the table by the
logical unit number specified in the QIO request.

5. A device control block has a pointer to the unit control
block of the first related unit. Because the length of a UCB
is stored in the DCB and all UCBs are allocated in a
continuous area, access to all the UCBs related to that DCB
is possible. This arrangement allows software to access all
related unit information for a device type.

A DCB also has a pointer to the start of the driver dispatch
table. This pointer allows the Executive to call the driver
at its entry points to process an I/O-related or a
reconfiguration request.

¢1-¢

POINTER TO LINK TO
DEVICE VECTOR NEXT DCB DRIVER CODE FIRST ICB
—1 | ©
oDt Common
Interrupt
Table
SDEVHD (:> $CTLST
@ r--r-=—-—=—===7==—<= b
| | == —
l 1 cT8
| 1
DCB bes | : cTB
I 1/0 PACKETS |
(:) 1/0 QUEUE
I ettt B
l Current
C) — 110
LOADABLE $FRKHD Packet
Dgggﬂ FORKBLOCK
ucB SCB e
KRB ™
KRB TABLE
TCB OF I — CB TABLE ioE
U INDEX
ATTACHED ucB ()
TASK
VCB
(:) MOUNTED
TCB OF VOLUME
ACP FORKBLOCK[™ ™1 Krs —
;]
TASK
HEADER LUT ENTRY KRB TABLE UCB TABLE W8
L ey == —— il
WB
(TASK) (VOLUME)

NOTE

This diagram shows only a typical example;
itdoes not show every possible arrangement.

Figure 2-5

C) FCB

(TASK)

Composite I/0 Data Structures

ZK-253-81

STUNLONY¥LS O/I HIAIHA FDIAIA

6.

~2

DEVICE DRIVER I/O STRUCTURES

Each unit control block contains a pointer back to its
related DCB. This backpointer allows the Executive interrupt
dispatch code to enter the proper driver (through the pointer
. to the driver dispatch table).

Associated with each UCB is a status control block. The SCB
is shared by all wunits for a device type that does not
require units to operate in parallel. When units can operate
in parallel, each UCB has its own associated SCB.

As part of processing a QIO directive (queued 1I/0 request),
the Executive builds a structure called an 1I/0 packet.
Storage for packets is in the system dynamic storage region
(the pool). The Executive connects the packets by a pointer
in each packet to form a singly-linked list called the 1I/0
queue, The Executive maintains two pointers in the SCB to
the list of packets. The first pointer is to the start of
the 1list and the second pointer is to the last packet in the
list.

The driver should not access the 1list of 1I/0 packets
directly. When the Executive transfers control to the driver
to 1initiate processing of an I/0 request, the driver
immediately calls an Executive service routine to get a
packet to process. The routine passes, to the driver, data
sufficient to process the request (for example, the address
of the packet). Thus, the Executive, and not the driver,
removes a packet from the queue of packets. However, in
performing the I/0 request, the driver can access certain
fields in the packet to be processed because a pointer to the
currently active I/0 packet is kept in the SCB.1l

The Executive determines the ordering of packets 1in the
queue., Typically, higher-priority requests are placed at the
head of the queue.

At least one status control block (SCB) exists for each
controller. Where a controller and software support
operations in parallel on multiple units, one SCB exists for
each unit capable of operating independently. A pointer in
the SCB connects to the controller request block (KRB) of the
controller to which the related wunit 1is connected. If
multiple-access paths between a unit and controller are
possible, the KRB pointer is dynamic. The KRB to which the
SCB points at one instant therefore, is considered to be the
currently assigned KRB. To reflect the existence of
alternate controllers, a table of pointers to all the
possible KRBs is contained in the SCB, separate from the
pointer to the currently assigned KRB.

The fork block in the SCB contains some of the driver process
context. The driver executes an Executive routine so that
processing will occur at fork level. To preserve processing
status, the routine stores some context in the fork block.
When the driver eventually runs again, the fork processor
recovers the proper context from the fork block.

1. Normally, the driver does not directly manipulate the 1I/0 queue.
An exception is when a driver needs to examine an I/O packet before it
is queued or instead of having it queued. This exception involves a

status

bit in a control byte of the unit control block. For more

information on queuing of I/0 packets to the driver, refer to the
description of the UC.QUE bit in Section 4.4.4.

2-13

10.

11.

12,

DEVICE DRIVER I/0O STRUCTURES

On multiprocessor systems, the fork block contains an extra
cell to define the processor on which the driver must execute
the I/0 request, The Executive routine that preserves
context in the fork block ensures that certain driver code is
processed on a particular processor.

The fork blocks for pending driver processes are connected in
a singly-linked 1list, the head of which is in a location
(SFRKHD) in the Executive region. Generally, the fork
processing routines 1link a fork block in FIFO order. At
location SFRKHD+2 the executive maintains a pointer to the
last fork block in the list,.

Associated with each open file on a mounted volume is a file
control block (FCB). The file system alone uses the FCB to
control access to the file.

For each open file on a mounted volume, a window block exists
for each task that has the file open to hold pointers to
areas on the volume on which the file resides. The function
of the window block is to speed up the process of retrieving
data items from the file. (The associated ACP need not be
called to convert a wvirtual block number in a file to a
logical block number on the device.) The driver is not
concerned with the window block.

The driver dispatch table (DDT) is part of the driver code
and, through the vector and the interrupt control block, is
the means by which the device interrupts are passed to the
driver.

The controller request blocks (KRB) are linked into the 1I/0
data structure through the pointers in the controller table
(CTB). The table of KRB address in the CTB is static.

The KRB table allows the Executive access to the structures
for a controller when it initiates an interrupt. To report
the termination of a data transfer command, a controller
initiates an interrupt. (While such a controller-initiated
interrupt is in progress, the hardware delays interrupts from
units.) The Executive determines the correct KRB by indexing
the CTB with the controller number from the PS word 1in the
vector.

For a controller that allows unit operation in parallel
(overlapped seek support), the related KRB must have a table
of UCB addresses. This table allows the driver to access the
structures of the unit that generates an interrupt. When a
unit interrupts, its controller records (in the attention
summary register) the physical number of the interrupting
unit. The driver must retrieve the number and use it to
index the UCB table 1in the KRB to access the proper unit
control block.

To support unit operation in parallel, the KRB also contains
a queue to regulate <controller access. This queue, the
controller request queue, is a list of fork blocks for driver
processes that have requested and have been denied access to
the controller. The driver requests access to a controller.
If the controller is busy, the Executive forces the driver to
wait for access by placing the fork block in the queue of
processes waiting for access. The Executive gives precedence
to control access over requests for data transfer by placing
positioning requests onto the front of the queue and adding

13.

14.

DEVICE DRIVER I/O STRUCTURES

data transfer requests to the end of the queue. When a unit
is given access, the «controller status is set to busy and
unit UCB address is set to connect the KRB to the owned UCB.

To indicate what unit to process on a controller initiated
interrupt, a cell in the KRB points to the unit control block
(UCB) of the unit that currently owns the KRB.

The KRB queue cells have two words. The first word points to
the fork block in the SCB of the next unit to get access.
The second word points to the fork block in the SCB of the
last unit to get access. If the first word is 0, then the
second word points to the first and no unit is waiting for
access to the controller.

The location represented by the Executive symbol $CTLST is a
cell 1in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all controller tables
(CTBs) in the system. A word in each CTB is a link to the
next CTB. The last CTB in the list contains a link word of
0.

The list of controller tables 1is one of the two threads
through the system for device-related information. (The list
of device control blocks is the other thread.) A user-written
controller table must be linked into the 1list of
system-defined CTBs. This list is the mechanism by which
system routines, such as those for reconfiguration, access
I/0 data structures for hardware information.

One volume control block (VCB) exists for each mounted volume
in the system. The VCB maintains volume-dependent control
information.

Pointers within the VCB connect to the file control block
(FCB) and window block (WB). The FCB and WB control access
to the volume's index file, which is a file of file headers.
All FCBs for a volume form a linked list starting from the
index file FCB. These linkages aid in keeping file access
time to a minimum. A conventional driver does not access any
of these structures.

CHAPTER 3

EXECUTIVE SERVICES AND DRIVER PROCESSING

The Executive provides services related to I/0 drivers. Some services
are provided before a driver process is initiated and are therefore
called predriver initiation services. The predriver initiation
services are those performed by the Executive during its processing of
a QIO directive; these services are not available as Executive calls.

Predriver initiation processing extracts from the QIO directive all
1/0 support functions not directly related to the actual issuance of a
function request to a device., If the outcome of predriver initiation
processing does not result in the queuing of an I/0 Packet to a
driver, the driver is unaware that a QIO directive was 1issued. Many
QIO directives do not result in the initiation of an I/0 operation.

Other services are available to the driver after it has been given
control, either by the Executive or as the result of an interrupt.
They are available as needed by means of Executive calls.

An important concept used in this section and in Chapter 4 1is the
state of a process. In RSX~11M=-PLUS, a process can run in one of two
states, user or system. Drivers operate entirely in the system state;
the programming standards described in Chapter 4 apply to system-state
processes.

3.1 FLOW OF AN I/0 REQUEST

Following an I/0 request through the system at the functional level
(the 1level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when a task issues a
QIO directive. The following assumptions apply:

e The system is running and ready to accept an I/0 request. All
required data structures for supporting devices attached to
the system are intact.

e The only I/0 request in the system is the sample request under
discussion.

e The example progresses without encountering any errors that
would prematurely terminate its data transfer; thus, no error
paths are discussed.

e The controller in question executes only a single operation at
a time.

3.1.1

EXECUTIVE SERVICES ‘AND DRIVER PROCESSING

Predriver Initiation Processing

The I/0 flow proceeds as described below:

1.

Task issues QIO directive

The user program first either statically (by QIOWSC, QIOWS,
QIOSC, or QIOS) or dynamically (by QIOWSS or QI0S$S) creates a
directive parameter block (DPB) containing information about
what I/0 is to be performed on what device. Then, it issues
the directive.

All Executive directives are called by means of EMT 377. The
EMT causes the processor to push the PS and PC on the stack
and to pass control to the Executive's directive processor.

QIO Dispatching

The Executive directive dispatcher DRDSP ascertains that the
EMT 1is a QIO directive and calls the QIO directive processor
DRQIO.

First-level validity checks

The QIO directive processor validates the logical unit number
(LUN) and the Unit Control Block (UCB) pointer. DRQIO checks
whether the LUN supplied in the directive parameter block |is
a legal value. If it is not a legal value, the directive is
rejected. If the LUN is legal, DRQIO checks whether a wvalid
UCB pointer exists in the Logical Unit Table (LUT) for the
specified LUN. This check ascertains whether the LUN |is
assigned. 1If the check fails, the directive is rejected. If
both these checks are successful, DRQIO then performs the
redirect algorithm,

Redirect algorithm

Because the UCB may have been dynamically redirected by a
Redirect command, QIO directive ©processing traces the
redirect linkage until the target UCB is found. The target
UCB provides the links to most of the other structures of the
device to which the I/0 operation will be directed.

Additional validity checks

The event flag number (EFN) is wvalidated, as well as the
address of the I/0 Status Block (IOSB). If either is
illegal, the directive is rejected. Immediately following
successful validation, DRQIO resets the event flag and clears
the I/0 status block.

Obtain storage for and create an I/0 Packet

The QIO directive processor now acquires a 20-word block of
dynamic storage for use as an I/0 Packet. It inserts into
the packet the device~independent data items that are used
subsequently by both the Executive and the driver in
fulfilling the I/0 request. Most items originate 1in the
requesting task's Directive Parameter Block (DPB).

At this point, DRQIO sets the directive status to +1, which
indicates directive acceptance. Note that a directive
rejection is a return to the caller with the C bit set. In
addition, a directive rejection is transparent to the driver,

3.1.2

8.

EXECUTIVE SERVICES AND DRIVER PROCESSING

Validate the function requested

If the function is legal, DRQIO checks ¢to see whether the
unit is on=line, If the wunit is off-line, the packet is
rejected. The function is one of four possible types:

Control
No-op
ACP
Transfer

With the exception of Attach/Detach, <control functions are
queued to the driver. If the bit UC.ATT 1is set,
Attach/Detach will also be queued to the driver. I1f the
requested function does not require a call to the driver, the
Executive takes the appropriate action and calls the 1I1/0
Finish routine ($IOFIN).

No-op functions do not result 1in data transfers. The
Executive performs them without calling the driver. No-ops
return a status of IS.SUC in the I/0 status block.

ACP functions may require processing by the file system.
More typically, the request 1is a read or write virtual
function that is transformed into a read or write logical
function without requiring file-system intervention. When
transformed into a read or write 1logical function, the
function becomes a transfer function (by definition).

Transfer functions are address checked and queued to the
proper driver. This means that DRQIO checks the address of
the I/0 buffer, the byte count, and the alignment requirement
for the specified device, If any of these checks fails,
DRQIO calls the I/0 Finish routine ($IOFIN), which returns an
I/0 error status and clears the I/0 request from the system,
If the checks succeed, DRQIO either places the I/0 Packet in
the driver request queue according to the priority of the
requesting task or, if the UC.QUE bit 1is set, gives the
packet directly to the driver. (See Section 4.4.4 for a
description of the UC.QUE bit.)

Driver Processing

Request work

To obtain work, the driver calls Get Packet (SGTPKT). S$SGTPKT
either provides work, 1if it exists, or informs the driver
that no work is available or that the SCB 1is busy; if no
work exists, the driver returns to its caller. 1If work is
available, SGTPKT sets the device controller and unit to
busy, dequeues an 1I/0 request packet, and returns to the
driver.

EXECUTIVE SERVICES AND DRIVER PROCESSING

9., 1Issue I/0

From the available data structures, the driver initiates the
required I/0 operation and returns to its «caller. A
subsequent interrupt may inform the driver that the initiated
function 1is complete, assuming the device is interrupt
driven.

10. Interrupt processing

When a previously issued I/0 operation interrupts, the
interrupt causes the driver to be entered. The driver
processes the interrupt according to the programming protocol
described 1in Chapter 1. According to the protocol, the
driver may process the interrupt at priority 7, at the
priority of the interrupting device, or at fork level. If
the processing of the 1I/0 request associated with the
interrupt is ,still incomplete, the driver initiates further
I1/0 on the device (Step 9). When the processing of an 1I1/0
request is complete, the driver calls $IODON.

11. 1I/0 Done processing

SIODON removes the busy status from the device wunit and
controller, queues an AST if required, and determines whether
a checkpoint request pending for the issuing task can now be
effected. The I0SB and event flag, if specified, are
updated, and $IODON returns to the driver. The driver
branches to its initiator entry point and looks for more work
(Step 8). This procedure is followed until the driver finds
the queue empty, whereupon the driver returns to its caller
and the driver process vanishes.

Eventually, the processor is granted to another ready-to-run
task that issues a QIO directive, starting the I/0 flow anew.

3.2 EXECUTIVE SERVICES AVAILABLE TO A DRIVER

Once a driver is given control following an I/O interrupt or by the
Executive itself, a number of Executive services are available to the
driver. These services are discussed in detail in Chapter 7.

However, four Executive services merit special emphasis because
virtually every driver in the system uses them:

1. Get Packet (SGTPKT)
2. Interrupt Save (SINTSV)
3. Create Fork Process ($FORK)

4. 1/0 Done ($IODON or S$IOALT)

EXECUTIVE SERVICES AND DRIVER PROCESSING

3.2.1 Get Packet ($GTPKT)

The Executive, after it queues an I/0 Packet, <calls the appropriate
driver at its I/0 initiation entry point. The driver then immediately
calls the Executive routine $GTPKT to obtain work.l If work is
available, SGTPKT delivers to the driver the highest-priority,
executable I/0 Packet in the driver's I1/0 queue, and sets the SCB
status to busy. If the driver's I/0 queue is empty or if the driver
is busy, $GTPKT returns a no-work indication.

If the SCB related to the device is already busy, S$GTPKT so informs
the driver, and the driver immediately returns control to the
Executive.

Note that, from the driver's point of view, no distinction exists
between no-work and SCB busy, because an I/0 operation cannot be
initiated in either case.

3.2.2 Interrupt Save (SINTSV)

A driver should not directly call the $INTSV coroutine but should use
the INTSVS$ macro call. Therefore, if the driver is loadable, it need
not call $INTSV and the macro will not generate the call in the
driver. (The 1interrupt save processing 1is done by either the
interrupt control block or the appropriate common interrupt routine in
the Executive,) If a driver 1is resident, the INTSV$ macro call
generates the call to the SINTSV coroutine. The coroutine saves code
in the driver because the call is shorter than the code to save and
restore the conventional registers R4 and R5. More importantly, the
SINTSV coroutine gets the driver onto the system stack if it is not
already there. The INTSVS macro is described 1in more detail in
Section 4.3 and the interrupt entry point is described in Section 4.5.

3.2.3 Create Fork Process ($FORK)

Synchronization of access to shared data bases 1is accomplished by
creating a fork process. When a driver needs to access a shared data
base, it must do so as a fork process; the driver becomes a fork
process by calling $FORK. The SCB contains preallocated storage for a
4-= or 5-word fork block. See Section 4.4.5 for a description of the
fork block. Section 7.4 contains details on $FORK. After $FORK is
called, a routine is fully interruptable (priority 0), and its access
to shared system data bases is strictly linear.

3.2.4 I/0 Done (SIODON or S$IOALT)

At the completion of an I1/0 request, the subroutines $IODON or S$IOALT
perform a number of centralized checks and additional functions:

e Store status if an IOSB address was specified

e Set an event flag if one was requested

1.An exception is a driver that handles special user buffers. Such a
driver must call certain other Executive routines before calling
SGTPKT. See Section 4.4.4 for a description of the UC.QUE bit.

EXECUTIVE SERVICES AND DRIVER PROCESSING

e Determine whether a checkpoint request can now be honored
e DJetermine whether an AST should be queuéd
SIODON and $IOALT also declare a significant event, reset the SCB and

device wunit status to idle, and release the dynamic storage used by
the completed I/0 operation.

CHAPTER 4

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Chapters 2 and 3 give overviews of data structures and Executive
services, respectively. This chapter summarizes programming
standards, presents overviews of programming requirements for
user-written driver code and data, and gives details of the data
structures and driver code. Executive services are covered in Chapter
7.

4.1 PROGRAMMING STANDARDS

I/0 drivers function as integral components of the RSX-11M-PLUS
Executive, and this manual enables you to incorporate I/0 drivers into
your system. User-written drivers must follow the same conventions
and protocol as the Executive itself if they are to avoid complete
disruption of system service. Failure to observe the internal
conventions and protocol that are described fully in Chapter 1 can
result in poor service and reductions in system efficiency.

The programming conventions used by RSX-11M-PLUS system components are
identical to those described in Appendix E of the PDP-11 MACRO-11
Language Reference Manual. DIGITAL urges you to adhere to these
conventions.

4.1.1 Programming Protocol Summary

Drivers are required to adhere to the following internal conventions
when processing device interrupts:

l. No registers are available for use unless S$INTSV has been
called, or the driver explicitly performs save and restore
operations. If SINTSV is called, registers R4 and R5 are
available; any other registers must be saved and restored.
If the driver is to call S$INTSV directly, it must do so
immediately because SINTSV attempts to retrieve the
controller number from the PS.

2. Noninterruptable processing must not exceed 20 instructions,
and processing at the priority of the interrupting source
must not exceed 500us.

3. Only a fork process should modify system data bases.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

4.1.2 Accessing Driver Data Structures

All th2 driver data structure elements have symbolic offsets. Because
the piysical offset values may vary from one version of the Executive
to another, your wuser-written driver code should always use the
symbols to access the elements.

Accordingly, your driver code should not step from one structural
elemen: to another (relying on the juxtaposition of data structures
and inilividual words in a data structure) but should access each
elemen: by symbolic offset. By following this aspect of good coding
practi:e, you can reduce debugging time when converting an RSX-11M
driver to run on RSX~11M-PLUS. Many of the offsets in the RSX-11M SCB
differ physically from those in the RSX-11M-PLUS SCB but have the same
symbol ic values.

On the other hand, it is a common coding practice to assume that zero
offsets (particularly 1link pointers such as D.LNK) will remain zero.
This assumption allows the saving of one word per instruction by
substi:uting an instruction such as MOV (R3),R3 for MOV D.LNK(R3),R3.
DIGITA. recognizes that such practices are followed and consequently
attemps to keep such offsets zero.

4.2 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

You should create the source code for your user-written driver data
base n a file separate from that of the driver code. You assemble
this f le to create the driver data base module. If you make your
data base resident, vyour data base module will be linked separately
from the driver code and will be linked to the system device tables
module SYSTB.OBJ. (The source code for the SYSTB module is created in
UFD [1.,10) during system generation.) If vyour data base 1is in a
separate module and is to be loadable, it will be linked to the end of
the dr ver code module. If your driver data base is 1in the same
module as that of your driver «code, it must be at the end of the
driver code.

The detailed descriptions of the driver data structures are in Section
4.4. A few fields 1in the structures are conditional on certain
features in the Executive. You therefore must use conditional
assembly directives and some system-wide symbols that are defined in
the Executive assembly prefix file RSXMC.MAC, which is created during
system generation.

To create the source code, you need to know, in addition to the
detailed structures, what ordering and labeling are required. These
requirements, though not extensive, are 1important in 1linking and
loadinc your driver data base. The general coding requirements for
both lcadable and resident driver data bases are described 1in the
following subsections.

4.2.1 General Labeling and Ordering of Data Structures

If you are creating a loadable data base, you must specify, for the
LOAD rcutines, two global labels as follows:

$SxxDAT:: marks the start of the user-written driver data base.
$SxXEND:: marks the end of the user-written driver data base,

that 1is, immediately following the final word of the
data base.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

The characters xx represent the 2-character mnemonic of the device
that your driver data base supports. If either or both of these
labels are not defined, LOAD cannot determine the length of your data
base when you attempt to load your driver.

There is no mandatory ordering of the different structures in a driver
data Dbase. DIGITAL suggests, however, that you place the DCB first,
followed by the UCB, the SCB(s), the KRB(s), and the CTB. If vyou do
not follow this ordering scheme, you must specify the starting
location of the first (or only) DCB as described in Section 4.2.2.

4.2.2 Device Control Block Labeling

If the data base for a driver is to be 1loadable, the LOAD routines
require either that the first (or only) DCB be identified by the
global label $xxDCB:: or that the DCB be at the start of the data
base.

If the data base for a driver is to be resident, you must define the
start of the first (or only) DCB with the global label SUSRTB::. This
label is required to link the last DCB defined 1in the SYSTB module
with the DCB 1in vyour driver data base. If you fail to supply this
symbol, the Task Builder will generate an undefined reference error
when it builds the Executive.

4.2.3 Unit Control Block Ordering

All the UCBs associated with a specific device control block (DCB)
must be contiguous with each other and must be of equal length. These
requirements are necessary because the DCB has only one 1link to the
UCBs, and that link is to the first UCB. Two data elements, the UCB
length and the number of units, are stored in the DCB; they, together
with the 1ink to the first UCB, are used to locate subsequent UCBs.
If you do not follow these requirements, no software can access the
UCBs.

4.2.4 Status Control and Controller Request Blocks

All user-written drivers that do not need separate storage for
independent unit context should use the continuous allocation of the
KRB and SCB. (For an explanation of when independent unit context 1is
required, refer to the discussion of overlapped seek I/0 in Section
1.4.1.) Therefore, the KRB and SCB are contiguous and some fields of
each structure overlap. This arrangement saves space that would be
required for one SCB for each independent unit. Because only one unit
can be active at any one time, all wunits attached to the same
contrcller can share the SCB. This arrangement of the KRB and the SCB
is described in Section 4.4.7.

4,2.5 Controller Table

You must define the start of the table of KRB addresses in the CTB
with the global 1label $xxCTB::. Both the INTSV$ macro call and the
Executive LOAD routines require this label.

If your data base is resident, you must use the CTB macro at the CTB

link word L.LNK. The CTB macro automatically generates a global label
that provides the linkage between the last CTB defined 1in the SYSTB

4-3

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

module and the CTB defined 1in vyour driver tables module. (The
definition of the CTB macro is created in the file RSXMC.MAC during
system generation.)

4.3 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

To create the source code to drive a device, you must perform the
following steps:

1. Thoroughly read and understand this manual.

2. Familiarize yourself in detail with the physical device and
its operational characteristics.

3. Determine the level of support required for the device.
4. Determine actions to be taken at the driver entry points.
5. Create the driver source code.

You can write driver code for RSX-11M-PLUS that does one of the
following:

1. Supports standard functions and runs on RSX-11M-PLUS only.

2. Supports standard functions and is written so that it is
compatible with use on both RSX-11M and RSX-11M-PLUS. (This
driver needs separate data bases for each system.)

3. Supports advanced features and runs on RSX-11M-PLUS only.
(Although Chapter 1 discusses advanced features, this manual
does not describe how to program advanced features. Your
best gquide to utilizing advanced features 1is to use a
DIGITAL~supplied driver as a model.)

To assist you in generating proper code for your wuser-written driver
and to provide a stable user-level interface from one release of the
system to another, RSX-11M-PLUS provides the macro <calls 1listed in
Table 4-1.

The definitions of the system macro calls for drivers are in the
Executive assembly prefix file RSXMC.MAC. The following subsections
describe the format of the macro calls and other features of
user-written driver code. Driver code details (such as labeling
requirements and entry point conditions) are presented in Section 4.5.

4.3.1 Generate Driver Dispatch Table Macro Call - DDT$

The DDT$ macro call facilitates generation of the driver dispatch
table. The format of the DDT$ macro call is as follows:

DDTS dev,nctrlr,iny,inx,ucbsv,NEW,OPT,BUF

Table 4-2 lists the arguments of the DDT$ macro call. The macro
constructs the DDT, using as addresses those locations indicated by
the standard labels. The macro has arguments allowing you to tailor
some of the standard entry points. The format of the DDT generated by
the DDT$ macro is described in Section 4.5.1.

3

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Table 4-1
System Macro Calls for Driver Code

Macro Name

General Functions

DDT$

GTPKTS

INTSVS

Used conventionally at the start of the driver code
(1) to allocate storage for and to generate a
driver dispatch table containing the addresses of
entry points in the order in which the Executive
expects them; (2) to generate special global
labels required by the Executive; (3) to tell the
Executive LOAD routines: (a) which controllers the
driver supports, (b) how many interrupt vectors
each controller supports, and (c¢) the association
between the interrupt vectors and the driver
interrupt entry points; and (4) to generate
default controller and unit status change entry
point procedures (for on-line and off-line
transitions)

Used at the I/0 initiator entry point to generate
the call to the $GTPKT routine and to generate code
to save the address of the currently active wunit's
ucs

Used at an interrupt entry point to <conditionally
generate a <call to the $INTSV routine and to
generate code to load the UCB address of the
interrupting device into R5

Table 4-2
DDT$ Macro Call Arguments

Argument

Meaning

dev

nctrlr

iny

is the 2-character device mnemonic.

is the number of controllers that the driver services
(counting from 1).

allows the definition of no interrupt entry point or
multiple interrupt entry points. If you leave the
argument null, the macro generates as the interrupt
entry point address the 1location defined by the
conventional label $xxXINT.

If you specify NONE, no interrupt entry point is
generated for the controller.

If you specify an argument 1list of the form
<aaa,bbb,...>, the macro generates multiple cells
containing addresses defined by unconventional 1labels
of the form $xxaaa and S$xxbbb. This latter mechanism
allows you to define multiple interrupt entry points
in the driver. For example, the argument 1list
<INP,OUT> generates two interrupt address labels of
the form S$xxXINP and $xxOUT, the typical names used by
drivers with two interrupt entry points.

(continued on next page)

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

Table 4-2 (Cont.)
DDT$ Macro Call Arguments

Argunent

Meaning

inx

uchsv

NEW

Opr‘

BUF

uses an alternate I/0 initiation entry point add
label instead of the conventional xxINI form. If
specify inx, the macro uses as the only I/O initia
entry point address the location defined by the 1
xxinx.

is for compatibility with RSX-11M drivers. If you
writing a driver for RSX-11M-PLUS, you should 1
this argument blank. As a result, the macro does

allocate the space for the table of UCB addres
For guidelines on specifying this argument, refer
Section 4.3.4.

distinguishes between RSX-11M-PLUS and RSX
except null), the macro generates two cells to

addresses. The referenced driver entry points mus
labelled xxKRB: and xxUCB:. If vyour driver
these entry points, it cannot be compatible
RSX-11M unless the two routines are conditionalize

If the argument is null, the macro generates code
use the xxPWF entry point for controller and
on-line and off-line status changes.

indicates that the driver supports seek optimizat
The referenced entry point must be labelled xxC
The routine corresponding to that label should qua
the 1I/0 request and convert it to cylinder track
sector.

required if the driver performs buffered input
output. The entry point xxDEA: 1is generated.

NOTE

RSX-11M drivers implicitly handle controller
and unit on-line and off-line status changes
as power failures. Although this default
operation (enabled by code generated from
leaving this argument null) is not optimal for
operation on RSX-11M-PLUS, the driver will
probably function properly without being
changed to include the xxKRB and xxUCB entry
points.

drivers. If you specify this argument (any character
hold

the controller and wunit status change entry point

ress

you
tion
abel

are
eave
not
ses.
to

-11M

t be
uses
with
d.

to
unit

ion.
HK: .
lify
and

and

4.3.2 Get

The GTEKTS

Packet Macro Call - GTPKTS

macro call standardizes use of the Executive

SGTPKT

routine, which retrieves an I/0 packet for the driver to process. The
format of the GTPKTS$ macro call is as follows:

GTPKTS

dev,nctrlr,addr,ucbsv,suc

The description of the arguments appears in Table 4-3.

4-6

PROGRAMMING SPECIFICS FOR WRITING AN I/0O DRIVER

Table 4-3
GTPKTS Macro Call Arguments

Argument Meaning
dev is the 2-character device mnemonic.
nctrlr is the number of controllers that the driver services

(counting from 1).

addr is the local label defining the location at which to
continue execution if there is no I/O packet
available. A driver typically executes a RETURN
instruction when the S$GTPKT routine indicates that
there is no I/0 packet to process. If you leave this
argument null, therefore, the macro generates a RETURN

instruction.

ucbsv is for compatibility with RSX-11M drivers. 1If you are
writing a driver for RSX-11M-PLUS, you should leave
this argument null. The macro then generates code to
load the pointer S.OWN with the address of the UCB
returned by $GTPKT. For guidelines on using the
argument, refer to Section 4.3.4.

suc indicates single unit controller. If you are writing
a driver for RSX-11M-PLUS that supports a controller
type such as the LP11l, to which only a single unit can
be attached, you should specify this argument (any
character(s) except null). If you specify this
argument, you should ensure that the offset
K.OWN/S.OWN in the KRB(s) of your driver data base
points to the UCB(s) of the wunit(s) to which the
controller(s) is attached. Thus, the macro does not
generate code that stores the UCB address in the KRB
(a gratuitous operation) for a device that has only
one UCB per KRB.

If your RSX-11M-PLUS driver has multiple units
attached to the same controller, you should leave this
argument null. The macro therefore generates code to
store in the KRB the UCB address of the unit to
process.

This macro call generates the call to the Executive S$GTPKT routine.
You should place it at the I/O0 initiation (xxINI) entry point because
the SGTPKT routine is the standard manner for a driver to receive work
from the Executive. When the driver receives control at its xxINI
entry point, the Executive has loaded R5 with the address of the UCB
of the wunit that the driver must service. Because of the code the
macro call generates, the driver immediately calls $GTPKT, which can
set the C bit to indicate that no work 1is pending. The call
additionally generates the BCS instruction that returns control to the
calling routine when there is no work. If you specify an address as
an argument in the macro call, it is used as the destination of the
BCS instruction. The address 1is typically that of a RETURN
instruction, but does not have to be. Eventually the driver must
execute a RETURN to the system.

The S$GTPKT routine indicates that the driver has an I/0 packet to
process by clearing the C bit. Therefore, when the test of the BCS

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

instruction is false, execution continues inline and the driver can
process the 1I/0 packet that the Executive queued to it. The $GTPKT
routine leaves information in the driver registers to enable the
driver to process the request. Refer to the description of the S$GTPKT
routine in Chapter 7.

4.3.3 Interrupt Save Macro Call - INTSV$

You should specify the INTSVS macro call at each interrupt entry point
in the driver. The macro conditionally generates a call to the
Executive $INTSV routine based on whether the driver is loadable. The
format of the INTSVS macro call is as follows:

INTSVS dev,pri,nctrlr,pswsv,ucbsv

The arjuments of the call are described in Table 4-4. If the symbol
LD$xx (where xx 1is the device mnemonic) is not defined, the macro
generates the call to SINTSV and defines the priority at which the
interrupt service routine will run. Not defining LD$xx indicates that
the driver is resident. (For loadable drivers, the interrupt service
routine in the Executive dispatches the interrupt.) For both loadable
and resident drivers, however, the macro generates the code to load RS
upon an interrupt.

Table 4-4
INTSVS Macro Call Arguments

Argument Meaning
dev is the 2-character device mnemonic.
pri is the processor priority (PR4, PR5 or PR6) at which
the device runs and at which the $SINTSV coroutine will
run.
nctrlr is the number of controllers that the driver services

(counting from 1).

pswsv is for compatibility with RSX-11M drivers. If you are
writing an RSX-11M-PLUS driver, leave this argument
null, If your driver 1is an RSX-11M driver, this
argument has no effect.

uchsv is for compatibility with RSX-11M drivers. If you are
writing a driver for RSX-11M-PLUS, you should leave
this argument null. The macro generates code which
uses the controller 1index returned in R4 by $INTSV,
calculates the KRB of the interrupting controller, and
loads the UCB address of the interrupting unit into
R5. For guidelines on specifying this argument, refer
to Section 4.3.4.

4.3.4 Usage of UCBSV Argument in Macro Calls

The DD$, GTPKTS, and INTSVS macro calls allow vyou to specify an
argument (ucbsv) that maintains compatibility with RSX-11M drivers.
RSX-11M-PLUS does not need to wutilize the wucbsv argument. The
argument ucbsv in the DDT$ macro allocates nctrlr words of storage
(one word for each controller that the driver supports) and labels the

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

first word ucbsv:. This storage is the CNTBL area used by RSX-11M
drivers to contain the address of the wunit control block of the
interrupting devices for each controller. Both the GTPKT$ and INTSV$
macro calls may use this same area. For more information concerning
CNTBL, consult the RSX-11M Guide to Writing an I/O Driver.

If you specify the argument ucbsv in the GTPKT$ macro call, it must be
the same 1label that you supplied for the ucbsv argument in the DDT$
and INTSV$ macro calls. The macro generates code to move the UCB
address returned by SGTPKT to the correct 1location in the table
starting at the label ucbsv.

If you specify the argument ucbsv in the INTSV$ macro call, it should
be the same label you supplied for the ucbsv argument in the DDT$ and
GTPKTS macro calls. The macro uses ucbsv to locate the UCB address of
the interrupting wunit, and then generates code to load the address
into RS5.

4.3.5 Specifying a Loadable Driver

To specify that a driver is 1loadable and to enable generation of
conditional code, you must define the symbol LD$xx. The definition
can appear in either the driver source code or the assembly prefix
file RSXMC.MAC. It is usually more convenient to define the symbol in
the driver source code because you probably will not have cause to
edit RSXMC.MAC. When the symbol is defined, the INTSVS$ macro does not
generate the call to SINTSV.

4,3.6 Loadable Driver Entry Points for LOAD and UNLOAD

A loadable driver that requires additional initialization and
completion functions can define two entry points by labels of the form
$xXLOA and $xxXUNL (where xx 1s the 2-character device mnemonic).
Because these two labels do not appear in the DDT itself, their format
is fixed; you must use the exact format in your driver code. When
you load the driver, the LOAD routines check for the $xxLOA entry
point.

NOTE

The LOAD routines <can perform this
function only from MCR. If you attempt
to load a driver that has the $xxLOA
entry point from VMR, the load operation
is terminated with the error message
DRIVER REQUIRES RUNNING SYSTEM FOR
LOAD/UNLOAD.

The driver is entered, once per UCB, at the $xxLOA entry point at
priority zero. At this stage, the driver data base has been loaded
and pointers have been relocated. The driver is mapped through APR 5,

and the following registers are set up:

R3 - Controller index (undefined if S.KRB = 0)
R4 - Address of the status control block
R5 - Address of the unit control block

The driver may use all the registers. When you unload the driver, the

UNLOAD routine calls it at the $xxUNL entry point with the same
conditions.

4-9

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

These two entry points in the loadable driver are independent of the
controller and unit status change entry points used by Executive
reconfiguration software. That is, the two entry points $xxLOA and
$xXUNL are wused for initialization and completion at LOAD and UNLOAD
time and not at on-line and off-line status change time.

4.4 DRIVER DATA STRUCTURE DETAILS

The following elements in the I/0 data structure are of concern to the
programmer writing a driver:

1. The I/0 packet
2. The DCB
3. The UCB
4. The SCB
5. The KRB
6. The CTB

The I/0 data structure, and the control blocks 1listed previously in
particular, contain an abundance of data pertaining to input/output
operations. Drivers themselves are involved with only a subset of the
data.

NOTE

Except where explicitly noted otherwise,
all wunused bits, fields, and words in
all driver data base structures are
reserved for DIGITAL system use and
expansion.

In the following descriptions, most data fields (words or bytes) are
classified by one of five descriptions. Two items in each description
indicate:

e Whether the field is initialized in the data-structure source,
and ‘

e What sort of access the driver has to the field during
execution

The five descriptions are:

<initialized, not referenced>
This field is supplied in the data-structure source code, and

is not referenced by the driver during execution.

<initialized, read-only>
This field is supplied in the data-structure source code, and
may be read by the driver.

<not initialized, read-only>
Either an agent other than the driver establishes this field,
or the driver sets it up once and thereafter references it

read-only.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

<not initialized, read-write>
Either the driver or some other agent establishes this field,
and the driver may read it or write over it.

<not initialized, not referenced>
This field does not involve the driver in any way.

These five descriptions cover most of the fields in the control blocks
described 1in this section. No system software or hardware checks or
enforces any of the access described. Exceptions are noted 1in the
text.

4.4.1 The I/0 Packet

Figure 4-1 shows the layout of the I/0 Packet, which 1is constructed
and placed in the driver I/0 queue by QIO directive processing, and is
subsequently delivered to the driver by a call to $GTPKT, The DPB
from which the 1I/0 Packet 1is generated is illustrated in Section
4.4.2.

1.LNK Link to next 1/O packet 0
tzgk } EFN PRI 2
1.TCB TCB address of requester 4
1LLN2 Address of second LUT word | 6
LuUCB Address of redirect UCB 10
I.FCN Function code Modifier 12
1.10SB Virtual address of 1/0 status block 14
Relocation bias of 10SB 16
Real address of 10SB 20
LLAST Virtual address of AST service routine 22
I.PRM 24
I Device
parameters 1
I.LAADA Attachment Descriptor Pointer
I.LAADA+2 Attachment Descriptor Pointer
ZK-254-81

Figure 4-1: 1I/0 Packet Format

4-11

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

QIO directive processing dynamically builds the I/0 packet from the
data in the DPB. Fields in the I/0 Packet (see the following text)
are classified as:

e Not referenced,

® Read-only, or

e Read-write.
I.LNK

Driver access:

Not referenced.
Description:

Links I/0 Packets queued for a driver. A zero ends the
chain. The listhead is in the SCB (S.LHD).

I.EFN
Driver access:
Not referenced.
Description:

Contains the event flag number as copied by QIO directive
processing from the requester's DPB.

I.PRI
Driver access:
Not referenced.
Description:
Priority copied from the TCB of the requesting task.
I.TCB
Driver access:

Not referenced usually. Sometimes referenced at I/O cancel
and power failure.

Description:

TCB address of the requesting task.
I.LN2

Driver access:
Not referenced.

Description:
Contains the address of the second word of the LUT entry in
the task header to which the I/0 request is directed. For

open files on file-structured devices, this word contains the
address of the Window Block; otherwise, it is zero.

I.uUCB

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Driver access:

Not referenced by conventional driver; frequently referenced
by full duplex drivers.

Description:

I.FCN

Contains the address of the unit to which I/0 1is to be
directed. I.UCB 1is the address of the Redirect UCB if the
starting UCB has been subject to an MCR Redirect command.
The field is referenced by the $GTPKT routine.

Driver access:

Read-only.

Description:

I.I0SB

Contains the function code for the I/0 request. It consists
of two Dbytes. The high-order byte contains the function
code; the low-order byte contains modifier bits. Dur ing
predriver initiation the Executive compares the function code
with a function mask value in the DCB. The driver interprets
the modifier bits.

Driver access:

Not referenced.

Description:

I.I0SB contains the virtual address of the I/0 Status Block
(IOSB), if one is specified, or zero if one is not specified.

I.IOSB+2 and I.I0SB+4 contain the address doubleword for the
IOSB (see Section 7.2 for a detailed description of the
address doubleword). The first word contains the relocation
bias of the I0SB; the bias is, in effect, the number of the
32-word block in which the IOSB starts.

The second word is formatted as follows:

Bits 0 through 5 Displacement in block (DIB)
Bits 6 through 12 All zeros
Bits 13 through 15 6

The displacement in block is the offset from the block base.
The value 6 in bits 13 through 15 is constant. It is used to
cause an address reference through Kernel Address Page
Register 6 (APR6).

Discussion of the address doubleword is deferred to Section
7.3 because you seldom have to be concerned with its contents
or format in writing a conventional driver. 1Its construction
and subsequent manipulation are normally external to the
driver. Subroutines are provided as Executive services for
programmed I/0 to render the manipulations of I/O transfers
transparent to the driver itself.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

I.AST
D-river access:
Not referenced.
Description:

Contains the virtual address of the AST service routine to be
executed at I/0 completion. If no address is specified, the
field contains zero.

I.PRM
Driver access:
Read-write.
Description:

Device-dependent parameters constructed from the 1last six
words of the DPB. Note that if the 1I/0 function is a
transfer (refer to the description of D.MSK 1in Section
4.4.3), the buffer address (first DPB device-dependent
parameter) is translated to an equivalent address doubleword.
Therefore, the wvirtual buffer address, which occupied one
word in the DPB, occupies two words in I.PRM. As a result,
all other parameters in I.PRM are shifted by one word so that
device-dependent parameter n is copied to I.PRM +(2*n)+2.

Most DIGITAL-supplied drivers treat these words as a
read/write storage area after their initial contents have
been used.

When the last word of the device-dependent parameters is
nonzero, the value can have one of several special meanings
to the Executive. For example, if the value is nonzero and
could be an Executive address, the Executive assumes that the
value is a block locking word. Therefore, if the driver uses
the word, it should restore 1its contents before calling
$SIODON.

I.AADA
I.AADA+2

Driver access:

Not referenced; maintained by the Executive transparently to
the driver.

Description:

Two pointers, each to an attachment descriptor block of the
region in which the task I/O buffer resides. These pointers
account for I/0 by region and enable the Executive to lock a
region to make it noncheckpointable while I/O is in progress,
and to unlock a region after I/O completes.

4.4.2 The QIO Directive Parameter Block (DPB)

The QIO DPB is constructed as shown in Figure 4-2, Usually drivers
never access the DPB; the information is supplied here for general
reference.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

The parameters in the DPB have the following meanings:
Length (required):

The length of the DPB, which for the RSX-11M and RSX-11M-PLUS QIO
directive is always fixed at 12 words.

DIC (required):

Directive Identification Code. For the QIO directive, this value
is 1. PFor QIOW it is 3.

Q.IOFN (required):

The code of the requested I/O function (0 through 31).

Length DIC 0
Q.I0FN Function code Modifier 2
Q.loLy Reserved LUN 4
Q.I0PR/Q.IOEF Priority EFN 6
Q.10sB 1/0 status block address 10
Q.I0AE AST address 12
Q.I0PL +0 14

+2 []

*4 I dtle)peevri;:\t —_

+6 parameters
+10 -]
HZ‘_——_]

ZK-255-81

Figure 4-2: QIO Directive Parameter Block (DPB)

Modifier:

Device-dependent modifier bits.
Reserved:

Reserved byte; must not be used.
Q.IOLU (required):

Logical Unit Number.
Q.IOPR:

Request priority. Ignored by RSX-11M-PLUS, but space must be
allocated for IAS compatibility.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Q.IOEF (optional):
Event flag number., Zero indicates no event flag.
0.I0SB (optional):

This word contains a pointer to the I/O status block, which is a
2-word, device-dependent I/O-completion data packet formatted as:

Bvte 0
I/0 status byte.
Bvte 1
Augmented data supplied by the driver.
Bytes 2 and 3
The contents of these bytes depend on the value of byte 0.
If byte 0 =1, then these bytes usually contain the
processed byte count. If byte 0 does not equal 0, then the
contents are device-~dependent.
Q.IOAE (optional):
Address of the I/0 done AST service routine.
Q.IOPL
Up to six parameters specific to the device and to the 1I/0
function to be performed. Typically, for data transfer
functions, the following four are used:
e Buffer address
e Byte count
e Carriage control type

e Logical block number

The fields for any optional parameters not specified must be filled
with zeros.

4.4.3 The Device Control Block (DCB)

Figure 4-3 is a schematic layout of the DCB. The DCB describes the
static characteristics of a device controller and the units attached
to the controller. All fields must be specified.

The fieldsl in the DCB are described as follows:

D.LNK :1link to next DCB)

Driver access:

Initialized, not referenced.

1. Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-16

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

Description:

Address link to the next DCB. 1If this cell is 1in the last
(or only) DCB, you should set its value to zero. If you are
incorporating more than one user-written driver at one time,
then this field should point to another DCB in a DCB chain,
which is terminated by a value of zero.

D.UCB (pointer to first UCB)
Driver access:

Initialized, not referenced.

D.LNK Link to next DCB (O=last) 0
D.uCB Link to first UCB 2
D.NAM Generic device name (ASCH) 4
D.UNIT Highest unit no. Lowest unit no. 6
D.UCBL Length of UCB 10
D.DSP Address of driver dispatch table 12
D.MSK Legal function mask bits O - 15. 14
Control function mask bits 0 - 15. 16

No-op‘ed function mask bits 0 - 15. 20

ACP function mask bits 0 - 15. 22

Legal function mask bits 16. - 31, 24

Control function mask bits 16. - 31. 26

No-op’ed function mask bits 16. - 31. 30

ACP function mask bits 16. - 31. 32

D.PCB Address of partition control block 34

ZK-256-81

Figure 4-3: Device Control Block

Description:
Address link to the U.DCB field of the first, and possibly
the only, unit control block associated with the DCB. For a
given DCB, all UCBs are in contiguous memory 1locations and
must all have the same length.

D.NAM (ASCII device name)

Driver access:

Initialized, not referenced.

Description:

Generic device name in ASCII by which device wunits are
mnemonically referenced.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

D.UNIT (unit number range)
Driver access:
Initialized, not referenced.
D2scription:

Unit number range for the device. The 1low-order byte
contains the 1lowest . unit number; the high-order byte
contains the highest unit number. This range covers those
logical units available to the user for device assignment.
Typically, the lowest number is zero, and the highest is n-1i,
where n is the number of device-units described by the DCB.

D.UCBL (UCB length)
Driver access:
Initialized, not referenced.
D2scription:

The unit control block can have any length to meet the needs
of the driver for variable storage. However, all UCBs for a
given DCB must have the same length. The specified 1length
must include prefix words (such as U.LUIC and U.OWN), if

present.
D.DSP (driver dispatch table pointer)
Driver access:
Initialized, not referenced.
Description:

Address of the driver dispatch table, which is located within
the driver code. (When the Executive wishes to enter the
driver at any of the entry points contained in the driver
dispatch table, it accesses D.DSP, locates the appropriate
address in the table, and calls the driver at that address.)
For a resident driver, your code references the symbol
$xxTBL, which is generated by the DDT$ macro to mark the
start of the driver dispatch table. For a loadable driver,
then, vyou should initialize this field to zero, which
indicates that the driver is not in memory.

D.MSK (driver-specific function masks)
Driver access:
Initialized, not referenced.
Description:
Eight words, beginning at D.MSK, are critical to the proper
functioning of a device driver. The Executive uses these

words to validate and dispatch the I/0 request specified by a
QIO directive. The following description applies only to

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

nonfile-structured devices.l Four masks, with two words per
mask, are described by the bit configurations that you
establish for these words:

1. Legal function mask
2, Control function mask
3. No-op function mask
4. ACP function mask

The QIO directive allows for 32 possible I/0 functions. The
masks, as stated, are filters to determine validity and I/O
requirements for the subject driver.

The Executive filters the function code in the 1I/0 request
through the four masks. The I/0 function code 1is the
high-order byte of the function parameter issued with the QIO
directive. The decimal representation of that high-order
byte is equivalent to the decimal bit number of the mask. If
you want the function to be true in one of the four masks,
you must set the bit in that mask in the position that
numerically corresponds to the function code. For example,
the code for IO.RVB 1is 21 (octal) and its decimal
representation is 17. If you want IO.RVB to be true for a
mask, therefore, you must set bit number 17 in the mask.

The masks are laid out in memory in two 4-word groups. Each
4-word group covers 16 function codes. The first 4 words
cover the function codes 0 through 15; the second 4 words
cover codes 16 through 31. Below is the exact layout used
for the driver example in Chapter 8.

-WORD 177477 ; LEGAL FUNCTION MASK CODES 0-15.
«WORD 70 ;CONTROL FUNCTION MASK CODES 0-15.
.WORD 0 ;NO-OP FUNCTION MASK CODES 0-15.
.WORD 177200 ;ACP FUNCTION MASK CODES 0-15.

.WORD 377 ; LEGAL FUNCTION MASK CODES 16.-31.
.WORD 0 ;CONTROL FUNCTION MASK CODES 16.-31.
.WORD 0 ;NO-OP FUNCTION MASK CODES 16.-31.
.WORD 377 ;ACP FUNCTION MASK CODES 16.-31.

The Executive filters the function code through the mask
words sequentially as follows:

Legal Function Mask:

Legal function values have the corresponding bit position in
this word set to 1. Function codes that are not legal are
rejected by QIO directive processing, which returns IE.IFC in
the I/0 status block, provided an IOSB address was specified.

1. Although no DIGITAL publication describes writing drivers for
file-structured devices (drivers that interface with F11ACP), you
could write a disk driver by using a DIGITAL-supplied driver as a
template. For example, the RK1l1l driver (DKDRV) is one that does not
use advanced features.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Control Function Mask:

If any device-dependent data exists in the DPB, and this data
does not require further checking by the QIO directive
processor, the function 1is <considered to be a control
function. Such a function allows QIO directive processing to
copy the DPB device-dependent data directly into the 1I/O
Packet.

No-op Function Mask:

A no-op function 1is any function that is considered
successful as soon as it is issued. 1If the function is a
no-op, QIO directive processing immediately marks the request
successful; no additional filtering occurs.

ACP Function Mask:

If a function code is legal but specifies neither a control
function nor a no-op, then it specifies either an ACP
function or a transfer function. If a function code requires
intervention of an Ancillary Control Processor (ACP), the
corresponding bit in the ACP function mask must be set. ACP
function codes must have a value greater than 7.

In the specific case of read-write wvirtual functions, the
corresponding mask bits may be set at your option. If the
corresponding mask bits for a read-write virtual function are
set, QIO directive processing recognizes that a file-oriented
function is being requested to a nonfile-structured device
and converts the request to a read-write logical function.

This conversion is particularly useful. Consider a
read-write virtual function to a specific device:

1. 1If the device is file-structured and a file 1is open
on the specified LUN, the block number specified is
converted from a virtual block number in the file to
a logical block number on the medium. Moreover, the
request is queued to the driver as a read-write
logical function.

2. If the device is file-structured and no file is open
on the specified LUN, then an error is returned and
no further action is taken.

3. If the device 1is not file-structured, then the
request is simply transformed to a read-write logical
function and is queued to the driver. (The specified
block number is unchanged.)

Transfer Function Processing:

Finally, if the function is not an ACP function, then it 1is
by default a transfer function. All transfer functions cause
the QIO directive processor to check the specified buffer for
legality (that is, inclusion within the address space of the
requesting task) and proper alignment (word or byte). In
addition, the processor checks the number of bytes being
transferred for proper modulus (that is, nonzero and a proper
multiple). By convention, the first user-supplied parameter
is the buffer address and the second is the byte count.

D.PCB (0)

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

Creating Mask Words:

Creating function mask words involves the following five

steps:

10

2.

Establish the I/0 functions available on the device
for which driver support is to be provided.

Build the Legal Function mask: Check the standard
RSX-11M-PLUS function mask values in Table 4-6 for
equivalencies. Only the I0.KIL function is
mandatory. IO.ATT and I0.DET functions, if used,
must have the RSX-11M-PLUS system interpretation.
DIGITAL suggests that functions having an
RSX-11M-PLUS system counterpart use the RSX~-11M-PLUS
code, but this is required only when the device is to
be wused in conjunction with an ACP, From the
supported function 1ist in Table 4-5, you can build
the two Legal Function mask words.

Build the Control Function mask by asking:

Does this function carry a standard buffer address
and byte count 1in the first two device-dependent
parameter words?

If it does not, then either it qualifies as a control
function or the driver 1itself must effect the
checking and conversion of any addresses to the
format required by the driver. See Section 8.3 for
an example of a driver that does this. (Buffer
addresses in standard format are automatically
converted to Address Doubleword format.)

Control functions are essentially those functions
whose DPBs do not contain buffer addresses or counts.

Create the No-op Function mask by deciding which
legal functions are to be no-op. Typically, for
compatibility with File Control Services (FCS) or
Record Management Services (RMS) on
nonfile-structured devices, the file access/deaccess
functions are selected as 1legal functions, even
though no specific action is required to access or
deaccess a nonfile-structured device; thus, the
access/deaccess functions are no-op.

Finally, include the ACP functions Write Virtual
Block and Read Virtual Block for those drivers that
support both read and write. (Include only one
related ACP function if the driver supports only read
or write). Other ACP functions that might be
included fall into the nonconventional driver
classification and are beyond the scope of this
document.

Driver access:

Initialized, not referenced.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Description:

Address of the driver's Partition Control Block (PCB). The
driver data base source code must initialize the address to
zero. The DCB can be extended by adding words after D.PCB.

A PCB exists for every partition in a system. A driver PCB
describes the partition in which it resides.

The Executive uses D.PCB together with D.DSP (the address of
the driver dispatch table) to determine whether a driver is
loadable or resident and, if 1loadable, whether it 1is in
memory. Zero and nonzero values for these two pointers have
the meanings shown in Figure 4-4,

D.DSP:
D.PCB: =0 70

Loadable

=0 driver, Resident
not in driver
memory
(not andable

70 possible) f:lnver,

in memory
7K-223-81

Figure 4-4: D.PCB and D.DSP Bit Meanings

4.4.3.1 Establishing I/0 Function Masks - Table 4-5 1is supplied to
assist you in determining the proper values to set in the function
masks. The mask values are given for each I/0 function wused by
DIGITAL-supplied drivers. The bit number allows you to determine
which mask group to use: for bits numbered 0 through 15, use the mask
value for a word in the first 4-word group; for bits numbered 16
through 31, use the mask value for a word in the second 4-word group.

Of the function mask values 1listed in Table 4-5, only IO.KIL |is
mandatory and has a fixed interpretation. However, if IO.ATT and
IO.DET are used, they must have the standard meaning. (Refer to the
RSX~-11M/M-PLUS 1I/0 Drivers Reference Manual for a description of
standari I/0 functions.) If QIO directive processing encounters a
function code of 3 or 4 and the code is not no-op, QIO assumes that
these co>des represent Attach Device and Detach Device, respectively.
The otaier codes are suggested but not mandatory. You are free to
establish all other function-code values on nonfile-structured
devices. However, the mask words must still reflect the proper
filteriig process.

If you ire writing a driver for a file-structured device, you must
establish the standard function mask values of Table 4-5.

To determine the proper bit masks for disks, tapes, and unit record
devices (such as terminals, card readers, line printers, paper tape
punches,readers), use Tables 4-6, 4-7 and 4-8 as guides.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Table 4-5
Mask Values for Standard I/O Functions

Bit Mask Related I1/0
Value Symbolic Function
0 1 IO.KIL Cancel I/0
1 2 I0.WLB Write Logical Block
2 4 IO.RLB Read Logical Block
3 10 IO.ATT Attach Device
4 20 I0O.DET Detach Device
5 40 General Device Control
6 100 General Device Control
7 200 General Device Control
8 400 Diagnostics
9 1000 I0.FNA Find File in Directory
10 2000 I0.ULK Unlock Block
11 4000 I0.RNA Remove File from Directory
12 10000 I0.ENA Enter File in Directory
13 20000 I0.ACR Access File for Read
14 40000 I0.ACW Access File for Read/Write
15 100000 I0.ACE Access File for Read/Write/Extend
16 1 I0.DAC Deaccess File
17 2 I0.RVB Read Virtual Block
18 4 I0O.WVB Write Virtual Block
19 10 I10.EXT Extend File
20 20 I0.CRE Create File
21 40 I0.DEL Mark File for Delete
22 100 I0.RAT Read File Attributes
23 200 IO.WAT Write File Attributes
24 400 I0.APC ACP Control
25 1000 Unused
26 2000 Unused
27 4000 Unused
28 10000 Unused
29 20000 Unused
30 40000 Unused
31 100000 Unused

PROGRAMMING SPECIFIC3 FOR WRITING AN I/O DRIVER

Table 4-6
Mask Word Bit Settings for Disk Drives
Bit RSX~-11M-PLUS Related Symbolic
0 c IO0.KIL
1 t I0.WLB
2 t I0.RLB
3 c I0.ATT
4 c I0.DET
5 c I0.STC
6
7 sa I0.CLN
8 sd Diagnostic
9 a I0.FNA
10 a IO0.ULK
11 a I0.RNA
12 a I0.ENA
13 a I0.ACR
14 a I0.ACW
15 a I0.ACE
16 a I0.DAC
17 a I0.RVB
18 a I0.WVB
19 a I0.EXT
20 a I0.CRE
21 a I0.DEL
22 a IO0O.RAT
23 a I0.WAT
24 a I0.APC
25
26
27
28
29
30
31

n
[T I e B o NiNe 4

n

transfer function, bit set only in legal function mask

control function, bit set in legal and control function masks
no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

special case, bit set only in ACP function mask, but not legal
special case, bit set only if diagnostic support in system and
driver

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Table 4-7
Mask Word Bit Settings for Magnetic Tape Drives
Bit RSX-11M-PLUS Related Symbolic
0 c I0.KIL
1 t I0O.WLB
2 t IO.RLB
3 o} IO.ATT
4 c IO.DET
5 C I0.STC
6 c
7 sa I0.CLN
8 sd Diagnostic
9 a I0.FNA
10 I0.ULK
11 I0.RNA
12 n I0.ENA
13 a I0.ACR
14 a I0.ACW
15 a I0.ACE
16 a I0.DAC
17 a I0.RVB
18 a I0.WVB
19 a I0.EXT
20 IO.CRE
21 I0.DEL
22 a IO.RAT
23 IO.WAT
24 a I0.APC
25
26
27
28
29
30
31

n
[STRUNE e B oWy J

1]

transfer function, bit set only in legal function mask

control function, bit set in legal and control function masks
no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

special case, bit set only in ACP function mask, but not legal
special case, bit set aonly if diagnostic support in system and
driver

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

Table 4-8
Mask Word Bit Settings for Unit Record Devices

Bit RSX~11M-PLUS Related Symbolic
0 c I0.KIL
1 t I0.WLB
2 t I0O.RLB
3 c I0.ATT
4 c IO.DET
5 o I0.STC
6
7 sa IO.CLN
8 sd Diagnostic
9 a I0O.FNA

10 a I0.ULK

11 a I0.RNA

12 a I0.ENA

13 a I0.ACR

14 a I0O.ACW

15 a I0.ACE

16 a I0.DAC

17 a I0.RVB

18 a IO.WVB

19 a I0.EXT

20 a I0.CRE

21 a I10.DEL

22 a IO.RAT

23 a I0O.WAT

24 a I0.APC

25

26

27

28

29

30

31

|

n
[N VTR o Wie 4

2]

transfer function, bit set only in legal function mask

control function, bit set in legal and control function masks
no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

special case, bit set only in ACP function mask, but not legal
special case, bit set only if diagnostic support in system and
driver

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

4.4.4 The Unit Control Block (UCB)

Figure 4-5 is a layout of the UCB (a variable-length <control block).
One UCB exists for each physical device-unit generated into a system
configuration. For user-added drivers, this control block is defined
as part of the source code for the driver data structure.

The fieldsl in the UCB are described below:
U.UAB (0)
Driver access:
Initialized, not referenced.

Description:

For terminal UCBs only. It is required only 1if accounting
support is on the system (ASSCNT 1is defined) but may be
present if accounting support is not on the system. This
value 1is wused to access the user accounting block in

secondary pool.
U.MUP
Driver access:
Not initialized, not referenced.

Description:

For terminal UCBs only. Bits 1 to 4 contain an 1index to a
table which contains the address of CLI Parser Block (CPB)
for the current CLI; the remaining bits are used for other
terminal specific features and are defined as follows:

UM. OVR Override CLI indicator

UM.CLI CLI indicator

UM.DSB Terminal diabled because CLI eliminated.

UM .NBR No broadcast

UM.CNT Continuation of command line in progress

UM.CMO Command is in progress from this terminal

UM.SER Terminal is in serial mode

UM.KIL TTDRV should tell MCR to flush all pieces of
a continued command if the user types CTRL/C.

U.LUIC

Driver access:

Not initialized, not referenced.

Description:

For terminal UCBs only, and only in multiuser systems: the
logon UIC of the wuser at the particular terminal. This
offset must exist for any device on a multiuser system for
which the DV.TTY bit is set. This word is altered by logging
into the system.

1. Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-27

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

U.OWN (1)

Driver access:

Initialized, not referenced.

Description

.
.

Only in multiuser systems: the UCB address of the
terminal for allocated devices.
y, rD - —-——-=— == =717
U.UAB l_ User Account Block -’ 10
u.MUP! Multiuser flags and GLI pointer N 6
u.Luic! Log-on UIC 4
U.OWN Owning terminal UCB address -2 “
u.DCB Back pointer to DCB 0
U.RED Redirect UCB pointer 2
SEISL } Unit status Control flags 4
U.UNIT
i | .
UST?2 } Unit status Physical unit no 6
U.cwi Characteristics word 1 10
U.CwW2 Characteristics word 2 12
U.CwW3 Characteristics word 3 14
uU.Cw4 Characteristics word 4 16 All
devices
U.SCB Pointer to SCB 20
UATT TCB address of attached task 22
U.BUF Buffer relocation hias 24
U.BUF+2 Buffer address 26
U.CNT Byte count 30 "
2 ——— e — = = = - — — - - e

U.uBXx | Pointer to the UCB extension in secondary pool | 32

34

Device-
dependent
storage

1. This offset appears only for terminal devices (that is, devices that have DV.TTY set)
in multiuser systems.

2. This offset appears only for those devices that have DV.MSD set.

Figure 4-5:

Unit Control Block

ZK-257-81

owning

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

U.DCB (pointer to associated DCB)
Driver access:
Initialized, not referenced.
Description:
This word is a pointer to the <corresponding device control
block. Because the UCB 1is a key control block in the I/0
data structure, access to other control blocks usually occurs
by means of links implanted in the UCB.
U.RED (pointer to start of this UCB (.-2))
Driver access:
Initialized, not referenced.
Description:
Contains a pointer to the unit control block to which this
device-unit has been redirected. This field is updated as
the result of an MCR Redirect command. The redirect chain
ends when this word points to the beginning of the UCB itself
(U.DCB of the UCB, to be precise).
U.CTL (device-dependent values)
Driver access:
Initialized, not referenced.
Description:
U.CTL and the function mask words in the device control block

control QIO directive processing. Figure 4-6 shows the
layout of the unit control byte.

U.STS U.CTL

15 8

[TTTIIT]
L A A 4)

}UC. LGH - Buffer size mask bits for transfer length

UC.KIL - Unconditional cancel 1/0O (1=yes)
UC.ATT - Attach/detach notification {1=yes)
‘————————— UC.PWF - Unconditional call at powerfail ({1=yes)
UC.QUE - Queue to driver bit (1=yes)

UC.NPR - NPR device bit (1=yes)

UC.ALG - Alignment (byte or word}(1=no)

ZK-258-81

Figure 4-6: Unit Control Byte

The driver data base code statically establishes this bit
pattern. Any inaccuracy in the bit setting of U.CTL produces

erroneous I1/0 processing. Bit symbols and their meanings are
as follows:

UC.ALG - Alignment bit.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

If this bit is 0, then byte alignment of data buffers |is
allowed. If UC.ALG is 1, then buffers must be word-aligned.

UC.ATT - Attach/Detach notification.

If this bit is set, then the driver 1is called when $GTPKT
processes an Attach/Detach I/0 function. Typically, the
driver does not need to obtain control for Attach/Detach
requests, and the Executive performs the entire function
without any assistance from the driver.

UC.KIL - Unconditional Cancel I/0 call bit.

If set, the driver is called on a Cancel I/0 request, even if
the wunit specified 1is not busy. Typically, the driver is
called on Cancel I/0 only if an I/0 operation is in progress.
In any case, the Executive flushes the I/O queue,

UC.QUE - Queue to-driver bit.

If set, the QIO directive processor calls the driver at its
I/0 initiation entry point without queuing the I/O packet.
After the processor makes this call, the driver is
responsible for the disposition of the 1I/0 packet.
Typically, the processor queues an I/0 Packet before <calling
the driver, which later retrieves it by a call to S$GTPKT.

The most common reason for a driver to examine a packet
before queuing is that the driver employs a special user
buffer, other than the normal buffer used 1in a transfer
request. Within the context of the requesting task, the
driver must address-check and relocate such a special buffer.
See Section 8.3 for an example of a driver that does this.

On multiprocessor systems, certain restrictions apply to this
form of 1I/0 processing. No driver should process an I/0
packet received directly from the QIO processor without first
performing a conditional fork operation (that 1is, call
$CFORK) to guarantee execution on the correct processor.
Unless the driver 1is running on the correct processor, it
must not process a packet that causes access to the device
registers. The restriction does not apply if the driver
merely uses the current task context to map secondary 1I/O
buffers and then queues the I/0O packet itself. In summary,
packets received directly from $DRQIO may not be processed
directly unless they cause no activity on the I/0 page (and
thereby do not need to be executed on a particular processor)
or unless an intervening call to $CFORK has been performed.

UC.PWF - Unconditional call on power failure bit.

If set and the unit is on-line, the driver is always to be
called when power is restored after a power failure occurs.
Typically, the driver is called on power restoration only
when an I/O operation is in progress. See the discussion in
Sections 4.3.6 and 4.5 of the entry points in the DDT for
LOAD and UNLOAD and for controller and unit status change.

UC.NPR - NPR device bit.
If set, the device is an NPR device. This bit determines the

format of the 2-word address in U.BUF (details given in the
discussion of U.BUF below).

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

UC.LGH - Buffer size mask bits (two bits).

These two bits are used to check whether the byte count
specified 1in an I/0 request is a legal buffer modulus. You
select one of the values below by ORing into the byte a 0, 1,
2, or 3.

00

Any buffer modulus valid

01 - Must have word alignment modulus
10 ~ Combination invalid
11 - Must have double word-alignment modulus

UC.ALG and UC.LGH are independent settings.

NOTE

UC.ATT, UC.KIL, UC.QUE, and UC.PWF are usually zero,
especially for conventional drivers. Every driver,
however, must be concerned with its particular values
for UC.ALG, UC.NPR, and UC.LGH. The driver is
totally responsible for the values in these bits, and
erroneous values are likely to produce unpredictable
results.

U.STS (0)
Driver access:
Initialized, not referenced.
Description:
This byte contains device-independent status information.

Refer to the UCBDF$ macro definition in Appendix A. Figure
4-7 shows the layout of the unit status byte.

(TITTITTITT]
[Y |

~—TN T — Unused bits are reserved
l for system use and expansion.

Y

US.MDM - Marked for dismount (1=yes)
US.FOR - Mounted as foreign volume (0=vyes)
US.MNT - Volume is mounted (1=no)
US.BSY - Device-unit busy (1=vyes)

2

ZK-259-81

Figure 4-7: Unit Status Byte

US.MDM, US.MNT, and US.FOR apply only to mountable devices.!l

l. If your user-written driver services a mountable device, refer to
Section 4.5.9 for information on volume valid processing.

4-31

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

The bit meanings are as follows:
US.BSY
If set, device-unit is busy.
US.MNT
If set, volume is not mounted.
US.FOR
If set, volume is mounted foreign.
US .MDM
If set, device is marked for dismount.
U.UNIT (unit number)

Driver access:
Initialized, read-only.

Description:
This byte contains the physical unit number of the
device-unit serviced by this UCB. 1If the controller for the
device supports only a single unit, the unit number is always
zZero.

NOTE

This is the physical unit number of the device and
not the logical unit number. The range of this
number is from zero to n where n is device-dependent.
The 1logical designation DBO: does not necessarily
imply a zero in this byte.

U.ST2 (US.OFL)
Driver access:
Initialized, not referenced.
Description:

This byte contains additional device-independent status
information. Different parts of the system set and clear
these bits. The layout of the unit status extension byte is
shown in Figure 4-8.

U.ST2 U.UNIT

15 8,7 0
Unused bits are reserved
l [l l l l I I for system use and expansion.
‘ US.OFL - Unit offline (1=yes)
US.RED - Unit redirectable (1=no)
US.PUB - Unit is public device (1=no)
US.UMD - Unit attached for diagnostic s {1=yes)

US.PDF - Privileged diagnostic
functions only (1=vyes)

ZK-260-81

Figure 4-8: Unit Status Extension 2

4-32

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

The bit meanings are as follows:
US.OFL=1

If set, the device 1is off-line (that 1is, not in the
configuration). This bit should be initialized to 1.

US.RED=2

If set, the device cannot be redirected.
US.PUB=4

If set, the device is a public device.
US.UMD=10

If set, the device is attached for diagnostics.
US.PDF=20

If set, this unit can be used for a privileged diagnostic
function only.

U.CW1l (device-specific characteristics)
Driver access:
Initialized, not referenced.
Description:

The first of a 4-word continuous cluster of device

characteristics information. U.CW1 and U.Cw4 are
device-independent, whereas U.Cw2 and U.CW3 are
device-dependent. The four characteristics words are

retrieved from the UCB and placed in the requester's buffer
on 1issuance of a Get LUN information (GLUNS) Executive
directive. It is your responsibility to supply the contents
of these four words in the assembly source code of the data
structure.

U.CW1 is defined as follows. (If a bit 1is set to 1, the
corresponding characteristic is true for the device.)

DV.REC=1
Record-oriented device
DV.CCL=2
Carriage-control device
DV.TTY=4

Terminal device. If DV.TTY is set, then the UCB contains
extra cells (for U.LUIC, U.CLI, and optionally U.UAB).

DV.DIR=10
Directory device
DV.SDI=20

Single directory device

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

DV.SQD=40

Sequential device

DV.MSD=100

Mass Storage device

DV.UMD=200

Device supports user-mode diagnostics
DV.EXT=400

Unit is on an extended 22-bit controller
DV.SWL=1000

Unit is software write-locked
DV.ISP=2000

Input spooled device

DV.0SP=4000

Output spooled device

DV.PSE=10000

Pseudo device. If this bit is set, the UCB does not extend
past the U.CWl1l offset.

DV.COM=20000
Device mountable as a communications channel
DV.F11=40000
Device mountable as a FILES-11 device
DV.MNT=100000
Device mountablel
U.CW2 (device-specific characteristics)
driver access:
Initialized, read-write.

Jdescription:

Specific to a given device driver (available for working
storage or constants) .2

l. If your user-written driver services a mountable device, refer to
Section 4.5.9 for information on volume valid processing.

2. An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and
the low-order bits in U.CW3.

4-34

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

U.CW3 (device-specific characteristics)

Driver access:

Initialized, read-write.

Description:

Specific to a given device driver (available for working

storage or constants).l
U.CW4 (device-specific characteristics)
Driver access:
Initialized, read-only.

Description:

Default buffer size in bytes. This word is changed by a
system command (SET with the /BUF keyword). The value in
this word effects FCS, RMS, and many utility programs.

U.,SCB (SCB pointer)
Driver access:
Initialized, read-only.

Description:

This field contains a pointer to the status control block for
this UCB. In general, R4 contains the value in this word

when the driver is entered by way of the driver dispatch
table, because service routines frequently reference the SCB.

U.ATT (0)
Driver access:

Initialized, not referenced.

Description:

If a task has attached itself to the device-unit, this field
contains its task control block address.

U.BUF (reserve two words of storage)

Driver access:

Not initialized, read-write.

l. An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and

the low-order bits in U.CW3.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Description:

U.BUF 1labels two consecutive words that serve as a
communication region between S$GTPKT and the driver. 1If a
nontransfer function is indicated (in D.MSK), then U.BUF,
U.BUF+2, and U.CNT receive the first 3 parameter words from
the I/0 Packet.

For transfer operations, the 1initial format of these two
words depends on the setting of UC.NPR in U,CTL. The driver
does not format the words; all formatting is completed
before the driver receives control. The format is determined
by the UC.NPR bit, which is set for an NPR device and reset
for a program-transfer device.

The format for program-transfer devices is identical to that
for the second two words of I.IOSB in the I/O Packet. See
Section 4.4.1 for a description of I.IOSB in the I/0 packet.

In general, the driver does not manipulate these words when
performing I/0O to a program-transfer device. Instead, it
uses the Executive routines Get Byte, Get Word, Put Byte, and
Put Word to effect data transfers between the device and the
user's buffer.

For NPR device drivers, these two words represent what the
driver wuses to initiate the transfer operation. For both
UNIBUS and MASSBUS NPR devices, word 2 contains the low-order
16 bits of the physical address. For a UNIBUS NPR device,

bits 4 and 5 in word 1 are memory extension bits; for a
MASSBUS NPR device (the KS.MBC bit is set), bits 0 through 5
are the memory extension bits. It is the driver's

responsibility to set the function code, interrupt enable,
and go bits. This action must be accomplished by a Bit Set
(BIS) operation so that the extension bits are not disturbed.
The driver must move these words into the device control
registers to initiate the I/0 operation.

For a typical UNIBUS NPR device driver, the word layout is as

follows:

Word 1

Bit 0 Go bit initially set to zero
Bits 1,2,3 Function code-—-set to zeros
Bits 4,5 Memory extension bits

Bits 6 Interrupt enable--set to zero

Bits 7 through 15 Zero

Word 2

Bits 0 through 15 Low-order 16 bits of physical address

The construction of U.BUF, U.BUF+2, and U.CNT occurs only 1if
the requested function is a transfer function; if it is not,
these three words contain the first three words of the 1I/0
Packet.

The details of the construction of the Address Doubleword
appear in Section 7.2.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

U.CNT (reserve one word of storage)
Driver access:
Not initialized, read-write.
Description:
Contains the byte count of the buffer described by U.BUF.
The driver uses this field in constructing the actual device
request.
U.BUF and U.CNT keep track of the current data item in the
buffer for the current transfer (except for NPR transfers).
Because this field is being altered dynamically, the 1I/O
Packet may be needed to reissue an I/0 operation (for
instance, after a powerfail or error retry).
U.UCBX
Driver access:
Not initialized, not referenced
Description:
This field contains a pointer to the UCB extension in
secondary pool for mass storage devices with DV.MSD set,

(DV.MSD=1) .

For information on formatting, see the description of the
UCBDFS$ macro.

U.PRM (Device-dependent words)
Driver access:
Not initialized, read-write.
Description:

The driver establishes this variable-length block of words to

suit device-specific requirements. For example, a disk
driver uses the first words to store the disk geometry as
follows:

.BLKB 1 OF SECTORS PER TRACK

i
.BLKB 1 :# OF TRACKS PER CYLINDER
.BLKW 1 ;# OF CYLINDERS PER VOLUME

The driver can call the SCVLBN routine (described in Chapter

7) to convert a logical block number to a disk address based
on the values in U.PRM and U.PRM+2.

4.4.5 The Status Control Block (SCB)
Figure 4-9 is a layout of the SCB. The SCB contains the context for a

unit operation and describes the status of a unit that can run in
parallel with all other units.

4-37

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

S.LHD

S.URM!

S.FRK

S.KS5

S.PKT
S.CTM/S.ITM
S.STS/S.ST3
S.ST2

S.KRB

S.EMB?

s.KT83

Input/Output
Queue Listhead

Fork UNIBUS Run Mask

Fork Link Word

Fork PC

Fork R5

Fork R4

Driver/Fork KISARS

1/0 Packet Address

Initial Time-Out Count

Current Time-Out Count

Status Extension

Status

Status Extension

KRB Address

- ——— — = — — — J
KRB Address 0
F——_—— - — - - -
KRB Address 1
L o L - - J
r KRB Address n 1
P == === = 4
L e o - e d

14

16

20

22

24

26

30

If the symbols below are defined at system generation time,
the related cells marked with a number appear in the structure.

Figure 4-9:

1Multiprocessor support (M$$PRO)

2Appears only if driver supports error logging

31 the system has multiaccess device support (M$$SACD)
and the driver is multiaccess (S2.MAD)

ZK-261-81

Status Control Block

The fi2ldsl in the SCB are described as follows:

1. Par3>nthesized contents following the symbolic offset

value :0 be initialized in the data base source code.

4-38

indicate

the

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

S.LHD (first word equals zero; second word points to first)

Driver access:

Initialized, not referenced.

Description:

Two words forming the I/0 queue 1listhead. The first word
points to the first I/0 Packet in the queue, and the second
word points to the last I/O Packet in the queue. If the
queue is empty, the first word is zero, and the second word
points to the first word.

S.URM (controller UNIBUS run mask)

Driver access:

Initialized, not referenced.

Description:

This word appears only in a multiprocessor system (that 1is,
MSSPRO is defined). It contains a UNIBUS run mask that
defines the UNIBUS run to which the currently assigned
controller is attached. When controller assignment is made,
this cell is set from K.URM. For the purposes of running a
driver on the correct processor, S.URM is used exclusively
and independently of the value of S.KRB or K,URM. If S.KRB
is not equal to zero, and if S.URM is not equal to K.URM (an
unusual situation), then the driver must properly handle the
fact that it will run on a different processor from the one
its currently assigned KRB would normally warrant. It is
possible that the processor on which the driver will run has
the CSRs at a different location from that stored 1in the
current KRB, ADJACENCY WITH THE FORK BLOCK IS ASSUMED!

S.FRK (reserve four words of storage)

Driver access:

Initialize words to zero, not referenced.

Description:

S.KsS5 (0)

The four words starting at S.FRK are used for fork-block
storage if and when the driver deems it necessary to
establish itself as a Fork process. Fork-block storage
preserves the state of the driver, which is restored when the
driver regains control at fork 1level. This area is
automatically wused if the driver <calls $FORK. The Fork
processor also depends on the adjacency of S.URM and S.KS5 if
the required support is generated into the system.

Driver access:

Initialized, not referenced.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Description:

This word contains the contents of KISARS5 necessary to
correctly alter the Executive mapping to reach the driver for
this unit. It has no meaning for a driver that 1is not
loadable. It is set by LOAD, and whenever a fork block is
dequeued and executed, this word is wunconditionally Jjammed
into KISARS5. ADJACENCY WITH THE FORK BLOCK IS ASSUMED!

S.PKT ’'reserve one word of storage)
Diriver access:
Not initialized, read-only.
Description:

Address of the current I/0 Packet established by $GTPKT. The
Executive wuses this field to retrieve the I/0 Packet address
upon the completion of an I/O request. S.PKT is not modified
after the packet is completed.

S.CTM ’0)
Driver access:
Not initialized, read-write.
Description:

RSX-11M-PLUS supports device timeout, which enables a driver
to 1limit the time that elapses between the issuing of an I/O
operation and its termination. The current timeout count (in
seconds) is typically initialized by moving S.ITM (initial
timeout count) into S.CTM. The Executive clock service (in
module TDSCH) examines active times, decrements them, and, if
they reach zero, calls the driver at its device timeout entry
point.

The internal clock count is kept in 1l-second increments.
Thus, a time count of 1 is not precise because the internal
clocking mechanism is operating asynchronously with driver
execution. The minimum meaningful clock interval is 2 if you
intend to treat timeout as a consistently detectable error

condition. If the count is zero, then no timeout occurs; a
zero value is, in fact, an indication that timeout 1is not
operative. The maximum count is 250. The driver |is
responsible for setting this field. Resetting occurs at

actual timeout or within $FORK and $IODON.
S.ITM ’‘initial timeout count)
Driver access:
Initialized, read-only.
Description:

Contains the initial timeout value that the driver can load
into S.CTM to begin device timeout.

S.STS (0)

Driver access:

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Initialized, not referenced.

Description:

Establishes the controller as busy/not busy (nonzero/zero).
This byte is the interlock mechanism for marking a driver as
busy for a specific controller. The byte is tested and set
by $GTPKT and reset by S$IODON.

S.ST3 (driver-specific status byte)

Driver access:

Initialized, referenced by driver for synchronization.

Description:

This status byte is reserved for driver-specific status bits
concerning driver-executive or driver-driver communication.
Figure 4-10 shows the layout of this byte.

S.ST3 (S.STS)

HEEEERE J
W EEEERE

S3.DRL - Multiaccess drive in released state
S3.NRL - Driver should not release drive
S3.SIP - Seek in progress on drive

S3.ATN - Driver must clear attention bit
S3.SLV - Device uses slave units

S3.SPA - Port ‘A’ spinning up

S3.SPB - Port ‘B’ spinning up

S3.0PT - Seek optimization enabled (1 yes)
ZK-262-81

Figure 4-10: Controller Status Extension 3

The following are the descriptions for the currently defined
bits. All currently defined bits are used by mass storage
devices.

S3.DRL=1

If this bit is set, the drive 1is in the released state.
Drivers that support dual-access (dual-port) operation set
this bit after completion of the release command by the
drive. The Executive routines Request Controller for Control
Function ($RQCNC) and Request Controller for Data Transfer
(SROCND) test this bit to decide whether the drive is in a
released state and whether the Executive should attempt 1load
balancing by switching ports.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

S3.NRL=2

If this bit is set, a driver does not release the drive.
This bit exists solely for DIGITAL to maintain the device and
to debug the driver. Drivers that support dual-access
(dual-port) operation examine this bit and, if it is set, do
not issue the release command to the drive and do not set the
S3.DRL Dbit. If this bit is set, reconfiguration dual-port
activity (that is, port on-line and off-line operations) will
not function properly.

S3.51IP=4

If this bit is set, the drive has a seek 1in progress. A
driver that supports overlapped seek operations examines this
bit to keep track of whether the drive 1is seeking. For a
driver that does not support overlapped operations but does
support error logging (that is, cassette and magtape), this
bit is set to 1indicate that a positioning operation is in
progress.

S3.ATN=10

This bit is used only by MASSBUS devices. The Executive
common interrupt module DVINT checks this bit; if it is set,
then the driver must clear the attention bit in the Attention
Summary Register. If this bit is not set, DVINT itself
clears the attention bit in the Attention Summary Register.

S$3.SLV=20

If this bit is set, the device connects to slave units.
Certain devices, such as magnetic tape controllers attached
to a MASSBUS controller, can in turn have units attached to
them. These units are referred to as slave units. Thus, if
this bit is set, the SCB describes a tape controller to which

slave units can be attached.
S3.SPA=40
If this bit is set, port A on this unit is spinning up.
S53.SPB=100
If this bit is set, port B on this unit is spinning up.
S3.0PT=200
If this bit is set, seek optimization is enabled for this
device. SGTPKT uses this bit to determine whether
optimization is to be used. An MCR SET command can set and
clear this bit. If you select seek optimization support for
a Digital-supplied device during system generation, SYSGEN
sets this bit in that device SCB when it creates the cdevice
data base structures.
S.ST2 (controller status extension)

Driver access:
Initialized.

Description:

This status word defines certain status conditions for the
controller-unit combination. Figure 4-11 shows the layout of
this word.

4-42

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

S.ST2

15 8,7 . 0
CITTTTTT T T T T T DT TG mampmson

A ‘ l 4 ‘ ‘ S2.EIP - Error in progress (1 = yes)
“——— S2,ENB - Error logging enabled (0 = yes)

S2.LOG - Error logging supported (1 = yes)
S2.MAD - Multiaccess device (1 = yes)

S2.LDS - Load sharing enabled (1 yes)

S2.0PT - Device supports seek optimization (1 yes)
S2.CON - Contiguous KRB/SCB allocation (1 yes)
S2.0P1 - Indicates the type of optimization used
S2.0P2 - Indicates the type of optimization used
S2.ACT - Driver has operation (I1/0) active (1 yes)

ZK-263-81

Figure 4-11: Controller Status Extension 2

DIGITAL has attempted to restrict bits in this word to those
defining system-wide status. Specific bits for driver and
Executive synchronization or driver internal synchronization
are allocated from S.ST3. The following are the descriptions
for the currently defined bits:

S2.EIP=1

This bit is reserved for DIGITAL error logging routines.
S2.ENB=2

This bit is reserved for DIGITAL error logging routines.
S2.L0G=4

This bit is reserved for DIGITAL error logging routines.
S2.MAD=10

This bit indicates the presence of the table of KRB addresses
at the end of the Status Control Block. If this bit is set,
the device is a multiaccess device and the SCB has a KRB
table containing pointers to the KRBs of the controllers
capable of accessing the device.

52.LDS=40

This bit enables and disables load sharing for dual-access
devices. If this bit is set, the Executive may dynamically
switch ports and therefore alter controller assignment when
establishing an access path for a driver. If this bit is not
enabled, the Executive does not alter the current controller
assignment. This feature permits static controller
assignment, perhaps for diagnostic operations.

Devices (such as terminals) with S2.LDS clear have drivers
that explicitly manage controller assignment.

S2.0PT=100
If this bit is set, this device supports queue optimization.

This bit, wused by $DRQRQ, determines whether to call the
block check and convert the LBN routine in the driver.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

S52.CON=200

This bit indicates the continuous allocation of the
controller request and status control blocks. Devices that
do not support overlapped operation do not require a separate
SCB for each unit. The KRB and SCB for such devices can be
contiguous and some fields in the SCB overlap those in the
KRB. Therefore, the SCB offsets S.CSR, S.PRI, S.VCT, and
S.CON are valid only for such devices. For these devices,
S2.CON is set.

For the layout of the <contiguous KRB and SCB, refer to
Section 4.4.7.

S2.0P1=400
S52.0P2=1000

These bits indicate the type of optimization selected for
this device. An MCR command can set and clear these bits.
These two bits give you three options of queue optimization.
They are as follows:

s2.0pP2,52.0P1 = 0,0 Nearest cylinder
s$2.0pP2,52.0P1 = 0,1 Elevator
s2.0P2,S52.0P1 = 1,0 CSCAN
s2.0pP2,582.0P1 = 1,1 Reserved

S2.ACT=2000

If this bit is set, the driver has active 1/0.
S.KRB (pointer to currently assigned KRB)

Driver access:

Initialized, referenced by driver to access the KRB.
Dascription:

This word points to the currently assigned controller request
block. For non-multiaccess devices, it is set during system
generation and never altered. For multiaccess devices with
load-sharing enabled, it may take on the value of one of the
KRB pointers in the KRB table, S.KTB., If this word has a
value of zero, then the device has no currently assigned KRB.
It may, in fact, not have a KRB or CTB at all. Both the null
driver and virtual terminal driver have no KRB.

Certain restrictions apply to drivers whose data bases do not
include KRBs. They will receive powerfail, timeout, and
cancel calls like any other driver, but the priority will
always be zero, and the CSR address and controller index
(where supplied) will be undefined.

NOTE

All code that checks S.KRB for a KRB pointer must
check for a possible zero value and take appropriate
action. A zero value in S.KRB does not necessarily
mean that a KRB does not exist, but perhaps rather
that one is not currently assigned. A device which
has no KRB will not have S2.CON set.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

The first cell in the KRB (K.CSR) contains the control and
status register (CSR) address for the controller. The offset
K.CSR will always be zero so that the pointer (S.KRB) will
always connect directly to the cell containing the CSR
address.

S.ROFF This byte is reserved for devices that support DIGITAL error
logging software. This value is an offset from S.CSR/K.CSR
to indicate the start of the device registers. It is
typically zero.

S.RCNT This byte is reserved for devices that support DIGITAL error
logging software. It represents the minimum number of words
of I/0 page registers that this device has.

S.EMB This word is reserved for devices that support DIGITAL error
logging software.

S.KTB (KRB addresses)
Driver access:
Initialized, not referenced.
Description:

This table appears only if the system has multiaccess device
support (MSSACD 1is defined) and the device is multiaccess
(the S2.MAD bit set).

Every controller to which the unit (unit control block and
status control block combination) can communicate 1is
represented in this table by a controller request block
address. The table contains at least two entries, with the
list terminated by a zero word. For devices with executive
load sharing supported (S2.LDS set), bit zero of each word is
an on-line and off-line flag which, when set, indicates that
KRB is off-line with respect to this SCB and should not be
considered for controller assignment. Devices with S2.LDS
clear have drivers that explicitly manage controller
assignment. Only the driver may change S.KRB, and it may or
may not use the low-order bit of the KRB addresses in S.KRB
as an on-line and off-line flag. When drivers explicitly
manage controller assignment, system software (other than the
driver) must not modify S.KRB and must tolerate a 1 1in the
low-order bit of the values in S.KTB.

4.4.6 The Controller Request Block (KRB)

Figure 4-12 is a layout of the controller request block. One KRB
exists for each controller. If a controller allows only a single
operation on a single unit at a time, then the driver can allocate the
controller request block and the status control block in continuous
space. With such continuous allocation, all offsets commonly used by
the driver are referenced by their S.xxx forms. The system will still
use the offset S.KRB and the K.xxx forms for all references. Refer to
Section 4.4.7 for the continuous SCB/KRB allocation.

4-45

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

r—-—-—- - -=—- == =771

K.PRM Driver dependent storage
K.VCTS/ K.PRI® Vector/4 Priority -6
K.I0C/K.CONS Controller 1/0 count Controller index -4
K.STS Controller status -2
K.CSR3 Control and status register address 0
K.OFF Offset to UCB table 2
K.HPU Unused Highest physical unit 4
K.OWN Owner (UCB address of unit owned) 6
K.CRQ'! Controller request queue listhead 10
K.URM 12 L _ _ Cintro_ller_EJNlBUS_run_rnasI:— I 14

.

.

.

3
22-bit
Working
3 Storage
Area

KERHB 3 11/70 UMR/RHBAE offset

Start of UCB table ——————
4 UCB address physical unit 0

4 UCB address physical unit n

4 -1

11f cont guous allocation of KRB and SCB is used (that is, if S2.CON is set), this field overlaps the 1/0 request queue.
2 This field is for multiprocessor support (M$$PRO is defined).
3 This arva is for 11/70 extended memory support (MSSEXT is defined).
The arc¢a extends in a negative direction from the start of the UCB Table.
411 KS.LCB is set, then this table appears (allows overiapped function interrupts).
5 The S.»xx forms of these offsets are valid only for devices that perform a single operation on a
controller at a time. For such devices, S2.CON is set and the SCB and KRB are allocated in a contiguous area.

See Figure 4-7 for the contiguous SCB/KRB structure.
7K-264-81

Figure 4-12: Controller Request Block

The fieldsl in the KRB are described as follows:

1. Parenthesized comments following the symbolic offset indicate the
value to be initialized in the data base source code.

4-46

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

K.PRM (device-dependent storage)

K. PRI

Driver access:

Initialized, read-write.

Description:

LOAD does not relocate any addresses in this area.

(device priority)

Driver access:

Initialized, read-only.

Description:

Contains the priority at which the device interrupts. Use
symbolic values (for example, PR4) to initialize this field
in the driver data source code. These symbolic values are
defined by issuing the HWDDF$ macro (refer to the sample data
base in Chapter 8 and to the listing of the HWDDF$ macro).

K.VCT (interrupt vector divided by 4)

Driver access:

Initialized, not referenced.

Description:

Interrupt vector address divided by 4. Because you can use
the CON task to change the vector value, you need not be
overly concerned with initializing K.VCT to the correct
value. If K.VCT equals zero, then neither LOAD nor UNLOAD
takes any vector action. 1In particular, LOAD does not create
any interrupt control block linkage for this KRB.

K.CON (controller number times 2)

Driver access:

Initialized, read-only.

Description:

Controller number multiplied by 2. Drivers that support more
than one controller use this field. A driver may use K.CON
to index into a controller table created in the driver data
base source code and maintained 1internally by the driver
itself. By indexing the controller table, the driver can
service the correct controller when a device interrupts.

Because this number is an index into the table of addresses

in the CTB, its maximum wvalue is limited by the value of
L.NUM in that CTB.

4-47

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

K.IOC (0)
Driver access:
Initialized,

Description:

This is an I/0 count used by the system to keep track of
controller is.
of outstanding requests queued for this controller.

busy the

not referenced.

how
The value is related to the number
This 1is

a weighted number to be used only by the system to judge the
relative activity of one controller with respect to another.

K.STS (controller-specific status)

Driver access:

Initialized, not referenced.

Description:

used
Figure

This word is

controller.
status word.
K.STS

8,7

as a status word that concerns the
4-13 shows the layout of the controller

(1= yes)
0

I Unused bits are reserved
for system use and expansion.

(TTTTIILLT
ﬂ%l

I
YN

A A
KS.OFL - Controller offline
KS.MOF - Controller marked for offline
KS.UQP - Supports overlapped operation

KS.MBC - Device is a 22-bit MASSBUS controller
KS.SDX - Seeks allowed during data transfers

KS.POE - Parallel operation enabled

KS.UCB - UCB table present

KS.DIP - Data transfer in progress

KS.PDF - Privileged diagnostic functions only

KS.EXT - Extended 22-bit UNIBUS controller

Figure 4-13:

All undefined bits

KS.SLO - Controller is slow coming online

ZK-265-81

Controller Status Word

are reserved for use DIGITAL.

by

Currently defined bits are:

KS.OFL=1

The Executive reconfiguration routines set this bit to
off-line
The bit
to denote transition states.
assign a unit to the controller and this KS.OFL is

the controller
controller on-line.
KS.PDF

place
the bit to place the

in conjunction with
If a request is made to
set (and

clear
used

and
is

no other on-line controller is found), the request terminates

with the IE.OFL error and a return is made to the driver

I/0

initiation entry point to get a new packet.

The driver data code should initialize this bit to 1.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

KS.MOF=2

If this bit is set, the unit/controller is in the process of
becoming offline.

KS.UOP=4

This bit 1indicates whether +the controller supports unit
operation 1in parallel and requires synchronization. 1If this
bit is set, each unit attached to the controller is capable
of operating independently. Therefore, the KRB contains a
UCB table holding the UCB addresses of each independent unit.

KS.MBC=10

If this bit is set, the device is a 22-bit MASSBUS controller
and does not use UNIBUS mapping registers (UMRs) but has 2
extra registers to describe a 22-bit address. If these
registers exist, the offset to the first of them (RHBAE) is
in the cell KE.RHB. These registers can be found by using
the contents of KE.RHB in conjunction with the contents of
S.RCNT. The Executive on-line reconfiguration code calls the
common interrupt controller status change routine (in the
module DVINT) which dynamically sets or <clears this bit
during controller processing.

KS.5DX=20

If this bit is set, the controller allows seek operations to
be initiated while a data transfer is in progress. (Some
types of disks, such as the RKO06 and RK07, support overlapped
seek operations but do not allow a seek to be initiated if a
data transfer is in progress.) The Executive routines Request
Controller for Control Function (SRQCNC) and Request
Controller for Data Transfer (SRQCND) examine this bit to
distinguish between the two types of controllers that support
overlapped seeks.

KS.POE=40

If this bit is set, the driver may initiate an I/O operation
on the controller in parallel with other I/0 operations. A
driver that supports overlapped seek operations checks this
bit to decide whether it should attempt to perform an I/O
operation as a seek phase and then a data transfer phase
(that 1is, overlapped) or as an implied seek (that is,
nonoverlapped). If this bit is set, the driver <can then
attempt the overlapped operation.

An overlapped driver must check this bit once only for each
I/0 operation. Because this bit can be reset by system
commands at any time, the driver must not rely on the bit
value to decide whether, upon being interrupted, the driver
was attempting a seek operation. The driver must use the
S2.SIP bit to hold its internal state.

KS.UCB=100

This bit indicates the presence of the table of unit control
block addresses associated with the XRB. If this bit is set,
K.OFF gives the offset from the beginning of the KRB to the
start of the UCB table.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

Devices that support unit operation in parallel (for example,
overlapped seeks) require a mechanism for finding the UCB of
the unit generating an interrupt. Therefore, 1if KS.UOP is
set, a UCB table must exist. If KS.UOP is not set, however,
a UCB table may still exist because some devices (for
example, terminal multiplexers) support full unit operation
in parallel but do not require synchronization. Therefore,
K5.UCB may be used to determine whether the UCB table exists,
regardless of whether KS.UOP is set.

KS.DIP=200

If this bit is set, a data transfer is in progress. A driver
that supports overlapped ' seek operation sets or clears this
bit to indicate to 1itself and to the Executive common
interrupt module DVINT whether, after an interrupt, a data
transfer is in progress. The driver must set or clear this
bit. Usage of this bit eliminates the need for the software
to access the device registers to determine what type of
operation was in progress.

KS.PDF=40Q0

This bit and one KS.OFL bit 1indicate the reconfiquration
status of the controller. The Executive reconfiguration
software accesses both bits to describe the off-line,

on-line, and transition status of the controller.

KS.EXT=1000

If this bit is set, the device is a 22-bit UNIBUS controller
and does not use UNIBUS mapping registers but has 2 extra
registers to describe a 22-bit address. If these registers
exist, the offset to the first of them (BAE) is in the cell
KE.RHB. These registers can be found by using the contents
of KE.RHG in conjunction with the contents of S.RCNT.

K5.SL0O=2000

If this bit is set, the controller requires the use of the
extended time out feature of the reconfiguration subroutine.
If this bit 1is not set, a controller will transition
online/offline immediately.

K.CSR (zontroller status register address)
Driver access:
Initialized, read-only.
Description:

Contains the address of the Control and Status Register (CSR)
for the device controller. Because you can use the CON task
to change the CSR value, you need not be overly concerned
with initializing K.CSR to the correct value. The driver
uses K.CSR to initiate TI/0 operations and to access, by
indexing, other registers that are related to the device and
are located in the I/0 page. This address need not be the
CSR; it need only be a member of the device's register set.
The Executive reconfigquration software probes K.CSR to bring
a controller on-line. (If probing K.CSR yields a nonexistent
memory trap, the controller will not be brought on-line.)

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

NOTE

This word is guaranteed tp be offset 2zero for the
KRB. This assignment means that an RSX-11M-PLUS
driver can access the CSR by the reference @S.KRB and
need not use a separate register.

K.OFF (offset in bytes (from K.CSR) to start of UCB table)
Driver access:
Initialized, referenced by interrupt dispatch code.
Description:

This word contains the offset to the beginning of the unit
control block table. When added to the starting address of
the KRB, it yields the UCB table address. The UNIBUS mapping
register work area extends in a negative direction from the
start of the UCB table.

The status bit KS.UCB may be used to determine whether the
UCB table exists. A UCB table may exist if KS.UOP is not
set, since some devices (for example, terminal multiplexers)
support full unit operation in parallel with no
synchronization required. TIf KS.UOP is set, a UCB table must
appear (and KS.UCB will also be set).

K.HPU (highest physical unit number)
Driver access:
Initialized.
Description:

This byte contains the value of the highest physical unit
number used on this controller.

K.OWNN (0)
Driver access:
Initialized, referenced for actual unit.
Description:

This word has three slightly different uses, depending on the
particular device.

1. For controllers which always have only a single unit
connected to them (for example, the 1line printer),
K.OWN/S.OWN always points to the UCB of that unit. You
can use the suc argument 1in the GTPKT$ macro to
statically initialize this cell in the data base.

2. For controllers that may have multiple units attached but
do not support unit operation in parallel (for example,
the RK05), K.OWN/S.OWN is set with the currently active
unit by code generated with the GTPKTS$ macro suc argqument
set to blank.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

3. For controllers that support unit operation 1in parallel
and require synchronization (KS.UOP is set), this is a
busy/nonbusy interlock for the controller. If the
controller is busy for a data transfer, this word
contains the UCB address of the currently active unit.
This is true for RH disks such as the RP06. This word is
set and cleared by the Request Controller for Control
Access (SRQOCNC), Request Controller for Data Access
(SRQCND), and Release Controller (SRLCN) routines.

K.CRQ (first word equals 0; second word points to first)
Driver access:
Initialized, not referenced.
Description:
Two words that form the controller wait queue. Fork blocks
are queued here for driver processes that have requested
controller access. Driver processes that request access for
control functions are queued on the front of the list, and
those that request access for data transfer are queued on the
end of the list.
K.URM (controller UNIBUS run mask)
Driver access:
Initialized, not referenced.
Description:

This word appears only in a multiprocessor system (that is,
MSSPRO is defined).

It contains a UNIBUS run mask that defines the UNIBUS run to
which the controller is attached. When controller assignment
is made, the cell is moved into S.URM for the fork block
there. This word should not be zero.

Table of UCB addresses (offset from K.CSR by K.OFF bytes)

Driver access:
Initialized, referenced by interrupt dispatch code.

Description:
This table contains the unit control block addresses for the
units on this controller. Physical unit zero is in the first
word, unit one is in the second word, and unit n is in word
n+l. The table has a length of (K.HPU(R?)+1l) words. A value
of zero in this table indicates a physical unit number for
which no actual physical unit exists. The table is
terminated by a -1.

NOTE

This table exists only for those devices that have
KS.UCB set.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

KE.RHB (reserve appropriate amount of storage)

The UNIBUS mapping register work area extends in a negative
direction from the start of the unit control block table.
This work area always appears if the device is an NPR device.
For devices with either KS.MBC or KS.EXT set, the first word
is used as the BAE offset for the controller. This word
value 1is the offset that, when added to the CSR address
contained in K.CSR, yields the address of the BAE register on
the controller. If both KS.MBC and KS.EXT are clear, the
device controller uses UMRs.

4.4.7 Continuous Allocation of the SCB and KRB

In a configuration where a controller and the Executive supports only
a single operation on a unit at one time, the driver can allocate
space for the KRB and the SCB in a continuous area. Some fields of
the KRB overlap those in the SCB. Although the KRB and SCB in this
arrangement are contiguous, the system still considers the 1I/0 data
structure to contain a KRB. The system will still use the S.KRB
offset and the K.xxx forms for all references. The driver can
reference the fields by the S.xxx form of the symbolic offset
definitions. In such a case, although the physical offsets may differ
between RSX-11M and RSX-11M-PLUS systems, correct referencing of many
locations on both systems is eased. Figure 4-14 shows the physical
layout of the continuous KRB and SCB allocation.

4,4.8 Controller Table (CTB)

Figure 4-15 is a layout of the controller table. You ensure that the
CTB is linked into the system list of controller tables by placing the
CTB macro immediately before the allocation of the L.LNK word. The
CTB macro generates a global symbol that links the user-written CTB
into the system 1list.

PROGRAMMING SPECIFICS FOR WRITING AN I/O0 DRIVER

SCB
Offsets

KRB
Offsets

K.PRM

S.VCT/S.PRI K.VCT/K.PRI

S.CON -K.IOC/K.CON
K.STS
S.CSR K.CSR
K.OFF
K.HPU
K.OWN
S.LHD K.CRQ
S.URM! K.URM!
S.FRK
S.KS5
S.PKT
S.CTM/S.ITM
S.STS/S.ST3
S.8T2
S.KRB
KE.RHB

Start of UCB table

Driver-dependent storage

Vector/4 Priority

Controller 1/0 Count Controller index

Controlier status

Pointer to CSR

Offset to UCB table

Unused I Highest physical unit

Owner UCB

Input/output queue listhead

Fork URM

Fork Link
Fork PC
Fork RS

. Fork R4

KISARS

1/O packet address

Initial Time-Out Count | Current Time-Out Count

Status Extension Status

Status extension

KRB address

22-bit
Working
Storage
Area

11/70 UMR/RHBAE offset

UCB address physical unit 0

UCB address physical unit n

-1

MThis field is for multiprocessor support (M$$PRO is defined).

Figure 4-14:

Continuous KRB/SCB Allocation

ZK-266-81

-6
-4
-2

0

10

14

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

L.CLK r-—-——-----=-=-=-=- 1
8-word

I Clock !

| Block |

I I

I |
L.ICB Link to first ICB -2
L.LNK' Link to next CTB 0
L.NAM Generic controller name 2
L.DCB? DCB address 4
L.STS/L.NUM Controller status lNumber of KRB addresses| 6
L.KRB?S KRB address 0 10

KRB address n

' The head of the list of controller tables is $CTLST in SYSCM.

21f LS.CIN is set, this cell points to the common interrupt
address table rather than to the DCB.

3See Table 4-10 for label XXCTB.

ZK-267-81
Figure 4-15: Controller Table

The fieldsl in the CTB are described below:
L.CLK
Driver access:
Initialized
Description:
This is the clock queue entry for these devices that need a
single clock block per generic controller type. It only
appears if LS.CLK is set.
L.ICB (reserve one word of storage)

Driver access:

Not initialized, not referenced.

1. Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-55

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

Description:

This word points to the first interrupt control block for
this type of controller. It is a link and not an address.
In any system the ICBs must be in an executable pool area.
In an I and D space multiprocessor system, they must be
distinct for each processor, since each processor has its own
local executable pool mapped by KISARO. Since the linkage
must enter and leave other than the wusual Executive kernel
mapping, the upper 4 bits encode a processor number which may
be used to enter $K6TAB, and the lower 12 bits form an
address that has been shifted right once. On other than an I
and D space multiprocessor system, the upper four bits are
considered part of the address, which has still been shifted
right once.

L.LNK 10 or link to next CTB in list)
Driver access:
Not initialized, not referenced.
Description:
All of the controller tables in the system are 1linked
together so they can be found, and they are threaded through

this first word. A zero link terminates this list.

A CTB must exist for every physical controller type in the
system.

L.NAM ‘2-character ASCII device name)

Driver access:
Initialized, read-only.

Description:
This 2-character ASCII string is the controller mnemonic used
to find this controller table from among all the others in
the system. For the RH11/70 controller, it is RH instead of
DB, DS, DR, or MM,

L.NAM must be unique throughout the system, unlike D.NAM in
the device control block.

L.DCB (DCB address or address of common interrupt table)
Driver access:
Initialized, not referenced.
Description:

The DCB pointer is used to reach the device control block,
and thereby the unit control block and driver dispatch table
for a driver. 1If LS.CIN is set, L.DCB is a pointer to a
block that holds the common interrupt address (the address of
the interrupt dispatch routine in the Executive), and the DCB
addresses (the addresses of the DCBs for the devices that
this controller interfaces). This block is called the common
interrupt table and is shown in Figure 4-16.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

CI.CSR Controller CSR Test Entry
CLKRB Controller Status Change Entry
CI.PWF Powerfail Entry
1 Common Interrupt Address 0
DCBO
[]
.
DCB n n+2
0 n+4

I - l

11 LS.CIN is set, L.DCB in CTB points to this structure
instead of to the DCB.

ZK-268-81

Figure 4-16: Common Interrupt Table and Table of DCB Addresses

The powerfail entry at offset CI.PWF and the controller
status change entry at offset CI.KRB are addresses of
routines built into the Executive and are used instead of the
entries 1in a particular driver dispatch table. This allows
devices that have no DCB (for example, the interprocessor
interrupt and sanity timer) to still participate in
reconfiguration.

At offset CI.KRB is the address of a routine built into the
Executive for multidriver controllers such as the RH type.
This routine should set or clear the KS.MBC bit to indicate
whether the device is connected to an RH1l1l or an RH70. The
driver checks the KS.MBC bit to determine which addressing
format to use. If the value at CI.CSR is zero, the Executive
on-line routines check the existence of a device attached to
this controller by probing the address at K.CSR. If the
value is nonzero, it is the address of a routine built into
the Executive to check device presence. Instead of probing
the address at K.CSR, the Executive on-line code calls this
routine, which returns either with the C bit clear if the
device is present or with the C bit set if the device is not
present.

The common interrupt table may have only the common interrupt
address in those <cases 1in which a DCB does not exist (for
example, the IIST). If LS.MDC is clear, then only one DCB
address exists. (The zero termination is still necessary.)
If LS.MDC is set, then more than one DCB address is possible;
therefore, space should be 1left for all possible DCB
addresses (for LOAD) and the table terminated by a zero,
followed by a -1. Empty entries in this case are indicated
by a zero word. LOAD will then enter the DCB addresses into
the table when it loads data structures for drivers.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

L.NUM ‘number of KRB addresses)
Driver access:
Initialized, read only.
Description:

Used by programs that scan the controller tables to compute
the number of KRB addresses. This value is never zero, since
without controller request blocks there should be no
controller table.

The maximum value for L.NUM depends on the type of device and
on whether the driver is 1loadable. For common interrupt
devices, the value must be 1less than 17 (decimal). For
resident drivers and drivers loaded by MCR LOAD, the value
must be less than 17 (decimal). For drivers 1loaded by VMR
LOAD, the wvalue must be less than 17 (decimal) if the data
base is loadable and less than 129 (decimal) if the data base
is resident.

L.STS (generic controller status)
Driver access:
Initialized, read only.
Description:
The controller table status bits give information about the

class of controllers. Figure 4-17 shows the layout of this
byte.

1 .STS L.NUM (1 vyes)

L l I] I l l [Unused bits are reserved
for system use and expansion.

LS.CLK - Clock block allocated

LS.MDC - Multidriver controller

LS.CBL - Clock block linked into clock gueue

LS.CIN - Controller uses common interrupt address table
LS.NET - DECnet device

7K-269-81

Figure 4-17: Controller Table Status Byte

The following are the descriptions of these bits:

LS.CLK=1

If this bit is set, the controller table has an 8-word clock
block.

LS.MDC=2

If this bit is set, multiple drivers service units attached
to the associated controller.

LS.CBL=4

If this bit is set, the clock block is linked into the clock
queue.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

LS.CIN=10

If this bit is set, the driver is associated with a common
interrupt controller and must have exactly one interrupt
vector. The driver is therefore called at the D.VPWF entry
point only for wunit power failure. The Executive uses the
CI.PWF entry point in the common interrupt entry table for
controller power failure recovery. In addition, the cell
L.DCB does not point to the device control block but rather
to the common interrupt entry table in the Executive.

L.KRB (KRB addresses of controllers)
Driver access:
Initialized once for the controller, not referenced.
Description:

A list of the controller request block addresses ordered by
their respective system-wide controller numbers. This table
is indexed by the controller index retrieved from the PS word
immediately after an interrupt. The table 1is of length
(L.NUM(R?)) words. While the interrupt routines will not
have to scan the list in a linear fashion, the only way to
find all the controller request blocks in the system includes
a linear scan of all the controller tables. The CTB is
static.

The address of the start of the KRB address list in the CTB
is the global symbol $xxCTB in the driver dispatch table,
where =xx are the <characters comprising the controller
mnemonic., Because LOAD supplies this address in the DDT when
it loads the driver, a loadable driver should not specify
this address in the DDT.

NOTE

A KRB address of zero indicates a controller that was
specified during system generation with no attached
units. No controller request block for such a
controller is generated.

Proper action for drivers to access their 1list of KRB
addresses 1is to retrieve the address of the start of the KRB
list in the CTB from the cell in the driver dispatch table
set up by LOAD (both VMR and MCR).

4.5 DRIVER CODE DETAILS

This section describes the specific requirements for driver code. The
driver code must contain a driver dispatch table which allows the
Executive to call the driver to perform discrete system functions. If
the driver needs to access either system structures such as the
partition and task control blocks or structures within its own data
base, it should use the system-wide symbolic offsets rather than the
real offsets. Because the driver is built with the Executive 1library
EXELIB.OLB, the symbolic offsets are automatically defined for the
driver code. 1If you want to see the definitions of the symbols in

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

your driver listing, place in your Adriver source code the related
macro name in a J.MCALL directive and invoke the macro. (For your
convenience, the source code of the macro calls that define the
symbols of structures is in Appendix A.) The detailed descriptions of
the driver data base structures are in Section 4.4.

4.5.1 Driver Dispatch Table Format

The driver dispatch table associates the entry points that the
Executive expects to find in a device driver and the actual locations
of the routines in the driver code. The DDT also provides a link from
the driver code to the driver data base. Figure 4-18 shows the format
of the DDT. Section 4.3.1 describes the DDT$ macro call, which
automatically generates the DDT.

All device drivers require a driver dispatch table somewhere in the
first 4K words of the driver code. Conventionally, the table is
locatec at the beginning of the code.

NOTE

If the length of a driver must exceed 4K
words (20000 octal bytes), then your
driver must set up the mapping for the
second 4K words whenever it is entered;
and, of course, all entry points must be
in the first 4K words of the driver.

The driver must define some labels that the Executive routines and the
INTSVS macro call use to access the DDT. Table 4-10 lists these
labels. which are automatically generated by the DDT$ macro call.
Becausc these labels do not appear in the DDT itself, their format is
fixed and they must be specified in the format shown.

Table 4-9
Labels Required for the Driver Dispatch Table

Required Format Meaning

$»xTBL: : Defines the start of the DDT. You specify
this 1label in the D.DSP word of the DCB of
resident drivers to link the DCB to the
DDT. For loadable drivers, the LOAD
routines use this label to fill in D.DSP.

x»CTB: Defines the pointer to the table of KRB
addresses in the CTB of the controller for
device xx. Because a driver can support
different types of controllers, there may
be more than one of this form of 1label.
(The DDTS macro supports only one
controller type.)

SxxTBE: : Defines the end of the DDT for Executive
LOAD and UNLOAD routines that scan the DDT.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

e e — —

D.VNXC, D.VCHK' Next Command/Optimization Entry Point Address -4
ov0Es" | T T eatocaton Emy pom Adares 1 2

$xxTBL:: D.VINI 1/0 Initiation Entry Point Address 0
D.VCAN Cancel Entry Point Address 2

D.VTIM Timeout Entry Point Address 4

D.VPWF Powerfailure Entry Point Address 6

D.VKRB Controller Status Change Entry Point Address 10

D.VUCB Unit Status.Change Entry Point Address 12

+ D.VINT Generic Controller Name (ASCII) for xy 14

Interrupt Entry Point Address O

|
|

For Controller xy .

|
J

Interrupt Entry Point Address n

o

xy CTB: Pointer to KRB table in CTB (for INTSV$) for xy controller

Generic Controller Name (ASCII)

Interrupt Entry Point Address 0
L]
For Controller wz .

Interrupt Entry Point Address n
0
' wzCTB: Pointer to KRB Table in CTB (for INTSV$) for wz controller

|11
[1]

0

—

$xxTBE::

o
b

1. These are optional advance driver features
ZK-270-81

Figure 4-18: Driver Dispatch Table Format

At offsets D.VINI through D.VUCB in the DDT of your driver appear
labels defining the addresses of the entry points in the driver. As a
standard procedure, you supply the labels described in Table 4-10 at
the entry points in the driver code. The formats of the standard
labels that appear in the DDT are not fixed. Because the Executive
expects to find the entry point addresses at fixed offsets from the
start of the DDT and the labels themselves appear in the DDT, you can
change their format if you construct the DDT without using the DDT$
macro call. (However, other labels that are required in the driver
code but do not appear in the DDT have a certain, fixed format which
you must not change. For reference, these fixed format labels are:

$xxTBL: :
XXCTB:
$xxTBE:
$xxLOA:
SxxUNL:

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

These fixed-format labels are described elsewhere in this chapter.)
The T[DT$ macro uses the standard labels but allows you to alter the
format of some of then.

At offset D.VINT in the DDT is the name of the controller type that
the driver supports. (The same name is in the CTB.) If the driver has
no controller (such as the virtual terminal driver VTDRV), this word
is zero. The structure allows the driver to support multiple
controller types. (The terminal driver supports different controller
types.) Although the DDT$ macro supports only one controller type,
there is no restriction on the number of <controller types that a
driver can support.

After each controller name follows a block of interrupt entry
addresses. At location D.VINT+2 begins the first interrupt address
block, each word of which defines an address to be 1included in a
vector for the driver. A zero terminates the block and indicates that
there ire no more interrupt entry points for the controller. There is
no res:riction on the number of vectors each controller may have. For
a single interrupt device, location D.VINT+2 (interrupt entry address
0) is :he interrupt address.

Table 4-10
Standard Labels for Driver Entry Points
Labell Entry Point
xXINI: I/0 initiation
XX CAN: Cancel 1/0
XXCHK: Block check and conversion
xxO0UT: Device timeout
XXPWF: Power failure
XXKRB: Controller status change
XXUCB: Unit status change
$XXINT:: Interrupt entry point

1. The characters xx are the 2-character mnemonic.

The Executive reconfiguration software uses the following rules when
it accesses the interrupt address block to calculate the vectors for a
controller. To calculate the first wvector address, reconfiguration
routines access the cell K.VCT (or S.VCT) in the controller request
block. If K.VCT is not equal to zero, it is multiplied by 4. The
result is the vector address that will be loaded with the address
found in interrupt entry point 0. The next interrupt entry point is
examined. If it is zero, there are no more vectors or interrupt entry
points for the controller. If it is even, the next vector address 1is
the previous one plus 4 and that vector address is loaded with the

entry point address just examined.

If an entry point value in the block is odd (bit zero 1is set), bit
zero 1is cleared and the resulting number is an offset to the next
vector address. To compute the next vector address, the offset is

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

added to the last vector address The next interrupt entry point is
examined. If it 1is even, then 1its value is loaded into the last
vector address computed. If it is odd, the result is an offset that
is added to the vector address just computed and the next entry point
is examined. The computation of vector addresses terminates when the

next entry point is zero,

The entries shown in Figure 4-19 can be wused to calculate the
interrupt vector addresses when K.VCT equals 300.

The vectors at 300 and 304 are loaded with addresses xxIN1 and =xxIN2.
The odd value 7 yields the offset 6 that is added to the last vector
computed to attain 312. The address xxIN3 in the next interrupt entry
point examined 1is 1loaded 1in the vector at 312. A zero word in the
block shows there are no more vectors or interrupt entry points.

Following the interrupt entry address block for a controller type is a
pointer to the KRB table in the CTB. 1Its label is in the form xxCTB,
which is used by the INTSVS$ macro. This pointer connects .the driver
code to the driver data base and is the last entry in a block for a
specific controller.

A zero terminates the driver dispatch table. The global label in the
form $xxTBE marks the terminating word in the DDT.

D.VINT XX
XXIN1
XXIN2

7
XXIN3

0

XXCTB: 0

ZK-271-81

Figure 4-19: Sample Interrupt Address Block in the DDT

4.5.2 1I/0 Initiation Entry Point

The offset D.VINI in the driver dispatch table contains the address of
this entry point. A driver is called at this entry point at priority
0 from the Executive routine SDRQRQ in the module DRQIO. A driver
should call the Executive $GTPKT routine to get an I/0 packet to
process. This action dequeues an I1/0 request. The following are the
register conventions when the Executive enters the driver.

R5 = address of the UCB of the unit for which the Executive has
queued an I/0 packet

This entry condition pertains unless the driver wants to delay the
queuing operation. Therefore, 1if the queue-to-driver bit UC.QUE in

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

the unit status block offset U.CTL is set, the following are the
register conventions.

R5 = UCB address of unit for which a packet has been created
R4 = SCB address of the related unit
Rl = address of the I/0 packet

You may find more information on and coding requirements for the
queue-to-driver operation in the description of the UC.QUE bit in
Section 4.4.4 and an example of its use in Chapter 8.

The GTPKT$ macro call automatically generates the call to the $GTPKT
routine and the code to process the return from $GTPKT. Upon return
from $3TPKT, the C bit indicates whether there is a packet to process.

cC =1 If the C bit is set, the Executive found the controller
busy, could not dequeue a request, or had to call $FORK
to have the driver run on the correct processor.

C =0 If the C bit 1is <clear, the Executive successfully
dequeued a packet for the driver and placed it in the
device's input/output queue.

If a request was successfully dequeued, the following are the contents
of the registers:

R5 = Address of unit control block

R4 = Address of status control block

R3 = Controller index

R2 = Physical unit number of device to process
Rl = Address of the I/O packet

If the C bit is set, the driver returns control to the <caller (a
RETURN instruction should be executed). If the C bit is clear, the
generated code 1loads the 1location at offset K.OWN/S.OWN in the
continuous KRB/SCB with the UCB address of the unit to process. The
driver may then process the request and activate the device. All
registers are available to the driver. The driver executes a RETURN
instruction to transfer control to the system.

On a multiprocessor system, before returning a packet to the driver,
$GTPKT <calls the conditional fork routine $CFORK to ensure that the
driver executes on the correct processor. If the current processor is
the correct processor, SCFORK returns to SGTPKT, and $GTPKT dequeues
an I/0 packet, queues it to the driver, and returns to the driver with
the C bit clear. Should the current processor not be the correct
processor, SCFORK will call $FORK which returns to the driver with the
C bit set. This action causes the driver to dismiss itself.
Eventually the fork processor restarts the driver executing on the
correct processor.

4.5.3 Cancel Entty Point

The offset D.VCAN in the driver dispatch table contains the address of
this entry point. The Executive routine $IOKIL in the IOSUB module
calls the driver at this entry point at device priority. When the
Executive enters the driver, the following register conventions
pertain:

R5 = UCB address

R4 = SCB address

R3 = Controller index (undefined if S.KRB equals 2zero)
Rl = Address of TCB of current task

RO = Address of active I/0 packet

4-64

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

The usage of this entry point is explained 1in Section 2.2.2. All
registers are available to the driver. The driver returns control to
the Executive by executing a RETURN instruction.

4.5.4 Device Timeout Entry Point

The offset D.VTIM in the driver dispatch table contains the address of
this entry point. Routines in the Executive module TDSCH call the
driver at this entry point at device priority. When the Executive
enters the driver, the entry conditions are as follows:

R5 = UCB address

R4 = SCB address

R3 = Controller index (undefined if S.KRB equals zero)
R2 = Address of device CSR

RO = I/0 status code IE.DNR (Device Not Ready)

The usage of this entry point is explained 1in Section 2.2.3. All
registers are available to the driver. The driver returns control to
the Executive by executing a RETURN instruction.

4.5.5 Next Command Entry Point

Ths offset D.VNXC in the driver dispatch table is only applicable to
the terminal driver. The offset D.VNXC contains the entry point
address of a routine within the terminal driver which is called from
the routine $SNCMD in the Executive module DRSUB. This entry point is
entered when a task exits whose TI: is set to serial mode. The
driver then passes the next CLI command to the MCR dispatcher. When
the Executive enters the driver, the following register conventions
pertain:

RO = UCB address of the TI: of the exiting task.

4.5.6 Queue Optimization Entry Point

The offset D.VCHK in the driver dispatch table contains the address of
this entry point. The routine $DRQRQ in the Executive's module DRSUB
calls the driver at this entry point at priority =zero. When the
Executive enters the driver, the following register conventions
pertain:

R5
R1

UCB address
I/0 packet address

[I]

If the I/0 operation is a data transfer function, the I/0 packet
contains the starting LBN for the I/O request. The routine at this
entry point must verify the request is a data transfer function, and
if it is, the routine must replace the starting LBN with the starting
cylinder, track, and sector number to perform queue optimization. See
the routine DBCHK in the module DBDRV for an example of a driver that
supports queue optimization.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

4.5.7 Deallocation Entry Point

The offset D.VDEB in the driver dispatch table contains the address of
this entry point. This entry point is called at priority zero from
the rcutine $FINBF in the Executive module SYSXT after a buffered I/0
request completes. The driver is expected to deallocate its buffers
at this entry point. When called, the registers are set up as
follows:

R0 = address of the first buffer

All registers are available to the driver. The driver returns control
to the Executive by executing a RETURN instruction.

4.5.8 Power Failure Entry Point

The offset D.VPWF in the driver dispatch table contains the address of
this eatry point. The routines in the Executive module POWER call the
driver at this entry point at priority 0 for both unit and controller
power failures. The Executive first calls the driver for controller
power failure with the C bit set. The driver 1is called 1in this
fashioir once for each controller. The following are the register

conven-ions:
C bit set (controller power failure)

R3
R?

CTB address
KRB address

o

The dr iver may use all registers.

After the Executive has called the driver for all related controllers,
it ca.ls the driver once for each unit power failure at priority O
with the C bit clear. The following are the register conventions:

C bit clear (unit power failure)

R% = UCB address
R+ = SCB address
R% = Controller index

For both controller and unit power failures, the driver returns
control to the calling routine by executing a RETURN instruction.

If the driver supports a common interrupt device (that is, the LS.CIN
bit ir the CTB is set), the driver is called at this entry point only
for unit power failures. For controller power failures, the Executive
calls the entry point at CI.PWF in the common interrupt entry table.
See the description of the offset L.DCB in Section 4.4.8.

4.5.9 Controller Status Change Entry Point

The offset D.VKRB in the driver dispatch table contains the address of
this entry point. The Executive routine $KRBSC in the OLRSR module
calls the driver at this entry point at priority 0 to put a controller
on-line or to take a controller off-line.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

NOTE

If the controller is a common interrupt
controller (LS.CIN is set), the
Executive does not call the driver at
this address (if any) specified in the
DDT but at the address in the common
interrupt table 1labelled CI.KRB. See
Section 4.4.8.

The C bit indicates whether the request is for off-line or on-line.
The following are the register conventions upon entry to the driver.

R3
R2
0(SP)
2 (SP)

W

The C bit

C
C

CTB address for the controller

KRB address of controller changing status

Return address for completion

Return address for caller of the Executive routine

is set to indicate the requested status change as follows:

1l On-line to off-line transition
0 Off-line to on-line transition

The status change byte $SCERR is preset as follows:

SSCERR = 1

The driver indicates the return status in the $SCERR byte as follows:

$SCERR < 0 Operation is not successful and a negative value in

$SCERR is the I/0 error code. Thus, a negative value
rejects the status change requested by the C bit.

$SCERR = 1 Operation is successful,. The driver accepts the

status change requested. This 1is the default
condition.

All registers are available to the driver. The Executive does not

change

t

he status of the controller until and unless the driver shows

successful completion of the on-line or off-line request.

The driver must return immediately by either of the following methods:

1.

The driver can indicate the return status immediately and can
return to the first address on the stack in the normal
fashion. 1If the driver accepts the status change, it merely
executes a RETURN instruction. (The status change byte
$SCERR has been preset with 1.) If the driver rejects the
status change, it 1loads the relevant I/O error code into
$SCERR and executes a RETURN instruction. (The 1I/0 error
code symbols are listed in an appendix of the IAS/RSX-11 I/O
Operations Reference Manual.)

The driver need not indicate the status immediately but
removes the first address from the stack, saves it, and
returns immediately to the second address. The driver then
has 60 seconds to perform its processing, to indicate the
return status, and to return to the first address. The
driver can use the offset S.CTM in the status control block
to time out some operation (such as a protocol rundown) and
then accept or reject the operation by ucing $SCERR.

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

If the driver does not return to the first address on the stack, the
system can be considered to be in an indeterminate state and possibly
corrupt.ed. The driver must return immediately because status changes
should not stall the system. The 60-second delay allows a driver time
to oveircome conditions over which it has 1little control (such as
networl connections). System disk and terminal drivers must indicate
return status immediately. However, the terminal driver (TTDRV)
rejects a controller on-line request for a DZ11 multiplexer if some of
the status bits indicate that the device is not a DZ1ll or that it is

broken.

4.5.10 Unit Status Change Entry Point

The of‘set D.VUCB in the driver dispatch table contains the address of
this entry point. The Executive routine $UCBSC in the OLRSR module
calls the driver at this entry point at priority 0 to put a unit
on-line or to take a unit off-line. This entry is called once for
each unit whose status changes. The C bit indicates whether the
reques is for on-line or off-line. The following are the register
conven-:ions:

R5 = Address of UCB or unit changing status

Rl = Address of SCB of unit

R3} = Controller index {(undefined if S.KRB equals zero)
0(SP = Return address for driver completion
2(SP = Return address for caller of the Executive routine

The C bit is set to indicate the requested status change as follows:

1 On-line to off-line transition
0 Off-1line to on-line transition

C
C

The status change byte $SCERR is preset as follows:
$S3CERR = 1
The driver indicates the return status in the $SCERR byte as follows:

$5CERR < 0 Operation is not successful and a negative value in
$SCERR is the I/0 error code. Thus, a negative value
rejects the change requested by the C bit.

$3CERR = 1 Operation is successful. The driver accepts the
status change requested. This 1is the default
condition.

All rejisters are available to the driver. The driver must return
within 60 seconds. The Executive does not change the status of a unit
until ind unless the driver shows successful completion of the on-line
or off -l1ine request.

The driver must return immediately by either of the following methods:

1. The driver can indicate the return status immediately and can
return to the first address on the stack in the normal
fashion. If the driver accepts the status change, it merely
executes a RETURN instruction. (The status change byte
$SCERR has been preset with 1,) If the driver rejects the
status change, it 1loads the relevant I/O error code into
$SSCERR and executes a RETURN instruction. (The 1/0 error
code symbols are listed in an appendix of the IAS/RSX-11 I/0
Operations Reference Manual.)

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

2. The driver need not indicate the status immediately but
removes the first address from the stack, saves it, and
returns immediately to the second address. The driver then
has 60 seconds to perform its processing, to indicate the
return status, and to return to the first address. The
driver can use the offset S.CTM in the status control block
to time out some operation (such as a protocol rundown) and
then accept or reject the operation by using $SCERR.

If the driver does not return to the first address on the stack, the
system can be considered to be in an indeterminate state and possibly
corrupted. The driver must return immediately because status changes
should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has 1little control (such as
network connections). System disk and terminal drivers must indicate
return status immediately.

4.5.11 Interrupt Entry Point

Upon an interrupt, control 1is dispatched to the driver from an
interrupt vector through an interrupt control block or directly from
an interrupt vector. A device may have more than one interrupt entry
point. The entries in the DDT interrupt address block are used to
initialize either the vector(s) or the interrupt control block with
the address(es) of the related interrupt entry point(s). (Refer to
Section 4.5.1 for a discussion of the interrupt address block.) All
drivers should observe the protocol for handling interrupts introduced
in Section 1.3 and summarized in Section 4.1.

If the driver is loadable, it will be called from the interrupt
dispatch coroutine $INTSI in the Executive. The following are the
register contents when the driver gets control:

R4 = Controller index

Registers R4 and R5 are available to the driver. The driver runs at
the priority set in the interrupt control block. To dismiss the
interrupt, a driver executes a RETURN instruction.

If the driver is resident, it receives <control directly from the
interrupt vector. It runs at priority PR7 and the low-order four bits
of the PS have the <controller number of the interrupting device.
Because the 1low-order four bits are status bits and almost any
instruction modifies them, the first operation that should be
performed 1is to save the PS. Then, the driver does its processing at
priority PR7 (saving registers if necessary). After processing, it
restores the registers (if necessary) and dismisses the interrupt by
executing an RTI instruction.

However, all reasonable drivers should use the INTSV$ macro call at an
interrupt entry point. The INTSVS$ macro resolves entry processing for
both loadable and resident drivers. For loadable drivers, INTSVS$ does
not generate a call to SINTSV because LOAD establishes 1in the
interrupt control block the call to the $INTSI coroutine. The S$INTSI
coroutine saves R4 and R5; sets the priority to that in the interrupt
control block; and forms the controller index from the PS and stores
it in R4. (LOAD previously set the priority in the interrupt control
block based on the value at offset K.PRI in the controller request
block.)

For resident drivers, INTSVS generates a call to the $INTSV coroutine,
which sets the priority to that specified in the INTSVS$ macro call;
saves registers R4 and R5; and forms the controller index from the PS
and stores it in RA4.

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

For both loadable and resident drivers, INTSVS$ generates code to load
R5 with the UCB address of the interrupting unit. After the INTSV$
call ia the driver code, the following conditions pertain for both
loadable and resident drivers:

UCB address of the interrupting unit
Controller index

RS
R4

1]

The driver may then do the following:
1. Save extra registers if necessary
2. Do whatever processing is necessary

3. Become a fork process to access the data structures or to
call Executive routines if necessary

4. Restore the explicitly saved extra registers

5., Execute a RETURN instruction to the coroutine, which
dismisses the interrupt

In summary, then, the INTSVS macro eliminates your having to consider
the coding differences between a loadable and a resident driver in the

interrupt service routine.

4.5.12 Volume Valid Processing

System--supplied drivers that service mountable devices (those that
have +he DV.MNT bit in the UCB U.CWl word set) take advantage of
special. processing of volume valid for a device. For such devices the
Execut ve directive processor DRQIO checks that either of the mounted
status bits US.MNT or US.FOR in the UCB U.STS word 1is set. If a
mounted status bit is not set, DRQIO requires that a device-specific
bit called volume wvalid (US.VV) be set or else it rejects the
direct:ve. If a mounted status bit is set, DRQIO does not check the
volume valid bit. (DRQIO assumes that the MOUNT command properly set

the volume valid bit.)

To eftectively service a mountable device on the system, a
user-written driver should perform in one of two ways. First, it can
take acvantage of the volume valid capability in the same way that a
system-supplied driver does. This processing involves calling the
SVOLVD routine in the Executive module IOSUB, and handling the
spinnirg-up status bit (US.SPU) and the volume valid bit (US.VV) in
the UCE status byte U.STS. (For details of this mechanism, refer to
driver source code supplied on the system.) Second, a user-written
driver can circumvent the wvolume valid processing by doing the
following:

1. Enable the set characteristics function (I0.STC) for volume
valid in the DCB legal function mask word

2. Enable the same function in the DCB no-op function mask work

3. Statically set the US.VV bit in the UCB in the driver data
base source code

The second method allows the device to be successfully mounted and
associeted with an ancillary control processor without your having to
include code in the driver to handle US.VV.

CHAPTER 5

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

This chapter describes how to incorporate a user-supplied driver into
an RSX-11M-PLUS system. The material in the chapter depends on your
having created source code according to the programming specifics
given in Chapter 4.

5.1 GUIDELINES FOR INCORPORATING A DRIVER

The procedures that you follow to incorporate a user-supplied driver
into RSX-11M-PLUS depend on the type of driver you have. Your driver
is one of the following types:

e Loadable driver with a loadable data base

e Loadable driver with a resident data base

® Resident driver with a resident data base

If your driver is loadable with a loadable data base, you may perform
a system generation to include your driver, or you may incorporate it
directly into your currently running system. If you want to use a new
version of a loadable driver with a loadable base, and your driver is
currently loaded, you must create a new system image file, 1load the
new version of the driver into the file, and then bootstrap the new
system. Refer to Section 5.1.1 if you want to incorporate your driver
at system generation. Refer to Section 5.1.2 if you want to
incorporate your driver after system generation.

If your driver is loadable with a resident data base, or is resident,
you must perform a system generation because the resident driver
and/or data base reside in the Executive and must be assembled and
task built as part of the Executive. Refer to Section 5.1.1 to
incorporate your driver at system generation.

Because loadable drivers and loadable data bases can be changed and
reloaded without performing a system generation, loadable drivers with
loadable data bases are easier to debug and maintain than resident
drivers and/or resident data bases.

5.1.1 Incorporating a Driver at System Generation

If you want to build a loadable driver with a 1loadable or resident
data base during system generation, proceed as follows:

1. Assemble and task build your driver to eliminate any assembly
or Task Builder errors.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

2. Put the MACRO-11 source files containing your driver code and
data base in UFD [11,10] on the target system disk. The
driver source file should be named xxDRV.MAC and the data
base source file should be named xxTAB.MAC, where xx is the
2-character device mnemonic. Mnemonics for user-supplied
devices should begin with the 1letters J or Q to avoid
conflict with DIGITAL-supplied devices.

3. Perform a system generation and choose the Full-functionality
Executive. Answer the questions concerning user-supplied
drivers printed during system generation. This procedure
includes your driver data base in the Executive if it is
resident and builds your driver task image. A loadable
driver and data base are loaded into the system image file.
Refer to Section 5.3 for a description of the system
generation procedure,

4. Use CON from MCR to make your devices accessible. Refer to
Section 5.2.5 for the CON command description.

If you want to build a resident driver, proceed as follows:

1. 1If your driver can run loadable with a 1loadable data base,
first build and test it as loadable with a loadable data

base.

2. Put the MACRO-11 source files containing your driver code and
data base in UFD [11,10] on your target system disk. The
driver source file should be named xxDRV.MAC and the data
base source file should be named xXTAB.MAC where xx is the
2-character device mnemonic. Mnemonics for user-supplied
devices should begin with the 1letters J or Q to avoid
conflict with DIGITAL-supplied devices.

3. Perform a system generation. If you want to include a
resident driver, you must not choose the Full-functionality
Executive or Executive data space support. Answer the
questions concerning user-supplied drivers printed during
system generation. This procedure includes your driver and
data base modules in the Executive. Refer to Section 5.3 for
a description of the system generation procedure.

4. Use CON from MCR to make your devices accessible. Refer to
Section 5.2.5 for the CON command description.

5.1.2 Incorporating a Loadable Driver with a Loadable Data Base After
System Generation

The procedures to incorporate a loadable driver with a loadable data
base after system generation involve the following steps:

1. Assemble and task build your driver to eliminate any assembly
or Task Builder errors.

2. Put the MACRO-11 source files containing your driver code and
data base 1in UFD [11,10] on your target system disk. The
driver source file should be named xxDRV.MAC and the data
base source file should be named xxTAB.MAC, where xx is the
2-character devicz mnemonic. Mnemonics for user-supplied
devices should start with the 1letters J or 0 to avoid
conflict with DIGITAL-supplied devices.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

3. Run the system generation procedure and follow the
instructions in the "Adding a Device" section. (For
information on invoking the system generation procedure
(SYSGEN), refer to the RSX-11M-PLUS System Generation and

Installation Guide).

The system generation procedure asks you to enter the
2-character device mnemonic for your driver. Remember, this
should be the same mnemonic used in the driver and data base
source file names.

4. Use the MCR LOA command to link your driver data base into
the system device tables and to load your driver data base
and driver code. Refer to Section 5.2.4 for the LOA command
descriptions. .

5. Use CON from MCR to place the controller(s) and unit(s) on
line. (CON can also alter vector assignments.) Refer to
Section 5.2.5 for the CON command descriptions.

5.2 WHAT THE SYSTEM GENERATION PROCEDURE DOES FOR YOU

The system generation procedure assembles your driver and data base,
puts the resulting object modules in the Executive object library and
task builds your driver. If your driver or its data base is resident,
the driver and/or data base is included in the Executive. 1If your
driver or its data base is loadable, the driver and/or data base 1is
loaded into the system image file. You must then make the
controller(s) and unit(s) accessible.

The commands that the system generation procedure uses to assemble
your driver and data base, insert your driver and data base modules in
the library, and task build your driver, are the same commands that
you may use to assemble, 1insert and task build your driver. The
following subsections explain each of the procedures for incorporating
your driver.

5.2.1 Assembling the Driver and Data Base

The system generation procedure assembles your driver and its data
base with the following commands:

MAC>[11,24]xxDRV,[11,34]}xxDRV/-SP=[1,1]1EXEMC/ML,[11,10]RSXMC/PA:1
MAC>[11,24]xxTAB,[11,34]xxTAB/~-SP=[1,1]EXEMC/ML, {11,10]RSXMC/PA:1

If your driver is resident, these commands are located in the file
RSXASM.CMD. If your driver is loadable, these commands are located in
the file xxDRVASM.CMD, where xx is the device mnemonic.

The commands to the assembler specify as input the Executive macro
library EXEMC.MLB, the Executive assembly prefix file RSXMC.MAC, and
either your driver code or driver data base source file (xxDRV.MAC or
xxTAB.MAC) . EXEMC.MLB contains the macro definitions of structures
and symbolic offsets that your code may reference. (The source code
for some of the macro definitions is given in Appendix A.) RSXMC.MAC
contains symbols defined during system generation and definitions of
some macros that your driver may invoke (such as DDT$, GTPKT$, and
INTSVS). The assembler looks for the source file of your driver in
UFD [11,10].

) XXDRV
+XXTAB

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

As output, the assembler creates object modules in UFD ({11,24] and
listiny files 1in UFD [11,34]. The object modules xxDRV.OBJ and
xXxTAB.OBJ will later be put in the Executive object 1library. You
should retain the listing files xxDRV.LST and xxTAB.LST for
documentation and maintenance purposes.

5.2.2 Inserting the Driver and Data Base Modules in the Library

After ysour driver and data base modules have been assembled, the
driver and data base modules are added to the Executive object
library. Commands to the Task Builder (described in Section 5.2.3)
requir2 the modules be in this library.

The system generation procedure uses the following commands to add
both the driver and its data base to the same library:

L3R [1,24]RSX11M/RP=[11,24]xxDRV,xxTAB

The command to LBR adds the object modules of both your driver and its
data base to the Executive object library RSX11M.OLB, which resides in
UFD [1,24]. RSX11M.OLB is built from object modules assembled during
system generation. The /RP switch ensures that any modules of the
same name are replaced by the recently created modules. If this is
not the first time you have performed this operation, LBR prints
messages telling you that it replaced your modules in the library with
the new versions.

5.2.3 Task Building the Driver

After the modules have been added to the Executive object library, the
system generation procedure task builds your driver and data base.
The commands for a resident driver are located in the file RSX11M.CMD.
The commands for a resident data base are 1located 1in the file
RSX11M.CMD on systems without Executive data space support and in the
file DSP1IM.CMD on systems with Executive data space support.

The commands for a loadable driver are located in xxDRVBLD.CMD where
xx 1is the device mnemonic. The following discussion explains each of
the lines that are contained in the command file for a loadable
driver:

1. When the system generation procedure builds your driver, a
task-image file name and a symbol definition file name are
specified as TKB output. The task 1image and symbol
definition files are placed in the UFD corresponding to the
system UIC that will be in effect when the LOA command 1is
issued. The file names are both xxDRV, where xx is the
device mnemonic. The Task Builder produces the output files
named xxDRV.TSK, xxDRV.MAP, and xxDRV.STB. For example, the
input supplied to TKB to build the xx device would look 1like

the following:
[1,54)xxDRV/-HD/-MM, [1,34]xxDRV/~-SP,[1,54] xxDRV=
2. No task header is included. The switch /-HD is used, as in
the previous example. A driver is not really a task, but an

extension of the Executive, and as such needs no task header.

3. The switch /-MM must be used in the command line.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

4. A map file is produced and 1is useful for debugging. All
driver map files are written to UFD [1,34]. The switch /-SP
suppresses automatic spooling to the line printer.

5. The system generation procedure 1links your driver to the
system symbol definition file that contains definitions of
Executive global symbols. Continuing the example from item 1
above might give further TKB input that would like this:

[1,24]RSX11M/LB:xxDRV:xxTAB
[1,54]RSX11M.STB/SS

The first line above specifies the 1library file (/LB) in
which the input driver object module and the object file for
the loadable data base can be found. The object module
specification for the driver always precedes the
specification for the data base in the TKB command line.

The second line in item 5, above, indicates that the symbol
definition file RSX11M.STB is to be searched selectively
(/5S) for definitions of Executive global symbols. Note that
the /SS switch must appear 1in this context. It is never
omitted.

6. The system generation procedure 1links vyour driver to the
system 1library file that defines masks and offsets used in
the Executive. To continue the example:

}l,l]EXELIB/LB

The single slash begins the option phase of the Task Builder.

7. The Task Builder is directed not to allocate space for a
stack within the driver.

STACK=0

8. A partition for the driver is specified:

PAR=DRVPAR:120000: 40000
//

The partition name DRVPAR 1is the typical name of a
conventional partition reserved for drivers. A driver may be
loaded into any system-controlled partition. The base
virtual address of the partition is always 120000 (8). That
is, the loadable driver must be mapped through kernel APR5.
The 1length of the partition, the second parameter should not
exceed 8K words (40000 octal bytes).

The double slash ends the option phase of the Task Builder.

5.2.4 Loading the Driver

After your driver is task built, you are ready to load the driver on
your system. This procedure is used when you are incorporating your
loadable driver with a loadable data base after system generation.
Loading is done by using the privileged MCR command LOAD. 1Its form
is:

>LOAD xx:[/PAR=GEN] [/HIGH]
>

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

The variable xx is the 2-character device mnemonic. Specifying a
partition is optional. 1If a partition is not specified, the partition
input :o0 the Task Builder is used. The keyword /HIGH puts the driver
as hign as possible in the partition. The default condition is to put
the driver as low as possible in the partition.

LOAD pe2rforms many diagnostic checks on your driver data base,
relocaces many addresses within the data base, and loads the data base
and the driver code into memory. Because the LOAD diagnostic checks
are complicated and LOAD supports another, infrequently used option
(/CTB), a description of LOAD is given in Section 5.4. LOAD error
messages and meanings are listed in the RSX-11M/M-PLUS MCR Operations
Manual. After the driver is loaded, the controller(s) and units are
off-1ine and are not accessible. To allow access to the device, you
must n2=xt place the controller(s) and unit(s) on-line.

5.2.5 Making the Devices Accessible

After your driver has been successfully 1loaded, you must make the
controller(s) and units accessible. You use the CON task to place
controller(s) and units on-line, to change vector and CSR assignments
that you established in the driver data base, and to take units and
controller(s) off-line. Unless the wvector and CSR values 1in the
driver data base are not correct for the running system, you can place
the coatroller(s) and units on-line. You may change the vector and
CSR assignments to match the hardware CSR and vector assignments only
while the controller(s) and units are off-line.

5.2.5.1 Setting Vector and CSR Assignments - If the wvalues at the
offsets S.VCT/K.VCT and S.CSR/K.CSR in the KRB(s) of your driver data
base are incorrect for the running system, vyou must issue the
privil=ged SET command in CON to establish the correct values.

NOTE

Because CON causes the Executive to
access a driver data base when it
changes a vector or CSR assignment, you
must load the driver before you issue
the SET commands in CON. If a driver
data base 1is resident, you do not need
to load the driver to establish correct
vector and CSR assignments.

You must do this operation while the <controller(s) and units are
off-line. (LOAD ensures that, for a 1loadable data base, the
controller(s) and unit(s) are off-line.) Typical commands to set a
vector and CSR for a driver that supports a single controller are as
follows:

>CON

CIN>SET xxA VEC=300 CSR=160040
CON>"Z

>

The command first establishes 300 as the vector for controller A of
type xx. The Executive accesses the offset S.VCT/K.VCT in the driver
data base and writes the specified value divided by 4. The command

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

secondly establishes the control and status register address as 160040
for controller A of type xx. The Executive accesses the offset
S.CSR/K.CSR in the driver data base and writes the specified wvalue.
You type the CTRL/Z combination to exit from CON. After you set the
vector or CSR assignment, you can attempt to place the controller(s)
and units on-line.

5.2.5.2 Placing a Controller and Units(s) On-Line - If the vector and
CSR assignments 1in your driver data base are correct for the running
system, you can place the controller(s) and units on-line by issuing
the privileged ONLINE command in CON.

NOTE

Because placing a controller or a unit
on-line causes the Executive to call the
driver, you must have loaded the driver
before vyou 1issue the ONLINE command in
CON.

The following commands demonstrate a typical sequence to place a
single controller and two attached units on-line.

>CON
CON>ONLINE xxA
CON>ONLINE xx0:
CON>ONLINE xx1:
CON>"2Z

>

The first command places controller A of type xx on-line. The
Executive accesses the KRB of the controller to read the S.VCT/K.VCT
offset and initializes the vector to point to the related interrupt
control block.

NOTE

If the driver 1is resident within the
Executive, the vector points directly to
the driver. For a common interrupt
controller, the vector ©points to the
interrupt entry address in the Executive
rather than to an ICB.

The Executive then ensures that the address in S.CSR/K.CSR 1is wvalid
(that 1is, some device responds at that address). Refer to Section
5.2.5.3 for a discussion of CSR and vector assignment errors. Next,
the Executive calls the driver at its controller status change entry
point. Only after the driver indicates success does the Executive
change the status bit in the SCB/KRB of the controller from off-line
to on-line.

The second and third commands place logical units 0 and 1 on-line.
The Executive checks that the controller 1is on-line (that is, an
access path exists to the unit). 1If the controller 1is not on-line,
the Executive sets the UCB of the unit as marked for on-line. (The
Executive automatically places on-line a unit that is in the marked
for on-line state only when its controller is placed on-line.) If the

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

contro’ler is on-line, the Executive calls the driver at its unit
status change entry point. Only after the driver indicates success
doces tl.e Executive change the status bits in the UCB of the unit from
off-lire to on-line. (The driver is not required to take any special
action to indicate success. Refer to the discussion of status change
entry points in Section 4.5.)

After vou have issued the ONLINE commands, you can issue the DISPLAY
commanc in CON as follows to verify that the devices are in the state

that ycu want them to be in:

>CON
CCN>DISPLAY FULL FOR xx

(The display appears at the terminal.)

CON>"Z
>

The command displays status of all controllers of type xx and of all
units ¢ttached to the controllers.

5.2.5.7 CSR and Vector Assigment Errors - CSR and vector assignment
errors are not always immediately detectable. When you issue the
ONLINE command to CON to place a device on-line, CON verifies that
some cevice responds at the CSR address that you established at the
S.CSR/K.CSR offset in your driver data base. CON can encounter one of
three possible cases:

® Your device is at the established CSR address and it responds
to the CON probe. This is the case you want. CON continues

attempting to place your device on-line.

® Your device is at some address in the I/0 page other than the
established CSR address, but some other device responds at the
established CSR address. CON cannot distinguish your device
from some other device, and continues attempting to place your
device on-line possibly resulting in a system hang or crash.

e Your device is at some address in the I/0 page other than the
established CSR address, and no device responds at the
established CSR address. In this case, CON reports an error
and does not place the device on-line.

Therefore, 1if CON places your device on-line and the device
subsequently does not respond, have a DIGITAL Field Service
representative verify the CSR address jumpers and ensure that the CSR
assignment 1in your driver data base matches the verified hardware CSR
assignment.

When the vector address developed from the value that you established
at the offset S.VCT/K.VCT 1in the driver data base differs from the
hardware vector assignment, several outcomes are possible. Should the
established vector already be in use (that is, pointing at other than
the nonsense interrupt entry address in the Executive), CON reports
the condition and does not place the device on-line. If the vector is
not in use, CON establishes it as the device vector and continues
attempting to place the device on-line. This action does not
guarantee that the software and hardware vector assignments match.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

When CON does place a device on-line and the software and hardware
vector assignments do not match, two results are possible:

® Your driver will time out waiting for an interrupt.
e The device will interrupt through an unused vector.

If error logging is active on your system, a nonsense interrupt will
be logged as an undefined interrupt error and the ERRSEQ count in the
Executive is increased by 1. The RMDEMO task display, which includes
the ERRSEQ count, will reflect the occurrence of nonsense interrupts
by an increasing number in ERRSEQ. Consult an error 1log report and
look for undefined interrupt errors.

When (1) error logging 1is active, (2) nonsense interrupts do not
occur, and (3) your driver times out, the interrupt could be going
through some other driver vector. 1If the unexpected interrupt goes to
a DIGITAL-supplied driver, one of two outcomes is possible.

e The interrupt will simply be dismissed. (Common interrupt
routines dismiss wunexpected interrupts and some drivers keep
track of when they expect interrupts and dismiss unexpected
ones.)

e The driver will react in an unpredictable fashion (such as
attempting to terminate the last I/O packet again) causing a
system crash.

Thus, error logging and the ERRSEQ count in the RMDEMO display help
indicate improper vector assignments.

5.3 USER-SUPPLIED DRIVER SYSTEM GENERATION DIALOGUE SUMMARY

If you are building either a loadable driver with a resident data base
or a resident driver, vyou must perform a system generation to
incorporate your driver into the system. This section summarizes the
system generation dialogue only as it relates to user-supplied driver
support and related features. For more information on the system
generation procedure itself, refer to the RSX-11M-PLUS System
Generation and Installation Guide.

NOTE

If you are building a 1loadable driver
with a loadable data base, you need not
perform a system generation to
incorporate your driver. However, you
can still build your driver during
system generation. Section 5.1.2
describes the complete procedures to
build a loadable driver with a loadable
data base any time after you build the
Executive under which the driver will
run.

5.3.1 Choosing Executive Options

The system features are determined during the "Choosing Executive
Options" section. You have to specify answers related to including a

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

user-sudpplied driver in your system. A question in the following form
appears:

> Do you want the Full-functionality Executive? [Y/N D:Y]:

If you choose the Full-functionality Executive, your driver must be
loadable with either a loadable or resident data base. If you want to
incorpo>rate a user-supplied resident driver, you must omit the
Full-fuianctionality Executive and omit Executive data space support.
All DISITAL-supplied drivers should be loadable with a 1loadable or
resident data base.

If you do not choose the Full-functionality Executive, the system
generation procedure asks the two following questions:

> Do you want Executive data space support? [Y/N D:NJ:

If you have a loadable driver with either a loadable or resident data
base, vyou should answer Yes to this question. If you have a resident
driver, you must answer No to this question.

> What is the ICB pool size (in words)? [D R:16.-1024, D:128.]:

On systems with Executive data space, the ICB pool must be large
enough for all the drivers loaded into the virgin system image. One
ICB (8 words) is needed for every 16(10) controllers of the same type.
If the device controlled by your driver has a 1large number of
controllers, you should ensure that there is enough ICB pool space.

Whether you choose the Full-functionality Executive or not, another
question in the following form asks about XDT support:

> Do you want to include XDT? [Y/N D:N]:

You should answer Yes to this question. XDT (described in Chapter 6)
is helpful 1in debugging system problems which incorporating a faulty
driver may engender.

After this question, there are no more questions 1in this section
concerning user-supplied driver support or related features.

5.3.2 Choosing Peripheral Configuration

In the Peripheral Configuration section of the system generation
procedire, vyou must answer questions about your driver and its data
base configuration. A question in the following form asks you to
supply your device mnemonics:

> Enter device mnemonics for user-supplied drivers [S]:

You must enter the 2-character device mnemonic for your driver. This
should be the same mnemonic used in the driver and data base source

file names.

If you did not select Executive data space support, a question in the
following form appears:

> Do you want the xx: driver to be loadable? [Y/N D:N]J:

Answer Yes to this question if you want a loadable driver. Answer No
if you want your driver to be resident.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

If your driver is loadable, the next question in the system generation
procedure asks you about your data base:

> Do you want the xx: driver's data base to be loadable? [Y/N D:N]

Answer Yes to this question if you want a loadable data base. Answer
No if you want your data base to be resident.

The system generation procedure always asks you to specify the highest
interrupt vector address:

> What is the highest interrupt vector address? [O R:n-774 D:nj:

The system generation procedure calculates and displays the highest
interrupt vector address needed for the DIGITAL-supplied devices. 1If
the vector address for your device is higher than this, enter the
highest vector address used by your device.

This ends the system generation portion of incorporating a
user-supplied driver. If you are generating a new system, the system
generation procedure includes your driver in the Executive if it is
resident, or 1loads vyour driver into the system image 1if it is
loadable. After the newly built system is running, you must make the
devices that vyour driver supports accessible, as directed in Section
5.2.5.

If you are adding your driver after system generation, you must 1load
your driver and make the devices that it supports accessible, as
described in Sections 5.2.4 and 5.2.5.

5.4 LOAD PROCESSING

The Executive LOAD routines extensively check the driver data base;
LOAD provides the /CTB switch to handle multidriver controllers. The
following subsections describe the two aspects of LOAD.

5.4.1 LOAD Operations and Diagnostic Checks

Two modules (LDVLDB and LDVFIN) in LOAD, load a driver into memory:
one conditionally checks the validity of and loads the data base; and
the other finishes the operation by loading the driver. 1If there is
no resident data base, the data base is loaded into the system pool.
The LOAD routines relocate and validate many of the pointers within
the data base and, 1in the process, validate other data in the
structures. (If the data base is resident, no' validity checks on the
driver data base are performed.) The driver itself is then loaded into
its partition, and the interrupt control blocks are created.

To read the data base from the xxDRV.TSK file into the system pool,
the global labels $xxDAT and $xxEND, defining the start and end of the

data base, are needed.

To check the data base, the LOAD routines must know the starting
address of the DCB. If the global label $xxDCB is not defined (that
is, not in the symbol table file), the start of the DCB is assumed to
be the first word of the data base. Many unusual error conditions
result when LOAD assumes that the DCB is at the start of the data base
and the DCB is elsewhere in the data base and not labelled properly.
Thus, to avoid this type of problem, you should always define the
start of the DCB with the global label $xxDCB.

.
.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

Each CTB is checked and relocated. The following offsets are both
checked and relocated:

L.LNK

L.DCB

L.KRB

The link to the next CTB must be even. If it |is
not zero, it must point within the data base, and
the CTB to which it points must 1lie within the
data base. (Because it is highly unusual to have
two controller types in one driver data base, this
value is usually zero.)

The address of the related DCB must be even, point
within the data base, and the DCB to which it
points must lie within the data base. If L.DCB
points to a common interrupt table, the common
interrupt entry point address in the table must be
even and lie within the Executive. The DCB
address(es) in the table must be even, and the
DCB(s) to which each address ©points must lie
within the data base.

Each pointer in the table of KRB addresses must be
even and must point within the data base, and the
KRB to which each cell points must lie within the
data base.

The fo .lowing offsets in the CTB are checked:

L NAM

L . NUM

The controller name cannot duplicate other L.NAM
entries in the resident or loadable data base.

The number of controllers must be 1less than 17
(decimal) .

Each KRB is checked and relocated. The following offsets in the KRB
are both checked and relocated:

K. OWN

K. OFF

K.CRQ
K.CRQ+2

The pointer to the owner UCB must be even and
point within the data base, or be zero. If it is
nonzero, the pointer is relocated.

The start of the table of UCB addresses produced
from K.OFF must be even and must point within the
data base. The entries themselves must be even,
point within the data base, and the UCB to which
each cell points must lie within the data base.

The 1listhead for the controller request queue.
It is initialized to an empty list with the first
word =zero, and the second word pointing to the
first, relocated.

The following offset in the KRB is checked:

K. URM

In a multiprocessor system, the UNIBUS run mask
for the controller must have exactly one bit set
and that bit must correspond to an existing UNIBUS
run (either primary or secondary).

LOAD puts each controller in the off-line state by setting the KS.OFL
bit in the K.STS byte. Therefore, all controllers are off-line until
you use CON to place each one on-line.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

Each DCB is checked and relocated. The following offsets are both
checked and relocated:

D.LNK The link to the next DCB must be even. If it |is
nonzero, it must point within the data base, and
the DCB to which it points must 1lie within the

data base.

D.UCB The link to the first UCB must be even and must
point within the data base, and the UCB to which
it points must lie within the data base.

The following offsets in the DCB are checked:

D.NAM The device name must be the same as that which you
specified in the LOAD command line.

D.UCBL The length of the UCB must be even and nonzero.

D.UNIT The highest unit number (increased by 1) used with
D.UCBL forms the last address of all UCBs. This

address must lie within the data base.

The pointer to the driver dispatch table (D.DSP) is set to zero to
show that the driver is not loaded.

Each UCB is checked and relocated. The following offsets are both
checked and relocated:

U.DCB The pointer to the DCB must point to the DCB that
points to this UCB.

U.SsCB The pointer to the SCB must be even, must point
within the data base, and the SCB to which it
points must lie within the data base.

U.RED The unit redirect pointer must be nonzero and even
if it 1is an Executive address. If it is not an
Executive address, it must be nonzero, even, and
point within the data base.

LOAD places each unit in the off-line state by setting the US.OFL bit
in the U.ST2 byte. Therefore, all units are off-line until you use
CON to place each one on-line,

Each SCB is checked and relocated. The following offsets are both
checked and relocated:

S. KRB The pointer to the KRB must be even, must point
within the data base, and the KRB to which it
points must lie within the data base. If S.KRB is
nonzero, there must be a CTB in the loadable data
base.

S.KTB If the table of KRB addresses 1is present, each
entry must point within the data base. (LOAD
preserves bit zero in each entry.) Each entry in
the table must also have a matching entry in the
table of KRB addresses of a CTB in the 1loadable
data base.

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

The fcllowing offsets in each SCB are initialized as described:

¢.LHD The head of the I/0 queue is set to zero and the
pointer to the end of the queue (S.LHD+2) is set
to point at S.LHD.

€ .PKT The pointer to the current I/O packet is set to 1.
These last checks end the loading and validating of the data base.

After the data base is loaded and validated and no error is found, the
driver 1itself 1is 1loaded into memory. In loading the driver, the
driver dispatch table is validated, each interrupt entry in the driver
dispatch table 1is inspected, and the vector(s) are checked. 1If a
vector address is higher than the highest vector address allowed on
the system (as specified at system generation) or does not point to a
nonsense interrupt entry point, LOAD prints a warning message. You
can use CON to set the correct vector address before you place the
controller on-line. Interrupt control blocks are created and 1linked
into the list starting at L.ICB in the CTB.

The format of the DDT must be consistent with that described in
Secticn 4.5.1. If the device that the data base describes does not
have any physical controllers (that 1is, the wvalue at offset
S.VCT/K.VCT equals =zero), the DDT is not checked. 1If S.VCT/K.VCT is
nonzero, the device has at least one interrupt vector and therefore at
least one 1interrupt entry point. The DDT is then checked. The two
global labels $xxXTBL and $xxTBE must define the start and end of the
DDT. The generic controller name(s) must be nonzero and the interrupt
entry values must be valid. Interrupt entry point 0 must be nonzero,
even, and lie in the range 117777 and 140000. 1If the format of DDT is
inconsistent, LOAD prints an error message, restores the system device
tables, and exits.

When the driver is loaded, all links are established. The DCB of the
loadakle data base is put in the list of DCBs just in front of the DCB
for the first pseudo device. The CTB(s) are linked to the end of the
CTB 1list. The DDT address D.DSP, the driver PCB address D.PCB, and
the driver mapping S.KS5 (the block number of the first word of the
driver) 1in the fork block are initialized. The address of the start
of the KRB table in the CTB, denoted in the driver data base by the
global label $xxCTB, is loaded into the DDT.

5.4.2 Use of /CTB in LOAD

Some controllers such as the RH70 can support more than one device
type. The CTB for such a controller differs in two ways from the
standard CTB. First, the table of KRB addresses at the end of the CTB
contains pointers to KRBs of controllers for different device types.
Second, instead of a pointer to one DCB in the CTB, there is a pointer
to a table of DCB addresses because each different device must have a
separate DCB to describe each separate device type. Morever, more
than one driver supports the different types of devices capable of
being attached to the controller.

The data base for such a controller must necessarily be split.
Because only one CTB 1is needed to describe the type of controller,
only one driver that supports a device on that controller type can
define that CTB. The remaining drivers cannot define a CTB but must
reference the CTB defined for the first driver. Because all drivers
and their data bases can be loadable, the remaining drivers and the
syntax in the LOAD command must indicate to the LOAD routines which

INCORPORATING A USER-SUPPLIED DRIVER INTO RSX-11M-PLUS

resident CTB to use. (Of course, the driver data base that defines
the CTB of the multidriver controller must be loaded or already
resident before the other drivers can be loaded.)

The driver data base that defines the CTB for a multidriver controller
allows for structures to define the data base of drivers that are not
resident. 1In particular, for each device controller there must be a
slot in the CTB table of KRB addresses to hold the pointer to the KRB.
(A KRB must be defined to describe each occurrence of a controller.) A
zero 1is in the pointer for a device whose data base (and therefore,
whose KRB) is not resident. Moreover, the table of DCB addresses in
the common interrupt table must have sufficient slots to point to the
DCBs of all device types that the controller supports. A zero in the
DCB table indicates no DCB exists (that is, the data base for a device
type is not resident).

To load the data base of a device attached to the multidriver
controller, the LOAD routines must know the controller name, the
location of the device on the MASSBUS controller and the KRB(s) of the
device(s) whose driver is to be loaded. The /CTB syntax in the LOAD
command supplies the first two pieces of information. For example:

>LOA DR:/CTB=RHB,C
>

The letters RH are the name in the CTB already resident in the system.
LOAD routines search the system list of CTBs to locate the correct
one. The letters B and C are the slots in the table of KRB addresses
that will be wused to link the resident CTB with the KRB in the data
base being loaded.

The name of the device DR reflects the name in the DCB that is being
loaded. An empty slot in the table of DCB addresses in the resident

data base will be made to point to this DCB.

The LOAD routines need to find the correct KRB in the data base being
loaded. A global label of the form $cca (where cc is the controller
name and a is the slot, or controller number) must define the start of
the KRB(s) being loaded. Thus, the loadable data base for the example
above must contain the labels $RHB and SRHC, which are the KRB names.
The address(es) of the label(s) is loaded into the appropriate slot in
the CTB table of KRB addresses.

In summary, then, the /CTB syntax on the LOAD command combined with
the global 1label(s) allows the LOAD routines to link a driver data
base being loaded with a currently resident driver data base. The
KRB(s) being loaded are incorporated in the resident data base and the
DCB being loaded is connected to the common interrupt table.

CHAPTER 6

DEBUGGING A USER-SUPPLIED DRIVER

Adding a user-supplied driver carries with it the risk of introducing
obscure bugs into an RSX-11M-PLUS system. Because the driver runs as
part of the Executive, special debugging tools are both desirable and
necessary. RSX-11M-PLUS provides such aids, which can be incorporated
into your system during system generation:

1. Crash dump analysis support routine (CDA)
2. Executive debugging tool (XDT)

You need not select any of this software during system generation.
If, however, you do require the facilities they offer, you can select
them for incorporation in your system. The following sections
describe the features and use of each debugging aid.

6.1 CRASH DUMP ANALYSIS SUPPORT ROUTINE

The crash dump analysis (CDA) support routine prints the following
message on a notification device specified at system generation:

CRASH - CONT WITH SCRATCH MEDIA ON device mnemonic

You can then ensure that the secondary crash dump device is ready and
depress the CONT switch on the operator's console. The Executive
Crash Dump routine will dump memory to the crash dump device and halt
the processor upon completion.

The procedure for subsequently invoking CDA, which reads and formats
the memory dump, 1is documented in the RSX-11M/M-PLUS Crash Dump
Analyzer Reference Manual.

6.2 THE EXECUTIVE DEBUGGING TOOL

An interactive debugging tool aids in debugging Executive modules, I/0
drivers, and interrupt service routines. This debugging aid, called
XDT, is a version of RSX-11 ODT. Including XDT in a system with
Executive data space support does not reduce the size of pool space
that the system can have. XDT occupies physical address space but
does not take up any Executive virtual data address space. XDT also
does not interfere with user-level RSX-11 ODT, which can be used with
any number of tasks while you are debugging your driver with XDT.

You can include XDT in a system during the "Choosing Executive
Options" section of system generation when the following question is
asked:

Do You Want To Include XDT? [Y/N D:N]

6-1

DEBUGGING A UFER-SUPPLIED DRIVER

If you answer Y, XDT is linked into the Executive image when you build
the Executive.

6.2.1 XDT Commands

XDT commands are generally compatible with RSX-11 ODT commands, which
are described in the IAS/RSX-11 ODT Reference Manual. That manual,
together with the discussion in Section 6.2 in this manual, can be
used as a gquide to XDT operation on RSX-11M-PLUS.

XDT does not contain the following commands available in ODT:

No $M

(Mask) register

No $X - (Entry Flag) registers
No $V - (SST vector) registers
No $D - (I/O LUN) registers

No $E - (SST data) registers

No $W - (Directive status word) $DSW word

No E - (Effective Address Search) command
No F - (Fill Memory) command

No N - (Not word search) command

No V - (Restore SST vectors) command

No W -~ (Memory word search) command

In addi:ion, the X (Exit) ODT command has been changed for XDT. The X
command causes a jump to the crash dump routine.

Except or the omitted features and the change in the X command, XDT
is comnand-compatible with RSX-11 ODT; consequently, the IAS/RSX-11
ODT Reference Manual can be used as a guide to XDT operation.

XDT 1includes both Instruction space and Data space address
referencing. The following commands control the current address

referencing:
I sets address references to Instruction space
D sets address references to Data space

When XDT starts up, the default condition is that address references
are to Data space.

6.2.2 DT Start Up

When you bootstrap a system that 1includes XDT, the normal system
startup transfers control to XDT, which identifies itself at the

system console terminal with the following message:

XDT: <system name and version>

DEBUGGING A USER-SUPPLIED DRIVER
If no errors were encountered, the identification message is followed
by the prompt:
XDT>

The following are the register conditions when XDT starts:

RO = CSR address of the bootstrap device

Rl = LBN of the system image

R2 = LBN of the system image

R3 = physical unit number of the load device

R4 = ASCII name of the load device

R5 = total number of blocks read from the system image

XDT runs entirely at priority level 7.

You can set breakpoints at this time, and then give a G command,
passing control to the Executive initialization module INITL.
Whenever control reaches a breakpoint, a printout similar to that of
RSX-11 ODT occurs.

If INITL encounters an error condition, it prints an error message
preceded by a prefix telling whether the condition is a warning or
fatal. 1If the condition is a warning, XDT has control. You can set
breakpoints to establish control or type the P command to proceed. If
the condition is fatal, the processor halts. You must correct the
condition before you can rebootstrap your system. '

6.2.3 XDT Restrictions

On some types of systems, the following restrictions exist on the use
of XDT when it is first entered:

1. All systems

Some data structures are not yet initialized. The secondary
pool is not set wup and the console terminal and the
bootstrapped device are not on-line.

2. Systems with Kernel data space support

Data space mapping is not vyet set up. Certain Executive
locations that the Task Builder could not resolve are not
initialized. (The RH common interrupt table address (S$SRHTBX)
does not <contain the RH common interrupt routine address
(SRHALT) .)

To proceed when you encounter such restrictions on your system, at the
initial XDT prompt you should first set a breakpoint near the end of
the INITL module (after the routine that sets up the data structures).
Then, after you proceed and XDT encounters the breakpoint near the end
of INITL, use XDT to examine locations in the Executive and to set
more Executive breakpoints.

On a multiprocessor system, you should be aware of the following
conditions:

1. When you initially place a processor on-line, XDT does not
prompt from that processor unless you have set the
processor's bit in the $XDTPR word.

2. XDT does not handle multiprocessor-specific conditions. You
cannot set processor-specific breakpoints nor can you easily
examine other processors' low memory context.

6-3

DEBUGGING A USER~SUPPLIED DRIVER

3. Under certain circumstances (such as when Data space is not yet
set up), setting a breakpoint in shared Instruction space may

eventually cause a trap on a processor other than the one

which you set the breakpoint. Consequently, because the
processor encountering the breakpoint does not have that
breakpoint in its XDT tables, XDT generates a breakpoint error

message (BE:) rather than a breakpoint message.

4. All processors are locked out of the Executive while XDT
being executed by one of the other processors.

$.2.4 XDT General Operation

A forced entry to XDT can be executed at any time from a privileged
termineél by means of the MCR Breakpoint (BRK) command. Thus, if your
system has no XDT restrictions as described in Section 6.2.3, the
normal procedure is to type G when the system is bootstrapped without
settinc any breakpoints. When it becomes necessary to use XDT, the
MCR Breakpoint command is executed, causing a forced breakpoint. XDT

then prints on the console terminal:
BE : XXX XXX

This message is followed by the prompt:
XI'T>

You car then set breakpoints and issue other XDT commands. Continue
system operation by typing the Proceed (P) command to XDT.

All XD1 command I/0 goes to and from the console terminal, and the
List Memory (L) command can list on either the console terminal or the
line printer.

6.2.5 XDT and Debugging a User-Supplied Driver

Using XDT to debug a loadable driver has special pitfalls. One
problen that can arise is a T-bit error:

TE :XXXXXX
XL T>

This error results when control reaches a breakpoint that you have
set, using XDT, in a loaded driver. The T-bit error, rather than the
expected BE: error, occurs unless register APR5 1is mapped to the
driver at the time XDT sets the breakpoint.

To avoid this T-bit error, assemble the driver with an embedded BPT
instruction, or use either the ZAP utility or the MCR OPEN function to
set the breakpoint by replacing a word of code with the BPT
instruction. You <can use the OPEN command in the following way to
access the driver:

>CPE nnnn/DRV=xx:

where nnnn matches the address in the driver map listing and xx is the
device mnemonic. (Write down the instruction that you replace with
the BPT instruction.)

DEBUGGING A USER-SUPPLIED DRIVER

When control reaches a breakpoint set in the driver, XDT prints:

BE:xxxxxx
XDT>

Recover as follows:

1. Using XDT, replace the BPT instruction with the desired
instruction.

2. Decrement the PC by subtracting 2 from the contents of
register R7.

3. Then proceed by using the P or S commands.

NOTE

You should not set breakpoints in more
than one module that maps into the
Executive through APR 5 or APR 6, In
particular, do not set breakpoints in
more than one loadable driver at a time
or XDT will overwrite words of main
memory when it attempts to restore what
it considers to be the contents of
breakpoints.

6.3 FAULT ISOLATION
Four causes can be identified when the system faults:

1. A user-state task has faulted in such a way that it causes
the system to fault.

2. The user-supplied driver has faulted in such a way that it
causes the system to fault.

3. The system software itself has faulted.

4. The host hardware has faulted.
When the system faults, you must first decide which of these four
causes is responsible. This section presents some procedures that can

help you isolate the source of the fault. Correcting the fault itself
is your responsibility.

6.3.1 Immediate Servicing

Faults manifest themselves in four ways (they are listed here in order
of increasing difficulty of isolation):

1. 1If XDT is included, an unintended trap to XDT occurs.

2. The system displays text indicating a crash has occurred and
halts.

3. The system halts but displays nothing.

4. The system is in an unintended loop.

DEBUGGING A USER-SUPPLIED DRIVER

The following discussions assume the existence of a system built with
at leacst one debugging aid.

The immediate aim, regardless of the fault manifestation, is to get to
the point where you can obtain pertinent fault isolation data.

6.3.1.1 The System Traps to XDT - The trap may or may not be intended
(for example, a previously set breakpoint). 1If it is not intended,
type the X command, causing XDT to exit to location 40(8), from which
the CLOA support routine will be invoked. 1If, however, you have some
idea of the source of the problem (for example, a recent coding
change), then you may use XDT to examine pertinent data structures and
code.

6.3.1.2 The System Reports a Crash - If the text displayed on the
console terminal consists of output from the CDA support routine,
follow the procedure for obtaining and formatting a memory dump as
outlined in the RSX-11M/M-PLUS Crash Dump Analyzer Reference Manual.

6.3.1.2 The System Halts but Displays No Information - Before taking
any action, preserve the current PS and PC and the pertinent device
registers (that is, examine and record the information these registers
contain) . The procedure depends on the particular PDP-11 processor.
Consult the appropriate PDP-11 processor handbook for details.

After preserving the PS and PC, invoke your resident debugging aid:
enter 40(8) in the switch register, press LOAD ADDR, and then press
START. The contents of 40(8) cause the invocation of the CDA support
routine.

6.3.1.4 The System Is in an Unintended Loop - Proceed as follows:

1. Halt the processor.

2. Record the PC, the PS, and any pertinent device registers, as
in Section 6.3.1.3.

You may then want to step through a number of instructions 1in an
attempt to locate the 1loop. For this attempt to be meaningful you
must first disable the system clock. Proceed as follows:

1. Examine the contents of word 777546 (if your system has a
line-frequency clock) or word 772540 (if your system has a

programmable clock).

2. Clear bit 6 in this word and redeposit the word.

NOTE

Until vyou reenable the clock, some
system operations do not work because
they are waiting for time. You can type
and the system echoes typed characters,
You can input MCR commands.

DEBUGGING A USER-SUPPLIED DRIVER

After trying to locate the loop and reenabling the clock, transfer to
location 40(8) as in Section 6.3.1.3.

6.3.2 Pertinent Fault Isolation Data
Before you attempt to locate the fault, you should dump system common
(SYSCM) . SYSCM contains a number of critical pointers and listheads.
CDA always dumps the SYSCM area. In addition, you should dump the
dynamic storage region (system pool and, if it exists, the ICB pool)
and the device tables. The device tables are in the module SYSTB.
At this point, you have the following data:

e PS

e PC

e The stack

e RO through R6

e Pertinent device registers

e The dynamic storage region

e The device tables

e System common

These data represent a minimal requirement for effectively tracing the
fault.

6.4 TRACING FAULTS

Three pointers in SYSCM are critical in fault tracing. These pointers
are described below:

$STKDP - Stack Depth Indicator

This data item indicates which stack was being used at the time
of the crash. $STKDP plays an important role in determining the
origin of a fault. The following values apply:

+1 -- User (task-state) stack or a privileged task at user
state
0 or less -- System stack

If the stack depth is +1, then the user has crashed the system.
STKTCB - Pointer to the Current Task Control Block (TCB)

This is the TCB of the user-level task in control of the CPU.
SHEADR - Pointer to the Current Task Header (Pool-Resident)
The task header and its associated pointers are described below.

The location of the task header and the contents of 1its associated
pointers vary according to whether the task has an external header. A

DEBUGGING A USER-SUPPLIED DRIVER

task with an external header has its header attached in a physically
contiguous and numerically 1lower location in memory. A task with a
nonextaernal header has its header located in Executive pool space.
Theref>re, a header in Executive pool is a pool-resident header, and a
header adjacent to the task is a non-pool-resident header.

Figure 6-1 shows the 1interaction of header pointers for both
pool-r:sident and non-pool-resident headers. For a pool-resident task
header, $SHEADR, S$SAHPT, and $SAVSP all point to the first word of the
task header. This word also contains the user task's stack pointer
(SP) f-om the last time it was saved. Figure 6-2 shows a brief
descrintion of the task header. The task header is fully described in
the RSX-11M/M-PLUS Task Builder Manual.

POOL-RESIDENT TASK HEADER (Non-external)

Virtual Header Addr.

L$HEADR }
| Saved Stack Addr. Current Task
I $SAVSP B Header
] Virtual Header Addr. L - - - -
I $SAHPT B - Saved Stack Pointer
THDLN 0

I$SAHDB undamedvmqﬂ

NON-POOL-RESIDENT TASK HEADER (External)

.

: Task :
[$SAHPT 140000 —
|
Current Task
L $HEADR » Header
Executive
Data Area
L$SAVSP 1-word block T HDLN -0
Executive |
L$SAHDB KISAR6 }——-—rAddress resolution
7K.O01-8.
Figure 6-1: Interaction of Task Header Pointers

The header (as pointed to by $HEADR) also contains the last-saved
register set, just before the header guard word (the last word in the
header -- pointed to by H.GARD).

The four pointers associated with the header are:

e SHEADR
e $SAVSP
® S$SAHPT
e $SAHDB

DEBUGGING A USER-SUPPLIED DRIVER

RS

PC

PS

H.NLUN N

H.GARD

H.HDLN Length in bytes

SP

ZK-272-81

Figure 6-2: Task Header

The pointers associated with a pool-resident header are described

next:

SHEADR

$SAVSP

$SAHPT

$SAHDB

Points to the current task header.

The $HEADR word points to the pool-resident task header of
the task currently running. The value in S$HEADR is a kernel

virtual address in primary pool.

Points to the first word of the current task header, which
contains the saved stack pointer.

Points to the current task header in pool. $SAHPT contains
the virtual address of the header. $SAHPT and $HEADR contain
the same virtual address for a pool-resident header.

Contains an unknown value.

The pointers associated with a non-pool-resident header are described

next:
SHEADR -
$SAVSP -

$SAHPT -

Points to the pointer for the saved stack pointer, $SAVSP.
Points to a 4-word block in the Executive data area.
Contains the octal value of 140000 that is to be wused with

$SAHDB to resolve the address of the task's header. $SAHPT
always contains 140000 in this case.

6-9

DEBUGGING A USER-SUPPLIED DRIVER

$SSAHDB - Contains the value in KISAR6, which is a 32-word block-offset
to be used with the value in $SAHPT to resolve the address of
the task's header.

6.4.1 Tracing Faults Using the Executive Stack and Register Dump

To trace a fault after a display of the Executive stack and register
contents, first examine the system stack pointer. Usually an
Executive failure is the result of an SST-type trap within the
Executive. If an SST does occur within the Executive, then the origin
of the call on the crash-reporting routine 1is in the SST service
module. (The crash call 1is initiated by issuing an IOT at a stack
depth ¢f zero or less.)

A call to crash also occurs in the Directive Dispatcher when an EMT is
issued at a stack depth of zero or less, or a trap instruction is
executed at a stack depth of less than zero. The stack structure 1in
the case of an internal SST fault is shown in Figure 6-3.

PS

pPC

RS

R4

R3

R2

R1

RO

Return to system exit

Zero or more SST parameters

SST fault code

Number of bytes -+ SpP

ZK-273-81

Figure 6-3: Stack Structure: Internal SST Fault

The fault codes are:

0 ;ODD ADDRESS AND TRAPS TO 4

2 ;MEMORY PROTECT VIOLATION

4 ;BREAK POINT OR TRACE TRAP

6 ;IOT INSTRUCTION

10 ;ILLEGAL OR RESERVED INSTRUCTION
2 ;NON RSX EMT INSTRUCTION

1¢ ; TRAP INSTRUCTION

14 ;11/40 FLOATING POINT EXCEPTION
20 ;SST ABORT-BAD STACK

2 ;AST ABORT-BAD STACK

24 ;ABORT VIA DIRECTIVE

DEBUGGING A USER-SUPPLIED DRIVER

26 ; TASK LOAD READ FAILURE

30 ; TASK CHECKPOINT READ FAILURE
32 ; TASK EXIT WITH OUTSTANDING I/O
34 ; TASK MEMORY PARITY ERROR

The PC points to the instruction following the one that caused the SST
failure. The number of bytes is the number normally transferred to
the user stack when the particular type of SST occurs. If the number
is 4, then a non-normal SST fault occurred, and only the PS and PC are
transferred. There are no SST parameters.

If the failure is detected in $DRDSP, the stack is the same as that
shown in Figure 6-3, except that the number of bytes, the SST fault
code (the fault codes are listed above), and the SST parameters are
not present.

One SST-type failure, stack underflow, does not result in the stack
structure of Figure 6-3. To determine where the crash occurred, first
establish the stack structure; this can be deduced by the wvalue of
the SP and the contents of the top word on the stack. If the stack
structure is that of Figure 6-3, then the failure occurred in $DRDSP,
or was a normal SST crash. If the stack structure is that of Figure
6-4, then an abnormal SST crash has occurred.

PS

PC

ZK-274-81

Figure 6-4: Stack Structure: Abnormal SST Fault

Abnormal SST failures occur when it 1is not possible to push
information on the stack without forcing another SST fault. When this
situation occurs, a direct jump to the crash-reporting routine is made
rather than an IOT crash. The PS and PC on the stack are those of the
actual crash, and the address printed out by the crash-reporting
routine is the address of the fault rather than the address of the IOT
that crashes the system. Note that the <crash-reporting routine
removes the PC and PS of the IOT instruction from the stack, which in
this case is incorrect. Thus, the SP appears to be four bytes greater
than it really is (as in Figure 6-4).

You now have all the information needed to isolate the cause of the
failure. From this point on, rely on personal experience and a
knowledge of the interaction between the driver and the services
provided by the Executive.

6.4.2 Tracing Faults When the Processor Halts Without Display

To trace a fault when the processor halts but displays no information,
first examine $STKDP, $TKTCB, $HEADR, $SAVSP, $SAHPT and $SAHDB. The
difficulty in tracing failures in this case is that the system stack
is not directly associated with the cause of a failure.

By examining $STKDP, you can determine the system state at the time of
failure. If it was 1in user state, the next step is to examine the
user's stack. The examination focuses on scanning the stack for
addresses that may be subroutine links that can ultimately lead to a
thread of events isolating the fault. This is essentially the aim of
looking at the system stack if $STKDP is zero or less.

6-11

DEBUGGING A USER-SUPPLIED DRIVER

Frequertly, a fault can occur that causes the SP to point to Top of
Stack (TOS)+4. This fault results from issuing an RTI when the top
two items on the stack are data. The result 1is a wild branch and
then, most probably, a halt. Figure 6-5 shows a case in which two
data items are on the stack when the program executes an RTI. TOS
points to a word containing 40100. Suppose that location 40100
contairs a halt. This indicates that the original SP was four Dbytes
below the final SP, and fault tracing should begin from the
original SP.

40100 -t Sp

ZK-275-81

Figure 6-5: Stack Structure: Data Items on Stack

This type of fault also occurs when an RTS instruction 1is executed
with an inconsistent stack. However, in that case, SP points to
TOS+2.

A scan of the contents of the general registers may give some hint as
to the neighborhood in which a fault (or the sequence of events
leading up to the fault) occurred.

If the fault occurred in a new driver, a frequent source of <clues 1is
the buffer address and count words in the UCB (U.BUF, U.BUF+2, U.CNT),
as are the activity flags (US.BSY and S.STS). Other locations in both
the UCB and SCB may also provide information that may help locate the
source of the fault.

6.4.3 Tracing Faults After an Unintended Loop

To trace a fault when an unintended loop has occurred, first halt the
processor.

After you halt the processor, the same state exists as was discussed
in Section 6.4.2., Follow the same tracing procedure described there.
A specific suggestion is to check for a stack overflow loop. Patterns
of data successively duplicated on the stack indicate a stack looping
failure.

6.4.4 Additional Hints for Tracing Faults

Another item to check is the current (or last) I/O Packet, the address
of whi:h 1is found in S.PKT of the SCB. The packet function (I.FCN)
defines the last activity performed on the unit.

If trousle occurred in terminating an I/O request, a scan of the
system dynamic memory region may provide some insight. This region
starts it the address contained in SCRAVL, a cell in SYSCM. Because
all 1/) packets are built in system dynamic memory, their memory is
returned to the dynamic memory region when they are successfully
termina-zed. Following the 1link ©pointers in this region may reveal
whether I/0 completion proceeded to that point. In systems with QIO
optimization, S$PKAVL (SYSCM) points to a list of I/O packet-sized
blocks of dynamic memory that are not linked into the $CRAVL chain.

6-12

DEBUGGING A USER-SUPPLIED DRIVER

A frequent error for an interrupt-driven device is to terminate an I/O
Dacket twice when the device 1is not ©properly disabled on I/0
completion and an unexpected interrupt occurs. This action ultimately
produces a double deallocation of the same packet of dynamic memory.
Double deallocation of a dynamic buffer causes a loop in the module
SDEACB on the next deallocation (of a block of higher address) after
the second deallocation of the same block. At that time, R2 and R3
both contain the address of the I/0 Packet memory that has been doubly
deallocated. 1If XDT has been included in the system, the deallocation
routine checks £for bad deallocation and crashes the system if it
occurs.

6.5 REBUILDING AND REINCORPORATING A LOADABLE DRIVER

After correcting and assembling the driver source and wupdating the
Executive object library, simply unload the o0ld version, using the MCR
command UNLOAD, task build the new one, and load it wusing the LOAD
command. The commands for the assembler, Librarian, and Task Builder
are shown in Section 5.2.

Once loaded, the data base is not removed by the UNLOAD command. If
the data base is in error and cannot be patched, correct its source,
reassemble it, update the Executive object 1library RSX1IM.OLB and
build the new driver task. Then bootstrap the system before loading
the driver task image containing the corrected data base.

CHAPTER 7

EXECUTIVE SERVICES AVAILABLE TO AN I/0O DRIVER

Because a driver is mapped within the Executive address space, it can
call Executive routines on the same basis as that of any other module
in the Executive. The driver must observe the protocol and
conventions established on the system. The following sections
summarize the conventions, describe the address double word, tell what
special processing 1is required for NPR devices attached to a PDP-ll
processor with extended memory support (22-bit addressing), and
summarize some of the typical Executive services available.

7.1 SYSTEM-STATE REGISTER CONVENTIONS

In system state, R5 and R4 are, by convention, nonvolatile registers.
This means that an internally called routine is required to save and
restore these two registers if the routine destroys their contents.
R3, R2, R1l, and RO are volatile registers and may be used by a called
routine without save and restore responsibilities.

When a driver is entered directly from an interrupt, it is operating
at interrupt 1level, not at system state. At interrupt level, any
register the driver uses must be saved and restored. INTSV$ generates
code to preserve R5 and R4 for the driver's use. All drivers must
follow these conventions.

See the description of the driver dispatch table in Section 4.5 for
the contents of registers when a driver is entered.

7.2 THE ADDRESS DOUBLE WORD

RSX-11M-PLUS can accommodate configurations whose maximum physical
memory is 2048K words. Individual tasks, however, are limited to 32K
words. The addressing is accomplished by using virtual addresses and
memory mapping hardware. I/0 transfers, however, use physical
addresses 18 bits in length. Since the PDP-11 word size is 16 bits,
some scheme 1is necessary to represent an address internally until it
is actually used in an I/0 operation. The choice was made to encode
two words as the internal representation of a physical address and to
transform virtual addresses for I/0 operations into the internal
doubleword format.

On receipt of a QIO directive, the buffer address in the Directive
Parameter Block, which contains a task virtual address, is converted
to address doubleword format.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

The virtual address in the DPB is structured as follows:
Fits 0 through 5 Displacement in terms of 32-word blocks
Eits 6 through 12 Block number
Eits 13 through 15 Page Address Register Number (PAR#)

The internal RSX-11M-PLUS translation restructures this virtual
address into an address doubleword as described in the following
paragraphs.

The relocation base contained in the PAR specified by the PAR number
in the wvirtual address in the DPB is added to the block number in the
virtual address. The result becomes the first word of the address
doubleword. It represents the nth 32-word block in a memory viewed as
a collection of 32-word blocks. Note that at the time the address
doubleword 1is computed, the user's task issuing the QIO directive is
mapped by the processor's memory management registers.

The second word is formed by placing the displacement in block (bits 0
througn 5 of virtual address) into bits 0 through 5. The block number
field was accommodated in the first word and bits 6 through 12 are
clearei. Finally, a 6 is placed in bits 13 through 15 to enable use
of PAR #6, which the Executive wuses to service I/0 for program
transf2r devices.

For noiprocessor request (NPR) devices, the driver requirements for
manipulating the address doubleword are direct and are discussed with
the description of U.BUF in Section 4.4.4.

7.3 DRIVERS FOR NPR DEVICES USING EXTENDED MEMORY

Specia! features must be built into drivers for non-MASSBUS NPR
(nonprocessor request) devices attached to a PDP-11 processor with
extendoed-memory support (22-bit addressing).

Non-Ex*“ended memory NPR devices on the PDP-1l1 processor must perform
I/0 transfers by using UNIBUS Mapping Registers (UMRs) as described in
the PDP-11 Processor Handbook. One UMR is required for each 4K words
involved 1in the transfer -- as specified by the contents of U.CNT in
the UCB. When multiple UMRs are required for a transfer, they must be
contiguous.

A driver can be assigned UMRs through any one of three procedures:

1. Dynamically allocating UMRs for the duration of the data
transfer, or

2. Dynamically allocating UMRs for longer periods of time, or

3. Statically allocating UMRs during system generation.

NOTE

In large systems, use of the procedures
above to hold UMRs for longer periods
than necessary can result in the
blocking of other drivers and a
reduction in system throughput.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

7.3.1 Calling $STMAP and $MPUBM or $STMPl and $MPUB1

To obtain UMRs through use of the $STMAP and $MPUBM or the $STMP1 and
SMPUB1 routines, a driver must:

e Have available six words for a mapping register assignment
block in the 22-bit working storage area of the device's
controller request block (KRB). The end of this area 1is
accessed by adding the contents of K.OFF to the address at
K.CSR. If the driver uses $STMPl and $MPUB1l, it must also
have available a 10-word block

e Call the routine $STMAP or $STMP1 (Set Up UNIBUS Mapping
Address) atter getting the I/0 packet

e Call the routine SMPUBM or S$SMPUB1 (Map UNIBUS to Memory)
before initiating a transfer

These requirements are detailed in the following three subsections.
Note that these routines are only required when the driver is
performing a data transfer.

7.3.1.1 Allocating a Mapping Register Assignment Block - The
controller request block (KRB) of an NPR device requires a 6-word
mapping register assignment block 1located 1in the 22-bit working
storage area. It does not have to be initialized. Any initial
contents are simply overwritten.

The following example shows the allocation of a mapping register
assignment block.

«BLKW M.LGTH ;UMR WORK AREA

If the driver does not support parallel NPR operations requiring UMR
mapping, it calls $STMAP and SMPUBM. If the driver supports parallel
NPR operations requiring UMR mapping, it must call $STMPl and $MPUBL.
In the latter situation, the six additional words in the 22-bit
working storage area are not used but must still be present. In
addition, the driver data base must provide a 10-word mapping register
assignment block for each data transfer to be mapped as specified 1in
the description of $STMP1 later in Section 7.4.31.

7.3.1.2 Calling $STMAP or $STMPl - In the <coding at the initiator
entry point, after the call to S$GTPKT, the NPR-device driver must call
the routine $STMAP or $STMP1. These routines dynamically allocate
required UMRs. If UMRs are not available immediately, the driver is
blocked. Such blocking, if it occurs, is completely transparent to
the driver. The driver resumes processing at fork level when the UMRs
have been allocated. The register returns are absolutely identical
whether or not blocking has occurred.

$STMAP or $STMPl stores into U.BUF and U.BUF+2 (in the UCB) a UNIBUS
address that causes the appropriate UMR to be selected for mapping the
transfer. The call to $STMAP or $STMPl1 must be conditionalized on

MSSEXT.

7.3.1.3 Calling $MPUBM or S$MPUB1 - Before executing the transfer, the
driver must call $MPUBM or $MPUBl. These routines get the buffer's

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

22-bit physical address and load the UNIBUS mapping registers so that
transfers are mapped directly to the task's space. The call to $MPUBM
or SMPUB1 must be conditionalized on MS$SSEXT.

If the driver calls $STMAP and SMPUBM, the UMRs allocated to it are
deallocated during the call to SIODON or $IOALT. If the driver calls
SSTMP1 and $SMPUB1l, it must call $DEUMR to deallocate any allocated
UMRs before calling $IODON or $IOALT.

7.3.2 Calling SASUMR and $DEUMR

Use of the procedure described in Section 7.3.3 assures that UMRs are
always allocated. However, a driver may not require UMRs to be
allocated all of the time, and yet require UMRs for periods of time
longer than the normal time-frame between $GTPKT and $IODON (or
SIOALT). 1In such cases, there is a third procedure for allocating

UMRs.

Through use of the Executive routines $ASUMR and $DEUMR, a driver can
dynamically allocate, retain over a desired time-frame, and deallocate
UMRs. Refer to .Section 7.4 for descriptions of the $ASUMR and $DEUMR
routines.

Similar to the $STMAP/SMPUBM procedure, the use of $SASUMR and $DEUMR
also requires the allocation of a 6-word mapping register assignment
block. 1In this instance, however, the block must not be 1located in
the 22-bit working storage area. $IODON or $IOALT, when called, will
attempt to deallocate the UMRs of a block found in the 22-bit working
storage area. To avoid this deallocation, the mapping register
assignment block could be dynamically allocated from the pool. Figure
7-1 details the format of the 6-word block.

M.LNK Link Word

M.UMRA Address of first assigned UMR

M.UMRN Number of assigned UMRs "4

M.UMVL Low 16 bits mapped by first assigned UMR
M.UMVH High 6 bits of High 2 bits mapped by
M.BFVH physical buffer address UMR (in bits 4 and 5)
M.BFVL Low 16 bits of physical buffer address

ZK-276-81

Figure 7-1: Mapping Register Assignment Block

7.3.3 Statically Allocating UMRs During System Generation

UMRs can be statically assigned during system generation. The system
generation procedure defines the symbol N$SUMR equal to a fixed number
of UMR:s, multiplied by 4, that are statically assigned to the system.
Before assembling the Executive, the wuser can cause the static
allocation of an additional number of UMRs by editing the Executive
assembly prefix file RSXMC.MAC. The value of the symbol N$SUMR can
then be increased to represent the additional number of desired UMRs
multiplied by 4.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

The Executive assembly prefix file RSXMC.MAC further defines the
following three symbols, which describe .the first UMR statically
allocated during system generation:

USSMRN The I/0 page address of the first UMR register
available for allocation to the user

USSMLO The low-order 16 bits of the 18-bit UNIBUS address
mapped by this UMR

USSMHI The high-order 2 bits of the 18-bit UNIBUS address;
these 2 bits are in bit positions 4 and 5

These three symbols are not used by the system itself. They are
available for the user's infcrmation.

7.4 SERVICE CALLS

This section contains general commentary on the Executive routines
typically used by I/0 drivers. The descriptions of the routines are
taken from the source code of modules linked to form the Executive.
Table 7-1 summarizes the routines described in this section. Only the
most widely used routines are described; however, many other
Executive services are available. The source code for the related
routines is in the MACRO-11 source files for the Executive modules.

Table 7-1

Summary of Executive Service Calls for Drivers
Routine Location in
Name UFD [11,10] Function
$ACHKB EXSUB Adress check for byte-aligned buffers
$ACHCK EXSUB Address check for word-aligned buffers
$ALOCB CORAL Alocate core buffer
$ASUMR MEMAP Assign UNIBUS mapping registers
$BLKCK MDSUB Check logical block number
$BLKC1 MDSUB Check logical block number
$BLKC2 MDSUB Check logical block number
$BLXID BFCTL Move block of data
$SCKBFI EXESB Check I1/0 buffer
SCKBFR EXESB Check I/0 buffer
$CKBFW EXESB Check I/O buffer
$CKBFB EXESB Check I/0 buffer
$CLINS QUEUE Clock queue insertion
$CVLBN MDSUB Convert logical block number
$DEACB CORAL Deallocate core buffer
SDEUMR MEMAP Deassign UNIBUS mapping registers
SDVMSG T0SUB Device message output
$FORK SYSXT Create a fork process
$FORK1 SYSXT Fork but bypass clearing timeout count
SGTBYT BFCTL Get byte
$GTPKT I0SUB Get an I/0 packet
SGSPKT I0SUB Get a special I/O packet
$GTWRD BFCTL Get word
SINIBF 10SUB Initiate I/0 buffering
SINTSV SYSXT Interrupt save and restore
SINTXT SYSXT Interrupt exit

(continued on next page)

EXECUTIVE SERVICES AVAILABLE TO AN I/0O DRIVER

Table 7-1 (Cont.)

Summary of Executive Service Calls for Drivers

Routine Location in

Name UFD [11,10] Function

SIDALT I0SUB Alternate entry to $IODON

$IJDON I0SUB I/0 done for completing an I/O request

$IOFIN I0SUB I/0 finish for special I/O completion

$M2UBM MEMAP Map UNIBUS memory

SM2UB1 MEMAP Alternate $MPUBM entry for parallel
operations

SPTBYT BFCTL Put byte

$PTWRD BFCTL Put word

SQINSP QUEUE Queue insertion by priority

SR3ILOC MEMAP Relocate address

SR ILOP MEMAP Relocate UNIBUS physical address

SRIQUE I0SUB Queue kernel AST to task

SR IQU1 I0SUB Queue kernel AST to task

$STMAP MEMAP Set up UNIBUS mapping address

$S'TMP1 MEMAP Alternate $STMAP entry for parallel
operations

STSPAR REQSB Test if partition memory resident
for kernel AST

STSTBF I0SUB Test for I/0 buffering

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$ACHKB
$ACHCK

7.4.1 Address Check

These routines are in the file 1I0SUB. A driver can call either
routine to address-check a task buffer while the task is the current
task. The Address Check routines are normally used only by drivers
setting UC.QUE in U.CTL. See Section 8.3 for an example.

Calling Sequences:

CALL SACHKB
or
CALL SACHCK
Description:
i+
; **-SACHKB-ADDRESS CHECK BYTE ALIGNED
; **-SACHCK-ADDRESS CHECK WORD ALIGNED
H
; THIS ROUTINE IS CALLED TO ADDRESS CHECK A BLOCK OF MEMORY TO SEE WHETHER
; IT LIES WITHIN THE ADDRESS SPACE OF THE CURRENT TASK.
H
; INPUTS:
i
; RO=STARTING ADDRESS OF THE BLOCK TO BE CHECKED.
H R1=LENGTH OF THE BLOCK TO BE CHECKED IN BYTES.
H
; OUTPUTS:
i
; C=1 IF ADDRESS CHECK FAILED.
; C=0 IF ADDRESS CHECK SUCCEEDED.
i
H R2=ADDRESS OF WINDOW BLOCK MAPPING BUFFER
; (FOR PRIV TASKS SEE NOTE.)
H
; RO AND R3 ARE PRESERVED ACROSS CALL.
H
; NOTE: SINCE PRIVILEGED TASK I/0 BUFFERS ARE NOT ADDRESS
; CHECKED, R2 ALWAYS RETURNS A POINTER TO THE FIRST
; WINDOW BLOCK. CHECKPOINTING AND SHUFFLING OF COMMONS
; WILL STILL WORK PROPERLY PROVIDED THAT A PRIVILEGED
; TASK NEVER SPECIFIES AN I/O INTO A COMMON WHICH IT
; ALLOWS TO REMAIN CHECKPOINTABLE AND SHUFFLEABLE.
-
Notes:

In RSX-11M-PLUS Version 2.0, almost all drivers will wish to use
the alternate routines $CKBFB/$CKBFW which correctly maintain the
attachment and partition I/O count mechanism 1in addition to
address checking the user buffer. 1If the driver completes all
references to the buffer in the 1initiation routine (that is,
fills the buffer and calls $IOFIN, rather than queueing the
packet and/or starting a transfer which 1is completed via
interrupt service) then it is permissible to use $ACHKB/$ACHCK.
See Section 7.4.6 for a description of $CKBFB/SCKBFW and Section
8.3 for an example.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$ALOCB

7.4.2 Allocate Core Buffer
This routine is in the file CORAL.
Calliny Sequences:
CALL SALOCB
or
CALL SALOC1

Description:

+
*4=$A OCB=ALLOCATE CORE BUFFER
wre$ALOC1eALLOCATE CORE BUFFER (ALTERNATE ENTRY)

THIS ROUTINE IS CALLED TO ALLOCATE AN EXEC CORE BUFFER, THE ALLOCATION
ALGORITHM IS FIRST FIT AND BLOCKS ARE ALLOCATED IN MULTIPLES OF FOUR

BYTES,

“e me vo 15 wa e we

INPUTS

RA=ADORESS OF CCORE ALLOCATION LISTHEAD=2 IF ENTRY AT $ALOCY,
R1=SIZE OF THE CORE BUFFER TO ALLOCATE IN BYTES,

QUTPUTS

C=1 IF INSUFFICIENT CORE IS AVAILABLE TO ALLOCATE THE BLOCK,
C=? IF THE BLOCK IS ALLOCATED,

RosADDRESS OF THE ALLOCATED BLOCK,

R1=LENGTH OF BLOCK ALLOCATED

w8 %8 %s we S8 ve e we we we “we we wa

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$ASUMR

7.4.3 Assign UNIBUS Mapping Registers

This routine is in the file MEMAP. It is used only for PDP-11/70 NPR
devices requiring UNIBUS Mapping Registers when 22-bit memory

addressing is enabled. Normally, it is not called directly by an 1I/0
driver. Rather, it is called from within the $STMAP routine. Refer
to Section 7.3 for a discussion.

Calling Sequence:

CALL $ASUMR

Description:

-

**«$ASUMR=ASSIGN UNIBUS MAPPING REGISTERS

THIS ROUTINE IS CALLED TO ASSIGN A CONTIGUOUS SET OF UMR’S, NOTE THAT
FOR THE SAKE OF SPEED, THE LINK WORD OF EACH MAPPING ASSIGNMENT BLOCK
POINTS TO THE UMR ADDRESS (2ND) WORD OF THE BLOCK, NOY THE FIRST wWORD,
THE CURRENT STATE OF UMR ASSIGNMENT IS REPRESENTED BY A LINKED LIST OF
MAPPING ASSIGNMENT BLOCKS, EACH BLOCK CONTAINING THE ADDRESS OF THE
FIRST UMR ASSIGNED AND THE NUMBER OF UMR’S ASSIGNED TIMES 4, THE
BLOCKS ARE LINKED IN THE ORDER OF INCREASING FIRST UMR ADDRESS,

INPUTS:

RAsPOINTER TO a& MAPPING REGISTER ASSIGNMENT BLOCK,
M UMRN(R W) SNUMBER OF UMK®S KEQUIRED = 4,

QUTPUTS:
ALL REGISTERS ARE PRESERVED,

C=0 IF THE UMR®S WEWE SUCCESSFULLY ASSIGNED,
ALL FIELDS OF THE MAPPING REGISTER ASSIGNMENT BLOCK
ARE INITIALIZED AND THE BLOCK IS LINKED INTO
THE ASSIGNMENT LIST,
C=1 IF TrE UMR®S COULD NOT HE ASSIGNED,

S8 e SE Ne Ne e “e TE e Ve NS Te e w6 WE V6 e e we we e wa wa we e wo

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$BLKCK
$BLKC1
$BLKC2

7.4.4 Check Logical Block

This routine is in the file MDSUB. The output from this routine is
used by disk drivers as input to the $CVLBN routine to handle logical
block numbers in data transfers.

Callirg Sequence:
CALL $BLKCK
or
CALL $BLKC?2
Description:

S
**_-SBLKCK-LOGICAL BLOCK CHECK ROUTINE

**_SBLKC1-LOGICAL BLOCK CHECK ROUTINE (ALTERNATE ENTRY)
**_.SBLKC2-LOGICAL BLOCK CHECK ROUTINE (ALTERNATE ENTRY FOR QUEUE OPT)

THIS ROUTINE IS CALLED BY I/O DEVICE DRIVERS TO CHECK THE STARTING
AND ENDING LOGICAL BLOCK NUMBERS OF AN I/O TRANSFER TO A FILE
STRUCTURED DEVICE. IF THE RANGE OF BLOCKS IS NOT LEGAL, THEN $IODON
IS ENTERED WITH A FINAL STATUS OF "IE.BLK" AND A RETURN TO THE
DRIVER'S INITIATOR ENTRY POINT IS EXECUTED. ELSE A RETURN TO THE
DRIVER IS EXECUTED.

e Nu SE Se Ne Ne we N N

$BLKC2 RETURNS TO $QOPDN IN $DRQRQ IF THERE IS AN ERROR INSTEAD OF
THE DRIVER'S INITIATOR ENTRY POINT. THIS ALLOWS THE QUEUE
OPTIMIZATION CODE TO USE BLKCK

INPUTS:

R1=ADDRESS OF I/0 PACKET.
R5=ADDRESS OF THE UCB.

OUTPUTS:

IF THE CHECK FAILS, THEN S$IODON IS ENTERED WITH A FINAL STATUS
OF "IE.BLK"™ AND A RETURN TO THE DRIVER'S INITIATOR ENTRY POINT
IS EXECUTED.

IF THE CHECK SUCCEEDS, THEN THE FOLLOWING REGISTERS ARE RETURNED
RO=LOW PART OF LOGICAL BLOCK NUMBER.
R1=POINTS TO I.PRM+12 (LOW PART OF USER LBN)
R2=HIGH PART OF LOGICAL BLOCK NUMBER.
R3=ADDRESS OF I/0O PACKET.

N Ne NE N6 Ne e NP NE NE NE we N Se NE Se Ne Ne Ne e wo wo

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

$BLXIO

7.4.5 Move Block of Data
This routine is in file BFCTL.
Calling Sequence:

CALL SBLXIO

Description:

“+

**-SBLXIO~MOVE BLOCK OF DATA.
THIS ROUTINE IS CALLED TO MOVE DATA IN MEMORY IN A MAPPED SYSTEM.
INPUTS:

RO=NUMBER OF BYTES TO MOVE.
R1=SOURCE APR5 BIAS. :
R2=SOURCE DISPLACEMENT.
R3=DESTINATION APR6 BIAS.
R4=DESTINATION DISPLACEMENT.

OUTPUTS:

DESCRIBED MOVE IS ACCOMPLISHED.
RO ALTERED
R1,R3 PRESERVED

R2,R4 POINT TO LAST BYTE OF SOURCE AND DESTINATION + 1

NOTE: THE COUNT INPUT IN RO MUST NOT BE ZERO AND IT MUST NOT
BE LARGE ENOUGH TO CROSS APR BOUNDARIES (THIS TYPICALLY
MEANS A MAXIMUM OF 4K-63).

WO Ne N Ne NE Ne NG NE Ne Ne NE N N6 Ne We NE W Ne We w4 W6 we “o W

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

$CKEFI

$CKBFR
$CKBFW
$CKEFB

7.4.6 Check I/0 Buffer
These -outines are in file EXESB.
Calling Sequences:
CALL SCKBFB (or appropriate entry name)
Descrintion:

+

**_SCKBFI-CHECK I/0 BUFFER FOR I-SPACE (OVERLAY) ACCESS
**_SCKBFR-CHECK I/0 BUFFER FOR READ-ONLY (BYTE) ACCESS
**-SCKBFW-CHECK I/0 BUFFER FOR READ-WRITE (WORD) ACCESS
**-SCKBFB-CHECK I/0 BUFFER FOR READ-WRITE (BYTE) ACCESS

THESE ROUTINES ARE CALLED TO ADDRESS CHECK AN I/O BUFFER
ASSOCIATED WITH THE CURRENT (UNDER CONSTRUCTION) I/O PACKET.

IF THE ADDRESS CHECK PASSES, THEN AN ATTEMPT IS MADE TO POINT ONE
OF THE ATTACHMENT DESCRIPTOR POINTERS AT THE ASSOCIATED ADB. THIS
WILL HAVE ONE OF THE FOLLOWING OUTCOMES:

1) - THERE IS CURRENTLY NO ATTACHMENT POINTER IN THE PACKET TO THIS
ADB, AND THE POINTERS AREN'T FULL. A POINTER IS FILLED IN AND
THE A.ICC, P.IOC FIELDS FOR THIS I/O ARE INCREMENTED. THIS IS
THE "NORMAL" SUCCESSFUL CASE.

2) - THERE IS ALREADY ONE POINTER TO THIS ADB. THE PACKET IS
UNTOUCHED, AS ARE THE A.IOC AND P,IOC FIELDS, AND THE CHECK
IS CONSIDERED SUCCESSFUL. THE IMPLICATION OF NOT INCREMENTING
A.IOC AND P.IOC IS THAT DRIVERS AND ACPS MAY NOT RELEASE
BUFFERS FOR AN I/O REQUEST ONE AT A TIME, I.E. THE DRIVER
SHOULD NOT CALL S$DECIO DIRECTLY, BUT SHOULD CALL S$IODON OR
$DECAL AFTER ALL BUFFER ACCESS HAS COMPLETED.

3) - THERE ARE ALREADY TWO POINTERS, NONE OF THEM TO THIS ATTACHMENT
DESCRIPTOR, THIS IS CONSIDERED A CHECK FAILURE AND RETURN
IS MADE WITH CARRY SET.

INPUTS:

RO=STARTING ADDRESS OF BLOCK TO BE CHECKED
R1=LENGTH OF BUFFER TO BE CHECKED

SATTPT=ADDRESS OF I.AADA IN CURRENT I/O PACKET
HEADER OF THE SUBJECT TASK IS MAPPED THROUGH KISAR6

OUTPUTS:

C=0 CHECK AND PACKET UPDAT SUCCESSFUL
I.AADA OR I.AADA+2 POINTS TO THE ADB
A.IOC, P.IOC INCREMENTED
C=1 CHECK UNSUCCESSFUL OR PACKET COULD NOT BE FILLED IN

WO e WE NE N NE Ne NG Ne Ve NE Ne NE e Ne NE NG Ne Ne e we e Ne NS N6 Ne Ne Ne Ne Ne %o Ne %e Se N0 W We we s Ne we W& wo

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

$CLINS

7.4.7 Clock Queue Insertion
This routine is in the file QUEUE.
Calling Sequence:

CALL SCLINS
Description:

+
**_SCLINS-CLOCK QUEUE INSERTION

THIS ROUTINE IS CALLED TO MAKE AN ENTRY IN THE CLOCK QUEUE. THE ENTRY
IS INSERTED SUCH THAT THE CLOCK QUEUE IS ORDERED IN ASCENDING TIME.
THUS THE FRONT ENTRIES ARE MOST IMMINENT AND THE BACK LEAST.

INPUTS:

RO=ADDRESS OF THE CLOCK QUEUE ENTRY CORE BLOCK.
R1=HIGH ORDER HALF OF DELTA TIME.

R2=LOW ORDER HALF OF DELTA TIME.

R4=REQUEST TYPE.

R5=ADDRESS OF REQUESTING TCB OR REQUEST IDENTIFIER.

OUTPUTS:

THE CLOCK QUEUE ENTRY IS INSERTED IN THE CLOCK QUEUE ACCORDING
TO THE TIME THAT IT WILL COME DUE.

NOTE:
ON MULTIPROCESSOR SYSTEMS, A REQUEST WITH TYPE C.SYST!100000
WILL BE EXECUTED ON A PRATICULAR UNIBUS RUN, WITH URM
SPECIFIED IN C.URM. TYPE C.CYST REQUESTS ON MP SYSTEMS ARE
DEFAULTED TO RUN ON ANY UNIBUS RUN, WHICH IN PRACTICE WILL
RESULT IN THE REQUEST EXECUTING ON THE CPU WHICH OWNS THE
CLOCK. (S$CKURM)

We e e N M VO Ne We NG Ne We WE e e Ne Ne NE NP NE We We We We We Ne We we W

EXECUTIVE SERVICES AVAILABLE TO AN I/0O DRIVER

$CVLBN

7.4.8 Convert Logical Block Number

This routine is in the file MDSUB. The input to this routine 1is the
same as the output from the $BLKCK routine. Typically, a disk driver
calls chis routine to convert a logical block number to a physical
disk address. The routine accesses the U.PRM fields in the driver
data base unit control block. These fields contain the sector, track,
and cy7linder parameters for the type of disk supported. Refer to the
descriotion of the U.PRM fields in Section 4.4.4.

Calling Sequence:
CALL SCVLBN

Descripotion:

+

*x=SCVLBN=CONVERT LOGICAL BLOCK NUMBER TO DISK PARAMETERS

THIS SUBROUTINE WILL CONVERT THE SPECIFIED LOGICAL BLOCKX NUMBER
TO A SECTOR/TRACK/CYLINDER ADDRESS,

INPUTS

(SAME AS $BLKCK OUTPUTS)
R@SLOW PART OF LBN
R2sHIGH PART QOF LBN
R331/0 PACKET ADDRESS
RS=UCB ADDRESS

QUTPUTS
RA=SECTOR NUMBER

R13TRACK NUMBER
R2zCYLINDER NUMBER

TE TE T TE T e TE Ne Ve e NE N N W T4 e T Ne we

-
1]

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$SDEACB

7.4.9 Deallocate Core Buffer
This routine is in the file CORAL.
Calling sequences:
CALL SDEACB
or
CALL $DEAC1

Description:

A

*x=$DEACB=OEALLOCATE CORE BUFFER
waa$DEACI=0EALLOCATE CORE BUFFER (ALTERNATE ENTRY)

THIS ROUTINE IS CALLED TO DEALLOCATE AN EXEC CORE BUFFER, THE BLOCK IS
INSERTED INTO THE FREE BLOCK CHAIN B8Y CORE ADDRESS, IF AN ADJACENT
BLOCK IS CURRENTLY FREE, THEN THE Tw0 BLOCKS ARE MERGED AND INSERTED
IN THE FREE BLOCK ChaIN,

INPUTS:
RPzADDRESS OF THE CORE BUFFER TO BE DEALLOCATED,
R1=SIZE OF THE CORE BUFFER 'TO DEALLOCATE IM BYTES,
R3zADDRESS OF CORE ALLOCATION LISTHEADe2 IF ENTRY AT 3DEACH,
QUTPUTS:

THE CORE BLQOCK IS MERGED INTO THE FREE CORE CHAIN BY CORE
ADDRESS &AN 1S AGCQMERATED [F NECESSARY w1Tw ADJACENT BLOCKS,

N9 e Ve TE NE Ne %e Ne Se "6 N WE TE TE We e e e W we

EXECUTIVE SERVICES AVAILABLE TO AN I/0O DRIVER

$DEUMR

7.4.10 Deassign UNIBUS Mapping Registers
This routine is in the file MEMAP. It is used only for NPR devices
requiring UNIBUS Mapping Registers when 22-bit addressing is enabled.
Normally, it is not called directly by an I/O driver. Rather, it |is
calle¢c from within the $SIODON routine. Refer to Section 7.3 for a
discussion.
Callirg Sequence:

CALL SDEUMR

Description:

-

*ke§NEUMNDEASSIGN LNIBUS MAPPING REGISTERS
THIS ROUTINE IS CALLED TO NEASSIGN A CONTIGUOUS BLOCK OF UMR®S, IFf
THE MAPPING ASSIGNMENT BLOCK IS NOT I~ THE LIST, NO ACTION IS TAKEN,
NOTE THAT FOR THF SAXE OF ASSIGN™ENT SPEED, THE LINK WORD POINTS TO
THE UMR ADDRESS (2ND) wORD UF THE ASSIGMMENT BLOCK,
INPUTS

R2=sPOINTER TO ASSIGNMENT ELOCK,
OUTPUTS

Ry AND Ri ARE PRESERVED,

e e Ne %o e N6 NP e e %o e e we ~e we Se

EXECUTIVE SERVICES AVAILABLE TO AN 1/0 DRIVER

$DVMSG

7.4.11 Device Message Output
Device Message Output is in file IOSUB.
Calling Sequence:

CALL $DVMSG

Description:

+

**e$DVMSG=DEVICE MESSAGE QUTPUT

THIS ROUTINE IS CALLED TO SUBMIT A MESSAGE TO THME TASK FERMINATION
NOTIFICATION TASK, MESSAGES ARE EITHER DEVICE RELATED OR A CHECKPOINT
WRITE FAILURE FROM THE LOADER,

INPUTSS

R2=MESSAGE NUMBER,
RSsADDRESS OF THE UCB Ok TCB THAT THE MESSAGE APPLIES TO,

OUTPUTSS

A FOUR WORD PACKET IS ALLOCATED, R@ AND RS ARE STORED IN THE
SECOND AND THIRD WORDS RESPECTIVELY, AND THE PACKET IS THREADED
INTO THE TASK TERMINATION NOTIFICATION TASK MESSAGE QUEUE,

NOTE: IF THE TASK TERMINATION NOTIFICATION TASK IS NOT INSTALLED
OR NO STORAGE CAN BE OBTAINED, THEN THE MESSAGE REQUEST
1S IGNORED,

TS TE WE WG TE Ve VI Ve Ve WO We e O Ve VO WS WA we V¢ e we s

Note:
Drivers use only two codes in calling $DVMSG: T.NDNR (device not
ready) and T.NDSE (select error). $SDVMSG can be set up and
called as follows:
MOV #T.NDNR,RO

or

MOV #T .NDSE, RO
CALL $DVMSG

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$FORK

7.4.12 Fork

Fork i3 in the file SYSXT. A driver calls $FORK to switch from a
partially interruptable 1level (its state following a call on S$INTSV)
to a fi1lly interruptable level.

Calling sequence:

CALL SFORK

Description:

-+

*#+$FORKeFORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS CALLED FROM AN I/0 DRIVER TO CREATE A SYSTEM PROCESS THAT
WILL RETURN TO THE DRIVER AT STACK DEPTH ZERO TO FINISH PROCESSING,

INPUTSS
RS=2ADDRESS OF THE UCB FOR THE UNIT BEING PROCESSED,
A(SP)=RETURN ADDRESS TO CALLER,
2(SP)=RETURN ADDRESS TO CALLERS CALLER,
QU PUTS:
REGISTERS RS AND R4 ARE SAVED IN THE CONTROLLER FORK BLOCK AND

A SYSTEM PROCESS IS CREATED, THE PROCESS IS LINKED TO THE FORK
QUEUE AND A JUMP TO SINTXT 1S EXECUTED,

TE WO e NE I WE we %e e s NS ne ve 8 %o w8 w8 e

Notes:

1. SFORK cannot be called unless S$INTSV has been previously
called or S$SINTSI has run. The fork-processing routine
assumes that the Executive has set up entry conditions.

2. A driver's current timeout count 1is cleared 1in calls to
$FORK. This protects the driver from synchronization
problems that can occur when an I/0 request and the timeout
for that request happen at the same time. After a return
from a call to SFORK, a driver's timeout code will not be

entered.

If the clearing of the timeout count is not desired, a driver
has two alternatives:

a. Perform timeout operations by directly inserting elements
in the <clock queue (refer to the description of the
SCLINS routine).

b. Perform necessary initialization, including clearing
S.STS 1in the SCB to zero (establishing the controller as
not busy), and call the $FORK1l routine rather than $FORK.
Calling SFORK1l bypasses the c¢learing of the current
timeout count.

3. The driver must not have any information on the stack when
$FORK is called.

7-18

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$FORK1

7.4.13 Forkl
Forkl is in the file SYSXT. A driver calls S$FORKl1l to bypass the
clearing of its timeout count when it switches from a partially

interruptable level to a fully interruptable level (refer also to the
description of the $FORK routine).

Calling Sequence:

CALL $SFORK1

Description:

+

*%e$FORK|«FORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS AN ALTERNATE ENTRY TO CREATE A SYSTEM PROCESS AND
SAVE REGISTER RS,

INPUTS S

RU=ADORESS OF THE LAST »ORD OF A 3 «ORD FORK BLOCK PLUS 2,
RS=REGISTER TO BE SAVED IN THE FORK BLOCK,

OUTPUTS?

REGISTER kS IS SAVEDR IMN THE SPECIFIED FORK BLOCK AND A SYSTEM
PROCESS 1S CREATED, THE PHOCESS IS LINKED TU THE FORX QUEUE
AND & JUMP TO SINTXT IS EXECUTED.,

R5 1S PRESERVED FOR CALLERS CALLER,

TS Ve %S e NP Ve e WE e 6 T e e WG e " we “o

Notes:
1. A 5-word fork block is required for calls to $FORK1.

2. When a 5-word fork block is used, the driver must initialize
the fifth word with the base address (in 32-word blocks) of
the driver partition. This address can be obtained from the
fifth word of the standard fork block in the SCB.

3. The driver must not have any information on the stack when
$FORK1l is called.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$GTBYT

7.4.14 Get Byte

Get Byte is in the file BFCTL. Get Byte manipulates words U.BUF and
U.BUF+2 in the UCB.

Calling sequence:
CALL SGTBYT

Description:

+

*he$GTBYTeGET nMEXT KYTE FROM USERK BUFFEK
THIS RKCQUTINE IS CALLED TO GET THE NEXT BYTE FROM THE USER BUFFER
AND RETURN IT TG THE CALLER OM THE STACK, AFTER THE BYTE HAS BEEN
FETCHED, THE NEXT RYTE ADDRESS 1S INCREMENTED,
INPUTS:

R5zANDDRESS OF THE UCBHE THAT CONTAINS THE BUFFER POINTERS,
QUTPUTS

THE NEXT BYTE IS FETCHED FROM THE USER BUFFER AND RETURNED
TU THE CALLER ON THE STACK, THE NEXT BYTE ADDRESS IS INCREMENTED,

ALL REGISTE~S ARE PRESERVED ACROSS CALL,

VO NE NE e Ve Ve TE Ne W Ve e e LI we e T8 e e

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$GTPKT
$GSPKT

7.4.15 Get Packet

Get Packet and Get Special Packet are in the file 1IOSUB. The
recommended way to use S$GTPKT is to use the GTPKT$ macro call defined
in Section 4.3. Usage of $GSPKT 1is described briefly 1in Section
1.4.7.

Calling Sequences:

CALL SGTPKT

or

CALL $GSPKT

Description:

NE NS Ne Ne e Ne e NE e Ne e NE WE Ve W Ne Nh e NE NE We e N W WE We We e We We e e e 80 N6 N N6 we e We W we

+

**_SGTPKT-GET I/0 PACKET FROM REQUEST QUEUE
**-SGSPKT-GET SELECTIVE I/0 PACKET FROM REQUEST QUEUE

THIS ROUTINE IS CALLED BY DEVICE DRIVERS TO DEQUEUE THE NEXT I/0 REQUEST TO
PROCESS. IF THE DEVICE CONTROLLER IS BUSY, THEN A CARRY SET INDICATION IS
RETURNED TO THE CALLER. ELSE AN ATTEMPT IS MADE TO DEQUEUE THE NEXT REQUEST
FROM THE CONTROLLER QUEUE. IF NO REQUEST CAN BE DEQUEUED, THEN A CARRY

SET INDICATION IS RETURNED TO THE CALLER. ELSE THE CONTROLLER IS SET BUSY AND
A CARRY CLEAR INDICATION IS RETURNED TO THE CALLER.

IF QUEUE OPTIMIZATION IS SUPPORTED AND ENABLED FOR THE DEVICE
THE APROPRIATE PACKET FOR THE CURRENT OPTIMIZATION ALGORITHM

IS RETURNED. THREE ALGORITHMS ARE SUPPORTED: NEAREST CYLINDER,
ELEVATOR, AND C-SCAN. ALL THREE ALGORITHMS INCORPORATE A
FAIRNESS COUNT. IF THE FIRST PACKET ON THE LIST IS PASSED OVER
MORE THAN "FCOUNT" TIMES, IT IS DONE IMMEDIATELY.

THE ALTERNATE ENTRY POINT $GSPKT IS INTENDED FOR USE BY DRIVERS WHICH
SUPPORT PARALLEL OPERATIONS ON A SINGLE UNIT, A COMMON EXAMPLE BEING
FULL DUPLEX. SUCH DRIVERS ARE EXPECTED TO LOOK TO THE SYSTEM AS IF
THEY ARE ALWAYS FREE, WHILE MAINTAINING THE STATUS OF ALL PARALLEL
OPERATIONS INTERNALLY WITHIN THEIR OWN DEVICE DATA STRUCTURES.
PARALLELISM IS ACCOMPLISHED BY HANDLING DRIVER-DEFINED CLASSES OF I/0
FUNCTION CODES IN PARALLEL WITH EACH OTHER. FOR EXAMPLE A FULL-DUPLEX
DRIVER WOULD HANDLE INPUT REQUESTS IN PARALLEL WITH OUTPUT REQUESTS.
A DRIVER CALLS $GSPKT WHEN IT WANTS TO DEQUEUE A PACKET WHOSE I/O
FUNCTION CODE BELONGS TO A CERTAIN CLASS. WHICH FUNCTIONS QUALIFY IS
DETERMINED BY AN ACCEPTANCE ROUTINE IN THE DRIVER WHOSE ADDRESS IS
PASSED TO $GSPKT IN R2. THE ACCEPTANCE ROUTINE IS CALLED BY $GSPKT
EACH TIME A PACKET IS FOUND IN THE QUEUE WHICH IS ELIGIBLE TO BE
DEQUEUED. THE ACCEPTANCE ROUTINE IS THEN EXPECTED TO TAKE ONE OF THE
FOLLOWING THREE ACTIONS:

1. RETURN WITH CARRY CLEAR IF THE PACKET SHOULD BE
DEQUEUED. IN THIS CASE $GSPKT PROCEEDS AS S$GTPKT
NORMALLY WOULD ON DEQUEUEING THE PACKET.

2. RETURN WITH CARRY SET IF THE PACKET SHOULD NOT BE
DEQUEUED. IN THIS CASE $GSPKT WILL CONTINUE THE SCAN
OF THE I/0 QUEUE.

$GTPKT

$GSPKT (Cont.)

e e N e Ne No N e So

O Ne NE NP NE Ne N N N NG NE Ne N NP N6 NE NG N6 NE NE Ne WO N Ne Ne we we SN

3.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

ADD THE CONSTANT GSSPSA TO THE STACK POINTER TO ABORT
THE SCAN WITH NO FURTHER ACTION.

THE ACCEPTANCE ROUTINE MUST SAVE AND RESTORE ANY REGISTERS WHICH IT
INTENDS TO MODIFY. WHEN A PACKET IS DEQUEUED VIA S$GSPKT, THE
FOLLOWING NORMAL $GTPKT ACTIONS DO NOT OCCUR:

NOTE:

INPUTS:

OUTPUTS:

NOTE:

FILLING IN OF U.BUF, U.BUF+2 AND U.CNT. THESE FIELDS
ARE AVAILABLE FOR DRIVER-SPECIFIC USE.

BUSYING OF UCB AND SCB.

EXECUTION OF $CFORK TO GET TO PROPER PROCESSOR (MULTI-
PROCESSOR SYSTEMS).

SGSPKT MAY NOT BE USED BY A DRIVER WHICH SUPPORTS
QUEUE OPTIMIZATION.

R2=ADDRESS OF DRIVER'S ACCEPTANCE ROUTINE (IF CALL AT $GSPKT).
R5=ADDRESS OF THE UCB OF THE CONTROLLER TO GET A PACKET FOR.

C=1 IF CONTROLLER IS BUSY OR NO REQUEST CAN BE DEQUEUED.
C=0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED.

R1=ADDRESS OF THE I/0O PACKET.
R2=PHYSICAL UNIT NUMBER.

R3=CONTROLLER INDEX.

R4=ADDRESS OF THE STATUS CONTROL BLCCK.
R5=ADDRESS OF THE UNIT CONTROL BLOCK.

R4 AND R5 ARE DESTROYED BY THIS ROUTINE.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$GTWRD

7.4.16 Get Word

Get Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2
in the UCB.

Calling Sequence:
CALL SGTWRD

Description:

+

* ke SGTWRD=GET NEXT w(ORD FRO“ USER BUFFER
THIS KOUTINE IS CALLED TO GET THE NEXT wORD FROM THE USER BUFFER
AND RETURN T TG THWE CALLE% OMN THE STACK, AFTER THE WORD HAS BEEN
FETCHED, THE MNEXT w0ORD ADDRESS IS CaALCULATED,
INPUTS S

R5zaDORESS (F THE UCK THAT CONTAINS THE BUFFER POINTERS,
OUTPUTS:

THE NEXT wORD IS FETCHED FROM THE USER BUFFER AND RETURNED
TO THE CALLER ON THE STACK, THE NEXT WORD ADDRESS IS CALCULATED,

ALL REGISTERS ARE PRESERVED ACROSS CallL,

8 %6 e NE NE TE Wa T WE We We o W6 s we o we wo

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

SINIBF

7.4.17 1Initiate I/0 Buffering
This routine is in the file iOSUB.
Calling Sequence:

CALL SINIBF

Description:

+

**_SINIBF-INITIATE I/0 BUFFERING
THIS ROUTINE INITIATES I/0O BUFFERING BY DOING THE FOLLOWING:
1. DECREMENT THE TASK'S I/0 COUNT.
2. INCREMENT THE TASK'S BUFFERED I/O COUNT
3. INITIATE CHECKPOINTING IF A REQUEST IS PENDING
INPUTS:
R3=ADDRESS OF I/O PACKET FOR I/O REQUEST.
OUTPUTS:

R3 IS PRESERVED.,

WO MO N Ne Ne W N6 N Ne Ne e Ne Ne ws Ne we we we wo

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

SINTSV

7.4.18 1Interrupt Save

Interrupt Save is in the file SYSXT. The recommended way to use
SINTSV is to use the INTSVS$ macro call described in Section 4.3.

Calling Sequence:
CALL SINTSV, PRn
n has a range of 0-7.

Description:

+

k=S INTSV=INTERPUPT SAVE
*ne$INTSE=INTERFUPT SAVE FCR ERRORLOGGING DEVICES

THIS ROUTINE IS CALLED FROM AN INTERRUPT SERVICE ROUTINE wWHEN AN
INTERKUPT IS NOT GOING TO BE IMMEDIATELY DISMISSED, A SWITCH TO

THE SYSTEM STACK IS EXECUTED IF THE CURRENT STACK DEPTH IS ¢i, WHMEN
THE INTERRUPT SERVICE ROUTINE FINISHES ITS PROCESSING, IT EITHER FORKS
s JUMPS TO SINTXT, OR EXECUTES A& RETURN,

INPUTS

4(SP)=PS wORD PUSHED BY INTERRUPT,
2(SP)sPC wORD PUSHED BY INTERRUPT,
Q(SP)=SAVED RS PUSHED BY *JSR RS,$INTSV’,
V(RS)sNEw PROCESSOR PRIORITY,

OUTPUTS

REGISTER R4 IS PUSHED ONTO THE CURRENT STACK AND THE CURRENT
STACK DEPTH IS DECREMENTED, IF THE RESULT 1S ZERO, THEN

& SWITCH TO THE SYSTEM STACK 1S EXECUTED, THE NEW PROCESSOR
STATUS IS SET AND A CO=ROUTINE CALL TO THE CALLER IS EXECUTED
R4 IS SET WITH THE CONTROLLER INDEX*2, WHICH IS DETERMINED
FROM THE PSW AT ENTRY,

WS e TE e NE TE e TS Ve WO WG VO e U e WE Ve e W e O SO Ve We wa we

Note:

A system macro, INTSVS, is provided to simplify the coding of
standard interrupt entry processing. See Section 4.3.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

SINTXT

7.4.19 Interrupt Exit
Interrupt Exit is in the file SYSXT.

Callinc Sequence:

JVP SINTXT

Description:

.
*wwSINTXT=INTERRUPT EXIT

THIS ROUTINE MAY BE CALLED VIA A JMP TO EXIT FROM AN INTERRUPT,
INPUTS

2(SP)=INTERRUPT SAVE RETURN ADDRESS,
QUTPUTS

A RETURN TO INTERRUPT SAVE IS EXECUTED,

e e %e We NE e Ne “e “e e s we wo

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$IOALT/SIODON

7.4.20 I/0 Done Alternate Entry and I/0 Done
These routines are in the file IOSUB.

Calling Sequences:

CALL SIOALT
CALL $IODON

Description:

P
xS I0ALT=1/0 DONE (ALTERNATE ENTRY)
*»x=$J0DON=1/0 DONE

.

THIS ROUTINE 1S CALLED BY DEVICE DRIVERS AT THE COMPLETION OF AN 1/0 REGUEST
TO DO FINAL PROCESSING, THE UNIT AND CONTROLLER ARE SET IDLE AND SIOFIN IS
ENTERED TO FINISH THE PROCESSING,

INPUTS
RZzFIKRST 1/0 STATUS wORD,

R1=SECOND I/0 STATUS wORD,
R2=STARTING AND FINAL ERQQR RETRY COUNTS IF ERROR LOGGING

DEVICE,
RS=ADDRESS OF THE UNIT CONTROL BLOCK OF ThHE UNIT BEING COMPLETED,
(SP)=RETURN ADDRESS TO DRIVER’S CALLER,) TM@9S

NOTE® IF ENTRY 1S AT $IDALT, THEN R1 IS CLEAR TO SIGNIFY THAT THE
SECOND STATUS =(0RD IS ZERO,

NUTFUTS:
THE UNIT anD CONTROLLER AWE SET IDLE,

#32ADLRESS 0OF THE CURRENT 1/0 PACKET,

NS %E NE Ve Ne % N6 TE N6 N6 NE e WP BE VS WS V6 Te W6 e e Ve ws we

Note:

R4 is destroyed when either of these routines 1is called. The
routines call $IOFIN, which destroys R4.

These routines push the address of routine $DQUMR onto the stack
before returning to the driver. This precludes the use of the
stack for temporary data storage by drivers when calling these
routines.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$IOFIN

7.4.21 1/0 Finish

I/0 Fiaish is in the file IOSUB. Most drivers do not call I/0 Finish,
but yo>u should be aware that this routine is executed when a driver
calls 3IOALT or $IODON. A driver that references an I/0 packet before
it is queued (bit UC.QUE set--see Section 8.3 for an example) calls
I/0 Fiaish if the driver finds an error while preprocessing the 1I/0

packet.
Callinj Sequence:

CALL SIOFIN

Description:

+

“xe$ JOFIN=I/0 FINISH

THIS ROUTINE IS CALLED T0O FINISH I/0 PROCESSING IN CASES WHERE THE UNIT AND
CONTROLLER ARE NOT 70 BE DECLARED IDLE, IF THE TASK wHICH ISSUED THE

1/0 HAS HAD A RECENT MAPPING CHANGE WHICH MAY HAVE UNMAPPED ITS 1/0

STATUS BLOCK, THE I/0 PACKET IS QUEUED TO THE FRONT OF ITS ASY QUEUE

YO fE COMPLETED LATER IN SFINBF BY CALLING SIOFIN AGAIN,

INPLTS

R@=FIRST 1/0 STATUS wORD,

R1=SECOND 1/0 STATUS «ORD,

R3zADDRESS OF THE I/0 REQUEST PACKET,
OUTFUTS

THE FOLLOwWING ACTIONS ARE PERFORMED

1=THE FINAL I/0 STATUS VALUES ARE STORED IN THE 1/0 STATUS BLOCK IF
ONE WwAS SPECIFIED,

2=ALL ASSOCIATED I/0 COUNTS ARE DECREMENTED AND TS,RDN 18
CLEARED IN CASE THE TASK WAS BLOCKED FOR I1/0 RUNDOWN,
T3,MPC IS CLEARED IF THE TASK I/0 COUNT GOES 7O ZERO YO
INDICATE THAT THE I/0 COUNT WENT TO ZERQO AFTER A MAPPING
CHANGE,

Je]F *TS,CkR’ IS SET, THEN IT IS CLEARED AND CHECKPOINTING OF
THE TASK IS INITIATED,

4=IF AN AST SERVICE ROUTINE wAS SPECIFIED, THEN AN AST I8 QUEUED
FOR THE TASK, ELSE THE I/0 PACKET IS DEALLOCATED,

S=A SIGNIFICANT EVENT OR EQUIVALENT IS DECLARED,
NOTEs R4 IS DESTROYED BY THIS ROUTINE,

WO WE WD TE e TE TE N TE WE TR Ve TE e TE We e VO NE NE WE N SO WO Ve W Ve S8 & We V6 T we ws Ve s we we

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

$SMPUBM

7.4.22 Map UNIBUS to Memory

This routine is in the file MEMAP. It is used only for NPR devices
requiring UNIBUS Mapping Registers when 22-bit memory addressing is
enabled. See Section 7.3 for a discussion.

Calling Sequence:

CALL SMPUBM

Description:

e
;] Rk=SMPUBM=MAP UNIBUS TO MEMORY

-

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO LOAD THE
NECESSARY UNIBUS MAP REGISTERS TO EFFECT A TRANSFER TO MAIN MEMe
ORY ON AN 11/70 PROCESSOR WITH EXTENDED MEMORY,

INPUTS

R4=ADDRESS OF DEVICE SCB,
RSaADDRESS OF DEVICE ucse,

QUTPUTSt

THE UNIBUS MAP REGISTERS NECESSARY TO EFFECT THE TRANSFER
ARE LOADED,

NOTEs REGISTER R3 IS PRESERVED ACROSS CalLi,

e T N e e O VO e T e T e S W W =

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

$MPUB1

7.4.23 Map UNIBUS to Memory (Alternate Entry)

This routine is in file MEMAP. It is used only for NPR devices that
require UNIBUS Mapping Registers when 22-bit memory addressing is
enabled and for support parallel operations.

Calling Sequences:

CALL SMPUB1

Description:

+

*hke§MPUB1=MAP UNIBUS TO MEMORY (ALTERNATE ENTRY),
THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE ORIVERS TO LOAD THE
NECESSARY UNIBUS MAP REGISTERS TO EFFECT A TRANSFER TO MAIN
MEMORY ON AN 1{/70 PROCESSOR WITH EXTENDED MEMORY, THIS ALTERNATE
ENTRY POINT ALLOWS THE DRIVER TO SPECIFY A NON=STANDARD UMR MAPPING
ASSIGNMENT RBLOCK,
INPUTS S

RV=ADODRESS OF A UMR MAPPING ASSIGNMENT BLOCK,
QUTPUTS:

THE UNJBUS ™MAP REGISTERS NECESSARY TO EFFECT THE
TRANSFER ARE LOADED,

NOTEs "EGISTER #3 IS PRESERVED ACROSS CALL,

TE Ne SE Te N W N NE N Te e N Ve e we e wF e o we

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$SPTBYT

7.4.24 Put Byte

Put Byte is in the file BFCTL. Put Byte manipulates words U.BUF and
U.BUF+2 in the UCB.

Calling Sequence:
CALL SPTBYT

Description:

+

*x=$PTBYT=PUT NEXT BYTE IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A BYTE IN THE NEXT LOCATION IN

USER BUFFER, AFTER THE BYTt HAS BEEN STORED, THE NEXT BYTE ADDRESS
IS INCREMENTED,

INPUTS

RSsADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS,
2(SP)=BYTE TO BE STORED IN THE NEXT LOCATION OF THE USER BUFFER,

OUTPUTS}

THE BYTE IS STORED IN THE USER BUFFER AND REMOVED FROM
THE STACK, THE NEXT BYTE ADDRESS IS INCREMENTED,

ALL REGISTERS ARE PRESERVED ACROSS CaLL,

e We e TE TE NE WE e VO V6 We TE Ve Ve e Ve we ws Ve

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$PTWRD

7.4.25 Put Word

Put Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2
in the UCB.

Calling Sequence:
CALL SPTWRD

Description:

+

w*=SPTWRDePUT NEXT WORD IN USER BUFFER

THIS ROUTINE IS CALED TO PUT A wORD IN THE NEXT LOCATION IN

USER BUFFER, AFTER THE WORD HAS BEEN STORED, THE NEXT WORD ADDRESS
18 CALCULATED,

INPUTS

RS52ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS,
2(SP)sWORD TO BE STORED IN THE NEXT LOCATION OF THE BUFFER,

OUTPUTS

THE WORD IS STORED IN THE USER BUFFER AND REMOVED FROM
THE STACK, THE NEXT WORD ADDRESS IS CALCULATED,

ALL REGISTERS ARE PRESERVED ACROSS CALL.

NS G WE WO TE TE WG T Ve NG W e %e e W e e we W

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$QINSP

7.4.26 Queue Insertion by Priority
This routine is in the file QUEUE. A driver may call $QINSP to insert
into the 1I/0 queue an I/O packet that the Executive has not already
placed in the queue. Queue Insertion by Priority 1is wused only by
drivers setting UC.QUE in U.CTL. See Section 8.3 for an example.
Calling Sequence:

CALL $QINSP

Description:

+*

**eSQINSP=QUEUE INSERTION BY PRIORITY
THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN A PRIORITY ORDERED
LIST, THE LIST IS SEARCHED UNTIL AN ENTRY IS FOUND THAT HAS A
LOWER PRIORITY OR THE END OF THME LIST IS REACHED, THE NEW
ENTRY I8 THEN LINKED INTO THE LIST AT THE APPROPRIATE POINT,
INPUTS

ROsADDRESS OF THE TwOD WORD LISTHEAD,

R{sADDRESS OF THE ENTRY TO BE INSERTED,
OUTPUTS:

THE ENTRY IS LINKED INTO THE LIST BY PRIORITY,

R® AND Rl ARE PRESERVED ACROSS CALL,

T NG NG W WO NG TE T We VO T Ve WS WO VO Ve e Ve we we

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$RELOC

7.4.27 Relocate

Relocate is in the file MEMAP. A driver may call $RELOC to relocate a
task wvirtual address while the task is the current task. Relocate is
normally used only by drivers setting UC.QUE in U.CTL. See Section
8.3 for an example.

Calling Sequence:

CALL SRELOC

Description:

1+
3 **=SRELOC-RELOCATE USER VIRTUAL ADDRESS

-~

THIS ROUTINE IS CALLED TO TRANSFORM A 16 BIT USER VIRTUAL ADDRESS
INTO A RELOCATION BIAS AND DISPLACEMENT IN BLOCK RELATIVE TO APRG6,

INPUTS ¢
ROsUSER VIRTUAL ADDRESS TO RELOCATE,
OUTPUTS:

R{=RELOCATION BIAS TO BE LOADED INTO PARe,
R2=DISPLACEMENT IN BLOCK PLUS 140020 (PAR6 BLAS),

R2 AND R3 ARE PRESERVED ACROSS CALL.

e e %o e e we Se Ne s we w8 %o we we

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

SRELOP

7.4.28 Relocate UNIBUS Physical Address
This routine is in the file MEMAP,
Calling Sequence:

CALL SRELOP

Description:

+

*xeSRELOP=RELOCATE UNIBUS PHYSICAL ADDRESS

THIS ROUTINE RELOCATES A UNIBUS PHYSICAL ADDRESS TO A KISAR6
BIAS AND DISPLACEMENT,

INPUTS:

RO=BYTE OFFSET FROM ADDRESS IN U.BUF+1 AND U,BUF+?2
R4U=SCB ADDRESS
RSeUCB ADODRESS
U,BUF+1(RS)=HIGH ORDER BITS OF PHYSICAL ADDRESS
UsBUF+2(RS)=L0w ORDER BITS OF PHYSICAL ADDRESS

OUTPUTSt

KISAR6BCALCULATED BIAS (MAPPED SYSTEM)
Ri=REAL ADDRESS OR DISPLACEMENT

e TE WS TR WE TE TE NG e Ve Ve W W N6 we W e w6 wE

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$SREQUE
$REQU1

7.4.29 Queue Kernel AST to Task
This routine is in module IOSUB.

Calling Sequence:

CALL SREQUE
or

CALL SREQU1
Description:

e

; **-SREQUE-REQUEUE A REGION LOAD AST TO A TASK AST
; **~SREQU1-REQUEUE A REGION LOAD AST TO A TASK AST (ALTERNATE ENTRY)

THESE ROUTINES ARE USED TO QUEUE A TASK KERNEL AST WHICH HAS BEEN
USED AS A REGION LOAD AST BACK AS A TASK AST. THE BUFFERED I/0
COUNT OF THE TASK IS DECREMENTED IF ENTRY AT S$REQUE.

INPUTS:
RO=TCB ADDRESS OF ASSOCIATED TASK

R3=ADDRESS OF PACKET TO BE QUEUED

OUTPUTS:
NONE.

WO WE NS M. Ne Ne N Ne Ne Ne N e w

EXECUTIVE SERVICES AVAILABLE TO AN I/0 DRIVER

$STMAP

7.4.30 Set Up UNIBUS Mapping Address

This routine is in the file MEMAP. It is used only for NPR devices
requiring UNIBUS Mapping Registers when 22-bit memory addressing is
enabled. See Section 7.3 for a discussion.

Calling Sequence:
CALL $STMAP

Description:

1

¢ =xe$STMAP=SET UP UNIBUS MAPPING ADDRESS

'

¢ THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO SET UP THE

¢ UNIBUS MAPPING ADDRESS, FIRST ASSIGNING THE UMR’S, 1IF THE UMR’S

¢+ CANNOT BE ALLOCATED, THE DRIVER’S MAPPING ASSIGNMENT BLOCK IS PLACED
g IN A WAIT QUEUE AND A RETURN TO THE DRIVER’S CALLER I8 EXECUTED, THE
¢ ASSIGNMENT BLOCK wILL EVENTUALLY BE DEQUEUED WHEN TME UMR’S ARE

¢ AVAILABLE AND THE DRIVER wILL BE REMAPPED AND RETURNED TO WITH Ri=RS
¢ PRESERVED AND THE NORMAL OUTPUTS OF THIS ROUTINE, THE DRIVER'’S

¢ CONTEXT I8 STORED IN THE ASSIGNMENT BLOCK AND FORK BLOCK WHILE IT IS
s BLOCKED AND IN THE wAIT QUEUE, ONCE A DRIVER’S MAPPING ASSIGNMENT

¢ BLOCK IS PLACED IN THE UMR WwAIT QUEUE, IT IS NOT REMOVED FROM THE

t+ QUEUE UNTIL THE UMR’S ARE SUCCESSFULLY ASSIGNED, THIS STRATEGY

3 ASSURES THAT WAITING DRIVERS WILL BE SERVICED FIFO AND THAT DRIVER’S
¢ WITW LARGE REQUESTS FOR UMR’S WILL NOT WAIT INDEFINATELY,

3 INPUTSI

I} R4=ADDRESS OF DEVICE SC8,
’ RS=ADDRESS OF DEVICE uCB.
y (SP)SRETURN TO DRIVER’S CALLER,

¢ OUTPUTS1

' UNIBUS MAP ADDRESSES ARE SET UP IN THE DEVICE UCB AND THE
" ACTUAL PHYSICAL ADDRESS IS MOVED TO THE S8CB,

¥
3 NOTE® REGISTERS R1, R2, AND R3 ARE PRESERVED ACROSS CalLL,

ie

Note:

This routine pushes the address of routine $DQUMR+2 onto the
stack before returning to the caller. This precludes the use of
the stack for temporary data storage by drivers when calling this
routine.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$STMP1

7.4.31 Set Up UNIBUS Mapping Address (Alternate Entry)

This routine is in file MEMAP. It is used only for NPR devices that
requir=s UNIBUS Mapping Registers when 22-bit memory addressing is
enabledl and for support parallel operations.

Calling Sequence:

CALL SSTMP1

Description:

+

**=§STMP1eSET UP UNIBUS MAPPING ADDRESS (ALTERNATE ENTRY),

THIS ENTRY CODE SETS UP AN ALTERNATE DATA STRUCTURE USED AS

A UMR MAPPING ASSIGNMENT BLOCK AND CONTEXT STORAGE BLOCK, IN

THE SAME MANNER AS $STMAP USES THE FORK BLOCK AND MAPPING

BLOCK IN THE SCB, KRB, THE FORMAT OF THE STRUCTURE IS AS FOLLOWS}

l ! 4 WORDS USED FOR SAVING
{ { DRIVER’S CONTEXT IN CASE
| { UMRS CAN’T BE MAPPED

! ! IMMEDIATELY,

i {
6 WORDS USED AS A UMR
MAPPING ASSIGNMENT BLOCK,

] !
1 i
{ !
{ !
| !

INPUTS S
RP=ADDRESS OF THE DATA STRUCTURE DEPICTED ABOVE,
Ry=z4aDDRESS QF DEVICE scCs,
RS=ADDRESS 0OF DEVICE uUCRh,

QUTPUTS

DATA STRUCTURE POINTERS SET UP FOR ENTRY TO $STMP2 IN SSTMAP,

TE TH e NE e NS SE N6 B SE e S Ve N8 Ne We %6 “e we ve N S8 S0 e W8 S8 V6 “e % w4 wa e e wo

Note:

This routine pushes the address of routine $DQUMR+2 onto the
stack before returning to the caller. This precludes the use of
the stack for temporary data storage by drivers when calling this
roatine.

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$TSPAR

7.4.32 Test if Partition Memory Resident for Kernel AST
This routine is in file REQSB.

Calling Sequence:
CALL STSPAR
Description:
**-STSPAR-TEST IF PARTITION IS IN MEMORY FOR KERNEL AST

THIS ROUTINE IS CALLED TO CHECK A REGION FOR MEMEORY RESIDENCE
TO DETERMINE IF IT IS SAFE TO SERVICE A KERNEL AST (E.G. COPY
A BUFFER) INTO THE REGION. IF THE REGION IS CHECKPOINTED OR
CURRENTLY BEING CHECKPOINTED, THEN A REGION LOAD AST IS QUEUED
AND THE REGION IS ACCESSED ON THE TASKS BEHALF.

INPUTS:
RO=ADDRESS OF PACKET PEING PROCESSED
R1=PCB ADDRESS OF REGION
R5=TCB ADDRESS OF ASSOCIATED TASK

OUTPUTS:
C=0 IF REGION IS MEMORY RESIDENT
C=1 IF REGION IS NON-RESIDENT. IN THIS CASE THE REGION AST
HAS BEEN QUEUED, ETC.

e Ne Mo N Mo Ne Ne N N e Ne NG W We N % W N

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

$TSTBF

7.4.33 Test for I/0 Buffering
This routine is in file IOSUB.
Calling Sequence:

CALL $TSTBF

Description:

+

**_-STSTBF-TEST IF I/O BUFFERING CAN BE INITIATED
THIS ROUTINE DETERMINES IF A GIVEN I/O REQUEST IS ELIGIBLE FOR I/0
BUFFERING, AND IF SO IT STORES THE PCB ADDRESS OF THE REGION INTO
WHICH THE TRANSFER IS TO OCCUR IN I.PRM+16 OF THE I/0 PACKET.
INPUTS:

R3=ADDRESS OF I/O PACKET FOR I/0O REQUEST
OUTPUTS:

R3 IS PRESERVED.

C=0 IF I/0 BUFFERING CAN BE INITIATED.

C=1 IF I/0 BUFFERING CAN NOT BE INITIATED.

WO N WE Np Mo N NP N Ne Ne We e e W we NE w6 W N

[}

CHAPTER 8

SAMPLE DRIVER CODE

This chapter presents three sections of code. Sections 8.1 and 8.2
show the driver data base and driver code for a conventional driver.
Section 8.3 gives a coding example from a driver that inhibits the
automatic packet queuing in QIO processing so that it might
address-check and relocate a special user buffer. Both of the sample
drivers are in UFD [200,1] on the distribution kit.

In addition to the examples shown in this chapter, you should review
the source <code for one or more standard DIGITAL-supplied drivers.

You should also examine the files SYSTB.MAC and XXTAB.MAC, which
contain data structures created at system generation.

8.1 SAMPLE DRIVER DATA BASE
The following example shows the source code to create the data base

for the driver that supports the DL device. The data base allows for
one controller and one unit,

.TITLE DLTAB
.IDENT /09.0/
SYSTEM TABLES

MACRO LIBRARY CALLS

~e Ne we we we

.MCALL CLKDF$
.MCALL HWDDF$
.MCALL SCBDF$
.MCALL UCBDFS$

CLKDF$;DEFINE CLOCK BLOCK OFFSETS
HWDDF$;DEFINE HARDWARE REGISTERS
SCBDF$,,SYSDEF ;DEFINE SCB OFFSETS
UCBDF$;DEFINE UCB OFFSETS
H
;
;
SDLDAT: :
;
; DL CTB
H
.WORD 0 ; L.ICB
$CTBO:
.WORD $CTB1 ; L.LNK
.ASCII /DL/ ; L.NAM
.WORD .DCO ; L.DCB
.BYTE 1 ; L.NUM

SDLCTB::

« Ne o~

$SDLTBL=0
SDLDCB : :
.DCO:

e e ~
-
0n
-3
1]

.DLO

DLND=.

e we w

SDLA::

LUrSe ~e ~e

DLO::

DLA:

.BYTE

.WORD

.WORD
-WORD
.ASCII
.BYTE
.WORD
.WORD
.WORD
.WORD

.WORD

.WORD
.WORD
.BYTE
.BYTE
.WORD
.WORD
.WORD
<WORD
.WORD
.WORD
.BYTE
.WORD

-.BYTE
.BYTE
.BYTE
«WORD
.WORD
.WORD
.BYTE
.WORD

SAMPLE DRIVER CODE

0

SDLA

.DC1
.DLO

/DL/

0,0
DLND-DLST
$DLTBL

~. wo

.
’

* we we we ws owe

’

L.STS
L.KRB

DL DCB

LOADABLE DLDRV

D.LNK
D.UCB
D.NAM
D.UNIT
D.UCBL
D.DSP

177477,70,0,177200,377,0,0,377 ; D.MSK

0

0

.DCO
.=2

4

D.PCB

DL UCB'S

UC.ALG!UC.NPRIUC.PWF!1,US.MNT

0,US.OFL

DV.DIR!DV.MSD!DV.UMDIDV.F11!DV.MNT

0
50000

512.

$DLO
0,0,0,0,0,0,0,0
40.,2.

512.

PR5
160/4
0*2,0
0!KS.OFL
174400
DLA-$DLA
0,0

0

LR VI YL LTI VI TR 1Y

CONTIGUOUS S CB HERE

.WORD
.WORD
.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.BYTE
.BYTE
.WORD
. BLKW
-WORD

~ =
|
o N

Q.
-

~
o

QOO OOOC O

S2.LOG!S2.CON
SDLA

[« le)NeoNe N

Ne Ne N we Ne w8 Ne NE Mo Ne Ne W we we we

DLA KRB

K.PRI
K.VCT
K.CON, K.IOC
K.STS
K.CSR
K.OFF
K.HPU
K.OWN

FOR DL

S.LHD AND K.CRQ
S.FRK

S.KS5

S.PKT

S.CTM

S.ITM

S.STS

S.ST3

S.ST2

S.KRB

S.RCNT

S.ROFF

S.EMB

MAPPING ASSIGNMENT BLOCK
KE.RHB

SAMPLE DRIVER CODE

~e wo

$SDLEND: :

.DC1 =0 END OF DCB LIST FOR DL:

-

SCTB1 = 0 END OF CTB LIST FOR DL:

~e

. END

8.2 SAMPLE DRIVER CODE
The following example shows the source code for the DL driver.

Comments beginning with ';;;' indicate that the instruction is being
executed at a priority level greater than or equal to 5.

.TITLE DLDRV
.IDENT /01/

RL11-RL0O1/02 DISK DRIVER

~e ~o we

.MCALL HWDDF$, PKTDF$
HWDDF$;DEFINE HARDWARE REGISTERS
PKTDF$;DEFINE I/0 PACKET OFFSETS

EQUATED SYMBOLS

~e we e

RETRY= 8. ;CONTROLLER ERROR RETRY COUNT
RLBPT= 512.%*20. ;BYTES PER SURFACE
RLSPU= 15. ;TIME TO SPIN UP

RL11 DEVICE REGISTER OFFSETS

e we wo

RLCS= 0 ;CONTROL STATUS REGISTER
RLBA= 2 ;BUS ADDRESS REGISTER
RLDA= 4 ;DISK ADDRESS REGISTER
RLMP= 6 ;MULTIPURPOSE REGISTER

RLCS BIT ASSIGNMENTS

~ we we

ERR= 100000 ;COMPOSITE ERROR

DE= 040000 ;DRIVE ERROR

NXM= 020000 ;NONEXISTENT MEMORY
DLT= 010000 ;DATA LATE

HNF= 010000 ;HEADER NOT FOUND

DCK= 004000 ; DATA CHECK ERROR
HCRC= 004000 ;HEADER CRC ERROR

OPI= 002000) ;OPERATION INCOMPLETE
DRDY= 1 ;DRIVE READY

WCHK= 2 ;WRITE CHECK FUNCTION
WRITE= 2 ;WRITE OFFSET

GSTS= 4 ;GET DRIVE STATUS FUNCTION
SEEK= 6 ;SEEK FUNCTION

RDH= 10 ;READ HEADERS FUNCTION
READ= 14 ;READ DATA FUNCTION

SAMPLE DRIVER CODE

IE= 100 ; INTERRUPT ENABLE
CRDY= 200 ;CONTROLLER READY

RLDA STATUS CODES

~e wo we

MRK= 1 ;MARKER BIT
STS= 2 ;GET STATUS BIT

SN= 4 ;SIGN BIT FOR SEEK

RST= 10 ;DRIVE RESET BIT

HS= 20 ;HEAD SELECT BIT FOR DIFFERENCE
REV= 200 MRK ;REVERSE SEEK DIFFERENCE WORD

RLMP GET STATUS BIT ASSIGNMENTS

~e ~o we

WDE= 100000 ;WRITE DATA ERROR

CHE= 040000 ; CURRENT HEAD ERROR

WLS= 020000 ;WRITE LOCK STATUS

SKTO= 010000 ;SEEK TIMEOUT ERROR

SPD= 004000 ; SPEED ERROR

WGE= 002000 ;WRITE GATE ERROR

VC= 001000 ; VOLUME CHECK

DSE= 000400 ;DRIVE SELECT ERROR

DT= 000200 ;DRIVE TYPE

HSS= 000100 ;HEAD SELECT STATUS

Co= 000040 ;COVER OPEN

HH= 000020 ;HEADS HOME

BH= 000010 ;BRUSHES HOME

SLM= 000005 ;DRIVE IN SEEK-LINEAR MODE STATE
LOCAL DATA

CONTROLLER IMPURE DATA TABLES
THESE ARE INDEXED BY THE CONTROLLER NUMBER

e we we N we we

RTTBL: .BLKW R$SL11 ;RETRY COUNT FOR CURRENT OPERATION
PRMSV: .BLKW R$SL11*5 ; PARAMETER SAVE AREA FOR WRITE CHECK

DRIVER DISPATCH TABLE

~. W we

DDTS DL,R$SL11,NEW=Y ;GENERATE DISPATCH TABLE

+

**-DLINI-RL11-RL01/02 DISK CONTROLLER INITIATOR

THIS ROUTINE IS ENTERED FROM THE QUEUE I/O DIRECTIVE WHEN AN I/O
REQUEST IS QUEUED AND AT THE END OF A PREVIOUS I/O OPERATION TO
PROPAGATE THE EXECUTION OF THE DRIVER. IF THE SPECIFIED CONTROLLER
IS NOT BUSY, THEN AN ATTEMPT IS MADE TO DEQUEUE THE NEXT I/O REQUEST.
ELSE A RETURN TO THE CALLER IS EXECUTED. IF THE DEQUEUE ATTEMPT

IS SUCCESSFUL, THEN THE NEXT I/O OPERATION IS INITIATED. A RETURN
TO THE CALLER IS THEN EXECUTED.

INPUTS:
R5= ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED.

OUTPUTS:
IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS
WAITING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE

Ne Ne WMo NE Ne Mo Mo N5 e e ws we we %o W wp W

SAMPLE DRIVER CODE

; DRIVER INITIATES THE REQUESTED I/O FUNCTION

’

DLINI: GTPKT$ DL,R$SL11 ;GET NEXT I/0 PACKET TO PROCESS

THE FOLLOWING ARGUMENTS ARE RETURNED BY $GTPKT:

R1= ADDRESS OF THE I/0 REQUEST PACKET

R2= PHYSICAL UNIT NUMBER OF THE REQUESTED DRIVE

R3= CONTROLLER INDEX

R4= ADDRESS OF THE STATUS CONTROL BLOCK

R5= ADDRESS OF THE UCB OF THE DRIVE TO BE INITIATED

RL11-RL0O1/02 DISK CONTROLLER I/0 REQUEST PACKET FORMAT:

WD. 00 -- I/O QUEUE THREAD WORD

WD. 01 -- REQUEST PRIORITY, EVENT FLAG NUMBER

WD. 02 -- ADDRESS OF THE TCB OF THE REQUESTOR TASK

WD. 03 —-- POINTER TO 2ND LUN WORD IN REQUESTOR TASK HEADER
WD. 04 -- CONTENTS OF FIRST LUN WORD

WD. 05 -- I/0 FUNCTION CODE

WD. 06 -- VIRTUAL ADDRESS OF I/O STATUS BLOCK

WD. 07 -- RELOCATION BIAS OF I/0 STATUS BLOCK

WD. 10 -- I/0 STATUS BLOCK ADDRESS (DISPLACEMENT + 140000)

WD. 11 -- VIRTUAL ADDRESS OF AST SERVICE ROUTINE

WD. 12 -- MEMORY EXTENSION BITS OF I/0 TRANSFER

WD. 13 -~ BUFFER ADDRESS OF I/O TRANSFER

WD. 14 -- NUMBER OF BYTES TO BE TRANSFERRED

WD. 15 -- NOT USED.

WD, 16 -- LOW BYTE MUST BE ZERO AND HIGH BYTE IS NOT USED

WD. 17 -- LOW PART OF LOGICAL BLOCK NUMBER OF I/O REQUEST

WD, 20 -~ RELOCATION BIAS OF REGISTER BUFFER ELSE NOT USED

WD. 21 -~ REGISTER BUFFER ADDRESS (DISPLACEMENT + 140000) ELSE NOT USED

DRIVER USAGE OF WORDS IN I/O PACKET:
I.PRM+6 (WD. 15) - SEEK DIFFERENCE WORD
I.PRM+10 (WD. 16) - STARTING DISK ADDRESS FOR THIS TRANSFER

We NE NE Ne N We N W We We we W W e WO Ne Ne we N We Ne Ne We we We N6 We Wa W6 We we We we No we

I.PRM+12 (WD. 17) - BYTE COUNT FOR THIS TRANSFER
MOV #RETRY&377,RTTBL(R3) ;SET INITIAL RETRY COUNT
CALL $VOLVD ;VALIDATE VOLUME VALID
BCS 5% ;IF CS WE FAILED
TST RO ; TRANSFER FUNCTION?
BMI 10$;IF MI YES
TST I.PRM+2 (R1) :SIZE THE DISK?
BPL 5$;IF PL NO, ERROR
MoV S.CSR(R4) ,R2 ;RETRIEVE CSR ADDRESS
CALL DLRST ;RESET DRIVE AND GET STATUS
MOV S.PKT (R4),R3 ;RETRIEVE I/O PACKET ADDRESS
MOV I.PRM+14(R3) ,KISAR6 ;SET BUFFER RELOCATION BIAS
MOV I1.PRM+16(R3),R3 ;GET REGISTER BUFFER ADDRESS
CALL REGPAS ;MOVE REGISTERS INTO BUFFER
5$: JMP DLFIN ;FINISH UP
10$: CALL $STMAP ;SET UP UNIBUS MAPPING ADDRESS
MOVB R2,U.BUF+1 (R5) ;SET CURRENT UNIT NUMBER
MOV $IE.IFC&377,R0 ;ASSUME ILLEGAL FUNCTION
BIS #READ!IE,U.BUF (R5) ;ASSUME READ LOGICAL FUNCTION
CMPB $#I10.RLB/256.,I.FCN+1(R1) ;REALLY?
BEQ 20$;IF EQ YES
CMPB #I0.WLB/256.,I.FCN+1(R1) ;WRITE LOGICAL FUNCTION?
BNE 5% ;IF NE NO, EXIT WITH ERROR
SUB #$WRITE,U.BUF (R5) ;CONVERT TO WRITE LOGICAL FUNCTION
20$: MoV #RETRY,RTTBL(R3) ;SET INITIAL RETRY COUNT

SAMPLE DRIVER CODE

MOV I.PRM+12(R1),R0 ;RETRIEVE BLOCK NUMBER

CLR R2 ;CLEAR HIGH ORDER BLOCK NUMBER

BITB #I0.WPB&377,I.FCN(R1) ;PHYSICAL BLOCK FUNCTION?

BN: 358 ;IF NE YES

CALL $BLKCK ;CHECK LOGICAL BLOCK NUMBER

CM>B #I0.WLB/256.,I.FCN+1(R3) ;WRITE FUNCTION?

BN 308 ;IF NE NO

BITB #I0.WLT&377,I.FCN(R3) ;OK TO WRITE ON LAST TRACK?

BN: 308 ;IF NE YES

MO'7 RO,I.PRM+6(R3) ;YES, SAVE STARTING BLOCK NUMBER

ADD #°D<20>,I.PRM+12(R3) ;ADD 1 TRACK'S WORTH OF BLOCKS

CA.L $BLKC1 ;CHECK IF WRITE ON LAST TRACK OF DISK

MO/ I.PRM+6 (R3),R0 ;RESTORE ORIGINAL STARTING BLOCK NUMBER
30%: AS. RO ;CONVERT BLOCKS TO SECTORS
35%: MO/ S.PKT (R4) ,R3 ;RESET I/0 PACKET ADDRESS

CALL $CVLBN ;CONVERT BLOCK NUMBER TO DISK ADDRESS

ROR R1 ;PUT SURFACE BIT IN CARRY

ROI, R2 ;MERGE IT WITH THE CYLIDER NUMBER

ASH #6,R2 ;POSITION CYLINDER AND SURFACE

BIS RO, R2 ;MERGE SECTOR WITH CYLINDER AND SURFACE

MOV R2,I.PRM+10(R3) ;SAVE STARTING DISK ADDRESS

MOV U.CNT(R5),I.PRM+12(R3) ;ASSUME ONLY ONE XFER NEEDED

MOV #°D<40>,R1 ;SET SECTORS/SURFACE

SUE RO, R1 ;CALCULATE SECTORS LEFT ON SURFACE

SW2.B R1 ;GET BYTES LEFT ON SURFACE

CMP U.CNT(RS) ,R1 ;ARE ADDITIONAL TRANSFERS REQUIRED?

BLOS 40% ;IF LOS NO

MOV R1,I.PRM+12(R3) ;SET BYTE COUNT FOR FIRST TRANSFER
40%: MOVB S.CON(R4) ,R1 ;RETRIEVE CONTROLLER INDEX

MUIL #5,R1 ;FORM INDEX INTO PARAMETER SAVE AREA

ADID #PRMSV, R1 ; POINT TO THIS ENTRY

MOV U.BUF (R5), (R1)+ ;SAVE INITIAL PARAMETERS

MOV U.BUF+2 (RS) ,(R1)+ ;...

MOV U.CNT(R5), (R1)+ ;...

MO\ I.PRM+10(R3), (R1)+ ;...

MOV I.PRM+12(R3), (R1)+ ;...

+
THIS SECTION WILL INITIATE THE OPERATION

. we we

DLINIO: CALL $SMPUBM ;MAP UNIBUS TO TRANSFER
MOV S.CSR(R4) ,R2 ;GET ADDRESS OF CSR
MOV S.PKT (R4) ,R3 ;GET ADDRESS OF I/0O PACKET
CLRB U.CW2+1 (R5) ;RESET DRIVE SETTLE DOWN FLAG
CLR I.PRM+6 (R3) ;RESET ERROR DIFFERENCE WORD
MOVB S.ITM(R4),S.CTM(R4) ;SET DEVICE TIMEOUT COUNTER
CALL DLRST ;RESET DRIVE AND GET STATUS
MOV RLMP (R2) ,R1 ;GET THE STATUS INFO
BIC #WLS!DT!HSS,R1 ;REMOVE IRRELEVANT BITS
BIT #DRDY, (R2) ;1S THE DRIVE READY?
BEQ 108 ;IF EQ NO
CMP #HH!BHISLM,R1 ;HEADS, BRUSHES AND STATE OK?
BEQ 203 ;IF EQ YES
10$: BIT3 #US.SPU,U.STS(R5) ;IS DRIVE SPINNING UP?
BNE DLPWF1 ;IF NE YES, WAIT FOR IT TO SPIN UP
MOV #IE.DNR&377,R0 ;SET RETURN ERROR CODE
JMP DLFIN ;EXIT WITH FATAL ERROR
20S: BIC3 $US.SPU,U.STS (R5) ;RESET DRIVE SPINNING UP
MOV I.PRM+10(R3) ,R0 ;RETRIEVE STARTING DISK ADDRESS
CAL. DLDIFF ;CALCULATE DIFFERENCE WORD
DLGO: BEQ 308 ;IF EQ NO SEEK IS NECESSARY
MOV #SEEK,R1 ;GET CODE FOR SEEK FUNCTION
CAL. DLXCT ;EXECUTE THE SEEK
BMI DLEROR ;IF MI ERROR DURING SEEK FUNCTION
30%: ADD #RLMP, R2 ; POINT TO RLMP

SAMPLE DRIVER CODE

MOV I.PRM+12(R3),R1 ;GET BYTE COUNT
ROR R1 ;MAKE IT A WORD COUNT

NEG R1 ;ALSO NEGATIVE

MOV R1, (R2) ; LOAD WORD COUNT

MOV I.PRM+10(R3),-(R2) ;LOAD STARTING DISK ADDRESS
MOV U.BUF+2(R5) ,-(R2) ;LOAD BUS ADDRESS

CALL $BMSET ;SET 1/0 ACTIVE BIT IN MAP

MOV U.BUF (R5) ,-(R2) ;;;LOAD FUNCTION AND GO

+
CANCEL I/O OPERATION IS A NOP FOR FILE STRUCTURED DEVICES.

~ o~

DLCAN: RETURN ;7 :NOP FOR RL11

+

POWERFAIL IS HANDLED VIA THE DEVICE TIMEOUT FACILITY AND
CAUSES NO IMMEDIATE ACTION ON THE UNIT. THE CURRENT TIMEOUT
COUNT IS EXTENDED, THUS IF A UNIT WAS BUSY IT WILL HAVE
SUFFICIENT TIME TO SPIN BACK UP. THE NEXT I/O REQUEST TO ANY
UNIT WILL BE SUSPENDED FOR AT LEAST THE EXTENDED TIMEOUT UNLESS
THE UNIT IS CURRENTLY READY.

N Ne Ne N we e we we

DLPWF: TSTB S.STS(R4) ;IS DRIVE CURRENTLY BUSY?
BEQ DLPWF2 ;IF EQ NO
MOVB #4,S.STS (R4) ;ALLOW FOR A FULL MINUTE TO SPIN UP
DLPWF1: MOVB #RLSPU,S.CTM(R4) ;EXTEND TIMEOUT INCASE UNIT WAS BUSY
DLPWF2: BISB #US.SPU,U.STS(R5) ;SET UNIT SPINNING UP
RETURN H
ths
;i **-SDLINT-RL11-RL0O1/02 DISK CONTROLLER
; INTERRUPT AND ERROR SERVICE ROUTINES
’

.ENABL LSB

SDLINT::INTSVS DL,PR5,R$SL11 ;;;SAVE REGISTERS AND SET PRIORITY

CALL $FORK ;;;CREATE A SYSTEM PROCESS

MOV R4,R3 ;COPY CONTROLLER INDEX

ASRB RTTBL+1 (R3) ;HOME SEEK IN PROGRESS?

BCS DLINIO ;IF CS YES

MOV U.SCB(R5) ,R4 ;GET ADDRESS OF SCB

MOV S.CSR(R4),R2 ;GET ADDRESS OF CSR

MOV #1S.SUC&377,R0 ;ASSUME SUCCESSFUL OPERATION

MOV S.PKT (R4) ,R3 ;RETRIEVE I/0 PACKET ADDRESS

MOV (R2),R1 ;GET CONTENTS OF RLCS

BMI 20$;IF MI AN ERROR OCCURRED

SUB I.PRM+12(R3),U.CNT(R5) ;CALCULATE BYTES LEFT TO XFER

BEQ 70$;IF EQ NONE LEFT

MOV U.CNT(R5),I.PRM+12(R3) ;ASSUME LAST XFER COMING

CMP U.CNT(R5) ,4#RLBPT ;IS THIS THE LAST TRANSFER?

BLOS 10$;IF LOS YES

MOV #RLBPT, I.PRM+12(R3) ;TRANSFER A WHOLE TRACKS WORTH
10$: BIC #CRDY, R1 ;CLEAR CRDY TO START FUNCTION

MOV R1,U.BUF (R5) ; SAVE CURRENT FUNCTION AND ADDRESS BITS

MOV RLBA(R2) ,U.BUF+2(R5) ;SAVE CURRENT BUS ADDRESS

MOV I.PRM+10(R3),R0 ;GET INITIAL DISK ADDRESS

MOV RO, R1 ;COPY DISK ADDRESS

BIS #77,R0 ;UPDATE CYLINDER AND SURFACE ...

INC RO ;... LEAVING SECTOR BITS ZERO

MOV RO,I.PRM+10(R3) ;SAVE NEW DISK ADDRESS

CALL DLDIFO ;CALCULATE MID-TRANSFER DIFFERENCE

JIMP DLGO ;GO DO THE OPERATION
20$: BIT #DRDY, R1 ;IS THE DRIVE READY?

SAMPLE DRIVER CODE

BNE DLEROR ;IF NE YES, GO CHECK FOR ERRORS
25$: MOV3 #3,S.CTM(R4) ;WAIT 3 SECONDS FOR THE DRIVE TO SETTLE
INC3 U.CW2+1 (R5) ;FLAG SETTLE DOWN IN PROGRESS
RETJRN ;
DLEROR: MOV (R2),R1 ;RETRIEVE CONTENTS OF RLCS
MOV #IE.VER&377,R0 ;ASSUME UNRECOVERABLE ERROR
BIT #NXM, R1 ;NON-EXISTENT MEMORY?
BNE 90$;IF NE YES
BIT $DE,R1 ;DRIVE PROBLEMS?
BEQ 408 ;IF EQ NO
CAL. DLGST ;EXECUTE GET DRIVE STATUS FUNCTION
BIT #WGE, RLMP (R2) ;WRITE GATE ERROR?
BEQ 90% ;IF EQ NO
BIT #WLS, RLMP (R2) ;IS THE DRIVE WRITE LOCKED?
BEQ DLRTRY ;IF EQ NO
MOV #IE.WLK&377,R0 ;SET WRITE LOCK ERROR CODE
BR DLFIN ;
40$: BIT #10,U.BUF (R5) ;WRITE CHECK FUNCTION?
BNE DLRTRY ;IF NE NO
BIT #0PI,R1 ;OPERATION INCOMPLETE?
BNE DLRTRY ;IF NE YES
BIT #DCK, R1 ;WRITE CHECK ERROR?
BEQ DLRTRY ;IF EQ NO
MOV BIE.WCK&377,R0 ;YES, SET WRITE CHECK ERROR CODE
BR DLRTRY ;GO RETRY OPERATION IF REQUIRED
70%: BIT3 #I0.WLC&377,I.FCN(R3) ;WRITE WITH WRITE CHECK?
BNE 80$;IF NE YES
BIT3 #US.WCK,U.STS(R5) ;WRITE CHECK ENABLED?
BEQ DLFIN ;IF EQ NO
80$: MOV U.BUF (R5),R1 ;GET CURRENT FUNCTION CODE
BIT ¥WCHK, R1 ;WRITE OR WRITE CHECK FUNCTION?
BEQ DLFIN ;IF EQ NO
BIT #10,R1 ;WAS FUNCTION WRITE CHECK?
BEQ DLFIN ;IF EQ YES
MOV3 S.CON(R4) ,R1 ;RETRIEVE CONTROLLER INDEX
MOV #RETRY, RTTBL (R1) ; RESET RETRY COUNT
MUL #5,R1 ;FORM AN INDEX INTO SAVE AREA
ADD #PRMSV, R1 P
MOV (R1}+,U.BUF (R5) ;RESTORE STARTING PARAMETERS
MOV (R1)+,U.BUF+2 (R5) ;...
MOV (R1)+,U.CNT(R5) ;...
MoV (R1)+,I.PRM+10(R3) ;...
MOV (R1)+,I.PRM+12(R3) ;...
BIC #10,Y.BUF (R5) ;CONVERT TO WRITE CHECK FUNCTION
JIMP DLINIO ;START THE WRITE CHECK
+

FINISH I/ OPERATION

~e ws ~»

90$: MOV #IE.VER&377,R0 ;SET UNSUCCESSFUL OPERATION
DLFIN: MOV S.PKT (R4) ,R2 ;GET ADDRESS OF I/0 PACKET
MOV I.PRM+4 (R2),R1 ;GET TOTAL TRANSFER SIZE
SUB U.CNT (R5),R1 ;CALCULATE BYTES TRANSFERRED
MOV’ S.CON(R4) ,R3 ;RETRIEVE CONTROLLER INDEX
MOV1 RTTBL (R3) ,R2 ;GET FINAL RETRY COUNT
BIS #RETRY*"D<256>,R2 ;MERGE STARTING RETRY COUNT
CAL. $TODON ;FINISH I/0 OPERATION
JIMP DLINI ; PROCESS NEXT REQUEST

+

~e we S o~

**-DLOUT-RL11-RL01/02 DISK CONTROLLER
DEV.CE TIMEOUT ROUTINE

SAMPLE DRIVER CODE

DEVICE TIMEOUT RESULTS IN THE OPERATION BEING REPEATED.
TIMEOUTS ARE USUALLY CAUSED BY A POWER FAILURE BUT MAY ALSO
BE THE RESULT OF A HARDWARE MALFUNCTION.

. we we =

DLOUT: MOV S.PKT(R4),R3 RETRIEVE I/0 PACKET ADDRESS

-

.
’

’
BITB $US.SPU,U.STS(R5) ;;;IS DRIVE SPINNING UP?
BEQ 208 :::IF EQ NO
DECB S.STS (R4) ;; ;HAVE WE WAITED A MINUTE YET?
BNE 108 ;IF NE NO
INCB S.STS (R4) :::; LEAVE CONTROLLER BUSY
BR 308 ;:;LOG DEVICE TIMEOUT
10S$: MTPS #0 ;1 ;ALLOW INTERRUPTS
JMP DLINIO ;RETRY ENTIRE OPERATION
20$: TSTB U.CW2+1 (R5) ;:;IS DRIVE SETTLING DOWN?
BEQ 308 ;+:IF EQ NO
MTPS #0 ;:;YES, ALLOW INTERRUPTS
JMP DLEROR ; PROCESS THE ERROR
308: MTPS #0 ;3 ;ALLOW INTERRUPTS
CALL DLRST :RESET DRIVE
MOV #IE.DNR&377,R0 ;SET DEVICE NOT READY
DLRTRY: MOV S.PKT (R4) ,R1 ;GET I/0 PACKET ADDRESS
BITB $I0.X,I.FCN(R1) ;INHIBIT RETRIES?
BNE DLFIN ;IF NE YES
DECB RTTBL (R3) ;ANY MORE RETRIES LEFT?
BLE DLFIN ;IF LE NO
JMP DLINIO ;YES, RETRY ENTIRE OPERATION
+

**-DLXCT,DLGST,DLRST-RL11-RL01/02 DISK CONTROLLER
FUNCTION EXECUTION ROUTINES

THIS ROUTINE WILL EXECUTE A GET DRIVE STATUS OR ANY
NON-INTERRUPTABLE FUNCTION AND WAIT FOR ITS COMPLETION,

INPUTS:
R1 = FUNCTION CODE
R2 = CSR ADDRESS
R5 = UCB ADDRESS
OUTPUTS:

R1 = CONTENTS OF RLCS (TESTED)
FUNCTION EXECUTED

Ne e Ne e Mo Ne N N Ne e We Ne W W wo we

.ENABL LSB

DLRST: MOV #RST!STS!MRK,RLDA(R2) ;SET MESSAGE CODES IN RLDA
CALL 10$;DO THE DRIVE RESET FIRST
DLGST: MOV #STSIMRK,RLDA (R2) ;SET MESSAGE CODES IN RLDA
10$: MOV #GSTS, R1 ;SET GET STATUS FUNCTION
DLXCT: MOV R1,-(SP) ;SAVE FUNCTION CODE
MOVB U.UNIT(R5),1(SP);MERGE CURRENT DRIVE BITS
MOV (SP)+, (R2) ; LOAD RLCS
20$: BIT #ERR!CRDY, (R2) ;READY OR ERROR?
BEQ 20% ;IF EQ NEITHER
MOV (R2) ,R1 ;SAVE RLCS AND TEST FOR ERRORS
RETURN :

.DSABL LSB

+

**-DLDIFF-RL11-RL01/02 DISK CONTROLLER
CYLINDER ADDRESS DIFFERENCE CALCULATOR

THIS SUBROUTINE CALCULATES THE DIFFERENCE WORD USED IN THE

SEEK OPERATION. IF A HEADER CANNOT BE READ AFTER 16. RETRIES,
AN ERROR WILL BE LOGGED AND A ONE CYLINDER REVERSE SEEK WILL BE
ISSUED. THE SEEK IS FOLLOWED BY A READ HEADERS TO CAUSE AN

L N T T T

Ne we Ne s we we Ne N N

7

FEE YRR

7

INTERRUP.

INPUTS:
RO
R3

i

OUTPUTS:
R1
RLDA =

I.PRM+6

DLDIFF: MQV
10$: MOV

CAILL
BPL
DEC
BGTY
CMp
CAIL
MOV
MOV
MOV
CAIL
BM1
BIC
BI¢
MOVB
MOVB
MOV
RETURN

208: TST

MOV

DLDIFO: CLEk

BIC
BIC
CMF
BEC
MOV
BIC
ASR
ASR
BIC
BIC
SuUB
BCC
NEG
BIS

30$: INC

BIS
MOV
MOV

40$: RETJRN

7
’
’
’

’

’

+

’

DIFFERENCE WORD
LOADED WITH DIFFERENCE WORD

SAMPLE DRIVER CODE

DESIRED DISK ADDRESS
I/0 PACKET ADDRESS

= LOADED WITH DIFFERENCE WORD
IF EQ NO SEEK IS NECESSARY

#RETRY*2, - (SP)
#RDH, R1

DLXCT

208

(SP)

108

(SP)+, (SP)+
DLRST

#REV, RLDA (R2)
#SEEK,R1

#IE.VER&377,R0

DLXCT
DLFIN

#377,R1
$TEIRDH,R]
#1,RTTBL+1 (R3)

;SET READ HEADER RETRY COUNT
;SET CODE FOR READ HEADERS FUNCTION
;EXECUTE THE FUNCTION

;IF PL FUNCTION EXECUTED OK

;ANY RETRIES LEFT?

;IF GT YES

;REMOVE RETRY COUNT AND CALLERS ADDRESS
;RESET DRIVE

;LOAD REVERSE SEEK DIFFERENCE WORD

;GET CODE FOR SEEK FUNCTION

;ASSUME WE WILL FAIL

;EXECUTE THE SEEK

;IF MI WE FAILED

;CLEAR OUT FUNCTION BITS

; LOAD CODES FOR READ HEADER

; INDICATE REVERSE SEEK IN PROGRESS

S.ITM(R4),S.CTM(R4) ;SET DEVICE TIMEOUT COUNTER

R1, (R2)

(sP)+
RLMP (R2) ,R1
I.PRM+6 (R3)
#77,R0
477,R1

RO, R1

40$

RO, - (SP)
#°C<100>, (SP)
(SP)

(SP)

#100, R0
#100,R1
RO,R1

30$

R1

#SN, R1

R1

(SP)+,R1
R1,RLDA (R2)
R1,I.PRM+6(R3)

; LOAD FUNCTION AND GO

;WAIT FOR THE INTERRUPT
;REMOVE RETRY COUNT

;RETRIEVE HEADER WORD

;RESET DIFFERENCE WORD

;MASK OUT SECTOR BITS

Feeoe

;DO WE NEED TO DO A SEEK?

;IF EQ NO

;SAVE DESIRED DISK ADDRESS

; ISOLATE SURFACE BIT

;PUT INTO THE PROPER POSITION
; REMOVE SURFACE BIT

Jeee

;SUBTRACT DESIRED FROM ACTUAL
;IF CC ACTUAL >= DESIRED
;ACTUAL < DESIRED, MAKE POSITIVE DIFFERENCE
;SET SIGN FOR MOVE TO CENTER OF DISK
;SET MARKER BIT

;MERGE IN SURFACE BIT

; LOAD DIFFERENCE WORD

;SAVE DIFFERENCE WORD

1

MOVE THE ZONTROLLER/DRIVE REGISTERS INTO THE SPECIFIED BUFFER.

INPUTS:
R2
R3

REGPAS: MOV

MOV

CSR ADDRESS
BUFFER ADDRESS

(R2) ,(R3)+

RLBA(R2), (R3)+

;MOVE RLCS
;MOVE RLBA

SAMPLE DRIVER CODE

MOV RLDA (R2), (R3)+ ;MOVE RLDA
MOV RLMP (R2), (R3)+ ;MOVE RLMP

CLR (R3)+ ;CLEAR PLACE HOLDERS...

CLR (R3)+ ;+..80 HRC/CON WILL WORK

CALL DLGST ;EXECUTE GET DRIVE STATUS FUNCTION
MOV RLMP (R2) , (R3) ; SAVE DRIVE STATUS

RETURN ;

-+

**_DLKRB-CONTROLLER ON-LINE/OFF-LINE ROUTINE

e e wo we

THIS ROUTINE WILL HANDLE RECONFIGURATION CALLS FOR ON-LINE
CONTROLLER AND OFF-LINE CONTROLLER FOR THE RL11.

INPUTS:
R2 KRB ADDRESS
R3 CTB ADDRESS
C=1 IF OFF-LINE REQUEST
C=0 IF ON-LINE REQUEST

e Ne SE We Ne Ne Ne Ne w6 N W

OUTPUTS:
NONE
DLKRB: BCS DLOFL ;HANDLE OFF-LINE REQUEST

CODE SPECIFIC TO HANDLE THE CONTROLLER COMING ON-LINE.

~e = we

RETURN ;EXIT

CODE SPECIFIC TO HANDLE THE CONTROLLER GOING OFF-LINE

~. we W

DLOFL:

~. e

RETURN

<+

**_DLUCB-UNIT ON-LINE/OFF-LINE ROUTINES

THIS ROUTINE WILL HANDLE RECONFIGURATION CALLS FOR ON-LINE
UNIT AND OFF~LINE UNIT FOR RLO1 AND RLO2 DRIVES.

INPUTS:
R3 = CONTROLLER INDEX
R4 = SCB ADDRESS
R5 = UCB ADDRESS

C=1 IF OFF-LINE REQUEST
C=0 IF ON-LINE REQUEST

N WE NE WE N We We Ne N6 Ne Ne Ne we N wo N

OUTPUTS:
NONE
DLUCB: BCS DLOFLU ;IF CS OFF-LINE REQUEST

CODE SPECIFIC TO BRINGING UNIT ON-LINE.

~o e we

RETURN

~e

i
; CODE SPECIFIC TO TAKING UNIT OFF-LINE.

SAMPLE DRIVER CODE

.
’

DLOFLU:

~e e

RETURN

. END

8.3 HANDLING SPECIAL USER BUFFERS

Some drivers need to handle user buffers in addition to the buffer
that the Executive address-checks and relocates in a normal transfer
request. Address-checking and relocation operations must take place
in the —context of the task 1issuing the I/O request, because the
mapping registers are set for the issuing task. However, in the
normal driver interface, the task context after the call to SGTPKT is
not, in general, that of the issuing task.

Thus, drivers that need to handle special! buffers must be able to
refer to the I/0 packet before it is queued, while the context of the
issuing task is still intact.

The coding shown in this section is an excerpt from a driver that
illustrates the handling of a special user buffer. The key points
are:

1. The UC.QUE bit has been set in the control byte (U.CTL) of
the UCB for each device/unit.

2. The routine (ZZINI) that is defined as the I/0 initiation
entry point in the driver dispatch table (DDT$) macro call
performs the following actions:

a. Retrieves the user virtual address and address-checks it

5. Relocates the virtual address and stores the result back
into the packet

>. Inserts the packet 1into the 1I/O queue and continues
execution 1inline to the entry point BMINI, which calls
$GTPKT

3. The driver propagates its own execution by branching back to
BMINI to call $GTPKT.

.TITLE BMTAB - DATA BASE FOR BLOCK MOVE DRIVER
.IDENT /01/

COPYRIGHT (c) 1981, 1982 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON., NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

B NE Ne e W “e N We NS Ne N Ne ws Se N

MACRO

We Ve e Ne Ne Ne W N N we N we

SBMDAT: :

~e Ne we

SBMDCB: :

.. we w

BMST=,

.BMO::

LIBRARY

-MCALL
«MCALL
«MCALL
«MCALL

CLKDF$
HWDDF$
SCBDFS$
UCBDF$

$BMTBL=0

+WORD
+WORD
+ASCII
.BYTE
+WORD
+WORD

«WORD

+WORD
+WORD
«WORD
+WORD
»WORD
»WORD
»WORD
»WORD

PRO=0

.IF
.WORD
. ENDC

«WORD
«WORD
.BYTE
.BYTE
«WORD

CALLS

CLKDF$
HWDDF$
SCBDF$
UCBDF$

s + SYSDEF

0
.BMO

/BM/
0,1-1
BMND-BMST
$BMTBL

33

=

COO0OOOOW

DF M$$SMUP
0

$BMDCB
=2
UC.QUE, 0
0,US.OFL
DV.REC

SAMPLE DRIVER CODE

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

LOADABLE DATA BASE FOR EXAMPLE BUFFERED I/O DRIVER

;DEFINE CLOCK BLOCK OFFSETS
;DEFINE HARDWARE REGISTERS
;DEFINE SCB OFFSETS
;DEFINE UCB OFFSETS

e Ne We NG NP NE NG W Ne S N Ne “e W we we W

o we we e we

BM DCB

; LOADABLE BMDRV

D.LNK

D.UCB

D.NAM

D.UNIT,D.UNIT+1

D.UCBL

D.DSP

D.MSK - FUNCTION MASKS

LEGAL 0-17 I0.KIL,IO.WLB,IO.ATT
I0.DET

CONTROL 0-17 IO0.KIL,IO.ATT,IO.DET

NOOP 0-17

ACP 0-17

LEGAL 20-37 I0.WVB

CONTROL 20-37

NOOP 20-37
ACP 20-37
D.PCB
BM UCB'S
U.DCB
U.RED

U.CTL,U.STS
U.UNIT,U.ST2
U.CWl

8-13

SAMPLE DRIVER CODE

.WORD 0 ; U.CW2

.WORD 0 ; U.CW3

.WORD 72. ; U.CW4

.WORD $BMO ; U.SCB

.WORD 0 ; U.ATT

.WORD 0,0 ; U.BUF,U.BUF+2

.WORD 0 ; U.CNT
BMND=.
; BM SCB'S
$BMO:: .WORD 0,.-2 ; S.LHD

.WORD 0,0,0,0 ; S.FRK

.WORD 0 ; S.KS5

.WORD 0 ; S.PKT

.BYTE 0,0 ; S.CTM,S.ITM

.BYTE 0,0 : S.STS,S.ST3

.WORD 0 ; S.ST2

.WORD 0 ; S.KRB - NO KRB SINCE NO CONTROLLER
$BMEND: :

.END

.TITLE BMDRV - BLOCK MOVE DRIVER
.IDENT /0l/

+

COPYRIGHT (c) 1981,1982 BY DIGITAL EQUIPMENT CORPORATION.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
OR COP'ED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

THIS IS A SAMPLE DRIVER WHICH DEMONSTRATES HOW TO USE SOME
OF THE MORE SOPHISTICATED EXECUTIVE SERVICES AVAILABLE TO
7/0 DRIVERS. THIS DRIVER DEMONSTRATES:

) THE CHECKING OF ADDITIONAL USER BUFFERS PRIOR TO QUEUEING
AN I/0 PACKET.

) USE OF THE CLOCK QUEUE FROM A DRIVER.

Z) USE OF THE BUFFERED I/O MECHANISM

£) USE OF THE GENERAL BUFFZRED I/O KERNEL AST MECHANISM
£) USE OF REGION LOAD KERNEL ASTS

¢) USE OF BLXIO

THIS DRIVER UNDERSTANDS PRECISELY ONE QIO, WHICH IS:

I0O.WLB,.....,<DEST-BUFFER,LENGTH, TIME, SRC-BUFFER>

OR
IO.WVB

THE DRIVER QUEUES A CLOCK BLOCK FOR TIME TICKS AND AT THE
END OF THAT TIME INTERVAL COPIES THE SOURCE BUFFER TO THE

VO N Ne Ne SE O NE Ne Ne Ne Ne Ve e Ne Se NE NE NG N N6 Ne Ne Ne e N6 Ne Ne Ne e Se e Ne e e wa we wo wa

8-14

~. we wp

~e we wa

WO NE Ne NE N NE VO NG N N NG N N N e NS Ne NE NG NS WE Ne We We N NE me NE Ne NG Me Ne Ng We We We We N6 Wg we wo wo

DESTINATION BUFFER.,

SAMPLE DRIVER CODE

IF POSSIBLE, THE REQUEST IS BUFFERED

INTERNALLY WHILE THE CLOCK REQUEST 1S POSTED.

.MCALL CLKDFS$,

CLKDFS$
PKTDF$

DEFINE MAXIMUM TRANSFER

BUFLIM =

DDTS$

+

100.

PKTDF$

;DEFINE CLOCK BLOCK OFFSETS
;DEFINE I/O PACKET OFFSETS

LENGTH WHICH WILL BE BUFFERED

BM, ,NONE, , ,NEW

k% — BMINI - I/0 INITIATION ENTRY POINT

INPUTS:

DRQIO (BECAUSE THE UC.QUE BIT IS SET IN THE UCB) SETS THE
REGISTERS TO THE FOLLOWING:

R1
R4
R5
OUTPUTS:

IF

ING TO BE PROCESSED,

ADDRESS OF I/0 PACKET
ADDRESS OF SCB
ADDRESS OF UCB

THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS WAIT-

THEN THE REQUEST IS DEQUEUED AND THE I/O OPER-

ATION IS INITIATED.

I/0 REQUEST

I.LNK
I.PRI/I.EFN
1.TCB
I.LN2
I.UCB
I.FCN
1.I0SB
I.I0SB+2
I.I0SB+4
I.I0SB+6
I.PRM
I.PRM+2
I.PRM+4
I.PRM+6
I.PRM+10

I.PRM+12

I.PRM+14
I.PRM+16

. ENABL

LSB

PACKET FORMAT:

I/0 QUEUE THREAD WORD.

REQUEST PRIORITY, EVENT FLAG NUMBER.

ADDRESS OF THE TCB OF THE REQUESTER TASK.

POINTER TO SECOND LUN WORD IN REQUESTER TASK HEADER.
UCB ADDRESS OF DEVICE

I1/0 FUNCTION CODE (IO.WLB).

VIRTUAL ADDRESS OF I/O STATUS BLOCK.

RELOCATION BIAS OF I/0 STATUS BLOCK.

I/0 STATUS BLOCK ADDRESS (DISPLACEMENT + 140000).
VIRTUAL ADDRESS OF AST SERVICE ROUTINE.

RELOCATION BIAS OF SOURCE BUFFER.

BUFFER ADDRESS OF I/O TRANSFER.

NUMBER OF BYTES TO BE TRANSFERED.

TIME DISPLACEMENT IN TICKS

VIRTUAL ADDRES (TO BECOME RELOCATION BIAS) OF
DESTINATION BUFFER

FILLED IN WITH DISPLACEMENT ADDRESS OF DESTINATION
BUFFER

USED TO STORE BUFFER/CLOCK BLOCK ADDRESS

FILLED IN WITH PCB ADDRESS OF OUTPUT BUFFER

~e W we wo we

BMINI:

WE Ve Ne e NI NI NS NG N Ne Ne Ne Ne we W We W we % wp we wo we we we we wo

w. % we wo w

SAMPLE DRIVER CODE

Sehhhkhhkkhhhhhhhhhkhkhhhhhhkhhhkhkhhhhkhkhkhhkhkhkhkkkkhkkhkkhkhhkkkhkhkhkkkhkkhkkhkk

*® *
” INITTIATTION ENTRY POINT *
* *

hkkkhkkhkkhkhkhkkhkhkhkhkhkhkkhhkhkhkdhhhhkhhkhkhkkhhhkhkhhhkhkhkhkkhkhkhkhhhhkhhhkhhhkrhkhhdkk

; PRE-QUEUING INITIALIZE ENTRY POINT

Thkhkhkkhkhkkkkhkhkhkhkdhhkhkhkhkhkhkkhkhkhkkhkhkhkhhkhkhkkhkhkhkhkhkkhkhkhkhkhhkhkhrhkhkhhhkhkkhhkhkk

£ *
x ADDRESS CHECK THE SOURCE BUFFER WHILE THE TASKS *
4 CONTEXT IS LOADED, AND FILL IN THE NECESSARY *
* PARAMETERS IN THE I/0 PACKET *
* *
ehkkkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhhhkhkhhkhkhkhkhkhkhhhkhkhkhkhkhkhkkhkhkhkhhhkhkhkkkhkkhkhk
MOV R1,R3 ; COPY ADDRESS OF I/0 PACKET

MOV I.PRM+10(R1),R0 ; GET VIRTUAL ADDRESS OF SOURCE BUFFER
MOV I.PRM+4 (R3),R1 ; AND LENGTH OF SOURCE BUFFER

e . b - e = = e = = . = " = = . = " > b o = e o e " A o i . o +

! THE INPUT PARAMETERS FOR $CKBFR ARE:

i
| RO STARTING ADDRESS OF BLOCK TO BE CHECKED
l R1 LENGTH OF THE BLOCK TO BE CHECKED
I
1
!

i

$ATTPT = ADDRESS OF I.AADA IN I/0 PACKET

(ESTABLISHED IN DRQIO)

CURRENT TASK HEADER MUST BE MAPPED THROUGH APR 6
(ESTABLISHED BY DIRECTIVE DISPATCHER)

THE OUTPUT PARAMETERS ARE:

|
|
|
]
|
I I.AADA OR I.AADA IN PACKET POINTS TO
!
|
I
I

C = 0 IF CHECK AND PACKET UPDATE SUCCESSFUL
RELATED ADB, P.IOC, A.IOC INCREMENTED
C = 1 IF CHECK UNSUCCESFUL OR I.AADA, I.AADA
ALREADY FILLED IN
S A +
CALL $CKBFR ; CHECK BUFFER, INCREMENT A.IOC AND
; P.IOC FOR APPROPRIATE REGIONS
3cc 10% ; IF CC ALL WAS OK
Ahkhkkhkhkhhkhkhkdhkhkhkhkkhkhkhkhhkhkkhkkkhkhkkkkkkhkkhkkkhhkkhkkkhhkkhkkkhkkhkkhhhkkkhkkkk*k
* *
* SOURCE BUFFER WAS ILLEGAL, FINISH I/O HERE *
* *

kkkkkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhhhkhhkhkhkhhkhkkhhkkkhhkhkhkkkhhkhkkhkkhhkkk

1oV $#IE.SPC&377,R0 ; SET COMPLETION STATUS
ZLR R1 ; AND NUMBER OF BYTES TRANSFERRED

e we Ne we S we We e Ne Ne Ne N6 Ne e we Ne “e N we

Ne Me Ne WO Ny we we ws e We N w8

108

e Ne Ne we w0

LU VIR Y TR TR TR VI PR

SAMPLE DRIVER CODE

THE INPUT PARAMETERS FOR S$IOFIN ARE:

RO = FIRST WORD OF I/O STATUS TO RETURN
R1 = SECOND WORD OF I/0O STATUS TO RETURN

THE OUTPUT PARAMETERS ARE:

|
|
|
|
|
ADDRESS OF I/0 PACKET |
|
|
|
R4 IS DESTROYED |

|

|
|
!
!
I
I R3
I
|
|
I
|

e e - +
CALLR $IOFIN ; COMPLETE I/O AND EXIT DRIVER

khkhkhkhhkhhhhkhhhkhhkhkhkhhhhkhhhhkhhhhkhkhkhkhhkhkhkhkhhkhkhkhhkhkhhhkkhhkhkhkhhkhkhkkhkkkhhkkx
i *
* BUFFER WAS LEGAL, CONVERT VIRTUAL ADDRESS TO *
I ADDRESS DOUBLEWORD AND STORE PARAMETERS :

dkhkhkhkhkhkhkhkhkkhhhkhkhkhkkkhkhkhkkhkhkhkhkhhkhkhhhhkhkhhkhhhkhkhkhkhhhhhkhkhkhhhhhhthkhkk

THE INPUT PARAMETERS FOR $RELOC ARE:

RO = USER VIRTUAL ADDRESS TO RELOCATE

I
I
I
I
| THE OUTPUT PARAMETERS ARE:
I
I
I
I

R1 = APR6 RELOCATION BIAS OF USER BUFFER

R2 = DISPLACEMENT IN BLOCK + 140000
e e +
CALL $RELOC ; RELOCATE BUFFER ADDRESS
MOV R1,I.PRM+10(R3) ; SAVE APR BIAS OF SOURCE BUFFER
MOV R2,I.PRM+12(R3) ; AND DISPLACEMENT ADDRESS
CLR I.PRM+16(R3) ; INDICATE NOT BUFFERED I/O
dAhkkkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhhkhhkhhkkhkhhkhhkhkhkhkhkhkhhhkhhhkhhhhhhhhhhhhhhkhkk
* *
* NOW QUEUE THE PACKET IN THE DEVICE QUEUE *

Thkhhkhkhhhhkhhhkhkhhkhkhkhhkhkhkkhkhkhkhkhkhkhkhkhkhhkhkhkhhhkhkhkhkhkhhhkhkhkhkhhkkhhhhdhdkhkkdhdk

MOV R4,R0 ; COPY POINTER TO I/O QUEUE LISTHEAD
MoV R3,R1 ; AND ADDRESS OF I/0O PACKET
e e +

THE INPUT PARAMETERS FOR $QINSP ARE:

|
I
I
ADDRESS OF THE TWO WORD LISTHEAD |
ADDRESS OF THE PACKET TO BE INSERTED |
|
I
I

R1

I

!

|

| RO
|

|

| NO OUTPUT PARAMETERS
|

CALL SQINSP ; INSERT PACKET IN QUEUE

e e we we we

N Ne Ne Ne Ne e Ne N6 NP Ne Ne N6 Ne e we we we

'BMIN1:

o
Ur
.

LT TR IR TR Y

NE Ne Mo me we we % N %e N N N Ns N

SAMPLE DRIVER CODE

khkkhkhhkhkkhkhkhhhkhkhkhkhhhkhkhhkhkhhkhkhkhkhkhkkhkhkhkhkkhkhkkhkhkhkhkhhkkhkhkhhkkhkhkkkhkkkk

* *
* BEGIN SERIAL PROCESSING OF I/O PACKETS *
* *

khkhkhkhkkhkkhhhhkhhkhhkhkkhkhkhhkhhhhkhkhkhhkhkhhkhkhkkhhkkhhkkhkkkkkkhkhkkhkhkhkkkkk

THE INPUT PARAMETERS FOR $GTPKT ARE:
R5 = ADDRESS OF THE UCB OF REQUESTING UNIT
THE OUTPUT PARAMETERS ARE:

| i
I |
| |
! i
| |
! |
| |
| C I
| ADDRESS OF THE I/O PACKET !
| |
! |
| |
| !
| |
I I

= 0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED
Rl =
R2 = PHYSICAL UNIT NUMBER
R3 = CONTROLLER INDEX
R4 = SCB ADDRESS OF CONTROLLER
R5 = UCB ADDRESS OF UNIT
C = 1 IF UNIT BUSY OR NO PACKETS QUEUED
o +
CALL $SGTPKT ATTEMPT TO GET A REQUEST
3CC 208 IF CC WE GOT ONE

~e wo we

DEVICE BUSY OR QUEUE EMPTY

; REFERENCE LABEL
khkkhkhkhhhkhkhhhkhhhkhhhkhhhdhhhhhhhkhhkhhhhhhhhhhkhhhhhhhhhhhhhhhxhdhhhkk
* *

* ATTEMPT TO ALLOCATE CLOCK BLOCK *
* *

kkhhkkkhkhhhkhhkhhkkhkhkhkhhkhhkhhkhhhhhhhkhkhhkhkhhkkkkhkkhkhkhkkkkhhkhkhkhkhkhkhkhkkk

RETURN

MOV R1,R3 ; COPY I/O PACKET ADDRESS
MoV #C.LGTH, R1 ; SET LENGTH OF CLOCK BLOCK
g N +

THE INPUT PARAMETERS FOR $ALOCB ARE:
Rl = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES)

|
|
I
|
!
THE OUTPUT PARAMETERS ARE: !
|
I
I
|
l
I

C = 0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED
RO = ADDRESS OF THE ALLOCATED BLOCK
R1 = LENGTH OF THE ALLOCATED BLOCK
C = 1 IF NO BLOCK ISCURRENTLY AVAILABLE
ey +
ZALL $ALOCB ; ATTEMPT TO ALLOCATE
3CcC 30$; IF CC SUCCESSFUL
MOV $IE.NOD&377,R0 ; SET I/O STATUS

WE NE Ne Ne WE Ne MO W N NE Ne W %o N we

30%

.. Ne N we we

Ne Ne W N Ne me N W e We N we

e we we o wg

SAMPLE DRIVER CODE

THE INPUT PARAMETERS FOR SIOALT ARE:

RO = FIRST WORD OF I/O STATUS BLOCK
R1 = SECOND WORD OF I/O STATUS BLOCK
R2 = STARTING AND FINAL RETRY COUNTS
R5 = UCB ADDRESS OF UNIT TO COMPLETE

THE OUTPUT PARAMETERS ARE:

I !
I I
I I
I I
| I
! I
[(IF AN ERROR LOGGING DEVICE) |
I !
I !
I |
I |
| R4 IS DESTROYED |
| I

e +
CALL $IOALT ; AND COMPLETE THE I/0

BR BMIN1 ; GO LOOK FOR MORE WORK

MOV RO,I.PRM+14(R3) ; SAVE ADDRESS OF CLOCK BLOCK
dhkhkkkhhkhkkhkkhkhkhhkkhkkkhkkhkhkhkhkhhkhkhkhkhkkkhhkkhkhkhkhkhkkkhkhhkhkhkdkhkhkhkdkkkkkkhkdhkk
* *
* DETERMINE IF I/0 REQUEST IS BUFFERABLE *
* *

khkhdhhkhkhkhhkhkhkhkhkhhkhkhkhhkhkkhkkhkhkkkhkhkhkkhkhkhkhkhhkkhkhhkhkhhkhkhhhkhkhhkhhkhkhhkkhkkkk

THE INPUT PARAMETERS FOR S$TSTBF ARE:
R3 = ADDRESS OF I/O PACKET TO TEST

THE OUTPUT PARAMETERS ARE:

C = 0 IF REQUEST MAY BE BUFFERED

C = 1 IF REQUEST MAY NOT BE BUFFERED
S R +
CALL STSTBF ; TEST FOR BUFFERABLE I/O REQUEST
BCS 40$; IF CS CAN'T ALLOCATE A BUFFER
khhkkkhhkhkhhkhhkhkhkhkhhhkhkhhhkhhhhkhhkhkhhhkhhhkhkhhhkhkrhhkrhkhkhhhhkhhkhhhhhrhhhdkkk
* : *
* ATTEMPT TO ALLOCATE A BUFFER *
* *

khkhdhhkhkhhkhkhhkhkhkkhkhkhhhkhkhkhkkhkhkhkhkkhhhkhkhhkhkhkhhkhhkhhkhkhhkhhhkhkhhkhkhkkhkhdhkkkk

MOV I.PRM+4 (R3),R1 ; GET LENGTH OF BUFFER
CMP R1, #BUFLIM ; BIGGER THAN BUFFER LIMIT ?
BHI 40$; IF HI YES, DON'T BUFFER

We W N e Ne Ne e We Ne Ne w8 e % we

.o we ws we we

e N N s Ne NE Ne W Ne NE Ne e SE Ne we we W

s we W we e

SAMPLE DRIVER CODE

THE INPUT PARAMETERS FOR $ALOCB ARE:
R1 = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES)

I
!
I
I
THE OUTPUT PARAMETERS ARE: {
|
I
i
I
[

C =0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED
RO = ADDRESS OF THE ALLOCATED BLOCK
R1 = LENGTH OF THE ALLOCATED BLOCK
C = 1 IF NO BLOCK ISCURRENTLY AVAILABLE
e +
CALL $ALOCB ; TRY TO ALLOCATE BUFFER
BCS 40$; IF CS COULDN'T GET ONE

kkkhkkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhhhkhkhkkkhkhkkkhkhhkhhkhkhkhkhhkhhkhhkhhhhkhhhkhhhhrhk
* *
* COPY USER BUFFER TO INTERNAL BUFFER *
* *

Thkkhkkhkhkkhkhkhkhkhkkhhkdhhhhhkhkhhkhhkhkhkhhhkhhhkhhkhkhkhhhhhhhhhhhhkhhhhhhhkihhhhk

MOV RO, R4 ; SET ADDRESS OF DESTINATION BUFFER
MOV R3,R5 ; SAVE ADDRESS OF I/O PACKET

MOV I.PRM+4 (R5) ,R0O ; SET LENGTH OF TRANSFER

MOV I.PRM+10(R5) ,Rl ; SET BIAS OF SOURCE BUFFER

MOV I.PRM+12(R5),R2 ; AND DISPLACEMENT

BIC #140000,R2 ; STRIP OFF APR6 ADDRESS BITS

BIS #120000, R2 ; AND SUBSTITUTE APRS

MOV R4,I.PRM+10(R5) ; SET INTERNAL BUFFER ADDRESS INTO PACKET
e —— e +

! THE INPUT PARAMETERS FOR $BLXIO ARE:

RO = NUMBER OF BYTES TO MOVE
R1 = SOURCE APR 5 BIAS

R2 = SOURCE DISPLACEMENT

R3 = DESTINATION APR6 BIAS

R4 = DESTINATION DISPLACEMENT

THE OUTPUT PARAMETERS ARE

RO ALTERED
R1,R3 PRESERVED
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1

A e +
CALL $SBLXIO ; COPY TO INTERNAL BUFFER

dAhkkhkkhkhkhkhkhkhkkhkhkhkhhkhkhhkhhhhkhhkhkhkhkhkhhhkhhkhkhkhhhkhkhkhkhkkhhkhkhkhkhhkhhkhhkhkkhkhkkhkkk
* *
* CONVERT TO BUFFERED I/0 REQUEST *
* *

khkkkhhkdkkdkhhhkhkhhhhhhkhkhhkhhhhhhhhhhhhhhhkhhhhhhkhkhhhkhkhhkhhhhhhkhhkhhkhhkk

MOV R5,R3 ; COPY I/0 PACKET ADDRESS BACK

e We N we We %o W we we

~e we N we e

N Ne NS N Ne NE N6 Ne we Ne e e we S
.

e wo we we wg

w. Ns we we N

CLKSRV:

N Se we we we

SAMPLE DRIVER CODE

: |
THE INPUT PARAMETERS FOR $INIBF ARE: I
I
| R3 = ADDRESS OF THE I/0 PACKET TO BUFFER |
I
I
I

|
|
| NO OUTPUT PARAMETERS.
I

A e e e +
CALL SINIBF ; INITIALIZE BUFFERED I/0
khkhkhkhkhhkhkkkhkkhkkhkhkhkhkkhkhkhhkkhkkhkkkhkkkhkkhkhkkhkkhhkkkhkkkkkhkkkkkhkhkkkkkkkkkkkk
%* *
* QUEUE THE CLOCK BLOCK :
*

dhkhkhkhkkhkhkhkkhkhkhhhkhkhkhkhkhkhkhkhkhkhkkkkhkhkkhkhkhkhhkhkhhhhkhkhkhkhkhhhkhkhkkhkhkhkhkhkhkkk

MOV I.PRM+14(R3),R0 ; GET ADDRESS OF CLOCK BLOCK

MOV #CLKSRV,C.SUB(R0O0) ; SET ADDRESS OF SUBROUTINE

CLR R1 ; HIGH ORDER DELTA TIME

MOV I.PRM+6 (R3),R2 ; LOW ORDER PART

MOV #C.SYST,R4 ; SET REQUEST TYPE

MOV R3,R5 ; USE PACKET ADDRESS AS IDENTIFIER

e e —————— e +

THE INPUT PARAMETERS FOR SCLINS ARE:

| RO = ADDRESS OF THE CLOCK BLOCK TO QUEUE
I Rl = HIGH ORDER HALF OF DELTA TIME
R4 = REQUEST TYPE
R5 = ADDRESS OF REQUESTING TASK OR IDENTIFIER

f
|
|
I
|
LOW ORDER HALF OF DELTA TIME |
|
|
. I
NO OUTPUT PARAMETERS. |

|

I
I
|
!
| R2
|
I
|
|

e +
CALLR $CLINS ; QUEUE CLOCK BLOCK AND TEMPORARILY

; EXIT THE DRIVER
ehkkhkkhkkkkhhkhkhkhkhhkhkhkhhkhhkhhhkhkhkhkhkhkhhhhkhhkkhhkhhkhhhhhkhhhhhbhhhkhhhhhhhdhik
¥* *
* CLOCK ENTRY POINT *

%* *
khkkhkkhkhkhkkhkhkhkhhkhkhhkhkkhhkhkhkhkhhkhkhkhkhkhkhkkhkhkhkhkhhkhkhhhkhkhhhkhkkhkhkkhhkhhkhhkkhhkhkkk

dekkhkhkhhkhkhkhhkhhkhkhkhhkhhhhhhkhhhkhkhhhhhkhhhkhhhhhkhhhhkhhhhhhkhdkhkkhkkkkk

i *
* CHECK TO SEE IF THE I/O WAS BUFFERED *
¥ *

hkkkkhkkhkhhhkhkhhhhhkhkhkhkhkhkhkhkhhkhhrhkhkhhkhkhhkhkhhkkhhhhkhkhkhkhhhkhkhhhhhhhhhhkk

MOV C.TCB(R4),R5 ; GET ADDRESS OF I/O PACKET

TST I.PRM+16(R5) ; WAS IT BUFFERED 1/0

BNE 50% ; IF NE YES, GO QUEUE KERNEL AST
dthkkkkhhkhkhkhkhkkhkhkhkkhkhkkhkkkhhkhhkhhkkkkhkhkhhkkhkhhkkkhkhhkkhkkhkhkkhkkhkhkkhkkhhkhkk*x
%* %*
* COULDN'T BUFFER, PERFORM COPY HERE AND NOW *
¥* *

dkhhkhkhkhkhkhkhhkhkhhkhkhhhhkhhhhhkhhhkhhhkhkhhkhkhhkhhhhkhkhhkhkkhkhhkhhkhkhkkhhkhhhhkx

SAMPLE DRIVER CODE

VMOV I.PRM+4(R5),R0 ; SET LENGTH TO TRANSFER

rMOV I.PRM+10(R5),R1 ; BIAS OF SOURCE BUFFER

rMOov I.PRM+12(R5) ,R2 ; DISPLEACEMENT OF SOURCE

EIC #140000,R2 ; STRIP OFF APR6 ADDRESS BITS
EIS #120000,R2 ; AND CONVERT TO APRS5

yOvV I.PRM(R5) ,R3 ; SET BIAS OF DESTINATION
MOV I.PRM+2(RS5) ,R4 ; SET DISPLACEMENT

THE INPUT PARAMETERS FOR S$BLXIO ARE:

RO = NUMBER OF BYTES TO MOVE
R1 = SOURCE APR 5 BIAS
R2 = SOURCE DISPLACEMENT
R3 = DESTINATION APR6 BIAS
= DESTINATION DISPLACEMENT

THE OUTPUT PARAMETERS ARE

RO ALTERED
R1,R3 PRESERVED

!

|

|

l

|

l

l

| R4
|

l

|

|

I

| R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1
!

e Ne N NE N N NI Ne e NE %e NE we % Se Ne w

CALL $BLXIO ; COPY BUFFER
MOV I.PRM+14(R5),R0 ; GET ADDRESS OF CLOCK BLOCK
MoV #C.LGTH,R1 ; GET LENGTH OF CLOCK BLOCK

THE INPUT PARAMETERS FOR S$DEACB ARE:

ADDRESS OF BLOCK TO DEALLOCATE
LENGTH OF BLOCK TO DEALLOCATE

R1

I

l

|

l RO
|

|

| NO OUTPUT PARAMETERS.
!

e We Ne we Ne Ne s Ne we we

CALL SDEACB ; DEALLOCATE IT

MOV R5,R3 ; COPY PACKET ADDRESS FOR $IODON
BMsSuUC: MOV #IS.SUC&377,R0 ; SET FINAL I/0 STATUS

MOV I.PRM+4(R3),R1 ; AND LENGTH OF TRANSFER = REQUESTED
BMDON: MOV I.UCB(R3),R5 ; GET UCB ADDRESS OF DEVICE

THE INPUT PARAMETERS FOR $IODON ARE:

~e Ne we o~

RO = FIRST WORD OF I/0 STATUS BLOCK
R1 = SECOND WORD OF I/0 STATUS BLOCK
R2 = STARTING AND FINAL RETRY COUNTS
R5 = UCB ADDRESS OF UNIT TO COMPLETE

THE OUTPUT PARAMETERS ARE:

R4 IS DESTROYED

e Ne Ne Ne Se N we owe we

!
I

I

|

l

|

| (IF AN ERROR LOGGING DEVICE)
I

|

I

|

|

l

~

~

e we we we we =,

50$:

Ne Mo NP NE SE N we Ne we S

we we we wo w

N we W w0 N

KATSRV:

NS NE W N4 NG NS NE Ne N N N N6 Ng e we

SAMPLE DRIVER CODE

CALL SIODON COMPLETE THE I/O

~e we

BR BMIN1 GO LOOK FOR MORE WORK

khkhkkhkhkhhhhkkhkhkhkhhkhkhkhkhkkhkhkhkhkkkhkhkhkhkhkhkhkhkkhkkkhkhkkhkkhkkkkhkhkkhkhkhkkkhkkhkkkkkk
* *
* BUFFERED I/0, CONVERT I/0 PACKET TO KERNEL *
* AST AND EXIT FROM DRIVER *
* %*

hhkkkhkhkhkhhhkhkhhhkhhhkhkhhkhhhhkhkhhkhkhkhkhkkhhkhkhkhkhkhhkkhhhkkkkkhkhhkhkhkhkhdkdkkhhs

MOV R4,R3 ; COPY CLOCK BLOCK ADDRESS FOR $REQUE

MoV I.TCB(R5),R0 ; POINT TO TCB OF TASK

TST (R4)+ ; SKIP LINK WORD

MOV #AK.GBI, (R4)+ ; SET A.CBL=AK.GBI

MoV KISARS, (R4)+ ; SET APR BIAS OF SERVICE ROUTINE

MOV #KATSRV, (R4)+ ; SET ADDRESS OF PROCESSING ROUTINE

MOV R5, (R4)+ ; SAVE I/0 PACKET ADDRESS IN CLOCK BLOCK
Ty S BB +

THE INPUT PARAMETERS FOR $REQUE ARE:

|

|

l

| RO
| R3
|

I

|

mn

ADDRESS OF THE PACKET TO QUEUE

I
I
I
TCB ADDRESS TO QUEUE AST BLOCK TO |
I
I
NO OUTPUT PARAMETERS. [

[

P +
CALLR $REQUE ; QUEUE AST TO TASK

khkkkhkkkhkhhkhkhkkhkhkhkhhkhkkkhkkhkhkhkkhkkhkkhhkhkhkhkkhkhkhkhkhkkhkkhhkhkhkkhkhkhkhkkkhhkhkhkhkhx
* *
* KERNEL AST ENTRY POINT *
* *

hkhkhkkhkhkhkhkhkkhkhkkhhkhkkkhkhkhkkhkhkhkhkhkhkkkkhkhhhkhkhkhkhkkhhkkhhkhkhkhkkkhkhkhkhkhkkhkkkkkkkk

kkkhkhkhkhkhkhkhkhkhkhkhkhhhkkhkhhhhhkhkhkhkhkhkhkhhkhkhkhkhkAkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkkhkk

* *
* GET PCB ADDRESS AND SEE IF PARTITION IS RESIDENT *
* *

R Ly T r Ly e ey e e S s R R et
MOV 10(R3),R5 GET I/0 PACKET ADDRESS

;
MOV I1.PRM+16(R5) ,R1 ; GET PCB ADDRESS OF BUFFER REGION
BEQ 70% ; IF EQ THERE IS NO COPY TO PERFORM

THE INPUT PARAMETERS FOR $TSPAR ARE:

RO = ADDRESS OF THE PACKET (THE KERNEL AST BLOCK)
R1 = PCB ADDRESS OF THE PCB CONTAINING THE BUFFER
R5 = TCB ADDRESS OF ASSOCIATED TASK

l THE OUTPUT PARAMETERS ARE

(@}
1

| 0 IF REGION IS RESIDENT AND CAN BE ACCESSED
| C = 1 IF REGION IS NOT RESIDENT AND AST HAS

| BEEN QUEUED
I

REGION IN MEMORY ?
IF CC REGION IN MEMORY

CALL STSPAR
BCC 60$

e we we Ne % we W

e we we N we

60$

WO Me NE N N Ne e N N S Mo N Ne we we wo we

Ne Mo wa Ne we Ne we we w0 we

. we we w0 we

SAMPLE DRIVER CODE

khkkhhkhkkkhkkhkhkhkhkhkhkkhhhkkhhkhkhkhkhkhkkhhkhkhhkhhkkhkhhhhkhkhkhkkkkkhhhkhhkhhkhkkdkkk*

* *
* A REGION AST WAS QUEUED. BUMP BUFFERED I/0 COUNT *
* BACK UP TO FORCE I/O RUNDOWN IN CASE OF ABORT AND *
* EXIT AST SERVICE ROUTINE. *
* *
khkhkhhkhkhkhkhkhkhhkhhhkhkhhkhhkhhkhkhkkhkhkkhkhkhhkhhhhkkhkhhkhkhkhkhkhhkkkhhkkhkhhkhhkkkhkkikkkk
MOV I.TCB(R5) ,RO ; GET TCB ADDRESS

INCB T.TIO(RO) ; BUMP BUFFERED I/O COUNT

RETURN ; EXIT AST SERVICE ROUTINE
khkkkhkkhhkkhkkhhhkkhkkhhkkhkhkhkhkhkhhrkhkhkhhkhkhhkhkhhkkhhhhkhkhkhhkhhkhkhhkhkhkhkkhkhkhkkkkk
* *
* PERFORM BUFFER COPY OPERATION *
* *

khkkkkkkkhhkhkhhhkkhkhhkhkhkhhkhkkhhkhhkkhhhhhhhdkhkhkkhkkhkhhkhhhhkkhkkhkhhkhhhhhkik

MOV I.TCB(R5) ,R0 ; GET TCB ADDRESS OF TASK

INCB T.IOC(RO) ; ADJUST REAL I/0 COUNT UPWARDS

MOV I.PRM+4 (R5),R0 ; GET COUNT OF BYTES

MOV I.PRM+10(R5),R2 ; SET SOURCE BUFFER ADDRESS

MOV P.REL (R1),R3 ; GET STARTING BIAS OF PARTITION

ADD I.PRM(R5),R3 ; AND ADD IN OFFSET

MOV I.PRM+2(R5),R4 ; SET DISPLACEMENT

o +

THE INPUT PARAMETERS FOR $BLXIO ARE:

RO = NUMBER OF BYTES TO MOVE
R1 = SOURCE APR 5 BIAS
R2 = SOURCE DISPLACEMENT

= DESTINATION APR6 BIAS
R4 =

THE OUTPUT PARAMETERS ARE

RO ALTERED
R1,R3 PRESERVED

I

|

I

I

!

I

| R3
I

I

I

I

|

I

| R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1
I

I
I
I
I
|
I
I
DESTINATION DISPLACEMENT |
|
|
!
|
I
|
I

o +
CALL $BLXIO ; COPY THE BUFFER

MOV I.PRM+10(R5),R0 ; GET BUFFER ADDRESS AGAIN

MOV I.PRM+4 (R5),R1 ; GET LENGTH OF BUFFER

e . e e e e e = - — +

THE INPUT PARAMETERS FOR $DEACB ARE:

RO
R1

W

LENGTH OF BLOCK TO DEALLOCATE

|
|
|
ADDRESS OF BLOCK TO DEALLOCATE |
|
|
NO OUTPUT PARAMETERS. |

|

___ +
CALL $DEACB ; DEALLOCATE IT

AR EE RS R ESEEEE SRS R R RS R R R R R R R R R AR R R R R R RRRE R RE SR RS
« *
* IF THIS WASN'T A REGION LOAD AST, FINISH THE I1/0 :
&

kkkkkhkkhkhkhkhkhkhkhhkkhkkhkhhkhkkkkhkdkhkhkkkhkkhkhkhkhkhkhhkhkhkhhhkhhohkhkkhkhkhkkhkhkhkhkhkkkkk

70$:

N We We W We N6 Ne we N o

e N e wo w,

0
[
R23
.

W e We We We wE N Ne we

we e we wo W

e We We we we we N N

SAMPLE DRIVER CODE

MOV I.PRM+14(R5),R0 ; RETRIEVE AST BLOCK ADDRESS

TST (RO) ; WAS THIS A REGION LOAD AST ?

BNE 80$; IF NE YES

Mov #C.LGTH,R1 ; SET LENGTH OF CLOCK BLOCK

o e e e 4

THE INPUT PARAMETERS FOR $DEACB ARE:

ADDRESS OF BLOCK TO DEALLOCATE
LENGTH OF BLOCK TO DEALLOCATE

I

|

|

| RO
I R1
l

|

I

Won

NO OUTPUT PARAMETERS.

CALL SDEACB DEALLOCATE CLOCK BLOCK

~ ~o

MOV I.I0SB(RS5),R3 GET VIRTUAL ADDRESS OF I/0 STATUS BLOCK
MOV #IS.SUC&377,-(SP) ; SET FIRST I/O STATUS WORD

MTPD$ (R3)+ ; WRITE FIRST WORD OF STATUS (MAY TRAP)
MoV I.PRM+4 (R5) ,-(SP) ; SET SECOND WORD OF I/O STATUS

MTPDS (R3) ; WRITE SECOND WORD (MAY TRAP)

CLR I.I0SB(R5) ; PREVENT $IODON ATTEMPT TO WRITE STATUS
MOV RS, R3 ; COPY I/0 PACKET ADDRESS

JMP BMSUC ; FINISH IN COMMON CODE
dkkhkhkkhkhkhkhkkkhkhkhkhkkkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkkhkhrhkhkhrhkhkhhkkthkkhhhhhkhkhrhhhhkhkhkhhkhihk
* *
* RECONVERT REGION LOAD AST TO A TASK AST *
* %*

hhkkhkkhkhkkhkhkhkhhhkhhkhkhkhkkhkhkkhkhkhkhhkhhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhhkkk

MOV R0O,R3 ; COPY BLOCK ADDRESS

CLR 10(RO) ; INDICATE NO BUFFER NEXT TIME

MOV I.TCB(R5),R0O ; GET TCB ADDRESS
T +

THE INPUT PARAMETERS FOR SREQUE ARE:

RO
R3

TCB ADDRESS TO QUEUE AST BLOCK TO
ADDRESS OF THE PACKET TO QUEUE

NO OUTPUT PARAMETERS.

o ———————————————— +
CALLR SREQUE ; RE-QUEUE TASK AST AND EXIT AST SERVICE

ktkkkhkhhkhhkhkhhkhhkhhkhkhkhhkhkhhhhkhkhkhkhhkhkhkhkhkhhkhhhkhhhkhkhhkhhhkhkhkhkhkhhkhkhkkkhkhhkkk
* *
* MISCELLANEOUS ENTRY POINTS *
* %*

kdkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhkhhkhkhkkhkkhkhhkhkhkhhkhkhkhkhkhhhhkhhhhhhhkhkhkhkhkkkkk

kdkkkhkhkkkhhhhhhhkhkhhhkhkhhkhkhhkhhhhkhkkhkhkhkhhkhkhhkhkhhhkhhkhkhkhhhhhhhhkkkkk

CANCETL ENTRY POINT

* *
* *
* *
* WE COULD DEQUEUE PENDING CLOCK REQUEST, ETC HERE, *
* BUT WE DON'T, WE JUST LET THEM COMPLETE LATER *
* *
* *

drkkhkhhkhhkkhhhkhhkhkhkhkhkkhkhkhhkhhhkhkhhkhkhhkkhkkkkhhkkhhkhhhkhkhkhkkhkhkhkkhkhkkhkkkk

SAMPLE DRIVER CODE

BMCAN:
; KA R AR R KRR R AR ARk h A kA kA kA kAR AR A AR A A A Ak A kA AR Ak A Ak h kA AR A XAk k&
. * *
’
; * TIMEOUT ENTRY POINT *
. * *
r’
; * SINCE THERE'S NO PHYSICAL DEVICE TO TIME OUT, NO-OP *
. * *
; hkkhhkdhhhhhkhhhkkk kR AR Rk kXA A R KA Rk khhkhkhkhhhhhhkhkhkhhkhkhhhhhkk k&
BMOUT:
; khkhkkhkhkhkhkhkhkhhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhkhkhkhkrhhhkhhkhhkhhkhkhkhkhhkhkhhkhhrhkhhkhk
- * *
!
; * POWERPFATIL ENTRY POINT *
. * *
14
H * POWERFAIL DOESN'T AFFECT NON-EXISTENT DEVICES *
. * *
; AAAk KKK KA Ah AR AR Ak khkhhkhhhhhhkhkhhkhhhkhkhhhkhhhhkhhkhhkkhkhkkkhhkhkk
BMPWF:
; R R R R R R R R R R R 2 S X2 22222222 S
. %* *
; * S TATUS CHANGE ENTRY POINTS *
. * *
I
; * DON'T NEED TO TOUCH NON-EXISTENT DEVICE, JUST LET *
; * EXEC PUT DEVICE ON/OFF LINE *
- * %*
; R R R g R e Y 2222222222222
BMKRB:
BMUCB:

RETURN ; ALL THESE ARE NO-OP FOR NOW

.END

APPENDIX A

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

This appendix describes the RSX-11M-PLUS system macros that supply
symbolic offsets for data structures listed in Table A-1.

The data structures are defined by macros in the Executive macro
library. To reference any of the data structure offsets from your
code, include the macro name in an .MCALL directive and invoke the

macro. For example:

.MCALL DCBDF$
DCBDFS ;Define DCB offsets

NOTE

All physical offsets and bit definitions
are subject to change in future releases
of the operating system. Code that
accesses system data structures should
always use the symbolic offsets rather
than the physical offsets.

The first two arguments, <:> and <=>, make all definitions global. If
they are 1left blank, the definitions will be local. The SYSDEF
argument causes the variable part of a data structure to be defined.

All of these macros are in the Executive macro library,
LB:[1,1]EXEMC.MLB. All except Fl1DFS, ITBDFS$, MTADFS, OLRDFS$, and
SHDDFS$ are also in the Executive definition library,

IB:[1,1]EXELIB.OLB.

Table A-1
Summary of System Data Structure Macros

Macro Arguments Data Structures

ABODFS$ | <:>,<=> Task abort and termination
notification message codes

ACNDFS$ |<:>,<=> Accounting data structures
(user account block, task account
block, system account block)

| CLKDFS$ | <:>,<=> Clock queue control block

(continued on next page)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

Table A-1 (Cont.)
Summary of System Data Structure Macros

Macro Arguments Data Structures

CTBDI'S | <:>,<=> Controller table

DCBDI'$ | <:>,<=>,SYSDEF Device control block

EPKDF$ | <:>,<=> Error message block

F11DF$S | <:>,<=>,SYSDEF Files-11 data structures
(volume control block, mount list
entry, file control block, file
window block, locked block list
node)

HDRDFS | <:>,<=> Task header and window block

HWDDF'$ | <:>,<=>,SYSDEF Hardware register addresses and
feature mask definitions

ITBDFS$ | <:>,<=>,SYSDEF Interrupt transfer block

KRBDFS | <:>,<=> Controller request block

LCBDFS$ | <:>,<=> Logical assignment control block

MTADFS | <:>,<=> ANSI magtape data structures
(volume set control block)

OLRDF $ On-line reconfiguration interface

PCBDFS$ | <:>,<=>,SYSDEF Partition control block and
attachment descriptor

PKTDEFS | <:>,<=> I1/0 packet, AST control block,
offspring control block, group
global event flag control block,
and CLI parser block

SCBDFS$ | <:>,<=>,SYSDEF Status control block and UMR
assignment block

SHDDFS$ [<:>,<=> Shadow recording linkage block

TCBDFS$ | <:>,<=>,SYSDEF Task control block

UCBDFS$ | <:>,<=>,TTDEF,SYSDEF Unit control block

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

ABODFS$
ABODFS$
i
; TASK ABORT CODES
’
; NOTE: S.COAD-S.CFLT ARE ALSO SST VECTOR OFFSETS
’
S.CACT=-4. ;TASK STILL ACTIVE
S.CEXT=-2. ;TASK EXITED NORMALLY
S.COAD=0. ;ODD ADDRESS AND TRAPS TO 4
S.CSGF=2. ;SEGMENT FAULT
S.CBPT=4. ;BREAK POINT OR TRACE TRAP
S.CIOT=6. ;IOT INSTRUCTION
S.CILI=8. ; ILLEGAL OR RESERVED INSTRUCTION
S.CEMT=10. ;NON RSX EMT INSTRUCTION
S.CTRP=12. ;TRAP INSTRUCTION
S.CFLT=14. ;11/40 FLOATING POINT EXCEPTION
S.CsSsT=16. ;SST ABORT-BAD STACK
S.CAST=18. ;AST ABORT-BAD STACK
S.CABO=20. ;ABORT VIA DIRECTIVE
S.CLRF=22. ; TASK LOAD REQUEST FAILURE
S.CCRF=24, ; TASK CHECKPOINT READ FAILURE
S.IOMG=26. ;TASK EXIT WITH OUTSTANDING I/O
S.PRTY=28. ; TASK MEMORY PARITY ERROR
S.CPMD=30. ; TASK ABORTED WITH PMD REQUEST
S.CELV=32. ;TI: VIRTUAL TERMINAL WAS ELIMINATED
S.CINS=34. ;TASK INSTALLED IN 2 DIFFERENT SYSTEMS
S.CAFF=36. ;TASK ABORTED DUE TO BAD AFFINITY (REQUIRED
;BUS RUNS ARE OFFLINE OR NOT PRESENT)
S5.CCSM=38. ;BAD CSM PARAMETERS OR BAD STACK
S.COTL=40. ;TASK HAS RUN OVER ITS TIME LIMIT
H
; TASK TERMINATION NOTIFICATION MESSAGE CODES
T .NDNR=0 ;DEVICE NOT READY
T.NDSE=2 ;DEVICE SELECT ERROR
T.NCWF=4 ;CHECKPOINT WRITE FAILURE
T.NCRE=6 ;CARD READER HARDWARE ERROR
T.NDMO=8. ;DISMOUNT COMPLETE
T.NUER=10. ; UNRECOVERABLE ERROR
T.NLDN=12. ;LINK DOWN (NETWORKS)
T.NLUP=14, ;LINK UP (NETWORKS)
T.NCFI=16. ;CHECKPOINT FILE INACTIVE
T.NUDE=18. ;UNRECOVERABLE DEVICE ERROR
T.NMPE=20. sMEMORY PARITY ERROR
T.NKLF=22. ;UCODE LOADER NOT INSTALLED
T.NAAF=24, ;ACCOUNTING ALLOCATION FAILURE
T.NTAF=26. ;ACCOUTING TAB ALLOCATION FAILURE
T.NDEB=28., ;TASK HAS NO DEBUGGING AID
T.NRCT=30. ;REPLACEMENT CONTROL TASK NOT INSTALLED
T.NWBL=32, ;WRITE BACK CACHING DATA LOST

;UNIT WRITE LOCKED

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

ACNDF$

000000
000002
000003
000004
000012
000012

000016
00002¢

00002.
000022
000022

00002~
00002¢
000037
00003¢
00004°
00005¢
00005¢
000062
000064
00006°*

00006°%
00006¢€
00007¢C
000072
000074
000102
000104

000112
000130
000131
000132
000002

ACNDFS$

~

; ACCOUNTING

e we we Ne W

.ASECT
.=0
B.LNK: .BLKW
B.TYP: .BLKB
B.LEN: .BLKB
B.TIM: .BLKW
B.HID=.
B.UID: .BLKW
B.ACN: .BLKW
B.TID: .BLKB

.BLKB
B.HEND=,
$SSHLN=,
I
I
;
B.CPU: .BLKW
B.DIR: .BLKW
B.QIO: .BLKW
B.TAS: .BLKW
B.MEM: .BLKW
B.BEG: .BLKW

B.CPUL: .BLKW

B.PNT: .BLKW
B.STM: .BLKB
$SSTLN=.

W e

N WWNDNDDNDDN

BLOCK OFFSET AND STATUS DEFINITIONS
FOR EACH TRANSACTION TYPE.

HEADER COMMON TO ALL TRANSACTIONS

;LINK TO NEXT IN SYSLOG QUEUE

; TRANSACTION TYPE

; TRANSACTION LENGTH

; ENDING TIME OF TRANSACTION

; START OF HEADER IDENTIFICATION AREA
;UNIQUE SESSION IDENT

;FIRST WORD-RADS50, SECOND-BINARY
;ACCOUNT NUMBER

;ASCII TERMINAL TYPE (V,T,B OR C)
; (VIRTUAL,REAL,BATCH, OR CONSOLE)
;UNIT NUMBER

;END OF HEADER ID AREA

;HEADER LENGTH

ACCUMULATION FIELDS FOR TAB, UAB, AND SAB

; TOTAL CPU TIME USED

; TOTAL DIRECTIVE COUNT

; TOTAL QIO$ COUNT

; TOTAL TASK COUNT

; RESERVED

;BEGINNING/LOGIN TIME

;CPU LIMIT

;POINTER TO HIGHER LEVEL TOTALS
; STATUS MASK

;TOTAL'S LENGTH

USER ACCOUNT BLOCK (UAB)

i
i
; NOTE:
i

=$$STLN
B.USE: .BLKB
B.ACT: .BLKW
B.UUIC: .BLKW
B.UCB: .BLKW
B.LGO: .BLKW
B.ULNK: .BLKW
B.RNA: .BLKW
B.NAM: .BLKB
.BLKB
.BLKB
B.ULEN=.

$$8=<.+77>/100

W W

[

UAB'S MUST END ON A WORD BOUNDRY

;START AFTER TOTALS
;USE COUNT

;NUMBER OF CURRENTLY ACTIVE TASKS

;LOGIN UIC

;POINTER TO UCB

; LOGOFF TIME

;LINK TO NEXT UAB

;LOC IN SYSTEM ACCNT FILE

; (OFFSET,VBN-HI, VBN-LO)

;LAST NAME OF USER

;FIRST INITIAL OF USER

; UNUSED BYTE

;UAB LENGTH

;UAB LENGTH (ROUNDED UP TO 32 WORD BOUND)

RSX-11M~-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000065
000066
000072
000074
000076
000100
000102
000104
000110
000114
000120
000124
000002

000065
000066
000070
000072
000076
000102
000106
000112
000120
000122
000124
000126
000134
000136
000140
000144
000146
000154
000160
000162

000162
000202
000222
000242
000262
000302
000322
000342
000362
000366
000372
000376

’
;7 TASK ACCOUNT BLOCK (TAB)
; NOTE: THE TAB MUST END ON A WORD BOUNDRY
4
.=SSTLN ;STARTS AFTER TOTALS
B.PRI: .BLKB ;HIGHEST RUNNING PRIORITY
B.TNAM: .BLKW ; TASK NAME
B.TCB: .BLKW ; TCB ADDRESS
B.TST3: .BLKW ;T.ST3 FROM TASK'S TCB
- BLKW ;RESERVED FOR FUTURE STATUS BITS

B.CUIC: .BLKW
B.PUIC: .BLKW
B.CTXT: .BLKW
B.TCKP: .BLKW
B.OVLY: .BLKW
B.EXST: .BLKW
B.TLEN=.

PN NN e N

B.TBLK=<.+77>/100

i
; SYSTEM ACCOUNT BLOCK (SAB)

=$$S$TLN
B.SHDN: .BLKB
B.UHD: .BLKW
B.ULO: .BLKW
B.ULT: .BLKW
B.CKP: .BLKW
B.SHF: .BLKW
B.RND: .BLKW
B.FID: .BLKW

B.DVNM: .BLKB
B.UNIT: .BLKW
B.EXTS: .BLKW
B.LSCN: .BLKW
B.SCNR: .BLKW
B.DSCN: .BLKW
B.STSP: .BLKW
B.SYSM: .BLKW
B.CKUS: .BLKW
B.CKSP: .BLKW
B.CKAL: .BLKW
B.SLEN=,

~e wo we

B.CPUT: .BLKW
B.CTXP: .BLKW
B.IDCT: .BLKW
B.QIOC: .BLKW
B.MIOC: .BLKW
B.AIOC: .BLKW
B.IPSN: .BLKW
B.IPRC: .BLKW
B.CKEX: .BLKW
B.CFCL: .BLKW
B.CFRK: .BLKW
B.TLOD: .BLKW

HFNWHFNDEFRFWRERFRDWNDNDND N

8.
8.
8.
8.
8.
8.
8.
8.
2

2
2
2

ACNDFS$ (Cont.)

; CURRENT UIC OF TASK
; PROTECTION UIC OF TASK
;NUMBER OF CONTEXT LOADS

; TIMES TASK HAS BEEN CHECKPOINTED

;NUMBER OF DISK OVERLAY LOADS
;EXIT STATUS AND ABORT CODE

; TAB LENGTH

;NUMBER OF SEC POOL BLOCKS IN TAB

;START AFTER TOTALS

;ACCOUNTING SHUTDOWN REASON CODE

;UAB LISTHEAD

;NUMBER OF USERS CURRENTLY LOGGED ON

; TOTAL NUMBER OF LOGONS
; TOTAL NUMBER OF CHECKPOINTS
; TOTAL NUMBER OF SHUFFLER RUNS

;NUMBER OF CPU INTERVALS ROUNDED UP TO 1

;FILE-ID OF TRANSACTION FILE

; DEVICE
;UNIT

OF TRANSACTION FILE
OF TRANSACTION FILE
;EXTEND SIZE FOR TRANSACTION FILE
; TIME OF LAST SCAN

;SCAN RATE IN SECONDS
; STATISTICAL SCAN RATE (IN SEC)

; RESERVED
; RESERVED
; RESERVED
; RESERVED
; RESERVED
;SAB LENGTH

NEW FIELDS FOR EXTENDED ACCOUNTING

;CPU TIME USED PER PROCESSOR

;NUMBER OF CONTEXT SWITCHES (PER PROC)
;NUMBER OF IDLE LOOP ENTRIES (PER PROC)
;NUMBER OF I/O INITIATIONS (PER PROC)

;MASS STORE I/O COMPLETIONS (PER PROC)

;ALL I/0 COMPLETIONS (PER PROC)
;IP INTERRUPTS SENT (PER PROC)
; IP INTERRUPTS RCVD (PER PROC)
;CHECKPOINT DUE TO EXTEND TASKS

;CALLS TO CFORK

; CFORK FORKS
; TASK LOADS

A-5

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

ACNDFS$ (Cont.)

00040z B.RLOD: ,BLKW 2 ;REGION LOADS

00040¢ .BLKB 82. ;BUMP SIZE TO NEXT 32 WORD BLOCK

00034¢ B.SSBL=,-B.SLEN ;EXTRA LENGTH OF SYSTEM STATISTICS BLOCK
00000€ $$$=<.+77>/100 ;SAB LENGTH (ROUNDED UP TO 32 WORD BOUND)

SYSLOG STARTUP TRANSACTION

* ws we we

=$$SSHLN ;START AFTER HEADER
00002z B.SSLN=, ; TRANSACTION LENGTH

; CRASH RECOVERY TRANSACTION

=$$SHLN ;START AFTER STANDARD HEADER
000022 B.CTLS: .BLKW 3 ; TIME OF LAST SCAN BEFORE CRASH
00003C B.CSRT: .BLKW 1 ; SCAN RATE BEFORE CRASH
000032 B.CRSN: .BLKB 60. ;ASCII TEXT EXPLAINING CRASH
00012¢ B.CLEN=. ; TRANSACTION LENGTH

i
; INVALID LOGIN TRANSACTION
i

=$$SHLN ;
000022 B.INAM: .BLKB 14. ;NAME FROM LOGIN LINE
00004C B.IUIC: .BLKB 6. ;UIC FROM LOGIN LINE
00004€ B.IPSW: .BLKB 6. : PASSWORD FROM LOGIN LINE
000054 B.ILEN=, ; TRANSACTION LENGTH
; DEVICE TRANSACTIONS (ALLOCATION, DEALLOCATION, MOUNT, AND
; DISMOUNT)
7
.=SSHLN ;
000022 B.DNAM: .BLKW 1 ;ASCII DEVICE NAME
000024 B.DUNT: .BLKB 1 ;OCTAL DEVICE UNIT NUMBER
000025 B.DLEN=, ; TRANSACTION LENGTH FOR ALL, DEA, AND DMO
000025 .BLKB 1 ;s UNUSED BYTE
000026 B.DLBL: .BLKW 6 ; VOLUME LABEL
000042 B.DMST: .BLKW 1 ;MOUNT STATUS BITS
000044 B.DUIC: .BLKW 1 ; OWNER UIC
000046 B.DVPR: ,BLKW 1 ; VOLUME PROTECTION CODE
000050 B.DACP: .BLKW 2 ;NAME OF ACP FOR DEVICE
000054 B.MLEN=, ;LENGTH OF MOUNT TRANSACTION

; STATUS BITS FOR MOUNT STATUS MASK (B.DMST)

BM.SHR=1 ;DEVICE IS MOUNTED SHARED
BM.NOS=2 ;DEVICE IS MOUNTED NOSHARE
BM.SYS=4 ;DEVICE IS MOUNTED FOR THE SYSTEM (PUBLIC)
BM.FOR=10 ;DEVICE IS MOUNTED FOREIGN

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000022
000030
000036

000022
000030
000032
000034
000035
000036
000040
000041

000022
000030
000032
000034
000035
000036

000022
000024
000042
000043

000022
000030
000032
000034
000042
000044
000046
000050
000052
000054

ACNDF$ (Cont.)

i
; SYSTEM TIME CHANGE TRANSACTION
H

=$$SHLN
B.TOLD: .BLKB
B.TNEW: .BLKB
B.TMLN=,

i
; PRINT DESPOOLER TRANSACTION
i

=$$SHLN
B.PNAM: .BLKW
B.PPGS: .BLKW
B.PNFI: .BLKW
B.PFRM: .BLKB
B.PPRI: .BLKB
B.PDEV: .BLKW
B.PPUN: ,BLKB
B.PLEN=.

CARD READER

~. we ~e

.=$SSHLN

B.RNAM: .BLKW
B.RCDS: .BLKW
B.RDEV: .BLKW
B.RUNT: .BLKB
B.RSOP: .BLKB
B.RLEN=,

i
; LOGIN TRANSACTION

=$SSHLN
B.LUIC: .BLKW
B.LNAM: .BLKB
.BLKB

B.LLEN=,

B.OFID: .BLKW
B.ODNM: .BLKB
B.OUNT: .BLKW
B.NFID: .BLKW
B.NDNM: .BLKB
B.NUNT: .BLKW
B.OEXS: .BLKW
B.NEXS: .BLKW
B.OSCR: .BLKW
B.NSCR: .BLKW

= W

o~

;OLD TIME (YR, MON, DAY, HR, MIN, SEC)
;NEW TIME (YR, MON, DAY, HR, MIN, SEC)
; TRANSACTION LENGTH

;START AFTER HEADER
;PRINT JOB NAME (RADS50)

; PAGE COUNT

;NUMBER OF FILES PRINTED
;FORM NUMBER

; PRINT PRIORITY

; PRINT DEVICE NAME (ASCII)
;UNIT NUMBER OF PRINT DEVICE
; TRANSACTION LENGTH

SPOOLING TRANSACTION

N)

FRHREFRODWHDW

;START AFTER HEADER

;BATCH OR PRINT JOB NAME

;NUMBER OF CARDS READ

;READER DEVICE NAME (ASCII)

;UNIT NUMBER OF READER DEVICE
;SUBMIT OR PRINT (0=SUBMIT, 1=PRINT)
; TRANSACTION LENGTH

;START AFTER HEADER
;LOGIN UIC

;USER'S LAST NAME
;AND FIRST INITIAL
; TRANSACTION LENGTH

;AFTER HEADER
;FILE-ID OF OLD TRN. FILE
;DEVICE OF OLD TRN. FILE
;UNIT OF OLD TRN. FILE
;FILE+ID OF NEW TRN. FILE
;DEVICE OF NEW TRN. FILE
;UNIT OF NEW TRN, FILE

:EXT. SIZE FOR OLD TRN. FILE
:EXT. SIZE FOR NEW TRN. FILE
;OLD SCAN RATE IN SECONDS
;NEW SCAN RATE IN SECONDS

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

ACNDFS$ (Cont.)

000056 B.ODSC: .BLKW
000060 B.NDSC: .BLKW
00006 B.RTLN=,

~e we N we we we

BT.SAB=1

BT.UAB=2

BT.TAB=3

BT.SS=11

BT.INV=12
BT.TIM=13
BT.ALL=14
BT.DEA=15
BT.MOU=16
BT.DMO=17
BT.PRT=20
BT.DIR=21
BT.VOL=22
BT.LOG=23
BT.CRH=24
BT.DST=25
BT.RTP=26
BT.INP=27

o wo we

4
BS.ACT=200
BS.CRH=100
BS.LGO=40
BS.C0=40
BS.TML=20
BS.ZER=10
BS.SCN=4

e we wo

BF.DST=40000
BF.WRT=2000
BF.SCN=1000
BF.SLR=400
BF.ERR=200
BF.STR=100
BF.LSS=40

BF.TRN=10
BF.XTK=4
BF.TSK=2
BF.XAC=1

TRANSACTION TYPES

000 THRU 127
128 THRU 255

;OLD STATISTICAL SCAN RATE
;NEW STATISTICAL SCAN RATE

RESERVED FOR DEC USE
RESERVED FOR CUSTOMER USE

; SYSTEM ACCOUNT BLOCK (SAB)
;USER ACCOUNT BLOCK (UAB)

; TASK ACCOUNT BLOCK (TAB)

;SYSLOG STARTUP TRANSACTION

; INVALID LOGIN TRANSACTION

;SYSTEM TIME CHANGE TRANSACTION

;ALLOCATE DEVICE TRANSACTION

; DEALLOCATE DEVICE TRANSACTION

;MOUNT DEVICE TRANSACTION

; DISMOUNT DEVICE TRANSACTION

;PRINT DESPOOLER TRANSACTION

;DISK ACCOUNTING BY DIRECTORY (UNSUPPORTED)
;DISK ACCOUNTING BY VOLUME (UNSUPPORTED)
;LOGIN TRANSACTION

;CRASH RECOVERY TRANSACTION

;DEVICE STATISTICS (UCB EXTENSION)

;RESET TRANSACTION PARAMETERS

;CARD READER SPOOLING TRANSACTION

STATUS MASK BIT DEFINITIONS (B.STM)

;CONTROL BLOCK ACTIVE

;RECORD FROM "TMP" FILE AFTER SYSTEM CRASH
; LOGGED OFF WITH OUTSTANDING ACTIVITY (UAB)
;TASK'S TI: IS CO: (TAB ONLY)

; TAB EXISTS ONLY FOR TIME LIMIT (TAB ONLY)
;LAST CPU INTERVAL WAS OF LENGTH ZERO

; TRANSACTION READY FOR WRITE TO SCAN FILE

ACCOUNTING FEATURE MASK (S$SACNFE)

;STATISTICAL SCAN RATE

;FORCE SYSLOG TO WRITE ITS BUFFER

; SCAN REQUESTED

;SYSLOG IS RUNNING (NOT STOPPED)
;ACCOUNTING STOPPED DUE TO FATAL ERROR
;ACCOUNTING IS STARTING UP / SHUTTING DOWN
;ACCUMULATE SYSTEM STATISTICS

; (POINT UAB TO SAB)

;OUTPUT TO TRANSACTION FILE
;CHECKPOINT REQUEST IS DUE TO EXTKS

; TASK ACCOUNTING TURNED ON

;EXTENDED ACCOUNTING ASSEMBLED IN

RSX-11M-PLUS SYSTEM DATA STRUC@URES AND SYMBOLIC DEFINITIONS

ACNDFS$ (Cont.)

SHUTDOWN CODES (B.SHDN)

i

H

1

;1 MAINTENANCE

; 2 REBOOT

;i 3 SCHEDULED SHUTDOWN

; 4 ACCOUNTING SHUTDOWN BY TASK "SHUTUP"
i 5 OTHER

B.MAXL=128.
B.MINL=SSHLN

;MAXIMUM TRANSACTION LENGTH
sMINIMUM TRANSACTION LENGTH

+«PSECT
ACTDF$
ACTDFS
.ASECT
-=0
000000 A.GRP: .BLKB 3 ;GROUP CODE (ASCII)
000003 A.MBR: .BLKB 3 sMEMBER CODE
000006 A.PSWD: .BLKB 6 ; PASSWORD
000014 A.LNM: .BLKB 14. ; LAST NAME
000032 A.FNM: .BLKB 12, ; FIRST NAME
000046 A.LDAT: .BLKB 6 ;DATE OF LAST LOG ON (DD/MM/YY HH:MM:SS
000054 A.NLOG: .BLKB 2 ; TOTAL NUMBER OF LOGONS
000056 A.SYDV: .BLKB 4 ;s DEFAULT SYSTEM DEVICE
000062 A.ACN: .BLKW 1 ;ACCOUNT NUMBER (BINARY)
000064 A.CLI: .BLKW 2 ;RAD50 USER CLI
000070 . BLKW 2 ; UNUSED
000074 A.LPRV: .BLKW 1 ; LOGIN PRIVILEGE WORD
000076 A.SID: .BLKW 1 ;SESSION IDENTIFIER
A.LEN=128. ; LENGTH OF CONTROL BLOCK

i

; BIT DEFINITIONS ON A.LPRV - LOGIN PRIVILEGE BITS
i

AL.SLV=1 ;SLAVE TERMINAL ON LOGIN

«PSECT

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

CLKDFS$
; CLOCK QUEUE CONTROL BLOCK OFFSET DEFINITIONS
; CLOCK QUEUE CONTROL BLOCK
; THERE ARE FIVE TYPES OF CLOCK QUEUE CONTROL BLOCKS. EACH CONTROL
; BLOCK HAS THE SAME FORMAT IN THE FIRST FIVE WORDS AND DIFFERS IN
; THE REMAINING THREE.
; THE FOLLOWING CONTROL BLOCK TYPES ARE DEFINED:
C.MRKT=0 ;MARK TIME REQUEST
C.SCHD=2 ; TASK REQUEST WITH PERIODIC RESCHEDULING
C.SSHT=4 ; SINGLE SHOT TASK REQUEST
C.SYST=6 ;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
: (IDENT)
C.SYTK=8. ;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
; (TASK)
C.CSTP=10. ;CLEAR STOP BIT (CONDITIONALIZED ON
;SHUFFLING)

CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT OFFSET DEFINTIONS

~s N wo

+ASECT
000000 C.LNK: .BLKW
000002 C.RQT: .BLKB
000003 C.EFN: .BLKB
000004 C.TCB: .BLKW
000006 C.TIM: .BLKW

;CLOCK QUEUE THREAD WORD

;REQUEST TYPE

; EVENT FLAG NUMBER (MARK TIME ONLY)

;TCB ADR OR SYSTEM SUBROUTINE IDENTIFICATION
;ABSOLUTE TIME WHEN REQUEST COMES DUE

N b

H
; CLOCK QUEUE CONTROL BLOCK-MARK TIME DEPENDENT OFFSET DEFINITIONS

=C.TIM+4 ;START OF DEPENDENT AREA

;AST ADDRESS

;FLAG MASK WORD FOR 'BIS' SOURCE
;ADDRESS OF 'BIS' DESTINATION

; UNUSED

000012 C.AST: .BLKW
000014 C.SRC: .BLKW
000016 C.DST: .BLKW
000020 .BLKW

b b

; CLOCK QUEUE CONTROL BLOCK-PERIODIC RESCHEDULING DEPENDENT OFFSET
; DEFINITIONS
;

=C.TIM+4 ;START OF DEPENDENT AREA
;RESCHEDULE INTERVAL IN CLOCK TICKS
s SCHEDULING UIC

; POINTER TO ASSOCIATED UAB

000012 C.RSI: .BLKW
000016 C.UIC: .BLKW
000020 C.UAB: .BLKW

=N

H
; CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT DEPENDENT OFFSET DEFINITIONS

=C.TIM+4 ; START OF DEPENDENT AREA
000012 . BLKW 2 ; TWO UNUSED WORDS

A-10

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000016
000020

000012
000014
000016

000020
000022

CLKDFS$ (Cont.)

« BLKW 1 ; SCHEDULING UIC
«BLKW 1 ;C.UAB

CLLOCK QUEUE CONTROL BLOCK-SINGLE SHOT INTERNAL SUBROUTINE OFFSET
DEFINITIONS

THERE ARE TWO TYPE CODES FOR THIS TYPE OF REQUEST:

N6 We N N we We W Ne Nwe N we we

TYPE 6 = SINGLE SHOT INTERNAL SUBROUTINE WITH A 16 BIT VALUE
AS AN IDENTIFIER.
TYPE 8 = SINGLE SHOT INTERNAL SUBROUTINE WITH A TCB ADDRESS
AS AN IDENTIFIER.
.=C.TIM+4 ;START OF DEPENDENT AREA
C.SUB: .BLKW 1 ; SUBROUTINE ADDRESS
C.AR5: .BLKW 1 ;RELOCATION BASE (FOR LOADABLE DRIVERS)
C.URM: .BLKW 1 ;URM TO EXECUTE ROUTINE ON
; (MP SYSTEMS, C.SYST ONLY)
.BLKW 1 ; UNUSED
C.LGTH=. ;LENGTH OF CLOCK QUEUE CONTROL BLOCK

. PSECT

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

CTBDF$

CTBDF$

CONTROLLER TABLE (CTB)

THE CONTROLLER TABLE IS A CONTROL BLOCK THAT CONTAINS A VECTOR
OF KRB ADDRESSES. THIS VECTOR MAY BE ADDRESSED BY THE CONTROLLER
INDEX TAKEN FROM THE INTERRUPT PS BY $SINTSV/SINTSE.

w6 NP Ne me w8 we N

.ASECT
.=177756
177756 L.CLK: .BLKW
177776 L.IZB: .BLKW
000000 L,LNK: .BLKW
000002 L.NAM: .BLKW
000004 L.DCB: .BLKW
000006 L.NJM: .BLKB
000007 L.STS: .BLKB
000010 L.KRB: .BLKW

;START OF CLOCK BLOCK (IF ANY)
;ICB CHAIN FOR THIS CTB

;CTB LINK WORD

;GENERIC CONTROLLER NAME (ASCITI)
;DCB ADDRESS OF THIS DEVICE
;NUMBER OF KRB ADDRESSES IN TABLE
;CTB STATUS BYTE

; START OF KRB ADDRESSES

Sl = Iy,)

NOTE: THE SYMBOL $XYCTB:: IS DEFINED FOR EACH CTB, WHERE THE
CHARACTERS XY ARE THE SAME AS THOSE STORED IN L.NAM. THE
SYMBOL IS NOT THE START OF THE CTB, BUT INSTEAD THE START OF
THE KRB TABLE AT THE END OF THE CTB (L.KRB).

Ne we Ne wo w0 Ny

«PSECT

CONTROLLER TABLE STATUS BYTE BIT DEFINITIONS

* ~ =

’

LS.CLK=1 ;CLOCK BLOCK AT TOP OF CTB (1=YES)

LS.MDC=2 ;MULTIDRIVER CTB (1=YES)

LS.CBL=4 ;CLOCK BLK LINKED INTO CLK Q (1=YES)

LS.CIN=10 ;CONT. USE COMMON INT TABLE (1=YES)

LS.NET=20 ;THIS IS DECNET DEVICE. ICB'S IN K.PRM
; (1=YES)

COMMON INTERRUPT TABLE DISPATCH ENTRY POINTS

o e we

CI.CSR=-6 ;CSR TEST ENTRY POINT

CI.KRB=-4 ;KRB STATUS CHANGE ENTRY POINT
CI.PWF=-2 ; POWERFAIL ENTRY POINT

CI.INT=0 ; COMMON INTERRUPT ADDRESS
CI.DCB=2 ; START OF DCB TABLE (0 ENDS TABLE)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

DCBDF$

DCBDF$,,SYSDEF

DEVICE CONTROL BLOCK

THE DEVICE CONTROL BLOCK (DCB) DEFINES GENERIC INFORMATION ABOUT A
DEVICE TYPE AND THE LOWEST AND HIGHEST UNIT NUMBERS. THERE IS AT
LEAST ONE DCB FOR EACH DEVICE TYPE IN A SYSTEM. FOR EXAMPLE, IF
THERE ARE TELETYPES IN A SYSTEM, THEN THERE IS AT LEAST ONE DCB
WITH THE DEVICE NAME 'TT'. IF PART OF THE TELETYPES WERE
INTERFACED VIA DL11-A'S AND THE REST VIA A DH1ll, THEN THERE WOULD
BE TWO DCB'S. ONE FOR ALL DL11-A INTERFACED TELETYPES, AND ONE
FOR ALL DH11 INTERFACED TELETYPES.

N Ne Ne NE Ns we We Ne Ne N8 N N

«ASECT
.=0 .
;LINK TO NEXT DCB

000000 D.LNK: .BLKW 1
000002 D.UCB: .BLKW 1 ; POINTER TO FIRST UNIT CONTROL BLOCK
000004 D.NAM: .BLKW 1 ;GENERIC DEVICE NAME
000006 D.UNIT: .BLKB 1 ; LOWEST UNIT NUMBER COVERED BY THIS DCB
000007 .BLKB 1 ;HIGHEST UNIT NUMBER COVERED BY THIS DCB
000010 D.UCBL: .BLKW 1 ; LENGTH OF EACH UNIT CONTROL BLOCK IN BYTES
000012 D.DSP: .BLKW 1 ; POINTER TO DRIVER DISPATCH TABLE
000014 D.MSK: .BLKW 1 ; LEGAL FUNCTION MASK CODES 0-15.
000016 «BLKW 1 ;CONTROL FUNCTION MASK CODES 0-15.
000020 «BLKW 1 ;NOP'ED FUNCTION MASK CODES 0-15.
000022 « BLKW 1 ;ACP FUNCTION MASK CODES 0-15.
000024 . BLKW 1 ; LEGAL FUNCTION MASK CODES 16.-31.
000026 « BLKW 1 ;CONTROL FUNCTION MASK CODES 16.-31.
000030 .BLKW 1 ;NOP'ED FUNCTION MASK CODES 16.-31.
000032 « BLKW 1 ;ACP FUNCTION MASK CODES 16.-31.

1

000034 D.PCB: .BLKW ; LOADABLE DRIVER PCB ADDRESS

. PSECT

DRIVER DISPATCH TABLE OFFSET DEFINITIONS

~e wo we

D.VDEB=-2 ; DEALLOCATE BUFFER(S)

D.VCHK=-4 ;ADDRESS OF ROUTINE CALLED TO VALIDATE
;AND CONVERT THE LBN. USED BY DRIVERS
;THAT SUPPORT SEEK OPTIMIZATION.

D.VNXC=-4 ;ADDRESS OF ROUTINE IN TTDRV CALLED TO
;HAVE IT SEND THE NEXT COMMAND IN THE
; TYPEAHEAD BUFFER TO MCR...

D.VINI=0 ;DEVICE INITIATOR

D.VCAN=2 ;CANCEL CURRENT I/O FUNCTION
D.VCUT=4 ;DEVICE TIMEOUT

D.VPWF=6 ; POWERFAIL RECOVERY

D.VKRB=10 ;CONTROLLER STATUS CHANGE ENTRY
D.VUCB=12 ;UNIT STATUS CHANGE ENTRY

.IF NB SYSDEF
D.VINT=14 ;BEGINNING OF INTERRUPT STUFF

.« ENDC

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

EPKDFS$

EPKDF$

ERROR MESSAGE BLOCK DEFINITIONS

.~ Ne we

+ASECT

HEADER SUBPACKET

- +
| SUBPACKET LENGTH IN BYTES !
A e e e e e +
| SUBPACKET FLAGS |
o e e +
| FORMAT IDENTIFICATION | OPERATING SYSTEM CODE |
e B R Fomm e +

WS We N M N W M W N e N Ne NE N N N N Me WM we we we We W NE g e Ne mp we W
+
|
|
|
|
]
]
|
|
|
]
]
|
|
|
|
1
|
|
]
1
|
|
]
+
|
|
|
|
]
|
|
|
|
]
|
|
|
|
i
|
|
|
|
|
|
|
|
-+

o e o +
! FLAGS | CONTEXT CODE !
| ENTRY SEQUENCE |
o +
| ERROR SEQUENCE |
B R ettt D e B e +
| ENTRY TYPE SUBCODE | ENTRY TYPE CODE |
et et T L T +
| TIME STAMP |
| |
| f
o o +
| RESERVED | PROCESSOR TYPE !
R it T B e +
| PROCESSOR IDENTIFICATION (URM) |
- +
.=0
000000 ESHLGH: .BLKW 1 ; SUBPACKET LENGTH IN BYTES
000002 ESHSBF: .BLKW 1 ; SUBPACKET FLAGS
- 000004 ESHSYS: .BLKB 1 ; OPERATING SYSTEM CODE

000005 ESHIDN: .BLKB 1 ; FORMAT IDENTIFICATION

000006 ESHSID: .BLKB 4 ; OPERATING SYSTEM IDENTIFICATION

000012 ES$HCTX: .BLKB 1 ; CONTEXT CODE

000013 ESHFLG: .BLKB 1 ; FLAGS

000014 ESHENS: .BLKW 1 ; ENTRY SEQUENCE NUMBER

000016 ESHERS: .BLKW 1 ; ERROR SEQUENCE NUMBER

000020 ESHENC: ; ENTRY CODE

000020 ESHTYC: .BLKB 1 : ENTRY TYPE CODE

000021 ES$HTYS: .BLKB 1 ; ENTRY TYPE SUBCODE

000022 ESHTIM: .BLKB 6 ; TIME STAMP

000030 ESHPTY: .BLKB 1 ; PROCESSOR TYPE

000031 .BLKB 1 ; RESERVED

000032 ESHURM: .BLKW 1 ; PROCESSOR IDENTIFICATION (URM)
.EVEN

000034 ES$HLEN: LENGTH

~

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

EPKDF$ (Cont.)

SUBPACKET FLAGS FOR ESHSBF

~. weo we

SM.ERR = 1 ; ERROR PACKET

SM.HDR = 1 ; HEADER SUBPACKET

SM.TSK = 2 ; TASK SUBPACKET

SM.DID = 4 ; DEVICE IDENTIFICATION SUBPACKET
SM.DOP = 10 ; DEVICE OPERATION SUBPACKET

SM.DAC = 20 ; DEVICE ACTIVITY SUBPACKET

SM.DAT = 40 ; DATA SUBPACKET

SM.MBC = 20000 ; 22-BIT MASSBUS CONTROLLER PRESENT
SM.CMD = 40000 ; ERROR LOG COMMAND PACKET

SM.ZER =100000 ;

ZERO I/0 COUNTS

CODES FOR FIELD ESHIDN

“e wo we

EHS$FOR

]

1 ; CURRENT PACKET FORMAT

FLAGS FOR THE ERROR LOG FLAGS BYTE (SERFLA) IN THE EXEC

s we we

ES.INI = 1 ; ERROR LOG INITIALIZED
ES.DAT = 2 ; ERROR LOG RECEIVING DATA PACKETS
ES.LIM = 4 ; ERROR LIMITING ENABLED
ES.LOG = 10 ; ERROR LOGGING ENABLED

TYPE AND SUBTYPE CODES FOR FIELDS E$HTYC AND ES$SHTYS

SYMBOLS WITH NAMES ES$CXXX ARE TYPE CODES FOR FIELD E$HTYC,
SYMBOLS WITH NAMES E$SXXX ARE SUBTYPE CODES FOR FIELD ES$HTYS

Ne W e we Ny W

ESCCMD = 1 ; ERROR LOG CONTROL

E$SSTA = 1 ; ERROR LOG STATUS CHANGE
ESSSWI = 2 ; SWITCH LOGGING FILES
ESSAPP = 3 ; APPEND FILE

ESSBAC = 4 ; DECLARE BACKUP FILE
ESSSHO = 5 ; SHOW

E$SSCHL = 6 ; CHANGE LIMITS

ESCERR = 2 ; DEVICE ERRORS

ESSDVH = 1 ; DEVICE HARD ERROR

ESSDVS = 2 ; DEVICE SOFT ERROR

E$SSTMO = 3 ; DEVICE INTERRUPT TIMEOUT
ESSUNS = 4 ; DEVICE UNSOLICITED INTERRUPT
ESCDVI = 3 ; DEVICE INFORMATION

E$SSDVI = 1 ; DEVICE INFORMATION MESSAGE
ESCDCI = 4 ; DEVICE CONTROL INFORMATION
ESSMOU = 1 ; DEVICE MOUNT

ESSDMO = 2 ; DEVICE DISMOUNT

ESSRES = 3 ; DEVICE COUNT RESET
ESSRCT = 4 ; BLOCK REPLACEMENT

ESCCPU = 5 ; CPU DETECTED ERRORS

E$SMEM = 1 ; MEMORY ERROR

ESSINT = 2 ; UNEXPECTED INTERRUPT

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

EPKDF$ (Cont.)

ESCSYS = 6 ; SYSTEM CONTROL INFORMATION
ESSPWR = 1 ; POWER RECOVERY

ESCCTL = 7 ; CONTROL INFORMATION

ESSTIM = 1 ; TIME CHANGE

ESSCRS = 2 ; SYSTEM CRASH

E$SSLOA = 3 ; DEVICE DRIVER LOAD

ESSUNL = 4 ; DEVICE DRIVER UNLOAD

E$SSHRC = 5 ; RECONFIGURATION STATUS CHANGE
ESSMES = 6 ; MESSAGE

ESCSDE = 10 ; SOFTWARE DETECTED EVENTS

ESSABO = 1 ; TASK ABORT

CODES FOR CONTEXT CODE ENTRY ESHCTX

~e we =

EHSNOR = 1 ; NORMAL ENTRY
EHSSTA = 2 ; START ENTRY
EH$CRS = 3 ; CRASH ENTRY

CODES FOR FLAGS ENTRY ESHFLG

~e we we

EHSVIR = 1 ; ADDRESSES ARE VIRTUAL
EHSEXT = 2 ; ADDRESSES ARE EXTENDED
EHSCOU = 4 ; ERROR COUNTS SUPPLIED

TASK SUBPACKET
e e +
| TASK SUBPACKET LENGTH]
o +

e +
| TASK UIC |
o +
| TASK TI: DEVICE NAME |
e e e +
| FLAGS | TASK TI: UNIT NUMBER |
e e +

L R T R R T N R T TR T Y

.=0
000000 ESTLGH: .BLKW
000002 ESTTSK: .BLKW
000006 ESTUIC: .BLKW
000010 ESTTID: .BLKB
000012 ESTTIU: .BLKB
000013 ESTFLG: .BLKB

TASK SUBPACKET LENGTH
TASK NAME IN RADS5O0
TASK UIC

TASK TI: DEVICE NAME
TASK TI: UNIT

FLAGS

Ne %o we we we we

N N

000014 ESTLEN:

FLAGS FOR ENTRY ESTFLG

~s we o

TASK IS PRIVILEGED
TERMINAL IS PRIVILEGED

ETSPRV
ET$PRI

o
N =
~e ~e

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000000
000002
000004
000005
000006
000007
000010
000012
000013
000014
000030
000034
000034
000036
000042
000046
000047

NE MO NG Ve N W N NE NG NE e NG Ve Ne N NS Mg W6 N NE WE NS Mo WS Ne M N We Np WO e Ne N6 %o we W W

N N Ne Ne we ~we

ESILGH:
ESILDV:
ESILUN:
ESIPCO:
ESIPUN:
ESIPSU:
ESIPDV:
ESIFLG:

.
|
o

ESIVOL:
ESIPAK:
ESIDEV:
ESIDCL:
ESIDTY:
ESIOPR:
ESIERS:
ESIERH:

EPKDF$ (Cont.)

DEVICE IDENTIFICATION SUBPACKET

M +
| DEVICE IDENTIFICATION SUBPACKET LENGTH |
ey +
| DEVICE MNEMONIC NAME |
g S +
| CONTROLLER NUMBER | DEVICE UNIT NUMBER |
i Sy +
| PHYSICAL SUBUNIT # | PHYSICAL UNIT #]
e T +
| PHYSICAL DEVICE MNEMONIC (RSX-11M-PLUS ONLY)

S M +
| RESERVED | FLAGS |
T - B R, +

VOLUME NAME OF MOUNTED VOLUME

o +
.BLKW 1 ; DEVICE IDENTIFICATION SUBPACKET LENGTH
.BLKW 1 ; DEVICE MNEMONIC NAME
.BLKB 1 ; DEVICE UNIT NUMBER
.BLKB 1 ; CONTROLLER NUMBER
.BLKB 1 ; PHYSICAL UNIT NUMBER
.BLKB 1 ; PHYSICAL SUBUNIT NUMBER
.BLKW 1 ; PHYSICAL DEVICE MNEMONIC
.BLKB 1 ; FLAGS
.BLKB 1 ; RESERVED
.BLKB 12. ; VOLUME NAME
.BLKB 4 ; PACK IDENTIFICATION
; DEVICE TYPE
. BLKW 1 ; DEVICE TYPE CLASS
.BLKW 2 ; DEVICE TYPE
.BLKW 2 ; I/0 OPERATION COUNT LONGWORD
.BLKB 1 ; SOFT ERROR COUNT
.BLKB 1 ; HARD ERROR COUNT

A-17

RSX-11M-PLUS

EPKDF$ (Cont.)

000050
000054

000060

000000
000002
000006
000010
000012
000013
000014
000016
000017
000020
000024
000026

000030

E$IBLK:
ESICYL:

ESILEN:

FLAGS

~. wo e

WE NMe M MO e Ne N NE NE NE NE NE NE e NE We W e W WE NE we Ne Ne we N W

.=0

ESOLGN:
ESOTSK:
ESOUIC:
ESOTID:
ESOTIU:

ESOFNC:
ESOFLG:

E$OADD:
ESOSIZ:
E$ORTY:

ESOLEN:

FLAGS

~. % w0

.BLKW
.BLKW
.EVEN

FOR FIELD ESIFLG

EISSUB
EI$NUX

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

1
2

~. =

~

~ we

BLOCKS TRANSFERRED COUNT
CYLINDERS CROSSED COUNT

SUBPACKET LENGTH

SUBCONTROLLER DEVICE
NO UCB EXTENSION, DATA INVALID

DEVICE OPERATION SUBPACKET

e e +
| TASK UIC !
B it s e T +
| TASK TI: LOGICAL DEVICE MNEMONIC I
B ettt L e ettt +
! RESERVED | TASK TI: DEVICE UNIT |
B ettt e R R et +
| I/0 FUNCTION CODE |
o Fom e +
| RESERVED | OPERATION FLAGS |

e +
| TRANSFER OPERATION BYTE COUNT }
o +
| CURRENT OPERATION RETRY COUNT |
A e e +
.BLKW 1 ; SUBPACKET LENGTH

« BLKW 2 ; TASK NAME IN RAD50

. BLKW 1 ; TASK UIC

.BLKB 2 ; TASK TI: LOGICAL DEVICE MNEMONIC
.BLKB 1 ; TASK TI: LOGICAL DEVICE UNIT
.BLKB 1 ; RESERVED

. BLKW 1 ; I/0 FUNCTION CODE

.BLKB 1 ; OPERATION FLAGS

.BLKB 1 ;s RESERVED

. BLKW 2 ; TRANSFER OPERATION ADDRESS

. BLKW 1 ; TRANSFER OPERATION BYTE COUNT
.BLKW 1 ; CURRENT OPERATION RETRY COUNT

. EVEN

FOR FIELD ESOFLG

EOS$TRA
EOS$DMA

-~

. we

DEVICE OPERATION SUBPACKET LENGTH

TRANSFER OPERATION
DMA DEVICE

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000000

000000
000002
000003
000004
000005
000006
000010
000011
000012
000016
000020
000022
000024

EPKDF$ (Cont.)

EOSEXT = 4 ; EXTENDED ADDRESSING DEVICE
EOSPIP = 10 ; DEVICE IS POSITIONING
i
; I/0 ACTIVITY SUBPACKET
i
; Frr +
; | I/0 ACTIVITY SUBPACKET LENGTH |
; B et et ittt DDttt itk +
i
.=0
ESALGH: .BLKW 1 ; SUBPACKET LENGTH

I/0 ACTIVITY SUBPACKET ENTRY

We NS Ne NE Ne WE N W We Ne NE We We Ne We NE e We We W We We We We Ve Wy Ws we We W we

| TLOGICAL DEVICE NAME MNEMONTG \
| TCONTROLLER NUMBER | LOGICAL DEVICE UNIT |
| PRYSICAL SUBUNIT § | PHYSICAL UNIT NUMBER |
| PRYSICAL DEVICE MNEMONIC (REX-1IM_BLUS ONLY) 1
| TASK T1: LOGICAL UNIT | DEVICE Fiacs i
o o +

B e et +
| REQUESTING TASK UIC |
e e e e +
| TASK TI: LOGICAL DEVICE NAME |
o - +
| I/0 FUNCTION CODE !
et o +
| RESERVED | FLAGS |
e o - +

e e +
| TRANSFER OPERATION BYTE COUNT |
e +

«=0

ESALDV: .BLKW 1 ; LOGICAL DEVICE NAME MNEMONIC

ESALUN: .BLKB 1 ; LOGICAL DEVICE UNIT

E$SAPCO: .BLKB 1 ; CONTROLLER NUMBER

ESAPUN: .BLKB 1 ; PHYSICAL UNIT NUMBER

ESAPSU: .BLKB 1 ; PHYSICAL SUBUNIT NUMBER

ESAPDV: .BLKW 1 ; PHYSICAL DEVICE MNEMONIC

ESADFG: .BLKB 1 ; DEVICE FLAGS

ESATIU: .BLKB 1 ; TASK TI: LOGICAL UNIT

ESATSK: .BLKW 2 : REQUESTING TASK NAME IN RADS0

ESAUIC: .BLKW 1 ; REQUESTING TASK UIC

ESATID: .BLKW 1 ; TASK TI: LOGICAL DEVICE NAME

ESAFNC: .BLKW 1 ; 1/0 FUNCTION CODE

ESAFLG: .BLKB 1 ; FLAGS

R3X-11M-PLUS

EPKDF$ (Cont.)

000025
000026
000032

000034

ESAADD:
ESASIZ:

FLAGS

~e ws N

. BLKB
.BLKW
.BLKW
. EVEN

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

1 ; RESERVED
2 ; TRANSFER OPERATION ADDRESS
1 ; TRANSFER OPERATION BYTE COUNT

SUBPACKET ENTRY LENGTH

~

FOR FIELD ES$ADFG

EASSUB
EASNUX

SUBCONTROLLER DEVICE
NO UCB EXTENSION, DATA INVALID

1
2

~e e

FOR FIELD ESAFLG

EASTRA
EASDMA
EASEXT
EASPIP

.PSECT

1]

TRANSFER OPERATION

DMA DEVICE

DEVICE HAS EXTENDED ADDRESSING
DEVICE IS POSITIONING

o

O BN
~e o we we

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

F11DF$

F11DF$,,SYSDEF

VOLUME CONTROL BLOCK

s we we

VOLUME LABEL (ASCII)
PACK SERIAL NUMBER FOR ERROR LOGGING

000004 V.LABL: .BLKB 14
000020 V.PKSR: .BLKW 2

.ASECT

.=0

000000 V.TRCT: .BLKW 1 ; TRANSACTION COUNT

000002 V.TYPE: .BLKB 1 ; VOLUME TYPE DESCRIPTOR
VT.SL1= 1 ; FILES-11 STRUCTURE LEVEL 1
VT.ANS= 10 ; ANSI LABELED TAPE
VT.UNL= 11 ; UNLABELED TAPE

000003 V.VCHA: .BLKB 1 ; VOLUME CHARACTERISTICS
VC.SLK= 1 ; CLEAR VOLUME VALID ON DISMOUNT
VC.HLK= 2 ; UNLOAD THE VOLUME ON DISMOUNT
VC.DEA= 4 ; DEALLOCATE THE VOLUME ON DISMOUNT
VC.PUB= 10 ; SET (CLEAR) US.PUB ON DISMOUNT

000024 V.SLEN: LENGTH OF SHORT VCB

-

000024 V.IFWI: .BLKW 1 ; INDEX FILE WINDOW
000026 V.FCB: .BLKW 2 ; FILE CONTROL BLOCK LIST HEAD
000032 V.IBLB: .BLKB 1 ; INDEX BIT MAP 1ST LBN HIGH BYTE
000033 V.IBSZ: .BLKB 1 ; INDEX BIT MAP SIZE IN BLOCKS
000034 «.BLKW 1 ; INDEX BITMAP 1ST LBN LOW BITS
000036 V.FMAX: .BLKW 1 ; MAX NO. OF FILES ON VOLUME
000040 V.WISZ: .BLKB 1 ; DEFAULT SIZE OF WINDOW IN RTRV PTRS
; VALUE IS < 128.

000041 V.SBCL: .BLKB 1 ; STORAGE BIT MAP CLUSTER FACTOR
000042 V.SBSZ: .BLKW 1 ; STORAGE BIT MAP SIZE IN BLOCKS
000044 V.SBLB: .BLKB 1 ; STORAGE BIT MAP 1ST LBN HIGH BYTE
000045 V.FIEX: .BLKB 1 ; DEFAULT FILE EXTEND SIZE
000046 .BLKW 1 ; STORAGE BIT MAP 1ST LBN LOW BITS
000050 V.VOWN: .BLKW 1 ; VOLUME OWNER'S UIC
000052 V.VPRO: .BLKW 1 ; VOLUME PROTECTION
000054 V.FPRO: .BLKW 1 ; VOLUME DEFAULT FILE PROTECTION
000056 V.FRBK: .BLKB 1 ; NUMBER OF FREE BLOCKS ON VOLUME HIGH BYTE
000057 V.LRUC: .BLKB 1 ; COUNT OF AVAILABLE LRU SLOTS IN FCB LIST
000060 .BLRW 1 ; NUMBER OF FREE BLOCKS ON VOLUME LOW BITS
000062 V.STS: .BLKB 1 ; VOL STATUS BYTE, CONTAINING THE FOLLOWING

VS.IFW= 1 ; INDEX FILE IS WRITE ACCESSED

VS.BMW= 2 ; STORAGE BITMAP FILE IS WRITE ACCESSED
000063 V.FFNU: .BLKB 1 ; FIRST FREE INDEX FILE BITMAP BLOCK
000064 V.EXT: .BLKW 1 ; POINTER TO VCB EXTENSION

000066 V.LGTH: SIZE IN BYTES OF VCB

-~

MOUNT LIST ENTRY
EACH ENTRY ALLOWS ACCESS TO A SPECIFIED USER FOR A NON-PUB DEVICE

TO ALLOW EXPANSION, ONLY THE ONLY TYPE CODE DEFINED IS "1" FOR
DEVICE ACCESS BLOCKS

e Ne w0 we we we we W

.ASECT
.=0
000000 M.LNK: .BLKW 1 ; LINK WORD

A-21

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

F11DF$ (Cont.)

000002

000003
000004
000006

000010

000000
000002
000004
000006
000007
000010
000012
000014
000015
000016

000022

000026
000032
000033

000012

000034
000034
000035

000036
000040
000042
000044
000050
000052

000054

000000

M.TYPE: .BLKB 1
MT.MLS= 1
M.ACC: .BLKB 1
M.DEV: .BLKW 1
M.TI: . BLKW 1
M.LEN:
; FILE CONTROL BLOCK
’
.ASECT
.=0
F.LINK: .BLKW 1
F.FNUM: .BLKW 1
F.FSEQ: .BLKW 1
.BLKB 1
F.FSQON: .BLKB 1
F.FOWN: .BLKW 1
F.FPRO: .BLKW 1
F.UCHA: ,BLKB 1
F.SCHA: .BLKB 1
F.HDLB: .BLKW 2
F.LBN: . BLKW 2
F.SIZE: .BLKW 2
F.NACS: .BLKB 1
F.NLCK: .BLKB 1
S.STBK=.-F.LBN
F.STAT:
F.NWAC: .BLKB 1
.BLKB 1
FC.WAC= 100000
FC.DIR= 40000
FC.CEF= 20000
FC.FCO= 10000
F.DREF: .BLKW 1
F.DRNM: _BLKW 1
F.FEXT: .BLKW 1
F.FVBN: ,BLKW 2
F.LKL: .BLKW 1
F.WIN: .BLKW 1
F.LGTH:
V
; WINDOW
!’
.ASECT
.=0
W.ACT:

e W we we we

~

N Ne N we Ne Ne Ne wg Ne W

we Ne we we we w,

~

e N6 WE Mo We We We we we w0 we N6 N

~

TYPE OF ENTRY

MOUNTED VOLUME USER ACCESS LIST
NUMBER OF ACCESSES

DEVICE UCB

ACCESSOR TI: UCB

LENGTH OF ENTRY

FCB CHAIN POINTER

FILE NUMBER

FILE SEQUENCE NUMBER

NOT USED

FILE SEGMENT NUMBER

FILE OWNER'S UIC

FILE PROTECTION CODE

USER CONTROLLED CHARACTERISTICS
SYSTEM CONTROLLED CHARACTERISTICS
FILE HEADER LOGICAL BLOCK NUMBER

BEGINNING OF STATISTICS BLOCK

LBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS
0 IF NON CONTIGUOUS

SIZE OF FILE IN BLOCKS

NO. OF ACCESSES

NO. OF LOCKS

SIZE OF STATISTICS BLOCK

FCB STATUS WORD

NUMBER OF WRITE ACCESSORS

STATUS BITS FOR FCB CONSISTING OF
SET IF FILE ACCESSED FOR WRITE

SET IF FCB IS IN DIRECTORY LRU

SET IF DIRECTORY EOF NEEDS UPDATING
SET IF
DIRECTORY EOF BLOCK NUMBER

1ST WORD OF DIRECTORY NAME
POINTER TO EXTENSION FCB

STARTING VBN OF THIS FILE SEGMENT
POINTER TO LOCKED BLOCK LIST FOR FILE
WINDOW BLOCK LIST FOR THIS FILE

SIZE IN BYTES OF FCB

NUMBER OF ACTIVE MAPPING POINTERS
WHEN NO SECONDARY POOL

TRYING TO FORCE DIRECTORY CONTIG

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

F11DF$ (Cont.)

BLOCK SIZE OF SECONDARY POOL SEGMENT
WHEN SECONDARY POOL

LOW BYTE = § OF MAP ENTRIES ACTIVE
HIGH BYTE CONSISTS OF CONTROL BITS
READ VIRTUAL BLOCK ALLOWED IF SET

WRITE VIRTUAL BLOCK ALLOWED IF SET
EXTEND ALLOWED IF SET

SET IF LOCKED AGAINST SHARED ACCESS
SET IF DEACCESS LOCK ENABLED

WINDOW TURN PENDING BIT

SET IF MANUAL UNLOCK DESIRED

DATA CHECK ALL WRITES TO FILE

COUNT OF I/0 THROUGH THIS WINDOW
RESERVED

FILE CONTROL BLOCK ADDRESS

POINTER TO LIST OF USERS LOCKED BLOCKS
WINDOW BLOCK LIST LINK WORD

000000 W.BLKS:

000000 W.CTL: .BLKW 1

WI.RDV= 400
WI.WRV= 1000
WI.EXT= 2000
WI.LCK= 4000
WI.DLK= 10000
WI.PND= 20000
WI.EXL= 40000
WI.WCK= 100000
000002 W.IOC: .BLKB
000003 .BLKB
000004 W.FCB: .BLKW
000006 W.LKL: .BLKW
000010 W.WIN: .BLKW

W Ne Ne Ne e %6 N W We e We Ne %o we e wa W

=

.IF NB SYSDEF

~

IF SYSDEF SPECIFIED IN CALL

.IF NDF P$$WND IF SECONDARY POOL WINDOWS NOT ALLOWED

-

i

; NON-SECONDARY POOL WINDOW BLOCK

; IF SECONDARY POOL WINDOWS ARE NOT ENABLED, THE WINDOW BLOCK

; CONTAINS THE CONTROL INFORMATION AND RETRIEVAL POINTERS.

i

W.VBN: .BLKB 1 ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW

W.MAP: ; DEF LABEL WITH ODD ADDR TO CATCH BAD REFS

W.WISZ: .BLKB 1 ; SIZE IN RTRV PTRS OF WINDOW (7 BITS)
«BLKW 1 ; LOW ORDER WORD OF 1ST VBN MAPPED

W.RTRV: ; OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW
.IFF ; IF WINDOWS IN SECONDARY POOL

i

; SECONDARY POOL WINDOW CONTROL AND MAPPING BLOCK

; IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, LUTN2 POINTS

H TO A CONTROL BLOCK IN SYSTEM POOL WHICH CONTAINS THE

; FOLLOWING CONTROL FIELDS AND THE MAPPING INFORMATION

; FOR THE SECONDARY POOL WINDOW.

i

W.MAP: ,BLKW 1 ; ADDR TO THE MAPPING PTRS IN SECONDARY POOL

SECONDARY POOL WINDOW
IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, THE RETRIEVAL
POINTERS ARE MAINTAINED IN SECONDARY POOL IN THE FOLLOWING
FORMAT.

® we No Ne we Ne we

It
o

ASSUME W.CTL,O

.BLKB 1 ; NUMBER OF ACTIVE MAPPING POINTERS
W.USE: .BLKB 1 ; STATUS OF BLOCK
W.VBN: .BLKB 1 ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW

A-23

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

F11DF$ (Cont.)

000000
000002
000004
000005
000006

000010

W.WISZ: .BLKB
«BLKW 1
W.RTRV:

—

~. we ~o

«ENDC ;PS$SWND ;

«ENDC ;SYSDEF

~

LOCKED BLOCK LIST NODE

e Ne we

«ASECT
.=0

L.LNK: .BLKW 1 :
L.WIl: .BLKW 1 :
L.VBl: L.BLKB 1 ;
L.CNT: .BLKB 1 H
. BLKW 1 ;
L.LKSZ:
. PSECT

SIZE IN RTRV PTRS OF WINDOW (7 BITS)
LOW ORDER WORD OF 1ST VBN MAPPED
OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW

END SECONDARY POOL WINDOW CONDITIONAL

END SYSDEF CONDITIONAL

LINK TO NEXT NODE IN LIST

POINTER TO WINDOW FOR FIRST ENTRY
HIGH ORDER VBN BYTE

COUNT FOR ENTRY

LOW ORDER VBN

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000000
000002
000004
000005
000006
000010
000012
000014
000016
000020
000022
000024
000026
000030
000032
000034
000036
000040
000042
000044
000046
000050
000052
000054
000056
000060
000061
000062
000064
000065
000066
000072
000074
000076

000000
000002
000004
000006

HDRDFS$

HDRDF$

TASK HEADER OFFSET DEFINITIONS

e wo ws

.+ASECT
.=0
H.CSP: .BLKW
H.HDLN: .BLKW
H.SMAP: .BLKB
H.DMAP: .BLKB
-BLKW
H.CUIC: .BLKW
H.DUIC: .BLKW
H.IPS: .BLKW
H.IPC: .BLKW
H.ISP: .BLKW
H.ODVA: .BLKW
H.ODVL: .BLKW
H.TKVA: .BLKW
H.TKVL: .BLKW
H.PFVA: .BLKW
H.FPVA: .BLKW
H.RCVA: .BLKW
H.EFSV: .BLKW
H.FPSA: .BLKW
H.WND: .BLKW
H.DSW: .BLKW
H.FCS: .BLKW
H.FORT: .BLKW
H.OVLY: .BLKW
H.VEXT: .BLKW
H.SPRI: .BLKB
H.NML: .BLKB
H.RRVA: .BLKW
H.X25: .BLKB
.BLKB
«BLKW
H.GARD: .BLKW
H.NLUN: .BLKW
H.LUN: .BLKW

;CURRENT STACK POINTER

; HEADER LENGTH IN BYTES

; SUPERVISOR D SPACE OVERMAP MASK
;USER D SPACE OVERMAP MASK

; RESERVED

; CURRENT TASK UIC

; DEFAULT TASK UIC

; INITIAL PROCESSOR STATUS WORD (PS)

; INITIAL PROGRAM COUNTER (PC)

; INITIAL STACK POINTER (SP)

;ODT SST VECTOR ADDRESS

;ODT SST VECTOR LENGTH

; TASK SST VECTOR ADDRESS

; TASK SST VECTOR LENGTH

; POWER FAIL AST CONTROL BLOCK ADDRESS
; FLOATING POINT AST CONTROL BLOCK ADDRESS
;RECIEVE AST CONTROL BLOCK ADDRESS

; EVENT FLAG ADDRESS SAVE ADDRESS

; POINTER TO FLOATING POINT/EAE SAVE AREA
; POINTER TO NUMBER OF WINDOW BLOCKS

; TASK DIRECTIVE STATUS WORD

;FCS IMPURE POINTER

; FORTRAN IMPURE POINTER

;OVERLAY IMPURE POINTER

;WORK AREA EXTENSION VECTOR POINTER

; PRIORITY DIFFERENCE FOR SWAPPING
;NETWORK MMILBOX LUN

;RECEIVE BY REFERENCE AST CONTROL BLOCK ADDR
;FOR USE BY X25 SOFTWARE

;5 RESERVED BYTES

’

; POINTER TO HEADER GUARD WORD

;NUMBER OF LUN'S

; START OF LOGICAL UNIT TABLE

S e R e R e el el T e o TN T S S S SRy S S SR S g S P P

i
; LENGTH OF FLOATING POINT SAVE AREA
H

+FPSL=25.%*2

~

WINDOW BLOCK OFFSETS

¢ wo we we

]
(=]

W.BPCB: .BLKW
W.BLVR: .BLKW
W.BHVR: .BLKW
W.BATT: .BLKW

; PARTITION CONTROL BLOCK ADDRESS
;LOW VIRTUAL ADDRESS LIMIT

;sHIGH VIRTUAL ADDRESS LIMIT
;ADDRESS OF ATTACHMENT DESCRIPTOR

bt bt et s

R5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

HDRDFS$ (Cont.)

000010 W.BSIZ: .BLKW 1 ;SIZE OF WINDOW IN 32W BLOCKS

000012 W.BOFF: .BLKW 1 ; PHYSICAL MEMORY OFFSET IN 32W BLOCKS
000014 W.BFPD: .BLKB 1 ;FIRST PDR ADDRESS

000015 W.BNPD: .BLKB 1 ;NUMBER OF PDR'S TO MAP

000016 W.BLPD: .BLKW 1 ;CONTENTS OF LAST PDR

000020 W.BLGH: ;LENGTH OF WINDOW DESCRIPTOR

BIT DEFINITION FOR W.BLPD

~e we ws

WB.NBP=20 ;CACHE BYPASS IS NOT DESIRED FOR THIS WINDOW
WB.EPS=40 ;ALWAYS BYPASS THE CACHE FOR THIS WINDOW

.PSECT

RSX-11M~-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

HWDDF$
HWDDF$,,SYSDEF
;
; MACROS FOR DEFINING MAPPING REGISTER DEFINITIONS
’
.MACRO CRESET NAM,ADDR
$$$=0
.REPT 8.
CRENAM NAM,ADDR+<5%*%2>,\5
$58=$355+1
. ENDR
.ENDM
.MACRO CRENAM NAM,ADDR,N
'NAM' 'N'==ADDR
. ENDM
;
; HARDWARE REGISTER ADDRESSES AND STATUS CODES
I
MPCSR=177746 ;ADDRESS OF PDP-11/70 MEMORY PARITY REGISTER
MPAR=172100 ;ADDRESS OF FIRST MEMORY PARITY REGISTER
PIRQ=177772 ; PROGRAMMED INTERRUPT REQUEST REGISTER
PRO=:0 : PROCESSOR PRIORITY O
PR1=:40 ; PROCESSOR PRIORITY 1
PR4=200 : PROCESSOR PRIORITY 4
PR5=240 ; PROCESSOR PRIORITY 5
PR6=300 : PROCESSOR PRIORITY 6
PR7=340 : PROCESSOR PRIORITY 7
PS=177776 ; PROCESSOR STATUS WORD
SWR=177570 ;CONSOLE SWITCH AND DISPLAY REGISTER
TPS=177564 ;CONSOLE TERMINAL PRINTER STATUS REGISTER

EXTENDED ARITHMETIC ELEMENT REGISTERS

~e wa =

.IF DF ESSEAE

AC=177302 ; ACCUMULATOR
MQ=177304 ;MULTIPLIER-QUOTIENT
SC=177310 ;SHIFT COUNT

.ENDC

MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES

w. we we

.IF NB B

CRESET KINAR,172340 ; KERNEL I PAR'S
CRESET KINDR,172300 ;KERNEL I PDR'S
CRESET KDSAR,172360 ; KERNEL D PAR'S
CRESET KDSDR,172320 ; KERNEL D PDR'S
CRESET SISAR,172240 ;SUPERVISOR I PAR'S
CRESET SISDR,172200 ; SUPERVISOR I PDR'S
CRESET SDSAR,172260 ;SUPERVISOR D PAR'S
CRESET SDSDR,172220 ; SUPERVISOR D PDR'S
CRESET UINAR,177640 ;USER I PAR'S

A-27

RSX-11M-PLUS

HWDDF$ (Cont.)

CRESET
CRESET
CRESET

. ENDC
.IF NB
.IF DF

CRESET
CRESET

+IFF

CRESET
CRESET

. ENDC
.IF DF

CRESET
CRESET

.IFF

CRESET
CRESET

- ENDC

. ENDC

UBMPR=170200
CMODE=140000
PMODE=30000
CSMODE=40000
PSMODE=10000
SR0=177572
SR3=172516
CPUERR=177766
MEMERR=177744
MEMCTL=177746

. me ~o

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UINDR, 177600 ;USER I PDR'S
UDSAR, 177660 ;USER D PAR'S
UDSDR, 177620 ;USER D PDR'S
SYSDEF

K$SDAS

KISAR,172360 ;KERNEL D PAR'S
KISDR,172320 ;KERNEL D PDR'S
KISAR,172340 ;KERNEL I PAR'S
KISDR,172300 ;KERNEL I PDR'S
USSDAS

UISAR, 177660 ;USER D PAR'S
UISDR,177620 ;USER D PDR'S

; DF US$SDAS

UISAR, 177640 ;USER I PAR®S
UISDR, 177600 ;USER I PDR'S

; DF USSDAS

;UNIBUS MAPPING REGISTER 0
;CURRENT MODE FIELD OF PS WORD
; PREVIOUS MODE FIELD OF PS WORD
;CURRENT MODE =
; PREVIOUS MODE
;SEGMENT STATUS REGISTER 0

; SEGMENT STATUS REGISTER 3
;CPU ERROR REGISTER

;MEMORY SYSTEM ERROR REGISTER
;MEMORY CONTROL REGISTER

FEATURE SYMBOL DEFINITIONS

SUPERVISOR PS WORD BITS
SUPERVISOR PS WORD BITS

’

FE.EXT=1
FE.MUP=2
FE.EXV=4
FE.DRV=10
FE.PLA=20
FE.CAL=40
FE.PKT=100
FE.EXP=200
FE.LSI=400
FE.OFF=1000
FE.FDT=2000

;22-BIT EXTENDED MEMORY SUPPORT
sMULTI-USER PROTECTION SUPPORT
;EXECUTIVE IS SUPPORTED TC 20K

; LOADABLE DRIVER SUPPORT

; PLAS SUPPORT

; DYNAMIC CHECKPOINT SPACE ALLOCATION
; PREALLOCATION OF I/O PACKETS
;EXTEND TASK DIRECTIVE SUPPORTED

; PROCESSOR IS AN LSI-11

; PARENT/OFFSPRING TASKING SUPPORTED
;FULL DUPLEX TERMINAL DRIVER SUPPORTED

A-28

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

HWDDF$ (Cont.)

FE.X25=4000 :X.25 CEX IS LOADED

FE.DYM=10000 ; DYNAMIC MEMORY ALLOCATION SUPPORTED
FE.CEX=20000 ;COM EXEC IS LOADED

FE.MXT=40000 ;MCR EXIT AFTER EACH COMMAND MODE
FE.NLG=100000 ; LOGINS DISABLED - MULTI-USER SUPPORT

FEATURE MASK DEFINITIONS (SECOND WORD)

~e wo wo

F2.DAS=1 ; KERNEL DATA SPACE SUPPORTED

F2.LIB=2 ;SUPERVISOR MODE LIBRARIES SUPPORTED
F2.MP=4 ;SYSTEM SUPPORTS MULTIPROCESSING

F2.EVT=10 ;SYSTEM SUPPORTS EVENT TRACE FEATURE
F2.ACN=20 ; SYSTEM SUPPORTS CPU ACCOUNTING

F2.5DW=40 ;SYSTEM SUPPORTS SHADOW RECORDING
F2.POL=100 ;SYSTEM SUPPORTS SECONDARY POOLS
F2.WND=200 ;SYSTEM SUPPORTS SECONDARY POOL FILE WINDOWS
F2.DPR=400 ;SYSTEM HAS A SEPARATE DIRECTIVE PARTITION
F2.IRR=1000 ; INSTALL, RUN, AND REMOVE SUPPORT
F2.GGF=2000 ;GROUP GLOBAL EVENT FLAG SUPPORT
F2.RAS=4000 ;RECEIVE/SEND DATA PACKET SUPPORT
F2.AHR=10000 ;ALT. HEADER REFRESH AREA SUPPORT
F2.RBN=20000 ;ROUND ROBIN SCHEDULING SUPPORT
F2.5WP=40000 ;EXECUTIVE LEVEL DISK SWAPPING SUPPORT
F2.5TP=100000 ;EVENT FLAG MASK IS IN THE TCB(1=YES)

THIRD FEATURE MASK SYMBOL DEFINITIONS

o we we

’

F3.CRA=1 ;SYSTEM SPONTANEOUSLY CRASHED (1=YES)
F3.XCR=2 ;SYSTEM CRASHED FROM XDT (1=YES)

F3.EIS=4 ;SYSTEM REQUIRES EXTENDED INSTRUCTION SET
F3.8TM=10 ;SYSTEM HAS SET SYSTEM TIME DIRECTIVE
F3.UDS=20 ;SYSTEM SUPPORTS USER DATA SPACE
F3.PR0O=40 ;SYSTEM SUPPORTS SEC. POOL PROTO TCBS
F3.XHR=100 ;SYSTEM SUPPORTS EXTERNAL TASK HEADERS
F3.AST=200 ;SYSTEM HAS AST SUPPORT

F3.118=400 ;RSX-11S SYSTEM

F3.CLI=1000 sMULTIPLE CLI SUPPORT

F3.TCM=2000 ;SYSTEM HAS SEPARATE TERMINAL DRIVER POOL
F3.PMN=4000 ;SYSTEM SUPPORTS POOL MONITORING
F3.WAT=10000 ;SYSTEM HAS WATCHDOG TIMER SUPPORT
F3.RLK=20000 ;SYSTEM SUPPORTS RMS RECORD LOCKING
F3.S5HF=40000 ;SYSTEM SUPPORTS SHUFFLER TASK

; FOURTH FEATURE MASK BITS

’

F4,CXD=1 ;COMM EXEC IS DEALLOCATED (NON-I/D ONLY)

HARDWARE FEATURE MASK BIT DEFINITIONS
HF.CIS,HF.FPP DEFINED AS SIGN BITS FOR RUN TIME SPEED

F.UBM=1 ; PROCESSOR HAS A UNIBUS MAP (1=YES)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

HWDDFS$ (Cont.)

HF.EIS=2 ; PROCESSOR HAS EXTENDED INSTRUCION SET
HF.CIS=200 ; PROCESSOR SUPPORTS COMMERCIAL INST SET
HF.FPP=100000 ; (1=PROC. HAS NO FLOATING POINT UNIT)

SYSGEN FEATURE SELECTIONS MASK. THIS IS INTENDED TO RECORD IN A
BIT MASK THE CHOICES THE USER HAS MADE AT SYSGEN TIME. FEATURES
WILL BE LISTED HERE WHEN THEY ARE BEING RECORDED FOR OUR
INFORMATIONAL PURPOSES ONLY. THEY CANNOT BE TESTED LIKE BITS IN
THE FEATURE MASK SINCE THIS ONLY EXISTS IN THE RSX11M.STB FILE.
NO BITS IN MEMORY ARE USED. THEY ARE ONLY INTENDED TO BE PRINTED
FROM THE STB FILE BY CDA.

w6 N9 We N w6 W we we

14
SF.STD=1 ; STANDARD EXEC SELECTED
SF.RL2=2 ;SYSTEM IS FROM RLO2 KIT

MULTIPROCESSOR STATUS TABLE DEFINITIONS (TEMPORARY)

o o ws

’

MP.CRH=100000 ;CRASH PROCESSOR IMMEDIATELY
MP.PWF=40000 ; POWERFAIL ON ONE CPU

MP.RSM=20000 ;RESET INTERRUPT MASKS

MP.NOP=10000 ;NOP FUNCTION FOR TRANSMISSION CHECK
MP.STP=4 ;STOP PROCESSOR IN ORDERLY FASHION
MP.INT=7777 ;BIC MASK FOR INTERRUPT LVL FUNCTIONS

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

ITBDF$

ITBDF$,,SYSDEF

INTERRUPT TRANSFER BLOCK (ITB) OFFSET DEFINITIONS

~e e we

+MCALL PKTDF$

PKTDF$; DEFINE AST BLOCK OFFSETS
«ASECT
.=0

000000 X.LNK: .BLKW 1 ; LINK WORD FOR ITB LIST STARTING IN TCB
000002 X.JSR: JSR R5,@#0 ; CALL SINTSC
000006 X.PSW: .BLKB 1 ; LOW BYTE OF PSW FOR ISR
000007 .BLKB 1 ; UNUSED
000010 X.ISR: .BLKW 1 ; ISR ENTRY POINT (APRS5 MAPPING)
000012 X.FORK: ; FORK BLOCK
000012 «BLKW 1 ; THREAD WORD
000014 «BLKW 1 ; FORK PC
000016 . «BLKW 1 ; SAVED R5
000020 . BLKW 1 ; SAVED R4
000022 X.REL: .BLKW 1 ; RELOCATION BASE FOR APRS
000024 X.DSI: .BLKW 1 ; ADDRESS OF DIS.INT. ROUTINE
000026 X.TCB: .BLKW 1 ; TCB ADDRESS OF OWNING TASK

.IF NB SYSDEF

000030 «BLKW 1
000032 X.AST: .BLKB A.PRM
000044 X.VEC: .BLKW 1

A.DQSR FOR AST BLOCK

AST BLOCK

VECTOR ADDRESS (IF AST SUPPORT,

THIS IS FIRST AND ONLY AST PARAMETER)
SAVED VECTOR PC

LENGTH IN BYTES OF ITB

000046 X.VPC: .BLKW 1
000050 X.LEN:

e “o we Se we we

« ENDC

.PSECT

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

KRBDFS$

177770
177772
177773
177774
177775
177776
000000

000002
000004
000005
000006
000010
000014
000016

177754
177760

177776

000000

KRBDF$

CONTROLLER REQUEST BLOCK (KRB)

THE CONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF A DEVICE
CONTROLLER., EXACTLY ONE KRB EXISTS FOR EVERY DEVICE CONTROLLER
IN AN RSX-11M+ SYSTEM. THE KRB CONTAINS CERTAIN DEVICE STATUS
INCLUDING THE CSR AND VECTOR ADDRESS FOR THE CONTROLLER.

Ne we Ne e we W we e

«ASECT
.=177770
K.PRM: .BLKW
K.PRI: .BLKB
K.VCT: .BLKB
K.CON: .BLKB
K.IOC: .BLKB
K.STS: .BLKW
K.CSR: .BLKW

;DEVICE DEPENDANT PARAMETER WORD
;CONTROLLER PRIORITY

; INTERRUPT VECTOR ADDRESS
;CONTROLLER INDEX WITHIN THE SYSTEM
; CONTROLLER I/O COUNT

;CONTROLLER STATUS

;ADDRESS OF CONTROL STATUS REGISTER

b e b b

NOTE: K.CSR MUST BE THE ZERO OFFSET!

e we W

;OFFSET TO UCB/UMR/RHBAE TABLE
;HIGHEST PHYSICAL UNIT NUMBER
; UNUSED BYTE

; OWNER OF CONTROLLER
;CONTROLLER REQUEST QUEUE
;CONTROLLER UNIBUS RUN MASK

; POSSIBLE KRB FORK BLOCK

K.OFF: .BLKW
K.HPU: .BLKB

.BLKB
K.OWN: .BLKW
K.CRQ: «BLKW
K.URM: .BLKW
K.FRK: «.BLKW

= N

OFFSETS FOR THE KRB EXTENSION REACHED BY ADDING (K.OFF) TO
THE STARTING ADDRESS OF THE KRB.

~e we S we

DEFINE OFFSETS IN SCB/KRB FOR DISK MSCP CONTROLLERS

-, we o

.==20.

KE.UMH: .BLKW 2 ;LIST HEAD FOR UMR WAITING ASSIGNMENT BLK (S)

KE.UMC: .BLKW 1 ;COUNT OF AVAILABLE UMR WAITING ASSIGNMENT

;BLOCK (S)

.=177776

KE.RHB: .BLKW] ;OFFSET TO RHBAE REGISTER (IF ANY)

; WHEN ONE ADDS (K.OFF) TO THE KRB ADDRESS, IT YIELDS AN ADDRESS

; WHICH POINTS TO HERE.

KE.UCB: .BLKW 1 ;OFFSET TO UCB TABLE (IF KS.UCB SET)
.PSECT

;

; CONTROLLER REQUEST BLOCK (KRB) STATUS BIT DEFINITIONS

KS.OFL=1 ;CONTROLLER OFFLINE (1=YES)

KS.MOF=2 ;CONTROLLER MARKED FOR OFFLINE (1=YES)

A-32

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

KRBDF$ (Cont.)

KS.U0OP=4 ;SUPPORTS OVERLAPPED OPERATION (1=YES)
KS.MBC=10 ;DEVICE IS MASSBUS CONTROLLER (1=YES)
KS.SDX=20 ;SEEKS ALLOWED DURING DATA XFERS (1=YES)
KS.POE=40 ; PARALLEL OPERATION ENABLED (1=YES)
KS.UCB=100 ;UCB TABLE PRESENT (1=YES)

KS.DIP=200 ;DATA TRANSFER IN PROGRESS (1=YES)
KS.PDF=400 ;PRIVILEGED DIAGNOSTIC FUNCTIONS ONLY(1=YES)
KS.EXT=1000 ; EXTENDED 22-BIT UNIBUS CONTROLLER (1=YES)
KS.SL0=2000 ;CONTROLLER IS SLOW COMING ONLINE (1=YES)

DEFINE THE CONTIGUOUS SCB OFFSETS

Ns we we

.ASECT
.=177762

177762 S.PRI: .BLKB 1 ;CONTROLLER PRIORITY
177763 S.VCT: .BLKB 1 ; INTERRUPT VECTOR ADDRESS
177764 S.CON: .BLKB 1 ; CONTROLLER INDEX
177765 .BLKB 1
177766 .BLKW 1
177770 S.CSR: .BLKW 1 ;CONTROL AND STATUS REGISTER
177772 . BLKW 1
177774 .BLKB 1
177775 .BLKB 1
1

177776 S.OWN: .BLKW ;DISTRIBUTED CNTBL

SUBCONTROLLER REQUEST BLOCK (KRB1)

THE SUBCONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF A

DEVICE SUBCONTROLLER. EXACTLY ONE KRB1 EXISTS FOR EVERY DEVICE
SUBCONTROLLER IN AN RSX-11M+ SYSTEM.

e we we we o Se we

.ASECT
.==4
177774 K1.CON: .BLKB ; SUBCONTROLLER INDEX WITHIN THE SYSTEM
177775 .BLKB ;UNUSED BYTE

177776 K1.STS: .BLKW
000000 K1.MAS: .BLKW

; SUBCONTROLLER STATUS
;UCB ADDRESS OF THE MASTER UNIT

e

NOTE: K1.MAS MUST BE THE ZERO OFFSET

. we ~

000002 K1.OWN: .BLKW 1 ;OWNER OF SUBCONTROLLER

000004
000010

K1.CRQ: .BLKW
K1.UCB:

.PSECT

2

;SUBCONTROLLER REQUEST QUEUE
;START OF THE UCB TABLE (IF ANY)

RSX~-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

LCBDF$

000000
000002
000004
000005
000006
000010
000012

LCBDF$

LOGICAL ASSIGNMENT CONTROL BLOCK

THE LOGICAL ASSIGNMENT CONTROL BLOCK (LCB) IS USED TO ASSOCIATE A
LOGICAL NAME WITH A PHYSICAL DEVICE UNIT. LCB'S ARE LINKED
TOGETHER TO FORM THE LOGICAL ASSIGNMENTS OF A SYSTEM. ASSIGNMENTS
MAY BE ON A SYSTEM WIDE OR LOCAL (TERMINAL) BASIS.

e Ne Ne Ne Ne Ne e o w

«ASECT
L.LNK: .BLKW 1 ;LINK TO NEXT LCB
L.NAM: .BLKW 1 ; LOGICAL NAME OF DEVICE
L.UNIT: .BLKB 1 ; LOGICAL UNIT NUMBER
L.TYPE: .BLKB 1 ;TYPE OF ENTRY (0=SYSTEM WIDE)
L.UCB: .BLKW 1 ; TI UCB ADDRESS
L.ASG: .BLKW 1 ;ASSIGNMENT UCB ADDRESS
L.LGTH=,.-L.LNK ; LENGTH OF LCB

. PSECT

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000000
000002
000003
000004
000020
000022
000024
000026
000030
000032
000033
000034
000036
000040
000042
000043
000044
000046
000054
000055

000056
000060
000062
000070
000072
000074
000100
000104
000110
000111
000112

000150
000160
000162
000163
000164
000205
000206
000207

MTADFS$

MTADF$

ANSI MAGTAPE SPECIFIC DATA STRUCTURES
VOLUME SET CONTROL BLOCK OFFSET DEFININTIONS (VSCB)

VOLUME SET AND PROCESS CONTROL SECTION

e N8 e e No we we

.ASECT
.=0
V.TCNT: .BLKW 1 ; TRANSACTION COUNT
V.TYPE: .BLKB 1 ; VOLUME TYPE DESCRIPTOR
V.VCHA: .BLKB 1 ; VOLUME CHARACTERISTICS
V.LABL: .BLKB 12. ;FILE SET ID (FIRST SIX BYTES)
V.NXT: .BLKW 1 ; PTR TO NEXT VSCB NODE
V.MVL: .BLKW 1 ; PTR TO MOUNTED VOL LIST
V.UVL: .BLKW 1 ; PTR TO UNMOUNTED VOL LIST
V.ATL: .BLKW 1 ;ATL ADDR OF ACCESSING TASK TCB IN RSX11M
V.UCB: .BLKW 1 ;ADDR OF CURRENT UCB OR PUD
V.RVOL: .BLKB 1 ; CURRENT RELATIVE VOL #
V.MOU: .BLKB 1 ;MOUNT MODE BYTE
V.TCHR: .BLKW 1 ;UINT CHAR. FOR ALL UNITS USED FOR VOL SET
V.SEQN: .BLKW 1 ;CURRENT FILE SEQUENCE #
V.SECN: .BLKW 1 ;CURRENT FILE SECTION #
V.TPOS: .BLKB 1 ;POSITION OF TAPE IN TM'S TO NXT HDRI1
V.PSTA: .BLKB 1 ; PROCESS STATUS BYTE
V.TIMO: .BLKW 1 ;BLOCKED PROCESS TIMEOUT COUNTER
V.STAT: .BLKW 3 ; STATUS WORDS USED BY COMMAND EXECUTION MODS
V.TRTB: .BLKB 1 ; TRANSLATION CONTROL BYTE
V.EFTV: .BLKB 1 ;FOR MAG TO RETURN IE.EOF, EOT, EOV

LABEL DATA SECTION

~e Ne wa

V.BLKL: .BLKW 1 ;BLOCK LENGTH

V.RECL: .BLKW 1 ; RECORD LENGTH

V.FNAM: ,BLKW 3 ;FILE NAME

V.FTYP: .BLKW 1 ;FILE TYPE

V.FVER: .BLKW 1 ;FILE VERSION #

V.CDAT: .BLKW 2 ;CREATION DATE

V.EDAT: .BLKW 2 ; EXPRIATION DATE :

V.BLKC: .BLKW 2 ;BLOCK COUNT FOR FILE SECTION

V.RTYP: .BLKB 1 ;RECORD TYPE

V.FATT: .BLKB 1 ;FILE ATTRIBUTES FOR CARRIAGE CONTROL
.BLKB 30. ;REMAINDER OF FILE ATTRIBUTES

NULL WINDOW SECTION

~e wo e

V.WIND: .BLKW 4. ;NULL WINDOW

V.MST2: .BLKW 1 ;MAGTAPE STATUS BITS

V.FABY: .BLKB 1 ;FILE ACCESSIBILITY BYTE (HDR1)
.BLKB 1 ; SPARE

V.ANSN: .BLKB 17. ;ANSI 17 CHARACTER FILE NAME

V.BOFF: .BLKB 1. ;BUFFER OFFSET

V.DENS: .BLKB 1. ;REQUESTED UNIT DENSITY

V.DRAT: .BLKB 1. ;DEFAULT RECORD ATTRIBUTES

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

MTADFS$ (Cont.)

000210
000212

000214

000000

000000
000002
000004
000006
000010
000011
000012
000014

000016

000000
000002
000003
000004
000012

000020

V.DBLK: .BLKW 1. ;DEFAULT BLOCK SIZE
V.DREC: ,BLKW 1. ;DEFAULT RECORD SIZE
S.VSCB=, ;SIZE OF VSCB

. PSECT

DEFINE OFFSETS INTO NULL WINDOW SECTION

.. we we

.ASECT

W.CTL: .BLKW 1
V.WINC=V.WIND+W.CTL

;CONTROL WORD IN WINDOW
;CNTRL WORD IN NULL WINDOW
;RELATIVE TO THE VSCB

.PSECT
; MOUNTED VOLUME LIST OFFSET DEFININTIONS (MVL)
i

.ASECT
.=0
MJ.NXT: .BLEKW 1 ; PTR TO NXT MVL NODE (11M)
M.UIC: BLKW 1 ;OWNER UIC FROM RVOL #1
M.CH: . BLKW 1 ;U.CH/U.VP (11D)
M.PROT: .BLKW 1 ; PROTECTION U.AR IN 11D
M.RVOL: ,BLKB 1 ;RELATIVE VOL # OF MOUNTED VOLUME
M.STAT: .BLKB 1 ; VOLUME STATUS
M.VIDP: .BLKW 1 ; VOLUME ID POINTER
M.UCB: .BLKW 1 ;ADDR OF ASSOC UCB OR PUD
S.MVL=, ;SIZE OF MVL NODE

«PSECT

UNMOUNTED VOLUME AND VOLUME LIST OFFSET DEFINITIONS (UVL)

~e we we

+ASECT
.=0
L.NXT: .BLKW 1 ;PTR TO NXT UVL NODE
L.VOLl: .BLKB 1 ;REL VOL # OF 1'ST VOL IN NODE
L.VOL2: .BLKB 1 ;REL VOL # OF 2'ND VOL IN NODE
L.VIDl: .BLKB 6 ;VOL ID OF 1'ST VOL IN NODE
L.VID2: .BLKB 6 ;VOL ID OF 2'ND VOL IN NODE
S.UVL=. ;SIZE OF UVL NODE

.PSECT

; SYSTEM DATA STRUCTURE CONTENT VALUES
i

VSCB VALUES
V.MOU VALUES
200

A-36

;OLD .FL300 VOLUME - VM.BYP WILL ALSO BE SET

I3

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

MTADFS$ (Cont.)

VM.BYP = 100 ;BYPASS LABEL PROCESSING

VM.ULB = 40 ;UNLABELED TAPE

VM.FSC = 20 ;OVERRIDE FILE SET ID CHECK

VM.EXC = 10 ;OVERRIDE EXPRIATION DATE CHECK

i

; V.MST2 VALUES

V2.INI = 1 ;MAG WANTS US TO INITIALIZE NEXT OUTPUT
V2.XH2 = 2 ;THIS FILE HAS NO HDR2, DON'T WRITE EOF2
V2.XH3 = 4 ;THIS FILE HAS NO HDR3, DON'T WRITE EOF3
V2.NH3 = 10 ;DON'T WRITE HDR3/EOX3 LABELS

V2.0AC = 20 ;OVERRIDE FILE/VOLUME ACCESSIBILITY

i
; V.PSTA VALUES - UNBLOCKED TRANSITION STATE

’
VP.RM = 2 ; READ DATA MODE
VP.WM = 4 ;WRITE DATA MODE
VP.UCM = 6 ; UNLABELLED CREATE POSITIONING MODE
VP.SM = 10 ; SEARCH MODE
VP.MOU = 20 ;MOUNT MODE
VP.RWD = 40 ;REWIND OR VOL VERIFICATION WAIT
VP.VFY = VP.RWD
VP.POS = 100 ; PROCESS IN POSITIONING MODE
;7 (MULTI-SECTION FILE)
i
; BLOCKED STATE = - (UNBLOCKED TRANSITION STATE VALUES)
H
; PROCESS TIMED OUT BIT 0 = 1
VP.TO=1

NULL WINDOW CONTROL BIT DEFINITIONS

. ws we

’

WI.RDV = 400 ;ACCESSED FOR READ
WI.WRV = 1000 ;ACCESSED FOR WRITE
WI.EXT = 2000 ;ACCESSED FOR EXTEND
WI.LCK = 4000 ; LOCKED

MVL VALUES IN THE M.STAT FIELD

o we we

4

MS.VER = 200 ;VOL ID NOT VERIFIED

MS.RID = 1 ;VOL ID TO BE READ NOT CHECKED
MS.NMO = 2 ;MOUNT MESSAGE NOT GIVEN YET
MS.TMO = 4 ;ONE TIMEOUT ALREADY EXPRIED
MS.EXP = 10 ; EXPIRATION DATE MESSAGE GIVEN

R3X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

MTADFS$ (Cont.)

i
; MISC BITS USED IN MOUNT (STORED IN V.STS)

’

MO.QJVR = 1 ;OVER RIDE VOL NAME SWITCH
MO.JIC = 2 ;EXPLICIT UIC GIVEN

MO.PRO = 4 ;EXPLICIT PROTECTION GIVEN
MO.160 = 10 ;1600 BPI SPECIFIED

RS5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

OLRDF$

OLRDFS$ $$SGBL

THIS MODULE DEFINES THE ONLINE RECONFIGURATION INTERFACE
AS IMPLEMENTED BETWEEN THE RSX-11M-PLUS TASKS CON, HRC, AND
THE RDDRV.

~e we Ne wo we

DEFINE THE I/0 FUNCTION CODES FOR ONLINE RECONFIGURATION CONTROL.

~e wo we

.MCALL .WORD.,DEFINS

.IF IDN <SSGBL>,<DEFSG>
...GBL=1

.IFF
«e.GBL=0

. ENDC

THE FOLLOWING MACRO DEFINES THE SUB-FUNCTION CODES FOR EACH OF THE
OPERATIONS PERFORMED BY THE HRC TASK AND A PARAMETER DESCRIBING
THE ARGUMENTS REQUIRED FOR EACH FUNCTION. 1IN A MACRO CALL THE
FOLLOWING ARE THE LEGAL COMBINATIONS FOR THE 'MASK!'

PARAMETER:

<> SIGNIFYING NO PARAMETERS

<D> SIGNIFYING ONE BUFFER DESCRIPTOR

<D,D> SIGNIFYING TWO BUFFER DESCRIPTORS

<D,CT> SIGNIFYING ONE DESCRIPTOR AND 'CT' BYTES OF
PARAMETERS

<CT> SIGNIFYING 'CT' BYTES OF PARAMETERS

e We Ne Ne Ne N Ne N Ne Ne we e we

«.MACRO FUNC NAME, SUBF, FUN,MASK
.WORD., 1IO.'NAME,SUBF,FUN

FUNCA NAME , <MASK>

- ENDM

«.MACRO FUNCA NAME,MSK

PARCT=0

DESCT=0

«IRP X,<KMSK>

.IIF IDN <X>,<P> PARCT=PARCT+l

«IIF IDN <X>,<D> DESCT=DESCT+1

.IIF GT <PARCT-17> .ERROR INVALID PARAMETER COUNT
.IIF GT <DESCT-17> .ERROR INVALID DESCRIPTOR COUNT
- ENDR

TEMP=<DESCT*4>+<PARCT*2>
.WORD. TIOS$'NAME,<<DESCT#*20+PARCT>>,TEMP
. ENDM

DEFINE ONLINE RECONFIGURATION I/O FUNCTIONS

e we we

.WORD. IO.MFC,000,001 ; MULTI-FUNCTION MODIFY CONFIGURATN
.WORD. 1IO.RSC,000,002 ; READ SYSTEM CONFIGURATION
.WORD. 1I0.WSC,000,006 ; MODIFY DEVICE CONFIGURATION

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

OLRDF$ (Cont.)

DEFINE SUBFUNCTIONS TO MODIFY DEVICE CONFIGURATION

~e N S

FUNC ONL,001,006,<D,D> ; SET DEVICE ONLINE

FUNC OFL,002,006,<D,D> ; SET DEVICE OFFLINE

FUNC MAI,003,006,<D,D> ; SET DEVICE IN MAINT MODE

FUNC CAC,004,006,<> ; CACHE CONTROL

FUNC MEM,005,006,<> ; MIND CONTROL

FUNC STN,006,006,<P,P> ; RECONFIGURATION CONTROL,
; SPECIFY TASK NAME

FUNC HRC,007,006,<P,P> ; RECONFIGURATION CONTROL,
; HRC OPERATING MODE

FUNC ONE,010,006,<P,P> ; ON <CONDITION> <COMMAND>

FUNC STA,011,006,<D> ; RETURN DEVICE STATE

FUNC IF ,012,006,<P,P> ; IF <CONDITION> <COMMAND>

FUNC RLI,013,006,<D,D,D,D> ; LINK UNIBUS RUN

FUNC RUL,014,006,<D,D,D,D> ; UNLINK UNIBUS RUN

FUNC MBO,015,006,<P,P,D,D,D,D,D,D,D,D> ; MEM BOX ONLINE

FUNC RSW,016,006,<D,D,D,D> ; SWITCH BUS

FUNC WAT,017,006,<D> ; WRITE ATTRIBUTES

FUNC RAT,020,006,<D,D> ; READ ATTRIBUTES

FUNC MBF,021,006,<P,P,D,D,D,D,D,D,D,D> ; MEM BOX OFFLINE

IO$MAX=21 ; DEFINE MAXIMUM SUBFUNCTION

DEFINS IS.HRG,6. ; STOP PROCESSING COND ENCOUNTERED

; SECOND STATUS WORD IS ARGUMENT

DEFINE A MACRO, WHICH WHEN EXPANDED WITH THE APPROPRIATE
DEFINITION FOR .IOER. WILL DEFINE THE PRIVATE ERROR CODES USED BY

HRC AND CON.

e we Ne we we

.MACRO OLREMS

$SSVAL=-256. ; DEFINE INITIAL ERROR NUMBER VALUE

.IOER. IESDAL,<DEVICE already linked>

. IOER. IESDNL,<DEVICE not linked>

.IOER. IESPRM,<Parameter error>

.IOER. 1IE$SYN,<Syntax error>

.IOER. IESAFE,<Attribute format error>

.IOER. TIE$TMU,<HRC... Internal tables insufficient for this system>
.I0OER. IES$CAB,<Unable to access busrun>

.IOER. TIESTRP,<HRC... internal addressing error>

.IOER. IESALG,<Memory box parameter error>

.IOER. 1IESTQU,<Timeout on unit quieting operation>

. IOER. IESEPO,<ONLINE CPU failure>

. IOER. IESEUO,<ONLINE UNIT failure>

. IOER. IESECO,<ONLINE CONTROLLER failure>

. IOER., IESEPF,<OFFLINE CPU failure>

.IOER. IESEUF,<OFFLINE UNIT failure>

.IOER. 1IESECF,<OFFLINE CONTROLLER failure>

.IOER. 1IESCFU,<Attempt to quiet unit for controller failed>
.IOER. 1IESCSR,<CSR for controller not present in I/O page>

RSX-11M~PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

OLRDF$ (Cont.)

.IOER. IESSWF,<Unable to switch unit away from current controller>
.IOER. 1IESICE,<HRC... detected I/O database consistancy error>

.IOER., 1IES$SCE,<Executive or Driver status change error>

.IOER. IESMDE,<HRC... Memory descriptor format error>

.IOER. 1IESNFW,<No path to target device is available>

.IOER, IESCXT,<Unable to take unit with context offline.>

.IOER. 1IES$IDU,<Invalid device descriptor>

.IOER. TIESUNK,<Device is unknown in this configuration>

.IOER. IESSZE,<HRC... Unable to access device to size drive>

.IOER. IE$POB,<HRC... Can't take box offline. Partition overmaps box>
.IOER. IESNLB,<HRC... Can't take box offline. Not last box in memory:
.IOER. IESOMP,<HRC... Can't modify partition size. Overmap exists>
.IOER. IE$POC,<HRC... Can't modify partition size. Occupied>

.IOER. IES$DFE,<HRC... Request format error.>

.IOER. IES$IDS,<HRC... Invalid device specification.>

.IOER. IESUOE,<HRC... Unkown error from online/offline call>

. ENDM

CONDITION CODES FOR CONDITIONS TESTED BY IO.ONE AND IO,IF FUNCTS

~e we we

COSONL = 1 ; IF DEVICE NOW ONLINE

COSOFL = 2 ; IF DEVICE NOW OFFLINE

COSUNK = 3 ; UNKNOWN DEVICE

COSACC = 4 ; ACCESSABLE (ACCESS PATH EXISTS)
COSANY = 5 ; ANY ERROR CONDITION

COSMAI = 6 ; MAINTENANCE MODE

COSMAX = 6 ; MAXIMUM CODE

CONDITION COMMAND CODES FOR IO.ONE AND IO.IF FUNCTIONS

.. wa we

CD$STO = 2 ; 'STOP' COMMAND

CDSGOT = 4 ; 'GOTO!'

CDSCON = 6 ; 'CONTINUE'

CDSMAX = 6 ; MAXIMUM CONDITION DEFINED

ARGUMENT DEFINITION FOR IO.HRC FUNCTION

~e we N

MSLOG = 1 ; SUPRESS CONFIG TRANSMISSION TO ERRLOG
MSINIT = 2 ; INITALIZE HRC

MSDEBG = 4 ; SET HRC INTO DEBUG MODE (DEVELOPMENT ONLY)
MSEXIT = 10 ; EXIT REQUEST (FROM ABORT AST REQUEST)

DEFINE TABLE OFFSETS AND STATUS BITS RETURNED IN RESPONSE TO
A 'READ CONFIGURATION' QIO

o we we Ne

.ASECT
.=0
000000 CSDTYP: .BLKB 1 ; ENTRY TYPE FIELD

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

OLRDF$ (Cont.)

000001

000002
000003
000004
000005

000006
000012

000034

000000
000000
000002
000003
000004
000005
000006

000010

; ENTRY
) ET$HDR
ETSEND
ETSDEV
C$DECT: .BLKB
CSDVER: .BLKB
CSDSTD: .BLKB
C$DMUB: .BLKB
CSDMCT: .BLKB
. EVEN
C$DFAC: .BLKW
CSDIDN: .BLKW
C$STD:

. we we

CSDTYP:

CSDNAM: ,BLKW
CSDPUN: .BLKB
CSDLUN: .BLKB
C$DSCT: .BLKB
CSDEVT: .BLKB
CSDSTS: .BLKW

~s wo wo

CSSATR=

wou

1

o

O N

=

CSSEXF=76

=

FLAG VALUES FOR CS$DSTS

Cs$5UB=100
;CSS$XXX=200
CS$0OFL=400
CS$SPDF=1000
CS$SPOR=2000
CS$SMBD=4000

CS$UNK=10000
CS$ACC=20000
CSSMTD=40000
CS$DRV=100000

C$DST2: .BLKW

1

CS$PUN=20

CS$CRD=40

TYPE CODES ARE AS

- we

~

e we we we we we

~e wo

-,

e We ws Ne we Ne owe

e Ne N Ne e Ne N Ne e s %l we we

~e

~e we we wo

FOLLOWS

CONFIGURATION HEADER ENTRY
END OF CONFIGURATION DATA

MIN VALUE FOR DEVICE SPECIFICATION ENTRY

COUNT OF TABLE ENTRIES (CPUS+SWITCHED

BUS RUNS+CONTROLLERS+UNITS) -
VERSION OF RECONFIGURATION TASK PROTOCAL
SIZE OF HEADER

MAXIMUM UNIBUS RUNS SUPPORTED

MAX CONTROLLERS OF A GIVEN TYPE SUPPORTED

FACILITES SUPPORTED IN HOST SYSTEM
HRC VERSION AND BUILD TIMESTAMP

SIZE OF THE TABLE HEADER

OFFSETS WITHIN THE FIXED PORTION OF A GIVEN ENTRY

ENTRY TYPE CODE

TWO ASCII CHARACTER UNIT OR CONTR NAME
CONTROLLER NUMBER (0-255.)

LOGICAL UNIT NUM IF THIS DEVICE IS A UNIT
SUB-CONTROLLER NUMBER

DEVICE TYPE CODE

DEVICE STATUS MASK

VARIABLE LENGTH ATTRIBUTE INFO IS APPENDED
FIELD IN C$DSTS CONTAINING COUNT OF
ADDITIONAL BYTES IN THIS DEVICE ENTRY
THIS IS A SUB-CONTROLLER DEVICE

UNUSED

1=>DEVICE IS OFFLINE, 0=>DEVICE IS ONLINE
DEV IS RESTRICTED TO PRIVILEGED DIAG FNS
THIS IS A MULTIPORT DEVICE

DEVICE IS A MASS BUS DEVICE

DEVICE IS UNKNOWN

AN ONLINE ACCESS PATH EXISTS TO THIS DEV
DEV IS MOUNTED(DISK) OR LOGGED IN (TERM)
A DRIVER IS LOADED FOR THIS DEVICE

STATUS EXTENSION

1=> THIS DEVICE SPECIFIED WITH PHYSICAL
UNIT NUMBER

1=> THIS IS A CONTROLLER RELATIVE DEVICE
SPEC

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000012

000016

000016

000020

000016

000020

000022

000016

000020

CS$PRC=100

CS$CTL=200
CS$DCL=3400

DEVICE CLASS VALUES

~e wo we

DCSUNI
DCSCTL
DC$MKU
DC $MKC
DC$SBU
DC$SBC
DC$CPU
;DCSXXX = 7

nnu

]

AN WO

CSDDAT: .BLKW 2

CS$SME:

VARIABLE PORTION OF A

~e wo we

FOR CONTROLLERS

s s we we

=C$SME

CSDKPO: .BLKW 1

CS$SCT:

i
; FOR UNIT ENTRIES
i

=C$SME

CSDCTN: .BLKW 1

C$DUPO: .BLKW 1

CSSUN:

FOR CPU-S

-, we we

.=C$SME

C$DCPO: .BLKW 1

CS$SCP:

e we wo we we

Ne e Ne we N Ne we wo

-

~

OLRDF$ (Cont.)

1=> THIS IS A PORT RELATIVE CONTROLLER
SPEC

DEVICE IS A CONTROLLER (MUST BE SIGN BIT)

DEVICE CLASS CODE FIELD. MUST BE LOW ORDER

BITS OF HIGH BYTE.

UNIT

CONTROLLER

MEMORY BOX UNIT

MEMORY BOX CONTROLLER
SWITCHED BUS UNIT
SWITCHED BUS CONTROLLER
CPU

UNUSED

DEVICE DEPENDANT DATA

SIZE IF A MINIMUM ENTRY

GIVEN ENTRY

~. we we “o

e Ne we we wme ws wo

~e we e

PORT-STATUS-WORD. THIS DESCRIBES THE BUS
RUN, CPU OR SWITCHED BUS, TO WHICH THIS

CONTROLLER IS CONNECTED.
MIMIMUM SIZE OF A CONTROLLER ENTRY

CONTROLLER NAME. TWO CHARACTER ASCII CODE
OF THE CONTROLLER TO WHICH THIS UNIT IS
ATTACHED.

PORT-STATUS-WORD. THIS IS THE

FIRST OF THE PSWS DESCRIBING THE CONTR(S)
TO WHICH THIS UNIT IS CONNECTED.

MIMIMUM SIZE OF A UNIT ENTRY

PORT-STATUS-WORD. THIS IS THE BUS
NUMBER FOR THIS CPU.
MINIMUM SIZE OF A CPU ENTRY

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

OLRDF$ (Cont.)

000016
000020

000030

000000
000002
000003
000004
000006

;
; FOR MEMORY BOXES
;

=C3SME

CSDCTN:

CS$SHMB:

we S N

~s Ne w

-, we e

.=0
CSMBAS:
CSMINT:

CS$MS1Z:
CSMGRN:

.BLKW 1 ; CONTROLLER NAME,
. BLKW 4 ; MAXIMUM OF 4 PORTS FOR MEMORY CONTROLLERS

; MAXIMUM SIZE OF A MEMORY BOX ENTRY

S'TATUS BIT DEFINITIONS FOR THE PORT STATUS WORD

1=> PORT IS OFFLINE

UNUSED

THIS PORT IS THE CURRENT PORT (S.KRB
REFERENCES THIS PORT

UNUSED

UNUSED

THIS PORT HAS AN ACCESS PATH

PORT HAS CONTEXT OR SERVICES A DEVICE
HAVING CONTEXT

UNUSED

CPSOFL=400
CP$XXX=1000
CPSCUR=2000

CPS$XXX=4000

CP$XXX=10000
CPSACC=20000
CP$MTD=40000

Ne wu ws We Ne Ne Ne Ne W N

CP$XXX=100000

DEVICE ATTRIBUTES CODES

.MACRO ATT NAME, SIZ

SSSTMP=$SSTMP+1
DEFINS DAS'NAME, $SSTMP!<400*SIZ>

. ENDM
SSTMP=0

ATT CSR, 2 ;: CSR ADDRESS

ATT VEC, 2 ; VECTOR ADDRESS

ATT UBR, 2 ; UNIBUS RUN

ATT TYP, 2 ; DEVICE TYPE, READ ONLY

ATT VOL,12. ; MOUNTED VOLUME NAME, READ ONLY
ATT ERR,10 ; DEVICE ERROR COUNTERS, READ/WRITE
ATT PRI, 2 ; DEVICE INTERRUPT PRIORITY

ATT MBP, 6 ; MEMORY BOX PARAMETER

ATT STE, 2 ; SANITY TIMER ENABLE/DISABLE

ATT SAL, 2 ; ALARM ENABLE/DISABLE

ATT DSN, 2 ; DEVICE SERIAL NUMBER

ATT CSN,10 ; CPU SERIAL NUMBERS

MEMORY BOX ATTRIBUTE BUFFER

.ASECT

- BLKW 1 ; BASE ADDRESS OF BOX

.BLKB 1 ; INTERLEAVE FACTOR

.BLKB 1 ; FREE BYTE

.BLKW 1 ; SIZE OF BOX IN 32 WORD BLOCKS

. BLKW 1 ; BOX GRANULARITY. "BYTES-PER-UNIT"

000010

R5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

CSMDSC:

.PSECT

.. we we

’

OLRDFS$ (Cont.)

SIZE OF BOX ATTRIBUTE BUFFER

MACRO FOR THE DEFINITION OF DEVICE TYPE CODES

.MACRO DEVCDS$ $$S$GBL

.MCALL DEFINS

.IF IDN <$S$$GBL>,<DEFS$G>

«+«.GBL=1

. IFF
«+.GBL=0

. ENDC

.MACRO DEV X
DEFINS DS$'X,S$S$SSTMP
$$SSTMP=SSSTMP+1

. ENDM
$SSTMP =

DEV UDET
DEV UKNO

DEV RKO03
DEV RKO05
DEV RKSF

DEV RXO01
DEV RX02

DEV RLO1
DEV RLO02

DEV RPO02
DEV RPO3
DEV RPO0O4
DEV RPO5
DEV RPO6
DEV' RPQ7

DEV RKO06
DEV RKO07

DEV RMO02
DEV RMO3
DEV RMO5
DEV RM80

DEV RS03
DEV RS04

DEV RF1l1

~e “o we ~. we

~e ~e

~

P R T T T

~ we

-~ ~e wo e we

~

UNDETERMINED DEVICE TYPE
UNKNOWN DEVICE TYPE

RKO3
RKO5
RKO5-F (DUAL DENSITY FIXED CARTRIDGE)

RX01
RX02 (DUAL DENSITY RXO01l)

RLO1
RLO2

RPO02
RPO3
RP04
RPO5
RPO6
RPO7

RKO06
RKO7

RMO02
RMO3
RMO5
RM80

RSO3
RS04 (DUAL DENSITY RSO03)

RF11/RS08

REX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

OLRDFS$ (Cont.)

DEV TU10 ; TUlO

DEV TU1l6 ; TULl6

DEV TU45 ; TU45

DEV TU77 ; TU77

DEV TU78 ; TU78

DEV TS11 ; TSl

DEV TMO2 ; TMO2

DEV TMO3 ; TMO3

DEV TM78 ; TM78

DEV TUS56 ; TUS6

DEV TUS58 ; TUS8

DEV TU60 ; TU6O

DEV MSCP ; UDAS0

DEV RAG60 ; RA60

DEV RAS80 : RAS80

DEV RAS81 ; RAS81

DEV ML11 ; ML11

DEV TERM ; TERMINAL
$$STMP=370

DEV USRO ; USER TYPE 0
DEV USR1 ; USER TYPE 1
DEV USR2 ; USER TYPE 2
DEV USR3 ; USER TYPE 3
DEV USR4 ; USER TYPE 4
DEV USR5 ; USER TYPE 5
DEV USR6 ; USER TYPE 6
DEV USR7 ; USER TYPE 7

000000
000002
000004
0ooo010
000012
000014
000016
000016
000020
000024
000030
000032
000034
000042
000043

000044

000000
000002
000003
000004
000010
000012
000014
000016
000016
000020
000022
000024
000026
000030
000032
000034
000036

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PCBDF$,,SYSDEF

MAIN PARTITION PCB

s we we

-ASECT
.=0
P.LNK: .BLKW 1
« BLKW 1
P.NAM: .BLKW 2
P.SUB: .BLKW 1
P.MAIN: .BLKW 1
P.REL: .BLKW 1
P.BLKS:
P.SIZE: .BLKW 1
P.WAIT: .BLKW 2
.BLKW 2
P.STAT: .BLKW 1
P.ST2: .BLKW 1
«BLKW 3
P.HDLN: ,.BLKB 1
P.IOC: .BLKB 1

5=.
P.RRM: ,BLKW 1

.IF NDF MSSPRO

.=58$

. ENDC

.IF NB SYSDEF
P.LGTH=.

- ENDC
i
; TASK REGION PCB
;
.=0
P.LNK: .BLKW 1
P.PRI: .BLKB 1
P.RMCT: .BLKB 1
P.NAM: _.BLKW 2
P.SUB: .BLKW 1
P.MAIN: .BLKW 1
P.REL: .BLKW 1
P.BLKS:
P.SIZE: .BLKW 1

-BLKW 1
P.SWSZ: .BLKW 1
P.DPCB: .BLKW 1
P.TCB: .BLKW 1
P.STAT: .BLKW 1
P.HDR: .BLKW 1

« BLKW 1
P.ATT: .BLKW 2

PCBDF$

;LINK TO NEXT MAIN PARTITION PCB

; (UNUSED)

;PARTITION NAME IN RADS0

;POINTER TO FIRST SUBPARTITION

; POINTER TO SELF

;STARTING PHYSICAL ADDRESS IN 32W BLOCKS

;SIZE OF PARTITION IN 32W BLOCKS

; PARTITION WAIT QUEUE LISTHEAD

; (UNUSED)

; PARTITION STATUS FLAGS

;STATUS EXTENSION FOR COMMON AND MAIN PCB'S
; (UNUSED)

;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
;PARTITION I/0 COUNT

;REQUIRED RUN MASK

;PARTITION CONTROL BLOCK LENGTH

;UTILITY LINK WORD

; PRIORITY OF PARTITION

;RESIDENT MAPPED TASKS COUNT

;PARTITION NAME IN RADS5O0

;POINTER TO NEXT SUBPARTITION

; POINTER TO MAIN PARTITION

;STARTING PHYSICAL ADDRESS IN 32W BLOCKS

;SIZE OF PARTITION IN 32W BLOCKS
; (UNUSED)

; PARTITION SWAP SIZE

; CHECKPOINT ALLOCATION PCB

; TCB ADDRESS OF OWNER TASK

; PARTITION STATUS FLAGS

;POINTER TO HEADER CONTROL BLOCK
; (UNUSED)

;ATTACHMENT DESCRIPTOR LISTHEAD

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PCBDF$ (Cont.)

000042
000043

000000
000002
000003
000004
000010
000012
000014
000016
000016
000020
000022
000024
000026
000030
000032
000034
000036
000042
000043

1 ;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
1 ; PARTITION I/0 COUNT
1 ;REQUIRED RUN MASK

.IF NDF MSS$SPRO

P.HDLN: .BLKB
P.IOC: .BLKB
$S8=.
P.RRM: .BLKW
.=58$

. ENDC

* ~e we we

=0

COMMON REGION

PCB

;UTILITY LINK WORD

; PRIORITY OF PARTITION
;RESIDENT MAPPED TASKS COUNT
; PARTITION NAME IN RAD50

; POINTER TO NEXT SUBPARTITION
; POINTER TO MAIN PARTITION
; STARTING PHYSICAL ADDRESS

o N

IN 32W BLOCKS

;SIZE OF PARTITION IN 32W BLOCKS
;COMMON BLOCK DIRECTORY LINK

; PARTITION SWAP SIZE

; POINTER TO DISK PCB

;OWNING UIC OF REGION

; PARTITION STATUS FLAGS

;STATUS EXTENSION FOR COMMON AND MAIN PCB'S
; PROTECTION WORD [DEWR,DEWR,DEWR,DEWR]
;ATTACHMENT DESCRIPTOR LISTHEAD

;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
; PARTITION I/0 COUNT

N = e et e

1 ;REQUIRED RUN MASK

.IF NDF MS$SPRO

P.LNK: .BLKW
P.PRI: .BLKB
P.RMCT: .BLKB
P.NAM: .BLKW
P.SUB: .BLKW
P.MAIN: .BLKW
P.REL: .BLKW
P.BLKS:
P.SIZE: .BLKW
P.CBDL: .BLKW
P.SWSZ: .BLKW
P.DPCB: .BLKW
P.OWN: .BLKW
P.STAT: .BLKW
P.ST2: .BLKW
P.PRO: .BLKW
P.ATT: .BLKW
P.HDLN: .BLKB
P.IOC: .BLKB
$$8=.
P.RRM: .BLKW
.=5

. ENDC

.PSECT

.
4
-
1’

PS.0UT=100000
PS.CKP=40000
PS.CKR=20000
PS.CHK=10000
PS.FXD=4000
PS.CAF=2000
PS.LI0O=1000
PS.NSF=400
PS.COM=200
PS.LFR=100
PS.PER=40

PARTITION STATUS WORD

BIT DEFINITIONS

IS OUT OF MEMORY (1=YES)
CHECKPOINT IN PROGRESS (1=YES)
CHECKPOINT IS REQUESTED (1=YES)

; PARTITION IS NOT CHECKPOINTABLE (1=YES)

; PARTITION IS FIXED (1=YES)

;CHECKPOINT SPACE ALLOCATION FAILURE (1=YES)
;MARKED BY SHUFFLER FOR LONG I/O (1=YES)

; PARTITION IS NOT SHUFFLEABLE (1=YES)

; LIBRARY OR COMMON BLOCK (1=YES)

; LAST LOAD OF REGION FAILED (1=YES)

; PARTIY ERROR OCCURED IN THIS REGION (1=YES)

; PARTITION
; PARTITION
; PARTITION

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000000
000002
000004
000006
000010
000012
000014
000016
000020

PS.DEL=10

PS.AST=4

~e we we

PR.UBT=100000
PR.UBS=40000
PR.UBR=20000
PR.UBP=10000
PR.UBN=4000
PR.UBM=2000
PR.UBL=1000
PR.UBK=400
PR.UBJ=200
PR.UBH=100
PR.UBF=40
PR.UBE=20
PR.CPD=10
PR.CPC=4
PR.CPB=2
PR.CPA=1

.
1
-
4
.
’
.
’
P

2.LMA=40000

P2.CPC=20000
P2.SEC=4000

P2.PAR=2000
P2.POL=1000
P2.CPU=400
P2.PIC=200

P2.RON=100
P2.DRV=40
P2.APR=7

~e wo e

.ASECT
.=0
P.LNK: .BLKW
P.UCB: .BLKW
P.LBN: .BLKW
. BLKW
P.SUB: .BLKW

P.MAIN: .BLKW
P.REL: .BLKW
P.SIZE: .BLKW
P.DLGH=.

REQUIRED RUN MASK

STATUS EXTENSION WORD
(THESE BITS CAN

CHECKPOINT FILE PCB

o b b e e e

PCBDF$ (Cont.)

; PARTITION SHOULD BE DELETED WHEN NOT
;ATTACHED (1=YES)
; PARTITION HAS REGION LOAD AST PENDING

;UNIBUS RUN
; UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
; PROCESSOR D
; PROCESSOR C
; PROCESSOR B
; PROCESSOR A

mmMIEGXC I Z0U NI

BIT DEFINITIONS
ONLY BE EXAMINED IN COMMON OR MAIN PCB'S)

;DON'T SHUFFLE,DELETE SPINDLE OR MUTILATE
;THIS PARTITION

;CPCR INITIATED CHECKPOINT PENDING

;THIS IS RO SECTION OF MU TASK

;WITH TCB IN SEC. POOL

;THE FIXER TASK HAS HANDLED A PARITY ERROR
; SECONDARY POOL PARTITION

;MULTIPROCESSOR CPU PARTITION

;POSITION INDEPENDENT LIBRARY OR COMMON

; (1=YES)

;READ-ONLY COMMON (1=YES)

;DRIVER COMMON PARTITION (1=YES)

;STARTING APR NUMBER MASK FOR NON-PIC COMMON

;LINK WORD OF CHECKPOINT FILE PCB'S

;UCB ADDRESS OF CHECKPOINT FILE DEVICE
;HIGH PART OF STARTING LBN

;LOW PART OF STARTING LBN

; POINTER TO FIRST CHECKPOINT ALLOCATION PCB
;MUST BE 0 (FOR S$RLPR1)

;CONTAINS 0 IF FILE IN USE, 1 IF NOT IN USE
;SIZE OF CHECKPOINT FILE IN 256W BLOCKS
;LENGTH OF ALL DISK PCB'S

RSX-~11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PCBDF$ (Cont.)

000000
000010
000012
000014
000016

000000
000002
000004
000006
000010
000012
000014
000016

000000
000002
000003
000004
000006
000010
000011
000012
000014

® we we =~

=0
. BLKW
P.SUB: .BLKW
P.MAIN: .BLKW
P.REL: .BLKW
P.SIZE: .BLKW
;
; COMMON TASK
i
.=0
P.FIDl: .BLKW
P.UCB: .BLKW
P.LBN: .BLKW
. BLKW
P.FID2: .BLKW
P.MAIN: .BLKW
P.REL: .BLKW
P.FID3: .BLKW

~. No S

.ASECT
.=0
A.PCBL: .BLKW

A.PRI: .BLKB
A.IOC: .BLKB
A.TCB: .BLKW
A.TCBL: .BLKW
A.STAT: .BLKB
A.MPCT: .BLKB
A.PCB: .BLKW
A.LGTH=.

~e we we

. PSECT
AS.PRO=100
AS.SBP=20
AS.RBP=40
AS.DEL=10
AS.EXT=4
AS.WRT=2
AS.RED=1

CHECKPOINT ALLOCATION

(SRR IFRFENN

PCB

; (UNUSED)
;LINK TO NEXT CHECKPOINT ALLOCATION PCB
;ADDRESS OF CHECKPOINT FILE PCB

;RELATIVE POSITION IN FILE IN 256W BLOCKS
;SIZE ALLOCATED IN 256W BLOCKS

IMAGE FILE PCB

e S oVl S STy S o

ATTACHMENT DESCRIPTOR

R el o S ey

ATTACHMENT DESCRIPTOR

;FILE ID WORD FOR SAVE)

;UCB ADDR OF DEVICE ON WHICH COMMON RESIDES
;HIGH PART OF STARTING LBN

; LOW PART OF STARTING LBN

;FILE ID WORD FOR SAVE

; POINTER TO SELF

;ALWAYS CONTAINS A O

;FILE ID WORD FOR SAVE

OFFSETS

; PCB ATTACHMENT QUEUE THREAD WORD

; PRIORITY OF ATTACHED TASK

;I/0 COUNT THROUGH THIS DESCRIPTOR

; TCB ADDRESS OF ATTACHED TASK

; TCB ATTACHMENT QUEUE THREAD WORD

; STATUS BYTE

;MAPPING COUNT OF TASK THRU THIS DESCRIPTOR
; PCB ADDRESS OF ATTACHED TASK

; LENGTH OF ATTACHMENT DESCRIPTOR

STATUS BYTE BIT DEFINITIONS

;A.TCB IS SEC POOL TCB BIAS (1=YES)
;CACHE BYPASS REQUESTED

;REQUEST TO NOT BYPASS CACHE

; TASK HAS DELETE ACCESS (1=YES)

; TASK HAS EXTEND ACCESS (1=YES)

; TASK HAS WRITE ACCESS (1=YES)

; TASK HAS READ ACCESS (1=YES)

177774
177776
000000
000002

000004
000006
000010
000012

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PKTDF$

e we e we W e

.ASECT

.=177774

A.KSR5: .BLKW

A.DQSR: .BLKW
. BLKW

A.CBL: .BLKW

A.BYT:
A,AST:
A.NPR:
A.PRM:

-BLKW
«BLKW
.BLKW
.BLKW

AS.FPA=1
AS.RCA=2
AS.RRA=3
AS.PEA=4
AS.REA=5
AS.PFA=6
AS.CAA=7

STACK

e we w2 W

AB.NPV=1
AB.TYP=2

A.PLGH=70
A.DUCB=10
A.DLGH=10.

—

e

PKTDF$

ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS

SOME POSITIONAL DEPENDENCIES BETWEEN THE OCB AND THE AST CONTROL
BLOCK ARE RELIED UPON IN THE ROUTINE S$FINXT IN THE MODULE SYSXT.

; SUBROUTINE KISARS5 BIAS (A.CBL=0)

; DEQUEUE SUBROUTINE ADDRESS (A.CBL=0)

;AST QUEUE THREAD WORD

; LENGTH OF CONTROL BLOCK IN BYTES

;IF A.CBL = 0, THE AST CONTROL BLOCK IS

;TO BE DEALLOCATED BY THE DEQUEUE SUBROUTINE
;POINTED TO BY A.DQSR MAPPED VIA APR 5
;VALUE A.KSR5. THIS IS CURRENTLY USED ONLY
;BY THE FULL DUPLEX TERMINAL DRIVER FOR
;UNSOLICITED CHARACTER ASTS.

;IF THE LOW BYTE OF A.CBL = 0, AND THE
sHIGH BYTE IS NOT = 0, THE AST CONTROL BLOCK
;IS A SPECIFIED AST, WITH LENGTH, C.LGTH.
;IF THE HIGH BYTE OF A.CBL=0

;AND THE LOW BYTE > 0, THEN

;THE LOW BYTE IS THE LENGTH OF THE

;AST CONTROL BLOCK.

;IF HIGH BYTE = 0 AND LOW BYTE IS NEGATIVE,
;THEN THE BLOCK IS A KERNEL AST

;BIT 6 IS SET IF $SGFIN SHOULD

;NOT BE CALLED PRIOR TO DISPATCHING

;THE AST, AND THE LOW SIX BITS (5-0)
;REPRESENT THE INDEX/2 INTO THE

;KERNEL AST DISPATCH TABLE ($KATBL)

;NUMBER OF BYTES TO ALLOCATE ON TASK STACK
;AST TRAP ADDRESS

;NUMBER OF AST PARAMETERS

;FIRST AST PARAMETER

;CODE FOR FLOATING POINT AST

;CODE FOR RECEIVE DATA AST

;CODE FOR RECEIVE BY REFERENCE AST
;CODE FOR PARITY ERROR AST

;CODE FOR REQUESTED EXIT AST

;CODE FOR POWER FAIL AST

;CODE FOR CLI COMMAND ARRIVAL AST

ABORTER SUBCODES FOR ABORT AST (AS.REA) TO BE RETURNED ON USER'S

;ABORTER IS NONPRIVILEGED (1=YES)
;ABORT FROM DIRECTIVE (0=YES)

;ABORT FROM CLI COMMAND (1=YES)

;SIZE OF PARITY ERROR AST CONTROL BLOCK
;UCB OF TERM ISSUING DEBUG COMMAND
;LENGTH OF DEBUG (AK.TBT) AST BLOCK

RSX~11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PKTDFS$ (Cont.)

KERNEL AST CONTROL CODES (A.CBL)

AK.BUF=200 ;BUFFERED I/0 COMPLETION
;THIS CODE MUST BE 200 UNTIL ALL
;REFERENCES IN TTDRV ARE FIXED

AK.OCB=201 ;OFFSPRING TASK EXIT

AK.GBI=202 ; SEGMENTED BUFFERED I/0 COMPLETION
AK.TBT=203 ;TASK FORCE T-BIT TRAP (DEBUG CMD)
AK.DIO=204 ;DELAYED I/O COMPLETION

AK.GGF=205 ;GRP. GBL. RUNDWN

BIT DEFINITIONS FOR THE GET/SET INFORMATION DIRECTIVE.

o« Ne =

SF.PRV=100000 ;FUNCTION IS PRIVILEGED
SF.IN= 40000 ;FUNCTION IS AN INPUT FUNCTION

GROUP GLOBAL EVENT FLAG BLOCK OFFSETS

0
LNK: .BLKW

000000 G. 1 ; LINK WORD

000002 G.GRP: .BLKB 1 ;GROUP NUMBER

000003 G.STAT: .BLKB 1 ;STATUS BYTE

000004 G.CNT: .BLKW 1 ;ACCESS COUNT

000006 G.EFLG: .BLKW 2 ; EVENT FLAGS

000012 G.LGTH=. ;LENGTH OF GROUP GLOBAL EVENT FLAG BLOCK
GS.DEL=1 ;STATUS BIT -- MARKED FOR DELETE

EXECUTIVE POOL MONITOR CONTROL FLAGS

~e wo o~

SPOLST IS THE SYNCHRONIZATION WORD BETWEEN THE EXEC AND POOL

Ne Ne Ne o~

MONITOR

PC.HIH=1 ;HIGH POOL LIMIT CROSSED (1=YES)

PC.LOW=2 ; LOW POOL LIMIT CROSSED (1=YES)

PC.ALF=4 ; POOL ALLOCATION FAILURE (1=YES)

PC.XIT=200 ; FORCE POOL MONITOR TASK TO EXIT (MUST
;BE COUPLED WITH SETTING FE.MXT IN THE
;FEATURE MASK)

PC.NRM=PC.HIH*400 ; POOL TASK INHIBIT BIT FOR HIGH POOL

PC.ALM=PC.LOW*400 ; POOL TASK INHIBIT BIT FOR LOW POOL

SPOLFL IS THE POOL USAGE CONTROL WORD

o wo we

PF.INS=40 ;REJECT NONPRIVILEGED INS/RUN/REM
PF.LOG=100 ;NONPRIVILEGED LOGINS ARE DISABLED
PF.REQ=200 ;STALL REQUEST OF NONPRIV, TASKS
PF.ALL=177777 ; TAKE ALL POSSIBLE ACTIONS TO SAVE POOL

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PKTDF$ (Cont.)

OFFSPRING CONTROL BLOCK DEFINITIONS

SOME POSITIONAL DEPENDENCIES ARE DEPENDED ON BETWEEN THE OCB AND
THE AST BLOCK IN THE ROUTINE S$FINXT IN THE MODULE SYSXT.

® Ne Se wo ws N we

=0
000000 O.LNK: .BLKW 1 ;OCB LINK WORD
000002 O.MCRL: .BLKW 1 ;ADDRESS OF MCR COMMAND LINE
000004 O.PTCB: .BLKW 1 ; PARENT TCB ADDRESS
000006 O.AST: .BLKW 1 ;EXIT AST ADDRESS
000010 O.EFN: .BLKW 1 ;EXIT EVENT FLAG
000012 O.ESB: .BLKW 1 ;EXIT STATUS BLOCK VIRTUAL ADDRESS
000014 O.STAT: .BLKW 8. ;EXIT STATUS BUFFER
000034 O.LGTH=. ; LENGTH OF OCB

I1/0 PACKET OFFSET DEFINITIONS

e we as

.ASECT
.=0

000000 TI.LNK: .BLKW 1 ;I/0 QUEUE THREAD WORD

000002 TI.PRI: .BLKB 1 ;REQUEST PRIORITY

000003 I.EFN: .BLKB 1 ; EVENT FLAG NUMBER

000004 I.TCB: .BLKW 1 ; TCB ADDRESS OF REQUESTOR

000006 I.LN2: .BLKW 1 ; POINTER TO SECOND LUN WORD

000010 TI.UCB: .BLKW 1 ; POINTER TO UNIT CONTROL BLOCK

000012 TI.FCN: .BLKW 1 ;I/0 FUNCTION CODE

000014 TI.IOSB: .BLKW 1 ; VIRTUAL ADDRESS OF I/0O STATUS BLOCK

000016 . BLKW 1 ;I/0 STATUS BLOCK RELOCATON BIAS

000020 . BLKW 1 ;I/0 STATUS BLOCK ADDRESS

000022 TI.AST: .BLKW 1 ;AST SERVICE ROUTINE ADDRESS

000024 I.PRM: .BLKW 1 ;RESERVED FOR MAPPING PARAMETER #1

000026 . BLKW 6 ; PARAMETERS 1 TO 6

000042 .BLKW 1 ;USER MODE DIAGNOSTIC PARAMETER WORD

000044 TI.ATTL=. ;MINIMUM LENGTH OF I/O PACKET (USED BY
;FILE SYSTEM TO CALCULATE MAXIMUM
;NUMBER OF ATTRIBUTES)

000044 T1.AADA: .BLKW 2 ; STORAGE FOR ATT DESCR PTRS WITH I/O

000050 I.LGTH=. ;LENGTH OF I/0 REQUEST CONTROL BLOCK

I.ATRL=6%*8. ;LENGTH OF FILE SYSTEM ATTRIBUTE BLOCK

CLI PARSER BLOCK (CPB) DEFINITIONS

e we we

=0

000000 C.PTCB: .BLKW
000002 C.PNAM: .BLKW
000006 C.PSTS: .BLKW
000010 C.PDPL: .BLKB ; LENGTH OF DEFAULT PROMPT

000011 C.PCPL: .BLKB ;LENGTH O CNTRL/C PROMPT

000012 C.PRMT: ;START OF PROMPT STRINGS. DEFAULT

' ;IS CONZATENATED WITH CONTROL C PROMPT

;ADDRESS OF CLI'S TCB
;CLI NAME
; STATUS MASK

= N

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PKTDF$ (Cont.)

000000
000002
000004
000006
000010
000012
000012
000014
000015
000016

STATUS BIT DEFINITIONS

* we we

CP.NUL=1 ; PASS EMPTY COMMANDS TO CLI
CP.MSG=2 ;CLI DESIRES SYSTEM MESSAGES
CP.LGO=4 ;CLI WANTS COMMANDS FROM LOGGED OFF TTYS
CP.DSB=10 ;CLI IS DISABLED
CP.PRV=20 ;USER MUST BE PRIV TO SET TTY TO THIS CLI
CP.SGL=40 ;DON'T HANDLE CONTINUATIONS (M-PLUS ONLY)
CP.NIO=100 sMCR..., HEL, BYE DO NO I/O TO TTY
sHEL, BYE DO NOT SET CLI ETC.
CP.RST=200 ;ABILITY TO SET TO THIS CLI IS RESTRICTED
;TO THE CLI ITSELF
CP.EXT=400 ; PASS TASK EXIT PROMPT REQUESTS TO CLI
CP.POL=1000 ;CLI TCB IS IN SECONDARY POOL

SECONDARY POOL COMMAND BUFFER BLOCKS

¢~ we we

=0
C.CLK: .BLKW
C.CTCB: .BLKW
C.CUCB: .BLKW

; LINK WORD

; TCB ADDRESS OF TASK TO RECEIVE COMMAND
;UCB ADDRESS OF RESPONSIBLE TERMINAL
C.CCT: .BLKW ;CHARACTER COUNT, EXCLUDING TRAILING CR
C.CSTS: .BLKW ; STATUS MASK

C.CMCD: ;SYSTEM MESSAGE CODE

e ™)

C.CSO: .BLKW 1 ; STARTING OFFSET OF VALID COMMAND TEXT
C.CTR: .BLKB 1 ; TERMINATOR CHARACTER

C.CBLK: .BLKB 1 ;SIZE OF PACKET IN SEC POOL (32 WD.) BLOCKS
C.CTXT: ;COMMAND TEXT, FOLLOWED BY CR

i
; STATUS BITS FOR COMMAND BLOCKS

CC.MCR=1 ;FORCE COMMAND TO MCR

CC.PRM=2 ; ISSUE DEFAULT PROMPT

CC.EXT=4 ;TASK EXIT PROMPT REQUEST

CC.KIL=10 ;DELETE ALL CONTINUATION PIECES FROM THIS TT
CC.CLI=20 ;COMMAND TO BE RETREIVED BY GCCI$ ONLY
CC.MS5G=40 ; PACKET CONTAINS SYSTEM MESSAGE TO CLT
CC.TTD=100 ; COMMAND CAME FROM TTDRV

IDENTIFIER CODES FOR SYSTEM TO CLI MESSAGES

CODES 0-127. ARE RESERVED FOR USE BY DIGITAL
CODES 128.-255. ARE RESERVED FOR USE BY CUSTOMERS

" Ne we we we we

’

CM.INE=1 ;CLI INITIALIZED ENABLED
CM.IND=2 ;CLI INITIALIZED DISABLED
CM.CEN=3 ;CLI ENABLED

CM.CDS=4 ;CLI DISABLED

CM,ELM=5 ;CLI BEING ELIMINATED

CM. EXT=6 ;CLI MUST EXIT IMMEDIATELY
CM.LKT=7 ;NEW TERMINAL LINKED TO CLI
CM,RMT=8. ; TERMINAL REMOVED FROM CLI
CM,.MSG=9. ;GENERAL MESSAGE TO CLI

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PKTDFS$ (Cont.)

i
i
000000 A
A
A

=0
+.REL: .BLKW 1 ;ACD RELOCATION BIAS
000002 .DIS: .BLKW 1 ;ACD DISPATCH TABLE POINTER
000004 .MAS: .BLKW 1 ;ACD FUNCTION MASK
000006 A.NUM: _.BLKB 1 ;ACD IDENTIFICATION NUMBER
000007 .BLKB 1 ;RESERVED
000010 A.LIN: ,BLKW 1 ;ACD LINK WORD
000012 A.ACC: .BLKB 1 ;ACD ACCESS COUNT
000013 A.STA: .BLKB 1 ;ACD STATUS BYTE
000014 A.LEN1l=. ;LENGTH OF PROTOTYPE ACB
.=A.LIN ;FULL ACB OVERLAPS PROTOTYPE ACB
000010 A.IMAP: .BLKW 1 ;ACD INTERRUPT BUFFER RELOCATION BIAS
000012 A.IBUF: .BLKW 1 ;ACD INTERRUPT BUFFER ADDRESS
000014 A.ILEN: .BLKW 1 ;ACD INTERRUPT BUFFER LENGTH
000016 A.SMAP: .BLKW 1 ;ACD SYSTEM STATE BUFFER RELOCATION BIAS
000020 A.SBUF: .BLKW 1 ;ACD SYSTEM STATE BUFFER ADDRESS
000022 A.SLEN: .BLKW 1 ;ACD SYSTEM STATE BUFFER LENGTH
000024 A.IOS: .BLKW 2 ;ACD I/0 STATUS
000030 A.RES: .BLKW 1 ;RESERVED FOR USE BY THE ACD
000032 A.LEN2=, ;LENGTH OF FULL ACB

i
; DEFINE THE FLAG VALUES IN THE OFFSET U.AFLG

.
7

UA,.ACC=1 ;ACCEPT THIS CHARACTER

UA . PRO=2 ; PROCESS THIS CHARACTER

UA.ECH=4 ;ECHO THIS CHARACTER

UA.TYP=10 ;FORCE THIS CHARACTER INTO TYPEAHEAD
UA.SPE=20 ;THIS CHARACTER HAS A SPECIAL ECHO
UA.FPUT=40 ;PUT THIS CHARACTER IN THE INPUT BUFFER
UA.CAL=100 ;CALL THE ACD BACK AFTER THE TRANSFER
UA.COM=200 ;COMPLETE THE INPUT REQUEST

UA.ALL=400 ;ALLOW PROCESSING OF THIS I/O REQUEST
UA.TRA=1000 ; TRANSFER CHARS. WHEN I/O COMPLETES

DEFINE THE ACD ENTRY POINTS (OFFSETS INTO THE DISPATCH TABLE)

* we we we

=0

000000 A.ACCE: .BLKW
000002 A.DEQU: .BLKW
000004 A.POWE: .BLKW
000006 A.INPU: .BLKW
000010 A.OUTP: .BLKW
000012 A.CONN: ,BLKW
000014 A.DISC: .BLKW
000016 A.RECE: .BLKW
000020 A.PROC: ,BLKW
000022 A.CALL: .BLKW

;I/0 REQUEST ACCEPTANCE ENTRY POINT

;I/0 REQUEST DEQUEUE ENTRY POINT

; POWER FAILURE ENTRY POINT

; INPUT COMPLETION ENTRY POINT

;OUTPUT COMPLETION ENTRY POINT
;CONNECTION ENTRY POINT

; DISCONNECTION ENTRY POINT

; INPUT CHARACTER RECEPTION ENTRY POINT

; INPUT CHARACTER PROCESSING ENTRY POINT
;CALL ACD BACK AFTER TRANSFER ENTRY POINT

o b b e

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

PKTDF$ (Cont.)

DEFINE THE STATUS BITS IN A.STA OF THE PROTOTYPE ACB

;ACD IS MARKED FOR DELETE

AS.DEL=1
;ACD IS DISABLED

AS.DIS=2
«PSECT

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

SCBDF$

SCBDF$, ,SYSDEF

STATUS CONTROL BLOCK

THE STATUS CONTROL BLOCK (SCB) DEFINES THE STATUS OF A DEVICE
CONTROLLER. THERE IS ONE SCB FOR EACH CONTROLLER IN A SYSTEM.
THE SCB IS POINTED TO BY UNIT CONTROL BLOCKS. TO EXPAND ON THE
TELETYPE EXAMPLE ABOVE, EACH TELETYPE INTERFACED VIA A DL11-A
WOULD HAVE A SCB SINCE EACH DL11-A IS AN INDEPENDENT INTERFACE
UNIT. THE TELETYPES INTERFACED VIA THE DH11l WOULD ALSO EACH HAVE
AN SCB SINCE THE DH11l IS A SINGLE CONTROLLER BUT MULTIPLEXES MANY

Ne Mo Mo e We Ne we We %o We wo Wy

UNITS IN PARALLEL.
.IF NB SYSDEF
.ASECT
000000 S.LHD: .BLKW 2 ;CONTROLLER I/0 QUEUE LISTHEAD
000004 S.URM: ;REFERENCE LABEL
.IF DF MSSSPRO
+BLKW 1 ;UNIBUS RUN MASK FOR THE FORK BLOCK
. ENDC
000004 S.FRK: .BLKW 1 ;FORK BLOCK LINK WORD
000006 .BLKW 1 ; FORK-PC
000010 .BLKW 1 ; FORK-RS5
000012 .BLKW 1 ; FORK-R4
000014 S.KS5: .BLKW 1 ; FORK KISARS
000016 S.PKT: .BLKW 1 ;ADDRESS OF CURRENT I/0 PACKET
000020 S.CTM: .BLKB 1 ; CURRENT TIMEOUT COUNT
000021 S.ITM: .BLKB 1 ; INITIAL TIMEOUT COUNT
000022 S.STS: .BLKB 1 :STATUS (0=FREE, NE 0=BUSY)
000023 S.ST3: .BLKB 1 ;STATUS EXTENSION BYTE
000024 S.ST2: .BLKW 1 ;STATUS EXTENSION
000026 S.KRB: .BLKW 1 :ADDRESS OF KRB
000030 S.RCNT: .BLKB 1 ;NUMBER OF REGISTERS TO COPY
000031 S.ROFF: .BLKB 1 ;OFFSET TO FIRST DEV REG TO COPY
000032 S.EMB: .BLKW 1 :ERROR MESSAGE BLOCK POINTER
000034 S.KTB: .BLKW 1 ; START OF MULTI-ACCESS KRBS
.PSECT
.IFF
;
; STATUS CONTROL BLOCK STATUS EXTENSION BIT DEFINITIONS
éz.EIp=1 :ERROR IN PROGRESS (1=YES)
S2.ENB=2 ;ERROR LOGGING ENABLED (0=YES)
$2.L0G=4 ;ERROR LOGGING SUPPORTED (1=YES)
S2.MAD=10 ;MULTIACCESS DEVICE (1=YES)
S2.LDS=40 ; LOAD SHARING ENABLED (1=YES)
S2.0PT=100 ;SUPPORTS SEEK OPTIMIZATION (1=YES)
S$2.CON=200 ;SCB AND KRB ARE CONTIGUOUS (1=YES)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

SCBDFS$ (Cont.)

S2.0P1=400 ;THESE TWO BITS DEFINE THE OPTIMIZATION
S$2.0P2=1000 ;METHOD.
;OP2,0P1=0,0 INDICATES NEAREST CYLINDER
;OP2,0P1=0,1 INDICATES ELEVATOR
;O0P2,0P1=1,0 INDICATES C-SCAN
;0P2,0Pl=1,1 RESERVED
S2.ACT=2000 ;DRIVER HAS OPERATION OUTSTANDING (1=YES)
52.XHR=4000 ;EXTERNAL HEADER AND NEW I.LN2 SUPPORT

STATUS CONTROL BLOCK STATUS EXTENSION (S.ST3) DEFINITIONS

o we wo

’
S3.DRL=1 ;MULTI-ACCESS DRIVE IN RELEASED STATE({l=YES)
S3.MRL=2 ;DRIVER SHOULDN'T RLS MULTI-ACCESS DRIVE
; (1=YES)
S3.81IP=4 ;SEEK IN PROGRESS (1=YES)
S3.ATN=10 ;DRIVER MUST CLEAR ATTENTION BIT (1=YES})
§3.5LV=20 ;DEVICE USES SLAVE UNITS (1=YES)
S3.5PA=40 ; PORT 'A' SPINNING UP
S53.8PB=100 ; PORT 'B' SPINNING UP
S3.0PT=200 ;SEEK OPTIMIZATION ENABLED (1=YES)
83.£PU=S3.SPA!S3.5PB ; .OR. OF PORT SPINUP BITS
H
; KEB ADDRESS TABLE (S.KTB) PORT OFFLINE FROM THIS SCB FLAG.
’
KP.CFL=1 ;KRB ADDRESS POINTS TO OFFLINE PORT (1=YES)

M2PPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER ASSIGNMENT)

~e we wo

.ASECT
.=0

000000 M.LNK: .BLKW 1 ; LINK WORD
000002 M.UMRA: .BLKW 1 ;ADDRESS OF FIRST ASSIGNED UMR
000004 M.UMRN: .BLKW 1 ;NUMBER OF UMR'S ASSIGNED * 4
000006 M.UMVL: .BLKW 1 ;LOW 16 BITS MAPPED BY 1ST ASSIGNED UMR
000010 M.,UMVH: .BLKB 1 ;HIGH 2 BITS MAPPED IN BITS 4 AND S
000011 M.BFVH: .BLKB 1 ;HIGH 6 BITS OF PHYSICAL BUFFER ADDRESS
000012 M.BFVL: .BLKW 1 ;LOW 16 BITS OF PHYSICAL BUFFER ADDRESS
000014 M.LGTH=. ;LENGTH OF MAPPING ASSIGNMENT BLOCK

. ENDC

.PSECT

000000
000002
000004
000010
000012
000013
000014

000016

000000
000002
000003
000004
000005
000006
000010

000060

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

SHDDFS$

SHDDF$

FIRST, WE MUST DEFINE THE I/0 PACKET DEFINITIONS, SINCE WE
USE THEM IN OUR DEFINITIONS.

e we we we

PKTDFS$;DEFINE I/O PACKET DEFINITIONS

SHADOW RECORDING LINKAGE BLOCK (UMB)

THE UMB LINKS TOGETHER TWO UCB'S AS A SHADOW SET. ONE IS THE
PRIMARY UCB, THE OTHER THE SECONDARY UCB. THE EXISTANCE OF A
UMB SIGNALS THAT SHADOW RECORDING IS ENABLED ON A PARTICULAR
UCB.

e We we we we we wo we

.ASECT
.=0

M.LNK: .BLKW 1 ;LINKAGE OF ALL UMB'S IN THE SYSTEM
M.LHD: .BLKW 1 ;LISTHEAD OF ALL ML NODES FOR THIS SET
M.UCB: .BLKW 2 ; PRIMARY AND SECONDARY UCB ADDRESSES
M.STS: .BLKW 1 ; STATUS WORD
M.LBN: ,.BLKB 1 ;HIGH ORDER BYTE OF FENCE

.BLKB 1 ;UNUSED BYTE (MAYBE STATUS?)

. BLKW 1 ;LOW ORDER WORD OF FENCE

M.LGH=.

UMB STATUS BIT DEFINITIONS

~e we o

.PSECT
MS.MDA=1 ;UMB MARKED FOR DEALLOCATION (1=YES)
MS.CHP=2 ;CATCHUP IN PROGRESS (1=YES)

DEFINE THE OFFSETS FOR THE ML NODE, LINKED OFF OF THE UMB
THROUGH CELL M.LHD. THIS NODE CONTAINS THE SECONDARY I/O
PACKET, AND DOUBLES AS THE ERROR PACKET TO THE ERROR MESSAGE
TASK.

~e e wme we we we

.ASECT
.=0
ML.LNK: .BLKW
ML.LEN: .BLKB
ML.TYP: .BLKB
ML.ONC: ,BLKB

.BLKB
ML.PRI: .BLKW
ML.PKT: .BLKB

; LINKAGE OF ALL ML NODES ON UMB
;LENGTH OF ML NODE FOR DEALLOCATION
;TYPE OF ML NODE FOR ERROR TASK
;DONE COUNT OF PACKETS
; UNUSED
; PRIMARY I/0 PACKET ADDRESS

.LGTH ;SECONDARY I/O PACKET

il e e

ML.LGH=.

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

SHDDF$ (Cont.)

ML NODE TYPE CODES

~e wo we

«.PSECT
MT. PKT=1 ;ML NODE IS I/O PACKET TYPE

I/0 PACKET OFFSET DEFNS FOR USE BY SHADOW RECORDING

~e we wo

I.R0=I.PRM ;STATUS STORAGE FOR RO STATUS
I.R1=I.PRM+2 ;STATUS STORAGE FOR R1 STATUS

; DEFINE THE ERROR MESSAGE POINTERS THAT RESIDE IN THE I/O PACKET.
. PSECT

ML.FID=ML.PKT+I.IOSB ;FILE ID WHICH CONTAINS ERROR

ML.FSEQ=ML.PKT+I.IOSB+2 ;FILE SEQUENCE NUMBER OF FILE IN ERROR

ML.LBN=ML.PKT+I.PRM+10 ;HIGH ORDER LBN OF BLOCK(S) IN ERROR

ML.CNT=ML.PKT+I.PRM+4 ;NUMBER OF BLOCKS IN BAD XFER

ML.TCB=ML.PKT+I.TCB ;TCB OF TASK WITH BAD REQUEST
ML.SR0=ML.PKT+I.RO ;R0 OF SECONDARY I/O PACKET
ML.SR1=ML.PKT+I.R1 ;R1 OF SECONDARY I/O PACKET

ML.PRO=ML,PKT+I.PRM+14 ;RO OF PRIMARY I/O PACKET
ML.PR1=ML.PKT+I.PRM+16 ;R1l OF PRIMARY I/O PACKET

R5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

TCBDF$
TCBDFS ,,SYSDEF
;
; TASK CONTROL BLOCK OFFSET AND STATUS DEFINITIONS
; TASK CONTROL BLOCK
’
.ASECT
.=0
000000 T.LNK: .BLKW 1 ;UTILITY LINK WORD
000002 T.PRI: .BLKB 1 ; TASK PRIORITY
000003 T.IOC: .BLKB 1 :1/0 PENDING COUNT
000004 T.PCBV: .BLKW 1 ; POINTER TO COMMON PCB VECTOR
000006 T.NAM: .BLKW 2 ; TASK NAME IN RADS0
000012 T.RCVL: .BLKW 2 ;RECEIVE QUEUE LISTHEAD
000016 T.ASTL: .BLKW 2 ;AST QUEUE LISTHEAD
000022 T.EFLG: .BLKW 2 ; TASK LOCAL EVENT FLAGS 1-32
000026 T.UCB: .BLKW 1 ;UCB ADDRESS FOR PSEUDO DEVICE 'TI'
000030 T.TCBL: .BLKW 1 ; TASK LIST THREAD WORD
000032 T.STAT: .BLKW 1 ;FIRST STATUS WORD (BLOCKING BITS)
000034 T.ST2: .BLKW 1 ; SECOND STATUS WORD (STATE BITS)
000036 T.ST3: .BLKW 1 ; THIRD STATUS WORD (ATTRIBUTE BITS)
000040 T.DFRI: .BLKB 1 ; TASK'S DEFAULT PRIORITY
000041 T.LBN: .BLKB 3 ;LBN OF TASK LOAD IMAGE
000044 T.LDV: .BLKW 1 ;UCB ADDRESS OF LOAD DEVICE
000046 T.PCB: .BLKW 1 ; PCB- ADDRESS OF TASK PARTITION
000050 T.MXSZ: .BLKW 1 ;MAXIMUM SIZE OF TASK IMAGE (MAPPED ONLY)
000052 T.ACTL: .BLKW 1 ;ADDRESS OF NEXT TASK IN ACTIVE LIST
000054 T.ATT: .BLKW 2 ;ATTACHMENT DESCRIPTOR LISTHEAD
000060 T.ST4: .BLKW 1 ;FOURTH TASK STATUS WORD
000062 T.HDLN: .BLKB 1 ;LENGTH OF HEADER (0 IF HDR IN POOL)
000063 .BLKB 1 ; UNUSED
0000v4 T.GGF: .BLKB 1 :GROUP GLOBAL USE COUNT FOR TASK
000065 T.TIO: .BLKB 1 ;BUFFERED I/0 IN PROGRESS COUNT
000066 T.EFLM: .BLKW 2 ; TASK WAITFOR MASK/ADDRESS
000072 T.TKSZ: .BLKW 1 ; TASK LOAD SIZE IN 32 WD BLOCKS
$$%=. ;MARK START OF PLAS AREA
000074 T.OFF: .BLKW 1 ;OFFSET TO TASK IMAGE IN PARTITION
000076 .BLKB 1 ;RESERVED
000077 T.SRCT: .BLKB 1 ;SREF WITH EFN COUNT IN ALL RECEIVE QUEUES
000100 T.RRFL: .BLKW 2 ;RECEIVE BY REFERENCE LISTHEAD
.IF NDF P$SLAS
.=8 ;MOVE LC BACK TO START OF PLAS AREA
. ENDC
.IF NB SYSDEF
$$8=. ;:MARK START OF PARENT/OFFSPRING AREA
000104 T.OCBH: .BLKW 2 ; OFFSPRING CONTROL BLOCK LISTHEAD
000110 T.RDCT: .BLKW 1 ; OUTSTANDING OFFSPRING AND VT: COUNT
.IF NDF PS$SOFF
.=$83
. ENDC

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

TCBDF$ (Cont.)

000112

T.SAST: .BLKW 1 ;SPECIFY AST LIST HEAD

$$88=.

T.RRM: .BLKW 1 ;REQUIRED RUN MASK
T.IRM: .BLKW 1 ;INITIAL RUN MASK SET UP BY INSTALL
T.CPU: .BLKB 1 ; PROCESSOR NUMBER ON WHICH TASK LAST EXECUTD
.BLKB 1 ; (UNUSED)
.IF NDF MSSSPRO
.=5$33
.ENDC
$$8=.
T.ACN: .BLKW 1 ; POINTER TO ACCOUNTING BLOCK
.IF NDF AS$SCNT
.=3
. ENDC
$$8=.
T.1SIZ: .BLKW 1 ;SIZE OF ROOT I SPACE
.IF NDF USSDAS
.=8
. ENDC
T.LGTH=. ;LENGTH OF TASK CONTROL BLOCK
T.EXT=0 ;LENGTH OF TCB EXTENSION
.IFF

TASK STATUS DEFINITIONS

FIRST STATUS WORD (BLOCKING BITS)

* we ws we w

TS.EXE=100000 ; TASK NOT IN EXECUTION (1=YES)
TS.RDN=40000 ;I/0 RUN DOWN IN PROGRESS (1=YES)
TS.MSG=20000 ;ABORT MESSAGE BEING OUTPUT (1=YES)
TS.CIP=10000 ; TASK BLOCKED FOR CHECKPOINT IN PROGRESS

; (1=YE3)
TS.RUN=4000 ; TASK IS RUNNING ON ANOTHER PROCESSCR{1=YES)
TS.STP=1000 ; TASK BLOCKED BY CLI COMMAND
TS.CKR=100 ; TASK HAS CKP REQUEST (MP SYSTEM ONLY)

;i (1=YES)
TS.BLC=37 ; INCREMENT BLOCKING COUNT MASK

TASK BLOCKING STATUS MASK

i
i
TS.BLK=177777

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITI1UNS

TCBDFS$ (Cont.)

i
; SECOND STATUS WORD (STATE BITS)

’

T2.AST=100000 ;AST IN PROGRESS (1=YES)
T2.DST=40000 ;AST RECOGNITION DISABLED (1=YES)
T2.CHK=20000 ; TASK NOT CHECKPOINTABLE (1=YES)
T2.REX=10000 ;REQUESTED EXIT AST SPECIFIED
T2.SEF=4000 ; TASK STOPPED FOR EVENT FLAG(S) (1=YES)
T2.S10=1000 ; TASK STOPPED FOR BUFFERED I/O
T2.AFF=400 ; TASK IS INSTALLED WITH AFFINITY
T2.HLT=200 ;TASK IS BEING HALTED (1=YES)
T2.AB0O=100 ; TASK MARKED FOR ABORT (1=YES)
T2.STP=40 ;SAVED T2.SPN ON AST IN PROGRESS
T2.S5TP=20 ; TASK STOPPED (1=YES)

T2.SPN=10 ;SAVED T2.SPN ON AST IN PROGRESS
T2.S5PN=4 ; TASK SUSPENDED (1=YES)

T2.WFR=2 ;SAVED T2.WFR ON AST IN PROGRESS
T2.WFR=1 ; TASK IN WAITFOR STATE (1=YES)

i
; THIRD STATUS WORD (ATTRIBUTE BITS)

1

T3.ACP=100000 ;ANCILLARY CONTROL PROCESSOR (1=YES)
T3.PMD=40000 ;DUMP TASK ON SYNCHRONOUS ABORT (0=YES)
T3.REM=20000 ;REMOVE TASK ON EXIT (1=YES)

T3.PRV=10000 ; TASK IS PRIVILEGED (1=YES)

T3.MCR=4000 ;TASK REQUESTED AS EXTERNAL MCR FUNCT(1=YES)
T3.SLV=2000 ;TASK IS A SLAVE TASK (1=YES)

T3.CLI=1000 ;TASK IS A COMMAND LINE INTERPRETER (1=YES)
T3.RST=400 ;TASK IS RESTRICTED (1=YES)

T3.NSD=200 ; TASK DOES NOT ALLOW SEND DATA

T3.CAL=100 ; TASK HAS CHECKPOINT SPACE IN TASK IMAGE
T3.ROV=40 ;TASK HAS RESIDENT OVERLAYS

T3.NET=20 ;iNETWORK PROTOCOL LEVEL

T3.MPC=10 ;MAPPING CHANGE WITH OUTSTANDING I/O (1=YES)
T3.CMD=4 ; TASK IS EXECUTING A CLI COMMAND

T3.8WS=2 ;RESERVED FOR SOFTWARE SERVICES USE
T3.GFL=1 ;GROUP GLOBAL EVENT FLAG LOCK

STATUS BIT DEFINITIONS FOR FOURTH STATUS WORD (T.ST4)

* we we

’

T4.MUT=40 ;TASK IS A MULTI-USER TASK

T4,LDD=20 ;TASK'S LOAD DEVICE HAS BEEN DISMOUNTED

T4.PRO=10 ;TCB IS (OR SHOULD BE) A PROTOTYPE

T4.PRV=4 ;TASK WAS PRIV, BUT HAS CLEARED T3.PRV
;WITH GIN (MAY RESET WITH GIN IF T4.PRV SET)

T4.DSP=2 ; TASK WAS BUILT FOR USER I/D SPACE

T4,SNC=1 ; TASK USES COMMONS FOR SYNCHRONIZATION

REQUIRED RUN MASK

~e wo wo

TR.UBT=100000 ; UNIBUS RUN T
TR.UBS=40000 ;UNIBUS RUN S

RS5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

TCBDF$ (Cont.)

TR.UBR=20000
TR.UBP=10000
TR.UBN=4000
TR.UBM=2000
TR.UBL=1000
TR.JBK=400
TR.UBJ=200
TR.UBH=100
TR.JBF=40
TR. JBE=20
TR.CPD=10
TR.CPC=4
TR.CPB=2
TR.CPA=1

. ENDC

. PSECT

;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
;UNIBUS RUN
; UNIBUS RUN
;UNIBUS RUN
; UNIBUS RUN
; UNIBUS RUN
;UNIBUS RUN
; PROCESSOR D
; PROCESSOR C
; PROCESSOR B
; PROCESSOR A

mHmOnOURCIZU0 D

177772
177774
177776
000000
000002
000004
000005
000006
000007
000010
000012
000014
000016
000020
000022
000024
000026
000030

000032
000034
000036
000034
000040
000042
000046
000050
000054

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDFS$

UCBDF$,,TTDEF, SYSDEF

UNIT CONTROL BLOCK

THE UNIT CONTROL BLOCK (UCB) DEFINES THE STATUS OF AN INDIVIDUAL
DEVICE UNIT AND IS THE CONTROL BLOCK THAT IS POINTED TO BY THE
FIRST WORD OF AN ASSIGNED LUN. THERE IS ONE UCB FOR EACH DEVICE
UNIT OF EACH DCB. THE UCB'S ASSOCIATED WITH A PARTICULAR DCB ARE
CONTIGUOUS IN MEMORY AND ARE POINTED TO BY THE DCB. UCB'S ARE
VARIABLE LENGTH BETWEEN DCB'S BUT ARE OF THE SAME LENGTH FOR A
SPECIFIC DCB. TO FINISH THE TELETYPE EXAMPLE ABOVE, EACH UNIT ON
BOTH INTERFACES WOULD HAVE A UCB.

We Me Ne ME Ne We Ne Ne W “o Ne wp

.ASECT
.=177772

.IF NB SYSDEF

.IF DF ASSCNT
.=177770
U.UAB: .BLKW 1 ;POINTER TO USER ACCOUNT BLOCK

.IFF
U.UAB:

. ENDC

.ENDC
U.MUP: .BLKW 1 ;MULTI-USER PROTECTION WORD
U.LUIC: .BLKW 1 ; LOGIN UIC - MULTI USER SYSTEMS ONLY
U.OWN: .BLKW 1 ;OWNING TERMINAL - MULTI USER SYSTEMS ONLY
U.DCB: .BLKW 1 ;BACK POINTER TO DCB
U.RED: .BLKW 1 ; POINTER TO REDIRECT UNIT UCB
U.CTL: .BLKB 1 ;CONTROL PROCESSING FLAGS
U.STS: .BLKB 1 ;UNIT STATUS
U.UNIT: .BLKB 1 ; PHYSICAL UNIT NUMBER
U.ST2: .BLKB 1 ;UNIT STATUS EXTENSION
U.CW1l: .BLKW 1 ;FIRST DEVICE CHARACTERISTICS WORD
U.CW2: .BLKW 1 ;SECOND DEVICE CHARACTERISTICS WORD
U.CW3: .BLKW 1 ; THIRD DEVICE CHARACTERISTICS WORD
U.CW4: .BLKW 1 ; FOURTH DEVICE CHARACTERISTICS WORD
U.SCB: .BLKW 1 : POINTER TO SCB
U.ATT: .BLKW 1 ; TCB ADDRESS OF ATTACHED TASK
U.BUF: .BLKW 1 ;RELOCATION BIAS OF CURRENT I/0 REQUEST

.BLKW 1 ;BUFFER ADDRESS OF CURRENT I/O REQUEST
U.CNT: .BLKW 1 ;BYTE COUNT OF CURRENT I/O REQUEST
U.UCBX=U.CNT+2 ; POINTER TO UCB EXTENSION IN SECONDARY POOL
U.ACP=U.CNT+4 ;ADDRESS OF TCB OF MOUNTED ACP
U.VCB=U.CNT+6 ;ADDRESS OF VOLUME CONTROL BLOCK
U.CBF=U,CNT+4 ;CONTROL BUFFER RELOCATION AND ADDRESS
U.UMB=U,CNT+10 ;ADDRESS OF UMB FOR SHADOW RECORDING

U.PRM=U.CNT+12
U.UTMO=U.CNT+16
U.LHD=U,.CNT+20
U.BPKT=U.CNT+24

;DISK SIZE PARAMETER WORDS

;UNIT COMMAND TIME OUT

;UNIT OUTSTANDING I/O PACKET LISTHEAD
;UNIT BAD BLOCK PACKET WAITING LIST

RS5X-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDFS$ (Cont.)

000060
000062
000064

000040
000042
000044

000000
000022
000026
000032
000033
000034
000035
000036

000042
000046
000050
000051
000051
000052
000054
000055

000056

000000
000002
000004
000010
000020
000024

U.UC2X=U.CNT+30
U.O0TRF=U.CNT+32
U.CMST=U.CNT+34

. we

U.SNUM=U.CNT+10
U.FCDE=U.CNT+12
U.KRB1=U.CNT+14

; POINTER TO 2ND EXTENSION IN SECONDARY POOL
; OUTSTANDING COMMAND STATUS REQUEST REGISTER
; COMMAND STATUS PROGRESS REGISTER

MAGTAPE DEVICE DEPENDANT UCB OFFSETS

; SLAVE UNIT NUMBER
; FUNCTION CODE
; SUBCONTROLLER KRB1 POINTER

DEFINE SECONDARY POOL UCB EXTENSION OFFSETS
(FRROR LOGGING DEVICES ONLY)

* we we we ws

=0
. BLKW 9. ;FIXED ACCOUNTING TRANSACTION HEADER

X.NAME: .BLKW 2 ;DRIVE NAME IN RADS5S0
X.IOC: .BLRKW 2 ;I/0 COUNT
X.ERHL: .BLKB 1 ;HARD ERROR LIMIT
X.ERSL: .BLKB 1 ;SOFT ERROR LIMIT
X.ERSC: .BLKB 1 ; SOFT ERROR COUNT
X.ERHC: .BLKB 1 ; HARD ERROR COUNT
X.W-NT: .BLKW 2 ;WORDS TRANSFERED COUNT

~e we wo

DEFINE OFFSETS FOR SEEK OPTIMIZATION DEVICES

X.CYLC: .BLKW 2 ;CYLINDERS CROSSED COUNT
X.CCYL: .BLKW 1 ; CURRENT CYLINDER
X.FCUR: .BLKB 1 ; CURRENT FAIRNESS COUNT
X.FLIM: ;FAIRNESS COUNT LIMIT
X.DSKD: .BLKB 1 ;DISK DIRECTION (HIGH BIT 1=0UT)
X.DNAM: .BLKW 1 ;DEVICE NAME FOR ACCOUNTING
X.UNIT: .BLKB 1 ;UNIT NUMBER FOR ACCOUNTING

. BLKB 1 ;UNUSED FOR NOW
X.LGTH=. ;LENGTH OF THE UCB EXTENSION
X.IFFL=10. ;DEFAULT FAIRNESS COUNT LIMIT
X.IFSL=8, ;DEFAULT SOFT ERROR LIMIT
X.DFHL=5. ;DEFAULT HARD ERROR LIMIT

~s we wo

* we we

=()

CHARACTERISTICS OBTAINED FROM

DEFINE OFFSETS FOR DISK MSCP CONTROLLERS (SECOND UCB EXTENSION)

"GET UNIT STATUS"™ END PACKETS

X.MLUN: .BLKW 1 ;MULTI-UNIT CODE
X.UNFL: ,BLKW 1 ;UNIT FLAGS
X.HSTI: .BLKW 2 ;HOST IDENTIFIER
X.UNTI: .BLKW 4 ;UNIT IDENTIFIER
X.MEDI: .BLKW 2 ;MEDIA IDENTIFIER
X.SHUN: .BLKW 1 ; SHADOW UNIT

A-66

000026
000030
000032
000034
000040
000042
000043

000044
000050

000054

000024
000026
000034

000034

000035
000036
000040
000041
000042
000044
000045
000046
000047
000050
000052
000054

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDFS$ (Cont.)

X.SHST: .BLKW
X.TRCK: .BLKW
X.GRP: .BLKW
X.CY¥L: .BLKW
X.RCTS: .BLKW
X.RBNS: .BLKB
X.RCTC: .BLKB

; SHADOW UNIT STATUS
;UNIT TRACK SIZE
;UNIT GROUP SIZE
;UNIT CYLINDER SIZE
;UNIT RCT TABLE SIZE
;UNIT RBN 'S / TRACK
;UNIT RCT COPIES

N

CHARACTERISTICS OBTAINED FROM "ONLINE"™ OR "SET UNIT
CHARACTERISTICS" END PACKETS

~e we ws we

X.UNSZ: .BLKW 2 ;UNIT SIZE
SER: .BLKW 2 ; VOLUME SERIAL NUMBER
X.DbUsz=, ;SIZE OF DISK MSCP CONTROLLER UCB EXTENTION

.IF NB TTDEF

U.TUX: .BLKW
U.TSTA: .BLKW
U.TTAB: .BLKW

; POINTER TO UCB EXTENSION (UCBX)
;i STATUS TRIPLE-WORD

=W

AHEAD BUFFER, CURRENTLY EMPTY

IF NON-0 AND EVEN: POINTER TO MULTI-
CHARACTER TYPE-AHEAD BUFFER
e=a-2

U.TECO: .BLKB 1
YPEAHEAD BUFFER SIZE

EFAULT UIC
INES PER PAGE

U.TBSZ: .BLKB
U.UIC: .BLKW
U.TLPP: .BLKB
U.TFRQ: .BLKB
U.TFLK: .BLKW
U.TCHP: .BLKB
U.TCVP: .BLKB
U.TTYP: .BLKB
U.TMTI: .BLKB
U.ACB: .BLKW
U.AFLG: .BLKW
U.ADMA: .BLKW

T
T
E
I
UM
T
D
L

We Ne Ne We Ne e Ne N w0 wa e W “e

]
o
o)
=~
o]
s3]
[}
(=]
o]
4))]
=]
w
<
=)
(o]

;FORK LIST LINK WORD

;CURRENT HORIZONTAL POSITION

; CURRENT VERTICAL POSITION

; TERMINAL TYPE

;MODEM TIMER

;ANCILLARY CONTROL DRIVER BLOCK ADDR
;ANCILLARY CONTROL DRIVER FLAGS WORD
;ANCILLARY CONTROL DRIVER DMA BUFFER

el e e e e

-
’
.
’

DEFINE BITS IN STATUS WORD 1 (U.TSTA)

~

S1.RST=1 ;READ WITH SPECIAL TERMINATORS IN PROGRESS
S1.RUB=2 ' ;RUBOUT SEQUENCE IN PROGRESS (NON-SCOPE)
S1.ESC=4 ;ESCAPE SEQUENCE IN PROGRESS

;IF 0: U.TTAB+1 IS SINGLE-CHARACTER TYPE-

IF ODD: U.TTAB+1 IS SINGLE-CHARACTER TYPE-
AHEAD BUFFER AND HOLDS A CHARACTER

HE NEXT TWO OFFSETS OVERLAP U.TTAB WHEN
HE TYPEAHEAD BUFFER IS IN SECONDARY POOL
CHO BUFFER FOR DMA OPERATIONS WHEN UCBX IS
N SECONDARY POOL AND THUS NOT MAPPED BY A

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDFS$ (Cont.)

S1.RAL=10
S1.RNE=20
S1.CTO=40
S51.0BY=100
S1.IBY=200
S1.BEL=400
S1.DPR=1000
S1.DEC=2000
S1.DSI=4000
S51.CTS=10000
S1.USI=20000
S1.0BF=40000
S1.IBF=100000

.
I
.
’

’

S2.ACR=1
S2.WRA=6
S2.WRB=2
52.CR=10
S2.BRQ=20
S52.SRQ=40

52.0RQ=100
S2.IRQ=200
S2.HFL=3400
S2.VFL=4000
S2.HHT=10000
S2.HFF=20000
S2.FLF=40000
S2.FDX=100000

DEFINE BITS IN STATUS

i
S3.RAL=10

S3.RP0O=20
S3.WES=40
S3.TAB=100
S53.8BC=200
S3.RCU=400
S3.ABD=1000
53.ABP=2000
S3.WAL=4000
S3.VER=10000

S3.BCC=20000

S3.DA0=40000

S3.PCU=100000

. ENDC

DEFINE BITS IN STATUS

;READ ALL IN PROGRESS

; ECHO SUPPRESSED

;OUTPUT STOPPED BY CTRL-O
;OUTPUT BUSY

; INPUT BUSY

;BELL PENDING

;DEFER PROCESSING OF CHAR. IN U.TECB
;DEFER ECHO OF CHAR. IN U.TECB
; INPUT PROCESSING DISABLED
;OUTPUT STOPPED BY CTRL-S

; UNSOLICITED INPUT IN PROGRESS
;BUFFERED OUTPUT IN PROGRESS
;BUFFERED INPUT IN PROGRESS

WORD 2 (U.TSTA+2)

;WRAP-AROUND (AUTOMATIC CR-LF) REQUIRED
;CONTEXT FOR WRAP-AROUND

;LOW BIT IN S2.WRA BIT PATTERN

; TRAILING CR REQUIRED ON OUTPUT

; BREAK-THROUGH-WRITE REQUEST IN QUEUE
;SPECIAL REQUEST IN QUEUE

;(I0.ATT, IO.DET, SF.SMC)

;OUTPUT REQUEST IN QUEUE (MUST = S1.0BY)
; INPUT REQUEST IN QUEUE (MUST = S1.1IBY)
;HORIZONTAL FILL REQUIREMENT

;VERTICAL FILL REQUIREMENT

; HARDWARE HORIZONTAL TAB PRESENT

; HARDWARE FORM-FEED PRESENT

;FORCE LINE FEED BEFORE NEXT ECHO

;LINE IS IN FULL DUPLEX MODE

WORD 3 (U.TSTA+4)

; TERMINAL IS IN READ-PASS-~ALL MODE

; (S3.RAL MUST = S1.RAL)

;READ W/PROMPT OUTPUT IN PROGRESS

; TASK WANTS ESCAPE SEQUENCES

; TYPE-AHEAD BUFFER ALLOCATION REQUESTED
;PASS 8 BITS ON INPUT

;RESTORE CURSOR (MUST = TF.,RCU*400)
;AUTO-BAUD SPEED DETECTION ENABLED
;AUTO-BAUD SPEED DETECTION IN PROGRESS
;WRITE-PASS-ALL (MUST = TF.WAL*400)
;LAST CHAR. IN TYPE-AHEAD BUFFER

;HAS PARITY ERROR

;LAST CHAR. IN TYPE-AHEAD BUFFER

;HAS FRAMING ERROR

; LAST CHAR. IN TYPE-AHEAD BUFFER

;HAS DATA OVERRUN ERROR

;NOTE - THE 3 BITS ABOVE MUST CORRESPOND
;TO THE RESPECTIVE ERROR FLAGS IN THE
;HARDWARE RECEIVE BUFFER

;POSITION CURSOR BEFORE WRITE

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

000006

000024
000026
000030
000032
000034

000040

000026
000030
000034

UCBDF$ (Cont.)

VIRTUAL TERMINAL UCB DEFINITIONS

~e we we

«=U.UNIT
U.OCNT: .BLKB 1 ;OFFSPRING WITH THIS AS TI:

.=U.BUF

U.RPKT: .BLKW
U.WPKT: .BLKW
U.IAST: .BLKW
U.OAST: .BLKW
U.AAST: .BLKW

;CURRENT OFFSPRING READ I/0 PACKET
; CURRENT OFFSPRING WRITE I/0 PACKET
; INPUT AST ROUTINE ADDRESS

;OUTPUT AST ROUTINE ADDRESS

;ATTACH AST ROUTINE ADDRESS

= b e

.IF NB TTDEF

.IIF NE U.AAST+2-U.UIC .ERROR ;ADJACENCY ASSUMED
. ENDC

.=U.AAST+4
U.PTCB: .BLKW 1 ; PARENT TCB ADDRESS

; CONSOLE DRIVER DEFINITIONS

=U.BUF+2

U.CTCB: .BLKW 1 ;ADDRESS OF CONSOLE LOGGER TCB
U.COTQ: .BLKW 2 ;1/0 PACKET LIST QUEUE
U.RED2: .BLKW 1 ;REDIRECT UCB ADDRESS

«PSECT

DEVICE TABLE STATUS DEFINITIONS

o Ne W we wg

DEVICE CHARACTERISTICS WORD 1 (U.CW1l) DEVICE TYPE DEFINITION BITS.

’
DV.REC=1 ;RECORD ORIENTED DEVICE (1=YES)
DV.CCL=2 ;CARRIAGE CONTROL DEVICE (1=YES)
DV.TTY=4 ; TERMINAL DEVICE (1=YES)
DV.DIR=10 ;FILE STRUCTURED DEVICE (1=YES)
DV.SDI=20 ;SINGLE DIRECTORY DEVICE (1=YES)
DV.SQD=40 ; SEQUENTIAL DEVICE (1=YES)
DV.MSD=100 ;MASS STORAGE DEVICE (1=YES)
DV.UMD=200 ;USER MODE DIAGNOSTICS SUPPORTED (1=YES)
DV.MBC=400 ;MASSBUS CONTROLLER (11M COMPATIBILITY ONLY)
DV.EXT=400 ;UNIT ON EXTENDED 22-BIT UNIBUS CNTROLER
; (1=YES)
DV.SWL=1000 ;UNIT SOFTWARE WRITE LOCKED (1=YES)
DV.ISP=2000 ; INPUT SPOOLED DEVICE (1=YES)
DV.0SP=4000 ;OUTPUT SPOOLED DEVICE (1=YES)
DV.PSE=10000 ; PSEUDO DEVICE (1=YES)
DV.COM=20000 ;DEVICE IS MOUNTABLE AS COM CHANNEL (1=YES)
DV.F11=40000 ;DEVICE IS MOUNTABLE AS F11 DEVICE (1=YES)
DV.MNT=100000 ;DEVICE IS MOUNTABLE (1=YES)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDFS$ (Cont.)

-
’
.
’

TERMINAL DEPENDENT CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS

U2.DH1=100000 ;UNIT IS A MULTIPLEXER (1=YES)
U2.DJ1=40000 ;UNIT IS A DJ11 (1=YES)

U2.RMT=20000 ;UNIT IS REMOTE (1=YES)

U2.HFF=10000 ;UNIT HANDLES HARDWARE FORM FEEDS (1=YES)
U2,L85=10000 ;OLD NAME FOR U2.HFF

U2,NEC=4000 ;DON'T ECHO SOLICITED INPUT (1l=YES)
U2.CRT=2000 ;UNIT IS A CRT (1=YES)

U2,ESC=1000 ;UNIT GENERATES ESCAPE SEQUENCES (1=YES)
U2.L0G=400 ;USER LOGGED ON TERMINAL (0=YES)
U2,SLV=200 ;UNIT IS A SLAVE TERMINAL (1=YES)
U2.DZ1=100 ;UNIT IS A DZ11 (1=YES)

U2.HLD=40 ; TERMINAL IS IN HOLD SCREEN MODE (1=YES)
U2.AT.=20 ;MCR COMMAND AT. BEING PROCESSED (1=YES)
U2.PRV=10 ;UNIT IS A PRIVILEGED TERMINAL (1=YES)
U2.L35=4 ;UNIT IS A LA30S TERMINAL (1=YES)
U2.VT5=2 ;UNIT IS A VTO5B TERMINAL (1=YES)
U2.LWC=1 ;LOWER CASE TO UPPER CASE CONVERSION (0=YES)

BIT DEFINITIONS FOR U.MUP

~e we we

UM.OVR=1 ;OVERRIDE CLI INDICATOR

UM.CLI=36 ;CLI INDICATOR BITS

UM.DSB=200 ;TERMINAL DISABLED SINCE CLI ELIMINATED
UM.NBR=400 ;NO BROADCAST

UM.CNT=1000 ;CONTINUATION LINE IN PROGRESS
UM.CMD=2000 ;COMMAND IN PROGRESS

UM.SER=4000 ;SERIAL COMMAND RECOGNITION ENABLED
UM.KIL=10000 ; TTDRV SHOULD SEND KILL PKT ON CNTRL/C

TERMINAL SECONDARY POOL OFFSETS FOR THE UCB EXTENSION AND TYPE-

i

; AHEAD BUFFER

U.TAPR=24 ;OFFSET WITHIN UCB WHICH POINTS TO UCB EXT
U.TTBF=46 ;OFFSET WITHIN UCB EXTENSION WHICH POINTS TO

; TYPEAHEAD BUFFER

RH11-RS03/RS04 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS

2.R04=100000 ;UNIT IS A RS04 (1=YES)

Cine ~e s

RH11-TU16 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS

2.7CH=10000 ;UNIT IS A 7 CHANNEL DRIVE (1=YES)

e S~

; TERMINAL DEPENDENT CHARACTERISTICS WORD 3 (U.CW3) BIT DEFINITIONS

U3.UPC=20000 ; UPCASE OUTPUT FLAG

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDFS$ (Cont.)

.
’
-
’

VIRTUAL TERMINAL 3RD CHARACTERISTICS WORD DEFINITIONS

i

U3.FDX=1 ;FULL DUPLEX MODE (1=YES)

U3.DBF=2 ; INTERMEDIATE BUFFERING DISABLED (1=YES)
U3.RPR=4 ;READ W/PROMPT IN PROGRESS (1=YES)

H

; TERMINAL DEPENDENT CHARACTERISTICS WORD 4 (U.CW4) BIT DEFINITIONS
i

U4.CR=100 ;LOOK FOR CARRIAGE RETURN

; UNIT CONTROL PROCESSING FLAG DEFINITIONS

’

UC.ALG=200 ;BYTE ALIGNMENT ALLOWED (1=NO)
UC.NPR=100 ;DEVICE IS AN NPR DEVICE (1=YES)
UC.QUE=40 ;CALL DRIVER BEFORE QUEUING (1=YES)
UC.PWF=20 ;CALL DRIVER AT POWERFAIL ALWAYS (1=YES)
UC.ATT=10 ;CALL DRIVER ON ATTACH/DETACH (1l=YES)
UC.KIL=4 ;CALL DRIVER AT I/0O KILL ALWAYS (1=YES)
UC.LGH=3 ; TRANSFER LENGTH MASK BITS

UNIT STATUS BIT DEFINTIONS

o we we

’

US.BSY=200 ;UNIT IS BUSY (1=YES)

US.MNT=100 ;UNIT IS MOUNTED (0=YES)

US.FOR=40 ;UNIT IS MOUNTED AS FOREIGN VOLUME (1=YES)
US.MDM=20 ;UNIT IS MARKED FOR DISMOUNT (1=YES)

CARD READER DEPENDENT UNIT STATUS BIT DEFINITIONS

;
i
;
US.ABO=1 ;UNIT IS MARKED FOR ABORT IF NOT READY
; (L=YES)
US.MDE=2 ;UNIT IS IN 029 TRANSLATION NODE (l=YES)
;
; FILES-11 DEPENDENT UNIT STATUS BITS
i
US.WCK=10 ;WRITE CHECK ENABLED (1=YES)
US.SPU=2 ;UNIT IS SPINNING UP (1=YES)
Us.vv=1 ;VOLUME VALID IS SET (1=YES)

; TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS

’

US.CRW=4 ;UNIT IS WAITING FOR CARRIER (1=YES)

US.DSB=2 ;UNIT IS DISABLED (1=YES)

US.0IU=1 ;OUTPUT INTERRUPT IS UNEXPECTED ON UNIT
; (1=YES)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UCBDF$ (Cont.)

LPS11 DEPENDENT UNIT STATUS BIT DEFINITIONS

~. Ne o~

US.FRK=2 ;FORK IN PROGRESS (1=YES)
US.SHR=1 ;SHAREABLE FUNCTION IN PROGRESS (0=YES)

ANSI MAGTAPE DEPENDANT UNIT STATUS BITS

;
US.LAB=4 ;UNIT HAS LABELED TAPE ON IT (1=YES)

; UNIT STATUS EXTENSION (U.ST2) BIT DEFINITIONS

4

US.OFL=1 ;UNIT OFFLINE (1=YES)

US.RED=2 ;UNIT REDIRECTABLE (0=YES)

US.PUB=4 ;UNIT IS PUBLIC DEVICE (1=YES)

US.UMD=10 ;UNIT ATTACHED FOR DIAGNOSTICS (1=YES)
US.PDF=20 ; PRIVILEGED DIAGNOSTIC FUNCTIONS ONLY(1=YES)

; MAGTAPE DENSITY SUPPORT DEFINITION IN U.CW3

UD. UNS=0 ; UNSUPPORTED

UD.200=1 ; 200BPI, 7 TRACK
UD.556=2 ; 556BPI, 7 TRACK
UD.800=3 ; 800BPI, 7 OR 9 TRACK
UD.160=4 ;1600BPI, 9 TRACK
UD.625=5 ;6250BPI, 9 TRACK

APPENDIX B

CONVERTING A USER-SUPPLIED RSX-11M DRIVER

This appendix describes the modifications that you must make to enable
an RSX-11M user-supplied driver to run on an RSX-11M-PLUS system. The
modifications involve both the driver data base and the driver code.

B.1 ASSUMPTIONS AND GENERAL APPROACH

The discussion in this appendix assumes that the RSX-11M user-supplied
driver runs on a mapped system. Also, samples of code from the
RLO1/RL02 driver (DLDRV) are used as examples in this appendix.

As a general approach to converting a driver, proceed in the following
manner:

1. Read the RSX-11M-PLUS Guide to Writing an I/O Driver to gain
a feeling for the differences ~between RSX-11M and
RSX-11M-PLUS drivers. Note especially the differences in the
data structures (RSX-11M-PLUS has two additional structures).

2. Make the changes described in this appendix.

3. Incorporate the driver according to the guidelines given in
Chapter 5.

For the purposes of this discussion, a standard disk driver 1is one
that does not attempt to use any of the advanced driver features that
are described in Chapter 1.

B.2 MODIFYING THE DATA BASE CODE

Before creating the driver data base, read the overview of programming
user-written driver data bases (Section 4.2). It gives important
information on ordering and labeling in the code.

CONVERTING A USER-SUPPLIED RSX-11M DRIVER

B.2.1 Unit Control Block Changes

Ensure that the Unit Control Block (UCB) has the data needed for disk
geometry calculations. Refer to the description of U.PRM in Section
4.4.4. The following is an example of the code needed to store the

disk geometry:

.BYTE 40.,2 ;U.PRM
.WORD 512, ;U.PRM+2

Notes:
1. 40. 1indicates the number of sectors per track.
2. 2 indicates the number of tracks per cylinder.
3. 512. 1indicates the number of cylinders per volume.

4. The values in the code are device dependent.

B.2.2 Status Control Block Changes

RSX-11M-PLUS requires a structure called the Controller Request Block
(KRB) . You can add the KRB data that RSX-11M-PLUS requires to the
Status Control Block (SCB) data to effectively create one continuous
structure. This arrangement is called the contiguous KRB/SCB and is
described in Sections 4.2.4 and 4.4.7. Because the ordering of the
SCB data differs from RSX-11M to RSX-11M-PLUS, you must rearrange the
RSX-11M SCB data to accommodate the RSX-11M-PLUS requirements. If
your driver refers to the SCB structures by symbolic offset and does
not rely on physical ordering, you do not need to change the driver
code that accesses the SCB. Refer to Sections 4.4.5 and 4.4.6 for a
description of the offsets required.

There must be one KRB/SCB combinatidn for each controller present on
the system.

An example of code that includes the proper offsets appears in Figure
B-1.

CONVERTING A USER-SUPPLIED RSX-11M DRIVER

.BYTE PR5,160/4 ;K. PRI,K.VCT
.BYTE 0*2,0 ;K.CON,K.IOC
+WORD KS.OFL ;K.STS
$DLA: : ;START OF KRB
.WORD 174400 ; K.CSR
.WORD DLA-SDLA ;K. OFF
.BYTE 0,0 ;s K.HPU
.WORD .DLO ;K.OWN
$DLO:: ;START OF CONTIGUOUS SCB
.WORD 0,.-2 ;S.LHD/K.CRQ
.WORD 0,0,0,0 ;S.FRK
<WORD 0 ;S .KS5
.WORD 0 ;S .PKT
.BYTE 0,4. ;S.CTM,S.ITM
.BYTE 0, :S.5TS,S.ST3
+WORD S2.CON!S2,LOG :1S.ST2
.WORD SDLA ;S .KRB
.BYTE 5.,0 :S.RCNT,S.ROFF
-WORD 0 ;S.EMB
«BLKW 6 ;sMAPPING ASSIGNMENT BLOCK
+WORD 0 ; KE.RHB
DLA:
Figure B~1 Contiguous KRB/SCB for DLDRV
Notes:

1, K.VCT and K.CSR can be changed dynamically by reconfiguration
commands when you bring the device on-line. Refer to the
RSX-11M/M-PLUS System Management Guide, Chapter 15 for
information on the Reconfiguration task and commands.

2. Label DLA is used solely for calculating K.OFF (DLA-$DLA).

B.2.3 The Controller Table

RSX-11M-PLUS requires a structure called a Controller Table (CTB).
Add the <code to define the CTB according to the rules described in
Sections 4.2.5 and 4.4.8. An example of the code needed to define the
CTB appears in Figure B-2,

+WORD 0 ;L.ICB
DLCTB: ; START OF CTB

.WORD 0 ; L.LNK

.ASCII /DL/ ;L.NAM

.WORD SDLDCB ;L.DCB

.BYTE 1,0 ;L.NUM,L,.STS
$SDLCTB::

-WORD SDLA ;L.KRB

Figure B-2 Controller Table (CTB) for DLDRV

Notes:

l. The symbol $DLDCB is a pointer to the Device Control Block
(DCB) .

2. L.KRB points to the start of the KRB.

This example assumes that you have a loadable data base. If the data
base is resident, you must include the CTB macro before L.LNK.

B-3

CONVERTING A USER-SUPPLIED RSX-11M DRIVER

B.3 MODIFYING THE DRIVER CODE

Several changes must be made to the RSX-11M driver code. For an
overview of the RSX-11M-PLUS coding requirements, refer to Section
4.3.

B.3.1 Conditional Symbols

You can remove most dependence on system conditional definitions from
the code. RSX-11M-PLUS always defines the symbols D$SIAG, MS$SMGE,

MSSEXT, M$SMUP, and ES$S$DVC.

B.3.2 Controller-Dependent Code

At the I/O0 initiation entry point in RSX-11M drivers, you will f£ind
code for defining a table of UCB addresses and loading the UCB address
of the currently active unit in the table. Remove this code and
replac2? it with the GTPKTS$ macro call. For guidelines on doing this,
refer o Sections 4.3.2 and 4.5.2.

Following is an example of the RSX-11M driver code that you must
remove:

CALL $GTPKT ;GET AN I/0 PACKET TO PROCESS

BCC 1$;IF CC PROCESS REQUEST

RETURN ;RETURN IF BUSY OR NO REQUEST
1$: MOV R5,CNTBL (R3) ;SAVE ADDRESS OF REQUEST UCB

Insert the RSX-11M-PLUS GTPKT$ macro call, a sample of which follows:

GTPKTS DL,R$SL11 ;GET NEXT I/O PACKET TO PROCESS

B.3.3 Driver Dispatch Table

Replace the code that defines the entry point addresses with the DDTS$
macro call. Refer to Section 4.3.1 for a description of the call and
its parameters. Refer to Section 4.5.1 for a description of the
Driver Dispatch Table (DDT) and the format of the labels that it uses
for the entry points.

Following is an example of the RSX-11M driver code that you must
replace:

$DLTBL: : .WORD DLINI ;DEVICE INITIATOR ENTRY POINT
«WORD DLCAN ;CANCEL I/O OPERATION ENTRY POINT
.WORD DLOUT ;DEVICE TIMEOUT ENTRY POINT
.WORD DLPWF ; POWERFAIL ENTRY POINT

Insert the RSX-11M-PLUS DDT$ macro call, an example of which follows:
DDT$ DL,R$SL11 ;GENERATE DISPATCH TABLE

You do not have to add code to the driver to handle controller and
unit status changes. The sample form of the macro call shown
generates code to use the xxPWF entry point for controller and unit
on-line and off-line status changes.

CONVERTING A USER-SUPPLIED RSX-11M DRIVER

B.3.4 Reconfiguration Support

If you incorporate the device in the Reconfiguration task (HRC...)
tables and the device calls the Executive volume valid routine, you
must incorporate a local register pass routine in your driver, an
example of which appears in Figure B-3.

+

MOVE THE CONTROLLER/DRIVE REGISTERS INTO THE
SPECIFIED BUFFER.,

H
H
; INPUTS:
: R2 = CSR ADDRESS
; R3 = BUFFER ADDRESS
H
; OUTPUTS:
; R3 - ALTERED
REGPAS: MOV (R2),(R3)+ ;MOVE RLCS
MOV RLBA(R2),(R3)+ ;MOVE RLBA
MOV RLDA(R2),(R3)+ ;MOVE RLDA
MOV RLMP(R2), (R3)+ ;MOVE RLMP
CALL DLGST ;EXECUTE GET DRIVE STATUS FUNCTION
MOV RLMP (R2), (R3) ; SAVE DRIVE STATUS
RETURN ;
Figure B-3 Register Pass Routine (REGPAS)
Notes:

1. The index values RLxxx and the subroutine DLGST are device
specific.

B.3.5 Volume Valid Processing

If the device 1is a disk and has a volume valid function, the
RSX-11M-PLUS Executive must be able to handle the correct function
codes. Refer to the description of volume valid processing in Section
4.5.9. For volume wvalid support, you may also need to include the
code that appears in Figure B-4.

CALL $VOLVD ;VALIDATE VOLUME VALID
BCS IODON ;IF CS WE FAILED
TST RO ; TRANSFER FUNCTION?
BMI 1$;IF MI YES
TST I.PRM+2 (R1) ;SIZE THE DISK
BPL IODON ;IF PL NO
MOV S.CSR(R4) ,R2 ;RETRIEVE CSR ADDRESS
CALL DLRST ;RESET DRIVE AND GET STATUS
MOV S.PKT (R4) ,R3 ;RETRIEVE I/O PACKET ADDRESS
CALL REGPAS ; PASS REGISTERS TO HRC
BR IODON ;FINISH I/O REQUEST
1%: ;REFERENCE LABEL

Figure B-4 Typical Handling of Volume Valid

Notes:

1. The subroutine DLRST is device specific.

CONVERTING A USER-SUPPLIED RSX-11M DRIVER

B.3.6 Converting Logical Block Numbers

The $CVLBN routine converts a Logical Block Number (LBN) to a physical
disk address. You can replace special-purpose code in the RSX-11M
driver with a call to this Executive routine, a description of which
is in Section 7.4.6. A sample of the code that you should remove
appears in Figure B-5.

Mov #40.,R1 ;DIVIDE BY SECTORS/SURFACE

CALL $SDIV ;CALCULATE CYLINDER NUMBER

-REPT 6.

ASL RO ;POSITION CYLINDER AND SURFACE

. ENDR

BIS R1,R0O ;MERGE SECTOR WITH CYLINDER AND SURFACE

Figure B-5 RSX-11M Logical Block Number Conversion

Figure B-6 includes the call to $CVLBN.,

CALL $CVLBN ;CONVERT BLOCK NUMBER TO DISK ADDRESS
ROR R1 ; PUT SURFACE BIT IN CARRY

ROL R2 ;MERGE IT WITH THE CYLINDER NUMBER

ASH $#6,R2 ;POSITION CYLINDER AND SURFACE

BIS R2,R0O sMERGE SECTOR WITH CYLINDER AND SURFACE

Figure B-6 RSX-11M-PLUS Logical Block Number Conversion

B.3.7 1Interrupt Entry Processing

Ensure that the INTSVS macro call appears as the first line of code at
each interrupt entry point in the driver. Refer to Section 4.3.3 for
a description of the INTSVS$ macro call and to Section 4.5.8 for a
discussion of processing at an interrupt entry point. Following, is a
sample INTSVS$ macro call:

INTSVS DL, PR5,R$SL11 ;7 7SAVE REGISTERS AND SET PRIORITY

INDEX

ABODFS$, A-3
Acceptance routine, 1-13
Access path,
switching between, 1-11
Accounting block offsets, A-4
Accumulation fields,
See ACNDF$
SACHCK routine, 7-7
SACHKB routine, 7-7
ACNDFS, A-4 to A-9
ACP function mask, 4-19 to
4-20
ACTDFS, A-10
Active Page Register,
See APR, 1-2
Address doubleword, 7-1 to 7-2
Advance driver feature, 1-7,
1-10 to 1-16, 2-4
SALOCB routine, 7-8
APR, 1-2 to 1-3
AST, 1-14
$ASUMR routine, 7-9
calling from driver, 7-4
Asynchronous System Trap,
See AST

$SBLKC1 routine, 7-10
$BLKC2 routine, 1-16, 7-10
$BLKCK routine, 1-15, 7-10
$BLXIO routine, 7-11
Breakpoint,

setting in a driver, 6-5
Buffer,

special user,

sample of driver handling,
8-12 to 8-25, A-26

Buffered 1/0, 1-14
Bus switch, 1-16

Cancel I/0,
entry point, 4-64 to 4-65
overview, 2-5
$CFORK, 1-17
CINTS directive, 1-1
SCKBFB routine, 7-12
SCKBFI routine, 7-12
SCKBFR routine, 7-12
SCKBFW routine, 7-12
$CLINS routine, 7-13
CLKDFS$, A-11
Clock queue control block,
offset definitions, A-11

Index-1

Common interrupt dispatching,
1-12
CON task, 1-18, 5-2, 5-7 to
5-9
overview, 1-18
Concurrent I/0, 1-13
Conditional assembly
directive, 4-2
Conditional fork, 1-17 to 1-18
necessity, 1-17
Configuration,
peripheral,
choosing, 5-10 to 5-11
Connectivity mask, 1-17
Contiguous KRB and SCB, 2-2,
4-53
Control and Status Register,
See CSR
Control function mask, 4-19 to
4-20
Controller, 1-4
2-level controllers, 1-13
access, 1-10 to 1-11
delayed, 1-11
dual support, 1-11
access list, 2-2
allowing parallel
operations, 2-2
assignment, 1-11
busy/not busy, 1-11 to 1-12
configuration status for,
2-2
defining type, 2-1
group number, 1-7
I/0 count, 1-12 to 1-13
interrupt vector, 1-7
interrupts, 1-11
location of a CSR for a, 2-2
maintaining hardware-
specific information
for, 2-2
making accessible, 5-6
name, 2-1
number, 1-5
placing on line, 5-7
reassignment and load
sharing, 1-11
status, 1-11
subcontroller device, 1-13
block, 1-13
supporting more than one
device, 1-12
Controller reassignment, 1-11
Controller Request Block,
See KRB

INDEX

Cortroller request queue,
1-11, 2-2
Controller status change,
entry point, 4-66 to 4-68
overview, 2-6
Controller status extension 2,
4-42
Controller status extension 3,
4-41
Controller status word, 4-48
Controller table,
See CTB
Controller table status byte,
4~-58
Conversion routine, 1-15
Crash dump analysis,
See CDA
CSR, 1-1
accessing of, 1-1
aldress space, 1-1
assignment error, 5-8
assignments,
setting, 5-6
CTB,
composite arrangement, 3-15
dz2finition, 1-4
d=tails, 4-53, 4-55 to 4-59
format, 4-55 to 4-59
layout, 4-55
overview, 2-1
r2quirement, B-3
system list, 2-1
use in handling interrupts,
2-1
validation during LOAD, 5-12
/CT3,
use in LOAD, 5-14, 6-15
CTBDF$, A-12
SCT.ST symbol, 2-1, 3-15
SCVLBN routine, 7-14
Cyl inder number, 1-15
Cyl:inder Scan,
definition, 1-15

D.xux offsets,
in DCB, 4-16 to 4-18
Data base, 1-18
assembling,
during system generation,
5-3
caode,
bit symbols, 4-30 to 4-31
cenverting RSX-11M to
RSX-11M-PLUS,
defining CTB, B-3
disk geometry
calculations, B-2

Index-2

Data base (Cont.)
modifying the data base,
B-1
creating source code, 4-2
defining link word for, 4-3
details of structures,
4-31 to 4-37, 4-39,
4-49 to 4-53
driver,
sample code, 8-1 to 8-3
structures,
overview of, 2-1, 2-3
global label, 4-2
SUSRTB, 4-3
$xxDCB, 4-3
labeling of data structures,
4-2
loadable, 1-19, 4-3
incorporating, 5-1
modifying RSX-11M to
RSX-11M-PLUS, B-1
SCB requirements, B-2
module,
inserting into library,

5~4
overview of structures,
2-2 to 2-3

owning CTB, 2-1
programming,
requirements, 4-2 to 4-3
resident, 1-19, 4-3
incorporating, 5-1
link to CTB, 4-3
structures,
augmented, 1-13
composite arrangement, 2-11
conventional, 1-13
ordering of, 4-2
typical arrangements,
2-6 to 2-8
validation during LOAD, 5-12
Data structure, 1-13
definitions, A-1 to A-71,
B-72
Data transfer, 1-14
DCB,
ASCII device name, 4-17
composite arrangement, 2-11
creating mask words in, 4-21
definition, 1-4
details, 4-16 to 4-18
driver dispatch table
pointer, 4-18
driver-specific function
masks, 4-18 to 4-26
establishing characteristics
for, 2-7
establishing I/0 function
masks, 4-22

INDEX (CONT.)

DCB (Cont.)
fields, 4-16 to 4-18
format, 4-16 to 4-18
labeling, 4-3
length of UCB, 4-18
link to next DCB, 4-16
list of, 2-3
means to access Driver
Dispatch Table, 2-2
number of units stored, 4-3
overview, 2-2 to 2-3
pointer to first UCB, 4-17
unit number range, 4-18
validation during LOAD, 5-13
DCBDF$, A-13
DDT$ macro call,
arguments, 4-5 to 4-6
use of, 4-4
$DEACB routine, 7-15
Deallocation entry point,
4-66
Delayed Controller access,
1-11
SDEUMR routine, 7-16
calling from driver, 7-4
$DEVHD routine, 2-3, 2-11
Device,
address, 1-1
assigned controller, 1-18
busy/not busy, 1-13
configured on-line, 1-13
dual-access capability, 1-17
generic name, 2-3
interrupt, 1-5
making accessible, 5-6
registers, 1-1 to 1-2, 4-50
storage of static
characteristics, 2-3
subcontroller, 1-13
Device Control Block,
See DCB
Device driver,
See Driver
Device interrupt address,
overview, 2-6
Device interrupt vector, 2-4
Device timeout,
entry point, 4-65
overview, 2-5
Directive Parameter Block,
See DPB
Disk,
geometry calculations, B-2
Distributed 1I/0, 1-16
Doubleword,
address, 7-1 to 7-2
DPB, 4-11
details, 4-14 to 4-15
format, 4-14 to 4-15

Index-3

DPB (Cont.)
I/0 function allowances,
4-19
usage in creating I/0
packet, 3-2
DRDSP,
directive dispatcher, 3-2
Driver,
acceptance routine, 1-13
accessing a controller, 1-17
advanced features, 1-10 to
1-16, 2-4
assembling,
during system generation,
5-3
building,
loadable, 5-2
resident, 5-2
code, 1-19
creating, 4-4
definition, 1-5
function, 4-4
general description, 4-4
requirements, 4-59
usage of symbolic offsets,
4-59
coding, 1-3
conversion routine, 1-15
converting RSX-11M to
RSX-11M-PLUS,
adding GTPKTS, B-4
adding the DDTS$ macro
call, B-4
conditional symbols, B-4
handling function codes,
B-6
interrupt entry point, B-6
LBN conversion, B-6
modifying the driver code,
B-4
reconfiquration support,
B-5
using $CVLBN, B-5%
using INTSVS, B-6
volume valid processing,
B-5
creating source code, 4-4
data base, 1-4, 1-18
linkages, 1-18
data structure, 1-4, 4-27
accessing, 4-2
details, 4-10
symbolic offsets, 4-2
DDTS$ macro call,
arguments, 4-5 to 4-6
placement of, 4-5 to 4-6
debugging, 2-20, 6-1 to 6-6,
6-8, 6-10 to 6-12, 7-13
using CDA, 6-1

INDEX (CONT.)

Driver (Cont.)

using XDT, 6-1
defining labels, 4-60
details of code, 4-59 to
4-69, 5-70
ertry points, 1-4, 2-4
See Driver entry point, 4-62
executable instructions, 1-4
executing on correct
processor, 1-18
Executive,
choosing options, 5-9 to
5-11
Executive services,
typically used, 3-4 to
3-5, 4-6
fcr NPR devices on PDP-11,
7-2
frll-duplex, 4-13
GTPKTS$ macro call,
arguments, 4-7
placement of, 4-7
hendling full-duplex
operations, 1-13
handling multiple I/O
requests, 1-13
I/0 packet, 1-4
I/0 queue,
placement of I/0 packet,
4-11
I,0 request,
function codes for, 4-13
processing, 1-15 to 1-16
1,0 requirements, 4-19
ircorporating, 1-18 to 1-19,
at system generation, 5-1
guidelines for, 5-1
loadable, 5-1
resident, 5-1
iritiating 1/0, 1-17
irterrupt handling, 1-8
irterrupt level, 1-6, 1-8
irterrupts, 7-1
INTSVS macro call,
arguments, 4-8
placement of, 4-8
lcadable,
definition, 1-2
entry points for LOAD and
UNLOAD, 4-9
incorporating, 5-1
after system generation,
5-2
at system generation, 5-1
overview, 1-18
rebuilding and
reincorporating a,
7-13

Index-4

Driver (Cont.)

with loadable data base,
1-19
with resident data base,
1-19
loadable data base,
incorporating, 5-1
after system generation,
5-2
loading, 5-5
macro call, 4-4 to 4-5
mapping with Executive,

1-2 to 1-3
modifying data in UCB, 2-3
module,
inserting into library,
5-4

partition, 5-5
predriver initiation, 3-2
process, 1-11

definition, 1-5
processing,

I/0 request, 1-4, 3-3

interrupts, 1-6
programming,

conventions, 4-1

requirements, 4-4 to

4-9
protocol, 1-8, 4-1
requesting I/0O packet, 1-5,
1-17
resident, 1-18
definition, 1-2
incorporating, 5-1
at system generation,
5-2
overview, 1-18
with resident data base,
1-19
sample source code, 8-3 to
8-12
servicing,

I/0 request, 1-4
specifying as loadable, 4-9
standards, 4-1
system generation, 5-4 to

dialogue summary, 5-9

effect, 5-3
system macro call,

arguments, 4-5

general functions, 4-5
task-building, 5-4 to 5-5
types of, 1-2
UMR procedures, 7-2 to

7-5
XDT support, 6-1

Driver Dispatch Table, 4-4

address of routines, 1-4

INDEX (CONT.)

Driver Dispatch Table
(Cont.)
entry points, 2-4
association of, 4-60
format, 4-60
generation of, 4-4
from DDTS$, 4-60
labels required, 4-60
layout, 4-61
link to the driver code and
data base, 4-60
Driver entry point, 2-4
block check and conversion,
4-62
cancel I/0, 4-62, 4-64 to
4-65
controller status change,
4-62, 4-66 to 4-68
deallocation, 4-66
device timeout, 4-62, 4-65
I/0 initiation, 4-62 to 4-64
interrupt, 4-62, 4-69, 5-70
next command, 4-65
power failure, 4-62, 4-66
queue optimization, 4-65
standard labels, 4-62
unit status change, 4-62,
4-68 to 4-69
DRQIO,
performing redirect
algorithm, 3-2
$DRQRQ routine, 1-15
locating the conversion
routine, 1-15
DT07 bus switch, 1-16
Dual access, 1-11 to 1-12
operation of, 2-10
Dual-access support, 1-11
$DVMSG routine, 7-17

Elevator,
definition, 1-15
EPKDFS$, A-14 to A-20
Executive,
calling the driver, 1-17
coroutine,
$INTSV, 1-6
directive dispatcher,
DRDSP, 3-2
dispatching to correct
driver routine, 2-1
distributing I/O requests,
1-17
handling,
interrupts, 2-1
routines, 1-5 to 1-6
interrupt exit routine, 1-6

Index-5

Executive (Cont.)
interrupt save routine,

1-6 to 1-7

macro library,

EXEMC.MLB, 5-3
maintaining controller and
hardware specific
information, 2-1

mapping of, 1-3
modifying data in UCB, 2-3
module,
DVINT, 1-12
options for driver, 5-9 to
5-11
performing processor
specific functions, 1-16
predriver initiation, 1-4
queuing to the driver, 1-4
request queue for
controller, 1-11
service routine, 1-2 to 1-3
stack and register dump,
6-11
symbol,
$CTLST, 3-15
Executive Debugging Tool,
See XDT
Executive routine, 1-12, 1-15,
4-41
See also Executive services
$GTPKT, 1-5, 1-13
$I0DON, 1-9
Executive services,
summaries of technically
used, 7-5 to 7-39, 8-40
EXELIB.OLB file, A-1
EXEMC.MLB file, A-1
Extended User Control Block,
See UCB
External header, 6-8

F11DFS$, A-21 to A-24
Fault,
tracing, 6-8, 6-12, 7-13
Fault codes, 6-10
Fault isolation, 6-5, 6-7 to
6-8
FCB, 2-14
File Control Block,
See FCB
Fork block, 1-17
storage area, 4-39
Fork list,
head of (SFRKHD), 2-14
Fork process, 1-9, 1-18
definition, 1-8
Fork processing, 1-14

INDEX (CONT.)

Fork routine, 1-8
$F(RK routine, 1-9, 1-18, 7-18
criver use in I/0
processing, 3-5
SF(RK1 routine, 7-19
SFEKHD symbol, 2-14
Full-duplex I1/0, 1-13
Furction mask,
ACP, 4-19 to 4-20
tuilding for mask word, 4-21
control, 4-19 to 4-20
establishing, 4-22
layout, 4-19 to 4-20
legal,
details, 4-19 to 4-20
no-op, 4-19 to 4-20

SGSPKT routine, 1-13 to 1-14,
7-21 to 7-22
SGT3YT routine, 7-20
SGTPKT routine, 1-5, 1-13,
1-16, 7-21 to 7-22
usage in driver code, 3-5
GTPXTS$ macro call,
arguments, 4-7
SGTWVRD routine, 7-23

Har lware configuration,
r2lationship to structures
at block level, 2-1
HDRDJFS$, A-25 to A-26
SHEADR, 6-7, 6-9
pointer to first word of
task header, 6-8
Hig1-speed device, 1-16
HWD)FS$, A-27 to A-30

I.x:Xx offsets,
in I/0 packet, 4-11 to 4-14
1/0.
cancel in-progress, 2-5
h gh-speed devices, 1-14
ovverview, 3-4
processing requirements,
1-15
s. ow-speed devices, 1-14
I/0 count, 1-12
I/0 data base structure,
cemposite arrangement, 2-11
tvpical arrangements, 2-7 to
2-8, 2-10
I/0 data structure,
details, 4-10

Index-6

I/0 data structure (Cont.)
overview, 2-1 to 2-3
typical arrangements, 2-6

1/0 finish,

See SIOFIN routine

I/0 function,
definition of types, 3-3
mask values, 4-23
mask word bit settings,

4-24 to 4-26

I/0 function mask,
establishing, 4-22

I/0 initiation,
entry point, 4-63 to 4-64

sample use of alternative,
8~12 to 8-25, A-26
overview, 2-5

I/0 packet, 1-4
building, 4-11
composite arrangement,

2-13 to 2~14
creation of, 3-2
current address, 4-40
fields, 4-11 to 4-14
handling before it is
queued, 8-12 to 8-25,
A-26
layout, 4-11

I/0 page, 1-3

I/0 queue,
listhead, 4-39

I/0 Queue Optimization,
Cylinder Scan, 1-15
Elevator, 1-15
Nearest Cylinder, 1-15

I/0 request, 1-4 to 1-5, 1-15
completing process for an,

3-4
flow of, 3-1 to 3-4
issuing I/0 for an, 3-4

Ice, 1-2, 1-6, 1-12, 1-18, 2-4

number of controllers
allowed, 1-7

SINIBF routine, 1-14, 7-24

SINISI routine, 1-6

INITL module,
errors from, 6-3

Interrupt, 1-1
addresses,

overview, 2-6
connect-to directive, 1-1
dispatching, 1-7
for common interrupt
devices, 1-12
overview, 2-6
entry address, 2-4
for overlapped seek, 1-12
handling, 1-5, 1-7 to 1-9,
1-12

INDEX (CONT.)

Interrupt (Cont.,)
processing by driver, 3-4
protocol, 1-6, 1-9
service routine, 1-5 to 1-6
vector, 1-1, 1-12
Interrupt Control Block,
See ICB
Interrupt entry point, 4-69,
5-70
Interrupt save,
See SINTSV routine
$INTSI routine, 1-7
SINTSV routine, 1-6 to 1-7,
7-25
INTSVS macro call,
arguments, 4-8
$INTXT routine, 1-6, 7-26
$IOALT routine, 1-13, 1-15,
7-27
driver use in I/0O
processing, 3-5, 4-6
$IODON routine, 1-9, 1-13,
7-27
driver use in I/0
processing, 3-5, 4-6
$IOFIN routine, 1-13 to 1-14,
3-3, 7-28
I0SB,
validity checks, 3-2
ITBDFS$, A-31

K.STS, 4-48
K.xxx offsets,
in KRB, 4-47 to 4-48,
4-50 to 4-52
KRB, 1-13
access queue in the, 2-2,
3-15
combined with sSCB, 2-2, 4-53
layout, 4-54
composite arrangement, 3-15
configuration status in the,
2-2
contigquous with sCB, 2-7,
4-3
controller status register,
4-50
defining start of addresses,
4-3
definition, 1-4
details, 4-45, 4-47 to 4-53
format, 4-47 to 4-53
layout, 4-46
overview, 2-1 to 2-2
subsets, 1-13
use in determining
interrupting unit, 2-2

Index-7

KRB (Cont.)

validation during LOAD, 5-12
KRB1, 1-13
KRBDF$, A~32 to A-33

L.STS, 4-58
L.xxx offsets,
in CTB, 4-55 to 4-56,
4-58 to 4-59
LBN, 1-15
LCBDF$, A-34
LD$Sxx symbol, 4-9
Legal function mask,
details, 4-19 to 4-20
LOAD command, 1-18 to 1-19,
2-20, 5-2
allowances, 1-7
Executive operation for
driver, 5-11
operation, 5-11
overview, 1-18
use of /CTB, 5-14
Load sharing, 1-11
Loadable data base,
See Data base
Loadable driver,
See Driver
Logical block number,
See LBN
Logical unit table,
See LUT
LPAl11-K, 1-13 to 1-14
LyT, 2-11, 3-2

Mask word,
creating, 4-21
I/0 function, 4-21
MASSBUS,
controller, 1-13
mixed device, 1-12
Mixed MASSBUS device, 1-12
SMPUB1 routine, 7-30
SMPUBM routine, 7-29
MTADFS$, A-35 to A-38
Multiple access operation,
data base structures, 2-8,
2-10
Multiple controller, 1-7
Multiprocessor system,
task issuing I/0 request,
1-16

INDEX (CONT.)

Nearest Cylinder,
d=2finition, 1-15
Next command entry point, 4-65
No-op function mask, 4-19 to
4-20
Non-pool-resident, 6-8
header, 6-9
Nonz2xternal header, 6-8
NPR device,
drivers for (on PDP-11), 7-2

OLRDFS$, A-39 to A-46
Overlapped Seek I1/0, 1-11
data base structures, 2-8
data transfers, 1-10
difficulty factor, 1-10
executing parallel
operations, 1-10

Page Address Register,
S=2e PAR
Page Description Register,
S2e PDR
PAR, 1-2
Parallel un:t operation,
data base structures, 2-8
Partition Control Block,
See PCB
PCB,
composite arrangement, 2-11
PCBDF$, A-47 to A-50
PDR, 1-2
Peripheral configuration,
choosing at system
generation, 5-10 to 5-11
PKTDFS$, A-51 to A-56
Pool-resident, 6-8
header, 6-9
Ports, 1-11
switching between, 1-12
Power failure,
entry point, 4-66
overview, 2-6
Predriver initiation,
processing during, 3-2 to
3-4
Primary UNIBUS run, 1-17
Processor,
halt,
tracing fault, 6-11
loop,
tracing fault, 6-12
Processor-specific functions,
1-17
SPTBYT routine, 7-31

Index-8

$PTWRD routine, 7-32

Q.xxx offsets,
in I/0 packet, 4-15 to 4-16
SQINSP routine, 7-33
QIO directive,
building I/0 packet, 4-11
creating DPB, 3-2
directive dispatching, 3-2
QIO Directive Parameter Block,
See QIO DPB
QIO DPB, 4-12, 4-15 to 4-16
QIO request, 2-11
SQUEBF routine, 1-14
Queue optimization, 1-15
entry point, 4-65

Redirect algorithm, 3-2
Register,

conventions,

at system state, 7-1

$RELOC routine, 7-34
SRELOP routine, 7-35
SREQU1l routine, 7-36
SREQUE routine, 7-36
Resident data base,

See Data base
Resident driver,

See Driver
SRQCNC, 4-41
SROCND, 4-41
RSXASM.CMD file, 5-3

S.ST2, 4-42
S.5T3, 4-41
$.STS, 4-41
S.xxx offsets,
in 8CB, 4-39 to 4-45
SAB, A-5
SSAHDB, 6-9 to 6-10
contains an unknown value,
6-8
SSAHPT, 6-9
pointer to first word of
task header, 6-8
$SSAVSP, 6-9
pointer to first word of
task header, 6-8
sCB, 1-13, 2-2
adding KRB, B-2
address for KRB, 2-3
changes for converting a
driver, B-2

INDEX (CONT.)

SCB (Cont.)
combined with KRB, 4-53
layout, 4-54
composite arrangement,
2-13 to 2-14
contiguous with KRB, 2-7, 4-3
details, 4-37, 4-39 to 4-44
format, 4-39 to 4-44
KRB addresses for, 4-45
layout, 4-38
link to fork blocks, 2-3
overview, 2-3
parallel operations, 2-3
pointer,
to currently assigned KRB,
4-44
to head of queue for I/0
requests, 2-3
validation during LOAD,
5-13 to 5-14
SCBDF$, A-57 to A-58
Secondary UNIBUS run, 1-17
Serial operations,
single controller, 2-7
Serial unit operation,
data base structures, 2-7
multiple units per
controller, 2-7
Service routine,
See also Executive services
summaries of Executive, 3-5,
4-6, 7-5 to 7-39, 8-40
SHDDFS, A-59 to A-60
SPR, 2-20
Stack and register dump,
Executive, 6-11
Stack depth indicator, 6-8
Stack structure, 6-12
internal SST fault, 6-10 to
6-11
Static structure, 2-1
Status Control Block,
See SCB
$STXDP, 6-8, 6-11
Stack Depth Indicator, 6-7
$SSTMAP routine, 7-37
calling from the driver, 7-3
$STMP1l routine, 7-38
calling from the driver, 7-3
Subcontroller device, 1-13
block, 1-13
Ssymbolic offsets, A-1
usage, 4-2
SYSTB.MAC file, 1-18
System,
data structures,
abort codes, A-3
macro definitions, A-1 to
A-71, B-72

Index-9

System (Cont.)
stack, 6-11
System Account Block, A-5
System generation,
incorporating a driver, 5-1
System I/0 data base,
main thread through, 2-1,
2-3
System macro call, 4-5
System-state,
register convention, 7-1

TAB, A-5
Task,
checkpointing, 1-14
decrementing I/0 count, 1-14
frequency of accessing data
areas, 1-15
proper state to initiate
buffered 1/0, 1-14
Task Account Block, A-5
Task Control Block,
See TCB
Task header, 6-9
composite arrangement, 2-13
pointers, 6-8
TCB, 1-14
composite arrangement, 2-11
TCBDFS$, A-61 to A-64
Timeout count,
initial, 4-40
Timeout entry point,
overview, 2-5
$TKTCB,
pointer to current TCB, 6-7
Tracing fault, 6-8, 6-12, 7-13
Transaction file,
SAB, A-5
TAB, A-5
UAB, A-5
STSPAR routine, 7-39
STSTBF routine, 1-14, 8-40

U.ST2, 4-32

U.sTs, 4-31

U.xxx offsets,
in UCB, 4-27 to 4-37

UAB, A-5

UCB, 1-13 to 1-14
association with sCB, 2-7
composite arrangement, 2-13
details, 4-27 to 4-37
device-dependent values,

4-29

UCB (Cont.)
device-specific

characteristics, 4-

4-35

INDEX (CONT.)

32 to

disk geometry calculations,

B-2

enabling driver to access

data structures, 2-

fields,
format, 4-27 to 4-37
layout, 4-28
length, 4-3

stored in DCB, 2-3
ordering, 4-3
overview, 2-3
pointer,

4-27

to associated DCB, 4-
to I/0 structures, 2-

to start of this UCB,
table,

3

29
3
4-29

composite arrangement,

3-15
validation during LOAD,

5-13

UCBDF$, A-65 to A-71, B-72
UCBSV,
usage in macro calls, 4-8
UMR,
programming procedures,
7-2 to 7-5
UNIBUS,

switched bus, 1-16
UNIBUS Mapping Registers,
See UMR
UNIBUS Run Mask,
See URM
Unit,
making accessible, 5-6
placing on line, 5-7
Unit Control Block,
See UCB
Unit status byte, 4-31
Unit status change,
entry point,
overview, 2-6
Unit status extension 2,

4-68 to 4-

69

4-32

Index-10

URM, 1-16, 4-39
User Account Block, A-5
SUSRTB global label, 4-3

VCB,
composite arrangement,
Vector,
addresses,
definition of in Driver
Dispatch Table, 2-6
assignment,
setting, 5-6
assignment error, 5-8
interrupt, 1-1, 1-12
Volume Control Block,
See VCB
Volume valid processing,

3-15

5-70

Window block,

composite arrangement, 2-14

XDT, 6-1 to 6-3,
commands, 6-2
debugging,

driver, 6-2, 6-4 to 6-5
general operation, 6-4

6-5

restrictions, 6-3

startup, 6-2
xxCTB label, 4-60
$xxDCB,

global label, 4-3
xXxDRV.MAC file, 5-2
XxXDRVASM.CMD file, 5-3
$xxLOA label, 4-9, 4-61
xxTAB.MAC file, 1-18, 5-2
$xxTBE label, 4-60
$xXTBL label, 4-60

$xxUNL label, 4-9, 4-61

RSX-11M-PLUS
Guide to Writing
an 1/0 Driver
AA-H267B-TC

READER’'S COMMENTS
NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

(7] Assembly language programmer

("1 Higher-level language programmer

[} Occasional programmer (experienced)
[J User with little programming experience
{1} Student programmer
7] Other (please specity)

Name Date

Organization

Street

City State ZipCode
or Country

— — — Do Not Tear - Fold Here and Tape

— — — Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

— = emem ewte e e e omme e mmm v e s e e v mvem e e — o—

No Postage
Necessary
if Mailed in the
United States

Cnt Alana NDattad T ina

