VAX BASIC Reference Manual
Order Number: AA-HY16B-TE

February 1990

This manual provides reference material and syntax for VAX BASIC language elements.

Revision/Update Information: This revised manual supersedes the VAX BASIC
Reference Manual, Version 3.3

Operating System and Version: VMS Version 5.0 or higher
Software Version: VAX BASIC Version 3.4

digital equipment corporation
maynard, massachusetts

First Printing, August 1986
Revised, July 1988
Revised, February 1990

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1986, 1988, 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASSBUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT

DECUS ULTRIX XUl
DECwindows UNIBUS

DIGITAL VAX ™
LNO3 VAXcluster Hﬂﬁﬂﬁﬂ

The following is a third-party trademark:
PostScript is a registered trademark of Adobe Systems, Inc.
ZK5433

Contents

Preface xv
Summary of Technical Changest nnnnnn.. Xix

Chapter 1 Program Elements and Structure

141 Components of Program Lines 1-1
1.1.1 LineNumbers i, 1-2
1.1.141 Programs With Line Numbers 1-2
1.1.1.2 Programs Without Line Numbers 1-2
1.1.2 Labels i e 1-3
113 Statements 1-4
1.1.31 Keywords, 1-5
1.1.3.2 Identifying Program Units 1-6
1.1.3.3 Single-Statement Lines and Continued
Statements, 1-7
1.1.34 Multi-Statement Lines 1-8
114 Compiler Directivesccovvinnnennn.. 1-9
115 Line Terminatorsciivuu.... 1-10
1.1.6 Lexical Orderiiiiiinnennn.. 1-10
1.2 VAXBASICCharacter Setccoiiierunnnnn. 1-10
13 VAXBASICDataTypesc.uvimmiiinnnnnnnn. 1-11
1.3.1 Implicit Data Typingcciiiiienn... 1-14
1.3.2 Explicit Data Typing v ... 1-15
14 Variables 1-16
1.4.1 Variable Names, 1-17
142 Implicitly Declared Variables 1-17

1.4.3 Explicitly Declared Variables 1-19

1.4.4 Subscripted Variables and Arrays 1-19

1.45 Initialization of Variables 1-22

15 Constants ittt e 1-23
1.51 NumericConstantsttt 1-24

1.5.1.1 Floating-Point Constants 1-24

1.5.1.2 IntegerConstants. 1-26

1.5.1.3 Packed Decimal Constants 1-27

1.5.2 String Constantsttt 1-27

1.5.3 Named Constantso iiiniinennnnnn 1-29

1.5.3.1 Naming Constants Within a Program Unit 1-29

1.6.3.2 Naming Constants External to a Program Unit . . . 1-31

1.5.4 Explicit Literal Notation 1-31

1.5.5 Predefined Constants 1-34

1.6 EXPressionNS it 1-36
1.6.1 Numeric Expressions i . 1-36

1.6.1.1 Floating-Point and Integer Promotion Rules 1-38

1.6.1.2 DECIMAL PromotionRules 1-39

1.6.2 String EXpressions i e 1-41

1.6.3 Conditional Expressions, 1-42

1.6.3.1 Numeric Relational Expressions 1-42

1.6.3.2 String Relational Expressions 143

1.6.3.3 Logical Expressions 1-45

1.6.4 Evaluating Expressions i 1-50

1.7 Program Documentation 1-52
1.74 CommentFields i, 1-52

1.7.2 REM Statementsciiiiiinnnnnn.n 1-54

Chapter 2 Environment Commands

I YOUR-COMMENTot it i i e e e 2-2
$SYSTEM-COMMAND i i ee e 2-4
APPEND .. it e e e 2-6
ASSIGN . ..t e e e e 2-8
COMPILE . o ittt e et ittt i 2-10
CONTINUE . . .ottt e e e ettt et e i aeee e 2-21
= 1 = 2-22

ED T oot e e e e 2-24

5« 1 2-27

HELP . .o e e e e e e 2-29
IDENTIFY . ottt e e e e e e 2-31
INQUIRE . .. ittt ittt it e et et e e e e e et et 2-32

0 7

OLD . e e e
RENAME e e
REPLACE e

RUN .

...

...

2-33
2-35
2-37
2-38
2-40
2-41
2-43
2-45
2-48
2-51
2-53
2-55
2-56
2-58
2-60
2-62

Chapter 3

Compiler Directives

%ABORT .
%CROSS .

%DECLARED i e
%IDENT . . . e e e
%IF-%THEN-%ELSE-%END %IF

%INCLUDE

BoLET . o e e
LIST . e e
%NOCROSS e e

%NOLIST .
%PAGE . .
%PRINT . .
%REPORT
%SBTTL .
%TITLE . .
%VARIANT

...

...

3-3
3-4

3-10
3-15
3-17
3-18
3-20
3-21
3-22
3-23
3-25
3-27
3-29

Chapter 4

vi

Statements and Functions

ABS

...

..

CCOPOS . .. e

CHA

IN e

CHRS .. e
CLOSE e

Cos

...

DATES . . .

DIF$

EXP

..

...

...

...

PLELl

4-10
4-16
4-18
4-20
4-22
4-25
4-27
4-29
4-35

4-39
441
4-43

4-48
4-50
4-52
4-54
4-59
4-65
4-70
4-72
4-74
4-76
4-81

4-89
4-91
4-93
4-95
4-97
4-100
4-102
4-108
4-111
4-119

FNEND it i i e s e et
FNEXIT .. e i e

FOR

FORMATS i i i it

FREE
FSP$

..

...

FUNCTION i i it e e
FUNCTIONEND. o e s
FUNCTIONEXIT ...ttt ittt i i i aeennns

GET

GETRFA ... e e e
GOSUBttt i e e e
€1 2 1
HANDLER i it it e s

IF ..

INKEYS . . oottt i e e e
INPUT L i it ittt it
INPUTLINE i i i i e e e
INSTR ... i e i e e e e

INT .

...

INTEGER i et i et aee e e
ITERATE i i i it i e eaanens

KILL

MAP

MAR

MAT

...

...

...

...

...

...

...

...

MAT INPUT .. e e
MAT LINPUT . ..o i ittt e e
MAT PRINT . .. i i e i e
MAT READ i i i ettt

MAX

4-121
4-122
4-123
4-127
4-129
4-131
4-133
4-137
4-138
4-139
4-147
4-149
4-151
4-153
4-155
4-158
4-162
4-166
4-169
4-171
4-173
4-175
4177
4-178
4-180
4-182
4-184
4-186
4-189
4-191
4-193
4-195
4-197
4-199
4-201
4-205
4-209
4-210
4-212
4-217
4-220
4-223
4-226
4-229

vii

viii

NEXT

NUM

OPEN

PRODS ...

RCTRLC ..
RCTRLO ..
READ

RESET ...

RETRY ...

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

4-231
4-234
4-236
4-238
4-242
4-244
4-246
4-248
4-250
4-252
4-254
4-256
4-258
4-260
4-263
4-265
4-267
4-269
4-283
4-288
4-292
4-294
4-298
4-305
4-308
4-310
4-314
4-317
4-319
4-321
4-322
4-324
4-326
4-328
4-333
4-335
4-337
4-342
4-343
4-345
4-348
4-350
4-352
4-354

RSET .

...

SCRATCH i e e e e e

SEG$.
SELECT

...

SET PROMPT i e i e

SQR ..

STOP .
STRS. .

SuB ..

UNTIL .

VAL% .

...

...

...

...

..

...

...

..

...

...

...

...

...

4-357
4-359
4-361
4-363
4-365
4-368
4-370
4-371
4-373
4-375
4-376
4-378
4-380
4-382
4-384
4-386
4-390
4-391
4-392
4-394
4-396
4-398
4-399
4-401
4-403
4-404
4-406
4-407
4-409
4-411
4-413
4-415
4417
4-419
4-421
4-426
4-428

Appendix A

Transporting Programs Between VAX BASIC and BASIC-PLUS-2

A1 OVeIVIeW e e e, A-1
A2 Language-Specific Functionality A-2
A3 O Differences ittt e, A-3
A.3.1 The MAGTAPE Functiono e, .. A-3
A.3.2 The OPEN Statement, A—4
A.3.3 The PUT Statementu.... A-6
A4 Procedure Calling. A-6
A4.1 The CALL Statement, A6
A4.2 The CHAIN Statement A-7
A4.3 SYSandFIPSYSCallscovviiiiunnnn.. A-7
A5 Generated Errors, A-8
A.6 Miscellaneous Differences., A-9
A.6.1 DataTypescoviiiiin ittt ien A-10
A.6.2 The DEF and DEF* Statements A-10
A.6.3 Default Integer Size A-10
A.6.4 IntegerOverflow A-10
A.6.5 Line Numbersand Labels A-10
A.6.6 The MAP and COMMON Statements A-11
A.6.7 The MAP DYNAMIC Statement A-11
A.6.8 The PRINT Statement A-12
A.6.9 The PRINT USING Statement A-12
A.6.10 The REPLACECommandcoovviienunn.. A-12
A.6.11 The SPEC% and PEEK Functions A-12
A.6.12 String Comparisonsc.ccoiiiiiiiiinn... A-12
A.6.13 AssigningSymbols A-13
A.6.14 The TIME Function 0., A-13
A.6.15 The TIMES Functioncci .. A-13
Appendix B ANSI Minimal BASIC
B.1 Introduction B-1
B.2 The /ANSI_STANDARD Qualifier B-2

B.3 Extensions To ANSI Minimal BASIC Standard X3.60-1978 B-2
B.3.1 Program Format iiiiiiannn. B-2

B.3.2 Statements e i e B-3

B.3.3 Delimiters i i B-3

B.3.4 Variables B-3

B.3.5 NumericConstantsot nnnnnn. B4

B.3.6 Datalnputt B4

B.3.6.1 Unquoted StringData B-5

B.3.6.2 Nulllnput i B-5

B.3.7 User-Defined Functions (the DEF Statement) B-6

B.3.8 Built-in Functions i i B-6

B.3.9 N - B-7

B.4 implementation-Defined Features B-7
B.4.1 Initial Values for Variables B-8

B4.2 Retentionof Long Strings B-8

B.4.3 Accuracy of Evaluation of Numeric Expressions B-8

B.4.4 Machine Infinitesimal B-8

B.4.5 Machine Infinity i B-8

B.4.6 Precision For Numeric Values B-9

B.4.7 Exrad-Width For Printing Numeric Representations B-9

B.4.8 Significance-Width For Printing Numeric Representations B-9

B.4.9 PrintZonelength B-9

B.4.10 Margin for QutputLine ot B-9

B.4.11 Pseudorandom Number Sequence B-10

B.4.12 Unique LineNumbers it B-10

B.4.13 Input Prompt i e e B-10

B.4.14 EndoflnputReply B-10

B.4.15 EndofPrintLine0 i B-10

B.4.16 Exponentiation Operatorcii... B-10

Appendix C ASCII Character Codes
Appendix D VAX BASIC Keywords

xi

Index

Examples
11 Referencing Label Names in VAX BASIC Programs 1-4
1-2 Using the DECLARE Statement to Set Array Boundaries 1-20
1-3 Naming Constants Within a Program Unit 1-29
14 Associating Values with Named Constants 1-30
1-5 Naming Constants as Expressions 1-30
1-6 Declaring Constants Outside the Program Unit 1-31
1-7 Specifyinga Comment Field 1-53
1-8 Using Comments Fields to Format a Program 1-53
1-9 Using Empty Statements in a VAX BASIC Program 1-54
1-10 Using REM Statements in VAX BASIC Programs 1-55

Figures
1-1 Representation of the Subscript Variable A%(4%,6%) 1-22
1-2 Truth Tables 1-48

Tables
1-1 Keyword Space Requirements 1-5
1-2 VAXBASIC Data Typescuiiiiii .. 1-13
1-3 Valid Floating-Point Variable Names 1-18
14 Specifying Floating-Point Constants 1-25
1-5 Numbersin ENotation 1-25
1-6 Specifying Integer Constants 1-26
1-7 Predefined Constants 1-34
1-8 ArithmeticOperators it e 1-37
1-9 Result Data Types in VAX BASIC Expressions 1-39
1-10 VAX BASICResult DataTypesc0iiiiiinnnnnnnnn. 1-39
1-11 Result Data Types for DECIMALData. 1-40
1-12 Numeric Relational Operatorsv.... 143
1-13 String Relational Operators, 1-45
1-14 Logical Operators.t ittt 1-46
1-15 Numeric Operator Precedence 1-51
2-1 Multiplying a Numeric Value with the SCALE Command 2-54

Xii

41

FELILT

4-7

A-2
A-3
A-4
A-5
A-6
c-1
c-2

VAX BASIC Parameter-Passing Mechanisms 4-11
FILL ltem Formats and Storage Allocations 4-31
EDITE Values ittt ettt e it 4-84
MAGTAPE Functionality in VAXBASIC 4-200
Rounding and Truncation of 123456.654321 4-290
VAXBASIC STATUS Bits . .. ot ittt it it i it it eieeeaaann 4-379
TIME Function Valuesottt e it i e e eee s 4-400
MAGTAPE Functionality in VAXBASIC A4
RSTS/E Disk MODE Values and Corresponding BASIC Statements A-5
VAX BASIC Subset of RSTS/ESYS Calls A-7
VAX BASIC Subset of RSTS/EFIPSYS Calls A-8
Fatal Errors in VAX BASIC that are Warnings in BASIC-PLUS-2 A-9
VAX BASIC and BASIC-PLUS-2 TIME Function Differences A-13
ASCII Characters Reserved for NationalUse C-1
ASCI CodeS .« o v oottt e e Cc-2

xiii

Preface

Intended Audience

This manual describes the language elements and syntax of VAX BASIC.
Readers are presumed to be familiar with VAX BASIC programming tech-
niques. This manual provides reference material to be used in conjunction
with the other two manuals in the documentation set.

Associated Documents

This manual is one of three manuals that form the VAX BASIC document
set. The other two manuals are as follows:

VAX BASIC User Manual Provides tutorial material for VAX BASIC
language constructs and information pertaining
to programming with VAX BASIC on VMS

systems
Programming with VAX BASIC Provides tutorial and reference material on
Graphics VAX BASIC graphics capabilities

You may also be interested in the following supplementary manuals:
e VAX BASIC Syntax Summary

* Introduction to BASIC

e BASIC for Beginners

* More BASIC for Beginners

XV

Document Structure

This manual consists of four chapters and four appendixes.

Chapter 1 Summarizes VAX BASIC program elements and structure

Chapter 2 Describes VAX BASIC environment commands

Chapter 3 Describes VAX BASIC compiler directives

Chapter 4 Describes VAX BASIC statements and functions

Appendix A Summarizes transportability issues between BASIC-PLUS-2 and
VAX BASIC

Appendix B Explains how VAX BASIC conforms to the ANSI Minimal
Standard for BASIC

Appendix C Lists the ASCII codes

Appendix D Lists VAX BASIC keywords

In Chapters 2, 3, and 4, the VAX BASIC language elements are arranged
in alphabetical order within each part; each language element begins on

a separate page. These chapters provide reference material on each VAX
BASIC language element. The descriptions are arranged in alphabetical

order and include the following sections:

Overview An overview of what the statement or command does.

Format The required syntax for the language element.

Syntax Any rules governing the use of parameters, separators, or other syn-
Rules tax items, effect of the statement or command on program execution,

and any restrictions governing its use.

Example One or more examples of the statement in a partial program. Where
appropriate, explanatory text and program output are included.

Conventions

This manual uses case of text, symbols, and mnemonics in syntactical dia-
grams. This symbology aids in providing more concise and exact descriptions
of syntatic variables, rules, and format.

Convention Meaning

$ BASIC In command-line examples, the user’s response to a system
prompt is printed in red; system prompts are printed in black.

Convention Meaning

UPPERCASE Uppercase letters are used for VAX BASIC keywords and must

letters be coded exactly as shown.

lowercase letters Lowercase letters are used to indicate user-supplied names or
characters.

[] Brackets enclose an optional portion of a format. Brackets

around vertically stacked items indicate that you can select
one of the enclosed items. You must include all punctuation as
it appears in the brackets.

{} Braces enclose a mandatory portion of a format. Braces
around vertically stacked items indicate that you must choose
one of the enclosed items. You must include all punctuation as
it appears in the braces.

A vertical ellipsis indicates that code which would normally be
present is not shown.

An ellipsis indicates that the immediately preceding item
can be repeated. An ellipsis following a format unit enclosed
in brackets or braces means that you can repeat the entire
unit. If repeated items or format units must be separated by
commas, the ellipsis is preceded by a comma (, ...).

The following mnemonics are used in the syntax diagrams:

Mnemonic Meaning

angle An angle in radians or degrees

array An array; syntax rules specify whether the bounds or dimensions
can be specified

chnl An /0 channel associated with a file

com Specific to a COMMON block

cond Conditional expression; indicates that an expression can be either
logical or relational

const A constant value

data-type A data type keyword

def Specific to a DEF function

exp An expression

file-spec A file specification

func Specific to a FUNCTION subprogram

Xvii

Mnemonic Meaning

int An integer value

int-exp An expression that represents an integer value

int-var A variable that contains an integer value

label An alphanumeric statement label

lex Lexical; used to indicate a component of a compiler directive

line A statement line; may or may not be numbered

line-num A statement line number

lit A literal value, in quotation marks

log-exp Logical expression

map Specific to a MAP statement

matrix A two-dimensional array

name A name or identifier; indicates the declaration of a name or the

name of a VAX BASIC structure, such as a SUB subprogram

num A numeric value

param-list A parameter list, such as for a SUB subprogram

pass-mech A valid VAX BASIC passing mechanism

real A floating-point value

rel-exp Relational expression

str A character string

str-exp An expression that represents a character string

str-var A variable that contains a character string

sub Specific to a SUB subprogram

target The target point of a branch statement; either a line number or a
: label

unsubs-var Unsubscripted variable, as opposed to an array element

var

A variable

Summary of Technical Changes

Summary of New and Changed Features for Version 3.4

Version 3.4 of VAX BASIC includes support for the Program Design Facility
(PDF). This new functionality can be implemented by appending the
/DESIGN qualifier to the DCL command BASIC. See the VAX BASIC User
Manual for more information on the /DESIGN qualifier.

This documentation update also contains numerous corrections and

clarifications to Version 3.3 documentation. These documentation changes
do not reflect new features.

Xix

Chapter 1

Program Elements and Structure

The building blocks of a VAX BASIC program are as follows:

Program lines and their components
The VAX BASIC character set

VAX BASIC data types

Variables and constants
Expressions

Program documentation

These building blocks are described in the following sections.

1.1 Components of Program Lines

A VAX BASIC program is a series of program lines that contain instructions
for the VAX BASIC compiler. These instructions are in the form of
statements that contain keywords, operators, and operands.

All VAX BASIC program lines can contain the following:

Statements

Line numbers or labels
Compiler directives
Comment fields

A line terminator (carriage return)

Only a line terminator is required in a program line. The other elements
are optional.

Program Elements and Structure 1-1

1.1.1 Line Numbers

Line numbers are no longer required in VAX BASIC programs; you can
compile, link, and execute a program with or without line numbers. There
are, however, different rules for writing programs with line numbers and for
writing programs without line numbers. These differences are described in
the following sections.

1.1.1.1 Programs With Line Numbers

If you are entering program lines directly into the BASIC environment in
line mode, then only those statements with line numbers are allowed to start
in the first column. Also, any programs entered in line mode must have an
initial line number associated with the first program line.

A VAX BASIC line number must be a unique integer from 1 through 32767,
and must be terminated by a space or tab. VAX BASIC ignores leading
spaces, tabs, and zeros in line numbers. Embedded spaces, tabs, and com-
mas cause VAX BASIC to signal an error.

In line mode, a line number followed by a carriage return does not constitute
a VAX BASIC program line. A program line entered in line mode must
contain a statement or a comment field. (Comment fields are discussed in
Section 1.7.1). A new line number or a carriage return terminates a VAX
BASIC program line.

A program line can contain any number of text lines; however, a text line
cannot exceed 255 characters.

1.1.1.2 Programs Without Line Numbers

VAX BASIC searches for a line number on the first line of program text
when you

* Load a program into the BASIC environment with the OLD command.
¢ [Edit a program in the BASIC environment.

If no line number is found, then the following rules apply:

* No line numbers are allowed in that program module.

* References to the ERL function and a RESUME statement to a line
number are not allowed.

1-2 Program Elements and Structure

¢ A subroutine will signal the same errors as it would if it were compiled
with the /NOLINES qualifier. If an error is resignaled back to the caller,
ERL gives the line number of the calling site, rather than the line -
number of the actual error in the subprogram.

¢ The REM statement is not allowed.

If your program contains multiple units, the point at which VAX BASIC
breaks each program unit is determined by the placement of the statement
that terminates each program unit. Any text that follows the program
terminator becomes associated with the the following program unit. A
program terminator can be any END statement, such as an END PROGRAM
statement followed by any valid expression.

You cannot use the APPEND command in the BASIC environment, or a plus
sign (+) at DCL level, to concatenate programs without line numbers.

Note that when you compile a program from DCL, or when you copy a
program into the BASIC environment with the OLD command, program
statements can begin in the first column.

Instead of line numbers, you can use labels to identify and reference pro-
gram lines.

1.1.2 Labels

A label is a 1- to 31-character name that identifies a statement or block

of statements. The label name must begin with a letter; the remaining
characters, if any, can be any combination of letters, digits, dollar signs ($),
underscores (_), or periods (.). If the program is being entered in line mode,
and therefore contains line numbers, then only line numbers and immediate
mode statements can begin in the first character position.

A label name must be separated from the statement it identifies with a colon
(:). For example:

Yes_routine: PRINT "Your answer is YES."

The colon is not part of the label name. It informs VAX BASIC that the
label is being defined rather than referenced. Consequently, the colon is not
allowed when you use a label to reference a statement. For example:

200 GOTO Yes_routine

Program Elements and Structure 1-3

You can reference a label almost anywhere you can reference a line number.
However, there are the following exceptions:

* You cannot compare a label with the value returned by the ERL function.

* You cannot reference a label in an IF.. THEN...ELSE statement without
using the keyword GOTO or GO TO. You can use the implied GOTO
form only to reference a line number. In Example 1-1, the GOTO
keyword is not required in statement 100 because the reference is to a
line number. However, the GOTO keyword is required in statement 200
because the references are to labels.

Example 1-1: Referencing Label Names in VAX BASIC Programs

100 IF A% = B%
THEN 1000
ELSE 1050

200 IF A$ = "YES"
THEN GOTO Yes
ELSE GOTO No

1.1.3 Statements

A VAX BASIC statement consists of a statement keyword and optional
operators and operands. For example, both of the following statements are
valid:

LET A% = 534% + (SUM% - DIF%)
PRINT A%

VAX BASIC statements can be either executable or nonexecutable:

* [Executable statements perform operations (for example, PRINT, GOTO,
and READ).

* Nonexecutable statements describe the characteristics and arrangement
of data, specify usage information, and serve as comments in the source
program (for example, DATA, DECLARE, and REM).

VAX BASIC can accept and process one statement on a line of text, several
statements on a line of text, multiple statements on multiple lines of text,
and single statements continued over several lines of text. Each line of
program text is associated with the last specified line number, and each
must contain a keyword.

1-4 Program Elements and Structure

1.1.3.1 Keywords

Every VAX BASIC statement except LET and empty statements must
begin with a keyword. A keyword is a reserved element of the VAX BASIC
language. Keywords are used to

¢ Define data and user identifiers.
¢ Perform operations.
¢ Invoke built-in functions.

NOTE

Keywords are reserved words and cannot be used as user iden-
tifiers, such as variable names, labels, or names for MAP or
COMMON areas.

Keywords cannot be used in any context other than as VAX BASIC key-
words. The assignment STRING$ = “YES”, for example, is invalid because
STRINGS is a reserved VAX BASIC keyword and therefore cannot be used
as a variable. Appendix D in this manual contains a list of the VAX BASIC
keywords.

A VAX BASIC keyword cannot have embedded spaces and cannot be split
across lines of text. There must be a space, tab, or special character such as
a comma between the keyword and any other variable or operator.

Some keywords use two words. In this case, their spacing requirements
vary, as shown in Table 1-1.

Table 1-1: Keyword Space Requirements

Optional

Space Required Space No Space

GO TO BY DESC FNEND

GO SUB BY REF FNEXIT

ON ERROR BY VALUE FUNCTIONEND
END DEF FUNCTIONEXIT
END FUNCTION NOECHO
END GROUP NOMARGIN

(continued on next page)

Program Elements and Structure 1-5

Table 1-1 (Cont.): Keyword Space Requirements

Optional
Space Required Space No Space

END IF SUBEND
END PROGRAM SUBEXIT
END RECORD

END SELECT

END SUB

EXIT DEF

EXIT FUNCTION

EXIT SUB

INPUT LINE

MAP DYNAMIC

MAT INPUT

MAT LINPUT

MAT PRINT

MAT READ

1.1.3.2 Identifying Program Units

You can delimit a main program compilation unit with the PROGRAM and
END PROGRAM statements, as shown in the following example:

PROGRAM Sort_out

END PROGRAM

This allows you to identify a program with a name other than the file
name. The PROGRAM name must not be the same as that of any SUB,
FUNCTION, or PICTURE subprogram.

If you include the PROGRAM statement in your program, the name you
specify becomes the module name of the compiled source. This feature is
useful when you use object libraries, because the librarian stores modules
by their module names rather than by their file names. Similarly, module
names are used by the VMS Debugger and the VMS Linker.

For more information about program units, see the VAX BASIC User
Manual.

1-6 Program Elements and Structure

1.1.3.3 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement on one numbered line, or
one statement continued over two or more text lines. For example:

30 PRINT B * C / 12

This single-statement line has a line number, the keyword (PRINT), the
operators (*, /), and the operands (B, C, 12).

You can have a single statement span several text lines by typing an am-
persand (&) and the RETURN key. Note that only spaces or tabs are valid
between the ampersand and the carriage return. For example:

OPEN "SAMPLE.DAT" AS FILE 2%, &[RET]
SEQUENTIAL VARIABLE, &[RET]
MAP ABC

The ampersand continuation character may be used but is not required for
continued REM statements. The following example is valid:

REM This is a remark
And this is also a remark

You can continue any VAX BASIC statement, but you cannot continue a
string literal or VAX BASIC keyword. The following example generates the
error message “Unterminated string literal”.

PRINT "IF-THEN-ELSE- &
END-IF"

This example is valid:

PRINT "IF-";
"THEN-";
"ELSE-";
" END_ n ,.

L IFII

R R

A more efficient way to continue string literals is to use the string concate-
nation operator (+) as follows:

PRINT "IF-"
+ "THEN-"
+ "ELSE-"
+ IIEND_"
+ " IF n

-2 s I "o -1}

VAX BASIC concatenates the four string literals at compilation and stores
them as one string. When the PRINT statement executes, VAX BASIC
displays the one concatenated string literal rather than four separate string
literals, thereby causing your program to execute faster and more efficiently.

Program Elements and Structure 1-7

1.1.3.4 Multi-Statement Lines

Multi-statement lines contain several statements on one line of text or
multiple statements on separate lines of text. All the statements on a
multi-statement line are associated with a single line of code.

Multiple statements on one line of text must be separated by backslashes
(\). For example:

40 PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to line

number 40 refers to all three statements and execution begins with the first
statement on the line. For example, VAX BASIC cannot execute the second

statement without executing the first statement.

You can also write a multi-statement program line that associates all state-
ments with a single line number by placing each statement on a separate
line. VAX BASIC assumes that such an unnumbered line of text is either a
new statement or an IF statement clause.

In the following example, each line of text begins with a VAX BASIC state-
ment and each statement is associated with line number 400.

400 PRINT A
PRINT B
PRINT "FINISHED"

VAX BASIC also recognizes IF statement keywords on a new line of text and
associates such keywords with the preceding IF statement. For example:

100 REM Determine if the user’s response
was YES or NO.
200 IF (A$ = "YES") OR (A$ = "y")
THEN PRINT "You typed YES"
ELSE PRINT "You typed NO"
STOP
END IF

The VAX BASIC compiler assigns listing line numbers to the statements as
they occur physically in the program. For example:

1100 REM Determine if the user’s response
was YES or NO.
200 IF (A$ = "YES") OR (A$ = "y")
THEN PRINT "You typed YES"
ELSE PRINT "You typed NO"
STOP
END IF

Nouds wN

1-8 Program Elements and Structure

You cannot use listing line numbers as targets of branch statements. The
target of a branch statement such as GOTO must be a line number or a
label. See the VAX BASIC User Manual for more information on listing file
formats.

You can use any VAX BASIC statement in a multi-statement line. Since
the VAX BASIC compiler ignores all text following a REM keyword until it
reaches a new line number, a REM statement must be the last statement on
a multi-statement line. REM statements are disallowed in programs without
line numbers.

In the environment, a leading space or tab not followed by a line number
implies a new statement in a multi-statement line, compiler commands and
immediate mode statements cannot be preceded by a space, tab, or line
number. If you enter a compiler command or immediate mode statement,
you cannot add more continuation lines to the last program line. If you
attempt to do so, VAX BASIC signals the error “Unknown command input.”

1.1.4 Compiler Directives

Compiler directives are instructions for the VAX BASIC compiler. These

instructions cause the VAX BASIC compiler to perform certain operations as

it compiles the program.

By including compiler directives in a program, you can:

¢ Place program titles and subtitles in the header that appears on each
page of the listing file

e Place a program version identification string in both the listing file and
object module

e Start or stop the inclusion of listing information for selected parts of a
program

e Start or stop the inclusion of cross reference information for selected
parts of a program

e Include VAX BASIC code from another source file or a text library
¢ Conditionally compile parts of a program

e Terminate compilation

e Include CDD record definitions in a VAX BASIC program

e Display messages during the compilation

Follow these rules when using compiler directives:

e Compiler directives must begin with a percent sign

Program Elements and Structure 1-9

* Compiler directives must be the only text on the line (except for
%IF-%THEN-%ELSE-%END-%IF)

* Compiler directives cannot appear within a quoted string
* Compiler directives can be preceded by an optional line number

See the VAX BASIC User Manual and Chapter 2 in this manual for more
information on compiler directives.

1.1.5 Line Terminators

In the BASIC environment, a program line ends with a carriage return/line
feed combination (the RETURN key) followed by an optional space or tab
or a new line number. An ampersand followed by a carriage return ends a
line of text, but not the program line. Note that spaces and tabs are valid
between the ampersand and the carriage return; no other characters are
valid. When line numbers are present, all statements between the first line
number and the next line number are associated with the first line number.

1.1.6 Lexical Order

Lexical order refers to the order in which the statements in a program
are compiled. In general terms, VAX BASIC compiles program lines in
sequential order: multiple statements on a line of text are processed from
left to right, and lines of text are processed from top to bottom. Note
that certain VAX BASIC statements can alter this flow of compilation, for
example GOSUB and GOTO.

Some VAX BASIC statements, such as comments and MAP declarations, are
nonexecutable. If program control passes to a nonexecutable statement, the
VAX BASIC compiler executes the first statement that lexically follows the
nonexecutable statement.

1.2 VAX BASIC Character Set

VAX BASIC uses the full ASCII character set. This includes

® The letters A through Z, both upper- and lowercase
® The digits 0 through 9
® Special characters

1-10 Program Elements and Structure

Appendix C in this manual lists the full ASCII character set and character
values.

The VAX BASIC compiler does not distinguish between upper- and lowercase
letters except in string literals or within a DATA statement. The VAX
BASIC compiler does not process characters in REM statements or comment
fields, nor does it process nonprinting characters unless they are part of a
string literal.

In string literals, VAX BASIC processes:

¢ Lowercase letters as lowercase

¢ Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot

appear in a string literal. Use the CHR$ function or explicit literal notation
to use these characters and terminators.

You can use nonprinting characters in your program, for example, in string
constants, but to do so you must use one of the following:

¢ A predefined constant such as ESC or DEL
¢ The CHR$ function to specify an ASCII value
¢ Explicit literal notation

See Section 1.5.4 for more information on explicit literal notation.

1.3 VAX BASIC Data Types

Each unit of data in a VAX BASIC program has a specific data type that
determines how that unit of data is to be interpreted and manipulated by
the VAX BASIC compiler. This data type also determines how many storage
bits make up the unit of data.

VAX BASIC recognizes five primary data types:
e Integer

¢ Floating-point

¢ Character string

e Packed decimal

¢ Record’s file address

Integer data is stored as binary values in a byte, word, or longword. These

values correspond to the VAX BASIC data type keywords BYTE, WORD,
and LONG; these are all subtypes of the type INTEGER.

Program Elements and Structure 1-11

Floating-point values are stored using a signed exponent and a binary
fraction. VAX BASIC allows four floating-point formats: single, double,
G_floating, and H_floating. These formats correspond to the VAX BASIC
data type keywords SINGLE, DOUBLE, GFLOAT, AND HFLOAT; these are
all subtypes of the type REAL.

VAX BASIC packed decimal data is stored in a string of bytes. Refer to the
VAX BASIC User Manual for more information on the storage of packed
decimal data.

Character data consists of strings of bytes containing ASCII code as binary
data. The first character in the string is stored in the first byte, the second
character is stored in the second byte, and so on. VAX BASIC allows up to
65535 characters for a STRING data element.

In addition to this data type, VAX BASIC also recognizes a special RFA data
type to provide information about a record’s file address. An RFA uniquely
specifies a record in a file: you can access RMS files of any organization

by record’s file address. By specifying the disk address of a record, RMS
retrieves the record at that address. Accessing records by RFA is more
efficient and faster than other forms of random record access. The RFA data
type can only be used for

* RFA operations (the GETRFA function and the GET and FIND
statements)
* Assignments to other variables of the RFA data type

* Comparisons with other variables of the RFA data type with the equal to
(=) and not equal to (<>) relational operators

* Formal and actual parameters
* DEF and function results

You cannot declare a constant of the RFA data type, nor can you use RFA
variables for any arithmetic operations.

The RFA data type requires 6 bytes of information. See the VAX BASIC
User Manual for more information on Record File Addresses and the RFA
data type.

For the DECIMAL(d,s) data type, you can specify the total number of digits
(d) in the data type and the number of digits to the right of the decimal
point (s). For instance, DECIMAL(10,3) specifies decimal data with a total
of 10 digits, 3 of which are to the right of the decimal point.

1-12 Program Elements and Structure

Table 1-2 lists VAX BASIC data type keywords and summarizes VAX BASIC

data types.

Table 1-2: VAX BASIC Data Types

Precision
Data Type (decimal)
Keyword Size Range (digits)
Integer
BYTE 8 bits -128 to +127 NA
WORD 16 bits -32768 to +32767 NA
LONG 32 bits —2147483648 to NA
+2147483647
Real
SINGLE 32 bits .29 *10738 to 6
1.7 *10%
DOUBLE 64 bits 29%107 %8 to 16
1.7 *10%
GFLOAT 64 bits 56 *1073% to 15
.90 * 10308
HFLOAT 128 bits 84 %1074 ¢o 33
59 * 101932
Decimal
DECIMAL(d,s) 0tol6 1%107% to1 * NA
bytes 10%
String
STRING One Max = 65535 NA
character
per byte
RFA
RFA 6 bytes NA NA

In Table 1-2, REAL and INTEGER are generic data type keywords that
specify floating-point and integer storage, respectively. If you use the
REAL or INTEGER keywords to type data, the actual data type (SINGLE,

Program Elements and Structure 1-13

DOUBLE, GFLOAT, HFLOAT, BYTE, WORD, or LONG) depends on the
current default. If you do not explicitly type one of the appropriate subtypes,
VAX BASIC uses the current subtype defaults for REAL and INTEGER.

You can specify data type defaults in the BASIC environment with the
SET and COMPILE commands, or from DCL level with the DCL command
BASIC. You can also specify whether program values are to be typed
implicitly or explicitly. The following sections discuss data type defaults and
implicit and explicit data typing.

1.3.1 Implicit Data Typing

You can implicitly assign a data format to program values by adding a suffix

to the variable name or constant value. If you do not specify any suffix, the

variable or constant is assigned the current default data type. The following

rules apply for implicit data typing:

* A dollar sign suffix ($) specifies STRING storage.

* A percent sign suffix (%) specifies INTEGER storage.

* No special suffix character specifies storage of the default type, which
can be INTEGER, REAL, or DECIMAL.

With implicit data typing, the range and precision for program values are
determined by the corresponding default data sizes or subtypes:

* BYTE, WORD, or LONG for INTEGER values
¢ SINGLE, DOUBLE, GFLOAT, or HFLOAT for REAL values
® The default (d,s) values for DECIMAL values

The default data type is determined by one of the following:

¢ The system default (REAL)

* The data type set for the BASIC environment with the SET or COMPILE
compiler command

* The data type set for the BASIC environment with the BASIC statement
OPTION

* The data type set for VAX BASIC with a qualifier for the DCL command
BASIC

The VAX BASIC qualifiers for the SET and COMPILE commands are
described in Chapter 2 of this manual. The qualifiers for the DCL command
BASIC are listed in the VAX BASIC User Manual.

1-14 Program Elements and Structure

Note that if you compile your program with the /TYPE_DEFAULT=
EXPLICIT qualifier (on either the DCL command BASIC or VAX BASIC
command COMPILE), you can still add the appropriate suffixes to your
variable names or constant values. The suffixes are useful because they
identify the data type of the variable or constant immediately; the reader
does not have to refer to the declarations at the top of the program to see
which data type applies to a particular program value. However, with the
/TYPE_DEFAULT=EXPLICIT qualifier, you must still explicitly assign data
types to all program values or VAX BASIC signals an error.

It is considered good programming practice to use explicit data typing
because implicit data typing is dependent on compilation defaults. These
defaults may change, thereby affecting the precision of the program values.

1.3.2 Explicit Data Typing

Explicit data typing means that you use a declarative statement to spec-
ify the type, range, and precision of your program values. Declarative
statements associate attributes such as data type and value with user
identifiers.

In the following example, the first DECLARE statement associates the
constant value 03060 and the STRING data type with a constant named
zip_code. The second DECLARE statement associates the STRING data type
with emp_name, the DOUBLE data type with with_tax, and the SINGLE
data type with int_rate. No constant values are associated with identifiers
in the second DECLARE statement because they are variable names.

DECLARE STRING CONSTANT zip code = "03060"
DECLARE STRING emp_ name, DOUBLE with_tax, SINGLE int_rate

With explicit data typing, each program variable within a program can
have a different range and precision. You can explicitly assign data types to
variables, constants, arrays, parameters, and functions; therefore, integer
data does not have to take the compilation default types. Explicit data
typing gives you more control over your program.

Using the REAL and INTEGER keywords to explicitly type program values
allows you to write programs that are transportable across systems, because
these data type keywords specify that all floating-point and integer data take
the current defaults for REAL and INTEGER. The data type INTEGER, for
example, specifies only that the constant or variable is an integer. The
actual subtype (BYTE, WORD, or LONG) depends on the default set with
the COMPILE or SET command, the DCL command BASIC, or with the
OPTION statement.

Program Elements and Structure 1-15

You can also specify a particular data type size for values declared INTEGER
or REAL with compilation qualifiers. The /DOUBLE qualifier, for instance,
specifies that all data typed REAL is to be treated as double-precision data.

The /TYPE_DEFAULT=EXPLICIT qualifier or OPTION TYPE=EXPLICIT
statement allows you to specify that all program data must be explicitly
typed. Compiling a program with /TYPE_DEFAULT= EXPLICIT or specify-
ing OPTION TYPE=EXPLICIT means that any program value not explicitly
declared causes VAX BASIC to signal an error.

For new applications, DIGITAL recommends using VAX BASIC’s ex-
plicit data typing features. See the VAX BASIC User Manual for more
information.

1.4 Variables

A variable is a named quantity whose value can change during program
execution. Each variable name refers to a location in the program’s storage
area. Each location can hold only one value at a time. Variables of all data
types can have subscripts that indicate their position in an array. You can
declare variables implicitly or explicitly.

Depending on the program operations specified, the value of a variable can
change from statement to statement. VAX BASIC uses the most recently
assigned value when performing calculations. This value remains in effect
until a new value is assigned to the variable.

VAX BASIC accepts the following general types of variables:
* Floating-point

* Integer

* String

¢ RFA

* Packed decimal
* Record

See the VAX BASIC User Manual for more information on RFA variables
and RECORD data structures.

1-16 Program Elements and Structure

|1.4.1 Variable Names

The name given to a variable depends on whether the variable is internal or
external to the program and whether the variable is implicitly or explicitly
declared.

All variable names must conform to the following rules:

e The name can have from 1 to 31 characters.
¢ The name has no embedded spaces.

e The first character of the name must be an upper- or lowercase alpha-
betic character (A through Z).

e The last character of the name can be either a dollar sign ($) to indicate
a string variable or a percent sign (%) to indicate an integer variable. If
the last character is neither a dollar sign nor a percent sign, the name
indicates a variable of the default type.

e The remaining characters, if present, can be any combination of upper-
or lowercase letters (A through Z), numbers (0 through 9), dollar signs
($), underscores (_), or periods (.). The use of underscores in variable
names helps improve readability and is preferred to the use of periods.

e The name of an external, explicitly declared variable in VAX BASIC
must follow the rules for naming any explicitly declared variable.

Note that a program cannot have external, implicitly declared variables
since all implicitly declared names except SUB subprogram names are
internal to the program.

1.4.2 Implicitly Declared Variables

VAX BASIC accepts three types of implicitly declared variables:

¢ Integer
e String
e Floating-point (or the default data type)

The name of an implicitly declared variable defines its data type. Integer
variables end with a percent sign (%), string variables end with a dollar
sign ($), and variables of the default type (usually floating-point) end with
any allowable character except a percent sign or dollar sign. All three types
of variables must conform to the rules listed in Section 1.4.1 for naming
variables. The current data type default INTEGER, REAL, or DECIMAL)

Program Elements and Structure 1-17

determines the data type of implicitly declared variables that do not end in
a percent sign or dollar sign.

A floating-point variable is a named location that stores a single floating-
point value. The current default size for floating-point numbers (SINGLE,
DOUBLE, GFLOAT or HFLOAT) determines the data type of the floating-

point variable. Table 1-3 lists valid floating-point variable names:

Table 1-3: Valid Floating-Point Variable Names

C L...5 ID_NUMBER
M1 BIG47 STORAGE_LOCATION_FOR_XX
F6TT_J Z2. STRESS_VALUE

If a numeric value of a different data type is assigned to a floating-point
variable, VAX BASIC converts the value to a floating-point number.

An integer variable is a named location that stores a single integer value.
The current default size for integers (BYTE, WORD, or LONG) determines
the data type of an integer variable. The following are valid integer variable

names:
ABCDEFG% C_8% RECORD_NUMBER%
B% D6E7% THE_VALUE_I_WANT%

If the default data type is INTEGER, the percent suffix (%) is not necessary.

If you assign a floating-point or decimal value to an integer variable, VAX
BASIC truncates the fractional portion of the value. It does not round to the
nearest integer. For example:

100 B% = -5.7
VAX BASIC assigns the value —5 to the integer variable, not —6.

A string variable is a named location that stores strings. The following are
valid string variable names:

C1$ M$ EMPLOYEE_NAME$
L_6$ F34G$ TARGET_RECORD$
ABC1$ T.$ STORAGE_SHELF_IDENTIFIER$

Strings have both value and length. VAX BASIC sets all string variables to
a default length of zero before program execution begins, with the exception
of those variables in a COMMON, MAP, virtual array, or record definition.
See the COMMON statement and the MAP statement in Chapter 4 of this
manual for information on string length in COMMON and MAP areas. See

1-18 Program Elements and Structure

the VAX BASIC User Manual for information on default string length in
virtual arrays.

During execution, the length of a character string associated with a string
variable can vary from zero (signifying a null or empty string) to 65535
characters.

1.4.3 Explicitly Declared Variables

VAX BASIC lets you explicitly assign a data type to a variable or an array.
For example:

DECLARE DOUBLE Interest_rate

Data type keywords are described in Section 1.1.3.1. For more information
on explicit declaration of variables, see the sections on the COMMON,
DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL, MAP, and SUB
statements in Chapter 4 of this manual. See also the VAX BASIC User
Manual.

1.4.4 Subscripted Variables and Arrays

A subscripted variable references part of an array. Arrays can be of any
valid data type. Subscripted variables and arrays follow the same naming
conventions as unsubscripted variables. Subscripts follow the variable name
in parentheses and define the variable’s position in the array. When you
create an array, you specify the maximum size of the array (the bounds) in
parentheses following the array name.

In Example 1-2, the DECLARE statement sets the bounds of the array
emp_name to 1000. Therefore, the maximum value for an emp_name
subscript is 1000. The bounds of the array define the maximum value for a
subscript of that array.

Program Elements and Structure 1-19

Example 1-2: Using the DECLARE Statement to Set Array Boundaries

DECLARE STRING emp name (1000)
FOR I% = 0% TO 1000%

INPUT "Employee name";emp_ name (I%)
NEXT I%

Subscripts can be any positive LONG integer value between 0 and
21474836417.

NOTE

By default, VAX BASIC signals an error if a subscript is bigger
than the allowable range. Note, however, that the amount of
storage the system can allocate depends on available memory.
Therefore, very large arrays may cause an internal allocation
error even though the subscript is still within the specified range.

An array is a set of data ordered in any number of dimensions. A one-
dimensional array, like emp_name(1000), is called a list or vector. A two-
dimensional array, like payroll_data(5,5), is called a matrix. An array of
more than two dimensions, like big_array(15,9,2), is called a tensor.

As a default, VAX BASIC arrays are always zero-based. The number of
elements in any dimension includes element number zero. For example,
the array emp_name contains 1001 elements, since VAX BASIC allocates
element zero. Payroll_data(5,5) contains 36 elements because VAX BASIC
allocates row and column zero.

Often, however, applications call for arrays that are not zero-based. In VAX
BASIC, you can define arrays that are not zero-based by specifying a lower
bound, as well as an upper bound, for the subscripts. In this way, you can
create an array with arbitrary starting and ending points. For example,
you might want to create array birth_rate that holds the annual birth rate
statistics for the years 1950 through 1985:

DECLARE birth_rate (1950 TO 1985)

Lower bounds are not allowed with virtual arrays or arrays used in MAT

statements. However, you can specify lower bounds for any or all dimen-

sions of a compile-time dimensioned array. If a multi-dimensional array is
declared with lower bounds specified for some dimensions and not others,

zero will be used for those dimensions without lower bounds.

You can use the UBOUND and LBOUND functions to determine the upper
and lower bounds of an array. For a description of these funtions, see
Chapter 4 of this manual.

1-20 Program Elements and Structure

For all arrays except virtual arrays, the total number of array elements
cannot exceed 2147483647. Note, however, that this is a theoretical value;
the actual maximum size of an array which you can declare depends on the
configuration of your system.

VAX BASIC arrays can have up to 32 dimensions. You can specify the type
of data the array contains with data type keywords. Table 1-2 lists VAX
BASIC data types.

An element in a one-dimensional array has a variable name followed by one
subscript in parentheses. There can be a space between the array name and
the subscripts. For example:

A(6%)

B (6%)

C$ (6%)

A(6%) refers to the seventh item in this list:
A(0%) A(1%) A(2%) A(3%) A(4%) A(5%) A(6%)

An element in a two-dimensional array has two subscripts, in parentheses,
following the variable name. The first subscript specifies the row number
and the second subscript specifies the column. Use a comma to separate
the subscripts. You can include a space between the array name and the
subscripts if you like. For example:

A (7%,2%) A% (4%, 6%) A$ (10%,10%)

In figure Figure 1-1, the arrow points to the element specified by the
subscripted variable A%(4%,6%):

Program Elements and Structure 1-21

Figure 1-1: Representation of the Subscript Variable A%(4%,6%)

COLUMNS

0123456

RO 0000000

O1 0000000

W2 0000000

S3 0000000
4 0000 0 0 0e— A%(4%,6%)

ZK-5549-GE

An element in an array has as many subscripts as there are dimensions.

Although a program can contain a variable and an array with the same
name, this is poor programming practice. Variable A and the array A(3%,3%)
are *separate* entities and are stored in completely separate locations, so it
is a good idea to give them different names.

Note that a program cannot contain two arrays with the same name but a
different number of subscripts. For example, the arrays A(3%) and A(3%,3%)
are invalid in the same program.

VAX BASIC arrays can be redimensioned at run time. See the VAX BASIC
User Manual for more information on arrays.

1.4.5 Initialization of Variables
VAX BASIC sets variables to zero or null values at the start of program
execution. Variables initialized by VAX BASIC include:

* Numeric variables and in-storage array elements (except those in MAP
or COMMON statements).

* String variables (except those in MAP or COMMON statements).

® Variables in subprograms. Subprogram variables are initialized to zero
or the null string each time the subprogram is called.

1-22 Program Elements and Structure

VAX BASIC does not initialize the following:

® Virtual arrays
e Variables in MAP and COMMON areas

1.5 Constants

A constant is a numeric or character literal that does not change during
program execution. A constant can also be named and associated with a
data type. VAX BASIC allows the following types of constants:

¢ Numeric:
— Floating-point
— Integer
— Packed decimal
e String (ASCII characters enclosed in quotation marks)

A constant of any of the above data types can be named with the DECLARE
CONSTANT statement. You can then refer to the constant by name in your
program. Refer to Section 1.5.3 for information on naming constants.

You can use the OPTION statement to declare a default data type for all
constants in your program. This statement allows you to specify a data type
for only the constants in your program; you can specify a different data type
for variables. You can also use a special numeric literal notation to specify
the value and data type of a numeric literal. Numeric literal notation is
discussed in Section 1.5.4.

If you do not specify a data type for a numeric constant with the DECLARE
CONSTANT statement or with numeric literal notation, the type and size of
the constant is determined by the default REAL, INTEGER, or DECIMAL
type set with the DCL command BASIC, the VAX BASIC SET or COMPILE
commands, or the OPTION statement.

To simplify the representation of certain ASCII characters and mathematical
values, VAX BASIC also supplies some predefined constants.

The following sections discuss numeric and string constants, named
constants, numeric literal notation, and predefined constants.

Program Elements and Structure 1-23

1.5.1 Numeric Constants

A numeric constant is a literal or named constant whose value never
changes. In VAX BASIC, a numeric constant can be a floating-point number
an integer, or a packed decimal number. The type and size of a numeric
constant is determined by

¢ The system default values

® The defaults set by the qualifiers for the DCL command BASIC
* The data type qualifiers specified with the COMPILE command
¢ The defaults set by the SET command

* The data type specified in a DECLARE CONSTANT or OPTION
statement

¢ Numeric literal notation
If you use a declarative statement to name and declare the data type of

a numeric constant, the constant is of the type and size specified in the
statement. For example:

DECLARE BYTE CONSTANT age = 12

This example associates the numeric literal 12 and the BYTE data type with
the identifier age. To specify a data type for an unnamed numeric constant,
you must use the numeric literal notation format described in Section 1.5.4.

1.5.1.1 Floating-Point Constants

A floating-point constant is a literal or named constant with one or more
decimal digits, either positive or negative, with an optional decimal point
and an optional exponent (E notation). If the default data type is integer,
VAX BASIC will treat the literal as an INTEGER unless it contains a
decimal point or the character E. If the default data type is DECIMAL, an E
is required or VAX BASIC treats the literal as a packed decimal value.

Table 14 contains examples of floating-point literals with REAL, INTEGER,
and DECIMAL default data types.

1-24 Program Elements and Structure

Table 1—4: Specifying Floating-Point Constants

REAL INTEGER DECIMAL
—8.738 —8.738 —-8.738
239.21E-6 239.21E-6 239.21E-6
79 .79 .T9E

299 299E 299E

Very large and very small numbers can be represented in E (exponential) no-
tation. If a positive number appears in E notation, it can be preceded by an
optional plus sign (+). A negative number in E notation must be preceded
by a minus sign (). A number can be carried to a maximum of 6 decimal
places for SINGLE precision, 16 decimal places for DOUBLE precision, 15
decimal places for GFLOAT precision, and 33 places for HFLOAT precision.

To indicate E notation, a number must be followed by the letter E. It also
must be followed by an exponent sign and an exponent. The exponent sign
indicates if the exponent is either positive or negative and is optional only if
you are specifying a positive exponent. The exponent is an integer constant
(the power of 10).

Table 1-5 compares numbers in standard and E notation.

Table 1-5: Numbers in E Notation

Standard Notation E Notation

.0000001 .1E-06
1,000,000 1E+07
-10,000,000 -1E+08
100,000,000 1E+09
1,000,000,000,000 J1E+13

The range and precision of floating-point constants are determined by the
current default data types or the explicit data type used in the DECLARE
CONSTANT statement. However, there are limits to the range allowed for
numeric data types. Table 1-2 lists VAX BASIC data types and ranges. VAX
BASIC signals the fatal error “Floating point error or overflow” (ERR=48)
when your program attempts to specify a constant value outside of the
allowable range for a floating-point data type.

Program Elements and Structure 1-25

1.5.1.2 Integer Constants

An integer constant is a literal or named constant, either positive or nega-
tive, with no fractional digits and an optional trailing percent sign (%). The
percent sign is required for integer literals only if the default type is not
INTEGER.

In Table 1-6, the values are all integer constants. The presence of the
percent sign varies depending on the default data type.

Table 1-6: Specifying Integer Constants

REAL or
INTEGER DECIMAL
81257 81257%
-34717 —3477%
79 79%

The range of allowable values for integer constants is determined by either
the current default data type or the explicit data type used in the DECLARE
CONSTANT statement. Table 1-2 lists VAX BASIC data types and ranges.
VAX BASIC signals an error for a number outside the applicable range.

If you want VAX BASIC to treat numeric literals as integer numbers, you
must do one of the following:

* Set the default data type to INTEGER
* Make sure the literal has a percent sign suffix
¢ Use explicit literal notation

The VAX BASIC compiler must convert numeric literals when assigning
them to integer variables. This means that your program runs somewhat
slower than it would if integer values were explicitly declared. You can
prevent this conversion step by using one of the following:

* Percent signs for integer constants
* Numeric literal notation
¢ Named integer constants

NOTE

You cannot use percent signs in integer constants that appear
in DATA statements. An attempt to do so causes VAX BASIC to
signal “Data format error” (ERR=50).

1-26 Program Elements and Structure

1.5.1.3 Packed Decimal Constants

A packed decimal constant is a number, either positive or negative, that has
a specified number of digits and a specified decimal point position (scale).
You specify the number of digits (d) and the position of the decimal point
(s) when you declare the constant as a DECIMAL(d,s). If the constant is not
declared, the number of digits and the position of the decimal is determined
by the representation of the constant.

For example, when the default data type is DECIMAL, 1.234 is a
DECIMAL(4,3) constant, regardless of the default decimal size. Likewise,
using numeric literal notation, "1.234"P is a DECIMAL(4,3) constant, re-
gardless of the default data type and default DECIMAL size. Numeric literal
notation is described in Section 1.5.4.

1.5.2 String Constants

String constants are either string literals or named constants. A string
literal is a series of characters enclosed in string delimiters. Valid string
delimiters are:

¢ Double quotation marks ("text")
¢ Single quotation marks (’ text’)

You can embed double quotation marks within single quotation marks (’ this
is a "text" string’) and vice versa ("this is a ' text’ string"). Note, however,
that VAX BASIC does not accept incorrectly paired quotation marks and
that only the outer quotation marks must be paired. For example, the
following character strings are valid:

"The record number does not exist.”

"I'm here!"

"The terminating ’condition’ is equal to AS$."
"REPORT 543"

However, the following strings are not valid:

"Quotation marks that do not match’
"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, 8-bit
data characters, or the NUL character (ASCII code 0). If you need a string
constant that contains a NUL, you should use the NUL predefined constant.
See Section 1.5.4 in this manual for information on explicit literal notation.

Program Elements and Structure 1-27

The VAX BASIC compiler determines the value of the string constant by
scanning all its characters. For example, because of the number of spaces
between the delimiters and the characters, these two string constants are
not the same:

" END-OF-FILE REACHED "
"END-OF-FILE REACHED"

VAX BASIC stores every character between delimiters exactly as you type it
into the source program, including:

¢ Lowercase letters (a—z)

¢ Leading, trailing, and embedded spaces
e Tabs

* Special characters

The delimiting quotation marks are not printed when the program is
executing. The value of the string constant does not include the delimiting
quotation marks. For example:

PRINT "END-OF-FILE REACHED"

END
Output
END-OF-FILE REACHED

VAX BASIC does, however, print double or single quotation marks when
they are enclosed in a second paired set. For example:

PRINT ’'FAILURE CONDITION: "RECORD LENGTH"'
END

Output

FAILURE CONDITION: "RECORD LENGTH"

1-28 Program Elements and Structure

1.5.3 Named Constants

VAX BASIC allows you to name constants. You can assign a name to a
constant that is either internal or external to your program and refer to the
constant by name throughout the program. This naming feature is useful
for the following reasons:

e If a commonly used constant must be changed, you need to make only
one change in your program.

e Alogically named constant makes your program easier to understand.

You can use named constants anywhere you can use a constant, for example,
to specify the number of elements in an array.

You cannot change the value of an explicitly named constant during pro-
gram execution. To change the value of a constant, you must change the
program statement that names the constant and declares its value, and then
recompile the program.

1.5.3.1 Naming Constants Within a Program Unit

You name constants within a program unit with the DECLARE statement,
as is shown in Example 1-3.

Example 1-3: Naming Constants Within a Program Unit

DECLARE DOUBLE CONSTANT preferred rate = .147
DECLARE SINGLE CONSTANT normal_rate = .162
DECLARE DOUBLE CONSTANT risky rate = .175

new_bal = old_bal * (1 + preferred_rate) “years_payment

When interest rates change, only three lines have to be changed rather than
every line that contains an interest rate constant.

Constant names must conform to the rules for naming internal, explicitly
declared variables listed in Section 1.4.1. Note that constant names cannot
have embedded spaces.

The value associated with a named constant can be a compile-time expres-
sion as well as a literal value, as shown in Example 1-4.

Program Elements and Structure 1-29

Example 1-4: Associating Values with Named Constants

DECLARE STRING CONSTANT Congrats = &
ettt LT, +" + LF + CR + &
"| Congratulations! [" + CR + CR + &
ll+ ____________________ +ll

PRINT Congrats

PRINT Congrats

Named constants can save you programming time because you do not have
to retype the value every time you want to display it. Named constants can
save you execution time because the named constant is known at compilation
time.

Valid operators in DECLARE CONSTANT expressions include all valid
arithmetic, relational, and logical operators except exponentiation. You
cannot use built-in functions in DECLARE CONSTANT expressions.

VAX BASIC allows constants of all data types except RFA to be named as
expressions. Because you cannot declare a constant of the RFA data type
you cannot name one as an expression. Example 1-5 illustrates the concept
of naming constants as expressions:

Example 1-5: Naming Constants as Expressions

DECLARE DOUBLE CONSTANT &
min_value = 0, &
max_value = PI/2

You can specify only one data type in a DECLARE CONSTANT state-
ment. To declare a constant of a different data type, you must use a second
DECLARE CONSTANT statement.

1-30 Program Elements and Structure

1.5.3.2 Naming Constants External to a Program Unit

To declare constants outside the program unit, use the EXTERNAL state-
ment, as shown in Example 1-6.

Example 1-6: Declaring Constants Outside the Program Unit

EXTERNAL LONG CONSTANT SS$_ NORMAL
EXTERNAL WORD CONSTANT IS_SUCCESS

The first line declares the VMS status code SS$_NORMAL to be an external
LONG constant. The second line declares IS_SUCCESS, a success code, to
be an external WORD constant. Note that VAX BASIC allows only external
BYTE, WORD, LONG, and SINGLE constants. The VMS Linker supplies
the values for the constants specified in EXTERNAL statements.

External constant names cannot exceed 31 characters and must conform to
the rules for naming external variables listed in Section 1.4.1. No external
constant name can have embedded spaces. In VAX BASIC, the named
constant might be a system status code or a global constant declared in a
VAX MACRO or VAX BLISS program.

1.5.4 Explicit Literal Notation

You can specify the value and data type of numeric literals by using a special
notation called explicit literal notation. The format of this notation is as
follows:

[radix] "num-striit* [data-type]

Radix specifies an optional base, which can be any of the following:

D Decimal (base 10)

B Binary (base 2)

(0] Octal (base 8)

X Hexadecimal (base 16)
A ASCII

The VAX BASIC default radix is decimal. Binary, octal, and hexadecimal
notation allow you to set or clear individual bits in the representation of
an integer. This feature is useful in forming conditional expressions and in
using logical operations. The ASCII radix causes VAX BASIC to translate a
single ASCII character to its decimal equivalent. This decimal equivalent is

Program Elements and Structure 1-31

an INTEGER value; you specify whether the INTEGER subtype should be
BYTE, WORD, or LONG.

Num-str-lit is a numeric string literal. It can be the digits 0 and 1 when the
radix is binary, the digits 0 through 7 when the radix is octal, the digits 0
through F when the radix is hexadecimal, and the digits 0 through 9 when
the radix is decimal. When the radix is ASCII, num-str-lit can be any valid
ASCII character.

Data-type is an optional single letter that corresponds to a data type
keyword, excluding INTEGER and REAL:

BYTE

WORD

LONG

SINGLE

DOUBLE

GFLOAT

HFLOAT

DECIMAL

CHARACTER

Note that data-type for the ASCII radix is limited to BYTE, WORD, or
LONG. For example:

D"255"L Specifies a LONG decimal constant with a value of 255
"4000"F Specifies a SINGLE decimal constant with a value of 4000
-"125"B Specifies a BYTE decimal constant with a value of =125
A"M"L Specifies a LONG integer constant with a value of 77

A"m"B Specifies a BYTE integer constant with a value of 109

OV ImQUEr g W

A quoted numeric string alone, without a radix and a data type, is a string
literal, not a numeric literal. For example:

"255"W Specifies a WORD decimal constant with a value of 255
n255" Is a string literal

If you specify a binary, octal, or hexadecimal radix, data-type must be an
integer. If you do not specify a data type, VAX BASIC uses the default
integer data type. For example:

B"11111111"B Specifies a BYTE binary constant with a value of -1
Br11111111"W Specifies a WORD binary constant with a value of 255

1-32 Program Elements and Structure

Bri11iiiil- Specifies a binary constant of the default data type (BYTE,
WORD, or LONG)

Br11111111"F Is illegal because F is not an integer data type

X"FF"B Specifies a BYTE hexadecimal constant with a value of -1
X"FF"W Specifies a WORD hexadecimal constant with a value of 255
X"FF"D Is illegal because D is not an integer data type

O 377"B Specifies a BYTE octal constant with a value of —1
0"377"W Specifies a WORD octal constant with a value of 255
0"377"G Is illegal because G is not an integer data type

When you specify a radix other than decimal, overflow checking is performed
as if the numeric string were an unsigned integer. However, when this value
is assigned to a variable or used in an expression, the VAX BASIC compiler
treats it as a signed integer.

In the following example, VAX BASIC sets all 8 bits in storage location A.
Because A is a BYTE integer, it has only 8 bits of storage. Because the 8-bit
two’s complement of 1 is 11111111, its value is —1. If the data type were W
(WORD), VAX BASIC would set the bits to 0000000011111111, and its value
would be 255.

DECLARE BYTE A
A = B"11111111"B
PRINT A
Output

-1

NOTE

In VAX BASIC, a D can appear in both the radix position and
the data type position. D in the radix position specifies that the
numeric string is to be treated as a decimal number (base 10). D
in the data type position specifies that the value is to be treated
as a double-precision, floating-point constant. P in the data type
position specifies a packed decimal constant. For example:

"255"D Specifies a double-precision constant with a value of 255
"255.55"P Specifies a DECIMAL constant with a value of 255.55

You can use explicit literal notation to represent a single-character string in
terms of its 8-bit ASCII value. For example:

[radix] num-str-lit C

Program Elements and Structure 1-33

The letter C is an abbreviation for CHARACTER. The value of the numeric
string must be from 0 through 255. This feature lets you create your own
compile-time string constants containing nonprinting characters.

The following example declares a string constant named control_g (ASCII
decimal value 7). When VAX BASIC executes the PRINT statement, the
terminal bell sounds.

DECLARE STRING CONSTANT control g = "7"C
PRINT control g

1.5.5 Predefined Constants

Predefined constants are symbolic representations of either ASCII characters
or mathematical values. They are also called compile-time constants because
their value is known at compilation rather than at run time.

Predefined constants help you
¢ Format program output to improve readability

* Make source code easier to understand

Table 1-7 lists the predefined constants supplied by VAX BASIC, their
ASCII values, and their functions.

Table 1-7: Predefined Constants

Decimal

Constant ASCII Value Function

BEL (Bell) 7 Sounds the terminal bell

BS (Backspace) 8 Moves the cursor one position to the
left

HT (Horizontal Tab) 9 Moves the cursor to the next horizon-
tal tab stop

LF (Line Feed) 10 Moves the cursor to the next line

VT (Vertical Tab) 11 Moves the cursor to the next vertical
tab stop

FF (Form Feed) 12 Moves the cursor to the start of the
next page

(continued on next page)

1-34 Program Elements and Structure

Table 1-7 (Cont.): Predefined Constants

Decimal

Constant ASCII Value Function

CR (Carriage Return) 13 Moves the cursor to the beginning of
the current line

SO (Shift Out) 14 Shifts out for communications net-
working, screen formatting, and
alternate graphics

SI (Shift In) 15 Shifts in for communications network-
ing, screen formatting, and alternate
graphics

ESC (Escape) 27 Marks the beginning of an escape
sequence

SP (Space) 32 Inserts one blank space in program
output

DEL (Delete) 127 Deletes the last character entered

PI None Represents the number PI with the
precision of the default floating-point
data type

You can use predefined constants in many ways. For instance, the following
example shows how to print and underline a word on a hard copy terminal.

PRINT "NAME:" + BS + BS + BS + BS + BS + " "
END

Output

NAME :

The following example shows how to print and underline a word on a VT100
video display terminal.

PRINT ESC + "[4mNAME:" + ESC + "[Om"
END

Output

NAME :

Note that the “m” in the above example must be lowercase.

You can also create your own predefined constants with the DECLARE
CONSTANT statement.

Program Elements and Structure 1-35

In the following example, the first DECLARE statement defines underlined_
name as a string constant. The second DECLARE statement defines D_PI
as a DOUBLE constant equal to the predefined constant PI. If the default
REAL data size is SINGLE, the program can use both single-precision PI
and double-precision D_PI.

DECLARE STRING CONSTANT underlined name = ESC + "[4mNAME:" + ESC + "[Om"
DECLARE DOUBLE CONSTANT D PI = PI

PRINT underlined_name

PRINT D_PI,,PI

1.6 Expressions

VAX BASIC expressions consist of operands (numbers, strings, constants,
variables, functions, and array elements) separated by arithmetic, string,
relational, and logical operators.

Almost all VAX BASIC expressions yield numeric values. The only
exceptions are string concatenation expressions and invocations of string-
valued functions. By using different combinations of numeric operators and
operands, and by using the resulting values, you can produce

¢ Numeric expressions

* String expressions

¢ Conditional expressions

VAX BASIC evaluates expressions according to operator precedence and

uses the results in program execution. Parentheses can be used to group
operands and operators, thus controlling the order of evaluation.

The following sections explain the types of expressions you can create and
the way VAX BASIC evaluates expressions.

1.6.1 Numeric Expressions

1-36

Numeric expressions consist of floating-point, integer, or packed decimal
operands separated by arithmetic operators and optionally grouped by
parentheses. Table 1-8 shows how numeric operators work in numeric
expressions.

Program Elements and Structure

Table 1-8: Arithmetic Operators

Operator Example Use

+ A+B AddBto A

- A-B Subtract B from A

* A*B Multiply A by B

/ A/B Divide A by B

A A"B Raise A to the power B
wk A**B Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the same
expression. Exceptions are the unary plus and unary minus. The following
expressions are valid.

A * + B
A * - B
A * (-B)

A*+-+-B
The following expression is not valid:
A-*B

An operation on two numeric operands of the same data type yields a result
of that type. For example:

A% + B% Yields an integer value of the default type
G3 * M5 Yields a floating-point value if the default type is REAL

If the result of the operation exceeds the range of the data type, VAX BASIC
signals an overflow error message.

The following example causes VAX BASIC to signal the error “Integer error
or overflow” because the sum of A and B (254) exceeds the range of —128

to +127 for BYTE integers. Similar overflow errors occur for REAL and
DECIMAL data types whenever the result of a numeric operation is outside
the range of the corresponding data type.

DECLARE BYTE A, B
A = 127

B = 127

PRINT A + B

END

Program Elements and Structure 1-37

It is possible to assign a value of one data type to a variable of a different
data type. When this occurs, the data type of the variable overrides the
data type of the assigned value. The following example assigns the value
32 to the integer variable A% even though the floating-point value of the
expression is 32.13.

A% = 5.1 * 6.3

1.6.1.1 Floating-Point and integer Promotion Rules

When an expression contains operands with different data types, the data
type of the result is determined by VAX BASIC’s data type promotion rules:

e With one exception, VAX BASIC promotes operands with different data
types to the lowest common data type that can hold the largest or most
precise possible value of either operand’s data type. VAX BASIC then
performs the operation using that data type, and yields a result of that
data type.

¢ The exception is that when an operation involves SINGLE and LONG
data types, VAX BASIC promotes the LONG data type to SINGLE
rather than DOUBLE, performs the operation, and yields a result of the
SINGLE data type.

Note that VAX BASIC does sign extension when converting BYTE and
WORD integers to a higher INTEGER data type (WORD or LONG). The
high order bit (the sign bit) determines how the additional bits are set when
the BYTE or WORD is converted to WORD or LONG. If the high order bit
is zero (positive), all higher-order bits in the converted BYTE or WORD are
set to zero. If the high order bit is 1 (negative), all higher-order bits in the
converted BYTE or WORD are set to 1.

Table 1-9 lists the data type results possible in numeric expressions that
combine BYTE, WORD, LONG, SINGLE, and DOUBLE data. Table 1-10
lists the data type results possible in numeric expressions that combine the
data types GFLOAT and HFLOAT. When the operands are DOUBLE and
GFLOAT, VAX BASIC promotes both values to HFLOAT, and returns an
HFLOAT value. The promotion of DOUBLE and GFLOAT to HFLOAT is
necessary because a DOUBLE value is more precise than a GFLOAT value,
but cannot contain the largest possible GFLOAT value. Consequently, VAX
BASIC promotes these data types to a data type that can hold the largest
and most precise value of either operand.

1-38 Program Elements and Structure

Table 1-9: Result Data Types in VAX BASIC Expressions

BYTE WORD LONG SINGLE DOUBLE

BYTE BYTE WORD LONG SINGLE DOUBLE
WORD WORD WORD LONG SINGLE DOUBLE
LONG LONG LONG LONG SINGLE DOUBLE
SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

For example, if one operand is SINGLE and one operand is DOUBLE, VAX
BASIC promotes the SINGLE value to DOUBLE, performs the specified
operation, and returns the result as a DOUBLE value. This promotion

is necessary because the SINGLE data type has less precision than the
DOUBLE value, whereas the DOUBLE data type can represent all possible
SINGLE values. If VAX BASIC did not promote the SINGLE value and the
operation yielded a result outside of the SINGLE range, loss of precision and
significance would occur.

The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a simple
hierarchy: if all operands in an expression are of these data types, the result
of the expression is the highest data type used in the expression.

Table 1-10: VAX BASIC Result Data Types

GFLOAT HFLOAT

BYTE GFLOAT HFLOAT
WORD GFLOAT HFLOAT
LONG GFLOAT HFLOAT
SINGLE GFLOAT HFLOAT

DOUBLE HFLOAT HFLOAT
GFLOAT GFLOAT HFLOAT
HFLOAT HFLOAT HFLOAT

1.6.1.2 DECIMAL Promotion Rules

VAX BASIC allows the DECIMAL(d,s) data type. The number of digits (d)

and the scale or position of the decimal point (s) in the result of DECIMAL
operations depends on the data type of the other operand. If one operand is
DECIMAL and the other is DECIMAL or INTEGER, the d and s values of

the result are determined as follows.

Program Elements and Structure 1-39

* If both operands are typed DECIMAL, and if both operands have the
same digit (d) and scale (s) values, no conversions occur and the result
of the operation has exactly the same d and s values as the operands.
Note, however, that overflow can occur if the result exceeds the range

specified by the d value.

* If both operands are DECIMAL but have different digit and scale values,
VAX BASIC uses the larger number of specified digits for the result.

In the following example, variable A allows three digits to the left of the
decimal point and two digits to the right. Variable B allows one digit to
the left of the decimal point and three digits to the right.

DECLARE DECIMAL(5,2) A
DECLARE DECIMAL(4,3) B

The result allows three digits to the left of the decimal point and three

digits to the right.

* If one operand is DECIMAL and one is INTEGER, the INTEGER value
is converted to a DECIMAL(d,s) data type as follows:

= BYTE is converted to DECIMAL(3,0).
— WORD is converted to DECIMAL(5,0).
— LONG is converted to DECIMAL(10,0).

VAX BASIC then determines the d and s values of the result by evaluat-
ing the d and s values of the operands as described above.

Note that only INTEGER data types are converted to the DECIMAL data
type. If one operand is DECIMAL and one is floating-point, the DECIMAL
value is converted to a floating-point value. The total number of digits (d) in
the DECIMAL value determines its new data type, as shown in Table 1-11.

Table 1-11: Result Data Types for DECIMAL Data

Number of

DECIMAL . .

Digits Floating-Point Operands

in Operand SINGLE DOUBLE GFLOAT HFLOAT
1-6 SINGLE DOUBLE GFLOAT HFLOAT
7-15 DOUBLE DOUBLE GFLOAT HFLOAT

1-40 Program Elements and Structure

(continued on next page)

Table 1-11 (Cont.): Resuit Data Types for DECIMAL Data

Number of

DECIMAL . .

Digits Floating-Point Operands

in Operand SINGLE DOUBLE GFLOAT HFLOAT
16 DOUBLE DOUBLE HFLOAT HFLOAT
17-31 HFLOAT HFLOAT HFLOAT HFLOAT

If the value of d is between 7 and 15, the operand is converted to:

e DOUBLE if the floating-point operand is SINGLE or DOUBLE
e GFLOAT if the floating-point operand is GFLOAT
e HFLOAT if the floating-point operand is HFLOAT

Thus, a DECIMAL(8,5) operand is converted to DOUBLE if the other
operand is SINGLE or DOUBLE, to GFLOAT if the other operand is
GFLOAT, and to HFLOAT if the other operand is HFLOAT. Note also
that exponentiation of a DECIMAL data type returns a REAL value.

See the VAX BASIC User Manual for tutorial information on data type
interactions, conversions, and promotion rules in VAX BASIC numeric
expressions.

1.6.2 String Expressions

String expressions are string entities separated by the plus sign (+). When
used in a string expression, the plus sign concatenates strings. For example:

INPUT "Type two words to be combined";A$, B$
C$ = A$ + BS

PRINT C$

END

Output

Type two words to be combined? long
? word

longword
Ready

Program Elements and Structure 1-41

1.6.3 Conditional Expressions

Conditional expressions can be either relational or logical expressions.
Numeric relational expressions compare numeric operands to determine
whether the expression is true or false. String relational expressions
compare string operands to determine which string expression occurs first in
the ASCII collating sequence.

Logical expressions contain integer operands and logical operators. VAX
BASIC determines whether the specified logical expression is true or false
by testing the numeric result of the expression. Note that in conditional
expressions, as in any numeric expression, when BYTE and WORD operands
are converted to WORD and LONG, the specified operation is performed in
the higher data type, and the result returned is also of the higher data type.
When one of the operands is a negative value, this conversion will produce
accurate but perhaps confusing results, because VAX BASIC performs a sign
extension when converting BYTE and WORD integers to a higher integer
data type. See Section 1.6.1.1 for information on integer conversion rules.

1.6.3.1 Numeric Relational Expressions

Operators in numeric relational expressions compare the values of two
operands and returns either a —1 if the relation is true (as shown in Example
1), or a zero if the relation is false (as shown in Example 2). The data type
of the result is the default integer type.

Example 1

A =10

B 15

X% = (A <> B)

IF X% = -1%

THEN PRINT ’'Relationship is true’

ELSE IF X% = 0
THEN PRINT ’‘Relationship is false’
END IF

END IF

Output

Relationship is true

1-42 Program Elements and Structure

IF X% = -1%

THEN PRINT ’'Relationship is true’

ELSE IF X% = 0
THEN PRINT ‘Relationship is false’
END IF

END IF

Output
Relationship is false

Table 1-12 shows how numeric operators work in numeric relational
expressions.

Table 1-12: Numeric Relational Operators

Operator Example Meaning

= A=B A is equal to B.

< A<B A is less than B.

> A>B A is greater than B.

<= or =< A<=B A is less than or equal to B.

>= or => A>=B A is greater than or equal to B.

<> or >< A<>B A is not equal to B.

== A== A and B will PRINT the same if they are equal to

six significant digits. However, if one value prints
in explicit notation and the other value prints in E
format notation, the relation will always be false.

1.6.3.2 String Relational Expressions

Operators in string relational expressions determine how VAX BASIC
compares strings. The VAX BASIC compiler determines the value of each
character in the string by converting it to its ASCII value. ASCII values
are listed in Appendix C in this manual. VAX BASIC compares the strings
character by character, left to right, until it finds a difference in ASCII
value.

In the following example, VAX BASIC compares A$ and B$ character by
character. The strings are identical up to the third character. Because the
ASCII value of Z (90) is greater than the ASCII value of C (67), A$ is less

Program Elements and Structure 1-43

than B$. VAX BASIC evaluates the expression A$ < B$ as true (-1) and
prints “ABC comes before ABZ”.

A$ = 'ABC’
BS = 'ABZ’
IF A$ < B$

THEN PRINT ‘ABC comes before ABZ’
ELSE IF A$ == B$
THEN PRINT ’‘The strings are identical’
ELSE IF A$ > B$
THEN PRINT ‘ABC comes after ABZ'
ELSE PRINT ‘Strings are equal but not identical’
END IF
END IF
END IF
END

If two strings of differing lengths are identical up to the last character in the
shorter string, VAX BASIC pads the shorter string with spaces (ASCII value
32) to generate strings of equal length, unless the operator is the double
equal sign (==). If the operator is the double equal sign, VAX BASIC does
not pad the shorter string.

In the following example, VAX BASIC compares “ABCDE” to “ABC ” to
determine which string comes first in the collating sequence. “ABC ” comes
before “ABCDE” because the ASCII value for space (32) is lower than the
ASCII value of D (68). Then VAX BASIC compares “ABC ” with “ABC”
using the double equal sign and determines that the strings do not match
exactly without padding. The third comparison uses the single equal sign.
VAX BASIC pads “ABC” with spaces and determines that the two strings

match with padding.
A$ = 'ABCDE’
B$ = ’ABC’

PRINT ’'B$ comes before A$’ IF B$ < AS

PRINT ’A$ comes before BS$’ IF A$ < BS

C$ = ’'ABC '

IF B$ == C$
THEN PRINT ’‘B$ exactly matches CS$’
ELSE PRINT ’'B$ does not exactly match C$’

END IF

IF B$ = C$
THEN PRINT ’B$ matches C$ with padding’
ELSE PRINT ’'B$ does not match C$’

END IF

Output
B$ comes before AS

B$ does not exactly match C$
B$ matches C$ with padding

1-44 Program Elements and Structure

Table 1-13 shows how numeric operators work in string relational
expressions.

Table 1-13: String Relational Operators

Operator Example Meaning

= A$ = B$ Strings A$ and B$ are identical after the shorter
string has been padded with spaces to equal the
length of the longer string.

< A$ < B$ String A$ occurs before string B$ in ASCII sequence.

> A$ > B$ String A$ occurs after string B$ in ASCII sequence.

<= or =< A$ <= B$ String A$ is identical to or precedes string B$ in
ASCII sequence.

>= or => A$ >= B$ String A$ is identical to or follows string B$ in ASCII
sequence.

<> Or >< A$ <> B$ String A$ is not identical to string B$.

A$ == B$ Strings A$ and B$ are identical in composition and
length, without padding.

VAX BASIC treats unquoted strings typed in response to the INPUT
statement differently from quoted strings; it does so by ignoring leading
and trailing spaces and tabs. For example, it evaluates the quoted strings
“ABC” and “ABC ” as equal but not identical because the == operator
does not pad the shorter string with spaces. When you input those same
strings as unquoted strings in response to the INPUT prompt, VAX BASIC
evaluates them as equal and identical because it ignores the trailing spaces.
The LINPUT statement, on the other hand, treats unquoted strings as
string literals, so the trailing spaces are part of the string, and VAX BASIC
evaluates the strings as equal, but not identical.

1.6.3.3 Logical Expressions
A logical expression can have one of the following formats:
¢ A unary logical operator and one integer operand
¢ Two integer operands separated by a binary logical operator
¢ One integer operand

Program Elements and Structure 1-45

Logical expressions are valid only when the operands are integers. If

the expression contains two integer operands of differing data types, the
resulting integer has the same data type as the higher integer operand. For
instance, the result of an expression that contains a BYTE integer and a
WORD integer would be a WORD integer. Table 1-9 shows how integer data
types interact with each other in expressions.

VAX BASIC determines whether the condition is true or false by testing
the result of the logical expression to see whether any bits are set. If

no bits are set, the value of the expression is zero and it is evaluated as
false; if any bits are set, the value of the expression is nonzero, and the
expression is evaluated as true. VAX BASIC generally accepts any nonzero
value in logical expressions as true. However, logical operators can return
unanticipated results unless —1 is specified for true values and zero for false.
Table 1-14 lists the logical operators.

NOTE

DIGITAL recommends that you use logical operators on the
results of relational expressions to avoid obtaining unanticipated
results.

Table 1-14: Logical Operators

Operator Example Meaning

NOT NOT A% The bit-by-bit complement of A%. If A% is true (-1),
NOT A% is false (0).

AND A% AND B% The logical product of A% and B%. A% AND B% is
true only if both A% and B% are true.

OR A% OR B% The logical sum of A% and B%. A% OR B% is false
only if both A% and B% are false; otherwise, A% OR
B% is true.

XOR A% XOR B% The logical exclusive OR of A% and B%. A% XOR
B% is true if either A% or B% is true but not if both
are true.

(continued on next page)

1-46 Program Elements and Structure

Table 1-14 (Cont.): Logical Operators

Operator Example Meaning

EQV A% EQV B% The logical equivalence of A% and B%. A% EQV B%
is true if A% and B% are both true or both false;
otherwise the value is false.

IMP A% IMP B% The logical implication of A% and B%. A% IMP B%

is false only if A% is true and B% is false; otherwise,
the value is true.

The truth tables in Figure 1-2 summarize the results of these logical
operations. Zero is false; —1 is true.

Program Elements and Structure 1-47

Figure 1-2: Truth Tables

A% NOT A% | A% B% A%OR B%
0 -1 0 o0 0
-1 0 0 -1 -1

-1 0 -1

-1 -1 -1

A% B% A% AND B%| A% B% A% EQV B%

0 0 0 0 o -1
0 -1 0 0 -1 0
-1 0 0 1 0 0
1 -1 1 - -1

A% B% A% XOR B%| A% B% A% IMP B%

0 0 0 0 0 -1

0 -1 -1 0 -1 -1

-1 0 -1 -1 0 0

-1 -1 0 -1 -1 -1
ZK-5548-GE

The operators XOR and EQV are logical complements.

In the following example, the values of A% and B% both test as true because
they are nonzero values. However, the logical AND of these two variables
returns an unanticipated result of false.

A% = 2%

B% = 4%

IF A% THEN PRINT ‘A% IS TRUE’

IF B% THEN PRINT ’‘B% IS TRUE’

IF A% AND B% THEN PRINT 'A% AND B% IS TRUE’
ELSE PRINT ‘A% AND B% IS FALSE'

END

1-48 Program Elements and Structure

Output

A% IS TRUE
B% IS TRUE
A% AND B% IS FALSE

The program returns this seemingly contradictory result because logical

operators work on the individual bits of the operands. The 8-bit binary
representation of 2% is as follows:

00 0 0 0 0 1 0
The 8-bit binary representation of 4% is as follows:
000 0 0 1 0 0

Each value tests as true because it is nonzero. However, the AND operation
on these two values sets a bit in the result only if the corresponding bit is
set in both operands. Therefore, the result of the AND operation on 4% and
2% is as follows:

00 0 0 0 0 0 O
No bits are set in the result, so the value tests as false (zero).

If the value of B% is changed to 6%, the resulting value tests as true
(nonzero) because both 6% and 2% have the second bit set. Therefore, VAX
BASIC sets the second bit in the result and the value tests as nonzero and
true.

The 8-bit binary representation of —1 is as follows:
11 1 1 1 1 1 1

The result of -1% AND —1% is —1% because VAX BASIC sets bits in the
result for each corresponding bit that is set in the operands. The result tests
as true because it is a nonzero value, as shown in the following example:

AS = -1%

B% = -1% v

IF A% THEN PRINT ‘A% IS TRUE’

IF B% THEN PRINT ’'B% IS TRUE’

IF A% AND B% THEN PRINT ‘A% AND B% IS TRUE’

ELSE PRINT ‘A% AND B% IS FALSE’
END

Output

A% IS TRUE

B% IS TRUE

A% AND B% IS TRUE

Your program may also return unanticipated results if you use the NOT
operator with a nonzero operand that is not —1.

Program Elements and Structure 1-49

In the following example, VAX BASIC evaluates both A% and B% as true
because they are nonzero. NOT A% is evaluated as false (zero) because the
binary complement of —1 is zero. NOT B% is evaluated as true because the
binary complement of 2 has bits set and is therefore a nonzero value.

A%=-1%
B%=2
IF A% THEN PRINT 'A% IS TRUE’
ELSE PRINT 'A% IS FALSE’
IF B% THEN PRINT ’'B% IS TRUE’
ELSE PRINT ’'B% IS FALSE’
IF NOT A% THEN PRINT ’'NOT A% IS TRUE’
ELSE PRINT ’'NOT A% IS FALSE’
IF NOT B% THEN PRINT ’NOT B% IS TRUE’
ELSE PRINT ’'NOT B% IS FALSE’
END

Output

A% IS TRUE
B% IS TRUE
NOT A% IS FALSE
NOT B% IS TRUE

1.6.4 Evaluating Expressions

VAX BASIC evaluates expressions according to operator precedence. Each
arithmetic, relational, and string operator in an expression has a position
in the hierarchy of operators. The operator’s position informs VAX BASIC
of the order in which to perform the operation. Parentheses can change the
order of precedence.

Table 1-15 lists all operators as VAX BASIC evaluates them. Note that

* Operators with equal precedence are evaluated logically from left to
right. :
* VAX BASIC evaluates expressions enclosed in parentheses first, even

when the operator in parentheses has a lower precedence than that
outside the parentheses.

* The addition (+) and multiplication (*) operators are evaluated in
algebraic order.

1-50 Program Elements and Structure

Table 1-15: Numeric Operator Precedence

Operator Precedence

% gp A

— (unary minus) or + (unary plus)
*or/

+or—

+ (concatenation)

all relational operators

NOT

AND

OR, XOR

IMP

EQV

© 0 3 O O W N

—
= o

For example, VAX BASIC evaluates the expression A = 1572 + 1272 -
(35 * 8) in five steps:

1. 1572 = 225 Exponentiation (leftmost expression)
2. 1272 =144 Exponentiation

3. 225 + 144 = 369 Addition

4. (35 * 8) = 280 Multiplication

5. 369 — 280 = 89 Subtraction

There is one exception to this order of precedence: when an operator that
does not require operands on either side of it (such as NOT) immediately
follows an operator that does require operands on both sides (such as the
addition operator (+)), VAX BASIC evaluates the second operator first. For
example:

A% + NOT B% + C%
This expression is evaluated as:
(A% + (NOT B%)) + C%

VAX BASIC evaluates the expression NOT B before it evaluates the
expression A + NOT B. When the NOT expression does not follow the
addition (+) expression, the normal order of precedence is followed. For
example:

NOT A% + B% + C%

Program Elements and Structure 1-51

This expression is evaluated as:
NOT ((A% + B%) + C %)

VAX BASIC evaluates the two expressions (A% + B%) and (A% + B%) + C%)
because the + operator has a higher precedence than the NOT operator.

VAX BASIC evaluates nested parenthetical expressions from the inside out.

In the following example, VAX BASIC evaluates the parenthetical expression
A quite differently from expression B. For expression A, VAX BASIC
evaluates the innermost parenthetical expression (25 + 5) first, then the
second inner expression (30 / 5), then (6 * 7), and finally (42 + 3). For
expression B, VAX BASIC evaluates (5 / 5) first, then (1 * 7), then

(25 + 7 + 3) to obtain a different value.

A= ((((25 +5) / 5 *7) + 3)
PRINT A
B=25+5/5%*7+ 3
PRINT B

Output

45
35

1.7 Program Documentation

Documentation within a program clarifies and explains source program
structure. These explanations, or comments, can be combined with code
to create a more readable program without affecting program execution.
Comments can appear in two forms:

¢ Comment fields (including empty statements)
e REM statements

1.7.1 Comment Fields

A comment field begins with an exclamation point (!) and ends with a
carriage return. You supply text after the exclamation point to document
your program. You can specify comment fields while creating VAX BASIC
programs at DCL level as well as in the BASIC environment. In both cases,
VAX BASIC does not execute text in a comment field. Example 1-7 shows
how to specify a comment field.

1-52 Program Elements and Structure

Example 1-7: Specifying a Comment Field

! FOR loop to initialize list Q
FOR I =1 TO 10

Q(I) = 0 ! This is a comment
NEXT I
! List now initialized

VAX BASIC executes only the FOR...NEXT loop. The comment fields,
preceded by exclamation points, are not executed.

Example 1-8 shows how you can use comment fields to help make your
program more readable and allow you to format your program into readily
visible logical blocks. Example 1-8 also shows how comment fields can be
used as target lines for GOTO and GOSUB statements.

Example 1-8: Using Comments Fields to Format a Program

1

! Square root program

]

INPUT ’'Enter a number’;A
PRINT ’'SQR of ’;A;’is ’';SQR(A)
1

! More square roots?

]

INPUT ’'Type "Y" to continue, press RETURN to quit’;ANSS$
GOTO 10 IF ANS$ = "y"

1

END

You can also use an exclamation point to terminate a comment field, but
this practice is not recommended. You should make sure that there are no
exclamation points in the comment field itself; otherwise, VAX BASIC treats
the text remaining on the line as source code.

NOTE

Comment fields in DATA statements are invalid; the VAX BASIC
compiler treats the comments as additional data.

Empty statements consist of a line number and an exclamation point.
Empty statements can make your program more legible by increasing the
amount of “white space” and visually separating logical program segments.
In Example 1-9, lines 100 and 300 are empty statements.

Program Elements and Structure 1--53

Example 1-9: Using Empty Statements in a VAX BASIC Program

100 !
! FOR loop to initialize list Q
!
200 FOR I =1 TO 10
Q(I) = 0 ! This is a comment
NEXT I
300 !
! List is now initialized

In general, empty statements can be used to make a program more legible
and organized.

1.7.2 REM Statements

A REM statement begins with the REM keyword and ends when VAX
BASIC encounters a new line number. The text you supply between the
REM keyword and the next line number documents your program. Like
comment fields, REM statements do not affect program execution. VAX
BASIC ignores all characters between the keyword REM and the next
line number. Therefore, the REM statement can be continued without
the ampersand continuation character and should be the only statement
on the line or the last of several statements in a multi-statement line.
Example 1-10 shows the use of the REM statement.

1-54 Program Elements and Structure

Example 1-10: Using REM Statements in VAX BASIC Programs

REM This is an example
A=5
B=10
REM A equals 5
B equals 10
PRINT A, B

The REM statement is nonexecutable. When you transfer control to a REM
statement, VAX BASIC executes the next executable statement that lexically
follows the referenced statement.

NOTE

Because VAX BASIC treats all text between the REM statement
and the next line number as commentary, REM should be used
very carefully in programs that follow the implied continuation
rules. REM statements are disallowed in programs without line
numbers.

In the following example, the conditional GOTO statement in line 20
transfers program control to line 10. VAX BASIC ignores the REM comment
on line 10 and continues program execution at line 20.

10 REM ** Square root program

20 INPUT ’'Enter a number’;A
PRINT 'SQR of ’;A;’is ' ;SQR(A)
INPUT ’'Type "Y" to continue, press RETURN to quit’;ANSS$
GOTO 10 IF ANSS$ = "y"

40 END

Program Elements and Structure 1-55

Chapter 2

Environment Commands

Environment commands are commands that you use in the BASIC
environment. With environment commands, you can display, edit, and
merge VAX BASIC programs, set compiler defaults, move VAX BASIC source
programs to and from storage, and execute programs. This chapter lists
alphabetically all of the compiler commands that can be used within the
BASIC environment. For information on immediate mode and calculator
mode statements, see the VAX BASIC User Manual.

Environment Commands 2-1

! your-comment

! your-comment

You can enter comments while in the BASIC environment by typing an
exclamation point (!) and the comment.

Format

! your-comment

Syntax Rules

1. The exclamation point must be the first character on the line.
2. You cannot continue a comment over more than one line.

Remarks

None.

Examples

Example 1
Ready

! Comments here ...

2-2 Environment Commands

! your-comment

Example 2
$ TYPE BUILD_SPECIAL.COM

$ SET VERIFY
$ BASIC

! Set the compilation options by uncommenting
! the appropriate ones.
[
]

SET LIST
SET WORD
SET DEBUG
'+
! Get the source module.
[
OLD SPECIAL
'+
! Compile it.
1 -
COMPILE
'+
! All done.
11—

EXIT

Environment Commands 2-3

$ system-command

$ system-command

You can execute a DCL command while in the BASIC environment by typing
a dollar sign ($) before the command. VAX BASIC passes the command to
the operating system for execution. The context of the BASIC environment
and the program currently in memory do not change.

Format

$ system-command

Syntax Rules

VAX BASIC passes system-command directly to the VMS operating system
without checking for validity.

Remarks

1. The terminal displays any error messages or output that the command
generates.

2. Control returns to the BASIC environment after the command executes.
The context (source file status, loaded modules, and so on) of the BASIC
environment and the program currently in memory do not change unless
the command causes the operating system to abort VAX BASIC or log
you out.

3. The command you specify executes within the context of a subprocess.
Consequently, commands such as the DCL command SET execute only
within the subprocess and do not affect the process running VAX BASIC.

2-4 Environment Commands

$ system-command

Example

Read -

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED, GROUP=RWED, WORLD=RE

Ready

b

Environment Commands 2-5

APPEND

APPEND

The APPEND command merges an existing VAX BASIC source program
with the program currently in memory.

Format

APPEND [file-spec]

Syntax Rules

File-spec is the name of the VAX BASIC program you want to merge with
the program currently in memory. The default file type is BAS.

Remarks

1.

2.

You cannot specify the APPEND command on programs that do not
contain line numbers.

If you type APPEND without specifying a file name, VAX BASIC
prompts with

Append file name--

You should respond with a file name. If you respond with a carriage
return and no file name, VAX BASIC searches for a file named
NONAME.BAS. If the VAX BASIC compiler cannot find NONAME.BAS,
VAX BASIC signals the error “Can’t find file or account” (ERR=5).

You can append the contents of file-spec to a source program that is
either called into memory with the OLD command or created in the
BASIC environment. If there is no program in memory, VAX BASIC
appends the file to an empty program with the default file name
NONAME.

2-6 Environment Commands

APPEND

4. If file-spec contains a VAX BASIC line with the same line number as a
line of the program in memory, the line in the appended file replaces the
line of the program in memory. Otherwise, VAX BASIC inserts appended
lines into the program in memory in sequential, ascending line number
order.

5. The APPEND command does not change the name of the program in
memory.

6. If you have not saved the appended version of the program, VAX BASIC
signals the warning “Unsaved change has been made, CTRL/Z or EXIT
to exit” the first time you try to leave the BASIC environment.

Example

Ready
New FIRST TRY.BAS

Ready
10 PRINT "First program"

APPEND NEW_PROG.BAS
Ready

LIST

10 PRINT "First Program"

20 PRINT "This section has been appended"

Environment Commands 2-7

ASSIGN

ASSIGN

The ASSIGN command equates a logical name to a complete file
specification, a device, or another logical name within the context of the
BASIC environment.

Format

ASSIGN equiv-namelf:] log-namel:]

Syntax Rules

Equiv-name specifies the file specification, device, or logical name to be
assigned a logical name. If you specify a physical device name, you must
terminate it with a colon (:).

Log-name is the 1- to 63-character logical name to be associated with
equiv-name. You can specify a logical name for any portion of a file
specification. If the logical name translates to a device name, and will be
used in place of a device name in a file specification, you must terminate
it with a colon (:).

If log-name has more than 63 characters, VAX BASIC signals the error
“Invalid logical name”.

Remarks

When the logical name assignment supersedes another logical name
previously assigned, VAX BASIC dlsplays the message “Prevmus logical
name assignment replaced”.

2-8 Environment Commands

ASSIGN

2. Logical names assigned with the ASSIGN command are placed in the
process logical name table and remain there until you exit the BASIC
environment.

Example

ASSIGN [HENRY.BAS] PRO:

Environment Commands 2-9

COMPILE

COMPILE

The COMPILE command converts a VAX BASIC source program to an object
module and writes the object file to disk.

Format

COMPILE [file-spec] [/qualifier]...

Command Qualifiers
/[NOJANSI_STANDARD
/INOJAUDIT [sep text-entry]
/INOIBOUNDS_CHECK
/BYTE

/INOJCROSS_REF [sep [NOJKEYWORDS]

/[INOIDEBUG

/DECIMAL_SIZE sep (d,s)
/DOUBLE

/INOJFLAG [sep (flag-clause,...)]
/GFLOAT

/HFLOAT

/INOJLINES

/INOJLIST

/LONG

/INOJMACHINE_CODE
/[INOJOBJECT

/INOJOVERFLOW [sep (data-type,...)]
/INOJROUND

/[INOJSETUP

/[NOJSHOW [sep (show-item,...)]
/SINGLE

/INOJSYNTAX_CHECK
/INOJTRACEBACK
/TYPE_DEFAULT sep default-clause

2-10 Environment Commands

Defaults
/NOANSI_STANDARD
/NOAUDIT
/BOUNDS_CHECK
/LONG
/INOCROSS_REF
/NODEBUG
/DECIMAL_SIZE=(15,2)
/SINGLE

/NOFLAG

/SINGLE

/SINGLE

/LINES

/NOLIST

/LONG

/NOMACHINE
/OBJECT
/OVERFLOW=(INTEGER,DECIMAL)
/NOROUND

/SETUP

/SHOW

/SINGLE
/NOSYNTAX_CHECK
/TRACEBACK
/TYPE_DEFAULT=REAL

COMPILE

/VARIANT sep int-const /VARIANT=0
[NO]WARNINGS [sep warn-clause] /WARNINGS
/WORD /LONG

Syntax Rules

I

File-spec specifies a name for the output file or files. If you do not
provide a file-spec, the VAX BASIC compiler uses the name of the
program currently in memory for the file name, a default file type of
OBJ for the object file, and a default file type of LIS for the listing file, if
a listing file is requested.

File-spec can precede or follow any qualifier.
/Qualifier specifies a qualifier keyword that sets a VAX BASIC default.

You can abbreviate all positive qualifiers to the first three letters of the
qualifier keyword. You can abbreviate a negative qualifier to NO and the
first three letters of the qualifier keyword.

In cases of ambiguous or erroneous qualifiers, VAX BASIC signals
“Unknown qualifier”, and the program does not compile. When qualifiers
conflict, VAX BASIC compiles the program using the last specified
conflicting qualifier. For example, the following command line causes
VAX BASIC to compile the program currently in memory but does not
cause VAX BASIC to create an OB file.

COMPILE/OBJ/NOOBJ

There must be a program in memory, or the COMPILE command does
not execute; VAX BASIC does not signal an error or warning.

Remarks

The following qualifiers cannot be used within the VAX BASIC
environment with the COMPILE command:

e /ANALYSIS_DATA
e /CHECK

Environment Commands 2-11

COMPILE

* /DESIGN

* /DEPENDENCY_DATA

* /DIAGNOSICS

* /INTEGER_SIZE

* /OLD_VERSION=CDD_ARRAY
* /REAL_SIZE

¢ /SCALE

If an object file for the program already exists in your directory, VAX
BASIC creates a new version of the OBJ file.

You should not specify both a file name and file type. For example, if

you enter the following command line, VAX BASIC creates two versions
of NEWOBJ.FIL:

COMPILE NEWOBJ.FIL/LIS/OBJ

The first version, NEWOBJ.FIL:1, is the listing file; the second version,
NEWOBJ.FIL;2, is the object file. If you specify only a file name, VAX
BASIC uses the OBJ and LIS file type defaults when creating these files.

Use the COMPILE/NOOBJECT command to check your program for
errors without producing an object file.

When you exit from the BASIC environment, all options set with
qualifiers return to the system default values. Use the SHOW command
to display your system defaults before setting any qualifiers.

Command Qualifiers

/[NOJANSI_STANDARD

The /ANSI_STANDARD qualifier causes VAX BASIC to compile programs
according to the ANSI Minimal BASIC standard and to flag syntax that does
not conform to the standard. The /NOANSI_STANDARD qualifier causes
VAX BASIC not to compile the program according to the ANSI Minimal
BASIC standard. The default is NOANSI_STANDARD.

See the VAX BASIC User Manual for more information on the ANSI
Minimal BASIC Standard.

2-12 Environment Commands

COMPILE

anojavorr [{ = | { ;7;,;;% }]

The /AUDIT qualifier causes VAX BASIC to include a history list entry in
the CDD data base when a CDD definition is extracted. Str-lit is a quoted
string. File-spec is a text file. The history entry includes

* The contents of str-lit, or up to the first 64 lines in the file specified by
file-spec

¢ The name of the program module, process, user name, and user UIC
that accessed the CDD

¢ The time and date of the access
¢ A note that access was made by the VAX BASIC compiler
* A note that access was an extraction

If you specify /NOAUDIT VAX BASIC does not include a history list entry.
/NOAUDIT is the default.

/[NO]JBOUNDS_CHECK

The /BOUNDS_CHECK qualifier causes VAX BASIC to perform range
checks on array subscripts. With bounds checking enabled, VAX BASIC
checks that all subscript references are within the array boundaries set
when the array was declared. If the subscript bounds are not within the
bounds initially declared for the array, VAX BASIC signals an error message.
If you specify /NOBOUNDS_CHECK VAX BASIC does not check that all
subscript references are within the array bounds set. /BOUNDS_CHECK is
the default.

/BYTE

The /BYTE qualifier causes VAX BASIC to allocate 8 bits of storage as the
default for all integer data not explicitly typed in the program. Untyped
integer values are treated as BYTE values and must be in the BYTE range
or VAX BASIC signals the error “Integer error or overflow.” Table 1-2 in
this manual lists VAX BASIC data types and ranges. By default, the VAX
BASIC compiler allocates 32 bits of storage.

/[NO]CROSS_REFERENCE[{ : } [NOJKEYWORDS]

If you use the /CROSS_REFERENCE qualifier with the /LIST
qualifier when you compile your program, the VAX BASIC compiler
includes cross-reference information in the program listing file. If

Environment Commands 2-13

COMPILE

you specify /CROSS_REFERENCE=KEYWORDS, VAX BASIC also
cross-references VAX BASIC keywords used in the program. If you specify
/NOCROSS_REFERENCE, VAX BASIC does not include a cross reference
section in the compiler listing. The default is /NOCROSS_REFERENCE.

/[NO]JDEBUG

The /DEBUG qualifier appends to the object file information on symbolic
references and line numbers. This information is used by the VMS
Debugger when you debug your program. When you specify the /DEBUG
qualifier on the COMPILE command, you cause the debugger to be invoked
automatically when the program is run at DCL level (unless you specify
RUN/NODEBUG). If you specify COMPILE/NODEBUG, information on
program symbols and line numbers is not included in the object file. The
default is /NODEBUG.

See the VAX BASIC User Manual for more information on using the VMS
Debugger.

/DECIMAL_SIZE { i } (d,s)

The /DECIMAL_SIZE qualifier allows you to specify the default size and
precision for all DECIMAL data not explicitly assigned size and precision
in the program. You specify the total number of digits (d) and the number
of digits to the right of the decimal point (s). VAX BASIC signals the error
“Decimal error or overflow” (ERR=181) when DECIMAL values are outside
the range specified with this qualifier. See Table 1-2 in this manual for
more information on the storage and range of packed decimal data. The
default is /DECIMAL_SIZE=(15,2).

/DOUBLE

The /DOUBLE qualifier causes VAX BASIC to allocate 64 bits of storage

in D_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated as
DOUBLE values and must be in the DOUBLE range or VAX BASIC signals
the error “Floating-point error or overflow.” Table 1-2 in this manual lists
VAX BASIC data types and ranges. The default is /SINGLE.

: [NO]BP2COMPATIBILITY
ANOJFLAG [{ | }({ [NOJDECLINING }) 1
The /FLAG qualifier causes VAX BASIC to provide compile-time information
about program elements that are not compatible with BASIC-PLUS-2
or that DIGITAL designates as not recommended for new program

2-14 Environment Commands

COMPILE

development. For more information on source code that is incompatible
with BASIC-PLUS-2, see Appendix A in this manual.

If you specify the DECLINING clause, VAX BASIC will flag the following
source code as declining:

e CVT$$ (use EDIT$)

e CVT$%, CVT$F, CVT%$, CVTF$, AND SWAP% (use multiple MAP
statements)

¢ DEF* functions (use DEF functions)
e FIELD statements (use MAP DYNAMIC and REMAP)
e GOTO line-num% (do not use the integer suffix with a line number)

The default is /NOFLAG.

/GFLOAT

The /GFLOAT qualifier causes VAX BASIC to allocate 64 bits of storage
in G_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated
as G_floating values and must be in the G_floating range or VAX BASIC
signals “Floating-point error or overflow.” Table 1-2 in this manual lists
VAX BASIC data types and ranges. The default is /SINGLE.

/HFLOAT

The /HFLOAT qualifier causes VAX BASIC to allocate 128 bits of storage
in H_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated
as H_floating values and must be in the H_floating range or VAX BASIC
signals “Floating-point error or overflow.” Table 1-2 in this manual lists
VAX BASIC data types and ranges. The default is /SINGLE.

/[NOJLINES

The /LINES qualifier includes line number information in object modules.

If you specify /NOLINES VAX BASIC does not include line number
information in object modules. If you specify /NOLINES in a program
containing a RESUME statement or the run-time ERL function, VAX BASIC
issues a warning that the /NOLINES qualifier has been overridden. The
default is /LINES.

Environment Commands 2-15

COMPILE

/[NOJLIST

The /LIST qualifier causes VAX BASIC to produce a compiler listing file.
This compiler listing generated by the /LIST qualifier contains a memory
allocation map. By default, the name of the listing file is the same as the
name of the first program module specified, and has a default file type
of LIS. If you specify /NOLIST VAX BASIC does not generate a compiler
listing. /NOLIST is the default.

/LONG

The /LONG qualifier causes VAX BASIC to allocate 32 bits of storage as the
default size for all integer data not explicitly typed in the program. Untyped
integer values are treated as LONG values and must be in the LONG range
or VAX BASIC signals the error “Integer error or overflow.” Table 1-2 in
this manual lists VAX BASIC data types and ranges. /LONG is the default.

/[NOJMACHINE_CODE

When you specify the MACHINE_CODE qualifier with the /LIST qualifier
in the COMPILE command, VAX BASIC includes the machine code
generated by the compilation in the program listing file. If you specify
/NOMACHINE_CODE, VAX BASIC does not include a machine code section
in the listing file. /NOMACHINE_CODE is the default.

/[NOJOBJECT

The /OBJECT qualifier generates an object module with the same file name
as the program and a default file type of OBJ. The /NOOBJECT qualifier
allows you to check your program for errors without creating an object file.
/OBJECT is the default.

ANoJoVERFLOW [{ } }({ Z‘ggﬁi‘z o 1

The /OVERFLOW qualifier causes VAX BASIC to report arithmetic overflow
for operations on integer or packed decimal data, or both. If you specify
/NOOVERFLOW, VAX BASIC does not report arithmetic overflows. The
default is /OVERFLOW=(INTEGER,DECIMAL).

/[NOJROUND

The /ROUND qualifier causes VAX BASIC to round rather than truncate
DECIMAL values. If you specify /NOROUND, VAX BASIC truncates
DECIMAL values. The default is/NOROUND.

2-16 Environment Commands

COMPILE

/[NOJSETUP

The /SETUP qualifier causes VAX BASIC to make calls to the Run-Time
Library to set up the stack for VAX BASIC variables, set up dynamic string
and array descriptors, initialize variables, and enable VAX BASIC error
handling. If you specify the /NOSETUP qualifier, VAX BASIC will attempt
to optimize your program by omitting these calls. If your program contains
any of the following elements, VAX BASIC provides an informational
diagnostic and does not optimize your program:

CHANGE statements

DEF or DEF* statements
Dynamic string variables
Executable DIM statements
EXTERNAL string functions
MAT statements

MOVE statements for an entire array
ON ERROR statements
READ statements

REMAP statements
RESUME statements
WHEN blocks

All graphics statements
String concatenation
Built-in string functions
Virtual array declarations

Note that program modules compiled with the /NOSETUP qualifier cannot
perform I/O and have no error-handling capabilities. If an error occurs in
such a module, the error is resignaled to the calling program. The default is
/SETUP.

Environment Commands 2-17

COMPILE

[NO]CDD_DEFINITIONS
. [NOJENVIRONMENT
/INOJSHOW [{ : } ({ [NOJINCLUDE)]
- [NOJMAP
[NOJOVERRIDE
The /SHOW qualifier (when used with the /LIST qualifier) tells VAX BASIC
what to include in the compiler listing file. You can specify the following
/SHOW qualifier items:

* CDD_DEFINITIONS causes VAX BASIC to include a section of
translated CDD definitions

¢ ENVIRONMENT causes VAX BASIC to include a list compilation
qualifiers in effect

¢ INCLUDE causes VAX BASIC to include a section on the contents of any
%INCLUDE files

* MAP causes VAX BASIC to include a storage allocation map section

* OVERRIDE cancels the effect of all %ZNOLIST directives in the source
program

For example, if you specify the following command, VAX BASIC includes a
storage allocation map section in the compiler listing:

COMPILE/LIST/SHOW=MAP

If you specify a /SSHOW qualifier but do not specify any /SHOW items, VAX
BASIC includes all the aforementioned sections in the listing. If you specify
/NOSHOW, VAX BASIC does not add any additional sections to the compiler
listing. The default is /SHOW.

/SINGLE

The /SINGLE qualifier causes VAX BASIC to allocate 32 bits of storage in
F_floating format as the default size for all floating-point data not explicitly
typed in the program. Untyped floating-point values are treated as SINGLE
values and must be in the SINGLE range or VAX BASIC signals the error
“Floating-point error or overflow.” Table 1-2 in this manual lists VAX BASIC
data types and ranges. The default is /SINGLE.

2-18 Environment Commands

COMPILE

/[NOJSYNTAX_CHECK

The /SYNTAX_CHECK qualifier causes VAX BASIC to perform
syntax checking after each program line is typed. If you specify
/NOSYNTAX_CHECK, VAX BASIC does not perform syntax checking
after each program line is typed. The default is /NOSYNTAX_CHECK.

/[NOJTRACEBACK

The /TRACEBACK qualifier causes VAX BASIC to include traceback
information in the object file that allows reporting of the sequence of calls
that transferred control to the statement where an error occurred. The
/NOTRACEBACK qualifier tells VAX BASIC not to include traceback
information in the object file. The default is TRACEBACK.

REAL
/TYPE_DEFAULT{:_ } :’)"bf gfl‘j’z

EXPLICIT
The /TYPE_DEFAULT qualifier sets the default data type (REAL,

INTEGER, or DECIMAL) for all data not explicitly typed in your program
or specifies that all data must be explicitly typed (EXPLICIT).

¢ REAL specifies that all data not explicitly typed is floating-point data of
the default size (SINGLE, DOUBLE, GFLOAT, or HFLOAT).

e INTEGER specifies that all data not explicitly typed is integer data of
the default size (BYTE, WORD, or LONG).

* DECIMAL specifies that all data not explicitly typed is packed decimal
data of the default size.

e EXPLICIT specifies that all data in a program must be explicitly typed.
Implicitly declared variables cause VAX BASIC to signal an error.

The default is TYPE_DEFAULT=REAL.

/VARIANT { . Lint-const

The /VARIANT qualifier establishes int-const as a value to be used in
compiler directives. The variant value can be referenced in a lexical
expression with the lexical function, %VARIANT. Int-const always has a data
type of LONG. The default is /VARIANT=0.

Environment Commands 2-19

COMPILE

: [NOJWARNINGS
/[NOJWARNINGS [{ = } { [NOJINFORMATIONALS 1

The /WARNINGS qualifier causes VAX BASIC to display warning or
informational messages, or both. If you specify /WARNINGS but do
not specify a warning clause, VAX BASIC displays both warnings and
informational messages. If you specify /NOWARNINGS, VAX BASIC
does not display warning and informational messages. The default is
/WARNINGS.

/WORD

The /WORD qualifier causes VAX BASIC to allocate 16 bits of storage as
the default for all integer data not explicitly typed in the program. Untyped
integer values are treated as WORD values and must be in the range
—32768 to 32767 or VAX BASIC signals the error “Integer error or overflow.”
Table 1-2 in this manual lists VAX BASIC data types and ranges. The
default is /LONG.

In the following example, VAX BASIC compiles the program LETSGO and
creates a new version of the object file as well as a listing file. In addition,
VAX BASIC allocates 64 bits of storage in D_FLOAT format as the default
for all floating point data not explicitly typed in the program.

Example

COMPILE LETSGO/DOUBLE/LIST

2-20 Environment Commands

CONTINUE

CONTINUE

The CONTINUE command continues program execution after VAX BASIC
executes a STOP statement or encounters a CTRL/C.

Format

CONTINUE

Syntax Rules

None.

Remarks

1. After a STOP statement or a CTRL/C, you can enter immediate mode
commands and resume program execution with the CONTINUE
command.

2. After a STOP statement or a CTRL/C, you cannot resume program
execution if you have made source code changes or additions.

Example

$BAS-I-STO, Stop
~BAS-I-FROLINMOD, from line 25 in module ABC
Ready

CONTINUE

Environment Commands 2-21

DELETE

DELETE

The DELETE command removes a specified line or range of lines from the
program currently in memory.

Format

DELETE line-num [‘.”"’e'”“m]
Jine-num...

Syntax Rules

None.

Remarks

1. You cannot specify the DELETE command on programs that do not
contain line numbers.

2. The separator characters (comma or hyphen) allow you to delete
individual lines or a block of lines.

¢ If you separate line numbers with commas, VAX BASIC deletes each
specified line number.

¢ If you separate line numbers with a hyphen, VAX BASIC deletes the
inclusive range of lines. The lower line number must be specified
first. If it is not specified first, the DELETE command has no effect.

3. You can combine individual line numbers and line ranges in a single
DELETE command. Note, however, that a line number range must be
followed by a comma and not another hyphen, or VAX BASIC signals an
error.

2-22 Environment Commands

DELETE

4. VAX BASIC signals an error if there are no lines in the specified range
or if you specify an illegal line number.

Examples

Example 1
DELETE 50

Example 2
DELETE 70-80, 110, 124

Example 3
DELETE 50,60,90-110

Environment Commands 2-23

EDIT

EDIT

The EDIT command allows you to edit individual program lines in the
BASIC environment while invoking an editor. EDIT with no arguments
invokes a text editor and reads the current program into the editor’s buffer.

Format
EDIT [line-num search-clause [replace-clause] |
search-clause: delim ung-str1 delim

replace-clause: [ung-str2][delim [int-const1][,int-const2]]

Syntax Rules

1. Line-num specifies the line to be edited.

Search-clause specifies the text you want to remove or replace. Ung-strl
is the search string you want to remove or replace.

3. Replace-clause specifies the replacement text and the occurrence of the
search string you want to replace.

* Ung-str2 is the replacement string.

* Int-constl specifies the occurrence of ung-strl you want to replace.
If you do not specify an occurrence, VAX BASIC replaces the first
occurrence of ung-strl.

¢ Int-const2 specifies the line number of a block of program code where
you want VAX BASIC to begin the search.

4. Delim can be any printing character not used in ung-strl or ung-str2.
The examples for this command use the slash (/) as a delimiter.

2-24 Environment Commands

EDIT

Remarks

The delim characters in search-clause must match, or VAX BASIC
signals an error.

If the delimiter you use to signal the end of replace-clause does n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>