

~DmDDmD
digital equipment corporation

Copyright 1969 by
Digital Equipment Corporation.,

PDP is a registered trademark
of Digital Equipment Corporation

The material in 'this handbook is for'information pur
poses only and is subject to change without notice.

II

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

PDP-II SYSTEMS ;.. I
UNIBUS .. 1
KA11 PROCESSOR I

Priority Interrupts .. I
Reentrant Code 2
General Registers 2
Instruction Set 2
Addressing .. 2
Asynchronous Operation 2

PACKAGING .. 2
SOFTWARE .. 3

CHAPTER 2 SYSTEM INTRODUCTION

SYSTEM DEFINITION .. 5
SYSTEM COMPONENTS d... 5
UNIBUS ... 5

Single Bus 5
Bidirectional Lines :....................... 5
Master-Slave Relation :.. 5
Interlocked Communication ... :.. 5
Dynamic Master·Slave Relation 6

KA11 CENTRAL PROCESSOR , :..... 6
General Registers 6
Central Processor Status Register.......... 6

CORE MEMORy :... 6
PERIPHERAL DEVICES .. :......... 7
SYSTEM INTERACTION 7
TRANSFER OF BUS MASTER .. 7
PRIORITY STRUCTURE .. 7

NPR Requests .. 8
Interrupt Requests .. 8

CHAPTER 3 ADDRESSING MODES

INTRODUCTION .. 11
SINGLE OPERAND ADDRESSiNG... 11

General Register Addressing.............. 11
Deferred Addressing 11
Indexed Addressing .. 12
Autoincrement Mode Addressing .. 12
Autodecrement Addressing...... 12

STACK PROCESSING 13
USE OF THE PC AS A GENERAL REGISTER 13

Immediate Addressing 13
Absolute Addressing.............................. 13
Relative Addressing .. 14
Deferred Relative Addressing 14

USE OF THE SP AS A GENERAL REGISTER 14
DOUBLE OPERAND ADDRESSIN~ .. 14

CHAPTER 4 INSTRUCTION SET

INSTRUCTION TIMING .. 17
NOTATION .. 17

III

DOUBLE OPERAND INSTRUCTIONS .. 17
Arithmetic Operations.......... 18
Boolean Instructions .. 20

BRANCHES 21
Unconditional Branch .. 21
Simple Conditional Branches 22
Signed Conditional Branches•.......... 23
Unsigned Conditional Branches .. 25
JuMP .. 26

SUBROUTINES ... 27
Examples 28

SINGLE OPERAND INSTRUCTIONS .. 31
Multiple Precision Operations....... 33
Rotates .. 33
Shifts .. 34
Examples 36

BYTE OPERATIONS .. 36
Double Operand Byte Instructions 36
Example .. 37
Single Operand Instructions 38

CONDITION CODE OPERATORS .. 40
MISCELLANEOUS CONTROL INSTRUCTIONS 41
PROCESSOR TRAPS 41

Trap Instructions 41
Stack Overflow Trap 43
Bus ErrN Traps 43
Trace Traps............... 43

CHAPTER 5 ADDRESS ALLOCATION
ADDRESS MAP 45

Interrupt and Trap Vector 46
Processor Stack and General Storage 46
Peripheral Registers :... 46

CORE MEMORY .. 46
Read·Write Core Memory 46
Read-Only Core Memory 46
Word let Memory .. 46

. CHAPTER 6 PROGRAMMING OF PERIPHERALS
DEVICE REGISTERS 47
CONTROL & STATUS REGISTERS 47

Device Function Bits 48
Memory Extension 48
Done Enable and Interrupt Enable.. 48
Condition Bits 48
Unit Bits .. 48
Error Bits 48

DATA BUFFER REGiSTERS..................... 49
PROGRAMMING EXAMPLES-NON INTERRUPT 49
INTERRUPT STRUCTURE .. 50
PROGRAMMING EXAMPLE .. 51

CHAPTER 7 PERIPHERAL BULLETINS
TELETYPE (MODEL L T33-DC/ DD) 53

Size .. -.... 53
Power Req!Jirement 53

IV

TELETYPE CONTROL (MODEL KLll) 53
Teletype Control ." .. ' ,'" '."'." , .. "'.' ' ... , ... , .. , ... " ,'. "" '.. 53
Keyboard/Reader Operation " ".. 53

Registers (TKS, TKB) , " " ,........ 54
Teleprinter/Punch , ... , , .. ', .. , , .. , ' ,............ 54

Registers (IPS, TPB) " "............................. 55
Programming Example " " ... ".......................... 55
Peripheral Address Assignments " ".................. 55
Mounting " , ... " .. , .. ,' .. " .. ,." .. "., ... ,,,., .. ,, ... ,, , ,...... 55

HIGH-SPEED PERFORATED TAPE READER (MODEL PCll) 55
Tape Reader ." ,., ... , ... , ... , .. " .. ,' , ... " , ... , .. "......... 55

Registers (PRS, PRB) .. " .. " ".".................................. 56
Programming Example ." ... " , ... ,."............................ 56
Peripheral Address Assignments "..................... 56

Tape Punch " , " ".............................. 56
Registers (PPS, PPB) "" ... " " "............................ 57
Programming Example "" "......................... 57
Peripheral Address Assignments ""."....................... 57

Mounting .. , .. " "., " .. ".' ... , ... , .. ,,", ... , ... ,., ... , , ... " .. ,.... 57
Environmental ." , .. ,',.,,,., ,, ,, , ... , .. ,'.,.".'. 58
Line Frequency Clock (Model KWll-L) .. , .. "." ". 58
Register , .. , ... " ,,,., ... , .. ,, .. ,, , , .. ,.. 58
Peripheral Address Assignments , .. , " .. ,....................... 58
Mounting."." .. "."." .. , , .. , .. ',.,' .. , ... ,., , .. , , .. , ".' ... , .. , .. , ... , , ... 58
Vector Address "."'''" ... " .. " " ,,. 58
Priority Level 58

CHAPTER 8 DESCRIPTION OF THE UNIBUS

GENERAL CONCEPTS OF THE UNIBUS :..... 59
Single Bus ", ... , ... , " "., ', , ,...... 59
Bidirectional Bus "., ... , ... , .. , ,................................... 59
Master-Slave Relation , ... , .. , , , " ,.. 59
Interlocked Communication , "............... 60
Dynamic Master-Slave Relation ... "": ... , ,,............... 60

UNIBUS SIGNALS ., , ... , ".................................... 60
NON·INTERRUPT SIGNALS ,......................... 60

Data Lines ., ... , " , .. " , .. , ... , .. ' ,..................... 60
Address Lines .. ' , " .. , ', ,.............. 60
Control Lines ., , ... , , ,', ',.'............................... 61
Master Sync &'Slave Sync .. ".. 61
Parity Available & Parity Bit , ,................................61

,Initial,ization , , .. "., ... , ,..................................... 61
Spare 1 & Spare 2 ,.. 61

INTERRUPT SIGNALS ., "." .. , .. , ,.................................. 61
Bus Request Lines " , ,....................... 61
Bus Grant Lines """ ,, , ,....................... 61
Non-Processor Request ;, " ,:. 61
Non-Processor Grant .. , .. ,.,',., ... , , ... " .. , , ,............. 61
Selection Acknowledge .. ' 61
Interrupt (and) Bus Busy .. ".:" ".............................. 61

UNIBUS DATA TRANSFER OPERATIONS 61
DATO and DATOB , "..................................... 62
DATI and DATIP .. "." .. " .. " " .. , "."............................... 62
Examples of Data Transfers ." .. " .. " , ... "........................... 62
Signal Description of Data Transfers." , 63

v

UNIBUS CONTROL .. 64
Priority Arbitration 64
Selection of Next Bus Master................. 65
Interrupt Sequence 65
Example of Interrupt, etc. 66
Example of NPR Operation .. 66

CHAPTER 9 INTERFACING

REGISTERS 69
BUS DRIVERS AND RECEIVERS .. 69
ADDRESS SELECTOR 71
INTERRUPT CONTROL .. 74
DEVICE CONTROL LOGIC .. 76

CHAPTER 10 CONFIGURATION AND INSTALLATION PLANNING
MODULAR CONSTRUCTION .. 77
MOUNTING BOXES AND CABINETS .. 77

PDP-11 Tabletop Box for 11/20, Etc. 77
PDP-11 Basic Mounting Box 78
PDP-11 Tabletop Extension Mounting Box 80
PDP-11 Freestanding Base Cabinet 80
Freestanding Programmer's Table 81

SYSTEM UNITS AND CABLES .. 81
Peripheral Mounting Unit. 81
Blank System Unit 81
Unibus Module 82

. Unibus Cable 82
CABLE REQUIREMENTS 82
PDP-11/20 POWER REQUIREMENTS.. 82
TELETYPE REQUIREMENTS .. 82
ENVIRONMENTAL REQUIREMENTS ... 82
INSTALLATION PROCEDURE 83

CHAPTER 11 PAPER TAPE SOFTWARE SYSTEM
PTS FEATURES .. 85

PAL-IIA Assembler .. 85
EDl1 Editor 85
ODT On-Line Debugging 85
lOX Input/Output, etc. ... 86
Math Package .. 86
Loaders .. 86
Core Dump Routines .. 86

CHAPTER 12 THE OPERATOR'S CONSOLE
CONSOLE ELEMENTS ... ,............ 87

Indicator Lights 87
Register Displays................... 87
Switch Register .. 87
Control Switches 87

CONTROL SWITCH OPERATION .. 89

APPENDIX A-PDP-11 INSTRUCTION REPERTOIRE 91

APPENDIX B-ADDRESSING SUMMARy...... 95
ADDRESSING MODES 95

General Register Addressing 95
PC Register Addressing ... :............ 95

VI

INSTRUCTION FORMATS 95

APPENDIX C-ADDRESS MAP .. 97

APPENDIX D-UNIBUS OPERATIONS 99
DATA·TRANSFERS 99

DATI and DATIP 99
DATO and DATOB .. 100

PTR·PRIORITY TRANSFER 101
INTR-INTerRupt 102
GENERAL NOTES ON THE BUS OPERATIONS...... 102

VII

The POP·ll is available in two versions-POP·ll/l0 and POP·
11/20. The basic POP·llIl0 contains 1,024 words of read only
memory in conjunction with 128 words of readiwrite memory and
the basic POp·ll/20 includes 4,096 words of read/write memory.

VIII

CHAPTER 1

INTRODUCTION
This publication is a handbook for Digital Equipment Corporation's PDP-l1.
It provides a comprehensive overview of the system structure, the instruction
repertoire, inputloutput programming, peripherals, general interfacing, soft
ware, and console operation.

PDP-l1 is Digital's answer to the demand for a modular system for real·time
data acquisition, analysis and control. PDP-l1 systems can. handle a wide
variety of real·time control applications-each system being individually
tailored from a comprehensive array of modular building blocks. Digital is
unique among manufacturers of small·scale computers in its ability to pro·
vide not only fast and efficient processing units, but also a large family of its
own compatible 110 devices including AID and 01 A converters, magnetic
tape, disk storage, paper tape, and displays, as well as a wide range of
g~neral-purpose modules. This capability offers the user a new, more efficient
approach to real·time systems.

The following paragraphs introduce the new PDp·l1 by way of highlighting
several of the important design features that set it apart from other machines
in its class. Subsequent chapters of this manual place these features in their
proper context and provide detailed descriptions of each.

PDP-II SYSTEMS
The PDP-II is available in two versions designated as PDP-ll/lO and PDP-
11/20. The PDP·11/10 contains a KAl1 processor, 1,024 words of l6·bit
read-only memory, and 256 l6·bit words of read·write memory. The basic
PDp·11/20 contains a KAl1 processor and 4,096 words of l6·bit read·write
core memory, a programmer's console, and an ASR·33 Teletype. Both ver
sions can be similarly expanded with either read·write or read·only memory
and peripheral devices.

UNIBUS
Unibus is the name given to the single bus structure of the PDP-l1. The
processor, memory and all peripheral devices share the same high·speed
bus. The Unibus enables the processor to view peripheral devices as active
memory locations which perform special functions. Peripherals can thus be
addressed as memory. In other words, memory reference instructions can
operate directly on control, status, or data registers in peripheral devices.
Data transfers from input to output devices can bypass the processor com
pletely_

KAII PROCESSOR
The KAl1 processor incorporates a unique combination of powerful features
not previously available in l6·bit computers.

Priority Interrupts-A four-level automatic priority interrupt system permits
the process-or to respond automatically to conditions outside the system, or
in the processor itself. Any number of separate devices can be attached to
each level.

Each peripheral devi~e in a PDp·ll system has a hardware pointer to its own
unique pair of memory words which, in turn, point to the device's service
routine. This unique identification eliminates the need for polling of devices

1

to identify an interrupt, since the inte'rrupt servicing hardware selects and
begins executing the appropriate service routine.

The device's interrupt priority and service routine priority are tndep~ndent.
This allows dynamic adjustment of system behavior in response to real·time
conditions. .

The interrupt system allows the processor continually to compare its own
priority levels with the levels of any interrupting devices and to acknowledge
the device with the highest level above the processor's priority level. Servic·
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower priority device can be resumed 'automatically
upon completion of the higher level servicing. Such a process, called nested
interrupt servicing, can be carried out to any leirel.

Reentrant Code--Both the interrupt handling hardware and the subroutine
call hardware are designed to facilitate writing reentrant code for the
PDp·ll, This type of code allows use of a single copy of a given subroutine
or program to be shared by more than one process or task. This reduces the.
amount of core needed for multi·task applications such as the concurrent
servicing of many peripheral devices. .

General Registers-The PDp·ll is equipped with eight general registers. All
are program·accessible and can be used as accumulators, as pointers to
memory locations, or as full·word index registers .. Six registers are used for
general·purpose access while the seventh and eighth registers are used as
a stack pointer and program counter respectively.

Instruction Set---'-An important feature of the PDp·ll instruction set is the
availability of double operand instructions. These instructions allow memory·
to-memory processing and eliminate the need to use registers for storage of
intermediate results. By using double operand instructions, every memory
location can be treated as an accumulator. This significantly reduces the
length of programs by eliminating load and store operations. associated with
single operand machines.

Addressing-'-Much of the power of the PDP-II is derived from its wide range
of addressing capabilities. PDP-ll addressing modes include list sequential
addressing, full address indexing, full I6-bit word addressing, 8-bit byte
addressing, stack addressing, and direct addressing to 32K words.
Variable length instruction formatting allows a minimum number of bits to
be used for each' addressing mode. This results in efficient use of program
storage space. .

Asynchronous Operation-The PDP-ll's memory and processor operations
are asynchronous. As a result, I/O devices transferring directly to or from
memory may steal memory cycles during instruction operation.

PACKAGING
The PDP-ll has adopted 'a modular approach to allow custom configuring of
systems, easy expansion, and easy servicing. Systems ar.e composed of basic
building blocks, called System Units, which are completely independent sub
systems connecte9 only by pluggable Unibus and power .connections.
There is no fixed wiring between them. An example of this type of subsystem
is a 4,096-word memory module.
System Units can be mounted in many combinations within the PDP-ll
hardware, since there are no fixed positions for memory or I/O device con·
trollers. Additional units can be mounted easily and connected to the system

2

in the field. In case maintenance is required, defective System Units can be
replaced with spares and operation resumed within a few minutes.

SOFTWARE
A complete package of user·oriented software includes:
• Absolute assembler providing object and source listings
• String·oriented editor
• Debugging routines capable of operating in a priority interrupt environ·

ment
• Input! output handlers for standard peripherals
• Relocatable integer and floating point math library

3

All PDp·ll processors, memories and peripherals are electrically
and mechanically modular subsystems supported in System Units
which are simply plugged together to form a computer tailored to
user needs.

4

CHAPTER 2
SYSTEM INTRODUCTION

SYSTEM DEFINITION
Digital Equipment Corporation's PDP-ll is a 16-bit, general-purpose, parallel
logic computer using two's complement arithmetic. The PDP-It is a variable
word length processor which directly addresses 32,768 16-bit words' or
65,536 8-bit bytes. All communication between system components is done
on a single high-speed bus called a Unibus:Standard features of the system
include eight general-purpose registers which can be used as accumulators,
index registers, or address pointers, and a mUlti-level automatic priority in
terrupt system.

SYSTEMCOMPON ENTS
UNIBUS--There are five concepts that are very important for understanding
both the hardware and software implications of the Unibus.

Single Bus-The Unibus is a single, common path that connects the central
processor memory, and all peripherals. Addresses, data, and control informa
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the Unibus. The
processor uses the same set of signals to communicate with memory as with
peripheral devices. Peripheral devices also use this set of signals when com
municating with the processor, memory, or other peripheral devices.

Peripheral device registers may be manipulated as flexibly as core memory
by the central processor. All the instructions that can be applied to data in
core memory can be applied equally well to data in peripheral device regis
ters. This is an especially powerful feature, considering the special capability
of PDP-11 instructions to process data in any memory location as though it
were an accumulator.

Bidirectional Lines-Unibus lines are bidirectional, so that the same signals
which are received as input can be driven as output. This means that a
peripheral device register can be either read or set by the central processor
or other peripheral devices; thus, the same register Ccln be used for both
input and output functions.

Master-Slave Relation-Communication between two devices on the bus is
in the form of a master-slave relationship. At any point in time, there is one
device that has control of the bus. This controlling device is termed the
"bus master." The master device controls the bus when communicating with
another device on the bus, termed the "slave." A typical example of this
relationship is the processor, as master, fetching an instruction from mem
ory (which is always a slave). Another example is the disk, as master, trans
ferring data to memory, as slave.

Interlocked Communication-Communication on the Unibus is interlocked
so that for each control signal issued by the master device, there must be a
response from the slave in order to complete the transfer. Therefore, com
munication is independent of the physical bus length and the response time
of the master and slave devices. The maximum transfer rate on the Unibus
is one 16-bit word every 750 nanoseconds, or 1.3 million 16-bit words per
second~

5

Dynamic Master-Slave Relation--:Master-slave relationships are dynamic. The
processor, for example, may pass bus control to a disk. The disk, as master,
could then communicate with a slave memory bank.

Since the Unibus is used by the processor and all I/O devices, there is a
priority structure to determine which device gets control of the bus. There
fore, every device on the Unibus which is capable of becoming bus master

. has a priority assigned to it. When two devices which are capable of becom
ing a bus master request use of the bus simultaneously, the device with the
higher priority will receive control first. Details of what conditions must be
satisfied before a device will get control of the bus are given in the section
on System Interaction.

KAll CENTRAL PROCESSOR-There are four major features which are of
particular interest to the programmer: I), the General Registers; 2), the
Processor Status Word; (3), the Addressing Modes; and 4), the Instruction
Set. The addressing modes and the instruction set of the PDP-II processor
will be discussed in detail in Chapters 3 and 4.

General Registers-The KAll processor contains eight I6·bit general regis
ters. These eight general registers (referred to as RO, RI, ... ' .. R7) may
be used as accumulators, as index registers, or as stack pointers. One of
these registers, R7, is resenied as a program counter (PC). Generally, the
PC holds the address of the next instruction, but it may point to data 'or
to an address of data. The register R6 has the special function of processor
stack pointer.

, '

Central Processor Status Register-The Central Processor Status Register
(PS) contains information on the current .priority of the processor, the result
of previous operations, and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The priority of the
central processor can be set under program control to ajiY-oneoTe@it.
levels. This information is held in bits 5, 6; and 7 of the PS.
Four bits of the PS are assigned to mo'nitoring different results of previol,ls
instructions. These bits are set as follows:

Z-if the result was zero
N-if the result was negative
C-if the operation resulted ,in a carry from the most significant bit.
V-if the operation resulted in an arithmetic overflow

The T bit is used in program debugging and can be set or cleared under pro
gram control. If this bit is set, when an instruction is fetched from memory
a processor trap will be caused by the completion of the instruction's
execution.

7 • o

Central Processor Status Register (PS)
CORE MEMORY-The PDP-ll allows both I6-bit word and a-bit byte ad
dressing. The address space may be·filled by core memory and peripheral
deyice registers. The top 4,096 words generally are reserved for peripheral
device registers. The remainder of address space can be used for read-write
core memory or read-only core memory.

Read-write core memory is currently available in 4,096 I6-bit word segments.
This memory has a cycle time of, .,t,,?microseconds and an access time of
500 nanoseconds: It is a standard part of a PDP-ll/20 system.

6

Read-only core memory (ROM) is available in 1,024 16 bit-word segments_
The access time of the ROM is 500 nanoseconds_ Memory is also available in
256 16-bit word segments with a 2_0 microsecond cycle time_ 1,024 words
of read-only memory as well as 256 words of read-write memory mount in
a single System Unit and are a standard part of the PDP-ll/I0 system_

PERIPHERAL DEVICE5--The ASR-33 Teletype with low-speed paper tape
reader and punch is provided in the basic PDP-ll/20 system_ Options for the
PDP-ll include a paper tape reader capable of reading 300 characters per
second, a paper tape punch with an output capacity of 50 characters per
second, . and additional Teletype units. Provision is made for the addition
of numerous. peripheral devices. These include standard DEC peripherals as
well as other devices which will be unique to the PDP-ll_,

SYSTEM INTERACTION
At any point in time only one device can be in control of the bus, or be bus
master. The master communicates with another device on the bus which is
called the slave_ Usually, the established master will communicate with the
slave in the form of data transfers_

Full 16-bit words or 8-bit bytes of information can be transferred on the bus
between the master and the slave. The inforniation can be instructions, ad
dresses, or data. This type of operation occurs when the processor, .as
master, is fetching instructions, operands, and data from memory, and re
storing the results into memory after execution of instructions. Direct data
transfers occur between a disk control and memory.

TRANSFER OF BUS MASTER-When a device (other than the central pro
cessor) is capable of becoming bus master and requests use of the bus, it is
generally for one of two purposes: 1) to make a non-processor transfer of
data directly to or from memory; or 2) to interrupt program execution and
force the processor to branch to a specific address where an interrupt
service routine is located.

PRIORITY STRUCTURE-When a device capable of becoming bus master
requests use of the bus, the handling of that request depends on the loca
tion of that device in the priority structure. These factors must be considered
to determine the p~iority of the request:

L The processor's priority can be set under program control to one of
eight levels using bits 7, 6, and 5 in' the processor status register.
These three bits set a priority level that inhibits granting of bus re
quests on lower levels_

2_ Bus requests from external devices can be made on one of five re
quest lines. A non-processor request (NPR) has the highest priority,
and its request is honored by the processor between bus cycles of
an instruction execution. Bus request 7 (BR7) is the next highest
priority, and BR4 is the lowest. The four lower level priority requests
are honored by the processor between instructions. When the pro
cessor's priority is set to a level, for example 6, all bus requests on
BR6 and below are ignored.

3_ When more than one device is connected to the same bus request
(BR) line, a device nearer the central processor has a higher priority

. than a device farther away. Any number of devices can be connected
to a given BR or NPR line.

Once a device other than the processor has control of the bus, it may do
one of two types of operations: 1) data transfers, 2) Interrupt operations.

7

i\\.." .. ,;.~ ~):,
NPR Data Transfers-NPR data transfers can be made between any two
peripheral devices without the supervision of the processor. Normally, NPR
transfers are between a mass storage device, such as a disk, and core memo
.ory. The structure of the bus also permits device·to-device transfers, allowing
customer-designed perip~eral controllers to access other devices such as
disks directly. .

An NPR device has very fast access to the bus and can transfer at high data
rates once it has control. The processor state is not affected by the transfer;
therefore the processor can relinquish control while an instruction is in
progress. This can occur at the end of any bus cycle except in between a
read-modify-write sequence. (See Chapter 8 for details). In the PDP-lI, an
NPR device can gain bus control in 3.5 microseconds or less. An NPR device
in control of the bus may transfer l6-bit words from memory at memory
speed or every 1.2 microseconds in the PDP-lI/20 or every 1.0 microseconds
in the PDP-lI/lO.

Interrupt Operations-Devices that request interrupts after getting bus con
trol on the bus request lines (BR7, BR6, BR5, BR4) can take advantage of
the power and flexibility of the processor. The entire instruction set is avail
able for manipulating data and status registers. When a device servicing
program must be run, the task currently under way in the central processor
is interrupted and the device service routine is initiated. Orice the device
request has been satisfied, the processor returns to the interrupted task.

In the PDP·lI, the return address for the interrupted routine and the proces
sor status word are held in. a "stack." A stack is a dynamic sequential
list of" data with special provision for access from one end. A stack is also
called a "push down" or "LIFO" (Last-In First-Out) list. Storage and reo'
trieval from stacks is called "pushing"~ and "popping" respectively. These
operations are illustrated in Figure 2-1.

In the PDP-lI, a stack is automatically maintained by the hardware for inter
rupt processing. Thus, higher level requests can interrupt the proG(:)ssing of
lower level interrupt service, and automatically return control to the· lower
level interrupt service routines when the higher level servicing is completed.

Here is an example of this procedure. A peripheral requires service and
requests use of the bus at one of the BR levels (BR7, BR6, BR5, BR4).The
operations undertaken to "service" the device are as follows:

MEM~ {

'-. AN-E-MFrr y
STACK

~
4. ANOTHER

PUSH

2. PUSHING A
DIITUM ONTO
THE STACK

i2
~
~
5. POP

3.PUSHING ANOTHER
DIITUM ONTO THE
STACKS'

~
6. PUSH

Fig 2·1 Illustration of Push and Pop Operations

8

1. Priorities permitting, the processor relinquishes the bus to tl
device.

2. When the device has control of the bus, it sends the processor
interrupt command with the address of the words in memory c(
taining the address and status of the appropriate device serv
routine.

3, The processor then "pushes"-first, the current central proces~
status (PS) and then, the current program counter (PC) onto t

. processor stack.
4. The new PC and PS (the "interrupt vector") are taken from the loc

tion specified by the device and the next location, and the devi

1 PROCESS" IS RUNNING 0 bd
STACK POINTER (SPI 400
POINTING TO LOCATION
P0

SP-P0
PROGRAM

2. INTERRUPT STOPS
PROCESS 0 WITH
PC=PC0 AND STATUS:
PS0 STARTS PROCESS 1

3 PROCESS 1 USES STACK
FOR TEMPORARY
STORAGE (TE0 ,TE,)

400. f--------1

sp- PC0
f--P-,-s.:---------1

P0 f--------1
PROGRAM

40.

4, PROCESS 1 INTERRUPTED
WITH PC=PC, AND
STATUS: PS,
PROCESS 2 IS STARTED

40.

SP-

PO

5 PROCESS 2 COMPLETES

rr;~~I:S~JII~~~:~~~N 400
PC IS RESET TO PC, AND
STATUS IS RESET TO PS,
PROCESS 1 RESUMES

SP-

P0

PC1

PS1

TE1

TE.

PC.

PS.

PROGRAM

TE1

TE.

PC.

PS.

PROGRAM

6 PROCESS I RELEASES
THE TEMPORARY
STORAGE HOLDING
TE0 AND TEl

4 •• 1------1
SP_ TEl

TE0

Po. sp- PC0

PS. PS. P.
PROGRAM P0 PROGRAM

7. PROCESS I COMPLETES 0 6:d
~iI OPERATION WITH AN 400:' ,

PC IS RESET TO PC0
AND STATUS IS RESET
TO PS0 SP _P0:
PROCESS 0 RESUMES PROGRAM

Figure 2·2 Nested Device Servicing

9

service routine is begun. Note that those operations all occur auto·_
matically and that no device-polling is required to determine which
service routine to execute.

5_ 7.2 microseconds is the time interval between the central processor's
receiving the interrupt command and the fetching of the first instruc
tion. This assumes there were no I\IPR transfers during this time.

6. The device service routine can resume the interrupted process by
executing the RTI (Return from Interrupt) instruction which "pops"
the processor stack back into the PC and PS. This requires 4.5
microseconds if there are no intervening NPR's.

7. A device service routine can be interrupted in turn by a sufficiently
high priority bus request any time after completion of its first in
struction.

8. If such an interrupt occurs, the PC and PS of the device service
routine are automatically pushed into the stack and the new device
routine initiated as above. This "nesting" of priority interrupts can
go on to any level, limited only by the core aV;iilable for the stack_
More commonly, this process will nest only four levels deep since
there are four levels of BR signals. An example of nested device
servicing is shown in Figure 2-2. A rough core map is given for each
step of the process. The SP points to the top word of the stack as
shown.

10

CHAPTER 3

ADDRESSING MODES
Most data in a program is structured in some way-in a table, in a stack, in
a table of addresses, or perhaps in a small set of frequently· used variables
local to a limited region of a program. The PDp·11 handles these common
data structures with addressing modes specifically designed for each kind
of access. In addition, addressing for unstructured data is general enough
to permit direct random access to all of core.

Addressing in the PDp·l1 is done through the general registers. Programs
requiring several stacks can use the general registers for stack pointers.
Those requiring many local variables can use general registers as accumu·
lators. The general registers can be used interchangeably as index registers
or as sequential list pointers to access tabular data. Address arithmetic may
be done directly in the general registers.

SINGLE OPERAND ADDRESSING
PDp·l1 instruction words contain a 6·bit address field divided into two sub·
fields selecting the general register and the mode of generating the effective
address.

OP FIELD AOORESS FIELD

I I I I I I I I I I I MODE I REGISTER I
INSTRUCTION WORD 110 BITS)

The register subfield specifies which of the eight general registers is to be
used in the address calculation. The mode subfield indicates how this register
is to be used in determining the operand. These modes will be described
in the following paragraphs.

GENERAL REGISTER ADDRESSING-The general registers can be used as
simple accumulators for operating on frequently·accessed variables. In thiS
mode, the operand is held directly in the general register. The general reg·
isters are in fast memory, resulting in a speed improvement for operations
on these variables.

PAL·l1, the PDp·l1 assembler, interprets instructions of the form

aPR R
as general register operations. R has been defined as a register name and
aPR is used to represent a general instruction mnemonic. The address field
for general register operations is

I • I I R I I
ADDRESS FIELD- GENERAL REGISTER

MODE
(MODE IS INDICATED AS AN OCTAL DIGIT)

DEFERRED ADDRESSING
Operands that are pointed to by addresses (indirect or deferred) are 'de·
noted to the assembler by the @ symbol. Thus, instructions of the form .

aPR @R or aPR (R)

specify deferred register addressing and have the following address field.

I 1 I I R I I
ADDRESS fiELD-DEFERRED REGISTER

MODE

11

INDEXED AND DEFERRED INDEXED ADDRESSING-The general registers
may be used as index registers to permit random access of items in tables or
stacks of data. Instructions of the form

OPR X(R)
specify indexed mode addressing. The effective address is the sum of X
and the contents of the specified general register, R.

The index word containing X follows !he instruction word.

ADDRESS FIELD-INDEXED MODE

I I I ·, I I I R I INSTRUCTION , ______________ -',--I,-,,-J,L...-L-, -L., -1.., --l
,WORD

INDEX WORolL...-__________________ ----'

INDEXED ADDRESSING

Index mode addressing can be deferred to permit access of data elements
through tables or stacks of their addresses. The address field for index de·
ferred mode is

I 7 I , I R I ,
ADDRESS FlELD- DEFERRED INDEXED

MODE

It is specified by instructions of the form

OPR @X(R)

AUTOINCREMENT AND DEFERRED AUTOINCREMENT ADDRESSING-Auto·
increment addressing provides for automatic stepping of a pointer through
sequential elements of a table of operands. In ,this mode, the address of
the operand is taken from the general register and then the contents of the
reglSter-are'stepped'(incremented by one or two) to address the next word or
byte depending upon whether the instruction operates on byte or word data.
Instructions of the form

OPR (RH
specify autoincrement addressing. The address field for autoincrement ad
dressing is

, I 2 J , I· I ,
ADDRESS FIELo- AUT01NCREMENT

This mode may also be deferred. Instructions of the form

OPR @(RH
specify deferred autoincrement addressing and assemble with the following
address field. In this case, the register points to a location which contains
the effective address of the operand.

1"', -I-'-I--r,-, -. -,"
ADDRESS FIELD - AUTOINCREMENT

OEFERRED MODE

AUTODECREMENT AND DEFERRED AUTODECREMENT ADDRESSING
Autodecrement addressing steps the specified general register to the next

12

(decrement by two) address and uses the new contents of the general reg·
ister as the operand address. Instructions of the form

OPR -(R)

specify autodecrement addressing. The address field for autodecrement ad·
dressing is

I I' I I I R I I
ADDRESS FIELD- AUTO INCREMENT

MODE

This mode also may be deferred and specified by instructions of the form
OPR @ -(R). When deferred the address field is

STACK PROCESSING

I I 5 I I I R I I
ADORESS FIELO-AUTOtNCREMENT

DEFERRED MOOE

The combination of autoincrement addressing in which the general register is
stepped forward after the operand address is determined and autodecrement
addressing in which the general register is stepped backward before the
operand address is determined is the basic requirement for convenient low
overhead stack operations.

The PDP·ll has extensive stack processing capabilities. The stack pointer
SP (R6), maintains a stack for the nested handling of interrupts and sub·
routine calls. All of the general registers can maintain stacks under program
control. Elements in the middle of stacks may be accessed through 'indexed
addressing. This provides for convenient access of dynamically assigned
temporary storage, especially useful in nested procedures.

USE OF THE PC AS A GENERAL REGISTER
There are special implications in the use of the addressing modes already
described when applied to the PC (that is, to R7). The use of the PC with
the addressing modes described above generates immediate, direct, relative,
and deferred relative addressing.

IMMEDIATE ADDRESSING-Immediate addressing provides time and space
improvement for access of constant operands by including the constant in
the instruction, The instruction word referencing an immediate operand
specifies autoincrement addressing through the program counter. The ad·
dress field would be

I 2 I I 1 I I
ADDRESS FIELD-IMMEDIATE MODE

The program counter points to the word after the instruction word following
the instruction fetch. The contents of this word are therefore used as the
operand and the program counter is advanced to the next word. PAL·ll
recognizes address expressions of. the form "# n" as immediate operands
and codes them with the address field shown above followed by a word
of data.

A full word is assembled for immediate operands even in byte instructions
so that instruction words are always fetched from even locations.

ABSOLUTE ADDRESSING-The contents of the location following the instruc·

13

tion word may be taken as the address of an operand by specifying deferral
in immediate mode addressing. That is, instructions of the form

OPR @#A

refer to the operand at address A. The assembler places address expressions
of this form into an instruction with address field .

I I 3 I I I 1 I I
AODRESS FIELD-ABSOLUTE MODE

followed by a word containing the operand address.

RELATIVE ADDRESSING-Relative addressing specifies an operand address
relating the program counter to the referenced instruction location. This is
done by using the PC as a base register. The offset, which is calculated by
subtracting the program counter's contents from the address of the refer·
enced location, is !~t~Lned_ in. the index word of the instruction. The as·
sembler operates on instructions of the form:

OPR A
(where A has not been assigned as a name of a general register) as an
instruction word with the address field

I I· I I I 1 I I
AOORESS FIELD-RELATIVE MODE

followed by·an index word of the form

I A-ADDRESS OF" THIS W0R0-21

DEFERRED RELATIVE ADDRESSING-Deferral of relative addressing permits
access to data through memory locations holding operand addresses. The
"@" character specifies deferred addressing; i.e., OPR @A. The address field
for deferred relative addressing is

I I 1 I I I 1 I I
AOORESS FIELD-DEFERRED

RELATIVE MODE

USE OF THE SP AS A GENERAL REGISTER
The processor stack pointer will in most cases be the general register used
for PDP·ll stack operations. Note that -(SP) will push data onto the stack,
that (SP)+ will pop data off the stack, and that X(SP) will permit random
access of items on the stack. Since the SP is used by the processor for inter
rupt handling, it has a special attribute:, autoincrements and autodecrements
are always done in steps of two. Byte operations using the SP in this way
will simply leave odd addresses unmodified.
simply leave odd addresses unmodified.

DOUBLE OPERAND ADDRESSING.
Operations which imply two operands such as add, subtract and compare
are presented in the PDp·ll by instructions which specify two addresses. The
instruction word for such operations is of the form

Instruction Word-Double Operand Instructions

14

and is fellewed by index werds and immediate eperands fer the seurce and
des.tinatien address fields as apprepriate. Seurce address calculatiens are
perfermed befere destinatien address calculatiens. The addressing medes are
as fer single eperand instructiens, and are described belew. Addressing
medes can be mixed in the same instructien. The seurce address and des·
tinatien address can be anv cembinatien ef medes. Since each eperand mav
be anywhere in cere sterage er in the general registers, eacn memery lecatien
is thus effectively previded with the arithmetic capabilities ef an accumulater.
Further, since peripheral device registers and memery lecatien are addressed
in the same way, the centents ef peripheral data buffers can be stered er
leaded directly to. and frem memery witheut use ef any general register. This
means that interrupt reutines can be executed witheut saving and restering
any of the general registers.

GENERAL REGISTER ADDRESSING

OPR RX,RY

is interpreted by the assembler as a register mede, and signifies that the
seurce address is a general register, as is the destinatien address. -

DEFERRED ADDRESSING

OPR @RX, @RY
er

OPR (RX), (RY)

-specifies that the seurce register centains the effective address ef the seurce
eperand, and the destinatien register centains the effective address ef the
destinatien eperand.

INDEXED AND DEFERRED INDEXED ADDRESSING

OPR A(RX), 8(RY)

specifies that the effective address of the seurce eperand is given by legically
adding (in 2's cemplement) the value ef A to. register RX. The destinatien
address is defined by the sum ef the value ef 8 and the centents ef register
RY.
When the instructien is ef the ferm

OPR @A(RX), @8(RY)

then theabeve eperatiens define the address ef the lecatien which in turn
centains the effective address, rather than being the effective address.

AUTOINCREMENT AND DEFERRED AUTOINCREMENT ADDRESSING

OPR (RX) +, (RY) +
implies that the effective address ef the seurce eperand is in register RX
and the effective address ef the destinatien eperand is in register RY. After
the addresses have been fetched frem the registers, the registers are incre·
mented autematically by two. (er by ene fer byte instructiens).

OPR @(RX) +, @(RY) +
implies the same as above, except that the addresses in the registers are the
addresses ef lecatiens which in turn centain the addresses of the eperands.

15

AUTODECREMENT AND DEFERRED AUTODECREMENT ADDRESSING

OPR - (RX), - (RY)

uses the registers as in autoincrement mode except that the contents are
decremented by two (or one for byte instructions) before the contents of
the registers are used as operand addresses.

OPR @-(RX), @-(RY)

uses the registers as in autodecrement mode except that the contents of
the register is a pointer to the address of the operand rather than to the
operand itself.

IMMEDIATE ADDRESSING

OPR #C, DEST ADDRESS

is a special case of

OPR (RX)-I--, DEST ADDRESS

where RX is Register 7 (tile PC). In this case, the source address is the
memory location following the instruction and the constant "C" is the
operand.

ABSOLUTE ADDRESSING

OPR @ # A, DEST ADDRESS

is a special case of

OPR @(RXH, DEST ADDRESS

where RX is Register 7. The memory location following the instruction con· .
tainsthe effective address (points to the operand).

RELATIVE AND DEFERRED RELATIVE ADDRESSING

OPR A, DEST ADDRESS

is a special case of

OPR X(RX), DEST ADDRESS

where RX is Register 7 and X is an offset which, when logically added to
the PC (which does not change the contents of the PC), results in the ef
fective address. This mode aids the generation of relocatable programs.

OPR @A, DEST ADDRESS

is the equivalent of

OPR @X(RX), DEST ADDRESS

which differs from relative addressing in that the offset from the PC points
at a location containing the address of the operand rather than the operand
itself.

Deferred register addressing may also be selected -in PAL-ll by the form
OPR (R).

16

CHAPTER 4

I NSTRUCTION SET
This chapter presents the order code for the PDP-l1. Each PDP-l1 instruc
tion is described in terms of five parameters: operation, effect on condition
codes, base timing, assembler mnemonics, and octal representation. Special
comments are included where appropriate.

NOTATION
The following notations will be used in this section:

(XXX) The contents of XXX
src The Source Address
dst The Destination Address
/I. Boolean "AND" Function
V Boolean "OR" Function
V Boolean "Exclusive OR" Function

Boolean 'NOT" Function (Compl~ment)
-7 "becomes"
t "is popped from the stack"
..J, "is pushed onto the stack"

INSTRUCTION TIMING
ThePDP-l1 is an asynchronous processor in which, in many cases, memory
and processor operations are overlapped. The execution time for an instruc
tion is the sum of a basic instruction time and the time to determine and
fetch the source and/ or destination operands. "(he following table shows the
addressing times required for the various modes of addressing source and
destination operands. The instruction time for each operation is given
(throughout this chapter) for the 11/20 configuration. All times stated are
subject to ±20% variation.

ADDRESSING FORM
(src or dst)

R
(R) or @R
(R) +
-(R)
@(R) +
@-(R)
BASE(R)
@BASE(R) or @(R)

src (~s>t
o
1.5
1.5
1.5
2.7
2.7
2.7
3.9

TIMING

• . dst time is 0.5 JlS. less than listed time if instruction was a
CoMPare, CoMPare Byte
Bit Test, Bit Test Byte
TeST, or TeST Byte

·none of which ever modify the destination word.
t. referencing bytes at odd addresses adds 0.6Jls to src and dst times.

dst (~S)t
o
1.4*
1.4'~

1.4'~

2.6*
2·9*
2.6*
3.8*

DOUBLE OPERAND INSTRUCTION5--Double Operand Instructions are repre
sented in assembly language as:

OPR src, dst
where src and dst are the addresses of the source and destination operands
respectively. The execution time for these operations is comprised of the
source time, the destination time, and the instruction time. The source and
destination times depend on addressing modes and are described in the pre·
ceding table.

17

Arithmetic Operations-

MOVe MOV s'c, dsl 2.3 u.s

MOV ,LI..;.0-LI_L..--1._L..--1._.LI_s'_c.LI_-'---'_...L.----I_...L.d_SI-L.----'L....--L.---.J
15 12 11

Operation: (src) --,) (dst)

Condition Codes:
Z: set if (src) ='0; cleared otherwise
N: set if (src) < 0; cleared otherwise
C: not affected
V: cleared

6 5 °

Description: Moves the source operand to the destination location. The pre
vious contents of the destination are lost. The contents of the source are
not affected.

The MOV instruction is a generalization of 'load," "store," "setup," 'push,"
"pop,' and interregister transfer operations.

General registers may be loaded with the contents of memory addresses with
instructions of the form:

MOV src, R

Registers may be loaded with a counter, and pointer values with MOV in
structions:

MOV #n, R
(which loads the number n into register R)

Operands may be pushed onto a stack by:
MOV src, -(R)

and may be popped off a stack by:
MOV (RH, dst

Interregister transfers are simply:
MOV RA, RB

(RA and RB are general registers)

Memory-to·memory transfers may be done with the MOV instruction in the
general form:

MOV src, dst

ADD ADD s,c, dsl 2.311.5

AD D LI_°--1.I_L..-L_6--1.1_-'---'1_5'_c..lI_..L...----I_-L.----'L....-_IL..d_51-L._L--L.---'

15 12 II 6 5 °
Operation: (src) + (dst) --,) (dst)

Condition Codes: Z: set if result = 0; cleared otherwise
N: set if result < 0; cleared otherwise
C: set if there was a carry from the most significant bit

of the result; cleared otherwise
V: set if there was arithmetic overflow as a result of the

operation, that is, if both operands were of the same
sign and the result was of the opposite sign; cleared
otherwise

18

Description: Adds the source operand to the destination operand and stores
the result at the destination address. The original contents of the destination
are lost. The contents of the source are not affected. Two's complement addi
tion is performed.

The ADD instruction includes as special cases tile "add·to-register," "add-to
memory," and "add-register-to-register" functions:

Add-to-Register ADD src, R'
Add-to-Memory ADD R, dst
Add Register-to-Register ADD RA, RB

Arithmetic may also be done directly in memory by the general form ADD
instruction

ADD src, dst

Use of this form saves considerable loading and storing of accumulators.

Two special cases of the ADD instruction are particularly useful in compilers,
interpreters, and other stack arithmetic processes:

ADD (RH, (R)
(where R is the stack pointer)

which replaces the top two elements of the stack with their sum; and ADD
src, (R), which increases the top element of the stack by the contents of
the source address.

The "Add Immediate" operation is yet another special case of this general
ized ADD instruction:

ADD #n, dst

Immediate operations are useful in dealing with constant operands. Note
that:

ADD #n, R
steps the register R (which may be an index register) through n addresses
eliminating the need for a special "add-to-index- register" instruction.

All these special cases of the ADD instruction apply equally well to the other
double operand instructions that follow_

SUBtract SUB sre, dst 2.3JJ.s

6 I sre I I dst I SUB
15 12 11 6 5 o

Operation: (dst) - (src) -'> (dst) [in detail, (dst) + ,-- (src) + 1 -'> (dstj]
Condition Codes: Z: set if result = 0; cleared otherwise

N: set if result < 0; cleared otherwise
C: cleared if there was a carry from the most significant

bit of the result; set otherwise
V: set if there was arithmetic overflow as a result of the

operation, that is, if the operands were of opposite
signs and the sign of source was the same as the
sign of the result; cleared otherwise.

Description: Subtracts the source operand from the destination operand and
leaves the result at the destination address. The original contents of the
destination are lost. The contents of the source are not affected.

19

CoMPare CMP src,dst 2.3ll.s·

CMP LI_O_IL-~_2~~ __ ~~I_sr_c~I __ L-~ __ L--L~I~d_st~I~~~~
15 12 II 6 5 0

Operation: (src) - (dst) [in detail, (src) + ,..... (dst) + 1]
Condition Codes: Z: set if result = 0; cleared oth~rwise

N: set if result < 0; cleared otherwise
C: cleared if there was a carry from the most significant

bit of the result; set otherwise
V: set if there was arithmetic overflow; that is, operands

were'of opposite signs and the sign of the destination
was the same as the sign of the result; cleared
otherwise.

Description: Arithmetically compares the source and destination operands.
Affects neither operand. The only action is to set the condition codes
appropriately.

Boolean Instructions-These instructions have the same format as the
double operand arithmetic group. They permit operations on data at the
bit level.

Bit Set BIS src,dst 2.3ll.s

BIS I 0 I 5

15 12 tt 6 5 o

Operation: (src) V (dst) ~ (dst)

Condition Codes: Z: set if result = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared

Description: Performs "Inclusive OR" transfer between the source and des
tination operands and leaves the result at the destination address; that is,
corresponding bits set in the source are set in the destination. The original
contents of the destination are lost. The source is not affected.

Bit Clear BIC src, dst 2.9ll.s

BIC LI_°-LI_L-4-L_L-~_~I_sr_c~I_J-~_~~_d~~_t~_~~~·~1
15 12 11 6 5 o

Operation: ,..... (src) 1\ (dst) -? (dst)

Conditions Codes: Z: set if result = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared

Description: The BIC instruction clears each bit in the destination that cor
responds to a set bit in the source. The original contents of the destination
are lost. The contents of the sources are unaffected.

·There is no read/modify/write cycle in the CMP and BIT operations. This saves 0.5
I'S in all destination address modes except address mode O.

20

Bit Test

o I 3

'5 '2 11

Operation: (src) 1\ (dst)

BIT src,dst

src
I

6 5

dst
I

2.9J.l.s*

BIT
o

Condition Codes: Z: set if result = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared

Description: Performs logical "and" comparison of the source.and destination
operands and modifies condition codes accordingly_ Neither the source nor
destination operands are affected.

The BIT instruction may be used to test whether any of the corresponding
bits that are set in the destination are also set in the source or whether
all corresponding bits set in the destination are clear in the source.

Note that the operations of BIS, BIC, and BIT are parallel in that the same
mask may be used to set, clear and test the state of particular bits in a word.

BRANCHES-Branches have the instruction format

Operotian B .. lac Instruction Time

operation code

I
offset BXX

I
15 B 7 o

The offset is treated as a signed two's complement displacement to be mul
tiplied by 2 and added to the program counter. The program counter points
to the next word in sequence. The effect is to cause the next instruction to.
be taken from an address, "Ioc", located up to 127. words back (- 254
bytes) or 128 words ahead (+ 256 bytes) of the branch instruction. PAL-ll
gives an error indication in the instruction if "Ioc" is outside this range.

The PDP-ll assembler handles address arithmetic for the user and com
putes and assembles the proper offset field for branch instructions in the
form

Bxx loc
where loc is the address to which the branch is to be made. The branch
instructions have no effect on condition codes.

Unconditional Branch-

BRonch (Unconditional) BR lac 2.6J.l.s

o BR
15 8 7 o

Operation: loc -,) (PC)

Description: Provides a way of transferring program control within a limited
range with a one word instruction. The execution time is equal to the in
struction time (2.6!Ls) for the operation.

21

Simple Conditional Branches-Conditioned branches combine in one instruc
tion a conditional skip, unconditional branch sequence.

Timing for the conditional branches is shown as execution time if the con
dition is not met, followed by the execution time if the condition is met (and
a program branch occurs).

Branch on EQuollZero)

BEQ I 0 I 1 0 I

15

I 1

Operation: loc ~ (PC) if Z = 1

BEQ loc

offset
t

1.511S.2.611S

o

Description: Tests the state of the Z-bit and causes a branch if Z is set. It
is used to test equality following a CMP operation, to test that no bits set
in the destination were also set in the source following a BIT operation, and
generally, to test that the result of the previous operation was zero.

Thus the sequence

CMP A,B
BEQ C

; compare A and B
; branch if they are equal

will branch to C if A = B
. and the sequence

(A - S = 0)

ADD A,S
SEQ C

will branch to C if A + B = O.

Bronch on Not Equol(Zero)

BNE I 0 I 1 0 I

15

Operation: loc ~ (PC) if Z = 0

add A to S
branch if the result = 0

BNE loc 1.511S.2.611S

1 0
offset

B 7 o

Description: Tests the state of the Z·bit and causes a branch if the Z·bit is
clear. BNE .is the complementary operation to SEQ. It is used to test in·
equality following a CMP, to test that some bits set in the destination were
also set in the source, following a BIT and, generally, to test that the result
of the previous operation was not zero.

Branch on Minus BMI loc t.5 IlS, 2.611S

BMI I I o o 14
offset

t5 B 7 o

Operation: loc ~ (PC) if N = 1

Description: Tests the state of the N·bit and causes a branch if N is set. It
is used to test the sign (most significant bit) of the result of the previous
operation.

Branch on PLu 5 BPL loc 1.5=, 2.611S

I I offset

BPL ~~j~I~~°-L~L-~°-L~L-°~ __ ~-L~ __ ~-L~ __ ~~
15 B 7 0

22

Operation: loc ~ (PC) if N = O.

Description: Tests the state of the N·bit and causes a branch if N is clear.
BPL is the complementary operation to BMI.

Branch on Corry Set BCS lac 1.5JJ.s,2.6ILS

0, 3 14 Bes
15 8 7 o

Operation: loc ~ (PC) if C = 1

Description: Tests the state of the C·bit and causes a branch if C is set. It
is used to test for a carry in the result of a previous operation.

Branch on Corry Clear BCC loc 1.5ILs,2.6ILS

o
offset Bee

15 8 7 o

Operation: loc ~ (PC) if C = 0

Description: Tests the state of the C·bit and causes a branch if C is clear.
BCC is the complementary operation to BCS.

Branch on oVerflow Set BVSloc

2 1 4

15 8 7

Operation: loc ~ (PC) if V = 1

offset
, I

1.5JJ.S,2.6JJ.s

o
BVS

Description: Tests the state of the V-bit (overflow) and causes a branch if
the V-bit is set. BVS is used to detect arithmetic overflow in the previous
operation.

Branch on oVerflow Clear BVC loc 1.5.11.s,2.6JJ.s

o I 2 1 0
offset Bve

15 8 7 o

Operation: loc ~ (PC) if V = 0

Description: Tests the state of the V-bit and causes a branch if the V-bit is
clear. BVC is the complementary operation to BVS.

Signed Conditional Branches-Particular combinations of the condition code
bits are tested with the signed 'conditioned branches. These instructions are
used to test the results of instructions in which the c.'perands were consid
ered as signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned
comparisons in that in signed 16-bit, two's complement arithmetic the
sequence of values is as follows: .

23

largest 077777
077776

positive

000001
------- 000000

177777
177776

negative

smallest -~-----
100001
100000

whereas in unsigned 16·bit arithmetic the sequence is considered to be

highest

lowest

Branch on Less Than(Zero) BLl loc

o 2

15 B 7

Operation: loc ~ (PC) if N VV = 1

177777

000002
000001
000000

offset

1.5.LLs,2.E?11.S

o
BlT

Description: Causes a branch if the "Exclusive OR" of the N· and V·bits are
L Thus Bl T will always branch following an operation that added two neg·
ative numbers, even if overflow occurred.

In particular, Bl T will always cause a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even if overflow
occurred). Further, BlT will never cause a branch when it follows a CMP
instruction operating on a positive source and negative destination. BlT
will not cause a branch if the result of the previous operation was zero
(without overflow).

Branch on Greater than or Equal(Zero) BGE loc 1.5as,2.6as

~O~I __ i-O~ __ ~~_2~ __ ~o~I __ ~~~~0~f_fs~el~~ __ L-~~1 BGE
15 8 7 0

Operation: loc ~ (PC) if N V V = 0

Description: Causes a branch if N and V are either both cl.ear or both set.
BGE is the complementary operation to BlT. Thus BGE will always cause
a branch when it follows an operation that caused addition to two positive
numbers. BGE will also cause a branch on a zero result.

24

Branch on Less than or Equal (Zero) BLE lac

o I 3

15 8 7

Operation:.loc ~ (PC) if Z V (N V V) = 1

offset
I

1.5 ll.S, 2.6ll.s

o
BlE

Description: Operation of BlE is similar to that of Bl T but in addition will
cause a branch if the result of the previous operation was zero.

Branch on Greater Than (Zero) . BGTloc 1.5 ll.S, 2.6 u.a

o 3 offset BGT
15 8 7 o

Operation: loc ~ (PC) if Z v (N V V) = 0

Description: Operation of BGT is similar to BGE, except that BGT will not
cause a branch on a zero result.

Unsigned Conditional Branches-The Unsigned Conditional Branches pro
vide a means of testing the result of comparison operations in which the
operands are considered as unsigned values. .

Branch on Higher BHI 1.5ll.5,2.6ll.5

offset BHI
15 8 7 o

Operation: loc ~ (PC) if both C and Z = 0

Description: Causes a branch if the previous operation caused neither a carry
nor a zero result. This will happen in comparison (CMP) operations as long
as the source has a higher unsigned value than the destination.

Branch on LOwer or Some BL.OS lac 1.5ll.s,2.6ll.S

LI_'-LI~O~IL-~IL-'~IL-J--J __ ~1_4~ __ ~~ __ ~~f_fs_e~t __ L--L~~~IBlOS
15 8 7 o

Operation: loc ~ (PC) if C v Z = 1

Description: Causes a branch if the previous operation caused either a carry
or a zero result. BlOS is the complementary operation to BHI. The branch
will occur in comparison operations as long as the source is equal to, or has
a lower unsigned value than, the destination.

Comparison of unsigned values with the. CMP instruction can be tested for
"higher or same" and "higher'.' by a simple test of the C-bit. For convenience,
the mnemonics BHIS (Branch on Higher or Same) and BlOS (Branch on
lower Or Same) have been defined such that BHIS = BCC and BlO = BCS.

Bronch on Higher or Some BHIS lac 1.5ll.s,2.6ll.S

1~1-LI __ LI~O~I __ L--L1~3-L __ L-0~1 __ J-~ __ ~0_ff_s~a: __ ~~~~~I BHIS
15 8 7 0

Operation: loc ~ (PC) if C = 0

Description: BHIS is the same instruction as BCC

25

Branch on lOwer BlO lac t5us,2.6us

BlO LI_1-L1 __ ~0-LI __ L--i1_3-i __ ~1_4~ __ ~~ __ ~;_f_fs~el~~~L--L~
15 B 7 o

Operation: loc ~ (PC) if C = 1

Description: BLO is the same instruction as BCS

The following example illustrates the use of some of the instructions and
addressing modes described thus far. Two new instructions are used: INC
(INCrement) and ASL (Arithmetic Shift Left) which respectively, add 1 (INC)
and multiply an operand by 2 (ASL). Their operation is fully described later
in this chapter.

This example demonstrates the generation of a table (histogram) that shows
the frequency of occurrence of each value in another table (within a range
of values 1·100). Histogram generation (including initialization) requires
22 words. Values outside the range 1·100 are ignored.

HIST: MOV #OTABLE, RO
MOV #-100., R1

CLOOP: CLR (ROH
INC R1
BNE CLOOP
MOV # ITABLE, RO
MOV # -1000., R1
MOV # 100., R2

HLOOP: MOV (ROH, R4
BLE NOCOUNT
CMP R4, R2
BGT NOCOUNT
ASL R4
INC OTABLE (R4)

NOCOUNT: INC R1
BNE HLOOP
HALT

;set up to clear output table
;100 entries in output table
;clear next entry
;check if done
;if not, continue clearing
;set up input pointer
;Iength of table
;max input value
;get next input value
;ignore if less than or equal zero
;check against max value
;ignore if greater
;2 bytes per table entry
;increment proper element
;input done?
;if not, continue scanning
;histogram complete

The JuMP Instruction-JMP (JuMP) provides more flexible program branch·
ing then is provided with the branch instructions. Control may be transferred
to any location in memory (no range limitation) and can be accomplished
with the full flexibility of the PDP·ll addressing modes.

JuMP JMP ds1 t2us

JMP LI_0-LI~L-0~~ __ ~0-L~ __ ~~ __ ~-L~I_d_SI~I __ ~-L~
15 6 5 o

* Operation: dst ~ (PC)

Conditioned Codes: not affected

Description: Register mode is illegal in JMP instructions and will cause an
"illegal instruction" condition. (Program control cannot be transferred to a
register.) Register deferred mode is legal and will cause program control to
be transferred to the address held in the specified register. Note that instruc
tions are word data and must therefore be fetched from an even-numbered
• See footnote, P. 46.

26

address. A "boundary error" condition will result when the processor at·
tempts to fetch an instruction from an odd address. '

Deferred index mode JMP instructions permit transfer of control to the
address contained in a selectable element of a table of dispatch vectors.

SUBROUTINES-The subroutine call in the PDP·ll provides for automatic
nesting of subroutines, reentrancy, and multiple entry points. Subroutines
may call other subroutines (or indeed themselves) to any level of nesting
without making special provision for storage of return addresses at each
level of subroutine call. The subroutine calling mechanism modifies no fixed
location in memory and thus also provides for reentrancy. This allows one
copy of a subroutine to be shared among several interrupting processes.

Jump to SubRoutine

o.
t5

Operation: dst ~ (tmp)
(reg) J,
(PC) ~ (reg)
(tmp) ~ (PC)

,4

Condition Codes: not affected

JSR. reg, dst 4.4 u.s

reg
I dst I JSR

9 8 6 5 o

(tmp is an internal processor register)
(push reg contents onto processor stacl()
(PC holds location following JSR; this address

now put in reg)

Description: Execution time for JSR is the sum of instruction and destination
times. In execution of the JSR, the old contents of the 'specified register,
(the "linkage pointer"), are automatically pushed onto the processor stack
and new linkage information placed in the register~ Thus subroutines nested
within subroutines to any depth may all be called with the same linkage
register. There is no need either to plan the maximum depth at which any
particular subroutine will be called or to include instructions in each routine
to save and restore the linkage pointer. Further, since all linkages are saved
in a reentrant manner-on the processor stack-execution of ,a subroutine
may be interrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine can then be
resumed,when other requests are satisfied. This process (called nesting) can
proceed to any level.

A subroutine called with a JSR reg, dst instruction can access the arugments
following the call with either autoincrement addressing, (reg) +, (if argu
ments are accessed sequentially) or by indexed addressing, X(reg), (if ac
cessed in random order). These addressing modes may also be deferred,
@(reg)+ and @X(reg) if the parameters are operand addresses rather'than
the operands themselves.

JSR PC, dst is a special case of the PDP-ll subroutine call suitable for
subroutine calls that transmit parameters through the general registers. No
register except the program counter is modified by this call.

Another special case of the JSR instruction is JSR PC, (SP)+ which ex
changes the top element of the processor stack and the contents of the
program counter. Use of this instruction allows two routines to swap pro
gram control and resume operation when recalled where they left off. Such
routines are called "co-routines."

Return from a subroutine is done by the RTS instruction. RTS reg loads the
contents of the reg into the PC and pops the top element of the processor
stack into the specified register.
* See footnote, P. 46.

27

ReTurn from Subroutine RTS reg 3.5us

RTS ~1_O~I~~_O~~ __ ~O~ __ ~~_2~ __ ~-L_0-L __ L--Lr_eg~-J
15 3 2 o

Operation: (reg) ~ (PC)
, t (reg)

Condition Codes: not affected

Description: Loads content of reg into PC and pops the top element of the
processor .stack into the specified register. Execution time for RTS is equal
to the basic instruction time.

Return from a subroutine is typically made through the same register that
was used in its call. Thus, a subroutine called with a JSR PC, dst exists
with a RTS PC and a subroutine called with a JSR R5, dst, picks up param
eters with addressing modes (R5)+, X(R5), or @X(R5) and finally exists
with aRTS R5.

Programming Examples of the Use of Subroutines-

1. Passing arguments in subroutine calls-The subroutine TOLER
checks each element in an array of unsigned integers to determine
whether any elements are outside specified limits. If all are within
tolerance, the value 0 is returned in the register RO. If TOLER find
an element out of tolerance, it returns the address of the bad
element + 2 in RO. The ·calling sequence for TOLER is:

JSR R5, TOLER
• WORD ARRAY ;address of array to be

;checked (·WORD expres·
;sion-defines a word equal
;to the value of the expres
;sion)

• WORD -LENGTH
WORD HILIM

;minus # of items in array
;upper limit of tolerance
;Iower limit of tolerance
;subroutine returns here

· WORD LOLIM

;Tolerance Check·Array Elements Within Limits?
TOLER: MOV (R5)+, RO ;get array address

TLOOP:

TEXIT:

MOV (R5)+, RI ;get minus the length
MOV (R5)+, R2 ;get high tolerance limit
MOV (R5)+, R3 ;get low tolerance limit
MOV (RO)+, R4 ;get next element of array
CMP R4, R2 ;check it against high limit
BHI TEXIT ;Ieave routine if higher
CMP R4, R3 ;check it against low limit
BLO TEXIT ;Ieave routine if lower
INC RI ;increment count, check

BNE TLOOP
CLR RO
RTS R5

28

;whether at end of array
;continue if not at end yet
;exit with RO = 0 if all ok
;return, RO holds pointer
;or 0

The instruction INC Rl increases the contents of Rl by 1 and the instruction
CLR RO zeroes the register RO

2. Saving and restoring registers on the stack-This subroutine pushes
RO-R5 onto the stac;:k. It is called by: -

SAVE:
JSR R5. SAVE

MOV R4. -(SP)
MOV R3. -(SP)

MOV R2. -(SP)

MOV Rl. -(SP)
MOV RO. -(SP)

JMP @R5

;JSR. X(PC)
;R5 was pushed by the JSR
;R5 will be at the bottom
;of the stack
;R4. R3. R2.Rl. and RO
;in order
;will be above it
;RO is at the top of the
;stack
;R5 holds the return ad
;dress

The following example illustrates a subroutine to restore RO-R5 from the
stack.

REST: TST (SP) +
MOV (SPH. RO
MOV (SPH. Rl
MOV (SPH: 'R2
MOV (SPH. R3
MOV (SPH. R4
RTS R5

;this increments the SP by 2
;the registers are restored
;in reverse order to that in
which
;they were put on the stack
;R5 is loaded into the PC
and the old R5 restored

The TST operation is equivalent to comparing the operand with O. i.e .•
TST opr = CMP opr. #0

The only effect is to set the appropriate condition codes.

The operation TST (SP)+ removes the top element on the stack At the time
it is used. the top element holds the contents of R5 that were saved by the
call to REST. Since R5 is to be loaded with the value saved on the stack
by SAVE. this information is not needed.

3. Stacks. recursion. and nesting-The following subroutine converts
an unsigned binary integer to a string of typed ASCII characters. In
the routine. the remainders of successive divisions by 10 are saved
and then typed in reverse order.

The operation of the subroutine is to call a part of itself (begin
ning with DECREM) repeatedly until a zero quotient is calculated
by an integer divide subroutine. IDIVR. At each iteration. the dividend
is divided by 10. the resulting quotient replaces the dividend. and
the remainder is pushed onto the processor stack. The processor
stack thus holds interleaved data (remainders) and control informa
tion (return addresses from calls to DECPNT and DECREM) when
the quotient finally comes up as 0 and the branch is made to
DECTTY. The portion of the -routine beginning at DECTTY then pops
a remainder from the stack. coriverts it to an ASCII character. types
it and then returns control to DECTTY (with RTS PC) until the stack
is reduced finally 1:.0 its state immediately after the call to DECPNT.

29

At this point execution of RTS PC returns control to the main
program.

A character is typed in DECTY by loading the teleprinter buffer
(TPB) and waiting for the teleprinter READY flag, the most significant
bit of the low·order byte of the teleprinter status word (TPS),
to be set.

The symbols CR and LF are assumed equal to the ASCII repre·
sentations for carriage return and line feed respectively.

This' subroutine types the unsigned integer in RO. It illustrates recursion and
the use of stacks.

DECPNT:
DECREM:

DECTTY:

TTYOUT:

TTYLUP:

TTYLF:

MOV #10., R2
JSR PC, IDIVR

MOV Rl, ~(SP)

TST RO

BEQ,DECTIY

JSR PC, DECREM
MOV (SPH, RO
ADD #60, RO
MOV RO, TPB

TST TPS

BPL TTYLUP

CMP #CR, RO

BEQ TTYLF

RTS PC

MOV #LF, TPB
BR TTYLUP

;set up divisor of 10
;subroutine divides (RO) by
;(R2)
;quotient is in RO, remain·
;der is in Rl
;after pushing remainder
;onto stack test quotient
;if the 'quotient is 0, we're
;done getting remainders
;if not try again
;get next remainder
;make an ASCII character
;type the ASCII character in
;RO
;wait for the teleprinter to
;be done
;TPS is negative when the
;TP is done
;was the character of a car·
;riage return
;if not: return, if so; get a
;line feed
;returns either to DECTTY
;or main program
;type a line feed
;and wait for it to be com·
;pleted

4. Multiple entry points-In the example that follows, the subroutines
described above are used to type out all the entries in a table of
unsigned integers that are not within specified tolerance.

The subroutine TOLER is entered at TOLER for initialization and at
TLOOP to pick up each bad entry of the array after the first one.

The subroutine DECPNT is entered at DECPNT to print the value of
the unsigned binary number held in RO and at TTYOUT to print the
ASCII character held in RO. TTYOUT prints the carriage return, line
feed sequence when it sees the carriage return character.

This routine types all out·of·tolerance elements of an integer array.
The program starts at TYPOUT.

30

TYPFIN:

TYPOUT:

HALT

JSR R5, TOLER

· WORD ARRAY

;suspend processor opera·
;tion, wait for key continue
;get address of bad item;
;initialization entry

· WORD -LENGTH
;address of array
;·Iength of array
;high limit

TYPCHK:

· WORD HILIM
· WORD LOLIM
SEQ TYPFIN

JSR R5, SAVE

MOV -(RO), RO

JSR PC, DECPNT
MOV #CR, RO
JSR PC, TTYOUT

JSR R5, REST
JSR R5, TLOOP

BR TYPCHK

SINGLE OPERAND INSTRUCTIONS-Single
sented as:

OPeRation OPR dst

operation code
I I I I

15

;Iow limit
;Z·bit is set if no more out
;of limits
;an element is out of limits,
;save registers
;RO holds address + 2, get
;operand into RO
;print out number
;type CR, L:F
;note use of second entry
;point
;restore registers
;continue searching array,
;alternate entry
;another bad element?

Operand Instructions are repre·

6 5

dst
I

Instruction Time

OPR
o

The execution time for single operand instructions is the sum of the basic
instruction time and destination address time for the operation.

General Operations-

CLeaR CLR dst 2.3 u.s

I 0 I 1 0 1 5 0
dst

15 6 5 0

Operation: 0-> (dst)

Condition Codes: Z: set
N: cleared
C: cleared
V: cleared

Description: Zeroes the specified destination.

tNCrement INC dst 2.3 u.s

I 0 I 0 1 5 2 1 dst I
15 6 5

Operation: (dst) + 1 ~ (dst)

Condition Codes: Z: set if the result is 0; cleared otherwise.
N: set if the result is < 0; cleared otherwise
C: not affected
V: set if (dst) held 077777; cleared otherwise

Description: Adds 1 to the contents of the destination.

31

0

CLR

INC

DECrement DEC dst 2.3.u.s

DEC 1..1 _0...J11...-..L.._o ...L1_...L....--L_5--L_.L---L._3--L._L-..L..---JIL..d_St....lI_...L....---L---J

15 6 5

Operation: (dst) - 1 ~ (dst)

Condition Codes Z: set if the result is 0; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: not affected
V: set if (dst) was 100000; cleared otherwise

Description: Subtracts 1 from the contents of the destination.

°

NEGate NEG dst 2.3.u.s

NEG 1 ° I I ° I
15

5
I

Operation: - (dst) ~ (dst)

Condition Codes: as in SUB dst, #0

4
dst

I I
6 5

Z: set if the result is 0; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: cleared if the result is 0; set otherwise

°

V: set if the result is 100000; cleared otherwise

Description: Replaces the contents of the destination address by their two's
complement. (However, 100000, is replaced by itself-in two's complement
notation the most negative number has no positive counterpart.)

TeST

TST 1 ° I I 0 I

t5

Operation: (dst) - 0

TST dst

5 I

Condition Codes: as in CMP dst, #0

7 I dst I
6 5

Z: set if the result is 0; cleared otherwise

2.3JJ.s

0'

N: set if the result is < 0; cleared otherwise
C: cleared
V: cleared

Description: Sets the condition codes Z and N according to the contents of
the destination address.

COMplement

COM I ° I I ° I
15

Operation: ,- (dst) ~ (dst)

COM dst

5 I I· ,dS! I
6 5

Condition Codes: Z: set if result is 0; cleared otherwise

2.3.u.s

o

N: set if most significant bit of result set; cleared other
wise

C: set
V: cleared

Description: Replaces the contents of the destination address by their
logical complement (each bit equal to 0 is set and each bit equal to 1 is
cleared). .

• NO.read/modify/write cycle occurs. Subtract 0.5 ~ec except for addres~ mode O.

32

Multiple Precision Operations-It is sometimes convenient to do arithmetic
on operands considered as multiple words. The PDP-ll makes special pro
vision for such operations with the instructions ADC (ADd Carry) and SBe
(SuBtract Carry).

ADC dst 2.3JJ.s

5 5 ADC
15 6 ·5 D

Operation: (dst) + (C) -'> (dst)

Condition Codes: Z: set if result = 0; cleared otherwise
N:set if result < 0; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared other

wise
V: set if (dst) was 077777 and. (C) was 1; cleared other

wise.

Description: Adds the contents of the C-bit into the destination. This permits
the carry from the addition of the two low-order words to be carried into the
high-order result.

Double precision addition may be done with the following instruction se
quence:

ADD AO, 80
ADC Bl
ADPA1, Bl

SuBtract Corry

15

. I 5

Operation: (dst) - (C) -'> (dst)

add low-order parts
add carry into high-order
add high-order parts
SBC dst

1 6

6 5

dst
I

Condition Codes: Z: set if the result 0; cleared otherwise
N: set if the result < 0; cleared otherwise

2.3JJ.s

SSC
a

C: cleared if the result is 0 and C = 1; set otherwise
V: set if the result is 100000; cleared otherwise

Description: Subtracts the contents of the C-bit from the destination_ This
permits the carry from the subtraction of two low-order words to be sub
tracted from the high-order part of the result.

Double· precision subtraction is done by:

SUBAO, BO
·SBC Bl
SUB AI, Bl

Double precision negation is accomplished with:

NEG BO
SBC Bl
NEG Bl

;negate low-order part; sets C unless BO = O·
;makes "NEG Bl" = "COMB Bl" unless BO = 0
;negate high-order part

Rotates-Testing of sequential bits of a word and detailed bit manipulation
are aided with rotate operations. TheinstructionsROR (ROtate Right) and
ROl (ROtate left) cause the C-bit· of the status register to be effectively
appended to the destination operand in circular bit shifting_

33

ROtate Right ROR dst 2.31lS

I d~
ROR L..:.0...1I_..L.:0:...L1 ---l_..l-6-L---l_...L-°--L~--:-...L-_'.Li ..--J_-'--.l-7'

15 6 5 a

Condition Codes: Z: set if all bits of result = 0; cleared otherwise.
N: set if the high·order bit of the result is set; cleared

otherwise
C: loaded with the low·order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the rotate operation).

Description: Rotates all bits of the destination right one place. Bit 0 is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into bit 15 of the destination.

ROtate Left

ROL I a I I a I

15

Condition Codes:

ROL dst 2.31ls

I 6 I 1 I
dst

6 5 o

Z: set if all bits of the result word = 0; cleared other
wise

N: set if the high-order bit of the result word is set;
cleared otherwise '

C:loaded with the high-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion 'of the rotate operation)

Description: Rotates all bits of the destination left one place_ Bit 15 is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into bit 0 of the destination.

SWAp Bytes

SWAB 10 I ,0,
15

Condition Codes:

SWAB d., 2,31ls

I a :3 I

650

Z: set if low-order byte of result = 0; cleared otherwise
N: set if high-order bit of low-order byte (bit 7) of result

is set; cleared otherwise
C: cleared .
V: cleared

Description: Exchanges high-order byte and low-order byte of the destination
word (dst must be a word address).

Shifts-Scaling data by factors of 2 is accomplished by the shift instructions:
ASR-Arithmetic Shift Right
ASL-Arithmetic Shift Left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The
low-order bit is filled with 0 in shifts to the left. Bits shifted out of the C-bit
are lost.

34

Arithmetic Shift Right ASR dst 2.3=

~1_O_IL-~_O~I~~~_6~ __ ~~_2-L1 __ ~-L __ Lld_st~I~~~~~I ASR
t5 6 5 o

Condition Codes: Z: set if the result = 0; cleared otherwise
N: set if the high-order bit of the result is set; cleared

otherwise
C: loaded from the low-order bit of the destination
V: loaded from the Exclusive OR of the N-bit and C-bit

(as set by the completion of the shift operation)

Description: Shifts all bits of the destination right one place. Bit 15 is repli
cated. The C-bit is loaded from bit 0 of the destination. ASR performs signed
division of the destination by 2.

Arithmetic Shift Left ASL dsl 2.3J.LS

I 6 I 3 I
dst
, I ASL

15 6 5 o

Condition Codes: Z: set if the result = 0; cleared otherwise
N: set if the high-order bit of the result is set; cleared

otherwise
C: loaded with the high-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the shift operation)

Description: Shifts all bits of the destination left one place. Bit 0 is loaded
with a O. The C-bit of the status word is loaded from the most significant bit
of the destination_ ASL performs a signed multiplication of the destination
by 2.

Multiple precision shifting is done with a sequence of shifts and rotates.

. Double Precision Right Shift:
ASR AI; low-order bit of Al to C-bit
.ROR AO; C-bit to high-order bit of AO

Double Precision Left Shift:
ASL AO; high-order bit of AO to C-bit
ROL AI; C-bit to low-order bit of Al

Normalization of operands (scaling of the operand until the operand taken
as a 15-bit fraction with sign is in the range -- lh < operand ~ lh) pro
ceeds as follows:

NORM:

NFIN:

NDONE:

ASL
BEQ

BVC
ROR
BR
ROR
ASR

A
NFIN

NORM.
A
NDONE
A
A

; shift O's into low-order bit
; if the result is 0, the operation is
; complete
; if the sign did not change, continue
;restore the sign· .
; normalization complete
; restore the sign: 000000 or 100000
; and replicate it: 000000 or 140000

35

The following example illustrates the use of shifts and rotates in a 16-bit un
signed integer multiply subroutine_ Access of operands through address
parameters following the subroutine is also shown_ The multiplication takes
115,170),tS in in-line code_ The entire subroutine as shown below takes
approximately 200 /LS and requires 16 words_ The calling sequence is:

MULT:

MLOOP:

NOADD:

_\

JSR R5. MULT
·WORD MCAND
• WORD MPLIER
• WORD PROD
CLR RO
MOV @ (R5) +. R1
MOV @ (R5) +. R2
MOV #-,16_. R3
ASL RO
ROL RI
BCC NOADD
ADD R2. RO
ADC RI
INC R3
BNE MLOOP
MOV (R5) +. R2
MOV RO. (R2)- +
MOV RI. (R2)
RTS R5

; address of multiplicand
; address of multiplier
; address of product

; get multiplier into RI
; get multiplicand into R2
; set counter
; double prec shift
; shift and add multiply
; most significant bit governs add
; if set add in multiplicand
; keep 32-bit product
; done?
; if not continue
; get address to store prod_
; put low-order away. move to high
; put l:Iigh-order away
; return to calling program

BYTE OPERATIONS-The PDP-11 processor includes a full complement of
instructions that manipulate byte operands. Addressing is byte-oriented so
that instructions for byte manipulation are straightforward. In addition. byte
instructions with autoincrement or autodecrement direct addressing cause
the specified register to be stepped by one to point to the next byte of data.
Byte operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word or
byte processor. The numbering scheme for word and byte addresses in core
memory is:

BYTE 0

BYTE 3 BYTE 2

BYTE N+l BYTE N

WORD 0

WORD 2 · · · · WORD N

-Timing of byte instructions is the same as for word instructions except that
an additional 0.6 itS is required for access of bytes at odd addresses.

36

Operation: (src) -'? (dst)

Condition Codes: Set on the byte result as in MOV

Description: Same as MOV instruction. The MOVB instruction in register mode
(unique among byte operations) extends the most significant bit of the byte
register (sign extension). Otherwise MOVB operates on bytes exactly as MOV
operates on words.

CoMPore Byte CMPB Sre ,dst 2.3J.1.s*

~1_'~I __ ~I_.~1_2~ __ L-~ __ s~I __ ~~ __ ~~ __ ~,_ds_t~~~~~ICNtPB
15 12 11 6 5

Operation: (src) - (dst) in detail (src) + ,...... (dst) + 1

Condition Codes: Set on the byte result as in CMP

Description: Same as CMP instruction.

Bit Set Byte BISB sre,dst

sre dst
I ,

15 12 11 6 5

Operation: (src) V (dst) -'? (dst)

Condition Codes: Set on the byte result as in BIS

Description: Same as BIS.

Bit Clear Byte BICB sre, dst

sre

I
15 12 11 6 5

Operation: r- (src) A (dst) -'? (dst)

Condition Codes: set on the byte result as in BIC

Description: Same as BIC.

Bit Test Byte BITB src, dst

sre
3 I I ,.

15 12 11 6 5

Operation: (src) A (dst)

Condition Codes: Set on the byte result as in BIT

Description: Same as BIT.

dst
I

a

2.3J.LS

BISB
a

2.3J.1.S

BICB
a

2.3J.1.S*

BITB
a

The following subroutine sca'ns a packed character string of variable length
lines, removes blanks and unpacks the string to left·justified length lines.
INSTRING is the address of the INput STRING, OUTSTRING is the address
of the OUTput String. EOLCHAR, SPCHAR, and EORCHAR are the End Of
Line CHARacter, SPace CHARacter, and End of Record CHARacter respec
tively .

• These instructions have no read/modify/write cycle, and save 0.5 !,sec.

37

Double Operand Byte Instructions-
MOVe Byte MOVB sro.dst

MOVBI'I 1'1 I·

sre
I

. '5 '2 " 6 5

do'
I

2.3.u.5

o
LNL1NE is the Lengt;h of uNpacked LINES. The routine .requires 24 words.

EDIT:

NULlNE:
NXTCHR:

MOV # INSTRING, RO
MOV #OUTSTRING, Rl
MOV #EOLCHAR, R2
MOV # SPeHAR, R3
MOV #LNLlNE, R4
MOVB (RO) + ,RS
CMP RS, R2
BEQ FILINE
CMP RS, R3
BEQ NXTCHR

; set up input byte pointer
; set up output byte pointer
; put high use constant in reg.
; to save time in loop
; R4 holds # char left in line
; get next byte
; end of line?
; if yes, fill line
; blank?
; if yes, skip character

DECR4
MOVB RS, (Rl) +
BR NXTCHR
CLRB (Rl) +
DEC R4
BNE'FILINE

; decreme'1t.# of characters left in line
; move byte to output string

FILlNE:

CHKEND: CMPB (RO), #EORCHAR
BNE NULINE

Single Operand Byte Instructions-

CLeaR Byte

CLRBI, I I 0 I

'5

Operation: 0 ~ (dst)

CLRB dst

5

; continue
; put a blank byte in output
; decrement # char left
; continue if not end
; end of record?
; if not EOR, start next line

2.3.u.s

0 1 I dst I

6 5 o

Condition Codes: Set on the byte result as in CLR

Description: Same as CLR

INCrement Byte INCB dst 2.3

1

INGB ~1~'~I~~I_o~I __ ~~1~5~ __ ~~1~2~ __ L--L __ ~d_s~tl~~~~~
'5 6 5 Ci

Operation: (dst) + 1 4 (dst)

Condition Codes: Set on the byte result as in INC

Description: Same as INC. The carry from a byte does not affect any other
byte.

DECrement Byte DECB dst 2.3.u.s

.DECB LI_, ...J11-..... ,_0_·..LI_-'---'-_5..J.......J. __ .J.1_3~-:-~....L..---'_ds_t --'-_'-::

15 6 5 0

Operation: (dst) - 1 ~ (dst)

Condition Codes: Set on the byte result as in DEC

Description: Same as DEC.

38

NEGate Byte NEGB dst 2.3JJ.s

~1~1~1~~0~ __ ~-L1_5-L~ __ ~1_4-L __ ~-L~,_ds_t~I __ ~-L~1 NEGB
15 6 5 o

Operation: -(dst) --7 (dst) in detail, ,- (dst) + 1 --7 (dst)

Condition Codes: Set on the byte result as NEG

Description: Same as NEG.

TeST Byte TSTB dst· ·2.3JJ.s"

I I I 0, 5 7

15 6

Operation. (dst) - 0

Condition Codes: Set on the byte result as TST

Description: Same as TST.
COMplement Byle COMB dsl

I 1 I I 0, 5 I'
15 6

Operation: ~ (dst) --7 (dst)

Condition Codes: Set on the byte result' as COM

Description: Same as COM.

AOd Corry Byte ADCB dst

1, I I 0, , 5 5

15 6

Operation: (dst) + (C) --7 (dst)

Condition Codes: Set on the byte result as ADC

Description: Same as ADC.
SuBtract Corry Byte SBCB dst

dst lSlB
5 0

2.3.u.s

I dst I ICOMB
5 0

2.3JJ.s

I dst I IADCS
5 0

2.3JJ.s

LI_'-LI __ '~°-LI __ L--L,_5~ __ L-~_6~1 __ ~~ __ ~,_d_st~1~~~~JI SBCB
is" 6 5

Operation: (dst) -- (C) --7 (dst)

Condition Codes: Set on the byte result as SBC·

D~scription: Same as SBC.

o

ROtate Righi Byte RORB dst 2.3JJ.s.

LI...:.l....LI--J,L...::O....LI __ L--LI.;:.6--L __ L--L'...:O:....J. __ ~~ __ ~I_d_s~tl __ ~~'--...I1 RORB
15 6 5

Operation: as in ROR on byte operands

Condition Codes: Set on the byte result as ROR

Description: Same as ROR

o

• Subtract 0.5 itS in all destination address modes except register mode 0, as in CMP.

39

ROtate Left Byte ROLB dst 2.3

ROLBI L_'~IL-~O~ __ L--L_6~~ __ ~3-L~L-~~ld_S_t~I __ ~~~
15 6 5

Operation: as in ROlon byte operands

Condition Codes: set on the byte results as ROl

Description: Same as ROl

Arithmetic Shift Right Byte

ASRB 11 I 1 0 I

t5

I 6

ASRB dst

2

6 5

Operation: as in ASR on byte operands

Condition Codes: set on the byte result as ASR

Description: Same as ASR

. Arithmetic Shift Let! Byte

ASLB 11 I I 0 I

15

6

ASLB dst

I 3
6 5

Operation: as in ASl on byte operands

Condition. Codes: set on the byte results as ASl

Description: Same as ASl

dst
I

dst
I

o

2.3=.

o

o

CONDITION CODE OPERATORS-Condition code operators set and clear con·
dition code bits. Selectable combinations of these bits may be cleared6rset
together in one instruction.

Condition Code Operators 1.5.lLS

o o 2

15 5 4 3 2 0

Condition code bits corresponding to bits in the condition code operator
(bits 3·0; N, l, V, C) are modified according to the sense of bit 4, the setl
clear bit of the operator. The following mnemonics are permanent symbols
in the assembler:

Mnemonic
ClC
ClV
Cll
ClN

Operation
Clear C
Clear V
Clear l
Clear N

Op Code
000241
000242
00();244
000250

Mnemonic
SEC
SEV
SEl
SEN

Operation
Set C
Set V
Set l
Set N

Op Code
000261
000262
000264
000270

Timing for all condition code operators is the basic instruction time (1.5/Ls)
for the operators. (The codes 000240 and 000260 are the shortest "no·opera·
tion" instructions.)

• Shift and rotate operations require an additional 0.6 I'S to access bytes at odd
addresses.

40

Combinations of the above set or clear operations may be ORed together to
form new instruction mnemonics. For example: ClCV = ClC ! ClV. The new
instruction clears C and V bits. ("!" signifies "inclusive or" in PAl·l1.)

MISCELLANEOl!S CONTROL INSTRUCTIONS

RESe' ExTernal bus RESET 20 ms

° I 0, ° ,0 ,0 5 RESET
15 °

Condition Codes: not affected

Description: Sends an INIT pulse on the Unibus. All devices on the bus are
reset to their state at power·up.

WAit for InterrupT WAIT \.8.11.5

1~_O~I~~t __ O~, __ ~~t_O~ __ ~-L_O_t~-L~~O~~ __ ~~~lvvAIT
15 o

Condition Codes: not affected
Description: Provides a way for the processor to relinquish use of the bus
while it waits for an external interrupt. Having been given a WAIT command,
the processor will not compete for bus use by fetching instructions or
operands from memory. This permits higher transfer rates between a device
and memory, since no processor·induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions, the PC points
to the next instruction following the WAIT operation.

Thus whim an interrupt causes the PC and PS to be pushed onto the proces·
sor stack, the address of the next instruction following the WAIT is saved.
The exit from the interrupt routine (i.e. execution of an RTI instruction) will
cause resumption of the interrupted process at the instruction following the
WAIT.

HALT HALT 1.8.11.5 /

" ° , 1 0 , 0 0, ° t HALT
15

Condition Codes: not affected
Description: Causes the processor operation to cease. The console is given
control of the bus. The console data lights display the contents of RO; the
console address lights display the address of the halt instruction. Tr~nsfers
on the Unibus are terminated immediately. The. PC points to the next in
struction to be executed. Pressing the continue key on the console causes
processor operation to resume. No INIT signal is given.

Processor:Traps, -Processor Traps are internally generated interrupts.
Error conditions, completion of an instruction in trace mode (i.e. T-bit of
status word set), 'and certain instructions cause traps. As in interrupts, the
current PC and PS are saved on the processor stack and a new PC and PS
are loaded from the appropriate trap (interrupt) vector. See Appendix C for
a summary of Trap Vector Addre,sses.

Trap Instructions-Trap Instructions provide for calls to emulators, I/O
monitors, debugging packages, and user-defined interpreters.

41

EMulator Traps EMT xxx 9.3 JJ.S

EMT LI..:.I....LI --.JL:.0....L_L-....LI:4....L_LI....:°:......L_.L..-1_..L_--1'_XX_x...LI_....L...--1---l
15

Operation: (PS) -.l, SP
(PC) -.l, SP
(30) ~ PC
(32) ~ PS

8 7

Condition Codes: loaded from trap vector.

°

Description: Performs a trap sequence with a trap vector address of 30.
All operation codes from 104000 to 104377 are EMT calls. The low·order
byte, bits 0·7 of the EMT instructions, may be used to transmit information
to the emulating routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word at address 30;
the new central processor status (PS) is .taken from the word at address 32.

TRAP TRAP x xx 9.3.u.s

TRAP LI_1....LI_L-0....L_.L..-11_4-1_~1_4__1_..L_~_~~'Lxx_x~IL__L~L_~
15 8 7

Operation: as in EMT except the trap vector is located at 34.

Condition Codes: loaded from trap vector.

°

Description: Performs a trap sequence with a trap vector address of 34.
Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and
EMTs are identical in operation, except that the trap vector for TRAP is at
address 34.

110 Trap lOT 9.3.u.s

lOT LI~0~_~0~,_.L..-11....:0~_..L_~ILO~I_~~'~0~,L__L_,~4~'L-~
15 °

Operation: as EMT except the trap vector is located at address 20 and no
information is transmitted in the low byte.

Condition Codes: loaded from trap vector.

Description: Used to call the I/O executive routine lOX.

No defined mnemonic 000003 9.3.u.s

(0, ° ° ° 3

°
Operation: Same' as lOT except that trap vector is located at address 14.

Condition Codes: loaded from trap veCtor.

Description: Used' to' call debugging aids. The user is cautioned against
employing code 000003 in programs run under these debugging aids.

42

ReTurn from Interrupt RTl 4.8J1.s

o I 0, o 2. RTI
15 o

Operation: SP l' (PC), SP l' (PS).

Condition Codes: loaded from processor stack.

Description: Used to exit from an interrupt or TRAP service routine. The PC
and PS are restored (popped) from the processor stack.
Reserved Instruction Traps-These are caused by attempts to execute in
struction codes reserved for future processor expansion (reserved instruc
tions) or instructions with illegal addressing modes (illegal instructions).
Order codes not corresponding to any of the instructions described above
are considered to be reserved instructions. Illegal instructions are JMP and
JSR with register mode destinations. Reserved and illegal instruction traps
occur as described under EMT, but trap through vectors at addresses 10
and 04 respectively.
Stack Overflow Trap-Stack Overflow Trap is a processor trap through the
vector at address 4. It is caused by referencing addresses below 400. through
the processor staclt pointer R6 (SP) in autodecrement or autodecrement de
ferred addressing. The instruction causing the overflow is completed before
the trap is made.

Bus Error Traps-Bus Error Traps are:

1. Boundary Errors-attempts to reference word operands at odd ad
dresses.

2. Time-Out Errors-attempts to reference addresses on the bus that
made no response within 10 j.Ls. In general, these are caused by at
tempts to reference nonexistent memory, and attempts to reference
nonexistent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap--Trace Trap enables bit 4 of the PS word and causes processor
traps at the end of instruction executions. The instruction that is executed
after the instruction that set the T-bit will proceed to completion and then
cause a processor trap through the trap vector at address 14.

The following are special cases and are detailed in subsequent paragraphs;

1. The traced instruction cleared the T-bit.
2. The traced instruction set the T-bit.
3. The traced instruction caused an instruction trap.
4. The traced instruction caused a bus error trap.
5. The traced instruction caused a stack overflow trap.
6. The process was interrupted between the time the T-bit was set and

the fetching of the instruction that was to be traced.
7. The traced instruction was a WAIT.
8. The traced instruction was a HALT.

An instruction that cleared the T-bit-Upon' fetching the traced instruction
an internal flag, the trace flag, was set. The trap will still occur at the end
of execution of this instruction. The stacked status word, however, will have
a clear T-bit.

43

An instruction that set the T-bit-Sinc~ the T-bit was already set, setting it
again has no effect_

An instruction that caused an Instruction Trap-The instruction trap is
sprung and the entire routine for the service trap is executed_ If the service
routine exists with an RTI or in any other way restores the stacked status
word, the T-bit is set again, the instruction following the traced instruction
is executed and, unless it is one of the special cases noted above, a trace
trap occurs_

An instruction that caused a Bus Error-This is treated as ih an Instruction
Trap. The only difference is that the error service is not as likely to exit
with an RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow-The instruction completes
execution as usual-the Stack Overflow does not cause a trap. The Trace
Trap Vector is loaded into the PC and PS, and the old PC and PS are pushed
onto the stack. Stack Overflow occurs again, and this time the trap is made.

An interrupt between setting of the T-bit and fetch of the traced instruction
The entire interrupt service routine is executed and then the T-bit is set again
by the exiting RTI. The traced instruction is executed (if there have been no
either interrupts) and, unless it is a special case noted above, causes a trace
trap.

Note that no interrupts are acknowledged between the time of fetching any
trapped instruction (including one that is trapped by reason of the T-bit being
set) and completing execution of the first instruction of the trap service.

A WAIT-The trap occurred immediately. The address of the next instruction
is saved on the stack.

A HALT-The processor halts. When the' continue key on the console is
pressed, the instruction following the HALT is fetched and executed. Unless
it is one of the exceptions noted above, the trap occurs immediately follow
ing execution_

Power Failure Trap-is a standard PDP-ll feature. Trap occurs whenever
theAC power drops below 105 volts or outside 47 to 63 Hertz. Two milli
seconds are then allowed for power down processing. Trap vector for power
failure is at locations 24 and 26. ""

Trap priorities-In case multiple processor trap conditions occur simUltane
ously the following order of priorities is observed (from high to low):

1. Bus Errors
2. Instruction Traps
3. Trace Trap
4. Stack Overflow Trap
5. Power Failure Trap

The details on the trace trap process have been described in the trace trap
operational description which includes cases in which an instruction being
traced causes a bus error, instruction trap, or a stack overflow trap:

If a bus error is caused by the trap process handling instruction traps, trace
traps, stack overflow traps, or a previous bus error, the processor is halted.

If a stack overflow is. caused by the trap process in handling bus errors, in
struction traps, or trace traps, the process is completed and then the stac~
overflow trap is sprung.

44

CHAPTER 5

ADDRESS ALLOCATION
The PDP-ll provides for a very flexible addressing structure. Both 16-bit
words and 8-bit bytes can be directly addressed_ Addresses are 16-bits long
allowing for direct addressing of 32,768 words or 65,536 bytes.

ADDRESS MAP
As a result of the organization of the PDP-ll, bus addresses serve several
functions .. A map of possible PDP-ll bus address allocation is shown

BUS ADDRESS
o

400.

160000.

177777.

CONTENT

Program Counter ~
Processor Status wor1

Stack Pointer Overflow Limit

Stacks, Program and Data Storage

Status Register and}
Data Buffer Register

Space For Device Registers

Device Address Register
Word Count Register
Memory Address Register
Control and Status Registers

Figure 5-1
Simplified Address Allocation Map

45

Processor
Trap Vectors
and Device
Interrupt
Vectors

{

Typical
Registers for
Programmed
Transfer
Device

Typical
Additional
Registers
for a
Block
Transfer
Device

· in Figure 5-1. Three areas of addresses of particular interest to the pro
grammers are: 1) Interrupt and Trap Vectors; 2) Processor Stack and General
Storage; and 3) Peripheral Device Registers.

INTERRUPT AND TRAP VECTOR5--Addresses between location zero and
location 400, are generally reserved for interrupt and trap vectors.

PROCESSOR STACK AND GENERAL STORAGE-Addresses between 400,
and the limit of implemented core are available for the processor stack or
other programs and data. The highest address in this region is 157777,.

PERIPHERAL DEVICE REGISTER5--Addresses above 160000, generally are
reserved for peripheral device status, control, and data registers. The general
registers and the processor status can be addressed from the program
.console using addresses in this area. .

A more detailed address allocation map can be found in Appendix- C.

CORE MEMORY
The three types of core memory that can be used in a PDP-ll system are:
1) Read-Write Core Memory; 2) Read-Only Core Memory; and 3) Wordlet
Memory; These memories can be located anywhere in address space provided
they do not overlap. They do not have to be in continuous address locations.

MMll-E READ WRITE CORE MEMORY-The MMll-E has the following
specifications:

Capacity: 4,096 16-bit words or 8,192 8-bit bytes
Cycle Time: 1.2 microseconds
Access Time: 500 nanoseconds
Configuration: Planar 3-wire, 3·D using 22 mil cores
Packaging: One standard PDp·l1 System Unit
Interface: Designed to work with PDP-ll bus, TTL-compatible

MRll-A READ-ONLY CORE MEMORY (ROM)-The ROM has the following
specifications:
Capacity: 1,024 I6-bit words or 2,048 8·bit bytes
Access Time: 500 nanoseconds
Configuration: 2-piece core with wire braid, 256 wires, 64 cores
Packaging: 3/4 of one standard PDP-ll System Unit
Interface: Designed to work with PDp·ll bus, TTL-compatible

MWll-A WORDLET MEMORY-The wordlet memory is used with ROM sys
tems and provides read-write memory capacity for temporary data and in
struction storage.
Capacity: 256 16-bit words or 512 8-bit bytes
Cycle Time: 2.0 microseconds
Access Time: 1.0 microsecond
Configuration: 3·Wire, 3D
Packaging: I/4.standard PDP-ll single System Unit
Interface: The word let memory will work with the ROM and interfaces

through the ROM System Unit to the PDP-ll bus.

Both JMP. an~ JSR, used in Address mode 2 (autoincrement), increment the register
~efore ~s,"g It as an address. This is a special case. and is not true of any other
instruction.

46

CHAPTER 6

PROGRAMMING OF PERIPHERALS
Programming of peripherals is extremely simple in the PDP-ll-a special
class of instructibns to deal with input/output operations is unnecessary_
The Unibus permits a unified addressing structure in which control, status,
and data registers for peripheral devices are directly addressed as memory
locations_ Therefore all operations on these registers, such as transferring
information into or out of them or manpulating data within them, are per
formed by normal memory reference instructions_

The ability to use all memory reference instructions on peripheral device
registers greatly increases the flexibility of input/ output programming_ In
formation in a device register can be compared directly with a value and a
branch made on the result.

CMP # 101, PRS
SEQ SERVICE

In this case the program looks for 101. from the paper tape reader data
buffer, and branches if it finds it. There is no need to transfer the informa
tion into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can trans
fer the character into a user buffer in core or in another peripheral device.

MOV PRS, LOC
This instruction transfers a character from the paper tape reader buffer into
a user-defined location_

All arithmetic operations can be performed on a peripheral device register.

ADD #10, DSX
This instruction will add 10. to a display's x-deflection register.

All peripheral device registers can be treated as accumulators. There is no
need to funnel all data transfers, arithmetic operations, and comparisons
through a single or small number of accumulator registers_

DEVICE REGISTERS
All peripheral devices are specified by a set of registers which are addressed
as core memory and manipulated as flexibly as an accumulator. There are
two types of registers associated with each device: 1) Control and Status Reg
isters (CSR); and 2) Data Registers.

CONTROL AND STATUS REGISTERS (CSR)-Each peripheral has one or more
control and status registers which contain all. the information necessary to
communicate with that device. The general form of a control and status
register is shown below.

General Control and Status Register
This general form does not necessarily apply to any device, but is presented
as a format which could be used as a guideline for designing peripheral

47

devices. Many devices will require less than sixteen status bits. Other devices
will require more than sixteen bits and therefore will require additional status
and control registers.

Device Function Bits-These three bits specify operations that a device is
to perform. An example of one -operation for a paper tape reader is read
one character. For a disk one operation would be read a block of words from
memory and store them on the disk.

Memory Exter1sion Bits-These two bits are reserved for future expansion.
They will allow devices to use a full 18 bits to specify addresses on the bus.

Done Enable and Error Enable Bits-These two bits are independently pro
grammable. _ If bit 6 -is set. an interrupt will occur as a result of a function
done condition. If bit 5 is set. an interrupt will occur as the result otan
error condition. This occurs when one or more of the error bits is set to a
one. To initiate an interrupt routine to read from the paper .tape reader.
the instruction

MOV # 101, PRS
could be used. This sets bit 0 and bit 6 of the paper tape reader control and
status register. Setting bit 0 starts the read operation and setting bit 6
enables an interrupt to occur when the read operation is complete.

Condition Bits-The CSR contains a DONE bit. a READY bit, or a DONE
BUSY pair of bits, depending on the device. These bits are set and cleared
by the hardware, but may be queried by the program to determine the
availability of the device. For example, the teleprinter status register (TPS)
has a READY bit (7) that is cleared on request for output and then set when
output is complete. The keyboard status register (TKS) has a DONE-BUSY
pair (Bits 7 and 11) that distinguishes between no input (DONE = BUSY
= 0), input under way (DONE = 0, BUSY = 1). and input complete (DONE
= 1, BUSY = 0).

The DONE bit could be used to control an input loop for reading from the
paper tape reader as follows;

LOOP: TSTB PRS
BPL LOOP

test low byte of paper tape status register
branch back if DONE bit (bit 7) is not set

Unit Bits-Some peripheral systems have more than one device per control.
For example, a disk system can have multiple surfaces per control and an
analog-to-digital converter can have multiple channels. The unit bits select
the proper surface or channel. -

Error Bits-Generally there is an individual bit associated with a specific
error. When more bits are required for errors, they can be obtained by ex
panding the error section in the word or by using another status word.

Example of Control and Status Register-The high-speed paper tape reader
control and status register (PRS) is as follows:

15 " 7 6 o

These bits may be read or set by instructions which use the appropriate
effective address. Bit 0 of the PRS is the function bit for reading one char-

48

acter. Incrementing the PRS will set 'bit 0 and cause one character to be
read. The instruction

INC PRS
performs that function. MOV # I, PRS does the same thing but takes one
more word.

DATA BUFFER REGISTERS-Each device has at least one buffer register
for temporarily storing data to be transfer into or out of the computer. The
number and type of data registers is a function of the device. The paper
tape reader and punch use single 8·bit data buffer registers. A disk would
use 16·bit data registers and some devices may use tw!, I6·bit registers for
data buffers.

PROGRAMMING EXAMPLES
PROGRAM CONTROLLED DATA TRANSFER WITH THE INTERRUPT DISABLED
~Single character 110 devices (teletype, paper tape readerl punch) have an
addressable register buffer through which data is transferred. For inPut, the
data buffer register is the source operand of the instruction used to get the
data; for output, it is the destination operand. For example assuming the
paper tape reader interrupt is not enabled, character input could proceed
as follows:

MOV R, -(SP)
MOV #BUFFER, R

START: INC PRS
LOOP: BIT PRS. #100200

BEQ LOOP
BMI ERROR
MOVB· PRB; (R)+

CMP #LlMIT. R
BGE START
MOV (SP)+. R

save R on the stack
pointer to input buffer into register R
start up reader
test DONE and ERROR bits'
branch back if none ·on yet
branch to error routine if minus
move byte from device buffer reg·
ister touser's buffer and increment
pointer
check for end of buffer
get next character
restore R

Character output to the paper tape punch might be executed as .follows:

LOOP:

MOV RO, -(SP)· save RO
MOV RI, -(SP) save RI
MOV NCHAR, RO number of characters into RO
MOV BUFFER, R1 user buffer address into R1
BIT PPS, # 100200 test device ready and error bits
BEQ LOOP fall through if on
BMI ERROR branch on error
MOVB (RI)+, PPB output character,' increment pointer
DEC RO decrement character counter (and

BGT LOOP
MOV (SP)+.
MOV (SP)+.

RO
Rl

set condition codes)
repeat if greater than zero
restore RO
restore R1

BLOCK TRANSFER WITH THE INTERRUPT DISABLED-High·speed block
transfer devices use the Unibus to make data transfers between the device
and core memory. These devices are provided with addressible registers
that control the flow of data. '

49

A typical set might be:
1. Control and status register
2. Memory address register
3. Word count register
4. Device address register

Loading the device address register would in general initiate the transfer,
which then proceeds without processor intervention. The device issues non
processor requests for the Unibus that, when granted, allow' direct data
transfer between the device and memory_ These requests are interleaved
with processor 'requests for the bus. If very fast transfer is required, the
processor may execute a WAIT instruction after starting the block transfer.

,
The DONE or appropriate error bits are set in the CSR with completion of
the transfer or when an error occurs. These may be enabled to cause an
interrupt or may be tested to determine when the device needs assistance.

A block transfer could be executed as follows:

MOV #401, DKS,

MOV #BUFADR. DKMA

MOV #BUFCNT, DKWC
MOV # BLKNO, DKDA

; when data is needed.

LOOP: BIT # DKMSK, DKS
BEQ LOOP
BIT # DKEMSK, DKS
BNE ERROR

; data is now in buffer at BUFADR

INTERRUPT STRUCTURE

read block of data (function 1)
from unit 1
buffer address to memory ad
dress register
word count to word count register
block number to device address
register, which starts the trans
fer

test done bit and error bits
branch back if none on
test for any error bits
branch if any on

If the appropriate interrupt enable bit is on, in the control and status register
of a device, transition from 0 to 1 of the DONE or -READY bit causes an
interrupt request to be issued to the processor. Also if DONE or READY is a
1 when the interrupt enable is turned on, an interrupt request is made. If
the device makes the request at a priority greater than that at which the
processor is running and no other conflicts exist, the request is granted and
the interrupt sequence takes place:

a. the current program counter and processor status are pushed onto
the processor stack; _

b. the new PC and PS are loaded from a pair of locations (the interrupt
vector) in low core unique to the interrupting device~

Since each device has a unique interrupt vector which dispatches control to
the appropriate interrupt handling routine immediately, no device polling is
required. Furthermore, since the PS contains the processor priority, the
priority at which an' interrupt request is serviced can be set under program
control and is independent of the priority of the interrupt request. The

50

ReTurn from Interrupt instruction is used to reverse the action of the
interrupt sequence. The top two words, on the stack a.re popped into the PC
and PS, returning control to the interrupted sequence.

PROGRAMMING EXAMPLE
A paper tape reader interrupt service could appear as follows:

First the user must initialize the service routine by specifying an address
pointer and a word count
INIT: MOV #BUFADR, #0

POINTR = . .,.... 2
MOV #CNTR, #0
CRCNT =.- 2
MOV # 101, PRS

set up address pointer
in third word of MOV instruction.
set up character count in
third word of MOV instruction.
read a character with interrupt
enabled.

When the interrupt request occurs and is acknowledged, the processor stores
the current PC and PS on the stack. Next it picks up the .interrupt vector or
new PC and PS beginning at location 70,. The next instruction executed is
the first instruction of the device service routine at PRSER.
PRSER: TST PRS ; test for error

DONE:

BMI ERROR branch to error routine if

MOVB PRB, @POINTR .

INC POINTR
DEC CRCNT
BEQ DONE
INC PRS
RTI

bit 15 of PRS is set.
; move character (byte)
; from reader to buffer

increment pointer
decrement character count
branch when input done

51

start reader for next character
return from interrupt

The DIGITAL M225 module contains multiple high speed general
purpose registers. The M225 general registers provide program
flexibility when used as accumulators, index registers, and pointers
to data words.

52

CHAPTER 7
PERIPHERAL BULLETINS

TELETYPE (MODEL LT33-DC/DD)
The standard Teletype Model 33 ASR (Automatic Send-Receive) can be used
to type in or print out information at a rate of up to ten characters per sec
ond, or to read in or punch out perforated paper tape at a ten characters
per second rate_ Signals transferred between the 33 ASR and the control
logic are standard serial, ll-unit code Teletype signals_ The signals consist
of "marks" and "spaces" which correspond to bias and idle current in the
Teletype serial line, and to 1 's and O's in the control and computer. The
start space and subsequent eight bits are each one unit of time duration and
are followed by the stop mark which is two units_

The 8-bit code used by the Model 33 ASR Teletype unit is the Americal
Standard Code for Information Interchange (ASCII) modified_ To convert the
ASCII code to Teletype code, a,dd 200 octal (ASCII + 200,= Teletype),

The Model 33 ASR can generate all assigned codes except 340 through
374 and 376. The Model 33 ASR can detect all characters, but does not
interpret all codes that it can generate as commands. The standard number
of characters printed per line is 72. The sequence for proceeding to the next
line is a carriage return followed by a line feed, Punched tape format is as
follows: .

Tape Channel 87 654

Binary Code 10 110
(Punch = 1)

Octal Code 2 6
(S = Sprocket)

SIZE- Floor space approximately 221,4 U wide, 18%" deep
Cable length 8 feet

MODEL
LT33-DC
LT33-DD

POWER REQUIREMENTS
115 V ± 10% 60 ±0.45 Hz
230 V ± 10% 50 ±0.75 Hz

TELETYPE CONTROL (MODEL KLll)

S 321

100

4

TELETYPE CONTROL-Serial information read or written by a Teletype unit
is assembled or disassembled by the control for parallel transfer on the
Unibus. The control also provides the flags which cause a priority interrupt
and indicate the availability of the teletype.

KEYBOARD/READER-The Teletype control contains an 8-bit buffer (TKB)
which assembles and holds the code for the last character struck on the
keyboard or read from the tape. Teletype characters from the keyboard/
reader are received serially by the 8-bit shift register TKB. The code of a
Teletype character is loaded into .the TKB so that "spaces" correspond to
binary O's and holes, "marks," correspond to binary l's.Upon program
command, the contents of the TKB may be transferred in parallel to a
memory location or a general register.

A character is read from the low-speed reader by setting the Teletype reader
enable bit, (RDR ENB), to a 1. This sets the busy bit (BUSY) to a 1. When a
Teletype character starts to enter, the control de-energizes a relay in the

53

Teletype unit to release the tape feed latch. When released, the latch
mechanism stops ·tape motion only when a complete character has been
sensed, and· before sensing of the next character is. started. When the charac·
ter is available in buffer (TKB), the busy bit (BUSY) is cleared and the done
flag (DONE) is set. If the interrupt is enabled, a request is made for the bus
at level 4 (BR4). The interrupt vector is at location 60 •. The DONE bit is
cleared by any instruction which .reads the contents of the buffer (TKB) into
the processor. If the DONE flag is cleared before the interrupt is granted, no

· interrupt will occur. The keyboard must be read within 18 milliseconds of
DONE to ensure no loss of information ..

Registers!
Teletype Keyboard Status (TKS)

Bit.
o

6

7

11

15 11 7 6 0

I 10*1 10*101 10.1
. ~----------~L-~-B~--Y----~~L~·~L-~I-NT-R~·-EN-B------~~t:RDR

RDR ENB

INTR ENB

DONE

BUSY

OONE ENB

Requests that one 'character be read from the
reader; set from the bus: (Note: Setting RDR
ENB causes tape to advance by one character
which is shifted into TKB if DONE is cleared.)
Receipt of START bit on the serial input line sets
BUSY, clears RDR ENB and clears TKB.
O-No interrupt; I-'-Attach the keyboard and
reader to the priority interrupt system at bus
req.uest level 4.
Character available; cleared by reading the buf·
fer (TKB).
Character is being read; set by RDR ENB going
to a 1. Cleared by DONE going to a 1.

! The following notation will be used throughout this chapter for describing registers.
0- A power clear sets this bit to o.
1 - A power clear sets this bifto 1 .
• - This bit can only' be read from the bus.
:J: - This bit can only be set from the bus. If it is. read, it will always appear

as·zero. .

Teletype Keyboard Buffer (TKB)

8-BIT CHARACTER *1
15 8' 7 o

· TELEPRINTER/PUNCH-On program command, a character is sent in parel·
· lei from a memory location (or a general register) to the TPB shift register
for transmission to the teleprinter/ punch unit. The control generates the
start "space," then shifts the eight bits serially into the Teletype unit, and

· then generates the stop "marks." This transfer of information from the TPB
into the teleprinter/punch unit is accomplished at the normal Teletype rate
and requires 100 milliseconds for completion. The READY flag in the tele·
printer/punch indicates that the TPB is ready to receive a new character. A
mailitenance mode is provided which connects the TPB output to the TKB
input so that the parallel serial and serial parallel shifting may be verified.

54

Registers
Teleprinter Status Word (TPS)

Bit
2

6

7

MAINT

INTR ENB

READY

Teleprinter Buffer (TPB)

15

7 6

L L INTR ENS
READY

2

LMAINTENANCE
CONTROL

Maintenance function which connects TPB serial
output to TKB serial input.
O-No interrupt; I-attaches the Teleprinter to
the priority interrupt system at BR4.
Set by punch/printer DONE; cleared by loading
the teleprinter buffer (TPB).

8- BIT CHARACTER DATA ·1
8 7 o

PROGRAMMING EXAMPLE-To read a character from tape and echo it on
the printer:
ECHO: INC TKS

TSTB TKS
BPl.-4
TSTB TPS
BPl.-4
MOVB TKB, TPB

BR ECHO

; set RDR ENB
; test for DONE set

test again if not set
test for printer READY set
test again if not set
put input character into output
buffer to be printed
return for another character

PERIPHERAL ADDRESS ASSIGNMENTS
TKS 177560
TKB 177562
TPS 177564
TPB 177566

VECTOR ADDRESS Keyboard! Reader
Teleprinter! Punch

60
64

PRIORITY LEVEL set to BR4-Teletype printer is lower than the Teletype
keyboard

MOUNTING-Requires one small peripheral controller mounting space (%
of a DDll or one of two such spaces in KAll)

HIGH-SPEED PERFORATED TAPE READER PUNCH AND
CONTROL (TYPE PCII)

TAPE READER-This device senses 8-hole perforated paper or Mylar tape
photo-electrically at 300 characters per second. The reader control requests
reader movement, transfers data from the reader into the reader buffer
(PRB), and signals the computer when incoming data is present. It does this

55

by setting a DONE bit. If the interrupt is enabled and the interrupt is granted,
the processor traps to location 70. and may immediately begin executing the
service routine for the paper tape reader.

Registers

Paper Tape Reader Status Word (PRS)

Bit

o

6

7·

11

15

15 II 7 6 o

1 0*1 1 0*1 1 0*1 0 1
LERROR L BUSY L LINTR ENB LRDR

ENB

RDR ENB

INTR ENB

DONE

BUSY

ERROR

DONE

·Requests read of next character; can be set from
bus only if ERROR = O. Clears PRB, sets BUSY.

O-No interrupt; I-attached to priority interrupt
system at. BR4. (Note: Interrupt occurs when INT
ENB is a 1 and either the error flag, ERROR, or
the done flag, DONE, becomes a 1.)

SeLby character available; cleared by reading the
paper tape reader buffer (PRB).

Set by RDR ENB going to a 1; cleared by DONE
going to a 1.

Error Flag - Set or cleared by out·of-tape sensor
or off line switch.

Paper Tape Reader Buffer (PRB)

*1 8- BIT CHARACTER _

15 8 7 o

PROGRAMMING EXAMPLE-Tape reading subroutine (not using interrupt):

READ: INCB PRS ; enable reader
TEST: BIT # 100200, PRS ; test for error or done

BEQ TEST branch back if not done
BMI ERROR branch if error = 1
MOVB PRB, RO get character from buffer
RTS 5 return to caller

ERROR: (message type out routine)
HALT ; wait for operator intervention
JMP READ ; try again when continue switch is hit.

TAPE PUNCH-This option consists of a Royal McBee paper tape punch that
perforates 8·hole tape at a rate of 50 characters per second. Information to
be punched on a line of tape is loaded in an 8·bit punc_h buffer (PPB) from a
memory location or one of the general registers. The punch flag, READY,
becomes a 1 at the completion of punching action, signaling new information
may be transferred into the punch buffer and punching initiated. '

56

Registers

Paper Tape Punch Status Word (PPS)

.15 7 6

L L-INTR ENB
DONE

o

Bit
6 INTR ENB O-No Interrupt; I-Attached to priority interrupt

system. (Note: An interrupt occurs when INT ENB
is a 1 and either the ERROR flag or the READY flag
becomes a 1.)

7 READY Set by punch done; cleared by loading the paper
tape punch buffer (PPB).

15 ERROR Error Flag-Set by out·of·tape sensor, or unit power
off switch.

Paper Tape Punch Buffer (PPB)

8- BIT CHARACTER DATA "'I
IS 8 7

Loading the buffer initiates punching.

PROGRAMMING EXAMPLE
PUNCH: BIT # 100200, PPS

BEQ PUNCH

ERROR:

BMI ERROR
MOV RO, PPB
RTS R5
(message type out)
HALT

test for ready or error

; wait for operator to fix punch

o

JMP PUNCH ; try again when Continue is hit.

PERIPHERAL ADDRESS ASSIGNMENTS

PRS 177550
PRB 177552
PPS 177554
PPB 177556

VECTOR ADDRESSES-Reader 70
Punch 74

PRIORITY LEVEL-Set to BR4. Punch is lower t~an reader.

MOUNTING-Electromechanical assembly-EIA Standard 19" rack, 10Yl"
vertical mounting space, by 17Yl" deep.

PCll·M Controller-One small peripheral controller mounting space (%
of DDll or one of two such places in KAlI).

57

ENVIRONMENTAL
55°-100°F
20% -95% RH (without condensation)

MODEL
PC 11
PC11A
PRll

DESCRIPTION
Reader, Punch & Control
Reader, Punch & Control
Reader & Control

LINE FREQUENCY CLOCK (TYPE 'KWll-L)

POWER REQUIREMENTS
115±10% 60 Hz
115±10% 50 Hz
115 ± 10% 50-60 Hz

The KW1J.oL real time clock provides a method of measuring time intervals
at line frequency. This clock consists of a frequency source and control logic.
When enabled the clock causes an interrupt every 16.6 or 20 milliseconds,
depending upon line frequency.

Register
Line Time Clock Status Register (LKS)

Bit

7 6

L LINTR ENS
CLOCK

6 INTR ENB When set, an interrupt will occur every time CLOCK goes true.
Cleared by program or reset or start sequence.

7 CLOCK Set to 1 every 16.6 milliseconds (60 Hz) or 20 milliseconds (50
Hz). Cleared by reading LKS, RESET or pressing the START
switch.

PERIPHERAL ADDRESS ASSIGNMENTS
LKS 171546

VECTOR ADDRESS 100
PRIORITY LEVEL BR6

MOUNTfNG---This option plugs into the KAll processor.

58

CHAPTER 8

DESCRIPTION OF THE UNIBUS
Communication between all system units in a PDP-ll configuration is done
by a single common bus: the Unibus_ All communication-both instructions
and logical operations-is defined by a set of 56 signals_ This set of 56 sig
nals is used for program controlled data transfers, direct memory data trans
fers, priority bus control, and program interrupt.

This chapter presents the concepts of the Unibus and how they affect pro-·
gram software and interfacing hardware. The use of the 56 bus signals to
effect data transfers and to control bus use is also described.

GENERAL CONCEPTS OF THE UNIBUS
There are five major aspects of the Unibus that affect both software and
hardware considerations in the PDP-ll.

SINGLE BUS-The set of 56 signals that comprise the Unibus is the one
and only bus connecting all peripheral devices, memories, and the central
processor_ Thus, to every device there exists a single set of signals by which
it can be interrogated by the processor or other devices, or be used by the
device itself to transfer data to and from memory.

The processor uses this same set of signals to communicate with all mem
ories and devices. The important point here is that the form of the com
munication used by processor and peripheral devices is identical. Conse
quently, the same set of program instructions used to reference memory
is used to reference peripheral devices. (A look at the PDP-ll instruction
set will reveal that there are no explicit I/O instructions.)

Peripheral devices in a PDP-ll system are designed to respond to the Unibus
in the same manner as memory. Device status registers, device con
trol registers, and device data registers are each assigned unique "memory"
addresses_ For example, the instruction MOVS RO, PUNCH would load the
punch buffer register with an 8-bit character contained in RD. Other in
structions would monitor the punch status and the program could deter
mine when the punching operation was complete.

BIDIRECTIONAL BUS-Unibus bus signals are bidirectional-the signal re
ceived as an input can be driven as an output, as shown in Figure 8-L

.J
<l
Z
(!)

iii
(/)

:=>
II]

r-----------i
I RECEIVE BUS SIGNAL I
I I

I
DRIVE BUS SIGNAL I

I
L ______ ~~E ...:o~c _ J

Figure 8-1 Bidirectional Nature of the Bus

MASTER-SLAVE RELATION-At anyone point in time, there is one device,
called the master, that has control of the bus_ The master device controls

59

the bus to communicate with other devices, called slaves, on the bus. An
example of this relationship is the processor (master) fetching an instruction.
from ,memory (which is always a slave). -

iNTERLOCKED COMMUNICATION-For each control signal issued 'by the
master device, there is a response from the slave; thus bus communication
is independent of the physical bus length and the response time of the mas
ter and slave devices.' Also, master-slave relationships can exist in nearly
any combination between fast-responding and slow·responding devices.

DYNAMIC MASTER-SLAVE RELATION-Master·slave relationships are dy·
namic. The processor, for example, can pass bus control to a disk. The disk,
as master, could then communicate with, a slave memory bank.

UNIBUS SIGNALS'
The 56 Unibus signals can be divided into two major groups-the interrupt
group and the non-interrupt group. The interrupt group can then be sub
divided into two classes-the request and control class and the grant class.
All bus signals except the grant class are bidirectional in nature and are
connected to every device (though they may not be used by every device).
The grant signals, because of their special nature in priority bus control
(to be explained later), are bussed through each device and are unidirectional
in nature.

DATA TRANSFER SIGNALS

Data Unes (0 < 15:00 »-(Note that the notation A <a:b> specifies
b - a + 1 signal lines which are named Aa through Ab.) The 16 data lines
are used to transfer information between master and slave. This is the bit
format:

HIGH BYTE LOW BYTE

15 8 7. o

Address lines (A < 17:00 »-The 18 address lines are used by the master
device to select the slave (a unique core memory or device register address)
with which it will be communicating. This is the bit format of the 18 signals:

11 16 15. 0

I I I I .J
L' t BYTE POINTER~ J
iEXT.-t--. --------PROGRAM ADDRESS ----------.11

A < 15:01 > are used to specify a unique 16-bit word group. In byte opera
tions, AOO is used to specify the byte being referenced. If. a word is refer
enced at X (X must be even, since words can be addressed on even bound·
aries only), the low byte can be referenced at X and the high byte at X + 1.

A < 15:00 > are supplied by the software as memory reference addresses.
A17 and A16 are used as extended memory bits for relocation and as pro
tection schemes in future systems. In the PDP·U/20 and the .PDp·U/10,
A17 and· A16 are asserted or forced to 1 whenever an attempt is made to
reference a memory location where A15·= .A14 = Al3 = 1. Thus the hard
ware converts the 16-bit software address to a full 18-bit bus address.

An address map is. shown in Figure 8-2.

60

SOFTWARE ADDRESS HARDWARE ADDRESS

000000-017777 000000-017777
1st 4K

MEMORY BANK
020000-037777 020000-037777

2nd 4K
MEMORY BANK

I
I

140000-157777 140000-'57777
71h 4K

MEMORY BANK
160000-177777 760000- 777777

PERIPHERAL
BANK

Figure 8·2 Address Map

The peripheral bank is composed of the processor's fast memory, status
register, console switch register, and all device registers.

Control Lines (C < 1:0>)-These two bus signals are coded by the master
device to indicate to the slave one of four pos~ible data transfer operations.

Master Synchronization and Slave Synchronization (MSYN, SSYN)-MYSN
is a control signal used by the master to indicate to the slave that address
and control information is present. SSYN is the slave's response to MSYN

Initialization (INIT)-This signal is a power clear signal asserted by the con·
sole and the processor which is used to reset peripheral devices.

PA, PB, SPl, SP2-These lines are not implemented on the PDp·lI/lO or
PDp·ll/20.

CONTROL TRANSFER SIGNALS
Bus Request Lines (BR < 7:4 >)-These four bus signals are used by
peripheral devices to request control of the bus.

Bus Grant Lines (BG < 7:4 >)---: These signals are the processor's response
to a BR. They will be asserted only at the end of instruction execution.

Non·Processor Request (NPR)-This is a maximum priority bus request from
a peripheral device to the processor.

Non-Processor Grant (NPG)-This is the processor's response to an NPR. It
occurs at the end of bus cycles within the instruction execution.

Selection Acknowledge (SACK)-SACK is asserted by a bus· requesting device
that has received a bus grant. Bus control will pass to this device when the
current master of the bus completes its operations.

Interrupt (INTR)-This signal is asserted by the master to start program
interruption in the processor.

Bus Busy (BBSY)-This signal denotes bus in use by a master device.

UNIBUS DATA TRANSFER OPERATIONS
Direction of data transfers on the Unibus is defined in relation to the master

61

device. A data transfer from processor to memory (aiways a slave) is "data
out," and a transfer from memory to processor is "data in."

TYPES OF DATA TRANSFERS--The type of data transfer being made between
master and slave is determined by the C lines coded as follows:

C1 co
0 0 iDATI- DATa In

0 1 DATIP-DATa In,Pause

1 0 DATO - DATa Ou1

1 1 DATOB-DATa Out, By'te

DATO AND DATOB-The DATO arid DATOS operations are used to transfer
data out of the master to the slave. DATO is used to transfer a word to the
address specified by A < 17:01 >. The slave ignores AOO and the data ap
pears onD < 15:00>. DATOS is used to transfer a byte of data to the ad
dress specified by A < 17:00 >. AOO = 0 indicates the low byte, and data
ap.pears on D < 07:00 >; AOO = 1 indicates the high byte, and data appears
on D < 15:08 >-
DATI AND DATIP-The DATI and DATIP operations transfer data from a slave
whose address is specified on A < 17:01 > into the master. Soth transfers
are made in words on D < 15:00 >. In destructive read-out devices, DATI
commands a read-write operation, while a DATIP commands a read operation
only and sets a pause flag. When the device receives the subsequent DATO
or DATOS and its pause flag is set, the usual read cycle is skipped and an
immediate write cycle is initiated. Thus, DATIPs are immediately followed
by a DATO or DATOS to effect a read-modify-write data exchange. In non
destructive read-out devices, DATI and DATIP are treated identically.

This diagram illustrates the data flow in the four data transfers:
DATI OR DATIP

DATOBI\AOO
DATA=D<15:08 >

DATO
DATA=D<l5:00>

Figure 8·3 Data Flow

DATOBMOO
DATA = 0 <07:00 >

Note that all- transfers into the master are word operations; it is up to the
master to accept the appropriate byte. On a DATOS, the master must place
the byte on the appropriate data lines; the slave must accept the proper byte.

DATA TRANSFER EXAMPLES--The bus operations used by the processor for
a typical instruction sequence illustrates how the data transfer operations
are used. The "program" starts at location 1000:

1000: INCS @RO
ADD #3, @RO

where RO contains 500 and location 500 contains 10023. The result of this

62

instruction sequence will leave 10027
coding appears as:·

in location 500. In binary form, this

;INCB @RO 1000:
1002:

-1004:

105210
062710
000003

;ADD (PCH, @RO
;3

The following table lists the bus operations that result as a consequence
of these two instructions:
Processor Cycle
1. Fetch

- 2. Destination
3. Execute
4. Fetch
5. Source
6. Destination
7. Execute

Bus Operation
DATI
DATIP
DATOS
DATI
DATI
DATIP
DATO

Bus Address
(PC) = 001000
(RO) = 000500

. (RO) = 000500
(PC) = 001002
(PC) = 001004
(RO) = 000500
(RO) = 000500

Data Transferred
105210
010023
000024
062710
000003
010024
010027

Note that in step 3, it.is inconsequential what data appe~rs on 0 < 15:08 >;
the slave accepts only the modified low byte.

A second example of bus operation compares the contents of the Teletype
keyboard data buffer whose address is 177560 with the ASCII value for the
letter "A." '

200: CMPB @#177560. #301

This instruction is assembled in three words as follows:
200: . 123727 ;CMPB @(R7)+. (R7H
202: 177560 ;Address of data buffer
204: 000301 ;301

The processor will execute this instruction with these cycles:

Processor Cycle Bus Operation Bus Address Data Transferred
1. Fetch DATI (PC) = 200 123727
2. Source DATI (PC) = 202 177560
3. Source DATI 777560 ASCII
4. 'Destination DATI (PC) = 204 000301 '
5. Execute none - condition codes set internally.

Note that in step 3. the software specified address 177560 was converted to
tbe bus address 777560.

SIGNAL DESCRIPTION OF DATA TRANSFERS-Figure 8.4(a) shows the sig·
nalflow between master and slave during a DATO operation. (The sequence
is similar for DATOB except that only a byte of information is transferred.)
The master sets Control for DATO, sets Address for the unique slave address,
and sets Data for the information to be transferred. The master then asserts
MSYN. This signal is received by the slave that recognizes its address; it
responds by accepting the data arid asserting SSYN. SSYN is received by the
master which then negates Control, Address, Data. and MSYN. The slave
sees MSYN negated and negates SSYN. The master device continues its
operation when it sees SSYN negated.

63

MASTER

OPERATION: DATO

SLAVE

A,C,D ______________ --,
M~N ,

.r-------------- SSYN

MSYN
A,C,D -----------------.~

~r----------------SSYN

Figure 8-4(a)

The flow of signals for DATI is shown in Figure 8_4(b). (DATIP is similar
except that the internal operatioll of the slave device is modified.) The master
sets Control for DATI, sets Address for the slave to be selected, and asserts
MSYN_ The selected slave responds by setting Data for the information re
quested and asserts SSYN. The master sees SSYN, accepts the data, and
then negates Control, Address, and MSYN. The slave sees MSYN negated
and negates SSYN. The master continues when it sees SSYN negated.

A more detailed signal sequence for the DATI, DATIP, DATa, and DATOS bus
operations can be found in Appendix D.

MASTER

OPERATION: DATI

SLAVE

A,C
MSYN----------------.+

.r---------------- SSYN,D

MSYN
A,e --------------"

~r--------------- SSYN,i5

Figure 8-4(b)

UNIBUS CONTROL OPERATIONS
The following section will deal with how a device becomes master of the bus
and how control of the bus is transferred from one device to another. Two
additional bus operations will be presented-the PTR (Priority Transfer) and
INT.R (Interrupt).

In normal operation, the processor is bus master, fetching instructions and
operands from memory. Other devices on the bus have the capability of
becoming bus master, and use the bus for one of two purposes: 1), to gain
direct memory access or 2), to interrupt program execution and force the
processor to branch to a specific address.

PRIORITY ARBITRATION-Transfer of bus control from one device to another
is determined by a priority scheme in which three factors must be considered.

First, the processor's priority is determined by bits 7, 6, and 5 in the pro-

64

cessor status register. These three bits set a priority level that inhibits
granting of bus requests on lower levels.

Second, bus requests from external devices can be made on one of five
request lines. NPR has the highest priority, and its request is honored by the
processor between bus cycles of an instruction execution. BR7 is the next
highest; BR4 is the lowest. These four lower level requests are honored by
the processor between instructions, except when the instruction currently
being executed causes an internal trap (either an error or trap instruction).
In this case, BR requests will not be honored until completion of the first
instruction after the trap sequence. Thus if two requests are made to the
processor for bus control, the higher of the two requests will be honored first.

Third, in response to a bus request, the processor may honor the request by
asserting a bus grant (BG) corresponding to the line on which the bus re
quest was made. This signal is passed serially through each device in the
system. If a device had made a request, it would block the grant signal
and prevent it from reaching the following devices. Thus, in this "pass·the
pulse" chain, the device that is closest to the processor has the highest
priority on that request level.

This table lists device priorities:
Highest: Devices on NPR

Processor when priority = 111
Devices on BR7 .
Processor when priority = 110
Devices on BR6
Processor when priority = 101
Devices on BR5
Processor when priority = 100
Devices on BR4
Processor when priority = 011
Internal options
Processor when priority = 010
Internal options
Processor when priority = 001
Internal options

Lowest: Processor when priority = 000

When the processor's priority is set at N, all requests for bus control at
level N and below are ignored.

SELECTION OF NEXT BUS MASTER-The signal sequence by which a device
becomes selected as next bus master is the PTR (Priority Transfer) bus
operation. Note that this ope~ation does not actually transfer bus control;
it only selects a device as next bus master. It takes one additional condition
to complete the transfer: the current bus master must complete its bus
operations. The signal that indicates this is BBSY. Thus, when a device makes
an NPR or BR request to the processor for bus control, it waits until it first
becomes selected as next bus master by the PTR operation and second, it
no longer senses BBSY. The negation of the BBSY signal indicates that
the current master has completed its bus operation. The selected device
now becomes bus master and asserts BBSY itself ..

INTERRUPT SEQUENCE-Once the device has bus control and is asserting
BBSY itself, it is sole user of the bus until it releases its control. This release
of control can be made either actively or passively. Passive release is realized

65

by negating BBSY. Bus control will then pass to either a device that was
selected in the meantime by another PTR sequence or back to the processor,
which will continue where it was interrupted. Active release of bus control
is realized through the INTR bus sequence.

- The INTR (interrupt) operation is used by the bus master to transfer to the
processor a memory address (called the interrupt vector). Two consecutive
words, the starting address of an interrupt service routine a,nd a new pro·
cessor status word, are stored at the interrupt vector address. After the
INTR operation is complete, the processor automatically becomes bus master
and begins a trap sequence in which it stores the current value of the PC
and PS on the stack and fetches a new PC and PS from the location pointed
to by the interrupt vector. Thus, the next instruction executed is the start
of the interrupt service routine.

It is illegal to issue an INTR command after gaining control of the bus by
requesting on an NPR line. NPR requests are granted during instruction
execution and external bus masters must restrict their bus use to nonpro·
cessor activities.

Interrupt Servicing Sequence Example-The following is an example of the
INTR sequence.

"When a peripheral requires service and requests control of the bus with a
BR signal, the operations undertaken to "service" the device are as follows: .

• Gain Control of the Bus-When the processor has no higher priority tasks
to complete, it relinquishes the bus to that device. Higher priority items are
(in order of priority):
1. Acknowledging an NPR request
2. Handling a processor error (illegal instructions, reqUirements, for non·

existent memory, etc.)
3. Completing the current instruction
4. Acknowledging a trace trap
5. Continuing a higher priority process
6. Acknowledging a higher level BR signal
7. Acknowledging same level BR signals for device~ closer to the processor

e Do INTR Sequence-when the device has control of the bus, it initiates
an INTR sequence, transferring to the processor the interrupt vector address
which specifies two words in memory containing the address and status of
the appropriate device service routine.

• Push Old Interrupt Vector Onto Stack-The processor then "pushes"
first, the current central proc"essor status (PS) and then the current program
counter (PC) onto the processor stack.

• Fetch New Interrupt Vector-The new PC and PS (the "interrupt vector")
are taken from the address specified by the device, and the device service
routine is begun. Note that those operations all occur automatically and that
no device polling is required to determine which service routine to execute.

Example of NPR Operation-Disk operation gives an example of a device
which uses the bus for direct memory access. Under program control, the
processor would initialize registers in the disk control that specify word count
(WC, number of words in block of data to be transferred), memory address
(MA, the address at which the block of data is found or is loaded), and Track
Address (TA, the point on the disk where the block of data starts). Also, the

66

program would set certain function bits in the disll's command and status
register that specify a read or write function. For this example, assume the
disk was set to read.

Once the disk's control registers are initialized, the disk control logic starts
a search for the requested data. (The processor in the meantime has con
tinued in its program execution.) When the disk has found the data, it
assembles the first 16·bit word from the disk surface into its data register.
The disk now requests bus control via the NPR request line. The processor,
when it has completed its current bus cycle of the current instruction and
no higher NPR requests exist, grants control of the bus to the disk. The disll,
as bus master, effects a DATa bus operation, transferring the contents to
its data buffer to the core address held in its MA. The MA is now incremented
and the we is decremented. When the DATa operation is complete, the disk
passively releases control of the bus.

When the second word has been assembled, the disk again requests bus
control, does a data transfer, and then releases bus control. This cycle is
repeated until the we reaches zero. At this point, the disll has completed
the transfer that was requested.

To notify the program that the transfer is finished, the disk initiates a request
for bus control at the BR level, gains control when higher priority requests
are satisfied, and does an immediate INTR to the processor and causes the
program to branch to a specific service program (as described in the previous
example).

Details of the INTR and PTR bus operations can be found in Appendix D.

67

The plug-in console board with modular construction is supplied
in the basic 11/20 configuration_ In addition to aiding program
ming, the console contributes to ease of maintenance on the
PDP-ll.

68

CHAPTER 9

Interfacing

A typical device bus interface as shown in Figure 9-1 is composed of five
major components: 1), Registers; 2), Bus Drivers and Receivers; 3), Address
Selector; 4), Interrupt Control; and 5), Device Control Logic.

REGISTERS
Each device is assigned bus addresses at which the program can inter
rogate and/ or load the device status, control, and data registers. The stan
dardized mapping for these registers and the bit assignments of the com
mand/status register (CSR) were given in Chapters 5 and 6.

As shown in Figure 9-1, all information flow between the device logic and
the Unibus is done through the registers. In general, registers are designed
to be both loadable and readable from the bus. This allows the program to
use such instructions as ADD RD, REG, or INC REG. However, registers can
be "one-sided," either "read-only" or "write-only." Examples of read-only
bits are the DONE and BUSY flags in the device's CSR. These bits are de
rived from the internal state of the device logic and are not under direct
program control. Write·only registers are used when it is unnecessary to
read back information. Attempting to read such a register would result in an
all-zero transfer. The instructions effective with this type of register are then
limited to those which load the register such as MOV RD, REG, or CLR REG
(as opposed to ADD REG, RD, or INC REG).

/I

0<15'00>

BB~Y ,INTR
SACK.2BR ----;;;;;- rlaus DRIVERS I ~us DRIVERS r-1eus DRIVERS --[aus DRIVERS -0<07'02>
SSYN IN"TERRUPT

CONTROL

1
DEVICE

.8G
-,

1
LOGIC -=---

1
r-'" "I COMMAND I

~ ~ S¢A~~S -
OATA I

§ AODRESS BUFFER

SELECTOR REGISTER I
MIO~

_t
A<tNIl0> REGISTER I
C<t0> - ...
MSVN

T
0< 15'00>

BUS RECEIVERS

~ T

Figure 9.1 Typical Peripheral Device Interface

BUS DRIVERS AND RECEIVERS
To maintain the transmission-line characteristics of the Unibus, special cir
cuits are required to pass signals to and from the bus. The majority of bus
signals (all except the five grant lines) are received, driven and terminated
as shown in Figure 9-2.

69

,-----,
+5

Rt

R3

M930

L __:..._-1

Rt. R2=tBO.n. 5% tl4W
R3. R4=390.fl..5% t/4W

RECEIVER

DRIVER

Figure 9.2 Typical Unibus Line

,-----,
I +5 I
I R2 I
I I

R4

M930

I
I
I
I
I
I

L ____ ...l

Information is received from the bus using gates which have a high input
impedance and proper logic thresholds. High input levels must be greater
than 2.5 V with an input current less than 160 p.a. Low level input must be
less than 1.4 V with an input current greater than 0 !la.
Information transmitted on the bus must be driven with open collector drivers
capable of sinking 50 ma with a collector voltage of less than .8 V. Output
leakage current must be lesS than 25 J.L8. .

In PDP'l1 systems, the bus signals are terminated at both ends by resistor
dividers provided on the M930 module. Physically, an M930 is located in
the processor; another is located at the last unit on the bus. A bus signal
sits at logical "0" (inactive, or negated state) at a voltage of 3.4 V. A bus
line is at logical "I" (active, or asserted) when it is pulled to ground.

Drivers and receivers meeting these specifications are· available on the
M783, M784 and M785 modules as shown in Figures 9·3, 9-4 and 9-5.

70

~"~
~

~
C2

N2
NI 8881

~' T2
52 8aSI

~
2

f2
VI aaSl

~+'v

rl!;;ure 9.3 M783 Unibus Drivers

., GNP 0·.:.:"'-------<1-,

1
C2,T'

.01 MFO

.Q1MfD

,01 MFO

6.8MFO

DEC 380 IS RECEIVER

Figure 9.4 M784 Unibus Receivers

MIOS ADDRESS SELECTOR
The Ml05 Address Selector as shown in Figure 9·6 is used to provide gating
signals for up to four device registers. The selector decodes the l8·bit bus
address on A < 17:00> as follows:

71

•• GNO

.2 CZ.T1
.ot MFO

.at MFD

.01 MFD

.Ot MFO

.ot MFD

6.B MFa

~ = 7400

CI

.2

E2

Ai

H2

E1

'2

01

M2

MI

P2

L1

52

R'

U2

P,

IDEe 380 IS RECEIVER
DEC ase1 IS DRIVER)

Figure 9.5 M785 Unibus Drivers and-Receivers

AOO is used for byte control. A01 andA02 are decoded to provide one of
four addresses. A < 12:03 > are determined by jumpers on the card. When
the jumper h~ in, the selector will look for a' 0 on that address line·
A < 17:13 > must all be l's-(this defines the external bank). Other bus
inputs to the selector are C < 1:0> and MSYN. The single bus output is
SSYN. The user signals are SELECT 0, 2, 4, and 6 (corresponding to the
decoding of A02 and A01, one of which is asserted when A < 17:13 > are all
l's and A < 12:03> compare with the state of the jumpers. Other user sig·
nals are OUT HIGH (gate data into high byte), OUT LOW (gate data into low
byte), and.lN (gate data onto the bus). The equations for these last three
signals are as follows:

OUT HIGH =
OUT LOW =
IN =

DATO V DATOB~AOO
DATO V DATOS AOO
DATI ' V DATIP

where" V,II means a logical ,or and "A" means a logical and.
Use of the M105, drivers, receivers and a flip-flop register is shown in Fig
ur~9-7.

72

The signal SSYN INH L may be used to delay the MI05 assertion of SSYN.
This may be done by adding external capacitance (2200 pf gives about I /,s),
or by gating with an open col/ector device (M783, M624). This line may not
be cjriven from a standard TTL device.

MSYN.L

A 17L

A0

A0

A0

A0

3L

2L

IL

0L
CIL
C 0L

EI

* B7

01
E2
02
KI
K2
C1
LI
PI
RI
N2
P2
UI
VI
U2
V2

Fl
HI

H2
F2
T2

SSYN INH L

BUS SSYN L
CONTROL JI

SELECT o H
A S2 0
0 I---
R

120-
E SELECT 2 H
S

T2 ~II 0- S

10 0-- 0 -
9 0-- E

C SELECT 4 H
~8 0-- 0 R2

~~ ?= 0
E -

~5 0- SELECT 6 H
~ 4 C?--
~3 0-

SI

II
M2

OUT HIGH
J GATING Nl

OUT LOW
I CONTROL I MI IN H
I J

MI05 ADDRESS
SELECTOR

* NORMALLY LEFT OPEN
SEE TEXT

Figure 9.6 MI05Address Selector

M782 INTERRUPT CONTROL

H
H

The M782 Interrupt Control module contains the necessary logic circuits to
allow a peripheral device to gain bus control and perform a program inter·
rupt. The three circuits on this card are block diagrammed in Figure 9·8.
Note that only signals relevant to the user's interface are shown; bus
signals SSYN, BBSY and SACK have been omitted for clarity.

The Master Control circuit is used to gain bus control. When INT and INT
ENB are asserted, a bus request is made on the request line to which BR
is jumpered. When the processor issues the corresponding grant and other
bus conditions are met, the MASTER signal is asserted, indicating that this
device now has bus control.' Note that this circuit also can be used to gain
bus control on an NPR line for a device which requests the bus for direct
memory access.

73

"T1
o"Q.
c:
til
~
'-.J

~
"C
o·
~
\J
(1)

'-.J ~.
~ "C

:r
(1)
~
0
(1)

< o·
(1)

::0
(1)

(JQ
iii·
(1)

rM~ -
ADDRESS
SELECTOR

SELECT REG

IN -H

OUT HIGH H

OUT LOW L

SELECT REG + 'I 16~HER ~"-""'=t.------'-. REGISTERS
SELECT REG.c.+-"4.,. _____ ••

SELECT REG + 61 .. BUS 015L- - BUS D09L- - BUS 008L- - BUS OI)7L- - BUS D01L- - BUS D00L- - -

In addition to two Master Control circuits, a third logic network provides the
necessary signals and gating to perform the INTR bus operation. When either
of the START INTR signals is asserted, the INTR bus signal is asserted
along with a vector address on D < 07:02 >. Bits 07:03 are determined by
jumpers on the card. A jumper "in" forces a 0 in that bit. Bit 2 is controlled
by Vector Bit 2. When the processor responds to the INTR signal by asserting
SSYN, the INTR DONE signal is asserted. This line is used to clear the
condition which asserted INTR START.

Ul
UZ

VI

c.G IN 1\ MASTER ., CONTROL
A

Rl
CLEAR A

RZ
START INTR A

0 H< BUS 007
F2

SACK START INTR • 0 F1
BUS DIG

rz P2 0 .2
BUS 005

0 L1
BUS 004

0 E2
BUS 013

BaSY 01 0 ., BUS 002
BUS JNTR

02 VECTOR BIT Z INTR ez
tNTR DONE A

INT B CONTROL MZ
INTR DONE B

.2 CI
PI SSYN

INT ENe

•
BG IN B MASTER GIIIO: e2, T1 • J2

El CONTROL AI +5'1: AZ

•
CLEAR B

SI

Figure 9.8 M782 Interrupt Control

Figure 9-9 shows a possible interconnection of the M782 to provide inde
pendent interrupts for two possible conditions in a device: ERROR and DONE.
The ERROR and DONE signals shown in Figure 9-9 are signals from bits 15
and 7 in a device's CSR. likewise ERROR INT ENB and DONE INT ENB are
derived from the CSR. Both interrupts in this example are tied to the BR4
level; the corresponding grant line BG4 enters the ERROR Master Control and
is passed on to the DONE Master Control. Thus, ERROR has a slightly higher
priority interrupt level than DONE.

Both MASTER signals are tied to the INTR control. Thus, whenever either
ERROR or DONE gains bus control, an INTR operation is initiated_ Note
that Vector Bit 2 is a 1 or 0 as a function of which master control
is interrupting_ Also, INTR DONE is tied to MASTER CLEAR to clear the
master condition.

75

DEVICE CONTROL LOGIC
The type of control logic for a peripheral depends on the nature of the
device. Digital offers a wi,de line of general-purpose logic modules for im
plementing control logic. These modules. are described in detail in another
Digital publication: The Logic Handbook.

ERROR INT ENB A

BUS 8G41N It

~'ttR

MASTER
CONTROL

A

BG40UT
AH

BUS BR4 L

~HL-______ -F~-!~~=s~n~R~~~-----------1

DONE tNT
ENS H

DONE H

8G4INBH

VECTOR BIT 2 H

NOTE:
I. BUS REQUEST IS MADE ON LEVEL 4
2. -[RROFI- INTERRUPTS TO t04
3. -DONE- INTERRUPTS TO 100
4. "ERROR" HAS HIGHER PRIORITY THAN

"DoNE- BECAUSE -ERROR" RECEIVES
BG4 Fl'RST.

Figure 9.9 Typical Interconnection of M782 Interrupt Control

76

BUS De7L
BUS Dl6L
BUS DeL
BUS DML
BUS De3L
BUS De2L
BUSINTR L

CHAPTER 10

CONFIGURATION AND INSTALLATION PLANNING
MODULAR CONSTRUCTION .
Physically, the PDP-ll is composed of a number of System Units. Each
System Unit is composed of three 8-slot connector blocks mounted end-to
end as shown in Figure 10-1. The Unibus connects to the System Unit at
the lower left and at the upper left. Power also" connects to the unit in the
leftmost black. A System Unit is connected to other System Units only via
the Unibus.

UNIBUS CONNECTION
A

POWER '0:::-.... ---2 ~ - - - -
~ ~ - - - -
~ LOGIC LOGIC 0 - - - - -
~ r- - - - -

V
UNIBUS CONNECTION

Figure 10.1 System Unit

The remainder of the System Unit contains logic for the processor, memory
or an I/O device interlace. This logic is composed of single height, double

'height, or quad height modules which are 8.5 " deep.

The use of System Units allows the PDP-ll to be optimally packaged for
each individual application. Up to six System Units can be mounted into a
single mounting box. For a basic PDP-ll/20 system, the processor/ console
would fill 2% System Unit spaces and 4096 words of core memory would
fill one System Unit space. This leaves 2112 spaces for user-designated op
tions_ This would allow the user to add 8,192 words of additional core
memory, a Teletype control, and a High-Speed Paper Tape Control, or 4,096
words of core memory and six Teletype interfaces. Larger systems will
require a BAll-EC or BAll-ES Extension Mounting Box which contains space
for six additional System Units.

The use of System Units also facilitates expansion of systems in the field
and service. To add an additional option to a PDP-ll system, the proper
System Unit is mounted in the Basic or Extension Mounting Box and the
Unibus is extended. Servicing of the PDP-ll can be done by swapping
modules or by swapping System Units.

MOUNTING BOXES AND CABINETS
The PDP-ll is available as either a tabletop or rack-mounted configura
tion. The rack-mounted, configuration may be installed in a DEC cabinet or
mounted in a customer cabinet. The PDP-ll mounts in an EIA standard 19-
inch cabinet. The rack-mounted PDP-ll has tilt-slides as standard mount
ing hardware_

, The following mounting units and cabinets are available for PDP-11 systems.

PDP-ll TABLETOP BOX AND POWER SUPPLY FOR 11/20, 11/10 SYSTEMS
(BAll-CC AND H720)-This cover and box 'may be specified with a basic
11/20 and 11/10 system and includes: .

1. H720 Power Supply
2. 15' of power cord with ground wire

77

~ For 115 V standard, parallel blade, U·ground, 15 ampere c011llectors
(NEMA 5·15P)

~ For 230 V 3 prong U·ground (NEMA 6·15P)
3. Cooling Fans
4. Filter
5. Programmers Console with 11/20 or Turn·Key Console with 11/10

Approximate Size-II" high, 20" wide, 25%" deep. Figure 10·2 shows the
layout of this unit.

Figure 10.2 Table Top PDp·11 Dimensions

Approximate Weight-lOO Ibs. (including CP, console and 4K core)

Power-120 V ± 10%,47·63 Hz 6'amps. single phase
(BA11·CC and H720·A)

230 V ± 10%,47·63 Hz 3 amps. single phase'
(BA11-CC and H720-B)

PDp·11 BASIC MOUNTING BOX AND POWER SUPPLY (BA11·CS ANDH720)
-This basic mounting box may be specified with a basic 11/20 or a 11/10
system and includes:

1. Tilt and Lock Chasis Slides
2. H720 Power Supply
3. 15' of power cord with ground wire
~ For 115V standard, parallel-blade, U·ground, I5-ampere connector,

(NEMA 5·I5P)
~ For 230 V 3-,prong, U·ground, NEMA No. 6·I5P
4. Cooling Fans
5. Filter
6. Programmers Console with 11/20 or Turn·Key Console with 11/10

Approximate Size-10 1h" high, 19" wide, 23" deep. Figures 10·3, 10·4 and
10·5 show the layout of this unit and give slide dimensions.

78

Approximate Weight-90 Ibs. (including CP. console and 4K core)

Power-120 V ± 10%. 47-63 Hz 6 amps. single phase
(BAll-C5 and H720-A)

230 V ± 10%. 47-63 Hz 3 amps. single phase
(BAll-C5 and H720-B)

Figure 10_3 Rack Mountable PDP-ll Dimensions

1/4"X 7/16"
SLOT TYP.

FRONT PANEL

I ~--=-'6f=======l I
f.--19-~

Figure lOA Rear View of Mounting Hardware

_~:: CHASSIS -- ------ - - --- - ~ ---1
: _ _ __ _ ,. _ _ _ _ ,~~1

I

'---- -.--.----- --~--,·-----2488E~IENS·ON---- --- _______ ~ __ ---.----~

SlOE: "I[W OF MOUNTING HAROWARE

Figure 10.5 Side View of Mounting Hardware

79

PDP·ll TABLETOP EXTENSION MOUNTING BOX (BAll·EC)-The tabletop
Extension Box is supplied, when ordered, for mounting of up to 6 additional
System Units which can not be contained in the Basic Mounting Box. This
unit is supplied with:

1. 15' of power cord with ground wire
~ For 115 V standard, parallel blade, U-ground, 15-ampere connector

(NEMA 5-15P) .
~ For 230 V 3-prong, U-ground, NEM!' 6-15P
2. Cooling Fans
3. Filter
4. Front Panel
5. Unibus Cable from Basic Mounting Box, 8'6" long

Approximate Size--11" high, 20" wide, 24" deep

Power-120 V ± 10%,47-63 Hz 6 amps. single phase
(when H720-A is added)

230 V ± 10%, 47-63 Hz 3 amps. single phase
(when H720-B is added)

r:'DP·ll EXTENSION MOUNTING BOX (BAll·ES)-The Extension Box is sup
plied, when ordered, for mounting of up to 6 additional System Units which
can not be contained in the Basic Mounting Box. This unit contains:

1. Tilt and Lock chassis slides .
2. 15' of power cord with ground wire
~ For 115 V standard, parallel-blade, U-ground, 15-ampere connector

(NEMA 5-15P)
~ For 230 V 3-prong, U-ground (NEMA 6-15P)
3_ Cooling Fans
4. Filter
5. Front Panel
6. Bus Cable from Basic Box, 8' 6" long

Approximate size--lOYl" high, 19" wide, 23" deep

Power-120 V ± 10%,47-63 Hz 6 amps. single phase
(when H720-A is added)

230 V .± 10%, 47-63 Hz 3 amps. single phase
(when H720-B is added)

PDp·ll FREESTANDING BASE CABINET (H960·CA)-This optional cabinet
cabinet can be used to mount theBAll-CS Basic Mounting Box and a
BAll-ES Exterlsion Mounting Box supplied with Tilt and Lock chassis slides
in addition to other PDP-ll equipment.

Panel capacity is six IOYl" high mounting spaces, each of which is covered
with black plastic panels if equipment is not mounted-(5 panels, maximum,
supplied).

Items supplied with the cabinet include:
1. H950-A Frame
2. H952-E Coasters
3. H-952-F L.evelers
4. H-952-C Fan Assembly (in top of cabinet)
5. H-950-S Filter
6. PDP-II Logo
7. H-950-B Rear Door
8. 10 112" Plastic Bezels, maximum of 5 supplied
9. Two H952-A End Panels

80

10. H950·D Mounting Panel Doors
11. H952·B Stabilizer Feet
12 .. #7406782 Kick Plate
13. #7005909 Power Distribution Panel (ac and dc, mounted on upper

left side)

Approximate Size--22" wide, 39" deep (including stabilizer feet), 71%" high ~

Approximate Weight-150 Ibs. (without computer)

Voltage--1l5 V 60 Hz (for fans)
230 V 50 Hz (for fans)

PDP-l1 POWER SUPPLY SUBSYSTEM H72o-This Power supply is used in
the Basic and Extension Mounting boxes and supplies power to all devices
mounted in one of these boxes. It is included in basic PDp·ll systems;
but must be ordered separately with a BAllES or BA11EC Extension Mount·
ing Box.

Approximate Size--16%" wide, 8" high, 6" deep

Approximate Weight-25 Ibs.

Voltages-(specify input voltage)
IN 120V ±10%, 47·63 Hz

218V ± 10%, 47·63 Hz
225V ±1O%, 47·63 Hz
233V ±10%, 47·63 Hz
240V ± 10%, 47·63 Hz

OUT +5V ±5%
-15V ±5%

+8RMS (unregulated)
-22V (unregulated)

6 amps
6 amps
3 amps
3 amps
3 amps

12 amps
10 amps

1.5 amps
1.0 amps

(H720A)
(H720A)
(H720B)
(H720B)
(H720B)

FREESTANDING PROGRAMMER'S TABLE (H952-HA)-This freestanding table
fits directly below the programmer's console in the Freestanding Base
Cabinet and extends into the cabinet approximately 1". The surface plate is
supported by its own adjustable height legs.

Approximate Size--20" extension from cabinet, 19" wide, 27" above floor

SYSTEM UNITS AND CABLES
The following items are available for mounting standard and special periph
eral device logic into a PDp·11 system.

PERIPHERAL MOUNTING UNIT (DDU-A)-The DD11 is a prewired System
Unit which allows standard small peripheral interfaces to be mounted in a

·PDP·l1 system. It accepts standard small peripheral interfaces (up to 4)
such as the KLll Teletype Control or the controller portion (PC11-M) of the
High Speed Reader/ Punch. For mounting, it requires one·sixth (1/6) of a
BA11 Mounting-8ox.

BLANK SYSTEM UNIT (BBU)-The BBll consists of three 288·pin con·
nector blocks connected end·to·end. Tliis unit is unwired except for Unibus
and power connections and allows customer·b-uilt interfaces to be integrated
easily into a PDP·ll system. For mounting it requires one~sixth (1/6) .of a
BA11 Mounting Box.

81

UNIBUS MODULE (M920)-The M920 is a double module which connects
the Unibus from one System Unit to the next ~ithin a Mounting Box. The
printed circuit cards are separated by I" for this purpose. A single M920
will carry all 56 Unibus signals and 14 grounds.

UNIBUS CABLE (BCllA)-The BCllA is a l20·conductor flexprint cable used
to connect System Units in different mounting boxes or a peripheral device
which is removed from the mounting boxes.

The 120 signals consist of the 56 Unibus lines plus 64 grounds. Signals and
grounds alternate to minimize cross talk.

Type ,Length
BCIlA·2 2'
BCllA·S 5'
BCIlA·8A 8'6"
BCllA·IO 10'
BCllA·lS IS'
BCllA·2S 25'

CABLE REQUIREMENTS
When an Extension Mounting Box is used, an external cable, the BClIA, is
the only signal connection between mounting boxes. This external bus cable
may also be used to connect other peripherals to the PDp·ll. The maximum
combined, internal and external, bus cable length is 50'.

PDP-ll/20 POWER REQUIREMENTS
Input Voltage and Current-IOS·12S Vac, 6 amperes, 210·260 Vac 3 am·
peres, (Single phase) .

Line Frequency--47-63 Hz

Power Dissipation--400 watts

A standard IS-foot, 3-prong, U-ground, IS-ampere, line cord is provided on
the rear of the PDP-ll for connection to the power source on 120 Vac
models. On 230 Vac models, a IS-foot, 3·conductor cable with pigtails is
provided.

TELE;TYPE REQUIREMENTS
The standard Teletype requires a floor space approximately 22lh inches
wide by l8lh inches deep. The Teletype cable length restricts its location to
within 8 feet of the side of the computer.

Input Voltage-lIS Vac ±lO%, 60 Hz ±O.4S Hz, 230 Vac ± 10%, 50 Hz
±0.7S Hz

Line Current Drain-2.0 amperes

Power Dissipation-ISO watts

The Teletype plugs into the rear of the PDP-ll Basic Mounting Box and is
turned ON and OFF by the power switch on the front panel of the PDp·ll.

ENVIRONMENTAL REQUIREMENTS
The PDP-ll is designed to operate from +10 to +50°C and with a rel~tive
humidity of from 20 to 95% (without condensation).

82

INSTALLATION PROCEDURE
The PDp·ll is crated for shipment to the customer site to prevent damage.
Installation is provided by DEC personnel at the customers site.

Computer cu'stomers may send personnel to instruction courses on computer
operation, programming, and maintenance conducted regularly in Maynard,
Massachusetts, Palo Alto, California, and Reading, England.

83

The PDp·II has adopted a modular packaging approach to allow
custom configuring of systems, easy expansion and easy seryicing.

84

CHAPTER 11

PAPER TAPE SOFTWARE SYSTEM
PAPER TAPE SOFTWARE SYSTEM (PTS)
PTS is a compatible group of software packages designed to aid development
of PDp·ll application programs. A brief description of each item with its
major features is offered below with detailed programming information avail·
able in corresponding software user's manuals.

PTS FEATURES

• 4K Absolute Assembler
• Symbolic Program Editor for editing of paper tape which is string oriented
• On· Line Debugging Aid allowing rapid and accurate modification of assem·

bled programs
• 110 Driver Routine allowing subroutine level communication with periph·

eral devices and double buffered inputloutput operation concurrent with
running programs

• Floating Point Math Package using both reentrant and relocatable code
• General Utilities including loaders and dump routines

PAL· 11 A ASSEMBLER-This two· or three·pass assembler runs on a PDp·ll
with 4K words of core memory and an ASR·33. It will also accommodate a
high·speed readerl punch. Optional outputs include the absolute object code,
an assembly listing containing each source statement, and an indication of
any errors detected in the statement. A symbol table may be alphabetically
listed.

ED11 EDITOR-The PDp·ll Editor (EDll) allows the user to type identified
portions of source program on the teleprinter and to make corrections or
additions. This is accomplished by typing simple commands that cause the
Editor to read, print, punch out on paper tape, search, delete and! or add to
the text of the program.

Use of the EDll presupposes no special knowledge or technical skill beyond
that of the operation of explicitly defined one·character commands. The
commands are grouped according to function: input, positioning of the
current·character location pointer, output, search (which is done bycharac·
ter string), insert, delete, and exchange of text portions.

EDll uses 2,000 words of core and requires an ASR·33 unit which includes
a printer, keyboard, paper tape reader and paper tape punch. Alternatively,
a KSR·33 may be used in conjunction with the high·speed paper tape reader
and punch.

ODT·11 ON·LlNE DEBUGGING TECHNIQUE-ODT·ll is a core resident pro·
gram which allows the user to debug his binary programs at the console by
running them in specific segments and checking for expected results at vari
ous points. If modification of the program is needed, the user can alter the
contents of the appropriate location by "opening" it and typing in new data.

Two versions of ODT are available, one being a subset of the other. The
larger system uses 750 words of core and utilizes an ASR·33, or a KSR·33
and a high·speed paper tape punch and reader. The smaller version uses the
same peripherals and 500 words of core. Up to eight breakpoints can be set
using the larger version of ODT, while one breakpoint is allowed in the
smaller version.

85

Debugging operations alternat~ between commands to ODT and the running
of the program to be debugged. Breakpoints are set in the user's program by
ODT commands, and a command to run starts execution of the. program.
When a breakpoint is encountered, the program run is suspended, and the
progress of its execution can be monitored and altered. This is accomplished
by using commands to open memory locations of interest, as well as special
registers.

An operator may examine and change the operating priority of both ODT
and the user's program, the mask and address range for searches, results
of logical and arithmetic operations, the SP and PC, and the general registers.
Other commands will search for values of specified bits of a word, or for
references to an address within an address range, calculate I6-bit and 8-bit
offsets to an address and restart the running of the user's program at any
address.

lOX Input/Output Utility Peripheral Driver-lOX is a set of service routines
allowing single or double buffered I/O processing on an ASR-33 and/or a high
speed paper tape reader and punch. This routine allows the user to make
simple assembly language calls- specifying devices and data forms to accom
plish interrupt-controlled data transfer concurrent with execution of the run
ning program. Multiple devices can be run simultaneously.

lOX frees,the user from the details of dealing directly with the device and
allows development of programs which may be run under the direction of a
monitor with minimum modification_

lOX also provides some degree of real-time control by allowing user programs
to be executed at priority levels at the completion of some device action or
data transfer_

MATH PACKAGE-A number of commonly used subroutines are available to
simplify programming. These routines are reentrant and relocatable to pro
vide maximum flexibility. Arguments are treated as floating point numbers
with a signed 3I-bit fraction and a signed I5-.bit exponent. Subroutines sup
plied include:

ADD
MULtiply
SUBtract
DIVide
SIN
COS
ATAN
FIX-FLOAT
FLOAT-FIX
NORmalize
(Integer MULtiply and DIVide are also supplied)

LOADERS-Two loaders are used:

eA Bootstrap loader loads the ABSolute loader and jumps to it.

e ABSolute loader loads PAL-llA output, checks for checksum errors and
jumps to a user program or halts when done.

CORE DUMP ROUTINES-Routines are provided which dump specified
ranges of core locations on paper tape in absolute format or on the tele
printer in octal.

86

CHAPTER 12

THE OPERATOR'S CONSOLE
The PDP-ll Operator's Console has been configured to achieve convenient
control of the system. Through switches and keys on the console, programs
or information can be manually inserted or modified. Also indicator lamps on
the console face display the status of the machine, the contents of the Bus
Address Register and the data at the output of the data paths.

The console is shown in Figure 12-1.

CONSOLE ELEMENTS

ADDRESS REGISTER
I

I I

Figure 12-1

The console has the following indicators and switches:

SOURCE DESTINATION ADDRESS
I I c:==:J

1. A bank of 8 indicators, indicating the following conditions or oper
ations: Fetch, Execute, Bus, Run, Source, Destination and Address

. (2 bits).
2. An 18-bit Address Register display
3. A 16-bit Data display
4. An 18-bit Switch Register
5. Control Switches:

a. LOAD ADDR (Load Address)
b. EXAM (Examine)
c. CONT (Continue)
d. ENABLE/HALT .
e. S/INST-S/CYCLE (Single Instruction/ Single Cycle)
f. START
g. DEP (Deposit)

INDICATOR L1GHTS--The indicators signify specific macliine functions,.
operations, or states. Each is defined below.

1. Fetch-indicates that the central processor is fetching an instruction.
2. Execute-indicates that the central processor is in the state of

executing an instruction ..

87

3. Bus-indicates that a peripheral is controlling the bus. It is lit when
BBSY (Bus Busy) is asserted, unless the processor (which includes
the console) is asserting BBSY.

4. Run-indicates that the processor is running. It monitors the control
flip·flop for the internal clock.

5. Source-indicates that the central processor is obtaining source
data (except from~an internal register).

6. Destination-indicates that the central processor is obtaining des·
tination data (except from an internal register).

7. Address-identifies the source or destination address cycle of the
central processor, using two lights that are decoded zero, one, two,
or three. When references are made via the Unibus to the addresses,
the lights tell the machine's source or destination cycle. For an in·
ternal register reference, there is a "zeroth" addressing operation.

REGISTER DISPLAYS-The Operator's Console has an 18·bit Address Regis·
ter display and a 16·bit Data display. The Address Register display is tied
directly to the output of an 18·bit flip·flop register called the Bus Address
Register. T!lis register displays the address of data examined or deposited.
deposited.

The 16·bit data register is divided on the face of the console by a line into
two 8-bit bytes. This register is tied to the output of the processor data paths
and will reflect the output of the processor adder. After execution of a HALT
instruction, the Data display will show the content of the RO register. It
also will show data either examined or deposited when doing these control
functions.

SWITCH REGISTER-The PDP·11/l0 and PDp·11!20 can reference 216 byte
addresses. However, the Unibus has expansion capability for 218 byte ad·
dresses. In order that the console can access the entire 18·bit address
scheme, the switch register is 18 bits wide. These bits are assigned as 0
through 17. The highest two are used only as addresses. A switch in the
"up" position is considered to have a "I" value and in the "down" position
to have a "0" value. The condition of the 18 switches can be loaded into the
Bus Address Register or any memory location by using the appropriate con·
trol ~witches which are described below_

CONTROL SWITCHES-The switches listed' in item 5 of the "Console
Elements" have these specific control functions:

1. LOAD ADDR-transfers the contents of the 18-bit switch register
into the bus address register.

2. EXAM-displays the contents of the location specified by the bus
address register.

3. DEP-deposits the contents of the low 16 bits of the switch register
into the address then displayed in the address register. (This switch
is actuated by raising it.)

4. ENABLE/HALT-allows or prevents running of programs. For a pro·
gram to run, the switch must be in the ENABLE position (up). Placing
the switch in the HALT position (down) will halt the system.

5. START-starts executing a program when the ENABLE/HALT switch
is in the ENABLE position. When the START switch is. depressed, it
asserts a system initialization signal; ,the system actually starts when
the switch is released. The processor will start executing at the
address which was last loaded by the LOAD ADDR key, provided
no other key operations have been performed. In HALT mode, de·
pressing START effectively resets the entire system, thus acting as
a manual 110 reset.

88

6. CONT-allows the machine to continue without initialization from
whatever state it was in when halted, provided no other key opera
tions have been performed.

7. S/INST-S/CYCLE-determines whether a single instruction or a
single bus cy~le is performed when the CONT switch is depressed
while the machine is in the halt mode.

When the system is running a program, the LOAD ADDR, EXAM, and DE
POSIT functions are disabled to prevent disrupting the program. When the
machine is to be halted, the ENABLE/ HALT switch is thrown to the halt
position. The machine will halt either at the end of the current instruction,
or at the end of the current bus cycle, depending upon the position of the
S/INST-S/CYCLE switch. But for EXAM, DEPOSIT and LOAD ADDR to func
tion, the machine must stop in "Service" (all state indicators off). To assure
this condition, halt the machine in SINGLE INSTRUCTION mode.

OPERATING THE CONTROL SWITCHES
When the PDP-ll has been halted, it is possible to examine and update bus
locations. To examine a specific location, the operator sets the switches of
the switch register to correspond to the location's address. The operator then
presses LOAD ADDR, which will transfer the contents of the switch register
into the bus address register. The location of the address to be examined is
then displayed in the address register display. The operator-then depresses
EXAM_ The data in that location will appear in the data register display.

If the operator then depresses EXAM again, the bus address register will be
incremented by 2 to the next word address and the new location will be
examined. In the PDP-ll, the bus address register will always be pointing to
the data currently displayed in the data register. The incrementation occurs
when the EXAM switch is depressed, and then the location is exal!1ined_

The examine function has been designed so that if LOAD ADDR and then
EXAM are depressed, the address register will not be incremented. In this
case, the location reflected in the address register display is examined
directly. However, on the second (and successive) depressings of EXAM, the
bus address register is incremented. This will continue for successive de
pressings as long as another control switch is not depressed.

If the operator finds an incorrect entry in the data register, he can enter new
data there by putting it in the switch register and raising the DEP key. The
address register will not increment when this data is deposited. Therefore,
when the operator presses the EXAM key, he can examine the data he just
deposited. However, when he presses EXAM again, the system will increment.

If the operator attempts to examine data from, or deposit data into, a non
existent memory location, the "time out" feature will cause an error flag. The
data register will then reflect location 4,' the trap location, for references to
nonexistent locations. To verify this condition, the operator should try to
deposit some number other than four in the location causing the error; if
four is still indicated, this would indicate that either nothing is assigned
to that location, or that whatever is assigned to that location is not working
properly_

When doing consecutive examines or consecutive deposits, the address will
increment by 2, to successive word locations. However, if the programmer is
examining the fast registers (the "scratch pad" memory), the system only

89

increments by 1. The reason for this is that once the switch register is set
properly, the programmer can then use the four least significant bits of the
switch register in examining fast memory registers from the front panel.

To start a PDP·ll program, the programmer loads the starting address of
the program in the switch register, depre:;ses LOAD ADDR, and after ensur·
ing that the ENABLE/ HALT switch is in the ENABLE position, depresses
START. The program will start to run as soon as the START switch is reo
leased.

The Run indicator lamp is driven off the flip·flop that controls the clock.
Normally, when the system is running, not only will this light be on, but the
other lights (Fetch, Execute, Source, Destination, the Address lights, and the
Address and Data registers) will be flickering. If the run light is on, and none
of the other indicators are flickering, the system could be executing a "wait"
instruction which waits for an interrupt. In this case, a "I" will appear in the
Data display.

While in the halt mode, if the operator wishes to do a single instruction, he
places the S/INST-S/CYCLE switch in the S/INST position and depresses
CONT. When CO\'lT is depressed, the console momentarily passes control to
the processor, allbwing the machine to execute one instruction before regain'
ing control. Each time the CONT switch is depressed, the machine will
execute one instruction. The Bus Address Register will then show the last
address referenced by the instruction (not necessarily the address of the
instruction itself) and the Data display will reflect the data acted upon
at that address.

Similarly, if the operator wishes to have the machine perform a single bus
cycle, he places the S/ INST·S/ CYCLE switch in the S/ CYCLE position and
presses CONT. The machine will then perform one complete bus cycle and
halt. The operator cannot do an examine or deposit function at the end of a
single bus cycle. This prevents altering machine flow. Only when the machine
is at the end of an instruction and in the halt mode can the examine or
deposit functions operate.

To start the machine running its program again, the operator places the
ENABLE/HALT switch in the ENABLE position, and depresses the CONT
switch.

90

APPENDIX A-POP-II INSTRUCTION REPERTOIRE

Condition
Instruction Codes

Mnemonic Operation OPCode ZNCY Timing

DOUBLE OPERAND GROUP: OPR scr, dst

MOY(B) MOVe (Byte) ·lSSDD YV-O 2.3
(src) ~ (dst)

CMP(B) CoMPare (Byte) ·2SSDD VVVV 2.3>1<
(src) - (dst)

BIT(B) Bit Test (Byte) ·3SSDD VV-O 2.9*
(src) A (dst)

BIC(B) Bit Clear (Byte) . -4SSDD V v-O 2.9
r- (src) A (dst) ~ (dst)

BIS(B) Bit Set (Byte) ·5SSDD Vv-O 2.3
(src) V

ADD ADD 06SSDD VVVV 2.3
(src) + (dst) ~ (dst)

SUB SUBtract 16SSDD VVVV 2.3
(dst) - (src) ~ (dst)

CONDITIONAL BRANCHES: Bxx loe

BR BRanch (unconditionally) 0004XX 2.6-
loc ~ (PC)

BNE Branch if Not Equal (Zero) OOlOXX 2.6-
loc ~ (PC) if Z = 0

BEQ Branch if Equal (Zero) 0014XX 2.6-
loc ~ (PC) if Z = 1

BGE Branch if Greater or Equal (Zero) 0020XX 2.6-
loc ~ (PC) if N V V = 0)

BlT Branch if less Than (Zero) 0024XX 2.6-
loc ~ (PC) if N V V = 1

BGT Branch if Greater Than (Zero) 0030XX 2.6-
loc ~ (PC) if Z v (N V V = 0)

BlE Branch if less Than or Equal (Zero) 0034XX 2.6-
loc ~ (PC) if Z v (N V V) = 1

BPl Branch if Plus 1000XX 2.6-
loc ~ (PC) if N = 0

BMI Branch if Minus .1004XX 2.6-
loc ~ (PC) if N = 1

BHI Branch if Higher 1010XX 2.6-
loc ~ (PC) if C v Z = 0

BlOS Branch if lOwer or Same 1014XX 2.6-
loc ~ (PC) if C v Z = 1

BVC Branch if oVerflow Clear 1020XX 2.6-
loc ~ (PC) if V = 0

BVS Branch if oVerflow Set 1024XX 2.6-
loc ~ (PC) if V = 1

BCC Branch if Carry Clear 1030XX 2.6-
(or BH IS) loc ~ (PC) if C = 0
BCS Branch if Carry Set 1034XX 2.6-
(or BLO) loc --') (PC) if C = 1

91

SUBROUTINE CALL: JSR reg, dst
JSR Jump to SubRoutine 004ROO 4.4

(dst)-,;> (tmp), (reg) t
(pC) --i> (reg), (tmp) --i> (PC)

SUBROUTINE RETURN: RTS reg
RTS ReTurn from Subroutine 00020R 3.5

(reg) --i> PC, t (reg)

SINGLE OPERAND GROUP: OPR dst
CLR(B) CLeaR (Byte) ·05000 1000 2.3

o --i> (dst)
COM(B) COMplement (Byte) ·05100 v vOO 2.3

~ (dst) --i> (dst)
INC(B) INCrement (Byte) ·05200 vv-v 2.3

(dst) + 1 --i> (dst)
OEC(B) OECrement (Byte) ·05300 vv-v 2.3

(dst) - 1 --i> (dst)
NEG(B) NEGate (Byte) ·05400 vvvv 2.3

,-- (dst) + 1 --i> (dst)
AOC(B) AOd Carry (Byte) ·05500 vvvv 2.3

(dst) + (C) --i> (dst)
SBC(B) SuBtract Carry (Byte) ·05600 vvvv 2.3

(dst) - (C) --i> (dst)
TST(B) TeST (Byte) ·05700 v vOO 2.3*

0- (dst)
ROR(B) ROtate Right (Byte) ·06000 vvvv 2.3 0

rotate right 1 place with C
ROL(B) ROtate Left (Byte) ·06100 vvvv 2.3 0

rotate left 1 place with C
ASR(B) Arithmetic Shift Right (Byte) ·06200 vvvv 2.3 0

shift right with sign extension
ASL(B) Arithmetic Shift Left (Byte) ·06300 vvvv 2.3 0

shift left with lo·order zero
JMP JuMP 000100 1.2

(dst) --i> (PC)
SWAB SWAp Bytes 000300 v vOO 2.3

bytes of a word are exchanged

CONDITION CODE OPERATORS: OPR 1.5
Condition Code Operators set or clear combinations of condition code bits.
Selected bits are set if S = 1 and cleared otherwise. Condition code bits cor-
responding to bits set as marked in the word below are set or cleared.

CONDITION CODE OPERATORS;

I 0 I 1 0 I
15 5 4 :3 2 I 0

Thus SEC = 000261 sets the C bit and has no ettEll::t on the other condition
code bits (CLC = 000241 clears the C Bit)

OPERATE GROUP: OPR
HALT

WAIT

HALT 000000
processor stops; (RO) and the HALT address. in lights
WAIT 000001
processor releases bus, waits for interrupt

92

1.8

1.8

RTI ReTurn from Interrupt 000002

lOT
t (PC), t (PS)
Input/Output Trap 000004

(PS) ,J" (PC) ,J, , (20) ~ (PC), (22) ~ (PS)
RESET RESET 000005

an INIT pulse is issued by the CP
EMT EMulator Trap 104000-104377

(PS) ,J, , (PC) ,J, , (30) ~ (PC), (32) ~ (PS)
TRAP TRAP 104400-104777

(PS) ,J" (PC) ,J" (34) ~ (PC), (36) ~ (PS)

NOTATION:
1. for order cOdes

. - word/byte bit, set for byte (+100000)
SS--:source field,
DO-destination field
XX-offset (8 bit)

2. for operations
A and,
v or,

not,
() contents of,
V' XOR
,J, "is pushed onto the processor stack"

v'v'v'v' 4.8

v'v'v'v' 9.3

20 ms.

v'v'v'v' 9.3

v'v'v'v' 9.3

t "the contents of the top of the processor stack is
popped and becomes"

~ "becomes"
3. for timing

* O.4.IlS less if not register mode
0.9 IlS less if conditions for branch not met
1.2 IlS more if addressing odd byte

. (0.6 IlS additional in addressing odd bytes otherwise)

4. for condition codes
v' set conditionally

not affected
o cleared
1 set

93

The PDP-ll derives speed and memory efficiency from its wide
range of addressing capabilities_

94

APPENDIX B-ADDRESSING SUMMARY
ADDRESSING MODES

MODE REGISTER

Ire or dlt

GENERAL REGISTER ADDRESSING

Mode
o
1
2
3
4
5
6
7

Description
register .
register deferred
auto increment
auto increment deferred
auto decrement
auto decrement deferred
indexed
indexed deferred

Symbolic
R
@ R or (R)
(R) +
@ (R) +
- (R)
@ - (R)
X (R)
@ X (R) or @ (R)

MODE 7

PC REGISTER ADDRESSING

Mode
2
3
6
7

Description
immediate
absolute
relative
relative deferred

INSTRUCTION FORMATS

arc or dlt

Symbolic
#n .,
@#A
A
@A

DOUBLE OPERAND GROUP: OPR sre, dst

15 12 I' 6 5

95

Timing (/oIs)
src dst
00 00

·1.5 1.4
1.5 1.4
2.7 2.6
1.5 1.4
2.7 2.6
2.7 2.6
3.9 3.8

Timing (/oIs)
src dst
1.5 1.4
2.7 2.6
2.7 2.6
3.9 3.8

o

SUBROUTINE CALL: JSR reg. dst

I 0 I 0 4 reg . I dsl I
15 9 B 6 5 0

SUBROUTINE RETURN: RTS reg

I 0 I 0 0 2 0 rog

15 3 2 0

SINGLE OPERAND GROUP: OPR d.I

lOP CODE I dsl I
15 6 5 0

CONDITION CODE OPERATORS;

I 0 I 0 0 2 41 S I N I z vi C

15 5 4 3 2 0

96

000000

000 037

000 040
000 057

000 06
000 077

000 100

000 170
000 177

000 000 000200
BASIC 4K (WORD)

000 377
0.7 777
020 000

4K MEMORY
037 777 000 270

040000 000277

00030

\0
'I

077 777
100 000

117 777
4K MEMORY

000 374

.20 000 000377
4K MEMORY 760 000

.37 777
•• 0 000

763 777
157 777 764 777
760 000

767 777

777 777
770 000

773 777
774 000

777 550

777 777

TRAP VECTORS

SYSTEM SOFTWARE
COMMUNICaTION WORDS

TT Y AND PAPER TAPE
INTERRUPT VECTORS

INTERRUPT VECTORS

INTERRUPT VECTORS

INTERRUPT VECTORS

0

• ERROR
10 RESERVED INSTR

•• TRACE
20 lOT
24 PWR FAIL
30 EMT
3. TRAP

60 TELETYPE KEYBOARD

64 TELETYPE PRINTER
70 PAPER TAPE READER
74 PAPER TAPE PUNCH

RESERVED FOR CUSTOMER
DEVICES
(000 170 000 174)
(000 270 000274)

NOT PROTECTED t---------+----j AGA.NST
STACK OVERFLOW

UNASSIGNED

RESERVED FOR
USER DEVICES

RESERVEO FOR
DEC DEVICES

RESERVED FOR ------ ------
DEC DEVICES

777 550

n7567

777 571

177 100

177 lt~

777 720

777 775
777 777

TELETYPE AND PAPER
TAPE DEVICE ADDRESSES

RO-R?

TEMP-SQURCE-ETC

777 550 PAS
777 552 PRB
777 554 PPS
777 556 PPB
777560 TKS
777 562 TK8
777 564 TPS

PAPER TAPE READER

PAPER TAPE PUNCH

TELETYPE KEY80A-RD

777566 TPS TELETYPE PRINTER

777 570 a 777571 ARE SWITCH REGISTER

PROCESSOR FAST STORAGE-THESE 16 LOCATIONS ARE
EACH t FULL WORD

R6 IS STACK POINTER
R7 IS PROGRAM COUNTER

777 776 a 777 777 ARE STATUS REGISTER

98

APPENDIX D-UNIBUS OPERATIONS
There are six bus operations: four to effect data transfers, one to transfer
bus control, and one to effect a program interrupt. This appendix describes
the signal interaction on the Unibus to perform these six operations.

DATA TRANSFERS
The four data transfers use the C lines coded as follows:·

Cl CO
o 0
o 1
1 0
1 1

DATI-DATa In
DATIP-DATa In, Pause
DATO-DATa Out
DATOS-DATa Out, Syte

DATI AND DATIP-These two bus operations transfer data from a slave
whose address is specified by A < 17:01 > into the master. Soth transfers
are made in words on 0 < 15:00 >. In destructive read-out devices,
DATI commands a read-restore operation, while DATIP commands a read
pause operation and the setting of a pause flag. DATIPs are to be followed
by a DATO or DATOS to effect a read-modify-write data exchange. In non
destructive read-out devices, DATI and DATIP are treated identically. The
sequence of operations is as follows:

L Master puts address on A, 0 or 1 on C, and waits 150 nanoseconds.
(75 nanoseconds for deskewing address + 75 nanoseconds for ad
dress decoding).

2. Master asserts MSYN.
3. Slave decodes address, sees 0 or 1 on C; and MSYN and begins read

cycle (flip-flop register would simply gate flop outputs to bus).
4. Slave completes read cycle, outputs data to 0 lines, and asserts

SSYN. If the slave is a destructive read·out device, it now restores
data on a DATI: it sets a pause flag on a DATIP.

Figure 0-1 shows the signals for a DATI operation.

DATI

SIGNALS AT MASTER

ADDRESS -CONTROL ______ H
DATA _____________J1 R L·
MSYN _____ ...fl TT--------- L _____ _

SSYN----~-----------~IRI"""-----"""IL......

SIGNALS AT SLAVE

ADDRESS-CONTROL ______ I R

DATA====~~I~T ===~= MSYN ________ -'IR

SSYN ____ --'-_____ ---'1 T

MEMORY CYCLE 1 READ I RESTORE LI ________ _

T' SIGNAL AS TRANSMITTED

R • SIGNAL AS RECEIVED

Figure D-IDATI Operation

99

5. Master sees SSYN and waits 75 nanoseconds, minimum (data des·
kewing + internal gating deskewing).

6. Master strobes data, drops MSYN, and waits 75 nanoseconds min·
imum (deskew address).

7. Master drops A and C and waits for SSYN to fall.
8. Slave sees MSYN fall and drops SSYN and D lines.
9. Master sees SSYN fall, signaling end of bus. operation.

NOTES:
1. Step 1 of the next data transfer may begin at step 7 of the current DATI or

DATJP.
2. Step 2 of the next data transfer may begin at step 9 of the current DATI or

DATIP.

DATO AND DATOB-These two bus operations transfer data out of the mas·
ter to the slave. DATO is used to transfer a word to the address specified
by A < 17:01 >. The slave ignores AOO and the data appears on D < 15:00 >.
DATOB is used to transfer a byte to the address specified by A < 17:00 >
AOO = 0 indicates the low byte and data appears on D < 07:00 >; AOO.= 1
indicates high byte and data appears on D < 15:08 >. The sequence of op·
eration is as follows:

1. Master puts address on A, data on D, 2 or 3 on C, and waits 150
nanoseconds (75 nanoseconds for deskewing address + 75 nano·
seconds for address decoding).

2. Ma!iter asserts MSYN.
3. Slave decodes address, sees 2 or 3 on C and MSYN and strobes in

word or byte. When slave has taken data, it asserts SSYN. If the slave
is a destructive read·out device and its pause flag is set (by DATIP),
slave begins write cycle; if not, slave must first do a read cycle to
clear the memory cell and then a write.

4. Master sees SSYN and drops MSYN and waits 75 nanoseconds (des·
kewaddress).

5. Master drops A, D, and C, and waits for SSYN to fall.
6. Slave sees MSYN fall and drops SSYN.
7. Master sees SSYN fall, signaling end of bus operation.

Figure D·2 shows the signals for a DATO operation.
DATO

SIGNALS AT MASTER

ADDRESS.CONTROL --1 T

DATA~f1Tr------------L----------------

MSYN---------~rITr---------lL ______________________ _

SSYN _________________ ~ R

SIGNALS AT SLAVE

ADDRESS.CONTROL ________ Jil Rl----------------------L-_________ __

DATA 1 R
.... 1 ____________ _

MSYN ____ ,--__________ --'1 R

SSYN fil T:---------L ________________ _

MEMORY CYCLE 1 CLEAR 1 WRITE

Figure D~2 DATO Operation

100

NOTES:
1. Step 1 of the next data transfer may begin at step 5 of the current DATa or

DATOS.
2. Step 2 of the next data transfer may begin at step 7 of the current DATO or

DATOS.

PTR-PRIORITY TRANSFER
This bus operation is used to pass control of the bus from one master to
another. The steps which follow are performed simultaneously with the data
transfers:

o. Current master device always has BBSY asserted.
1. Requesting device asserts its assigned BR line.
2. Processor sees BR asserted, determines which BR is highest, and

asserts the corresponding BG line if the processor's current priority
level allow that level of bus request.

3. Each device that receives the BG passes it on to the next device
unless it itself is requesting.

4. A device becomes selected as next bus master when it sees the
leading edge of the grant signal corresponding to the line on which
the bus request was made.

5. The selected device asserts SACK and drops its BR, and waits for
BBSY, BG, and SSYN to drop.

6. The processor sees SACK and drops BG.
7. The device which is current master completes its data transfers,

drops BBSY, and ceases to be bus master.
8. The selected device sees BG, BBSY, and SSYN drop, becomes bus

master, asserts BBSY, drops SACK, and begins data transfers.
9. New master relinquishes bus control, either to the processor or to a

requesting device, by dropping BBSY at the end of its last bus op·
eration. This is termed a passive release of bus control.

NOTES:
1. NPR bus requests are handled as above.
2. Processor defers action on SR <7:4> until last bus cycle of an instruction

execution or interrupt sequence, NPR is acted upon immediately.
3. Processor becomes bus master and asserts SBSY whenever it sees BSSY = 0

and no other device has been selected or is being selected as next bus master.
4. Processor will not execute step 2 if SACK is asserted. See note 2 under INTR.

Figure 0·3 shows the signals for a PTR operation .

...F:!!!.
SIGNALS AT DEVICE

BR ------JnTr----------;;:==========~-----------
BG----------------~IR

SACK r:1 T:----------...,.------------

SIGNALS AT PROCES SOR

SACK ________________________ -'1 R

T· SIGNAL AS TRANSMITTED

R • SIGNAL AS RECEIVED

Figure 0·3 PTR Operation

101

INTR-INTerRupt
This bus operation is initiated by a master immediately after receiving bus
control to effect a program interrupt in the processor. It proceeds as follows:

0.- Device has become bus master via PTR, and BBSY is asserted and
SSYN negated.

1. Master puts interrupt vector address on 0 and asserts INTR.
2. Processor sees INTR and waits 75 nanoseconds (deskew data).
3. Processor strobes data and asserts SSYN.
4. Master sees SSYN, drops INTR, 0, and BBSY. The master has now

relinquised bus control directly to the processor. The INTR sequence
is termed an active release of bus control.

5. Processor sees INTR drop and drops SSYN and enters interrupt
sequence to update PC and PS.

NOTES:
.1. Step 1 must be made simultaneously with step 8 of PTR; that is. SACK cannot

be dropped until INTR is asserted.
2. When the processor sees SACK drop, it waits 75 nanoseconds (deskew). If, at

that time, INTR = 1, the processor issues no BG's, until the interrupt sequence
is complete. '

, Figure 0-4 shows the signals for the INTR operation.
INTR

SIGNALS AT MASTER

eesy T L-__________ ~I R

D~A~RT;=============~===================
INTR ----1'r
S~N----------------------flIR~--------~-------

SIGNALS AT PROCESSOR
eesy R

DATA' _________ ---ll R

~------------~

INTR IR
SSyN _____________ ~'~ITT------~--1_ __________ __

T' SI GNAL AS TRANSMITTED
R • SIGNAL AS RECEIVED

Figure 0·4 INTR Operation

GENERAL NOTES ON THE BUS OPERATIONS
1. A master device doing a read·modify·write operation must keep bus

control BBSY asserted for both bus transactions (both the OATIP
and the OATO or OATOB). This is the one case where an NPR request
will not be honored between bus transactions.

2. A device becomes master by the PTR operation. If the request for
bus control was made on the NPR line, bus control must be released
passively (by dropping BBSY). Bus control is then passed either back
to the processor to execute the next bus cycle of the instruction or
to another device requesting on the NPR line. If a device becomes
master via a BR request line, control may be passed actively back
to the processor by using the INTR operation or passively (by drop·

102

ping SSSY). If control is given up actively, only N PR requests will be
honored during the interrupt sequence of updating the PC and PS.
If control is given up passively, control may pass either to the
processor to fetch the next instruction or to an NPR requesting
device.

3. A device other than the processor which uses the bus to execute
more than one bus operation before releasing control (rather than
executing just one operation each time it gains control) must keep
SACK asserted (rather than dropping SACK after it becomes bus
master) until the beginning of the last operation in its string of bus
transactions. (Step 1 of data transfer or INTR sequence).

4. GRANT CHAIN
The Master Controls in the M 782 treat the grant signals in the
following manner: SG IN has a 390 ohm resistor to ground; SG
OUT has a 180 ohm resistor to +5. Thus a typical grant chain looks
as follows:

M930
BUS TERMINATORS
r-- -,
I +5 I
I I
I ISol
I I
I I GRANT SIGNAL
I
L- ___ ...J

MASTER CONTROL
OF THE M782
(I ST DEVICE)

+5

ISO

103

+5

MASTER CONTROL OF
THE M7S2

(LAST DEVICE)

ISO·

M930 r---.,
I +5 I
I I

: ISO I
I I

.-----;-: ---' :
I I
'- ___ ..J

UNIBUS Pin Assignments

Signal Pin Signal Pin Signal Pin Signal Pin
ADO L BH2 BBSY L AP2 007 L AH2 Ground BC2
AOI L BHl BG4 H BE2 008 L AHI Ground BOI
A02 L BJ2 BG5 H BBI 009 L AJ2 Ground BEl
A03 L BJI BG6 H BAI 010 L AJ1 Ground BTl
A04 L BK2 BG7 H AVI 011 L AK2 Ground BV2
A05 L BKI BR4 L B02 012 L AKI INIT L AAI
.A06 L BL2 BR5 L BCl 013 L AL2 INTR L ASI
A07 L BLl BR6 L AU2 014 L All MSYN L BVI
A08 L BM2 BR7 L AT2 015 L AM2 NPG L AUI
A09 L BMI CO L BU2 Ground AB2 NPR L AS2
AID L BN2 Cl L BT2 Ground AC2 PA L AMI
All L BNl 000 L ACI Ground "ANI PB L AN2
A12 L BP2 001 L A02 Ground API +5V AA2
A13 I BPI 002 L AOI Ground ARI +5V BA2
A14 L BR2 003 L AE2 Ground ASI SACK L AR2
A15 L BRI 004 L AEI Ground ATl SP 1 BF2
A16 L BS2 005 L AF2 Ground AV2 SP 2 BFl
A17 L BSI 006 L AFl Ground BB2 SSYN L BUI

Each bi·directional signal line on the Unibus is terminated at both ends by
a resistive divider network to hold the inactive line at +3.4 volts. This net·
work consists of a IBO·ohm pull·up resistor connected to a 5·volt supply,
and a 390·ohm resistor connected to ground. The uni·directional grant lines
us a different terminating scheme-a IBO·ohm pull·up resistor on each grant
line output, and a 390·ohm pull·down resistor on each device input. Logic
power of +5 volts is available on pins AA2, BA2, but is not carried on the
bus and should only be used to supply power for terminating the bus. The
M930 Terminator module provides standard terminations.

104

DIGITAL EQUIPMENT CORPORATION WORLD-WIDE SALES AND SERVICE

MAIN OFFICE AND PLANT
{46 Main Street, Maynard, Massachusetts 01754· Telephone: From Metropo/Wm Boston: 646-8600. Elsewhere: (617) 897-5'''. TWX: 710-347-0212 Cable: Digital Mayn. Telex: 94-8457

NORTHEAST
NORTHEAST OFFICE:
15 Lunda Street, Waltham, Massachusetts 02154
Telephone: (617)-891-1030 & 1033

WALTHAM OFFiCE:
15 Lunda Street, Waltham, Massachusetts 02154
Telephone: (617)-891-1030 & 1033

CAMBRIDGE/BOSTON OFFICE:
899 Main Street. Cambridge, Massachusetts 02139
Telephone: (617)-491-613:) TWX: 710-320-1167

ROCHESTER OFFICE:
130 Aliens Creek Road, Rochester, New York 14618
Telephone: (716).481-1700 TWX: 510-253-3078

CONNECTICUT OffiCE:
t Prestige Drive, Meriden, Connecticut 06450
Telephone: (203)-237-8441 TWX: 710-461-0054

MID.ATLANTIC-SOUTHEAST
MID-ATLANTIC OFFICE:
U.S. Route 1, Princeton, New Jersey 08540
Telephone: (609)-452-9150 TWX, 510-685-2338
NEW YORK OFFICE:
95 Cedar Lane, Englewood, New Jersey 07631
Telephone: (201)·871-4984, (212)-594-6955. (212)-736-0447
TWX: 710-991-9721

NEW JERSEY OFFICE·
1259 Route 48, Parsippany, New Jersey 07054
Telephone: (201)-335-3300 TWX: 710-987-8319

PRINCETON OFFICE:
Route One and Emmons Drive,
Princeton, New Jersey 08540
Telephone: (609)-452-2940 TWX: 510-685-2337

LONG ISLAND OFFICE:
1919 Middle Country Road
Centereach, l.1., New York 11720
Telephone: (5\6)-585-5410 TWX: 510-228-6505

PHILADELPHIA OFFICE:
1100 West Valley Road, Wayne, Pennsylvania 19087
Telephone (215)-687-1405 TWX: 510-668·4461

WASHINGTON OFFICE:
E"ecutlve BUilding
7100 Baltimore Ave., College Park, Maryland 20740
Telephone: (301)·779-1100 TWX: 710·826-9662

CANADA
CANADIAN OFFICE:
Digital Equipment of Canada, Ltd.
150 Rosamond Street, Carleton Place, OntariO
Telephone: (613)-257-2615 TWX: 610-561-1651

OTTAWA OFFICE,
Digital EqUipment of Canada, Ltd.
120 Holland Street, Ottawa 3, Ontario I

Telephone: (613)-725-2193 TWX: 610-562-8907

TORONTO OFFICE:
Digital EqUipment of Canada. Ltd.
23J lakeshore Road East, Port Credit, Ontario
Telephone: (416)-278-.6111 n'v'X: 610-492-43)6

MONTREAL OFFICE:
Diglta[EqUipment of Canada, Ltd.
640 Cathcart Street, Suite 205, Montreal, Quebec
Telephone: (514)-851-6394 n'v'X: 610-421-3690

EDMONTON OFFICE:
Digital Equipment of Canada, Ltd.
5531-103 Street
Edmonton, Alberta, Canada
Telephone: (403)--434-9333 TWX: 610-831-2248

EUROPEAN HEADQUARTERS
D[91tal Equipment Corporation International-Europe
81 Route De L'Aire
1227 Carouge / Geneva, Switzerland
Telephone: 42 79 50 TeleJ<, 22 683

GERMANY
COLOGNE OFFICE,
Digital Equipment GmbH
5 Koeln, Bismarckstrass€ 7, West Germany
Telephone: 52 21 81 Telex: 841-888-2269
Telegram: Flip Chip Koeln

MUNICH OFFICE:
DigJtal Equipment GmbH
8000 Muenchen 19, Leonrodstrasse 58
Telephone: 51630 54 TELEX: 841 524226

UNITED STATES
MID-ATLANTIC-SOUTHEAST (cont_)
CHAPEL HILL OFFICE:
2704 Chapel Hill Boulevard
Durham. North Carolina 27707
Te[ephone: (919)·489-3347 TWX: 510 927-0912
HUNTSVILLE OFFICE:
Suite 41 - Holiday Offlee Center
3322 Memorial Parkway S.W., Huntsville, Ala. 35801
Telephone: (205)-8BI-77?ll TWX: 810-726-2122
ORLANDO OFFICE:
Suite 232, 6990 Lake Ellenor Drive, Orlando, Fla. 32809
Telephone: (305)-851-4450 TWX: 810-850-0180
ATLANTA OFFICE:
Suite 116, 1700 Commerce Drive, N.W.,
Atlanta, Georgia 30318
Telephone: (404}351-2822 TWX: 810-751-3251
KNOXVILLE OFFICE:
5731 Lyons VIew Dr., S.W .. Knoxville, Tenn. 37919
Telephone: (615)-588-6571 TWX: 810-583-0123

CENTRAL
CENTRAL OFFICE:
1850 Frontage Road, Northbrook. 1[llnois 60002
Telephone: (312).498-2560 TWX: 910-686-0655
PITTSBURGH OFFICE:
400 Penn Center Boulevard,
Pittsburgh, Pennsylvania 15235
Telephone: (412}-243-BSOO TWX: 710-797-3657
CHICAGO OFFICE:
1850 frontage Road. Northbrook, Illinois 60062
Telephone: (312)-498-2SOO TWX: 910-686-0655
ANN ARBOR OFFICE: .
230 Huron View Boulevard, Ann Arbor, Michigan 48103
Telephone: (313)-761-1150 TWX: 810-223-6053
INDIANAPOLIS OFFICE;
21 Beachway Drive - Suite G
Indianapo[ls, Indiana 46224
Te[ephone: (317)-243-B341 TWX: 810-341-3436
MINNEAPOLIS OFFICE:
15016 Minnetonka Industrial Road
Minnetonka, Minnesota 55343
Telephone: (612)-935-1744 TWX: 910-576-2818
CLEVELAND OFFICE:
Park Hill Bldg., 35104 Euclid Ave.
Willoughby, Ohio 44094
Telephone: (216)-946-8484 TWX: 810-427-2608

INTERNATIONAL
ENGLAND
READING OFFICE:
Digital EqUipment Co. Ltd.
Arkwrl9ht Road, Readln9, Berkshire, England
Telephone: Reading 85131 Telex: 84327
MIINCHESTER OFFICE,
D:9ital Equipment Co. ltd.
13/15 Upper Precinct, Walkden
Manchester, England m285az
Telephone: 061-790-4591/2 Telex: 668666

LONDON OFFICE:
Digital Equipment Co. Lld_
Bilton House, UJ<bridge Road. Ealing, London W.5.
Telephone: 01-579-2781 Tele,,: 84327

FRANCE
PARIS OFFICE:
EqUIpment Digital S.A.R.L.
233 Rue de Charenton, PariS 12, Franoe
Telephone: 344-76-07 TWX: 21339

BENELUX
THE HAGUE OFFICE:
(serving Belgium, luxembourg, and The Netherlands)
DI91tai Equipment N.V.
Konlnglnnegracht 65, The Hague. Netherlands
Telephone: 635960 Telex: 32533

SWEDEN
STOCKHOLM OFFICE:
D[gltal EquIpment Aktlebolag
Vmtenvagen 2. S-171 54 Solna, Sweden
Telephone: 08 98 13 90 TELEX: 17050 Digital S
Cable: Digital Stockholm

SWITZERLAND
SWITZERLAND OFFICE:
Digital Equ[pment Corporation S.A.
81 Route De L'Aire
1227 Carouge I Geneva, Switzerland
Telephone: 42 79 50 Telex: 22683

CENTRAL (cont.)
ST. LOUIS OFFICE:
Suite 110, 115 Progress Pky., Maryland Heights,
Missouri 63042
Telephorte: (314)_872_7520 TWX: 910-764-0831

DAYTON OFFICE:
3101 Kettering Blvd., Dayton, Ohio 45439
Telephorle: (513)-299-7377 TWX: 810-459-1676

DALLAS OFFICE:
1625 W. Mockingbird lane, Suite m
Dall as, Texas 75235
Te[ephone: (214)-638-4880

HOUSTON OFFICE:
3417 Milam Street. Suite A, Houston. Texas 77002
Te[ephone: (713}-524-2961 TWX: 910-881-1651

WEST
WESTERN OFFICE:
560 San Anton[o Road, Palo Alto, California 94306
Telephone: (415)-328-0400 tWX: 910-373-1266

ANAHEIM OFFICE:
801 E. Ball Road, Anaheim, California 92805
Telephone: (714)-776-6932 or (213)-625-7669
TWX: 910-591-1189
WEST LOS ANGELES OFFICE:
2002 Cotner Avenue, Los Angeles. California 90025
Telephone: (213)-479-3791 TWX: 910-342-6999
SAN FRANCISCO OFFICE:
560 San Antonio Road. Palo Alto. C"lifornlA 943ClA
Telephone: (415)-326-5640 TWX: 910-373-1266

ALBUQUERQUE OFFICE:
6303 Indian School Road, N.E_
Albuquerque, N.M. 87110
Telephone: (5:)5)-296-5411 TWX: 91O-989..Q614

DENVER OFFICE:
2305 South Colorado Blvd., Suite #5
Denver, Colorado 80222
Telephone: 303-757-3332 TWX: 910-931-2650
SEATTLE OFFICE:
1521 l?llth N.E .. Bellevue, Washington 98004
Telephone: (206)-454-4056 TWX: 910-433-2306
SALT LAKE CITY OFFICE:
431 South 3rd East, Salt Lake City, Utah 84111
Te[ephone: (801)-326-9836 TWX: 910-925-5634

ITALY
MILAN OFFICE:
Digital Equipment S. p, A.
Corso Garibaldi, 49. 20121 Milano, Italy
Te[ephone: 872 748, 872 694, 872 394 Tele,,: 33615

AUSTRALIA
SYDNEY OFFICE:
Digital Equipment Australia Pty_ Ltd.
75 Alexander Street, Crows Nest, N.S.W_ 2065_ Australia
Telephone: 439-2566 Telex: AA20740
Cable: Digital, Sydney

MELBOURNE OFFICE:
Digital Equipment Australia Pty. Ltd_
60 Park Street, South Melbourne, Victoria, 3205
Te[ephone: 69-6142 Telex: AA30700

WESTERN AUSTRALIA OFFICE:
Digital Equipment Australia Pty. Ltd
643 Murray Street
West Perth, Western Australia 6005
Te[ephone: 21-4993 TeleJ<: AA92140

BRISBANE OfFICE:
D[gital Equipment Australia Pty. ltd.
139 Merivale Street, South Brisbane
Queensland, Australia 4101
Te[ephone: 44047 Telex: AA40016

JAPAN
TOKYO OFFICE:
Rikei Trading Coo, Ltd. (sales only)
KOla.to-Kalkan Bldg.
No. 18-14, Nishlshimbashl l-chome
Minato-Ku,Tokyo, Japan
Telephone: 5915246 Telex: 7814206

Digital Equipment Corporation International
(engineering and services)
Fukuyoshlcho Building, No. 2-6, Roppong! 2-Chome,
Minato-Ku, Tokyo
Telephone No. 585-3624 Telex No.: 0242-2650

112X 01269 AJO F 11 50 Pr inted in U.S.A .

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106

