
DECnet Open Networking

Digital Technical Journal
Digital Equipment Corporation

Volume 5 Number 1
Winrer 1993

Cover Design
Our cover illustrates an image of the

simplicity of data sharing as experienced

by system users interconnected through a

global network; papers in this issue describe

the depth and complexity of technologies

and products that make the simplicity of

data exchange possible.

The cover design is by Deb Anderson of

Quantic Communications, Inc.

Editorial
Jane C. Blake, Editor
Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor

Circulation
Catherine M. Phillips, Administrator

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, U lustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
Richard]. Hollingsworth
Alan G. Nemeth
jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/B68, Maynard, Massachusetts
01754-2571. Subscriptions to the journal are $40.00 for four issues and must be pre
paid in U.S. funds. University and college professors and Ph.D. students in the electrical
engineering and computer science fields receive complimentary subscriptions upon
request. Orders, inquiries, and address changes should be sent to the Digital Technical
journal at the published-by address. Inquiries can also be sent electronically to
DTJ@CRL.DEC.COM. Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 129 Parker Street, Maynard, MA 01754.

Digital employees may send subscription orders on the ENET to RDVAX::JOURNAL
or by interoffice mail to mails top ML01-3/B68. Orders should include badge number,
site location code, and address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may be sent to the editor
at the published-by or network address.

Copyright© 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted . All rights reserved.

The information in the journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.
ISSN 0898 -901X

Documentation Number EY-M7 70E-DP

The following are trademarks of Digital Equipment Corporation: ADVANTAGE
NETWORKS, Alpha AXP, the Alpha AXP logo, AXP, Bookreader, DEC, DEC 3000 AXP,
DEC FDD!controller, DEC OSF/1 AXP, DEC LANcon troller, DEC WANcontroller,
DECbridge, DECchip 21064, DECconcentrator, DEChub, DECmcc, DECnet, DECnet/SNA,
DECnet-VAX, DECnet/OSI for Open VMS, DECnet/OSI for ULTRIX, DECNlS 500/600,
DECstation, DECthreads, DECUS, Digital, the Digital logo, DNA, LANbridge, L AT,
Open VMS, Open VMS on Alpha AXP, POLYCENTER, POLYCENTER Network Manager 200,
POLYCENTER Network Manager 400, POLYCENTER SNA Manager, RS232, ThinWire,
TURBOchannel, ULTRIX, VAX, VMS, and VMSciuster.

Advanced System Management and SOLVE: Connect for EM A are trademarks of System
Center, Inc.

AppleTalk is a registered trademark of Apple Computer, Inc.

BSD is a trademark of the University of California at Berkeley.

FastPacket, Strata Com, and IPX are registered trademarks of Strata Com, Inc.

IBM and NetView are registered trademarks oflnternational Business Machines
Corporation.

Motif, OSF, and OSF/1 are registered trademarks of Open Software Foundation, Inc.

NetWare and Novell are registered trademarks of Novell, lnc.

NFS is a registered trademark of Sun Microsystems, Inc.

Presto serve is a trademark of Legato Systems, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark ofx;Open Company Limited.

Book production was done by Quantic Communications, Inc.

I Contents
10 Foreword

Anthony G. Lauck

12 Overview of Digital's Open Networking
John Harper

DECnet Open Networking

21 The DECnet/OSifor OpenVMS Version 5.5 Implementation
Lawrence Yetto, Dorothy Noren Millbrandt, Yanick Pouffary,
Daniel). Ryan , J r. , and Dav id). Sul livan

34 The ULTRIX Implementation of DECnet/OSI
Kim A. Buxton, Edward). Ferris, and Andrew K . Nash

44 High-performance TCP/IP and UDP/IP Networking
in DEC OSF/1 for Alpha A XP
Chran-Ham Chang, Richard Flower, john Forecast, Heather Gray,
Wil l iam R. Hawe, K . K . Ramakrishnan, Ashok P. Nadkarni,
Uttam N. Sh ikarpur, and Kathleen M. Wilde

62 Routing Architecture
Radia) . Perlman, Ross W Calion , and I. M ichael C. Shand

70 Digital's Multi protocol Routing Software Design
Graham R. Cobb and El.liot C. Gerberg

84 The DECNIS 500/600 Multiprotocol Bridge/Router
and Gateway
Stewart F Bryant and David L.A. Brash

99 Fra�ne Relay Networks
Robert). Roden and Deborah Tayler

107 An Implementation of the OS/ Upper Layers
and Applications
David C. Robinson, Lawrence N. Friedman,
and Scott A. Wattum

117 Network Management
Mark W Sylor, Frands Dolan, and David G. Shurtleff

130 Design of the DECmcc Management Director
Col in Strutt and james A. Swist

I Editor's Introduction

Jane C. Blake

Editor

Ten years ago, a network of 200 nodes was con

sidered very large with u ncertain managea bil i t y.

Today, Digita l 's networks accommodate 100,000

nodes in open, d istributed system envi ronments

and resolve the complexities of i ncompatibi l i ty
among multivendor systems. Ten years from today,

network systems comprising a million-plus nodes

wi l l be bui lt based upon the D igital architectures
and technologies described in this issue.

John Harper provides an i nformative overview of

advances made with each phase of the D igital Net

work Architecture, now in Phase V He describes

the architectural layers and d ist ingu ishes D ig ital's

approach to network services and m a nagement

from t hat of others in the i ndustry. His paper offers

context for those that follow.

The Phase V architecture prov ides the m igration

to open systems from previous phases of DECnet. I n

implementing Phase V, designers of two DECnet

products for the OpenVMS and ULTRlX operating
systems shared several goals: extend network access

i n a m u ltivendor environment, use standard proto

cols, and protect customers' software investments.

Larry Yet to, Dotsie M i l lbrandt, Yanick Pou ffary, Dan
Ryan , and David Sul livan describe the DECnet/OSI
for OpenVMS implemen t a tion and give deta i ls of

t he s ig nificantly different design of Phase V net
work management. In their paper on DECnet/OSI

for ULTRJX, Kim Buxton, Ed Ferris, and Andrew

Nash stress the importance of the protocol switch

tables in a multiprotocol envi ronment. DECnet/OSI

for ULTRJX incorporates OS! , TCP/IP, and X.25.

I n the broad ly accepted TCP/IP protocol area,

D igital has developed a h igh-performance TCP/JP

implementation that takes advantage of the ful l FDDJ

bandwidth. K.K. Ramakrishnan and members of the

development team review the characteristics of the
Alpha AXP workstation, OSF/1 operating system, the

2

protocols, and the network i n terface. They then

detail the optimizations made for high performance.

Rou t i ng data through networks with thousands

of nodes is a very diffi c u l t task. Radia Perlman, Ross

Calion, and M i ke Shand describe how the Phase V

routing archi tecture addresses routing complexity.

Focusing on the IS-IS protocol, they pose problems

a routi ng protocol could experience, present alter

native solu tions, and expl a i n the IS- IS approach.

The chal lenges i n developing mult iprotocol rout
ing software for i nternetworking across LANs, WANs,
and d ial-up networks are presented in the paper by

Gra ham Cobb and E l l iot Gerberg. They h ighl ight

the importance of the stability of the rou t i ng algo

rithms, using the D EC WAN router and DECNIS prod

ucts as a basis for d iscussing alternative designs.

Stewart Bryan t and David Brash then focus on

details of the h igh-performance DECNIS 500/600

bridge/router and gateway. They discuss the archi

tecture and the algorithm for d istributed forward

i ng that i ncreases scalable performance. Both the

hardware a nd the software are described.

In addition to rou ting , the subject of clara transfer

of h igh-speecl, bursty traffic using a simpl ified form

of packet switching is described . Robert Rod e n and

Deborah Tay ler discuss frame relay networks, their

u n ique characteristics, and the care needed in pro

tocol selection and congestion hand l ing.

The above d iscussions of data transfe r and rout

ing occ u r at t he lower layers of the network archi

tecture. Dave Robi nson, Larry Friedman, and Scott
Wattum present an overview of the upper layers

and describe implementations that m aximize

throughp u t and m i n imize con nection delays.

Network managemen t is critica l to the rel iable

function of the network. As Mark Sylor, Frank

Dolan, and Dave Shurtleff tell us in their paper,

Phase V managemen t is based on a new architec
ture that e ncompasses management of the network
and systems. They explain the decision to move
management responsibi l i ty to the subsystem archi

tecture, and a lso describe the entity model . The
next paper e l aborates on the d irector portion of the
man agement arch i tectu re, cal led the DECmcc

M anagement D irector. Col i n Stru t t and Jim Swist

review the design of this platform for developing

management capabil ities, the modu larity of which

al lows future modules to be added dynamically

The editors thank John Harper for h is help in

selecting the content of t h is issue.

Biographies

David L.A. Brash David Brash, a consu l tant engineer, joined Digital's

Networks Engineering Group in 1985 to lead the hardware development of the

MicroServer communications server (DEMSA). As the technical leader for the

DECNIS 500/600 hardware platforms, David contributed to the architecture,

backplane specification, module and ASIC designs and monitored correctness.

He was an active member of the IEEE Futurebus+ working group. He is currently

leading a group supporting Alpha design wins in Europe. David holds a B.Sc. in

electrical and electronic engineering from the University of Strathclyde.

Stewart F. Bryant A consulting engineer with Networks and Commu

nications in Reading, England, Stewart Bl)'ant worked on the advanced develop

ment program that developed the DECNIS 600 architecture. During the last six

months of the program, he was its technical leader, focusing on implementation

issues. Pr ior to this work, Stewart was the hardware and firmware architect for

the MicroServer hardware platform. He earned a Ph .D. in physics from Imperial

Col lege in 1978. He is a member of the Institute of E lectrical Engineers and has

been a Chartered Engineer since 1985.

Kim A. Buxton Kim Buxton is a principal software engineer in the Networks

and Communications Group. During the past seven years, Kim has been work

ing on DECnet and osr for UNIX operating systems. She is currently the project

leader of the DECnet/OSI for DEC OSF/1 AXP release. Prior to assuming the role of

project leader, Kim worked on network management, session control, and trans

port protocols for DECnet-ULTRIX products. She has worked in the area of net

works and communications since joining Digital in 1980. She earned her B.S.

degree in mathematics and secondary education from the University of lowell .

Ross W. Calion As a member of Digital's Network Architecture Group from

1988 to 1993, Ross Calion worked on routing algorithm and addressing issues.

He was a primary author of the Integrated IS-IS protocol and of the guide! ines for

using NSAP addresses in the Internet. P reviously, he was employed by Bolt

Beranek and Newman as a senior scientist and helped develop the ISO CLNP pro

tocol. Ross received a B.Sc. (1969) in mathematics from MIT and an M .Sc. (197 7) in

operations research from Stanford University. He is currently employed as a con

sulting engineer at Wel l fleet Communications.

Chran-Ham Chang Chran-Ham Chang is a principal software engineer in the

UNIX System Engineering Group and a member of the FAST TCP/IP project team.

Since joining Digital in 1987, Chran has contributed to the development of vari

ous Ethernet and FOO l device drivers on both the ULTRIX and DEC OSF/1 AXP

systems. He was also involved in the ULTRIX network performance analysis and

tools design. Prior to this, Chran worked as a software specialist in Taiwan for a

distributor of D igital 's products. He received an M .S. in computer science from

the New jersey Institute of Technology.

I

3

Biographies

1\ �
� e.: �· · . .r ' -. .. _. -

- --'ov

�

4

Graham R. Cobb Graham Cobb is a consulting engineer in the Internet

Products Engineering Group and was software project leader for the DECNIS

'500/600 router development. Graham holds an MA in mathematics from the

University of Cambridge ancl joined Digital as a communications software engi

neer in 1982. He has worked on many Digital communications products, includ

ing X.2'5 products and routers, and was a major contributor to the DEC WAN router

100/'500 software immediately prior to leading the DECNIS development. Most

recently, Graham has been working on new-generation routing software.

Francis Dolan Frank Dolan is a consultant engineer with Digital's Telecommu

nication Business Group Engineering in Valbonne, France. He is currently the

project manager and technical leader of the GD.MO translator, a tool being devel

oped to support the DECmcc/TeMIP OS! access module and OSI agent presenta

tion module. Prior to this work, Frank was the architect of several Phase V DNA
specifications, including DDCMP network management, OS! transport, and

network routing accounting. He was also an active member of OS! management

standards committees. Frank has filed one European patent application.

Edward J. Ferris Ed Ferris is a principal engineer in the Networks and

Communications Group. During the past seven years, Ed has been working on

DECnet- LTRIX. He is currently one of the technical leaders of the DECnet/OSI

for DEC OSF/1 AXP release. Ed has primarily worked at the data link and network

protocol layers. He has worked on networks and communication products since

joining Digital in 1982. Ed earned a B.A. in English from the University

of Massachusetts and a B.S. in computer engineering from Boston University.

Richard Flower Richard Flower works on system performance issues in

multiprocessors, networking, distributed systems, workstations, and memory

hierarchies. T he need for accurate time-stamping events across multiple systems

led him to develop the QUIPU performance monitor. The use of this monitor led

to performance improvements in networking, drivers, ami RPC. Richard earned

a B.S.E.E. from Stanford University (with great distinction) and a Ph.D. in com

puter science from MIT. Prior to joining Digital, he was a professor at the

University of Illinois. Richard is a member of Phi Beta Kappa and Tau Beta Pi.

john Forecast A software consultant engineer with the Networks

Engineering Advanced Development Group, John Forecast addresses network

performance issues associated with the transmission of audio and video data

through existing networks . .John joined Digital in the United Kingdom in 1974

and moved to the United States to help design DECnet-RSX Phase 2 products,

DECnet Phase rv, and DECnet implementations on ULTIUX ancl System V UNIX.

John also worked on file servers for VMS and a prototype public key authentica

tion system. He holds a Ph.D. from the University of Essex.

Lawrence N. Friedman Principal engineer Lawrence Friedman is a technical

leader in the OS! Applications Group. He joined Digital in 1989 and is the project

leader for ULTRIX FTAJ\1 V l .O and V l . l . In addition to his project responsibilities,

Larry is Digital's representative to the National Institute of Standards and

Technologies (NIST) FTAM SIG and was the editor of the NIST FTAM SIG Phase 2

and Phase 3 documents from 1990 to 1992. He is currently the editor for the

FTAM File Store Management International Standard Profile. Larry holds a B .A .

(1978) in music from Boston University.

Elliot C. Gerberg Elliot Gerberg is a senior engineering manager in Digital's

Networks Engineering Division, managing the Routing Engineering Group

(USA). Since joining Digital in 1977, he has worked on numerous projects includ

ing the DEUNA, Digital's first LAJ'l adapter; the DECserver 100, Digital's first low

cost terminal server; the SGEC, a high-performance Ethernet semiconductor

interface; and various multiprotocol routers. Elliot has a B.S. in physics from

SUNY and an M.S. in computer science from Boston University. He holds profes

sional memberships with the IEEE, the ACM, and the Internet Society.

Heather Gray A principal engineer in the UNIX Software Group (USG),

Heather Gray is the technical leader for networking performance on the DEC

OSF/1 AXP product family. Heather's current focus is the development ofiP multi

cast on DEC OSF/1 A.'(P. She has been involved with the development of Digital

networking software (TCP/IP, DECnet, and OS!) since 1986. Prior to joining USG,

Heather was project leader for the Internet Portal Y l .2 product. She came to

Digital in 1984, after working on communication and process control systems at

Broken Hill Proprietary Co., Ltd. (BHP) in Australia.

john Harper As technical director of the Corporate Backbone Networks

Group in NAC, john Harper directed the development of the DECnet Phase V

architecture. Until last year john also chaired the ISO Committee JTCl/SC6/WG2,

which deals with standards for the OS! network layer. He joined Digital in 1974

after receiving a degree in computer studies (1st class honors) from the

University of Lancaster. john has ten patents (filed or issued) on computer net

works and has published several conference papers on that subject. He has made

numerous contributions to standards for computer networks.

William R. Hawe A senior consulting engineer, Bill Hawe manages the LAN

Architecture Group. He is involved in designing architectures for new net

working technologies. Bill helped design the FDDI and extended LAN architec

tures. While in the Corporate Research Group, he worked on the Ethernet

design with Xerox and Intel and analyzed the performance of new communica

tions technologies. Before joining Digital in 1980, Bill taught electrical engineer

ing and networking at the University of Massachusetts, where he earned a B .S. E. E.

and an M.S.E.E. He has published numerous papers and holds several patents.

I

5

Biographies

6

Dorothy Noren Millbrandt Dotsie Millbrandt is a principal software engi

neer and a co-project leader for Common Network Management. Currently she

is developing management components that will work across all the DECnet/OSI

platforms: OpenVMS, OSF/1, and ULTRlX. Dotsie was the project leader for the

MOP component and the trace facility and has worked on OST transport and con

figuration software. Prior to this work, she was a project leader and microcode

developer for DSB32 and KJ.\1\'11 synchronous communications controllers in the

CSS Network Systems Group.

Ashok P. Nadkarni A principal software engineer in the Windows NT

Systems Group, Ashok Nadkarni is working on a port of native Novell Net Ware to

Alpha �'<P systems. Prior to this, he was a member of the NaC Advanced

Development Group. He has contributed to projects dealing with IP and OS! pro

tocol implementations, network performance improvement, a prototype of the

Digital distributed time service, and mobile networking. He holds a B. Tech. in

computer engineering from the Indian Institute of Technology, Bombay, and an

M.S. from Rensselaer Polytechnic Institute. Ashok joined Digital in 1985.

Andrew K. Nash Andrew Nash is a principal software engineer with NaC

Australia and was the project leader for the ULTRIX Phase V X.25 products. He is

currently technical leader for NaC Australia and has been with the group since

1988. Since joining Digital in 1980, he has worked for Educational Services and

the Customer Support Centre and has been a consultant for Software Services.

Andrew received a B.Sc. (M.Sc.) from the University of Adelaide and a graduate

diploma in software engineering from the University of Technology, Sydney.

Radia J. Perlman As a member of the Network Architecture Group, Radia

Perlman has been designing protocols for bridges and routers since joining

Digital 13 years ago. She designed the spanning tree algorithm used by all stan

dardized forms of bridges, as well as many of the protocols in IS-IS. Radia

authored the book Interconnections: Bridges and Routers and has more than 20

patents filed or pending in the areas of bridging, routing, and network security

She holds S.B. and S.M. degrees in mathematics and a Ph. D. in computer science,

all from the Massachusetts Institute of Technology.

Yanick Pouffary A principal software engineer, Yanick Pouffary is currently

the transport technical leader in the DECnet/OSI for OpenVMS Group. She was

the principal designer and developer of OSI transport and NSP transport protocol

engines. Prior to this work, she developed the presentation layer for the VTX20,

a videotext terminal. Before joining Digital in 1985, Yanick worked for the

CODEX Corporation on a statistical multiplexer. Yanick earned a B. S. in computer

science from the University of Nice, France, and an M.S. in computer science

from the State University of New York at Stony Brook.

K. K. Ramakrishnan A consul ting engineer in the Distributed Systems

Architecture and Performance Group, K. K. Ramakrishnan joined Digital in 1983

after completing his Ph .D. in computer science from the University of Maryland .

K. K.'s research interests include performance analysis and design of algorithms

for computer networks and distributed systems using queuing network models.

He has publ ished more than 30 papers on load balancing, congestion control

and avoidance, algorithms for FDDI, distributed systems performance, and issues

relating to network I/0. K. K. is a member of the IEEE and the ACM.

David C. Robinson David Robinson is a principal software engineer i n

Network Engineering Europe. He was the architect for the OSI upper layers and

designed and prototyped Digital's i mproved upper layer implementation. He

came to D igital in 1988 from the General Electric Co. (GEC) in Chelmsford ,

Essex, U.K., where he developed a remote procedure call and a distributed com

puting environment. Dave holds a B.Sc. (Eng) in computing science (1982) and

a Ph .D. in management of very large distributed computing systems (1988), both

from the Imperial College in London.

Robert J. Roden Robert Roden is a consulting engineer in Networks

Engineering. Recently, he has been working on new transmission technologies

such as frame relay and switched multimegabit data service. He has also worked

on computer integrated telephony and chaired a group developing related stan

dards. Robert joined Digital in 1986 from Racal Milgo, where he was responsible

for local area networks and network management p latforms. He received a B.Sc.

(1971) in physics and a Ph.D. (1974) in materials science from the I mperial

College in London.

Daniel J. Ryan, Jr. A principal software engineer in the DECnet/OSI for

OpenVMS Group, Dan Ryan was responsible for the configuration and instal la

tion portion of the DECnet/OSI for OpenVMS product. Recently he was the team

leader for the transport development effort. Currently he is investigating

DECnet/OSJ and TCP/IP integration as well as DECnet/OSI critical problems. Dan

has 14 years of experience in data communications and has been with Digital

since 1983. He was previously employed as a systems programmer and was a

free-lance consultant on computer communication solutions.

I. Michael C. Shand Consulting engineer M ichael Shand of Networks

Engineering is responsible for the DNA Phase V network routing layer architec

ture. Prior to this, he worked on the Phase V X.25 access and HDLC architectures.

He represents Digital on the ISO network layer committee and was a major con

tributor to the standardization of the IS-IS routing protocol (lSO/IEC 10589). Mike

came to Digital in 1985 from Kingston Polytechnic (U.K.). He has an M .A. (1971) in

natural sciences from the University of Cambridge and a Ph .D. (1975) in surface

chemistry from Kingston Polytechnic.

I

7

Biographies

Uttam N. Shikarpur Uttam Shikarpur joined D igital in 1988 after receiv ing

an M .S. in computer and systems engineering from Rensselaer Polytechnic

Institute . Uttam is a senior engineer and a member of the UNIX Systems Group

work ing on network drivers and data l in k issues. His current project involves

writing a token ring driver for the DEC OStJl AXP operating system. Prior to this

work , he contributed to the common agent project.

David G. Shurtleff A member of D igital's Corporate Systems Engineering

Group, Dav id Shurtleff consults in support of major systems integration projects

and participates in CSE initiatives to improve engineering processes. P rev ious ly,

he was a member of the EMA Architecture Group, where he worked on the spec

ification of EMA director architectures and the development of systems manage

ment standards. Dav id has also worked in the DECmcc strategic vendor program

as a senior technical resource. Before joining Digital in 1988, Dav id was on the

packet switch development staff at BBN Communications Corporation.

Colin Strutt Colin Strutt is the DECmcc technical d irector in Enterprise

Management Frameworks, part of the NAS Systems Management. Prior to that

pos ition, Col in was the project leader for the terminal server manager, v arious

termina l server products, Ethernet communications server, and DECnet-lAS. He

joined Digital in 1980 and is now a consult ing engineer. Colin received a B A

(honors) and a Ph .D. both in computer science from the University of Essex , U.K

He is a member of BCS and ACM. Colin has several patents pending on DECmcc

technology and has published papers on integrated network management.

David J. Sullivan Dav id S u l l ivan is a senior software engineer and was the

technical leader of the node agent and event d ispatcher components for the

DECnet/OSI for Open VMS product. Dav id also worked as an indiv idual contribu

tor on the design and implementation of the session control layer. He is cur

rently working on a development effort to a l low the DECnet/OSI product to run

on Digital's AXP platforms . After join ing Digital in 1987, he worked i n the

VAX/RPC Group where he was responsible for writing tests for the pidgin com

pi ler. David holds a B.S.C.S. (1988) from Merrimack College.

James A. Swist J im Swist joined Digital in 1975. He is a consulting software

engineer and the technical leader for open systems in the E nterprise

Management Frameworks Group . Prior to this pos ition, he was a system man

agement architect for V MS development, technical leader and development man

ager forTDMS/ACMS/CDD database systems, and a consu ltant in software serv ices

for several large commercial TP projects. J im earned a B.S. in electrical engineer

ing from the Massachusetts Institute of Technology in 1970. He has one patent

pending on MCC distributed dispatch.

Mark W. Sylor Mark Sylor is the manager of Digital 's Enterprise Management

Architecture Group . He is the author of the EMA Entity Model and the Phase V
DECnet Network Management Specification. Mark was a member of the ISO and

ANSI committees working on OS! system management and was the ANSI T5.4 ad

hoc group leader on the structure of management information. Prior to this

work, Mark was the principal designer and development supervisor for the

NM CC/DECnet monitor. Mark joined D igital in 1979. He holds an M .S. in mathe

matics from the Univers ity of Notre Dame.

Deborah Tayler Deborah Tayler, a principal software engineer in Networks

Engineering Europe, is currently responsible for the design and implementation

of frame rel ay and point-to-point protocol functional ity on multiprotocol

routers. She joined Digital in 1982 and has worked on DECtalk, ALL-IN-I, and com

p u ter integrated telephony projects. Deborah received a B.Sc. (1981) in eco

nomics from University Col lege in London and an M .Sc. (1982) in the theory and

appl ications of computation from Loughborough University of Technology i n

Loughborough, Leicestershire.

Scott A. Wattum Senior software engineer Scott Wattum is a member of the

OSI Appl ications Engineering Group. He is responsible for the design and devel

opment of Open VMS Virtual Terminal V 1 .0 and is involved in the LTRIX and

OSF/1 porting efforts. Previously, Scott worked at the Colorado Springs

Customer Support Center and provided network support, specializing in OSI

protocols and applications. Prior to joining Digital in 1987, he was employed by

the University of Alaska Comp uter Network in various software positions. He

received a B.A. (1985) in theatre from the University of Alaska, Fairbanks.

Kathleen M. Wilde As a member of the Networks Engineering Architecture

Group, Kathleen Wilde focuses on integration of new TCP/IP networking tech

nologies into Digital's products. For the past two years, she has been prototyping

h igh-performance network features on the OSF/ 1 operating system and coOI·cli

nating the standards strategy for Digital's IETF participation. Previously, she was

the development manager of the ULTRJX Network Group . Her responsibil ities

included product development of TCP/ IP enhancements, FDDI, and SNMP. She

has a B.S. in computer science and mathematics from Union Col lege.

Lawrence Yetto Larry Yet to is currently a project and technical leader for the

DECnet/OSJ for OpenVMS Group . He joined Digital in 1981 and has held various

positions in software engi neering on development projects for VMS journal ing,

VMS uti l ities, and DECnet-VAX Phase IV. He also worked in the Project Serv ices

Center, Munich, and was the project leader for the OpenVMS version 5.0 fie ld

test. Prior to joining Digital, Larry worked as a systems programmer ar

Burroughs Corporation . He earned a B.A. i n both math and computer science

from the State University of New York at Potsdam.

I

9

I Foreword

Anthony G. Lauck

Corporate Consultant

Engineer and
Technical Director,
Networks Engineering

D igital's fifth generation of computer networking
products enters the market as computer net
working technology enters its third decade as a
practical technology. D igital's first four generations
of DECnet products entered a marketplace that was
oriented toward proprietary computer solutions
and where networking grew slowly from a depart
mental function to include a functional unit of an
enterprise and, eventually, an entire enterprise.
With networks confined to a department or func
tion, there was l ittle need for heterogeneity.
Engineering departments used Digital's mini
computers l inked by DECnet, while corporate busi
ness applications ran on IBJ\'1 mainframes accessed
by SNA networks. Eventual ly these heterogeneous
networks were l inked by gateways which provided
the necessary protocol conversions; but inte
gration was never transparent-especially to the
system and network managers. The number of
computers in a network was l imited by the scope
of the department, function, or organization and
by the cost of individual computers. Timesharing
remained the dominant mode of computer use in
these networks; there were signif icantly fewer
computers in a network than users of the network.

When D igital began its initial architectural work

on DECnet Phase V, we real ized that technological
and economic l imitations on network size were

going away. Microprocessors were making it pos
sible for each person to have a computer. Local
area networks were making it possible for each
computer to be conveniently and inexpensively
connected . Early experience with embedded

10

computers in manufacturing applications at Digital
and with some of our customers convinced us that
the number of computers in a network could easily
exceed the number of people using the network. A

few communities, such as the worldwide h igh
energy physics community, had built networks that
extended beyond the bounds of a single enterprise.
We saw that networks would need to have great
scope and wou ld need to support a great d iversity
of management. An architecture such as our DECnet
Phase IV, which l imited a single network to tens of
thousands of nodes, would become too confining.

Early computer networks were homogeneous in
archi tecture and implementation, reflecting the
proprietary nature of the computer industry at the
time and also the d ifficulty of getting heteroge
neous networks to work. Digital learned the d iffi
culties of heterogeneous networking back in the
1970s when it deveioped DECnet Phase I I and made
a network work across a range of computer systems
from a single vendor. By the early 1980s there were
already multiple competing network architectures,
some proprietary to organizations, some v iewed as
proprietary to a single nation. Different enterprises
and different departments of a given enterprise had
chosen different computer vendors, operating sys
tems, a nd network architectures. Linking these
together by gateways would be too cumbersome.
These factors prompted for us the vision of a com
mon network architecture, standardized on an inter
nationa l scope and appropriate to Digital's role as
an international corporation. Many of the papers in
this issue describe our realization of this v ision.

Our v ision of a common networking architec
ture gave us the basic requirements for DECnet
Phase V-a scalable network architecture that is
open and standardized internationally. Like earlier
generations of DECnet, this architecture would be
backward compatible with its predecessor, preserv
ing our customers' investments in applications and
network infrastructure. Implementing this vision
of a homogeneous network architecture based on
international ly standardizecl protocols and back
ward compatibil ity with DECnet Phase IV proved to
be a daunting task. It involved developing new net
working technology, in particular new routing and
addressing technology, standardizing this technol
ogy in the international community, and imple
menting it across a fu l l range of products.

While Digital continued to work on its v ision,
networking expanded v igorously across the entire
computer industry. Protocols appeared in n iches:
vendor based , operating system based , industry

based. Users needed connectivity between these

niches, prov id ing market pull for expansion from

initial niches. The result is today's world of mult i

protocol computer networks. Digita l's next genera

tion of networking products also reflects this

multiprotocol reality. Host networking products

support several protocol famil ies and are con

structed to isolate many of the differences between

network protocols from users. Network infrastruc

ture products such as routers and network manage

ment software support this diversity more ful ly,

reflecting the need for the infrastructure to support

all the types of network traffic . Many papers in this

issue relate to our participation in this complex

real ity.

Computer networks have become an essential

part of many organizations. These networks must

be dependable and must not be bottlenecks. In its

fifth generation of networking products, D igital has

stressed robustness and performance. In designing

Digital's router products, we p laced great emphasis

on robustness and network stabil ity, particularly

under conditions of traffic overload . These are not

qualities that our customers wil l necessarily appre

ciate u n less they have experienced their absence

in an overloaded network. New appl ications and

larger data storage mandate h igher host networking

I
throughput. High-speed local area networks, such

as FDDI, together with high-speed RISC processors,

such as Alpha AXP, create the expectation of high

performance host networking. Achieving this level

of performance takes more than fast hardware,

however. It requires careful attention to details

of protocol implementation and interaction with

network i nterface hardware, the processor and

memory system, and the operating system. Sev

eral papers in this issue describe how Digital

h as ach ieved leadership in network robustness and

performance.

Networking depends on a variety of underlying

communications technologies and services. This

issue of the Digital Technical journal concentrates

on how these u nderlying technologies can be used

to build large-scale computer networks; earl ier

issues described such underlying communications

technologies as Ethernet and FDDI. This issue does,

however, include one paper on a new wide area

technology and service, Frame Relay, and how it

can be used by computer networks. Many other

new communications technologies and common

carrier services are in the process of being inte

grated into Digital's family of networking products.

These will be described in future issues of the

journal.

1 1

Overview of Digital's
Open Networking

John Harper I

The principal element of Digital's open networking family of products is tbe DECnet

computer network. in its latest form, DECnet supports very large networks of more

tban 100, 000 nodes and incorporates industry standards sucb as 051 and TCP/IP. To

meet tbe design goals of the Digital Network Architecture, tbe structure of DEC net is

divided into layers with defined relationships between layers. Since its introduction

in 1974, DECnet has evolved in parallel with tbe standards for open networking.

Digital has contributed to the formation of networking standards, and the stan

dards have, in tum, influenced the design of DECnet.

In 1974, Digital shipped t he industry's first general

purpose n etworking product for distributed com

puting. The DECnet computer network was the

embodiment of t he v ision t hat small systems work

ing together could become a n a lternative to main

frame computing. Prior to t hat time, networking

products had been aimed at s olving some specific

problem and had often been closely integrated

with a particular a pplicat ion . In contrast, DECnet

a llowed any application to share data with all ot h

ers. Whereas previous n etworking products in the

industry bad concentrated on connecting terminals

to h osts, DEC:net provided peer-to-peer net working

for the first time. By doin g t his, it anticipated the

client-server computing style that is now common

place and esta blished client-ser ver computing as a

viable approach.

DECnet built on work t hat had been done in the

research community. The internet protocol, hmded

by the Advanced Researc h Proj ects Agency (ARPA),
was of particular relevance. 1 This too was a imed at

providing genera l-purpose distributed computing

and later evolved int o t he well-kn own TCP/IP (trans

mission control protocol/intern et protocol) proto

col suite. In 1974, however, it was still a research

topic .

In the same year, International Business Machines

Corporation ann ounced its Systems Network

Architect ure (SNA) 2 T he comparison between SNA
and DEener is interesting because SNA was designed,

not surprisingly, to support mainframe computing.

It focused principally on connecting many rela

tively unintelligent devices, such as terminals and

1 2

remote j ob entry stations, into a single computer.

On ly after several years did SNA allow more than

one mainframe to exist in the same n etwork . Its

original goal was to address t he proliferation of

a pplica tion-specific protocols that allowed a termi

nal connected to the network to use one a pplica

tion on ly.

This paper presents a short history of the DECnet

n etworking product, defining eac h phase of its evo

lution in t er ms of its contribution to distributed

computing. It explores the development of DECner

Phase \\ t he c urrent implementation, and discusses

t he principles of Digital's layered architecture. T he

paper then describes the layers of DECn er , t he

importance of naming services, and the role of

network mana gement .

A Short History of DECnet

The development of DECnet has proceeded by

phases. Each phase has represented a major step in

the evolution of the product family. The initial

products , later referred to as Phase I, revealed s ome

unexpected problems in buildin g a range of prod

ucts across different systems that would all work

together. One of the consequences was the creation

of a distinct Network Architecture Group. Their j ob

was to produce detailed specifications of the proto

cols and interfaces to be used without constraining

the implementers to build products in some particu

lar way. At t hat t ime, software porta bilit y was practi

cally unheard of, and each different hardware or

software environ ment had its own completely sepa

rate i mplementation. Phase I I of DECnet, introduced

ViJI 5 No. I Winter 199:) Digital Technical journal

in 1978, provided fu l.l interoperabi l i ty between the

different implementations, thanks to adherence to

a rigorously specified architecture.

At this stage, systems s t i l l had to be d i rectly con

nected to each other if they were to com m u n icate.

Phase I II, wh ich appeared in 1981 , i ntroduced the
abi l ity to route messages through any number

of l inks and intermediate systems to reach a desti

nation. DECnet aga i n used a technique from the

research networks, a dynamic adaptive rou ting

algorithm, which computed the best route to a des

t ination au tomatica l ly as the physical connectivity

of the network changed. Compet ing products at

the time (such as SNA) required routes to be com

p u ted and entered manual ly, includ ing backup

routes for use in the event of fai l ure of a l i nk or

a system in the network.

Phase I l l a lso incl uded fu l l remote management

and reflected the gradual emergence of standards

for computer networking by supporting X.25

packet switch i ng networks as one means for con

necting systems.' A Phase Ill network could contain
up to 255 nodes.

The invention of local area networks (LANs), and
in particular the Ethernet, was to have a huge

impact on the use of networking 4 For the first time

i t was cheap and simple to connect a system to the

network . Prior to LANs, only wide area network

technology was used, even when the systems were

physical ly next to each other. DECnet Phase IV,
which appeared in 1984, added support for the

Ethernet and a l lowed networks to contain up to

64,000 nodes.

The Evolution of Open Networking
When DECnet appeared in 1974, a l l its networking

protocols were "proprietary," that is, they had been

developed by D igital and remained u nder D igita l 's
control . At that t ime there were no standards or

publicl y defined network protocols. Work on stan

dards for t h is purpose began d uring the 1970s, and
in 1978 the Com ite Consu ltatif Internationale de
Tetegraphique et Telephonique (CCITT) publ ished
its Recommendation X 25.·1 This document defined
a standard way of connecting a computer to a

network that woul d permit free communicat ion
between a l l at tached compute rs. X.25 networks

were typica l l y expected to be p rovided by a p u blic

carrier such as a telephone company.

The appearance of th is standard prompted the
question, " Now that our computers can talk to each

other, what are they going to say'" Simply permit-

Di�ital Techuical]ounwl Vnl. 5 No. I Winter I'J93

Overview of Digital's Open Networking

r ing them to send data to each other was of no use

unless they cou ld also understand it and make some

use of i t . DECnet, for exa m ple, included protocols

for t ransferring files and for remote terminal access

as wel l as the base protocols for transferring data.

Thus t he idea of open systems in terconnection

(OS!) was born. OSI was the most ambit ious effort

in the history of standards. Its goal was to develop a

complete set of standard protocols that wou ld

al low computers not only to exchange data but a l so

to make meaningfu l use of it i n their appl ications.

The work was un dertaken by the I nternational

Organization for Standard izat ion (ISO). This organi
zation has representatives from a l l major cou ntries

and is thus able to draw upon their extensive expe

rience in research and commercial networking.

By 1984, when DECnet Phase IV became ava ilable,

the work on OS! had made substant ial progress. The

arch itectural model had been publ ished as an i nter

national stand ard , and standard ization of many of

the protocols was at an advanced stage . ; I t was also

becom i ng clear that the future of computer net

works depended on the abil ity to communicate

without regard to who was the sup pi ier of a system.

Ad hoc solu tions, such as the DECnet/SNA gateway,

existed fo r com m u nication between differen t net

work architectures (• OS!, however, held the prom

ise of being a genera l solu t ion. I t was feared that the

alternative to OSI would be the adopt ion of a ven

dor-specific arch itecture as a de facto sol u tion, a nd

that that archi tecture wou ld inevitably be SNA. The

internet fam i ly of protocols, col loqu i a l ly known as

TCP/IP, had not yet become the force it is today-

Detail ed exa mination of the OSI protocols

showed that they formed a suitable basis for the

evolu tion of DECnet. This was not surprising, s ince

the ISO had i ncorporated Digital 's basic concepts

into OSI, rather than the different ideas put forth by

t he publ ic network operators. A nu mber of defi

ciencies were identified, but these cou ld be reme

d ied by contributing more of D igita l 's tech no logy
to the standards process. For example, a l l the
network-layer rou ting protocols used in OSI were

contributed by D igital . Thus the decision was made
that the next phase of DECnet, Phase Y, wou ld use

the OS! standards as much as possible. The existing
proprietary protocols wou ld be retai ned only for

the purpose of backward compati b i l ity.

During the development of the arch i tecture and

products for Phase V, another event of great signifi

cance took place. During the 1980s, TCP/IP emerged

as an a l ternative solution for open network ing. This

1 3

DECnet Open Networking

development was prompted by the explosion in the
use of workstations based on the UNrx system style

of computing. The architectural model of Phase v
al lowed a relatively straightforward integration of
these protocols into the products, although a great

deal of necessary software was written. Since OS!

and TCP/IP were never designed to work together,
a l lowing them to coexist i n the same network

demanded considerable creativity.�

Goals of DECnet Phase V
The design of DECnet Phase v had three principal

goals:

• To allow networks to grow to be very large, with

one mil l ion systems as a practical target

• To use standard protocols to the maximum
extent possible

• To support a distributed-system mode of opera
tion in which the systems cooperate more

closely than in traditional networking

The 64,000-node size l imit of Phase IV was far

from posing a practical problem i n 1984, but it was

then foreseen that computer networks in large
enterprises would approach this limit by the end of
the decade. Indeed, this happened with Digital's

internal network, which grew to over 100,000
nodes on Phase IV with the use of innovative man

agement techniques. The node size limitation was
imposed primarily by the size of the addresses

used , which was 16 bits. Addresses in OSJ networks
can be as long as 20 bytes, which removes the

im mediate l imitation. Very large networks, how
ever, need more than large addresses to support
100,000 nodes or more . For example, the Phase IV
routing algorithm has certain inherent weaknesses
that start to appear for networks at the Phase IV size
l imit . For this reason, Phase V employs a different
rout ing algorithm, which readily supports net
works of mi l l ions of nodes 9 This algorithm has
subsequently been adopted as the international
standard for routing in OS! networks and, with mod
ifications, for TCP!IP networks.1o.u

Management of very large networks also requires
special attention. DECnet has always provided a

high degree of automated management compared
to other network architectures, but as a network

increases in size, the burden of tracking the config
uration increases d isproportionately. Assigning
addresses to nodes was a manual procedure in
Phase IV, and maintaining the correspondence
between node names and their addresses was

1 4

performed separately in each system. A goal for
Phase V was to provide a robust, distributed naming
service throughout the network . Furthermore,
nodes would be al lowed to generate their own

addresses in a reliable and unambiguous way and to

register themselves in this naming service. Thus a
new system can be connected to the network with
out any administrative procedure, if network secu

rity pol icies permit .

At a more detai led level, the architecture has a set
of goals that have evolved over time to include the
fol lowing.

• Conceal network operation from the user. The

internal operation of a large network is inevitably

complex, but to the user it should appear simple.

• Support a wide range of applications.

• Support a wide range of com munications facili
ties: LANs, wide area leased l ines, X.25 networks,
etc.

• Support a wide range of network topologies.

• Use standards wherever feasible rather than pro

prietary protocols. For cases in which standards
are evolving but are not yet finished , ensure that
future migration is as smooth as possible.

• Require minimum management intervention.

• Be manageable. Not all functions can be auto
mated; for example, some depend on the organi

zational policy of the user. In such cases
management should be as simple as possible
and should not impose any particu l a r style of
management.

• Permit growth without disruption.

• Permit migration between versions. Each phase
of DECnet is guaranteed to work with the next
and previous phases, so that the systems in the
network can be upgraded over a long period . I t
would be inconceivable to upgrade thousands of
systems overnight.

• Be extensible to new developments in technology.

• Be highly available in the face of l ine or system

fai lure or even, to the extent possible, operator
error.

• Be highly d istributed. The major functions of the
D igital Network Architecture (DNA), such as
rout ing and network management, are not cen
tral ized in a single system in the network. This in
turn increases availability.

Vol. 5 No. I Winter 199.3 Digital Tecbnicaljournal

• Allow for security functions, such as authentica
tion of remote users and access control.

Architectural Principles
DNA is a layered architecture. The necessary func
tions are <..l ivicled into related and logica.l ly coherent

groups cal led layers. The layers are built on top of

one another, so that each layer makes use of services

provided by the one below it. To meet the goals of
DNA, particul arly those relating to flexibility, the

structure of a layered architecture is essential.

Figure 1 i l lustrates the principles of a layer in the
terminology of the OSI reference model ." These
principles apply to any layer; in Figure 1 they are
shown applied to the transport layer. Each commu

nicating system contains its own element of the

layer, called the transport entity. These entit ies
communicate with each other through the trans

port protocol. This protocol is conveyed using the
services of the next lower l ayer, in this case , the
network l ayer. For this pu rpose the most important
service is the one that conveys data without regard
to its contents. Other services are also provided, for

example, connection management services. The

transport layer a lso provides a well-defined trans
port service to its user, in this case, the session layer.
The detailed mechanisms and protocols of the layer

are hidden from the layers above and below, so that
the layer above sees only a well-defined service.

This independence of the mechanisms used per
mits substantial changes to be made to the mecha
nisms and protocols of a layer without affecting the

adjacent layers. This very important property is
called layer independence. It has been extensively
exploited in the development of DECnet to allow

TRANSPORT

Overview of Digital's Open Networking

protocols ro be enhanced or even completely
replaced .

The principles of layered architecture were
defined in a rigorous way by the OS! reference

model, bu ilding on previous work such as DECnet
and the TCP/IP protocol fami ly. The original layer
structure of DNA was defined in Phase I and has

changed only a little since then. It corresponds to

the lower layers of OSI as well as the layers ofTCP/IP.

The Layers of DECnet
Figure 2 shows the layers of DECnet Phase V The

lower layers are the physical, data l ink, network,

and transport layers. They provide a universal, rel i
able serv ice for moving data from one system to
another. Many different u nderlying means of physi

cal communication can be used , with their associ
ated protocols, including:

• Ethernet LANs and the equivalent standard (IEEE
802.3, ISO 8802-3)

• Token ring LANs (IEEE 802.5)

• Wide area l inks running over leased links at any
appropriate speed

• X.25 wide area networks

The network and transport layers u nify the ser
vice provided by these disparate physical networks

and al low com mu nication across any mixture of
different facil ities.

Protocols from different protocol su ites may be

used, including OSI, TCP/IP, ami DECnet Phase IV,
but the structure of the layers is the same in
each case. This facil itates interworking in mixed

protocol networks.

5,5r,M ,- - �=v:'_ - - - - - t sYsTEM, - - - -1- - - -
I

TRANSPORT PROTOCOL TRANSPORT

+
I 1
� - ·

PHYSICAL COMMUNICATION PROVIDED
BY UNDERLYING LAYERS

Figure 1 Elements of a Layer of DECnet Architecture

Digital Technical journal vb/. 5 No. I Winter 191)3

LAYER

1 5

DECnet Open Networking

The upper layers of DECnet, the session, pre

sentation, and appl ication l ayers, make use of the
rel i able transport service to provide application

oriented fu nctions, such as fi le transfer or elec

t roni c mai l . Agai n, different protoco l su ites are

supported, al though in this case there are historical

reasons for the d ifferent layer structures that exist.

The Physical Layer

The physical layer is concerned essential ly with the

electrical or other physical aspects of com mu nica

t ion. It converts electrical or other sign a l i ng i nto

binary data (i .e . , bits) and v ice vers a .

I n DECnet, t h i s layer h a s a l ways been viewed

as the prov ince of standards for devices such as

modems and LANs. These standards may have a n

extremely complicated i nternal structu re, a s is the

case fo r some of the emerging high-speed, wide

area network standards, but this complex ity is nor

visible to the l ayers above.

The Data Link Layer

The data l ink layer provides a rel iable com mu ni

cation path between d i rectly connected systems

in the network . Its protocols can detect errors

i ntroduced by the physical l ayer (for example, from

electrical d isturbance). For media k nown to exhibit

a h igh error rate, such as a nalog l inks, the data l i nk

l ayer also provides error-correcting mechanisms.

D ECnet supports a variety of protocols i n the

data l i n k l ayer, depen d i ng o n the nature of the phys

ical l ink and the need to acco mmodate exist i ng

technologies.

The Network Layer

The network layer prov ides the means to move data

from one system to a nother, without regard to the

n ature of the connections between them. It finds a

route through m u ltiple systems and physical paths

[()

APPLICATION LAYER

PRESENTATION LAYER

SESSION LAYER

TRANSPORT LAYER

NETWORK LAYER

DATA LINK LAYER

PHYSICAL LA YEA

Figure 2 The Layers of DECnet

as necessary fo r a n y particular pair of com municat

i ng systems. I n DECnet, systems that move data

through the network without being involved i n the

detai l s of the comm u nication are cal led routers.

A key element i n this layer is the network

address. Every system i n the network has a u nique

address. Every system can com municate with every

other system in the network, whether it is adjacent

or located on the other side of the world . osr pro

vides a n addressing scheme that a l lows every

system in the world to have a u nique address. u I t

may also give some hints t o find a route t o the

system. Previous vers ions of DECner (Phase IV and

before) used a d ifferent add ressing scheme. Phase v
includes a way to map these addresses i nto the OS!
scheme.

In add i t i o n to protocols for carryi ng user data

between commu nicating systems. the network

layer also contains protocols for findi ng routes

between systems. The rou t i ng protocols used in

DECnet Phase v are international standards, but the

technology was developed by D igital a n d sub

sequently submitted to the relevant standards

organ izations. 1 0• 1 1 · � '

The networ k l ayer has a complex internal struc

ture that a l lows one network to use the con nec

tions provided by another. For example, some of

the links in a DECnet network may be provided by a

public X.25 network, wh ich is a lso providing l i n ks

in other private networks.

The Transport Layer

The transport l ayer provides a rel iable end-to-end

service between two com mun icating systems, con
cea l i ng from its users the detai led way in which this

is achieved . Unlike the l ayers below it, the transport

l ayer is p resent o n ly i n the end systems com muni

cating with each other. Thus it a l lows the end sys

tems to take fu l l responsibi l ity for the qual ity of the
commu n ications. The functions of the transport

l ayer include

• Recovery from data loss, for example, when
the network l ayer fai ls to clel iver a packet due to

congestion

• Flow control , so that the transmitter does nor

send data i nto the network faster than the

receiver can accept i t

• Segmentation and reassembly o f user messages,
so that the necessary d ivision of data into d is

tinct messages sent through the network does

not l i mit the size of messages as seen by the user

Vol. 5 No. I Winter /'}'}3 Digital Technicaljourual

• Congestion avoidance, so that data transmitters
can adjust their rate of transmission into the
network in reaction to congestion ind ications
from the network layer

DECnet supports three protocols in the transport

layer: the network services protocol (NSP), defined
for previous phases of DECnet; the OSI transport
protocol; and TCP from the internet protocol
suiteJ. 14

Upper Layer Protocols

The OSI model defines three distinct layers above
the transport layer: the session, presentation , and
application layers.

• The session layer organizes the structure of mes

sage exchanges. For example, it provides half
duplex semantics and al lows checkpoints to be
established for recovery from system failure.

• The presentat ion l ayer deals with the existence

of d ifferent data representations in different sys
tems. It allows a mutual ly acceptable transfer

syntax to be established which each communi
cating system wi l l be able to convert to and from
its internal representation.

• The application layer contains protocol elements

specific to a particu lar appl ication, such as file
transfer. It also provides a structu re that a llows

applications to be built that use mu ltiple proto
cols in a coordinated fashion.

The DECnet Phase rv and TCP/IP protocol stacks,

which are also supported by DECnet Phase V, do not
have this structure. Rather, the functions of the ses

sion and presentation layers are built into the appli
cation protocols as needed.

All three protocol su ites support a wide variety
of applications, in addition to a l lowing a user the

flexibil ity to develop custom appl ications. Typ ical
applications include

• File transfer and access

• Virtual terminal

• Electronic mail

• Remote procedure calls

Naming Services
The protocols in the lower layers operate in terms
of addresses which are, for practical purposes, sim
ply bit strings. Their format is heavily constrained
by the protocols, and their value is constrained by

Digital Technical jounml Vol. 5 No. 1 Winte1· 1993

Overview of Digital's Open Networking

the network topology or hardware. These addresses
are not at a l l user friendly, nor are they intended to
be. The human users of a network need access in
terms of something which they can remember and

which makes sense to them, which i s to say a name.
Computers in the network therefore need to be

able to take a name and change it to an address, and
vice versa for incoming t raffic.

DECnet Phase IV had a very simple approach to
this problem. Since it was aimed at smal l- to

medium-sized networks, it was practical for each

system to store the complete set of names and
addresses. Administrative procedures, such as regu

lar file transfers, could be used to ensure that all
systems were kept up-to-date.

DECnet Phase V was designed to al low much

larger networks to be built , while both OSI and

TCP/IP are designed to support networks on a
global scale. The administrative problems and stor
age requirements of the Phase rv approach m ake i t
u nusable for very large networks. A further compli
cation arises as networks span mult iple organiza

tions, since no single central site can have

management responsibil ity for the complete set of

names. Therefore, a different approach is needed.
The l imitations of the Phase IV approach were

recognized when this version of DECnet was in the

design phase, and work was started on the Digital
Distributed Name Service (DECdns). DECdns has

been available as an optional component of DEC net
Phase rv for some time. It provides

• Distribution: Al l naming information does not
have to be stored at a single point in the
network.

• Repl ication: I nformation can be held in more

than one place, giving resilience in the face of
system or network failures.

• Dynamic updating: I nformation can be changed

at any time.

• Automatic updating: Changed or new informa
tion is automatical ly propagated throughout the
network.

• Hierarchical naming: A name can have multiple
components to reflect an administrat ive or other
organizational structure.

The development of the DECnet and DECdns

products has been closely l i nked, and each is
designed to make maximum use of the other. When
they are used together, DECnet can provide com
plete autoconfiguration of a new node in the

1 7

DECnet Open Networking

network, such that no manager or user needs

explicit knowledge of the address of a node. Once

a name is assigned , the node can keep the naming

service up-to-date both with the initial assignment

of an address and any subsequent changes. It is also

possible for a DECnet system to operate without

DECdns.

The TCP/IP protocol suite also inc ludes a naming

service, with similar properties to DECdns. It is

cal led the domain name system, or DNS. At the

highest level, names are assigned by a global author

ity to countries and to other large groupings of

organizations. Within countries, they are assigned

to particular organizations such as companies.

These organizations can then assign names that may

have further components reflecting their internal

structure.

Work on a naming service for OSI has lagged

behind the other protocol suites, but the most

important elements have been available since 1988

in a standard generally cal led X.500 (after the first

of a series of CCITT recommendations that define

the OSI directory). The X.500 standard defines the

structure of names and the protocols to be used to

access the naming service, but it does not include

the mechanisms required for automatic updating

and maintenance of the service i tself. 15 Work on

standards for these functions is currently at an

advanced stage. Like the DNS system for TCP/lP, the

X.500 standard al locates the highest level of the

structure to countries and then to organizations

within countries. Its design pays particular atten

tion to the needs of electronic mail (the X .400 pro

tocol family). I n contrast to DECdns and DNS, which

assign names to computer systems, the structure of

X.500 names extends to the level of naming i ndivid

uals within a coherent naming framework.

DECnet supports a l l these naming services, in

conjunction with their respective protocol stacks.

Distributed Network Management

In early computer networks, management was per
formed "out of band." This meant that if any com
munication between sites was needed to keep the

network running, some means other than the

network (for example, the telephone) was used. It

was soon realized that much of the time, the

network itself provided the most effective way to

communicate management information, either to

investigate a problem or to modify the configura

tion. DECnet has included the abi l i ty to manage

itself in this way since Phase I I I .

18

The most obvious requ irement for such a scheme

is a protocol that can carry management informa

tion through the network. Such a protocol fits natu

rally into the application layer, where it can make

use of the services provided by the other layers.

A further requirement is a well-defined structure

for the information that is to be conveyed. A net

work architecture is constantly evolving, and it

must be possible to add new information (for exam

ple , for a new kind of data l ink) into the protocol.

Final ly, the specific information elements, such

as the fault counters to use in conjunction with a

particular protocol, must be defined.

The management model and protocol used in

earlier versions of DECnet were u nsuitable for the

needs of Phase V clue to the many different protocol

combinations that were to be supported. Hence, a

new management model was defined. For a long

time, this was cal led the Entity Model and was

subsequently published as Digital 's Enterprise

Management Architecture (EMA) .16 This model takes

an object-oriented approach to model ing the infor

mation needed for management. It is completely

flexible and is not restricted to the management of

the network itsel f; it has since been applied to man

agement of the computer systems themselves.

At the same time, Digital adopted an early draft of

the protocol under development for OSl manage

ment, the common management information pro

tocol (CMIP) . The structure of the C.MIP protocol

accommodates the flexibil ity allowed in EMA.

The management information needed for each

protocol is defined in the same architecture docu

ment as the protocol itself. The modular structure

of .EMA al lows this to be accom pi ished without con
flict between management information defined for

different protocols. In addition to the information

specific to particular protocols (such as parameters

of the protocol operation or counters), there are
also representations of the relationship between
protocol elements, such as user to provider.

EMA provides a clear distinction between two

roles in the management of a network: the agent
and the manager. The agent corresponds to the

thing being managed and is part of the same system.
The manager is typically elsewhere and communi

cates with the agent using the network and the

management protocols. The manager role is taken
by user i nterface programs. These may be simple,

l ike the network control language (NCL), a basic

command l ine utility appropriate for simple
networks, or they may be extremely powerful .

Vol. 5 No. 1 Winte-r 1993 Digital Technical journal

DECmcc, for example, is a Digital product that pro

vides the faci l i ties appropriate to the m anagement
of networks throughout an enterprise.

If the network is being used to manage itself, the
possibility exists for a kind of "dead ly embrace," i n
which the communication path needed t o fix a

problem is itself unavailable due to that same prob
lem. DECnet has been designed to min imize the l ike

l ihood and practical impact of this risk. The
operation of the network layer is of vital i mpor
tance in this regard. As long as a physical communi

cation path is working, it will virtual ly always be
able to correct a fault , even if the fault is due to a
previous incorrect management operation.

The TCP!IP protocol suite also provides a manage
ment capabil ity through the simple network man
agement protocol (SNMP) .7 Although both the

protocol and the information model underlying it
are considerably simpler than EMA, comparable

facil ities exist for many purposes. To the extent
possible, DECnet implementations are designed to
be managed through SNMP as wel l as through using
the DECnet management protocol.

The standards for management associated with

OSI protocols are stil l under development. Digital
has made extensive contributions based on its own
architecture, and the resulting standards bear a
strong resemblance to EMA. Standards exist for the

CMIP protocol and for the management model, but
specification of the specific elements of manage
ment information needed for particular protocols
have yet to be completed.

Conclusions and Future Capability
In 1974, DECnet was the first networking product to
provide general-purpose, peer-to-peer communi

cations. With the availabi l i ty of Phase V, DECnet has
become the first ful ly standards -based family of
network products. It incorporates al l available stan
dards from the OSI and TCP/IP protocol suites in a
way that provides the system integration and the
performance trad itionally associated only with pro
prietary network products. Achieving this migra
tion to standards has involved a phenomenal effort,
but this price has now been paid. Technology and
the standards that reflect i t are in a constant state of
development. The future of DECnet will consist of
relatively frequent and modest incremental
changes that incorporate these new developments.
Al ready major developments in areas such as nam
i ng (X.500), transaction processing, and manage
ment are finding their way into the products.

Digital Technical journal Vol. 5 No. 1 Winter 1993

Overview of Digital's Open Networking

At the same time, there is an increasing need

for Digital networking products to incorporate
widely used, nonstandard protocols, especially
for interconnection with personal computers and

other desktop devices. Fortunately, the modular

architecture developed for Phase V makes i t
relatively easy to do this i n the same incremental

fashion.

DECnet has changed out of all recognition from
its early versions, yet it can stil l support the same

application programs that were built in the 1970s,
as well as client/server appl ications that are still
emerging. The basic physical technology that sup

ports networking has also undergone enormous
changes, from 2,400-bit-per-second modems to
E thernet and fiber distributed data interface (FDDI),
yet DECnet makes this all transparent to the user. In

another 20 years we can expect these technologies
to have developed as much again , or more, and we

can expect too that DECnet wil l continue to adapt
to match them.

References

1 . V Cerf and R. Kahn, "A Protocol for Packet

Network I nterconnection;' IEEE Tmnsactions

on Communications, vol. COM-22 (May 1974).

2. R. Cypser, Communications Architecture for

Distributed Systems (Reading, MA: Addison
Wesley Publishing Co., 1978).

3. CCJTT Recommendation X.25, CCITT Yellow
Book, vol. V11 1 .2 (Geneva: International

Telecommu nications Union, 1981) .

4 . The Ethernet: A Local Area Network, Data

Link Layer and Physical Layer Specification,
Version 2 .0 (Digital Equipment Corporation,
Intel Corporation, and Xerox Corporation,
Order No. AA-K759B-TK, November 1982) .

5. Basic Reference Model for Open Systems
Interconnection, ISO 7498: 1983 (Geneva:
International Organization for Standardiza
tion, 1983).

6.]. Morency, R. Pitkin, R.)esuraj, and A . Kwong,
"Modeling and Analysis of the DECnet/SNA
Gateway," Digital Technical journal, vol . 1 ,

no. 9 (June 1989).

7. D. Comer, lnternetworking with TCP/IP: Prin
ciples, Protocols and Architecture (Engle

wood Cl iffs, NJ: Prentice-Hal l , 1988).

1 9

DECnet Open Networking

8. G. Cobb and E. Gerberg, "Digita l 's Multiproto
col Routing Software Design," Digital Techni

cal journal, vol . 5, no. 1 (Winter 1993, this

issue): 70 -83.

9. R . Perlman, R. Calion, and M. Shand, ''Routing
Architecture," Digital Technical journal,

vol. 5, no. 1 (Winter 1993, this issue): 62-69.

10. Information Technology: Intermediate

System to Intermediate System intra-domain

Routeing information Exchange Protocol
for Use in Conjunction with the Protocol

for Providing the Connectionless-Mode

Network Service, ISO 10589 (Geneva: I nter

national Organization for Standard ization,
1992).

1 1 . R . Calion, Use of 051 15-fS for Routing in
TCP/1P and Multi-Protocol Environments,
Internet Activities Board, RFC 1 195 (1991) .

12. Information Processing Systems: Network

Service Definition, Addendum 2: Network
Layer Addressing, ISO 8348 (Geneva: Interna

tional Organization for Standardization, 1988).

20

13. Information Processing Systems: End system
to Intermediate System Routeing informa

tion Exchange Protocol for Use in Conjunc
tion with the Protocol for Providing the

Connectionless-Mode Network Service, ISO
9542 (Geneva: International Organization for
Standardization, 1988).

14. Information Processing Systems: Data

Communications Protocol for Providing the
Connectionless-Mode Network Service, ISO
8473 (Geneva: International Organization for
Standardization , 1984).

15. CCITI IXth Plenary Assembly, "The Directory

-Overview of Concepts, Models and Ser

vices," Recom mendation X.SOO and ISO 9594-1 ,
Data Communication Networks Directory:

Recommendations X.500 to X.521, CC/TT
Blue Book, vol . VIII.8 (Geneva: In ternationa l
Telecommunications Union, 1989).

16. Enterprise Management Architecture
General Description (Maynard , MA: Digital
Equipment Corporation, Order No. EK

DEMAR-G0-001 , 1989).

Vol. 5 No. 1 Winter 1993 Digital Technical journal

Lawrence Yetto
Dorothy Noren Millbrandt

Yanick Pouffary
Daniel]. Ryan,]r.
David]. Sullivan

The DECnet/OSifor OpenVMS
Version 5.5 Implementation

The DECnet/OS! for Open VMS version 5.5 product implements a functional Digital

Network Architecture Phase V networking product on the Open VMS system. This

new software product ensures that all existing Open VMS application programs uti

lizing published interfaces to DECnet-VAX Phase IV operate without modification

over the new DECnet product. The components of DECnet/OSI for Open VMS version

5.5 include the new interprocess communication interface. The design goals and

implementation strategy were redefined for network management, the session con

trol laye1; and the transport layer. The configuration u tility was structured into

several files that are easy to read.

The DECnet Phase V networking software presented
the DECnet-VAX development team with a major chal
lenge. Although the Digital Network Architecture
(DNA) has always corresponded to the lower layers
of open systems interconnection (OS I) , the Phase V
architecture has substantial differences from Phase
IV in many layers. For example, the session control
layer now contains a global name service. '

DECnet Phase V also added new network man
agement requirements for all layers. In m ost cases,
the existing Phase IV code cou ld not be adapted to
the new architecture; it had to be redesigned and
rewritten. This presented the engineers with the
opportunity to restructure and improve the older
pieces of code that have been continual ly modified
and enhanced since the first release of DECnet-VAX.
Due to the large instal led customer base, however,
it also presented a huge compatibil ity problem. We
could not simply drop the old i n favor of the new;
we needed to ensure that the customers' DECnet
Vfu'< applications would continue to be supported .

This paper gives an overview of the design of
the base components i n the new DECnet/OSl for
OpenVMS version 5.5 product. It then presents
details about the internals of the network manage
ment, session control, and transport layers. Finally,
the new configuration tool designed for DECnet/
OSI for OpenVMS version 5.5 is discussed. Unless
otherwise noted in this paper, the term DECnet/OSI
for OpenVMS refers to version 5.5 of the product.

Digital Teclmical}ou,.,wf Hll. 5 No. I Winter I<J93

High-level Design

Numerous goals were identified during the design
phase of the base components for the DECnet/OSI
for OpenVMS software. Foremost among these
goals was to conform to the DNA Phase V architec
ture and to support image- level compatibi l ity for
existing Phase IV applications. Care was also taken
in the design to a l low the product to be extensible
to accommodate the ongoing work with industry
standards.

Design Overview

The queue 1!0 request ($QIO) application program
ming interfaces (APis) for the Vfu'< OSI transport ser

vice and DECnet-VAX are already defined and widely
used by network appl ications. To ensure that exist
ing applications would continue to work, these
interfaces were modified in a compatible fashion.
As a result, not a l l of the capabilities of Phase V
could be added to the existing AP!s. A new API, the
interprocess communication interface ($ IPC), was
developed to support al l the functions defined in
the Phase V session control layer. I n addition, the
$!PC interface was designed to allow for future
capabil ities.

The $QIO and $IPC interfaces interpret the appl i
cation's requests and communicate them to the
DNA session control layer through a kernel mode
system interface called session services. In the ini
tial release of DECnet/OSI for Open VMS, the Vfu'< OSI

2 1

DEC net Open Networking

transport service joined its $Ql0 interface to the

stack at the network layer. The first follow- o n
release wi l l fu l ly support this A P I . I t wi l l b e rewrit

ten to i nterface direct ly to the com mon OSI trans
port module.

DECnet/OSl for Open VMS implements each l ayer
of the Phase V architecture in separate modu les.

These modu les require a wel l-defined interface to

com m u n icate. This is suppl ied by the new inter

rupt-driven VAX com munication interface. This
interface defines the rules used by cooperating VAX

communication modules to exchange information.

The upper VAX com mu nication modules consume
a set of services, and the lower modules provide

services. The lower VA.'< com m u nication modules
define the expl icit messages and commands that

are passed between the modu les. This definition is

then referred to as the lower layer's VAX commu ni
cation i nterface. For example, the t ransport l ayer

provides a service to the session contro l layer.
Transport is the lower module, and session is the
upper. The ru les for how the interface works are
defined by the VA.'< com munication i nterface itsel f,

but the commands a nd services suppl ied by the
transport layer are defined by that layer. As a resu lt,

the interface between the session and transport

OSI
TRANSPORT
APPLICATION

VAX OSI
TRANSPORT
SERVICE $010

I
NETWORK OSI

MANAGEMENT TRANSPORT
(TPO, TP2, TP4)

I
I

X.25 NETWORK

I
EMAA L
ENTITY
I NTERFACE WIDE AREA

NETWORK -
DEVICE DRIVER

layers is referred to as the transport VAX com mu ni
cation interface.

To comply with the new Enterprise Management

Architecture (EMA), each of the modules suppl ies

one or more manageable entities to netwo rk man
agement. This is accompl ished by the EMA agent

(Eiv!AA) management faci l ity. EV!AA suppl ies both an
entity interface to the individual mod u les and an
EMAA i nterface to the network. This interface is dis

cussed further in the Network Management section.

Figure 1 shows the components of the DECnet/

OS! for Open VMS p roduct and their logical relation
ship to each other.

Implementation of the Modules

Each DECnet/OSI for OpenVMS base component is
implemented in one of three ways. The most promi

nent method is through OpenVMS executive load
able images. These loadable images are aU p.laced in

the SYS$LOADABLE_IMAGES system directory during
i nsta l l ation and loaded as part of the NET$STARTUP
procedure, which the OpenVMS system runs during

a system boot.

The two $QIO i nterfaces m ust operate within the
OpenVMS 1!0 subsystem. As a resu lt, they are both
coded as device d rivers and loaded during

I

CSMA-CD -

DNA APPLICATION

I
$ 1PC I I
I

I
$010

I
DNA SESSION
CONTROL

I
I

NSP TRANSPORT

I
I

OSI NETWORK

I
I

FIBER
DISTRIBUTED
DATA INTERFACE

USER API

SESSION SERVICES
I NTERFACE

SESSION MODULE

TRANSPORT
INTERFACE

TRANSPORT
MODULES

ROUTI NG I NTERFACE

ROUTING MODULES

DATA L INK
INTERFACE

DATA LINK
MODULES

Figure 1 DECnet/OS!for Open.VMS Base Components

2 2 Vol 5 No. I Wimer 1993 Digital Tee/mica/ jourtzal

The DECnet/05/for Open VMS Version 5.5 Implementation

NET$STAHTUP by the SYSGEN uti l ity. Once started,
they can create a VAX com mun ication interface
port to the appropriate modu les to process their

network requests.

The third way a component can be implemented
is as a standard OpenVMS im age or shareable image.
These images i nclude N ET$AC P . EXE, which is

started as a system process by NET$STARTllP , and
NCL.EXE, wh ich is the ut i l i ty that suppl ies the

network control l anguage (NCL) interface to
users. Other images, such as N ET$MI HROH.EXE, are

started by the network software in a separate pro
cess when a network request is received for the

appl ication.

Implementation of the Base Image

The base i mage, SYS $ NElWORK_SERVICES.EXE, has
been present on all Open VMS systems since version
5.4. The OpenVMS system loads this executive
image early in the boot cycle. The default file

shipped with OpenVMS is a stub that s imply sets a
system cel l during initial ization to ind icate that the
older Phase IV code is loaded. This system cel l can

then be in terrogated through an OpenVMS system
service or from a D igital Command Language (DCL)
command l ine to determine which version of the
DECnet software is loaded.

When the DECnet/OSl for OpenVMS product is
installed, the base image is replaced with the Phase
V version. The new image sets the system cell to
indicate that Phase V is loaded. It provides a host of
common services, includ ing EMAA, to the remain

ing system compo nents. It also contains the code

used to implement the Phase V node agent required
by EMA on each node. Each of the remaining

DECnet/OSI for Open VMS components makes use of
the base image by vectoring through a system cell
to the desired function.

Network Item Lists

The DECnet/OSl for OpenVMS modu les pass large
amounts of <lata between t hemselves. This
exchange requires an efficient means to encode and
move the data. Conversions are expensive opera
tions; therefore a decision was made to use the
same structure for a l l the interfaces w ithin the base

components. The structure chosen, a network item
l ist, is a simple length/tag/val ue arrangement in

which the tags are defined in a common area
between sharing modu les. Network item l ists are

very easily extended as new fu nctions are added to

the software. Since they con tain no absol ute

Digital Technical journal Vol. 5 No. I Winter I'J'J.)

addresses, they are also position independent. This

has the advantage of making it easy to copy or move
them when necessary.

Network item l ists are used between all VAX com

mun ication modu les, by EMAA, and by the session

services interface. They are also presented to user
written appl ications through the $ JPC interface ,

thus al lowing the i nterface to be expanded as more
protocols and standards are implemented in the

DECnet network.

Network Management

This section d iscusses the DECnet/OSI for Open VMS

network management design and network manage

ment functions implemented in Phase V

Network Management Design

The key to Phase V network management design is

the EMA Entity Model, which defines the standard

management structure, syntax, and interface to be

used by each manageable object. The DECnet/051
for Open VMS EMA framework is bui lt on t h is model

and defines the components requi red for a system
manager to perform actions on managed objects,
both loca l ly and across a network. The EMA frame

work consists of the fol lowing components.

• A director i n terface, th rough which user com
mands cal led d irectives are issued

• A management protocol module that carries
directives to the node where the object to be
managed resides

• An agent that decodes the d irective into specific

actions and passes that information to the man

aged object

• An entity, the object to be managed

For a fu l l u nderstanding of the DECnet/OSl for

OpenVMS network management implementation,

the reader should first u nderstand the EMA model.
Detai ls on the EMA model can be fou nd in t he paper
on management architecture in this issue.1

In the DECnet/OSI for Open VMS network manage
ment design, the components and their div ision of

function genera l ly fol low the EMA framework.
There are , however, a few exceptions. Figure 2
shows the DECnet/OSI for OpenVMS components

that implement the EMA model and other Phase V
management fu nctions.

The NCL u t il ity provides the EMA director func

tion . The NCL image processes user commands into

management directives. I t also d isplays the
responses that are returned.

23

DECnet Open Networking

COMMAND

DIRECTOR ! EVENT
(NCL) RESPONSE SINK EVENT - - - - - - - -

CMIP CMIP CMIP
EVENT REQUESTER PROTOCOLS LISTENER - - - - - - - - DIRECTIVE AGENT AGENT

I I i DIRECTIVE
EVENT I I RESPONSE DISPATCHER
DISPATCHER I I (EMAA) I I i EVENT

I I
D IRECTIVE! t RES I I

I I PONSE

DNA SESSION CONTROL DNA SESSION CONTROL
TRANSPORT TRANSPORT

ENTITIES NETWORK NETWORK ENTITIES
DATA LINK DATA LINK
PHYSICAL PHYSICAL

NODE A I TRANSMISSION MEDIUM I NODE 8

Figure 2 Network Management Components

The common management information protocol

(CMIP) requester l ibrary rou tines provide part of

the management protocol module functions. These

include encoding a management directive i nto
CMIP, transmitting it to the designated node, and

receiving the response. The CMIP requester rou
tines are implemented as part of NCL, not as a sepa
rate management protocol module.

A CMIP l istener server process, CML.EXE, pro

vides the remainder of the management protocol
module function. It receives a management direc

tive and passes it to the agent. When the agent
returns a response, CML transmits the response to

the originating node.
The DECnet/OSI for OpenYMS EMA agent, EMAA,

accepts management d irectives from CML, dis
patches them to the requested entity, and returns
responses to CML. EMAA also extends this concept
by actual ly performing the management directives
in some cases.

Entities are not strictly a part of network manage
ment. They do, however, receive management
directives from EMAA in DECnet/OSI for OpenYMS.

They must be able to carry out the d irectives and

return the results of the operation to EMAA.

In DECnet Phase V, an event is the occurrence of
an architectural ly defined normal or abnormal con

dition. Events detected by entities are posted to an
event dispatcher, which passes them to a local or
remote event sink. If remote, a CMIP event protocol
is used . Jn DECnet/OSI for OpenYMS, the event
d ispatcher image, NET$EVENT_DISPATCHER.EXE,

24

implements the event dispatching and event sink
functions.

The data dictionary is a binary compilation

of architecturally defined codes for all known
Phase V management entities, the manageable
attributes of each entity, and the actions that can be
performed. It also contains information necessary
to encode this information into Abstract Syntax

Notation Number 1 (ASN .l) , req uired for the CMIP
protocol.

Finally, there is the maintenance operations
protocol (MOP). Although MOP is not an E1\1f\ com

ponent, it is a component of DNA. It performs
low-level network operations such as down-l ine
loading and up- l ine dumping.

Network Management Implementation

The most visible d ifferences between DECnet Phase
IV and DECnct Phase V arise from adherence to
the EMA architecture. This section d iscusses the
replacement functions implemented in Phase V

The NCL Utility The network control program

has been replaced in Phase V with the NCL uti l i ty.
NCL provides a highly structured management syn

tax that maps d irectly to the EMA specifications for
each compl iant entity. In an NCL command, the
hierarchy of entities from the node entity to the
subentity being managed must be specified. For
example, the fol lowing command shows the local
area network (LAN) address attribute of a rou ting
circuit adjacency entity.

Vol. 5 No. I Winter }')93 Digital Technical journal

The DECnet/OSlfor OpenVMS Version 5.5 Implementation

N C L > S h o w N o d e D E C : . z k o . l l i u m
R o u t i n g C i r c u i t L a n - D A d j a c e n c y -
r t g $ 0 0 0 2 L A N A d d r e s s

The command contains the node entity name,

DEC : . zko. I I iu m ; the module ent ity with i n the node,

routi ng; the name of the circu it subentity of rout
i ng, lan-0; the name of the adjacency subentity of
circuit, rtg$0002; and finally the attribute name.

To issue management commands from a DECnet/
OS! for OpenVMS system, a user i nvokes the NCL

u t i l i ty. NCL parses commands i nto fragments cal led
tokens, containing ASCII strings. It uses the data dic

tionary to transl ate these i nto management codes

for directives, entit ies, and attributes. NCL then con
structs a network i tem l ist from this information

and i nvokes the CMIP requester send function.
CMIP requester functions are implemented as a

set of l ibrary routines t hat are l inked with the NCL

uti l ity. Underneath this cal ler i nterface, the CMJP

rout i nes establish a connection over DNA session
control to the destination node's CM I P l istener. The
directive is then encoded into a CMIP message and
passed to the destination.

NCL now posts the first CMIP requester receive

cal l . More than o ne receive cal l may be needed to
obtain a l l the response data. As soon as a partial
response is avai lable, the receive fu nction decodes

the CMIP messages into network item l ists and

passes them back to NCL. NCL translates these into
displayable text ami val ues and directs the output
to the user's terminal or a log fi le . If the partial
response is not complete, NCL then loops and
issues a nother ca l l to the CMIP requester receive
function.

The CMIP requester fu nctions are optimized for

the local node case. If the dest i nation node is speci

fied as "0" (the local node), the CMIP requester func
t ions interface directly to the EMAA i n terface,
s kippi ng t he CMIP encod i ng, decod i ng, and the

round trip across the network.

The CMIP Listener The CMIP l istener is imple
mented as a server process, similar to the Phase IV
network management l istener. When an i ncoming
connection request for CML is received, a process is
created to run the CML image. The CML image u t i
l izes the DNA session control in terface to accept
the connection and receive the CMIP encoded

directive. It then uses the data d ictionary to decode
the message into a network item l ist . EMA A is then
i nvoked to process the directive and return any

required response from the entity. Once CML

Digital Tee/mica/ jourt�al lkJI. 5 1\'o. 1 Winter t9'J3

has received al l portions of the response from

EMA A , encoded them into CMIP, and transmitted

them back to the requesting node, the CML image
terminates.

EMAA, the EMA Agent The management struc
ture imposed by EMA contains com mon directives
that must be supported by a l l entit ies. A design goal
for EMAA was to provide a common management

facil ity with support for common operations such

as show or set. EMAA can perform these functions

agai nst an entity 's management data structures,
thereby freeing each entity from separately imple

menting them and simpl ifying the entity's code

requ irements. This approach was successful ly
implemented, though at the cost of a more complex

agent implementation and a set of registration
macro instructions col loqu ial ly known as the

" macros from hel l ."

The above interface between EMA A and the enti·
t ies is known as the fu l l i nterface. Not all develop

ment groups' coding entit ies were i nterested in this
approach; thus, EMA A a lso provides a basic i n ter
face. An entity specifies wh ich i nterface to use dur
ing its i nitial ization when it registers with EMAA.

For an entity that uses the basic interface, EMAA
simply passes the directive information to the des
ignated entity and expects response data returned.

The choice of interface must be made by the
modu le-level entity. If the entity uses the fu l l inter
face, it m ust register its management structure,
i ncluding a l l subentities and attributes, with EMAA.

For these entities, EMA A processes the network

i tem l ist passed by CML. I t creates a data structure

for each subentity instance, specifying the
attribu tes, any values supplied, and the actions to
be performed . EMA A passes this to the designated

entity, which uses tables set up duri ng init ia l ization
to cal l the appropriate action routine for the direc
tive . By default , these action rou tines are set up as

cal l backs i n to EMAA itse l f, thereby a l lowing Etvi.AA

to perform the task . Wi th either the basic or the ful l
interface, a separate response is required for each
subentity i nstance specified by a directive. EMAA
cal ls CML i teratively through a coroutine cal l to

pass response data back to CML.

The Event Dispatcher Phase IV event logging

a l lowed events to be sent to a sink on one node. In

Phase V, the event dispatcher supports multiple
sinks that can be local or on any n umber of remote

nodes. Event filtering can be applied on the out

bound streams of events, fi ltering events before

25

DECnet Open Networking

they are t ransmitted to a sink. This provides a mech

anism to direct different types of events to d ifferent

sinks.

An event sink is the destination for an event mes
sage. A node can have mult iple sinks, each accept
i ng events from any number of remote nodes. Event

fi ltering can be appl ied to the inbound streams of

events at the event sink. An event message that

passes is sent to the sink, which uses the data d ic

tionary to format it into ASCII character strings. It is

then ou tpu t to the sin k client, which may be a con
sole, printer, or file.

An optimization is used when an event is gener

ated on a node and the destination sink is on the

same node. In this case, the event bypasses the out
bound stream and is queued directly to the event

sink. The DECnet/051 for OpenYMS product, in the

default configuration for a local node, defines one

outbound stream directed to a s ink on the loca l
node and defines the console as the sink cl ient .

An event relay provides compatibil ity with Phase

IV nodes. This important function permits a Phase V

event sink to log messages from Phase IV or Phase V

DECnet systems. Event relay is a session control

application that l istens for DECnet Phase IV event

messages. I t encapsulates each Phase rv event mes
sage in a Phase V event message and posts it to t he
event dispatcher, using the same service that other
DECnet/051 for Open VMS entities use to post events.

lvlaintenance Operations Protocol The N ET$MOP

process is the DECnet/051 for Open VMS implemen

tation of the DNA mai ntenance operations proto
col. MOP uses the services of the local and wide

area data link device d rivers to perfor m l ow-level
network operations. MOP can down-l ine load an

operating system i mage to a YMScluster satell i te

node and respond to remote requests from a
network device to down - l i ne load or up- l ine clump
an image . MOP also supports management d irec
tives that a l low a system manager to load or boot a
remote device, monitor system identification mes
sages, p erform data l i n k loopback tests, or open a
terminal I/0 com m u nications channel to a device's

console program.
The primary design goal of the MOP implementa

tion was to respond qu ickly and with low system
overhead to remote requests from devices to down

l i ne load an image. In some network co nfigura

t ions, a power failure and restoration can cause
hundreds of devices to request a down-line load at
the same time. The Phase IV imp.lementation was
known to have difficulty hand l i ng this, so the new

26

implement ation of MOP was designed for multi

threaded operation . This means there is only one
MOP process per node, and i t processes mu ltiple
concurrent operations by creating a separate
thread for each management d irective, program
request, or dump request received. Moreover, a l l

management data required t o service MOP requests
is conta ined in MOP-specific management data

structures, designed to be searched qu ickly. When a

request is received, MOP can promp t ly ascertain

whether the required information to service the
request is avai lable and make a response.

Session Control Implementation

The design of the DECnet/051 for Open VMS session

control layer is based on goals defined by both the
session control architecture and the DECnet user

com m u nity. These goals include

• Compatibility. The DECnet-YAX product has a

large customer base with major investments in

DNA appl ications. The session control layer sup
ports these applications without requiring a
rei ink of the object code.

• Performance. Transmit and receive operations

across the network must be as efficient as possi
ble. Minimal overhead is introduced by the ses
sion control layer in making each transport
protocol available to appl ications.

• Extensible. The session control layer design
al lows for future additions to the archi tecture.

• New features. The session control layer takes fu I I
advantage o f the new nam ing and addressing
capabil ities of Phase V DNA.

• Improved management. The session control

layer compl ies with EMA, a l lowing it to be man
aged from anywhere t h roughout the network .

Session Control Design

The session control layer is d ivided into several log
ica l components, $QIO, $! PC , NET$ACP, common
services, a nd network management. $QIO and $ J PC
provide the AP!s required to com m u n icate across
the network. $QIO is ful ly compatible with a l l

Phase rv DECnet-VAX appl ications; however, it d oes
not a llow access to the fu l l set of features available
in DECnet/OSI for OpenVMS. These n ew features,
and any future addit ions, are available o n ly through
the new $!PC interface.

The two APis are consu mers of session con
trol services provided by the common serv ices

Vol. 5 No. I Winter I'J93 Digital Tecbuical]ourual

The DECnet/051 for Open VMS Version 5.5 Implementation

component. This component provides all the
network functions defined in Phase V to the AP!s

above i t . In order to do this, the common services
component makes use of both the NET$ACP and
network management portions of the session con
trol layer.

Figure 3 shows the session layer components and
their relationships to each other.

Session Control AP!s

DECnet Phase IV restricted node names to six char
acters in length. In DECnet-VA..\: the $QIO interface
was the only means by which an application could
make cal ls to the session control layer. This inter
face also enforced the six-character name l imit .
With the advent of Phase V, this restriction no
longer applies. I t is possible for a node running
Phase V to be unreachable by a Phase IV-style six
character node name. As a consequence, the $QIO
interface was extended to al low ful l name repre
sentations of a node.

The $!PC interface is a new interface that incor
porates a l l the functions of the $QIO interface,
along with extensions made to the session control
architecture. This item-list-driven interface pro
vides a cleaner, more extensible i nterface and
a l lows for easy conversion of $QIO appl ications.
The $QIO interface uses a network control block
(NCB) and a network function block (NFB) to hold
data. This data is easily mapped to items in a
network item l ist. Also, the function codes used
by $QIO can be easily mapped to $!PC function
codes. As new requirements arise, supported items
can be added to the l ist without impacting the exist
ing values.

The $!PC interface also supplies some new fea
tures not available in $QIO. Phase V DNA uses the
D igital Distributed Name Service (DECdns) to store
information about nodes and appl ications in a
global namespace. Once an appl ication declares

NETWORK
MANAGEMENT

Figure 3 Session Design

Digital Tee/mica/ journal llrJ/. 5 No. I Winter 1993

itself in the global names pace, $!PC enables session
control to maintain its address attribute. This
address attribute contains all the information nec
essary to define where the application resides on
the network. $!PC can then be used by the c l ient
side of an application to connect to a server
through a single global name, instead of using a
node name and appl ication name pair. This enables

the client side of an appl ication to communicate
with its server without knowing where the server
currently resides.

$JPC supports a new means of accessing a node

by its address. In Phase IV, addresses were l imited
to 63 areas with 1 ,023 nodes in each area. The
address of each node cou ld be represented with

a 16 -bit integer. The $QIO interface supports a form
of node name in which the 16-bit address is con
verted into the ASCI I representation of the decimal
equivalent. This is not sufficient to address al l Phase
V nodes, so a new function called "connect-by
address tower" is available through $!PC . The
address tower is d iscussed further in the Common

Services Component section.
Yet another feature of $ IPC is the ability to trans

late a node's address into the name of the node as
registered in the global namespace. In Phase IV the
address- to-name translation was a management
function. Furthermore, the translation was local to
the node on which i t was performed .

Session Control Network Management

The session control layer makes use of the fu l l
Ei'VlAA entity interface to support a l l entities defined
by the session control architecture. These include

the session control entity itself, as wel l as the appli
cation, transport service, port, and tower mainte
nance subentities. Each of these entities contains
timers, flags, and other control inJormation used by
the session control layer during its operation. They
also contain counters for the events generated by
the session control layer.

The appl ication subentity is of special interest.
This entity is the equivalent of the Phase IV object
database. I t al lows the system manager to register
an appl ication with session control to make it avail
able for incoming connections. This entity is a lso
used to control the operation of the application
and select the types of connections that can be sent
or received by it.

Common Services Component

The common services component is the hub for
session control . It is responsible for performing

27

DEC net Open Networking

tasks that are not specific to the $ I PC or $QJO
i n terfaces. These tasks include m anaging transport
connections on beha l f of session control users,
mapping from a DECdns object name to addresses,

selecting communication protocols supported by

both the local and remote end systems, maintaining

the protocol and address information correspond

ing to loca l objects in the namespace, and activating

(or creating) processes to service i ncom ing con
nect requests.

The N ET$ACP process is used to provide the com

mon serv ices component with process context.

The NET$ACP image itself is noth ing more than a set

of queues and an id le loop. When the session con
trol layer is loaded, it creates user-mode and kernel

mode tasks. A queue is assigned for each task , and

the NET$ACI' process attaches to the task when i t is
started . When the session component needs to exe

cute in the context of a process and not on the
in terrupt stack, i t b u i lds a work queue entry,
queues i t to the appropriate tas k queue, and wakes
up the NET$ACP. The NET$ACP finds the address of

the desired routine in the work queue entry and

executes it. This routine can be located anywhere
that is add ressable by the process, but it is usu a l ly
contained within the session control loadable

i mage. The common services component makes

use of the N ET$ACP for reading files, creating
network processes, and making cal l s to the DECdns
clerk. It also makes use of the process for functions

tbat require large amounts of memory. By perform

ing these tasks in the NET$ACP process, session con
trol is able to use process virtual memory even
though it is implemen ted as an executive loadable

image.
The tower set data structure plays a key role

in session control. A tower set consists of one or

more towers. Each tower represents a protocol
stack and is composed of three or more floors, as
shown in figure 4. The lowest floors in the tower
correspond to the DNA rou ting, transport, and ses
sion control layers; they are used to identify proto
col and associated add ress information to be used

at that l ayer. When viewed as a whole, the tower set

describes a combination of protocols supported
on a node. The session control layer on every
DECnet/OSI for OpenVMS system not only uses t h is
information to communicate with remote nodes,

but is also responsi ble for build i ng a tower set to
represent that l ocal system . Once bui l t , this tower

set is placed in the namespace as the attribute for

the node.
The session control i nterfaces a l low the user to

specify a node in many ways. A node can be speci

fied as a Phase !V-sty le node name, a Phase rv-style
address, a DECdns fu l l name, or a tower set. The
three forms of name representations are mapped to
the correspond ing tower set by making cal ls to the
DECdns clerk to obtain the node's tower set
attribute. Once the tower set is in hand, it can be
used to com municate with the session control layer

on the remote node.
The tower set for a remote node and the tower

set for the local node are used in conjunction
to determine if both nodes support a common
tower. If a common tower is found, session control

attempts to establ ish a connection to the remote
node using that tower. If the connection fai ls, the
comparison continues. If another matching tower
is foun d , the connection attempt is rereated. This
continues u nt i l the connection is establ ished or the

tower sets are exhausted.

Use of DECdns

The session control layer uses DECdns objects for

a l l global naming. These objects are used in two d if
ferent ways: they can represent a node or a global
appl ication. A node object is a global representa
tion of a node in a DECdns namespace. Each node
object contains attributes that identify the location
of a node. Foremost in t h is l ist of attribu tes is the
DNA$Towers attribute. The DNASTowers attribu te
contains the tower set for the node and is written
automatical l y by the session control layer when
DECnet/OSI for Open VMS is configured and started.
Once created , this attribute is updated by session

FLOOR N

FLOOR 3

FLOOR 2

FLOOR 1

APPLICATION-DEFINED FLOORS

28

SESSION PROTOCOL SESSION ADDRESS I N FORMATION

TRANSPORT PROTOCOL TRANSPORT ADDRESS I N FORMATION

ROUTING PROTOCOL ROUTING ADDRESS INFORMATION

Figure 4 Tower Design

Vul. 5 .Vo. I Winter /'J'J3 Digital Technical journal

The DECnet/OS!for Open VMS Version 5.5 Implementation

control to reflect the current supported towers for
the node.

When the session control layer bu ilds the tower
set for the DECdns node object, it creates a tower

for each combination of supported protocols and
network addresses on the node. If the node sup
ports two transports and three network addresses,

the tower set is generated with six towers. It always
places the CML application protocol floor on top of
the session control floor. The address information

for the session control floor is then set to address
the CMI. appl ication. The transport address infor
mation is set to address DNA session control, and

the routing information of each tower in the set is

set to one of the supported network addresses for

the node .
The node object DNA$Towers attribute contains

data that completely describes the node. Since ses
sion control supports node addresses and Phase
rv-style node names, soft links are created in the
namespace to map from a Phase V network service
access point (NSAP) or a Phase IV-style node name

(node synonym) to the node object. These l inks can
then be used by the session control layer as alter
nate paths to the node object.

An application object is a global representation

of an appl ication. The DNA$ Towers attribute of this
object contains a set of address towers used to

address the appl ication. The rou ting and transport
floors for each tower in this set are used in the same
manner as for the node object. The address informa
tion in the session floor, however, addresses the
appl ication, not CML. Once set, the information in
this tower set is not maintai ned unless the appl ica
tion issues a register object cal l through the $!PC
interface. If this is done, session control maintains

the tower in the same manner as it does for the
node object.

Transport Implementation
The DECnet/OSI for OpenVMS product supports
two transport protocols: the open systems inter
connection transport protocol (OSI TP) and the
network service protocol (NSP). Each transport
protocol, or group oflogical ly associated protocols,
is bund led as a separate but equivalent VAX com mu
nication module. This approach accompl ishes
many goals. The more notable ones include

• Isolating each module as a pure transport engine

• Defining and enforcing a com mon transport
user interface to all transports

Digital Techllicaljounwl Vol. 5 /liu. 1 Winter 199.>

• Providing extensible constructs for future trans
port protocols, i .e . , provid ing a set of transport

service l ibraries

• Eliminating previous dupl ication in adjacent

layers (session and network routing layers)

• Providing backward compatibility with exist

ing Phase rv transport protocol engines

(NETDRIVER/NSP and VAX OS! transport service)

Transport Layer Design

A transport VAX communication module has two
components, a protocol engine and the transport

service libraries. The service l ibraries are common

code between modules and are l i nked together

with each engine to form an executive loadable

image. The three elements of DECnet/OSI for
OpenVMS transport, the NSP protocol engine, the

OS! protocol engine, and the transport service
l i braries, are linked into two images. Figure 5
shows the relationship of these elements.

The specific functions provided by a transport

engine depend on the protocol . The generic role of
NSP and the OS! transport layer is to provide a reli
able, sequent ial, connection-oriented service for

use by a session control layer. The design provides a
common transport interface to both NSP and the
OS! transport layer. This enables NSP and OSI trans
port (class 4) to be used interchangeably as a DNA

transport. As fu ture transport protocols are devel
oped, they can be easily added into this design.

The DECnet/OSI for OpenVMS transport design
places common functions in the service libraries
for use by any protocol engine that needs them.
Any functions that are not specific to a protocol are

performed in these l ibraries. Separating these func

tions enables new protocols to be implemented
more qu ickly and allows operating-system-specific
details to be hidden from the engines.

r - - - - - - - - - - - -
OSI VAX I

I COMMUNICATION I l MODULE _ _ _ _ _ _ + _ _ _ _ _ _

l I l
OSI l TRANSPORT I NSP I I PROTOCOL SERVICE I PROTOCOL I l ENGINE I LIBRARIES I ENGINE

I I I
- - - - - - I - - - - - J NSP VAX I

1 COMMUNICATION I
L _ _ _ _ _ _ _

M��E- _ _ J

Figure 5 Logical Transport Components

29

DEC net Open Networking

The NSP transport VAX commu nication module

operates only in the DNA stack and supports

only DNA session controL Due to an essential ly

unchanged wire protocol, NSP is completely com

patible with Phase IV implementations.

The OS! transport VAX communication module

implements the International Organization for

Standardization (ISO) 8073 classes 0, 2, and 4 proto

cols. It can operate on a pure OSI stack in a mu lti

vendor environment. The OS! transport is also

completely compatible with the Phase IV VA)\ OS!

transport service implementation and operates on

the DNA stack supporting DNA session control.

Transport Engines The transport VAX communi

cation modules provide a transport connection

(logical l ink) service to the session layer. The con

nection management is designed to ensure that

data on each logical l ink is handled independently

from data on other logical l inks. Data belonging to

different transport connections is never mixed, nor

does a blockage of data flow on one connection

prevent data from being handled on another.

The transport VAX: communication modules are

state table driven. Each transport engine uses a

state/event matrix to determine the address of an

appropriate action routine to execute for any

state/event combination. As a transport connection

changes state, it keeps a histogram of state transi

tions and events processed .

Service Libraries The fol lowing fu nctions are

common to many protocols and are implemented

in the service l ibraries.

• Transfer of normal data and expedited data from

transmit buffers to receive bu ffers

• Fragmentation of large messages into smaller

messages for transmission and the reconstruc

tion of the complete message from the received

fragments

• Detection and recovery from loss, duplication,

corruption, and misordering introduced by

lower layers

The key transport service l ibrary is the data

transfer l ibrary. This l ibrary gives a transport engine

the capabi J ity to perform data segmentation and

reassembly. Segmentation is the process of breaking

a large user data message i nto multiple. smal ler

messages (segments) for transmission. Reassembly

is the process of reconstructing a complete user

data message from the received segments. To use

the data transfer l ibrary, a protocol engine must

30

provide a set of action routines. These action rou

tines hold the protocol-specific logic to be applied

to the data handl ing process.

Network Services Phase V provides two types of

network services: connectionless (CLNS) and con

nection-oriented (CONS). CLNS offers a datagram

facil ity, in which each message is routed to its desti

nation independently of any other. CONS estab

lishes logical cormections i n the network layer over

which transport messages are then transmitted .

Transport running over CLNS has a flexible inter

face. It opens an association with the CLNS layer and

is then able to sol icit the CLNS layer to enter a trans

port protocol data unit (TPDU) into the network.

When admission is granted, transport sends as

many TPDUs as possible at that time. Incoming

TPDUs are posted to transport as they are received

by the CLNS layer. Both NSP and OS! transports run

over the CLNS layer.

Transport running over CONS has a more rigid

interface. Once a network connection is estab

lished with the CONS layer, each transport request

has to be completed by the CONS layer. Thus trans

port, when running over CONS , is not able to trans

mit all its TPDUs at once. Each transmit must be

completed back to transport before the next can

commence. Also, if transport is to receive incoming

TPDUs, a read must be posted to the CONS layer. The

OS! transport runs over the CONS layer, but the NSP

protocol was designed specifical ly for CLNS and

does not operate over CONS.

Differences between Phase IV and Phase V
Transport Protocol Engines

Flow control pol icy is an important difference

between the VA};: OS! transport service and the

DECnet/OSI for Open VMS i mplementation . The VAX

OSI transport service implements a pessimistic

pol icy that never al locates cred it representing

resources it does not have. The OS! transport proto

col, on the other hand, implements a more opti

mistic pol icy that takes advantage of buffering

available in the pipel ine and the variance in data

flow on d ifferent transport connections. It makes

the assumption that transport connections do not

consume a l l a llocated credit at the same time.

Other enhancements to the OSI transport protocol

include conformance to EMA network manage

ment, compliance with the most recent ISO specifi

cations, and participation in DECnet/OSI for

OpenVMS VMScluster Alias.

Vol. 5 No. I Winter 1993 Digital Technical journal

The DECnet/05/for OpenVMS Version 5.5 /mplementation

The two main differences between the Phase IV
and Phase V NSP implementations are conformance
to the EMA management model, and, once again,

flow control . In Phase IV, NSP does not request flow

control and uses an XON/XOFF mechanism. This
resu lts in large fluctuations in throughput. Phase V
NSP has been en hanced to request segment flow
control. This mechanism enables each side of a

transport to determine when it can send data seg
ments. Due to this d ifference in flow control policy,
Phase V NSP throughput converges to a maximum
value.

Future Direction of Transports

The DECnet/OSl for Open VMS transport design pro
vides a common transport user interface to a l l
transports and places common functions in the
transport service l ibraries. This approach provides
extensibil ity; i t al lows future transports to be easily
incorporated as they emerge in the industry. This
common interface can also be used to provide an

API that interfaces directly to a transport. DECoct/

OSI for Open VMS engineering is currently looking at
providing such an API.

Corifiguration
Design on the new configuration tools was started

by collecting user comments about the Phase IV
tools and desirable features for the new tool. This
data was collected from customer communication

at DECUS, through internal notes files, and through
internet news groups.

The first goal agreed upon was to create configu
ration files that are easy to read; inexperienced
Phase V network managers may be required to read
and understand these files. Next, the tool must be
structured. The configuration is divided into sev
eral files with recognizable file names rather than
one potential ly unmanageable one. Each file con

tains the in itial ization commands needed to initial

ize one network entity. Final ly, the configuration
tool should be extensible. New commands, enti
ties, or other information can easily be added to the
configuration.

Configuration Design

The main configuration tool is a DCL com mand pro
cedure (NET$CON FLGURE.COM). This procedure
generates NCI. script files, which are executed dur

ing network start-up, to initial ize the network. In
general , each script file in itial izes one entity within
DECnet/OSI for OpenVMS. It is possible, however,

Digital Tech11icaljom"ttal Vol. 5 No. 1 Winter 1993

for scripts to contain information for numerous
entities. For example, the NSP transport initial iza
tion script contains commands to create an
instance of the session control transport service

provider entity, which enables the session layer to
use the protocol. The procedure can extract infor

mation about the configuration by using the
NET$CONVERT_DATABASE utility to translate an
existing Phase IV configuration contained in the
Phase IV permanent databases. Alternatively, it can
prompt the user for the information needed to
al low basic operation of the node.

The first time NET$CONFIGURE is executed, all
the questions, except for the node's full name and
its Phase IV address, have default choices. If the

defaults are chosen, the node operates properly
once the network has started. When appropriate,
NET$CONFLGURE also ca l ls other configuration
tools to configure the DECdns cl ient and the Digital
D istributed Time Service (DECdts), and to perform
various network transition functions.

Once the init ia l configuration has been per

formed, customization of components is available.
Subsequent execution of the N ET$CONFIGURE pro
cedure wil l present the user with a menu that
allows specific subsections of the configuration to

be done, for example, adding or deleting MOP
cl ients or session control applications, changing

the name of the node, or controll ing the use of
communications devices.

General help is available while running
NET$CONFIGURE. Jf the user does not understand

any individual query, responding with a "'" (ques
tion mark) provides a brief explanation.

The scripts created by N ET$CONFIGURE
are computed. A checksum is computed by

NET$CONFIGURE for each script file, and it is stored
in a database along with the answers entered for all
other configuration questions. This al lows the
NET$CONFIGURE procedure to detect whether a
script has been modified by an outside source . If
this condition is detected, N ET$CONFIGURE warns
the user that user-specific changes made to the par
ticular script may be lost.

If a user has modified the NCL scripts,
NET$CONFJGURE cannot guarantee that the infor
mation will be retained after future executions of

the procedure. An attempt is made to maintain the

changes across new versions. In all cases, previous

scripts are renamed before the new scripts are gen

erated . This a l lows the user to verify that cus
tomized change was transferred to the new script.

3 1

DECnet Open Networking

If not, the saved version can be used to manually

replace the change.

Node Configuration NET$CONFTGURE asks only

one quest ion that is directly rel a ted to the node

enti ty. It asks for the node's DECdns ful l name and

sets the node's name. Since the namespace nick

name is a required component of the fu l l name

answer, it also al lows the procedure to determine

the namespace in which to configure DECdns.

The node synonym default is generated by using

the first six characters of the last simp.le name of the

node's fu l l name. If the user entered the fu l l name,

USN : . Norfolk .Destroyer.Spruance . D D 125, the syn

onym default woul d be 00 125. The user is free to

change this information as long as the response is a

legal Phase f\1-style name. If present, the transition

tools make use of this synonym when the node is

registered in the DECdns namespace.

Data Link/Routing The NET$CONFIGURE proce

c.Iure contains a table of a l l valid data l ink devices

supported by DECnet/OSI for OpenVMS. When the

data l ink/rout ing configuration module is cal led ,

the system configuration is scanned . Any valid

devices found on the system are presented to the

user for addition to the configuration. The only

exceptions are asynchronous data I ink devices. The

user must specifica l ly request asynchronous sup

port for these devices to be configured.

Configuration is mandatory for broadcast data

l ink media since these devices are shareable and

users other than DECnet/OSI for OpenVMS m ay

request the device. For synchronous devices, the

user has the choice to configu re the device for use

by DECnet/OSI for OpenVMS. If a device is config

ured , a choice between the Digital data commu ni

cations message protocol (DDCM P) or high-level

data l ink control (HDLC) as data l ink protocol must

a lso be made.

Each data l i nk device configured requires a name

for the device and a name for the corresponding
routing circuit. The defau lts for these names

are generated by using the protocol name, e .g . , car

rier sense multiple access-coil is ion detection

(CSMA-CD), HDLC, or DDCMP, along with a unit num

ber. The user may override the default with any

val id simple name. This al lows the user to set the

data l ink and routing circuit names to be more

descriptive in t heir environment; for example,

H DLC_SYNC_TO_BOSTON for a data l ink a nd

CONNECTION_TO_BOSTO!_DR500 for a routing

circuit .

Transport/Session Control NET$CONFIGURE sup

ports the NSP and OS! transports. The procedure

configures both transports by default , but al lows

the user to select only one. Commands are gener

ated in the start-up scripts to initial ize both the

transports and the session control transport ser

vice provider entity instances, which a l low the ses

sion control layer to use them .

If OSI transport is configured , default templates

are created to a l low the installa tion verification

proced ures for the OSI appl ications to operate suc

cessfu l ly. The user also has the option of creating

specific connection option templates for use with

OS! applications.

Al l defau l t session control applications, e .g. ,

fi le access l istener (FAL), mail, or phone, are config

ured in the same way as they are with the DECnet

VA..'(Phase rv configuration tool . The user has the

option to a llow access to each appl ication through

a default account or not. The only queries made by

the configuration tool are about the creation of the

user account for the arplication.

DECdts Confip,uration The DECeits configuration

is performed by a cal l to the DTSS$ CONFIGU RE

procedure. DTSS$CONFIGURE prompts the user

to choose between universal coordinated time

(UTC) or local t ime, which is UTC plus or mi nus

the ti me-zone differential factor (TDF) . If local t ime

is chosen, then the procedure prompts for the

continent and time zone on that continent to use.

This information is needed to comp u te the TDF.

The DTSS$CONF 1Gl!HE tool creates i ts own NCL

scripts. These scripts are not maintained by

NET$CONFIGURE, and no checksums are computed

or stored for them.

Configuration To configure DECdns, the network

software must be in operation so that the DECdns

software may use it. The N ET$CONFIGURE proce

dure attempts to start the network once it has cre

ated the necessary scripts. Once the network has

been started , the NET$CONFIGURE procedure calls

DNS$CONFIGURE, passing it the node full name that

was entered by the user. The ful l name contains the

namespace nickname that the user wishes to use.

DNS$CONFIGU RE then uses the DECdns advertiser to

l isten on the broadcast media for a name server that

is advertising the same namespace n ickname. If a

match is made, DECdns creates an init ial ization NCL

script with the needed instructions to configure

the DECdns clerk at the next system boot. It then

Vol. 5 No. I Winter 1993 Digital Techt� icaljourttal

The DECnet/OSifor OpenVMS Version 5.5 Implementation

tel ls the advertiser to configure against the same
names pace.

If the namespace nickname cannot be matched ,
the user is given alternatives. First, a l is t of the

current namespaccs advertised on the broadcast
med ia, along with the LOCAL: namespace is offered .
LOCAL: is a special case used in l ieu of the standard

client-server configuration. The LOCAL namespace
makes use of the client cache to store a sma l l num
ber of nodes locally.

If a choice is not made from the l ist, the user is
queried to see if an attempt should be made to con
figure to a name server that may be located on a

data l ink other than the broadcast media. If yes,

then a valid address must be provided to the
DNS$CON FIGURE tool so that it may connect to the

name server on the remote node.
If no options are chosen at this point, a final

choice of creating a name server on the local node
is presented . Since DECn et/OSJ for OpenVMS must
configure the DECdns clerk, if the answer is still no,

the procedure returns to the original l ist of known
namespaces and starts aga in.

Transition Tools Once DECdns is configured, the
transition tools are used to create the correct
namespace d irectory configuration. If a new

namespace has been created and selected for use,
the tools popu late the directories with the node
information from the Phase IV DECnet database
found on the system. Most often, the tools simply

register the node with the DECdns name server
along with the node synonym that was provided by
the user during the node configuration portion of
N ET$CONFIGURE.

The transition tools also assist the user when

renaming the node or changing from one name

space to another. They copy subdirectory informa
tion from the node's old DECdns directory to the

new directory structure on the new namespace or
within the same namespace, if the user only
changed the node's name.

Summary
The DECnet/OSI fo r OpenVMS version 5.5 product
implements all layers of the DNA Phase V archi tec
ture. This extends the OpenVMS system to a new
degree of network access by supplying standard OSI

protocols. The product also protects the large
investment in network software that OpenVMS
users currently hold. This is done by fu lly support
ing the extensive selection of applications avail able

Digital Technical jounwl Vol. 5 No. I Winter 1993

for Phase IV DECnet -VA.X. In addition , the design of
DECnet/OSI for Open VMS is structured in a way that
will ease the i ntroduction of new standards as they
come available.

Acknowledgments
Throughout the course of this project, many peo

ple have helped in the design , implementation, and
documentation of the product. We would like to
thank a l l those people for a l l their help. We would

also l ike to extend a special thanks to all members

of the bobsled team. Without them, this product
would never have come to be.

References

1 . J. Harper, "Overview of Digital's Open Net
working," Digital Teclmicaljoumal, vol. 5, no. 1
(Winter 1993, this issue): 12-21 .

2 . M. Sylor, F. Dolan, and D . Shurtleff, " Network
Management," Digital Technical journal, vol. 5,

no. 1 (Winter 1993, this issue): 1 17- 129.

33

Kim A. Buxton
EdwardJ. Ferris
A ndrew K. Nash

The ULTRIX Implementation
ofDECnet/OSI

The DECnet/05/for ULTRIX software was developed to allow the ULTRJX operating

system and ULTRJX workstation software systems to operate in a multivendm; multi

protocol network based on open standards. It operates in a complex networking

environment that includes 051, DECnet Phase rv, X.25, and TCP/IP protocols. BSD

sockets and pmtocol switch tables provide the entry points that define interfaces for

protocol modules. The DECnet/051 for ULTRIX software incorporates Digital's

Enterprise Management Architecture, which provides a framework on which to

consistently manage the various components of a distributed system. The DECnet/

05! for ULTRJX software provides a set of powerful tools and a system that can be

extended to include new functions as they are incotporated in the 05! standard.

DECnet/OSI for ULTRIX is an end system imple

mentation that supports the open systems inter
connection (OS!) protocol through the Digital

Networking Arch itecture (DNA) Phase V software.
This implementation provides several features
and programming environments that are consistent
with the UNIX system philosophy of networking.
Ease of use, extensibi l i ty, and portability were key
design goals during product development. Opera

tion of DECnet/OS! for ULTRIX software in a complex
network ing environment provides coexistence and
interaction with the transmission contro l proto
col/internet protocol (TCP/IP), DECnet Phase IV,

X.25, and multivendor OS! networks.
The paper " Overview of Digital 's Open

Networking" (in this issue) provides a suitable
introduction to J)F.\.net/OSI concepts. 1 For more
detai l s concerning standard Berkeley Software
Distribution (BSD) networking concepts, the
reader is referred to the general references l isted at
the end of this paper

This paper provides an overview of DECnet/OSI
for ucrrux software. I t discusses some of the design
decisions made during product development,

including the use of protocol switch tables. It

describes t he system's five com mu nication
domains, emphasizing the X.25, data l ink , and OS!

domains. The paper continues with a discussion of
application programming interfaces, interfaces
into kernel modules, and a network management
interface establ ished for extensibil ity. It concludes

34

with a description of network management and
network configuration.

System Overview
DECnet/OSl for ULTRIX is an end system implemen
tation of the OSI network architecture and Digital's
DNA Phase V The DNA Phase V architecture pro

vides a framework for incorporating OSI protocols
as defined by the I nternational Organization for
Standardization (ISO) into DECnet/OSI products.
DECnet/OSI for C LTRIX software is integrated into

the ULTRIX kernel and l ayered on existing ULTRJ X

interfaces. This software al lows the ULTIUX operat
ing system and U LTRIX workstation software (UWS)

systems to operate in a mul tivendor, multiprotocol

network based on open standards.
The DECnet/OSl for ULTRIX software provides the

following network services:

• Base networking software, which includes trans
port services, network layer services, X.25, and
local area and wide area device driver support as
described in the ISO Reference Model and DNA 2

• Network management software, incorporating

the Digital Enterprise Management Architecture.

• Appl ication programming interfaces to support
user development of d istributed applications.

• DEener application software. DNA session con
trol bridges DECnet applications such as file
transfer (dcp,d ls,drm), remote login (d login),
and mail to transport layer services.

Vol. 5 No. I Winter 1993 Digital Technical journal

• DECdns, Digital 's distributed name service,

which provides a loca tion-independent naming

facil ity. This service is used by DNA session

control to provide node name-to-add ress

translations.-1

• Digital 's distribu ted time serv ice , DECdts. This

time synchronization service is required by many

distributed appl ications such as DECdns to main

tain a consistent time base for their operations.

• OS! applications software, including file transfer,

access, and management (FTAM) and virtual

term inal protocol (VTP) support.

System Goals and Development
A major goal of DECnet/OSI for ULTRJX was to sup

port large mult ivendor, multiprotocol networks,

including coexistence of OSI and TCP/IP on an

ULTRD< UWS system . Coexistence includes the abil

i ty to share system resources and to provide a con

sistent set of services to users of both the OSI and

internet protocols. Another goal was to provide

connectivity between OSI and TCP/IP networks

through the implementations of gateways and

hybrid stacks.

Interoperabil i ty between DECnet/OSI and DEC net

Phase rv products was required to maintain con

nectiv ity during network transition to OSI . A frame

work for the development of new OS! appl ications

such as FTAM was another requ irement . As in the

DECnet-ULTRIX Phase IV implementation, program

ming and user interfaces needed to be consisten t

with the ULTRIX and UNIX systems environment.

Wherever possible, code was to be shared with

other development projects. For this reason , soft

ware development engineers used the C program

ming language and ai med to produce a portable

implementation . This was particul arly important

for the X.25 implementation, which would be used

in other products. The code was structured to mini

mize system-specific references and dependencies.

Code that interfaced directly to the BSD system was

isolated in separate modu les, and use of system

specific devices such as timers and buffers was hid

den behind generic macros or subroutines.

In addi tion, the software was designed to be

extensible so that fu ture OSI p rotocols could be

added . To achieve extensibi l ity, interfaces were

established between the various components.

These include appl ication programming interfaces,

in terfaces into each kernel mod ule, and a network

management interface. New protocols could be

more easily added by supporting these in terfaces.

Digital Technical journal Vol. 5 No. I Winter I'J93

The ULTRJX Implementation of DECnet/051

DECnet/OSI fo r l J LTRIX development began with a

col lection of eight distinct projects, each with its

own goals, schedules, and priorit ies. These projects

were developed across engineering organizations,

and spanned three continents. They consisted of

X.25, wide area device drivers, FTAM, VTP, DECeits,

DECdns, OS! appl ications kernel (OSAK), and the

DECnet/OSI base components.

Early in development, i t was real ized that no indi

v idual project could be successful without achiev

ing success at a systems .level fo r the DECnet/051 for

U LTRIX product. This real ization caused a change in

the way the DECnet/OSI for ULTRJX projects

approached engineering deve.lopment. Our focus

switched to provid ing a common set of goals and

one integrated sched ule. Priorit ies for individual

projects were reeval uated in the context of the

system goals and schedule. I t was critical to have a

set of wel l- defined in terfaces; any change to these

interfaces could have a major system impact.

Commun ication between all projects was essential.

A significant amount of t ime was bui l t into the

schedule for system i ntegration, as wel l as compo

nent integration.

Kernel Networking Environment
The DECnet/OSI for U LTRlX kernel implementation

was designed to be consistent with other ULTRIX
networking implementations such as the TCP/IP and

Local Area Transport (LAT). The networking struc

ture is based on the BSD networking subsystem:1

The ULTRIX networking environment allows pro

toco l compo nents to be insulated from each other.

One important aspect of this networking system is

the use of protocol switch tables. These tables con

tain the entry points for various protocol modu les

in the system, as shown in Figure 1 . DECnet/051 for

ULTRIX uses these ent ry points to define interfaces

for each protocol module . This means that there are

no direct calls from one protocol component into

another, an i mportant consideration when new

layers must be in tegrated. Moreover, one protocol

module does not access another's databases. Infor

mation is accessed from a mod ule only through the

defined interface .

Insu lating protocol modu les from each other is

advantageous for various reasons. As long as a pro

tocol module supports a generic interface, it can

act as a service provider for multiple users, which

a l lows a system to support multiple configurations.

For example, X.25 or h igh-level data l in k control

(HDLC) may be configured into the kernel only

35

DECnet Open Networking

DOMAIN LIST

DOMAIN FAMILY

DOMAIN NAME

POINTER TO
BEGINNING OF
DOMAIN PROTOCOL
SWITCH TABLE

POINTER TO
END OF

PROTOCOL SWITCH TABLE
ELEMENT O: �------------------,

SOCKET TYPE

PROTOCOL FAMILY

PROTOCOL NUMBER
. . .

FUNCTION ENTRY
POINTS:
pr_inpul()
pr_oulpul()
pr _ctl input()
pr _ctloutput()
pr_usrreq()
pr_init()
pr_fastimo()
pr_slowtimo()
pr_drain()

I . . . I
DOMAIN PROTOCOL
SWITCH TABLE

ELEMENT N.· SOCKET TYPE

POINTER TO NEXT
DOMAIN ENTRY

t

PROTOCOL FAMILY

PROTOCOL NUMBER

. . .
FUNCTION ENTRY
POINTS
pr_input()
pr_output()
pr_ctlinput()
pr _ctloutput()
pr_usrreq()
pr_init()
pr_rastimo()
pr_slowtimo()
pr_drain()

Figure 1 Domains and Protocol Switch Tables

when those services are needed. New protocol

modu.les can be easily added . If token ring support

is added as one of the broadcast devices, using the

same interface as the carrier sense mul tiple access

with col l ision detection (CSMA/CD) and fiber dis

tributed data i nterface (FDDI) modu les, l i t tle or no

change will be required to the network layer.

Modularity is another advantage. Complexity can

be reduced and problems can be isolated more eas

i ly when interfaces between each protocol module

are carefu l ly defined. For example, defining a

network m anagement interface for each protocol

removes the requ irement for network management

to access protocol module databases d irectly.

Network management code does not need to

u nderstand the i nternal organization of a modu le or

the locking strategies that may be required to

access the data.

36

To make use of the protocol switch table entry

points, some minor enhancements were required.

An extension was made to the control outpu t inter

face to a l low requests from kernel-level protocol

modules and network m anagement. The i n terface

was further extended to al low protocol modules to

use a port option to identify themselves as cl ients

of the service provider, to acquire information

from the service provider, or to mod ify the service

provider's behavior. Network management uses a

different option passed through the control ou tput

interface to manage kernel enti t ies.

The control input i nterface was also enhanced .

This i nterface prov ides two arguments: a request

and a pointer to one or more argu ments to be inter

preted as a function of the request. Originally, this

routine was used to notify I P of events, where each

event had its own un ique request value. To allow

Vol. 5 No. 1 Winter 1993 Digital Technical journal

DECnet/OSI protocols to use this interface without
adding several new request values, a general
purpose request was introduced . This request is
used by a service provider to interrupt one or more
of its cl ients to inform them of a change in service.
As part of the argument list, the service provider
passes a value indicating the exact nature of the
event being communicated . As an example, the
network layer uses this mechanism to inform the

transport layer modules of a change to the set
of network addresses. Similarly, X .25 uses this
interface to provide status about specific network
connections.

The ULTRlX/BSD networking system organizes
protocols i nto communication domains. The pur
pose of a communication domain is to group
together common properties necessary for process
to-process communication. As an example, the

X .25 domain was designed to provide a ful l set of
X .25 services that can be selected by cl ient proto
cols. It includes the socket and protocol switch
table interfaces necessary for user-level and kernel
level cl ients, X.25 accounting, profile load ing, and
trace util ities.

The components of DECnet/OSI for ULTRIX may
be combined in different ways depending on the
configuration requirements of individual cus
tomers. A multiple domain approach was chosen to
al low the various products and their development
to be separated from one another. For example,
network management software was placed in a sep
arate domain to a l. low the X .25 and wide area
network device driver (WANDO) products to be
managed without install ing DECnet/OSI for ULTRIX.
Similarly, the OSI domain protocols may operate
without the X.25 or WANDO products configured
into the system.

Five domains were established :

1 . The DECnet domain (AF _DECnet) is retained to
provide backward compatibility to existing
DECnet-ULTRL'(Phase rv applications.

2 . The data l ink domain (AF _DLI) contains all the
data link protocols, including Logical Link
Control (ISO 8802-2), CSMA/CD, FOOl, and HDLC.
For DECnet/OSI for ULTRJX, the AF _DLI domain
provides access to the drivers for kernel modules
as wel l as user applications.

3. The X.25 domain (AF _X25) contains the proto
cols necessary to access X.25 networks.

4. The OS! domain (AF _OSI) contains the h igher
level DECnet/OSI protocols, i .e . , DNA session

Digital 1echnicaljournal Vol. 5 No. 1 Winter 1')')3

The ULTRIX Implementation of DECnet/051

control, network services protocol (NSP), OS!
transport, DNA Phase V routing.

5. The network management domain (AF _NETJYlAN)
contains all the network management functions.
These functions can be used to manage any DNA
networking product.

Data Link D01nain

Under DECnet-ULTRIX Phase IV, the routing proto
col module accessed the drivers directly. In the OS!
implementation, data link interface (DLI) modules
interface to the device drivers and act as service
providers to network layer clients such as routing.
This decision was made to minimize specific
DECnet/OSI support needed in the ULTRIX operat
ing system device drivers. This al lows changes to be
made more easi ly, and it provides a central location
for common data link protocol code as well as
network management code.

The AF _DLI domain provides a common interface

to broadcast data links such as CSMA/CD and FDDI .
Modules implementing new broadcast data l ink
technologies can be added at any time by conform
ing to the DLI interface. DLI provides support for ISO
802.2 class I, type 1 functions; these may be used by
any broadcast module. Other 802.2 classes are han
d led by passing frames d irectly to the client module.

The point-to-point protocols consist of HDLC
and the Digital data communications message pro
tocol (DDCMP). ULTRlX relies on the DDC:MP sup
port provided by hardware devices. However, a
DDCMP software module exists to interface these
devices to network management. HDLC, on the
other hand, is entirely implemented as a software
module operating over a device driver. Similar
interfaces are provided by each protocol.

X.25 Domain

To ensure consistency with the goals and require
ments of DECnet/OSI for ULTIUX, several design
alternatives were considered for integrating X .25
into ULTIUX, including porting a previous Digital
i mplementation of X .25, the VAX Packet Switch
Interconnect. These alternatives were rejected
because they were not consistent with the DECnet/
OSl for ULTRIX implementation and BSD networking

in general. A new version of X .25 was implemented
in the C language using the protocol switch table
infrastructure. This approach provided enough
flexibility to al low the ULTRD\. X.25 code to be easily
ported to other product environments such as the
WANrouter 250.

37

DECnet Open Networking

The X .25 components of DECnet/OSI for UITRIX
are provided as p art of a wider X .25 strategy that
can support multiple protocol su ites, such as
DECnet/OSl, TCP/IP, and International Business
Machine Corporation's Systems Network Archi
tecture (SNA). Under DECnet/OSI for ULTRIX, X .25 is
used in two configurations. It provides the connec
tion oriented network services (CONS) support to
the OS! transport layer (ISO 8208, ISO 8878), and it
can be used as a subnetwork for the connectionless
network service (CLNS) layer. When used with
TCP/IP networks, X .25 can be used as a subnetwork
for the IP (Request for Comment [RFC] 877).

The interface to X.25 services was designed to be
accessed by other kernel components. The proto
col switch table was used to implement this inter
face. Components such as OSI connectionless
network protocol and OS! transport make direct
use of the kernel protocol switch interface with no
intervening software layer.

Access by user-level applications to X .25 occurs
through the BSD socket interface. The processing
requirements of the socket layer and the kernel
layer provided by the protocol switch are consider
ably different. To reduce the complexity of the ker
nel interface, an X .25 socket converter module was
provided. The socket converter module manages
issues such as queuing data at the socket interface
and converting between protocol switch table rou
tines and socket -layer calls. The converter module
is treated as a client of the kernel interface.

Direct access to the X .25 kernel interface from
IP was not possible due to TCP/IP development
constraints. Instead, an IP device converter was
supplied with ULTRTX X .25. This X.25 -IP interface
module appears as a device driver to IP. Further
more, I P can be configured to use X .25 without
requiring changes to the TCP/ I P software. The
pseudo-driver establishes an X .25 call when data is
sent to the X .25 device. After the I P data has been
transmitted, the X .25 connection is maintained to
reduce the overhead and cost of X.25 cal l setup
when the next I P data packet is sent. Configuration
of the X .25 IP device is performed using standard
ifconfig management commands.

OS! Domain

The AF_OSI domain contains the routing module,
the transport modules, ancl DNA session controL
The routing module is an end system implementa
tion that adheres to the Digital Network
A rchitecture (Phase V) Network Routing Layer

38

Functional Specification, version 3. 0. 0. It provides
support for the ISO Connectionless Network
Service (ISO 8473), End System to Intermediate
System Routing Exchange Protocol (ISO 9542), and
Phase IV routing. "Ping," a network loopback func
tion specified in A m endment X: Addition of an
Echo Function to ISO 8473 ancl in RFC 1 1 39, is pro
vided as a diagnostic tool to test network access to
a node.

Routing can be configured to operate over
the data l ink entities previously mentioned as well
as X .25. As an end system, DECnet/OSI for ULTRIX
does not route protocol data units (PDUs). It can,
however, operate over multiple circu its simultane
ously, which allows load balancing across circuits
and network redundancy. Phase V routing is capa
ble of autoconfiguring to one or more network
addresses. "

OS! transport (ISO 8072, I SO 8073) and NSP are
the two transport modu les supported. Both can
be configured to operate over CLNS. However, only
OS! transport can be configured to operate over
CONS/X.25. OS! transport class 4 is supported
over CLNS, and classes 0, 2, and 4 are supported
over CONS/X.25. OS! transport also provides a con
nectionless transport service (CLTS) to its users.
CLTS is a datagram service that operates over CLNS.

OS! transport supports two cl ient interfaces and
NSP supports one. Both support an interface to DNA
session control suppl ied by the protocol switch
table entry points. OSJ user appl ications directly
access OS! transport through X/Open transport
interface (XTI) 6 xn specifies a transport service
interface that is independent of the transport
provider. On the U LTRIX implementation, XTI is a
l ibrary interface implemented using the socket
layer. It is d iscussed in more detail later in the sec
tion Application Programming Interfaces.

OSJ transport can have mult iple cl ients, and it
identifies each client by an address called the trans
port sdector. When OS! transport processes an
incoming connect request, it uses the selector to
determine which cl ient should receive notification
of the request.

The DNA session control protocol engine was
implemented as part of NSI' for the DECnet-ULTRIX
Phase TV re lease. It is now implemented as a sepa
rate entity to al low operation over multiple trans
ports (NSP and OS! transport). This modification
created a subtle problem. DNA session control
resides between the transport layers and the socket
layer. However, both transport modules and DNA

\·bl. 5 No. I Winter 1993 Digital Technical journal

session contro l need access to the socket. DNA ses
sion control needs access when performing con
nection control, and the transport modules need
access when appending transmit or receive buffers
to the socket queues. Since the socket is actually
open to DNA session control , a mechanism was cre
ated to relay the socket pointer to the transport
modules. This information is passed through the
control output interface as part of the port option.

Application Programming Interfaces

To ease the transition of applications from Phase IV
to DECnet/OSI , the Phase IV socket interface and
programming library were retained . Applications
using these interfaces wil l continue to work. This
a l lows programmers time to modify their applica
tions to use the new interfaces and the capabil ities
provided with DECnet/OSI for ULTRIX .

New application programming interfaces (APis)
were developed . These APis include a DNA Phase V
session control programming l ibrary, an X.25 pro
gramming l ibrary, an X.25 socket interface, and
an XTI interface. They al low programmers to
write network applications that use DECnet/OSI
capabi l i t ies.

DNA Session Control Library

Through the use of the DNA Phase V session control
l ibrary and DECdns, appl ications can provide loca
tion-independent services to the network. DNA
session control stores information about an appli

cation and its services in an object in the DECdns
namespace. Client appl ications can access these
services by referencing the object name without
knowing the current location of the service.

DNA Phase V session control applications also
have the option of operating over various transport
services and network services. The l ibrary gives
the application programmer the flexibility of speci
fying the particular combination of services to be
used. As an alternative, the l ibrary can determine
the possible combinations of protocols that are sup
ported on both the local and remote systems. This
is done by accessing the addressing information
stored in DECdns for each of these systems. If any
combinations of protocols exist, DNA session con
trol tries each of them in succession u ntil a connec
tion is established.

The DNA Phase V session control programming
l ibrary is designed to be extensible. Instead of using
a call ing sequence with numerous parameters, one
parameter is p assed on all calls. This parameter is

Digital Technical journal Vol. 5 No. I Winte-r 1993

The ULTRIX Implementation of DECnet/051

an extensible data structure that consists of both
input and output arguments. I t al lows new argu
ments to be added by appending fields to the end of
the data structure.

The l ibrary is designed to support multithreaded
application development. If a threads programming
interface is supported on the ULTRlX operating
system, programmers are able to write applications
that have multiple control paths executing in paral
lel. This is useful in writing a network server appl i
cation that frequently needs to handle requests
from multiple clients. A single server application
can process requests in parallel instead of creating
additional processes to service each request.
Multithreaded support i n the l ibrary was accom
plished by removing the use of static and globa l
data by the l ibrary. Information is returned i n
dynamica lly allocated memory, which the appl ica
tions are responsible for freeing.

X.25 Interfaces

Two programming interfaces are provided for the
X .25 component. A socket i nterface is provided for
full access to X.25 features in a manner compatible
with BSD UNIX. This allows applications to make use
of a direct socket interface to both TCP/IP and X.25.

An X.25 programming l ibrary was created to pro
vide a portable programming interface that could
be used for access to X.25 across current and future
Digital implementations. The format of cal ls to the
X.25 l ibrary was constructed on l ines more compat
ible with the i nterface defined in the DNA X.25
access architecture than that available through the
socket interface.

XTI Library

The XTI l ibrary bas been extended to provide a
framework for developing osr applications. XTI

provides a transport-independent programming
interface that is standard across UNIX operating sys
tems. On ULTRIX, XTI was implemented to provide a
portable interface for writing TCP/IP applications.
In DECnet/OSI for ULTRIX, the implementation was
extended to provide support for OS! transport,
including both connection oriented transport ser
vice (COTS) and CLTS. In addition to supporting the
standard XTI calls, service rout ines were imple
mented . These routines provide a mechanism to
build and access addressing i nformation needed
within XTT. The addressing information consists of
transport selectors, network addresses, and inter
net ports.

39

DECnet Open Networking

Support fo r the Internet RFC 1006 specification

was also added to the XTI ! ibrary.7 This specification

a llows OS! appl ications to run over the TCP/IP pro

tocol suite. RFC 1006 defines a mechanism for OS!

transport class 0 (TPO) messages to be mapped

across a TCP connection. OSJ appl ications can be

written to communicate over either TCP/IP net

works or OS! networks, using the same API.
An RFC 1006 daemon was implemented to work

in conjunction with the XTI l ibrary to hand l e

incoming connection establishment. To a l low mul

tiple OSI applications to bind to the same RFC 1006
TCP port, a simple protocol exchanges file descrip

tors and a few basic messages between the XTI

l ibrary and the daemon, using UNIX domain sock

ets. RFC 1006 specifies that a TCP connection be

completed and a TPO connect request be received

before an OS! appl ication server can be selected t o

process t h e i ncoming connect. The daemon hides

the TCP connection and effectively blocks the OS!

application server until the TPO connect request

occurs.

Network Management
DECnet/OSI network management is completely dif

ferent from the m anagement provided for DECnet

Phase rv. It is based on the Enterprise Management

Architecture (EMA), which provides a framework to

consistently manage the various components mak

ing up a distribu ted system.8 DECnet/OSI for ULTRIX

network management consists of a director, an

event logger, an agent access module , and an agent

for each manageable protocol entity. Figure 2

shows the network management environment.

The d irector, network control language (NCL),

provides the user interface that al lows network

management commands to be entered . NCL

USER-LEVEL ENTITY

encodes the network management commands

using the common management information proto

col (CMIP). The encoded directives are passed to

the common management l istener (CML). CML, in

turn, passes the directives to the appropriate agent

in a form the agent can understand. On the ULTRIX

implementation, when the connection between

NCL and CML is local , a pipe is used . When NCL

needs to connect to a remote CML, an OS! network

connection is establ ished .

The event logger (EVl.) takes event messages

generated by agents and sends them to either a local

sink or a remote event sink. A local sink is a process

that is executing locally, but a remote event sink is

executing on a system elsewhere in the network. In

the latter case, the CMIP protocol is used to convey

the event message. Events are typ ica l ly d isplayed

on the console or in a file .

The DECnet/OSI for ULTRIX network m anagement

implementation is designed to be modular and

extensible. The data dictionary, a key component,

describes all the management attribu tes of each

entity. The data d ictionary is a dynamical ly extensi

ble database and is used by a l l network manage

ment appl ications. NCL uses the data dictionary to

parse command l ines and display output. CML uses

the data d ictionary to decode/encode CMIP proto

col messages from/to NCL, and EVl. uses it to display

an event locally. Information about new attributes

or entire entities can be added to the data dict io

nary without modifying the network management

applications. Thus layered products can easily add

support for new manageable objects.

The network management environment in

DECnet/OSI for ULTRIX is essential ly a message pass

ing scheme, as shown in Figure 2. Like the data d ic

tionary, it was designed to be extensible and

I SERVICE I J PROVIDER AGENT G----1 USER CML I I USER EVL I

40

SOCKET LAYER

I
AF_NETMAN

KERNEL-LEVEL ENTITY

AGENT l'" KERNEL CML I SERVICE l
PROVIDER KERNEL EVL

Figure 2 Network Management

Vol. 5 No. 1 Winter 1993 Digital Technical journal

generic. Al l manageable, DNA-architected entities
use this environment. At the core is a switch, kernel
CML. Kernel CML passes messages between user
CML and any DNA entity. User CML and kernel CML
communicate through the socket layer. User-level
agents, in turn, commu n icate with CML using the
socket-layer interface, and kerneJ-level agents com
municate with CML through the control output
routine for the entity.

User-level agents can send multiple responses to
a single request, but kernel-level agents can send
only one response per request. Because user-level
agents reside in process space and are separated
by the socket layer, their transactions can be asyn
chronous. Transactions of kernel-level agents, on
the other hand, must be synchronous. When called,
they must process the request and return a single
response. Whenever multiple responses are to be
returned, as in a wild-card operation, the agent
relies on being invoked again by kernel CML for
each of the response messages. This programming
precludes the possibility of exhausting system
buffers while conveying information about a large
number of subentities. Kernel CML stops requesting
additional responses from a kernel entity when it
detects that the socket receive queue is fu l l . Once
there is more room on the queue, it resumes the
wild-card operation.

The network management environment pro
v ides a core set of routines as an aid to processing
and building the syntax for each message. It also
provides routines that assist in wild-card process
ing. Agents that make use of these routines need
not be aware of the physical structure of each mes
sage. This has several benefits. It provides a com
mon set of code that is not dupl icated from entity
to entity. If there is a problem, i t is corrected in one
location instead of several. Also, i t makes the imple
mentation more portable. The message passing
scheme uses the local operating system's network
buffers. When changing from one operating system
to another, the buffering needs to change only in
the common code and not in each of the agents.

Entities may need to originate event messages
bound for the EVL. The mechanism providing this
support is basically the same as the message passing
scheme previously described . A kernel EVL switch
receives event messages from either a user-level or
kernel-level agent and passes the event up to its
counterpart through the socket layer. With this
mechanism, however, messages flow i n only one
d irection, from the entity to the event logger.

Digital Technical journal Vol. 5 No. 1 Winter 1993

The ULTRIX Implementation of DECnet/051

In DECnet/OSI, some significant architectural
changes were m ade to the maintenance operations
protocol (MOP). As in Phase IV, the current imple
mentation supports down-line loading and up-line
dumping over FDDI and CSMA/CD devices. These
functions are now performed by using the MOP ver
sion 4.0 protocol over ISO 8802-2 or MOP version 3.0
over Ethernet. As part of implementing the new
protocol, support for down- l ine load ing CM IP
scripts was added. These are used by remote sys
tems such as DECnet/OSI routers to perform
network management initial ization. Cl ient informa
tion is kept i n a MOP-specific database. By keeping
entity-specific information modular and d istinct,
the DECnet/OSI for ULTRJX MOP implementation is
consistent with EMA. This contrasts with the
DECnet-ULTRIX Phase IV implementation, which
stores MOP client i nformation in the DECnet nodes
database.

Applications Supported

The DECnet Phase IV applications continue to be
provided with the DECnet/OSI for ULTIUX product.
These include the file transfer util ity, dcp, the
remote terminal uti l ity, d login, and the mail util ity.
These DECnet applications have been modified to
use the DECnet/OSJ for ULTRl.X programming inter
face and to take advantage of the new DNA Phase V

capabil it ies. They can accept DECdns ful l names for
node names and run over both the NSP and OS!
transport. The DECnet-internet gateway is also pro
vided as part of the product. The gateway provides
bidirectional network access between DECnet and
internet systems. I t a l lows DECnet and TCP/IP users
to communicate through their respective file trans
fer, remote login, and mail facil ities.

New OS! applications were written to provide
similar capabil it ies to the DECnet appl ications.
They allow users to access files and terminal emula
tion in a multivendor environment. These OS! appli
cations include FTA.t\1, VTP, and X .29 terminal
support. Just as the DECnet-internet gateway is pro
vided, osr appl ications provide their own gateways
to l i nk OSI and internetY

ULTRIX X .25 includes X .29 terminal support. A
packet assembler/disassembler (PAD) provides out
going access. Thus PAD al lows terminal emulation
for X.25 connections to remote hosts in much the
same way that the VTP does in a fu l l OS! stack. For
incoming X.29 calls, a UNIX daemon creates an X.29
login process or activates an application based on

X.29.

4 1

DECnet Open Networking

Installation and Corifiguration

DECnet/OSI for ULTRIX networking software a llows
the use of OS! addressing and access to global
naming services. I t provides new network man
agement ut i l ities and the ability to configure a
network stack in many d ifferent ways. For example,
in configuring X.25, many attributes can be set to
a llow conformance to many public and private
packet-switched data networks. The new capabi l i
ties add a degree of complexity to the process of
configuring the networking software. To simpl ify
this process, configuration was separated from
i nstallation. Instal l ation occurs when files are
moved from the d istribution media to the target
system. Configuration is the process of providing
information to make the networking subsystem
operational.

The ULTRD(DECnet/OSI and X .25 setup uti l it ies
provide two modes of configuration, basic and
advanced . The DECnet/OSI for ULTRIX setup basic
configuration process asks a l imited number of
questions and is designed for the user who wil l be
install ing DECnet/OSI for U LTRIX on a workstation
connected to a local area network. The advanced
configuration process and X .25 setup utility pro
vide more configuration choices for the network
manager who wil l be insta l l ing DECnet/OSI for
ULTRIX in a server configuration, or who will
require more detailed network configurations.

X .25 and wide area network device driver setup
uti l ities supply a mechanism for configuring TCP/IP

or DECnet/OSI for ULTRIX to run over X .25 or syn
chronous data links. For a more unified approach to
configuring an OS! stack, these setup uti l ities are
integrated with the DECnet/OSI for ULTRIX setup
advanced process. These setup u tilities add a logi
cal abstraction above the EMA, which helps to
reduce complexity. For each manageable entity on
the system, NCL scripts are generated through
default assumptions and responses to configura
tion questions.

Network configuration is accomplished with
shel l scripts and network management scripts.
These mechanisms initial ize manageable entities.
At system start-up, the decnetstartup script is exe

cuted from within rc.Jocal. This invokes the various
NCL scripts to configure the networking software.
One or more NCL scripts can be modified indepen
dently of the configuration ut i l i t ies to change
attributes of the manageable entities. As an alterna
tive, the setup uti l it ies can be rerun to modify the
scripts. In addition, responses to configuration

42

questions are stored in a file to provide default
answers to simplify subsequent reconfiguration.

Summary

The design of DECnet/OSI for ULTRIX was a challeng
ing endeavor that resulted in a rich set of capabil i
ties and a system on which to build new functions.
I t operates in a complex networking environment
that includes OS!, DECnet Phase IV, X.25, and TCP/IP

protocols. DECnet/OSI for ULTRIX software allows
OSI appl ications to function in TCP/IP networks.
RFC 1006 supports the operation of OSI applica
tions using TCP/IP connections, and RFC 877 allows
TCP/IP to be configured over X .25. In addition, a set
of gateways al lows intercommunication between
DECnet/OSI and TCP/IP networks.

The DECnet/OSI for ULTRIX system was also
designed to be extended to include new functions
as they are incorporated into the OS! standards.
New protocol components can be added and used
without changing existing components or net
work m anagement. In addition, the software was
designed to be portable. The DECnet/OSI for ULTRIX

software has been ported to the DEC OSF/1 AXP

operating system, and DECnet/OSI version 1 .0 for
DEC OSF/ 1 AXP was released i n March 1993.

DECnet/OSI for ULTRIX demonstrates D igital's
continuing commitment to provide the OS! proto
col on platforms based on open systems. The
ULTRIX system was the first end system to include
products that fol lowed the DNA OS! strategy. These
systems can intemperate with either DECnet Phase
IV systems or other OS! systems. As with DECnet
Phase IV, DECnet/OSI for ULTRIX continues to pro
vide a set of components consistent with the UNIX

philosophy of networking.

Acknowledgments
The authors would .like to thank the people, past
and present, who contributed to the design and
development of the DECnet/OSI for ULTRIX product.
Special thanks go to members of the fol lowing
teams for their dedication and hard work : DECnet
ULTRIX, ULTRIX FTAM, U LTRIX VT, OSAK, DECdns,
DECeits, U LTRIX X.25, and ULTRIX Wide Area Device
Drivers.

References

1 .]. Harper, "Overview of Digital 's Open Net
working," Digital Technical journal, vol . 5, no. 1
(Winter 1993, this issue): 12-20.

Vol. 5 No. I Winter 1993 D igital Technical journal

2. Information Processing Systems--'-Open Sys
tems Interconnection-Basic Reference Model,
ISO 7498 (New York: American National Stan
dards Institute, 1984).

3. S. Martin,). McCann, and D. Oran, " Development
of the VAX D istributed Name Service,'' Digital

Technical journal, vol. 1 , no. 9 (June 1989): 9- 15.

4. S. Leffler, W Joy, and R . Fabry, " 4.2BSD Net
working Implementation Notes," (Berkeley, CA:
University of California Technical Report, 1983).

5. R. Perlman , R . Cal ion, and M. Shand, " Routing
Architecture," Digital Technical journal, vol . 5,
no. 1 (Winter 1993, this issue): 62-69.

6. X/Open Company, Ltd . , X!Open Portability
Guide, Networking Services (Englewood Cliffs,
NJ : Prentice-Hall, 1988).

7. M. Rose and D. Cass, "Request for Comments:
RFC 1006, ISO Transport Services on Top of the
TCP, Version 3," May 1987.

Digital Technical journal Vol. 5 No. 1 Winter 1993

The ULTRIX Implementation of DECnet/OSI

8. M . Sylor, F. Dolan, and D. Shurtleff, " Network
M anagement," Digital Technical journal, vol. 5,
no. 1 (Winter 1993, this issue): 1 17-129.

9. D. Robinson, L. Friedman, and S. Wattum, "An
Implementation of the OSI Upper Layers and
Applications," Digital Tec/:mical journal, vol. 5 ,
no. 1 (Winter 1993, this issue): 107- 1 16.

General References

D. Comer, Internetworking with TCP/IP: Principles,
Protocols and Architecture (Englewood Cliffs, NJ:

Prentice-Hall , 1988).

S. Leffler, M . McKusick, M. Karels, and). Quarter
man, The Design and Implementation of the 4.3
BSD UNIX Operating System (Reading, .MA: Add i
son-Wesley Publishing Company, May 1989).

S. Leffler, W Joy, and R. Fabry, "A 4.2BSD lnterpro
cess Communication Primer," (Berkeley, CA: Univer
sity of California Technical Report, 1983).

43

Highperformance TCP/IP
and UDP/IP Networking in
DEC OSF/lfor Alpha AXP

Chran -Ham Chang
Richard Flower

john Forecast
Heather Gray

William R. Hawe
K. K. Ramakrishnan

Ashok P. Nadkami
Uttanz N. Shik.arpur

Kathleen M. Wilde

The combination of the Alpba AXP workstations, the DEC FU/Jicontroller/

TURROchannel network inte;jace, the DEC OS!! I operating system, and a stream

lined implementation of the TCP/IP and UDP/IP delivers to user applications almost

the full FDDI bandwidth of 100 Mb/s. This combination eliminates the network 110

bottleneck for distributed systems. The TCP!IP implementation includes extensions

to TCP such as support for large transport windows j()r higher perjbrmance. This is

particularly desirable for h(i!,het'speed networks and/or large delay networks. The

DEC FDD!controllet/1URIJ0channel network interface deliuers full bcmdtL'idth to the

system using D/vlA, and it supports the patented point-to-point, full-duplex FDDI

mode. Measurement results show UDP pe1jonnance is comparable to TCP. Unlike

typical BSD-derived systems, tbe UDP receive t!Jroughpu t to user applications is also

maintained at high load.

We have seen significan t i ncreases in the band

width available for compu ter com munication net

works in the recent past. Commercia l ly avai lable

local area networks (I .ANs) operate at 100 megabits

per second (Mb/s), and research networks are run

ning at greater than 1 gigabit per second (Gb/s).

Processor speeds have also seen dramatic increases

at the same time. The u ltimate throughput del iv

ered to the user application, however, has not

i ncreased as rapid ly. This has led researchers to

say that network 1/0 at the end system is the next

bottleneck. 1

One reason that network I/O to the application

has not scaled up as rapid ly as communication l ink

bandwidth or CPU processing speeds is that mem

ory bandwidth has not scaled up as rapid ly even

though memory costs have fal len dramatical ly.

Network 1/0 i nvolves operations that are memory

intensive due to data movement and error check

ing. Scal ing up memory bandwidth, by making

memory either wider or faster, is expensive.

The result has been an increased focus on the

design and implementation of higher-performance

network in terfaces, the re-exami nation of the

implementation of network 1/0, and the considera-

44

tion of al ternative network protocols to achieve

h igher performance. 2· .1 . 1

This paper describes the work we d id to remove

the end system network 1/0 bottleneck for cu rrent

commercia l ly avai lable high-speed data l i nks, such

as the fiber distributed data interface (FOOl). ' <' We

used the conventional internet protocol suite of

transmission control protocol/internet protocol

(TCP/ IP) and the user datagram protocol/in ternet

protocol (UDP/ I P) on Alpha AXP hardware and soft

ware platforms.- H. 'J The specific hardware platform

was the DEC 3000 t\."XI' Model 500 workstation with

the DEC rf)Dicontrol ler/TC RI30channel adapter

(DEFT A) . The software platform was the DEC OSF/ 1
operating system version 1 . 2 using the TCP an<.l UDP

transport protocols. The combination of the Alpha

AXP workstations, the DEFT A adapter, the DEC OSF/ 1
operating system , and a s treamlined implementa

tion of the TCP/IP and ! ID P/IP del ivers to user appl i

cations essential ly the fu ll FDDI bandwidth of 100
Mb/s.

While the DEC FDDicontrol ler/TU RBOchannel

network i nte rface is lower cost than previous FDDl

controllers, it also del ivers fu l l bandwidth to the

system using direct memory access (DMA). In

Vol. 5 No. J Winter I'J'J.) Digital Technical journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha A.XP

addition, it supports the patented point -to-point,
full-duplex FDDI mode. This al lows a link to be used
with 100 Mb/s in each direction simultaneously,
which increases throughput in some cases and
reduces latency compared to the standard FDDI ring

mode.
Incremental work for data movement and check

sums has been optimized to take advantage of the
Alpha AXP workstation architecture, including
64-bit support, wider cache l ines, and the coher

ence of cache blocks with DMA. Included in the

TCP/IP implementation are extensions to TCP
recently recommended by the Internet Engineering
Task Force (IETF), such as support for large trans
port windows for higher performance . 10 This is
particularly desirable for high-speed networks
and/or large delay networks.

We feel that good overload behavior is also

important. Workstations as wel l as hosts acting as

servers see substantial load due to network I/0.
Typical implementations of UDP/IP in systems based
on the UNIX operating system are prone to degrada

tion in throughput delivered to the appl ication as

the received load of traffic to the system increases

beyond its capaci ty. Even when transmitting UDP/IP
packets from a peer transmitter with similar capa
bil ities, the receiver experiences considerable
packet loss. In some cases, systems reach receive

" l ivelock," a situation in which a station is only
involved in processing interrupts for received pack
ets or only partially processing received p ackets

without making forward progress in del ivering
packets to the user appl ication. 11 Changes to the
implementation of UDP/IP and algorithms incorpo
rated in the DEFT A device driver remove this type of
congestion loss at the end system under heavy
receive l oad . These changes a lso eliminate u nfair

ness in al location of processing resources, which
results in starvation (e .g . , starving the transmit
path of resources).

The next section of this paper discusses the char
acteristics of the Alpha AXP workstations, the DEC
OSF/1 operating system, and the two primary trans
port protocols in the internet protocol suite, TCP
and UDP. We provide an overview of the implemen
tation of network 1/0 in a typical UNIX system using
the Berkeley Software Distribution (BSD) to moti
vate several of the implementation enhancements
described in the paper. 12

The section on Performance Enhancements and
Measurements Resu lts then describes the specific
implementation enhancements incorporated in

Digital Teclmicaljour11al Vol. 5 No. I Winter 19')3

the DEC OSF/1 operating system version 1 .2 to
improve the performance of TCP and UDP. This
section also provides measurement results for TCP

and UDP with DEC 3000 AXP workstations running
DEC OSF/1 version 1 .2 in a few different configura

tions. Also included are measurements with TCP
and UDP with Digita l 's patented fu l l-duplex mode
for FDDI, which can potential ly increase through
put and reduce latency in FDDI LANs with point-to

point li nks (which can also be used in switched

FDDI LANs). A few implementation ideas currently

under study are also presented in the section on
Experimental Work.

System Characteristics
The project to improve the implementation of

Digita l's TCP/IP and UDP/IP (the internet protocol

suite) networking was targeted on the DEC 3000
A..'CP Model 500 workstation, running the DEC OSF/1
operating system version 1 .2. Since we were inter
ested in achieving the highest performance pos
sible on a commercially available data l ink, we

chose FDDI , and used the DEC FDDicontroller/
TURBOchannel adapter (DEFTA) to communicate
between the Alpha A.XP workstations. In this sec
tion, we describe the features of the workstations,
relevant characteristics of FDDI, the internet pro
tocol su ite, and the DEC OSF/1 operating system
itself, relative to the networking implementa

tion. The architectural features of the Alpha AXP
workstations as wel l as the DEC FDD!controller/
TURBOchannel adapter are shown in Figure 1 .

The Alpha AXP System

The Alpha A.XP workstation, DEC 3000 A.XP Model

500 was chosen for our research. The system is
built around Digital's 21064 64-bit, reduced instruc
tion set computer (RISC) microprocessor.

Digital's 21064 Microprocessor The DECchip
21064 CPU chip is a RISC microprocessor that is fu l ly
pipel ined and capable of issu ing two instructions
per clock cycle. t3. 14 The DECchip 21064 micropro
cessor can execute up to 400 mil l ion operations
per second. The chip includes

• An 8-kb direct-mapped instruction cache with
a 32-byte l ine size

• An 8-kb d irect-mapped data cache with a

32-byte l ine size

• Two associated translation buffers

• A four-entry (32-byte-per-entry) write buffer

45

DECnet Open Networking

MEMORY
CPU ADDRESS ADDRESS

t
DECCHIP SECONDARY SYSTEM MAIN 2 1 064 CACHE CROSSBAR MEMORY
CPU 5 1 2 KB

t MEMORY DATA

CPU DATA

t � SYSTEM 1/0 BUS (TURBOCHANNEL) > �-------,t--____;_---..,
TURBOCHAN NEL BUS I NTERFACE

DMA ENGINE FOOl

ADAPTER PACKET MEMORY

Figure 1 The Alpha AXP Workstation-CPU, Memory Subsystem, and the

FDDicontroller/TURBOchannel Adapter

• A pipelined 64-bit integer execution unit with a

32-entry register file

• A pipelined floating-point unit with an addi

tional 32 registers

The DEC 3000 AXP Model 500 Workstation The

DEC 3000 AXP Model 500 workstation is built

around the DECchip 21064 microprocessor running

at 150 megahertz (MHz) . 1' In addition to the on-chip

caches, there is an on-board second-level cache of

512 ki lobytes (kB). Main memory can be from 32 MB

to 256 MB (1 GB with 16 MB dynamic random-access

memories [DRAMs]) . The memory bus is 256 bits

plus error-correcting code (ECC) wide and has a
bandwidth of l l4 MB/s. Standard on the system is

also a 10-Mb/s Ethernet interface (LANCE). For con

nection to external peripherals there is an on-board

small computer systems interface (SCSI)-2 interface

and six TURBOchannel slots with a maximum l/0

throughput of 100 MB/s. One of the TURBOchannel

slots is occupied by the graphics adapter.

The system uses the second-level cache to help

minimize the performance penalty of misses and

write throughs i n the two relatively smaller pri

mary caches in the DECchip 21064 processor. The

second-level cache is a direct-mapped, write-back

cache with a block size of 32 bytes, chosen to match

the block size of the primary caches. The cache

46

block allocation policy a llocates on both read

misses and write misses. Hardware keeps the cache

coherent on DMAs; DMA reads probe the second

level cache, and DMA writes update the second

level cache, while inval idating the primary data

cache. More details of the DEC 3000 A.XP Model 500

AXP workstation may be obtained from "The

Design of the DEC 3000 A.XP Systems, Two High

performance Workstations." I'

DEC OSF/ 1 Operating System

DEC OSF/ 1 operating system version 1 .2 for Alpha

A.XP systems is an implementation of the Open

Software Foundation (OSF) OSF/1 version 1 .0 and

version 1 .1 technology. The operating system is a

64-bit kernel architecture based on Carnegie
Mellon University's Mach version 2.5 kernel.

Components from 4.3 BSD are included, in addition
to UNIX System Laboratories System V interface

compatibi l i ty.

D igi tal's version of OSF/1 offers both rel iability

and high performance. The standard TCP/IP and

UDP/!P networking software, interfaces, a nd proto

cols remain the same to ensure full multivendor

interoperabi l ity. Tbe software has been tuned ancl

new enhancements have been added that improve

performance. The i nterfaces between the user

application and the internet protocols i nclude both

Vol. 5 No. 1 Winter 1993 D igital Teclmica l journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ I jo1· Alpha AXP

the BSD socket interface and the X/Open Transport

Interface. 12 The internet implementation condi

tional ly conforms to RFC 1 122 and RFC 1 123. 16· 17

Some of the networking uti l ities included are
Telnet; file transfer protocol (FTP); the Berkeley "r"

util ities (rlogin, rep, etc.); serial line internet proto

col (SLIP) with optional compression; Local Area

Transport (LAT); screend, which is a filter for con

trol l ing network access to systems when DEC OSF/ 1

is used as a gateway; and prestoserve, a file system

accelerator that uses nonvolatile RAM to improve

Network File System (NFS) server response time.

The implementation also provides a STREA.I\1S inter

face, the transport layer interface, and allows for

STREAMS (SVID2) and sockets to coexist at the data

l ink layer. There is support for STREAMS drivers to

socket protocol stacks and support for BSD drivers

to STREAMS protocol stacks via the data l ink

provider interface.

The OSF/ 1 Network Protocol
Implementation

The overall performance of network l/0 of a work

station depends on a variety of components: the

processor speed, the memory subsystem, the host

bus characteristics, the network interface and

final ly, and probably the most important, software

structuring of the network 1/0 functions. To under

stand the ways in which each of these aspects influ

ences performance, it is helpful to understand the

structuring of the software for network l/0 and the

characteristics of the computer system (processor,

memory, system bus). We focus here on the struc

turing of the end system networking code related

to the internet protocol suite in the DEC OSF/l oper

ating system, fol lowing the design of the net

working code (4.3 BSD-Reno) in the Berkeley UNfX
d istribu tion.8.9. 12

A user process typical ly interfaces to the net

work through the socket layer. The protocol mod

u les for UDP, TCP (transport layers) and IP (network

layer) are below the socket layer in the kernel of the
operating system. Data is passed between user pro

cesses and the protocol modules through socket
buffers. On message transmission, the data is typi
cally moved by the host processor from user space
to kernel memory for the protocol layers to packet

ize and del iver to the data l ink device driver for

transmission. The boundary crossing from user to

kernel memory space is usual ly needed in a general

purpose operating system for protection purposes.

Figure 2 shows where the incremental overhead for

Digital Technical jou rnal Vol. 5 No. 1 Winter 1993

packet processing, based on packet size, occurs in a

typical BSD 4.3 distribution.

The kernel memory is organized as buffers of var

ious types. These are called mbufs. They are the pri

mary means for carrying data (and protocol

headers) through the protocol layers. The protocol

modules organize the data into a packet, compute

its checksum, and pass the packet (which is a set of

mbufs chained together by pointers) to the data

l ink driver for transmission. From these kernel

mbufs, the data has to be moved to the buffers on

the adapter across the system bus. Once the adapter

has a copy of the header and data, it may return an

indication of transmit completion to the host. This

allows the device driver to release the kernel mbufs

to be reused by the higher l ayers for transmitting or

for receiving packets (if buffers are shared between

transmit and receive).

While receiving packets, the adapter moves the

received data into the host's kernel mbufs using

DMA. The adapter then interrupts the host proces

sor, indicating the reception of the packet. The data

l in k driver then executes a filter function to enable

posting the packet to the appropriate protocol pro

cessing queue. The data remains in the same kernel

mbufs during protocol processing. Buffer pointers

are manipu lated to pass references to the data

between the elements processing each of the proto

col layers. Finally, on identifying the user process of
the received message, the data is moved from the

kernel mbufs to the user's address space.

Another important incremental operation per

formed i n the host is that of computing the check

sum of the data on receive or transmit. Every byte

of the packet data has to be examined by the pro

cessor for errors, adding overhead in both CPU pro

cessing and memory bandwidth. One desirable

characteristic of doing the checksum after the data

is in memory is that it provides end-to-end protec

tion for the data between the two communicating

end systems. Because data movement and check

sum operations are frequently performed and exer
cise components of the system architecture

(memory) that are difficult to speed up signifi
cantly, we looked at these in detail as candidates for
optimization.

The Internet Protocol Suite:
TCP/IP and UDP/IP

The protocols targeted for our efforts were TCP/lP

and UDP/IP, part of what is conventional ly known as

the internet protocol suiteJ,9

47

DEC net Open Networking

TRANSMIT USER RECEIVE USER

- - ,;:�I� - - - - ��;:�' - - - - - �T� ;, - -
COPY COPY

� �
(2) I CHECKSUM J I CHECKSUM I (2) _ _ _ _ _ _ _ _ _ _ TRANSPORT _ _ _ _ _ _ _ _ _ _

LAYER l i P I TCP I DATA I
NETWO RK

l i P I TCP I DATA I
- - - - - - - - - - LAYER I FOOl l iP I TC P I DATA I

DATA LINK
LAYER

_
_

_
_ G

_ _
_

_
(1) �

�
FOOl

(1)
DMA

Figure 2 The incremental data operations occur in three places: (1) when the data is moved

using D1l1A between the kernel and the network adapter memory, (2) when a checksum is computed
for the data, and ()) when the data is copied between the user process and the kernel.

TCP is a rel iable, connection-oriented , end

to-end transport protocol that provides flow

controlled data transfer. A TCP connection contains

a sequenced stream of data octets exchanged

between two peers. TCP ach ieves rel iability

through positive acknowledgment and retransmis

sion. It achieves flow control and promotes effi

cient movement of data through a sliding window

scheme. The sliding window scheme al lows the

transmission of multiple packets while awaiting the

receipt of an acknowledgment. The number of
bytes that can be transmitted prior to receiving an
acknowledgment is constrained by the offered win

dow on the TCP connection. The window ind icates
how much buffering the receiver has available for

the TCP connection (the receiver exercises the flow

control). This window size also reflects how much

data a sender s hould be prepared to buffer if

retransmission of data is required. The size of the

offered window can vary over the life of a connec

tion. As with BSD systems, DEC OSF/l currently

mai ntai ns a one- to-one correspondence between
window size and buffer size al located at the socket

layer in the end systems for the TCP connection. An
erroneous choice of window size, such as one too

48

sma l l , or one leading to nonbalanced sender and

receiver buffer sizes, can result in unnecessary

blocking and subsequent inefficient use of available

bandwidth .

TCP d ivides a stream of data into segments for

transmission . The maximum segment size (MSS) is

negotiated at the time of connection establishment.

In the case of connections within the local net
work, TCP negotiates an MSS based on the maximum

transmission unit (MTU) size of the underlying
media . (For IP over FDDI the MTU is constrained to

4,352 octets based on the recommendation in RFC

1390. 18) TCP calculates the MSS to offer, by subtract

ing from this MTU, the number of octets required
for the most common IP and TCP header sizes.

The implemen tation of TCP/IP in DEC OSF/1
fol lows the 4 .3 BSD-Reno implementation of TCP.

Included is the use of dynamic round-trip time

measurements by TCP, which maintains a timer

per connection and uses adaptive t ime-outs for set

ting retransmission timers. The implementation

includes slow start for reacting to congestive loss
and optimizations such as header prediction and

delayed acknowledgments important for network

performance. 19 DEC OSF/1 version 1 .2 also includes

Vol. 5 No. I Winter 1993 Digital Technical journal

High-performance TCP!IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

recent extensions to TCP for accommodating
higher-speed networks 10 TCP's performance may
depend upon the window size used by the two
peer entities of the TCP connection. The product of
the transfer rate (bandwidth) and the round-trip

delay measures the window size that is needed to
maximize throughput on a connection.

In the TCP specification RFC 793, the TCP header
contains a 16 -bit window size field which is the

receive window size reported to the sender 9 Since
the field is only 16 bits, the largest window size that
is supported is 64K bytes. Enhancing the original

specification, RFC 1323 defines a new TCP option,
window scale, to a l l ow for larger windows. 10 Th is
option contains a scale value that is used to increase
the window size value found in the TCP header.

The window scale option is often recommended

to improve throughput for networks with high
bandwidth and/or large delays (networks with large
bandwidth-delay products). However, it also can
lead to higher throughput on LANs such as an FDDI

token ring . Increased throughput was observed
with window sizes larger than 64K bytes on an FDDI
network.

The TCP window scale extension maps the 16-bit
window size field to a 32-bit value. It then uses the
TCP window scale option value to bit-shift this

value, resulting in a new maximum receive window
size value. The extension al lows for windows of up

to I gigabyte (GB). To faci l itate backward compati

bi l i ty with existing implementations, both peers
must offer the window scale option to enable win
dow scal ing in either direction . Window scale is
automatical ly turned on if the receive socket buffer
size is greater than 64K bytes. A user program can
set a l arger socket buffer size via the setsockopt()

system ca I I . Based on the socket buffer size, the ker
nel implementation can determine the appropriate

window sca le factor.
Similar to the choice of large window sizes, the

use of large TCP segments, i .e . , those approaching
the size of the negotiated MSS, could give better
performance than smaller segments. For a given
amount of data, fewer segments are needed (and
therefore fewer packets). Hence the total cost of
protocol processing overhead at the end system is
less than with smaller segments.

The internet protocol sui te also supports the
user datagram protocol or DP. UDP performance

is important because it is the underlying protocol
for network services such as the NFS. UDP is a
connectio n-less, message-oriented transport layer

Digital Technical journal Vol. 5 No. I Winter 199.3

protocol that does not provide reliable delivery or

flow contro l . The receive socket buffer size for UDP
l imits the amount of data that may be received ami

buffered before it is copied to the user's address
space. Since there is no flow control, the UDP

receiver may have to discard the packet if i t receives
a large burst of messages and there is no socket
buffer space.

If the receiver is fast enough to al low the user

application to consume the data, the Joss rate is

very low. However, most BSD-derived systems today
experience heavy packet loss for UDP even when

the receiving processor is the same speed as the
transmitter. Furthermore, since UDP has no flow

control , there is no mechanism to assure that a l l
transmitted data wil l b e received when the trans
mitter is faster than the receiver. We describe our
implementation of UDP to avoid this behavior, so
that packet loss is minimized.

Data Link Characteristics: FDDI

FDDI is a 100 Mb/s LAN standard that is being
deployed commercia l. l y. It uses a timed-token

access method and al lows up to 500 stations to be
connected with a total fiber length of 200 ki lo
meters. I t a llows for both synchronous and asyn
chronous traffic simu l taneous ly and provides a

bound for the access t ime to the channel for both
these classes of traffic.

The t imed-token access method ensures that all
stations on the ring agree to a target token rotat ion

time (TTRT) and l imit their transmissions to this tar
get. 20 With asynchronous mode (the most widely
used mode in the industry at present), a node can

transmit only if the actual token rotation t ime (TRT)

is less than the target.
The basic algorithm is that each station on the

ring measures the time since it last received the
token. The time interval between two successive

receptions of the token is called the TRT. On a
token arrival , if a station wants to transmit, it com
putes a token holding time (THT) as: THT = TTRT -

TRT. The TTRT is agreed to by all the stations on the
ring at the l ast time that the ring was initial ized (typ
ically happens when stations enter or leave the
ring) and is the minimum of the requested values by
the stations on the ring. If THT is positive, the sta

t ion can transmit for this interval. At the end of
transmission, the station releases the token. If a sta

tion does not use the entire THT a l lowed, other sta
tions on the ring can use the remaini ng time by
using the same a lgorithm .

4 9

DECnet Open Networking

A number of papers relating to FOOl have

appeared in the l iterature, and the reader is encour

aged to refer to " Performance Analysis of FDOI

Token Ring Networks: Effect of Parameters and

Guidelines for Setting ITRT," for more details. ZJ

Network Adapter Characteristics

The DEC FDDicontroller/TURBOchannel adapter,

DEFTA, is designed to be a high-performance adap

ter capable of meeting the fu l l FDDI bandwidth. It

provides DMA capability both in the receive and

transmit directions. It performs scatter-gather on

transmit. The adapter has 1 MB of packet buffering.

By default , half the memory is used for receive

buffering; one-fourth of the memory is al located for

transmit buffering; and the remaining memory is

al located for miscellaneous functions, including

buffering for FOOl's station management (SMT). The

memory itself is not partitioned, and the adapter

uses only as much memory as necessary for the

packets. It avoids internal fragmentation and does

not waste any memory.

The receive and transmit DMA operations are

handled by state machines, and no processor is

involved in data movement. The DMA engine is

based on the model reported by Wenzel. 22 The main

concept of this model is that of circular queues

addressed by producer and consumer indices.

These indices are used by the driver and the adapter

for synchronization between themselves; they indi

cate to each other the availability of buffers. For

example, for receiving packets into the kernel

memory, the device driver produces empty buffers.

By writing the producer index, it indicates to the

adapter the address of the last buffer produced and

placed in the circular queue for receiving. The

adapter consumes the empty buffer for receiving an

incoming packet and updates the consumer index

to indi cate to the driver the last bu ffer that it has

consumed in the circular queue. The adapter is

capable of full-duplex FDDI operation. Finally,

FDDI's SMT processing is performed by a processor

on board the adapter, with the adapter's receive and

transmit state machines maintaining separate

queues for SMT requests and responses.

To obtain high performance, communication

adapters also try to minimize the amount of over

head involved in transferring the data. To improve

performance, the DEFTA FDDI port interface (inter

face between the hardware and the operating

system's device driver) makes efficient use of host

50

memory data structures, minimizes overhead 110
related to the port interface, and minimizes inter

rupts to the host system.

The Port Architecture contains several u nique

features that optimize adapter/host system perfor

mance. These features include the elimination of

much of the control and status information trans

ferred between the host and adapter; the organiza

tion of data in host memory in such a way as to

provide efficient access by the adapter and the host;

and the use of an interrupt mechanism, which elim

inates unnecessary interrupts to the host.

The design also optimizes performance through

careful organization of data in host memory. Other

than the data buffers, the only areas of host memory

that are shared by the host and the adapter are the

queues of buffer descriptors and the area in which

the adapter writes the consumer indices. The

adapter only reads the buffer descriptors; it never

writes to this area of host memory. Thus the impact

on host performance of the adapter writing to an

area in memory, which may be in cache memory, is

eliminated . On the other hand , the area in host

memory where the adapter writes its consumer

indices is only written by the adapter and only read

by the host. Both the receive data consumer index

and transmit data consumer index are written to

the same longword in host memory, thus possibly

eliminating an extra read by the host of i nformation

that is not in cache memory Furthermore, the pro

ducer and consumer indices are maintained in dif

ferent sections of memory (different cache l ines) to

avoid thrashing in the cache when the host and the

adapter access these indices.

The device driver is also designed to achieve high

performance. It avoids several of the problems asso

ciated with overload behavior observed in the

past. 23 We describe some of these enhancements in

the next section.

Performance Enhancements and
Measurements Results

We describe in this section the various perfor

mance enhancements included in the DEC OSF/1

operating system version 1 .2 for Alpha AXP systems.

In particular, we describe the optimizations for

data movement and checksum validation, the

implementation details to provide good overload

behavior within the device driver, the TCP enhance

ments for high bandwidth-delay product networks,

and the UDP implementation enhancements.

Vol. 5 No. 1 Winter 1993 Digital Tecbllical journal

Highperformance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

We also present measurement results showing

the effectiveness of the enhancements. In most

cases the measurement environment consisted of
two Alpha AXP workstations (DEC 3000 AXP Model
500) on a private FOOl token ring, with a DEC FDDI

concentrator. The tests run were similar to the
well-known ttcp test suite, with the primary

change being the use of the sl ightly more efficient
send and receive system calls instead of read and
write system ca l l s. We call this tool inett within

Digital. The throughputs obtained were at the user
appl ication level, measured by sending at least
10,000 user messages of different sizes. With UDP,

these are sent as distinct messages. With TCP, algo
rithms used by TCP may concatenate mult iple mes
sages into a single packet. Time was measured using
the system clock with system calls for resource
usage. We also monitored CPU utilization with

these system calls, and made approximate (often

only for relative comparison) conclusions on the
usage of resources with a particular implementa
tion alternative.

Optimizations for bcopy() and
in_checksum() Routines

In TCP/UDP/IP protocol implementations, every

byte of data generally must pass through the
bcopy() and in_ checksu m() routines, when there
is no assistance provided in the network interfaces.

There are some exceptions: the NFS implementa
t ions on DEC OSF/ 1 avoid the bcopy() on transmit
by passing a pointer to the buffer cache entry
directly to the network device driver, and U DP

may be configured not to compute a checksum

on the data. Digital's implementations turn on the
UDP checksum by default . Even with the above

exceptions, it is important that the bcopy() and
in_ checksum() routines operate as efficiently as
possible.

To write efficient Alpha AXP code for these rou
tines, we used the following guidelines:

• Operate on data in the largest units possible

• Try to maintain concurrent operation of as many
independent processor units (CPU, memory
reads, write buffers) as possible

• Keep to a minimum the nu mber of scoreboard

ing delays that arise because the data is not yet

available from the memory subsystem

• Wherever possible, try to make use of the Alpha
AXP chip's capabil i ty for dual issue of instructions

Digital Techntcaljom-nal Vol. 5 No. 1 Winter 1993

For network 1/0, the bcopy() routine is called to
transfer data between kernel mbuf data structtJres

and user-supplied buffers to read()/write()/
send()/recv() cal l s .

The bcopy() routine was writ ten in assembler.
This routine always attempts to transfer data in the
largest units possible consistent with the al ignment

of the supplied bu ffers. For the optimal case, this

would be one quadword (64 bits) at a time. The rou
t ine uses a simple load/store/decrement count loop
that iterates across the data buffer as

l d q t 1 , 0 (a 0 l ; g e t n e x t q u a d w o r d

; (6 4 b i t s)

a d d q a D , 8 ; m o v e o n s o u r c e p o i n t e r

s t q t 1 , 0 (a 1 l ; s t o r e q u a d w o r d

a d d q a 1 , 8 ; m o v e o n p o i n t e r

s u b q t 2 , 8 ; r e d u c e b y t e c o u n t

b n e t 2 , 1 b ; l o o p t i l l d o n e

Several attempts were made to improve the per

formance of this simple loop . One design involved

u nrol l ing the loop further to perform 64 bytes of
copying at a time, while reading ahead on the sec
ond cache line. Another involved operating on four

cache l ines at once, based on concerns that a sec
ond quadword read of a cache l ine may incur the
same number of clock delays as the first cache miss,
if the second read is performed too soon after the
first read. However, neither of these approaches
produced a copy routine that was faster than the
simple loop described above.

The TCP/UDP/IP su ite defines a 16-bit one's com

plement checksum (in_ checksum ()) , which can be
performed by adding up each 16-bit element and
adding in any carries. Messages must (optional for

UDP) have the checksum val idated on transmission
and recept ion.

As with bcopy(), performance can be improved
by operating on the largest units possible (i .e. ,
quadwords). The Alpha AXP architecture does
not include a carry bit, so we have to check if

a carry has occurred. Because of the nature of
the one's complement addition algorithm, it is not
necessary to add the carry in at each stage; we just
accumulate the carries and add them a l l in at the
end. By operating on two cache I ines at a time, we
may start the next computation while the carry
computation is under way, accu mu late al l the
carries together, then add them all into the result

(with another check for carry) at the end of pro

cessing the two cache l ines. This results i n four

cycles per quadword with the addition of some end
of-loop computation to process the accu mulated

5 1

DECnet Open Networking

carries. Interleaving the checksum computation

across two cache lines also al lows for some dual
issue effects that a l low us to absorb the extra end
of-loop computation.

DEFTA Device Driver Enhancements

Preliminary measurements performed with the DEC
FDDicontroller/TURBOchannel adapter (DEFTA) and
the OSF/ 1 device driver combination on DEC 3000
AXP Model 500 workstations indicated that we

were able to receive the fu l l FDDI bandwidth and

del iver these packets in memory to the data link

user. Although we show in this paper that the DEC
OSF/1 for Alpha AXP system is able to also del iver the

data to the user appl ication, we ensure that the

solutions provided by the driver are general enough
to perform wel l even on a significantly slower

machine. When executing on such a slow system,
resources at the higher protocol layers (buffering,
processing) may be inadequate to receive packets
arriving at the maximum FDDI bandwidth , and the

device driver has to ckal with the overload. One of
the primary contributions of the DEFTA device

driver is that it avoids receive livelocks under very
heavy receive load .

First, the queues associated with the different
protocols are increased to a much l arger value (512)

instead of the typical size of 50 entries. This al lows
us to ride out transient overloads. Second, to man
age extended overload periods, the driver uses the

capabil ities in the adapter to efficiently manage
receive interrupts. The driver ensures that packets
are dropped in the adapter when the host is starved
of resources to receive subsequent packets. This

minimizes wasted work by the host processor. The
device driver also tends to trade off memory for
computing resources. The driver al locates page
size mbufs (8K bytes) so that we minimize the over
head of memory al location, particularly for large
messages.

For transmit ting packets, the driver takes advan
tage of the DEFT A 's abil ity to gather data from d iffer
ent pieces of memory to be transmitted as a si ngle
packet. Up to 255 mbufs in a chain (although typi
cally the chain is small , less than 5) may be trans

mitted as a packet. In the unusual case that a chain

of mbufs i s even longer than 255, we copy the last
set of mbufs i nto a single large page-size mbuf, and

then hand the packet to the device for transmis
sion. This enables applications to have considerable
flexibil ity, without resulting in extraneous data

52

movement operations to place data in contiguous
memory locations.

In addition, the driver implements a policy to

achieve transmit fa irness. Al though the operating

system's scheduling provides fairness at a h igher
level, the pol icies within the driver a l low for prog
ress on transmits even under very heavy receive

overload. Although the Alpha AXP systems are capa
ble of receiving the fu l l FDDI bandwidth, the
enhanced transmit fa irness may stil 1 be a benefit
under bursty receive loads during which timely

transmission is stil l desirable. In addition , as trans
mission .l inks become faster, this feature will be
valuable.

Wherever possible, a l l secondary activities

excl uding the transmit and receive paths-have

been implemented using threads. Schedul ing sec
ondary activity at a lower priority does not impact
the latency of transmit and receive paths.

Improvements to the TCP!IP
Protocol and Implementation

The ini tial TCP window size is set to a default or to
the modified value set by the appl ication through
socket options. TCP in BSD 4.3 performed a round
ing of the socket buffer, and hence the offered

window size, to some multiple of the maximu m
segment size (MSS). The imp lementation in BSD 4.3

performed a rounding down to the nearest multiple
of the MSS. The MSS value is adjusted, when it is

greater than the page size, to a factor of the page

size.
When using a socket bu ffer size of 16K bytes,

the rounding down to a mu ltiple of the MSS on
FDDI results in the number of TCP segments out

standing never exceed ing three. Depending on
the application message size and i nfluenced by
one or more of both the sil ly window syndrome
avoidance algorithms and the delayed acknowl
edgment mechanism, throughput penalties can be
incurred . 1''- 2•1

Our choice in this area was to perform a round
ing up of the socket buffer, and hence window size.
This enabled existing appl ications to maintain per
formance regard less of changes to the buffering
performed by the underlying protocol. For exam

ple, appl ications coded before the rounding of the
buffer was implemented may have specified a

bu ffer size at some power of 2. We believe it also
a l lows better performance when interoperating
with other vendors' systems and provides behavior

Vol. 5 No. I \Vinter !')<.)) Digital Tecbnical]ourual

High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

that is more consistent to the user (they get at least
as much buffering as they request).

A buffer size of 4K bytes has long been obsolete
for TCP connections over FDDI. Digital chose to
increase this buffer to 16K bytes for U LTRJX support
of FDD I . With a socket buffer of 16K bytes, even
when rounding up is applied, the amount of data is
l imited to 17,248 octets per round-trip time. We
found that the throughput over FDDI is l imited by
the window size. This is due to the effects of
schedu l ing data packet processing and acknowl
edgments (ACKs), the interactions with window
flow contro l , and FOOl's token access protocol
(described below). 13.15

With memory costs decreasing considerably,
we no longer consider the 16K byte default to
be an appropriate trade-off between memory
and throughput. Based on measurements for di.f.
ferent values of the window size, we feel t hat the
default window size of 32K bytes is reasonable .
Increasing the window size from 16K bytes to
32K bytes resu l ts in an increase of the peak
throughput over FDDI from approximately 40 M b/s
to approximately 75 Mb/s. However, increasing the
window size beyond 32K bytes a l l owed us to
increase the throughput even further, which led us
to the incorporation of the TCP window sca le
extension.

Window Scale Extensions for TCP The imple
mentation of TCP in DEC OSF/ 1 version 1 .2 is based
on the BSD 4.3 Reno d istribution. In addition, we
incorporated the TCP window scale extensions
based on the model proposed in RFC 1323. 10 Our
work fol lowed the implementation placed in the
public domain by Thomas Skibo of the University of
I l l inois.

The TCP window scale extension maps the 16-bit
window size to a 32-bit value. The TCP window
scale option occupies 3 bytes and contains the type
of option (window scale), the length of the option
(3 bytes), and the "shift-count." The window scale
value is a power of 2 encoded logarithmical ly. The
shift -count is the number of bits that the receive
window value is right-shifted before transmission .

For example, a window shift-count of 3 and a win
dow s ize of 16K would inform the sender that
the receive window size was 128K bytes. The
shift -count value for window scale is l imited to 14.
This a l lows for windows of (2 16+ 2 14) = zw = 1 GB.
To facil itate backward compatibility with existing
implementations, both peers must offer the win-

Digital Technical journal Vol. 5 No. 1 Winter 1993

dow scale Of)(ion to enable window scal ing in
either direction.

The window scale option is sent only at con
nection init ia l ization time in an <SYN> segment.
Therefore the window scale value is fi..,-xed when the
connection is opened. Since the window scale
option is negotiated at initial ization time, only a bit
shift to the window is added to the established path
processing and has l i t tle effect on the overal l cost
of processing a segment.

Changes made to the OSF/ 1 TCP implementation
for using the window scale option include the addi
tion of the send window shift -count field and
receive window shift -count field to the TCP control
block. TCP processing was mod ified : the receive
window shift-count value was computed based on
the receive socket buffer size, and the window
scale option is sent with the receive window shift
count. A modification at connection initialization
time allows the received shift-count value to be
stored in t he send window shift -count, if TCP

receives an <SYN> segment containing a window
scale option. The receive window shift -count field
is assigned to the window scale option that is sent
on the <SYN. ACK> segment. When the TCP enters
established state for the connection, window
scale is turned on if both sides have sent <SYN> seg
ments with window scale. For every incoming seg
ment, the window field in the TCP header is

left-shifted by the send window shift -count. For
every outgoing segment, the window field in the
TCP header is right-shifted by the receive window
shift-count.

Measurement Results witb TCP with Alpha AXP

Workstations We used the inett tool to measure
the throughput with TCP on the DEC OSF/ 1 operat
ing system between two DEC 3000 AXP Model 500
workstations on a private FDDI ring. We observed
that as the window size increaseu from 32K bytes to
150K bytes, the throughput general ly increased for
message sizes greater than 3,072 bytes. For example,
for a user message size of 8, 192 bytes, the through
put with a window size of 32K bytes was 72.6 M b/s
and increased to 78.3 Mb/s for a window size of 64K
bytes. The TCP throughput rose to 94.5 Mb/s for a
window size of 150K bytes. For window sizes
beyond 150K bytes, we did not see a substantial,
consistent i mprovement in throughput between
the two user appl ications in this environment.

We believe that window scale is required to
achieve higher throughputs-even in a l imited

53

DEC net Open Netvvorking

FODI token ring of two stations-based on the inter

actions that occur between the token holding time,

the scheduling of activities in the operating system,

and the behavior of TCP. The defaul t value fo r 'TTRT

is set to 8 mill iseconds 21 The end system is able to

transmit packets at essentially the fu ll FODI band

width of 100 Mb/s, thus potentia l ly consu ming

about 350 microseconds (including CPU and

network interface times) to transm it a maximum

sized FDDI TCP segment of 4,312 bytes. During the

8 mil l iseconds, the source is able to complete the

entire protocol processing of about 23 to 24 seg

ments (approximately lOOK bytes).

Further overlap of user data and protOcol pro

cessing of packets can occur while the data l ink is

transmitting and the sink is generating acknowledg

ments, if there is adequate socket buffer space in

the source system. Thus, with the additional win

dow of approximately 20K bytes to 30K bytes, the

source system is able to pre-process enough seg

ments and provide them to the adapter. The adapter

may begin transmitt ing when the token is returned

to the sender (after i t receives a set of acknowledg

ments), while the source CPU is processing the

acknowledgments and packetizing additional user

data. With up to 150K bytes of socket buffer (and

hence window), there is maximal overlap in pro

cessing between the CPU, the adapter, and the FDDJ

token ring, which results in h igher throughput.

This also explains why no further increases in the

window size resulted in any significant increase in

throughput.

Figure 3 shows the throughput with TCP between

two DEC 3000 A.XP Model 500 workstations on an

isolated FOOl token r ing for different message sizes

fo r socket bu ffer sizes of 32K, 64K, and 150K bytes.

For 150K bytes of socket buffer, the peak through

put achieved was 94.5 Mb/s. For a l l message sizes,

we believe that the CPU was not fully uti l ized.

Application message sizes that are sl ightly larger

than the maximum transmission unit s ize tradition

al ly display some sma l l throughput degradation

due to additional overhead i ncurred for segmenta

tion and the subsequent extra packet processing.

We do not see this in Figure 3 because the CPU is

not saturated (e.g . , approximately 60 percent uti

l ized at message sizes of 8K bytes), and therefore

the overhead for segmentation does not result in

lower throughput.

So too, appl ication message s izes that are larger

than the d iscrete memory buffer sizes provided by

the memory al locator shou ld incur smal l amounts

54

100

KEY:

. ...- ··· - . . . ·- -

0 20000 40000 60000
USER MESSAGE SIZE (BYTES)

WINDOW SIZE = 32K BYTES
WINDOW SIZE = 64K BYTES
WINDOW SIZE = 1 50K BYTES

Figure 3 TCP Throughput as a Function
of Window Size: Two DEC 3000

A.XP Model 500 Workstations
on an Isolated FDDI Ring

80000

of extra overheacl due to the necessity of chaining

such buffers. Figure 3 also shows that the through

put degradation in this case is smal l .

Improvements to the UDP/IP
Protocol Implementation and
Measurement Results

UDP is a connection-less, message-oriented trans

port, with no assurances of reliable del ivery. It also

does not provide flow control. Unlike TCP, the UDP

transmitter does not buffer user data. Therefore

user messages are transmitted directly as packets

on the FODI. When user messages are larger than

the MTU size of the data l i nk (4, 352 bytes), J P frag

ments the data into multiple packets. To provide

data in tegrity, UDP uses the one's complement

checksum tor both data as well as the UDP header.

In our experience, the receive throughput to

applications using UOP/IP with BSD-derived systems

is quite poor due to m any reasons, includ ing the

lack of flow control. Looking at the receive path of

incoming data for UDP, we see that packets (poten

t ia l ly fragments) of a UOP message generate a high

priority i nterrupt on the receiver, and the packet is

placed on the network layer (IP) queue by the

device driver. The priority is reduced, and a new

thread is executed t hat processes the packet at the

JP layer. Su bsequently, fragments are reassembled

and placed in the receiver's socket bu ffer. There is a

Vol 5 No. 1 Winter 1993 Digital Technical journal

High-petformance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

finite IP queue and al so a finite amount of socket
buffer space. If space does not exist in either of
these queues, packets are dropped . Provided space
exists, the user process is then woken up to copy
the data from the kernel to the user's space . If
the receiver is fast enough to allow the user applica
t ion to consume the data, the loss rate is low.
However, as a resu lt of the way processing is sched
uled in UNJX- I i ke systems, receivers experience
substantial loss. CPU and memory cycles are con
sumed by UDP checksums, which we enable by
default for OSF/ 1 . This overhead in addition to the
overhead for data movement contribu tes to the

receiver's loss rate.
Table 1 shows the receive throughput and mes

sage loss rate with the original UDP implementation
of OSF/ 1 for different message sizes. We modified the
way in which processing is performed for UDP in the
receiver in DEC OSF/1 version 1 .2. We reorder the
processing steps for UDP to avoid the detrimental
effects of priority-driven schedu l ing, wasted work,
and the resulting excessive packet loss. Not only do
we save CPU cycles in processing, we also speed up
the user appl ication's abi l ity to consume data, par
ticularly as we go to larger message sizes. Table 1
gives the receive throughput and message Joss rate
with DEC OSF/ 1 version 1 .2 incorporating the
changes in UDP processing we have implemented .

UDP throughput was measured between user
applications transmitting and receiving different
size messages. Figure 4 shows the throughput at the
transmitter, which is over 96 Mb/s for a ll message
sizes over 6,200 bytes and achieves 97.56 Mb/s for
the message size of 8K bytes used by N FS . During
these measurements, the transmitting CPU was still
not saturated and the F DDI l ink was perceived to be
the bottleneck. Therefore, to stress the source
system further, we used two FDDJ adapters in the

system to transmit to two different receivers on
different rings. Figure 4 a lso shows the aggregate
transmit throughput of a single DEC 3000 A.'(P
Model 500 workstation transmitting over two FDDI
rings simultaneously to two d ifferent sinks. The
source system is capable of transmitting signifi
cantly over the FDDI bandwidth of 100 Mb/s. For the
typical NFS message size of 8, 192 bytes, the aggre
gate transmit throughput was over 149 Mb/s. The
throughput of the two streams for the d ifferent
message sizes, ind icates that, for the most part,
their individual throughputs were similar. This
showed that the resources in the transmitter were
being d ivided fairly between the two applications.

200

0
6 1 50

1- U :::J W
a._ rJJ
I a:
� � 1 00
O m ,� -� - --- - - - - - - - - - - - - -· ------ - - - - - - -a: I-
� �

� 50

�

0

KEY:

/ I
I I

I I
I
I

1 0000 20000

USER MESSAGE SIZE (BYTES)

TRANSMISSION ON A SINGLE RING TO 1 RECEIVER
TRANSMISSION ON TWO RINGS TO 2 RECEIVERS

30000

Figure 4 UDP Transmit Throughput: Single DEC

3000 AXP Model 500 Workstation
Transmitting as Fast as Possible to
Single Ring and Receiver and Two

Receivers on Different Rings

Table 1 UDP Receive Characteristics with Peer Transmitter Transmitting at Maximum Rate

Message
Size
(bytes)

1 28
51 2
1 024
4096
81 92

UDP Receive Before
Changes

Throughput Message
(Mb/s) Loss Rate

0.086 98.8%
0.354 98.5%
0.394 99.1 6%
9.5 90.26%
NA* NA*

• NA: Benchmark did not finish because of significant packet loss in that experiment.

Digital Technicaljour11af Vol. 5 No. I Winter 1993

UDP Receive After
Changes

Throughput Message
(Mb/s) Loss Rate

0.64 83.1 %
1 5. 1 4 35.1 5%
23.77 46.86%
96.91 1 .08%
97.01 0.56%

55

DECnet Open Networking

Measurements ofTCP/IP and UDP/IP with
FDDI Full-duplex Mode

Earlier we observed that the behavior ofTCP i n par

ticular depended on the characteristics of the

timed-token nature of FDDI . One of the modes

of operation of FDDI that we believe wil l become

popular with the deployment of switches and the

use of poi nt - to-point FDDI is that of fu l l -duplex

FDDI. D igital 's full-duplex FDDI technology, which

is being licensed to other vendors, provides the

abi l i ty to send and receive simul taneously, resul ting

in sign ificantly higher aggregate bandwidth to the

station (200 Mb/s) . More important, we see this

technol ogy reducing latency for po int-to-po int

connections. There is no token rotating on the ring,

and the station does not await receipt of the token

to begin transmission. A station has no restrictions

based on the token-hold ing time, and therefore it is

not constrained as to when it can transmit on the

data l ink. The DEC 1-'DDlcontrol ler/TU RBOchannel

adapter (DEFTA) provides the capabi l i ty of full

duplex opera tion. We in terconnected two DEC

3000 AXP Model 500 workstations on a point-to

point I ink using the DEFT As and repeated several of

t he measurements reported above.

One of the characteristics observed was that the

maximum throughput with TCP/IP between the

two Alpha AXP workstations, even when using the

default 32K bytes window size, reached 94 .47 Mb/s.

Figure 5 shows the behavior of TCP throughput

1 00
. . :::::: :: ::: . . - - - - - - - - - · · · · · · · ·

� 80
0

f-- 0
::::J W §: � 60
(') W
::::J O.
0 (1) � t: 40
f- � (') w � 20

KEY

56

0 20000 40000 60000

USER MESSAGE SIZE (BYTES)

WINDOW SIZE = 32K BYTES
WINDOW SIZE = 64K BYTES
WINDOW SIZE = 1 50K BYTES

80000

WINDOW SIZE = 32K BYTES; MAX I M U M SOCKET = 64K BYTES

Figure 5 TCP Throughput as a Function

of Window Size: Two DEC .3000
AXP Jltlode/ 500 Workstations

with Full-duplex FDDI

with ful l -duplex FDDI operation fo r d ifferent win

dow sizes of 32K, 64K, and 150K bytes (when win

dow scale is used). The throughput is relatively

i nsensitive to the variation in the window size. For

a l l these measurements, however, we maintained

the value of the maximum socket bu ffer size to be

150K bytes. When using a smaller value of the maxi

mum socket buffe r size (64K bytes), the through

put drops to 76 Mb/s (for a window size of 32K

bytes) as shown in Figure 5.

Although we removed one of the causes of l im it

ing the throughput (token-holding times), fu ll

duplex operation sti l l ex hibits l i mitations due to

schedu l ing the ACK and data packet processing and

the resu lting lack of parallelism in the different

components in the overal l pipe (the two CPlJs of

the stations, the adapters, a nd the data l ink) with

small socket buffers. Increasing the maximum

socket buffer a l lows for the paral lel ism of the work

involved to provide data to the protocol modu les

on the transmitter.

Observing the UDP/IP throughput between the

DEC 3000 AXP Model 500 workstations, we found a

sl ight increase i n the transmi t throughpu t over the

normal FDDI mode. For example, the UDP transmit

throughput for 8K messages was 97.93 Mb/s as com

pared to 97.56 lVIb/s using a single ring in normal

FDDI mode. This improvement is due to the absence

of small delays for token rotation through the sta

tions as a result of using the fu l l-duplex FDDI mode.

Experimental Work
We have continued to work o n further enhancing

the implementation of TCP and UDP for DEC OSF/1
for Alpha AXP. We describe some of the experimen

tal work in this section.

Experiments to Enhance the Transmit and
Receive Paths for TCPIIP

The bcopy() and i n_checksu m() routine optimiza

tions minimize the incremental overhead fo r packet

processing based on packet sizes. The protocol pro

cessing routines (e.g . , TCP and IP) also minimize the

fixed per-packet processing costs.

Al l TCP outpu t goes through a single routine,

tcp_outpu t() , which often fol lows the TCP pseu

docode in RFC 793 very closely 9 A significant por

tion of its implemen tation is weighed down by

code that is useful only du ring connection start-up

and shu tdown, flow con trol, congestion, retrans

m issions and persistence , processing out-of

band data, and so on. Although the actual code

Vol. 5 No. I Winte-r 1993 Digital Technical journal

Highperformance TCP/IP and UDP/IP Networking in DEC OSF/ I for Alpha AXP

that handles these cases is not executed every time,

the checks for these special cases are made on

every pass through the rout ine and can be a non

trivial overhead.

Rather than check each case separately, the

TCP/IP code was modified to maintain a bit mask .

Each bit in the mask is associated with a special con

d it ion (e .g . , retransmit , congestion , connection

shutdown, etc .) . The bit is set whenever the cor

responding condit ion occurs (e .g . , retransmit

t ime-out) and reset when the condit ion goes away.

If the bit mask is 0, the TCP/IP code executes

straightl ine code with minimal tests or branches,

thus optimizing the common case. Otherwise, it

simply cal ls the original routine, tcp_output , to

hand le the special cond i t ions. S ince the conditions

occur rarely, setting and resetting the bits incurs

less overhead than performing the tests expl icitly

every t ime a packet is transmitted. S imi lar i deas

have been suggested by Van]acobson 21'

Additional efficiency is achieved by precomput

ing packet fields that are common across a l l packets

transmitted on a single connection. For example,

instead of computing the header checksum every

time, i t is partial ly precomputed and i ncremental ly

updated with only the fields that d iffer on a packet

by-packet basis.

Another example is the data l ink header compu

tation . The original path i nvolved a common rou

tine for all devices, which queues the packet to the

appropriate driver, i ncurs the overhead of m ulti

plexing mu ltiple protocols, looking up address res

olution protocol (ARP) tables, determin ing the data

l ink formats, and then bui lding the header. For TCP,

once the connection is established, the data l i nk

header rarely changes for the duration of the con

nection. Hence at connection setup time, the data

l ink header is prebu i lt and remembered in the TCP

protocol control block. When a packet is transm i t

ted, the data l ink header is prefixed to the IP header,

and the packet is directly queued to the appropriate

i nterface driver. This avoids the overhead associ
ated with the common routine. Network topology
changes (e .g . , l ink fa i lures) may require the data

l ink header to be changed . This is hand led through

retransmission t ime-outs. Whenever a retransmit
t ime-out occurs, the prebui l t header is d iscarded

and rebui l t the next time a packet has to be sent.

Some parameters are passed from TCP to 1 P

through fields i n the mbufs. Combin ing the layers

el iminates the overhead of passing parameters and

val idating them. Passing parameters is a nontrivial

Digital Technical journal Vol. 5 No. 1 Winter 1993

cost, s ince i n the original i mplementation, some

data was passed as fields in the mbuf structure.

Because these were formatted in network byte

order, bui ld ing and extracting them incurred over

head . Moreover, the I P layer does not have to per

for m checks for special cases that are not appJ icable

to the TCP connection. For example, no fragmenra

tion check is needed since the code for TCP has

al ready taken care to bui ld a packet within the

al lowed size l imits.

In a similar fashion to the transmit path, a

common-case fast path code was implemented for

the receive side. This mimics the most frequently

executed portions of the TCP/IP input rout ines, an<l

relegates special cases and errors to the original

code. Special cases i nclude fragmented packets,

presence of I P options, and noncontiguous packet

headers. Combining error checking across TCP and

IP also e l iminates additional overhead. For exam

ple, length checks can be used to detect the pres
ence of options that can be passed to the original

general case path.

These fast path optimizations were implemented

in an experimental version of the OSF/ 1 operating

system. TCP measurements on the experimenta l

version of OSF/ 1 runn ing on two systems commu

n icating over a private FDDI ring ind icate that,

when both the input and output fast path segments

are enabled on the two systems, thro ughput is

improved for a lmost a l l message sizes.

Experiments to Enhance UDP/!P
Processing

An enhancement for UDP/11' processing with which

we experimented was to combine the data copying

and checksum operations. This has been attempted

in the past z" The primary motivation is to reduce

memory bandwidth uti I ization and pertorm the

checksums whi le the data is in the processor dur i ng

the data movement. To al low us to do th is, we intro

duce a new UDP protocol-specific socket option

that a l lows users to take advantage of this optimiza
t ion. When a user appl ication posts a receive buffer

after enabl i ng this socket option, we invoke a com

bined copy and checksum routine on receiving a
packet for that user. In the i nfrequent case when

the checksum fails , we restore the user J/0 struc

ture and zero the user bu ffer so that inappropriate

data is not left in a user's buffer. PreJ iminary perfor

mance measurements indicate significant reduc

tion in CPU u ti l ization for UDP receives when using

this socket option.

57

DEC net Open Networking

Experiments to Eliminate the Data Copy
from User to Kernel Space

As observed earlier, data movement operations add

significant overhead on the end sys tem. One

method to reduce the cost of data movement for

a send operation, prototyped on an exp erimen

tal version of the OSF/ 1 opera ting system, is to

replace the data copy from user space to the kernel

socket bu ffer by a new virtual memory page remap

function. Instead of copying the data from physical

pages in the user map to physical pages in the kernel

map, the physical pages associated with the user

v irtual address range in the user map are remapped

to kernel virtual addresses. The pages associated

with the new kernel virtual addresses are then

masqueraded through the network as mbufs.

Pre limi nary results ind icate that a virtual memory

mapping technique can be used on the OSF/1 oper

ating system to significantly reduce the overhead

associated with the transmission of messages.

The und erlying design of the remap operation

affects app l ication semantics and performance.

The semantics of the app l ication are affected by

which u n derlying page remap operation is

selected. Performance may also be affected by the

impkmentation of the page map operation and

how wel l certain TCP/JP configuration variables are

tuned to match the processor arch itecture and the

network adapter capabil it ies.

Two types of remap operations were proto

typed: page steal and page borrow. The page steal

operation, as the name i mpl ies, steals the pages

from the user v irtual add ress space and gives the

pages to the kernel. The user v irtual addresses are

then mapped to demand-zero pages on the next

page reference. In the page steal operation, the

user ends up with demand zero pages. On the other

hand, i n the borrow page operation, the same phys

ica l pages are g iven back to the user. If the user

accesses a page that the kernel was sti l l using, the
user process either "sleeps,"' wait ing for that page to

become ava i l able or (depending upon the imple
mentation) receives a copy of the page . For the

page borrow operation, the user buffer size must

be greater than the socket bu ffer size , and the user

buffer must be referenced in a round-mbi n fashion

to ensure that the appl ication does not s leep or

receive copies of the page.

Both the page steal and the page borrow ope ra

tions change the semantics of the send() system

cal ls, and some knowledge of these new seman tics

of the send system calls needs to be reflected in the

58

application. The application's bu ffer a l location and

usage is dependent upon how the u nderlying

remap operation is implemented . An i mportant

consideration is the impact on the appl ication pro

gram ming i n terface. In particu lar, the extent to

which the semantics of the send system cal ls (e .g . ,

al ignme nt requirements fo r the user message

buffe r) need to change to support the remap opera

t ions is an area that is currently under study.

The page remap feature has not yet been incorpo

rated in the DEC OSF!l version 1 . 2 prod uct. Inclusion

of this feature in the product is expected to reduce

CPU util ization. WJ1 ile page remapping does reduce

the cost of processing a packet, the design issues

outl ined above i mpact appl ications . To ach ieve

performance benefits and appl ication portabil

ity across m u l tiple heterogeneous open systems,

future work continues in this area. In addition, in te

grated hardware solut ions to reduce the cost of the

copy operation are also u nder investigation.

The performance nu mbers presented in this

paper did not include the improvements described

in this section on experi mental work. We a n t icipate

that the overa l l performa nce wou ld see substantial

improvement with the i nclusion of these changes.

Conclusions
1ncreases i n communication l i n k speeds and

the dramatic i ncreases in processor speeds have

increased the potential for widespread use of d is

tributed comput ing. The typical throughp ut del iv

ered to appl ications, however, has not in creased as

dramat ical ly. One of the primary causes has been

that network 1/0 is i ntensive on memory band

width, and the in creases in memory bandwidths
have only been modest. We described in this paper

an effo rt using the new Alpha A.XP workstations and

the DEC OSF/ 1 operat i ng system fo r commun ication

over FDDI to remove this 1/0 bott leneck from the

end system.

We described the characteristics of the DEC 3000

AXP Model '500 workstation which uses D igital 's

Alpha AXP 64-bit RTSC microprocessor. With the use

of wider access to memory and the use of multi level

caches, which are coherent with DMA, the memory

subsystem provides the needed bandwidth for

appl ications to ach ieve su bstantia l throughput

while performing network 1/0.

We described the implementation of the internet

protocol su i te, TCP/IP and UDP/I P, on the DEC OSF/1

operating system. One of the primary characteris

t ics of the design is the need for data moveme nt

lirJ/. 5 No. I Winter 199.3 D igilal Technical Jounwl

High-performance TCP/IP and UDP/IP Networking in DEC OSFI 1 for Alpha AXP

across the kernel-user address space boundary. I n
addition, both TCP a n d U D P use checksums for the
data. Both these operations introduce increasing
overhead with the user message size and comprise
a significant part of the total processing cost. We
described the optimizations performed to make
these operations efficient by taking advantage of
the wider cache l ines for the systems and the use of
64-bit operations.

We incorporated several optimizations to the
implementation of TCP in the DEC OSF/1 operating
system. One of the first was to i ncrease the default
socket buffer size (and hence the window size)
used by TCP from the earlier, more conservative
4K bytes to 32K bytes. With this, the throughput of

a TCP connection over FOOl between two Alpha
AXP workstations reached 76.6 Mb/s. By i ncreasing
the window size even further, we found that the
throughput increases essentially to the fu l l FOOl
bandwidth. To i ncrease the window size beyond
64K bytes requires the use of recent extensions to
TCP using the window scale option. The window
scale option, which is set up at the connection ini
tialization time, allows the two end systems to use
much larger windows. We showed that, when using
a window size of 150K bytes, the peak throughput
of the TCP connection increases to 94.5 Mb/s.

We also improved the performance of UDP
through implementation optimizations. Typical
BSD-derived systems experience substantial loss at
the receiver when two peer systems communicate
using UDP. Through simple modifications in the
processing for UDP and reordering the processing
steps, we improved the del ivered throughput to the
receiving application substantial ly. The UDP receive
throughput at the application achieved was 9756
.Mb/s for the typical NFS message size of 8K bytes.
Even at this throughput, we found that the CPU of
the transmitter was not saturated. When a transmit

ter was al lowed to transmit over two different rings
(thus removing the communication l ink as the bot
tleneck) to two receivers, a single Alpha AXP work
station (DEC 3000 AXP Model 500) is able to
transmit an aggregate throughput of more than 149
Mb/s for a message size of 8K bytes.

We also described throughput measurements
with the FOOl full-duplex mode between two Alpha
�'\P workstations. With ful l-duplex mode there are
no latencies which are associated with token rota
tion, lost token recovery, or l imitations on the
amount of data transmitted at a time as imposed by
the FDDI timed-token protocol . As a result, with

Digital Technical journal Vol. 5 No. I Winter 1993

fu l l-duplex mode there are performance improve
ments. With TCP, we achieve a throughput of 94.5
Mb/s even w ith the default socket buffer of 32K
bytes. This is smal ler than the buffer size needed in
token passing mode to achieve the same level of
throughput. Since the I ink becomes the bottleneck
at this point, there is no substantia l increase in
throughput achieved with the use of window scal
ing when FDDI is being used in fu l l-duplex mode.
An increase in peak transmit throughput with UDP
is a lso seen when using FDDI in ful l-duplex mode.

Finally, a few implementation ideas currently
under study were presented .

Acknowledgments

This project could not have been successful with
out the help and support of a number of other ind i
viduals. Craig Smelser, Steve .Jenkins, and Kent
Ferson were extremely supportive of this project
and ensured that the important ideas were incor
porated into the OSF V 1 . 2 product. Tim Hoskins
helped tremendously by providing many hours of
assistance in reviewing ideas and the code before i t
went into the product. In addition, we thank the
engineers who ported DEC OSF/ 1 to Alpha AXP in
order to provide a stable base for our work. The
DEFTA product development group led by Bruce
Thompson and Torn Cassa not only provided us
with a n ice adapter, but a lso helped by giving us as
many prototype adapters as we needed on very
short notice. We wouJcl like to thank Gary Lorenz in
particular for his help with the DEFT A adapters.

References

1 . D. Clark and D. Tenneohouse, "Architectural
Considerations for a New Generation of
Protocols," Proceedings of the Symposium

on Communications Architectures and

Protocols, ACM 5/CCOMM 1990, ACJll! Com
puter Communications Review, vol . 20, no. 4
(September 1990).

2. J Lumley, "A High-Throughput Network Inter
face to a R1SC Workstation,'' Proceedings of
the IEEE Workshop on the Architecture and
Implementation of High Peiformance Com

m unication Subsystems, Tucson, AZ (Febru
ary 17-19, 1992).

3. P Druschel and L. Peterson, "High-perfor
mance Cross-domain Data Transfer," Techni
cal Report TR93-5, Department of Computer

59

DECnet Open Networking

Science (Tucson, AZ: U n ivers i ty of Arizona ,

March 1993).

4. G. Chesson , "XTP/PE Overview," Proceedings

of the 13th Conference on Local Computer

Networks, Min neapol is, MN (October 1988).

5. FDDI fltledia Access Control, American

National Standard, ANSI X3J39-1987

6. FDDI Physical Layer Protocol, American

National Standard, ANSI X3.J48-1988.

7 J Postel , "User Datagram Protocol," RFC 768,

SRI Network I nformation Center, Menlo Park,

CA (August 1980).

8. J Postel , " Internet Protocol," RFC 791 , SRI

Network Information Center, Menlo Park, CA
(September 1981).

9. J Postel, "Transmission Con trol Protoco l ,"

RFC 793, SRJ Network Information Center,
Menlo Park, CA (September 1981).

10. V jacobson, R. Braden, and D. Borman, "TCP

Extensions for High Performance," RFC 1323.
Internet Engineering Task Force (February

1991).

1 1 . K . Ramakrishnan, " Performance Considera

tions i n Designing Network Interfaces," lEI::E

journal on Selected Areas in Communica

tions, Special Issue on High Speed Compute1!
Network lntelfaces, voL 1 1 , no. 2 (February
1993).

12. S. Leffler, M. McKusick, M . Karels, and J Quar

terman, The Design and Implementation of

the 4.] BSD UNIX Operating s:ystem (Read ing,

MA: Addison-Wesley Publ ishing Company,
May 1989).

13. R. Si tes, ed . , Alpha A rchitecture Reference
Manual (Burl ington, MA: Digital Press, 1992).

14. D. Dobberpuhl et aL, "A 200-MHz 64-bit Dual

issue CMOS Microprocessor," Digital Techni

cal journal, vol 4, no. 4 (Special Issue 1992):
35- 50.

15. T D utton, D. Eiref, H . Kurth , J Reisert, and

R . Stewart, "The Design of the DEC 3000 A,'\Cl'
Systems, Two High-performance Work
stations," Digital Technical journal, vol . 4 ,

no. 4 (Special Issue 1992): 66-81 .

60

16. R . Braden, " Requ irements For Internet

Hosts-Commu nication Layers,'' RFC 1 122,
Internet Engineering Task Force (October

1989).

17 R. Braden, ''Requirements For Internet

Hosts-Appl ication and Support," RFC 1 123,
I nternet Engi neering Task Force (October

1 989).

18. D. Katz, "Transm ission of JP ami ARP over FDDI

Networks," RFC 1:190, Internet Engineering

Task Force (January 1993).

19. V Jacobson, " Congestion Avoidance and

Control," Proceedings of the Symposium on

Communications Architectures and Proto
cols, ACM SIGCOMM 1988, ACM Computer

Communications Review, vol . 18, no. 4
(August 19R8).

20. R. Grow, "A Timed Token Protocol for Local

Area Networks," Presented at EJectro/82,
Token Access Protoco ls, Paper 17/3, May 1982.

2 1 . R. Jain, "Performance Analysis o f FDDJ Token

Ring Networks: Effect of Parameters and

Guidel i nes for Set ting TTRT," Proceedings of
the Symposium on Communications Archi

tectures and Protocols, ACM S!GCOMM 1990,
ACM Computer Communications Review,

voL 20, no. 4 (September 1990).

22. M . Wenzel, "CSR Archi tecture (DNIA A rchitec

ture)," IEEE P 1212 Working Group Part I l l-A ,
Draft 1 .3 , May 1'5 , 1990.

23. K. Ramakrishnan, "Sched u l i ng Issues for

Interfacing to H igh Speed Networks," Pro

ceedings of Globecom '92 IEEE Global
Telecommunications Conference, Session
18 04, Orlando, FL (December 6 - 9, 1992).

24. D. Clark, "Window and Acknowledgment
Strategy i n TCP," RFC 813, SJU Network Infor
mation Center, Menlo Park, CA (July 1982).

25. L. Zhang, S. Shenker, and D. D. Clark , "Obser

vations on the Dynamics of a Congestion Con
trol Algori thm: The Effects of Two-Way

Traffic," Proceedings of the Symposium on
Communications Architectures and Proto

cols, ACM SIGCOMM 1991, ACM Computer
Communication Review, vo l . 21, no. 4

(September 1991).

Vol 5 No. I Winter 1993 Digital Technical journal

High-performance TCP/IP and UDP!IP Networking in DEC OSF/1 for Alpha A)(p

26. V jacobson, "Efficient Protocol Implementa

t ion," ACM SICCOM,H 1990 Tutorial on Pro

tocols for High-Speed Networks, Part B
(September 1990).

27. C. Partridge and S. Pink, "A Faster UDP,"

Swed ish I nstitu te of Computer Science Tech

n ical Report (August 1991) .

Genera/ References

E. Cooper, 0. Menzi lciogl u, R. Sansom, and F Bitz,

" Host In terface Design for ATM LANs," Proceedings

of the 16th Conference on Local Computer Net

works, Minneapolis, MN (October 1991) .

B. Davie, "A Host-Network Interface Arch itecture

for ATM ," Proceedings of the Symposium on Com

munications Architectures and Protocols, ACM

SICCOI'f'IM 1991, ACIH Computer Communication

Review, vol . 21 , no. 4 (September 1991) .

H . Kanakia a n d D. Cheriton, "The VMP Network

Adapter Board (NAB): High Performa nce Network

Commu nication for M u l tiprocessors," Proceedings

Digital Technical journal Vol. 5 No. I Winter 1993

of the Symposium on Communications Architec

tures and Protocols, ACM SICCOMM 1988, ACM

Computer Communication Review, vol . 18, no. 4

(August 1988).

M. Nielsen, "TURBOchannel," Proceedings of 36th

IEEE Computer Society International Conference,
COMPCON 1991, February 1991 .

P Steenkiste, "Analysis of the Nectar Commun ica

tion Processor," Proceedings of the IEEE Workshop

on the Architecture and Implementation of

High Performance Communication Subsystems,
Tucson, AZ (February 17- 19, 1992).

C. Traw, S. Brendan, and .J. M. Smith, "A H igh-Perfor

mance Host I nterface for ATM Networks," Proceed

ings of the Symposium on Communications
Architectures and Protocols, ACM SICCO/v!M. 1991,

ACM Computer Communication Review, vo l . 21 ,

no. 4 (September 1991) .

TURBOchannel Developer's Kit, Version 2 (May

nard, MA: D igital Equ ipme nt Corrorar ion, Se ptem

ber 1990).

61

Routing Architecture

RadiaJ. Perlman
Ross W. Calion

I. Michael C. Shand

Digital deueloped the intermediate svstem-to-intermediate system (IS-IS) intra

domain rou ting information exchange protocol for the DECnet Phase V network

layer architecture. This protocol, which bas been adopted by the International

Orgcmization fo r Standardization, is based on a link state routing algorithm. The

benefits deriued ji"om the IHS protocol include a se!fstabilizing method for reliable

link state packet distribution, a bierarcbical network structure to support larger

networks, protocols for efficient�)' utilizing local area networks, and simultaneous

support for m ultiple network layer protocols.

The network layer architec ture has three basic com

ponents. The first concerns the transmission of

data packets from one e nd system (a host) to a

remote end system, regardless of whether or not

these packers are sent by way of rou ters. The main

features of t h is component are packet formats and

addressing. Standards for these features are defined

i n the connectionless network l ayer protocol

(CLNP), adopted by the International Organization

for Standard ization (ISO), and in the internet proto

col (IP), the equivalent standard in the transmission

control protocol/i nte rnet protocol (TCP/JP) suite . L !

The second component relates to hand shaking

between neighbors (i .e . , directly con nected sys

tems) and mapping network layer addresses to (l ata

l i nk layer addresses. The JSO protocol that performs

this function is the end system-to-intermediate

system (ES-15) protoco l . 1 The address resolution and

internet control message protocols provide most of

the same fu nctional ity i n the TCP/IP protocol

suite.·1 1

The third component of the network layer archi

tecture perta i ns to rou t ing. The rou ting protocol

developed for D igital 's DECnet Phase V network

arch i tecture and adopted by the JSO is the interme

(Jiate system-to-intermediate system (IS-JS) in tra

domain rou t i ng information exchange proroco l . 1'

The architecture for DECnet Phase V al lows sup

port of m any network layer protocols, i . e . , CI..NP, IP,

Novell NetWare, and AppleTa l k 7 Each network

layer suite has its own protocols for the first two

components of the network layer architecture.

DECnet Phase V support for a particular network

layer suite imp I ies support for such protocols.

Consequently, end systems that i mplement an exist

ing network layer protocol need not be modified to

62

operate with DECnet Phase V rou ters (i . e . , interme

d iate systems). This paper briefly d iscusses data

packet formats, types of rou ting contro l packets,

and neighbor h andshaking p rotocols and then

focuses on the third component of the network

layer architecture, concentrating o n the 15-15 rout

ing protocol.

Support for any network protocol suite can be

added easi ly to the !5-JS rou t i ng protocol. DECnet

Phase V rou ting p roducts currently support the

DECnet Phase IV, CLN P/DECnet Phase V, and the IP

protocols. Support for the Novel l NetWare, XNS,

and AppleTalk protocols is u nder i nvestigation.

Data Packet Formats

A network layer data packet carries data, usually

generated by higher-l ayer protocols, between host

systems. The pu rpose of the network rou t i ng layer

is to correctly del iver data packets to their desti na

t ions. To accompl ish this task, addit ional pieces of

i n formation are requ ired; these are carried i n t he

header of the data packet. The most important

fu nction of the header is address ing. Each data

packet must uniquely identify the source and desti

nation add resses for the packet. Other important

functions include: checksu m m i ng, to ensure that

transmission errors are detected; fragme ntation

and reassem bly, to al low the transmission of l arge

packets over l i n ks that can support only smaller

packets; error reporting, to notify someone should

an error occur; security, to identify special security

requirements of packets; quality of service mainte

nance, to ensure that the correct level of service is

provided; and congestion notification, to notify the

source and destination should congestion occur

along the path of a data packet.

Vol. 'i No. 1 Winter 1')93 Digital Technical journal

The DECnet Phase IV architecture uses a propri

etary packet format for data exchange. The DECnet

Phase V architecture continues to support this for
mat to a l low compatibil ity with existing Phase IV
systems. However, DECnet Phase V uses the ISO

CLNP standard for communication between DECnet

and open systems interconnection (OS!) systems.

Use of this standard protocol also permits DECnet

Phase V systems to communicate with other ven

dors' end systems that implement the ISO standard.

ln addition, commu nication using IP is possible

with systems that implement the TCP/TP suite.

DECnet Phase IV employs a 16-bit network layer

addressing scheme. When using the CLNP, the

addresses, known as network service access point

(NSAP) addresses, vary in length up to 20 octets.

Defining a common mapping procedure allows a

DECnet Phase IV address to be expressed as an

equivalent ISO NSAP address. Similarly, an ISO NSAP

address thus derived, and therefore Phase IV com

patible, may be converted back to the original

Phase rv add ress. Converting the source and desti

nation addresses and the packet formats enables

any DECnet Phase IV packet to be translated into a

CLNP packet and back again. Therefore, two DECnet

Phase IV systems can communicate over a portion

of a network that supports only the CLNP . Similarly,
two DECnet/OSI (or even pure OSI) systems can

communicate over a portion of the network that

supports DECnet Phase rv , provided that the

addresses chosen are Phase IV compatible.

Overview of Routing Control Packets

The !S-IS protocol uses three basic types of packets:

1 . Hello Packet. The protocol uses Hello packets to

keep track of neighbors. Routers determine the

identity of neighbors and periodically check the

status of the l ink to that neighbor by exchanging

Hello packets.

2 . Link State Packet. Link State Packets (LSPs) l ist,

for each neighbor of the node issuing the LSP, the
ID of that neighbor and the cost of the link to i t .

This l ist includes both router neighbors and end
system neighbors. The cost of the link is assigned
by the network manager to reflect the desirabil

ity of using that l ink. A number of factors deter

mine the cost, including throughput capacity

and the monetary cost associated with using the

link.

3. Sequence Number Packet. Sequence Number
Packets (SNPs) are used to ensure that neighbor-

Digital Techn-ical journal Vol. 5 No. 1 Winter 1993

Routing Architecture

i ng routers have the same notion of what is the

most recent LSP from every other router. There

are two types of SNPs: the Complete Sequence

Number Packet (CSNP) and the Partial Sequence

Number Packet (PSNP).

The CSNP l ists al l LSPs present in the issuing

router's LSP database, together with their

sequence numbers, and is used to synchronize

LSP databases. The CSNP is transmitted upon link

start -up on point-to-point l inks and periodically

on a local area network (LAN). This use of the

CSNP to ensure LSP database consistency of a l l

routers on the LAN is described in more detail in

the section Efficient Use of LANs.

The PSNP l ists only a few LSPs and is used to

explicitly acknowledge or request one or more

LSPs.

Neighbor Handshaking Protocols

The architecture for DECnet Phase V uses the ES-IS

protocol to enable routers and end systems on a

LAN to learn about each other's presence. Every end

system periodically multicasts an End System Hel lo

protocol data unit (PDU) to the multicast address

"All Intermediate Systems." This PDU contains the

end system's NSAP address and permits the receiv

ing routers to create an entry that maps the NSAP

address to the corresponding data l ink address

from which the PDU was received. The routers use

this i nformation to deliver data PDUs to the end sys

tems and also to communicate the existence of the

end systems to other routers by means of the rout

ing protocols.

In a similar manner, all routers periodical ly

multicast an Intermediate System Hel lo to the multi

cast address "All End Systems." This data permits the

end systems to determine the data link ad dresses

of all routers on the LAJ'I . In the absence of other

information, an end system w i l l transmit any data

PDUs destined for another system to one of the

routers it has d iscovered. However, the router to
which the data PDU is sent may not be the best path.
Indeed, direct transmission of the data PDU to the

destination system may be possible, if the source

and destination systems are on the same LAN . In
such cases, the router concerned sends a Redirect

PDU back to the source end system. The Redirect

contains the data l ink address to use for this NSAP

address, which the end system can then use for sub

sequent transmissions.

The ES-IS protocol replaces the proprietary

DECnet Phase rv i nitial ization protocol for use

63

DECnet Open Networking

between the DECnet and OS! systems. However,

operation of the DECnet Phase IV protocol is st i l l

necessary t o enable handshaking between DECnet

Phase rv and DECnet Phase V systems. To avoid con

fusion, the Phase rv i n it i a l ization messages trans

mi tteu by Phase V systems have a version nu mber

that is acceptable to only Phase IV systems. Such

messages are ignored by other Phase V systems.

Routing Protocols, with Emphasis on
the IS-IS Protocol

Rout i ng protocol s are used to calcu late the path,

i .e . , the route, that a data packet wi l l take through a

network. Typical l y, a routing protocol dynam ical ly

adjusts to network problems, such as fa i led l inks or

routers, to ensure that the network conti nues to

operate in a robust manner. Use of dynamic routi ng

protocols also eases insta l lation and configuration,

because routes are calculated by means of the a lgo

rithm, not the user.

The two main types of dynamic rou ting proto

cols are d istance vector and l i n k stare. Many rout

ing protocols are based on distance vector routing,

for example, DEener Phase I l l , DECner Phase rv, and

the rou ting information protocol (RJP).8 In a dis

tance vector protocol, each rou ter is responsible

for keepi ng track of and informing its neighbors

about its d istance (i .e. , tota l cost) to each destina

t ion. The rou ter compu tes i ts d istance to each des

t ination based on its neighbors' d istances to each

uesti nation. The o n ly inform ation a router has to

know a priori is its own ID anc.l the cost of its l inks

to each neighbor.

Consider the distance vector routing exa mple

shown in Figure 1 . Suppose a router R with five

ports is configured with costs c1 , c2 , c, , (; , and c� for

each of the ports, respectively Further suppose

that the n e ighbor on port 1 informs R that it is d1
from some destination D, the neighbor on port 2

i nfo r ms R that it i s d2 from D, a nd so forth. R can

then figure out i ts own d istance to desti nation D.

If the destination is R itself, then R's d istance to D is

0. Otherwise, R 's distance to D is the m i n imum

value of c; + d;, for i = 1 th rough 5. If R receives a

packet addressed to destination 0, R should for

ward the packet through the port with minimum

total cost to D.

Beca use of their s lower convergence rate, d is

tance vector protocols generally provide lower per

form ance than link state protocols. Distance vector

protoco ls adapt to changes in topology less q u ickly

than l i n k state protocols, and u nt i l the protoco l

64

TO
DESTI NATION D

TO
DESTINATION D

TO
DESTINATION D

Figure 1 Distance Vector Routing

adapts to such a change, rou t ing can be d isrupted.

The m a i n reason for this convergence problem

stems from incorrect information. When changes

such as l i nk fai l u res occur in the network, the i nfor

mation that each node transmits to its neighbors is

only that node's current impressio n of the distance

to each destination, which may be i ncorrect infor

mation. Consequently, the dista nce vector algo

rit hm may take several i terati ons to converge to the

correct routes.

The first deployed l i n k state routing protocol

was developed by Bolt Beranek and Newman (BBN)

for the Advanced Research Projects Agency

Network (ARPANET) .�· 10 In l in k state rou t ing, each

router determi nes its l oca l status and then con

structs an LSP, defined earlier in the section

Overview of Routing Control Packets. This LSP is

transmi tted (or "flooded") to all the other routers,

which are responsible for storing the most recently

generated LSP from each router. J J (If the large s ize of

the network m a kes it impractical for the LSP

database to contain information for every other

rou ter, the network can be made h ierarchical, as

described in the H ierarchy sect ion.) All routers (or

a l l rou ters in an area, when h ierarchical rou ting is

used) then compute routes based o n a complete

topology Figure 2 i l l ustrates an example of l i n k

state rou t i ng, w i t h a router R determin ing the state

of its neighbors and then broadcasting this informa

tion by means of Hel lo Neighbor messages.

Link state a lgorithms respond rapid ly and consis

tent ly to changes i n networks, as compared with

d istance vector a lgori thms. Once the LSPs have

been d istri buted, each rou ter can calculate routes

Vol. No. I Winter 1993 Digital Technical jour7lal

LSP FROM ROUTER R
NEIGHBOR DISTANCE
PORT 1
PORT 2
PORT 3
PORT 4
PORT 5

Figure 2 Link State Routing

without further reference to the other routers. The

results are more stable routing and lower consump
tion of l ink bandwidth and router CPU. Therefore,
the design of the IS-IS routing algorithm was based

on the original BBN l ink state routing algorithm,
which used an algorithm known as the shortest
path first (SPF) to calculate the routes. 12

The IS-IS protocol corrected many deficiencies
and added extra functional i ty.

1 . The !5-IS protocol provides a more stable method

for reliably distributing LSPs. The ARPANET
method was an early algorithm that used exces
sive overhead and was unstable in rare cir
cumstances. The IS-IS protocol design uses a
self-stabilizing protocol for LSP distribu tion that
requires much less bandwidth.

2. The IS-IS protocol can be used i n a hierarchical
manner to support larger networks.

3. The ARPANET method assumed al l connections
were point -to-point l inks. Many nodes can be
connected with a LAN. Model ing a LAN as a fu l ly
connected set of nodes attached with point-to
point l inks would be extremely inefficient. The
IS-IS routing protocol incorporates protocols for
efficiently uti l izing LANs.

4. Given that a router has limited memory, the

network can grow beyond a size that the router
can support. If the router failed simply because
its LSP database overflowed the available space ,

network management could not be used to

Digital Tecbnicaljoul"nal Vol. 5 No. 1 Winter 1993

Routing Architecture

reconfigure the router. If the router continued
to operate and based the routing on an incom
plete database, loops might form and adversely
affect routes that traverse that router. The IS-IS

protocol has mechanisms that enable overloaded

routers to remain reachable for network man
agement.

5. Certain control packets can get very large. The
IS-IS protocol has mechanisms for ensuring that
fragments of a control packet can be dealt with

independently rather than required to be fu lly
reassembled first.

6. The IS-IS routing protocol can support many
network layer protocols simultaneous ly. This

support is known as Integrated IS-IS . t3

Hierarchy
As a network grows, several factors may overload
the routing protocol: the LSP database may become
too large to fit into memory; computing routes may
require too much CPU; the task of keeping the LSP

databases up-to-date may consume too much band
width; or the network may be unstable because link
changes are frequent. To deal with these factors,
the IS-IS protocol allows the network to be parti

tioned into areas. Within an area, the level I routers
keep track of all the nodes and l inks. Level 2 routers

keep track of the location of the areas but are not
concerned with the detail inside the areas. A level 2

router can also act as a level 1 router in one area.
To use the IS-IS protocol in a hierarchical way, it is

convenient for the network layer addresses to be
topologically hierarchical. Figure 3 i l lustrates the
structure of an IS-IS address. Al l nodes in a particu
lar area have the same value for the area address

field of their address. A level 1 router looks at the
area address portion of the destination address in a
packet. If this field matches the router's area, the

router assigns the packet a path based on the ID

portion of the address. Otherwise, the router
routes the packet toward a level 2 router, which
d irects the packet to the correct area.

The IS-IS protocol treats the last octet of the
address as a selector, which is used only for
demultiplexing multiple network users within the

AREA ADDRESS ID

Figure 3 IS-IS Address Structure

SEL

65

DECnet Open Networking

destination system. The selector field can therefore
be ignored with respect to IS-IS routing.

In general, the area address itself is hierarchically
subdivided. This structure is usefu l for address

administration and for routing between routing
domains, for example, differen t corporations,
which may be interconnected by means of a public
network. However, from the point of view of 1S-IS

operation, the entire area address is a single identi
fier for the area.

In a network of globa l d imensions, possibly com
prising mill ions of addresses, the abil ity to use hier
archical addressing is essential to help provide

some of the topological information . This address
ing scheme is analogous to the use of country codes
in international telephone nu mbers, wh ich allows

ca l l s to be routed to other countries without com
plete knowledge of the internal structure of a l l the
telephone systems in the world.

Elfident Use ofLANs
All routers connected to a LAN are neighbors. If the
routing protocol was simply to consider a l l pairs of
nodes on the LAN as neighbors, then each router on
the LAN would issue an LSP listing every node on
the LAN. In addition, the LSP d istribution would be
i nefficient if each router had to transmit every LSP

to a l l other routers on the LAN and then receive
acknowledgments from al l these same routers.

The IS-IS protocol dramatically reduces the
required size of the LSP database by considering the

LAN as a pseudonode. Each router then claims to
have one link to the pseudonode, rather than a l ink

to every other router on the LAN. Only the pseudo
node claims to have Jinks to all the end systems on

the LAN .
This approach requires that an LSP be transmitted

for the pseudonode itself, and thus some router
on the LAN has to take on the responsibil ity for
transmitting the packet for the pseudonode. The
router with the numerically highest priority (or,
in the event of a tie, the highest data l ink address)
is elected the designated router (DR) . The DR gives

a name to the LAN by appending an octet to its

own 10.
For example , assume a LAN has 5 routers and 100

end systems, as shown in Figure 4. Let R5 be the

elected DR. R5 might name the LAN R5.17. In that
case, Rl, R2, R3, R4, and R5 each issue an LSP l isting
the neighbor R5.17. R5 will issue a second LSP, from
source R5.17, l isting Rl , R2, R3, R4, R5, and a l l the

end systems (El through £ 100) as neighbors.

66

Figure 4 Local Area Network

The IS-IS protocol also contains special features

to allow efficient d istribution of LSPs on the LAN .
IS-IS does not require expl icit acknowledgments to
LSPs on the LAN. Instead , a router that has an LSP to
forward to the LAJ"' simply mul ticasts the LSP to the
other routers. A router that receives an L'lP on the
LAN wil l not mul ticast the same LSP on the LAN .

Theoretical ly, if n o packets get lost, only a single
router would issue an LSP on the LA� .

However, packets d o get lost, s o the detection of
lost LSPs is important. IS-IS detects lost l.SPs by hav
ing the DR periodically broadcast a su mmary of the

LSP database in a CSNP. Based on the CSNP, a receiv
ing router can determine whether it has missed an
LSP (in which case it wi l l expl icitly request the LSP
from the DR), or it has a more recent LSP than the DR
has (in which case the receiving router will multi
cast the LSP on the LAN to the other routers) .

Database Overload
An implementation of a router typical ly has a finite

amount of storage for the LSP database. Therefore,
the router could receive an LSP and not be able to
store it. The space may be inadequate for two rea

sons. First, the network may experience a static
overload, i .e . , the network may have become so
large that the router cannot store the LSP database.
Second, an ordering of events can temporarily
ma ke the LSP database larger than necessary, caus

ing a temporary overload . For example, the DR on a
large LAN may fa i l . The DR's previous pseudonode
LSP is still in the other routers' databases. The new
DR on the LAN will give the LAN a new ID and

attempt to purge the previous pseudonode LSP.
However, until the purge is complete, other routers

will have to temporarily store twice as much infor
mation about that LAN.

Without considering this storage problem, a
router implementation might employ any of the fol

lowing strategies: the router might fai l and recover
only with operator intervention; the router might
fa il and reboot; or the router might ignore the

Vol. 5 No. I Winter 1993 Digital Technical journal

temporary overload and perform routing in the

best way possible.

Each of these possible strategies is undesirable. If

a rou ter fai l s and needs human i ntervention to

recover, routing wil l be disrupted longer than neces

sary if the problem is only temporary. Crashing and

automatically rebooting is desirable if the overload

is very short- 1 ived (so the over.load cond ition is cor

rected before the router has rebooted). Otherwise,

this strategy can cause long- term instabi l i ty, since

after rebooting, the router starts to exchange rout

ing information with neighbors, only to eventua l ly

overload and fail again. Routing based on an incom

plete LSP database can be d angerous and can cause

widespread misrouting an(l/or rou ting loops.

IS-IS solves the storage problem by requiring a

router that cannot store its LSP database to set an

overload flag in its own LSI'. Other routers then

treat that router as an end system and route to that

router but not through that router. Thus, the over

loaded router is available through network manage

ment. If the router has not needed to refuse an LSP

from a neighbor for a period of a mi nute (or as con

figured by network management), the router will

clear the flag in its LSP. Thus, i.f the problem is tem

porary, the network wil l recover without human

interven tion. An im portant feat ure of this solution

is that changing the flag does not change the size of

the LSP database ami hence does not lead to oscil la

tion of the overloaded condition.

Limiting the Size of
Routing Control Packets
Some JS-JS packets (specifical ly, L'iPs and CSNPs)

may become too large to be transmitted as single

packets. Consequent ly, the packets may spl i t i nto

several packets for transmission.

An L'iP can become very large if a router has many

neighbors. However, this situation is rarely an issue,

except for the pseudono<le LSP fo r a LAN . The IS-IS

protocol avoids such large LSPs, which would need

to be fragmented for transmission across each I ink

and then reassembled at each router. The protocol

has the L'il' source break the L'iP into individual frag

ments, each with its own un ique lD and sequence

nu mber. The I D of the L'iP is no longer simply the ID

of the router issu ing the L.SP but has an additional

octet appended to the router's (or pseudonode's) ID

indicating the fragment number. Each fragment is

independently flooded to the other routers. Only in

the route computation is any connection made

between the fragments of a router's LSP.

Digital Teclmicaljournal Vol. 5 No. 1 Winter 1.993

Routing Architecture

A CSNP can become large as wel l , si nce i t

includes the range of source addresses of LSPs to

which i t refers. If the range indicates x through y,

then a l l LSPs with sou rce IDs between x and y wil l

be incl uded and only t hose LSI's. Absence of an LSP

that l ies within the range impl ies that the issu ing

router has no knowledge of that LSP. Therefore, the

IS-IS p rotocol can take action based on a CSNP frag

ment without wa iting for all fragments. If a CSNP

fragment is lost, then a lost LSP in that fragment 's

source address range might not be detected until

the next time a CSNP fragment l isting the I D of the

lost LSP is transmitted.

Support of Multiple Protocols
with IS-IS
Extend ing the IS-IS protocol to support mu ltiple

protocol suites is relatively straightforward . The

OSI version of the IS-IS protocol supports routing

for OS! CLNP, which a lso impl ies support for DECnet

Phase V (since Phase V user data packets are identi

cal to CLNP packets at the network layer) . DECnet

Phase V routing extends IS-IS to al low support fo r

DECnet Phase V and for Phase IV-Phase V in ter

operability. Also, Digital worked on the Internet

Engineering Task Force (IETF) to define the exten

sion to IS-IS for support of IP. 1-�

To u nderstand how the OS! IS-IS protocol can be

extended to support multiple protocol su ites, con

sider what the IS-IS protoco l provides. For example,

consider a level I router with in an area. The IS-IS

routing protocol al lows this router to know the

identity and up/down status of the other routers

and l inks in the area and which routers in the area

are level 2 routers. IS-IS calculates routes to al I other

routers in the area . IS-IS also provides a nu mber of

important background fu nctions, such as al lowing

information to be rel iably broadcast between the

routers in the area and al lowing up/down status to

be periodical ly checked. In addition, IS-IS a l lows

each router to know which OSI addresses are reach

able by means of each other router. (At level 1 , the

router would l ist the NSAPs of a l l its end-system

neighbors; at level 2, the router would l ist al l the

areas and address prefixes it can reach .) IS-IS there

fore already has most of the information needed to

calculate routes for add itional ro uting protocols.

To add rout ing support fo r another protocol

su ite such as If>, the IS-IS protocol is upd ated to

announce the addresses that are reachable by

means of that protocol suite. For example, to acid IP

support to IS-IS, a new field is defined in the LSPs to

67

DECnet Open Networking

announce IP addresses, expressed in ordered pairs

of the form (IP address, subnet mask). This allows

IP addresses and OS! (i .e . , DECnet Phase V)

addresses to be assigned independently, while

still a l lowing most of the overhead functions

required by a routing protocol, such as checking

l ink status and propagating the information, to be

performed only once for a l l supported protocol

suites.

If all routers support a particular protocol , the

data packets for that protocol can be transmitted in

native mode, i . e . , no additional header is required.

If some routers do not support a particular proto

col, then the packet must be encapsulated in a net

work layer header for a network layer protocol that

al l the 15-IS routers do support. In DECnet Phase V,
al l the routers support both IP and CLNP, so these

two protocols are transmitted in native mode.

However, if support for another protocol is added,

for instance AppleTalk support, then the routers

that have AppleTa lk neighbors need to be able to

parse AppleTal k packets. However, other routers

will not need to be modified . To faci l i tate knowing

when to encapsulate, IS-IS routers annou nce which

protocols they support in their IS-IS packets. Also,

routers that support the AppleTalk protocol and

have AppleTaLk neighbors l ist in their LSPs that they

can reach certain AppleTalk destinations.

The IS-IS packets are encoded such that a router

can ignore i nformation pertain ing to protocol

su ites that the router does not support but can cor

rectly interpret the rest of the IS-IS packet. Assume

that Rl and R2 are the only two routers in an area

that support the AppleTalk protocol. Rl and R2

therefore announce in their LSPs which AppieTal k

destinations they can reach. R l and R2 use a format

for i ncluding AppleTalk information in IS-IS LSPs

that other routers in the same area can forward but

will otherwise ignore. Assume R2 receives an

AppleTalk packet for forwarding with destination

D3, reachable through R 1 . Then R2 encapsulates

the packet as data inside a CLNP (or IP) packet with

destination Rl. When Rl receives the packet, it

removes the CLNP header and forwards the packet

to D 3. If Rl and R2 are adjacent, or if all the routers

along the path from R2 to Rl support the AppleTalk

protocol, then encapsu lation of AppleTalk packets

inside CLNP packets would not be necessary. Thus,

encapsulation occurs automatically only when

needed for transmission through routers that do

not support the protocol of the data packet to be

forwarded .

68

Using one integrated rout ing protocol to route

packets from mul tiple protocol suites has signifi

cant advantages over using a separate routing pro

tocol for each suite. Probably the most important

advantage is that only one routing protocol needs

to be managed and configured . A single coordi

nated routing protocol can respond to network

problems, such as l ink fa ilures, in an efficient man

ner, improves bandwidth utilization, and minimizes

the CPU and memory requirements in routers. Also,

integrated rou ting al lows automatic encapsulation

and el iminates the need for manual configuration

of where and when to encapsu late.

Summary
IS-IS is a powerfu l and robust routing protocoL

Many aspects are innovative and have been copied

by other routing protocols. When looked at as a

whole, the algorithms may appear complex, but

when examined individual ly, the designated router

election, the LSP propagation, and the LSP database

overload procedure, for example, are a l l quite sim

ple. IS-IS provides efficient routing for a variety of

protocol su ites, currently including DECnet Phase

I V, CLNP/DECnet Phase V, and IP .

References

I . Information Processing Systems, Data Com
munications: Protocol for Providing the

Connectionless-Mode Network Service, ISO
8473 (Geneva : International Organization for

Standard ization, 1988).

2 .) . Postel, " Internet Protocol," Internet Engi

neering Task Force RFC 791 (September 1981).

3. Information Processing Systems, Telecom
munications and Information Exchange

between Systems: End System to Intermedi
ate System Routeing Exchange Protocol for
Use in Conjunction with the Protocol for

Providing the Connectionless-Mode Network
Service (ISO 8473), ISO 9542 (Geneva: Inter

national Organization for Standardization,

1988).

4. D. Plummer, "Ethernet Address Resolu tion

Protocol," Internet Engineering Task Force

RFC 826 (November 1982).

5. J Postel, " Internet Control Message Protocol,"

Internet Engineering Task Force RFC 792

(September 1981).

Vol. 5 No. I Winter 1')')3 Digital Technical journal

6. Information Technology, Telecommunica

tions and Information Exchange between

Systems: Intermediate System to Intermedi

ate System Intra-Domain Routeing Exchange

Protocol for Use in Conjunction with the

Protocol for Providing the Connectionless

Mode Network Service (ISO 8473), ISO/IEC
10589 (Geneva: International Organization
for Standardization/] nternational Electrotech
nical Commission, 1992).

7 G. Sidhu, R . Andrews, and A. Oppenheimer,
inside AppleTalk, Second Edition (Reading,
MA: Addison-Wesley, 1990).

8. C. Hedrick, "Routing Information Protocol,"
Internet Engineering Task Force RFC 1058
(June 1988).

Digital Tecbnical journal Vol. 5 No. 1 Winter 1993

Routing Architecture

9.) . McQuil lan, I . Richer, and E. Rosen,
"ARPA N ET Routing Algorithm Improvements,
First Semiannual Technical Report," BBN
Report 3803 (April 1978).

10. E. Rosen et a l . , "ARPANET Routing Algorithm
Improvements, Volume 1 ," BBN Report 4473
(August 1980).

1 1 . R . Perlman, Interconnections: Bridges and

Routers (Reading, MA: A<.ldison-Wesley, 1992).

12 . E . Di jkstra, "A Note on Two Problems in Con
nection with Graphs," Numerical Mathemat

ics, vol. 1 (1959): 269-271 .

13. R. Calion, "Use of OSI IS-IS for Routing in TCP/IP

and Dual Environments," Internet Engineer
ing Task Force RFC 1195 (December 1990).

69

Graham R. Cobb
Elliot C. Gerberg

Digital's Multiprotocol
Routing Software Design

The implementation of Digital's multiprotocol routing strategy required address·

ing various technical design issues, principal�y the stabili�)' of the distributed rout

ing algorithms, netwotk management, performance, and interactions between

rou ting and bridging. Deuelopers of Digital's DEC W4Nrouter and DECNIS products

enhanced real-time kernel software, implemented pe1jonnance-centered protocol

software, and used high-couerage, high-quality testing and simulation methods to

solve problems related to these issues. In particulcn; a packet management strategy

ensured that queuing requirements were met to guarantee the stability of tbe rout

ing algorithms. Also, network management costs were minimized by down-line

loading sojtware, using a menu·driuen configuration program, and carejitl moni

toring Router pe1jonnance was optimized by maximizing the packet forwarding

rate while minimizing the transit delay

D igital 's implementation of mult iprotocol routing

software enables i nternetwork ing across complex

topologies inclu ding loca l and wiue area networks

(LANs and WANs) a nd dial-up networks. Evolving

from D igita l 's successful tradition in DECnet Phase

IV networks, the impleme ntation of m u l tiprotocol

rou ting cu rren tly supports n umerous protocol and

packet types inc lu d i ng

• DECnet Phase IV

• Transmission control protocol/internet proto·

col (TCP/IP)

• Nove l l NetWare internetwork packet excha nge

(IPX) protocol

• AppleTalk protocol suite

• OS! CLNS, the open systems intercon nect ion

protocol for providing the con nection less-mode

network service

• X.25, the packet switching standard specified

by the Comite Consu l ta tif Internationale de

Te!egraphique et Telephonique (CCITT)

Additional extensions for Digita l 's DECnet Phase V

and ADVANTAGE-NETWORKS architecture require

ments are also supported by D igital 's multiprotocol

rou ters. 1 · 2 Many of these routers incorporate bridg

ing technology, thus provid ing integrated bridging

70

rou ters. This paper descri bes the most s ignificant

technical problems encoun tered and the solu tions

implemented when many internetworking opera·

t ions are i n tegrated i nto Digi ta l 's mu ltiprotocol

router system designs.

Digital's Router Product Overview
Digi ta l 's m u l tiprotocol rou ter p roducts comprise

two types: (1) access routers, which a l low access to

WAN services from branch offices for large LAN and

WAN integration networks, and (2) backbone

routers, wh ich provide high-speed packet switch

ing services fo r the network backbone of mult iple

types of high-speed med ia . Backbone s i tes offer a

backbone network that often consol idates high

speed WAN l i nes, e.g . , T l , T3, and SMDS. For high·

sreed local si tes, backbone routers prov ide

high-speed sw itching fo r many I.AN ports and

types, i .e . , Ethernet, fiber d istributed data interface

(FDDJ), and token ring. Th is section briefly dis·

cusses some of Digi ta l 's access rou ters-the DEC

WANrouter '500, DEC WA Nrouter 250, and DEC

\VANroute r 90 products-anu backbone rou ters

the DECNIS '500 and DECN !S 600 products.

The DEC WA N rou te r '500 is one of Digital 's access

routers :�nd has been ava ilable in the marketplace

s ince 1986. Origina l ly a DECnet Phase !V-only

router, th is router has been upgraded and now

Vol. 5 No. I Winter I'J'J3 D igital Technicaljour11al

offers multiprotocol routing that includes DECnet
Phase IV, TCP/IP, and OS! . Add itional support exists
in this access router for common WAN services such
as X .25 and frame relay. The DEC WAN router 500 is a
fixed-port configuration router offering one Tl
WAN port and one Ethernet LA..1'1 port. This configu
ration permits branch office LANs to interconnect
to backbone routers over relatively h igh-speed T l
l ines. The DEC WANrou ter 500 has a n important
place in rou ter industry history as it was the first
router ever to support the integrated intermediate
system-to-intermediate system (Integrated IS-IS)
routing algorithm .:I

The DEC WANrouter 250, another of D igital 's
access routers, is significant due to its h igh density
of WAN ports and its support for asynchronous WAN
data link protocols. These two major features com
bine with the multiprotocol routing software to
provide a rou ter for the newly emerging computer
networking needs of mobile computers. The increas
ing use of personal computers, including mobile
laptop computers, has led to the development of
new techniques for networking such remote com
puters. The DEC WANrouter 250 provides eight WAN
ports with dial-in access for the internetworking of
such remote and mobile computers.

The introduction of LAN hub technology has pro
duced a need for new small router products for
these platforms. Digital's DEChub 90 E thernet back

p lane product set i ncludes the DEC WANrouter 90
access router shown in Figure 1 . One feature of
the DEChub 90 technology is that this router can
be configured to reside within the hub itself or
as a standalone module. In addition, this rou ter
is completely selfcontained and extremely small
(i .e . , similar in size to a VHS videocassette). Many
WAN access services, such as X .25 network access,

Hgure 1 DEC �li.4.Nrouter 90 Access Router

Digital Technical journal Vol. 5 No. I Winter 1993

Digital's Multiprotocol Routing Software Design

are provided for the DEChub 90 with the DEC
WAN router 90 router.

The DECNIS 500 and DECNIS 600 (see Figure 2)
bridging and routing products are Digital 's h ighest
performing and most flexible platforms. These
backbone rou ting systems offer the power and
interfaces necessary to meet the bridging and rout
ing requirements of complex, high-speed net
works, e .g. , Ethernet, FOOl, T l/El , and T3/SMDS. i

Router Software Development Methods

Software development for routing systems requires
rea l-t ime kernel software, performance-centered
protocol software development implementation,
and high-coverage, high-quality testing and simula
tion methods. This section briefly describes some
key techniques used in these development areas
for the DEC WANrouter and DECNIS engineering
programs.

Kernel Software

D igital bas developed and refined different kernels
with common interfaces to address the real - t ime
software design environments required for their
routers. A common router interface model has

Figure 2 DECNIS 600 Backbone Router

7 !

DECnet Open Networking

permitted d ifferent kernels to be turned to specific

platforms as required . In some cases, a common

portable kernel was developed that permitted quick

retargeting of the total router software in support

of short time-to-market development needs.

Software Implementation

The fol lowing techniques were used in the devel

opment of the DEC WA.J.'\Irouter and DECN!S router

software:

1 . Implementing software directly from proprietary

or standards-based architecture specifications

2. Licensing software from suppl iers, e .g . , external

corporate software providers and government

funded university software projects

3. Importation of software from other implementa

tions, i .e . , host sources such as the ULTRIX, Open

Software Foundation (OSF), and OpenVMS systems

Digital has developed special-purpose, high-

performance implementations of the I ntegrated

IS-IS routing protocol. In addition, specific software

kernels provide control and extensions for the spe

cial features required. Engineers enhanced the real

time software kernels with software interfaces

com monly found in public domain software (e .g . ,

the Berkeley Software Development [BSD] UNIX

socket model and system services). The inclusion

of such interfaces has accelerated the addition of

new software from external sources.

Common router software has been developed for

use across Digital 's many internetworking plat

forms. The majority of this routing software, which

is independent of the underlying hardware, has

been developed to support the evolving standards

of portabi lity. For each platform, the performance

intensive and hardware-specific code have been

customized to maximize the design center for each

instance of a router product architecture.

Router Software Design Issues

Many technical problems had to be resolved when

build ing Digital 's multiprotocol routers. The fol

lowing sections describe the most significant issues

and how they were addressed in the DECNJS 600

backbone router, as an example of router software

design . These issues were

1 . Stabil ity of the distributed routing algorithms

2. Network management

72

3. Performance

4. Interactions between routing and bridging

Memory size and usage and congestion control

are also key issues. However, this paper does does

not describe them in depth. Briefly, the amount of

memory available is a major constraint on any router

implementer. Usually, memory is largely consumed

by code and by the databases the router must main

tain to calculate the best route. In the case of routers

that also perform connection-oriented functions

(e .g. , X.25 gateways and terminal servers), signifi

cant amounts of memory may be taken up by the

per-connection state and counter information.

Since it is essential for routers in the network to

agree on the best route to a destination , a l l such

routers must be able to hand le the route database

for that network. Digital's router designs have an

automatic shu tdown mechanism that takes effect

should a router run out of memory in which to

store rou ting information . This mechanism pre

vents routing loops.

To control OSI congestion, the router must deter

mine whether or not a packet experienced conges

t ion by calculating the average transmission queue

length over time. This calculation must be per

formed in an efficient rea l-time manner. Thus, for

the DEC WANrouter and DECNIS products, Digital

designed and implemented algorithms specific to

the particular queue structures and hardware

design.

Stability of the Distributed
Routing Algorithms
D istributed routing algorithm stabil it y was the

most important issue considered in the design of

Digital's router systems. A system design must guar

antee successful results in support of routing con
trol protocols even when the router is operating

under a high load.

Whatever protocol is used, dynamic rou ting

requires that all nodes that make decisions on how

to forward data should agree on the correct path.

Otherwise, data packets wil l be discarded (e.g. , if

sent to a node that does not know how to reach the

destination) or may loop (e .g . , if two routers each

believe the other is the correct next node on the

path to the ultimate destination, then the packet

wil l loop between the two routers).

If network configurations never changed, and

l ines and routers never got overloaded, then

guaranteeing successful results would be easy.

Vol. 5 No. I Winte-r 1993 Digital Technical journal

Unfortunately, actual networks are complex. In
practice, for each protocol, the correct path agree
ment is reached using an algorithm distributed
between multiple independent routers and operat
ing on ever-changing data.

The d istributed algorithm must converge rapidly
so that when network conditions change, the new
route is agreed upon quickly. However, the algo
rithm must also be stable. When changes occur at
a fast rate or when the a lgorithm is trying to com
plete or has just completed, the algorithm must sti l l
converge to a consistent state between al l the
routers involved . In this way, the network remains
useful . In addition, while the network is changing,
a router or a l ine may suddenly be presented with
an excessive load of packets to forward (e.g . ,
because a routing loop occurred transiently). This
situation must not be allowed to d isturb the stabil
i ty of the routing algorithm.

The stabil i ty of a wel l-designed rou ting algo
rithm is directly related to how well the algorithm

meets the fol lowing maio requirements:

• Line speed. The effective speed of l ines between
routers (al lowing for error correction by the

data l ink protocol or the modem) must be h igh
enough to allow the routers to rapidly exchange
routing control information. The maximum
bandwidth required for routing control traffic
can be calculated from the size of the network . '
In a network of 4,000 end nodes, 100 level 1
routers, and 400 level 2 routers, approximately
one Link State Packet (L'iP) will be received
every second . This LSP may contain 1 , 500 bytes,
which would use a l ine bandwidth of 12,000 bits
per second. This aspect of stabil ity is u nder the
control of the network designer; l ine speeds and
network size must be continuously monitored
and related.

• Processing power. The router CPU must be fast
enough to forward routing updates to neighbor
i ng routers with minimum delay and must be
able to recalculate the forwarding database
quickly. Of course, this requirement relates only
to that portion of the CPU time available for rout
ing functions. A router that is a lso doing another
job (e.g. , acting as a fi le server) will have Jess CPU
power available, un less routing is given priority
over the other functions . Consequent ly, most
networks now use dedicated routers instead of

attempting to have routing tasks share the CPU
with other functions.

Digital Technical]ow-nal Vol. 5 No. I Winter 1993

Digital's Multiprotocol Routing Software Design

• Queuing. The most i mportant stabi l ity factor is
to make sure that the systems are self-stabi l izing.
As the problem gets worse, progress to the solu
tion should not become slower. For exam pie , as
the network configuration changes more

rapid ly, the calculation of the best route must
not get slower. To meet this requirement, the
routers must be careful about queuing data and
routing control messages internally so that
excessive or unusual data forwarding loads do
not affect the processing of routing control mes
sages. Otherwise, when a network problem
overloads a router, the routing algorithm may
never converge to fix the problem.

Figure 3 il lustrates a case w here an i ncorrectly
designed router (one that gives priority to data
forwarding over routing control message recep
tion and processing) cou ld cause a permanent
routing loop and thus isolate a portion of
the network. In this example, node A is send
ing a large amount of data to node F over
the high-speed Tl l ine. The lower-speed
(64 k ilobit -per-second [kb/s]) l ine is available
as a backup l ine. Because the backup line runs
at only 64 kb/s, node C need only be a low
power router. For example, a router rated at
128 packets per second would be sufficient
because a fu lly saturated fu ll-duplex 64-kb/s
line with 128-byte packets hand les 128 packets
per second .

FAST
ROUTER

FAST
ROUTER

L---.----J L---,----J

Figure 3 Network Instability

LAN

SLOW
ROUTER

SLOW
ROUTER

LAN

73

DECnet Open Networking

Consider what happens if the Tl l ine fai ls .

Router B notices i mmediately and begins to for

ward data to rou ter C . Initial ly, however, router

C sti l l believes the best route to node F is over

the Tl l ine and so forwards the data back to

router B. B resends the data to C and so on; a

routing loop has been created. This problem is

common during routing transitions. The loop

will be broken as soon as router C runs the cleci

sion process and updates its routing tables.

However, if router C is incorrectly designed and

gives priority to forwarding data, then the unex

pected ly large amount of data wi l l "swamp" the

router and prevent it from running the decision

process.

In add ition, since router C is on ly a low-speed

router, i t wi l l be forced to discard many data

packets. Eventual ly, the transport connections

between node A and node F will fail, because

packets are not being clel ivered (presumably

causing the applications to fa i l) . This situation

wi l l reduce the number of packets being intro

duced into the loop. However, each packet can

go around the loop many times, thus generating

a high load. In this example, if nodes are set up

such that a packet can travel the loop 6 4 times (a

common value), then introducing only two

pacK.ets into the loop per second wi l l continue

to swamp router C. Any node o n the L A N might

be sending those packets to discover when

access to the remote LAN is restored . The effect

is a long-l ived routi ng loop that iso lates the

whole LAN, even though there was supposed to

be a backup l ink available.

• Memory usage. Activities less important than

routing should not consume the memory neces

sary for rout ing control processes to carry out

their function. Even in a dedicated router, some

lesser activities will be in progress. For example,

network management and accounting are

important activit ies, but they are not as critical

as maintaining network stabil ity-without a sta

ble network, network management ancl account

ing will fail. Therefore, other activities should

not starve the routing control processes of mem

ory. Consequently, traditional memory pools are

not an appropriate way to al locate critical mem

ory within the router; routing memory usage

must be preallocated.

74

The remainder of this section describes the

impact of the requirements on processing power,

queuing, and memory al location on the design of

the DEC WAN router and DECNIS products.

Requirements on Processing Power

The Digital Network Architecture (DNA) routing

architecture requires that routing updates be prop

agated within 1 second of arriving and that the for

warding database calcu lation take no more than

5 seconds.' The forwarding database calculation is

CPU-intensive, but the time is p roportional to the

number of l inks reported in LSPs. To meet the DNA

requirement, various measurements were made for

each product to determine the nu mber of I inks the

decision process cou ld hand le per second. This

information indicates, for each product, the maxi

mum number of I inks al lowed in the network. Note

that this number does not directly l imit the number

of nodes permitted in the network; a large network

with an efficient connection strategy may have

fewer l i nks than a sma l l network in which every

node is connected directly to every other.

The update process latency requirement means

that the CPU time must be fairly al located between

the decision process and the update process. I f the

update process was requ ired to wait until the deci

sion process had completed , then the delays on for

warding LSPs would be too large (i .e . , 6 seconds).

We considered three possible solutions.

I. Process priorities. Give the update process a

strictly h igher priority than the decision process

so that the database can be updated as required.

The main issues to resolve are synchronizing

access to the shared LSP database and al lowing

the decision process to complete, if a faul ty

router generates LSPs at an excessive rate.

2. Timesl icing. As in a trad itional timesharing

system, a l low both processes to run simulta

neously, thus sharing the CPU. This solution

also requires synchronizing access to the LSP

database.

3. Vol untary preemption. The decision process

periodical ly checks to see if the update process

is required and, i.f so, d ispatches to it. This check

can occur at t ime interval s frequent enough to

meet the latency requirements and at times con

venient to the decision process so that no syn

chronization problems occur.

Vol. 5 No. I \Vi11fer /')'}3 Digital Technical journal

To avoi d the synchronization problems, Digital 's

DECNJS GOO software developers chose the third

sol ut ion f()r two reasons.

1 . Synchronization issues often cause problems

that are serious and difficu lt to debug in com

plex systems. By avo iding these issues entirely,

we simpl ified the software and increased its
rei iabi l ity.

2. The addition of synchron ization mechanisms

for para l lel tasks can decrease the performance
of the total system (for example by causing

excessive reschedu l i ng operations) . Using vol

untary preemption al lowed a very efficient solu

tion that sti l l met the arch itectural requirements.

Requirements on Queuing

Queu ing constrai nts ensu re that h igh loads do not

cause rou ting control information to be d iscarded.

Init ial ly, separating the data for forward ing from

rout ing control messages might appear to be the

logical sol ution to preserving routing control i nfor
mation. However, this solution works only if the

router can process all the routing control messages

without get ti ng behind .

Many practical routers, includ ing the DEC

WANrouter products, do not have a CPU that is

fast enough to guarantee such processing perfor
mance. Digital 's routers can guarantee to meet

t he t iming req uirements on the decision and

update processes (even under worst-case loads),

but if that load is combined with a flood of End

node Hello messages, Rou ter Hel lo messages, and
other control traffic, then some of those messages

have to be d iscarded or queued for later processing.

Since t here m ight be 1 ,000 or more nodes on the

LAN, the worst situation wou ld be if a l l these nodes

were to decide to send Hel lo messages at the same

t ime.

Careh1l software design means that the routers

can meet the network stabil i ty requirements and
st i l l not lose connectivity to end nodes on the LAN .

For the DEC WANrouter software, Digital designed
and i mplemented a packet management pol icy that

differentiates between routing packet types to
meet their respective processing requirements for
network stabil i ty. The fol lowing l ist summarizes

the classes of packet types:

• Data

• End-node Hel lo messages

• Router He l lo messages

Digital Technical journal Vol. 5 No. I Winter 19'))

Digital:' Multiprotoco/ Routing Software Design

• Link State Packets and t heir acknowledgments,

Sequence Nu mber Packets (SN Ps) and Complete
Sequence Number Packets (CSN Ps)

The parameters contro l l ing the minimum a nd

maximum numbers of packets to be used for each

differentiated type are careh11Jy calcu latecl based

on their archi tected behavior ancl the network "

configurations supported by each product. For

example, a router's arch i tected des ign center for
supporting a given maximum number of adjacent

routers on an at tached LAI wil l affect the policy

selected for managing the Router Hello message

queues and packet buffers. Such mechanisms are

implemented to guaran tee that, for network stabil

ity, forwardi ng performance, and network conver

gence, the minimum levels of forward progress per

packet type are met.

This packet management pol icy uses both buffer

pools and queuing to implement the requi red poli

cies. Inbound traffic is placed on queues that are

serviced using variants of round-robi n a lgorithms.
These algorithms give different weightings to each

queue to ensure that progress is made for every

packet type, although at d i fferent rates (' For exam

ple, for every data packet processed, the romer may

process 5 I.SPs, 5 End-node Hel los, and 10 Rou ter
Hel los. The actual weightings used are selected

when the software is designed and depend on the

performance characteristics and expected network

configuration of each product.

Some a l ternatives that were considered are

• Alternative buffer pools. A completely separate

pool can be used for each of the different t ypes

of packets. The d isadvamage is that in smal l con

figt�rations or ones that are not under heavy

stress, the pool of buffers avai lable for forward

ing is l imited unnecessarily.

• Strict priorities. Set t ing strict priont1es for

processing different types of routing control
messages is u ndesirable, because a flood of one
type of rou ti ng control message cou ld cause
another type to be ignored for a long time. In

such a case, i t is better to process some of each
type of message than to give one type abso lute
priority.

In the DECNIS routers, several queues exist at the

boundaries between the d i fferent DECNIS proces

sors. ' Digital designed a mechanism for these
queues simi lar to that descri bed for the DEC

WAJ\Irou ter products . When the network interface

75

DECnet Open Networking

cards, i .e . , l inecards, receive a packet destined to be

passed to the management processor card (MPC),

they analyze the packet and tel l the MPC whether i t

is data, routing control, bridging control, or system

control (wh ich includes l inecard responses to com

m ands from the M PC) . Thus, queues ana logous to

those described for the DEC WANrouters are used at
a l l the i nterfaces within the system. For example,

the assistance processor on the 1YI PC recognizes the

different types of messages and queues them on

separate i nternal queues.

Requirements on Memory Allocation

Routers must have sufficient bu ffer space to hand le

the routing control messages. Consequently, a l l of

Digital 's router products guarantee this memory

al locat ion. To preserve these buffers, the DEC IS

MPC implements bu ffer swapping between l ayers,
as i l l ustrated in Figure 4. The data l ink layer must

never be starved of buffers; otherwise, packets

regarded as important by routing may be discarded

without ever being received. To ensure that an ade

quate number of buffers is avai lable to the data l ink

layer, the MPC gives the data l ink a certa in number

of buffers and maintains that number. Every t ime a

buffer is passed from the data I ink layer to the rout

ing layer, another buffer is swapped back in return .

If routing currently has no free buffers, it selects a
less important packet to discard (free ing up the

buffer containing the packet) . In this way, the data

l ink layer always has bu ffers avai lable.

In the DECNlS l inecard buffers, the arrangements

are s imi lar to those just described , but the deta i l s

d iffer. The l inecards and the MPC perform buffer

swapping among themselves:J

76

FULL DATA
BUFFER

EMPTY
REPLACEMENT
BUFFER

Figure 4 Stiffer Swapping between Routing

Module and Data Link Module

Network Management
Some of the h ighest costs involved in running a

network are those related to obtaining and main

tain ing trai ned and experienced network managers

and operators. Minimizing these costs requ i res

routers that can be easily and efficiently managed.

The major network management issues are

• Insta l lat ion/load i ng. How are software updates

d istributed and inst a l led? How long does the

router take to load after a power fai lure?

• Configuration. How is the software told about

changes to the l ines or the network parameters?

Does the network requ ire a reboot to change

information?

• Monitoring . How does the manager get immedi

ate reports of problems and u nexpected changes,

a nd long- term reports of traffic patterns and

usage for network planning?

• Contro l . How can the manager shut down a l ine

or even a whole router?

• Problem solvi ng . \Vhat tools are avai lable to

detect the problem and then to i nvestigate and

correct the problem?

In a l l networks, though, a remote management
capabi l ity is essential . Ski l led network manage

ment staff may not be avail able at a l l s ites (e.g . , a

sma l l branch office) . In fact, some sites may have

no staff at a l l (e.g. , a l ights-out comput ing center).

Installation and Loading

Al l DEC WA;\Irouter and DECNIS products update

their software by down- l ine loadi ng new software

over the network. In the case of the DECNJS, the
software is stored in nonvolati le memory and so
does not need to be reloaded on each boot.

However, the DEC WAN router p roducts down- l ine
load the software each t ime they are booted .

D igital considered two other a l ternatives.

• Read-only memory (ROM). This means of distri

bution has the disadvantage of being expensive

to modify ami d ifficult to replace remotely.

• Floppy disk or other interface on the router. This

mechanism increases cost and reduces rel iabi l i ty.

Loadi ng from a floppy d isk may also be s lower

than loading over a network . Again, remote

u pdating may not be possible, a nd physical

Vol. 5 No. I Winter /99.3 Digital Technical journal

security issues (e .g . , preventing unauthorized

users from supplying uncontrol led router soft

ware) may be introduced .

For the DECNIS product, D igital chose to use

nonvolati le memory, e .g . , flash random -access

memory (RAM), for fast and rel iable loading com

bined with backup down-line load operation when

software updates are required. The down-l ine load

can be from a DECnet system using the ma inte

nance operations protocol (MOP) or from a TCP/IP

host using the boot protocol (BOOTP) and the triv

ial file transfer protocol (TFTP) . 1 The down-l ine

load provides an easy way to update software when

requ ired; the software can be instal led on a load

host using a ny of the standard software d istribu tion

mechanisms (e .g. , CD-ROM, magnetic tape, or the

network).

Configuration

Configuring a router is notoriously difficult .

Therefore, Digital developed a tool to assist the

network manager with configuration. Each of

the DEC WANrouter and DECNIS products comes

with a configurat ion program. This menu-d riven

program leads the network manager through a

series of forms to define the information needed to

configure the router or to modify an existing

configuration . On-l ine help is avai lable, and steps

may be retraced. Consequently, the network man

ager has no need to learn the network control

language (NCl.) .

Digital used for mal human factors testing during

the design and development of the conJigurators to

ensure that these tools were of high qual ity. Human

interface testing cont inued through the router's

customer field trials and provided additional feed

back on our configurators' ease of use.

One thing that D igital d id not original ly antici

pate is that users now tend to see the configurators

as the user interface for the product. The configura

tor is often a customer's main means of interacting

with the router and thus is an essen tial part of the

product. Once people have used the configurator,

they no longer regard it as an optional feature.

Monitoring

Digi tal 's routers are fu lly manageable using Phase V
network m anagement. They a l l respond to

NCL commands and can be managed using the

DECmcc program. Digital 's Enterprise Management

Architecture (EMA)-compl iant director. Therefore,

Digital Technical journal Vol. 5 No. I Win/a !')'))

Digital's JV!ultiprotoco/ Routing Software Design

DECmcc added-value fu nctional modu les are

avail able for performance ana lysis and historical

data recording. The DECmcc design enables these

fu nctions to work without changing the router

design .

Many users, however, are now investing i n man

agement stations that use the simple network

management protocol (SNMP). Thus, for monitor

i ng purposes, Digital a l ready implements basic

read-only SNi\'I P management, which is being

enhanced over time to add more information.

Control
Whether managed by the NCL or the DECmcc

director, access is controlled using passwords.

In addition, D igi ta l is focused on offering fu l l

SNMP management for the rou ter products. As wel l

as providing the standard pub! ic management

information, Digital is defin ing private man

agement information to a l low unique features of

the rou ters to be control led . We designed the

internal management interfaces of the routers to

al low us to write modules that are manageable from

both the SNMP and the common management infor

mation protocol (0.1[P), with minimal effort and

dupl ication.

Problem Solving

One of the most time-consuming, and hence expen

sive, parts of a network manager's job is problem

solving. Fortunately, many of the tools and tech

n iques used for this task were requi red for debug

ging a nd testing router implementations and thus

a l ready exist.

Build ing init ial ly on debugging and testing expe

rience, and l a ter o n d iscussions with users, Digital

has produced problem-solv ing guides for each DEC

WANrouter and DECNIS prod uct. These gu ides take

the user through a step-by-step description of how

to isolate and fix a problem. We have conducted

human factors testing on these guides ancl have

investigated different modes of making this infor

mation available. The DECNJS gu ide is currently

available in hard copy and also in an on-l ine

Bookreader form that a I lows moving through the

flow to be automated using hot spots. Digital is cur

rently evaluating Hypertext technology to further

improve the usabil i ty. One main tool for problem

solving is the common trace facil ity (CTF), a soft

ware tool that causes the router to record and dis

play packets that are sent and received . Analysis

routines automatica l ly format the packets. Hav ing

77

DECnet Open Networking

the CTF is comparable to having a bui l t - in l in e or

LAN <� na lyzer. The C:TF is the main diagn ostic tool

used by Digit<� l 's service engineers when investigat

ing a problem a nd also by the development engi

neers when debugging software .

D igita l 's ro uters also i n c l ucle diagnostic and

maintenance faci l i ties, which include loopback

testing over all i nterfaces and low-level , l im ited,

remote m a nagement directly at the data l in k

layer. T h e remote management capab i l i t ies al low

mon i toring of counters from an adjacent node and

also al low an adj acent node to force a reboot if a

su itable p assword is supp l ied. This latter operation

is referred to as a MOP boot (previously known as a

MOP trigger i n DECnet Phase JV). 1

A MOP boot command may be the fi nal at tempt

by a network m a nager to fix a problem with a

router without havi ng to go physical ly o n site. For

that reason, the command m ust be recogni zed and

acted u pon regard less of what e lse may be happen

i ng in the rou ter. In the DEC:NlS ro uters, the 1YIOP

boot com m an d is recogn ized by the l i necards. In

the DEC WANrou ter, the MOP boot command is spe

c i a l ly actio ned by the lower layers of the software

to make sure it is honored even if the h igher l ayers

have failed i n some way or if the system is u nder an

enormous load .

We also support the "TCI'l'IP ping'· u t i l i t y (more

for m a l ly, ICMP Echo) ancl the similar " OS! ping" u t i l

i ty. These tools are commonly usecl for d iagnosing

reachabi l i ty problems.

Router Performance
Today's large-scale compu ter clara networks re ly o n

briclge router components for the networks' total

level of performance and qual i t y of service. As

such, data network designers and n etwork man

agers m ust be knowledgeable about their chosen

rou ter plat form's p erf()rmance characteristics. This

sectio n of the paper discusses the performance

aspects of D igita l 's routers.

Performance Metrics
I n support of developing com mon metric.� across

the in ternetworking router i ndustry, t he Internet

Engineering Tas k Force ([ETF) has set up a

Benchmarking Methodology Wor k i ng G roup,

which has devc;Ioped defi n it ions for router pert<>r

mance.' Three key metrics defined by t h is group

provide the background for our d iscussion of

Digital's rou ter software design.

78

• 'fhroughput-the maxi n1 u m (for�varding) rate

at which none of the offered frames (packets)

are dropped by the device (i . e . , packets per

second)

• Frame loss rate- the percent of frames (packets)

that should have been forwarded by the network

device (router) whi le u nder a constan t load but

which were not forwarded due to l ack of

resources (i . e . , percent packets Jost)

• Latency-for store-and-forward devices (i .e . ,

routers), the t i me in terval beg i n n i ng when the

last bit of the i n rut frame reaches the input port

and ending when the first bit of the output frame

is seen on the output port (i .e . , u n its of t ime)

I n the design of Digi ta l 's router software and sys

tems, a balance has been targeted with maximizing

the packet throughput fo rward i ng rates wh ile

m i n i m izing the packet latency. Som e vendors m is

takenly compare loss-free throughput rates with

forwardi n g rates that have high loss rates. Such

comparisons must be studied carefu l l y, because

they do not compare rou te perfo r m a nce measures

of equal i m pact to the total net work. To reiterate,

the throughput forward i ng rate occu rs only at the

po int when the frame loss rate i s zero percent.

Digita l 's routers target throughput designs which,

as much as possible, run at · 'wire speed" with zero

frame loss rates. Regard less of the throughput value

qu oted , router comparison shou ld reference com

mon packet loss rates because network appl ica

t ions need to retransmit any packets that are lost by

the rou ters.

I n general, the throughput, loss - free forwarding

rate is the opti m u m value for d iscussions of router

forwarding perfo rmance. The other critical value is

the stabi l ity of the router u nder heavy overload.

A " receive l ivelock " con d it ion occurs when the

offered load, i . e . , i n p u t packets received for su bse

quent forward i ng by a given router, reaches the

point where the de l ivered through p u t , i . e . , packets

actual l y fo rwarded, decreases to zero H.� Real -t ime

systems, such as routers, have the potentia l to l ive

lock u nder traffic loads above their throughput

peaks. However, it is extremely important that

ro uti ng i m plementations avoid such responses

to post-throughput satura t i o n . In the case of

Digital 's routers, i n all archi tectures and products,

the routers do not l ivelock but rem a i n stable eve n

when the appl ied input load to a router exceeds tbe

peak throughput fo rward i ng packet rate . T h is key

Viii 5 No. I Wintl!r 1993 Dip, ita/ Tee/mica/ journal

performance measure of router devices remains

an underlying design characteristic of a l l D igital

DECNIS and DEC WAt'\Jrouter network devices.

Packet Throughput/Forwarding Rate

Digital's routing platforms offer a range of through

put measures. For each platform, the throughput is

the most often quoted value used to characterize

the router's aggregate capabi l i t ies. In the case of the

DECNIS 600, an aggregate throughput of 80,000

packets per second is offered Hl In s maller routers,

the WAN line interface rates (i.e . , 64 kb/s and T l)

are often the l imiting factor for the aggregate

throughput. The software in a l l cases is optimized

for the given router pla tforms mix of WAN and LAN

i nterfaces.

Since the forwarding rate is the most important

performance metric for a router, D igital carefu l ly

optimized the designs of its multiprotocol routers

to al low data forwarding to occur as fast as possible.

On the DEC WANrouter products, we han d le all the

forwarding on a central CPU with l i tt le hardware

assistance. In the DECNIS products, forwarding and

filtering operations are hand led by l i necards. A

hardware assist for the performance-critical

forwarding function 's address lookup is used on

DECNIS routers in support of requirements for very

h igh-speed packet switching. ·1 On each l inecard , a

streamlined software kernel has been developed

along with a l l the required software. The l inecard

software kernel and modules were carefu l l y con

structed to have the minimum number of instruc

t ions and the lowest nu mber of execution cycles

necessary to perform the h igh-speed forwarding

and filtering operations. On the DECNIS MPC, the

software kerne.l is also fu l l y capable of the routing

forwarding operations. However, this kernel is

mainly required to provide the software processing

for the remaining non-performance-intensive oper

ations of the router's software (i.e . , the processing

of updates to the rou ter topology database and the

network management commands/received pack

ets). This partitioning of processing of received

packets in the DECNIS rou ter system permits such

routers, and the networks that they comprise, to

remain h ighly stable when traffic overloads occur.

For the DEC WAN router software, the forwarding

operation has no hardware assist. Software lookup

assist algorithms have been researched and imp.le

mented to help meet the performance-intensive

requirement. As in the microcoded DECNIS l inecard

Digital Technical journal Vol. 5 No. I Winter 1993

Digital's Multiprotocol Routing Software Design

adapter software, the software is h ighly tuned for

performance. To mi nimize the additional mainte

nance overhead associated with h ighly tuned soft

ware, the amount of such code is kept to a
minimum. The DEC WAN router software design is

an example of how Digital carefu lly balanced prod

uct performance requirements and product devel

opment and maintenance costs to meet the

requ ired price/performance goals for its rou ter

product family.

Packet Latency (Transit Delay)

The next most frequently specified performance

requirement is packet latency or packet transit

delay For bridge/router devices, this measurement

clearly depends on software and hardware t imings.

However, the definit ion of l atency util ized con·e

sponds d irect ly to the , '1osen system's design .

The previously quoted IETF definit ion for store

and-forward dev ices can be further refined to

accom modate d iffering device designs. The I ETF

working group clarifies the d ifference between a

"store-and-forward device" and a " bit-forward ing

device" internal design model for a router. The

latter design model is often referred to as a "cut

through" design and requires a d ifferent definit ion

than previously listed for store-and-forward

devices. The definit ion of latency used for this

cut-thratJt;h model is the time interval starting

when the end of the first bit of the input frame

reaches the input port and ending when the start

of the first bit of the output frame is seen on the

output port."

The issue that distinguishes the two models is

whether or not processing starts prior to the packet

being completely received. However, another key

point is whether or not the packet received can be

sent out for transmission prior to complete recep

tion. When reception, forwarding, and transmis

sion can occur i n para l lel , the design is referred to

as cut-through. For D igital 's router designs, the

DECNIS does process reception and forwarding

in parallel prior to a packet being completely

received . However, t he DECNIS does not start trans

mission until a packet is completely received. Thus,

the DECNlS latency model uses the original store

and-forward definition of the IETF.

In the case of the DEC WANrou ter software, the

model and definition used is agai n store-and-for

ward. The factors that control the packet latency i n

the DEC WAN router design are as fol lows:

79

DECnet Open Networking

l . Receiving the packet. The packet must be com

pletely received.

2. Performing the forward i ng operation. This fac

tor incl udes packet ver ification, analyzing the

packet , performing any required address

lookup, performing any required packet mod ifi

cations, and queuing the packet for transmission

o n the dest ination interface .

3. Congest ion queuing. If the destination interface

is not i d le, the packet will have to be queued

before transmission. Some transit delay measu re

ments use only uncongested media in terfaces

connected to the router. However, l a tency mea

surements must be made to measure the poten

tial latency delays due to congestion at the router

output interface. The packet latency due to

queue occupation delays is also incl uded here.

Congestion avoidance algorithms have been

i mplemented to minimize this congestion delay.

4. Transmit t i ng the p acket. This factor is usua l ly

dominated by the t ime taken to clock the bits of

the packet out of the interface but also includes

media access times, i .e . , delays due to another

node a l ready using a common connection.

We now examine how the DEC WANrouter and

DECNIS routers separately minimize the transit de lay.

The DEC WAN rou ters minim ize the packet recep

t ion and transmission portions by al lowing hard

ware to perform these functions using direct

memory access (DMA). Because these systems have

only a single processor, the forward ing delay is m in

i mized by the same fast-path optimizat ions used to

i mprove the forwarding rate.

On the other hand , the optimizations for the

DECNIS routers are sl ightly different for the various

l i necards. The DEC WANco ntroller 622 card has no

DMA, and the l i necard on-board processor is

i nvolved in receivi ng each byte of the packet. We

parse the header as soon as the re is enough infor

mation to do so. For example, the data l i nk packet

type field is decoded before the network address

bytes have been received, and the network address

lookup is initiated as soon as the add ress has been

received (i .e . , before the data has been received).

The address lookup is then performed by the

add ress recognit ion engine hardware without fur

ther i nvolvement from the software.

The DEC WANcontro l ler 618 card and the DEC

LANcon troller 601 and 602 cards aJ I receive packets

80

one segment at a time. I n ternal ly, these cards use

small fixed-size bu ffe rs that are l i nked together as

necessary to store a whole packet. Aga in, they per

form the analysis and forwarding lookup as soon as

the data is ava i lable (i .e . , when the first segment is

received).

Thus, for a large packet, the entire forward i ng

decision wil l have been made before the last byte

has been received. H owever, note that unti l the l ast

byte has been received, it is not known whether the

cyc lic red u nda ncy check (CRC) is correct or the

packet has been corrupted . So the packet is not

actua l l y passed to the destination l inecard u n ti l that

check has been completed . As discussed before,

this design is st i l l store-and-forward, rather than

cut-through. The DECNIS design goals were easi ly

met without using cut-through; however, Digital

has used the cut -through design on a n umber of

LAN host -based adapters.

\Vhen a packet is to be transmitted, certain

changes must be made i n the data. For example, the

IP and osr protocols require that t ime-to- I ive fields

and, in some cases, other options be m oclifiecl.

Bridged packets may need address bits modified or

conversion between Ethernet and IEEE 802 forms.

As with reception, a!J DEC WANcontrol lers perform

these operations as the data is transmitted. Al l cards

have hardware assistance for recalcul ating header

checksums and CRCs.

These features are designed to reduce the for

ward ing delay as much as poss ible, so that the tran

s i t delay is mainly control led by the time i t takes to

receive and send the packet . The type of archi tec

ture that best describes the DECNIS design is a data

flow, which blends trad itional store-and-forward

designs with newer cut-through designs. This data

flow architecture processes packets in a d istrib

u ted manner (i . e . , l inecarcls process packets)

without transmitt ing packets prior to complete

reception val idation of these packets. This design

l i mits the forwarding of packets that are found to

be in error, whereas the s imi lar fu l l cut-through

design wou l d propagate inva l id packets.

Interaction between Routing
and Bridging

Designing a combi ned router and bridge product is

com pi ica tecl by the rel ationship between the rou t

i ng and bridging fu nctions. 1 1 A received packet

mu st be subjected to either the bridge forwarding

or the rou ting forwarding process (or maybe both).

Vol. 5 No. I Winter 1993 Digital Tecb7l ical jour1lal

Several designs are possible and are i l lustrated in

Figure 5.

(a) Protocol sp lit. In this design, some protocols

are bridged, e.g. , Local Area Transport (LAT),

and others are routed, e.g., TCP/I P. The bridging

and routing functions are completely separate;

they merely share I ine interfaces. Every packet

received is passed to either routing (if intended

for a protocol that is being routed) or bridging.

(b) Integrated with one interface. In this design,

the routing fu nction is modeled as being

layered on top of the bridging fu nction.

Theoretical ly, packets are subjected to the

bridging process and then, if they are

addressed to the rou ter, su bjected to the rout

ing process. In this form of the model, the

router uses a single logical interface seemingly

connected to a private LAN contained within

the bridge/router.

(c) Integrated with mul tiple interfaces. This

design is similar to the integrated design with

one interface, but the router uses a l l the avai l

able interfaces and logica l ly connects to the

same extended LAl\1 multiple times.

Each design model has advantages and d isadvan

tages, and we considered a l l three models for

the design of the DECNIS routers. The protocol

spl itting model has the advantage of simpl icity. The

major disadvantage is that any particular protocol

must be either bridged or routed . The in tegrated

models have the disadvantage of requiring specific

management to prevent a routed protocol from

also being bridged . In most cases, a protocol is

being routed specifical ly to avoid the problems

associated with bridging. The model with one inter

face also has the disadvantage that the network

manager may get confused at tempting to work out

which interface is being used for routing. We chose

the protocol-spl itt ing model because of its effec

tiveness and ease of use.

Special Considerations of the
DECNIS Architecture

We have discussed special features of the DECNIS

system architecture. Now we present some addi

tional DECNJS software design issues.

Control and Management of Linecards

Each l inecard is a separate software environment

and must be managed and control led by the man

agement processor. The main tasks required are

Digital Technical journal Vul. 5 No. I Winter 1')')3

Digital's Multiprotocol Routing Software Design

� - - - - - - - - - - - ,

I I
I I
I I

PROTOCOL
SPLIT I

L _ _ _ _ _ _ _ _ _
LAN ------

PROTOCOL
SPLIT

(a) Protocol split. Some protocols are passed

to the bridging functions, others to the

routing functions.

(b) Integrated with one interface. The routing

function uses a single LAN address and a

single logical interface to the extended LAN.

r - - - - - - - ,
I I
I I
I I
I I
I I
l _ _ _ _ _ _ _ j

LAN ------ ___ __ LAN

(c) Integrated with multiple interfaces. The

routing function uses all inte1jaces to

attach to the extended LAN multiple times.

Figure 5 Bridge/Routing Design

• "Watchdog" poll ing. In a standalone network

server product, it is necessary to guard against

the software gett ing caught in an infinite loop

and hence not responding to management and

control messages. The management processor is

protected by a hardware watchdog timer, but

the l inecards do not have a timer. To protect the

l inecard software, we designed the management
processor software to poll each 1 inecard every

R l

DECnet Open Networking

400 mil l iseconds (ms). If there is no response,

we reset the card .

• Cou nters. The network in terface canis handle

data forwarding and therefore must maintain the

requ ired counters (e.g . , the number of data bytes

received). However, to avoid requ iring the

linecard to maintain 64-bit counters (which

costs memory and requires 64 -bit arithmetic) ,

the management processor maintains the fu l l

counters and pol ls the l inecards frequently

enough to guarantee that the on-card cou nters

do not wrap . Each counter is sized to support

the design of the management processor pol l ing

every 400 ms.

• Control . When a data l ink protocol or a routing

protocol is started or stopped on an interface,

the management processor receives the

network management command and issues

appropriate control messages to the network

interface care! .

Distributed Forwarding

Each l inecard normally hand l es the forwarding of

bridged and routed data without involving the man

agement processor. This design requ ires a d ifferent

approach to meeting the stabi l ity requirements

from that described for the DEC WANrouter devices.

For example, the DEC WANrouter products dis

card data packets to meet the routing stabi l ity

requirements. This discard is l imited by the packet

management mechanisms to guarantee a minimum

level of forwarding performance for the other rout

ing packets, even under worst-case conditions such

as those caused by network topology changes. The

DEC:'>i!S routers do not normal ly have to discard

packets, because the network interface cards can

continue to forward data while the management

processor hand les the routing protocol operations.

In addition, correctly designed l inecard software

guarantees that control traffic is passed to the MPC,
even in cases where the software is also passing

large amounts of data traffic to the MPC.

Conclusion
This paper describes the complex nature of the

design decisions required in the development of

Digital 's mult iprotocol router systems and soft

ware. The issues and solutions d iscussed show how

many conflicting technical requirements can be

addressed . One example of such a conf l ict is related

to the designs goals for the performance of Digital's

82

mult iprotocol routers. Whi le on one hand ach iev

ing extremely high system throughput (i .e . , the

DECNIS 600 router supports a forwarding through

put rate of over 80,000 packets per second), the

DECNIS 600 design a lso addresses the equal ly criti

cal metric of router stabil i ty (i .e . , the DECNIS 600

product remains stab le under extreme network

loads) . "1 T h is balancing of requirements is key to

justifying Digita l 's approach toward router product

engineering. As sum marized in h is recent book on

computer systems performance ana lysis, Raj Jain

states that

The performance of a network . . . i s measured by
the speed (throughput and delay), accuracy (error
rate) and avai labi l i ty of the packers sent . 1l

Routers that can forward packets but cannot

remain stable under heavy loads, or meet the

requirements for bursty packet rates as required by

many of the newer network appl ications (e .g. ,

packet-based videoconferencing systems such as

D igital's DECspi n product), wil l fail to satisfy cus

tomers . 1 ' As such, Digital provides a wel l-tuned ,

optimized total network solution with DECNIS 600

routers and DECspin products. This synergy of

Digi tal 's network applications and network infra

structure components is the ultimate j ustification

for the mult iprorocol router design decisions out

l ined in this paper.

Acknowledgments
Many engineers in Austra l ia, England, Ireland, and

the Uni ted States participated in the design and

implementation of the Digi ta l 's multiprotocol

routers. We wish to thank a l l of them.

References

L Df:"Cnet Digital Network Architecture (Phase

V) General Description (Maynard, MA: D igital

Equipment Corporation, Order No. EK

DNAPV-GD-00 1 , 1987).

2 .] . Martin and]. Leben, DECnet Phase V (Engle

wood Cl iffs, NJ : Prentice-Hal l , Inc . , 1992).

3. R. Perlman, R. Cal ion, and M . Shand, "Routing

Architecture," Digital Technical journal, vol .

5 , no . 1 (Winter 1993, this issue): 62-69.

4 . S. Bryant and D . Brash, "The DECNIS 500!600

Multiprotocol Bridge Router and Gateway,"

Digital Technical journal, vol . 5, no. 1

(Winter 1993, this issue): 84 -98.

Vul. 5 No. 1 Winter 1993 Digital Tech1licaljournal

'5. m:'Ciwt Digital Network Architecture (Phase
V) Netux;rk Routing Layer Functional Speci

fication (Maynard, MA: Digital Equipment

Corporation, Order No. EK-DNA03-FS001 ,

1991)

6. E. Coffman , .J r. , and P Denning, Operating Sys
tems Theory (Englewood Cl iffs, NJ : Prentice

Hal l , Inc , 1 973): 169.

7. S. Brad ner, " Benchmarki ng Termino.logy

for Network Interconnection Devices," I nter

net Engineering Task Force RFC 1242 (July

1991) .

8. K. Ramakrishnan and W Hawe, "The Work

station on the Network: Performance Consid

erations for the Communications Interface,"

//;'/;'/:' Computer Society Technical Committee

on Operating Systems, vo l . 3, no. 3 (Fal l

1989): 29 -32.

Digital Technical journal Vol. 5 No. 1 Winter 1993

Digital's Multiprotocol Routing Software Design

9. K. Ramakrishnan, ··schedu ling Jssues fo r

Interfacing for High Speed Networks,"

Pr-oceedings of Globecom '92, !EEL Global
Telecommunications Conference, Session

18.04, Orlando, FL (December 1992) : 622-626.

10. S. Bradner, "lnterop Fa l l 1992 Router Perfor

mance Study," technical presentation, Har

vard University, 1992 .

1 I . W Hawe, M. Kempf, and A. Kirby, "The

Extended Local Area Network Architecture

and LANBridge 100," Digital Technical jou r

nal, vol . I , no. 3 (September 1986): 54-72.

12. R. Jain, The A rt of Computer Systems Perfor
mance Analysis, ISBN 0-471-50336- 3 (New

York: John Wi ley & Sons, 1991): 23.

13. R. Palmer and L. Palmer, "DECspin: Net

worked Mult imedia Conferencing for the

Desktop," Digital Teclmical journal, vol . 5,

no. 2 (Spring 1993, forthcoming).

83

Stewart F. Bryant
David L.A. Brash

The DECNIS 500/600 Multiprotocol
Bridge/Router and Gateway

The DECN!S 500/600 high-performance multtjJrotocol bridge/muter and gateway

are described. Tbe issues affecting the des(r;n of routers with tbis class of pe!for

mance are outlined, along with a description of tbe architecture and implementa

tion. The system described uses a distributed forwarding algorithm and a

distributed buffer management algorithm executed on plug-in linecards to achieve

scalable petformance. An 011eruieu• of the currently auailable linecards is provided,

along with performance results acbiet•ed during system test.

The DEC Network Integration Server ')00 and 600

(OECNIS 500/600) p roducts are general-purpose

com m unications servers integra ting mul tiprotocol

rou t i ng, bridgi ng, and gateway fu nctions over an

evolving set of local and wide area i n terfaces. The

product fa m i ly is designed to be flex ible, offering a

wide range of performance and functional it)'.

The basic system consists o f a Futurebus+ based

backplane, a management processor card (i'vl PC),

and a packet random -access memory (PRAM) card

with a centralized address recogn it ion engine (ARE)

for forward ing routed and bridged traffic. Network

in terface cards or l inecards are added to provide

network attachment. The DECNIS ')00 provides two

J i necard slots, ancl the DEC IS 600 prov ides seven

I i necard s lots. The applications run from local

memory o n the NIPC and l i necards. PRAI'vl is used to

bu ffer packets in transit or desti ned to the system ,

i tsel f.

The system was developed around d istributed

forward i ng on the l inecards to maxim ize perfo r

mance. Software provides fo rwarding on the

l in ecard for i nternet protocol (IP), DECnet, and

open systems in terconnection (OSI) traffic using

i n tegrated IS-IS (intermediate system to in termedi

ate system) routi ng, a long with bridging fu nctio nal

i ty for other traffi c . The m anagement processor

controls the system, i n cluding load ing a nd dump

ing of the l inecards, administering the rou ting and

bridging databases, generat ing rou ting and bridging

contro l traffic, and network management. X.2')

fu nctionality, both for rout ing data and as an

X.25 gateway, and rou t ing for AppleTalk and I I'X

are supported on the management processor.

Per formance measurements on a system config-

84

ured with 14 Ethernets have demonstrated a for

ward ing performance of 80,000 packets per second

as a router or a bridge.

This paper d iscusses the issues invo lved in the

design of a fast bridge/rou ter. It presents the pro

cessing considerations that led us to design the dis

tr ibuted forward i ng system used in the OECNIS

')00/600 products. The paper then deta i ls the hard

ware and software design and concludes with a per

formance sum mary.

Fast Bridge/Router Design Issues
There are a number of confl icting constraints o n

the design of a bridge/router. I t m ust s imultane

ously forward packers, partic ipate in the process of

ma intain ing a global view of the network topology,

and at a l l t i mes be responsive tO network manage

me nt. This requ i res a sophist icated hardware

ami/or software design capable of striking the cor

rect balance between the demands i mposed by

these constraints.
The need to make optimum use of the transmis

s ion technology is emphasized by the h igh l ink rar

i fh in Europe and the throughput demands o f

modern high-performance co mputing equipment.

Therefore, the router designer must fi nd methods

of forward ing packets in the min imum nu mber of

CPU instructions in order to use modern transmis

s ion technology to best advantage. In addit ion to

h igh performance, low system latency is required .

The appl i cations that run across networks are often

held up pend ing the transfer of data. As CPU perfor

mance increases, the effects of network delay play

an in creasingly significant ro le in determining the

overal I appl ication performance.

vhf. 5 Nu. I \Vi11ter /')'J.i Digital Techuicaljourllal

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

Another aspect of forwarding that requ ires atten
t ion is data integrity. Many protocols used in the
local area network (LAN) have no clara protection
other than that provided by the data l ink checksum.
Thus carefu I attention must be paid to the design
of the data paths to minimize the periocls when the
data is unprotectecJ. The normal technique in briclg
ing is to leave the checksum intact from input to
output. However, more aclvanced techniques are
needed , as th is simple approach is not possible
when translating between clissimilar LAN types.

Two part icular operations that constrain the per
formance of the forward ing process are packet
parsing and address lookup. In a mult iprotocol
router, a variety of aclcl ress formats need to be vali
dated and looked up in the forwarding table. The
most powerfu l address format in popular use is the
OS! NSAP (network service access point), bllt this is
the most complex to parse, with up to 20 octets to
be analyzed as a longest-match sequence extracted
from padding fields. In a bridge, supporting the
rapid learn ing of med ia access control (MAC)
aclclresses is another requirement. To provide con
sistently high performance, these processes bene
fit from hardware assistance.

Although the purpose of the network is the trans
mission of data packets, the most critical packets
are the network control packets. These packets are
used to determine topological informat ion and to
communicate i t to the other network components.
If a data packet is lost, the transport service retrans
mits the packer at a small inconvenience to the
appl ication. However, if an excessive number of
network control packets are lost, the apparent
topology, and hence the apparent optimum paths,
frequently change, lead ing to the formation of rout
ing loops and the generation of further control
packets describing the new paths. Th is increased
traffic exacerbates the network congestion. Taken
to the extreme, a posi tive feedback loop occurs, i n
which the only traffic flowing i s messages trying to
bring the network back to stabi l ity.

As a result , two requirements are rtaced on the
router. First, the router must be able to identify and
process the network control packets under all over
load condit ions, even at the expense of data traffic.
Second, the router must be able to process these
packets quickly enough to enable the network to
converge on a consistent view of the network
topology.

As networks grow to global scale, the possibil ity
emerges that an underperforming rou ter in one

Digital Technical]ourual Vi!/. 5 No. I Winter 1993

part of the worl.d could cause incorrect network
operation in a d ifferent geographical region. A
bridge/router must t herefore be designed to pro
cess all network control traffic, and not export its
local congestion problems to other parts of the
network: a "good citizenship" constraint. To
achieve this, the router needs to provide processing
and fi ltering of the received traffic at l ine rates, in
order to extract the network control traffic from
the data traffic under worst -case conditions. In
some cases, careful software design can accom
pl ish this ; however, as l ine speeds increase, hard
ware support may be required. Once the control
traffic has been extracted, adequate processing
power must be provided to ensure that the
network converges quickly. This requires a sui table
task schedul ing scheme.

Another requirement of a bridge/router is that it
remain manageable under all circumstances. If the
router is being overloaded by a malfunctioning
node i n the network, the only way to rel ieve the sit
uation is to shut down the circu it causing the over
load. To do this, it must be able to extract and
process the network management packets despite

the overload si tuation. Cobb and Gerberg give more
information on routing issues. '

Architecture

To address the requirements of a high-performance
m u l tiprotocol bridge/router with the technology
currently available, we split the functional require
ments into two sets: those best hand led in a dis
tributed fashion and those best hand led central ly.

The data I ink and forwarding functions represent
the h ighest processing load and operate in suffi
ciently local context that they can be d istributed to
a processor associated with a I ine or a group of
l ines. The processing requirements associated with
these functions scale l inearly with both l ine speed
and number of l ines attached to the system. Some
aspects of these per- l ine functions, such as l ink ini
tial ization and processing of exception packets,
require information that is available only centra l ly
or need a sophisticated processing environment.
However, these may be decoupled from the critical
processing path and moved to the central process
i ng function.

In contrast to the lower- level functions, the man
agement of the system and the calculation of the
forwarding database are best hand led as a central
i zed function , since these processes operate in
the context of the bridge/router as a whole. The

85

DECnet Open Networking

processor workload is proportional to the size of

the network and not the speed of the l i nks.

Network protocols are designed to reduce the

amount of this type of process ing, both to minimize

contro l traffic bandwidth and to permit the con

struction of relatively simple low-performance

routers i n some parts of the network.
These processing considerations led us to design

the DECN!S 500/600 as a set of per- l ine forward ing

processors, communicati ng on a peer-to-peer basis
to forward the normal packets that comprise the

majority of the network traffic, pl us a central

management processor. Although this processor

behaves, in essence, l i ke a normal monoprocessing

bridge/router, its involvement in forward ing is l i m

ited to unusual types of packet.

Having spl i t the functional ity between the
peer- to-peer forwarding processors and the man

agement processor, we designed a buffer and

contro l system to efficiently couple these pro

cessors together. The DECN!S 500/600 products
use a central PRAM of 256-byte bu ffers, shared

among the l inecards. Ownersh ip of buffers is

passed from one l inecard to another by a swap,

which exchanges a fu l l buffer for an empty

one. This algorithm improved both the fa irness
of buffer al location and the performance of the

bu ffer ownership transfer mechanism. Fract ional

bu ffers much smal ler than the maxi m u m packet

sizes were used, even though this makes the sys

tem more com p l icated. The consequential econ

omy of memory, however, made this an attractive

p roposition.

Ana lysis of the forward ing function i ndicated

that to achieve the levels of performance we

DESTINATION
NETWORK ADDRESS

FORWARDING
PARAMETERS

PACKET PACKET
(DATA LINK HEADER, (DESCRIPTOR,
ROUTING HEADER, ,-1.--� ROUTING HEADER,
PACKET BODY) PACKET BODY)

PRAM

required , we would need hardware assistance in

parsi ng and look ing up network addresses.

Considerati o ns of economy of hardware cost,

board area, and bus bandwidth Jed us to a single ARE

shared among all J inecards. This ackl ress parser has
sufficient performance to support a DECNIS 600

server fu l ly populated with l inecards that support

each l ink with a bandwidth of up to 2 x 10 megabits

per second. Above this speed, local address caches

are requ ired .

Distribu ted Forwarding

In u nderstand i ng the distributed torward i ng pro

cess used on the DEC IS '500/600, it is convenient to
first consider the forward ing of rout ing packets,

and then to extend tl1 i s description to the process
i ng of other packet types. In the routing forward ing

process, as shown in F igure 1 , the i ncoming packets
are made up of three components: the data l i n k

header, the routing header, and the packet body.

The receive process (RXP) term in ates the data

l in k layer, stripping the data I ink header from the

packet. The rou ting header is parsed and copied

into P"R.ANI unmodified . Any required changes are

m ade when the packet is subsequently transm itted.

The information needed fo r this is placed in a clara

structure ca l led a packet descriptor, which is writ

ten into space left at the front of the first packet

bu ffer. The packet body is copied i nto the packer

b uffer, continu ing in other packet b u ffers i f
required.

The desti nation network add ress is copied to the

ARE, which i s also given instruct ions on which

address type needs to be parsed. The HXP is now

free to starr processing another incoming packet.

• TXP

PACKET
(DESCRIPTOR,
ROUTING HEADER,

I PACKET BODY)

.___......,.._..�

PACKET
(DATA LINK HEADER,
ROUTING HEADER,
PACKET BODY)

RING VECTOR (BUFFER POINTER, QUEUING INFORMATION)

86

Figure 1 Distributed Forwarding

Vol 5 No. J Winter !')').) D igilnf Tecbuical journal

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

When the address lookup process has completed,
the IL'<P is able to read from the ARE the forwarding
parameters needed to complete the processing of

the packet. These parameters contain infor mation
about the output port and channel to use, the desti
nation data link address for the next hop, and any
translation information. The RXP combines this
information with some inJormation saved from pars
ing the packer to build the packet descriptor in PRAM.

The R.XP builds a set of ring vectors for the
packet, one for each bu ffer used. Each r ing vector
contains a pointer to the PRAM buffer used , plus

some additional information used to decide on
which queue the buffer should be stored and to
determine its relative importance to the system.
D u ring congestion , this information is used by the

l inecards to discard t he least important packets
first. These ring vectors are then exchanged with

the transmit process (TXP) on the output l inecard,
which queues them ready for transmission. Before
the TXP starts to process a packet for transmission,
it reads the descriptor from the first PRAl\1 buffer.
From the information in the descriptor, the TXP is
able to bui ld the data l ink header, determine the

routing header translation requirements, and locate
a number of fields in the header (such as the OS! seg
mentation and qual ity of service fields) without
having to rcparse the header. The TXP builds the

data l ink header, reads the routing header from
P RAM, makes the appropriate modifications, and
then completes the packet by reading the packet
body from PRAI\1.

Since the transmit packet construction follows

the packet transm ission order byte for byte, imple
mentations can be built without further intermedi
ate transmission buffering. Linecards need only

provide sufficient transmit buffering to cover the

local latency requirements. In one instance, a
li necard has significantly less than a fu ll packet
buffer. This sma l l buffering requirement impl ies
reduced system latency and makes available a num
ber of different implementation styles.

If the RXP discovers a fau lty packet, a packet with

an option that requires system context to process,
or a packet that is addressed to this system (includ
ing certain multicast packets), i t queues that packet
to the management processor in exactly the same
way that it wou ld have queued a packet for trans
mission by a TXP. The MPC contains a ful l -function

monoprocessor router that is able to hand le these
exception cases. Similarly, the MPC sends packets

by presenting them to the appropriate TXP in
exactly the same format as a receiver.

Digital Technical journal Vol 5 No. I Winter 1993

The bridge forwarding process operates in a fash
ion similar to the routing forwarding process,
except that the data l i nk header is preserved from
input port to output port, and only the data l ink

header is parsed .

Buffer System

A schematic description of the DECNIS 500!600

bu ffer system is shown in Figure 2. The RXPs have

only sufficient buffering to cope with the latencies
that must be sustained in their various stages of
packet processing. All long-term storage of packets

takes place while the packet is owned by the TXP.
When an IL'<P has finished processing a packet, it
swaps the PRAM buffer s contain ing the packet for
the same number of empty buffers owned by the

TXP that transmits the packet. Only if the TXP is able
to replace these buffers with empty buffers does

the transfer of ownership take place. If the swap

cannot complete due to lack of free buffers, the IL'\P
reuses these buffers for another packet. I n this way,
no transmitter is able to accumulate buffers and
thereby prevent a receiver from receiving packets

intended for other output ports.

The design of an efficient buffer transfer scheme

is an important aspect of a high-performance mult i
processor router. We solved this problem by using a

set of si ngle writer/single reader rings, with one
ring associated with each pair-wise exchange of

buffers that can take place in the system. Thus each
TXP has associated with it one r ing for each of the

RXPs in the system (including its own), plus one for
the management processor. When an IL'\P has a

buffer to swap, it reads the next transfer location in
its ring corresponding to the destination TXP. If it
finds a free buffer, it exchanges that buffer with the

one to be sent, keeping the free buffer as a replace

ment. The transferred information consists of a
pointer to the buffer, its ownership status, and

some information to ind icate the type of informa
tion in the buffer. This structu re is known as a r ing
vector. A single-bit semaphore is used to indicate
transfer of ownership of a ring vector.

The buffer transfer scheme schematic shown in
Figure 2 i l lustrates how this works. Each transmit
port (TXa or TXb) has a ring dedicated to each of the
receivers in the system (RXa anci JL'\b). RXa swaps
ring vectors to the "a" r ings on TXa and TXb, and
RXb swaps ring vectors to the "b" rings on TXa and
TXb.

During buffer transfer, the TXP runs a scavenge
process, scanning all its rings for new buffers, queu
ing these buffers in the transmit queues (TXQs)

87

DECnet Open Networking

r - 1
I RXa I TXa
I I
I I
I I
I I
I I
I I I I I

TXb

i -1 RXP 1: .C)
1 I b
- - - - - - - - - - - - - - - - - - ,_ - - - - - - - - - - - - - - - - - -

Figure 2 Movement of Buffer Ownership

specified by the ring vector, and replacing the

entries in the ring from the local free list . The buffer

type information enables the transmit l inecard to

qu ickly determine the importance of the buffer.

Thus if the l inecard runs short of buffers due to

congestion, it is able to discard Jess important pack

ets in preference to those packets required to p re

serve the stabil ity of the network.

Through judicious optimization of the ring vector

encodings, we were able to condense this ring swap

transaction into a single Jongword read fol lowed by

a single Jongword write for each buffer swap, for a l l

unicast traffic . For multicast traffic, a second long

wore! was required. To reduce the amount of bus

traffic and the processor time associated with the

scavenge process, the random-access memory

(RAM) that holds the rings is physica l ly located on

the transmit l inecard. Hardware is used to watch

the rings for activity and report this to the TXP.

Analysis of the traffic patterns indicated that con

siderable economies in PRAM cou ld be made if we

fragmented long packets over a number of buffers.

We achieved a satisfactory compromise between

the processing overhead associated with buffer

management and memory efficiency through the

use of 256-byte buffers. With this buffer size, a large

fraction of the packets are contained within a single

buffer. When a Jinecard is driven into output con

gestion, it is no longer certain that a complete set of

88

p acket buffers wi l l be swapped. We therefore had

to introduce a simple protocol to ensure that a

packet was queued for transmission only if it had

been fully transferred to the transmitting l inecard.

To cope with dissimilar swap and scavenge process

speeds, we had to stage the transfer of buffers.

Thus, the TXPs collect a complete set of buffers

from an RXP before queuing the packet for trans

mission; this process is called binning. In this way, a

partial transfer due to congestion or a slow receiver

does not block the progress of other ports in the

system.

Bridging needs a mechanism to support the

distribution of flooded and multicast packets to

multiple output ports. In some distributed systems,

this function is hand led by repl icating the packet

via a copy process. In other systems, the packet

is hand led by a central multicast service. The

use of a central mul ticaster gives rise to synchro

nization issues when a destination address moves

from the unknown to the learned state. Replica

tion by the l inecards is not practical in this architec

ture since the l inecards do not hold a local copy

of the buffer after it has been copied to PRAM.

We therefore use a system in which m u lticast

buffers are loaned to a l l the transmit l inecards.

A "scoreboard" of outstanding loans is used to

record the state of each mult icast buffer. When

a buffer is returned from a l l its borrowers, it is

Vol. 5 No. 1 Winte-r 1993 D igital Technicaljourttal

The DECNIS 500/600 Multi protocol Bridge/Router and Gateway

added to the mul ticast free queue and made

available for reuse. The Joan process and the return
process are similar to the normal swap and scav
enge process, but the ring vector is extended
sl ightly to include the information needed for rapid
de referencing.

Centralized Resources

Three central resources are used in the DECNIS

500!600 products: M PC , PRAM, and ARE. Central
izing these resources reduced both the cost and the

complexity of the system. There are two ways of

bu ild ing a distributed processing rou ter. In one
method , the router consists of a federation of fu l l
function routers, each a separate network node. An

alternative method is to employ a partia l ly central

ized design in which only one processor is the
router in the traditional sense. The central proces
sor is the focus for network management, calcu

lating the forwarding table and being a central
repository for the context of the rou ter, and the
peripheral processors undertake the majority of
the forwarding work. An ana lysis of the cost and
complexity both from a system and a network per

spective led us to choose the latter approach. Thus
the MPC provides a l l the software functiona l ity
necessary to bind the col lection of forwarding
agents located on the l inecards together to form a
router. To the rest of the network, the system
appears indistinguishable from a traditional ly
designed rou ter. The processing capabi l ity and
memory requirements of the MPC are those associ
ated with a typical medium-performance mult i
protocol bridge/router.

We had a choice of th ree locations for the PRAJ.\1:

distributed among the receiving l inecards, dis

tribu ted among the transmitting linecards, or

located central ly. Locating the bu ffering a t the
receiver would have meant providing the maxi
mum required transmitter buffering for each trans
mitter at every receiver. Locating the long-term
packet buffering at the transmitters would have

mean t staging the processing of the packets by stor
ing them at the receiver until the transmit port was
determined and then transferring them to the
appropriate transmitting l inecard . This would have
increased the system latency, the receiver complex
ity, and its workload. An analysis of the bus traffic
indicated that for a router of this class. there would

be adequate bus bandwidth to support the use of a
centrally located, single shared packet buffer mem

ory. With this approach, however, every packet

Digital Technical journal Vol. 5 No. 1 Winter 199.3

crosses the bus twice, rather than once as in the
other approaches. Nevertheless, we chose to base
the system around a single packet memory, and win
the consequential economies in both l inecard cost
and board area.

An analysis of the processing power needed to
parse and look up a network address led us to con
clude that the l inecards would need some form of

assistance if the processing power associated with
each l ine was to be constrained to a reasonably
cost-effective level . This assistance is provided by

the ARE. Some advanced development work on the
design of hardware search engines showed that it
was possible to design a single address parser pow
erfu l enough to be shared among a l l the l inecards.

This search engine was adaptable enough to parse
the complex structure of an OSI NSAP, with its two
right- justified padded fields and its longest-match
semantics. I n addition, the engine was able to cope

with the other routing protocol address formats
and the learning requirements of bridging. By cen
tral izing the forwarding database, we also avoided
the processing and bus overhead associated with
maintaining several d istribu ted forwarding data

bases and reduced the cost and board area require
ments of the l inecards.

The bus bandwidth and lookup rate needed to
support multiple fiber d istributed data interface
(FDDI) l inecards wou ld place an excess ive burden
on the system. For FD DI, therefore, we equip the
central lookup engine with a I inecard-resident
address cache.

DECNIS 500/600 Hardware Design
There are three primary systems in the DECNIS

500/600: the backplane, together with i ts interface
circui try, the system core functions contained in
the MPC and the PRA.i\1, and the various l inecards. I n
this section, w e describe the hardware design of
each of these.

Backplane and Interface Logic

The DECNIS 500/600 backplanes are based on the
Futurebus+ standard using 2.1-volt (V) terminated
backplane transceiver logic (BTL) 2·5 Although
a l l current cards use 32-bit data and address paths,
the DECNIS 600 backplane has been designed to
support 64-bit operation as wel l.

Common to al l current modules except the PRAI.\1

card, the basic backplane interface consists of two

appl ications specific in tegrated circuits (ASICs),

BTL transceivers, and a selection of local memory

89

DECnet Open Networking

and registers, as shown in Figure 3. The two ASICs

are a controller and a data-path device. The con
trol ler requests the bus via central arbitration,

controls the transceivers, and runs the parallel

protocol state machines for backplane access. The

data-path device provides two 16-bit processor
interfaces (ports T and R), mult iple d irect memory
access (DMA) channels for each processor port with
byte packing, u npacking, frame check sequence
(FCS) and checksum support, and backplane

address decode logic.
On the backplane, four DMA channels are pro

vided per processor port. Two channels offer fu l l
duplex data paths, and the other two are double

buffered , configurable to operate in either direc

tion, and optimized for bulk data transfer. DMA
write transfers occur automatically when a block
fil ls. Similarly, DMA prefetch reads occur au tomati

cally on suitably configured empty blocks. The
double-buffered channels al low bus transactions to
happen in para l le l with processor access to the
other block. A l l data transfers between the proces-

q DATA-PATH
ASIC •

BTL <= TRANSCEIVERS

sor and the DMA channel are done under direct
control of the processors, with the processors read
ing or writing every byte of clara to or from the DMA

streams. This direct control arrangement makes the
design of the hardware s impler, avoiding the need
for ASIC DMA support on the processor buses. More
important, the use of processor read and write
cycles makes the behavior of the system determinis
tic and ensures that the processor has the correct

context at the completion of all operations, regard

less of the outcome.
The data-path ASIC also provides command/

status registers (CSRs) and a local bus containing the
control interface for the second ASIC, ring vector

memory (RVMEM), the geographical address, boot
read-only memory (ROM), and nonvolatile battery
backed RAM (BBRAM) for error reporting . The
H.VM El\'1 and some of the registers are accessible
from the backplane. All resources can be accessed
from either processor port. The device arbitrates
internal ly for shared resources and has several

other features designed to assist with efficient data

I MEMORY I
' PROCESSOR '

PORT T

jJ I

lp::e�:R��
PORT A

I I I I I
I BBRAM I I ROM I I RVMEM I I CSRs I BUS

90

1- _____._ CONTROL
ASIC

t I MEMORY I �ROCESSOR

• II L___,.., DATA-PATH
ASIC .. I

I MEMORY I :PROCESSOR
,

I BBRAM I I ROM J I RVMEM I I CSRs I
KEY:

D DEVICES ASSOCIATED WITH A SINGLE (PRIMARY) NODE

D DEVICES ASSOCIATED WITH A SECONDARY NODE

D NOT PRESENT IN SINGLE PROCESSOR BUS INTERFACE DESIGNS

Figure 3 DECNJS Bus Interface

• PORT T

• PORT R

Vol. 5 No. 1 Winter 1993 D igital TeclmicalJourual

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

transfers, e.g . , a su mmary register of write activity
to the RVMEM.

The data-path device can be driven from a single
processor port (port T) for use in simpler, low
speed l inecards. In addition, the architecture
supports two data-path devices (primary and sec

ondary) served by a common control ler connected
to the local bus of the primary device. Each data
path device adopts a different node identifier in the

backplane address space.
Dedicated l ines on the backplane are provided

for power status, temperature sensing, and other
system requirements.

Processor and Memory Modules

The MPC has two processors, a main processor and

a uniprocessor version of the com mon backplane
interface. The main processor, a VAX device, is in
overall command of the system and provides a l l the
management and forwarding services fou n d in a
monoprocessor router. The 16-bit, processor-based

backplane interface frees the main processor from
time-critical backplane-associated tasks.

A block diagram of the memory module is shown
in Figure 4. Separate dynamic RAM (DRANI) arrays

are used for data buffering and the forwarding
database associated with the ARE. Ring structures in

static memory are used to al low the l inecards to
post requests and read responses from the ARE,

which is based on the TRIE system originally devel

oped for text retrieval .4 .5

An ASIC was developed for the ARE; i t was
extended to include some of the other module con

trol logic, e.g . , PRAM refresh control and the syn
chronous portion of the Futurebus+ backplane

interface.

Network Interface Cards-Linecards

The DECNIS 500/600 products currently offer syn
chronous com munications, Ethernet, and FDDI
adapters, a l l using variants of the standard back
plane interface.

Two synchronous communication adapters are
available: a two-l ine device operating at up to 2.048
megabits per second, and a higher fan-out device
supporting up to eight J ines at a reduced l ine rate of
128 ki lobits per second. All l ines are fu l l duplex
with modem control. The lower-speed adapter uses
a uniprocessor architecture to drive three industry

standard serial communications controllers (SCCs).
The data and clocks for the channels, along with an
extra channel for multiplexed modem control, are

Digital Technical jour11al Vol. 5 No. I Winter 1993

FORWA
OATAB

RDING
ASE

ss ADORE
RECOG
ENGINE

NIT ION
(ARE)

EST/ REQU
RESP
MEMO

ONSE
RY

PACKET
MEMORY
(PRAM)
2 OR 8 MB

FUTUREBUS+ BATIERY-
- INTERFACE - BACKED RAM

(BBRAM)

BACKPLANE

Figure 4 PRAM and ARE Module Block Diagram

connected to a remote distribution panel using a

2-meter um bil ical cord. Panels are available to sup
port eight l ines using the RS232, EIA422, or V 35 elec
trical interface. A fou r-l ine multistandarcl variant

al lows mixed electrical interfaces from a single
adapter at a reduced fan-out. The multistandard
panel uses a 50-pin cable common to other commu
n ication products from Digital.

The two-l ine device uses a four-processor inter

face as shown in Figures 3 and 5. The sec is an ASIC

device designed specifical ly for the data-flow style

of processing adopted in the system architecture. I t
i s closely coupled to the data-path ASIC and proces
sors for optimal throughput. The hardware design

has minimal dependency between the transmit and
receive tasks, recognizing the l imited coupl ing
required by acknowledged data l ink protocols such
as high-level data l in k control (HDLC). State infor

mation is exchanged between processors using a
smal l dual-ported RA.J'vl in the sec. In addition, each
sec and associated processors operate as a separate
entity, resulting in consistent performance when
forwarding both on and off the module. Two 50-pin
multistandard interfaces (EIA422 and V .35 only) are
provided on the module handle.

Several Ethernet adapters are available. A single
port thick-wire adapter uses a dual-processor archi
tecture (primary R and T ports in Figure 3), along

with a discrete implementation, to interface the

E thernet and its associated buffer (tank) memory.
This design was reengineered to put the tank mem

ory interface (TMI) into an ASIC , resul ting in a dual
port (fu l l implementation of the interface shown
in Figure 3 plus two Ethernet interfaces) adapter

91

DECnet Open Networking

D-TYPE

SER IAL
PORT T - COMMUNICATIONS -CONTROLLER

'F"
PORT R - (SCC)

STANDARD
BUS D INTERFACE (5

-TYPE

SERIAL
PORT T - COMMUNICATIONS -1 PORT R CONTROLLER D

AV:

-
(SCC)

Figure 5 DEC WANcontroller 622

Block Diagram

derivative. This adapter is available in two variants

supporting thick-wire, and ThinWire wiring

schemes.

As shown in Figure 6, the FDDI adapter (DEC
fDDlcontroUer 621) is a two-card option designed
to cope with the high filtering and forwarding rates
associated with FDDI. The hardware includes a fil

tering engine closely coupled to the FDDI chip set,
a synchronous interconnect between the two
cards, and a multichannel Dlv[A engine for data

transfer through the device. The DMA engine main
tains tank memory under reduced instruction set
computing (ruse) processor control, and can be set

up and monitored with minimal processor over
head. Data is transferred to or from buffers in PRAM

to the tank memory, where complete packets are
kept in contiguous address space. A second DMA

channel transfers complete packets in a single burst
to or from the bu ffer memory on the l ine interface
card.

Traffic processing between buffer memory
and the ring is done in hardware. A third DMA
path is used to prefetch and then burst transfer
packet header information from tank memory
into the ruse processor subsystem for packet pro
cessing. The DIYlA engine, which includes tank
memory arbitration, can queue multiple com
mands and operate all DMA channels in parallel .
The 32-bit ruse subsystem provides the l inecard

processing, communicating with the bus interface
processor using dual-ported RAM. Modu lar connec
tivity is offered for different physical media. The
module also supports dual-attach and optical

bypass options.

DECNIS 500/600 Software Design
This section describes the software design of the

DECNIS 500/600. The structure of the management
processor software is first described. The structure
of the l inecard receiver and transmitter is then
discussed, fol lowed by detai.ls on how we
expanded the design to forward multicast packets.

I s�s��N�E;A�E �A;D
-

-
- - - - - - - I L;E-;-N�R;A;; �; - - - - - - - - -1

I I I
I I RISC I

PROCESSOR � I I I SUBSYSTEM
I

t I + I
PORT T - DUAL-PORTED

RAM I
STANDARD - I BUS
INTERFACE t BUFFER

I
PORT R' - DMA ENGINE I

t I
I

TANK MEMORY I
I

f--
f--

STATION
MANAGEMENT
PROCESSOR

t
+ t

FILTERING - FDDI
ENGINE INTERFACE

t
BUFFER
MEMORY

I
I
I
I
I
I
I
I
I
I
I
I
I
I

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l
'DMA interlace replaces second processor.

92

Figure 6 DEC FDDJcontroller 621 Block Diagram

Vol. 5 No. I Winter 19.93 Digital Techuica/ journal

The DECNIS 5001600 Multiprotocol Bridge/Router and Gateway

Management Processor Software

The DECNIS 500/600 M PC software structure, as

shown in Figure 7, consists of a fu l l-function

bridge/rou ter and X.25 gateway, together with the

software necessary to adapt it to the DECNIS

500/600 environment. The control code module,

which includes the rout ing, bridging, network

management, and X.25 modu les, is an extended ver

sion of Digital 's WANrouter 500 software. These

extensions were necessary to provide configura

t ion information and forwarding table updates to

the DECNIS 500/600 environment module. This

module h ides the d istributed forwarding function

a lity from the control module. Thus the control

module is provided with an identical environment

on both the MicroServer and DECNIS 500/600

platforms.

The major component of the DECNIS 500/600

environment module contains the data l ink in i t ial

ization code , the code to control the l inecards, and

the code to transform the forwarding table updates

into the data structu res used by the ARE. A second

component of the environment module contains

the swap and scavenge funct ions necessary to

commu nicate with the l inecards. Because of the

real-time constraints associated with swap and scav

enge, this function is spl it between the manage

ment processor on the MPC and an assist processor.

ROUTING
BRIDGING

The control code module was designed as a

ful l - function router; thus we are able to in troduce

new functional ity to the platform in stages. If a

new protocol type is to be i ncluded, i t can be

init ial ly executed i n the management processor

with the l inecards providing a framing or data l ink

service. At a later point, the forwarding compo

nents can be moved to the l inecards to provide

enhanced performance. The management proces

sor software is described in more detail elsewhere

in this issue. 1

Linecard Reception

The l i necard receiving processes are shown in

Figure 8. The receiver runs four processes: the main

receive process (IL'<P), the receive buffer system

ARE process (RXBA), the receive buffer system

descriptor process (RXBD) , and the swap process.

The main receive process, RXP, pol ls the l ine

communications controller u ntil a packet starts to

become avail able. The RXP then takes a pointer to a

free PRAM buffer from the free queue and parses

the data l ink header and the rou t ing header, copy

ing the packet into the buffer byte-by-byte as it does

the parse. From the data l ink header, the RXP is able

to determ i ne whether the packet shou ld be routed

or bridged . Once this d istinction has been made,

the routing destination address or the destination

PORT OF DEC
WAN ROUTER 500
CODE
I

I
NTROL CODE co

MO DULE NETWORK MANAGEMENT

NVI RONMENT E
M ODULE

X.25

I ARE U P DATES

+ /

DECNIS ENVIRONMENT ADAPTATION

/ HI DES CONTRO
CODE FROM
LINECARD
ENVI RONMENT

/ PROVI D E D BY
ASSIST

SWAP AND SCAVENGE MODULE / PROCESSOR

fi
D- ,lJ

LINECARDS

Figure 7 MPC Software Structure

FUTUREBUS+

L

Digital Tecbn icalJourual Vol. 5 No. 1 Winter 1993 93

DECnet Open Networking

MULTICAST FREE --[[[f------------.,
U N ICAST FREE ---[[[REMOTE f-----------------------, DESTINATION

R I NGS

.-------'---. l-+------t3
COMMUN ICATIONS
CONTROLLER

ACKNOWLEDGE
TO TRANSMITTER

SOURCE

ARE RESULT

MULTICAST
HEAP

DESCRI PTOR

ARE REQU EST

HEADER AND BODY

Figure 8 Linecard Receive Processing

MAC address is also copied to the ARE , together with

some information to tel l the ARE which database to

search. The ARE provides hardware assistance to

the bridge learning process. To prevent this hard

ware from inadvertently learning an incorrect

address, the ARE is not al lowed to start a MAC
address lookup unti l the RXP has completely

received the packet and has ensured that the check

sum was correct. This restriction does not apply to

routing addresses, which m ay be looked up before

the packet has been completely received, thus

reducing latency.
In the case of a routing packet, the data l ink

header is discarded; only the routing header and

the packet body are written to the buffer in PRAM .

The source MAC address or, in the case of a multi

channel card, the channel on which the packet

was received is stored for later use. A n umber of

other protocol-specific items are stored as wel l .

Al i this information is used later to bui ld the

descriptor. The buffer pointer is stored on the pre

address queue until it can be reconciled with the

resul t of the address lookup. In the case of an

acknowledged data l in k such as HDLC, the receiver

exports the latest acknowledgment status to the

transmit process.

94

The receive buffer system ARE process, R.XBA,

polls the ARE for the resu lt of the address lookup

and stores the resu lt in an internal data structure

associated with its corresponding packet. The

buffer pointer and the bu ffer pointers for any other

buffers used to store the remainder of a long packet

are then moved onto the R...'\-bin queue. Since the

RXP and RXBA processes, the ARE search engine, and

the l ink transmission process are asynchronous, the

system is designed to have a number of pending ARE
results, which are completed at an indeterm inate

time. This means that the reconci l iation of lookup

resu lts and buffers may happen before or after the

whole packet has been received. Because of the

possibility of an error in the packet, no further
action can be taken unril the whole packet has actu

al l y been received and a l l its buffers have been

moved to the the queue labeled RX-bin .

Jf this staging process were not used, we would

need to provide a complex abort mechanism to

purge erroneous packets from the swap, scavenge,

and transmit processes. U nder load, the rate at

which we pol l the ARE has been engineered to be

exactly once per lookup request. A pol l fai lure wil l

i ncrease the backlog in the pre-address queue,

which should not grow above two packets. This

Vol. 5 No. I Winter 1993 Digital Technical journ al

The DECNIS 500!600 Multiprotocol Bridge/Router and Gateway

a lgorithm minimizes the Fururebus+ bandwidth

expended in u nsuccessful ARE poll operations.

When the receiver is id le, the poll rate i ncreases

and the outstanding packets are quickly processed

to c lear the backJog.

The receive bu ffer system descriptor process,

RXBD, writes the packet descriptor onto the front of

the first PRA.J\1 buffer of the packet. The descriptors

are protocol specific, requiring a cal l back into the

protocol code to construct them. After the descrip

tor bas been written, the buffer pointers are passed

to the source que ue, ready for transfer to the desti·

nation l inecard by the swap process. The buffer is

then swapped with the destination l inecarcl as

described in the section Buffer System , and the

resultant free buffer is added to the free queue.

As an example of the information contained in a

descriptor, Figure 9 shows an OS! packet buffer

together with its descriptor as it is written i nto

PRAM. The descriptor starts with a type identifier

to indicate that it is an OS! packet. This is fol lowed

by a flags field and then a packet length indicator.

The ARE fl ags ind icate whether packet translation

to DECnet Phase IV is required. The destination port

is the J inecard to which the buffer must be passed

for transmission. The next hop physical address

is the MAC address of the next desti nation (end

system or router) to which the packet must be

sent if the output circuit is a LAN; otherwise, it is

the physical or virtual channel on a multiplexed

output circu it . The segmentation offset informa

tion is used to locate the segmentation information

in the packet in case the output circuit is required

to segment the packet when the circu it comes to

transmit the packet. This is fol lowed by the byte

value and position of the qua l ity of service (QOS)

option, the field used to carry the DECbit conges

tion state indicator.

The transmitter requires easy access to these

fields since their modified state has to be reflected

in the checksum field, near the front of the routing

header. The source l inecard number, reason, and

last hop fields are needed by the management pro

cessor in the event that the receiving linecard is

unable to complete the parsing operation for any
reason. This information is also necessary in the

generation of redirect packets (wh ich are gener

ated by the management processor after normal

transmission by the destination l inecarcl).

Linecard Transmission
The l inecard transmitter function consists of five pro

cesses: the scavenge rings process, the scavenge bins

Digital Technicaljoun.al Vol. 5 No. I Winter 1993

DESCRI PTOR TYPE
FLAGS �ACKET LENGTH -
ARE RESULT FLAGS
DE STINATION PORT AND FLAGS � EXT HOP -,_£'HYSI CAL ADDRESS -

1-- -
I-- -
1--- -

LEVEL 3 DATA OFFSET .,_?EGMENTATION OFFSET -
SEGMENTATION OFFSET BYTE POSITION
QOS BYTE VALUE
QOS OPTION POSITION
SOURCE L I N ECARD N U MBER

REASON
1--:: LAST HOP TRANSMITIED

PHYSICAL ADDRESS I--
I--
I-
I-
' ' '

NLPID
LENGTH
VERSION

LIFETIME
FLAGS ANO TYPE �EGMENTATION LENGTH

�HECKSUM

DESTINATION ADDRESS LENGTH

' ' '

-
-

DESCRI PTOR

OSI PACKET

,__
! I-_D_E_s_T-IN_A_T-IO-N-AD_D_R_E_s_s ______ -l1! f 20 OCTETS §OURCE ADDRESS CENGT"

.

: SOURCE ADDRESS : f 20 OCTETS
·,_...o
___9ATA UNIT IDENTIFIER -
�EGMENTATION OFFSET -

TOTAL LENGTH

QOS OPTION IDENTIFIER
QOS OPTION LENGTH
QOS OPTION VALUE

1-- -
DATA

Figure 9 OS! Packet Buffer and Descriptor

95

DEC net Open Networking

process, the transmit bu ffers system select p rocess

(TXRS), the main transmit process (TXP), and the

TXB release process. These are shown in Figure 10.

The scavenge rings process scans the swap ri ngs

for new buffers to be queued for transmission,

replacing them with ti·ee bu ffers. Buffers are queued

in reassembly bins (one per dest ination r ing) so

that only complete packets are queued in the hold

ing queues. The process tries to replenish the desti

nation r i ngs from the port-specific return queues,

but fai l i ng t h is i t uses the free I ist. The primary use

of the port-specific return queues is in m u lt icasting

(see the section Linecard Multicasting).

The scavenge bios process scans the reassembly

bins for complete packets and transfers them to the

hold ing queues. Since different protocols have d if

ferent traffic characteristics, the packets are queued

by p rotocol type.

The TXBS process dequeues the packets from

these hold i ng queues round-robin by p rotocol

type. This prevents protocols with an effective

congestion control algorithm from being pushed

i n to congestion backoff by protocol types with no

effective congestion contro l . It a lso al lows both

bridged and routed protocols to make progress

despite overload. The scavenge bins and TXBS

ACKNOWLEDGE

FROM RECEIVER

PENDING

ACKNOWLEDGMENT

PACKET RELEASE

Q U E U E

processes between them exec ute the DECbit con

gestion control ami packet aging fu nctions. By

assuming that queuing t i me in the receiver is mini

mal , we are able to simp! ify the algorithms by exe

c u t ing them in the transmit path. New algori thms

had to be designed to execute t hese fu nctions in

this arch itecture.

The TXP process transm its the packet selected by

TXBS. TXP reads in the descriptor, prepending the

data I ink header and tran s m i t t i ng the mod ified

routing header. When transmi t ti ng a protocol that

uses explicit acknowledgments, l i ke t-JDLC, the

transmit ted packet is transferred to the pend ing

acknowledgment queue to wait for acknowl

edgment from the remote end. Before transmit

t i ng each packet, the transmitter checks the cur

rent acknowledgment state i nd icated by the

receiver. If necessary, the transmitter either moves

acknowledged packets from the rending acknowl

edged queue to the packet release queue, or, if

it receives an i nd ication that re tra nsm issi on is

requ i red, moves them back to the transmit packet

queue.

The TXB release process ta kes packets from

the prerelease queue and separates them into a

series of queues used by the swap process. Simple

FREE LIST

:JIIJ--- - - - -
:JIIJ--

I PORT-SPECI FI C

1 RETURN QUEUES

I

DESCRIPTOR

PACKET HEADER AND BODY

Figure 10 Linecard Transmit Processes

96 Vol. 5 No. 1 lrinli.!l" J')'J3 Digital Tee/mica/ jourual

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

unicast packets have their buffers returned to
the transmitter free pool. The multicast packets
have their buffers placed on the port-specific
queue for the source l inecard, ready for return to
their originating receiver. Packets intended for

return to the management processor are also

queued separately.

Linecard Multicasting

A bridge multicast or flooded buffer must be trans
mitted by a number of l inecards. This is achieved by
swapping a special type of ring vector, indicating
that the buffer is only on loan to the transmitting
l inecard and must be returned to its owner upon

completion. In add ition to the normal p acket type ,
fragmentation, and buffer identification informa
tion, the ring vector contains loca l referencing

information ind icating where it is stored on the
mul ticast heap. The receiver keeps a record of
which multicast buffers are on loan to which trans

mitters. The scavenge process notes in w hich ring
it found the ring vector. After transmission, the TXB
release process places the ring vector on the corre

sponding port -specific return queue. These ring
vectors are then preferential l y returned to their

owner via the swap process. As the receiver gets
these buffers back, it checks them off against a
scoreboard of issued buffers. When a buffer is

received from al l destination l inecards to which it
was loaned, the buffer is moved back on the free
l ist. For this to work successfu l ly, some buffers

must be set aside specifically for use by the multi
cast process.

Debugging the System
Extensive simulation was performed during system
development. A model based on VHDL (a hardware
description language used for simulation and logic
symhesis) was built to simulate the queues, pro
cesses, bus accesses, and bus latency for the fast for

warding paths. Models were developed for the
different styles of l inecards, and many d ifferent
traffic scenarios (packet size, packet type, packet
rates) were simulated to verify the original thinking

and architectural assumptions. In add ition, simula
tion was performed on the software to measure

code correctness and execution times. Gate arrays
and modules were both functionally simulated and
timing verifjed ; analog model i ng techniques were
used to verify signal integrity of the backplane and
selected etches.

Digita(Technicaljournal Vol. 5 No. I Winter 1993

The l inecard processors used have a serial port
and masked ROM embedded in the device . The
internal ROM was programmed with a simple boot

and console procedure. Provisions for a debug con
sole via a ribbon cable to the module were devel

oped, al lowing a terminal connection to be made
from the management processor to any l inecard
processor. Each processor on a module is software
selectable from the console, which al lows l imited

access functions to peek and poke memory maps,

set break points, and step through the code. The
system was enhanced by developing a breakout box
and workstation environment that could connect

to multiple l inecards, offering multiple windows to
different modules in parallel. The code executed

u nder this regime ran at fu l l speed. The environ
ment a l lowed remote access, which proved useful
between the two main modu le development sites
in England and Ireland when problems required
close cooperation between the two groups.

Performance
Performance measurements have been made on the
DECNIS 500!600 products for DECnet Phase IV,
DECnet Phase V (OSI), IP, and bridged traffic. For a
detailed description of the measurement methodol
ogy and a comparison between the performance of
the DECNlS 500/600 and competing bridge/routers,

the reader is referred to independent test results
compiled by Bradner. 6

A summary of the LAN performance measured by

Bradner and the WAN performance measured by
ourselves is shown in Tables 1, 2, and 3. Table 1

shows the Ethernet-to-Ethernet forwarding
throughput for minimum-sized packets. These
measurements show the maximum forwarding per

formance with no packet loss. The use of a no- loss
figure for comparison between different designs is

important because this represents the maximum
throughput usable by a network application. If the

applications attempt to run at more than the loss
free rate, the packet loss causes the transport proto
cols to back off to the loss-free operating point. The
Ethernet-to-Ethernet figures ind icate the near l in
ear scalabil ity of performance with number of
l ines. Ethernet forwarding performances of this
magnitude are wel l in excess of those required to
operate on any practical LAN. The correctness soft

ware ensures the reception of any routing packets
for a significant period after these rates are
exceeded.

97

DECnet Open Networking

Table 1 64-byte Ethernet-to-Ethernet
Packet Throughput

Protocol Number of Ports
4 6

Bridge 1 3,950 48,21 1 80,045
I P 1 3,362 51 ,960 79,452
DEC net 9,330 34,1 64 53,746
OSI 6,652 25,891 38,837

Table 2 FDD I-to- F D D I Throughput

,----- Packet Size -
64 Byte 2048 Byte

Throughput

Maxi mum pps*

Bandwidth

1 6%
56,869

Note: pps = packets per second

76%
4,352

85.5 Mb/s

Table 3 WAN-to-WAN Performance for
Routed Traffic

.--- Measured Percentage --,
Line Utilization

DECnet DEC net
N PDU Size Phase IV Phase V (OSI) I P

46 96% 95% 93%
1 28 99% 99% 98%
51 2 1 00% 1 00% 1 00%
1 450 1 00% 1 00% 1 00%
Note: NPDU = network packet data unit

Measurements also ind icated that the unidirec
tional and bid irectional forwarding performances

are substantial ly the same, which is not the case for
al l router designs. This is of more than academic sig
nificance. Poorly �esigned Ethernet subsystems do
not provide adequate transmit processing power
under condit ions 9f receive overload. Such subsys
tems suffer from a condition known as " l ive- lock."
In this condition, the receiver uses up al l the pro
cessing cycles, thus preventing the transmitter

from attempt ing the transmission that wou ld force

a coll ision on the Ethernet and thereby restore fair
operation.

The FDDI forwarding performance is shown in
Table 2. These measurements were also taken at the
zero- loss operating point and ind icate industry
leading performance results.

98

The performance of the WANcontroller 622 run
ning at 2 megabits per second is shown i n Table 3.

These measurements were taken using HDLC (with
acknowledgments) as the data l ink, with a packet
overhead of + 19 octets for Phase rv and +6 octets
for OSI and IP. These results indicate that the Jines

were running close to saturation.

Acknowledgments
The DECNIS 500/600 project has i nvolved a great

number of people located around the world. The
authors wish to recognize everyone's contribution
to the largest project undertaken by the Reading

and Galway network engineering groups. Special

thanks are extended to Mick Seaman for his leader
ship and gu idance throughou t the advanced devel

opment and early implementation phases of this
project.

References

1 . G. Cobb and E . Gerberg, "Digital 's Multiprotocol
Routing Software Design," Digital Technical

journal, vol . 5, no. I (Winter 1993, this issue):
70-83.

2 . FuturebuS+ Logical Layer Specification, I EEE

Standard 896.1-1991 (New York: The Institute of
Electrical and Electronics Engineers, 1992).

3. Futurebus+ Physical Layer and Profile Specifi

cations, IEEE Standard 896.2-1991 (New York:
The Institu te of Eiectrical and Electronics
Engineers, 1992).

4. E. Fredkin, "TRIE Memory," Communications of

the ACM, vol. 3 (1960): 490-499.

5. D. Knu th, The Art of Computer Programming,

Sorting and Searching, vo l . 3 (Read ing, MA:
Addison-Wesley Publ ishing Co . , I nc . , 1973):
481-490.

6. S. Bradner, "Testing the Devices," Proceedings of
Fall Interop 1992. Available on the Internet by
anonymous FTP from hsdndev.harvard.edu in
/pub/ndtl .

Vol. 5 No. 1 Winte•· 1993 Digital Tecbr�icaljour71al

Frame Relay Networks

RobertJ. Roden
Deborah Tayler

Frame relay networks reduce the cost of transmission lines and equipment and

improve network performance and response time. Designed for transmission lines

with a low error rate, frame relay networks provide minimal internal checking,

and consequently, error detection and recovery is implemented in the attached user

systems. The Frame Relay Bearer Service was developed specifically as a data ser

vice to handle high-volume, bursty traffic by means of high-speed packet transmis

sion, minimal network delaJJ, and efficient use of network bandwidth. The frame

protocol supports the data transfer phase of the Service; the frame relay header and

the local management interface are sources of congestion avoidance mechanisms.

Current implementations include the StrataCom IPX FastPacket digital networking

system, which provides the frame relay network, and Digital's DECNIS 500!600 and

DEC WANrouter 100!500 software for attaching user equipment.

Today's communications networks are built using
high-speed digital trunks that inherently provide

high throughput, minimal delay, and a very low
error rate . Such transmission networks supply
highly reliable service without the overhead of

error control functions. Frame relay is a packet
mode transmission network serv ice that exploits
these network characteristics by minimizing the

amount of error detection and recovery performed
inside the network .

This paper explains the nature of the Frame Relay
Bearer Service (FRBS) and provides details of the
interface defined for attaching user equipment.
The impl ications for higher-layer protocols in the
user equipment are also considered .

Following this tutorial, the paper introduces
some current implementations. As an example
of equipment used to construct a frame rel ay

network, the technology deployed by the
StrataCom integrated packet exchange (IPX)
FastPacket range of equipment is described. Access
to a frame relay network is typically via a router,
as is i ll ustrated in the d iscussion of two D igital
products:

• The DECNJS V2.1 software, i .e . , network i ntegra
tion server, for either the DECNIS 500 or the DEC

NIS 600 hardware units (abbreviated as DECNIS

500/600)

Digital Techllical jourrwl Vul. 5 No. 1 Winte1· 1993

• The DEC WAi'Jrouter V l .O software for either the
DEMSB or the DEMSA hardware units (subse

quently referred to as the WANrouter 100/500)

The p aper concludes with a brief discussion of

activities related to the further development of

frame relay technology.

The Frame Relay Bearer Service
The FlU3S was developed spec ifica lly as a data ser

vice to hand le high-volume, bursty traffic. The ser
vice was designed to provide high-speed packet
transmission , minimal network delay, and efficient
use of network bandwid th . 1 Local area network
(LAN)- to-LAN wide area internetworking is a typical
appl ication.

The packet-based frame relay technology uses a
combination of features from existing standards for
X.25 packet switching and time division mul ti
plexed (TDlVI) circuit switching 2 Frame relay pro
vides an X.25 - l ike statistical interface but with
lower functionality (in terms of error correction
and flow control) and hence higher throughput,
because most processing requirements have been

removed. At the same time, frame relay has the
higher speed and lower delay qualit ies of TDM cir

cuit switching without the need for dedicated fu l l
time devices and circu its and wasted time slots

99

DECnet Open Networking

when no data is being transmitted . The fact that the
FRBS need not provide error detection/correction

and flow control relies on the existence of intel li
gent end-user devices, the use of control ! ing proto
col layers (CPLs), and high-speed and rel iable
com munication systems. Access to the FRHS is via a

frame relay interface defined between data circu it
terminating equipment (DCE) on the network side
and data terminal equipment (DTE) on the user
side. A typical frame relay configuration is shown

in Figure 1 .
I n 1990, four vendors- StrataCom, Digital

Equipment Corporation, C isco Systems. and

Northern Telecom-col laboratetl on developing a

specification cal led the Frame Relay Specification
with Extensions -' This document, edited by
StrataCom , introduced a local management inter

face (LMI) to provide control procedures for perma
nent virtual circuits (PVCs). The LMI was structured
into a basic, mandatory part and a number of

optional extensions. It focused on PVCs for frame
relay point-to-point connections rather than on
switched virtual connections (SVCs), because SVCs

are not well suited for LAi\l interconnection.
Subsequently, standards have emerged in this

area that adopt the basic form of the LM I, without
the optional extensions, as an annex for PVC control
procedures. These standards do differ, however,

in some respects. First, the recent standards have
specified primary rate access (PRA) for the physi
cal in terface rather than Comite Consultatif

International de Telegraphique et Telephonique
(CCITT) Recommendation V35 for wideband electri
cal signal ing, which was adopted in the original
joint document.-; Second, the standards include sig
nal ing support tor svcs. The frame rel ay service is
being standardized by both the American National

Standards Institute (ANSI) committee, ANSI T l S l ,
and the CCin-.

Frame Protocol
ANSI used the earl ier work as a basis for developing

the frame protocol to support the data transfer
phase of the FRBS . " This protocol operates at the
lowest sublayer of the data I ink layer of the
International Organization for Standardization/
Open Systems Interconnection (ISO/OSI) seven

layer reference model. The protocol is based on a
core subset of l ink access protocol D (LAP-D) ,
which is used in the Integrated Services D igital
Network (ISDN) . The frame protocol specifies the
following characteristics of the frame relay proto
col data unit (PDU) or frame:

• Frame del i miting, alignment, and transparency,

provided by high- level data l ink control (I-IDLC)
flags and zero-bit insertion/extraction.

• Framed integrity verification, provided by a
frame check sequence (FCS). The FCS is gener

ated using the standard !6-bit CCITT cyclic
redundancy check (CRC) polynomial.

I �<�i=N
R
T=�=�=�=:=g=�=y=>l FRAME RELAY K=i=N

R
=T
A
E=�=�=:=g=�=

A
=Y:)� I

� SERVICE �
LAN SEGMENT

100

'----.......,;:-----'

Figure I Typical Frame Relay Configuration

LAN SEGMENT

Vol. 5 No. I Wi11ter I'J9.l Digital Technical jour11al

• Frame relay addressing, using headers of 2, 3, or
4 octets in length. F igure 2 shows the frame relay
header formats. An extended address (E/A) bit is
reserved in each octet to ind icate whether or not
the octet is the last one in the header.

Most of the header represents the data l ink con
nection identifier (DLCI), which identifies the
frame's virtual circu it . The header may also con
tain a DLCI or control indicator (D/C) to indicate
whether the remaining six bits are to be inter

preted as lower DLCI bits or as control bits. For
a l ignment with LAP-D, the header also contains a
bit to d iscriminate between commands and
responses (C/R). This bit is not used for support
ing frame rel ay access.

The DLCI influences the routing of the frame to
the desired destination. The DLCI is also used to
m u ltiplex PVCs onto the physical l ink and
enables each endpoint to communicate with
multiple dest inations by means of a single
network access. DLC!s may have either global or
local significance in the network. ln the global
case, the scope of the DLCI extends throughout
the network such that a particular DLCI always
identifies the same destination, thus making the
frame relay network look more l ike a LAN. ln the
local case, the scope of the DLCI is l im ited to the
particular interface. When local DLCis are used ,
the same DLCI can be reused at another interface
to represent a different connection.

• Congestion control and avoidance information.
The frame relay header also contains the forward
expl icit congestion notification (FECN) bit, the

DLCI (6 HIGH-ORDER BITS)

DLCI (4 LOW-ORDER BITS)

DLCI (6 HIGH-ORDER BITS)

DLCI (4 BITS)

DLCI (6 LOW-ORDER BITS)

DLCI (6 H IGH-ORDER BITS)

DLCI (4 BITS)

DLCI (7 BITS)

Frame Relay Networks

backward explicit congestion notification
(BECN) bit, and the discard el igibility (DE) indica
tor, which are discussed in the Congestion
Avoidance section.

Permanent Virtual Circuit
Control Procedures

Frame relay PVCs provide point-to-point connec
tions between users. Although the PVCs are set up
for long periods of time, they can still be con
sidered virtual connections because network
resources (i .e . , buffers and bandwidth) are not con
sumed unless data is being transferred .

For interface management purposes, the frame
relay interface includes control procedures based
on the LMI definition contained in the original
mult ivendor specification. These procedures use
messages carried over a separate PVC identified by

an in-channel signaling DLCJ. The management mes
sages are transferred across the interface using data

l ink unnumbered i nformation frames, as defined
in CCITI Recommendation Q.922 6 The messages
use a format similar to that defined in CCITI
Recommendation Q.931 for ISDN signal ing in sup
port of cal l control and feature invocation.7 Each
message is formed from a set of standardized infor
m ation elements defining the message type and
associated parameters. The control procedures per
form three main functions:

• L ink integrity verification initiated by the user
device and maintained on a continuous basis.
This function allows each entity to be confident
that the other is operational and that the physical
l i nk is in tact.

C/R E/A = 0

I FECN I BECN DE EIA = 1

C/R E/A = 0

I FECN I BECN DE E/A = 0

D/C E/A = 1

C/R E/A = 0

I FECN I BECN DE E/A = 0

E/A = 0

DLCI OR CONTROL (6 LOW-ORDER BITS) D/C E!A = 1

Figure 2 Frame Relay Header Formats

Digital Technical journal Vol. 5 No. 1 Winter 1993 1 0 1

DECnet Open Networking

• When requested by the user, fu I I status network

report providing details of a l l PVCs. The user

wou ld normal ly request such a report at start-up

and then periodical ly.

• Notification by the network of changes in i ndi

vidual PVC status, including the add ition of a PVC
and a change in PVC state (active/inactive).

The management protocol is defined in Annex

D of Al'JS I T 1 .617, with equivalent functiona l ity

also defined in CCITT Recom mendation Q.933,

Annex A H Y

Effect 011 Higher-level Protocols

Frame relay provides a mult iplexed PVC interface

and, with regard to routi ng software, can be mod

eled as a set of point-to-point J inks. However, the

characteristics of the frame relay service d iffer from

normal point-to-point J inks. The m ajor differences

are as fol lows:

• Round-trip delay across a frame relay network is

normal ly longer than the delay across a dedi

cated point-to-point l ink.

• PVC throughput can be as h igh as 2 megabits per

second (Mb/s), whereas many existing leased

l ines operate at lower rates.

• A single frame relay interface can have multiple

virtual connections (each one going to a dif

ferent clestination) as compared to the tradi

tional point-to-point l i nk, which supports a

single connection.

Given the specific characteristics j ust described,

a frame relay interface m ay h ave many more pack

ets in transit than a conventional point-to-point

l ink . Consequently, a n acknowledged data l ink pro

tocol whose procedures i nclude retransmission of
data frames is of l imited use in this environment.

For a large number of virtual connections, the mem

ory required to store the data frames pending

acknowledgment wou ld be prohibitive. In addition,

if frames are being discarded due to congestion in
the frame relay subnetwork, the retransmission

pol icy would i ncrease, rather than recover from,
this congestion . I nstead, an u nacknowledged data

l i nk layer should be used.

Using an u nacknowledged data l ink protocol has

implications for the rou ting l ayer operating over
frame relay. In particu lar, the data I ink can no

longer be considered rel iable, and the routing pro

tocol must accommodate this characteristic.

1 02

Congestion A·voidance

When a frame relay network becomes congested,

network devices have no option but to drop frames

once their buffers become fu l l . With an unacknowl

edged data l ink layer, the user device will not be

informed if a data frame is lost. This lack of expl icit

signa l ing when operating over frame relay net

works places a requirement on the higher protocol

layers in the end-system equipment. The OS! trans

port layer protocol demonstrates how to deal with

this type of characteristic . The destination end

system's transport implementation detects data Joss
and requests the source to retransmit the frame.

The implementation reduces the source's credit to

one, thus closing the source's transmit window

and, in effect, reducing traffic through the con

gested path.

Frame relay networks are prone to congestion.

Consider the scenario shown i n Figure 3. Note that

the committed information rate (CJR) represents

minimum guarameed throughput. In the configura

tion shown, the network device can support two

PVCs : one running at 64 ki lobits per second (kb/s)

and the other at 128 kb/s. With no back pressure

appl ied across the frame relay i nterface, in the

worse case, the network device wil l become con

gested. The router can send frames into the

network or a particular PVC at I Mb/s that wi l l then

be forwarded at a much s lower rate. Once the
network device's butlers are fu l l , it wi l l discard

frames. As a result , routing and bridging control

messages may be lost, thus causing the routi ng

topology to become u nstable. Since this, in turn,

wil l l ikely lead to looping packets, a network melt
down cou ld resu lt .

In addit ion, if data frames are lost, the higher

layer protocols in the end system (e .g. , the OS!
transport layer) discover this situation and retrans

mit the lost frames. Repeated transmission of the

-
FRAME RELAY

ROUTER INTERFACE
FRAME
RELAY NODE r- (USER (NETWORK

DEVICE) 1 MBIS LINE DEVICE)
-

LAN SEGMENT n n
64 KBIS 1 28 KBIS
C I R L INE C I R LINE

Figure 3 EYample Configuration ofFrame Relay

Jntelface Rate and Permanent Virtual

Circuit Throughput

Vol. 5 No. I Winter I'J9.i Digital Teclmical journal

same data causes the effective end-to-end through
put to drop wel l below the minimum guaranteed
throughput.

The frame relay header has several mechanisms
that can be used to apply the appropriate back pres
sure to prevent congestion.

• The FECN bit is set by the network when a frame
experiences congestion as it traverses the

network . In OSI and DECnet Phase V environ
ments, this bit can be mapped onto the conges

tion-experienced bit in the header of the
network layer PDU. This PDU, when subse
quently delivered to the destination, a l lows the
destination to discover that the path is con
gested and to notify the source transport to
decrease its window and thus place less demand
on the network. Standardization work is cur

rent ly under way to add similar support to the

transmission control protocol/internet protocol

(TCP/IP).

• The BECN bit is set by the network when a frame

traverses a congested virtual circuit in the oppo
site d irection. This indicator is not perfect,
because there is no guarantee that traffic will be
generated i n this d irection on the virtual circuit .

A source that detects it is transmitting on a con

gested path is expected to reduce its offered
load .

• The DE bit, if set, ind icates that during conges
tion the frame should be the first d iscarded. The
procedures for decid ing to set this bit are
not clearly defined . This bit cou ld be set by

(1) the entry node of the network, e.g. , when
the input offered load is too high, or (2) the

source user equipment, e .g . , to d iscriminate data
frames from the more important routing control
messages.

Other methods can be used to avoid the conse
quences of congestion and hence frame loss. The
LMl defined in the multivendor frame relay specifi
cation contained an optional extension that
included a threshold notification bit in the PVC sta
tus information element of one of the messages.
The threshold notification bit provided a means of
al lowing a network device to asynchronously
inform a user device that a particu lar PVC connec
tion was congested. The user device could then

stop transmitting data on the connection unti l the

network device informed it that the congestion was
al leviated.

Digital Technical jourual Vol. 5 No. I Winter 1993

Frame Relay Networks

Since the loss of rou ting control messages can
cause network instabil ity, an a l ternative approach

is to adopt m anual configuration . Static network
configurations use reachable add resses to provide

rou ting information such that the transmission

of rout ing control traffic is not required. Conse
quently, the routing behavior is independent of the
performance of the network.

In addition, the user device could implement
rate-based transmission to ensure that virtual cir

cuits are not congested. However, a means of notify
ing the user device of the CIR of a virtual circuit was

included only as an optional extension in the LMI
specification, and use of such a method wou ld

destroy one of the major benefits of frame relay, i .e . ,

the capabil i ty t o a l locate bandwidth on demand.
In practice, network devices have l imited i nter

nal buffering to store frames; this is reflected in the

CIR assigned to PVCs. Consequently, data loss occurs
if user devices consistently transmi t data on a PVC

faster than its associated CIR. Adequate procedures

and CPLs that cope with congested situations have
yet to be developed and standardized. As a result ,

such situations may lead to unfairness in a multi
vendor environment where those users who sup
port congestion avoidance wil l lose bandwidth to

those who do not.

Products

Below we describe examples of frame relay prod
ucts: the StrataCom IPX FastPacket equ ipment,
which provides the frame relay network; and

D igital 's DECNIS 500/600 and WANrouter 100/500,

which support the frame relay service by accessing
the i nterface as user equ ipment.

The StrataCom JPX FastPacket
Product Family

The StrataCom IPX FastPacket product family can

be used to build networks that support both cir
cuit-mode voice and data as wel l as frame relay.
Within the network, the StrataCom IPX FastPacket
nodes communicate using a technique based on
cell switching, which i nvolves the transmission of
small , fixed-length cells. Additional, high-level
functions provide services on top of the basic t rans

mission network. Strata Com uses a hardware-based

switching technique resu lting in very high-speed
switching (100,000 to 1 ,000,000 cel ls per second) .

With such high throughputs and low delays, these

networks have been used for carrying voice, video,
and data traffic.

1 03

DEC net Open Networking

The Strata Com IPX FastPacket network is config

ured by network management to provide the

required virtual circuits between users. The

StrataCom cel l switching mechanism adopts a sin

gle-eel I format for the transmission of all types of

information, with each cel l containing addressing

information. Routing tables within the network

nodes use this addressing information to forward

the traffic along the desired virtual circuit . Since i n

a n y particu lar connection the path used for the

sequence of cel ls is always the same, cel l ordering is

maintained. Intel l igent interfaces at the edge of the

network provide the functions required for spe

cific services such as voice and data.

Figure 4 i l lustrates the concept employed by

StrataCom of building service-specific functions on

top of a common cel l switch ing technology. The fig

ure shows examples of various types of external

interfaces.

For the frame relay i nterface, StrataCom sup

ports the optional features defined to address con

gestion. The J PX FastPacket node provides the

optional expl icit congestion indicators defined in

the frame header, which are set based on averaging

queues that build up in the IPX FastPacket nodes i n

the network. Support is also provided for the

optional threshold notification feature defined as

B nFRAME RELAY
I NTERFACE

part of the LMI ; the actual threshold values, together

with buffer configuration, can be configured by the

network manager.

Frame Relay Support in Digital's Family of
Multi protocol Routers

D igital has provided frame relay support i n its fam

i ly of mul tiprotocol routers that employ the OS!
intermediate system-to-intermediate system (IS-IS)
routing protocol . Frame relay user device func

tionality is i mplemented in the DECNIS V2.1 soft

ware for either the DECNIS 500 or the DECNIS 600
hardware units, and i n the DEC WAN router v 1 .0
software for either the DEMSB or the DEMSA hard

ware units.

Part of the development of the frame relay sup

port involved cooperating with StrataCom to pro

duce a working frame relay specification. In

particular, extensions were added to the LM I to pro

vide appropriate congestion control procedures.

Digital 's software supports the Frame Relay

SpeciJication with Extensions, Revision 1 .0, written

by Strata Com and the relevant Ai\ISI TlS l
standards ..'. J .o.s The software has been tested and is

known to be compatible with the StrataCom IPX

FastPacket 16/32 equipment with Frame Relay

I nterface Card Software.

I COMPUTER I nDATA CI RCUIT
MODE I NTERFACE

SERVICE-SPECI FIC FUNCTIONS

1 04

PRIVATE
BRANCH
EXCHANGE

VOICE C I RCUIT
MODE INTERFACE

< >

COMMON CELL SWITCH ING

VOICE C I RCUIT
MODE INTERFACE I DIGITAL I TRANSMISSION

DATA C I RCUIT FRAME RELAY
MODE INTERFACE INTERFACE

ROUTER B
Figure 4 Sample StrataCom Network Configuration

PRIVATE
BRANCH
EXCHANGE

Vol 5 No. I Winter 1993 Digital Technical journal

The DECNIS ami WAJ'lrouter implementations use

the point-to-point protocol (PPP) for the transmis
sion of multiprotocol datagrams over point -to
point l inks. PPP is defined in Requests for Comment

(RFCs) 1331 and 1332, with bridging extensions
specified in RFC 1220; support for DECnet Phase IV
is defined i n RFC 1376 and for osr in RFC 1377 10- 14

Congestion avoidance procedures include support

for both the threshold notification signal in the LMI
(when available) and the FECN. The threshold notifi
cation signal causes the end system to modify its
rate of data transmission. Receipt of a frame with
the FECN bit set causes the equivalent bit in the
network layer PDU header to be set, which in turn
causes the end systems to reduce their offered traf
fic. The BECN and DE bits are never set or examined .

Related Activities
Various committees are involved in activities related

to the frame relay technology. These activities
include standards work, specifications, and efforts
to address technical issues such as interoperabil ity.

Standards

The overall frame relay network architecture is

defined in ANSI TJ. 606, Frame Relay Bea-re-r
Se-rvice-A-rchitectural F-ramewo-rk and Se-rvice

DescrzjJtion. 1 Access is provided by the frame relay
interface, which is defined in various Al'JSI stan
dards for both permanent and switched virtual cir

cuits . ANSI Tl. 618, DSSJ -Co-re Aspects of Frame
P-rotocol fo-r Use with Frame Relay Bea-re-r Se-rvice

contains a definition of the protocol for exchanging

Frame Relay Netwo-rks

frames across the interface, as wel l as annexes
concerned with local management (e .g. , notifica
tion of PVC status) .' Although al l implementations
to date have focused on a PVC-based interface, svc
access is defined in ANSI TJ. 61 7, DSSJ -Signaling
Specification fo-r Frame Relay Bea-rer Service. 8

E ach of these T l S l standards has an equivalent

cenT recommendation, as shown in Table 1 .

Other Current Activities

The Internet Engineering Task Force (IETF) is
developing specifications for RFCs related to
the frame relay technology. A specification called
Multiprotocol Interconnect over Frame Relay
defines an encapsulation mechanism for support
ing multiple protocols over frame relay networks.

To al low use of the simple network management
protocol (SNMP), an experimental management

information base (MIB) for frame relay DTEs is also
under development.

To promote the frame relay technology, a Frame

Relay Forum has been set up in both North America
and Europe. A technical committee bas been estab

l ished to address issues related to the technology in
terms of its interoperabil ity and evolution in multi
vendor environments. This committee actively par

ticipates with the standards bodies and develops
implementation agreements and interoperabil ity

test procedures. Work continues to define a
network-to-network control interface, multicast
ing capabilities, multiple protocol encapsu lation,
and interworking with other technologies, such as

Table 1 Cu rrent Status of Frame Relay Standardization

Standard ANSI Status

Arch itect u re T1 .606 Standard
and SVC
Description

Congestion Addendum Standard
Management to T1 .606
Pri nciples

Data T1 .61 8 Standard
Transfer -
Core Aspects

Access T1 .61 7 Standard
Signaling
for SVCs

Management I ncluded Standard
Procedu res in T1 .61 7
for PVCs Annex D

Digital Technical Journal Vol. 5 No. 1 Winter 1993

CCITT Status Remarks

1 .233 Standard Replaces 1 .222

1 .370 Standard

0.922 Standard Most important
(Annex A frame relay
corresponds standard
to T1 .61 8)
0.933 Stan dard

I ncluded Standard Concepts
in 0.933 accepted
Annex A i n CCITI

1 05

DECnet Open Networking

the switched multimegabit data service (SMDS)
defined by Bell Communications Research, Inc. 1 '

The ce l l swi tch i ng adopted by StrataCom within

their network is expected to change over t ime to
conform with emerging CCITT recommendations

f()r broad band ISDN J6 These recommendations

cover asynchronous transfer mode (ATM), which

defines a standard ce l l structure and ATM adaptation

layers (AALs) for particular higher-level functions.

Summary
Frame relay is a s impl ified form of packet-mode

swi tching that, at least in theory, provides access
to h igh bandwidth on demand, d i rect connectivity

to a J I other points in the network, and consump

t ion of only the bandwidth actually used . Thus,

to the customer, the frame relay technology offers

a red uction in the cost of transmission l i nes
and equipment and improved performance and

response t ime.

Rou ters connected to a frame relay network can

consider the mult iplexed , PVC interface as a set of

point-to-point I inks. The special characteristics of a

frame relay network require that special care be

taken i n selecting the data l in k protocols and in
hand I ing congestion.

Acknowledgments
The authors than k StrataCom, Inc. for provi ding

sign ificant input on cell switch ing technology and

its use in t heir I PX FastPacket equ ipment. The

authors would also l i ke to acknowledge Cl iff

Didcock of the Computer Integrated Telephony

Development Group who consu l ted in Digita l 's in i

t ia l frame relay implementation .

References

1 . ANSI TJ. 606: Frame Relay Bearer Serl'ice
Arc/.Jitectural Framework and Seruice
[)escriptimz (New York: American National
Standards Institute, Inc . , 1990).

2 . CUTT Recommendation X.25: InteJfa.ce
between Data Terminal Equipment (DTL)

and Data Circuit-terminating Equipment

(lXI:) for Tenninals Operating in the Packet

/Vlode and Connected to Public Data Net
tmrks !Jy Dedicated Circuit (Geneva: Interna

tiona l Telecommunications Union, 198R).

3. Fmme Relay ,�jJecijication with Extensions,
Ret • ision 1 0, C isco Systems, Digital Equ ip

ment Corporation, Northern Telecom. Inc . ,

and StrataCom, Inc. (September 1990).

[()(i

4. ccrrr Recommendation V35: Data Tmns
mission at 48 Kilobits per Second U�ing

60- 108 kHz Group Band Circuits (Geneva:

International Telecommun ications Union,

1976)

'5. ANSI T/. 618: DSS1-Core Aspects of frame

Protocol for Use with Frame Relay Bearer
Seruice (New York : American National Stan

dards Institute, Inc . , 1990).

6. CC./7T Recommendation Q.922: ISDN User

Network Interface Layer 3 Spenfication for
Basic Call Control (Geneva: I nternational

Telecom munications Union, 1991).

7. COTT Recommendation Q.931: ISDN Data

Link Lc�ver Specification for Frame Mode

Bearer Services (Geneva: Internat ional
Telecommunications Union, I991).

8. ANW Tl. 61 7. DSSJ -S(!{naling Speetficatiun
j()r Frame Relay Bearer Service (New York:
American National Standards Inst i tu te , I nc . ,

1990).

9. CC/Tf' Draft Recommendation Q. 933: ISDN

Signalling Specification for Frame Mode
Bearer Services (Geneva: International

Te lecomm u n ications Union, 1991).

10. Point-to-Point Protocol for the Transmission

of fi!Iulti-protoco! Datagrams over Point-to

Point Links, I n ternet Engineering Task Force
RFC 1 331 (May 1992).

1 1 . The PPP Internet Protocol Control Protocol

(JPCP), Internet Engineeri ng Task Force RFC

1 352 (May 1992).

12 . Point-to-Point Protocol EYtensiunsfor Bridg
ing, I nternet Engineering Task Force R.FC 1220

(Apri l 1991) .

13 . PPP DECnet Phase w Control Protocol

(JJNCP) , Internet Engineering Task Force RFC
1 376 (November 1992) .

14. PPP OS! Network Layer Control Protocol (OSI

NLCP), Internet Engineering Task Force RFC

1377 (November 1992).

1'5. Betlcore TR-TS V-000772, Generic System
Requirements in Support of Switched Multi

Megabit Data Seruice, Bel l Communications

Research, Inc. (May 1991) .

16. CCJ7T Drajt Recommendation I. 121: Broad
band Aspects of ISDN (Geneva: I nternational
Telecommunications union, 1991) .

�-bt. 5 No. I Winter /'J')3 Digital Technical]ourual

David C. Robinson
Lawrence N. Friednum

Scott A. Wattum

An Implementation oft he OS/
Upper Layers andAppUcatUms

Above the transport layet; the open systems interconnection (OS!) basic reference

model describes se1'eral application standards supported by a common upper lCf:)'er

protocol stack. Digital's high-performance implementation of the upper layers of the

protocol stack concentrates on maximizing data throughput while minimizing con

nection establishment delay A n additional benefit deriued from the implementa

tion is that; for· normal data exchanges, the delive1y delCf:J' is also minimized. The

implementation features of Digital's two 051 applications-file transfer, access, and

management (FTAt'vf) and virtual terminal (VT)-include the use of common code

to facilitate portability and efficient buffer management to improve performance.

The open systems i nterconnection (OSI) basic

reference model defined in the International

Organization for Standardization standard ISO 7498-1
specifies a l:lyered protocol model consisting of

seven layers. 1 By convention, the first four layers

physica l, data l i n k , network. and transport-are

referred to as the lower layers 2 These layers pro
vide a basic com munication serv ice by rel iably

transferring unstructured user data through one or

more networks. The remaining layers-session,

presentation, and appl icatio n-build on the lower

l ayers to provide serv ices that structure data

exchanges and maintain information in data

exchanges to support d istributed applications .

These three layers are known c o l lective ly as the

upper layers.

This paper first gives an overview of the OS!

upper layers and of two application standards-file
transfer, access, and management (FfA.M) and virtual

terminal (VT). The d iscussion that fol lows concen

trates on the features of D igita l 's implementation of
the upper layers and the two appl ications, with
emphasis on novel imp.lementation approaches.

Summary of OS/ Upper
Layer Standards
The appl ication-independent parts of the OSI upper

layers are defined in the fol lowing standards:

• ISO 8326 and ISO 8327-Session Connection

Oriented Service and Protocol

• ISO Hb'22 and ISO 8823-Presentation Connec
tion Oriented Service and Protocol

Digital Technical journal lkJI. 5 No. I Winler JY9.>

• ISO 8824-Abstract Syntax Notation One (ASN . I)
• ISO 8825-Basic Encod ing Ru les (BER)
• ISO 8649 and ISO 8650-Association Control

Service E lement (ACSE)

This section gives an overview of the serv ices
defined in these standards. The later sections File

Transfer, Access, and Management Implementation

and Virtual Terminal Implementation discuss two

appl ication-specific standards.

Session Layer

The transport layer service faci l i tates the exchange

of u nstructured bytes (i .e. , octets) of data. How

ever, exchanges between components of a d istrib

uted appl ication are often structured. The function

of the session laye r is to standardize some of the
common exchanges by supply ing serv ices that add

structure to the transport layer exchanges.

The session-connection-oriented service has the
three phases typical of a l l connection-oriented ser
vices: connection establ ish ment, data transfer, and
connection release. All structuring of the data

exchanges occurs in the data transfer phase and is
accompl ished by using ei ther tokens or synchro
n ization . Hence, the connection establishment and

release phases are not d iscussed further in this

paper.

Tokens are used to control which peer session

user of a session connection is permitted to invoke

a particular service or group of services. The

sess ion layer a lso provides services to exchange

1 07

DEC net Open Networking

tokens between peer session users. There are tour

types of tokens.

1 . Data , for control l ing half-duplex data exchanges

2. Release, for contro l l ing which session user can

initiate the release of a session connection

3. Synchronize-mi nor, for controll ing the issu ing

of the minor synchronization service

4. Major/Activit}', for contro l l ing the issui ng of

major synchronization and activity services

For example, when the data token has been nego
tiated on a session connection, sess ion data can be

sent only by the end that cu rrently has the token .
Exchanging the data token between t h e session
users provides a half-duplex data service.

The data transfer phase provides synchroniza
tion by al lowing session users to insert major and

minor synchron ization points into the data being
transmitted . Optional ly, each direction of flow can

have its own set of synchronization points.
Figure 1 i l lustrates a data exchange structured as

a single dialog unit. A dialog unit begins at a major
synchronization point and terminates either at a
new major synchronization point or by the release

of the session connection. Further structure is pos
sible within the dialog unit by inserting minor syn
chronization points.

The session synchronization services al low
appl ications to insert synchronization points into
their data exchanges. These points are appl ication

specific. The session service a lso provides a resyn

chronization service to a l low a session user to
request irs peer to resynchronize to an earl ier
synchronization point, for example, to a previous
point in a file transfer.

Activities provide an additional structuring ser
vice. An activity represents a l ogical piece of work.
At any moment in time, there is at most one activity
per session con nection. However, several activities
can exist during the l ifetime of a session connec
tion, and an activity can span session connections.
The synchronization services can be used with
activities services.

1...------- DIALOG UNIT ------+

MAJOR

1 08

MINOR MINOR M INOR MAJOR

Figure 1 Data Exchange Structured
as a Dialog Unit

Presentation Layer

Different computer architectures and compi lers
use different internal representations (i .e . , con
crete syntax) for data values. Therefore, conversion
between representations is necessary when com
mu nicating between dissimilar arch itectures. The
intent of the presentation layer is to a l low com mu

nicating peers to negotiate the data representation
to be used on a presentation connection.

The presentation standards, ISO HH2 2 and ISO

8823, distingu ish between abstract syntax and
transfer syntax. Abstract syntax is the definition of
a data type independent of its representation.

Typica l ly, data types are defined using the ASN.l

standard , ISO 8824, which was developed for this
purpose. ASN . l bas a number of primitive data
types, including INTEGER, REAL, and BOOLEAN , as wel l as
a col lection of constructed data types, includ ing sn
and SEQUENCE O F . These primitive and constructed

data types can be used to define the abstract syntax
of complex data types such as appl ication protocol
data units.

A transfer syntax is the externa l com mu nication
representation of an abstract syntax. Values from
the abstract syntax are encoded according to the
ru les defined in the transfer syntax. A common way
to define a transfer syntax is in terms of encoding
ru les. For example, these ru les may indicate how an
INTEGER value is represented or how to encode a
SEQUENCE OF data type. A widely used transfer syntax
is the basic encoding rules specification, ISO 8b'25.

An abstract syntax can be encoded using differ
ent transfer syntaxes, of which there are many. The
role of the presentation layer is to negotiate the set
of abstract syntaxes to be used on a particu lar pre
sentation connection and to select a compatible
transfer syntax for each of these abstract syntaxes.
This process ensures that both peers agree on the
data representation to be used in data exchanges.

Application Layer

The appl ication layer supports distributed interac
tive processing, that is, the communication aspects
of distributed appl ications such as FlAM (defined
by ISO 8571), directory serv ice (defined by ISO

9594), and VT (defined by ISO 9040 and ISO 9041).
Unlike for the session and presentation layers,
nu merous appl ication l ayer protocols and serv ices
exist-at least as many as t here are d istributed
applications.

The appl ication layer structure specified in
ISO 9545 defines a model for combining these

Vol. 5 Nu. I \Vinter 199.1 Digital Technical journal

A n Implementation of the OS! Upper Layers and Applications

protocols in the same system. The fu nctions for a

particular appl ication are grouped together to form
an application serv ice e lement (ASE). FTAJ\'1, VT, and

d i rectory service are examples of ASEs and are the

basic bui ld ing blocks of the appl ication layer. One

or more ASEs are combi ned to form an application

entity (AE). An AE represents a set of com munica

tion resources and can be thought of as a program

on a disk. An invocat ion of an AE (i .e . , execution of

the program) can contain one or more i nstances of

an ASE with one or more application associations,

i .e . , application layer connections. The AE speciJica

tion al so defines the ru les for i nteraction between

ASEs operating over the same association as wel l as

interac tions between associations.

An ASE required by all appl ications is cal led the

assoc iation control service eleme nt (ACSE). The

ACSE, defined by ISO 8649 and ISO 8650, i s the ser

v ice and protocol requ i red to establ ish an appl ica

tion association . Therefo re, an AE always contains

at least the ACSE.

An appl ication association is mapped onto a pre

sentation connection; no other application associa

tion can share this presentation connection. In this

way, appl ications ga i n access to the presentation
and session data phase services.

New OS/ Upper Layer Implementation

Digital 's implementation of the OS! upper layers,

namely OSAK, i ncl udes session, presentation, and

ACSE services. Users of OSAK can thus establ ish

appl ication associations and use session and pre

sentation services du ring the data transfer phase.

Aims
In 1988, when Digital decided to produce a new

version of OSAK, three aims were considered

paramount: h igh pertormance, m a i ntainabi l ity, and

portabi li ty.

Performance High performance of the OS! upper

layers is essential to prod ucing competit ive OS!

products. Because a l l OSI appl ications use these

upper layers, the performance of OSAK affects these

appl ications. Therefore, OSAK aims to ma xim ize

data throughput and to mi nim ize connection estab

l ishment delays. Th is i mproved perfor mance is

ach ieved by maximizing the use of the communica

t ion pipe and m i n i m izing the local processing

requirements. The process involves

Digital Technical]our·rwl H1l. 5 No. I Winter 199.)

1 . Ama lgamating upper layer state tables. The ser

vices provided by the presentation and session

layers are similar. Also, connection establ ish

ment a nd release i n the ACSE is basical l y the same

as in the other two upper layers. Therefo re, the

three state tables can be combi ned i nto a single

state table, thus improving performance by

red uci ng the overhead . This amalgamation el im

i nates the need to ma nage l i nks between state

tables, requ ires all predicates to be tested in only

one place, and generates only one state transi

tion or action per i nbound event.

2. Treating the presentation service P-DATA as a

special case. The presentation service P-DATA

is the most frequently used service, and hence,

its performance has the greatest i mpact on data

t h rough put. By fast- laning the processing of the

P-DATA service, the normal overheads associated

with the combined state table p rocessing are

avo ided .

3. Good bu ffer management. The new appl ication

programming interface (API) to OSAK enables

efficient use of bu ffers. We el imi nated a l l copy

i ng of user data within OSAK by taking advantage

of user bu ffe rs. On an outbound service, an

OSAK user is requested to leave space at the start

of the user data . If there is suffic ient space, we

add the OSI upper l ayer protocol control infor

mation (PCI) to the user bu ffe r. This bu ffer is

tl1en sent to the transport provider. Otherwise,

we al locate an OSAK-specific bu ffe r using a user

suppl ied memory a l location rout ine.

Before receiving an in bound service, the user

m ust pass at least one user bu ffer to OSAK. Th is

bu ffer is used to receive the inbound transport

event (both user data a nd upper l ayer PC!) . The

upper l ayer PCl is decoded before the user

bu ffers are returned. In addit ion to bei ng

extremely efficient, this approach has the advan

tage of al lowing OSAK users to exert i nbound
flow control; if OSAK is not given any bu ffers, no

transport events will be received. Al so, th is buf
fering scheme si mpl ifies resource ma nagement

in OSAK. As OSAK does not have any of its own

resources, they a l l come from OSAK users. One

OSAK user cannot interfere with the operation of

another OSAK user by consuming all OSAK

resources.

4. Parsing only the upper l ayer headers. The pre
sentation layer standards model the m apping

1 09

DECnet Open Networking

between concrete (internal) a nd transfer (exter

na l) representa tion of data values. In particular,

the presen tation state tables con tain predicates

to verify that a l l user data is from a current pre

sentation con text. Since the best place for

encoding ami decoding is i n the appl icat ion

itself, OSAK does not implement these predi

cates. Hather, OSAK assumes t ha t i ts users have

correctly encoded their own p rotocol and w i l l

detect a n y problems when decod ing.

5. Trading memory for performance. AJI encoding

and decoding of upper layer PCI is done with

in- l ine code. More compact coding is possible

using subroutines but at the cost of performance.

6. Mini mi zing pa rameter checking. Most parame

ters are poi nters to user buffers. To check the

va l id i ty of a l l pointers is t ime- consu mi ng and,

consequen tly, costly. Therefore, OSAK assumes

that the poi nters do indeed point to t he user's

memory.

Maintainability The code for t he new ve rsion of

OSAK is easier to maint ain than the previous code.

As stated earl ier in this section, a major step i n

improving the maintainability was the use of amal

gamated state tables. A s ingle state table e l iminates

l i nks between tables, reduces the amount of main

tenance required , and thus s imp l ifies the code. In

add ition, using a s i ngle table makes it easier to seri

al ize events. With mult iple state tables, an inbound

transport event can trigger a confl ict ing state

cha nge in the session state table at the same t ime a

user request is changing the presentation stare

table. Usi ng a single state table for a particu lar con

nection ensures that only one event (i .e . , either a

user or a transport event) is active in the state table

at any given time.

The state tables are written in M4 macroproces

sor notation. Thus, the OSAK state table defi n it ion

is similar to an OSI protocol specification ; this

improves readabi l i ty. Macros are al so used exten

sive ly to hand le common bu ffe r manipulat ion and

the encode and decode fu nctions. Alt hough macros

are preferred over subrout ines to i mp rove perfor

mance, macros can be converted , at the expense of

slower performance, should a more compact ver

sion of OSAK be required.

Portability The new version of OSAK is designed

to facil itate portabil i ty of appl ications using both

the OSAK API and OSAK i tself. The new OSAK API

is designed to be com mon across a l l p latforms

I I 0

and thus ass ists port i ng applications between

platforms. The only major difference between

the versions for the ULTRIX and the OpenVMS

operating systems is the way events are signaled .

The ULTRIX i mplementat i o n supports both a pol l

ing model and an event- driven or blocking model.

With the po! J i ng model , the OSAK user repeated ly

ca l l s OSAK rou tines to test for completion of an

event; the rou tines used are osak_col lect_pb()

or osa k_get_event() . In the blocking model, the

OSAK user blocks awaiting the event, with the

osa k_select() rout ine .

These three routines are avai lable t o OpenV i'vtS

applicatio ns. In addit ion, the OpenVMS implemen

tation supports event notification by asynchronous

system traps (ASTs).

A l so, the OSAK API is similar to XAP, the X/Open

API to the OS! upper layers. To support OSAK on

multiple platforms, as far as p ossible, OSAK code

is common to all platforms. The main differe nces

are the in terface to the transport layer and the

OpenVMS support for ASTs. Over 90 percent of the

code is common to the ULTRJX and the OpenVMS

ve rsions.

Performance Measurements

Two performance metrics, t hroughp ut and connec

tion establ ishment delay, were measured between

two DECstation 3100 workstations connected by a

l ightly l oaded Ethernet communications network.

The DECstarion machi nes were running l ll..TRIX
V4.2 with DECnet-ULTRJX V5.1 . OSAK accessed OSI

transport through the X/Open transport in terface

(XTI) in non blocking mode.

For throughput measureme nts, two programs

were used: an init iator and a responder. The init iator

1 . Establ ishes an association.

2 . Reads the system time.

') Transmits 2,000 buffers of data as quickly as pos

s ible . These user bu ffers conta in suffic ient space

for the upper layer headers. When a send request

fa ils due to flow contro l , the sender waits using

the lJLTRJX system call select(2) unt i l the flow

control is removed. The sender then col lects the

user buffe rs with the osak_col lect_pb() rou tine

before cont inuing wi th the send loop.

4. Reads the system t ime and calcu lates the time

required to transmit the 2,000 bu ffers.

5. Heleases the association.

1-rJI. 5 No. I Winter 1993 Digital Technical journal

A n Implementation of the 0)1 UjJjJer Layers and Applications

The responder

1. Accepts an association request

2. Loops, wait ing for a transport event using the

! J LTRJX system cal l select(2), and then collects

the data using the osak_get_event() rou t i ne

unt i l a l l 2,000 buffers have been received

3. Responds to the request to release the association

Ta ble 1 records the through put measurements

for various buffer s izes ranging from 10 to 16,000

(16K) octets per buffer.

The data presented i n Table I ind icates that for

smal l bu ffers, the throughput is poor. This low per

forma nce is due to the system overhead associated

with processing a send request, in dependent of the

amount of data to be transmitted . However, the

throughp ut rapid ly improves unt i l the bu ffe r size

reaches 4K octets. From this size on, the through

put measurement is a l most flat at between 507K

and 528K octets per second. The variation is due to

fragmentation in the lower layers. The nu mber of

send requests flow controlled represents the n u m

ber of t imes a send request was del ayed because of

flow control by the transport service in the course

of transmitting the 2,000 buffers.

We profiled the init iator and the responder. For

bu ffers ranging in size from 10 to 16K octets, the i n i

tiator spent more than 90 percent of the time in

transport. For t he responder, the percent of t i me

spent in transport varied between 60 percent for

1 0 - octet bu ffers and 92 percent for 8K-octet

buffers. The rema i ning time was spent primari ly i n

select(2), waiting for and processing the next

Table 1 Throughput Measurements for
Digital 's OSI Upper Layer
I m plementation

Number of
Buffer Size Throughput Send Requests
(Octets) (Ki looctets/s) Flow Control led

1 0 6.60 2
1 00 56.80 4
51 2 21 6.00 35

1 ,024 266.60 794
2,048 372.60 862
4,096 453.70 1 '1 51
6,000 507.00 1 ,21 7
8,1 24 528.80 596
8,1 25 507. 1 0 651

1 0,000 527.20 751
1 3 ,000 522.20 1 ,1 01
1 6,000 505.27 1 ,279

Digital Technical Journal Vol. 5 No. I Winter 1993

i nbound even t. A lso, for the smal l buffe rs, a sign ifi

cant amount of t ime is consu med by init ia l izing the

user parameter b.lock before ret urning it to the user.

We also used the throughpu t program to mea

sure the connection establ ishment time. The pro

gram read the system t i me before and after the

association establ ishment phase; the average con

nect ion establ ishment time was 0.08 seconds. In

add ition, tests on the new OpenVMS implemen ta

t ion ind icate that throughput improved two to

three fo ld as compared to the OSAK code in the pre

viously ex isting Open VMS implementations.

Both the throughput and profile data ind icate

that the transport performance dominates the per

formance of OSAK. Therefore, OSAK has met its

design goa l of red ucing the overhead of t he OSI

upper layers to a very l ow level . Meeting this goa l

was necessary because poor OSAK performance

woul d impact a l l OSI appl icati ons supported by

OSAK. While further reductions in overhead are

possible, such savi ngs would be at the expense of

OSl upper .layer functionality.

File Transfer, Access, and
Management Implementation

This section pr >s · n b a s u m mary of the ISO FTA:'vl
standard and deta i l s of Digital 's implementation of

this standard .

Summary of the ISO FTAJM. Standard

ISO 8571 Fi le Transfer, Access, and Management

(FTAM) is a five-pan standard cons isting of a general

i ntrod uction, a defi ni t i o n of the v i rtual file store,

the file service, the fi le protocol defi n i t ions, and

the protocol i mplement ation co nformance state

ment proforma . The I'TA.J'vl sta ndard defines an ASE

for transferring fi les and defi nes a framework for

fi le access and file ma nagement.

Initiator and Re:-.jJoJtder FTA,\1 ser vice ami proto

col actions are based on a c l ient- server mode l . In

the FTA.M standard, the cl ient is referred to as the in i

t iator, and the server is referred to as the responder.

The i n i t iator is responsi ble for starting fi le ser

vice activity and controls the protocol actions that

take pl ace du ring the d ialog (or FlAM association)

between two FTAM appl ications. For example , the

i nitiator has to request that an FTAM association be

establ ished, that a fi le be opened o n a remote sys

tem , and that a file be reacl from a remote system .

The responder passively reacts to the requests of

the peer init iator. The responder is responsible for

1 1 1

DEC net Open Networking

managing the virtual fi le store and mapping any vir

tual file attributes into local fi le attributes.

Virtual File Store Many arch itectures and imple

mentations of file systems exist, and storing and

accessing data can d iffer from one system to

another. Therefore, a mechanism is needed to

describe files and their attribu tes independent of

any particu lar architecture or implementation . The

mechanism used in the FTAM is cal led the virtual file

store. The FTAM v irtual fi le store model consists of

file attribu tes, activity at tributes, file access struc

ture, and document types.

File attributes describe the properties of the fi le,

which include the size and the date of creation.

FI'AM file at tributes also define the types of actions

that can be performed on a file. Read access or

create access are examples of file actions.

Activity attributes are properties of the file,

which are in effect for only the d uration of the FTA.i\1.

associa tion. Examples of activity attribu tes are

current access request, current init iator identity,

and current concurrency control. Current access

request conveys the access control appl ied to the

fi le, e .g . , read or write access. Current in itiator iden

tity conveys the name of the initiator accessing the

virtual file store. Current concurrency control con
veys the status of the locks appl ied by the initiator.

The FTA.i\1. file access structure is hierarchical and

produces an ordered tree that consists of one or

more nodes. This file access structure is defined in

ASN.l and can be used to convey the structure of

a wide variety of fi les.

Tn the FTAM virtual fi le store model, document

types specify the semantics of a file's contents. The

FTA.i\1 standard defines four document types.

• FTA.i\1.-1 , u nstructured text files

• FTAM-2, sequential text files

• FTA.i\1-3, u nstructured binary files

• FTANI-4, sequen t ial binary files

The virtual file store model provides a framework

for defining many d ifferent file types, inc luding

those not supported by the standard ized document

types. The U.S. National I nstitute of Standards and

Technologies (NIST) has used the virtual f i le store

model to define document types to support various

file types, such as indexed files.

FTAM File Service The FTA.M file service is a func

tional base for remote file operations. Fu nctionality

defined by the FTAM file service is broken clown

I 1 2

into subsets of related services. The subsets of func

tiona l ity are cal led fu nctional un its. Functional

un its are used by the FTAIV! protocol to convey a

user's requirements. For example, the standard

defines the read functional u nit , which al lows a n

implementation t o read whole files, a n d the file

access unit, which a l lows an implementation to

access records in the file.

In addition, the FTA.i\1 standard defines the follow

i ng classes of fi le service: transfer, management,

transfer and management, access, and uncon

strained . Each service class is composed of a set of

functional units. For example, an FTAM implementa

tion that supports the transfer service class wi l l be

able to either read or write files.

New FTAM Standard Work Modifications to the

FTAIVl standard are in progress in the ISO . The most

important modification is the fi le store m anage

ment addendum, which specifies how wild cards,

file d irectories, and references (l inks) to files are to

be hand led in an OS! environment. The addendum

also specifies how to manipulate groups of files. In

the current version of the standard , only o ne file

can be selected at a time.

Digital's FTAM Implementation

Digital 's FlAM products, avai lable for the OpenVMS

and ULTRIX operating systems, support FTA.M appli

cations i n both the role of i nit iator and the role of

responder. The init iator applications a l low users to

copy, delete, rename, l ist, and append fi les. In the

OpenVMS version, the in itiator applications are

integrated into the Oigital Command Language

(DCL) so that the user can continue to use the

COPY, DELETE, DIRECfORY, and RENAME com

mands. Where the FTA.i\1 service and protocol is

used to support t hese commands, the additional

qual ifier /APPLICATlON=FTAM is required . In the
ULTIUX version, the same fu nctional ity is provided

using the set of commands ocp, orm, ols, ocat,

and omv. These commands have the same seman

tics as the corresponding ULTRIX commands cp.
rm, Is, cat, and mv, respectively, and are similar

to the set of DECnet file transfer uti l ities of dcp,

drm, d is, and dcat . (Note that the set does not

include dmv.)

The responder applications a l low users to cre

ate, read , write, delete, and rename files. File

access, i .e . , the location of specific records in a fi le,

is al so supported by the responder appl ications.

The OpenViVIS responder application supports file

locking and recoverable file transfer.

Vnl. 5 No. I Winter I'J<J.) Digital Techuica/ journal

A n Implementation of the OS/ Upper Layers and Applications

D igita l 's i nitiator and responder applications sup

port the fol lowing FTAM document types :

• FTA.M-1

• FTA.M-2

• FTA.M-3

• NBS-9, FTAM file directory

Programmatic Interface The FTAM A.Pl is com

mon across all platforms and shares a '· look and
fee l " with the OSAK A.PI . The FlAM API al lows access

to all FTAM services and parameters through the

use of a single parameter block and five l ibrary

cal ls.

• osif_assign_port()

• osif__deassign_port()

• osif_getevent()

• osif_send()

• osif_give_buffers()

The FTAM API can be used to create either initiator

or responder applications.

Protowl Gateways Digita l 's FTA.!'vl products sup

port two protocol gateways: an FTAM/file transfer

protocol (FTAM/FTP) gateway is avai l able on the

ULTRIX version, and an FTA.J'vl/data access protocol

(FTAM/DAP) gateway is available on the OpenVMS

version. The FTA!'vi/FTP gateway supports bidirec

tional protocol translation. Files on internet hosts

can be accessed through the gateway using FTAM;

files on OS! hosts can be accessed through the gate

way by using FTP.

Implementation Features Portability, maintain

abi I ity, and performance were the major goals of the

FTAM implementation. To achieve these goals we

1 . Created a common code base. The code is imple

mented using the C programming language. The
FTAM protocol machine and the in itiator and

responder appl ication programs are imple

mented such that a large amount of the code can

be used across multiple platforms. These mod

ules are referred to as common code modules.
Any system-specific code, which represents 90

percent of the code, is placed in system-specific

modules. Al l other modu les are common to both

the ULTRL'C and the Open VMS versions.

Digital Technical]Ottrttal Vol. 5 No. I Winter 1')9)

2. Hid interface dependencies from FTAIYI. To aid in

the porting of code to different platforms, the

FTA.M implementation makes no di rect calls to

system-specific interfaces.

3. Provided good bu ffer management. The FTAM

implementation uses the same buffer manage

ment model � OSAK, described earlier in the sec

tion New OS! Upper Layer Implementation .

Virtual Terminal Implementation

Digital a lso implemented the OS! virtual terminal

appl ication standards. Details of the standards and

features of the implementation fol low.

Summary of the VT Standards

ISO 9040 and JSO 9041 are the two international

standards that define the OSI virtual terminal . ISO

9040 is concerned primarily with specifying a

model for a virtual terminal basic class service; ISO

9041 defines the protocol to be used.

OS! virtual terminal.s are d ivided into five classes,

based on fu nctionali ty. 1

l . Basic-data consisting o f rectangu lar arrays of

characters

2. Forms-data consisting of characters arranged

in fields of variable size and shape, with the

manipulation of content controllable for each

field

3. Text-data representing document structures as

covered by the Office Document Architecture

standards (ISO 8613 series)

4. Image-data representing images composed of

arrays of dots, i .e . , pixels

5. Graphics-data represent ing computer graphics

elements, such as l ines and circles

To date, most of the work within the ISO has con

centrated on the basic terminal class, i .e . , basic

class virtual terminal (BCVT). An OSI virtual termi
nal implementation provides a mechanism that

aJ lows a user to interactively access a nother OSI
system, when not directly con nected to it. Since a

variety of systems and terminals exist that are not

necessarily compatible with each other, the ISO VT

protocol provides a means by which dissimilar ter

minals and systems may interact.

An example of a dissimilar terminal and system

interacting by means of a VT would be the action of

deleting a typed character. Some systems expect

the terminal user to enter the <delete> character

1 1 .3

DECnet Open Networking

as an ind ication of the intent to delete , whereas

other systems may expect the user to enter a
<backspace> character. VT resolves these differ
ences by translating the local action into a virtual

action. The action in our example becomes the
virtual actions of decrementing the current cursor
position and erasing the character at the current
locat ion . A cooperating implementation would
then translate these virtual actions into an appro
priate local action.

The VT protocol is very powerful in the respect

that the protocol definition provides many options
and features that al low the support of complex ter
minal models. During association establ ishment,
cooperating implementations agree on the subset
of the protocol and the terminal model to be used.

The protocol subset and terminal model are
referred to as the profile. In addition, VT provides
two modes of operation: asynchronous (A-mode),

which may be thought of as fu l l-duplex operation,

and synchronous (S-mode), which may be thought
of as half-duplex operation.

The ISO base standards define two basic profiles,
one for each mode. Additional profiles have a lso
been defined (or are being prepared) by the
regional OSI workshops. Currently, the OpenVMS

and ULTRIX implementations of the VT protocol
both support the following profiles:

1 . TELNET-1988, which mimics the basic functional
ity found in the transmission control protocol/

internet protocol teletype network (TCP/IP

TELJ'\JET) environment

2. Transparent, which allows the sending and
receiving of uninterpreted data

3. A-mode-default , which provides basic A-mode
functiona l ity

Digital's VT Implementation

Digital 's VT implementation provides both initiator
and responder capabil ities. In addition to describ
ing the features of the implementation, this section
compares the VT protocol with other network ter
minal protocols.

Initiator and Responder The VT implementation

for both the ULTRIX and the OpenVMS systems pro
vides the capability to act as either an initiator (a

terminal implementation) or a responder (a host
implementation). The initiator is responsible for
establishing an association with the responder
based on information provided by the user, such as

1 1 4

the desired profile. The responder is responsible for
accepting the peer association request and for creat
ing an interactive context for the remote peer user.

On the OpenVMS system, the VT protocol init ia

tor is invoked by the DCL command SET HOST/VTP;
on the ULTRJX system, the VT protocol in itiator is
invoked using the ologi.n command.

Implementation Features The VT implementa
tion uses the OSAK interface out! ined earl ier in the

paper. The goals of the VT implementation were to
provide a high ly portable, very efficient, and easily
extensible code.

To achieve the goal of portabil i ty, the implemen
tation was divided into two major components:

interface to the OS! environment and the non-OSI
interfaces (e.g. , to terminals). The OS! component

is completely portable to mu ltiple platforms. The
non-OSJ component is platform specific and must

be rewritten for each unique platform. The inter
face between these components consists of six
basic functions, which must be supported on all
platforms.

• Attach/detach-to attach and detach the non
OSI environment

• Open/c lose-to open or close a specific connec

tion into the non-OSI environment

• Read/write-to read or write data between the

OS! and the non-OSI environments

Because each function is simple and clearly

defined, the amount of platform-specific code
required for implementation is minimal . For exam
ple, t he read function on the ULTRJX implementa
tion is only 10 l ines of code. The implementation is
therefore highly extensible to different platforms.

Performance of the VT protocol implementation
is enhanced by using preal located buffer pools.
This approach to buffer management el iminates the
overhead of dynamically al locating buffers.

Our VT protocol implementation not only
implements the ISO VT protocol but a lso provides
a gateway to and from other terminal protocol envi
ronments. We provide gateways to TELNET and to
the Local Area Transport (LAT) on both the
OpenVMS and the ULTRIX versions. Jn addition, we
have a VT;com mand terminal (VT/CTERJ\1) gateway

on the ULTRIX version.

Comparison of the VT Protocol with Other
Network Terminal Protocols Most comparisons
with network terminal protocols deal with echo

Vol. 5 No. I Winter 1993 Digital Technical journal

An implementation of the OSi Upper Layers and Applications

response time, that is, how long it takes for a char
acter to echo to a d isplay after being typed a t the
keyboard. YT, l ike TELNET and CTERJVI , can operate
in two different echo modes: remote, where the
echo is achieved by means of the remote host; and
loca l , where the echo is accompl ished through the
local host. A number of factors contribute to

response time in a remote echo situation. including
protocol overhead and l ine speed. TELNET has l it t le
protocol overhead; in fact, for most situations,

transferring normal data requires no addit ional
overhead. VT protocol overhead is approximately

30 to 1 for a typical A-mode profi le, that is, 30 octets
are required to carry 1 octet of user data. VT over
head may seem excessive when compared with

TELNET. However, the VT protocol provides many
addit ional capabi l i ties that TELNET does not, such

as the abi l ity to accurately model d ifferent terminal
environments. Additional ly, the 30 octets of over
head does not increase significantly when larger

amounts of user data are transferred .
The largest gains for the VT are in the area of

S-mode profiles. S-mode profi les enable most char
acter echoing to be done local ly By using an appro

priate S-mode profile, the VT implementation can
provide sophisticated local terminal operations.
Thus, it is possible to edit an entire screen of text
ancl then to transmit it a l l at once to the remote
host. The ability to process large amounts of termi
nal input as batch jobs has many advantages, includ
ing reduced network bandwidth requirements,

reduced CPU requirements of the remote host
(since the remote host is no longer involved in char
acter echo), and i ncreased user satisfaction (since
users experience no network delays for character
echo).

Summary
Goals common to the OSAK, FTAM, ami YT protocol

projects included good performance and portabil
ity of implementation. Performance is especial ly
important for OSAK, because it supports a l l other
OS[applications. Maxim izing the use of common
code and reducing system dependencies in the
three projects significantly reduced the engineer
ing effort to port an implementation from one p lat
form to another. This savings in human resources is
necessary, given the growing set of hardware and
operating platforms supported by Digital . Equal ly
important is the integration of OS! applications with
their non-OSI cou nterparts, for example, the ocp

and ologin functions and the protocol gateways.

Digital Techuicttljournal Vol. 5 No. J Winter 1993

Acknowledgments
The authors wou ld l ike to thank their colleagues for
reviewing previous drafts of this paper. In particu
lar, we wou ld l ike to thank Chris Gunner and Nick
Emery, who were instrumenta l in revising the OSAK

API, and the OSAK team, who converted the

advanced development code into the product.

References

1 .]. Harper, "Overview of Digita l 's Open Net
working," Digital Technical journal, vol. 5, no. 1

(Winter 1993, this issue): 12-20.

2. L. Yet to et a l . , "The DECnet/051 for OpenVMS

Version 5.5 Implementation," Digital Technical

journal, vol . 5, no. 1 (Winter 1993, this issue):
21- 33.

3. P Lawrence and C. Makemson, "Guide to ISO

Virtual Terminal Standards," Information Tech
nology Standards Unit (UK), Department of
Trade and Industry (March 1988).

Genera/References

lnfonnation Processing Systems, Open Systerns

Interconnection, Part 1: Basic Reference Model
(International Organization for Standardization,
reference no. ISO 7498-1 , 1984).

Information Technology, Open Systems Intercon

nection: Connection Oriented Session Service

Definition (International Organization for Stan
dardization, reference no. ISO 8326, 1987).

Information Technology, Open .�ystems intercon

nection: Connection Oriented Session Protocol

Definition (International Organization for Stan
dardization, reference no. 150 8327, 1987).

Information Processing -�)'Stems, Open .�ystems
Interconnection, File Transje1; Access, and Man
agement: Part 1 , General Introduction; Part 2,
Virtual File Store; Part 3, File Service Definition;

Part 4, File Protocol .'ijJecification; and Part 5,
Protocol Implementation Conformance State
ment Proforma (Internationa l Organization for
Standardization, reference no. ISO 8571 , 1988).

information Processing Systems, Open Systems

Interconnection: Seruice Definition for the Associ
ation Control Service Element (International

Organization for Standardization, reference no. ISO

8649, 1988).

1 1 5

DEC net Open Networking

information Processing Systerns, Open Systems

Interconnection: Protocol Specification for the

Association Control Service Element (Interna

tional Organization for Standardization, reference

no. ISO 8650, 1988)

Information Processing Systems, Open 5j,stems

Interconnection: Connection Oriented Presenta

tion Service Definition (International Organization

for Standardization, reference no. ISO 8822, 1988).

Information Processing Systems, Open 5)stems

Interconnection: Connection Oriented Presenta

tion Protocol Specification (International Organi

zation for Standardization, reference no. ISO 8823,
1988)

Information Processing Systems, Open Systems

Interconnection: Spenfication of Abstract Syntax

Notation One (ASN. l) (International Organization
for Standardization , reference no. ISO 8824, 1987).

1 I 6

Information Processing Systems, Open Systems

Interconnection: Specification of Basic .Encoding

Rules for Abstract Syntax Notation One (ASN. l)
(Internationa l Organization for Standardization,

reference no. ISO 8825, 1987).

Information Technology, Open .s:vstems Intercon

nection: Virtual Terminal Basic Class Service

(International Organization for Standardization ,
reference no. ISO 9040, 1990).

Information Technology, Open 5)stems Intercon

nection: Virtual Terminal Basic Class Protocol

(International Organization for Standardization,
reference no. ISO 9041 , 1990)

Information Processing Systems, Open Systems

Interconnection: Application Lc�yer Structure

(International Organization for Standardization,

reference no. ISO 9545, 1989).

Vol 5 No. I lrlirller IYY. J Digital Technical journal

Network Management

Mark W. Sylor
Francis Dolan

David G. Shurtleff

DECnet/051 Phase V incorporates a new network management architecture based

on Digital's Ente1prise Manage1nent Architecture (El11A). The ElltlA entity model was
developed to manage all entities in a consistent manner, structuring any manage

able component regardless of its internal comple.:'(ity. The DNA CMIP management

protocol was developed in conjunction with the model to express the basic concepts

in the entity model. Phase V network management is extensible; the Phase V
management architecture transparently assimilates new deuices and technolo

gies. Phase V was designed to be em open architecture. Management ofDECnet/051

Phase V components is effective in a multi vendor network.

Network management has been an in tegral part of
DECnet since 1976 when Phase I I was cleveloped . 1

Even at that early stage of the DECnet archi tecture,

a n effective management capabil ity was recognized
as an essential part of an organized approach to

networking. Now in DECnet Phase V, the DECnet

network ma nagement architecture has undergone

a major revision based on Digital 's Enterprise
Management Archi tecture (EMA). This paper gives

a n overview of some of the key features and func

t ions of EMA a n d of DECnet Phase V network m an

agement . See the "Overview of D igital 's Open

Networking" paper in this issue for an overview of

the guiding principles, background, and architec
ture of DECnet Phase V2

Our initial work on Phase V indicated that

changes were needed i n the network management

architecture to support the broad range of network

ing functions planned for Phase V First, network

managers wo uld have to be able to manage a l l the

Phase V components i n a consistent man ner. A

method was needed to bui ld Phase V management

components that wou ld give the same general look

and fee l and the same model ing approach to a l l
components.

Seco nd, Phase V network ma nagement would
have to be extensible. The Phase V network archi
tecture was being designed to a ll ow the use of m ul
tiple modu les that would provide the same or

similar services at each layer and to simul taneously

support multiple-layer protocols in a network.

Therefore, we designed the Phase V ma nage

ment architecture to transparently assi m i late new

devices and technologies. Our ma nagement archi-

Digital Technical journal Vr;t. 5 No. J Winter 1993

tecture had to become as extensible as the network

architecture.

F i n a l ly, since Phase V was designed to be an open

architecture, ma nagement of Phase V components

would have to be effective in a m u ltivendor net

work. Our design had to ensure that the abi l i ty to

provide effective management of network compo

nents was independent of the vendors supplying

them.

The individual m anagement mechanisms used in
Phase IV could have been extended to accommo

date all the changes plan ned for Phase V. However,

we fel t i t was time to revisit the basic network man
agement arch itecture to see if we cou ld find a u n i

fied approach that wou ld provide a superior

solution.

Enterprise Management
Architecture
We began our Phase V development project by

exam i ning i n deta i l the requ irements for a new

network ma nagement archi tecture. Our goal was to

design a n open arch itecture that al lowed fo r consis

tent management of an extensible array of network
components in a mult ivendor environment. As we

identified the specific requ i rements t ha t wou ld
have to be ad dressed to meet this goal , we rea l ized
that we had the opportun ity to develop an architec
ture that went beyond ma nagement of Phase V net

works. We real i zed that we could provide an

arch itecture fo r the ma nagement of both networks

and systems. The arch i tectu re eventual ly became

known as the Enterprise Management Architecture

or EMA.

l l 7

DECnet Open Networking

Early in the project, we recognized that the con

ceptual separation of manageable components

from the software that manages them was a funda

mental design principle. EMA therefore d ist in

guished entities, the basic components of the

network that had to be managed, from directors,

the software systems and accompanying applica

tions used by managers to manage the components,

as shown in Figure 1.
formal ly, an entity was further spl it into a ser

vice element, a managed object, and an agent. The

service element is the portion of the entity that per

forms the primary function of the entity, e .g. , a data

l in k layer protocol module whose primary purpose

is communication with a peer protocol module on

another machine. The managed object encapsu

lates the software that implements the functions

supported by the entity for its own management.

For example, it responds to management requests

for the current val ues of state variables or to

requests for the values of certai n configuration vari

ables to be set to new values. The agent is the soft

ware that provides the interface between the

director and the managed object. The agent encodes

and decodes protocol messages it exchanges with

the d irector and passes requests to and receives
responses from the managed object.

Informally, we general ly equate the m anaged

object and the entity because the managed object

defines what the manager can monitor and control

in the entity.

A d irector was modeled as a layered software

system that provides a management-specific envi

ronment to management appl ications. A director

was spl i t i nto a framework, a management i nforma

tion repository (MIR) , and separate configurable

software modules cal led management modules.

The director kernel provides common routines
usefu l for the layered software modu les, includ ing

I

/
/

/

� - - - - - - - - ·
I KNOWLEDGE, I
I POLICIES, AND
I PROCEDURES 1
1 - - - - _ _ _ J

0
DIRECTORS

MONITOR

ENTITIES
CONTROL

MANAGEMENT
MANAGER PROTOCOL

I I S

Figure 1 The Basic Entity/Director Split

services such as d ispatch (location-transparent

exchange of management requests and responses

with enti ties), encoding/decodi ng, data access,

data dictionary access, and event management.

Taken together, the director kernel and the agent

provide a framework for managed objects and man

agement appl ications to interact. The framework

provides a n application programming interface

(API) to managed object and management module

developers. The MIR contains data about particular

ent i t ies as wel l as information about the structure

and other properties of entity c lasses, which the

director software also knows.

Management modu les were d ist ingu ished as

presentation, function, or access modu les. Presen

tat ion modules implement user or software access

to the d irector management modu les that is device

i ndependent and style dependent. Function mod

ules provide value-added management functions

that are partially or completely entity indepemlent,

such as network fau l t diagnosis, event or alarm han

d l i ng, or h istorical data record ing. Access modules

provide a consistent in terface to the basic manage
ment functions performed by entities. In add ition,

they i nclude one portion that maps operations on

entit ies i n to the appropriate protocol primitives

and another portion that i mplements the protocol

engine for the relevan t management protocol.

Figure 2 shows t he components of a director and

an entity.

Although users can conveniently interact with

systems through graphical user in terfaces (GU!s),

sophisticated users wished to preserve a command

l ine i nterface (CLI) they cou ld use to specify com

plex management requests quickly. Therefore, we

� - - - - - - - - � - - - - - - - -1 MANAGING SYSTEM I MANAGED SYSTEM

I I
I MANAGEMENT I
I MODULES I
I

(APPLICATIONS) I
I API I API

MANAGED
OBJECT

1-r-:::_-:::_-:::_-:::_-:::_-:::_ -:::_ � _ - _r_
-

_

-

_

-

_

-

_

-

_

-

_--:;
I I FRAMEWORK I
I I DIRECTOR �GENT I
I I KERNEL MANAGEMENT I

I I PROTOCOL I I M I R M I R I
I I I I
� �������J - - c-:::_-:::_-:::_-:::_-:::_-:::_-:::_ J

Figure 2 A Framework View ofEMA

Vol. 5 No. 1 lfiiuler 1')93 Digital Tecbnical jourua/

developed a single, extensible command language

that would a l low human operators or software pro

grams to communicate requests to management

modules and (u lt imately) entit ies in a consistent

fashion. This work developed into the network

control language (NCL). An NCL command specifies

an entity, an operation to be performed by the

entity, a l ist of arguments (if any), and a l ist of qual i

fiers (for specifying users, passwords, paths, fi l ter

ing values, etc.).

Digital 's DECmcc Management Director is an

implementation of an EMA d irector.' The DECmcc

product provides a platform for the development of

new management capabil it ies and offers specific

Phase V management capabi l it ies as we l l as a num

ber of generic net'work management tools. The

DECmcc director supports both GUT and NCL CLI

user interfaces.

Entity Model

To manage a l l entities i n a consistent manner, we

required a single, consistent method for structuring

any m anageable component (regard less of its inter

nal complexity) and for describing its management

properties: the operations that it can perform, the

variables it makes available for its management, the

critical occurrences it can report to managers, etc.

The El'vlA entity model was developed to answer

these needs. The structure of a manageable compo

nent in this model is shown in Figure 3. Essential ly,

the entity model defines techniques for specifying

an object-oriented view of an entity. Each entity has

the fol lowing properties:

• A position within an entity h ierarchy. To ease

management of networks with large numbers

OPERATIONS

NOTIFICATIONS {

l SERVICE
THE ENTITY
PROVIDES

CREATE A MANAGED OBJECT
AND DELETE (ENTITY)

GET

D AND SET I ATIRIBUTE

ACTIONS

EVENT
BEHAVIOR

REPORT

Figure 3 Structure of a Managed Object

Digital Technical Journal Vol. 5 No. 1 If/inter 1993

Network Management

of complex components, entity classes are orga

nized into logical structures that reflect the rela

tionsh ip of their corresponding components;

individual. entit ies are named in terms of that

structure. The name of the top- level entity

in each structure is global ly un ique, and i t is

referred to as a global entity. Al l i ts child entities,

however, have names that are unique only within

the context of their level in the structure.

Therefore, they are referred to as local entities.

• A h ierarchical ly structured name. An individual

entity's local name is constructed by concatenat

ing its class name to its instance identifier. The

class name is a keyword that uniquely identifies

the class (object type) of an entity. The instance

identifier is the value of an identifying attribute

used for naming i nstances of the entity's class,

for which each instance of the class has a unique

value.

A target entity's globa l ly unique name is con

structed by concatenating its local name

(a <class name, instance identifier> pair) to the

local names of each of its ancestors in turn,

beginning with the containing global entity and

ending with the target entity's immediate

parent. The construction of an entity's name

and the containment h ierarchy are shown in

Figure 4.

• A col l ection of i nternal state variables, cal led

attributes, that can be read and/or modified as a

result of management operations. At tributes

have names unique within the context of the

entity. Attributes have a type that defines the val

ues the attribute can have.

• A col lection of operations that can be per

formed by the entity. Operations al low man

agers to read attributes, modify attributes, and

perform actions supported by the entity. Actions

are entity-specific operations that resu l t in

changes of state in the entity or cause the entity

to perform an operation that has a defined

effect.

• A col lection of events that can be reported asyn
chronously by the entity. An event is some nor

ma l or abnormal condition within an entity,

usua l ly the resu l t of a state transition observed

by its service element or its agent. Event reports

are sent asynchronously to the manager; they

i nd icate the type of (enti ty-specific) event that

occurred and may also contain arguments that

1 1 9

DECnet Open Networking

NODE DEC UK REO MARVIN

CLASS NODE
NAME = DEC . U K. REO. MARVIN
STATE = ON

. . .

I
•

t NODE DECUK.
OSI TRANSPO

REO.MARVIN
RT

CLASS OSI TRANSPORT
CLASS ROUTI NG MAXIMUM WINDOW = 32

. . . l NODE DEC: .UK.
OSI TRANSPOR

REO.MARVIN
T PORT %X01 75A8D9

CLASS PORT
NAME = %X01 75A8D9
PROTOCOL CLASS = 4

Figure 4 k/anaged Object Naming Hierarchy

further describe or qualify the event. For exam

ple, arguments could indicate the n umber of

times the event occurred before a report was

sent to announce that a threshold was reached,

or give the old and new states in an event that

reports a state transition.

• A specification of the behavior of the entity in

relationship to the functions that the entity's ser

vice element provides. This is usua l ly specified

as some abstract state machine, through pseudo

code, or as a set of preconditions, postcondi

tions, and i nvariants.

The entity model provides specific requirements

and recommendations about the way entities can be

modeled in terms of these properties. These restric

tions, placed on entity class definitions for p urposes

of both interna l and global consistency, take several

forms: (1) restrictions on the types and ranges of
attr ibutes that can be used for various purposes

(e.g. , as identifying or counter attributes); (2) con

strain ts on operations (e.g. , examine operations
can have no side effects on the value of attributes

whose values they report); or (3) restrictions on

events (e.g . , all events and event reports must have

an associated time stamp and u nique identifier).

Readers famil iar with open systems interconnec

t ion (OSI) management wil l find the entity model

very similar to OSI 's structure of management infor

mation (SMl) standard:'' This is no coincidence.

Duri ng the early development of Phase V and the

entity model, we recognized the need for an open

management architecture. Portions of the techno!-

1 20

ogy were therefore contributed to JSO/IEC JTC 1

SC2 l/WG4, a working group of the International

Organization for Standardization (ISO) that is

responsible for efforts to define standards for OSI

management. Al though some details of OSI SM I and

the corresponding EMA features diverged sl ightly

from each other dur ing their evolution, the EMA

entity model ancl OS! SMI are sti l l compatible. At this

writing, work is u nder way to al ign certain parts of

the EMA entity model with the final in ternational

standard (IS) versions of OS! SMI .

Entities

The EMA entity model describes how to specify the

management of an architected subsystem. How

ever, for Phase V, we chose to make the manage

ment specification of a subsystem a part of the

subsystem's specification. As described in the

Modu les section, that may have been the most

important decision made in the network manage

ment architecture.

As the entit ies for DECnet/OSI Phase V were
defined, a collection of fol klore grew on how typi

cal design issues cou ld or should be solved. As with

any fo lk lore, these guide l ines were passed from

one architect to another, either verbal ly, or as
selected portions of the management specifica

tions were copied from one subsystem to another.

This fol k lore is continua l ly changing, as new and

better solutions are found. Much of the fol klore has

al ready been described 6 Some other guidelines are

described below.

Vol. 5 No. I Winte-r 1991 Digital Techllical jour11a/

The Network Management Specification

describes the central str ucture of Phase V network

man agement, and in particular defines the node

entity class .- In the fol lowing sections, we describe

the properties of the node entity class and, as a

representative example, the OSI transport module

entity class.

Node Entity Class
A single computer system in the DECnet/OST

network is cal led a node. The bounds of that system

depend on the system's architectu re ; a personal

computer (PC), a s ingle-processor workstation, a

multiprocessor mai nframe, a diskless system, even

a VAXcluster system can be considered a single

node. Nodes are modeled by the node entity class.

A node entity has only a few functions in

management.

• A node is a global ent ity that is the parent fo r

many subsystems and provides an agent for a l l of

them.

• A node has an identity, a name, and an address

that al low it to be managed remotely.

• A node plays a major role in system in i t ia l ization

and starr-up.

Identity

The fol lowing attributes ident ify a node:

• An address, the application layer a<id ress(es) of

the node's agent

• A name, a DECdns ful lname as defined by the

DECnet/OSI distribu ted name serverH

• A synonym, a Phase IV -style node name for back

ward compatibi l ity

• A spat ia l ly u n ique iden tifier (I D), a 48-bit quan

t ity used as a n Institute of Electrical and

E lectronics E ngineers (IEEE) H02 local area

network (LAN) or Ethernet address

• A space- and time-u n ique value

A node's address is the application l ayer

add ress(es) of the node's agent . The DECnet/OSI
network su pports mul tiple protocols at any of the

seven layers, and the agent can operate over m u l t i

ple protocol stacks. Each protocol has its own

addressing conve ntions. Thus a node's address is

actual ly a ser of protocol towers. Each tower

defines a sequence of protocols, each with its asso

ciated addressing information. A protocol tower

Digital Technical joul-uaf Vol. 5 No. I Wi11ter 1993

Network 1l1anaf,ement

provides a l l the information needed by a director to

con nect to the node's agent and to issue manage
ment d i rectives to the node or any of i ts chi ldren.

Users and network managers rarely refer to

nodes by their addresses. First , it is d i fficu lt to

remember the addresses and second, moving the

node from one place to another in the network gen

era l ly changes i ts address. Thus each node has a

name, a DECdns fu l l name. The node knows its name

and address. Each node's name is stored as a DECclns

ent ry, and one of the entry's DECdns attributes

holds the node's address. Thus, any director can

look up the node's name in the DECdns and the

address associated with it, and then use any one of

the towers to connect to the node's agent.

To ensure backward compatibi l ity with DECnet

Phase rv, a node also has an attribute cal led its syn

onym, which is a sb;-character, Phase l V -style node

name. If a node has a synonym name, that name is

entered in a special d irectory in the DECd ns name

space as a soft l i n k to the node's Phase V name. A
soft l i nk is a form of al ias or indirect poin ter, from

one name to another, that a l lows an en try to be

reacJ1ed by more than one name.

Each network l ayer address of the node (a node

can have more than one) is encoded in a standard

way as a soft l i nk to the node's name. This a l lows a

manager (or director) to translate a node address

i nto the equ ivalent node name, making many diag

nostic problems much simpler.

D ECnet/OSI i ncludes many features that a l low

most nodes to au toconfigure their addresses.

Network layer addresses consist of an area address

and a 48-bit ID . This ID can he obtai ned from an I D

read-only memory (ROM) chip o n many dev ices (for

exa mple, each Digital 802 3 LAN device has one).

End nodes detect area addresses from messages
sent by the routers adjacent to the end node.

Higher-level addresses used by management are

architectura l l y defined constants.

Managers and users choose the name and syn

onym of a node. The manager u ses the rename

action to tel l the node its name. Rename is an exam

ple of a situation in wh ich an action is more appro
priate than a set operation. Renaming a node is a

fairly compl icated operation. Not only is the name

attribute changed, but also the information is stored

in the DECd ns name space. Although the operation

can fa il in many ways, actions a l low errors to be

reported to the manager with enough detail on

what went wrong to a l low corrective action to be

taken . This is not easi ly done with a set operat ion.

1 2 1

DECnet Open Networking

One of the more d ifficult configuration prob

lems to track down occurs when two nodes in a

network have e ither the same nam e or the same

address. DECnet/OSI has several management fea

tures to prevent this from occurring or to detect the

situation when i t does occur.

First, each node has a spatially u n ique 48-bit I D ,

i . e . , n o two nodes i n the enterprise have the same

ID at the same time. The l D is usual ly derived from

an ID ROM chip in a LAN adapter. Special manufactur

ing procedures ensure that no two 11) ROMs hold the

same !D. Nodes with mu ltiple ID ROMs, for example

a router with two Ethernet interfaces, choose one

with a simple a lgorithm. Nodes without an ro ROM
must be assigned an JD when the system is first

booted , and that ID must come from the loca l ly

administered I Ds. However, an ID is not a lways tied

co the same node. Hardware devices can be

removed from one machine and inserted in another.

Indeed, this is a common diagnostic procedure.

Second, each node has a space- and t ime-unique

value provided by the unique identifier (UID) ser

vice. U ! Ds combine a spati a l ly u nique ID with a t i me

stamp in such a way that no two generated U ! Ds

w i l l ever h ave the same value 9 The U I D is stored in

nonvolatile storage (if the node has some), so the

UID remains constant across system reboots. Nodes

without nonvolatile storage w i l l generate a new

UID on every reboot.

Third, a change in the name, address, I D, or U I D

attributes is reported b y t h e n o d e a s an event,

which a ids in detecting dupl icate node names and

addresses. Two nodes can end up with the same

name when the disk where a node stores its system

image, name , address, and UID is copied, and then

the copy is booted on another machine. When the

disk is booted on the second m achine, that

machine wou ld have a differe nt l D ROM . The node
would detect that its I D is d ifferent, and thus an

event would be generated. The event would not

prevent the duplicate node from booting, but it
would al low the m anager to detect that a dupl icate

node may be on the network.

Start-up

A node is responsible for system start-up. We model

start-up through fou r states.

• Dead , when the node is clown and requ i res man

ual in tervention to start.

• Booting, when the node is in the init ial stages of

software start -up. The booting process is h ighly

system specific and may be i n i tiated by hare!-

1 2 2

ware, by software, by a power fa ilure, or by

a manager's console request. Booting loads a
system image, starts it running , and b r i ngs i t to

a known state. The system image can be loaded

from a d is k or equ ivalent storage, or it can be

loaded over the network using the m a intenance

operations protocol (MOP) clown - l i ne load pro

tocol. 10 MOP is layered directly over the data l in k

protocols. In Digital 's commun ications devices,

MOP is general ly implemen ted in the hardware
or firmware and does not requ ire a working

operat ing system.

• Off, when the node is i n it ia l izing itself and its

internal configuration. When booting completes,

the node changes to the off state. This transit ion

is called the "big bang." I n the first i nstant after

the big bang, the node has at least the fol lowing
th ings avai l able, as shown in Figure 5 :

- A working clock and time service used to

time stamp events.

A UJD generator usee! to give entities and

events a u n ique identifier.

- The node entity (and possibly some of the

node's ch ild entities) together with i t s agent

(wh ich i ncludes both the d irect ive dispatcher

and event logging).

- An in i t ial ization script, a series of m anage

ment com mands to configure the system.

This can be in the form of a text NCL com

mand fi le (described later in the section on

NCL), or it can be a compiled script, one that

has been encoded as a series of common

management i nformation protocol (CMTP)

requests. MOP can be used to clown-l ine load

an init ial ization script.

- An i n itial ization d irector, which reads the

script and invokes the directives in the order
given. Errors and other outpu t may be dis
played on a console (if the system has one)

and/or reported as events.

• On, when the node has "completed" initial iza

tion to the extent that i t can be m a naged

remotely. Somewhere in the initial ization script

(probably near the end), the node is enabled ,

which changes its state to on, i . e . , it can be man

aged remotely.

Modules

A node has many subsystems, called modu les i n

DECnet/OS I . Each modu le may o r may not be
configured within any particu lar node. Within the

Vol. 5 No. I Winter 199.5 Digital Technical journal

Network� Management

I ENTITY

IN ITIALIZATION I ENTITY

S C R I PT
DIR ECTIVE � -IN ITIALIZATION D I R ECTIVES DI SPATCH E R f---. ENTITY

D I R ECTOR (PART OF
THE AGENT)

I I EVENT SYSTEM OUTPUT TO CONSOLE LOGGING CONSOLE OR EVENT LOG G I N G (PART O F (OPTIONAL) T H E AGENT)

t I
EVENT R E PORTS TO CONSOLE I U I D SERVICE I OR OTHER EVENT SINKS

OTH E R EVENT

I I SINKS TIME SERVICE
(OPTIONAL)

Figure 5 The Node at the "Big Bang"

modules are the various subsystems that make up

DECnet/05! . A node never has more than one

instance of a module contai ned within it. A general

p urpose node a l lows the manager to flexibly con

figure a node to serve a part icu lar purpose by

crea ting and deleting the appropriate modu les.

In the DECnet/OSI Phase V network, the specifi

cation of the m anagement of each mod u le is an

integral part of the arch itecture of the su bsystem.

Moving responsibil ity for the management of a sub

system from a central network m anagement arch i

tecture to the subsystem architecture has m ade the

specifications clearer and more complete. In Phase

IV, a great deal of effort was spent coordi nating the

subsystem specifications and the network m anage

ment specificat ion. Placing responsibi l ity in one

person's hands made writing an i n terna l ly consis

tent subsystem much easier. Besides, the sheer size

of DECnet/OSI Phase V manage ment would have

made it i mpossible for a single person to design the

management of the whole system.

The development of the 051 management

stand ards i n ISO/C:ClTI (Comite ConsuJt a t if lnter

nat ionale de Telegraphique et Telephonique) has

been done in a s imilar way and for the same rea

sons. 150/IEC JTCl SC2l/WG4 is the group that has

developed the OSI management information model,

ma nagement specification language, and guide

l i nes for m od u le devel opers. \Vhile 5C2 1 /WG4 has

itsel f also developed the management of srecific

subsystems (e.g. , for event forwarding and logging),

typical ly, the job of doing this has been left to other

Digital Technical jour11af v'!!l. 5 No. I IVinter I'J<J.)

groups more expert in p articu lar areas. For exam

ple, Wor k i ng Groups 1 , 2, and 4 of iSO/IEC JTCl SC6

have developed management standards for the ISO

data l i nk, network, and transport l ayers, based on

D igi tal 's contributions derived from the OECnet/OSI

Phase V work in these areas.

In DECnet/OSI, the transport , network, and data

link subsystems were a mong the first to have the

EMA concepts appl ied to their management. Others

qu ickly tol lowed and , present ly, more than 50 mod

u les have been specified , with others being added

as new subsystems are designed . Not surprisingly,

du ring the early clays considerable interaction took

place between the archi tects responsible for the

central network management arch itecture and

those responsible for developing the management

of specific su bsystems. The EMA evolved and was

refined based on the experiences of the many sub

system architects using i t .

In a lmost a l l cases, modules contain one or more

entit ies, each representing some management

aspect of the subsyste m . These enti ties in turn m ay
contain other entit ies (sube ntities) . This nesting

can occur to an arbitrary depth, reflecting the m a n

agement complexity of the subsystem. Note that

m o d u les themselves are entities, a l beit with the

restriction that a node never has m ore rhan one

i nstance of a mod u le conta ined within it . An entity

is formal ly described using Digita l 's Management

Specifica tion Language (MSL) . 1 1

We next consider i n more detail the structure

and contents of t he DECnet/051 Phase V 05I

1 23

DEC net Open Networking

transport module. Complete descriptions of t h is

and othe r Phase V subsystems can be fou n d i n

t h e D igital Network Architecture (Phase V)

Documentation Kits. ' 2. 1.\. l,i. t >

OS/ Transport Module
In DECnet/OSI Phase v; the OS! transport module

contains port, template, local network service

access point (NSAP) address, and m a n u facturing

au tomation protocol (MAP) entit ies. A local NSAP

entity contains remote NSAP entities. The contai n

ment h ierarcl1y is shown in Figure 6.
The OS! transport module has characteristic

attr ibutes. A manager can change the configura

tion of the module by mod ifying its characteris

tic attributes. This is c.Jone for several reasons.

including

• To l i mit the maximum permissible nu mber of

active transport connections at any one t ime

• To control the maximum credi t w indow that
m ay be granted on an individual transport

connection

• 1b control the maximum number of transport

connections that can be multiplexed on any sin

gle network connection, when the OS! t ransport

protocol is operating over the connection-mode

network service

Modi fication of these attributes is needed only if

the manager requires anything other than a stan

dard configuration; wor king c.Jefa u l t values are

defined for all characteristic attributes.
Status attributes show the c u rrent operating

state of t he module, e .g . , the nu mber of transport
connections cu rre n t ly active. Status attribu tes can

not be modified directly by a m a nager. To start the

opera tion of the OS! transport module, the manager

uses the enable action. If successfu l , the state

attribute changes from off to o n .

In t h e DECnet/OSI Phase V arch itecture, a port
entity represents the in te rface between layers, mak

ing visible to a manager how one layer (a cl ient) is
using the services of a lower l ayer. Ports are not cre

ated by a manager; they are created when a cl ient of

the service requests use of the service (by "opening
a port") . The exact information held in a port entity

varies fo r each su bsystem. I n general, a port entity

contains attributes that ident i fy the cl ient and the

service being used, and how that service is being
used (e. g . , as usage cou nters). The port entity is an

example of how the Ei\'lA evolved through feedback

from the subsystem a rc h i tects. Before being
adopted as a general mechanism i n the overal l man

agement archi tecture. the concept was first devel
oped and used in subsystem architectures.

In the case of the OSL transport module, the port

entity a lso corresponds to the local end of a trans
port connection (TC) , and it provides a window to

the status information associated with the TC. For
example, the OSI transport port status attributes

give

• The name of the user of the OS! transport service

• Local and remote NSAP addresses and transport

selectors

• The protocol class being operated on the TC

In addition, a port entity has cou nter attributes that

record the total number of ti mes something of

i nterest occurred on the TC. For example, there are

counters recording the n u mber of octets ancl proto
col data units (POlls) sent and received. A manage

ment station can poll these and determine usage

OSI TRANSPORT

L 24

L

PORT TEMPLATE LOCAL NSAP

I
MAP REMOTE NSAP

Figure 6 Containment Hierarchy for 051 Transport Module

Vol. 5 No. J Winter 1<)9.) D(�ital Technical journal

over time. A port entity also main tains counters for

both c.l upl icated transport PDUs (TPDUs) c.letected
and retrans m it ted TPD Us. Ta ken with the usage
counters, these can be used to calculate error ratios

and rates on the TC.

W hen a cl ient opens a port onto a service, the

c l ient can then use the service i nterface to select

options such as w hich features to use or which p ro

files. Maximum flexibi l ity, however, also poses a

problem. In m a ny cases, a cl ient has l it t l e or no

k nowledge or u nderstandi ng of the service options

ava i lable in an underlyi ng layer. Fu rther, i t would

be unreal istic to expect a l l cl ients of a service (or,

ult imately, an end us er) to acquire this i n- depth
knowledge.

One alternative was to provide defa u l t values for

a l l the service options. However, a si ngle set of

c.lefault values satisfies only a single subset of uses.

I nstead we adopted the template, which is an entity

that represents a set of related option values . A

ma nager can create as many templates as required

for differen t sets of related option values. A c lient
neec.ls to be configured only with the s i ngle name o f

t h e template t o use, not t h e detai ls o f every service

option. The OS! management standards groups have

adopted the template concept in the fo rm of their

initial value managec.l object (I VMO).
A template in the OS! transport module is a col

lection of characteristic attributes used to supply

c.lefault values fo r certain parameters that influence

the operation of a TC. When a port is opened to the

OSI transport serv ice, a template name may be

specifiec.l by the cl ient. The characteristic attributes

in the template are then used as c.lefa u l t values fo r

TC parameters not suppl iec.l by the user, includ i ng ,

for example,

• The value of the w i ndow timer

• The set of classes of protocol that may be negoti

ated for use on a TC

• The use of checksums t ha t might be negotiated

for a TC that operates the cl ass 4 protocol , a
variant of the OS! transport protocol defined i n

ISO 8073

A default template is a u tomatical ly createc.l and
used if no template is specified when a port i s

opened.

There is one local NSAP entity for each NSAP

adc.lrcss used by the OSI transport. A local SAP entity
is automatically created when an NSAP address used

by the OSJ transport is added to the network rout

ing subsystem (the adjacent lower layer).

Digital Technicaljounwl �bl. 5 No. I Winter JY9.>

Network Management

The remote NSAP entity is a subentity of a loca l
NSAP entity. Each remote N SAP entity maintains

counter attr ibutes resu lt ing from interactions

between the superior local NSAP and a remote

transport serv ice provid er. Events are defined for

the remote NSAP entity, to provide immed iate noti

fication to the ma nager of error conditions. For

example,

• A checksum fa i lure event occurs whenever

checksu m val idation fai ls when performed on

a received TPDU

• An invalid TPDU received event occurs when
ever a TPDU received from the remote NSAP is

in violation of the transport protocol

Consider this second exa mple. Whenever an

inval id TPDU received event is generated, a counter

is incremented . Thus, even if the m anager has con
figured even t logging to fil ter out these events, an

ind ication that they are happening rem ains,

prompting the ma nager to change the fi ltering cri

teria. The event contains a number of arguments as

wel l . All events ident ify the generat ing entity and

the t ime the event occurred. The i nval id TPDU
received event also has arguments that give

• A reason code, i n d icating in what way the

TPDU was i nval ic.l, as specified i n the ISO 8073

standard 1 c.

• The part of t h e TPDU header that was inval id

• A specific Digital Network Architecture (DNA)

error code, which was added to qual ify the ISO

8073 reason code and to help customers d iag

nose problems

The MAP p laces a nu mber of requirements upon
impleme ntations of the OSI transport protocol

beyond si mple conformance to ISO 8073. The MAP

entity contains the additional management needed

to meet these extra requirements. The MAP entity

is optional; i mplementations with no busi ness
requ irement to support MA.P would not provide the

MAP enti ty.

Supporting Mechanisms
Network management in DECnet/05! is bui l t on a

number of supporting services. Wherever possible,

m anagement uses the services of the network to

manage the network. This approach m i n i m izes the

numbe r of special mechanisms we had to define
specifically fo r network m a nagement. Some key

services used by network management i ncl ude

l25

DECnet Open Networking

• Session control

• DEC:c.l ns name service

• Digita l 's cl istribu tecl t ime service (DECdts)

• A u n ique identifier service (UID)

A few serv ices were developed specifically to

support network ma nagement. Most had existed i n

earlier phases of DNA.

• D NA CMIP

• Event logging

• MOP down-line load protocol

• Appl ication loopback

In the foJ Jowing sections, we describe DNA CMIP

and event logging.

Digital Network Architecture Common
Management Infonnation Protocol

The entity model describes w hat a n entity can do.

Those concepts must be expressed in the manage

ment protocol . DNA CMIP, the management proto

col for DECnet/OSI Phase V, is an evol ution of the

Phase rv management protocol (ca l le d NICE). The

two protocols are remarkably similar. Both include

the set, show (also cal led get), and event report

operations. The main d i fferences between the two

protocols are in the fol lowing areas.

• Treatment of other ope rations. In NICE, each

operation required a new kind of message; in

CMIP, a general extension mecha nism, the

action, is provided.

• Naming. NICE supported a l imited nu mber of

entity cl asses (eight) and p rovided a rudimen

tary naming h ierarchy based on the notion of

" qua l i fying attribu tes." CMIP supports hierarchi

cal entity names a n d is essential ly unl i mited in

the nu mber of entities with which it can deal .

Similarly, CMIP is much more extensible in

naming at tributes, attribu te groups, and event
reports.

• Encoding. CMIP uses ISO Abstract Syn tax

Notation I (ASN . l), a standard tag, length , value

(TLV) encod ing of attribu tes and arguments, and

NICE used a private TLV encoding.

DNA CM IP is not qu ite the same as the rs version

of OS! CMIP, a lthough it was based on the second

d raft proposal of the CMIP standard. There are t wo

reasons for this.

1 26

• First and foremost was timing. DNA CMI P was

developed before the OSI CM IP was standardized.

The inevi table changes to the standard led to

many minor differences in the protocols. Stil l ,

because the concepts i n the EMA entity model

and OSI 's SJVH are a l igned, the DNA and OSI CMII'

protocols are fu ndamentally the same. The

a u thors are currently m igrating DNA CMIP to OSI

IS CMIP. The change wi l l be transparent to any

user.

• Second, DNA CMIP operates over a DNA protocol

stack, not a pure ISO stack. This al lows directors

on Phase IV systems to manage Phase V systems.

DNA CMIP can be viewed as two separate proto

cols. One protocol , management information con

trol excha nge (MICE), is used by a director to invoke

a direct ive (get, set, acti on, etc.) on an entity (or

entit ies). The other protoco l , management event

notification (MEN), is used by an entity (or entities)

to report events to a director. The two protocols

operate over separate connections for important

reasons.

• The times at wh ich the associations are con

nected c.liffer. A M EN association is brought up

when a n entity wishes to report an event , and is

thus controlled by the agent. A MICE association,

however, is brought u p w hen a director (or

ma nager) wishes to invoke an operation on an

entity, and is thus contro l led by the d irector.

Attempting to share control of association estab

l ishment was not worth the complexity.

• Whenever an association is shared by two (i iffer

ent users, the problem of al locating resources

fa irly to the two users must be addressed . Since

tra nsport connections deal with this issue

between connections, the addit i o n of a multi

plexing protocol at the appl ication level (with a n

attendant flow control mechanism) was again

considered to be too complex. Transport con

nections are not (or shou ld not be) expensive.

Event Logging

The entity emits an event report to the manager

when an event occurs in an entity The event logging

mod u le provides a service that transmits event

reports from the reporting entit ies to one or m ore

sink appl ications, which are considered to be a cer

tain kind of d i rector in EMA. Event logging i n Phase

V is based on concepts similar to those provided by

Phase IV. Because the principal use of event logging

is for repo rt ing fa u l ts, event logging does not

Vr;/. 5 No. I Winter 1993 Digital Tee/mica/ jounwl

guarantee del ivery of event reports to the sink

appl ication. F igure 7 shows the event logging

architectur e . 1 7

When a n event occurs within a n entity (E) i n a

source node, the entity invokes the PostEvent ser

vice provided by the event dispatcher (a part of the

node's agent). When posting an event , the entity

supplies its name, the type of the event, al l the argu

ments related to the event, a t ime stamp of when

the event occurred, and a UID assigned to the event.

UIDs ensure that each event can be u niquely identi

fied, so that if a sink appl ication receives more than

one copy of an event report, it can detect the dupli

cat ion. Time stamps a llow the event reports to be

ordered in t ime (an i mportant step in determining

causal ity). A time service (DECdts) is used to syn

chronize clocks across the network. It provides a

consistent view of time for correlating observations.

An important feature for management is the inc lu

sion of an inaccuracy bound on the time stamp.

The PostEvent service formats an event report

and places it in an event queue (Q). Event queues

are l imited in the amount of memory they use; thus

they l imit the number of events that can be held i n

the queue. Because events can b e placed in the

queue at a rate faster than the queue server (S) can

process them, the queue can fi l l , and any new

events placed in the queue wil l be lost. The events

lost event is recorded as a pseudo-event in the

queue (it appears as an event report from the entity

holding the queue). The events lost event carries an

argument that records the number of events that

were lost in a row.

The queue server for the event dispatcher

compares each event report against a filter (F)

associated with an ou tbound stream. The fi l ter l ists

SINK DIRECTOR

SINK APPLICATION INBOUND STREAM

R

00F
DNA
CMIP

I NBOUND STREAM M E N

Network Management

a col lection of entities and events that are either

passed through the fil ter or blocked by the filter.

Event reports passing through the fil ter are placed

in an event queue within the ou tbound stream.

Each outbound stream's queue server sends events

to a corresponding inbound stream in the sink

appl ication. M u ltiple ou tbound streams can be set

up by the manager, al lowing events to be sent to

many sink appl ications. Ou tbound streams are

modeled as entities i n their own right, and standard

management operations (create, get, set) are used

to configure them.

Each inbound stream in a s ink application has an

event receiver (R) . I nbound streams are genera l ly

created when a connection request is received

from an outbound stream. Events received by the

receiver are compared against a sink fi lter and

queued to the s ink appl ication. Thus the events

from mul tiple inboun_, streams are merged.

The protocol used between the ou tbound stream

and the inbound stream is the CMIP MEN protocol,

which operates over a connection (using either the

DECnet transport layer protocol or OSI transport).

The use of a connection lowers the probabil i ty that

an event report wil l be lost, since the connection

handles acknowledt5ments and retransmissions. It

does nor guarantee delivery, however, and events

may st i l l be lost due to fa ilures of the sink appl ica

t ion or the source node.

Conclusions

Our approach to Phase V management worked

well . Defin ing the EMA entity model first provided a

framework of consistency among all the architec

tures. Developing a management protocol (CMIP)

expressing the basic concepts in the entity model

SOURCE NODE

EVENT DI SPATCHER

OUTBOUND STREAM

� -11\ �F -
"-011@:. � OUTBOUND STREAM

PROTOCOL .� LE;J R

ANOTHER SINK DIRECTOR

Figure 7

Digital Technical journal Vol. 5 No. 1 Winte-r 1993

I

Event Logging

s)lllo� F -. ""'----I

ANOTHER SOURCE NODE

1 27

DECnet Open Networking

in conj u nction with the model placed the protocol

in a posit ion to meet t he needs of the model . Giving

responsibility for defi ning the management of a

subsystem to the architects of that subsystem made

each subsystem more comrlete and coherent. As

problems were found in the model. based on lessons

learned during the specification of ent ities, any

needed changes to t he entity model were applied to

correct those problems.

However, some things d id not go as well. The

nu mber of ent i t ies, attributes, and operations i n

Phase V was beyond anyone's expectations. This

reflects the overall complexity and feature-richness

of Phase V over Phase IV as wel l as the increased

con trol that the manager is given. This burden is

eased somewhat by the use of intell igent clefauJts,

au toconfiguration, a nd self-management . Still , s im

pl ifying the management of a Phase V network is an

important area for continual i mprovement.

The biggest success of EMA/Phase V management

is its general applicabil ity. E1\1A is bei ng appl ied to

more than the trad itional network management

areas. Systems, networks, and applications are al l

managed by EMA.

References

I . N . LaPel le, M . Seger, and M. Sylor, "The Evolu

tion of Network Management Products,"

Digital Tee/mica! Journal, vol . 1 , no. 3

(September 1986) : 1 1 7-12 8.

2 .). Harper, " Overview of Digital 's Open Net

working," Digital Tecl:micat journal, vol. 5,

no. 1 (Winter 1993, this issue): 12-20.

3. C. Strut t and J. Swist, " Design of the DECmcc

Management Director," Digital Technical
journal, vol . 5, no. 1 (Winter 1993, this issue):

1 30-142

4. OS! Management Information Seruices
Structure of Management information
Part 1: Management in{ormation Model,
ISO/IEC DIS 1016'5-1 (Geneva : I nternational
Organization for Standard ization/In terna

t ional E1ectrotecbnical Com mission, 1990).

'5. OS! il!fanagernent inj()rmation Services
Structure of iVltmagement 'n{onnation

Part 4: Guidelines j()r the Definition of

Managed Objects, ISO/IEC DIS 10165-4

(Geneva: International Organ .. :arion for Stan

dard ization/international Electrotechnical

Com miss ion, 1992).

1 28

6. M. Sylor, "Guideli nes for Structuring Manage

able Entities," integnlled Network Manage
ment /, B . Meandzija and]. Westcott (eels.),

(Amsterdam: Elsevier Science Publishers,

1989): 169-183.

7 DNA Network Management Functional

Specification, V5. 0. 0 (Maynard, MA: Digital

Equipment Corporation, Order No. EK

DNA02-FS-001 , 1991) .

8. DNA Naming Service Functional Specifica
tion, V2. 0. 0 (Maynard , MA : D igital Equ ipment

Corporation, Order No. EK-DNANS-FS-002,

1991) .

9. DNA Unique identijier Functional Specifica

tion, VJ. O. O (Maynard, MA: Digital Equipment

Corporation, Order No. EK-DNA l -Fs-001 , 1992).

10. DNA Maintenance Operations Protocol Func

tional Speczfication, V4. 0. 0 (Maynard, MA:
D igital Equipment Corporation, Order No.

EK-DNA 1 1-FS-00 1 , 1992).

1 1 . DECmcc System Reference Manual, 2

volu mes (Maynard, MA: Digital Equipment

Corporation , Order Nos. A A-PD5LC-TE, A A

PE55C-TE, 1992).

12. Digital Network Architecture (Phase V)
Documentation Kit No. 1 (Maynard, MA :
D igital Equipment Corporation, Order No.

EK-DNAP1 -DK-00l, forthcoming 1993).

13. Digital Network Architecture (Phase V)

Documentation Kit No. 2 (Maynard , MA:

Digital Equipment Corporation, Order No.

EK-DNAP2-DK-001 , 1993).

14. Digital Network Architecture (Phase V)

Documentation Kit No. 3 (Maynard, MA :
Digital Equ ipment Corporation, Order No.

EK-DNAP3-DK-001 , forthcoming 1993).

15. Digital Network Architecture (Phase V)
Documentation Kit No. 4 (Maynard, MA:

Digital Equipment Corporation, Order No.

EK-DNAP4-DK-001, 1993).

16. information Technology-Telecommunica
tions and information Exchange Between
Systems-Connection Oriented Transport

Protocol Specification, ISO/lEC 8073 (Geneva:

International Organization for Standard iza

t ion/International Electrotec hnical Commis

sion, 1989)

Vol. 5 No. I Winter l'J'J3 Digital Techt�icaljounwl

17 DNA Event Logging Functional Specification,
Vl. O. O (Maynard , MA : Digital Equ ipment Cor

poration, Order No. EK-DNA09-FS-001 , 1992) .

General References

tll1A Entity Model (Maynard, MA: Digital Equipmen t

Corporation, Order No. AA-PY7KA-TE, 1991).

M. Sy lor, " Managing DECnet Phase V: The E ntity

Model ," IEEE Networks (March 1988): 30-36.

S. Marti n ,]. McCann, and D. Ora n , " Development of

the VAX Distribu ted Name Service," Digital Techni

caljournal, vol . 1 , no. 9 Oune 1989): 9-15.

Digital Technical journal Vol. 5 No. I Winter 1993

Network Management

C. Strutt and D. Shurtleff, "Archi tecture for an Inte
grated, Extensible Enterprise Management System,"

Integrated Network Management I, B. Meandzija

and). Westcott (eds.), (Amsterdam: Elsevier Sci
ence Publ ishers, 1989): 61 -72.

DNA Network Command Language Functional

Specification, VJ. O. O (Maynard, MA: Digital Equip

ment Corpora tion, Order No. EK-DNAOS -fS-001,
1991).

L. Fehskens, "An Architectura l Strategy fo r E nter

prise Network Management," integrated Network

Management I, B. Meandzija and). Westcott (eds.),

(An1sterdam: Elsevier Science Publishers, 1989):

41-60.

1 29

Design of the DECmcc
Management Director

Colin Strutt
James A. Swist

The DECmcc product family represents a sigmficant achievement in the develop

ment of enterprise management capabilities. DECmcc embodies the director por·

lion of Digital's Enterprise Management Architecture (EMA) and is both a platform

for tbe development of new management capabilities and a vehicle for aiding cus

tomers to manage their computing and communications environments. Initially,

the DECmcc director was intended to facilitate sophisticated management of evolv·

ing networks. In addition to network management, DECmcc has been adapted to

the needs of system, applications, data, environment, and telecommunications

management. The first implementations contained the DECmcc kernel, a devel·

oper's toolkit, and various management modules.

Development of the DECmcc director has been a
m u lt iyear effort involving many groups within

Digital . When the DECmcc design was i n it iated i n

1987, there was n o equivalent m anagement soft·

ware i n the i ndustry. Most companies, Digital

i ncluded , provided one or more independent,

focused products. Each of these dealt with manag

ing a specific set of components such as a single

vendor's local area network (LAN) b ridges or pro·

viding a specific management appl ication such as

equipment inventory.

Digital's network management capabil ities

within DECnet Phase IV were reaching their l imit ,

and the i ncorporation of newer co m mu n ications

technologies in a seamless way was becoming

i ncreasingly difficult . As part of the DECnet Phase V

development, work was started to rational ize m a n

agement of distributed systems. This effort led
to the formal definit ion of such concepts as the
d irector/entity relationship, the entity model, and

the com mon ma nagement information protocol
(CMIP) . u.:1.1 These ideas formed the basis for m a n

agement in Phase V and were Digi t a l 's contribu·

tions to the open systems i nterconnect io n (OSI)

management model from the International

Organization for Standardization (ISO).
The original vision of network management i n

Phase V included the concept o f two management

directors. The first, a sophisticated director referred

to as the management control center (MCC), wou l d

hand le t h e more complex, yet user-oriented, m an-

1 30

agement tasks. The second, a simple command l ine

d i rector referred to as network control language,

would address the needs of more experienced man

agers who prefer a command l ine environment.'

Conceived primarily as a DECnet management

d i rector, the DECmcc p roduct evolved to address

the broader problems associated with managing a

complete computing and communications environ·

ment. This evolution is not yet finished and

arguably wil I never finish as network environments

continue to change.

Since the development of DECmcc in 1987, the

si mple network m anagement protocol (SNMP) has
become widely implemented. DECmcc bas adapted

to handle S N M P as wel l . In additio n , the DECmcc

product, once a tool for the VA.,'(VMS architecture, is

now implemented on m u ltiple platforms, such as

the ULTRIX and U NIX System V Release 4 operati ng
systems.

In this paper, we look at the development of the
DECmcc d irector. We start by d iscussing our i nit ial

design ideas taken i n the perspective of the indus
try at the t ime. We then describe the initial i mple

mentation of DECmcc. We also present the effects

of the changing i n dustry and how DECmcc has

adapted over time. We conclude with some of the
opportu n ities for future work.

Historical Perspective
D igital's first network management capa bility was

delivered in 1978 as part of the release of DECnet

Vol. 5 No. 1 Winter 1993 Digital Tech11icaljournal

Phase 11 software. Much of the DECnet product was
then manageable, both configuring the software for

instal !at ion as wel l as the operational aspects. The

main program used to perform management was

the network control program (NCP). At that time

management mostly consisted of looking at infor

mation and then changing it as needed. DECnet
Phase I I , however, could perform sophisticated

diagnostic loopback tests, both nonintrusive as
wel l as intrusive, to d iagnose con nectivity prob

lems at various layers of the protocol stack.

Management formed a significan t part of the

DECnet Phase lii and DECnet Phase IV networking

products. Each major release contained many

changes to manage the new fu nctional ity. However,

the DECnet management structure in place in the

1970s was becoming more difficu l t to adapt to the

requirements of the mid-l980s. For example, sup

port was added for X.25 during Phase Ill and for

Ethernet dur ing Phase IV . These releases required

quite different management approaches than the

one used for Phase II. With the advent of the signifi

cant changes to DECnet Phase V to include support

for the OSI protocol stack, another management
approach was needed .

Thus in conjunction with Phase V network devel

opment, an effort was started to provide a new

architectural approach to management of Phase V
One of the key requirements was to provide the
Phase V management needs in a way that would

extend their adaptabi l i ty to the fu ture. This work

was referred to as distributed systems management

because it addresses management of the computing

environment as well as management of the commu

nications that DEC net comprises. Most of the init ial

work i n distributed systems management con

cerned itse l f with the aspects that applied to
DECnet and the changes needed to provide manage

abil ity of DECnet in Phase V The primary under

lying concepts were articulated.

• Directors are management programs used by
human managers to effect management. Enti ties

represent managed components to directors
through software referred to as agents 6

• The entity model is the underlying model for

managed entities defined in terms of a n object

based approach. u.�

• The formal specification for the classes of enti

ties is defined in terms of Module-2+ l ike specifi

cations and is cal led management definition

language (MD) ..>

Digiwl Tecbnial/ journal Vol. 5 No. I Winter 1993

Design of the DECmcc Management Director

• A command language, network control language

(NCL) , was formal ly defined to be unambiguous

even with new e nti ties and their definitions; an

associated primitive director of the same name,

part of every Phase V package, replaces the NCP

of previous phases.5

• A management protocol called the common

management information protocol (CM!P) was

used to commu nicate between directors and
entities:i.H �

CMIP was named common and presumed to han

dle the common aspects of management across a

wide variety of management appl ications. Some

developers suggested the possible need for a

smal l number of special ized management infor

mation protocols (SMIPs)-perhaps one for each
of the management functional areas (configura

tion, performance, fau lt, security, and account

ing). However, CMIP proved to be sufficiently

expressive and powerful to support manage
ment appl ications covering the management

functional areas.

A t the time the distributed systems management

work was initiated, Digita l 's networking and com

munications product line was expanding to encom

pass more than the DECnet networking hardware

and software. Along with each product came its

own management software, some of which was

tailored along the l ines of the DECnet standard NCP.

In addition, the Network Management Devel

opment Group was building some fa irly sophisti
cated management applications that went far

beyond the capabi l i t ies of NCP in DECnet. The

developers necessarily took a different approach to

management.
Thus, by the la te 1980s Digital had developed a

number of distinct management products. Many of

these employed private protocols, for example

• NCP for managing DECnet, based on a command
l ine user i nterface

• NMCC/DECnet monitor, a wide-area DECnet mon
itoring tool, based on a graphical user interface

• NMCC/ETHERnim, an Ethernet monitoring/

inventory test program, based on a graphical

user interface

• RBMS, Remote Bridge Monitoring Software for

managing Digital's bridge fami ly, based on a com

mand l ine user interface similar to NCP

1 3 1

DEC net Open Networking

• TSM , Terminal Server Manager for managing

Digital's terminal server fami ly, based on a

command line user interface similar to that used

in the terminal servers

• LTM , LAN tratiic monitor for understanding the

traffic usage and patterns of Ethernet segments,

based on a graphical user interface

Other manufacturers also provided management

software capable of managing their devices. Some

vendors provided particular management appl ica

tions that were not tied to any specific network

device. These applications performed a single func

tion, such as maintaining an inventory of equip

ment on behalf of a manager.

The plethora of management capabil it ies from

many vendors created many choices for end users.

At the same time, the diverse applications were per

ceived as carrying significant drawbacks. Each appli

cation provided its own user interface. Each had its

own database for storing management information .

Each dealt with different management information.

In addition, each tool provided its own, often rudi

mentary, independent management application.

End users viewed these many products as creat

ing a series of problems: (1) A manager needed mul

tiple management terminals, one per product.

(2) Separate training was requ ired to use each

product. (3) Confusion occurred when the user

switched between mu ltiple products. (4) Different

information was available from each product, or

worse, the same information was available in a dif

ferent form. (5) There was no abi l ity to share infor

mation between products. (6) It became difficu lt to

diagnose problems that spanned multiple technolo

gies. Other aspects of the system management per

spective in 1986 have been described W

At that time, standards for network management

had not progressed very far; SNMP did not yet exist.

In fact, agreement on the overall concepts had only
begun within the OS! management committees.

It is with this background, then, that the design of
DECmcc as a management director was undertaken.

opportunities

Of all the situations that existed in customer net

works in the mid-1980s, probably the most impor

tant was the real ization that networks no longer

consisted of equipment from a single vendor. In

add ition, different technologies were commonly

used to improve a given customer's network. With

each technology came its own management proto-

1 32

col, a long with its own management structure. As

networks became larger, more than one network

manager was typically needed .

The opportunity existed to provide complete,

i ntegrated network management that could be

adapted to the changing needs of management. Our

product goals were

• To provide a consistent, integrated user inter

face, permitting management of any component

in the enterprise to be performed in a sty.le that
does not depend on the specific component

• To provide integration of the management data

(contained in the components as seen by the
director) and management information (as con

structed by the director using the management

data)

• To provide a consistent, extensible means of

storing management information and of allow

ing it to be accessed conveniently by multiple

independent management appl ications

• To provide an appl ication programming inter

face (API) to support management applications

Obviously, an approach necessary to solve these

nontrivial problems was not to be a small u nder

taking; an architected approach was appropriate 6

Design Approach

The solution to the problems out l ined was seen to

be a distributed applications environment, tailored

to the specific needs of management. Quite quickly,

the idea of defin ing a modular and extensible envi

ronment was selected.

Management capabilities could be added in a

straightforward fashion based o n an applications

kernel, which could either be replicated as needed
around a network, or considered as multiple, coop

erating kernels support ing a distributed manage

ment environment. Hence a kernel with modu les
that can be added dynamically, much as applica

tions are added to a n operating system, is funda
mental to the design of DECmcc.

The next consideration concerned the composi
tion of the modules themselves. One approach to

the support of multiple technologies had one mod

ule access each different sort of component to be

managed . Since a n umber of management applica
tion functions were desirable, one might have a

module for each such function. Also one might

have a module for each form of user i nterface to

\1JI. 5 No. I Winter J()')) DigitCll TechnicC�l]ournal

accommodate the d ifferent user interface styles,
such as command I ine or windowing.

Thus, we arrived at the concept of distinguishing
form, function, and access. Furthermore, we

defined management modu les based on presenta
tion modu les (PMs) for user interface, function
modu les (FMs) for management functions, and
access modu les (AlVIs) for accessing each d ist inct
technology. The DECmcc d irector structure is
shown in Figure 1 .

We observed that the EMA entity model, defined

initially to meet the needs of management of
enti ties, provided general ized structur ing con

cepts that would be appropriate for the direc
tor environment as wel l. Indeed , choosing the
same model to handle the needs of the director
removed the need for a translation between the
entity environment and the director environment
for EMA enti ties, which has proved to be advanta
geous for the implementations. Hence the fol low

ing entity model concepts were also used in the
director.

• An object-oriented approach-encapsulating
objects (entities) and their operations

• A class structure- defining attributes, opera
tions, and events tor each class and specifying
management information using a m anagement
specification language

As we studied the needs for stored management
information in the director, we identified four d if
ferent sorts of information, distingu ished by the
storage needs, nature of the contents, and the
access patterns.

INTERFACE

MANAGEMENT
KERNEL

MANAGEMENT
INFORMATION
REPOSITORY

FUNCTION .__"--"-------.1-...I.....J ACCESS
MODULES MODULES

Figure 1 DECmcc Director Structure

Digital Tee/mica/]ounwl Vol. 5 No. 1 Winter 1993

Design of the DECmcc Management Director

l . Class data- the dictionary of all management
operations, attribu tes, notifications, and their
related defin itions categorized by class, updated
infrequently, but read often

2. Instance data-the configuration information,
stored in a global naming service, changing
often, but read from many places simul taneously

3. Historical data-information about specific
entity instances stored over time, written incre
mental ly and read sporadical ly according to the
needs of appl icat ions using such data

4 . Miscellaneous data-other data needed for

specific modules, such as tariff information
or the defin ition of ru les specifying alarm

conditions

The complete logical information store was termed
the management information repository (MIR).

The kernel defines an execution environment

that is su itable for management modules and sup
ports the M IR . This was ini tially implemented in
terms of technology provided completely within

the director kernel. Many of the kernel services,
however, were subsequently replaced with dis

tr ibu ted systems services, including mul tithread
support, naming/directory service, time service,
and remote procedure cal .l (RPC).

It is, perhaps, interesting to note that the deci

sion to use a mult i threaded approach in DECmcc
was not unanimous. The alternate approach pro

posed an asynchronous message-passing scheme.
Although the decision to use a multithreaded envi

ronment has proved to be implementable, we did
not appreciate how the performance of the mult i
threading implementations wou ld affect the ability
to support the needs of application environments

such as DECmcc.

Invoking Module Services

As we looked at how management modu les would
cal l each other, we chose a fa irly straightforward
approach. User interactions with a PIVI would cause
the PM to invoke an FM, the FM to then invoke the
appropriate Al\1 , and the AJ.Vl to com municate with
the desired entity The response would then be
transmit ted through the AM , I'M, and PM , with the

result presented to the user. Thus the simple proce
dure call paradigm between modu les, as shown
in Figure 2, supported the needs of appl ications
geared toward monitoring and control operations.

However, one must consider the increase in the
total number of management modu les over time,

1 33

DECnet Open Networking

MANAGEMENT

MANAGEMENT
USERS

I Dl RECTOR

I

PRESENTATION
MODU LES

I
FUNCTION
MODU LES

I
ACCESS
MODULES

I
I I

MANAGED ENTITIES

Figure 2 Management il'Iodule

Calling Hierarchy

and the even greater increase in the total number of

available management services (defined by specific

operations on classes of entities). Thus, it became

clear that the i ntermodulc procedure caJJs could

not use named procedures, as administering the

names of ever-increasing numbers of procedures
would be a burden. Instead we chose an approach

whereby modules i nvoked each other's services by

referring to the operations and the objects, using a

service invocation procedure known as "mcc_call ."

We defined the interfaces provided by the manage

ment modules entirely in terms of operations on
objects-an object-oriented approach-but this

approach d id not require the use of object-oriented

languages or databases.

We further observed that one cou ld decompose a

management application into a number of smal ler,

potentially reusable services. Hence FMs could

invoke other FMs in performing their services much

in the same way that applications on UNIX systems

pipe resu lts from one component to another. Given

the general ly extensible nature of DECmcc and the

supporting mcc_call structure, this led to the con

cept of generic applications. Being run- time driven

from the class d ict ionary, these applications could

work over a wide range of managed objects and

1 34

perform the same service for each of them without

a priori knowledge of the objects. For example, one

might have an FM that provides performance

related services, turning error counters (obtained

d irectly from the managed objects) into error rates

(by simply pol l ing for two counter values, subtract

ing one from the other. and dividing by the time

interval between pol ls) . A d ifferent FM might pro

vide alarm services by notifying users of particular

(user-specifiable) conditions, such as when a par

ticular counter exceeds a defined threshold .

Of course, managers are often more interested in

error rates exceeding a given threshold. The same

alarms FM could be primed to look tor an error rate;

the request would be passed on to the performance

FM, which in turn would calcu late the rate by look

ing at successive pol ls of the error cou nter. The

alarms FM does not need to be aware whether

the data it needs comes from the performance

FM or directly from the managed object via the

appropriate A.J\1. The d isposit ion of the methods

among modules is b idden by the service invocation

mechanism.

Furthermore, the alarms FM tracks the number of

times a user is notified of a problem, and this

counter is available as management data. One might

then want to determine the rate of user notifica

tions (using exactly the same generic performance

Fivl as before), and use the same alarms FM to notify

a different user when the rate of notifications

exceeds a defined threshold. This threshold m ight

ind icate that one manager is being overloaded .

Thus, in this scenario we have a number of modules

involved in a call ing hierarchy, with the same mod

ules appearing more than once. Figure 3 sbows the

reuse of software using generic function modules

in DECmcc.

Management Specification Language

The entity model's management definition lan

guage, original ly intended for the specification of

management agents, was modified and appl ied
to the director environment. Director-oriented

information was added to the management specifi

cation, such as user interface tags for automatica iJy

generated forms and menus. This information

was named the management specification lan

guage (MSL). An MSL compiler was defined to con

vert MSL to an on- l ine form, available as metadata
through an on-line dictionary, the MIR class data.

With the management specification information

available to management modules, modules could

Vol. 5 No. I Winter I')'J3 Digital Technicaljout·nal

NOTI FICATION

� ALARMS
FUNCTION MODULE

I Get alar

PERFORMANCE
FUNCTION MODULE

NOTIFIC ATION I Get alar

� ALARMS
FUNCTION MODULE

Design of the DECmcc Management Director

Test (firing rate) value against threshold;
if exceeded, emit notification and increment
alarm firing counter.

m firing rate.

Calculate (firing) rate from two successive
(firing) counter values.

m firing counter.

Test (error rate) value against threshold;
if exceeded, emit notification and increment
alarm firing counter.

I Get error rate.

PERFORMANCE
FUNCTION MODULE

I Get error

ACCESS MODULE

Calculate (error) rate from two successive
(error) counter values.

counter.

Return error counter from entity.

Figure 3 Data/Control Flow for Multiple FMs

adapt their behavior as new modules were added;
this is especial ly important for generic modules.
Thus the same MSL that was used to help the entity
agent developers was also useful for the manage
ment d irector to drive the extensible management
modules. ' '

This d ictionary information spurred the defini
tion and development of the generic management
modules. The generic P.Ms provide an extensible
user interface that is capable of adapting as new
managed objects or applications are added. The
generic FMs provide consistent functions over a
broad set of managed objects. Finally, the generic
A.Ms support extensible management protocols,
allowing the dynamic addition of new sorts of man
aged objects.

The design of the DECmcc director led to a num
ber of possibil it ies in the type and application of
the different sorts of modules. Initial ly A.Ms were
conceived as being one per management protocol,
which usually translated to one AM per type of
device (such as bridge, terminal server, DECnet
node). Since the advent of standard protocols, such
as SNMP from the Internet community and CMIP for
OSl management, A.Ms are now more typically
generic and extensible 8.9· 12 A single AM covers many
d ifferent types of device with one protocol. to

Digital Technical journal Vol. 5 No. I Winter 1993

For FMs, we originally envisioned two sorts of
modules: the generic FM provid ing the same func
tion over a wide variety of managed objects, and a
specific FM providing a set of functions for a single
class of managed object. Today, we believe one may
have two different sorts of generic FM: one that is
specific to a technology (such as network manage
ment related), and another, truly generic, which is
completely i ndependent of the technology being
managed (such as an alarms FM).

For PMs, we recognized the need to handle
device-specific aspects as well as user interface
style-specific aspects. Normal ly one would have
generic PMs provide user interface capabi l i ties over

a broad variety of managed objects and applica
tions. However, to support the specific needs of
generic FMs, specific PMs might be used to provide
the appropriate user interface. PMs that are specific
to an FM are less useful since they do not provide a
consistent user interface " look and feel."

During the design of the DECmcc d irector, a num
ber of smaller, but nonetheless important, design
decisions were made. The concept of management
domains was defined as a general container mecha
nism for entities, which could include domains
themselves. Domains therefore provide a flexible,
user-specifiable organizational structure for both

1 35

DECnet Open Networking

visual representation at the user interface, as wel l

as a means to organize the stored management infor
mation and associated background processing. 1''

The need to provide a consistent approach to the
naming of objects within the director was estab
l ished. This was initially based on D igital's dis

tributed name service, DECdns, providing global ly
unique names and network-wide access to those
names 1' Final ly, the concept of time, including the
scheduling of operations as wel l as scope of inter
est for information retrieval , was included in the

mcc_call API. The time concept al lows manage
ment applications to be developed that can operate
on historically stored information as easily as they
can on data retrieved directly from the network. 16

A more detailed report on the design of DECmcc
has been publ ished . 17

Some other aspects of the DECmcc program,
while not part of the technical design , had a major

part to play in its evolution. First was the need to
provide publ ished, open definitions of the DECmcc
API, based on existing standards. This a llows other
vendors and end users to develop their own man
agement capabil it ies to add to DECmcc. Second was
the establishment of a strategic vendor program
within Digital to work with other vendors, particu
larly those that provided network technologies that

complemented D igital 's own offerings, to help

them develop to the DECmcc platform. Finally a
design center program was insti tuted whereby the
design of DECmcc would be validated, as it evolved,

against the needs of some major customers to
ensure that i t continued to address the manage
ment problems of those customers.

Broadening the Scope
Since DECmcc was designed to be able to manage

anything that could be described by the entity
model, and since the entity model is a general
object-oriented framework, it fol lows that it is feasi
ble to extend DECmcc to c lasses of managed object
and appl ications beyond the traditional network
oriented view of nodes, hosts, bridges, routers, etc.
Some of the new classes of managed objects and
new appl ications that we have seen developed
using DECmcc include

1. Management of applications such as transaction
processors and databases

2. Appl ications in traditional system management,
such as user management, disk backup, software
installation , configuration maintenance, and

performance monitoring

1 36

3. Management of objects in the telecommu nica
tions field , such as PBX machines, multiplexers,
and switches1H

4. Management of noncompu ter hardware, such
as air cond itioners and building-environment
controls

Note that the implementation of these exten
sions generally involves a relatively small invest

ment, at which point the power of existing generic
appl ications is automatical ly provided. For exam

ple, in the easiest case, a new object that is manage
able through SNMP need only have its management
information base (MIB) translated to MSL and loaded
into the DECmcc dictionary, at which point it is
accessible by the existing SNMP A.t\1 as well as the
standard generic appl ications.

In other cases, such as the air conditioning exam

ple, it is only necessary to code an AM that
communicates to the air conditioning control ler
through its private protocol. Functions such as
alarms, notifications, historical data recording, and
graphing are automatically provided by existing FMs
and PMs upon recognit ion of the new object class.

In complex cases, object-specific FMs are written
to perform such tasks as software installation and
disk backup control. Yet even in these cases, al l
these functions are automatical ly accessible
through the generic PMs.

The potential tor interdisciplinary applications

is now becoming possible by the normalization of
the interfaces to objects trad itional ly handled by
totally separate appl icat ions. For example, given
the extensions described above, it is possible to
write an application that activates an emergency
disk backup and switches telephone trunk traffic to
another bui lding if an air conditioning failure

occurs. In fact, depending on how the various
objects are defined , it may even be possible to cre
ate such an application simply by writing a single
alarm rule.

Evolution to Open Systems

With recent industry trends toward open systems
environments, as wel l as the real ization that almost

any enterprise now comprises multiple hardware
and software platforms from m u ltiple vendors, it
was clear that DECmcc had to evolve to this new
world. Among the requirements to be met were not
only the management of objects existing on various
platforms, but a lso the execution of the director
itself on d ifferent hardware and operating system
platforms.

W!l. 5 No. I Winter 19'J3 Digital Technical journal

These requirements d ictated two basic design

goals:

1 . Portabil ity of the director kernel itself to envi
ronments other than VAX VMS

2. Portabi l i ty of plug-in management modules to a

DEemcc director running on any supported plat

form, and in particular, source compatibil i ty to

the greatest extent possible with the consider

able suite of management modules that existed
when the porting effort started

Many of the fundamental requirements for porta

bility had already been met. All existing manage

ment modu les were coded to the API defined i n the

DECmcc System Reference Manual (SR.M), and the

SR.M had I ittle code that was inherently specific to

VAX or VMS. 1'> In fact, only the documented SR.NI rou

tines were used to access DECmcc services, as wel l

as many other common operating system services

such as data storage and thread control. Conse

quent ly, the kernel implementation team had the

flexibil ity to implement these services differently

on various platforms without impacting manage

ment module source code. This was particularly

true with the al l-important mcc_call service,

which provided the API for i ntermodule communi

cation i n a platform-independem context such that

a wide variety of i merprocess or intra process com

munications mechanisms cou ld be chosen for the

underlying implementation.

In the ini tial porting effort, which was from VAX

VMS to ruse (reduced instruction set computer) a nd

VA,'< ULTRlX, some of the more important changes i n

underlying implementations were

1 . The MIR was implemented over the ndbm hash

database manager. An earl ier version of the MIR.

was also implemented over ULTRIX SQL, which

provided some large-capacity database features

at the expense of significant performance.

2. The operating system time i nterfaces were
migrated to the distributed time service of the

Open Software Fou ndation distributed comput
ing environment (OSF DCE).

3. The multithreading services were migrated to

the DEeth reads component of the DCE.

4. The intermodule communication mechanisms

(mcc_call) were implemented using R.PC tech

nology, with management modules running

as independent R.Pe server processes. This

al lowed run-time extensibil ity without requir-

D igital Tecb11ical]ounzal Vol. 5 No. I Winter 199.3

Design of the DECmcc Management Director

ing the operating system to support a merged

image activation function, a feature of the VMS

implememation.

5. Through the use of various wrapper routines in

the DEemcc development toolkit , we were able

to al low the management module developer to

code entry points to the management modules

without distinction to whether they were being

run in an image merge or an independent pro

cess context.

Despite these major changes, 85 percent of the ker

nel code is i n fact platform independent, and we are

maintaining a single source pool for DECmcc
regard less of the number of platforms. To minimize

the operating-system-dependent code we must

maimain and to provide backward compatibility,

we are also porting to VMS a number of the above

technologies such as those built on DeE.

At the present time we continue to broaden our

open systems focus by additional ports to UNIX

System V, OpenVMS on Alpha AXP, OSF!l on Alpha

AXP, as well as other operating systems.

Implementation

I n late 1990 and early 1991 , D igital delivered the

first two versions of DECmcc. Version 1 .0 was writ

ten to al low other vendors to start building their

management modules; version 1 . 1 added some

components for network managers. Both releases

ran on VAX VMS systems, either workstations or

hosts.

In the midd le of 1992, Digital released version 1 .2

of DEemcc, which added significant capabil it ies

and runs on ruse ULTRIX. Later in 1992, Digital del iv

ered POLYCENTER SNA Manager. I n conjunction

with DECmcc and the SOLVE:Connect for EMA, a

product from System Center, Inc. , it al lows bid irec

t ional management between IBM SNA hosts and

DEemcc systems. 2o

In early 1993, D igital released version 1 . 3 of
DEemcc u nder the new product family name of

POLYCENTER, with the POLYeENTER Framework,

which is the basis for POLYCENTER Network
Manager 200 and POLYeENTER Network Manager
400. This new version adds ways to provide simpler,

yet powerful, integration of management capabi l i

ties; uses an OSF/Motif graphical user i nterface; a. 1d

provides additional development tools. These v r

sions contain the DECmcc kernel , a correspo ndiug

developer's toolkit , and a series of management

modules, which are outl ined in Table 1 . The SR.M

1 37

DECnet Open Networking

Table 1 DECmcc Director Management Modules

Presentation Modules

Forms and Command Line PM

Iconic Map PM

Notification PM

Function Modules

Registration FM

Domain FM

Historian FM

Exporter FM

Alarms FM

Performance Analyzer FM

Diagnostic Assistant FM

Autoconfiguration FMs

Access Modu les

SNM P AM

DECnet Phase IV AM

DECnet/OSI Phase V AM

1 38

Defin itions

Provides a command line user interface based on the NCL defi nition,
together with a full-screen mode for video terminal devices. This PM also
executes DECmcc command scripts.

Provides an iconographic display based on OSF/Motif. It supports all the
capabilities of the command li ne, but with a more usable graphical
representation of the network and pul l-down menu support. This PM also
provides on-line graph ing of management i nformation. In add ition, this PM
can launch management applications that are not strictly part of the
DECmcc environment, to provide a visual integration for the manager.

Provides an interactive management d isplay of event or alarm firing
conditions based on OSF/Motif. Flexible fi ltering of information is used to
mini mize the information displayed to the manager, but the manager can
search for and display i nformation using various criteria such as severity
level, managed object, and data and ti me.

Definit ions

Provides a means for reg istering entities with the director and for
maintaining reference i nformation on behalf of the entities.

Maintains the defi n itions of the various management domains, their
membersh ip, and their relationships.

Enables the capture and storage of user-specified management attributes
from any entity in the network. Retrieval of the stored information by
management modu les is provided directly by the mcc_cal l API.

Allows extraction of user-specified on-line o r stored management
i nformation into a relational database for processing by SOL-based
information management tools, such as reports.

Permits managers to specify, through rules, the set of conditions about the
network i n which they are i nterested. When the alarms FM detects a
condition (the rule fi res), various notification techniques may be employed.
Th ese include invoking a command script, se nding mai l , cal l ing a manager
using an electronic beeper, or modifying an icon on the icon ic map display.

Calcu lates statistics for DEC net, transmission control protocol/internet
protocol {TCP/I P), and LAN bridges, based on error and traff ic uti l i zation or
other information.

Helps the manager diagnose faults in a TCP/I P network, based on some of
the more frequently occurring TCP/I P network problems.

Determ ine automatically the configuration and topology of specific
portions of the network. I ncluded are FMs to determine the configu ration
and topology of DECnet Phase IV networks, IP subnetworks, fiber
distributed data interface (FDDI) ring maps, and LAN bridge span ning trees.

Definitions

Provides access to obj ects that implement the SNMP protocol. It is a
generic AM in the sense that it can adapt to new object defi n itions using
information i n the DECmcc dictionary. New MIB definitions are provided in
a standard form and translated by a M I B translation util ity into the DECmcc
d ictionary.

Provides access to the DEC net Phase IV i m plementations, be they hosts or
servers such as routers. This AM i mplements the network i nformation and
control exchange (NICE) protocol.

Provides access to the DECnet/OSI Phase V i mplementations, hosts, and
servers. It i mplements the C M I P protocol used in Phase V.

Vol. 5 No. I Winter 19'J3 Digital Teclmicaljournal

Design of the DECmcc Management Director

Table 1 DECmcc Di rector Management Modules (continued)

Access Modules Definitions

Bridge AM Supports Digital's family of LAN bridges, i ncluding the LANbridge 1 00,
LANbridge 1 50 and LANbridge 200, and the DECbridge family. It
implements the RBMS protocol, which is used by the original manage
ment product of the same name.

FDDI AM Supports Digita l 's FDDI DECconcentrator products and other devices that
support the standard station management protocol (SMl).

Termi nal Server AM Supports Digital's fam ily of terminal servers, implementing management
through the mai ntenance operations protocol (MOP).

Ethernet Station AM Supports al l Ethernet and I EEE 802.3 stations that implement either, or
both, the Dig ital MOP protocol or the I EEE 802.2 XID and TEST messages.

Circuit AM Uses the services of other AMs to provide management of the network
circuits that connect systems together, based on DEC net nodes, TCP/IP
hosts, or network management forum definitions. Such circuits might be
si mple point-to-point or could represe nt complex multichannel circuits.

SNA AM and Agent PM Permit bidirectional management of the SNA environment and the DECmcc
management environment through a component that resides on an SNA
host (either IBM's NetView or System Ce nter's Advanced System
Management).

Data Col lector AM Provides a means to allow other software, such as applications, to send
events into DECmcc so they may be processed and analyzed along with
events from devices or appl i cations that have access modules.

Script AM Al lows invocation of existi ng or custom shell scripts or command
procedu res from DECmcc, and information to be returned from the scripts
into DECmcc for processing and analysis by other modu les.

provided the API definitions for management mod

u les, as provided by the kernel. Figure 4 shows a

sample screen from DECmcc being used to manage
a portion of a network.

Since the DECmcc kernel is indifferent to the spe

cific type of any management module, i t is quite

convenient to package d ifferent modules together,

providing for a flexible packaging scheme. Each

DECmcc can therefore be tailored to include the set

of modules appropriate for managing the enviro n

ment in which it is situated. In addition, modules

from other vendors can be integrated by the cus

tomer without involvement from Digital .

As new management modules are added,

the powerful generic capabil ities of DECmcc
al low many existing functions to be used without

change. When an AM is added for a new class of

resource, or when an existing generic AM is
enhanced by adding new supporting definitions i n

the d ictionary, one can immediately perform the

fol lowing functions.

• Identify specific resource instances uniquely

• Make the resources known to al l DECmcc direc
tors in the network

Digital Technical journal Vol. 5 No. I Winter 1993

• Represent the resources on an iconic display in

one or more m anagement domains

• Examine management attribu tes from these

resources

• Modify management attributes in these
resources

• Apply management actions to these resources

• Display event information from these resources

• Create alarm rules that can be triggered on par

ticular conditions (polled or unsolicited) about

these resources

• Have the relevant icons change color when the
alarms fire

• Store, periodically, management data or infor
mation about these resources i n the DECmcc
historical data store, or export the information

to a relational database

• View the stored historical data

• Process the relational data using standard infor

mation management tools, for example, to pro
vide management reports

1 39

DECnet Open Networking

B
y
t
e
s

y
t
e
s

POL VCENTER Graph Node4 BILFSH

User bytes received

�1� I l l J I I I/I o lll , -• . --
34 : 4 1 35:59 36:59 37:5� 38:59 39:59 40:59 4 1 : 59 42:59 4 4 : 00 4 4 : 5�

Time Minutes : Seconds 14:44 :59
User bytes sent

450
soot
400
350
300
250
200
150
100

5� •J
� , � �'� � ' � n:� � ' � u : � � , � �:oo � : oo «:oo « : �

Time Minutes : Seconds 14:44 :59
r Characte ristics r Stati stics

r In itial attributes

Figure 4 Screen Display of DECmcc Version 1.3

Future Work

Of course, work on a major software system such as

the DECmcc director is never complete. There are

many areas of opportunity for additional develop

ment. For example, DECmcc can be ported to other

industry platforms (both hardware and software).

New objects can be managed, not only in network

management but a lso in system management,

application management, data management, envi-

140

ronment management, telecommunications man

agement, and so on. Commensurate with each of

these general areas are technology-specific appl ica

tions. In addition, further technology- independent

generic applications can be developed. A recent

paper describes how DECmcc can be considered
as a distributed appl ication and some additional

work to make use of the DECmcc concepts in a

distributed environment.21

Vol. 5 No. J Winter 1993 Digital Technical Journal

DECmcc is not the only management director

in the industry. Thus interoperabil ity between

DECmcc and other management systems is another

area of opportunity. DECmcc already has l inks to
other management systems, not the least being to

manage IBM SNA systems.

Recent advances in object-oriented technology

can be incorporated to enhance the object orienta

tion of DECmcc.

Final ly, new standard industry management pro
tocols, new managed objects, and management

framework innovations are always becoming avail

able. DECmcc wil l be ta king a l l of these evolutions
in its stride. The d istributed management environ

ment (DME), stil l under development by OSF,

promises to bring yet more technology to which
DECmcc wi l l adapt readi ly.

Summary

This paper has explained aspects of the design of

DECmcc in the context of the state of the ind ustry at

the time. DECmcc has been a large undertaking, but

we have been able to build and ship significant, con

sistent, integrated, and yet extensible, management

capabil i ties covering a broad range of managed

objects. The abil ity for DECmcc to adapt to the

changing management environments underscores

the benefit of adopting an architected approach to

implementation.

Acknawledgments

The authors would l ike to acknowledge the work of

the many people in the groups, past and present,

responsible for bringing the ideas presented in this

paper into practical real ity in the DECmcc product

set. Also, the detailed comments of two anonymous

reviewers were very helpful.

References

I . M . Sylor, " Managing DECnet Phase Y: The

Entity Model ," JEEE Networks (March 1988):

30-36.

2. M. Sylor, F. Dolan , and D. Shurtleff, " Network

Management," Digital Technical journal,

vol . 5, no. 1 (Winter 1993, this issue): 1 17-129.

3. EMA Entity Model (Maynard, JYIA: Digital

Equipment Corporation, Order No. AA

PV7KA-TE, January 1993).

D-igital Tecbn'ical]ournal l'bl. 5 No. I Winter 1993

Design of tbe DECmcc J'.llmlagement Director

4. DIVA (Phase V) Com mon Management Infor

mation Protocol Functional Spectfication

(Maynard, MA: Digital Equipment Corpora

tion, Order No. EK-DNAOl-FS-001 , July 1991) .

5. DNA (Phase V) Network Control Language

Functional Specification (Maynard, MA:
Digital Equipment Corporation , Order No.
EK-DNA05-FS-001 , July 1991) .

6. L. Febskens, "An Architectural Strategy for

Enterprise Management," IFJP Proceedings of

the first Symposium on Integrated Network

iVJanagement (May 1989): 41-60.

7. M. Sylor, "Guidelines for Structuring Manage

able Emit ies," IFIP Proceedings of the First

Symposium on Integrated Network Manage

ment (May 1989): 169-183.

8. Information Technology: Open Systems

Interconnection: Common Management

Information Service Definition, !SO/IEC 9595

(Geneva: International Organization for

Standardization/I nternational Electrotechni

cal Commission, 1990).

9. Information Technology: Open Systems

Interconnection: Common 1l1anagement

information Protocol Specification, Part 1 ,

ISO/JEC 9596-1 (Geneva: International Organi

zation for Standardization/International Elec

trotechnical Commission, 1990).

10. N. La Pel le, M. Seger, and M. Sylor, "The Evolu

tion of Network Management Products,"

Digital Technical journal, vol . 1 , no. 3

(September 1986): 117-128.

1 1 . D. Shurtleff and C . StrLitt , " Extensibility o f an

Enterprise Management Director," Network

Management and Control, A. Kershenbaum,
M. Malek, and M. Wal l (eds.) (New York:

Plenum Press, 1990): 129-141 .

12.]. Case, M . Fedor, M. Schoffstal l , and]. Davin,
"A Simple Networl' Management Protocol

(SNMP)," RFC 1157 (May 1990).

13. G. Stone, " Integrated Management Technolo

gies," AT&T UNIX Systems Management

Symposium, Spring 1991 .

1 4 1

DEC net Open Networking

14. C. Stru t t, "Deal ing with Scale in a n Enterprise

Management Director," IFJP Proceedings of

the Second Symposium on Integrated

Network Management (April 1991) : 577-593.

15. S. Marti n ,). McCann, and D. Oran, " Develop

ment of the VAX D istribu ted Name Service,"

Digital Technical journal, vol. 1 , no. 9 (June

1989): 9-15.

16. A. Shvartsman, "An Historical Object Base

in an Enterprise Management D irector," IFIP

Proceedings of the Thi-rd Symposium on

Integrated Network Management (April

1993): 123-134

17 C. Strutt ancl D. Shurtleff, "Architecture fo r an

Integrated, Extensible En terprise M anage

ment Director," IFJP Proceedings of the First

Symposium on Jntegr·ated Network Manage

ment (May 1989): 61-72.

142

18.) . Borden, " D igital 's Telecom m u nications

Network Management Program," Network

Operations and Management (New York :

The Institute of Electrical and Electronics

Engineers, 1992): 102-1 1 1 .

19. DECmcc System Reference Manual, 2 vol

umes (Maynard, MA: Digital Equipmen t

Corporation, Order No. AA-PD5 LC-TE, AA

PE55C-TE, April 1992)

20.]. Fernandez and K. Winkler, "Model ing SNA

Networks using the Structure of Management

Information," IEEE Commu nications (May

1993).

2 1 . C . Strutt , "Distribution i n an Enterprise Man

agement D irector," JFJP Proceedings of the

Third s:vmposium on Integrated Network

Management (April 199 3): 223-234.

Vol. 5 No. 1 Winter 1993 Digital Technica.t]ournal

I Recent Digital US. Patents

The following patents were recently issued to Digital Equipment Cmporation. Titles and names supplied
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original

published patent.

5, 117, 352

5, ll9,043

5, ll9,402

5, 119,465

5, 1 19, 483

5, 1 19,484

5,120,603

5, 121 ,085

5, 121,260

5, 121 ,382

5, 123,091

5, 123,306

5, 125,083

5, 125,086

5, 126,964

5, 127,006

5, 136,700

5, 150, 197

5, 150,360

5, 161 , 193

5, 179, 577

5, 185,537

5, 193, 151

5, 195, 181

L. H . Falek

R. W Brown, M. D. Leis,

and E. C. Simmons

S. A. Ginzburg and]. M. Rieger

M. L. jack and R. T. Gumbel

W C. Madden, D. E. Sanders,

G. M. Uhler, and W R. Wheeler

T. f Fox

P H. Schmidt

R. W Brown

G.). Asakawa, R. Y Noguchi,

and). Rinaldis

H. S. Yang, M. W Carrafiel lo,

W Hawe, and R. W Graham

B. E. Newman

N. S. Saunders and D.). Moretti

D. B. Fite, T. Fossum,

R. C. Hetherington,

). E. Murray, Jr., and D. A. Webb

F. L. Perazzol i , Jr.

]. H . Zurawski

K. Subramanian and

M. A. Billmers

C. P Thacker

W R. Hamburgen

R.). Perlman, W R. Hawe, and

A. G. Lauck

B. T. Lampson, W R. Hawe,

A. Gupta, and B. A. Spinney

N. Ilyadis

T. Creedon,]. Nolan,

and E. O'Neill

R.)ain

S. Bryant and M. Seaman

Mechanism for Fail-Over Notification

Auto-Centered Phase-Locked Loop

Method and Apparatus for Transmission of Local Area

Network Signals over Unshielded Twisted Pairs

System for Selectively Converting Plurality of Source Data

Structures through Corresponding Source Intermediate

Structures, and Target Intermediate Structures into Selected

Target Structure

Application of State Silos for Recovery from Memory

Management Exceptions

Selections between Alternate Control Word and Current

Instruction Generated Control Word for ALU in Respond to

ALU Output and Current Instruction

Magneto-Optic Recording Medium with Oriented Langmuir

Blodgett Protective Layer

Dual-Charge-Pump Bandwidth-Switched Phase-Locked-Loop

Read Channel Optimization System

Station- to-Station Full Duplex Communication in

a Communications Network

Data Processing System and Method for Packetizing Data

from Peripherals.

Pin Pulling Tool

Method and Apparatus for Resolving a Variable Number

of Potential Memory Access Conflicts in a Pipe! ined

Computer System

Virtual Memory Paging Apparatus with Variable Size

In-Page Clusters

High Performance Bit-Sl iced Multipl ier C ircuit

Fault D iagnostic System

Apparatus and Method for Reducing Interference in Two-Level

Cache Memories

Die Attach Structure and Method

Utilization of Redundant Links in Bridges Networks

Pipelined Cryptography Processor and Method for its Use in

Communication Networks

Dynamic Threshold Data Receiver for Local Area Networks

Gate Efficient Digital Glitch Filter for Multiple

Input Applications

Delay-Based Congestion Avoidance in Computer Networks

Message Processing System Having Separate Message

Receiving and Transmitting Processors with Message P>ocess

ing Being Distributed Between the Separate Processors

Digital Techrlical journal Vol. 5 No. I Winter 1993 143

I Referees, April 1992 to December 1992

The editors acknowledge and
thank the referees who have par

ticipated in a peer review of the
papers submitted for publication
in the Digital Technical)ournal.

The referees ' detailed reports

bcwe helped ensure that papers

published in the journal offer
relevant and in(onnative discus
sions of computer technologies
and products. The referees are
computer science and engineer
ing professionals from academia

and industry, including Digital:s
consulting engineers.

Ananr Agarwal, Massachusetts
Institute of Technology

Brian All ison, D igital

Paul Beck, D igital

Lisa Bender, Digital

Brian Bershad, Carnegie-Mel lon University

D i leep Bhandarkar, D igi tal

Meyer Bi l lmers, D igital

Verel l Boaen, D igital

Scott Bradner, Harvard University

Bevin Brett, D igital

Preston Briggs, Rice University

Dean Brock, University of North Caro lina

Mark R . Brown, Digital

Randal E . Bryant, Carnegie-Mel lon University

Lyman Chapin, Bolt, Beranek and Newman

john DiMarco, University of Toronto

James Duckworth, \Vorcester Polytechnic Institute

Hugh Dut·dan, D igital

P h i l ip Enslow, Georgia Institute of Technology

Deborah Estr in , University of Southern Cal ifornia

Len Fehskens, Digital

David Fenwick, D igital

David Fite, Digital

john Forecast, Digital

Tryggve Fossum, Digital

Mark S. Fox, University of Toronto

Rodney Gamache, D igital

Rick Gil lett, D igital

Michael Greenwald, Stanford University

Stephen Greenwood, Digital

James Grochmal , Digital

Robert Hagens, Un iversity of Wisconsin

AJf Hansen, Sintef

Steve Hardcastle-Ki l le , Isode

144

John Hauser, Un iversity of California

Bil l Herrick, Digital

Hai Huang, D igital

Raj Ja in, D igital

Ashok Joshi , D igital

Alberto Leon-Garcia, University of Toronto

Jeff Kalb, Mas par Computer Corporation

Kim Kappel, Georgia Institute of Technology

Paul K.inzelman, D igital

Jam�s Kirkley, Digital

Jeffery Kuskin, Stanford University

Paul Kyzivat, D igital

Mike Leary, D igital

Ian Lesl ie, University of Cambridge

Tom Levergood, Digital

David Lomet , D igital

Frank McCabe, D igital

joh n McDermott, Digital

Pau l McJones, D igital

Will iam M ichalson , Worcester Polytechnic
Insti tute

Peter Mierswa, D igital

Charles Mi tchel l , Digital

David Mitton, Digital

Fanya Montalvo, D igital

J Eliot Moss, University of Massachusetts

Trevor Mudge , University of M ichigan

Bi l l Noyce, D igital

Dave Patterson, University of Cal ifornia

Larry Peterson, University of Arizona

David Piscitel lo, Bel lcore

George Polyzos, University of Calfornia

Brian Porter, D igital

James .J , Quinn, D igital

Farshad Rafii, Babson College

Hemant Rotitbor, Worcester Polytechnic Institute

Pau l Rubinfeld, Digital

Peter Savage, Digital

Michael Schroeder, D igital

Wil l Sherwood, D igital

Robert Simcoe, D igital

Richard Sites, Digital

Richard Stockdale, Digital

David Stone, Digital

joseph Tardo, D igital

Bob Tay lor, D igital

M i ke Uhler, D igital

_lake VanNoy, D igital

Wolf-Dietrich Weber, Stanford University

Kathrin Winkler, D igital

vb/. 5 No. I Wi11ter 1993 Digital Tecfmicaljournal

�amaomaTM

ISSN 0898-901X

Printed in U.S.A. EY-M770E-DP/93 05 02 18.0 Copyright © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor8 introduction
	Biographies
	Foreword
	Overview of Digital's Open Networking
	The DECnet/OSI for OpenVMS Version 5.5 Implementation
	The ULTRIX Implementation of DECnet/OSI
	High-performance TCP/IP and UDP/IP Networking in DEC OSF/l for Alpha AXP
	Routing Architecture
	Digital's Multiprotocol Routing Software Design
	The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway
	Frame Relay Networks
	An Implementation of the OSI Upper Layers and Applications
	Network Management
	Design of the DECmcc Management Director
	Recent Digital U.S. Patents
	Referees, April 1992 to December 1992
	Back cover

