
OC2236
DEC-6-0-TP-MAC-LM-FP-ACTOI

PROGRAMMING
MANUAL

MACRO-6
ASSEMBLY LANGUAGE

-

D.IGITAL E.QUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

DEC-6-0-TP-MAC-LM-FP-ACTOI

/PDP-6 PROGRAMMING MANUAL.

MACRO-6 ASSEMBLY LANGUAGE

DIGITAL EQUIPMENT CORPORATION • MAYNARD. MASSACHUSETTS

Copyright 1965 by Digital Equipment Corporation

ii

Chapter

2

3

CONTENTS

LANGUAGE FUNDAMENTALS ••••••••..•••••••••.•••.•.••..••

Introduction •••••••••••••.•••••.••••••.••.••••••.••••.•.

Character Set ••••...••••••••.•••••.••••.••••.••••..•

The Location Counter •.•..•••....••••.•.•...•••...••.•... 2

Elements ••.•.•..••••.•.•.•••..•..••••...••.•••.••••.... 3

Symbols.. 3

Numbers ••.••.••.••••••••••••••••.••.•.••.•.•••••.. 3

Point

Text

Literals ••••••••••••••••••••.•.••••••••••••••••••..•

Expressions ••••••••••••••••••••••••••••••••••••..••..•..

Evaluation of Symbols •••••••••••.•••••••••••••••••.••••••

STATEMENTS

4

5

5

6

7

9

Comment Statements ••••••••••••••••••••••••••••••.•••••• 10

Instruction Statements •••••••••••••••••.••••••••••••••••.• 10

Primary Instruction Statements ••••••••••••••••.•..••••. 10

I/O Instruction Statements ••••••••••••••.••.••••.••..• 11

Extended Instruction Statements •••. • • • . • • • • • • • • • • • • . . . • 12

Assembly ••••••••••••••••••••••.••••••••••..••••.•.• 13

Number Codes 13

Data Statements •••••••••••••••••••••••••••••••••.••••••• 13

Assembler Control Codes ••••••••••••••••••••••••.•••••••.• 17

Listing Control•.•......•...••..•..•......... 23

MACROS .. . 25

Definition of Macros ...•••....•.•.•....•..•.••........... 25

Macros Calls 26

Additional Considerations............................. 26

Created Symbols •••••••••••••••••••••••••••••••••••• 28

iii

CONTENTS (continued)

Chapter Page

Concatenation•..••......•.••.•.•.••..••.••.•...•. 30

Indefinite Report ..••••..••••••.•..•.•••••••••••.•••.• 30

Nesting and Redefinition.......... •••.....••.•.••.. 32

4 RELOCATION AND LINKING•.•.......•.•..•.•..•..•..•.. 35

Relocation•..•••.........•..••........•....• 35

Linking Subroutines•..•.......•.....•.•.•...• 37

5 ERRORS••...••...•..............••..• 39

6

The Error Flags•.....•.........•••.....•......•• 39

ASSEMBLY OUTPUT

Assembly Listing

Binary Program

41

41

41

Rim Format ..•.•..••.......•..•.....•.••••••.....••.• 41

LIN K Format •........••.••••...•.••.•........•.••••.• 42

The Formats for the Block Types 43

7 ASSEMBLER INITIALIZATION.................................. 46

Appendix

CODES•.••..•.....••.•••.•..•••.•••••.....•.•.••••••• A1

2 SUMMARY OF ERROR FLAGS. • • . . . • • . . • • • A3

3 PROGRAMMING EXAMPLES................................... A4

4 CHARACTER SETS· . • • • • . . • • • . A7

iv

CHAPTER 1

LANGUAGE FUNDAM ENTALS

INTRODUCTION

MACRO-6 programs consist of a sequence of statements, each of which may generate one or

more machine instructions, generate words of data, or give special instructions to the MACRO-6

Assembler. The statements, in turn, are subdivided into fields: a label field, a code field,

argument fields, and comment fields. The fields may contain one-or more-of the basic ele

ments of the language described below. The interpretation of the basic element depends on

the field in which it appears.

This chapter begins with the MACRO-6 character set. It then describes the basic elements of

the language and how they may be constructed.

Character Set

The characters which are meaningful to the MACRO-6 Assembler are:

(space) G T

H U

" / < I V

0 = J W

$ > K X

% 2 ? L Y

& 3 @ M Z

4 A N [

5 B 0]

6 C P

* 7 D Q

+ 8 E R

9 F S

The corresponding ASCII, 6-bit ASCII, and punched-card codes are shown in Appendix 4. Two

of the characters shown in the appendix do not appear above. They are back slash and reverse

arrow. These two characters are ignored by the Assembler"and should not be used.

Punched Paper Tape

The ASCII code is used for paper tape input. In addition to the characters shown above there

are some nonprinting characters of significance, i.e., carriage return, line feed, and tabs.

Tabs are equivalent to a number of spaces and are properly translated to the correct number of

spaces on the output listings. Both tabs and spaces may be freely used (except for one

restriction-see Code Fields) to improve the appearance of programs. Statements must be

terminated by a semicolon or by a carriage return. All carriage returns must be followed by

a line feed, and all line feeds must be preceded by either a carriage return or another line feed

Punched Cards

A modified Hollerith code (Appendix 4) is used for card input. Only the first 72 columns are

considered by the processor; the remaining 8 may be used for identifying information. The

Assembler does not recognize a fixed-field input from the cards. That is, fields within a state

ment are not delimited by appearing in specified card columns. The fields must be delimited

by specified characters; the delimiters being exactly the same as for punched tape. The state

ment itself is automatically delimited by reaching the end of the card-column 72. To skip

lines, blank cards which generate no information may be inserted.

THE LOCATION COUNTER

In general, statements generate 36-bit binary words, which are placed into consecutive memory

locations. The location counter is a register used by the MACRO-6 processor to keep track of

the next available location in memory. It is updated after processing each statement. A state

ment which generates a single machine instruction would update the location counter by one;

a statement which generates six data words would update it by six. The location counter may

be expl icitly set by the LOC or RELOC codes.

2

ELEMENTS

Elements represent binary integers less than 235 . There are five types of elements: symbols,

numbers, characters, points, and literals .

. Symbols

These are strings of letters, numbers, 'or decimal points, the first of which must be a letter or

decimal point. The characters. % and $ are regarded as letters in forming symbols, although

a symbol may be any length, only the first six characters are considered, and any additional

characters are ignored. Symbols which are identical in their first six characters are considered

identical.

X
A65
NUMERIC
X.38
HIGH.
N12345

(equivalent to NUMERI)

Numbers

A number is a string of digits. If the string contains a decimal point, it is evaluated as a

floating-decimal number and the digits are taken radix 1,0. If the string does not contain a

decimal point, the digits are assigned values according to the prevailing radix. (This prevail

ing radix is normally regulated by the RADIX code.) If 8 were the prevailing radix, the num

ber 17 would have the value 17
8
=15

10
. If 1,0 were prevailing, 17 would have the value

17
10

=21
8

. The number 17.,0 would always have the value 2,0542,0,0,0,0,0,0,0 since the decimal

point denotes a floating-decimal number. A number must always begin with a digit or a dec

imal point.

Occasiona~ly, it may be desirable to change the valuS" of the radix for only one numeric element.

This is done by the qualifier tfollowed by a letter. Numbers are qualified in this manner to be pec

imal, Octal, ~inary, or £ixed point decimal fractions irrespective of the prevai ling radix. Thus:

3

tD17= 171O
t017= 1510
tB1,01,0 = 1,010 = 128

These qualifiers have no further effect on the prevailing radix. Floating-decimal numbers

never consider qualifiers, except F. The exponent parts of floating-decimal numbers may be

further augmented by following the number by E±n; the number is then considered to be multi

pi ied by l,0±n.

1. if 1,0.,0E-1
,0 .,0,0,01 E4
.,0,01 E+ 3

The binary representation
of each is

2,014,0,0,0,0,0,0,0,0

If, in addition, the characters t F are prefixed to a number, it is considered to be a fixed

decimal fraction. In this case, Bn should be suffixed to the number where n is an integer and

,0 2 n 2 35. The decimal point is then taken to be to the right of bit n. (If no bit position,

B, is specified, 35 is assumed.) Any integer part of the number's truncated to fit in n bits.

tF3.25B8 =
tF.281250B12 =
tF.4498,046E+1B11

A number may also be logically shifted left by following it by B:.: The number is shifted left

so that the right-hand (low-order) bit is in position ~ (decimal) of the 36-bit computer word.

Thus:

Point

The decimal point alone has a special meaning; it represents the current value of the location

counter. For example:

4

A: JRST .-1
iEQUIVALENT TO
A: JRST A-1

Text

If the first nonblank character of an element is a quote(II), the characters following it are

assembled right justified as their 7-bit ASCII representations. Only printing characters are

assembled. This element is terminated by a quote or a carriage return. If more than five char

acters are included within the quotes, only the right-hand five are considered.

AXE is equivalent to 4%661%5

(This representation is useful with

immediate mode operations.)

Literals

Literals are referenced in the argument field of a statement and are delimited by a pair of

brackets. The information within the brackets (whether it be a data word or machine instruction)

is assembled and assigned a specific storage location (usually at the end of the program). The

address of the generated word appears in the statement which referenced the literal. Literals

may be nested to any reasonable depth.

ADD 2, [DEC 65], DECIMAL LITERAL
FAD 1, [8.14], FLOATING POINT
MOVE 3, [ASCII .BYTES.]
XCT[XCT[XCT[ADD 2,X]] (4)], NESTED

The last example generates the following constants. For example:

LlTl: XCT LlT2(4)
LlT2: XCT LlT3
LlT3: ADD 2, X

5

EXPRESSIONS

Expressions are strings of elements separated by arithmetic or Boolean operators. Expressions

represent numeric values less than 2
35

in magnitude. The v~lue of an expression is calculated

by substituting the numeric values for each of the elements and performing the specified opera

tions. The a IIowabl e operations are:

Operator

*

I
+

&

Meaning

multiply

divide

add

substract

and

inc lusive or

When combining elements, the Boolean operations (AND, lOR) are performed first, from left

to right. Then the multipl ications are performed from left to right; and, finally, the additions

and subtractions are performed. Division always truncates the fraction part. All arithmetic

is performed modu 10 2
35

= 34, 359, 738, 368.

For example, suppose the element:

A represents the value 2
10

B represents the value 8
10

C represents the value 3
10

D represents the value 5
10

, the expression:

AlB + A *C represents 6
1
0

BI A - 2* A -1 represents -110 = 7777777777778

A&B represents ~

B+Dl,0+C represents 21
10

1 + A&C represents 3
10

6

An expression enclosed by angle bracket may be regarded as an element, allowing compound

expressions to be formed:

<A+B> /5 represents 2

C* <A+B* <D-C» represents 54
10

EVALUATION OF SYMBOLS

The value represented by a symbol is assigned by one of three mechanisms: a label, a direct

assignment, or a variable.

Label

Direct Assignment

Variable

If a statement begins with a symbol followed by a

colon, the symbol is called a label. It is assigned

the current val ue of the location counter.

If a symbol appears on the left-hand side of the equal

sign in a direct assignment statement, it is assigned

a value equal to the value represented by the ex

pression on the right-hand side. A direct assignment

statement has the form:

SYM = EXP, COMMENT

where SYM is a symbol and EXP is an expression.

For example:

A = B+2
TSIZE = TEND-TSTART
K=4

If a symbol is followed by a number sign (#), a

storage cell is automatically reserved (usually at

the end of the program), and the symbol represents

the location of this storage cell. The number sign

7

may appear after anyone or more occurrences of the

variable; it need not appear after all occurrences,

nor after the first occurr.ence.

This is useful for defining a symbolic temporary

storage location. For example: TEMPI, which

reserves a cell whose address is represented by

TEMP.

If a value is assigned directly, it may be altered by another direct assignment statement. If

it is defined as a label or variable, it may not be altered.

8

CHAPTER 2

STATEMENTS

There are four types of statements in the MACRO-6 language: comment statements, instruction

statements, data statements, and assembler control statements. The type of a statement is

identified by the fields present and the code contained in the code field.

The possible fields are listed below in the order in which they would appear from left to right.

Each field extends from the terminator for the preceding field, or from the beginning of the

statement if all preceding fields are null, to its own terminator.

Label Field

Code Field

Argument Fields

If present, this field must be terminated by a colon.

This field contains a string of characters represent

ing one, and only one, symbol. When a symbol

appears in a label field, it is immediately defined

to have a value equal to the current value of the

location counter.

This field is terminated by either a space or a comma.

It may contain mnemonics representing either PDP-6

instruct ions or any of the pseudo-operat ion codes

recognized by the Assembler.

The function of these fields is determined by the

code field. They may describe data, machine

addresses, accumulators, assembler control para

meters, index registers, etc. They may be del imited

by commas, parentheses, or angle-brackets, de

pending on their function in the statement.

9

If a statement is ended with fewer fields than are normally required, the unspecified fields are

considered null. If a statement has more fields than are required, the superfluous fields are

taken to be comments. The information between the semicolon, if present, and the end of a

card or carriage return is also taken as a comment.

The field completely determines the interpretation to be given to its contents. For example,

if the characters ADD appeared in a label field, they would be interpreted as a statement label

and would receive a value equal to the statements location in memory. If the same characters

appeared in a code field, they would be interpreted as the mnemonic for a PDP-6 instruction

and would receive the value 270B8.

COMMENT STATEMENTS

A statement with an empty or blank code field is considered to be a comment statement. The

presence of the empty field is indicated by the presence of the field's delimitor, i.e., a semicolon.

For example:

THIS IS A COMMENT

INSTRUCTION STATEMENTS

Instruction statements may have any or all of the possible fields. They must have a nonempty

code field. There are three types of instruction statements: primary instruction statements,

extended instruction statements, and I/O instruction statements.

Primary Instruction Statements

The primary instruction statements must have in their code field one of the PDP.-6 instruction

mnemonics, (including the appropriate mode suffix) except for the eight I/O instructions. (For

the complete list of mnemonics and mode controls, see F-65.) There must be ~ space between

the instruction mnemonic and the mode control since this space would attempt to terminate the

code field.

10

If the field following the code field is terminated by a comma, it is an accumulator field;

otherwise, it is the operand address field. If there is an accumulator field, the next field is

the address field. If a field is enclosed in parentheses, it is an index register field. The char

acter g appearing in the address field denotes indirect addressing. The contents of these

argument fields may be any desired expression.

The accumulator field may be left out and the code field delimited by a comma or space. In

this case, the accumulator is considered to be accumulator~. If indexing is not used, the

index field may also be left out and the address field delimited by a comma, carriage return,

or semicolon; otherwise, it is delimited by the opening parenthesis of the index field. For

example:

SUM: ADD 2, TABLE(X3)
ADD AC2, Y
JRST .-3;
JMP (4)

I/O Instruction Statements

The I/O instruction statements are exactly like the primary instruction statements with the

fo lIowi ng except ions:

1. The code field must contain one of the I/O instruction mnemonics for

the P DP-6 (see F-65).

2. The accumulator field is replaced by a device field. The device field

may contain either a device number or a device mnemonic (see F-65). For

example:

READ: DATA1 PTR, IglNUM(4)
CONO 2,03; ENABLE PC ON CH 3

11

Extended I nstruct ion Statements

For programming convenience, some extended operation codes are provided in the MACRO-6

Assembler. Primari Iy, these are to replace those PDP-6 instructions where the combination of

instruction mnemonic and accumulator field are both used to denote a single instruction. For

example:

JRST 4,

which is equivalent to a single halt instruction. Additionally, they are used to replace certain

commonly used I/O instruction-device number combinations.

The extended instruction statements are exactly I ike the basic instruction statements or I/O

instruction statements, except that they may not have an accumulator field or device field.

The code field must have one of the following extended mnemonics:

Extended
Equivalent

Mnemonics
PDP-6 Meaning

Mnemonics

JEN JRST 12, Jump and enable the PI system

HALT JRST 4, Halt

JRSTF JRST 2, Jump and reset flags

JOV JFCL 8, Jump on overflow and clear

JCRY0' JFCL 4, Jump on CRY~ and clear

JCRY1 JFCL 2, Jump on CRY1 and clear

JCRY JFCL 6, Jump on CRY~ or CRY1 and clear

JPC JFCL 1, Jump on PC change flag and clear

RSW DATAl ~, Read the console switches

12

Assembly

Instructions are assembled in the following manner. Each instruction code represents a 36-bit

number. If it is a primary instruction code, the low-order 4 bits of the value of the accumu

lator expression are 10Red into positions 9-12. The low-order 9 bits of the value of the device

expression of an I/O instruction are 10Red into positions 3-11. The low-order 18 bits of the

value of the address expression are 10Red into the right half of the instruction. If the indirect

address symbol @ appears in the address field, a bit is placed into position 13. Finally, if the

index register field exists, the lower four bits are 10Red into positions 14-17.

Numeric Codes

Numeric codes are considered to indicate primary instructions. The remainder of the statement

is assembled as a normal instruction. If the numeric code is preceded by a minus sign, the

2's complement of the number is taken. The minus sign is ignored for other codes. Character

elements are considered to be numeric. For example:

X;Ai THE VALUE OF A IS IN THE RT HALF
27X;B8 2,Xi EQUIVALENT TO ADD 2,X
tDX;5i X;X;X;X;X;X;X;X;X;IX;1 IS GENERATED
-Ii 7777m77777 IS GENERATED

DATA STATEMENTS

Several codes are used to indicate various data formats. These codes describe the type

of data to be generated. A label on a data-generating statement refers to the first word

assembled.

DEC (decimal data}-Set the radix to IX; for this statement

only and generate a word for each expression follow

i ng the code. Expressions are separated by commas.

For example:

DEC 1~, 4.5, 3.1416, 6.~3E-26, 3i
i5 WORDS GENERATED

13

OCT

EXP

XWD

(octal data)-Similar to the DEC code, but the

radix is temporarily set to 8. For example:

OCT -3, 2, 777, 4.1iTHE 4TH ITEM IS FLOATING PT.

(espressions)-The radix is unchanged. Each ex

pression following the code generates one 36-bit

data word. For example:

EXP X, 4, tD65, HALF, B+362-Ai

(transfer word)-Two expressions follow this code

which generates one data word. The low-order

18 bits of the value of the first are placed into the

left-half word, and the low-order 18 bits of the

value of the second expression are placed into the

right half. For example:

ATOB: XWD A, Bi POINTER WORD FOR BLOCK TRANSFER

Z

10WD

(zero word)-One word containing zeros is generated.

For example:

TEMP: Zi TEMPORARY STORAGE

(I/O transfer word)-used in the BLKI and BLKO

instructions. Two expressions separated by a comma

follow this code, which generates one data word.

The left half of the assembled word contains the

14

POINT

SIXBIT

2's complement of the value of the first expression,

and the right half contains the value of the second

expression minus one. For example:

INAREA: IOWD 6, tD265;
ASSEMBLES AS 777772~~~377

(byte pointer word)-The first expression indicates

the byte size, the second indicates the address, and

the third indicates the position of the right-hand bit

of the byte position. The indirect character (l) and

and index expression in parentheses may appear in

conjunction with the address part. The local radix

for the position and size expressions is always 1~,

regardless of the prevailing radix. For example:

STRING: POINT 6/Q-lN(4),5i
iPOINTS TO THE LH CHAR

If the position expression is left blank, the position

part will assemble as 44
S

. On incrementing, the

pointer will point to the left-hand byte.

(alphabetic information)-This code is used to generate

characters in 6-bit ASCII code, pack them into

6-character words and place the words in sequential

registers. The first nonblank character following

the code is the delimiter. Information is assembled

from the second character unt i I the first character

is repeated. Only the printing characters of the

15

ASCII

BLOCK

BYTE

ASCII code are assembled, except line feeds which

are assembled as 74 (\). The characters are left

justified. For example: .

NUMBER2 SIXBIT "2"
ALPHA: SIXBIT /ALPHABETIC INFORMATION/
,EQUIVALENT TO
ALPHA: OCT 41146,05,04142, 45645143,0,051;

OCT 564657625541, 64515756,0,0,0,0;

(alphabetic information)- This code is similar to

SIXBIT, but it packs words with the low 7 bits of

the full ASCII representation. The entire ASCII

character set may be assembled under this mode,

including the reverse slash (\) and back arrow

(~). For example:

ASCII . ~
.; A CARRIAGE RETURN AND LINE FEED

(block of storage reserved)-The expression following

the code indicates the number of cells to be reserved.

The location counter is incremented by the value of

the expression. The expression may be an absolute

value or a mixed arithmetic. For example:

MATRIX: BLOCK N*M

(byte strings)-The first expression following this

code is enclosed in parentheses and is the byte size.

Subsequent expressions, separated by commas, are

eva I uated, truncated to the byte size, packed and

assembled into sequential memory locations. If a

16

byte cannot fit into a word, it is assembled as the

first byte of the next word. The byte size may be

altered in the middle of a word or a string by in

serting a byte size expression in parentheses. The

local radix for the size portion is always considered

to be 1,0, no matter what value the prevailing radix

may have. For example:

RADIX 1,0
AX: BYTE (6) 1,0,4, 9, 1, 1, 3, 6
Q: BYTE (15)12, 3, 9,
STR: BYTE (6) 1,0,4, 9 (12) "AB"
, EQUIVALENT TO
AX: OCT 12,0411,01,01,03, ,06,0,0,0,0,0,0,0,0,0,0;
Q: OCT ,0,0,04,0,0,0,0,03,0,0, ,0,0,011,0,0,0,0,0,0,0;
STR: OCT 12,0411,0,04142;

ASSEMBLER CONTROL CODES

These statements do not generate data or instructions, but control the operation of the assembler.

REPEAT This code causes a character string to be processed

repeatedly. The code is followed by an expression

whose value indicates the number of repetitions

desired. This is followed by the string to be re

peated enclosed by angle-brackets. The expression

for the number of repititions in a REPEAT statement

must be followed by a comma. For example:

17

IFn

ADDX: REPEAT 3,<ADD 6,X(4}
ADDI 4, 1>

, EQUIVALENT TO
ADDX: ADD 6,X(4}

ADDI 4, 1
ADD 6,X(4}
ADDI 4, 1
ADD 6,X(4}
ADD I 4, 1 ...

SQ: REPEAT N, <
EXP . * . +SQ*SO+ 1-2*. *50+2*. -2*SQ>

;A TABLE OF SQUARES

The label of a repeat is placed on the first statement

generated. REPEATs may be nested to any reasonab Ie

degree. For example:

REPEAT N+1,<MOVE 6, A(K}
REPEAT N, <ADD 6, (3)

ADDI3,L>
MOVEM 6,A(K} >

(conditional assembly}-An IFn code is followed by

an expression, and a string of coding enclosed in

angle-brackets. The expression for a conditional

assembly must be followed by a comma. If the

expression fulfills the condition indicated by ~, the

string is processed; if not, it is ignored. The I Fn

codes are:

IFE Assemble if expression is 53.
IFG Assemble if expression is positive ..

IFGE Assemble if expression is positive or %.
IFL Assemble if expression is negative.

IFLE Assemble if expression is negative or %.
IFN Assemble if expression is nonzero.

18

IFIDN

IFDIF

RADIX

LaC

IFI Assemble if PASS 1 (no expression).

IF2 Assemble if PASS 2 (no expression).
For example:

IF X-Y, <ADD Z, Xi>
;ASSEMBLED ONLY IF X=Y

(conditional assembly on character strings)-This

is followed by three sets of angl e-brackets. If the

character strings enclosed by the first two sets of

angle-brackets are identical, the coding within the

third set is processed. For example:

IFIDN <+ > <+ >, < FAD 3,X >
;FAD 3,Xi WILL BE PROCESSED

{conditional assembly on character strings}-This

is the converse of IFIDN and is similar in format.

The coding within the third set of angle-brackets

is processed if the two character strings differ.

The prevailing value of the radix is controlled by

this code. It is followed by a decimal number

between 2 and 10 which then becomes the prevai ling

radix. The radix may be changed at any point on the

assemblYi it is initially considered to be 8. For

example:

RADIX 1.0,
iSET PREVAILING RADIX DECIMAL

This code changes the location counter to a value

equivalent to the expression which follows. The block

19

RELOC

PHASE

of coding following a LOC is assembled into the

absolute locations, and any labels defined are con

sidered absolute. For example:

ADD AC2,X
LOC 2%%
ADD AC3, @Q2
LOC .+3; SKIP 3 LOCATIONS
ADD ACl ,AC2

This is similar to LOC in that it explicitly sets the

location counter. The block of code which follows

is relocatable and all labels within the block are

relocatable. The implicit statement begins all

programs. For example:

RELOC %i

A portion of code may be moved i'nto other registers

before it is executed. PHASE gives the location

counter a value different from the location into

which the assembled code is to be loaded. The

code is actually loaded into continuing sequential

iocations, but all labels within a phased area are

in relation to the PHASE. Point elements (.) also

relate to the PHASE. PHASE is followed by an

expression indicating the first address of the sub

routine when it is to be executed. For example:

20

PASS2

END

NOSYM

LIT

MOVE [XWD LOOPX, LOOP]
BLT LOOP+5

LOOP: PHASE 11
LOOP: Z

DE PHASE

MOVN A(X)
FMP MPYR
FADM A(Y)
SOJGE X, .-3
JRST @LOOP

This example is the central loop in a matrix inversion.

Before executing it, the routine will be moved into

fast accumulator memory locations 11-16. The

symbol LOOP represents 11 and the point in the

SOJGE instruction represents 15. The routine is,

however, loaded into the normal sequential registers.

A phased area is terminated by a DEPHASE, LOC or

RELOC code. The DEPHASE code has no effect on

the next sequential loading location, but restores

the location counter to this value.

This code causes the location assignment phase,

PASS1 to be suspended and PASS2 to commence.

This statement must be the last statement in a pro

gram or subroutine. If it is a program, the follow

ing expression is the location of the first instruction

to be executed.

The assembler will normally output a symbol table

or list of the symbols used and their definitions. The

code NOSYM will suppress this.

This code will cause literals that have been previously

defined to be assembled starting at the current location.

21

VAR

RIM

OPDEF

If ~ literals have been defined, the next free cell

will be at (.+n). This statement will have no effect

on I itera Is which are defined after it. LIT may not

be used more than eight times.

This code will cause the symbols which have been

defined by following them with # in previous state

ments to be assembled as block statements. This has

no effect on subsequent symbol definitions of the

same type. This, and the previous pseudo-op, LIT,

are useful in controlling storage allocation. If these

codes do not appear, all variables and literals are

placed at the end of the program.

In paper tape assemblies, this code will cause binary

output to be punched in RIM format.

(define an operation mnemonic)-This is followed by

a symbol and a pair of brackets ~ontaining a state

ment that wi II generate one word of data. The

symbol then becomes a mnemonic for the operation

code represented by the 36-b it data word. For

example:

OPDEF PUSHP [PUSH PP,,0'J
OPDEF PUNCH [DATAO PIP,]

These OPDEFs may then be treated as ordinary op

codes. For example:

PUSHP X
PUNCH Y

22

SYN (define synonyms)-This code is followed by two

symbo Is or macros. The first must have been pre

viously defined, and the second is made equivalent

to the first. If the first is a symbol, the second

becomes a symbol with the same value; if the first

is a macro, the second becomes a macro wh ich acts

identically; if the first isa machine-op, control

code, or data generating code, the second will be

interpreted in the same manner. For example:

SYN K,X
SYN FAD,ADD
SYN END,XEND

If the first item is identical to both a symbol and

a code, the second item {which is the synonym} is

made synonymous with the symbol in preference to

the code.

Listing Control

Several codes are used to control the final listing.

LIST

XLiST

LALL

XALL

TITLE

Causes the assembler to begin listing the assembled

program in both octal and source text.

Causes the assembler to stop listing the assembled

program.

Causes the assembler to list all text that is processed:

macro expansions, list control codes, repeats, etc.

Causes the assemblef" to stop listing all text.

The comments field is written at the top of each

pr i nted page.

23

SUBTTL

PAGE

The comments field is written as a second line at

the top of each printed page.

The listing begins a new page. (A form feed on the

input tape also has the same effect.)

These list control codes are never printed in the final listings, except under LALL.

24

CHAPTER 3

MACROS

When writing a program, it often happens that certain coding sequences are used several times

with just the arguments changed. If so, it is convenient if the entire sequence can be generated

by a single statement. To do this, the cod ing sequence is defined with dummy arguments as a

macro. A single statement referring to the macro by name, along with a list of real arguments,

will generate the correct sequence.

DEFINITION OF MACROS

The first statement of a macro definition must consist of the code DEFINE followed by the name

of the macro. The name must be constructed by the rules for constructing symbols. The macro

name may be followed by a string of dummy arguments enclosed in parentheses. The dummy

arguments are separated by commas and may be any symbols that are convenient-single letters

are sufficient. A comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is delimited by angle

brackets. The body of the macro may consist of any proper string of coding; normally, but is

not restricted to, a group of complete statements.

Example: A macro to compute the length of a vector.

DEFINE VMAG (A, B)
<MOVE O,A;

FMP 0;
MOVE l,A+1;
FMP 1,1;
FAD 1;
MOVE l,A+2;
FMP 1,1;
FA" 1;
JSR FSQRT;
MOVEM B;

ROUTINE FOR THE LENGTH OF A VECTOR
GET THE FIRST COMPONENT
SQUARE IT
GET THE SECOND COMPONENT
SQUARE IT
ADD THE SQUARE OF THE SECOND
GET THE THIRD COMPONENT
SQUARE IT
ADD THE SQUARE OF THE THIRD
USE THE FLOATING SQUARE ROOT ROUTINE
STORE THE LENGTH>

25

MACRO CALLS

A macro may be ca II ed by any statement conta i n i ng the macro name fo II owed by a I ist of argu

ments. The arguments are separated by commas and may be enclosed within parentheses. 1£
parentheses are used (indicated by an open parenthesis following the macro name), the argument

string is ended by a closed parenthesis. If there are n dummy arguments in the macro definition,

a II arguments beyond the first n, if any, are ignored. If parentheses are omitted, the argument

string ends when all the dummy arguments of the macro definition have been assigned, or when

a carriage return or semicolon delimits an argument.

The arguments must be written in the order in which they are to be substituted for dummy argu

ments. That is, the first argument is substituted for each appearance of the first dummy argu

ment, the second argument is substituted for each appearance of the second dummy argument,

etc. For example:

VMAG VECT, LENGTH

The appearance of this statement in a program would generate the code sequence defined above

for the macro VMAG. The character string VECT would be substituted for each occurrence in

the coding of the dummy argument A, the character string LENGTH being substituted for the

single occurrence of B in the coding.

Statements with a macro call may have label fields. The value of the label is the location of

the first instruction generated.

Additional Considerations

1. Arguments must be separated by commas. However, arguments may also

contain commas. For example:

DEFINE JEQ (A,B,C)
<MOVE [AJ

CAMN B
JRST C>

26

If the data in location B is equal to A (a literal), the program jumps to C.

If A is to be the instruction ADD 2,X; then the calling macro instruction would

be written:

JEQ «ADD 2, X>, B, INSTX)

The angle brackets surrounding the argument are removed and the proper

coding is generated.

The general rule is: If an argument contains commas, semicolons, or any other

argument delimiters, the argument must be enclosed in angle brackets.

2. A macro need not have arguments. The instruction:

DATAO PTP,PUNBUF(4)

which causes the contents of PUNBUF, indexed by register 4, to be punched

on paper tape, may be generated by the macro:

DEFINE PUNCH
<DATAO PTP,PUNBUF(4»

The calling macro instruction could be written:

PUNCH

PUNCH calls for the DATAO instruction contained in the body of the macro.

3. The macro name, followed by a list of arguments, may appear anywhere

in a statement. The string within the angle brackets of the macro definition

will exactly replace the macro name and argument string. For example:

27

DEFIN E L(A, B) <3*<B-A+ 1»

gives an expression for the number of items in a table"where three cells are

used to store each item. A is the address of the first item, and B is the

address of the last item. To load an index register with the table length,

the macro can be called as follows:

MOVEI X, L(FIRST, LAST)

Created Symbols

When a macro is called, it is often convenient to generate symbols without expl icitly stating

them in the call, for example, symbols for labels within the macro body. If it is not necessary

to refer to these labels from outside the macro, there is no reason to be concerned as to what

the labels are. Nevertheless, different symbols must be used for the labels each time the

macro is called. Created symbols are used for this purpose.

Each time a macro that requires a created symbol is called, a symbol is generated and inserted

into the macro. These generated symbols are of the form .. hijk, that is, two decimal points

followed by four digits. The first created symbol is .. ,0,0,01, the next is .. ,0,0,02, etc.

If a dummy symbol in a definition statement is preceded by a percent sign (%), it is considered

to be a created symbol. When a macro is called, all missing arguments that are of the form

%X are replaced by created symbols. However, if there are sufficient arguments in the call ing

I ist that some of the arguments are in a position to be assigned to the dummy arguments of the

form %X, the percent sign is overruled and the stated argument is assigned in the normal

manner.

Null arguments are not considered to be the same as missing arguments. For ex~mple, suppose

a macro has been defined with the dummy string:

(A,%B, %C)

28

If the macro were called with the argument string:

(ARG,) or ARG"

the second argument would be considered to have been declared as a null string. This would

override the % prefixed to the second dummy argument and would substitute the null string for

each appearance of the second dummy argument in the code. However, the third argument is

missing. A label would be created for each occurrence of %C. For example:

DEFINE TYPE (A,%B)
<JSR TYPEOUT

JUMP %B
SIXBIT /A/
%B:>

This macro types the text string substituted for A on the console Teletype. TYPEOUT is an

output routine. Labeling the location following the text is appropriate since A may be text

of indefinite length. A created symbol is appropriate for this label since the programmer would

probably not be interested in knowing the label.

This macro might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is executed. If the call had

been:

TYPE HELLO, BX

the effect w~ld be the same. However, BX would be substituted for %B, overruling the

effect of the percent sign.

29

Concatenat ion

The character single quote (') is defined to be the concatenation operator and may not be used

otherwise inside a macro definition. (Outside a macro definition, it is ignored except as a

character in textual data.) A macro argument need not be a complete symbol. Rather, it may

be a string of characters which will form a complete symbol when joined to characters already

contained in the macro definition. This joining, called concatenation, is indicated by the

appearance of an apostrophe appearing between the strings to be so joined.

As an example, the macro:

DEFINE J(A, S,C)
<JUMP'A S,C>

when called, the argument A is suffixed to JUMP to form a single symbol. If the call were:

J (LE,3,X+l)

the generated code would be:

JUMPLE 3,X+l

Indefinite Repeat

It is often convenient if a macro can be repeated one or more times for a single call; each

repetition substituting successive arguments in the call statement for specified arguments in

the macro. This may be done by use of the indefinite repeat code, IRP. The code IRP is

followed by a dummy argument which may be enclosed in parentheses. This argument must

also be contained in the DEFINE statement's list. This argument is broken into subarguments.

When the macro is called, the range of the IRP is assembled once for each subargument, the

successive subarguments being substituted for each appearance of the dummy argument within

the range of the IRP. For example, the single argument:

30

<ALPHA, BETA, GAMMA>

consists of the subarguments ALPHA, BETA, and GAMMA. The macro definition:

and the co II:

DEFINE DOEACH (A)
<IRP A
<A
»

DOEACH <ALPHA, BETA, GAMMA>]

produces the following coding:

ALPHA
BETA
GAMMA

An opening angle bracket must follow the argument of the IRP statement to delimit the range

of the IRP. A closing angle bracket must terminate the range of the IRP.

It is sometimes desirable to stop processing an indefinite repeat depending on conditions given

by the assembler. This is done by the code STOPI. When the code STOPI is encountered, the

macro processor will finish expanding the range of the IRP for the present argument and terminate

the repeat action. An example:

DEFINE CONVERT (A)
<IRP A <IFE K-A, <STOPI
CONV1 A>
»

31

Assume that the val ue of K is 3; then the call:

will generate:

CONVERT (jj,1,2,3,4,5,6,7)

<IRP
IFE K-,0,<STOPI
CONV1,0>
IFE K-,0,<STOPI
CONVll>
IFE K-2,<STOPI
CONVI2>
IFE K-3,<STOPI
CONVI3>
STOPI
CONVI 3

The assemb Iy condition is not met for the first three arguments of the macro. Therefore, the

STOPI code is not encountered until the fourth argument, i.e., the number 3. When the con

dition is met, the STOPI code is processed which prevents further scanning of the arguments.

However, the action continues for the current argument and generates CONVI 3, i.e., a

call for the macro CONVI (defined elsewhere) with an argument of 3.

Nesting and Redefinition

Macros may be nested; that is, macros may be defined within other macros. For ease of dis

cussions, levels may be assigned to these nested macros. The outermost macros, i.e., those

defined directly to the macro processor, may be called first level macros. Macros defined

within first level macros may be called second level macros; space macros defin'ed within

second level macros may be called third level macros; etc.

At the beginning of processing, first level macros are known to the macro processor and may

be called in the normal manner. However, second and higher level macros are not yet de

fined. When a first level macro containing second, and higher, level macros is called, all

32

its second level macros become defined to the processor. Henceforth, their level of definition

is irrelevant and they may be called in the normal manner. Of course, if these second level

macros contain third level macros, the third level macros are still not defined until the second

level macros containing them have been called.

When a macro of level n contains a macro of level n+l, calling the macro results in generating

the body of the macro into the user's program in the normal manner until the DEFINE statement

is encountered. The level n+ 1 macro is then defined to the macro processor; it does not appear

in the user's program. When the definition is complete, the macro processor resumes generating

the macro body into the user's program unt i I, or un less, the ent ire macro has been generated.

If a macro name which has been previously defined appears within another definition statement,

the macro is redefined, and the original definition is eliminated.

The first example, calculation of the length of a vector, may be rewritten to illustrate both

nesting and redefinition.

DEFINE VMAG (A, B, %C)
<DEFINE VMAG (D, E)
<JSP SJ, VL
EXP D, E>
VMAG (A, B)
JRST %C

VL: HLRZ 2, (SJ)
MOVE (2)

FMP f:J

%C: >

MOVE 1,1(2)
FMP 1,1
FAD 1
MOVE 1,2(2)
FMP 1,1
FAD 1
JSR FSQRT
MOVEM ,((SJ)

JRST 2(SJ)

The procedure to find the length of a vector has been written as a closed subroutine. It need

only appear once in a user's program. From then on it can be called as a subroutine by the JSP

instruct ion.

33

The first time the macro VMAG is called, the subroutine calling sequence is generated followed

immediately by the subroutine itself. Before generating the subroutine, the macro processor

encounters a DEFINE statement containing the name VMAG. This new macro is defined and

takes the place of the original macro VMAG. Henceforth, when VMAG is called, only the

calling sequence is generated. However, the original definition of VMAG is not removed

unti I after the expansion is complete.

34

CHAPTER 4

RELOCATION AND LINKING

RELOCATION

The MACRO-6 assembler will create a relocatable program. This program may be loaded into

any part of memory as a function of what has been previously loaded. To accomplish this, the

address field of some instructions must have a relocation constant added to it. This relocation

constant is added at load time by the Linking Loader and is equal to the difference between

the memory location an instruction is actually loaded into and the location it is assembled into.

Most programs begin in location 6%8; if a program is loaded into cells beginning at location

14%%8' the relocation constant K would be 132%8.

Not all instructions must be modified by the relocation constant. Consider the two instructions:

MOVEI2, .-3
MOVEI2, 1

The first is probably used in address manipulation and must be modified; the second probably

should not. To properly accomplish the relocation, the actual expression forming an address

is considered and modification is decided. Integer elements are fixed and not modified. Point

elements (.) are relocatable and are always modified. * Symbolic elements may be fixed or

relocatable according to the means used in their definition. If a symbol is defined by direct

assignment statement, it may be relocatable or fixed depending on the expression following the

equal sign (=). If a symbol is defined as a macro, it is replaced by the string and the string

itself must be considered. If it is defined as a label or a variable (#), it is relocatable.*

Finally, references to literals are relocatable.*

To evaluate the relocatability of an expression, consider what happens at load time. A con

stant, k, must be added to each relocatable element and the expression evaluated.

*Except under the LOC code which specified absolute addressing.

35

Consider the expression:

x = A + 2*B-3*C+D

where A,B,C, and Dare relocatable. Assume k is the relocation constant. Adding this to

each relocatable term we get:

x = (A+k)+2*(B+k)-3*(C+k)+D+k)
r

This expression may be rearranged to separate the k's, yielding:

X = A+2*B-3*C+D+k
r

This expression is suitable for relocation since it involves the addition of a single k. In general,

if the expression can be rearranged to result in the addition of

.¢*k The expression is legal and fixed.
1 *k The expression is legal and relocatable.
n*k Where n is any positive or negative integer

other than .¢ or 1, the expression is i lIega I.

Finally, if the expression involves k to any power other than 1, the expression is illegal. This

leads to the following conventions:

1. Only two values of relocatability for a complete expression are allowed,

~ and'¢.

2. An element may not be divided by a relocatable element.

3. Two relocatable elements may not be multiplied together.

4. Relocatable elements may not be combined by Boolean expressions.

If any of these rules are broken, the expression is illegal and the assembled code is flagged.

If A, C, and Bare relocatable symbols, then:

A+B-C is relocatable

A-C is fixed

A+2 is relocatable

2*A-B is relocatable

2&A-B is erroneous

36

LINKING SUBROUTINES

Programs usually consist of subroutines which must be linked. This is relatively easy if all sub

routines are assembled together; they can be linked by JSR SUBR instructions. If independently

assembled, relocatable subroutines are used, linking must be considered since the symbol tables

from the assembly are inaccessibl e to the loader.

To accomplish this linking, selected symbols are made available to the Linking Loader by the

codes EXTERN, INTERN, and ENTRY.

The EXTERN code identifies certain symbols as external to the program. The condensed object

program contains the information that values for certain symbols must be derived from other

programs at load time. An expression containing a reference to an external symbol must con

sist of only the single external symbol. The statement

EXTERN SQRT, CUBE, TYPE;

identifies the symbols SQRT, CUBE and TYPE as external symbols. Symbols defined as external

must not be defined as labels, variables, macros, or assignments.

An external reference may not occur within a literal, and may only appear as the address part

of a machine command.

For example, if a square root is required, it would be called by

PUSHJ 1, SQRT:

Elsewhere in the program would be the statement

EXTERN SQRT;

37

To make internal program symbols available to other subroutines as external symbols, the code

INTERN or ENTRY is used. This code has no effect on the actual assembly of the subroutine,

but will make a list of symbol equivalences available to other programs at loading time. The

statement

INTERN SIN, COS, SIND, COSDi

might appear in a sin-cos routine where SIN, COS, SIND and COSD are entry points to the

subroutine to calculate, respectively, sines and cosines of angles in radians and degrees.

Internal symbols must be defined within the subroutine as assignments, labels, or variables.

In the square root subroutine would be the statement

INTERN SQRTi

Some subroutines have common usage, and it is convenient to place them in a library. To load

these subroutines, the code ENTRY is used. ENTRY is equivalent to INTERN except for the

following additional feature. All names in a list following ENTRY are defined as internal

symbols and are placed in a list at the beginning of the program. If the loader is in library

search mode, a program will be loaded only if an undefined global symbol, i.e., any symbol

made accessible to other programs, matches an internal symbol in the ENTRY list. If the SQRT

routine mentioned above were a library program, the statement

ENTRY SQRTi

would also appear in the SQRT program.

38

CHAPTER 5

ERRORS

There are two c lasses of errors-errors in language usage and program errors. MACR 0-6 will

exam i ne the statements for errors in I anguage usage, and pri nt appropr iate messages. These

errors are caused by meaningless or inconsistent construction in the source language. When a

listing is prepared during theassembly, eachMACRO-6statement that contains errors will be

flagged by one or several letters in the margin. At the end of the listing will be a summary

of the errors; this summary will be printed even if a listing is not prepared. Program errors

which properlyusetheMACRO-6 language will be correctly translated into errors in the binary

program.

M

S

p

o

N

THE ERROR FLAGS

{multiply defined symbol)-A symbol is defined

more than once, either as a label or variable. The

symbol retains its original definition.

(symbol error)-There is a meaningless character

string that resembles a symbol or macro. It is

assembled as though the value were ¢.

{phase error)-A symbol is assigned a value as a

label during PASS 2 different from that which it

was assigned in PASS 1.

(undefi ned code)-The code i nd icat i ng the state

ment type is not defined in the code table. It is

assembl ed as a numer ic code of ¢.

(number error)-There is a meaningless string of

characters that resembl es a number. It is assemb I ed

as ¢.

39

A

L

F

u

v

R

D

E

(argument error}-An argument of a control code

has a peculiar value.

(Iiteral}-There is an error within a literal.

(macro definition error}-A format error exists in a

DEFINE statement.

(undefined symbol}-A symbol or macro is undefined.

It is given a value of ¢.

(value previously undefined}-A symbol used to con

trol the processor is undefined prior to the point at

which it is first used.

(relocation error}-An expression has a relocation

constant other than 1 or ¢, contains division by a

relocatable number, contains the product of two

relocatable numbers, or involves relocatable num

bers in Boolean operations. The relocation constant

is set to ~.

(multiply defined symbol reference)-The statement

contains a reference to a multiply defined symbol.

It is assembled with the first value defined.

(external}-Improper usage of external symbols.

On PASS 1, an error printout consists of two lines. The first has the most recently used tag

followed by + ~ where ~ is the (decimal) number of lines of coding between the tag and the

error.

The second line, and the only line in PASS 2, is a copy of the erroneous line of code with a

letter(s) indicating the error type(s} in the left-hand margin.

40

CHAPTER 6

ASSEMBLY OUTPUT

ASSEMBLY LISTING

There are two types of assembly output-the assembly listing and the binary program. The

assembly listing consists of a printout of the source program. On the same line with each source

statement are three numeric fields-the location of the assembled code, the left half word,

and the right half word. Above each line containing an error is an appropriate message. This

I isting is controll ed by the List Control Codes except that error messages are always pr inted.

All assemblies begin with an implicit LIST. Apostrophes on the assembly listing indicate

relocatability. The program break is printed at the end of the assembly-this is the highest

relocatable location assembled plus one.

BINARY PROGRAM

The binary program may assume two forms: RIM and LINK. The RIM {read-in mode} format is

always punched into paper tape and is usually used for loaders and computer hardware mainten

ance programs. RIM programs may be completely loaded by the loader resident in the shadow

memory located behind the accumulator memory.

Rim Format

Programs in RIM moae consist of two word pairs. The first word is an instruction:

DATAl PTR , A,

The second word of the pair is the word of instruction or data to be loaded into memory

location A.

The last word of a RIM tape is a single instruction:

HALT I START;

where START is the first location of the program.

41

LINK Format

LINK format is the normal binary output mode. Programs in this format are acceptable to the

Linking Loader and are usually relocatable. The Linking Loader will load subprograms into

memory, properly relocating each one and adjusting addresses to compensate for the relocation.

It will also link external and internal symbols to provide communication between independently

assembled subprograms. Finally, the Linking Loader will load subroutines in library search

mode.

LINK format data is in blocks. All blocks have an identical format. The first word of a

LINK block consists of two halves. The left half is a code for the block type, and the right

half is a count of the number of data words in the block. The data words are grouped in sub

blocks of 18 items. Each 18-word sub-block is preceded by a relocation word. This relocation

word consists of 18 2-bit bytes. Each byte corresponds to one word in the sub-block, and

contains relocation information regarding that word.

If the byte value is:

2

3

no relocation occurs

the right half is relocated

the left half is relocated

both halves are relocated

These relocation words are not included in the count; they always appear before each sub

block of 18 words or less to insure proper relocation.

All programs (except those in paper tape RIM format) are stored in this format, inc luding pro

grams on paper tape, DECtape, standard magnetic tape, punched cards, drums and discs. This

format is totally independent of logical divisions in the input medium (40-word check summed

paper tape blocks, 128-word blocks on DECtape and drums, 23-word check summed punched

cards, etc.). It is also independent of the block type.

42

The Formats for the Block Types

Block Type 1 Relocatable or Absolute Programs and Data

WORD 1
WORD 2

WORD N

Block Type 2 Symbols

THE LOCATION OF THE FIRST DATA WORD IN THE BLOCK
A CONTIGUOUS BLOCK OF PROGRAM OR DATA WORDS.

(N MUST BE LESS THAN 2%%,%%% OCTAL)

CONSISTS OF WORD PAIRS
1 ST WORD BITS %-3 CODE BITS
1 ST WORD BITS 4-35 RADIX 5% REPRESENTATION OF SYMBOL

(See Below)
2ND WORD DATA (VALUE OR POINTER)

CODE %4:
2ND WORD

CODE 1%:
2ND WORD

CODE 6%:
2ND WORD
2ND WORD

CODE 6%:
2ND WORD
BIT 1
BIT 2
BIT 3
BIT 9
BIT 10
BIT 11
BIT 12
BITS 18-35

Block Type 4 Entry Block

GLOBAL (INTERNAL) DEFIN ITION
BITS %-35 VALUE OF SYMBOL

LOCAL DEFINITION
BITS %-35 VALUE OF SYMBOL

CHAINED GLOBAL REQUESTS:
BITS %-17 = %
BITS 18-35 POINTER TO FIRST WORD OF CHAIN
REQUIRING DEFINITION (See Loader Manual)

GLOBAL SYMBOL ADDITIVE REQUEST: (See Loader Manual)
BIT % = 1.
SUBTRACT VALUE BEFORE ADDITION
SWAP HALVES BEFORE ADDITION
ROTATE LEFT 5 BEFORE ADDITION
REPLACE LH WITH RESULT IN STORAGE
REPLACE RH WITH RESULT I N STORAGE
REPLACE INDEX FIELD WITH RESULT IN STORAGE
REPLACE AC FIELD WITH RESULT IN STORAGE
POINTER TO WORD REQUIRING ADDITION

THIS BLOCK CONTAINS A LIST OF RADIX 5% SYMBOLS, EACH OF WHICH
MAY CONTAIN A ZERO OR ONE IN THE HIGH ORDER CODE BIT. EACH
REPRESENTS A SERIES OF LOGICAL 'AND' CONDITIONS. IF ALL THE

43

GLOBALS IN ANY SERIES ARE REQUESTED, THE FOLLOWING PROGRAM IS
LOADED. OTHERWISE ALL INPUT IS IGNORED UNTIL THE NEXT END
BLOCK. THIS BLOCK MUST BE THE FIRST BLOCK IN A PROGRAM.

Block Type 5 End Block

THIS IS THE LAST BLOCK IN A PROGRAM. IT CONTAINS ONE WORD
WHICH IS THE PROGRAM BREAK, THAT IS, THE LOCATION OF THE FIRST
FREE REGISTER ABOVE THE PROGRAM. (NOTE: THIS WORD IS RELOCATABLE).
IT IS THE RELOCATION CONSTANT FOR THE FOLLOWING PROGRAM LOADED.

Block Type 6 Name Block

THE FIRST WORD OF THIS BLOCK IS THE PROGRAM NAME (RADIX 5¢).
IT MUST APPEAR BEFORE ANY TYPE 2 BLOCKS. THE SECOND WORD IF
IT APPEARS DEFINES THE LENGTH OF COMMON.

Block Type 7 Starting Address

THE FIRST WORD OF THIS BLOCK IS THE STARTING ADDRESS OF THE PRO
GRAM. THE LAST BLOCK OF THIS TYPE ENCOUNTERED BY THE LOADER
IS USED UNLESS THE CONTROL CHARACTER (A) HAS BEEN TYPED. THE
STARTING ADDRESS FOR A RELOCATABLE PROGRAM MAY BE RELOCATED
BY MEANS OF THE RELOCATION BITS.

Block Type 1¢ Internal Request

EACH DATA WORD IS ONE REQUEST. THE LEFT HALF IS THE POINTER TO
THE PROGRAM. THE RIGHT HALF IS THE VALUE. EITHER QUANTITY MAY
BE RELOCATABLE.

Radix 5¢ Representation

Radix 5¢ representation is used to condense 6 character symbols into 32 bits. Let each character

of a symbol be subscripted in descending order from left to right; that is, let the symbols be of

the form

44

If C denotes the six bit code for L I the radix 5% representation is generated by the following:
n n

where a II numbers are octa I.

The code numbers corresponding to the characters are:

Code (Octal) Characters

%% Space
%1-12 %-9
13-44 A-Z
45
45 $
47 %

45

CHAPTER 7

ASSEMBLER INITIALIZATlON

At the beginning of each assembly, the assembler is initialized to certain states affected by

control codes. The initial states are:

1. Radix is set to 8.

2. The location counter is set to 0 and relocatable assembly wi II occur.

3. There will be a' normal listing.

4. There will be LINK binary output with a symbol table.

5. Phase mode is off.

6. The title and subtitle are blanked.

7. Only device mnemonics are placed in the symbol table. They are:

CPA = ~~~ Arithmetic Processor
PRS ~~4 Priority Interrupt System
PTP = 1~~ Paper Tape Punch
PTR = 1~4 Paper Tape Reader
CP 11~ Card Punch
CR = 114 Card Reader
TTY = 12~ Console Teleprinter
LPT 124 Line Printer
DI 13~ Display
DC = 2~~ Data Control
UT = 21~ Micro Tape Control
UTS = 214 Micro Tape Status
MTC = 22~ Mag Tape Control
MTS 224 Mag Tape Status
MTM = 23~ Mag Tape Status
DCSA 3~~ Data Communication System
DCSB 3~ Data Communication System
DRUM 4~~ Drum System

8. No macros or opdefs exist.

46

DEC

OCT

EXP

XWD

10WD

POINT

SIXBIT

BYTE

BLOCK

ASCII

REPEAT

IFn

OPDEF

SYM

APPENDIX 1

CODES

DATA GENERATING CODES

Decimal numbers

Octal numbers

Express ions

Block transfer word

I nput/ output transfer word

Pointer word

ASCII (6-bit) character strings

Variable length bytes

Block of storage reserved

ASCII (7-bit) character strings

PROCESSOR CONTROL CODES

Repeat character string

Conditional assembly

n

E

G

GE

L

LE

N

B

2

Define an op mnemonic

Define a synonym

Al

Condition

zero

positive

zero or positive

negative

zero or negat ive

non zero

blank

pass I

pass 2

PHASE

DEPHASE

RIM

IFIDN

IFDIF

RADIX

LOC

PASS2

NOSYM

LIT

VAR

EXTERN

INTERN

IRP

PURGE

TAPE

END

LIST

XLiST

LALL

XALL

TITLE

SUBTTL

PAGE

Enter ph,:!se mode

Leave phase mode

Assemble RIM tapes

Conditional assembly on character strings

Conditional assembly on character strings

Radix control

Set location counter

Terminate PASS 1

Suppress symbol table output

Assemble literals

Assemble variables

List of external symbols

List of internal symbols

Indefinite repeat

Purge symbols

End of a physical tape

Last line

LIST CONTROL

List

Stop listing

Expanded listing

Stop expanded listing

Title

Subtitle

Skip to top of next page

A2

APPENDIX 2

SUM MARY OF ERR FLAGS

A Argument of control op

D Reference to multiply defined symbol

E III ega I use of an externa I

F Macro definition

L Usage of I itera I

M Multiply defined symbol

N Number

0 Undefined operation code

P Phase discrepancy

R Relocation

U Undefined symbol

V Value previously undefined

X Macro definition error

A3

APPENDIX 3

PROG RAM M I NG EXAMPLES

FLOATING POINT LOG (BASE E) SUBROUTINE

LOG: MOVMS A iGET ABSF(X)
JUMPLE A,L iRETURN ~ FOR LOG(¢) OR LOG(-~)
ASHC A,-33 iSEPARATE FRACTION FROM EXPONENT
ADDI A,211~~~ iFLOAT THE EXPONENT AND MULTIPLY BY 2
MOVSM A,LS iNUMBER NOW IN CORRECT FLOATING FORMAT
MOVSI A,567377 iSET UP -4~1 .~ IN A
FADM A,LS iSUBTRACT 4~1 FROM THE EXPONENT*2
ASH B,-l~ iSHIFT FRACTION PART FOR FLOAT
TLC B,2~~~~ iFLOAT THE FRACTION PART
FAD B, 11 iB=B-SQRTF(2.~)/2.~
MOVE A,B iA=B
FAD A,L2 iA=A+SQRTF(2 .~)/2.~
FDV B,A iB=B/A
MOVEM B,LZ iSTORE NEW VARIABLE IN LZ
FMP B, B iCALCULATE Zt2
MOVE A,L3 iPICK UP FIRST CONSTANT
FMP A,B iMULTIPLY BY Zt2
FAD A,L4 iADD IN NEXT CONSTANT
FMP A,B iMULTIPLY BY Zt2
FAD A,L5 iADD IN LAST CONSTANT
FMP A,LZ iMULTIPLY BY Z
FAD A,LS iADD IN EXPONENT TO FROM LOG BASE 2
FMP A,L7 iMUL TlPL Y BY LOG(2), BASE E

L: POPJ P, i EXIT

L1 : 577225754146 i-~·7~71~6781187
L2: 2~1552~23632 i 1.414213562374
L3: 2~~62532522 i ~.5989786496
L4: 2~~7542136~ i ~. 96147%6323
L5: 2~2561251~~6 i 2.88539129~3
L7: 2~~54271~3~~ i ~.69314718~56

LS: ~
LZ: ~

A=i7
B=~
P=1

ENTRY LOG

END
A4

FLOATING POINT SQUARE ROOT FUNCTION

iARGUMENT IS WRITTEN IN THE FORM X=F*2**2B
iSQRT(X) IS THEN SQRT(F)*2**B
iSQRT(F) IS CALCULATED BY A LINEAR APPROXIMATION
iSQRT(F) IS CALCULATED BY A LINEAR APPROXIMATION
iTHE NATURE OF WHICH DEPENDS ON WHETHER 1/4<F<1/2
iOR 1/2<F<l, FOLLOWED BY 2 ITERATIONS OF NEWTON'S METHOD.

SQRT: MOVMS A iGET ABSOLUTE VALUE OF ARG
JUMPLE A,SQ2 iEXIT IF X=%
ASHC A,-33 iPUT EXPONENT IN A, FRACTION IN B
SUBI A,2%1 iSUBTRACT 2%1 FROM EXPONENT
ROT A,-l iCUT EXPONENT IN HALF, SAVE ODD BIT
HRRM A,SQ1 iSAVE FOR FUTURE SCALING OF ANSWER
LSH A,-43 iGET BIT SAVED BY PREVIOUS INSTRUCTION
ASH B,-l% iPUT FRACTION IN PROPER POSITION
FSC B,177(A) iPUT EXPONENT OF FRAC TO EITHER % OR 1
MOVEM B,ST iSAVE IT. 1/4< FRAC <1
FMP B,Sl(A) iLlNEAR FIRST APPROX, DEPENDING ON
FAD B, S2(A) iWHETHER 1/4<F<1/2 OR 1/2<F<1
MOVE A,ST iSTART NEWTON'S METHOD WITH FRAC
FDV A, B iCALCULATE X (0)/X(l)
FAD B,A iX(l }+X(0)/X(l)
FSC B,-I i 1/2(X(1 }+X(0)/X(1))
MOVE A,ST iSECOND ITERATION NEWTON's METHOD
FDV A, B iX(0)/X2)
FADR A,B i X(2}+X(0)/X(2)

SQ1: FSC A,% iSCALE ANSWER FOR NEWTON AND EXPONENT
SQ2: POPJ P, i EXIT

Sl : %.8125 iCONSTANT, USED IF 1/4<FRAC<1/2
%.578125 iCONSTANT, USED IF 1/2 < FRAC<1

S2: %.3%2734 iCONSTANT, USED IF 1/4 < FRAC <1/2
%.421875 iCONSTANT, USED IF 1/2 <FRAC<1

ST: %

A=17
P=1
B=%

ENTRY SQRT

END

A5

FLOATING POINT NUMBER TO A FIXED POINT POWER

iROUTINE CALCULATES A**B, A FLOATING POINT
iB IS OF THE FOLLOWING FORM:
i B=A(0)+A(1)*2+A(2)*4+ ••. , WHERE A(I)=.0 OR 1 •
iANSWER MULTIPLIED BY A**I IF A(I)=1
iTHEN B IS SHIFTED TO GET NEXT BIT.

EXP.2:

FEXP1:

FEXP2:

FEXP4:

JUMPE
MOVSI
JUMPGE
MOVMS
PUSHJ
MOVSI
FDVM
POPJ

FMP
LSH
TRZE
FMP
JUMPN
MOVE
POPJ

T=.0
P=1
A=17
B=16

A,FEXP4
T,2.014.0.0
B, FEXP2
B
P,FEXP2
T,2.014.0.0
T,A
P,

A,A
B, -1
B, 1
T,A
B,FEXPI
A, T
P,

ENTRY EXP.2

END

iZERO BASE, RETURN
iPUT 1 • .0 IN ACC. T
iCHECK SIGN OF EXPONENT
iNEGATE EXPONENT - SET TO POSITIVE
iDO CALCULATION
iGET 1 • .0 IN T
iFORM 1/ A**B
iEXIT

iFORM A**N, FLOATING POINT
iSHIFT EXPONENT FOR NEXT BIT
ilS BIT A ZERO?
iNO, MULTIPLY ANSWER BY A**N
iUPDATE A**N UNLESS ALL THROUGH
iPICK UP RESULT FROM T
iEXIT

A6

APPENDIX 4

CHARACTER SETS

6 bit Punched 6 bit Punched
ASCII ASCII Card ASCII ASCII Card

(space) 240 00 b @ 300 ---;w- 4-8
241 01 12-7-8 A 301 41 12-1

II 242 02 0-5-8 B 302 42 12-2
243 03 0-6-8 C 303 43 12-3
$ 244 04 11-3-8 D 304 44 12-4
% 245 05 0-7-8 E 305 45 12-5
& 246 06 11-7-8 F 306 46 12-6

247 07 6-8 G 307 47 12-7

(250 10 0-4-8 H 310 50 12-8
) 251 11 12-4-8 I 311 51 12-9
* 252 12 11-4-8 J 312 52 11- 1
+ 253 13 12 K 313 53 11-2

254 14 0-3-8 L 314 54 11-3
255 15 11 M 315 55 11-4
256 16 12-3-8 N 316 56 11-5

/ 257 17 0-1 0 317 57 11-6

~ 260 20 ~ P 320 60 11-7
1 261 21 1 Q 321 61 11-8
2 262 22 2 R 322 62 11-9
3 263 23 3 S 323 63 0-2
4 264 24 4 T 324 64 0-3
5 265 25 5 U 325 65 0-4
6 266 26 6 V 326 66 0-5
7 267 27 7 W 327 67 0-6

8 270 30 / 8 X 330 70 0-7
9 271 31 9 Y 331 71 0-8

272 32 11-0 Z 332 72 0-9
i 273 33 0-2-8 [333 73 11-5-8
< 274 34 12-6-8 "- 334 74 7-8
= 275 35 3-8] 335 75 12-5-8
> 276 36 11-6-8 t 336 76 5-8
? 277 37 12-0

A7

5244

momooma
EQUIPMENT
CORPORATION
MAYNARD,MASSACHUSETTS

PRINTED IN U.S.A. 10-2/65

