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Chapter 1 

Introduction to the TOPS-10 Monitor 

The DECsystem-10 consists of hardware and software designed to allow users to run a variety 
of programs efficiently and conveniently. The details of the system software will be discussed 
after developing basic concepts and defining terms involving both the software and hardware. 

The DECsystem-10 is specifically designed for interactive multiprogram operation. Normally 
there are several programs active and control is switched from one to another by the system 
executive program, or monitor. Programs that are not using the CPU can still have active 
input and output devices. The overlapping of I/O with the processing of several programs 
permits efficient use of both the CPU and the I/O devices. 

1.1 User Program Addressing 
The DECsystem-10's hardware features are designed to facilitate multiprogram operation. 
There are two basic modes of operation, executive and user. The monitor runs in executive 
mode with no restrictions on its operations. In user mode, a program can access memory only 
within areas assigned to it by the monitor. Also, certain instructions can not be executed 
in user mode. These include all hardware I/O instructions (except for the I/O instructions 
for devices 740-774, reserved for customers), the instructions to control memory access and 
mode of operation, and a few instructions reserved to the executive. 

Each program consists of instructions, constants, and data areas, which may constitute either 
one or two segments (high or low) of the user's virtual address space. The hardware and 
microcode provide a mapping from a virtual address to a physical address. 

The user's virtual address space, like physical memory itself, is divided into fixed-size pages 
of 512 words. Each user's page (called a virtual page) will be assigned a physical page in 
core. When the monitor initially assigns physical pages to a user's segment, it builds a page 
table and a page map in order to tell where each of the user's virtual pages resides in core. 

On the DECsystem-10, the mapping of a user virtual address to a physical address is 
accomplished by referring to entries in the user's page map. 

On an indirect memory reference, the mapping mechanism is used for each memory reference 
made in the effective address calculation. 
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Addresses 0-17 always refer to the hardware accumulators. The KL10 has 8 sets of 
accumulators, or fast register blocks. Three or four sets are used by the monitor, one set is 
available for the current user, and portions of two sets are available for the KL10 microcode. 
The other sets are available for real-time programs. 

Also associated with each user virtual page are access bits that provide protection for the 
monitor and other user programs when this user is running. The monitor fills the page map 
and sets the access bits only for those entries that the user is allowed to access. Zero access 
bits in the page table cause a reference to the associated page to initiate a page failure trap 
or page fault to the monitor. 

Before the monitor can allow the user's program to begin, it must pass the address of the 
user's process table to a hardware register in the MBOX called the User Base Register (UBR). 
Once the address of the user's process table has been passed to the UBR, the monitor is ready 
to start up the user's program in user mode. When the user program starts executing, the 
hardware, because of the user mode flag, uses the UBR to point through the User's Page 
Table (UPT) to the specified User's Page Map (UPM) for the mapping of the user's program's 
virtual addresses to physical addresses. 

According to this scheme, each memory read results in two actual memory references: one 
to get the memory mapping data and one to get the user's mapped memory reference. 1b 
speed up the memory reference time, the last 512 (1024 with the MCA25) distinct virtual 
pages referenced have a copy of the associated physical page numbers and access bits stored 
into a special table in the MBOX, called the hardware page table (HPT). Thus, two actual 
memory references into main memory must be made only if the information concerning the 
page referenced is not in the HPT. 

In a timesharing system such as the DECsystem-10, it is quite likely that several users might 
want to run the same program at the same time. The system can do this more efficiently 
by allowing users to share portions of the program. To allow sharing of code, the program's 
virtual address space is divided into 2 parts called segments: a pure, or reentrant, segment, 
and an impure segment. The reentrant segment normally consists of all the constants and 
instructions that do not change during the program execution. Since this part of the program 
does not change, a single copy in physical memory can be shared by more than one user 
program. That is, the same physical page numbers for the pure segment appear in more 
than one page map, and the pure segment pointers are duplicated to JBTSGN. All parts of 
the program that are subject to change must be separate for each user. 

Normally, the impure segment of the program begins with virtual address OOOOOOs and can 
go as high as 7777778, or one section. However, that leaves no room for the pure segment. 
The pure segment, if there is one, usually begins with virtual address 4000008 and extends 
as high as 777777 S. 

On a KL10, with the 7.03 release of TOPS-10, users can have up to 3210 of these sections of 
virtual memory (controlled by the system manager). 

Because the virtual addresses in the pure segment are often greater than those in the impure 
segment, the pure segment is called the high segment and the impure segment is called the 
low segment. Note that the terms high and low segment refer to the virtual addresses, not 
the physical addresses at which the pages of the segment are located. Any instruction can 
refer to a memory location in either segment. Hence, the two segments function as a single 
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program. To the program, the only effect of segmentation is that there may be a range of 
invalid (non-existent) user virtual addresses in between ranges of valid ones. 

1.2 Monitor Calls 
The monitor performs a number of services for user programs, including all I/O operations. 
The instruction codes from 0408 through 0778 provide the means for programs to request 
the monitor to perform these services. These operation codes, called Unimplemented User 
Operators (UUOs), have no hardware function except to give control to the monitor. When 
a UUO is executed, the instruction is trapped by the microcode and control is given to the 
monitor. A routine in the monitor then decodes the request and calls a subroutine to perform 
the requested operation. Each UUO appears as only one instruction in a program, but 
it actually functions as a subroutine call. Hence, those instructions are sometimes called 
"programmed operators". 

1.3 I nterru pts 
The KL10 processor has a multiple level priority interrupt system. There are seven levels of 
priority: one is the highest level priority, seven is the lowest. Each I/O device is assigned to a 
level and can interrupt any activity running at a lower priority level. Interrupts can also be 
requested from within a program. Level seven is reserved for software generated interrupts. 
No devices are assigned to this level. 

When an interrupt occurs on level n, the next instruction is taken from Executive Page Table 
(EPT) location 40 + 2 * n, and is executed in executive mode. When a vectored interrupt 
occurs, the device or controller requesting the interrupt supplies a function word to the CPU. 
The contents of this function word are used to determine the address of the instruction to 
execute in order to service the interrupt. This allows transfer of control directly to the device 
service routine rather than through the fixed address of EPT 40 + 2 * n, as with a non-vectored 
interrupt. Upon completion of interrupt processing, control is restored to the interrupted 
program. All accumulators and processor flags must be saved and restored by the interrupt 
routine. 

All DECsystem-10 processors have a clock that interrupts regularly according to the power 
line frequency. On the KL10 this is done by setting the interval timer to interrupt every 
16.6ms (60 HZ) or 20ms (50 HZ). This interval is known as a jiffy. This clock interrupt 
guarantees that the monitor can always, predictably, take control back from a user program. 
One jiffy is, therefore, the basic unit of CPU time that the monitor alloc~tes to a program. 
At each clock interrupt, the monitor reconsiders the question of which program to run. 

1.4 The Monitor 
The monitor provides the interface with which users and user programs interact. It controls 
each user job in such a way that no user needs to be concerned that there are other users 
on the same system. The monitor presents the appearance of a complete and independent 
system to each user. In addition to its control functions, the monitor provides many services 
to users and user programs. We might think of any function performed upon request from a 
user as a service and any function performed without a user request as a control function. 
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Requests for service can come from user terminals as monitor commands or from user 
programs as UUOs. For example, in response to a command that runs a program, the monitor 
assigns physical memory to the user job, reads an executable file into memory from some other 
storage medium, and adds the program to the set of programs sharing the CPU. The most 
frequent requests for service come from user programs via the I/O UUOs. These UUOs allow 
a program to access data by file name and block number without being concerned about the 
physical location of the data. The monitor computes physical addresses on the disk, starts 
I/O transfers, and handles the resulting I/O interrupts for all user programs. 

Control functions are performed as necessary by the monitor, according to algorithms that 
attempt to give optimum overall system performance. One of the most important of these 
functions is dividing the available amount of CPU time among the active user programs. Jobs 
must be stopped when clock interrupts occur and their states must be preserved so that they 
may be restarted at a later time. The monitor must also decide which user jobs to keep in 
physical memory and which to "swap out" to disk. In addition, the monitor must decide where 
to put jobs in physical memory as they are swapped back in or when they change in size. 

1.5 Structure of the Monitor 
The monitor consists of many separate, though often architecturally related, modules. These 
modules are more or less independent routines that are executed according to events occurring 
within the system. Some of these routines operate on a regular cycle based on the clock 
interrupt; others are called only in response to system events such as I/O interrupts and the 
execution of UUOs. 

The Control Routine is executed on each clock interrupt. It dispatches to the Command 
Processor, the Scheduler, and the context switching routine, each time it is executed. The 
Command Processor routine handles commands typed by users. It frequently calls the 
SAVE/GET routines and the Core Management module when it processes commands to set 
up and run various programs. The Scheduler decides which user program to run during the 
next sixtieth of a second, also referred to as a Jiffy. The Context Switching routine saves 'the 
computational state of the current job and restores the state of the chosen job, allowing it to 
run for the rest of the time slice. 

The Swapper is called by the Scheduler on each clock interrupt. It transfers user programs 
between physical memory and disk and attempts to keep the highest priority jobs in memory. 

The UUO processor (UUOCON) responds to all requests for service by user programs and 
specifically handles all I/O required by the user program. UUOCON is device independent 
and is the same in all monitors regardless of the hardware configuration for which they are 
built. The device dependent code required for any device is included in the device service 
routine for that device. Any given monitor is built for a specific hardware configuration and 
contains device service routines for the devices in that configuration. 

The Core management modules (APRSER, COREl, and VMSER) all handle changes in the 
size of user jobs and changes in their physical memory locations. These routines are called 
as needed by the Command Processor, the UUO processor, and the Swapper. 
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At any point throughout this cycle there could be an interrupt due to completion of an 
I/O operation or transfer. The interrupt save routine must save and restore the state of 
the interrupted routine. The lower priority routine normally does not need to give any 
consideration to the possibility of being interrupted. However, if there is an interaction 
between an interrupt routine and a lower priority routine, the lower priority routine must 
be written so that it will work properly with an interrupt on any instruction. If this is 
impossible, the priority interrupt hardware may need to be disabled for a few instructions 
when it is critical that no interrupt should occur. 

1.6 The Monitor as an Event Processor 
Overall, the monitor can be envisioned as a real time program that responds to events occuring 
within the system. The routines that operate on a regular cycle are called as a result of a 
periodic event, the clock interrupt. The UUO processor responds to the execution of UUOs 
and the Command Processor responds to a user typing a command on his terminal. Each 1/0 
device interrupt is an event that results in the execution of a specific interrupt routine. 

There is a well-defined function that the monitor performs in response to each event. However, 
a given event does not necessarily result in the same action all the time; the specific action 
taken on a given event depends on the state of the system. The system state is represented 
by many variables in memory and device registers and depends on the past history of the 
system. The monitor performs a specific predictable function in response to any specific event, 
depending upon the state of the system at the time the event occurs. 

In summary, the monitor both controls user jobs and provides services to them. The monitor 
presents the appearance of a complete and independent system to each user job by switching 
control among the user jobs. The monitor runs and stops user programs according to the 
user's commands and the condition of the program. It handles all I/O operations, according 
to requests from user programs and attempts to allocate all system resources in such a way 
as to give the best overall system performance. 
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Chapter 2 

Monitor Cycle 

The heart of the timesharing illusion is the monitor cycle. Time accounting, command 
processing, scheduling, swapping, and context switching take place in this cycle every clock 
tick. This cycle allows TOPS-IO timesharing to work effectively by reallocating resources on 
a periodic basis. All knowledge of the monitor is built upon an understanding of this process 
and serves as the real starting point for the course. 

2.1 The Control Routine 
Every sixtieth of a second the monitor performs a cycle that, at its conclusion, gives control to 
a user program. In this cycle the monitor performs all functions except servicing interrupts 
and UUOs. The functions that are performed in-line within the control routine are discussed 
in this chapter. We are particularly interested in the manner in which the major routines are 
called and the circumstances under which the entire cycle is repeated. Functions performed 
as subroutine . calls, such as command processing and scheduling functions, are discussed in 
later chapters. 

2.1.1 Time Accounting 

At the beginning of the cycle, CPU usage for the previous cycle is accounted for. If a user 
program was running, the elapsed time is added to the total time for the job in the Process 
Data Block (PDB). If the Null Job was running, the elapsed time is added to the total Null 
Job time in the CPU Data Block (CDB). If the Null Job was running, but'there were jobs in 
one or more Run Queues that could not be run for some reason, the time is considered "lost" 
CPU time. If there were no jobs in the Run Queues, the time is considered idle time. Lost 
time is accumulated separately in the CDB, in addition to total Null time. 

CPU times are accumulated in a manner that might seem peculiar, at first. Various system 
programs, such as SYSTAT and some user programs, look into the monitor's tables and expect 
these times to be in jiffies. t It is desirable to measure and bill CPU times with a finer 
resolution than the jiffy. The time base meter on the KLIO can measure time intervals with 
1 microsecond resolution. In order to use the additional precision without having to change 

t Strictly speaking, a jiffy is defined as the time for one cycle of AC line current. Hence, it means one sixtieth of a second 
or one fiftieth of a second depending on the country in which you are located. 
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all the programs that look at these time intervals, the interval is maintained in two parts. 
The table entries that have historically been in jiffies are still in jiffies. An additional word 
is used to hold the amount of excess beyond the last even jiffy. When the interval is updated, 
the incremental time is added to the excess. If the excess goes past one jiffy, the excess and 
the jiffy total are each corrected. 

On systems using a time base meter, the time interval for a user job is measured from the 
time the program is given control until the time it is stopped again. Time spent servicing 
priority interrupts is included in this total but is assumed to be insignificant. The time spent 
performing monitor overhead functions (from stopping one user program until starting the 
next) is measured and accumulated separately in the CDB as overhead. This overhead time 
can be included into or excluded from a user's runtime as determined at MONGEN time. 

KLIO processors have two additional clocks, or meters, that can be used for an even higher 
degree of accuracy and repeatability than the time base meter. These meters are called 
the EBox and MBox time accounting meters. The EBox meter counts EBox cycles during 
instruction execution while the MBox meter counts the number of memory references. These 
meters can be operated in a mode such that they are stopped during interrupt processing, thus 
not charging the current user for the EBox cycles used by interrupt processing. The EBox and 
MBox counts are scaled by the appropriate factors to be equated to CPU run time as obtained 
from the time base meter. Job accounting using EBox and MBox accounting is more consistent 
than time base meter accounting since varying instruction execution times due to memory 
contention and interrupt processing are excluded from the job's accounting data. However, the 
accuracy of the scaling factor is dependent on the nature of the memory references (read/write) 
and cache-hit ratio. Refer to Appendix Appendix A for more information. 

In addition to CPU time, a total of CPU time is accumulated, weighted by core size for each 
job. Each time a job accumulates a jiffy of CPU time, its current size is added to this "Kilo 
Core Tick" total. Most commercial timesharing bureaus base their charges partially on this 
figure. 

2.1.2 Time Limit 

It is possible to set a CPU time limit for any job. This is especially important for the Batch 
Controller, but can be set by timesharing users if they so desire. If a time limit is set up, 
the remaining time is decremented each time the job accumulates another jiffy of CPU time. 
When this time limit, contained in table JBTLIM, expires, the job is stopped. A timesharing 
user can type a CONTINUE command, but a batch job is aborted by the Batch Controller. 

2.1.3 System Time Accounting 

If the current CPU is the "Policy" CPU, the monitor updates the Smithsonian Date and Time, 
checks if the KDPLDR (if a KSIO system) should be run, and then checks if there are any 
commands waiting to be processed. If there are, the monitor calls the Command Processor. 
The Command Processor chooses one of the waiting commands to interpret and process. Mter 
processing, the Command Processor returns to the Control Routine. The Command Processor 
is a major routine and is discussed in detail in Chapter Chapter 3. 
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2.1.4 Timing Requests 

The next function in the overall cycle is processing timing requests. A timing request is a 
request submitted by a monitor routine for some function to be performed at a specified time 
in the future, such as waking a job that has gone to sleep. Each request includes the address 
of the routine to be called, the time interval in jiffies, and several bits of data to be passed 
to the routine. The requests, in the form of two word entries, are stored in the table CIPWT. 
On each clock tick, the monitor decrements the remaining time for each request and calls the 
routine for any request whose time has expired. 

The monitor performs some functions only once per second and once per minute. A counter 
is decremented on each clock tick to indicate when another second or minute has elapsed. 
Each time these counters expire, the Once-a-Second or Once-a-Minute routines are called. 
Among other things, these routines check for Hung 110 devices and send out "Device offline" 
messages. 

2.1.5 Calling the Scheduler 

The Scheduler (see Chapter Chapter 6) is called next. The scheduler requeues any jobs that 
have changed state during the last cycle. Then, if core is scarce, it calls the swapper (see 
Chapter Chapter 7). The swapper starts swapping jobs out of memory or cleans up jobs that 
have finished swapping, then returns to the scheduler. The scheduler then decides what user 
program is to be run next. It does not give control to that program directly, but returns the 
job number chosen to the overall control routine that called it. 

2.1.6 Context Switching 

Mter the scheduler returns, the monitor checks to see if the job number selected to run next 
was the current job. If so, the monitor checks to see if the user's high segment has moved 
due to a LOCK UUO, updates the UPM if it has, and then goes on to the next task. If the job 
number is not the current job, the monitor saves the old job's ACs in the "Shadow Area" in 
the user's Job Data Area (.JDAT), saves the old job's PC word in the UPT (at USRPC), and, 
if a multi-CPU system, marks the job as runable after the next cache sweep. 

Before giving control to the new user program, the monitor restores all conditions that affect 
the user program's execution to the state that they were in when it was last interrupted: the 
same conditions that were saved for the user program that ran last. 

The hardware registers that are restored are the User Base Register (UBR), the user's 
accumulators, and the program counter and processor flags PC word. The PC word is saved 
immediately whenever the program is stopped. The information necessary to set up the UBR 
is maintained in the table JBTUPM. 

2.1.7 CPU Tick Dependent Code 

Before returning control to the user program, the monitor checks to see if the clock cycle was 
initiated because of a clock tick. If so, the monitor calls routines to handle subsystem specific 
functions. These routines start output on terminal lines, perform the Queued 110 processing 
on multi-CPU systems, DECnet functions, functions for various devices, and create any pages 
that needed to be allocated at clock level. 
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2.1.8 Returning Control to the User 
When the monitor is ready to return to the user, it turns on the accounting meters, if they 
were disabled to exclude monitor overhead from the user's runtime, and checks for any user 
specific actions that need to be taken. These actions could be: starting more output if the 
user program is doing non-blocking 110, generating Software interrupts (PSI), or handling 
and trap conditions set by the user. 

After taking care of all user specific actions, the monitor returns to the user if the PC was in 
user mode, or restores the Exec ACs and returns to the interrupted monitor routine. 

2.2 Repeating the Cycle 
Once control is given to a user program, it may run until the next clock interrupt or until 
it "blocks" within a UUO because it needs data or a resource that is not yet available. If 
a clock interrupt occurs during execution of a UUO, the job is not interrupted until after 
completion of the UUO. After completion of the UUO, the job is stopped in the exit routine of 
the UUO processor. There are, therefore, three conditions under which a user program might 
be interrupted and three corresponding entry points to the overall monitor cycle: 

1. Clock interrupt occurs while the program is running in user mode. Enter CLOCKl at 
routine RSCHED. 

2. Clock interrupt occurs during execution of a UUO and, then, the DUO is completed. Enter 
CLOCKl at routine USCHED. 

3. A UUO routine reaches a point where it can not immediately continue. A clock interrupt 
mayor may not have occurred. Enter CLOCKl at routine WSCHED. 

2.3 Clock Interrupt 
The interrupt routine that causes the monitor to begin the monitor cycle originates from the 
Interval timer, device TIM:. This timer is assigned to a very high interrupt priority (usually 
Levell, 2, or 3) because the interrupt triggers the maintenance of time of day, which must 
be accurate. However, there is no urgency for restarting the control cycle. Therefore, the 
hardware interrupt is used to drive a lower priority "software" clock interrupt. The software 
clock interrupt is always assigned to Channel 7 so that all 110 device interrupts can take 
priority over it. The software clock interrupt is also requested by certain other monitor 
routines in order to start a new cycle before the hardware clock interrupt has occurred. The 
flag .CPCKF is set by any routine that requests the Channel 7 interrupt; the flag .CPTMF 
is set only by the interval timer interrupt routine and indicates that an actual clock tick has 
occurred. 

When the software clock interrupt occurs, control passes to the CKnINT (where n is the CPU 
number), in COMMON. The CKnINT routine checks to see if the flag .CPCKF is set and, 
if it is, a jump to the routine CLKINT in CLOCKl is performed; otherwise, the interrupt 
is dismissed. If the interrupted program was in Exec mode, either UUO level or interrupt 
level, and rescheduling is not forced (flag .CPSCF is not set), the interrupt is immediately 
dismissed and the new cycle is delayed until the current monitor function is finished. The 
monitor stores the current PC word in the CDB and, if doing a forced reschedule, it saves the 
current Exec ACs in the user's Job Data Area (.JDAT), starting at location JOBDAC. If the 
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PC was in user mode, the monitor switches to the Exec AC block. The monitor then restarts 
the overall cycle again. 

Before returning control to the user program, the UUO processor checks to see if a clock tick 
occurred while it was running, if the swapper is trying to force this job out, or if a High 
Priority Queue (HPQ) job has become runable. If it finds .CPTMF, FORCEF, or SCDRTF 
set, it passes control to the USCHED routine, which performs a similar function to CKnINT. 
USCHED sets the "user program" return address to the next address in the UUO processor, 
saves the necessary ACs, and passes control on to RSCHED. When the interrupted program 
is selected to run again, it will be restarted in the UUO processor at a point just prior to 
where control is restored to the user program. 

2.4 Program Blocked 
In some cases, a user program may reach a point where it can not immediately continue. 
For example, it may execute an INPUT UUO at a time when the next buffer has not yet 
been filled. In such cases, the monitor routine can request a new cycle be started so that 
another job may be selected to run. To do so, the monitor routine passes control to WSCHED. 
WSCHED, like USCHED, sets up the return address, saves the ACs, and passes control to 
RSCHED. Later, following an interrupt, the program will be rescheduled and will continue at 
the point where the UUO routine requested a new cycle. Some functions in the overall cycle 
will not be performed if the clock has not ticked. 

2.5 Saving the PC word 
When the software clock interrupt occurs, the first instruction executed is an XPCW. An 
XPCW instruction saves the PC double word for the user program at location CKnCHL. If 
the interrupted program was in user mode, the contents of CKnCHL are copied into .CPPC 
in the CDB. If the job is not chosen to run next, its PC is copied from .CPPC in the CDB 
to USRPC in the user's UPT. The job's PC word is preserved in USRPC until the job is 
chosen to, run again. When the job is chosen to run again, the opposite process occurs. The 
contents of USRPC are copied into .CPPC during context switching, and control is given to 
the user program with the instruction: XJEN .CPPC. After execution of the XJEN, the PC 
and processor flags have the same value that they had when the program was interrupted. 

When the program is stopped by software action, at either WSCHED or USCHED rather 
than by interrupt, the stored PC word is set up to continue the program within the routine 
that stopped it. Both WSCHED and USCHED are called with a PUSHJ, which leaves the 
PC word on the push down list. This PC word is POP'ed into .CPPC and, from that point on, 
is handled by the same code executed on a clock interrupt. 

When control is returned to the user program, it isn't neccesary to be concerned about the 
manner in which the program was stopped. When the PC word is restored from the contents 
of USRPC, the program continues running in the correct state. If it was interrupted in user 
mode, it continues with the next instruction that would have been executed. If the program 
was stopped by a PUSHJ to WSCHED or USCHED, it continues with the next instruction 
after the PUSHJ. Therefore, from the point of view of a single program, the PUSHJ appears 
to behave like a normal subroutine call. In reality, however, the "subroutine" is the execution 
of an assortment of other unrelated tasks or programs. 
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Chapter 3 

Command Processor 

The command processor, COMCON, is called once a tick from the monitor cycle to process 
commands from a job. COMCON decides upon the appropriate function to perform, and 
either runs a program or handles the request itself. This chapter explains how COMCON 
pre-processes commands and dispatches to various routines, how error checking is done, and 
how users add new commands. 

3.1 The Command Processor 
The command processor provides a way for users to request the monitor's services. When 
the user types a command at a terminal, each character entered causes an interrupt to the 
system. The terminal interrupt routine reads in each character and stores it in an input buffer 
for that terminal (see Chapter 12. The interrupt routine tests each character to determine if 
it is a break character, which indicates the end of a character string. When a break character 
is received, the interrupt routine recognizes it as the terminator of a command. At that time, 
assuming the terminal line is at command level, a bit in the table CMDMAP is set, indicating 
that there is a command from that line waiting to be processed. In addition, COMCNT is 
incremented, indicating that there is a command pending. 

On the next clock interrupt, the overall control routine checks COMCNT. If a non-zero value 
is found, the control routine dispatches to the command processor. The command processor 
calls the routine to identify a line with a command ready. 

The command processor only processes a single command on each call. If several commands 
are presented by users during the same monitor cycle, the command processor is called on 
successive clock ticks until all the commands are processed. This policy ensures that the 
command processor does not take too much time away from any single clock tick. 
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3.2 Terminal Considerations 
There is an input buffer and output buffer within the monitor for each terminal line. All 
terminal I/O is placed into and taken from these buffers. Each terminal line has a Line Data 
Block (LOB) containing the buffer pointers and additional information about the line. 

A bit in the LOB, LDLCOM, indicates whether the line is being used for command input or 
for user program input. Initially, a line is at command level and any characters typed on the 
terminal are interpreted as a command. If the user gives a command to run a program, the 
line is normally switched to user level and any characters in the input buffer are available as 
terminal input for the program. When the program exits or is stopped, the line goes back to 
command level. It is possible to start a program but leave the line at command level by means 
of a CSTART or CCONT command. This allows the user to give certain simple commands 
while his program runs. 

When processing commands, characters are always extracted directly from the terminal input 
buffer. Such considerations as file names and logical device names do not apply to the 
command processor. For example, assigning TrY as a logical device name for the card reader 
would not cause the command processor to take commands from the card reader. 

3.3 The Dispatch Process 
When the command processor identifies the line having a command, the first six characters 
(up to a blank, switch, or break character) are extracted from that line's input buffer as the 
command. Any additional characters in the input buffer may be taken as arguments by the 
routine that handles the specific command, but are not considered in the dispatch process. 

3.3.1 Command Tables 

When processing a command, the monitor looks at three tables in an attempt to find a match. 
The three tables are: the standard system-wide command table, COMTAB; the customer
defined system-wide table, CSTrAB; and the user-defined table (one for each job), pointed to 
by location .POCMN in the process data block (PDB). COMTAB is distributed as a part of 
COMMON. The contents of CSTTAB are defined as a part of the MONGEN dialog. Users 
define the commands in the user-specific tables by using the DECLARE monitor command or 
the CMAND. DUO. 

3.3.2 Table Format 

Each of the three command tables (system, customer, and user) consists of three parallel 
subtables: command names, pre- and post-dispatch processing control bits, and routine 
addresses. 

The command names table contains the SIXBIT string definition of the command. One 
command name is stored per word, so commands can be no longer than six characters. This 
table is stored beginning at COMTAB or CSTTAB for system and customer tables, and at the 
address pointed to by word .POCMN in the POB for the user table. 

The pre- and post-dispatching processing control bits table has two different organizations, 
depending on the type of command table it is a part of. The system and customer tables, 
which start at UNQTAB and UNQTBC respectively, each contain one word per command 
entry. (Full descriptions of all of the control bits are provided in Section 3.6.) The user 
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control-bits table begins at the address pointed to by the left half of .PDUNQ in the PDB 
and consists of a string of six-bit bytes. There is one string of six-bit bytes per command, to 
specify the command's uniqueness. 

The routine address table contains the addresses of the routines that process each command. 
These routines may reside in COMCON, or elsewhere in the monitor. The system table begins 
at DISp, the customer table begins at DISPC, and the user table begins at the address pointed 
to by the right half of .PDUNQ in the PDB. 

3.3.3 Dispatching 

The dispatch routine gets the first six characters from the terminal input buffer, converts 
them to SIXBIT, and performs a table look up on the command; first in the user command 
table, then in CSTTAB, and, if not yet found, in COMTAB. If it finds an entry that exactly 
matches the command given by the user, that entry identifies the command. If no entry 
matches exactly, a subsequent search checks if one and only one entry matches the characters 
the user typed (that is, if the user typed an unambiguous abbreviation of a command). If 
exactly one entry matches the user's command, for as many characters as he typed, that 
entry identifies the command. If the command given matches an entry in both the user table 
and CSTTAB or COMTAB, the user table entry is used. If a match is found, the address 
of the routine to process it is picked up from the parallel entry in the appropriate dispatch 
address table. Similarly, if the user's command matches entries in both the customer and 
system command tables, the customer table entry takes precedence. This allows customers 
to redefine system-wide commands without having to edit COMMON. 

3.4 Long Routines 
Since the command processor operates as a part of the overall monitor cycle, the time spent 
processing commands reduces the time spent in the next user program. Therefore, the 
command routine must be written to run to completion quickly. Many commands, however, 
require more time than the monitor can afford to take out of the overall cycle. These 
commands are handled by setting up a monitor routine to run in the user's time. Such a 
routine appears very similar to a UUO except that it does not return to the user program 
upon completion. Since the processing of these commands requires the use of the user's 
accumulators and PC, they are not accepted while the user has a program running. The 
SAVE and RUN commands are of this type. 

Many commands that appear to be handled by the monitor actually run system programs for 
the user and pass the command arguments on to the program; all COMPIL-class commands 
are of this type. Giving such a command is equivalent to running the system program with an 
R command and giving the appropriate commands to the program. In the command dispatch 
process these commands are all equivalent to R. 
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3.5 Forced Commands 
Certain monitor routines sometimes require that a command be executed for a given line. For 
example, if a user at a dataset hangs up (or the telephone circuit is broken) the job must be 
DETACHed, and the forced command mechanism enables such an action. A monitor routine 
that wants to force command execution for a specific line can, using FRCUUO, deposit a 
forced command index into the line's LDB and set the forced command bit, LDBCMF. The 
command processor does not look at the line's input buffer on a forced command, but uses 
the forced command index as a pointer into a table of forced commands, TTFCOM. The 
SIXBIT command from TTFCOM is processed exactly as a normal command. Certain control 
characters (CTRLIT and CTRUC) cause similar actions to be performed. 

3.6 Predispatch Bits 
Several bits in UNQTAB specify conditions to check and functions to perform before dispatch
ing to the command routine. These predispatch bits are listed and described below. 

Table 3-1 : Predlspatch Bits 

Bits Definition 

NOCORE Specifies whether the command is legal for a job with no virtual core allocated. This 
bit does not cause the command to be delayed. The command is simply legal or illegal 
according to whether the job has any core allocated. 

NOJOBN Specifies whether the command requires a job number. If the terminal on which the 
command was typed is not attached to a job and this bit is not set, a job number is 
assigned to the terminal. 

NOLOGIN Specifies whether the job must be logged in before the command is legal. Most 
commands have this bit set to zero. Exceptions: LOGIN and INITIA.. 

NOACT Delays a command until all 110 completes. The job is already in core because there is 
active 110. CMWB is set and the job is requeued to the CMWQ. The use of the CMWB 
and CMWQ is two-fold: if the job is swapped out, it is swapped in, and the job is not 
scheduled to run. 

NORUN Specifies whether the command may be performed for a job that has a program 
running. All commands that result in setting up a routine to run as the user job have 
this bit set. Typing a command while the job has a program running results in an 
error message, "Please type I\C first". 

INC ORE Indicates that the job must be in physical memory if it has any memory allocated. 
This bit does not make the command illegal for a job that has no memory allocated. If 
a command with this bit set is given while the job is swapped out (or being swapped) 
the command must be delayed, and the job is put into the Command Wait Queue and 
assigned a very high priority for swap in. 

NXONLY Indicates that the command is illegal for a job running an "Execute-only" program. 
Execute-only is a property that may be given to a executable image file to allow users 
to run it as a program, but not look at it. This allows unprivileged users to execute 
proprietary programs. 

3-4 Command Processor 



Table 3-1 (Cont.): Predlspatch Bits 

Bits 

NBATCH 

NORCMP 

CUSTMR 

Definition 

Specifies that the command is not legal from a batch program. Batch programs are 
treated almost identically to normal timesharing programs in most respects. However, 
some commands, such as DETACH, are not permitted. 

Specifies that the command is allowed while logged out from a remote terminal. 

This bit is reserved for installations to use for their own purposes and has no function 
in the standard monitor. 

3.7 Postdispatch Bits 
The remaining hits in UNQTAB specify actions to he performed upon return from the 
command routine. 

Table 3-2: 

Bits 

NOINCK 

NOCRLF, 
NOPER 

TTYxxx 

CMWRQ 

Postdlspatch Bits 

Definition 

Indicates that a job is not initialized as a result of this command. It is set initially in 
DISP for certain commands. If it is set, the accumulator in which the DISP are held 
in case of an error in a command which otherwise would have initialized a job. 

Specifies whether a carriage return, line feed, and a period should be typed upon 
completion of a command. NOPER is set for any command on which the monitor is 
not ready to accept another command immediately after completion of the command 
routine. This includes all commands that set up a monitor routine to run as the user 
job. 

Set the job runable with different conditions. 

TrYRNU sets the job runable and switches the terminal to user level. Example: 
RUN. 

TrYRNC sets the job runable but leaves the terminal at command level. Both of these 
bits cause a job to be put into a run queue by the scheduler. 

TrYRNW sets the job runable, but checks to see if it was stopped in terminal 110 
wait. If so, it is put back into the terminal 110 wait queue. Example: CONTIN. 

Not more than one of these three bits are set for anyone command. None of them are 
set for a command that does not make the job runable. 

The command wait requeue bit (CMWRQ) gets the jc;>b out of the command wait 
queue. This bit is set in DISP for any command that might cause the job to be put 
into the command wait queue and does not cause the job to be requeued. The bit is 
cleared if the job is not requeued to command wait. Upon completion of the command 
routine, if this bit is set, the job is marked to be put back into its former queue. 

Command Processor 3-5 



Table 3-2 (Cant.): Postdlspatch Bits 

Bits 

NOMESS 

ERRFLG 

APPFLG 

NOFLM 

PSTCST 

Definition 

Command routines that output to the user's tenninal do not start the terminal, but 
simply deposit characters in the output buffer. One of the functions performed upon 
return from the command routine is to start output on the line in case there are 
characters to be typed. The NOMESS bit suppresses this action for the commands 
that never type a message. 

Set by command routines to signify an error while processing the command. 

Creates an alternate context ("auto push"), internally called SACFLG. 

Do not force left margin. 

This bit is reserved for installations to use for their own purposes and has no function 
in the standard monitor. 
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Chapter 4 

Memory Management 

KLlO memory is organized into pages of 51210 words. Pages are the basic unit of allocation of 
memory for both monitor and users. The memory management modules allocate memory 
by manipulating page maps and data structures within the monitor. Although system 
programmers rarely have cause to change the memory management routines or data base, a 
knowledge of how they work is necessary because many routines and subsystems rely on it. 

4.1 Introduction 
Memory management encompasses both physical pages (memory) and virtual pages (disk 
space used for swapping and paging). Management can mean simple bookkeeping or high 
level decisions about swapping and the running of programs. This chapter discusses the 
bookkeeping functions performed by the monitor modules COREl and APRSER. 

Note 
IIi TOPS-IO Version 7.04, low segments and sharable high segments are managed in 
much the same way. Therefore, the word "segment" is used to refer to either a low 
segment or a sharable high segment, unless the context clearly indicates otherwise. 

The modules COREl and APRSER can be accessed three ways: 

1. By the command decoder, COMCON, when the CORE, RUN, GET, or MERGE monitor 
commands are issued. 

2. By the UUO handler, UUOCON, when a CORE, PAGE., RUN, GETSEG, SEGOP., or 
MERGE. monitor calls are issued. 

3. By the swap per. 
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4.2 Allocation and Assignment 
Memory management is accomplished by allocation and assignment. The functions allocation 
and assignment are defined as follows: 
Allocation 

Assignment 

Management of virtual memory and swapping space. 

Management of physical memory or core. 

4.3 Memory Management Data Base 
The heart of the memory management data base consists of the tables PAGTAB, PT2TAB, and 
MEMTAB. These tables allow the monitor to keep track of physical memory and consequently, 
consist of one word per page of physical memory, indexed by page number. 

Conceptually, PAGTAB and Pr2TAB are really one table consisting of sets of doubly linked 
lists of pages. Physically, PAGTAB contains the forward links, and PT2TAB contains the 
backward links, each being stored in the right halfword of their respective tables. The left 
half word of each of these tables is used for various status bits and (in the case of Pr2TAB) 
fields. 

The MEMTAB table also consists of one word per page of physical memory indexed by page 
number. Its primary use is to correlate a physical page in memory with any disk copy that may 
exist for the page; thus, the right hand 2210 bits of this table are reserved for any such disk 
addresses. The remaining bits are used for status bits and fields. The exact interpretation of 
the contents of the fields in MEMTAB vary with the status of the page in question. 

On the KLIO, PAGTAB, PT2TAB, and MEMTAB reside in executive address space in the 
section designated by the variable MS.MEM defined in S (this is currently section 3). 

As was stated above, the tables PAGTAB and Pr2TAB consist of sets of doubly-linked lists 
of pages. The headers to these linked lists allow the monitor to access the lists according to 
the function or status of the physical page in memory. 

A PAGTAB or PT2TAB linked list can be headed by any of the following: 

Headers 

PAGPTR 

JBTUPM 

Function 

Heads the list of all free pages. 

Points to a two-page chain consisting of the job's UPT and section 0 page map (also 
known as the job's UPM). Indexed by job number. 
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Headers 

JBTxxx 

PAGINQ 

PAGSNQ 

PAGIPQ 

PAGOUQ 

PAGTAB(O) 

.USTMU 

LOKPTR 

BIGHOL 

Function 

JBTSSA, JBTAD2, and JBTHSA. Points to the physical pages in use by the segment; 
indexed by job or segment number. These three labels all refer to the same table, and 
can be used variably, depending on whether the context is relevant to a low segment 
only (JBTAD2), a high segment only (JBTHSA), or either segment (JBTSSA). If a 
low segment, JBTAD2 points to virtual page 0 (that is, the JOBDAT page) of the 
corresponding job. 

In TOPS-lO Version 7.04, there are no further restrictions of the order of the linked 
list of pages for the low segment. However, the pages are often linked in ascending 
virtual address order if the job has not changed its memory allocation (this includes 
implicit or explicit allocation of section maps for a multi-section image) since the 
time it was last swapped in or created. For sharable high segments, the pages exist 
in the list in ascending virtual address order, but programs written to be monitor 
independent should not be dependent upon this condition. 

Note: It is frequently convenient for the monitor to handle per-process pages as 
parts of the user's low segment address space. Since the maximum virtual page 
number a user's image can possess on the KLlO is 377778, virtual page numbers are 
assigned to these pages starting at user virtual page number 400008. The assignment 
of virtual page numbers is as follows: 

1. Funny pages. 
2. Extended section working set bit map page (.WSBNZ). 
3. Section 0 page map (addressed as .UPMAP). 

4. UPT. 
5. Section maps for user sections 1 through 378. 

Heads the list of pages on the monitor's "IN" paging queue. 

Heads the list of pages on the monitor's "slow" "IN" paging queue. 

Heads the list of pages on the monitor's "IN PROGRESS" paging queue. 

Heads the list of pages on the monitor's "OUT" paging queue. 

Heads the list of all pages owned by the monitor. Status bit MONTRB is set for these 
pages in PAGTAB. 

Heads the list of pages that are affected by a job's PAGE. UUO (including on behalf of 
the job by MONPFH) and that exist on one of .the paging queues at the time the UUO 
is executed. Status bit P2. TRN is set in PT2TAB for these pages. 

Points to pages that are reserved until a LOCK UUO completes for some job or 
segment. Pages on this list are free in that they are not allocated to any function; 
they are kept separate from the normal free list and are not allocated until the job 
issuing the LOCK UUO uses them. (The monitor has previously computed that 
these are the pages into which the issuing job is moved when they are all available. 
Because this operation may require swapping, it can take a significant amount of time 
to complete.) 

Number of unassigned physical memory pages, the same as the number of links in the 
linked list pointed to by PAGPTR. 
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Headers 

CORTAL 

LOKTAL 

PAGINC 

PAGSNC 

PAGIPC 

PAGOUC 

VIRTAL 

JBTADR 

SECTAB 

MS.MAP 

Function 

Number of free pages, BIGHOL, plus the number ofielle and dormant high segment 
pages. 

Number of pages on the queue headed by LOKPTR. 

Number of pages on the "IN" queue. 

Number of pages on the "SN" queue. 

N umber of pages on the "IF" queue. 

Number of pages on the "OUT" queue. 

Total number of free pages in the swapping space. 

Address and length for each segment in core for each job. The address values are 
7730008 (symbol .JDAT) for low segments, 7740008 (symbol .VJDT) for high segments, 
unless the segment is locked physically contiguous. 

An offset into the UPT which points to the extended section page maps of the user. 

Method by which the monitor addresses all of the user's section maps for examination 
and manipulation on the KLIO. The user's section 0 map can be-referenced either 
by .UPMAP or by this method on the KLIO. The map pointer fetching routines 
are conditionally assembled to return pointers based on MS.MAP for monitors that 
support exten~ed addressing, and ones base on .UPMAP for monitors that do not. 
MS. MAP currently resides as monitor virtual section 378. 

4.4 Memory Management Algorithms 
When a request for memory is made, four steps must be accomplished in order to assign the 
memory: 

1. Dispatch to core handling routine. 

2. Pre-processing and argument checking. 

3. Allocation. 

4. Assignment. 

The swap per, discussed in Chapter 7, goes straight to CORGET to allocate and assign memory. 

4.5 Core Allocation 
When a CORE command is issued by a user, monitor control passes to the CORE routine 
in COMCON, then to COREO in the module COREl, where pre-processing is performed. 
Next, the COREl routine is called. When done, COREl falls into COREIA (in APRSER) 
for assignment. Through the use of the CORE command, a user can increase or decrease 
low segment memory allocation (subject to limit restrictions). Although the user can give an 
argument of zero to the CORE command, he cannot deallocate all of his core. This is because 
the Job Data Area (JDA), which exists for all jobs, resides in the user's page 0 address space. 
Ajob can have zero pages only when it is non-existent, swapped out, or is the victim of a JOB 
STOPCD or serious error (such as a swap-read error or memory-parity error). In the case of 
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serious errors, the routine ZAPUSR (or one of its alternate entry points) is used to deallocate 
the core. The CORE command can be used to expand from zero pages, but this is useful only 
in the case of serious errors. 

4.5.1 CORE Command 

The CORE command (Examples in Figure 4-1) accomplishes its pre-processing at COREO 
before going to COREl to allocate the core. COREO can also be entered from COMCON when 
minimal core is assigned for for the KJOB, RUN, ASSIGN, and DEASSIGN commands. 

Figure 4-1: CORE Command Examples 

CORE <returns current allocation> 
CORE 0 
CORE n 
CORE nK 
CORE nP 

Example of allocation returned: 

Page number 

0-1 
400-411 
700-712 

Total of 27 pages 

Page status 

RD WR EX 
RD EX SH 
RD WR EX 

Data on page 

Private page(s) 
DSKA:PIP.EXE[1,4] 
Private page(s) 

At COREO, the monitor checks that the job is in core with no active I/O before going to 
COREL If the job is swapped out and the user gives a CORE command with an argument, 
the location IMGIN in JBTIMI is changed to reflect the amount of core desired by the user. 
This amount is allocated and assigned when the job is swapped in. 

4.5.2 CORE UUO 

The CORE monitor call allows the user to allocate and deallocate pages from a program. The 
restrictions are the same as for the CORE command but, because this is a UUO, it cannot be 
used to expand from zero pages. 

After UUO setup by UUOCON, control passes to the CORUUO routine (in COREl). CORUUO 
calls CHGCOR to check the arguments, and then calls the same routines as executed by the 
CORE command: COREl, VIRCHK, and CORE1A. After CHGCOR is called, CORUUO calls 
CORBND to calculate the current core size and returns it to the user. 

Whenever a CORE UUO is issued, control is passed to the routine CORUUO in COREL If 
the UUO has a non-zero argument, the job size is altered and the routine CHGCOR is called 
to allocate and assign core. If the UUO has a zero argument, no change is made to the user 
program's allocation. When returning to the user's program, the routine CORBND is called 
to return the amount of the user's core currently assigned. 

If CHGCOR is called from CORUUO or UUOCON (to set up buffer rings), it waits for all I/O 
to finish so that no data is lost. Otherwise, incoming data has no place to go if the pages are 
deallocated (the job is decreasing in size) or if the job is swapped out (JXPN is increasing). 
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If the job is not locked, the COREl routine is called to allocate and assign core, followed by a 
call to UCORID to assign high segment core, if needed. If core cannot be assigned, the job is 
marked as expanding (JXPN) for swap out and the scheduler is called to choose another job 
to run (WSCHED). The job is eventually swapped in with the correct amount of core. 

Errors occur if the job is locked, the expansion request exceeds CORMAX or currently assigned 
user limits, or if I/O is active. 

4.5.3 CORE1 Routine 

The COREl routine tests for certain conditions before allocating core. Control reaches routine 
COREl in module COREl from both the CORE UUO and the CORE command. The conditions 
tested for are: 

1. The argument is not negative. 

2. The Job is not locked in core. 

3. The Job is not trying to expand into high segment. 

4. The Job is not trying to exceed virtual limits. 

5. Allocating core to the Job would not exceed VIRTAL. 

6. The Job is not trying to exceed CORMAX. 

If all conditions are met successfully, the pages are allocated and assigned using VIRCHK 
(except as noted below) and the return is made to UUOCON or COMCON. 

If the low segment is expanding from zero or if a sharable high segment is changing, control 
returns to COREl for allocation and eventually to CORElA for assignment. 

4.6 Core Assignment 
Mter core allocation is accomplished (in routine COREl or VIRCHK), core can be assigned. 
The two routines responsible for core assignment are VIRCHK and CORElA. VIRCHK 
assigns core if it requested by a CORE command or a CORE UUO, except when the core 
is requested for a sharable high segment or a low segment increasing from zero. In these 
cases, CORElA assigns the core. CORElA also assigns core for the swapper. 

To better illustrate this division of labor, consider the following five cases: 

Ir. •. 

All of a job's core is 
deassigned. 

The job increases in size 
and is not going virtual. 

~ Memory Management 

Then ••• 

The monitor destroys the UPT and UPM. 

VIRCHK simulates a PAGE. UUO by calling the routine UPAGE. in 
VMSER. If there is enough physical core available, UPAGE. calls the 
routine ADPAGS in COREL ADPAGS updates PAGTAB and PT2TAB. If 
physical core is insufficient, a dispatch is performed to routine FIXDSK 
where the job is marked as expanding (JXPN set) and the scheduler is 
called to choose another job to run (WSCHED). 



If ... 

A job is increasing in 
size and is virtual or 
will be going virtual. 

A job starts with zero 
core and requests an 
amount of core that is 
not available. 

A job starts with zero 
core and requests an 
amount of core that is 
available. 

Then-•• 

The S (software) bit is set in the corresponding page map entries 
(VIRCHK). 

Control passes to routine CORGT7 and the job is marked as expanding 
(CORElA). 

The monitor builds the UPT and UPM and gets the core. Once CORElA 
is entered, dispatch is made to CORGTO. There, the pages are assigned 
in the low segment, including one for the UPT and one for the UPM. 
All pages are zeroed and the UPT is built. See Section 4.7 for more 
information on the steps necessary to complete this task. Finally, 
JBTADR, JBTREL, and the UPT are updated. 

4.7 Creating a UPT 
When a user job expands from zero core, the job's UPT must be created. Even though a page 
is assigned for the UPT, it cannot be accessed because all executive mapping for Executive 
Virtual Address (EVA) 7720008 (. UPMP) must go through the nonexistent UPT. An alternative 
mapping scheme is used to access the UPI'until it is completely initialized. 

The UPT, besides pointing to the UPM, must point to itself so that it can be accessed. This 
is done through location .UPMP + 7728. Figure 4-2, Creating a UPT, illustrates mapping for 
executive virtual pages 7718 through 7748. 

Figure 4-2: Creating a UPT 

UPM 767 
UPT 770 

JDAT 771 
VJDT 772 

2 /---------\ 
1 1 

UPT 1 V UPM 

-------------- 1 -------------
1<---\ 1 1 /-->1 ____ _ 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

--3-4-3--1----1---------------/ 1 

===344 __ 1----/ 1 
345 1--\ 1 

--346--1 1 1 
1 1 1 
1 1 User Page 0 1 

-------------- 1 --------------- --------------

1 JOBDAT 1 

1 1 1 
3 \-->1 1<--/ 4 

1 1 
1 1 

Figure 4-2 Cont'd. on next page 
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Figure 4-2 (Cont.): Creating a UPT 

1. Self Pointer (.UPMP + .UMUPT.) 
2. Current.Section Map Pointer (.UPMP + .UMUPM) 
3. Job Data Area (.UPMP + .UMJDT) 
4. User's Mapping for Page 0 (Job Data Area) 

Location 7738 of the UP'!' points to the first logical page of the user's program, and location 
7718 points to the UPM. 

If a page is assigned to create a UPT and its 13-bit physical page number is known, the page 
can be accessed to create the necessary links by using the EPT and the EPM for section 0 of 
executive space. 

The EPT always exists and is always pointed to by the EBR. The EPM for section 0, pointed 
to by the section map pointer in EPI' 540 (SECTAB), has several spare mapping slots in the 
EPM. One slot at EPM offset 7368 (.EUPMP) is allocated just for the purpose of creating a 
UPT. 

For example, if physical page 10328 is allocated for the UPT, the number 10328 is stored in 
the EPT mapping location for .EUPMP (Executive virtual address 7360008), one of the "spare" 
slots. This page is used as a temporary scratch pad to build UPTs. See Figure 4-3, Storing 
the Page in the EPT. 

Figure 4-3: Storing the Page In the EPT 

EPM 

.EUPMP (354) _____ 1032 UPT Physical Page 

Executive virtual address 7360008 now maps through the EPM to physical page 10320008, the 
new UPT. The UPT link to itself is accomplished by these instructions: 

MOVEM T1,.EUPMP+.UMUPT 
TLO T1, (PM.CSH) 
MOVEM T1, .EUPMP+.UMUUP 

Since the UP'!' can now stand by itself, 10328 is placed in the UBR, thus making the UPT 
addressable at executive virtual address 7720008. The remainder of initialization can be 
performed. See Figure 4-4. 
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Figure 4-4: Final UPT 

UBR 

10321--\ 
------------------- 1 

1 

/-----------/ 
1 /--------\ 

1 1 1 
1 UPT (1032) 1 v UPM 

\-->-------------- 1 -------------
1 1<----\ 1 /-->1 ____ _ 
1 1 1 1 1 

SECTAB 540 1 ·1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

UPM 767 1 343 1-----1---------------/ 1 
UPT 770 1 344 1-----/ 1 

JDAT 771 1--345--1--\ 1 
VJDT 772 1 346 1 1 1 

1 1 1 1 
1 1 1 User Page 0 1 
-------------- 1 --------------- --------------

1 JOBDAT 1 

1 1 1 
\ -->1 1 <--I 

1 1 
1 1 

4.8 Virtual Memory 
Virtual memory was first implemented in TOPS-10 with the release of Version 6.01. The 
monitor module VM:SER was added to handle references to logical addresses that are not in 
memory, as well as to handle the PAGE. UUO. 

References to addresses in pages with the A bits cleared produce a page fault. The page fault 
condition, in most cases, traps to a routine called a Page Fault Handler (PFH). The PFH 
decides which pages to bring into core so that a job can continue to run. The system default 
PFH is resident in the monitor as of TOPS-10 Version 7.03. 

Previous monitors used a default PFH located on SYS:PFH.EXE, and users can write and 
use their own, if so desired. In all cases, the user bears the burden of overhead for using 
virtual memory. For user-written page fault handlers and, in previous releases of the TOPS-
10 monitor, the page fault handler resides in user space and is considered part of the user's 
program. 

There are two sets of controls for virtual memory: one for administrators and one for the 
user. 
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Table 4-1: Administrative Controls 

For each PPN: 

MPPL 

MVPL 

Maximum Physical Page Limit. The maximum number of physical pages a user 
job may have in core at anyone time. 

Maximum Virtual Page Limit. The maximum size that a program may reach 
including memory and what is stored on disk. 

The user can also set limits for a specific job before or during program execution. 

Table 4-2: User Controls 

For each job: 

CPPL 

CVPL 

Current Physical Page Limit. The current number of pages a user job may have in 
core at anyone time. 

Current Virtual Page Limit. The current size that a program may reach including 
memory and what is stored on disk. 

For example, if a user program's MPPL (or CPPL, ifCPPL < MPPL) is 256 pages and MVPL 
is 512 pages, as long as the program size is less than the MPPL (256 pages), the program is 
not "virtual". When the program is bigger than 256 pages, the program "goes" virtual and 
not all pages may be in memory at the same time. For users without virtual memory, the 
MPPL and MVPL are identical. See Figure 4-5. 

The maximum parameters are set by the administrator using REACT and are stored in the 
Process Data Block (PDB) during the execution of a job. 

Figure 4-5: Virtual Memory 

512 (10) ---------------------------------------------------- MVPL 1 _________________ 1 CVPL 

1 1 
1 1 
1 1 
I 1 

256 (10) 1--------------------------------------------------1 MPPL 
1 _________________ 1 CPPL 

1 1 
1 1 
1 1 
1 I 

Instead of setting a CPPL, the user can set a physical guideline by issuing the monitor 
command SET PHYSICAL GUIDELINE nP. The guideline can be exceeded but the job's size 
is brought down to the guideline at each virtual time trap. 

With regard to these limits, a job may run virtual in response to a RUN or GET command, a 
CORE UUO, or a PAGE. DUO. 
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4.8.1 Virtual Memory Data Base 

When ajob uses virtual memory, much more accounting is required to keep track of the pages. 
Because the information is unique to the job, the data base for virtual memory is kept in the 
UPT. 

Table 4-3: Virtual Memory Data Base Elements 

Element Contents 

WSBTAB The sub-table of bits within the UPI', starting at location 4408. This is the working set 
table and contains one bit per user page in section O. If a bit is 1, the corresponding page 
is in core. 

.WSBNZ 

PM.AAB 

UPM 

The working set table for sections that are greater than O. It is for users who are running 
in extended sections and is mapped through the UP!' at offset 7708 (.UMWSB). If a bit is 
1, the corresponding page is in core. 

The accessible bit in the page map entry that determines if a page is currently accessible, 
that is, exists in core. If it does, presumably that page's bit is on in WSBTAB. 

The structure that contains one word entries for each possible page in the user's virtual 
address space. These entries provide the physical or disk address of the page and bits 
that indicate if the page is accessible, public, writable, software (that is, allocated but 
zero), or cacheable. Each UPM is one page long and contains entries for a single section, 
51210 pages. If a user is using extended addressing, there is an additional UPM allocated 
for each section. The current section's UPM is mapped through the UPI' at offset 7718 
(.UMUPM) and is found at 7710008 (.UPMAP). 

4.8.2 PAGE. UUO 

The PAGE. monitor call allows a user to manipulate pages and the data contained in them. 
PFHs use the PAGE. UUO for all page manipulations. 

The calling sequence is: 

Where: 

{encode 

addr 

MOVE ac, [XWD fcncode,addr] 
PAGE. ac, 

error return 
normal return 

addr: len 
first argument 

last argument 

Is: 

One of the function codes described below. 

The address of the argument list. 
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Where: 

len 

Is: 

The number of words that follow in the argument list. The value of len must be greater 
than 2 or the negative of a value greater than 2. If len is specified as a negative value, 
only one argument follows. That argument is the page number of the first page in a set, 
where the set contains that page plus the number of consecutive pages indicated by the 
value. 

For example, when len contains a negative value (such as -3), the argument (for example, 
page number 401), is the first of 3 consecutive pages (for this example, pages 401, 402 
and 403), to be manipulated. 

The pages you can specify are restricted by the following attributes: 

• Page 0 cannot be paged out or destroyed. 
• If the high segment is sharable, it cannot be paged out. 
• If the page is a SPY page, it cannot be paged out. 
• If a page is locked in core, it cannot be paged out. 

argument The arguments (first through last) for the given function, usually page numbers of 
memory pages being manipulated. 

4.8.2.1 The .PAGIO Function 

The .PAGIO function swaps a page in or out. Pages swapped in are added to the working set; 
pages swapped out are moved to secondary storage. 

Use one word in the argument list for each page to be swapped, or specify a negative list 
length to specify a set of consecutive pages. If you use more than one argument word, the 
page numbers must be in ascending order. 

The argument word format is as follows: 

Where: 

pageno 

XWD flags,pageno 

Is: 

The number of the page to be swapped. In the range 0 - 51110 on a KS, or 0 - 1638310 on 
aKL. 
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Where: 

flags 

Is: 

One or both of the following: 

Bit 

o 

1 

2 

Symbol 

PA.GAF 

PA.GSL 

PA.GDC 

4.8.2.2 The .PAGeD Function 

Bit Set 

Swap page out. 

Swap to slow 
swapping space. 

Suppresses error 
codes PAGCE%, 
PAGME%, 
PAGSC%, and 
PAGSM%. 

Bit Clear 

Swap page in. 

Swap to fast space. 

The .PAGeD function creates or destroys a specified page. Use one argument word for each 
page to be created or destroyed. If you use more than one word, the speci~ed pages must be 
in ascending order. 

The argument argument word format is as follows: 

XWD flags, page no 

Where: Is: 

pageno The number of the page to·be created or destroyed. This number is in the range 0-511 on 
a KS, or 0-16383 on a KL. 

flags One or both of the following: 

Bit 

o 

1 

Symbol 

PA.GAF 

PA.GCD 

4.8.2.3 The. PAGEM Function 

Bit Set 

Destroy page. 

Create page on 
disk. 

Bit Clear 

Create page. 

Create page in working set. 

The .PAGEM function moves or exchanges a page. The page is moved from one virtual 
address to another, or two pages exchange locations. A page cannot be moved to a location 
that is allocated to another page, and pages cannot be exchanged unless the source pages 
are allocated. 

Use one argument word for each page to be moved or exchanged. If more than one argument 
word is used, the specified pages must be in ascending order. 
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The argument word fonnat is as follows: 

<flag>+<source>B17+<destination>B35 

Where: Is: 

source The page number of the page to be moved. 

destination The page number of the location to receive the page. 

flag The following flag can be set: 

Bit Symbol Bit Set Bit Clear 

o PA.GAF Exchange page. Move source page. 

4.8.2.4 The. PAGAA Function 

The .PAGAA function sets or clears the access-allowed bit for a page. The access-allowed bit 
can be changed for any page in the working set. If a page is accessed that has this bit off, a 
page fault occurs. 

Use one argument word for each page whose access-allowed bit is to be changed. If you use 
more than one argument, the specified pages must be in ascending order. 

The argument word fonnat is as follows: 

XWD flags,pageno 

Where: Is: 

pageno 

flags 

The page number of the page whose bit is to be changed 

One or more of the following: 

Bit Symbol 

o PA.GAF 

1 PA.GSA 

2 PA.GDC 
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Bit Set 

Clear access
allowed. 

Automatically sets 
access-allowed on 
page fault. 

Ignores nonexistant 
page, suppresses 
error code 
PAGEM%. 

Bit Clear 

Set access-allowed. 

Dispatch to page handler on 
page fault. 



4.8.2.5 The .PAGWS Function 

The .PAGWS function returns a bit map of those pages in the current working set. In the 
PAGE. call, the number of words that are to be returned are specified. There is one bit for 
each possible page: if a bit is set, the page associated with that bit is a part of the working 
set. 

For example, Word 1 contains the bits associated with pages 0 through 35; Word 2 contains 
the bits associated with pages 36 through 71, and so on. The end of the bit map does not 
end on an integral word boundary, so the last word in the map is padded with zeroes. The 
bit map for another section begins on a new word. 

4.8.2.6 The .PAGGA Function 

The .PAGGA function returns a bit map indicating those pages that have their access-allowed 
bits set. This bit map has the same format as the one returned for function .PAGWS. If a bit 
in the map is set, the page associated with that bit is accessible. In the PAGE. monitor call, 
specify the number of words in the bit map that are to be returned. 

4.8.2.7 The .PAGCA Function 

The .PAGCA function determines the type of access allowed a given page. There is no 
argument block; instead, specify the function code in the left half of the ac (bits 0-17) and 
the page number in the right half of the ac (bits 18-35): [function"page-number]. 

On a normal return, the monitor sets one or more of the following bits: 

Bits Symbol Meaning 

0 PAGNE Does not exist. 

1 PAGWR Writable. 

2 PAGRD Readable. 

3 PAGAA Access allowed. 

4 PAGAZ Allocated page, but zero. 

5 PA.GCP Page cannot be paged out. 

6 PAGPO Page is paged out. 

7 PAGHI Page is in high segment. 

S PAGSH Page is sharable. 

9 PAGSP Page is SPYing (mapped onto running monitor). 

10 PA.GLK Page is locked in memory. 

11 PA.GNC Page is not cached (KLI0 and KSI0 only). 

12 PA.GSN Section does not exist. 

13 . PA.GVR Page is virtual (SPY page). 
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Bits Symbol Meaning 

14 PA.GIN Page is in an indirect section, that is, a section mapped onto another 
section. 

Reserved for use by DIGITAL. 15 

16-20 PA.GSC Section is independent, that is, a section that another section is mapped 
onto. PA.GIN must be set for PA.GSC to be set. 

Reserved for use by DIGITAL. 21 

22-35 PA.GPN Page number of the SPY page that the specified user page is SPYing on. 

4.8.2.8 The .PAGCH Function 

The .PAGCH function changes the pages in a high segment, or creates a high segment from 
a contiguous collection of pages. 

The argument block format is as follows: 

Where: 

addr+3 

addr: 

Is: 

EXP 
EXP 
EXP 
EXP 

number-of-words-that follow 
number-of-pages-to-be-remapped 
starting-page-number 
destination-page-number 

Is an optional word of the argument block. If not specified, page 400 is assumed. This 
function waits for all 110 to stop before creating the high segment. 

destination- On a normal return, the specified pages are REMAPped into the high segment, begining 
page- at this location. 
number 

starting
page
number 
and 
number
of-pages
to-be
remapped 

The error return is taken if all of the pages specified by starting-page-number and 
number-of-pages-to-be-remapped do not exist, or if a page included in the list already 
exists in the program's address space. If the number of pages specified is negative, those 
pages are remapped from the low segment to the high segment, and appended to the 
existing high segment. A sharable high segment cannot be created or affected with this 
function code. If only one argument is given, the number of pages specified is deleted 
from the end of the high segment. 

4.8.2.9 The .PAGCB Function 

The .PAGCB function sets or clears the cache bit for the page. This flag is automatically set 
if PA.GAF is on. This function sets or clears the cache bit on a per-page basis (KLIO and 
KSIO only). 
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The argument word format is as follows: 

Bit 

o 

1 

2-26 

27-35 

Symbol 

PA.GAF 

PA.GDC 

Bit Set 

Cache bit is set in 
the corresponding 
entry in the job's 
page map. 

Ignores nonexistent 
page, suppressing 
error code 
PAGME%. 

Reserved for 
Digital. 

The page number. 

Bit Clear 

Cache bit is cleared. 

If there is more than one argument word in the argument block, the page numbers specified 
in those words must be in ascending numeric order. The error return is taken if any of the 
following are true: 

• The function or call is not implemented. 

• A high segment page is specified in the argument list. 

• The argument list is not set up properly. 

• The job is not locked in core. 

4.8.2.10 The .PAGSP Function 

The .PAGSP function allows a program to map an arbitrary set of pages from memory or 
from the monitor's virtual address space into the program's address space. Use one argument 
word for each page to be mapped. If more than one argument word is used, pages must be 
specified in ascending order. This function requires that the calling job have PEEK privileges 
on all of core. 

Theargument word is formatted as follows: 
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Where: 

flags 

source 

<flags>+<source>B17+<destination>B35 

Is: 

One or more of the following: 

Bit Symbol 

o PA.GAF 

1 PA.GDC 

Bit Set 

Remove page from 
user's addressing 
space. 

On a create, this bit 
overlays an already 
existing page. 

Bit Clear 

Add monitor page to user's 
addressing space at specified 
page number. 

On a delete, nonexistent page 
is ignored, and error code 
PAGME% is suppressed. 

The page number of source page. If UU.PHY is set in the PAGE. monitor call itself, 
source is a physical page in memory. IfUU.PHY is not set, source is a monitor virtual 
address mapped through the executive page map. 

destination The page number of the page to be mapped into the program's address space. 

4.8.2.11 The .PAGSC Function 

The .PAGSC function creates or destroys a specified section. Use one argument word for 
each section to be created or destroyed. For more than one word, the sections or arguments 
must be specified in ascending order. 

The argument word format is as follows: 

XWD <flag>+<source>B17+<destination>B35 

Where: Is: 

flag One of the following: 

Bit Symbol 

o PA.GSF 

1 PA.GMS 

2 PA.GDC 

Bit Set Bit Clear 

Delete the section if Create the section if it does 
it exists. 

Map the sections 
specified in PA.GSS 
and PA.GDS 
together. 

not. 

Empty any existing Ignore nonexistant section. 
section. 

source The section number of the source section (bits 4-17, PA.GSS). 

destination The section number of the destination section (bits 22-35, PA.GDS). 
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4.8.2.12 The .PAGBM Function 

The .PAGBM function returns a bit map that indicates whether specified page accessibility 
attributes belong to a certain page. If the bit in the map is set on, the page has the specified 
attributes. 

Each argument word is of the form: 

addr: 

Where: Is: 

EXP 
EXP 
EXP 
EXP 

count 
attribute-settings 
care-mask 
starting-page-number 

count The number of arguments. 

attribute- The word indicating the desired state of the given attribute. The page accessibility 
settings attribute bits are the same as those given for .PAGCA. 

care- The word specifying which bits of the attribute-settings word should be examined. Note 
mask that PA.GSC, the independent section bit, is checked only when PA.GIN is turned on 

in both .PAGCA and in the care mask in .PAGBM. Likewise, PA.GPN, the SPY page 
number, is checked only when PA.GSP is on in .PAGCA and the care mask in .PAGBM. 

starting- The word specifying the page number of the page that is mapped to bit 0 of the mask. 
page-no 

4.8.2.13 The .PAGAL Function 

The .PAGAL function determines the type of access allowed for a given page. 

The argument block format is as follows: 

Where: 

count 

starting
page 

EXP count 
EXP starting-page 

Is: 

The number of arguments. 

The starting page of the area in which information is to be returned. The bits returned 
are the same as for .PAGCA. 

On a normal return, the specified function has been performed; the AC is unchanged. On an 
error return one of the following error codes: 
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Table 4-4: PAGE. UUO Error Codes 

Code Symbol Meaning 

0 PAGUF% Function not implemented. 

1 PAGIA% Illegal argument. 

2 PAGIP% Illegal page number. 

3 PAGCE% Page should not exist, but does. 

4 PAGME% Page should exist, but does not. 

5 PAGMI% Page should be in core, but is not. 

6 PAGCI% Page should not be in core, but is. 

7 PAGSH% Page is in sharable high segment. 

10 PAGIO% Paging I/O error. 

11 PAGNS% No swapping space available. 

12 PAGLE% Core limit exceeded. 

13 PAGIL% Function illegal if page locked. 

14 PAGNX% Cannot allocate zero page with virtual limit zero. 

15 PAGNP% Not enough privileges. 

16 PAGSC% Section should not exist, but does. 

17 PAGSM% Section should exist, but does not. 

20 PAGIS% Illegal section. 

4.'8.3 Internal Use of the PAGE. UUO 

The monitor can perform certain PAGE. UUO functions on behalf of the user. Some of these 
functions are executed as part of a monitor job (RUN UUO and related functions) and are 
therefore executed as normal UUOs at UUO level, using the shadow ACs to pass arguments. 
However, some of the PAGE. UUO functions must be executed at clock level (VIRCHK, for 
example). Those functions (.PAGIO, .PAGCD, and certain functions of .PAGRM) are specially 
coded to be executable at clock level. 

4.8.4 Page Fault Handlers 

A Page Fault Handler (PFH) manages memory for individual jobs when a job exceeds its 
current physical page limit. The PFH tries to keep the number- of pages in core below the 
limit and close to the guideline. To do this, pages must be paged in and out. The PFH 
decides what specific pages to swap in and out. A list of pages must be maintained according 
to some algorithm. In addition, the PFH can create pages (allocated but zero). 
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Until a program exceeds the CPPL, a PFH is not needed. But, when that limit is reached, 
the monitor looks at .JBPFH in the user's job data area. If that location is non-zero, the 
contents are treated as the address of the PFH and dispatch is made there. If zero, the 
monitor uses the internal PFH contained within the monitor. 

Control is sent to the PFH for some types of page failures, a time trap or a potential page 
failure (user address check in UUO processing). 

4.8.4.1 Page Failure 

A page failure (or page fault) occurs for the following reasons: 

1. Proprietary Violation. A concealed page is referenced. 

2. Page refill failure. Hardware problem. 

3. Address failure. Address break (KLIO only). 

4. Illegal Indirect address. 

5. Page table parity error. Hardware problem with pager. 

6. Illegal Address. Section number greater than 378. 

7. ARlARX parity error. 

8. Reference to a location whose UPM entry has a pointer type of zero. 

Only the last case is handled by the PFH; the rest are handled by the monitor. 

KLIO page faults trap using locations 500 through 503 of the current user's UPT. When the 
trap occurs, the page fail word is stored in location 500 of the UPT, and the processor flags 
and the current PC Word are stored in locations 500 and 502 with a new PC Word taken 
from location 503. 

The new PC in the page fail word is the address of the SEILM routine in APRSER. SEILM 
sorts out the type of condition and dispatches to the correct location. If the normal condition 
is met (a page needing to be read in from disk, or just turning on the A bit) control passes to 
the routine USRFLT in VMSER. 

If the page fault is for a user program that is already virtual, the routine USRFLT does not 
return to SEILM. 

USRFLT calls USRFLZ to do the work in processing the page fault. USRFLZ checks to see 
if the user specified his own page fault handler. If not, the Monitor Page Fault Handler 
(MONPFH) is called to take care of the fault. Otherwise, the monitor checks to see if the 
reference that caused the fault is for an extended section or if the current PC word is in an 
extended section. If so, the message "?Extended page fail, cannot be passed to user PFH" is 
printed on the user's terminal and the program is stopped. 

If the pointer type specified in the UPM entry for the page is zero, the page fault is called an 
access fault. The monitor checks the software accessible bit (PM.AAB) to see if the page is 
in the working set. If this bit is set, the monitor changes the pointer type in the UPM and 
returns control to the user program, provided that the user's page fault handler specified the 
PA.GSA bit on the last function call to set page access (.PAGAA). 
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In the other cases, the accessible bit not set (the page is not in the working set), PA.GSA is 
not set, or a UUO Address check occured, the PFH argument block is filled in and control is 
transferred to the user PFH. The format of the PFH argument block is shown in Figure 4-6. 

Figure 4-6: Page Fault Handler Argument Block 

1 Old PC word 1 
1-------------------------------1 1 Page Fault Word 1 
1-------------------------------1 
1 Virtual time 1 

1-------------------------------1 
1 Page Rate 1 

1-------------------------------1 
1 PSI Vector Address 1 

4.8.4.2 Potential Page Failure 

When a monitor call is issued and a test must be made to see if the user's UUO argument 
block is in core, UUOCON calls the UUOCHK. routine in VMSER to check if the argument 
block itself is accessable and to verify that any pages pointed to by the argument block are 
accessable. 

UUOCHK calls GETWRD in DATMAN to access the user argument block, then it calls the 
XRNGE routine in VMSER to access all of the pages specified by the argument block. If 
access to any of these locations fails, UUOCHK. dispatches to UUOFLT. UUOFLT releases 
any interlocks or resources that are being held, flags that the fault occurred in UUO code, 
and checks if the UUO was issued from user mode. If the UUO was issued from user mode, 
USRFLl is called to run the PFH to get the page into core. If USRFLl fails or the fault 
occured from exec mode, a UUO address error (check) occurs. 

4.8.4.3 Virtual Time Trap 

The purpose of a virtual time trap is to allow virtual jobs to page without thrashing. 

For jobs that have gone virtual and have set a physical guideline rather than a limit, the 
monitor enforces a virtual time trap on a periodic basis. This is based on the job's runtime 
and is usually every half second. . 

By using a guideline, the user job is allowed to increase in size over the guideline (CPPL) 
without having to page out. At the time trap, the monitor initiates actions leading to the 
job's paging out either enough pages to get back to the guideline (if using SYS:PFH.EXE), or 
all pages that haven't been accessed since the last time fault. In addition, all accessible bits 
(A bits) are turned off. Thereafter, when the job runs, every reference to a different page 
causes a page fault. If the page is in the job's working set (WSBTAB bit set), the A bit is 
simply turned back on and control is returned to the user. . 

Thus, the A bit reflects usage history during the time trap interval. Selection of pages for 
page out, at the time trap, begins with unaccessed pages, pages whose A bit has not been 
turned on during the preceding interval. 
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The time trap counter is typically initialized or reset to .5 second. This counter, maintained 
in the PDB, is decremented every jiffy of runtime. When the counter reaches zero, control 
passes to TIMFLT in VMSER and then on to either the Monitor's Page Fault Handler 
(MONPFH) or the user's Page Fault Handler (PFH). 

4.8.4.4 Page Fault Handler Conditions 

The following is a list of conditions that a PFH must be able to handle: 

1. Page not in memory. Examine the physical limit. If the physical limit has been reached, 
a page must be paged out before a new page is paged in. If the limit has not been 
reached, just page the new page in. 

2. Page allocated but zero. Examine the core limit. If the limit has not been reached, create 
a new page. Otherwise, reduce the working set to allow room for the new page and 
create it. 

3. A bit off, but page in memory. Tum the bit on. The PFH can have the monitor do this 
automatically by setting the PA.GSA bit on the call that turns off access allowed. 

4. Time trap. The PFH can use this to periodically trim the working set. 

4.8.5 System Page Fault Handler (SYS:PFH.EXE) 

In monitors previous to Version 7.03, the system page fault handler (SYS:PFH.EXE) used a 
second chance first-in first-out (FIFO) algorithim to maintain a user program's working set. 
This means that the first page paged in is the first page to be paged out, unless there are 
other pages that have not been accessed. 

The four access conditions are handled in the following manner: 

1. Page not in memory. Examine the physical limit. If the physical limit has been reached, 
the first page in the FIFO list is paged out and the new page is paged in. If the limit has 
not been reached, the page is paged in. 

2. Page allocated but zero. Examine the core limit. If the limit has not been reached, a 
page is created and stored on the FIFO list. If the limit has been reached, the first entry 
in the FIFO is paged out and the new page created. 

3. A bit off, but page in memory. Tum the bit on. 

4. Time trap. Examine physical guidelines. If the guideline has not been exceeded, the 
virtual time trap counter is reset to its initial value. If the guideline is exceeded, enough 
pages with the A bit off and the W bit on are paged out to bring the number of pages 
down to the guideline, the FIFO list is rebuilt, and the time trap counter is reset. Only 
pages that are in the low segment and are writable are paged out. 
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4.8.6 Monitor Page Fault Handler (MONPFH) 

Unlike the system page fault handler, the monitor page fault handler (MONPFH) sequentially 
faults pages out in a ring fashion. That is, it starts at the top of the working set and pages 
out sucessive pages until the user program is under the limit. The guideline is not used; if 
a user specifies a guideline, MONPFH uses the maximum physical limit (MPPL). MONPFH 
remembers the last page that it paged out from the working set and restarts from there. 

The four access conditions are handled by MONPFH in the following manner: 

1. Page not in memory. The physical limit is examined and if reached, the page following 
the last page that was paged out is removed from the working set, then the requested 
page is paged in. 

2. Page allocated but zero. The physical limit is checked, paging out a page if necessary, 
and a new page is created. 

3. A bit off, but page in memory. The access allowed bit is turned on and the count of not 
accessable pages is decremented. 

4. Time trap. When this happens, MONPFH pages out all pages that are in the working 
set but have their access allowed bits turned off last trap time. All pages that are in core 
have their access allowed bits turned off and the count of'pages that are not accessable 
is adjusted to reflect this. 

MONPFH does not page out the user's software interrupt vector, (PSI), JOBINT block, high 
segment, and DDT breakpoint pages. MONPFH also breaks down the large dump mode I/O 
lists into pieces small enough to keep the user's program within memory limits. MONPFH 
is also used by the monitor to migrate pages off of units that are being removed from the 
swapping space. 

4.9 Paging Queues 
In order to minimize paging I/O, the monitor does not immediately write pages paged out 
with the .PAGIO function of the PAGE. UUO. Instead, the pages are placed on a queue. 
Subsequently, the entire paging queue is written out using one I/O operation. 

The advantages of using paging queues are as follows: 

1. Monitor overhead is decreased, because the monitor is more efficient at a fewer large 
I/O operations as opposed to many smaller I/O operations (assuming the same number 
of pages are transfered). 

2. If the job faults for the page before it is necessary for the monitor to write the queue, the 
overhead of the write operation is saved. 

3. Even if the monitor writes the paging queue, the pages may not be immediately recycled, 
and the page does not have to be reread from the disk. 
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4.10 Internal Paging Queues 
The monitor maintains four internal paging queues: 

Queue 

IN 

SN 

IP 

OUT 

Function 

The queue on which pages are initially placed when removed from the job's working 
set by the PAGE. UUO. The page number exists in the page map entry for the job, but 
the hardware access bits for the entry are cleared and a software bit is set, indicating 
that the page is on the queue. The owner of the page is written in the MT.JOB field of 
l\1EMTAB for the physical page, and the' virtual page number to which the page belongs 
is written in the corresponding P2.VPN field of PT2TAB. 

The queue reserved for those pages that are destined for slow swapping space (refer 
to the PA.GSL bit of the .PAGIO PAGE. UUO function). IPCF pages are also placed 
on this queue initially, in lieu of being paged out: in this case, the low order 15 bits 
of the address of the IPCF block that owns the page are written into P2.VPN, and 
the high order 3 bits are written in MT.JOB. MT.IPC is set to indicate an IPCF page. 
Conceptually, the IN and SN queues are identical, with exception of the swapping space 
designation. 

The in-progress queue is the queue to which the IN or SN queue pages are placed while 
they are being written to disk. When pages are moved from the IN or SN queues to the 
IP queue, swap space is allocated and the disk addresses written to the appropriate page 
maps or IPCF blocks using the information previously stored in MEMTAB and PT2TAB. 
The disk address is also written into l\1EMTAB. 

The OUT queue receives the pages from the IP queue once the 110 completes successfully. 
The pages may now be recycled to the free list on a FIFO basis. 

4.11 Sharable High Segments 
In TOPS-10 Version 7.04, the flexibility of high segment assignment has been expanded to 
allow a user's core image to contain more than one sharable segment. In order to accomodate 
this feature, certain aspects of the monitor's handling of high segments were significantly 
altered: 

1. High segments are now handled much more like low segments insofar as swapping and 
memory allocation are concerned. In particular, sharable high segments must have a 
map allocated to them that is pointed to through the use of the SPT and shared pointers 
in the individual user's core image maps. 

2. The JBTSGN table was expanded to effectively allow more than one entry per job. 

4.11.1 High Segment Map • 
The high segment map is the sharable high segment equivalent of a user section map. As 
such, it contains either page map pointers or disk addresses in the same form as a user page 
map. However, there are a number of significant differences between user section maps and 
high segment maps: 

1. Whereas user maps are always allocated as full pages from the free page list, high 
segment maps are allocated as blocks of memory from monitor virtual address space in 
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the MS.MEM section, and are allocated like any other non-zero section free core, which 
is actually allocated in section 0 for non-extended monitors. 

There are a number of restrictions that must be enforced in order for this approach to 
work. In particular, due to a combination of hardware restrictions and restrictions due 
to the overall method by which TOPS-10 uses the SPT, high segment page maps are not 
allowed to cross page boundaries and must be contiguous. The code that allocates and 
extends existing high segment maps is smart enough to create a map that meets these 
specifications. This restriction means that a single high segment can never be more that 
a 51210 pages and thus never larger than a single section. 

2. High segment maps are never swapped. 

3. High segment maps contain a data header that contains items of interest related to the 
high segment itself (and not any particular job using the high segment). These items 
are described as part of the definition of the .M2x.xx symbols in S, by which they are 
referenced. 

4. The high segment map is virtually addressable by the monitor as a normal part of the 
monitor's address space, because it is allocated from monitor free core. The physical page 
number of the map area of the high segment is pointed to by the high segment portion 
of the JBTUPM table. The monitor virtual address of the map (which contains the offset 
from the physical page number in the JBTUPM table) is pointed to by the JBTVAD table. 
This offset also must reside in the map pointers in each user's page map. 

5. High segments are not allowed to be virtual. This means that the order of linked pages 
pointed to as belonging to the high segment is that of increasing virtual address. 

4.11.2 Per-Job Database 

The pointer to the per-job data base for high segments is JBTSGN. JBTSGN does not contain 
a high segment number, but the address of a block in section 0 free core. The free-core block 
(.HBxx.x symbols defined in S) gives the segment number and type of segment information 
previously stored in JBTSGN entries (in the same format as previous monitors) in the 
.HBSGN entry. 

There is one high segment data block for each high segment (including non-sharable 
segments) a job owns. The data blocks are linked together as a linked list pointed to by 
the job's JBTSGN entry. This list is zero-terminated. Because the high segment data block 
resides in section 0 of the monitor's address space, the high order 1810 bits of the JBTSGN 
entry for the job are used to contain bits that are an inclusive OR of certain high segment 
status bits (present in the .HBSGN word of the high segment block) for the job. This OR 
function allows certain data to be checked quickly for the job without chaining through all of 
its high segment data blocks. 

o 
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4.12 Alternate Contexts 
The implementation of alternate contexts under TOPS-lO Version 7.03 provides facilities to 
save and restore the state of a job. The alternate context features allow a running program 
to be halted and saved in order to perform some other task which would normally destroy 
the core image. The saved context can be restored and the original program continued. 
Temporary or permanent alternate contexts may be created through the use of monitor 
commands or monitor calls. The alternate context features is available to any program 
through the use of a monitor call. 

By default, the alternate context service module (CTXSER) is always loaded. The loading of 
CTXSER is accomplished by setting the MONGEN parameter M.CTX to 1. If M.CTX is set 
to zero, CTXSER is not loaded. Not loading CTXSER has the following affect: 

1. Monitor and user defined commands marked to perform an auto-save always destroys 
the user's core image. 

2. The CONTEXT, PUSH, and POP commands yield the error message "?Job contexts not 
supported" . 

3. The CTX. UUO always takes the non-skip return, leaving the AC unchanged. 

4. All UUOs that allow the inclusion of an optional context number in their arguments fail 
if the context number is non-zero. 

4.12.1 Saving and Restoring the State of a Job 

Alternate contexts are implemented by memorizing a job's current state and some terminal 
parameters. The job's core image is then swapped out to disk, an implicit RESET UUO is 
performed, and all user core is released. Once on disk, the context is considered idle. At this 
point, a user is free to run programs and use any monitor commands normally available. 

When restoring the state of a job, an implicit RESET UUO is performed, all user core is 
released, and the saved parameters in the context block are restored. The next time the 
job wants to swap in, it has its original core image in-core again. All data residing in the 
per-process area (funny space) is saved and restored when switching contexts. No attempt 
is made to selectively save and restore portions of this data. Selected job tables, portions 
of the job's terminal DDB, and words within the PDB must be preserved over changes in 
contexts. Other items, while not absolutely necessary, do provide a friendlier interface and 
are desirable. 

The following is a list of all items saved and restored. Those marked with an asterisk 
indicate data that is absolutely necessary to preserve the integrity of the monitor and job; 
all other items are optional. 

1. Program run from physical SYS bit: JB.LSY from JBTLIM * 
2. Monitor mode bit: LDLCOM from LDBDCH * 
3. SAVCTX word in the PDB: right half of .PDSCX * 
4. Break mask words LDBBKM and LDBBKB 

5. PSI data base address JBTPIA 

6. All IPCF -related words in the PDB 
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7. Enqueue block chain address: .PDEQJ 

8. Selected words in the TTY DDB * 
9. Job status word: JBTSTS * 
10. Swapped out disk address: JBTSWP * 
11. Swapped in image size: JBTIMI * 
12. Swapped out image size: JBTIMO * 
13. High segment number: JBTSGN * 
14. Per-process (funny space) page count: JBTPDB * 
15. Swapped out checksum: JBTCHK * 
16. Program name: JBTNAM * 
17. User PC: JBTPC 

18. 110 wait DDB:JBTDDB 

19. Program run data: .PDNAM, .PDSTR, .PDDIR, .PDSFD 

20. Time of last reset: .PDSTM 

21. Address to user defined commands: .PDCMN * 
22. Address to UNQTAB for user defined commands: .PDUNQ * 
23. Address of DECnet Session Control job block: .PDSJB 

Additional items can easily be added to the list. The routines to save and restore job and 
terminal information are completely table driven. Provisions exist for calling subroutines to 
perform the save and restores where the complexity or amount of data to be moved requires 
special attention. 

4.12.2 System Services 

The ENQlDEQ, IPCF, and PSI facilities have been modified to allow them to work with idle 
contexts. The concept of a Job/Context handle (JCH) was created to uniquely identify a job 
and one of its contexts. JCH storage requires 18 bits. A JCH with a zero context component 
is always translated into the JCH for the job's current context. The 18-bit UUO argument 
blocks for ENQlDEQ, IPCF, and PSI are used for JCH storage. Thus, a pt:ogram may target 
the UUO at a particular context for a job or leave the context number zero and the current 
context is the default. Idle contexts can hold ENQlDEQ locks, have IPCF message queues 
maintained, and PSI interrupts posted. 

4.12.3 Program Interface 

All context manipulation is done through the CTX. UUO (CALLI 215). The UUO argument 
block contains storage for a UUO function code, flags, RUN UUO block address, context 
name, and a data buffer length and block address. The argument block is never written 
by the monitor; it resides in a write protected page or a literal. All data is returned to the 
calling program in the UUO AC or the data buffer, if present. The UUO functions perform a 
superset of those available at monitor command level. 
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The calling sequence for using the CTX. UUO is: 

XMOVE I AC, addr 
CTX. AC, 
<error return> 

<normal return> 

The format of the CTX. UUO argument block is: 

o 1 7 8 17 18 35 
!=======================================================! 

.CTFNC !P! RESERVED! LENGTH FONCTION CODE 
!-------------------------------------------------------! 

. CTRON! RON UUO OFFSET ! RON 000 BLOCK ADDRESS ! 
!--~----------------------------------------------------! 

.CTNAM SIXBIT CONTEXT NAME OR OCTAL CONTEXT NUMBER 
!-------------------------------------------------------! 

.CTDBL DATA BOFFER LENGTH 
!-------------------------------------------------------! 

.CTDBA DATA BOFFER ADDRESS ! 

Words 

.CTFNC 

.CTRUN 

.CTNAM 

!=======================================================! 

Meaning 

This word is used for UUO flags, block length, and function code. Currently, only one flag 
is defined. . 

Bit 

o 

1-8 

9-17 

18-35 

Symbol 

CT.PHY 

CT. LEN 

CT.FNC 

Meaning 

The physical-run bit. Function .CTSVR (save current 
context and run program) uses this bit to search for the 
physical device given in the RUN UUO block. Optionally, 
UU.PHY may be used with the same results. 

Reserved for use by DIGITAL. 

Holds the length of the argument block. 

The function code. Negative functions are reserved for 
customers. 

This is the RUN UUO word. It contains the run offset and block address that is nonnally 
put into the RUN UUO AC. 

Bit 

0-17 

18~35 

Symbol 

CT.OFS 

CT.ADR 

Meaning 

The mask for the run offset. 

The mask for the address of the RUN UUO block. 

This word is used to specify a context name when creating new contexts, namely 
functions .CTSVH, .CTSVR, and .CTSVT. For functions that perfonn some task on or 
for a particular context, this word contains either a context name or number. 
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Words 

. CTDBL 

.CTDBA 

Meaning 

This word contains the data buffer length in words. The maximum value is 51010 words . 

This word contains the full 30-bit address of the data buffer. The IFIW bit is respected 
and causes a section local address reference relative to the section in which the CTX. 
UUO is executed. 

4.12.4 CTX. UUO Functions 

The CTX. UUO provides functions for creating, destroying, switching, and naming contexts, 
processing the data buffer, and manipulating quotas. 

Function What it does: 

.CTSVH Saves the current context and halts the job. This provides "PUSH" capabilities. The new 
context is inferior . 

. CTSVR Saves the current context and runs a program. This is equivalent to the auto-save and 
restore facilities available at monitor command level. 

.CTSVT Saves the current context and creates a new top level context. This function creates an 
adjacent context, not associated with the current context or PUSH chain, if one exists . 

. CTSVS Saves the current context and switches to another, already existing context . 

. CTSVD Saves the current context, deletes the target context, and switches back to the original 
one. In order to delete a context, a has to have that context as its current one. Hence the 
need to save the original. 

.CTRDB Reads the data buffer. This is used by an inferior context to read data passed to it by its 
superior. This is not a destructive read and can be repeated . 

. CTWDB Writes the data buffer. This is used by an inferior context to return data to its superior. 
Once data is written using this function, any old data originally set by the superior is 
lost. An inferior may write the data buffer repeatedly, each write function overwriting 
any existing data . 

. CTRQT Reads a job's context and saved-page quotas. This function requires the use of the data 
buffer to pass and return arguments. Word 1 (.CTJOB) specifies the target job number. 
Words 2 and 3 (.CTCTQ and .CTPGQ) return the context quota and saved-page quota 
respectively . 

. CTSQT Sets a job's context and saved-page quotas. This function uses the data buffer as function 
.CTRQT . 

. CTNCX Names a context . 

. CTLIS Lists context data for a job. 
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On any return from the CTX. UUO, the AC contains information pertaining to the status of 
the data buffer and errors. Regardless of the success or failure of the UUO, if a data buffer 
is used, CT.DAT (lBO) will indicate the existence of data returned in the buffer. CT.DBT 
(lBl) is returned if the buffer is truncated. CT.ETX (lB2) flags UUO error text in the buffer. 
The CT.RDL (777B27) field is a count of the number of words returned in the buffer. For 
UUO function .CTSVR, if the implied RUN UUO fails, CT. RUN (lB3) indicates the returned 
error code is a RUN UUO error, not a CTX. UUO error. RUN errors never return error text 
in the data buffer. Finally, the CT.ERR (777B35) field is the CTX. or RUN UUO error code. 
This is always returned on UUO errors even when the data buffer contains error text. 

Table 4-5: CTX. UUO Error Codes 

Code Symbol Meaning 

0 CXIFC% Illegal function code 

1 CXACR% Address check reading arguments 

2 CXACS% Address check storing answers 

3 CXNEA% Not enough arguments 

4 CXNLI% Not logged in 

5 CXLOK% Locked in core 

6 CXDET% Detached 

7 CXSCE% System context quota exceeded 

10 CXSPE% System page quota exceeded 

11 CXJCE% Job context quota exceeded 

12 CXJPE% Job page quota exceeded 

13 CXNCS% Not enough core to save context 

14. CXNCD% Not enough core to return data block 

15 CXICN% Illegal context number 

16 CXNSC% No superior context 

17 CXNPV% No privileges to set quotas 

20 CXIJN% Illegal job number 

21 CXCSI% Cannot switch to an intermediate context 

22 CXCDI% Cannot delete an intermediate context 

23 CXCDC% Cannot delete the current context 

24 CXCNP% Context not privileged 

25 CXNDA% No data block available 
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4.12.5 Command Interface 
The three commands CONTEXT, PUSH, and POP context creation, deletion, display, naming, 
and switching. Contexts can also be changed when certain programs are run by using the 
auto-save and restore facilities. 

4.12.5.1 CONTEXT Command 

The CONTEXT command allows a user to display and manipulate contexts within his or 
her job. It requires that the job is halted and at monitor level. It always preserves the 
current core image. Most options of the CONTEXT command take at least a context name 
or number. A context name is a string of 1 to 6 alphanumeric characters; the first character 
must be alphabetic. A context number is a decimal number assigned by the monitor and 
associated with a given context. A period (.) may be substituted in place of any context name 
or number to represent the current context for a job. 

4.12.5.2 List Options 

A user may list the status of a single context or the status for all contexts. The simplest 
form of the command is CONTEXT with no arguments. This produces a display showing the 
status of all contexts . 

. CONTEXT 

Contexts used/quota = 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 3.53 

* 2 TOPLVL 1 

In the above example, the user used 2 out of 4 contexts allowed for the job and 33 out of 
1000 saved-pages. Context #1 is named TOPLVL and was running the DDT program when 
it was saved. TOPLVL(l) has one inferior context, context #2, which is unnamed. Currently, 
no program is running. TOPLVL(l) had been idle for 3.53 seconds before the CONTEXT 
command was typed. An asterisk indicates the current context. In this case, it is context 
#2. An individual context may be listed using the command CONTEXT nlLIST. n is a valid 
context name or number. The following examples show the use of the !LIST option: 

.CONTEXT TOPLVL/LIST 

Context 
TOPLVL 1 

.CONTEXT 2/LIST 

Superior 

Context Superior 
* 2 TOPLVL 1 

4.12.5.3 Create Option 

Prog 
DDT 

Prog 

Idle time 
3.53 

Idle time 

The CONTEXT command can be used to create an adjacent context chain. Context blocks 
in the new chain are not associated with the current PUSH chain in any way. This facility 
allows a user to create multiple contexts so that programs that take lots of time to initialize 
(such as MS) may be started, halted, and ''kept''. Keeping an idle context with an initialized 
program allows a user to quickly switch to that context and continue it, thus avoiding the 
expensive overhead of restarting the program. The syntax to create an adjacent context is: 
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. CONTEXT 

.R MS 
MS> 
MS>EXIT 
• CONTEXT 

;CREATE AN ADJACENT CONTEXT 
; RUN A PROGRAM 
;PROGRAM TYPEOUT 
;EXIT PROGRAM 
;LIST ALL CONTEXTS 

Contexts used/quota = 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 3.53 
* 2 MS 

Optionally, preceeding the equal sign with a name associates that name with the newly 
created context. 

4.12.5.4 Delete Option 

Any single context or a context at the end of a PUSH chain can be deleted from any other 
context. The command syntax is CONTEXT nlKILL, where n is a valid context name or 
number. 

. CONTEXT ;LIST ALL CONTEXTS 

Contexts used/quota = 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 3.53 
* 2 

.CONTEXT TOPLVL/KILL 

. CONTEXT 
;DELETE TOPLVL(l) 
;LIST ALL CONTEXTS 

Contexts used/quota = 1/4, pages used/quota = 0/1000 
Context Superior Prog Idle time 

* 2 

4.12.5.5 Naming Option 

The CONTEXT command can be used to associate an alphanumeric name with any context 
owned by the job. The command format is CONTEXT new=old, where new is the new name 
to assign to context old. As with other CONTEXT command options, old can be any valid 
context name or number. 

. CONTEXT ;LIST ALL CONTEXTS 

Contexts used/quota = 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 3.53 

* 2 

.CONTEXT FOO=2 
• CONTEXT 

;ASSIGN "FOO" TO CONTEXT 2 
;LIST ALL CONTEXTS 

Contexts used/quota 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 4.12 
* FOO 2 

Additionally, a context can be named when it is created via the CONTEXT command. See 
the section on the create option. 
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4.12.5.6 Switch Option 

Once two or more adjacent contexts are established, the user can switch from one context 
to the other using the CONTEXT n command. n can be any valid context name or number. 
Here, as in the delete option, the same restrictions apply: a user can switch between the 
current context and any single adjacent context or one at the end of a PUSH chain. 

. CONTEXT ;LIST ALL CONTEXTS 

Contexts used/quota = 2/4, pages used/quota = 102/1000 
Context Superior Prog Idle time 

* TOPLVL 1 DDT 
MS 2 MS 10:02 

.CONTEXT MS 
• CONTEXT 

;SWITCH TO MS(2) 
;LIST ALL CONTEXTS 

Contexts used/quota 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 3.53 
* MS 2 MS 

4.12.5.7 PUSH Command 

This command allows a user to create an inferior context. The following sequence of 
commands demonstrate the PUSH command: 

.R DDT 
DDT 

.PUSH 

. CONTEXT 

;RUN A PROGRAM 
;PROGRAM TYPEOUT 
;EXIT PROGRAM 
;CREATE AN INFERIOR CONTEXT 
iLIST CONTEXTS 

Contexts used/quota = 2/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

TOPLVL 1 DDT 3.53 
* 2 TOPLVL 1 

The display shows context #2 is inferior to context TOPLVL(l). The action of the PUSH 
command caused an additional context to be charged to the user. In the case of DDT, 33 
additional pages have been counted against the user's saved-page quota. The context with 
the DDT core image had been idle for 3.53 seconds before the CONTEXT command was 
typed. The functionality available in the PUSH command is identical to that provided by the 
.CTSVH function to the CTX.. UUO. 

4.12.5.8 POP Command 

This command provides the only means to return to a superior context. Its purpose is to 
undo what the PUSH command did. That is, destroy itself and restore its superior context. 
The following sequence of commands demonstrates the use of the POP command. 

.POP 

. CONTEXT 
;RETURN TO SUPERIOR CONTEXT 
;LIST CONTEXTS 

Contexts used/quota = 1/4, pages used/quota = 0/1000 
Context Superior Prog Idle time 

* TOPLVL 1 DDT 
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. CONTINUE 
<> 

iRETURN TO THE SAVED PROGRAM 
iPROGRAM TYPEOUT 

POPping a context causes a free context to be returned to the number available to the user. 
In the DDT program, 33 pages is no longer counted against the total saved-pages allowed to 
the user. 

4.12.5.9 Auto-Save and Restore 

Normally, when a command is given that runs a program, the user's core image is destroyed. 
The system administrator has the option of marking certain commands as auto-save 
commands. When the user types a command that runs one of these programs, the monitor 
automatically saves the user's current context, and runs the specified program. Whenever 
the job attempts to return to monitor level due to EXIT UUO, CTRUC, HALT, or fatal error 
in job, the monitor performs an automatic restore of the saved context for the user. The 
net result is the user's core image is still intact. Additionally, user defined commands can 
be flagged as auto-save commands. This sequence of auto-save, running a program, and 
auto-restore is identical to the user typing PUSH, RUN, and POP commands, with one 
exception: a user's context and saved-page quotas are never checked when an auto-save is 
in progress. This is done to allow the system administrator to set a user's context quota 
to 1 and still allow the use of normal monitor commands that will invoke the auto-save 
and restore sequence. System context and saved-page quotas are always checked under all 
circumstances. 

4.12.5.10 SET WATCH Command 

An additional keyword has been added to the SET WATCH command. The CONTEXTS 
keyword is now accepted by the SET WATCH command. When this feature is enabled, 
context information is displayed each time the current context changes. For example: 

. CONTEXT iLIST CONTEXTS 

Contexts used/quota = 1/4, pages used/quota = 33/1000 
Context Superior Prog Idle time 

* TOPLVL 1 DDT 

.SET WATCH CONTEXTS 

.R DDT 
DDT 
"Z 
.PUSH 
[Context 2] 
.POP 
[Context TOPLVL(l)] 

iENABLE CONTEXT WATCH 
iRUN A PROGRAM 
iPROGRAM TYPEOUT 
iEXIT PROGRAM 
iCREATE AN INFERIOR CONTEXT 
iWATCH CONTEXT TYPEOUT 
iRETURN TO SUPERIOR CONTEXT 
iWATCH CONTEXT TYPEOUT 

4.12.6 Conservation of System Resources 
Any time JOBKL is called to kill a job and the job has contexts, the contexts are deleted, 
freeing up monitor free core and swapping space. This is accomplished by CTXSER ordering 
the job's entire list of context blocks into one PUSH chain and positioning the current context 
to the end of the chain. A POP command is simulated that propagates back to the highest 
superior context. Then, the final context block is deleted and the job is allowed to logout. 
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4.12.7 Administration 

The standard monitor installation automatically makes alternate contexts available to a 
customer. The system administrator should refer to the TOPS-10 Software Installation 
Guide if non-standard default context and saved-page quotas are desired. Also, swapping 
space may need to be increased depending on the amount of existing swapping space and 
the expected increased load created by saving contexts. The TOPS-10 Software Installation 
Guide provides guidelines for the allocation of swapping space. 

Using alternate contexts increases the swapping load on a system. The amount of increase 
can vary greatly depending on the size of the jobs being saved and restored. For systems 
using the recommended amount of swapping space, it is strongly suggested that the amount 
of swapping space be increased to compensate for the additional core images being saved. 
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Chapter 5 

InterProcess Communication Facility (IPCF) 

5.1 Introduction 

IPCF allows user and system programs and the monitor to communicate with one another. 
In IPCF, communication takes place between processes. These processes can be an entire 
program, or just a portion of a program. A single program can also have one or more 
processes. For example, the QUASAR program within GALAXY has five different processes 
that each send and receive IPCF messages. 

The monitor routines to support IPCF reside in the IPCSER module. 

5.1.1 Communicating with packets 

Processes that use IPCF communicate with each other by sending and receiving packets. 
These packets can be of two types: short-form and page-mode. A short-form packet consists 
of header information and a small number of words of data (up to 128 in the standard 
monitor). A long-form packet consists of the same header information as a short-form packet, 
plus a full 512-word page of data. 

Processes residing within user-mode programs use the IPCFS., IPCFR., IPCFQ., and IPCFM. 
UUOs to send and receive packets. Monitor-resident processes call the equivalent UUO 
service routines directly. 

5.2- Identifying Processes 
A process that wants to send a message using IPCF must identify who the intended receiver 
is. This can be done by using the receiver's: 

1. Job number or Job-Context Handle (JCH) 

2. Process IDentification number (PID) 

3. Symbolic process name 
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5.2.1 Job Numbers and Job-Context Handles (JCH) 

A process that wants to send a packet can simply provide the destination process' job number 
as the destination address. This, however, has three problems. First, it precludes sending 
packets to certain system processes. Second, if t~e destination job's program has multiple 
processes, they cannot be addressed directly. Third, if a job has multiple contexts that are 
enabled for IPCF reception, then a packet addressed to a job number could go to any of the 
job's contexts. 

A slightly better alternative is to use the destination's job number or JCH as a packet 
address. This erisures that the packet is placed in the appropriate program's IPCF receive 
queue instead of being sent to an arbitrary context. This approach, while better, still shares 
the first two problems that accompany the job number approach. 

5.2.2 Process IDentification Numbers (PIDs) 

Instead of using job numbers, a sending process can specify the PIO number of the 
destination. PIOs are monotonically increasing numbers that are assigned to a process by 
[SYSTEM]INFO (a system process that will be discussed later). PIOs are not reused until 
the system is reloaded. One job can have any number of PIOs assigned, up to the maximum 
PIO quota for the account (the default is 2). Unlike job numbers, PIOs allow packets to be 
sent to any process on the system. 

5.2.3 Symbolic Process Names 

When a process requests a PIO from [SYSTEM]INFO, it can optionally provide 
[SYSTEM]INFO with a symbolic name for the process. This name is placed in a table 
that is managed by [SYSTEM]INFO. If one process wants to send a message to another 
process, but only knows the destination process' name and not its PIO, the sending process 
can ask [SYSTEM]INFO for the PIO associated with that name. 

5.3 System Processes and Known PIDs 
In a standard TOPS-10 system running with GALAXY, several system-wide IPCF processes 
exist. Some of these processes are required for IPCF to function, while others are used to 
communicate with the monitor, other parts of GALAXY, or directly with users. The monitor 
maintains a table of these special PIOs for easy access, at .GTSIO in COMMON (GETTAB 
table 126). The following table contains the PIDs assigned to the following symbolic names, 
in order. If a process resides in a timesharing job, the program name is also listed. 

IPCF process Function Resident in 

[SYSTEM]IPCC System IPCF controller 

[SYSTEM]INFO System IPCF information QUASAR 
manager 

[SYSTEM]QUASAR Central manager of GALAXY QUASAR 

[SYSTEM]MDA Mountable Device Allocator QUASAR 
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IPCF process Function Resident in 

[SYSTEM]TAPE LABELLER Magtape labelling process PULSAR 

[SYSTEM]FILE DAEMON File access arbiter FILDAE 

[SYSTEM]TAPE AVR Automatic Volume Recognizer for QUASAR 
magtapes 

[SYSTEM]ACCOUNTING Accounting records collector ACTDAE 
DAEMON 

[SYSTEM]OPERATOR Operator interface program ORION 

[SYSTEM]ERRLOG System error logger (not used) 

[SYSTEM]DISK AVR Automatic Volume Recognizer for QUASAR 
disks 

[SYSTEM]TGHA MOS memory error analysis and TGHA 
reconfiguration 

[SYSTEM]DECNET CON- DECnet's Network Management NML 
TROLLER Layer process 

[SYSTEM]GOPHER Performs miscellaneous IPCF 
duties 

[SYSTEM]CATALOG DAEMON Manages system disk and CATLOG 
labelled tape catalog 

[SYSTEM]MAILER Sends and receives mail :MX 
messages 

Three of these processes are parts of IPCF itself: 

• [SYSTEM]IPCC, called an "exec pseudo-processes" because it resides in the monitor. 

• [SYSTEM]GOPHER, another "exec pseudo-process." 

• [SYSTEM]INFO, is a user-mode process that resides in the GALAXY component 
QUASAR. 

5.3.1 [SYSTEM]IPCC 

[SYSTEM]IPCC is the IPCF Controller process. It can perform many functions for both 
privileged and unprivileged user jobs. It can create and destroy PIDs, or transfer PIDs 
between user jobs. Since it is a resident part of the monitor, it can be called by other parts of 
the monitor to send messages to other processes (mostly those residing in various GALAXY 
components) to inform them of changes in the system (such as people logging out, or spooled 
files being closed, or MDA-controlled devices being placed on-line). 

[SYSTEM]IPCC can send messages for two reasons: 

• To respond to requests from user-mode processes. These can involve creating a PID, 
providing information, or checking IPCF quotas. [SYSTEM]IPCC's response contains the 
result from executing the user's request. 
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• To generate unsolicited messages. If something happens in the system that is of 
interest to one of the system processes (such as a disk unit coming on line, important 
to [SYSTEM]DISK AVR, or a job logging out, important to QUASAR), then the monitor 
tells [SYSTEM]IPCC to send a message to the system process that needs to know. 

[SYSTEM]lPCC is a "talk only" process. That is, when it sends a message, it does not expect 
a response from the recipient. This is because any messages it sends are either in response 
to a user request or are on behalf of another part of the monitor that wanted to spread the 
word about a system event. 

5.3.2 [SYSTEMlINFO 

[SYSTEM]lNFO is the information manager for IPCF. Like [SYSTEM]IPCC, [SYSTEM]lNFO 
can create and destroy PIDs. However, PIDs created by [SYSTEM]INFO can have a symbolic 
name associated with them. [SYSTEM]INFO manages the system-wide table of jobs, PIDs, 
and symbolic PID names. User programs can send requests to [SYSTEM]INFO to create 
or delete named PIDs, or to find out the PID associated with a particular symbolic name. 
When a job logs out, [SYSTEM]IPCC automatically sends [SYSTEM]INFO a message telling 
it to destroy any PIDs and symbolic names owned by that job. The [SYSTEM]INFO process 
resides in a user-mode program. Prior to the 7.03 monitor, [SYSTEM]INFO lived in the 
SYSINF program. From 7.03 onward, [SYSTEM]INFO resides in QUASAR, the GALAXY 
queue manager. 

5.3.3 [SYSTEM1GOPHER 

[SYSTEM]GOPHER is the go-between (hence, the name gopher) between the monitor and 
various system processes. Like [SYSTEM]IPCC, [SYSTEM]GOPHER resides within the 
monitor. Also, like [SYSTEM]IPCC, it allows the monitor to generate and send IPCF 
messages to system processes. However, unlike [SYSTEM]lPCC, it waits for a reply from 
the destination process before continuing. This allows the monitor to send messages as a 
byproduct of UUO execution, since it provides a mechanism to block the job until a reply is 
received. 

Any part of the monitor can use [SYSTEM]GOPHER to communicate with another system 
process. User-mode use [SYSTEM]GOPHER whenever they execute certain UUO functions: 

• LOOKUPs or ENTERs on File Daemon protected files 

• QUEUE. monitor calls 

• IPCFM. calls for [SYSTEM]INFO functions 

Each of these is described below. 

5.3.3.1 LOOKUPs and ENTERs on File Daemon Protected Files 

The file system is a major user of [SYSTEM]GOPHER. When a user issues a LOOKUP 
or ENTER UUO for a file that has a 4 or higher in the owner's protection code field, 
and the file (or the file's directory) is protected against that user, the file system calls 
[SYSTEM]GOPHER, and tells it to send a message to the File Daemon (FILDAE), asking it 
if the user can access the file. Because this exchange takes a relatively long time to complete, 
[SYSTEM]GOPHER places the user's job in the event wait queue for IPCF traffic (EW for 
EW.IPC), freeing the Scheduler to run another job. When [SYSTEM]GOPHER receives its 

5-4 InterProcess Communication Facility (IPCF) 



response, it removes the job from the event wait state and returns to the caller with the 
response. 

5.3.3.2 QUEUE. UUOs 

A similar chain of events occurs when a user executes a QUEUE. UUO. The monitor calls 
[SYSTEM]GOPHER, and tells it to send the details of the request in a message to one of the 
system processes (usually a GALAXY component). Again, [SYSTEM]GOPHER blocks the 
requesting job until it gets a response from the component or a no-response timer expires. 
In the former case, it returns to the calling routine with the response. In the latter case, 
it returns to the caller with an error code indicating that the component didn't answer the 
request. 

5.3.3.3 IPCFM. Calls to [SYSTEM]INFO 

The IPCFM. monitor call greatly simplifies the coding needed for a user-mode process to 
interact with both [SYSTEM]IPCC and [SYSTEM]INFO by replacing a two-UUO IPCFS.
IPCFR. message exchange. [SYSTEM]IPCC functions are handled directly, since the 
message is sent directly to [SYSTEM]IPCC. [SYSTEM]INFO functions, however, cannot be 
handled in the same manner. When an IPCFM. request for [SYSTEM]INFO is received, 
IPCSER places the requesting process' job into the event wait for IPCF state, and sends a 
[SYSTEM]GOPHER request to [SYSTEM]INFO to perform the requested function. When 
[SYSTEM]INFO's response is received, it is returned to the job. The job is removed from the 
event wait queue and allowed to continue. 

5.4 Message-Sending Mechanics 
IPCF messages are sent in the form of packets from one process to another. Each packet 
consists of two parts: 

• A Packet Header Block (PHB), six words in length. 

• A Packet Message Block (PMB), containing the actual message. 

The PHB describes the characteristics of the communication (for example, the sender and 
receiver) and points to the PMB, where the actual message is stored. 

The PMB can be of two types: short-form, or long-form. Each is described below. 

5.4.1 Short-Form Messages 

A short-form message contains a standard PHB and a PMB of a few words, up to a maxim urn 
of 10. This limit is specified by the monitor parameter M.PKTL, and is stored in the GETTAB 
table .GTIPC, item 0 (%IPCML). 

When a user sends a short-form packet, the packet contents are copied from the user's buffer 
into monitor freecore, where it is held until received. When the intended receiver executes 
the IPCFR. UUO to read the packet, the monitor copies the packet into the user's buffer. 

InterProcess Communication Facility (IPCF) 5-5 



5.4.2 Long-Form (Page-Mode) Messages 

A page-mode message consists of a standard PHB, which points to a PMB of one memory 
page (512 words) in length. The PMB in a page-mode message starts on a page boundary, 
and is always one page long. t 
When a user sends a page-mode message, the monitor removes the page from the user's 
address space and marks it as an IPCF page. The page is also marked as eligible for 
page-out. If system memory is scarce, the pager writes a copy of the page to the swapping 
area and recovers the memory for other uses. When the receiving process executes the 
IPCFR. call to get the page, the monitor maps the page into the receiver's address space. 
If the page was paged out before being received, it is not paged in now. The process' first 
reference to the page causes a page fault that, in turn, causes the monitor to bring the page 
into memory. 

5.4.3 Performance Considerations 

When running a monitor with the M.PKTL parameter set to its default value of 10 words, 
delivery of a short-form IPCF packet is quicker than a page-mode packet. The CPU time 
required to copy a handful of words twice (first from the sender's PMB to monitor freecore, 
then from freecore to the receiver's PMB) is significantly shorter than the time needed to 
manipulate the page map for page-mode packets. 

Short-form packets of larger lengths can be sent by changing the value ofM.PKTL during the 
MONGEN dialogue. The amount of CPU time saved by using short-form packets decreases 
as the packet size increases. If M.PKTL is set to values above 150 words, short-form packets 
take longer to execute than page-mode packets. In addition, since short-form packets are 
stored in monitor freecore while in transit, larger packets take up more room. On a system 
with much IPCF traffic, system freecore fills up rapidly if messages. are allowed to back up. 
This can cause the system to come to a grinding halt. On the other hand, since the PMB in 
a page-mode message is an entire page (and is eligible for page-out) it is far less likely that 
system congestion will occur due to backed-up messages. :I: Therefore, page-mode 'messages 
are much more efficient than short-form messages when there are a lot of data to move 
between processes. 

5.5 IPCF Data Structures 
IPCF maintains a set of data structures that indicate the state of all processes, packets, and 
message queues. These data structures fall into the following categories: 

• System-wide data 

• Job-specific data 

• Context-specific data 

• Packet-specific data 

Each of these is described below. 

t Technically, a page-mode packet's PMB can have two potential sizes: zero words and 512 words. 

* It is less likely but not impossible. The PHB for page-mode messages still exists in monitor free core while in transit. 
Even though it is only six words in length, enough of them could pile up to cause problems if traffic is very heavy and 
is allowed to back up. 
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5.5.1 System-Wide Common Data 

The system-wide data structures all reside in COMMON and contain information that is 
important to IPCF. These include: 

Data Struc
ture 

PIDTAB 

IPCTAB 

. GTSID 

.GTQFC 

Contents 

The master table of all PIDs that exist on the system. 

The GETTABable table of IPCF quotas and statistics, such as packet, word, 
and page counts. It also contains copies of the PIDs of the monitor processes 
[SYSTEM]IPCC and [SYSTEM]GOPHER. 

The GETTABable table of special system PIDs . 

The QUEUE. UUO function table. The QUEUE. UUO causes [SYSTEM]GOPHER 
to send packets to system processes to carry out various functions. Customers can 
add new functions (with negative function numbers) to the top of the table. 

5.5.2 Job-specific data 

In addition to the system-wide data, the monitor maintains a set of data for each job in the 
system. This data resides in the Process Data Block (PDB), the repository for job-specific 
information. The PDB words that are used by IPCF, and their contents, are as follows: 

PDBword 

PDIPC 

.PDIPA 

. PDIPQ 

. PDIPL 

. PDPID 

. PDIPI 

.PDIPN 

.PDQSN 

Contents 

The left half points to the first (oldest) packet in the job's IPCF receive queue. 
The right half contains the number of outstanding packets, both sent and to be 
received. 

The left half contains the number of packets sent since login, while the right half 
contains the number received since login. 

IPCF flags and quotas . 

IPCF queue interlock word . 

PID number for a PID-specific receive . 

PID number of the current job's [SYSTEM]INFO process . 

The left half contains the pointer to the last packet in the receive queue. The right 
halfis zero. 

The left half contains the sequence number of the last packet sent to the File 
Daemon by [SYSTEM]GOPHER in the current job's behalf. The right half contains 
the same information for packets sent to a system process as the result of a 
QUEUE. UUO. 
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PDBword 

.PDEPA 

Contents 

Can contain three different kinds of data during a [SYSTEMJGOPHER message 
exchange with a system process: 

1. After [SYSTEM]GOPHER has sent the message, and while it waits 
for a response, .PDEPA contains the PID of the destination process. 
[SYSTEM]GOPHER places the initiating job in the "event wait for IPCF" 
queue. . 

2. When the destination process sends its response, .PDEPA contains the exec 
address of the packet. 

3. If the destination does not respond, or if the packet is turned around because 
of an error, .PDEPA contains an error code. 

The set of PDB words above is collectively referred to as the IPCF Process Control 
Block (PCB). The two IPCF processes that reside in the monitor ([SYSTEM]IPCC and 
[SYSTEM]GOPHER) have their own private executive PCBs. These blocks are located at 
IPCADR and GFRADR, respectively. Their format is identical to the user-mode PCB, except 
for an extra word at the end. Locations within each exec PCB have names of the form 
.EPxxx, where each xxx is the same as those in the list above. The extra word in the exec 
PCB, . EPADR, contains the address to call (using a PUSHJ) when an IPCF packet arrives 
for the process. 

The .EPxxx and .PDxxx IPCF symbols have one additional difference. While the .PDxxx 
symbols are numbered relative to the start of the PDB block, the .EPxxx symbols are 
numbered relative to the beginning of the IPCF PCB. Thus, while the symbol .PDIPC (the 
offset of the first word of the IPCF PCB) has a nonzero value, its counterpart, .EPIPC, does 
have a zero offset. IPCSER uses the .EPxxx offsets exclusively when accessing PCB locations. 
Accumulator W, which contains the address of the current PCB, is used as an index register. 
If the PCB is for an exec pseudo-process ([SYSTEM]IPCC or [SYSTEM]GOPHER), then W 
points to the exec PCB for one of those processes. If the PCB is for the current context of 
a user job, then W points to the PCB words within the PDB. If the current PCB is for an 
inactive context, then W points to the IPCF words in the saved context block for that context. 

5.5.3 Context-specific data 

When a job uses multiple contexts, the PDB words that contain the IPCF state for each 
saved context are placed in a saved-context block. This allows each context to have its own 
set of PIDs and streams of packets. The PDB words are stored in the saved-context block in 
the same order that they occur within the PDB itself. 

When a packet is to be delivered, the routine VALPID is called within IPCSER. VALPID 
takes as input the job number, JCH, or PID of the destination process. If the input is valid, 
VALPID sets up accumulator J to point to the correct JCH of the destination, and W to point 
to the first word of the IPCF data for the target process. 

5-8 InterProcess Communication Facility (IPCF) 



5.5.4 Packet-specific data 

The monitor maintains a block of data about every packet that is active on the system (that 
is, packets sent but not yet received or discarded). This information resides in a packet 
descriptor block, which is stored in monitor freecore. The packet descriptor block contains 
the following words: 

Word 

.IPCFLt 

. IPCFSt 

.IPCFRt 

.IPCFpt 

.IPCFI 

.I PC FUt 

.IPCFCt 

.IPCFD 

Contents 

Link and flags word. The left half contains a pointer to the next packet. The right 
half contains various flags about the type and status of the packet . 

Sender's PID number. 

Receiver's PID number . 

The left half contains the length of the PMB . 

Information about the location of the packet, whether it's in core or has been paged 
out to disk, and where it is located. 

PPN of sending process. Filled in by monitor during a send . 

Sender's capability word. The status of the bits indicate whether sender has 
JACCT., is logged-in, is execute-only, can poke the monitor, or has IPCF privileges. 
It also contains the job-context number of sender. This word is also filled in during 
a send. 

First word of data in a short-form packet . 

tThese words are found in the packet header block for any of the IPCF UUOs. Some of the words and fields 
have different meanings depending on whether it is in the UUO packet header block or in the monitor's packet 
descriptor block. 
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Chapter 6 

The Scheduler 

The scheduler selects the next job to run. This chapter explains how jobs are placed in 
various queues and how they are selected to run, based on scheduling parameters such as: 
priority of the job, interactiveness of the user, and current state of the job. 

6.1 Introduction 
The function of the scheduler is to choose the next job to run. In order to do this, the 
scheduler must ensure that all jobs are properly queued according to their current state. 
Specifically, the scheduler performs all requeuing, selects a job to run next, controls the 
allocation of sharable resources, and governs the priority of jobs to be in physical memory. 
The overall philosophy of scheduling in the DECsystem-10 and the specific procedures by 
which this philosophy is implemented is explained in this chapter. 

6.2 Queues 
Scheduling in the DECsystem-10 is based on the use of queues and wait state codes. The 
queue in which a job waits, and its position within the queue, determine the job's relative 
priority for the use of the CPU. The wait state code can be used to indicate that a job 
is waiting for a particular resource and is not able to use the CPU until that resource is 
available. Jobs that are most likely to be able to use the CPU wait in the processor queues, 
called PQl and PQ2. All jobs in PQl are given high response but for a very short time. Jobs 
enter at the back of PQl when they start to run or when they come out of any long term 
wait such as terminal 110 wait, command wait, or DAEMON wait. Certain jobs that have 
been sleeping or hibernating are also be queued into PQl if they were sleeping for more than 
one second. Jobs enter PQ2 from PQl when they have exceeded the amount of time that 
they are allowed in PQ1. In most systems, there are also high priority processor queues for 
particularly important jobs and real-time applications. Users must have special privileges to 
get their jobs into these queues. 
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Wait state codes are maintained for each job in the JBTSTS table and are used to define 
short- and long-term states. Short-term states apply to waits that are predictably less than 
one second. These are: 

• Wait satisfied 

• Sharable resource wait 

• I/O wait 

• Short sleep Oess than one second) 

There are no special queues associated with short-term states. Jobs in short-term wait states 
maintain their position in a run queue but have their wait state code altered. 

Long-term states refer to waits of longer than one second. These are listed below: 

• Command wait 

• Jobs waiting for service by DAEMON 

• Terminal I/O wait 

• Sleep wait 

• Event wait 

These wait states, and two others, have individual queues. The two other states having 
individual queues are: stopped Gob does not want to run) and null (no job occupying a 
particular job slot). Jobs going into long-term states enter at the rear of the respective queue. 

The scheduler does the following: 

1. Manages In-Core Protect Tiine (See Section Section 6.4) 

2. Deals with the current job if necessary 

3. Requeues other jobs needing requeuing 

4. Calls the swapper to make a swapping decision, if necessary 

5. Chooses the next job to run 

6. Allocates sharable resources 

Physical memory is a sharable resource for which there is no one queue or wait state. Jobs 
in any processor queue may either be in an in-core queue or an out-core queue. Maintaining 
separate in-core and out-core queues for each processor queue reduces overhead in queue 
scanning for job selection. The scheduler uses the in-core queues for job selection. The 
swapper uses the out-core queue for swap in job selection and the in-core queues for swap out 
job selection. The swapper attempts to keep jobs in core that ar~ most likely to do productive 
work (make use of system resources). However, swapping depends very much on the sizes of 
jobs, as well as the queue in which they are located. 
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6.2.1 Queue Transfers 
All transfers of jobs from one queue to another are performed by the routine QXFER in 
SCHEDl. Transfers are made to the beginning or end of a specified destination queue. The 
destination queue can be specified in one of three ways: 

• On a fixed transfer, a queue number is given directly. 

• On a link transfer, the destination queue is specified as a function of the job's current 
queue. 

• On a job size transfer, the destination queue is determined by the size of the job. 

The routine requesting a queue transfer can also request that the job's quantum run time be 
reset. This is done when the job is being requeued into a run queue . 

. When a queue transfer is requested, the calling program specifies the job number, its current 
queue number (on link transfers), and the address of a transfer table. The transfer table 
specifies how the job should be requeued. A transfer table consists of two words, in the 
following format: 

+------------------+------------------+ 
I place I function I 
+------------------+------------------+ 
I quantum I destination I 
+------------------+------------------+ 
place is negative (lBO) for a transfer to the end of a queue and zero for a transfer to the 
beginning of a queue. TOPS-10 does not permit requeuing to the beginning of a queue (RBQ 
stopcode). 

function has one of two values, QFIX or QLNKZ, corresponding to the manner in which the 
destination queue is to be determined. These are actually labels for the entry points of the 
routines within QXFER that determine the destination queue. However, they can be thought 
of as codes specifying the type of transfer. 

On fixed destination transfers, quantum and destination are the actual values of the new 
quantum run time and destination queue number. A negative value of quantum indicates 
that the quantum run time is not to be changed. A positive value of quantum provides the 
address of a word containing a new Quantum Run Time (QRT) value. destination is always 
negative. It is used as an index to JBTCQ. 

On link and job size transfers, quantum and destination are addresses of tables that are 
used to determine the destination queue and quantum run time. 

The actions taken by the queue transfer routine on a fixed destination transfer are listed 
below: 

• The calling routine sets up the job number in AC J and the address of a transfer table 
in AC U, and does a PUSHJ to QXFER. 

• At QXFER, AC P4 is loaded from the second word of the transfer table. Then, there is a 
jump to the address in the right half of the first word. On a fixed destination transfer, 
the jump is to QFIX. 
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• At QFIX, if the job is being requeued to a run queue and successfully requested a 
High Priority Queue (HPQ), the priority level is obtained from table JBTRTD. The 
corresponding HPQ number and quantum. run time are obtained from tables QTTAB and 
QQSTAB. 

• The monitor checks to see if the job is currently in PQ2. If so, it is deleted from the core 
and no-core subqueues and removed from the just swapped-in list (JBTJIL). 

• At QFIXB, the monitor checks to see if the job is in PQ2. If not, the job is removed from 
the output scan list (JBTOLS). If the job is in PQ2, a check is made to see if it is going 
back into PQ2. If not, it is removed from the output scan list. 

• If the job is going into PQ1, the in-core protect time is reset. If the job is going into PQ2 
and if its in-core protect time has expired, the job is placed on the output scan list and, 
based on job class, is entered into a parallel sub queue. If the in-core protect time has 
not expired, the job is cycled to the end of the just swapped-in list. 

• The job is removed from its current queue. This is done by giving its "following job" entry 
to its preceding job, and its "preceding job" entry to its following job. A sample section 
of the current job requeue table is shown in Figure 6-1. Note that this procedure works 
correctly when the job is first or last in its queue, or is the only job in its queue. 

Figure 6-1: Deletion of Job 4 from Its Queue 

Last Job First Job 

+------------------+------------------+ 
JBTCQ -4 I I I 

+------------------+------------------+ 
-3 I I I 

+------------------+------------------+ 
-2 I 7 I 2 I 

+------------------+------------------+ 
-1 I I I 

+------------------+------------------+ 
o I I I 

+------------------+------------------+ 
1 I I I 

+------------------+------------------+ 
2 I -2 I 4 I 

+------------------+------------------+ 
3 I I I 

+------------------+------------------+ 
4 I 2 I 7 I 

+------------------+------------------+ 
5 I I I 

+------------------+------------------+ 
6 I I I 

+------------------+------------------+ 
7 I 4 I -2 I 

+------------------+------------------+ 
Previous Job Next Job 

• The job is inserted into the destination queue. The job could be inserted following either 
the first link (the queue header) or the last link, depending on the value of the PLACE 
entry in the transfer table. In fact, the transfer is always to the back of the queue. 
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AC J points to the entry that is to be inserted. AC T2 is loaded from P4 and initially 
points to the queue header, which is correct if the insertion is to be at the beginning of 
the queue. If the insertion is to be at the end of the queue, AC T1 is backed up one entry, 
to point at the'last entry. This is done with the instruction: 

HLRE T1, JBTCQ(T2) ;Puts "last job" 
;Number from queue header into T1 

AC T1 is thus loaded with the index of the entry at the end of the queue, after which the 
insertion is made. This is the value in the RH of the entry to which AC T1 now points. 

The new linkages are set up with four easy instructions: 

HRLM J, JBTCQ (T2 ) 
HRRM J, JBTCQ (T1 ) 

; "End of Queue" entry 
;New "preceding" entry gets (J) as 
; following entry 

HRL T2, T1 
MOVEM T2,JBTCQ (J) 

;Put old "last job" number in LH of T2 
;Create new job entry: 
; previous job number" - queue number 

Figure 6-2: Insert Job 1 at End of Queue 1 

Last Job First Job 

+------------------+------------------+ 
JBTCQ -4 I I I 

+------------------+------------------+ 
-3 I I I 

+------------------+------------------+ 
-2 I I I 

+------------------+------------------+ 
-1 I 5 I 3 I 

+------------------+------------------+ 
o I I I 

+------------------+------------------+ 
1 I I I 

+------------------+------------------+ 
2 I I I 

+------------------+------------------+ 
3 I -1 I 5 I 

+------------------+------------------+ 
4 I I I 

+------------------+------------------+ 
5 I 3 I -1 I 

+------------------+------------------+ 
6 I I I 

+------------------+------------------+ 
7 I I I 

+------------------+------------------+ 
Previous Job Next Job 

• P4 initially contains -1, the index of the queue into which the insertion is to be made. 
This is copied into AC T2. 

• Since the insertion is to be at the end of the queue, AC T1 is loaded from the LH of 
the entry to which T2 (RH) points. The ACs are now set up (all values are relative to 
JBTCQ) as follows: 

• J points to the entry to be inserted ( +1) 
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• T1 points to the entry after which it will be inserted ( +5) 

• T2 points to the queue in which the entry will be inserted (-1) To insert the new 
job: 

• J is placed into the LH of JBTCQ (T2) and is placed into the RH of JBTCQ (T1). 

• T2 RH is placed into the RH of JBTCQ (J). 

• T1 RH is placed into the LH of JBTCQ (J). 

The final result of the queue transfer is shown in Figure 6-3. 

Figure 6-3: Final Result 

Last Job First Job 

+------------------+------------------+ 
JBTCQ -4 I I I 

+------------------+------------------+ 
-3 I I I 

+------------------+------------------+ 
-2 I I I 

+------------------+------------------+ 
-1 I 1 I 3 I 

+------------------+------------------+ 
o I I I 

+------------------+------------------+ 
1 I 5 I -1 I 

+------------------+------------------+ 
2 I I I 

+------------------+------------------+ 
3 I -1 I 5 I 

+------------------+------------------+ 
4 I I I 

+------------------+------------------+ 
5 I 3 I 1 I 

+------------------+------------------+ 
6 I I I 

+------------------+------------------+ 
7 I I I 

+------------------+------------------+ 
Previous Job Next Job 

• Mter the job is inserted into its new queue, if QUANT < 0, there is a jump to the routine 
exit. 

• Otherwise, the value pointed to by QUANT is inserted into the Process Data Block for 
Job J (the job's quantum run time is reset). 

The QFIX transfer is used for all queue transfers except for requeuing done as a result of 
quantum runtime expiration; in this case, the QLNKZ function is used. All requeuing is 
always done to the back of the destination queue. 

On the QLNKZ transfers, the destination queue and, possibly, quantum run time must be 
determined. This is done by a simple table lookup. The job's current queue number, from 
JBTST2, is used to index the table to which DESTINATION points. The destination queue 
number is picked up from the corresponding entry in the table. If QUANT is given is also 
a table address, and the new quantum run time is picked up from a parallel entry in that 
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table. Once the destination queue number and quantum run time are determined, QLNKZ 
continues through the same procedure executed for QFIX.. 

6.3 Mechanics of Requeuing 
Jobs are requeued according to events. Each time a job is to be requeued, a specific transfer 
table is used. Transfer tables are not set up or modified dynamically. Rather, for each event, 
the requeuing algorithm produces the address of a specific transfer table. This is done by 
means of several data structures and a number of checks for special cases. 

The most general mechanism for requeuing jobs uses the Wait State Code (WSC) in the job's 
JBTSTS entry. On the next clock tick, the scheduler is called. The scheduler picks up the 
job's WSC and uses it as a pointer into QBITS. QBITS contains a dispatch address as well as 
the transfer table address, if there is one. The dispatch routine is executed and, if necessary, 
calls routine QXFER to perform the actual queue transfer. The WSC indicates the event, 
and the QBITS entry specifies the response. QBITS is used in putting jobs into I/O wait and 
sharable resource wait, removing jobs from I/O wait, and in requeuing jobs into a run queue 
after they have been stopped. 

There are a number of special conditions that the scheduler checks for individually that call 
for specific transfer tables. For example, if the job's RUN bit is not set, the job is put into 
the stop queue, regardless of its WSC. If the job's command wait bit is set, it is put into 
the command wait queue. The use of the special bits allows the WSC to indicate a previous 
event. Since the WSC is unchanged, the job can be put back into its previous queue when 
returning from the stop queue or command wait queue (CTRUC followed by CONTINUE). 

Another bit used for this purpose is the JDC bit. The JDC bit is used to put the job into a 
queue to wait for a function to be performed by DAEMON. (DAEMON is a system program 
that runs as a user job and performs various functions for the monitor and other user jobs. 
It is, in effect, a non-resident portion of the monitor.) 

6.4 CPU Scheduling 
The scheduling of CPU time is based primarily on the order indicated by the scheduler scan 
table SSCAN. SSCAN specifies that the following in-core jobs be scanned in the order in 
which they are listed: 

1. jobs in HPQs 

2. jobs in PQl 

3. jobs in PQ2, by subclasses 

4. background batch jobs 

If no runable jobs are found, the null job is run. There are three additional factors influencing the 
normal selection of jobs. These are: 

• Quantum Run Time (QRT). Quantum run time is an amount of run time assigned to a 
job when it enters a run queue. It is used to limit the amount of time a job maintains the 
same position in the processor queue and therefore provides for a fairness consideration 
in CPU scheduling. 
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• In-Core Protect Time (IePl'). In-core protect time provides a mechanism to prevent the 
swapper from immediately swapping out ajob that was just swapped in. When the ICPT 
expires, the job is requeued to the back of PQ2. 

With QRT, ICPT ensures that a job gets its fair share of the CPU when it is in core. A 
job's ICPI' value is decremented if it is in the EWQ or SLPQ, or was scanned to run but 
rejected (for example, because it was waiting for a sharable resource). Upon expiration 
of ICPT, a job is requeued to the back of PQ2 (or HPQ). 

• The subclass quota is a percentage of a scheduling interval that is allocated to a subclass. 
During each scheduling interval, the scheduler considers the highest class. If no runable 
jobs are found in this class, the next class in the ordering is scanned. 

6.5 Queue Scanning 
The following sections describe queue scanning and queue transfers. Queue scanning and 
transfer are not essential parts of the scheduler philosophy, however, they illustrate the 
table-driven nature of the scheduler. An understanding of these sections will make it easier 
to understand the detailed flow charts contained within the supplement. 

6.5.1 Queue Scanning 

The routine QSCAN is used to scan through one or more of the job queues. To use QSCAN, 
the caller must supply a scan table. A scan table specifies which queues to scan and the 
direction in which each is to be scanned. 

A scan table consists of an arbitrary number of words, as shown in Figure 6-4. 

Figure 6-4: Queue Scan Table Entry 

+------------------+------------------+ 
I queue # I scan code I 
+------------------+------------------+ 
queue # is the negative queue number, and is always written as a symbol (for example, 
-PQ2). The scan code is the label of the routine that performs a specific scanning operation. 
The following are some of the meanings: 

Table 6-1: Scan Codes 

Code 

QFOR 

QFORI 

QBAK 

QBAKl 

SQFOR 

Function 

Scan the entire queue forward. 

Look at the first entry only. 

Scan the entire queue backward. 

Scan backward, but omit the first entry in the queue. 

Scan subqueues forward according to SSSCAN (or SSSCNl). 

A zero word terminates the table. 
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To use QSCAN, a routine puts the scan table address into accumulator U, and does a JSP to 
QSCAN. QSCAN gives a skip return, with the first job number in accumulator J. QSCAN 
also supplies an address to which the caller may return to continue scanning for another job 
number. Each time the caller returns to that address (with a JRST), QSCAN returns to the 
second word beyond the original call, supplying the next job number. QSCAN automatically 
steps from entry to entry in the scan table, and gives a non-skip return when the table is 
exhausted. 

QSCAN is used by the scheduler in choosing the job to run next. It is also used by the 
swapper in selecting jobs for swap in and out. 

6.5.2 Sharable Resources 

There are a number of sharable resource wait states. A sharable resource is some part of 
the system, either software or hardware, that can be used by only one job at a time but is 
shared among different jobs over relatively short periods of time. For example, a DECtape 
controller is a sharable resource. The code and data relevant to it must be shared by all jobs 
doing I/O on the units it controls. Only one of these jobs may have I/O in progress at any 
given time. A line printer is not a sharable resource. It is given to a single job and that job 
has its exclusive use until the job chooses to give it up. 

Access to sharable resources is controlled by table REQTAB. REQTAB has one entry for 
each sharable resource. Each entry is referenced by its own label, which is of the form 
xxREQ, where xx represents a two letter mnemonic for the resource. Each REQTAB entry 
is initialized to -1. Code that uses a sharable resource begins with an instruction that 
increments and tests the appropriate entry. If the value is greater than zero, the job for 
which the code was being executed must have its wait state changed to the short-term 
state associated with the sharable resource. The job becomes unblocked when it is being 
considered to run by the scheduler and the resource is available. For some resources, such 
as executive virtual memory, the REQTAB entry is initialized to -n, where -n is the number 
of executive virtual memory slots. 

Another table, AVALTB, contains entries parallel to the REQTAB entries. The AVALTB 
entries are used as flags to the scheduler that the corresponding resources have become 
available while someone is waiting for them. The flag in AVALTB is set to a non-zero value 
at the end of the code that uses the sharable resource. It is set, however, only if there is a 
job waiting for the resource (that is, only if REQTAB is positive). 

Sharable resource management is accomplished by two routines in CLOCK1: SRWAIT for 
resource allocation, and SRFREE for resource deallocation. These routines are called from 
various modules within the monitor that use the resources. Specifically, a PUSHJ P, xxWAIT, 
where xx is the two-letter mnemonic for the resource, results in a subsequent PUSHJ P, 
SRWAIT. The code wi thin CLOCKl for resource allocation does the following: 

SRWAIT: (housekeeping) 

AOSG xx'REQ 

JRST SRAVAL 

(if necessary, 
(if necessary, 

return EVM) 

;Is resource available? 
; (actually addressed as REQTAB - K, 
; indexed by WSC) 
;Yes, go use it 
;No, block job 

start partial cycle via entry to WSCHD1) 
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SRAVAL: (housekeeping) iHave resource 
(return to calling module) 

The code within CLOCKl for resource deallocation does the following: 

SRFREE: SOSL xx'REQ 
SETOM xx'AVAL 
(return to calling module) 

iDecrement request count 
iMark as available, if needed 

Note 
REQTAB entries are incremented and tested with a single instruction. If the resource 
is given up at interrupt level, there is no need to worry about the interrupt occurring 
between incrementing and testing. 

In the case of magtape usage, a job is placed in the long-term event wait state and 
associated event wait queue if the magtape controller is not available. 

The basic purpose of the sharable resource mechanism is to interlock a section of code so 
that only one job at a time executes any part of it. Since rescheduling is not allowed when 
the clock ticks during a UUO, there is no need to worry that another job will start through 
a monitor routine before a previous job finishes it. The only case in which this is possible 
occurs when a job might go into I/O wait within a routine. 

Requirements for sharable resources may be nested. A job that owns one resource may 
have to queue for another. This may lead to a deadlock situation, that is, a situation where 
two jobs each wait for the resource owned by the other. Neither job can run, and neither 
can release the resource it owns. This problem is overcome by adherance to the following 
programming convention: any time there are nested requirements for a sharable resource, 
they must be nested in the same order. 
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Chapter 7 

The Swapper 

The swapper allow~TOPS-lO timesharing to run efficiently by moving jobs of variable size 
in and out of physical memory. The primary purpose of the swapper is to maintain an 
equitable collection of runable jobs in memory from which the scheduler chooses one to run. 
The process includes swap selection, disk 110, swapping area maintenance, high segment 
management and paging requests. 

7.1 Introduction 
Swapping allows the timesharing system to present the appearance of having more physical 
memory than it actually has. Assuming the presence of more jobs than can fit in memory, 
the core images of some subset of user jobs are written to disk and read back into memory 
as required. Ideally, no user can tell if his job is swapped in or out. Whether this artifice 
succeeds depends on many factors. These include: the number of users, their interaction rate, 
their memory requirements, the speed of the swapping device, and the amount of physical 
memory. This chapter presents the overall philosophy of swapping on the DECsystem-10 
and the procedures by which this philosophy is implemented. The procedures are general 
enough to allow a great deal of flexibility in policy. 

7.2 Swapping Philosophy 
Under light loading, all active jobs reside in physical memory. However, if the requirement 
for physical memory exceeds that which is available, a job may be swapped out when the 
program stops or requires a response from the user. Each time the user requests another 
function, there is a short delay while the core image is swapped in. Mter the core image is 
swapped in, the program runs without being swapped out again until another user response 
is needed. Since the time to swap in a job is normally very short compared to human 
response times, the user does not usually notice a delay. Under these conditions, swapping 
can be quite successful. 
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Under heavier loading, the system is unable to keep all active jobs in physical memory. 
In this mode of operation, swapping gives the system the appearance of a larger, but 
correspondingly slower, system. The swapping algorithm becomes much more complex, 
because it must account for the possibility of jobs in memory entering a deadlock over a 
resource owned by a job that is swapped out. System overhead may spiral due to the (remote) 
possibility of swapping a job many times for a single interaction. 

The effective size of physical memory is reduced because swapping an active job does not 
contribute to overall system efficiency. It is not available to run, and cannot have any liD 
in progress. Moreover, the physical memory it occupies is not available until the swapping 
transfer is complete. The total system throughput would probably be greatest if runable jobs 
were never swapped out. However, the total throughput consideration must be balanced 
against the value of dividing the system resources fairly among all the users. All things 
being equal, it is preferable that the system appears twice as slow to all users than four 
times as slow to half the users. (Although the other half probably wouldn't object.) 

In the way that swapping is implemented on the DECsystem-10, there is no direct distinction 
between the two modes of swapping discussed above. Swapping is based on the job queues, 
and the queue transfers are set up to give the desired swapping characteristics. There are 
three basic levels of priority, and normally, jobs at each level are given complete priority over 
jobs at the next level. Some exceptions are made to this policy in the interest of fairness. 
(Real time jobs are locked in core, exempt from swapping consideration). 

Highest priority is given to jobs which must be in core in order for a command to be processed. 
Users expect instantaneous response to commands, but are normally more tolerant of delay 
when a program must be run. Actually, the class of commands that require a job to be in 
core is so small that the effect of this top priority level on the overall swapping behavior of 
the system is probably insignificant. 

Next priority is given to the class of jobs that are, in some way, considered interactive. This 
class includes jobs doing 110, all jobs that own sharable resources or are waiting for them, 
and all jobs that have had a recent user response. It is assumed that these jobs are the ones 
that make the most use of system resources, or whose users are less tolerant of delay. Under 
normal operating conditions, the jobs in at least these two top levels are kept in core. 

The lowest priority for core memory is given to CPU-bound jobs. If a job is CPU-bound, it is 
doing a considerable amount of processing, and the user does not expect immediate response. 
These jobs do not contribute to the total system liD throughput. Because the jobs are not 
using system resources other than the CPU and core, there is no advantage to having many 
of these jobs in core at a time. 

The actual implementation is somewhat more complicated than that discussed in the 
preceding paragraphs. It is important, however, to understand the overall philosophy on 
which the implementation is based. 

7-2 The Swapper 



7.3 Mechanics of Swapping 
Two scan tables, 18CAN and OS CAN, specify the relative priorities for jobs being in core as 
a function of the queue positions. The entries in these tables are fixed in a specific monitor, 
although they may be easily changed to implement a change in swapping policy. In effect, 
ISCAN is a listing of the out-of-core chain of queues needing swap-in. 08CAN is a listing 
of the in-core chain of queues containing jobs that might be swapped out. In addition to 
ISCAN and OSCAN, all the tables that control the requeuing of jobs are also important to 
the swapping process. The contents of ISCAN and OSCAN, as well as the requeuing tables, 
can be obtained from module COMMON. 

The STOP Queue and SLEEP Queue are the first to be swapped out and are not considered 
for swapping in. After HPQs, the Command Wait Queue has top priority for being swapped 
in, followed by PQ1. In general, queues that are in ISCAN are listed in the opposite order 
to OSCAN. All actual queues (short-term wait queues have no members) are in OSCAN. 
ISCAN specifies only those jobs that are in Command Wait or Processor queues. 

After a job is swapped in, there is an interval during which it is protected from being 
swapped out. This interval, called the In-Core Protect Time (I CPr), specifies an amount of 
time before the job becomes eligible to be swapped out. That time, in jiffies, is contained 
in the Process Data Block for each job. When a job is swapped in, the ICPT is computed 
according to the basic formula (the actual formula includes some scaling factors to account 
for the swapping units actually being used): 

PROTO + (PROT * Size in K) 

where P ROTa and PROT are constants computed during system initialization according to 
the speed of the swapping device. The purpose of these values is to make the ICPT interval 
dependent on the time required to swap the job. Typical values are 3 seconds for PROTO and 
o seconds PROT. This results in a default ICPT of 3 seconds applied to all jobs, regardless 
of size. PROT may be modified using the SCDSET program to make the ICPT a function of 
size. 
Several other items are important to the swapper. The tables JBTIMO and JBTIMI specify 
the size of each swapped out core image and the memory requirement for swap in; these may 
not be the same. The table PAGTAB specifies which pages of core are free and which are in 
use. CORTAL tells how many pages are available either as free pages or pages occupied by 
dormant or idle segments. t BIGHOL tells the number of pages available in core. The table 
JBTADR gives the location of the Job Data Area and the size for each segment that has any 
physical core assignment. A job's JBTADR entry is still set up while it is being swapped in 
either direction. The physical core assignment must be made before beginning to swap a job 
in and cannot be canceled until the job is completely swapped out. 

t An idle segment is a sharable high segment whose low segments are all swapped out. A dormant segment is a sharable 
high segment which no job is using. 
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7.4 The Swapper Cycle 
The swapper operates on an overall cycle that is repeated as often as possible. This 
cycle typically requires many jiffies to complete. Hence, the swapper must operate as an 
asynchronous process under the control of the monitor, rather than as a simple closed 
subroutine. Every clock tick, if there is memory contention, the scheduler dispatches to the 
swapper's single entry point in SCHEDl. The swapper proceeds through as much of its 
cycle as it can, and then returns to the scheduler. A number of flags are set up to allow the 
swapper to "remember" actions completed on earlier calls. Whenever the swapper reaches a 
point at which it cannot immediately continue, it exits, and attempts to continue on the next 
clock tick. Although the entire swapper cycle normally requires many clock ticks, it is best, 
initially, to look at the cycle as a continuous process. 

A flow chart of the entire swapper cycle appears in the supplement. The first step of the 
cycle is to choose a job to swap in. The job number is stored in FIT, and remembered there. 
All the following actions are directed toward the goal of getting this job into the core. If 
there is no job to swap in, the swapper checks for jobs that must be swapped out in order to 
expand (JXPN bit set). If there is such a job, it is swapped out. 

Once a job is chosen for swap in, all further actions have the objective of creating enough 
room for the size specified by its in-core image size in JBTIMI. The first step is to ensure 
that the total amount of available core (CORTAL) exceeds the amount required. If CORTAL 
is less than the amount required, another job must be forcibly swapped out. If CORTAL 
is greater than or equal to the amount of core required, the required assignment is made 
without forcing any other job to be swapped out. 

If there are enough free pages, core is assigned. If not, dormant and idle segments are 
deleted until the necessary pages are obtained. The core assignment routine is called to 
assign physical core to the job chosen to be swapped in. Then an I/O request for disk 
service is set up to read in the core image. When the transfer is complete, the necessary 
housekeeping is performed and the swapper cycle begins again. 

7.5 Choosing the Job to Swap Out 
The relative priorities of jobs for being swapped out are specified by the scan table OSCAN. 
When a job must be swapped out, the swapper scans the in-core queues, according to OSCAN, 
looking for jobs eligible to be swapped. A job is rejected for any of the following reasons: its 
in-core protect time has not expired, it is locked in core, or it has 110 in progress. A tally 
of the amount of core that has been checked is kept. When this tally reaches the amount 
needed, scanning stops and the first available job found is chosen for as the one to swap. 
Note that if jobs were swapped strictly according to priority, all of the jobs examined would 
have to be swapped. 

For example, if 20 pages are needed and the jobs in the order specified by OSCAN are set up 
as follows: 
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Job # Memory Size 

14 4P 

20 Locked in core 

6 12P 

12 SP 

10 24P 

Scanning would stop at Job 12, and Job 14 would be chosen to be swapped out. If the queues 
were unchanged after Job 14 was swapped, Job 6 would be chosen on the next scan. 

7.6 Swapping 1/0 
All 110 for the swapper is performed by the Disk Service Routine according to requests set 
up by the swapper. The following discussion of Swapping 110 assumes that the Disk Service 
Routine is a "black box routine" that writes specified physical disk blocks from specified core 
areas. The swapper sets up and submits a request for transfers. The Disk Interrupt routine 
clears a flag, SQREQ, each time a transfer is completed. 

Swapping space is reserved on a per unit basis when the disk is initialized. This space 
is marked in use as far as the rest of the system is concerned. The swap per maintains a 
Storage Allocation Table (SAT) for each unit on which it has space. It uses one bit in a 
SAT to represent 1K or 1024 words of disk space. A SAT bit is set when a block is used for 
swapping out a job and cleared when the job is swapped in. 

Swapping space may be reserved on any or all disk-like units or disk packs. Since the actual 
110 is handled by the disk service, the swapper logic is independent of the type of unit being 
used for swapping. Each unit having swapping space is assigned a class for swapping at the 
time the space is reserved. The class indicates the priority of the device for swapping and 
(normally) assigns the fastest device to the lowest numbered class. When the swap per needs 
to find space to write out a segment, it starts with the lowest class: 

1. The swapper scans through its SAT for each unit in the lowest class, and if it finds a 
large enough hole, it uses the corresponding area for the transfer. 

2. If it cannot find a large enough single hole, it searches for several holes that, together, 
provide the required amount of space. 

3. If it finds enough space, it writes the core image as several fragments within that class. 
If there is not enough space altogether within a class, it tries the next class. 

4. If no single class has enough space, it fragments the image, across classes. 

The purpose of multiple classes is to distinguish between devices of widely varying speed (for 
example, factors of 10). Better performance is achieved, under 7.02 and 7.03, with a single 
class of swapping units judiciously placed on the available channels. 

A sharable segment is normally left on the swapping device if there is a copy in core, even 
if the segment is dormant. This prevents having to write the same segment out to the 
swapping device at a later time. If there is not enough free swapping space, one of the 
unnecessary segments is deleted from disk and rewriten later. 
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7.7 Examples 
The following examples show how jobs are swapped under some highly simplified loading 
conditions. Specific values are used for CPU time requirements, but average or "expected" 
values are used for delays. The average delay time more closely approximates the effect of 
the delay when actual CPU times vary randomly about the specified average value. The 
additional complications that can result from the introduction of user I/O, competition for 
sharable resources, and any transient conditions, are not considered, even though it is quite 
possible that in actual operation these might have significant, or even dominant, effects. 

7.7.1 Small, Interactive Jobs 

A small, single disk pack system runs 20 jobs. The available user core is 200 pages. Each job 
runs in 20 pages and requires an average of one-tenth second (lOOms) of CPU time for each 
interaction. Each job does only a small amount of I/O to disk and TTY. Hence, swapping and 
CPU time are the primary considerations in computing expected performance. 

Normally, the swapper chooses a job to swap in on the next clock tick after a user inquiry. 
Thus, there is an average 8ms (1/2 clock tick) delay between the user action and the 
swapper's initial actions. Given the following assumptions: 

1. The core is filled with jobs that are available for swap out (inactive jobs that have no I/O 
in progress), and 

2. The swap per can immediately submit its output request to the Disk Service, 

A job is swapped out to make room for the next job swapped in. Given the following 
assumptions: 

1. The disk access arms are randomly positioned, and 

2. The swapping space is in the center of the pack, 

The seek takes an average of 28ms (407 cylinders). 

The transfer is initiated immediately upon completion of the seek. There is an 8ms (112 
rotation) average latency, or rotational delay time, followed by a 56ms transfer (5.6 micro
seconds per word $*$ 10K [20 pages]). The swapper is not called again until the next clock 
tick, giving an average 8ms delay. On the next call, the swapper starts the input transfer, 
and it is assumed that this transfer takes 28ms seek time. 

There is another 8ms latency, 56ms transfer, and 8ms delay until housekeeping for swapping 
in the active job. The job then runs for 6 consecutive clock cycles (lOOms). Under ideal 
conditions (user requests are regularly spaced, with one arriving every 1/2 second) each user 
job is completed within 308ms. This appears to be an instantaneous response. There is then 
a 192ms (500-308) period while the system is idle and waiting for the next user request. 

If the same sequence of actions is assumed for swapping each job, and if all 20 users 
requested action at the same time, the last request finished requires 5.7 seconds to complete. 

Operating as described above, the system repeats a cycle that takes an average of 500ms to 
complete. Of this 500ms, lOOms of CPU time is taken for the user job. Of the Null job time, 
208ms is counted as lost time and 192ms as idle time. Hence, the system shows 20% user 
program CPU, plus 42% lost, plus 38% idle. 
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How many such jobs can the system support? At saturation, the running of one job is 
completely overlapped by the swapping of another. Assuming the same sequence of actions 
for swapping, a maximum of one inquiry every 209ms, or 48 users, is possible. (Note, 
however, that any disk 110 done by user programs increases swapping time, and decreases 
the maximum request rate accordingly.) 

7.7.2 Large, CPU Bound Jobs 
Ten users start compute bound jobs that require 80 pages each and 18 seconds CPU time. 
The system has 100 pages of available user core. Hence, one job is in core while the other 
nine are swapped out, so the jobs are processed and swapped on a round robin basis. It is 
assumed that all jobs circulate entirely within PQ2 and the ICPT for each job is greater than 
6 seconds. 

The scheduler chooses the job in core to run. Since this job is the only job in core, it is the 
only runable job. Hence, it runs in the PQ2 quantum run time, 6 jiffies, and is requeued to 
the back of PQ2. During this time the swapper picked a swapped out PQ2 job to swap in but 
found no eligible jobs, (jobs with expired ICPT), to swap out. Since the ICPT is assured to be 
greater than 6 seconds, this NOFIT condition persists until the swap per becomes frustrated. 
During this time the job in core is run continuously, regardless of position within PQ2. Mer 
the Frustration timer has gone off, the job in core is eligible for swap out. Then, the original 
job chosen for swap in is brought in. 

In this example, an RP06 disk is used for swapping. There is an average 27ms seek, 9ms 
latency and 224ms transfer time. There is an average 8ms delay until the next clock tick. 
The save sequence occurs on the input transfer. Hence, changing jobs requires a total of 
536ms for swapping, both out and in. 

The system reports a cycle in which a job gets 6 seconds CPU time and then 536ms are spent 
swapping. Each job runs for one su~h cycle then is swapped out for nine such cycles. 

Therefore, each job runs just once, accumulating 6 seconds CPU time every 65.36 seconds 
elapsed time. Three such passes are required to accumulate 18 seconds CPU time for each 
job, with all jobs completing after 196.08 seconds. During this time the system has lost .536 
seconds out of 6.536 seconds elapsed, or about 8.2% lost time. 

7.8 Swapper Data Base 
SPRCNT 
Contains the number of jobs that have been selected for swapping. 

SWPCNT 
Contains the number of jobs that finished data transmission and are waiting for final cleanup 
at the scheduler level. 

SQREQ 
Contains the number of data transmissions awaiting the swap per. This is the number of 
fragments plus the number of page 110 requests. 
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PAGTAB 

A table containing one word per page of physical memory. Whereas it once had many uses, it 
is now used only as a memory management tool. It contains a linked list of pages for every 
segment currently in core, not necessarily in the same order as they are in the segment 
address space (if the job has "gone virtual" and has only a working-set in core). It also 
contains a linked list of pages not in use. 

MEMTAB 

Also one word per page of core. It is used during swap or page requests in conjunction with 
the UPT to keep track of the location of pages end up in the swapping area and which page 
to transmit next. On the KL10, MEMTAB is in Section 3. The first three bits of a MEMTAB 
entry are flags: 

Bit Symbol Meaning 

o 
1 

MT.LEF 

MT.GPB 

Last entry in fragment chain 

Return swapping space when I/O done in IP queue 

2 MT.lPC IPCF page"address of packet + .JCPFI in :MEMTAB 

The format of bits 3 through 35 of the MEMTAB table entries differs for the status of the 
page. For a page that is being transmitted to or from disk, the entry contains the disk 
address in bits 15-35. 

The MEMTAB entry for a page in a paging queue contains the job number in Bits 5-14 
(MT.JOB). For an IPCF page, when the page is in the IP queue, the high-order 3 bits of 
MT.JOB contain the IPCF header address (remaining 15 bits of address of IPCF header are 
stored in PT2TAB). 

For a page in one of the IN paging queues, the remainder of the word is: 
Bit Symbol Meaning 

24-35 

22-26 

18-35 

JBTSWP 

MT.VPN 

MT.VSN 

MT.lPA 

Section-relative virtual page number (page is a job page) 

Section number 

Address of IPCF header block for this IPCF page 

Contains information when swapping segments. Each word in the JBTSWP table is 
formatted depending on the setting of Bit O. If Bit 0 is set, a core address is in bits 18-35. If 
Bit 15 is clear, bits 15-17 contain the index to the unit number, and bits 22-35 contain the 
first logical K of swapping space allocated for the segment on the unit. 

Bit Symbol Meaning 

o 
15-35 

15-17 

22-35 

FRGSEG 

JBYSUN 

JBYLKN 

1 if low or high segment is fragmented on the swapping device 

Disk address, if Bit 0 is off. Core address in Bits 18-35 of 
fragment table if Bit 0 is set. 

Index to unit number in SWPTAB 

First logical K on the unit 

Mter allocation, and before the swap is queued, if the segment is a low segment, LH of 
JBTSWP becomes the swapping pointer for the UPT. 
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Fragment table entries are put into four-word chunks of monitor free core and have the same 
format as JBTSWP entries, terminated by a zero word. If there is not enough room in the 
current four word entry, there is a fragment pointer (bit 0 on) to the next four word block. 
The bits in the fragment entry are: 

Bit Meaning 

0-17 Number of pages in fragment 

20-22 U nit index into SWPI'AB 

23-35 Logical page within unit where fragment starts 

There are 3 parallel tables used by the swapper to keep track of the requests currently under 
its control (swapping and paging). They are SWPLST, SW2LST, and SW3LST, and each is 
SLECNT long. Giving more than SLECNT jobs to the swapper results in a STOPCD. 

JBTIMI 

Contains the number of pages to allocate for non-zero section page maps when swapping the 
job in, number of pages which are currently allocated to non-zero section page maps, and the 
number of physical pages in the user portions of the job. 

JBTIMO 

Contains the number of physical pages in a swapped-out job (that is, the number of pages on 
disk). 

SWPLST 

Keeps track of the progress of the swapping or paging 110 for the job it is assigned to. 
SWPLST is used in conjunction with MEMTAB. Its format is: 

Bit Symbol Meaning 

0 

1 

2 

3 

4 

5 

6 

11 

12 

13 

SL.FRG 

SL.DIO 

SL.SIO 

SL.IOP 

SL.IOD 

SL.IPC 

SL.DFM 

SL.CHK 

SL.ERR 

SL.CHN 

Fragmented entry 

Direction of I/O (1 = out) 

Swapping/paging (1 = swapping) 

I/O in progress 

I/O done (this swap list entry is done) 

On if an IPCF page 

Don't find me (used to keep FNDSLE from finding this entry) 

Swapping checksum error 

I/O error 

Channel error 

For a contiguous entry, bits 14-26 contain the starting pysical page number (used as an index 
into MEMTAB), and bits 27-35 contain the number of pages. 

For a fragmented entry, bits 18-35 contain the address of the fragment table. 
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SW2LST 
Saves the original SWPLST entry during the swap because it is needed for cleanup, but the 
SWPLST entry is modified while I/O is in progress. 

SW3LST 

Contains the job number, if a low segment is being swapped; contains the job number, high 
segment number, if a high segment is being swapped. 

7.9 Swapping High Segments 
High segments are never chosen directly to be swapped in or out; job numbers (low segment 
numbers) only are considered when looking for jobs to swap in or out. High segments are 
swapped as appropriate for the low segments with which they are associated. 

A high segment is swapped out along with the last low segment using it. This means that 
non-sharable high segments are always swapped at the same time as their low segments. 
A sharable high segment is never swapped if there are any jobs still in core using it. Also, 
sharable high segments are normally written out to the swapping device only once. If there 
is a copy of a write protected high segment on the swapping device, we do not have to write 
it again. Hence, commonly used sharable high segments are on the swapping device all day. 
If the last job using a given high segment is swapped out, the high segment becomes idle. As 
an idle segment, it is subject to being deleted from core memory if the the space it occupies 
is needed. However, a copy is kept on the swapping device before deleting the core image. A 
high segment is swapped in whenever ajob using it is swapped in and there is not a copy of 
it in core. 

Essentially, the same code is used to swap high segments as is used to swap low segments. 
The routines that swap jobs in and out look at the numbers in FIT and FORCE as segment 
numbers and swap the specified segment in or out. A job is always choosen to swap in. The 
low segments are swapped in first. If the job has a high segment to be swapped in also, the 
high segment number is put into FIT and the routine is repeated. 

When ajob is choosen to swap out and, if it has a high segment to write out, the low segment 
number is stored and the high segment is swapped out first. Mter the high segment has 
been swapped out, its corresponding low segment is put into FORCE and swapped out. The 
reason for swapping the high segment first is because a segment cannot be written out until 
all its I/O stops. A sharable high segment cannot have I/O in progress, and therefore can 
always be written out immediately. Hence, the high segment can be swapped out while 
waiting for for I/O to stop in the low segment. Funny-space pages are swapped in or out 
with the low segment. 

7.10 Complications and High Segments 
A number of complications can arise in swapping jobs with sharable high segments. Several 
cases are identified and discussed below. 

1. Low Segment in Core, High Segment Swapped Out 
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This does not usually happen beeause the high segment is not normally removed from 
core until the last job is swapped out; it is then brought back along with the first low 
segment that uses it. However, it is possible for ajob to do a RUN for a swapped out high 
segment. This could occur while the low segment is set up in core and the high segment 
is swapped out. In this case, the low segment is marked as swapped even though it is in 
core. When the low segment is· choosen to swap in, and seen to be already in core, and 
proceed to swap in the high segment. This problem can also occur on a GETSEG UUO. 

2. Zero Length Core Images. 

A segment can exist in that it has a number and is recognized as a job or high segment 
but have no core allocated. This is quite common when a job or high segment initially 
expands from zero to a non-zero size. If the core management routine cannot make the 
requested assignment in core, it marks the job to be swapped out and sets the in core 
image size to the size requested. The swapper eventually chooses the job to swap out. 
Upon finding the the segment to be swapped out is of zero length, it bypasses the output 
process and simply marks the segment as swapped out. This gives a zero length segment 
on the swapping device. When the job is chosen to be swapped in, the swapper finds 
enough free pages of the size specified by the in core image size and assigns it to the 
segment being swapped in. The assignment routine sets the entire area to zeros. The 
swapper's input routine detects that the swapped out image size is zero and bypasses 
the process of reading in the core image. The segment is then marked as swapped in 
and is available for use. 

3. Idle Segment Not on Swapping device 

This does not normally occur because the high segment is written on the swapping 
device along with the last low segment using it. However, it is possible that the last low 
segment will not be swapped out. The could happen if the user runs another program or 
if the program does a GETSEG UUO , detaching from the high segment and leaving it 
without attached low segments in core. When an idle segment is chosen to be deleted, it 
is checked for this condition and, if necessary, the segment is foreably written out before 
deleting the core image. 
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Chapter 8 

UUO Processing 

UUOCON is the monitor module that executes Unimplemented User Operations (UUOs) for 
the user. It performs three functions: UUO pre-processing, dispatch to the correct service 
routine, and exit. This chapter explains how each operation functions and how to add new 
UUOs. 

In order to introduce the topic of crash analysis, this chapter explains how illegal UUOs are 
handled. 

8.1 Description 
The function of UUOCON is to service those unimplemented or illegal operation codes that 
are trapped by the processor microcode to locations 424 (.USMUO), 425 (.USMUP), and 
426 (.USMUE) of the current job's UPT. These are opcodes 0008 through 0778 and, in user 
mode, the device I/O instructions (7xx) outside the range of 7408 through 7748 (reserved 
for customers), the HALT instruction (JRST 4,), and the JEN instruction (JRST 10,). Any 
unassigned operation code causes the microcode to trap. 

For the purpose of this discussion the operations of UUOCON can be divided into three 
sections: 

1. Operator-independent pre-processing and dispatch 

2. Operator service (operator-dependent algorithms) 

3. Exit routines 

8.2 Operator pre-processing and dispatch 
Pre-processing includes the following: 

• Switching to the exec AC block (block 0). 

• Setting up a push down list in the job's UPT (for use by the monitor during UUO 
execution). 

• Saving the return PC on the stack. 

UUO Processing 8-1 



• Loading accumulators with information to be used by the operator service routines. 

• Dispatching to the proper service routine. 

8.2.1 Special registers 

An important pre-processing function is to place information about the UUO-issuing job into 
certain accumulators and index registers before dispatching. The tabler below lists these 
registers and their contents. 

Registers Contents 

P A pushdown pointer to a list in the User's Process Table 1338 words long. One of the first 
items placed in this list (JOBPDO) is the user's return; that is, a copy of the PC word in 
location 425 of the UPT (.USMUP). 

R A copy of the contents of JBTADR: job size"first page of user virtual address space. 
The first page of the user's virtual address space, which contains the Job Data Area, is 
accessed through executive virtual page 7738. Unless a job is locked in core, R contains 
(as does JBTADR) the job size in the LH and 7730008 in the RH. 

M A copy of the programmed operator so that operator service can refer to the effective 
address (E) indirectly through AC M. 

Pl A copy of the AC field of M. Pl could hold the number of a user I/O channel, as in the 
case of input and output operators. 

Ft A copy of the USRJDA (protected .JDAT) entry for this software channel. This register 
contains 0 if the channel is unassigned. If the channel is in use, the left half of this word 
had status bits indicating what UUOs have been performed for the device; the right half 
contains the address of the Device Data Block (DDB). 

st A copy of the DEVIOS status word for the device on this channel. 

T4 t A copy of the DEVSER word for the device on this channel. The left half of the word 
contains the address of the next DDB in a chain of all such blocks; the right half contains 
the address of the device dispatch table. Each type of device has a unique device dispatch 
table providing pointers to the UUO-level code for various I/O functions on that type of 
device. 

W Contains the address of the job's Process Data Block (PDB). 

tThese registers are pertinent only to Input/Output UUOs, and are loaded when an AC field (PI) corresponds to an 
assigned I/O channel. 

8.2.2 Functional description 

The following table lists pertinent routines and contained in the operator-independent 
pre-processing and dispatch section of UUOCON: 
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Label 

MUUO 
(COM
MON) 

UUOSY1 

DISPO 

NO CHAN 

DISP1 

Function 

After switching to the EXEC AC block from user mode, a flag bit of the trapped PC word 
is tested to detect whether the call is from the monitor (as in a GET command) or from 
the user. If from the monitor (that is, the processor had been in executive mode), certain 
ACs have been set up and a portion of the UUOCON coding can be skipped; control goes 
to UUOSY1. If the call was from user mode, the contents of R, J, and P are established. 
If the job doing the UUO is the null job and the UUO is a WAKE UUO, the Scheduler is 
called. This occurs only on multi-processor systems when one processor stops running a 
runable job while another processor is running the null job. This event forces the CPU 
running the null job to stop and select the runable job to run. 

This routine in UUOCON loads register M with the UUO itself and J with the job 
number. If the UUO has an opcode of 0, control is transferred to UUOERR in ERRCON. 
The return PC word is taken from offsets 424, 425, and 426 in the UPT and placed on the 
stack to ensure that it is not overwritten in the event a UUO is executed by the monitor 
itself. The ope ode is checked for a value greater than 100 (illegal at this point). If the 
value is legal, accumulator P1 is set up. If there is a device on this channel, F, S, and 
T4 are set up. If no device has been assigned to this channel coincident with this UUO's 
AC address, the routine NOCHAN is entered. Otherwise, if this UUO is indeed an 110 
operator of opcode 72 or greater (long dispatch 110 UUO), then routine DISP1 is entered. 
DISPO is entered directly for non-IIO UUOs or 110 UUOs between codes 55 and 71 if the 
channel is found to be assigned. 

This code obtains an address from the half-word dispatch table using the opcode as an 
index. Prior to dispatch, routine UUOCHK in module VMSER is called to verify that 
the UUO arguments are in core; if not, control is transferred to the PFH, which pages in 
the page or pages containing the UUO arguments. This approach is taken to prevent a 
page fault from occurring as a result of a memory reference made by the monitor. If the 
UUO is from user mode, the service routine is dispatched to by a PUSHJ, which puts the 
address of the user exit routine on the list as it jumps. If the UUO is from the monitor, 
then the desired address is already on the list and is left undisturbed when dispatching 
to the service routine. 

This routine calls DISPO if the UUO is from the monitor or if it was from the user and 
is not an 110 operator. If the UUO is a CLOSE or RELEASE operator, the successful 
return exit is called. Otherwise, the routine IOIERR is entered to type the message "110 
to Unassigned channel ... " and stop the job. 

This routine fakes a successful return to the user if the UUO was a long dispatch UUO 
and the device service routine does not have a long dispatch table. (This is an important 
concept in making user programs device independent; for example, it enables a LOOKUP 
to a physical paper tape reader tape to be successful.) If the device service routine is 
capable of performing long UUOs, the dispatch routine DISPO is called. 

8.3 Operator service 
Operator service routines perform the algorithm designed for the particular UUO, allowing 
the user to: 

• Receive information about the system 

• Alter the operation of the system concerning his job 
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• Communicate with the input/output devices 

A few specific examples are included in this chapter module to demonstrate the information 
flow between the three sections of UUOCON and the user's job. Input/output UUOs are 
described in the chapter on Input/Output Service, Chapter 9 

Communication between the user's program and the monitor takes place in the following 
manner: Information is passed to the monitor through the user AC block or through 
argument lists somewhere in the user's address space. These lists, as well as the actual 
arguments themselves, may be in a page of address space that is in core or paged out. 

The primary method of referencing UUO arguments, given a user virtual address, is by the 
use of the Previous Context Execute instruction (PXCT). However, before making memory 
references to a user virtual address, two conditions must be verified: first, that the address 
is a valid virtual address for that user's address space and second, that the page containing 
that address is in core. There are also some locations in the Job Data Area that need to be 
protected, and some references to user ACs that must be prevented. 

There are three address checking routines in UUOCON which are called from many UUO 
service routines: 

Label Function 

UADCKI Takes successful return if the address being checked is an AC, otherwise falls into 
UADRCK 

UADRCK Called only from UUO level. However, because the address being checked may be 
referenced from interrupt level sometime in the future, AC references are illegal. 
References to locations in the protected part of JOBDAT and to pages that do not exist 
are also rejected. If the reference is to a paged out page, the job's page fault handler is 
invoked to get the page in core before proceeding. If the reference is to the high segment, 
the error return is taken. If an illegal address is encountered in either UADCKI or 
UADRCK, the job is stopped and the message "Address check ... » is typed on the user's 
terminal. 

IADRCK This routine is called from interrupt level primarily for I/O buffer address verification. 
References to ACs, the protected part of JOBDAT, non-existent pages, and pages not in 
core are all illegal. . 

Once the user virtual address has been verified, the monitor makes the memory reference 
through the use of the PXCT instruction. In some instances the PXCT instruction appears 
in-line with the code that called the routine to verify the addresses. The EXCTUX, EXCTXU, 
and EXCTVU macros are used to generate the appropriate PXCT instruction. In other 
instances, calls are made to other routines to complete the memory reference. Consider the 
following four cases: 

1. Fetch the contents of the EA of the VUO into T1. 

The routine GETWDU in DATMAN is called. After some rechecking of the user virtual 
address, the code generated by the following macro is executed: 

EXCTUX <MOVE Tl,@M> 

The interpretation and translation of the contents of M as a user virtual address is done 
strictly by the hardware due to the execution of a PXCT instruction in executive mode. 
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2. Store the contents of Tl into the EA of the UUO. 

The routine PUTWDU in module DATMAN executes the code generated by the following 
macro: 

EXCTXU <MOVEM S, @M> 

where S had previously been loaded from Tl. 

3. Get an argument from the AC referenced by the UUO itself. 

Routine GETTAC in DATMAN extracts the AC number through use of the PUUOAC 
byte pointer and executes the GETWDU routine. 

4. Store the contents of Tl into the AC referenced by the UUO. 

Routine STOTAC in DATMAN uses routine PUTWDU to accomplish the desired results. 
There is an alternate entry point, STOTCI, that accomplishes the same result as STOTAC 
but takes a skip return. 

In returning to the user, it is possible to skip one or more instructions that followed the VUO 
or to give a skip or non-skip return to signify the success or failure of the operation. The 
UUOCON exit routine is designed to pass on to the user either a skip or non-skip return. If, 
at the level equal to that following the dispatch, a POPJ P, is used to exit, the user receives 
a non-skip return. If the sequence: 

AOS (P) 
POPJ P, 

is used, a skip return occurs. This can be used to bypass one instruction following the 
UUO (a system routine, CPOPJl performs this action if called by a JRST CPOPJl). If it is 
necessary to bump up the user's return by more than one, the routine must add the correct 
quantity to the correct entry on the pushdown list. (Recall that the pre-processor dispatch 
was not a PUSHJ if the original UUO was issued by the monitor). If, for example, two 
instuctions are to be skipped in return to a user-mode call, this sequence can be used: 

AOS -l(P) 
JRST CPOPJl 

To give the same return to a call from the monitor: 

AOS (P) 
JRST CPOPJl 

As an example, all operators that do not deal with some phase of input/output are invoked 
through the use of the CALLI UUO. For example: 

CALLI ac, 27 iOP-CODE = 47 

or 

RUNTIME ac, iEA = 27, serving as a code 
i or function within Op-code 47. 

The referenced AC is loaded (by the caller) with a job number before the CALLI, and the 
CALLI returns with total running time (in milliseconds) of that job in the same AC. 
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The pre-processor routine of UUOCON sets up the standard accumulators and, using the 
UUO opcode (CALLI - 047), dispatches through UUOTAB to UCALLI. UCALLI picks up the 
UUO effective address and uses it as an index into UCLJMP to find the dispatch address 
for the specific CALLI, RUNTIM. This argument is used to effect another dispatch to the 
routine JOBTIM:, which gets the appropriate run time (for the job specified in the caller's 
AC) and stores it in the user accumulator. 

When entered, the JOBTIM routine checks the contents of Tl for a valid job number and 
uses it as an argument to the FNDPDB routine to find the Process Data Block (PDB) for 
the job. The desired time is extracted from the PDB, converted to milliseconds, and placed 
into Tl. A JRST STOTAC causes this result to be stored in the user's accumulator, now 
addressed by M, and returns to the UUOCON exit routine. 

8.4 Exit routines 
The exit routines (normal or error) perform the setup necessary to return to the calling 
program or, in the case of errors, produce error messages and appropriately alter the status 
of the job. One important function of the normal exit routine is to check if the clock went 
off while the UUO was being executed before returning to the calling program. A software 
interlock between the Scheduler and UUOCON allows a UUO (which is, after all, one 
instruction) to run to completion before the current job is stopped. The normal UUO exit 
routine calls the Scheduler if the clock ticked during the UUO processing. 

8.4.1 Error exits 

Hard error exits, which do not allow a return to the user, occur when a UUO opcode is 
illegal or an address supplied by the user is illegal. An unimplemented UUO in the range 
408 through 778, or a UUO of 0 all stop the job with the error bit on (cannot continue) and 
print "Illegal UUO at ... ". An illegal opcode (such as a DATAl in user mode) causes the job 
to stop with the error bit set and the message "Illegal instruction at ... " to be printed. In 
user mode, the HALT instruction is treated like an illegal MUUO. It causes the job to stop 
(without actually executing the instruction), types ''HALT at ... ", but does not set the error 
bit. Thus, the CONTINUE command does function after a user mode HALT. (This can be 
useful for debugging.) 

When an illegal address is detected by a non-liD UUO, the UUOERR routine is called to 
print the message noted above ("Illegal UUO at ... ") and puts the job into an error stop. 
When a VUO is associated with a particular device, ADRERR may be called. ADRERR 
prints "Address check for device ... " and results in an error stop condition. 

8.4.2 Normal exits 
If the original UUO is issued by the monitor, the pre-processor dispatch is by a JRST rather 
than by a PUSHJ. The service routine's last POPJ bypasses the user exit routine and goes 
directly back to the monitor code following the call. 

If the VUO is from the user, the service routine's terminating POPJ returns to location 
USRXTl-l (no-skip return) or a JRST CPOPJl returns to USRXTl, which passes a skip 
return to the user by adding 1 to the address on the pushdown list. 
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Label Function 

USRXIT This routine checks to see if the user has typed a CTRUC or if the clock has ticked 
(software interlock), or if the system wants to stop this job (to swap it, for instance). 
If none of these conditions exists, the user's accumulators are restored and control 
is returned to his program. Otherwise, the Scheduler is called (USCHED) to take 
appropriate action. If the user's job continues in the future, control comes back here 
to restore the user's accumulators and continue the job. 

8.5 Adding a programmed operator 
There are two ways to add a new UUO function to the monitor. One is to use a previously 
unused opcode (42 through 46 for customers, 52 through 54 for DIGITAL). The other is to 
add an additional CALLI. Adding customer defined CALLIs with negative arguments is the 
preferred technique. 

8.5.1 Adding a new operator 

1. Edit the new code into the source file for UUOCON. Ifit is desired to make this routine 
a conditional feature, it may be enclosed in conditional assembly brackets preceded by a 
symbol like the feature test switches currently in use. 

2. Edit the CALLI UUO dispatch table macro definition, CNAMES, to include the name of 
the UUO, dispatch address, and legality bits. For instance, to add a new CALLI called 
UDUMP, change the dummy entry for CALLI -2 in the CNAMES definition. Conditional 
assembly can be used to set up the dispatch table entry if conditional assembly is used 
with the routine itself. 

For example, add this code to UUOCON: 

IFN FTDMPU,< 
UDUMP: (subroutine) 
> 

Then add the appropriate entry to the CNAMES macro: 

IFN FTDMPU, < 
X UDUMP, UDUMP 
> 
IFE FTDMPU,< 
x CPOPJ, CPOPJ## 
> 

In this example, the routine assembles, and the address of UDUMP is added to the 
dispatch table if the feature switch FTDMPU is non-zero. 

3. In preparation for assembling the new UUOCON, include the correct feature test switch 
in the F.MAC (softw~re features) source file by running MONGEN. 

4. Assemble F.MAC first, then UUOCON.MAC. 

5. Use MAKLIB to replace the old version of UUOCON with the new one in the library file 
to be used in building your system. (See the MAKLIB User's Guide for details). 
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6. Build a new monitor, using this new library file, according to the procedures in the 
Software Installation Guide. 

The new monitor call is available to all users at your site, as long as this version of the 
monitor is used. Of course, this new call can be patched into the monitor tables and code in 
executable form. That, however, presents complications leading to exhaustion of patching 
space and difficulty of documentation. 
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Chapter 9 

1/0 Introduction and UUO-Level Routines 

User programs perform 1/0 using a select group of UUOs such as OPEN, INIT, IN, 
OUT, CLOSE, and FILOP. Processing each UUO includes two phases: device-independent 
processing and device-dependent processing. This chapter discusses the first of these two 
phases, explaining what each UUO does at the device-independent level. 

9.1 Introduction 
Input-output handling by the DECsystem-10 monitor is based on the objectives of device 
independence and modularity of code. Any user program should be able to use any device 
capable of meeting its requirements. The user should not have to specify the device until run 
time and should be able to specify different devices for different runs as conditions require. 

Modularity of code plays an important role in meeting this objective. Code that is device 
independent is separated from various modules of device-specific routines. Modularity also 
makes it convenient to tailor a monitor for any specific configuration from a single set of 
source files. The systematic manner in which the 110 modules are organized makes it possible 
for an installation to add code to handle a special device without changing the existing code. 
The new code can take full advantage of all device-independent routines in the standard 
system. User programming for the special device can follow the same device-independent 
principles and protocols that apply to standard devices. 

This module discusses the following topics: 

• Hardware principles that apply to 1/0 processing. 

• Organization of the IIO-processing code. 

• Functions performed by various modules. 

• Device-independent functions performed within the VUO processor. 

• Device-service routines, which perform the device-dependent functions at UUO level 

• Macros that generate configuration-dependent code. 
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• Timing problems that must be considered by device-service routines and techniques for 
solving these problems. 

9.2 Hardware Principles 
All I/O transfers are done by DATAOIBLKO or DATAIlBLKI instructions. Each instruction 
addresses a specific device (or controller) by a device code in bits 3-10. Upon execution of the 
instruction, a single word is transferred between core memory and a register of the device. 
Execution of the instruction requires only a few microseconds, after which the CPU continues 
to execute the program. The device, however, is not ready to accept another instruction for a 
relatively long time. When it is ready, the device requests a priority interrupt. 

There are two different types of I/O devices: I/O-bus devices and data-channel devices. 
I/O-bus devices require the I/O bus for each word transferred. Data-channel devices require 
the I/O bus only for initiating the transfer. 

I/O-bus devices cause an interrupt for each word (or character) to be transferred for slower 
devices. An entire interrupt routine is executed on each interrupt. This interrupt routine 
checks: (1) for reaching the end of the buffer and (2) the device status for error conditions. 
Also, it normally requests the next transfer. The faster devices, DECtape and non-DMA 
magnetic tape (TMI0A), also cause an interrupt for each word, but the interrupt results in 
execution of only one instruction, a BLKO or BLKI. 

At the beginning of a block, the BLKx instruction is set up at the interrupt location, and 
a pointer-counter word is set up. On each interrupt, the transfer is performed, the pointer 
counter is incremented and tested, the interrupt is dismissed, and control is returned to the 
interrupted routine. If the counter expires, the interrupt remains in effect, and the next 
instruction after the BLKx is executed. This instruction calls an interrupt routine that does 
the necessary "housekeeping" and sets up the next block transfer. 

The BLKx devices are assigned two priority-interrupt levels. One of these, which is normally 
a very high-priority level, is used for the BLKx instruction on normal data interrupts. A 
lower level is used for error interrupts. The lower-priority channel is called the flag channel. 

The TM03 magnetic tape controller, and all disk controllers, use a data channel to access 
memory directly without interrupting the CPU or using the I/O bus. A single instruction 
initiates the transfer, and the controller requests an interrupt when the entire block is 
finished. Although these devices have very high data rates, their interrupts are infrequent. 
Disk controllers of the RH20 type usually automatically interrupt on level 3, using ac block 
3. Actual disk transfers are discussed in Chapter 11. 

9.3 Organization of I/O Routines 
All device-independent routines are contained in UUOCON. These include outer-level 
routines to handle all I/O UUOs. The UUO decoder dispatches to these routines, with 
various "global" ac's set up, and the I/O routines return to the UUO decoder for final 
housekeeping functions before it returns to the user program. Also included in UUOCON are 
subroutines to perform various device-independent functions for device-dependent routines 
such as the routine to advance buffers. 
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All device-dependent code for one device is normally included in a device-service routine 
for that device. There is only one service routine for a given type of device, regardless of 
the number of such devices or units in the configuration. These service routines work for 
any possible number of units. Therefore, any configuration-dependent code is included in 
COMMON (or COM1\1:0D for disk). 

The Device Data Block (DDB) for a device is normally included in the service routine. Where 
there are separate controllers for several devices of the same type, only a small amount 
of code depends on which controller is being used. The DDB for each device is defined in 
the driver module along with the interrupt code that is unique to the device. At system 
initialization, the monitor creates a working copy of the DDB from the prototype in the 
driver. In addition, device-specific interrupt service code is built and linked into the CONSO 
skip chain or set up for vectored interrupts, depending upon the type of device. Refer to 
Chapter 11 for more detailed information on device detection. 

Also included in each device-service routine are routines to perform device-dependent 
functions for each UUO. The entry points for these routines are put into the Device Dispatch 
Table, whose base address is included in the DDB. These routines are called only as 
subroutines from the device-independent routines in UUOCON. . 

Finally, included in each service routine is the interrupt routine for that device. The 
interrupt routine gets control when the corresponding device has caused a priority interrupt. 
It must perform the actions required by the device and then dismiss the interrupt without 
interfering with the interrupted process. 

9.4 Device-Independent Functions 
This section examines the functions performed by the device-independent routines in 
processing buffered I/O. It begins with a general discussion of actions taken by each UUO 
routine. First, it follows the steps taken by a program reading a file from an arbitrary 
device. Then, it follows the steps taken by a program writing a file. This section concentrates 
on major concepts; descriptions are not complete in every detail. However, once you are 
thoroughly familiar with the material in this section, you should be well prepared to go to 
the listings for complete information. 

9.4.1 INIT or OPEN UUO 

The INIT (or OPEN) UUO is the means by which the user program specifies a device that it 
wants to use. The main function of INIT is to find, or in some cases set up, a DDB for the 
specified device. The DEVSRC routine performs this function. It first searches for a DDB 
assigned to the job having a logical device name that matches the argument of the INIT. 
If this fails, it looks for a DDB having a physical device name that matches the argument. 
Finally, if a generic device name (for example, MTA) is given, it looks for a DDB that is 
appropriate for that generic specification. 

If a DDB is found, the ASSigned-by-PRoGram bit, ASSPRG, is set in the DEVJOB word. The 
DDB address is placed in the appropriate entry in the user's Job Device Assignment table 
(JDA) , thus establishing the fundamental link with a software channel. The user bits in 
DEVIOS, including the data mode, are initialized according to the program's specifications. 
Assuming buffered-mode 1/0, the byte size field in the buffer ring header is initialized 
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according to the data mode. The first and third words of the ring header are cleared. Hence, 
after INIT, the ring header appears like the one in Figure 9-1. 

Figure 9-1: Buffer Control Block or Buffer Ring Header 

+----------------------------------------+ 
I 0 I 
+----------------------------------------+ 
I I S I I 
+----------------------------------------+ 
I 0 I 
+----------------------------------------+ 
If the specified device does not exist or is not available, the INIT routine gives an error 
return on the UUO decoder. There is no call to the service routine for device-dependent 
functions. 

9.4.2 INBUF UUO 

The 'user program may execute an INBUF DUO to ask the monitor to set up an input buffer 
ring of any specified number of buffers. If the program does not execute an INBUF DUO, 
the same routine in the monitor is called on the first INPUT DUO to set a buffer ring of n 
buffers, where n is the default for a given device type. 

The buffer ring is set up in the user address space beginning at the job's first free location 
(.JBFF), and .JBFF is updated to point to the first location after the buffer ring. 

The length for each buffer (three words of header and a device-specific data area) is obtained 
by calling a device-dependent routine. Normally, the length, including buffer header, is two 
greater than the value obtained from the DEVCHR word in the DDB. An example of a buffer 
header block is shown in Figure 9-2. 

Figure 9-2: Buffer Header Block 

+----------------------------------------+ 
I I/O Status I 
+----------------------------------------+ 
IUISI Buffer Size I Buffer Address I 
+----------------------------------------+ 
I Word Count I 
+----------------------------------------+ 
The buffer linkages are set up, and the use bit in each buffer header is cleared, making the 
buffer available to the filler. The first buffer address is put into DEVIAD in the DDB and 
into the first word of the user's buffer control block. The sign bit of this word in the buffer 
control block is set, indicating that the buffer ring has been initialized. Refer to Figure 9-3. 
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Figure 9-3: Buffer Control Block 

+----------------------------------------+ 
IVI Buffer Address I 
+----------------------------------------+ 
I Byte Pointer I 
+----------------------------------------+ 
I Word Count I 
+----------------------------------------+ 
No call to a device-service routine has been made at this point. 

9.4.3 INPUT and IN UUOs 

With each INPUT (or IN) UUO the user program asks that a new buffer of data be made 
available to it. The major functions of the UUO are to ensure that the next buffer is full, set 
up the necessary pointers and byte count in the user's buffer control block, and return to the 
user. If necessary, it initiates a request to the device. In the case of non-sharable devices, 
this, in effect, starts the device. 

On the first INPUT after the INIT, if the buffer ring has not previously been set up by an 
INBUF, it must now be set up. A ring of buffers is set up by the same code described above 
for INBUF. 

On all INPUT UUOs except the first, the use bit is cleared on the buffer previously available 
to the user. Clearing the use bit indicates that there is no "good" data in the buffer and 
makes· the buffer available to the "filler." This informs the interrupt routine that it may 
continue writing into this buffer after it has filled the previous buffer. 

One very important function of the INPUT routine is to start the device. Whenever an 
INPUT DUO is executed, the device is not running (IOACT is zero), and fewer than half of 
the buffers are full, the device-service routine is called to start the device. Since starting the 
device requires an actual 110 instruction, it is always a device-dependent function required 
by the INPUT UUO. Note that it is always necessary to start the device on the first INPUT 
UUO after the INIT. The function of INPUT is to give the user a fresh buffer of data. 
Therefore, the next buffer must be determined to be full before control is returned to the 
user. If the use bit on the next buffer of the ring is set, it is already full (available to the 
"emptier"). Hence, control can be returned to the user immediately without blocking. If the 
next use bit is not set, however, the job must not be allowed to continue running until the 
buffer has been filled. This is the function of a device-independent routine, WSYNC, which 
is called with a PUSHJ. 

WSYNC informs the scheduler that this job is to go into 110 wait. (It sets the wait state code 
to IOWQ.) It sets up its own return address, from the push down list, as the restart address 
for the job and exits to WSCHED to perform a partial cycle. This job is put into an 110 wait 
state, and another job is chosen to run. The ADVBF· routine gets the job out of the 110 wait 
state at interrupt level when the next buffer has been filled (110 wait satisfied and JRQ bit 
set). The job continues at the next instruction after the PUSHJ to WSYNC. At this time, the 
next buffer is full, and control can be returned to the user program. 
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Note that, to the calling routine, WSYNC appears as a subroutine that can be called to fill 
the next buffer. From the monitor's point of view, it is simply a way of suspending the job, 
because it cannot immediately continue. Note also that the UUO processor must be reentrant 
at this point. Before the job continues running, any number of other jobs may execute this 
same code. Hence, when WSYNC is called, all variables must be in job-dependent storage 
locations. Specifically, all stored variables are either on the push-down list in this job's UPr 
or in accumulators. 

When an end-of-file condition is recognized on the device, the IOEND bit is set in the 
DEVIOS word of the DDB. This is not the end-of-file bit that the user sees, however. The 
purpose of IOEND is to prevent an attempt to restart the device after it has been stopped at 
end of file. The user may have several buffers full of data yet to process when end of file is 
reached on the device. 

Mter the last buffer has been given to the user, and he executes another INPUT UUO, 
the CALIN routine is called. This routine normally dispatches to the device-service routine 
to start the device. The CALIN routine does not attempt to start the device, because the 
IOEND bit is set. Instead, it gives an immediate return with IOACT still not set. When 
WSYNC is called, it does not put the job into 110 wait, because IOACT is not set. At this 
time, the user's end-of-file bit, IODEND, is set in DEVIOS. An error is returned to the user, 
and IODEND is his indication that he has reached end of file. This bit is never stored in the 
status bits of a buffer header; the user must check for it with a STATO or similar UUO. 

9.4.3.1 CLOSE for Input 

The CLOSE UUO performs the following functions: 

• Restores conditions to the initial state (that is, after the OPEN), in which the system is 
ready to begin reading another file. 

• Clears the use bit in each buffer of the ring. 

• Sets the ring-header use bit, indicating that the ring has been set up but never referenced. 

• Clears both end-of-file bits. 

• Calls the CLOSE routine in the device-service routine to perform whatever housekeeping 
actions might be necessary. (Most devices other than disk do not require any special 
actions on input close.) 

9.4.4 OUTPUT and OUT UUOs 

In writing a file, the INIT and OUTBUF UUOs are analogous to INIT and INBUF in reading. 
Although the user thinks of the OUTPUT (or OUT) UUO as being issued for each buffer of 
data to be written, the function of the OUTPUT UUO is to provide the user with a buffer to 
fill. 

The first OUTPUT normally does not write any data. The first OUTPUT is a "dummy" OUT, 
by which the user program asks the monitor to set up the buffer control block so that the 
user program can start putting data into the first buffer. 
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On each additional OUTPUT, the user is supplying one buffer of data and asking that a 
free buffer be made available to him. The full buffer is made available to the interrupt 
routine by setting the use bit (available to the emptier). If the device is not running, the 
device-dependent routine can be called to start it. Then the use bit of the next buffer is 
checked to see if the user can be allowed to put more data into it. If the use bit of the next 
buffer is not set, the buffer is empty (available to the next filler), and the job can be allowed 
to continue running immediately. If the use bit is set, there is still data in the buffer that 
must be written out. WSYNC is called to put this job in I/O wait until the interrupt routine 
restarts it. When the next buffer is free, it is cleared to zeroes, and the buffer control block 
is set up to allow the user to start filling the buffer. 

9.4.4.1 CLOSE for Output 

The CLOSE for an output file ensures that any remaining buffers are written out, keeping 
the job in I/O wait until all buffers' use bits have been cleared. The device-dependent routine 
is called for any device-dependent functions. Then the buffer ring is restored to its initial 
state. The buffer control block is also reinitialized with its use bit being set to indicate an 
unused ring. 

9.4.5 RELEASE UUO 

The RELEASE UUO countermands the OPEN. It first does a CLOSE on the software 
channel for both input and output, as appropriate, and puts the job into I/O wait until the 
device is inactive. The device service routine is called for any device-dependent actions. If 
the channel on which the RELEASE is being done is the highest channel in use by this job, 
the word is updated with the number for the highest channel in use, USRHCU (in the UPT). 
The ASSPRG bit is cleared in DEVIOS, and unless the ASSigned-by-CONsole-command bit, 
ASSCON, is set, the job number is cleared from DEVJOB. Hence, the RELEASE makes a 
device available for other jobs if it was not assigned by an ASSIGN command. If the device 
was disk, the DDB (which is set up by either the INIT or an ASSIGN command) is deleted 
when the job number is cleared. 
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Chapter 10 

Device Service 

This chapter focuses on hardware-device service and the data structures necessary to 
communicate with the devices. To better understand the methods of device I/O, some 
knowledge of hardware principles and of data structure generation and linkages is necessary. 

10.1 Hardware Instructions 
The PDP-10 instruction set has several instructions reserved for device control and I/O 
initiation. These are referred to as the I/O or input-output instructions. They are not 
identical for all types of CPUs: KL10s and previous processors use one group of I/O 
instructions; KS10s use a different group. 

10.1.1 KL 10 I/O Instructions 

A KL10 I/O instruction is designated by 111 in bits 0-2; that is, its left octal digit is 7. The 
instruction format is: 

!---!-------!---!-!----!------------------! 
! 7! dev !xxx!@! (ac)! addr--cond 
!---!-------!---!-!----!------------------! 

023 
1 1 1 1 1 1 

9023478 
3 
5 

Bits 10-12 are given as a two-digit octal number to select one of eight I/O instructions, 
which are described here in terms of their general effects for handling external devices. Dev 
addresses the device that is to respond to the instruction. The format thus allows for 128 
devices codes, of which the KA10 uses the first two, the KIlO the first three, and the KL10 
the first six. The first group of devices used by the processor are referred to as internal 
devices. Bit 13 (the indirect bit) and bits 14 through 17 (the index ac) are the same as all 
other instructions. Bits 18 through 35 contain either an address or a collection or mask of 
condition bits, depending upon the I/O instruction. 
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10.1.1.1 CONO 

Conditions Out 

!---!-------!---!-!----!------------------! 
! 7! dev ! 20!@! (ac)! cond 
!---!-------!---!-!----!------------------! 

023 
1 111 1 1 

9 0 234 7 8 
3 
5 

Sets up device dev with the effective initial conditions condo The number of condition bits in 
cond that are actually used depends on the device. 

10.1.1.2 CONI 

Conditions In 

!---!-------!---!-!----!------------------! 
! 7! dev ! 24!@! (ac)! addr 
!---!-------!---!-!----!------------------! 

023 
1 111 1 1 

9023478 
3 
5 

Reads the input conditions from device dev and stores them in location addr. The number 
of condition bits stored depends upon the device; the remaining bits in location addr are 
cleared. 

10.1.1.3 DATAO 

Data Out 

!---!-------!---!-!----!------------------! 
! 7! dev ! 14!@! (ac)! addr 
!---!-------!---!-!----!------------------! 

023 
111 1 1 1 

9 023 4 7 8 
3 
5 

Sends the contents of location addr to the data buffer in device dev and performs whatever 
control operations are appropriate to the device. The amount of data actually accepted by 
the device depends on such factors as the size of its buffer and its mode of operation. The 
original contents of location addr are unaffected. . 
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10.1.1.4 DATAl 

Data In 

!---!-------!---!-!----!------------------! 
! 7! dev ! 04!@! (ae) ! addr 
!---!-------!---!-!----!------------------! 

023 
1 1 1 1 1 1 

9023478 
3 
5 

Moves the contents of the data buffer in device dev to location addr and performs whatever 
control operations are appropriate to the device. The number of data bits stored depends on 
such factors as the size of the device buffer and its mode of operation. Bits in location addr 
that do not receive data are cleared. 

10.1.1.5 CONSZ 

Conditions In and Skip if Zero 

!---!-------!---!-!----!------------------! 
! 7! dev ! 30!@! (ae)! eend 
!---!-------!---!-!----!------------------! 

023 
1 1 1 1 1 1 

9 0 2 3 4 7 8 
3 
5 

Tests the input conditions from device dev against the effective mask condo If all condition 
bits selected by Is in cond are Os, skips the next instruction in sequence. If the device 
supplies more than 18 condition bits, only the right 18 are tested. Condition bits in the left 
half word can be tested by reading them with a CONI and then using a test instruction. 

10.1.1.6 CONSO 

Conditions In and Skip if One 

!---!-------!---!-!----!------------------! 
! 7! dev ! 34!@! (ae)! eend 
!---!-------!---!-!----!------------------! 

023 
1 1 1 1 1 1 

9 023 4 7 8 
3 
5 

Tests the input conditions from device dev against the effective mask condo If any condition 
bits selected by a 1 in cond are 1, skips the next instruction in sequence. If the device 
supplies more than 18 condition bits, only the right 18 are tested. Condition bits in the left 
half word can be tested by reading them with a CONI and then using a test instruction. 
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10.1.1.7 BLKO 

Block Out 

1---1-------1---1-1----1------------------1 
! 7! dev ! lO!@! (ac)! addr 
l---!-------l---l-l----!------------------l 
023 

111 1 1 1 
9 0 234 7 8 

3 
5 

Adds one to each half of a pointer in location addr and places the result back in addr. Then 
performs a data output (DATAO) instruction using the right half of the incremented pointer 
as the effective address. 

10.1.1.8 BLKI 

Block In 

!---l-------!---l-l----!------------------l 
! 7 I dev I OOI@1 (ac) I addr 
l---l-------l---!-l----l------------------! 
023 

111 1 1 1 
9 0 234 7 8 

3 
5 

Adds one to each half of a pointer in location addr and places the result back in addr. Then 
performs a data input (DATAl) instruction using the right half of the incremented pointer as 
the effective address. 

10.1.2 KL 10 1/0 Instruction Summary 

The BLKI and BLKO instructions are unique in that their behavior varies depending on 
whether they are executed as a priority-interrupt instruction. If the BLKI or BLKO is not 
executed as an interrupt instruction, and the addition has caused the count in the left half of 
the pointer to reach zero, the monitor goes on to the next instruction in sequence. Otherwise, 
it skips the next instruction. If the BLKI or BLKO is executed as an interrupt instruction, 
and the addition has caused the count in the left half of the pointer to reach zero, the 
monitor executes the instruction in the second interrupt location for the level. Otherwise, it 
dismisses this interrupt and returns to the interrupted program. 

Note 
A BLKI or BLKO instruction is effectively a whole in-out data-handling subroutine. 
It keeps track of the block location, transfers each data word, and determines when 
the block is finished. Initially, the left half of the pointer contains the negative of the 
number of words in the block; the right half contains an address one less than that of 
the first word in the block. 
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The above eight instructions differ from one another in their total effect, but they are not 
all different with respect to any given device. A BLKO acts on a device in exactly the same 
way as a DATAO; the two differ only in counting and other operations carried out wi thin the 
processor and memory. Similarly, no device can distinguish between a BLKI and a DATAl. 
Also, a device always supplies the same input conditions during a CONI, CONSZ, or CONSO, 
whether the program tests them or simply stores them. 

Hence, the eight instructions can be categorized in four types, represented by the first four 
instructions described above. Moreover, a complete treatment of the programming of any 
external device can be given in terms of these four instructions, two of which are for input 
and two for output. The four exhaust the type of information transfer that occurs in the 110 
system. 

Every device requires initial conditions; these are sent by a CONO, which can supply up to 
18 bits of control information to the device control register. The program can determine the 
status of the device from up to 36 bits of input conditions that can be read by a CONI (but 
only 18 bits can be tested by a CONSZ or CONSO). Some input bits simply reflect initial 
conditions but are subject to subsequent adjustment by the device, and still others may have 
no direct connection with the output conditions. 

Data is moved in and out in bytes of various sizes or in full 26-bit words. Each program 
transfer between memory and a device data buffer requires a single DATAl or DATAO. 
Every device has a CONO and CONI, but it may have only one data instruction unless it 
is capable of both input and output. A DATAl that addresses an output-only device simply 
clears location addr. On the other hand, a DATAO that addresses an input-only device is 
a no-oPe When the device code is undefined, or an addressed device is not in the system, a 
DATAO, CONO, or CONSO is a no-op, a CONSZ is an absolute skip, and a DATAl or CONI 
clears location addr. 

10.1.3 KS10 1/0 Instructions 

Unlike other processors, the KSI0 has no special format for 110 instructions. Instead, they 
are the same instructions that handle the peripheral equipment, the console, and memory 
status; although for consistency, they do have Is in the left three bits of the opcode field. 
UNIBUS-type devices, as all peripheral equipment on a KSI0, are handled through UNIBUS 
adapters. There are several instructions reserved for this purpose, and they are described 
here in terms of their general effects for handling external devices. 

As in all instructions, the processor does effective address calculations, but for the 110 
instructions, it ignores the results and recomputes an effective 110 address. The 110 address 
specifies an 110 register in some UNIBUS device or in the console or memory controller. For 
convenience, this effective address will be referred to as addr. An 110 address is analogous 
to an extended virtual address in that it has a fundamental length of 30 bits, but not all 
of its bits are implemented in a given processor. In a KSI0 110 address, the right 18 bits 
are the register address, and the left 12 are the controller number, of which only 4 bits are 
implemented. An 110 address thus has this format: 
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!--------------!----!------------------! 
! 00000 !cont! register address! 
!--------------!----!------------------! 

o 
1 1 1 1 
3 4 7 8 

3 
5 

Bits 0-13 must be zero. Cont is the controller number. Of the 16 possible controller numbers, 
only three are currently used: 0 addresses the console and memory controller; 1 addresses 
UNIBUS adapter 1; 3 addresses UNIBUS adapter 3. 

Controller Register Address Specifies 

o 100000 Memory status 
o 200000 Console (microcode only) 
1 400000 - 777777 Adapter 1 UNIBUS registers 
3 400000 - 777777 Adapter 3 UNIBUS registers 

, 
The 110 address calculation is like an effective address calculation in which the result can 
be "global," that is, can have more than 18 bits. When the result is an 18-bit "local" register 
address, it is automatically interpreted as specifying controller O. The calculation is limited 
to one level of indirection or indexing or both, and any intennediate result that is used as a 
memory address must be local, because the KS10 is confined to section 0.-

If there is no indexing or indirection, the 110 address is simplyaddr. 

If there is indexing only, and the left half of the right half of ac is negative, the 110 address 
is the local sum of addr and the right half of ac. 

If there is indexing only, and the right half of ac is positive, the 110 address is the global 
sum of addr and the right half of ac, but remember that bits 0-13 must be zero. 

If there is indirection only, the 110 address is the contents of location addr. 

If there is both indexing and indirection, the 110 address is the contents of the location 
specified by the sum of addr and the right half of ac. 

Note 
An index register can supply the entire 110 address, but it can also be used to supply 
only the controller number when addr is the register address. This latter technique 
is useful for employing common code for multiple adapters. 

10.1.3.1 BSIO 

Bit Set 110 

!---------!----!-!----!------------------! 
714 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 
11111 

o 8 9 234 7 8 
3 
5 
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In the word read from I/O register addr, sets hits corresponding to Is in ac and writes the 
result hack in register addr. 

10.1.3.2 BelO 

Bit Clear I/O 

!---------!----!-!----!------------------! 
715 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

In the word read from I/O register addr, clears hits corresponding to Is in ac and writes the 
result hack in register addr. 

10.1.3.3 ROIO 

Read I/O 

!---------!----!-!----!------------------! 
712 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 
11111 

o 8 9 234 7 8 
3 
5 

Reads the contents of I/O register addr into ac. 

10.1.3.4 WRIO 

Write I/O 

!---------!----!-!----!------------------! 
713 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

Writes the contents of ac into I/O register addr. 
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10.1.3.5 TIOE 

Test 110 Equal 

!---------!----!-!----!------------------! 
710 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

If all bits of 110 register addr corresponding to Is in ac are zero, skips the next instruction 
in sequence. 

10.1.3.6 TION 

Test 110 Not Equal 

!---------!----!-!----!------------------! 
711 ! ac ! @ ! (ac) ! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

If not all bits of I/O register addr corresponding to Is in ac are zero, skips the next instruction 
in sequence. 

10.1.3.7 BSIOB 

Bit Set I/O Byte 

!---------!----!-!----!------------------! 
724 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

In the byte read from 110 register addr, sets bits corresponding to Is in ac bits 28-35 and 
writes the result back in register addr. 

10.1.3.8 BCIOB 

Bit Clear 110 Byte 
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!---------!----!-!----!------------------! 
725 ! ae !@! (ae)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

In the byte read from I/O register addr, clears bits corresponding to 1s in ac bits 28-35 and 
writes the result back in register addr. 

10.1.3.9 RDIOB 

Read I/O Byte 

!---------!----!-!----!------------------! 
722 ! ae !@! (ae)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

Reads the contents of I/O register addr into ac bits 28-35. Clears ac bits 0-27. 

10.1.3.10 WRIOB 

Write I/O Byte 

!---------!----!-!----!------------------! 
723 ! ae ! @ ! (ae) ! addr 

!---------!----!-!--~-!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

Writes the contents of ac bits 28-35 into I/O register addr. 

10.1.3.11 TIOEB 

Test I/O Equal Byte 

!---------!----!-!----!------------------! 
720 ! ae ! @ ! (ae) ! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

If all bits of I/O register addr corresponding to 1s in ac bits 28-35 are zero, then skips the 
next instruction in sequence. 
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10.1.3.12 TIONB 

Test 110 Not Equal Byte 

!---------!----!-!----!------------------! 
721 ! ac !@! (ac)! addr 

!---------!----!-!----!------------------! 

o 
11111 

8 9 234 7 8 
3 
5 

If not all bits of I/O register addr corresponding to 1s in ac bits 28-35 are zero, skips the 
next instruction in sequence. 

10.1.4 KS10 1/0 Instruction Summary 

UNIBUS devices generally have data registers and control/status registers. Frequently, a 
single 110 address specifies two registers, one for reading and one for writing. A control 
register and status register in a device usually have the same address and also have bits 
in common; that is, information loaded into some of the control bits can be read as status. 
Ordinarily, a device is set up by reading status or testing individual status bits. 

10.2 Device Overview 
Many types of devices can be connected to a DECsystem-10. They can be divided into three 
main categories: 

• Simple devices 

• Controller-oriented devices 

• Data Channels 

10.2.1 Simple Devices 

The simplest and oldest group of devices exists on the 110 BUS. They can transfer a single 
word or byte of information at a time, usually using a DATAl or DATAO instruction. The 
CPU is interrupted upon completion of a transfer. Occasionally, a device of this type uses 
two priority-interrupt channels, one for data transfers and one for device control. Data is 
transferred on a high-priority channel, usually to avoid missing data due to a slow response 
to an interrupt. Device-control functions are relegated to a lower-priority channel where the 
status or condition(s) of the device are not likely to change quickly. The data structures to 
maintain this type of device are minimal. Usually, a single DDB is all that is needed. A good 
example of such a device is the BA10-based CR10 card reader. The BA10 serves as a passive 
interface to the I/O BUS; whereas the CR10 is the device that actually performs the 110. 
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10.2.2 Controller-Oriented Devices 

A controller is an intelligent piece of hardware that can direct one or more devices. Controller
oriented devices may still interrupt on a per-word or byte basis, but usually require the 
execution of a single instruction (BLKI or BLKO) at interrupt level. The combination of the 
BLKI or BLKO instruction and the short interrupt-level routine is an indication that these 
devices are capable of a higher data-transfer rate than the previously discussed I/O BUS 
devices. Again, the use of two priority-interrupt channels is common, with data transfers on 
the high-priority channel and device-control functions on the lower-priority channel. These 
devices also have a relatively simple data structure, the DDB, but in this case, controller 
information as well as drive-specific information must be maintained. A good example of 
this type of device is the TD10-based TU55/56 DECtape drive. Here, the TD10 is both an 
I/O BUS interface and a controller. 

10.2.3 Data Channels 

A data channel is the most sophisticated and intelligent 1 type of device. 

Typically, a DATAl or DATAO instruction is used to initiate a data transfer, but the channel 
is responsible for transferring the entire buffer without CPU intervention. This is often 
referred to as a Direct Memory Access (DMA) device. A channel may be a self-contained 
device such as a CI20, or it may be a controller capable of interfacing to several devices, such 
as a TM78 magtape formatter. Other types of channels are merely interfaces to non-Digital 
hardware. A good example is the DX10lIBM channel interface. 

This device and others like it are often incorrectly referred to as controllers, when their real 
function is to provide a hardware-compatible port between the DECsystem-10 and a foreign 
device. In the case of the DX10, it connects to the I/O and memory busses, and responds like 
a standard I/O BUS device, but device commands are translated into IBM channel signals 
suitable for communicating with IBM Tape Control Units (TCUs). 

The program (the bootstrap, diagnostic, monitor, and other components) uses DATAl and 
DATAO instructions to control the channel but not to actually transfer data, as in the case 
of the older I/O BUS devices. The DATAl or DATAO instructions are typically used to select 
registers within the channel (controller) or one of its connected devices. Once selected, 
the registers may be read or written with control information necessary for the channel to 
transfer data. For example, before a transfer can take place, the program might select a 
"drive" register in the channel, and store into this register the drive number on which the 
data transfer will take place. Another register may need to be selected to store the address 
of a command list that dictates how, where, and in what direction to transfer the data. Once 
the various channel registers have been properly initialized for the upcoming transfer, the 
final step is usually turning on the go bit. This instructs the channel to actually start the 
transfer. 

1 Intelligent is a relative term. Some controllers exhibit a high degree of competence with respect to the functions they 
must perform. This is seen in the manner in which data is transferred or errors detected and processed with little 
monitor intervention, a DXIO for instance. On the other hand, logic without discipline is not a measure of intelligence, 
as can be seen with the CI20. 

™ IBM is a registered trademark of International Business Machines Corporation. 
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Note 
The steps necessary for setting up and starting the channel vary greatly depending 
upon the type of channel. The description above is generic and not truly indicative of 
any particular device. 

10.3 Monitor Data Structures 
The monitor maintains various data structures for device-I/O purposes. Some of the more 
important data structures are: 

1. MDT - MONGEN'ed device table 

2. CHN - Channel data block 

3. KDB - Controller data block 

4. UDB - Unit data block 

5. DDB - Device data block 

6. DRV - Driver dispatch table 

These data structures are arranged in general order of importance with respect to 
the monitor's use of the items at system startup time. At this time, the monitor 
performs autoconfiguration and dynamically creates all the necessary data structures. 
Autoconfiguration is discussed below, after a description of the data structures and the 
devices that use them. 

10.3.1 MONGEN'ed Device Table (MDT) 

The MDT contains information that allows the monitor to identify a particular device 
and associate properties or parameters with that device. There are two MDTs for each 
device driver assembled into a monitor. When MONGEN is run, it asks the user about the 
device drivers to be assembled into the monitor. The result of any reply is written into the 
configuration file in the form of macros which, when assembled, expand and build an MDT 
in COMDEV. 

Each device driver also has an MDT. This is called the default MDT. Typically, the default 
MDT contains standard device-code definitions. When the monitor dynamically configures 
devices, it uses these MDTs to adjust the parameters (device codes in I/O instructions for 
example) of the newly configured devices to those specified at MONGEN time. If the event 
the MDT generated by MONGEN and expanded in COMDEV is empty, that is an indication 
that the standard device parameters are to be used. In this case~ the default MDT in the 
device driver is used. 

There is one important difference between the two MDTs. The MDT in COMDEV contains 
two words that do not exist in default MDTs. These are the first words in the MDT and 
are used as bookkeeping words by the monitor for counting the numbers of devices on the 
system. The data in these words is used to generate the device names. 

10-12 Device Service 



10.3.1.1 MONGEN Device Options 

For the purposes of this discussion, suppose you want to build a Tri-SMP monitor with DXIO 
magtape support, and your only DXIO resides on CPUl. When MONGEN is run, it asks you 
the following question (long dialogue format): 

Include DX10/TX01/TX02 tapes (NO,YES,PROMPT) [ 
TU70, TU71, TU72, and TU73 IBM channel magtapes are 
available through the use of a DX10 channel interface and a 
TXOl or a TX02 controller. TX1KON is the driver module for 
these magtapes. 
Respond with one of the following: 
NO Exclude driver 
YES Include driver 
PROMPT Include driver and prompt for parameters] : 

You supply an answer following the: prompt. A response of NO indicates the device driver 
(TXIKON) is not to be assembled into the monitor. There will be no device driver support 
for the DXIO in the monitor you are about to assemble. 

A response of YES indicates you want to include TXIKON. No other questions are asked for 
this device. This is, by far, the simplest way to have DXIO support. 

A response of PROMPT indicates you want to include TXIKON, and you have special 
non-standard parameters that need to be specified. Here, things can get a little complex. 
Fortunately, the DXIO is a simple case, so your options are limited. Again, the long form of 
the dialogue is used. (Note: This question is asked only for multi-CPU configurations.) 

Reserve devices per CPU: [ 
In multi-CPU configurations, it is often desirable to 
reserve a number of controller or device slots for each CPU 
which normally has this type of device connected to it. For 
example, in a dual CPU system, if each CPU has two channels 
for RP06s, one would like the controllers to have the names 
RPA, RPB, RPC, and RPD. 

For devices such as disks, where the controller name varies 
with each driver loaded, this question should be answered 
for each driver. 

For devices such as magtapes, where the controller 
designation (MT) is the same regardless of the driver being 
used, this question need only be answered for the first 
driver. 

Typing CR will default the number of controlle.rs or devices 
to an appropriate value depending upon the driver.]: 

The proper response to this question is "0,1,0" 
where: 

• The first ° indicates you have no tape controllers on CPUO. 

• The 1 indicates one controller (the DXIO) on CPUl. 
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• The last 0 indicates no tape controllers on CPU2. 

Merely replying YES to the initial question bypasses the reserved CPU counters option. This 
causes the monitor (at system startup time) to default the reserved counters. In this case, there is 
a theoretical maximum of 26 controllers (MTA through MTZ) and three CPUs. Since the monitor 
cannot predict the number of tape controllers, it must assume the worst case. This means that 
with only a single magtape controller on the system, the DXIO tape drives have the name MTIx 
rather than MTAx. Although rather obscure, this scheme ensures that each device in the system 
has the same name regardless of which CPU is the policy CPU at system startup. Note that this 
feature controls only the name associated with the controller and its drives and, as such, exists 
for aesthetic reasons. People typically like to see alphabetically ascending device names starting 
withA. 

Next, MONGEN prompts you for additional information. Normally, there is no more to 
supply at this point, and the response is NO. If, however, you want to configure your device 
using a non-standard device code, this is the time to do it. For this discussion, assume the 
DXIO does not use the normal 220, 224, or 034 device codes but instead uses device code 
270. MONGEN now prompts for CPU information. (Note: This question is asked only for 
multi-CPU configurations.) 

Type a CPU number or press RETURN for all CPUs: 

If you want the non-standard parameters to apply to all DXlOs on all CPUs, then RETURN 
suffices. Otherwise, enter a specific CPU number. In this example, the DXlO is on CPUl, so 
the proper response is 1. 

Now, MONGEN asks for the device code: 

Device code (CR,O-774) 
Press RETURN to accept the standard device code definitions.]: 

In this eXample, the proper response is 270. For KSlOs, MONGEN asks two questions: one 
for the interrupt vector and one for the UNIBUS/CSR base address. 

For MASSBUS devices, MONGEN prompts for a MASSBUS unit number. Because the DXlO 
is not a MASSBUS device, this question is omitted. 

If the non-standard definition being entered is to be applied to a specific drive or all drives 
on the controller, then the next question is important. 

Drive, slave, or unit: [ 
Type a decimal drive, slave, or unit number, "ALL" for all 
units, or "NONE" if defining a controller parameter. An 
answer to this question must be supplied.]: 

where: 

• n is a drive, slave, or unit number. 

• ALL indicates all devices on the controller. 
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• NONE means that the non-standard definition is not drive specific but instead applies 
only to the controller. In this example, the proper response is NONE, because a 
non-standard device code is specified, a quantity independent of the drives on the 
controller. 

The final question is meaningful only if the non-standard information being supplied is meaningful 
only to the driver. In the example, there is no other information, so a RETURN is all that you 
need to enter. 

Data: [ 
You may provide device-specific information. The response 
to this may contain a symbolic eA~ression. If you press 
RETURN, this indicates that there is no device-specific data 
other than the previously specified device code 
information.] : 

The data that could be entered here is meaningful only to the device driver. Therefore, it 
can be any 36-bit expression that MACRO can assemble. MONGEN cannot make validity 
checks on the supplied quantity. A typical example where this data might be useful is in 
the case of a line printer. The monitor can dynamically determine whether or not a printer 
has lowercase capability in all but one case, the BA10-based printer. The monitor normally 
assumes that all printers have lowercase capability, so to generate a monitor for a BA10 
uppercase-only printer, you need to supply a data word. LPTSER defines the symbol LPT. UC 
as global. The proper response to this question is "LPT. UC##". 

MONGEN assembles the results of the DX10 question into macro definitions that are written 
into the configuration file. The following is generated for the DX10 question in the example: 

M.TX01==:1 
DEFINE 
EXTERN 
MDCPUN 
MDKL10 
MDTERM 

MDTX01,< 
TX1KON 
(00,01,00,00,00,00) 
(1,270,0,0,<MD.KON>,0),< 

> iiEND DEFINE MDTX01 

"M.TX01= =:1" indicates that the monitor is assembled with DX10 support turned on. The 
EXTERN of TX1KON causes LINK to load the device driver into the monitor's .EXE file. The 
MDCPUN macro contains six arguments, one for each possible CPU. The values correspond 
with the CPU counters specified in the dialogue. The MDKL10 macro generates all the other 
parameters. The 1 represents CPU1, 270 is the non-standard device code, and MD.KON 
indicates this is a controller-wide definition. The other zeros represent the parameters that 
do not apply to the example: the MASSBUS unit number, dri-Ve number, and data word, 
respectively. The MDTERM macro terminates the MDT definition. Currently, it expands to 
a zero, the normal MDT terminator. 
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10.3.2 Channel Data Block (CHN) 
The CHN represents the highest level in the hierarchy of monitor I/O data structures. As its 
name implies, it is used by channel devices. 2 

CHN offsets, bits, and other associated symbols are defined in DEVPRM.MAC. The main 
item that makes one CHN different from the next is the device code associated with it. A 
CHN may exist for a single device (for example, CI20 or DXIO) or may have multiple devices 
(for example, TM02l3 or TM78). Thus, part of the CHN is devoted to bookkeeping words 
necessary to maintain one or more devices. Some of the more important common CHN words 
are explained below. 

The CHNDVC word contains the CPU and device-code information. It is used primarily by 
autoconfigure code to find an existing CHN. Typically, the device driver, after detecting the 
presence of a channel, calls AUTCON to find an existing CHN. The CHNDVC is then used. 

Included in each CHN is an AOBJN pointer (CHNTBP) to a table of KDB addresses. The 
table is part of the CHN, being dynamically built at system startup time and expanded 
whenever a new channel device is powered up under timesharing. CHNTBP and the table 
it points to are most commonly used by the monitor's I/O scheduler routines. Generally, 
hardware-channel I/O is optimized by looking at multiple paths to a given device. The table 
allows the I/O schedulers to scan all devices on a single hardware channel, picking the first 
available device to do a data transfer. 

There is also an in-use flag or busy word (CHNBSY) for the CHN. In most cases, the CHN 
is associated with a hardware channel that can perform a single data transfer at a time. 
Therefore, the monitor's I/O schedulers use this word as an interlock or flag, indicating the 
availability of the channel to perform a data transfer. For those devices that can perform 
multiple simultaneous transfers (for example, CI20) or operate in a block-multiplex mode 
(SAIO), this word is ignored. The I/O schedulers for these devices rely on information stored 
in other data structures (usually the KDB) to maintain those I/O queues. 

The other CHN words mostly perform disk and swapping I/O. With few exceptions, these 
words are misplaced and belong in the respective KDBs, because they pertain to functions 
specific to a single device on the hardware channel but not to the entire channel. 

10.3.3 Controller Data Block (KDB) 

The KDB maintains all information pertaining to a controller. A controller is an intelligent 
piece of hardware that can direct one or more devices. An example of such a device is the 
TM78 magtape formatter. Common KDB offsets, bits, and other associated symbols, as well 
as disk and magtape service extensions to the basic KDB are defined in DEVPRM.MAC. 
Device-driver-specific extensions to the KDB are defined in the monitor module for the 
respective device drivers. Some of the more important common KDB words are explained 
below. 

2 Currently, a CHN is required to use the MAPIO subroutine. Because of shortcuts taken in writing some of the KS10 
device drivers (for example, LP2SER), a CHN is created solely for the purpose of calling MAPIO. 
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A few identifying items are associated with each KDB. Given one of these items, the KDB 
can always be located. KDBNAM contains the sixhit controller name. It is generated by 
AUTCON when the data structure is created. KDBCAM contains the CPU accessibility 
mask, a bit for each CPU that has access to the device represented by the KDB. The CPU 
bits correspond to the bit that resides in the CPU data block (.CPBIT). Therefore, when 
selecting a KDB for 110 on a given CPU, there is a simple test that indicates whether a CPU 
can perform 110 on the KDB pointed to byac W. For example: 

MOVE Tl,KDBCAM(W) 
TDNN Tl, .CPBIT## 
JRST <no access> 
<continue> 

iGET KDB ACCESSIBILITY BITS 
iCOMPARE WITH THOSE OF THE CPU 
iCANNOT DO I/O ON THIS CPU 
iOK TO DO I/O 

KDBDVC contains a PDP-10 device code or UNIBUS base/CSR address. KDBUNI contains a 
MASSBUS unit number or -1 of not a MASSBUS device. Given any of the above quantities, 
a KDB can easily be located for performing 110 or autoconfiguring. 

Each KDB contains the address of the driver dispatch table in KDBDSP. The driver 
dispatch table allows the higher levels of the monitor (the service routines like UUOCON, 
FILUUOIFILFNDIFILIO, and TAPUUOlrAPSER) to perform device-specific functions 
without knowledge of the device itself. KDBDSP allows this dispatch table to be easily 
located. 

For the purposes of scheduling 110, the KDB contains three bookkeeping words: 

• KDBIUN - the initial unit pointer 

• KDBFUN - the final unit pointer 

• KDBCUN - the current unit pointer. 

Each word contains a 30-bit address. KDBIUN and KDBFUN point to the first and last word of 
a unit table, respectively, the table being defined as part of the KDB itself. KDBCUN is used by 
the 110 schedulers as a pointer to the unit currently being examined for 110 readiness. 

Among other things, the KDB also has defined words containing I/O instructions that 
are XCT'ed by the device drivers to do CONI/CONOs, DATAIlDATAOs, and BLKIlBLKOs. 
Because of the vast differences between doing 110 on a PDP-IO and UNIBUS, these words 
exist only on a KL10, the KS10 techniques being a hit more cumbersome. For example, to 
read the device status of a TM02l3 on a KLIO, this simple instruction loads Tl with the 
CONI bits for the KDB pointed to by ac W: 

XCT KDBCNI (W) iCONI DEV,Tl 

On a KS10, the equivalent code is: 

MOVE Tl,KDBDVC(W) iCOPY UNIBUS BASE/CSR ADDRESS 
RDIO Tl,«DO.CS2»(Tl) iREAD TM02/3 STATUS REGISTER 

Again, the KDB is pointed to byac W. DO.CS2 is the offset from the start of the UNIBUS 
base or CSR address. 

Device Service 10-17 



10.3.4 Unit Data Block (UDB) 
For those devices that have UDBs, it is the primary data structure for monitor I/O to that 
device and represents the lowest level in the hierarchy of monitor I/O data structures. 
Common UDB offsets, bits, and other associated symbols, as well as disk and magtape 
service extensions to the basic UDB, are defined in DEVPRM.MAC. Device-driver-specific 
extensions to the UDB are defined in the monitor module for the respective device drivers. 
Some of the more important common UDB words are explained below. 

The common UDB definitions are fairly simple, as the bulk of the data contained within a 
UDB is very specific to each device. A UDB is identified by a sixbit name in UDBNAM. It 
contains a physical device number in UDBPDN. UDBDSN is a two-word quantity containing 
the drive serial number. This is used by AUTCON for linking multi-ported drives to their 
respective KDBs and for hardware error reporting. 

UDBKDB is a table MXPORT words long that contains back pointers to the KDBs that have 
access to the UDB. MXPORT is defined in DEVPRM.MAC and can vary from 1 through 8. 
The number of KDBs pointed to by a UDB indicates the number of ports available for the 
device. 

The UDB also contains a CPU accessibility mask for 110 scheduling (UDBCAM). This mask 
is used in the same way as the KDB mask (KDBCAM). Under normal conditions, UDBCAM 
should contain the inclusive OR of all the KDBCAM words for the KDBs pointed to by 
UDBKDB. 

10.3.5 Device Data Block (DO B) 

The DDB is the primary interface between user-mode 110 programming and the monitor's 
service routines, (for example, UUOCON, FILUUO, and TAPUUO). For those devices that do 
not have UDBs, it is also the the primary data structure for monitor 110 to that device and 
represents the lowest level in the hierarchy of monitor 110 data structures. Common DDB 
offsets, bits, and other associated symbols are defined in S.MAC. Service-routine extensions 
to the basic DDB are defined in the monitor module for the service routine in question, with 
the exception of the disk DDB, which is defined in COMMOD.MAC. 

For all device types, a prototype DDB exists. This special DDB is used for creating all DDBs, 
whether at system startup time" or during timesharing. However, the methods for creating 
and/or deleting DDBs vary with the type of device. For most devices, DDBs are created when 
the device is detected, usually at system startup. From then until the next system reload, 
the DDB is reused again and again, often by multiple jobs. For disks, multiplex devices, 
network tasks, and other special devices, DDBs are created on demand and deleted when no 
longer needed. 

All DDBs, regardless of device type, maintain a number of words, used by the monitor to 
manipulate user buffers. Information stored includes 110 mode, buffer ring header addresses, 
110 section numbers, and CPU accessibility data. DDBs also contain the address of the 
driver dispatch table, thus granting UUO-Ievel code the ability to perform device-specific 
functions without knowledge of particular device programming aspects. 
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Because the service routine is to be assembled independently, the monitor does not know 
what other devices will be present in the system and therefore cannot fill in the linkage to 
the "next" DDB (the left half of DEVSER). DDBs are linked by AUTCON at system startup 
time. The order linkage within a group of DDBs for a single device type is in increasing 
numeric order (by DDB name), sorted according to ANF-IO station number and device-unit 
number. Then those groups of DDBs are arranged in alphabetical order based on the device 
name from the driver dispatch table. 

10.3.6 DRV· Driver Dispatch Table 

The driver dispatch table (DRV) was a data structure originally created to autoconfigure 
devices. It has been expanded so that the various service routines could call their device 
drivers without the need for defining another dispatch table. Common DRV offsets, bits, and 
other associated symbols, as well as magtape service extensions to the basic DRV are defined 
in DEVPRM.MAC. 

The concept behind the DRV is simple. There are many quantities and functions associated 
with each piece of hardware that must be made available to AUTCON. The old school of 
thought was to assemble into the monitor complex data structures and code to be executed 
for a device. Now, using a DRV and the prototype data structures it refers to, much of the 
auto configuring process becomes independent of the devices on the system. 

DRVs are linked together in a forward-linked list by 30-bit addresses. The links are initially 
generated by .LINK pseudo-ops in MACRO. Extended addressing fi,xups are done at system 
initialization time, producing the 30-bit addresses. DRVLST in AUTCON points to the start 
of the linked list. The DRVLST chain allows AUTCON to find any driver dispatch table, 
along with all the data structures and necessary subroutines to successfully autoconfigure 
all devices on the system. -

There are three main groups of information stored in a DRV: pointers to data structures, 
addresses of subroutines and tables, and device characteristics. Prototype data structure, 
pointers include the following: 

- KDB length and address 
- UDB length and address 
- DDB length and address 
- Microcode loader block address 
- Interrupt level code length and address 

Subroutine and table addresses include the following: 

- Interrupt service routine 
- DIAG_o UUO dispatch table 
- MONGEN'ed device table (MDT) 
- Compatible controller table 
- Autoconfigure routine 

Device characteristics are stored in two words: 

• The first word, DRVCNF, contains mostly flags used to describe how to build the data 
structures for a device. Bits indicate whether it is a real hardware device (such as a line 
printer) or a software device (such as a multiplex channel). Other bits indicate how the 
device name is to be built (for example, octal or decimal numbers), whether the device 
has multi-port capabilities, if the driver runs in extended sections, cache bits, and so 
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on. A single characteristic byte also exists in this word. It contains the device-type 
code (.TYxxx). This arrangement of the device-type byte and the collection of bits allows 
AUTCON to quickly find a driver dispatch, given very little information. For that reason, 
DRVCNF must not be expanded to contain anything other than one-bit quantities. 

• The second characteristic word, DRVCF2, contains only byte definitions. These include 
device-specific controller-type codes, maximum devices of this type that the system 
can support, maximum devices allowed on a controller, the highest drive number the 
controller can handle, and section numbers for data structures. 

10.4 Autoconfigure Overview 
Autoconfiguration is the process of detecting the devices attached to the system. This 
process is a collection of subroutines invoked at system startup and occasionally under 
timesharing. Historically, these subroutines existed primarily in the AUTCON module. A 
single call to that module was made, causing disks and magtapes to be dynamically built. 
Calling AUTCON at its entry point was often referred to as running AUTCON. Today, the 
architecture of AUTCON has drastically changed. It is no longer an ·aU-inell:1Sive module 
containing very specific knowledge about several types of disks and magtapes. Instead, it is 
a collection of random subroutines intended to be called by device-service routines and device 
drivers. None of the subroutines has any knowledge of device specifics beyond a distinction 
between channel types. There is, however, still one entry point which, when called, initiates 
auto configuration. Hence, running AUTCON is still valid. 

10.4.1 System Initialization 

10.4.1.1 AUTCON 

AUTCON plays a major role during system initialization. All I/O data structures are built 
at this time. This is a rather time-consuming process that may account for as much as one 
half of the system startup overhead. 

10.4.1.2 AUTINI 

Very early in SYSINI, just after the monitor initializes the memory manager, the routine 
AUTINI is called. AUTINI initializes AUTCON. This routine sets up the various data 
structures used by the auto configure process. Its first task is to scan INTTAB for any 
old-style (assembled-in) prototype DDB definitions. A prototype DDB is dOefined as one that 
has no name in DEVSER and is used for creating other DDBs. These DDBs are the first 
to be linked into the DDB chain. DDBs are linked through the left half of DEVSER; the 
chain is pointed to by DEVLST. The prototype DDB addresses and lengths are also stored 
in DDBTAB and DDBSIZ, respectively. These are two tables indexed by device type code 
(.TYxxx). 

After all prototype DDBs have been found in INTTAB, AUTINI then scans the driver 
dispatch tables. For each table in the DRVLST chain, the following steps are taken: 

1. Any addresses in the DRV are "fixed up" for extended addressing use. While AUTCON 
must run in section 1, routines pointed to by the DRV may reside in other sections. Also, 
explicit section 1 references are inserted where zeros exist to avoid the possibility of 
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being called out of section 1 and causing a reference to a bad address with an indirect 
reference through the DRV. 

2. The per-CPU device counters are set up in the COMDEV copy of the MDT. These 
numbers are necessary for AUTCON to correctly generate DDB names. 

3. Prototype DDBs are linked into the DEVLST chain, and the appropriate entries are 
made to the DDBTAB and DDBSIZ tables. 

4. Unlike the old-style DDB definitions, the prototypes pointed to by the DRVs do not have 
interlock words assembled into them. Consequently, the DEVCPU word must be "fixed 
up" to use the appropriate PI channel interlock. 

The remaining work done by AUTINI is largely bookkeeping: 

1. Global CPU counters are adjusted. Some devices have common DDB names but different 
drivers. Line-printer DDBs are all named LPTxxx, yet more than one device driver 
supports the printers. Magtapes fall into the same category. Since the per-CPU counters 
reside in the MDTs, the counts of reserved and allocated devices could skew if two 
printers use two different device drivers. For that reason, AUTINI examines the drive 
characteristics word (DRVCFG) in the dispatch table, looking for the global CPU counters 
bits. It then finds other drivers of the same device type (.TYxxx) and sets the counters 
in all the MDTs to the same values. 

2. Compatible controller tables are compared. These tables indicate that a single multi
ported device may have different types of controllers. For example, a multi-ported TU70 
may be accessible through three different types of channels: a DX10, DX20, or SA10. 
Once compared, if different controller types are found, AUTINI then "fixes up" various 
UDB and DDB parameters. It maximizes the lengths of the UDB and DDB and imposes 
any cache restrictions that may exist. 

3. GENTAB is built and alphabetically sorted. While the format of GENTAB has changed, 
its purpose has not. GENTAB provides access to DDBs by generic name and forms the 
basis for the high speed device search algorithm. GENTAB is arranged in two-word pairs. 
The first word contains a three-character, right-justified sixbit device name such, as LPT 
or MTA. The second word contains the address of the first DDB having the name stored 
in word one. 

10.4.1.3 AUTCPU 

The next routine to be invoked is AUTCPU. In SYSINI at the STACON label, AUTCPU is 
first called for the policy CPU. Then, for each CPU in the configuration, AUTCPU is called 
using the XCTCPU facility. (XCTCPU allows subroutines to be executed on a non-policy CPU 
during system initialization.) The asynchronous flag is set so control returns immediately to 
SYSINI, where AUTCPU is queued up to run on the next CPU, and so on. When AUTCPU 
has been started on all the CPUs, the policy CPU then waits a reasonable amount of time 
for each CPU to complete autoconfiguration. If the wait timer expires, and some CPU is still 
running, a stopcode results. 

Note 
It is important to know that this is the only time during system initialization that 
AUTCPU can be safely called. When the monitor is first loaded and started, it checks 
to see if all the CPU s in the configuration are running, giving the operator the option 
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to start those that are not running. The next opportunity to start a CPU does not 
occur until after the system has started timesharing. This behavior differs from 
earlier monitors, where AUTCON tried to allow a CPU to be started anytime during 
system initialization. This was the cause of many autoconfigure failures (false devices 
detected, bad data structures being built, and numerous crashes). 

AUTCPU is the heart of AUTCON. It is the one (fairly large) main loop responsible for 
causing the device drivers to build the data structures for all devices in the system. AUTCPU 
performs the following tasks: 

1. Saves the state of the PI system. This is necessary because, detecting the presence of a 
device requires interrupts to be disabled. 

2. Obtains the AUTCON interlock. Only one process or job should be manipulating 
AUTCON's data base at a time. The interlock is merely a spin lock, maintained on a 
per-CPU basis. 

3. On KL10s, puts the DTE20s into protocol-pause mode. This allows the KL10 to run 
for an extended period of time without having to update keep-alive counters. This 
is necessary because interrupts are disabled during autoconfiguration, and no timely 
mechanism updates the keep-alive counters. 

4. Redirects all typeout (if any occurs) to the CTY. 

5. Checks a PDP-10 device code. It does this by saving the current CONI word and trying 
to give the device a PI assignment. The presence of a device is indicated by the fact 
that the PI assignment, when read back, matches the one just set. Before proceeding, it 
resets the original CONI (and possible PI assignment) for the device. 

6. Checks a UNIBUS address. It does this by calling the UBGOOD subroutine. A non
existent CSR causes a page-fail trap. UBGOOD intercepts the page-fail traps and takes 
a skip or non-skip return, depending on whether a trap occurs. 

7. Skips the next step if the device in question does not exist. 

8. Calls all hardware device drivers in the DRVLST chain at their DRVCFG entry point. A 
driver may take one of three returns: 

• The device may not be a type supported by the driver (for example, line-printer 
service called for a TM02l3). In this case, AUTCPU steps to the next driver. 

• The device is a type that the driver supports (for example, MASSBUS disk driver 
called for an RP06). It builds the necessary data structures and requests AUTCPU 
to step to the next device code. 

• The device is a type that the driver supports (for example, TM78 driver called for an 
TM78). It builds the necessary data structures and requests AUTCPU to step to the 
next device driver, as another magtape formatter may e.xist on the same RH20. 

9. Advances to the next possible PDP-10 device code. 

10. Advances to the next UNIBUS address, cycling through all UNIBUS adapters as well. 

11. Loops back and tests this device, unless all devices on the system have been tested. 

12. Calls all software device drivers in the DRVLST chain at their DRVCFG entry point. 
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13. Calls NETSER so it can update its configuration tables and broadcast the changes to all 
nodes in the ANF-10 network. 

14. Exits from protocol pause mode on KL10s. 

15. Releases the AUTCON interlock. 

16. Restores the state of the PI system. 

This concludes the main autoconfigure loop. AUTCPU can be called under timesharing as 
well as from SYSINI. It is invoked by the OPRICONFIG AUTOCONFIGURE command or 
by executing RECON. UUO function .RCRAC. 

10.4.1.4 AUTSVS 

This is the final step in autoconfiguring during system initialization. A small number 
of devices are not auto configured but instead have their data structures assembled into 
the monitor. These devices depend on special INTTAB entries that contain information 
pertaining to the number of DDBs that must be generated, the length of the DDB, PI 
channel assignment, and so on. AUTSYS scans INTrAB for these entries, building the 
necessary DDBs and linking them into the DEVLST chain. AUTSYS replaces the old 
LINKDB subroutine in previous monitors. As with LINKDB, AUTSYS is not executed under 
timesharing. 

10.4.2 Autoconfiguring Under Timesharing 

This process takes one of three forms. It could be as simple as automatically or forcibly 
'adding a single device or drive on a controller, or as complex as configuring all devices on a 
CPU newly added into the system. 

10.4.2.1 Automatically Configuring a Single Device 

If a new device is powered on, it is sometimes desirable to have this device added into 
the system. For many devices, this can be an automatic process. These devices generate 
online interrupts. The device driver notices it is processing an interrupt for a previously 
non-existent device and marks the drive number in a bit map. Word KDBNUM (New Unit 
Mask) in the KDB contains the offset within the KDB of a bit map indexed by physical 
drive number. When a bit for a drive is set to one, it indicates that the necessary data 
structures for that device must be built. Interrupt level is an undesirable place for such a 
time-consuming process to take place. Therefore, the data structures are built during the 
once-a-second call to the driver. The driver, upon noticing a 1 in the bit map attempts to get 
the AUTCON interlock and if successful, builds the data structures and clears the bit in the 
bit map. At this point, the new drive is available for use. If the AUTCON interlock is not 
available, configuring the new drive is postponed until the next once-a-second call, when the 
bit in the bit map is again noticed, and an attempt to acquire the interlock is made again. 

Note 
To minimize overhead, a device driver tries to configure only a single device per 
once-a-second call. When an entire controller comes online (for example, a TX02 with 
16 tape drives), it takes about 16 seconds for all drives to be configured. They appear 
at the rate of one per second. 
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You may not always want a drive to be automatically configured. This is a case for the 
KDBIUM (Ignore Unit Mask) bit map. By using the OPRICONFIG SET IGNORE command, 
the operator can cause a particular drive to be ignored when the online interrupt occurs. 
This command is equivalent to DIAG. UUO function .DISDS, sub-function .DISS!. The bit 
map that KDBIUM points to is the map of drives to be ignored when a device comes online. 
Like the KDBNUM map, the KDBIUM map is indexed by physical drive number. 

10.4.2.2 Forcibly Configuring a Single Device 

Devices that do not generate automatic online interrupts on power up may still be configured. 
The OPRICONFIG ADD <device> command can be used for this function. This is equivalent 
to executing the DIAG. UUO function .DISDS, sub-function .DISSA, which attaches a single 
device. When this is done, the DIAG. UUO code invokes the device driver, gets the AUTCON 
interlock, and calls the driver at a special entry point used to configure a single device. The 
interlock is always available, in a sense, because the DIAG. code runs at UUO level, and if 
the interlock is not currently available, the job blocks (is put to sleep) until the interlock is 
free. 

10.4.2.3 Autoconfiguring an Entire CPU 

When a CPU is added into the system, initially the monitor has no knowledge of any devices 
on that CPU. The CPU, while capable of performing compute-bound tasks, cannot do 110. 
In the timesharing environment, there is little value in having only a computing engine. 
Therefore, attaching a CPU (DIAG. UUO function .DISDS, sub-function .DISSA) causes 
AUTCON to automatically run. The same entry point, AUTCPU, is used under timesharing 
as during system initialization. In all respects, it functions identically under both conditions, 
regardless of when it is called. 

10.5 Autoconfigure on a Device Driver Level 
This section builds upon your knowledge of AUTCON and examines the inner workings of 
configuring on a device-driver level. There are many different types of devices, and little 
basis for comparison between them. Therefore, the best way to illustrate what happens at 
the driver level is to examine some specific devices in the following categories: 

1. A single device 

2. A single controller on a channel 

3. Multiple controllers on a channel 

4. A software device 

This is not an all-inclusive list. However, it is sufficient to give you a basic understanding of 
what happens in some of the more common type of devices. 
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10.5.1 A Single Device 

A typical example of a single (and simple) device is a line printer. Almost any LPT driver 
is appropriate for the following discussion, but the focus will be on LPTSER, the 110 BUS 
driver. 

All device drivers contain a DRVCFG entry point. When AUTCON finds an existing device, 
it calls all its drivers at the DRVCFG entry point. In the case of LPTSER, this is the routine 
LPrCFG. Since most 110 BUS devices do not return a unique code (such as a MASSBUS 
drive type code), it is normally impossible to know that the device code that AUTCON has 
selected is an 110 BUS printer. The MDT helps LPTSER make this determination. 

You may recall that MONGEN generates MDTs with optional non-standard device codes. 
Most of the time, this is not the case, however, so the device-code field in the MDT for 
LPrSER (LPrMDT) is zero. Therefore, we must rely on the contents of the default MDT in 
the driver, because it contains the standard or default device codes for 110 BUS printers. It 
is inconvenient for LPTSER (and all the other drivers as well) to interpret the contents of 
both MDTs on each call from AUTCON, so the AUTMDT routine performs that function. 

Given the address of the generated MDT and the default MDT, AUTCON determines if the 
currently selected device code fits the requirements of the driver, LPTSER. A non-skip return 
indicates the selected device does not match the requirements. LPrSER then takes the skip 
return back to AUTCPU. AUTCPU interprets this return to mean it must try other drivers. 
A successful return from AUTMDT is indicated by a skip, and ac Tl contains the contents of 
the matching data word in the MDT. The data word is saved for later reference. 

Now, LPTSER checks to see if the DDB for the printer already exists due to a previous call 
to LPTCFG. It does this by comparing the device code with those stored in existing printer 
DDBs. The routine AUTFND (Find existing DDB) does this. If a DDB is found, the non-skip 
return is taken, and ac F contains the address. If the DDB does not yet exist, then LPTSER 
must create one. 

It is necessary to determine the name of a DDB before it can be created, because the DDB 
creation routine stores, among other things, the name and unit numbers. The next free 
unit number to be assigned is available by calling the AUTADN (Allocate Device Number) 
routine. AUTADN uses the first two words of LPTMDT to arrive at its results. The first 
word contains the reserved per-CPU counters, and the second word contains the count of 
devices allocated on a per-CPU basis. Upon return, AUTADN allocates the next available 
unit number and loads ac Tl with that number. LPTSER has only to put the three-character 
sixbit generic device name (LPT) in the left half of ac Tl, put the ANF-IO station number in 
ac T2 (zero means a local device), and call AUTDDB to create the DDB. Creating the DDB 
involves allocating core, copying the prototype DDB (from DRVDDB), storing the name, unit 
number, station number, and resolving a few other quantities. 

LPTSER then points AUTCON at the 110 instructions in the bDB and makes a call to 
AUTDVC to fill in and complete the instructions. Once completed, LPTSER performs any 
printer DDB-specific address fixups or relocations as required by the service routine. There 
are, after all, some things that AUTCON just cannot do for the driver. 
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LPrSER then causes the interrupt routine to be built. This is done by pointing AUTCON 
at the DDB and the prototype interrupt routines and calling AUTICD (Interrupt Code 
generator). AUTICD dynamically allocates core for the interrupt code and copies the 
prototype code into it. Again, LPrSER performs any address relocations in the interrupt 
code to make it functional. AUTCSO is then called to link the interrupt code into the CONSO 
skip chain. 

The final step involves retrieving the MDT data word and testing the LPT. UC bit, the 
uppercase printer bit defined by specifying non-standard data when MONGEN was run. 

At this point, the new line-printer DDB is usable. It may be OPEN'ed by LPrSPL or assigned 
to a user job. The DDB is permanent and exists until the system is reloaded. 

10.5.2 A Single Controller on a Channel 

One example of a single controller on a channel is the DX10. As you may recall, the DX10 
isn't really a controller but a channel interface to an IBM TCU (in Digital terminology, a 
TX01l2 or an STC 3800). You can, however, think of the combination of a DX10 and a TCU 
as a single entity, a controller. 

As in the case of the simple line printer, AUTCON selects an existing device. It is still up to 
the service routine (TX1KON) to determine if the device is really a DX10, and it does this in 
exactly the same way LPTSER did it- by using the MDT. 

The DX10 is a channel interface, so it must have a CHN to do its 110. TX1KON sets up Tl 
with the necessary channel-type bit, in this case, CP.DXl for a DX10. AUTCON already 
knows the device code, so there is no need to pass this information along. Then AUTCHN is 
called to either find an existing CHN or create a new one if necessary. 

Since this device can perform data transfers on one of several drives, a KDB is required. 
AUTKDB finds an existing KDB or creates one, given the information stored in the driver 
dispatch table. It also creates a block of interrupt code and links it into the CONSO skip 
chain. If the DX10 is a vectored interrupt device, the appropriate words in the KDB for 
maintaining an interrupt vector are set up. Core is also allocated for the initial channel 
program at this time, the address being stored in KDBICP. Upon return, ac W contains the 
KDB address. 

Note 
Now is the time to cause the DX10's microcode to be loaded. It is loaded regardless of 
the state the microprocessor. That is, the monitor cannct guarantee that the currently 
loaded microcode (if any) is truly functional. As a safety measure, this step is always 
performed. This step is not necessary for all controllers. 

TX1KON then checks to see if each possible drive exists. For IBM channel devices, this is a 
rather expensive undertaking. Therefore, blocking checks are performed only during system 
initialization. If configuring under timesharing, a request to read sense bytes is queued to 
the TCU. The results are received at interrupt level and are processed like the automatic 
online interrupts generated when the system powers up, described earlier. Assume that the 
magtape subsystem is being configured at system initialization time. 

If the drive responds, and the proper identifying sense bytes are returned, it is time to build 
the UDB and DDB. If there is no response, or invalid sense bytes are returned, then the 
drive is assumed not to exist, and TX1KON steps to the next drive. 

10-26 Device Service 



First, the drive serial number is retrieved. Note that like most devices, DX10-based magtape 
drives return only a single serial-number word. This word is temporarily stored as the 
low-order word in the serial-number word pair. 

The serial-number words, along with the physical drive number, are used as arguments to 
the AUTDPU (Dual-Ported Unit check). (The term dual-ported is historical and is often 
used when multi-ported is really meant. AUTDPU searches all other magtape controllers 
for a matching controller type, based upon the contents of the compatible controller tables. 
If a match is found, then the serial number and physical drive number of the drive being 
configured are compared to those already configured. If a match results, then a multi-ported 
drive has been detected, and the appropriate link words are updated in the UDBKDB table 
for the existing UDB. 

Density, track, interrupt bits, and hung device timers are gathered and fed to the routine 
TAPDRV. This routine (in TAPSER) is common for all types of magtape drives on all types 
of controllers. It creates the UDB and DDB if it is necessary to do so. 

AUTUDB creates a UDB if it does not already exist. One of the arguments in the calling 
sequence is the UDB table offset (in the KDB). Using this offset, AUTUDB tests the table 
entry for a nonzero value, a UDB address. This word may have been previously filled in 
by AUTDPU if the drive is ported to some other controller. Consequently, the UDB pointed 
to may really be "owned" by another controller. Owned is not really accurate, but best 
describes the situation. In the normal case, the name of the UDB is derived from that of the 
KDB. For example, if the KDB being configured has the name MTB, then the most logical 
name for drive zero on the controller is MTBO. If, however, the drive is ported to another 
controller that was configured first, for example, the MTA controller, then the UDB name 
is set to MTAO. Now, here's a situation where the MTB controller has access to the MTAO 
drive. While this doesn't present any problems from a software standpoint, it may confuse 
some people who are not aware that multi-ported magtapes use a single UDB and DDB. In 
reality, one controller has no more influence over the drive than another. Hence, owner is 
used incorrectly. 

A DDB is created for the drive if one did not already exist. The KDBNUM bit map entry 
for the drive is cleared, because the device really does exist along with its data structures. 
The KDBIUM bit map entry is also cleared, as it makes no sense to configure a device that 
would immediately be ignored. 

Control returns to TX1KON, which steps to the next possible drive until all are tested. 

10.5.3 Multiple Controllers on a Channel 

This hardware arrangement is not much different from the case of a single controller on 
a channel. The important difference is that some channels, like a DF10CIRH10, RH20, 
or SA10 can communicate with several controllers rather than just one. One example of 
multiple controllers on a channel is the TM78 magtape formatter. The TM78 co-exists with 
other TM78s or TM02/3s on a single RH20. Each formatter is assigned (by hardware) a 
MASSBUS unit number. This quantity is referred to by many different names in various 
hardware and software manuals. Another term is the MASSBUS device code. 
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The autoconfigure process is the same as in the case of a single controller on a channel, 
with one exception. After configuring, rather than taking the non-skip return, which tells 
AUTCPU to step to the next device, the monitor takes the skip return. AUTCPU then calls 
additional drivers. AUT CPU has no knowledge of what happened on the initial call. It does 
not know whether the TM78 was configured. It has no need to know. 

10.5.4 A Software Device 

Software devices are unique in that they are a figment of the monitor's imagination! They 
are not tangible devices, nor are they associated with a piece of hardware. One example of 
a software device is the multiplex channel (MPX). Since this is not a hardware device, most 
of the system initialization logic to configure a device was bypassed. One of the last things 
AUTCPU does is scan all drivers for software devices. 

Like all other drivers, MPXSER has a DRVCFG entry point (MPXCFG). System initialization 
for this driver is very simple. It needs to initialize (zero) a single counter. To avoid doing 
this on subsequent AUTCPU calls (either on non-policy CPUs or under timesharing), it also 
maintains a flag that indicates that MPXSER has been initialized. 

MPXSER uses some parts of AUTCON under timesharing, however. When a DDB needs to 
be created as the result of an OPEN UUO for example, MPXSER first acquires the AUTCON 
interlock. Since this can happen only at UUO level, AUTLOK always returns with the 
interlock, possibly after having blocked the job until the interlock is available. 

A call to AUTSET is necessary to set up various CPU variables, principally the address of 
the driver dispatch table (MPDDSP). 

Since MPXSER maintains its own copy of device counters in MPXNUM, it's not necessary to 
call AUTADN to do any allocation. Therefore, it only has to increment its device count and 
supply AUTDDB with the generic device name ofMPX.AUTDDB does all the usual work of 
dynamically allocating core, storing the device name, and so on. 

When a RELEASE UUO is executed, the MPX DDB needs to be deleted. This is done by 
loading ac F with the DDB address and calling AUTKIL (Kill DDB). AUTKIL unlinks the 
DDB from the DEVLST chain, removes any GENTAB entry if necessary, and returns the 
core used by the DDB. 

10.6 1/0 Subroutines 
When the implementation plans for the new autoconfigure methods were being drawn up, 
it became apparent that many devices required the use of similar monitor services. For 
example, many device drivers needed to refer to MASSBUS registers, yet each driver had its 
own set of subroutines to perform the task, and the calling sequences were often unique to 
each driver. Obviously, with a little effort, things could be reorganized and code consolidated. 
Other examples exist as well. 

In addition to the autoconfigure routines, AUTCON is also a repository for common 110 
routines. This did not come about by design, but evolved as a matter of convenience, because 
there is no other good place to put common I/O subroutines. The following sections briefly 
describe some of the more important subroutines. 
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10.6.1 MASSBUS Register 1/0 

MASSBUS channels have several registers. The number of registers vary depending upon the 
type of channel (RHI0, RHll, and others). The registers are accessed using DATAIlDATAOs 
(KLI0) or RDIOIWRIOs (KSI0). Some registers reside in the channel itself and others in the 
devices connected to the channel. 

There is always a possibility that an attempt to read or write a MASSBUS register will fail 
due to faulty hardware. This failure is referred to as a Register Access Error (RAE). In order 
to defend against RAEs, a complex series of instructions is required. Drivers that do not care 
to recover from RAEs use simple DATAIs and DATAOs. Some of the following subroutines 
contain code to defend against RAEs. 

10.6.1.1 ROOTR 

Read Drive Type Register (RDDTR) is used primarily by the autoconfigure routines, but could 
be used any place where reading the drive type code is necessary. The calling sequence is 

SKIPA Pl, [MASSBUS-UNIT"O] iIF AUTOCONFIGURING 
MOVE W,KDB-ADDRESS iIF NORMAL TIMESHARING 
PUSHJ P,RDDTR## 
<return> 

On return, ac T2 contains the MASSBUS drive type code. All other ac's are preserved. 

10.6.1.2 ROMBR 

Read MASSBUS Register (RDMBR) reads the contents of a specified register and defends 
against RAEs. It is used both by the autoconfigure code and the various device drivers. The 
calling sequence is 

SKIPA Pl, [MASSBUS-UNIT"O] iIF AUTOCONFIGURING 
MOVE W,KDB-ADDRESS iIF NORMAL TIMESHARING 
MOVE T2,REGISTER 
PUSHJ P,RDMBR## 
<return> 

On return, ac T2 contains the contents of the specified MASSBUS register. All other ac's are 
preserved. Normally, RAEs do not happen, so much of the complex code is never executed. If 
an RAE occurs, RDMBR tries up to 10 (decimal) times to read the register before giving up. 
If after all retries the error persists, then ac T2 is returned to the caller with whatever data 
bits the channel managed to retrieve from the register. The caller gets no indication that an 
error has occured. . 

10.6.1.3 SVMBR 

Save MASSBUS Register (SVMBR) is a co-routine used by interrupt levels to save the 
current address register, which may be in use by a higher (UUO) level routine. The calling 
sequence is 

MOVE 
PUSHJ 
<return> 

W,KDB-ADDRESS 
P,SVMBR## 

Device Service 10-29 



SVMBR uses no ac's. All ac's are preserved. This routine is not defined in KS10 monitors, 
as the registers on a KS10 are I/O addresses offset from the UNIBUS baselCSR address for 
the device in question. Hence, there is no register number to preserve. 

10.6.1.4 WTMBR 

Write MASSBUS Register (WTMBR) writes the contents of ac T2 to the specified register and 
defends against RAEs. It is used both by the autoconfigure code and by the various device 
drivers. The calling sequence ·is 

SKIPA Pl, [MASSBUS-UNIT"O] ;IF AUTOCONFIGURING 
MOVE W,KDB-ADDRESS :IF NORMAL TIMESHARING 
MOVE T2,REGISTER 
PUSHJ P,WTMBR## 
<return> 

All ac's are preserved. Normally, RAEs do not happen, so much of the complex code is never 
executed. If an RAE occurs, WTMBR tries up to 10 (decimal) times to write the register 
before giving up. The caller gets no indication that an error has occured. 

10.7 Finding Data Structures 
Since AUTCON builds nearly all of the I/O data structures, it is logical to assume that many 
of the pointers to these pieces of data reside in AUTCON. Knowing just a little information 
about the type of data structure you are interested in is usually enough to easily locate it. 

10.7.1 DDBTAB - DDB Table 

The table DDBTAB is indexed by device type (.TYxxx). Each entry in the table contains the 
3D-bit address of the prototype DDB of its type in the system. Prototype DDBs are also linked 
into the DEVSER chain. The left half of DEVSER in the DDB contains the 18-bit address of 
the next DDB in the system. The DEVSER chain is a forward linked list, terminated by a 
zero. 

10.7.2 DEVLST - DDB List 

The word DEVLST resides in COMMON and contains the address of the first DDB in the 
system. The left half of the word contains the DDB address. The right half is unused. 

10.7.3 DRVLST - Driver Dispatch Table Chain 

The location DRVLST contains the 3D-bit address of the first driver dispatch table in the 
system. Offset DRVNXT in a dispatch table contains the 3D-bit address of the next dispatch 
table in the system. The DRVLST chain is a forward-linked list, terminated by a zero. 

10.7.4 HNGLST - Hung-checked DDB List 

The contents of this word are identical to that of DEVLST. The word is no longer used by 
the monitor, as the method for testing potentially hung devices does not do a DDB-by-DDB 
search of the DDB chain. HNGLST is, however, maintained for the sake of programs that 
GETTAB its value to find DDBs. It should otherwise be considered obsolete. HNGLST 
resides in COMMON. 
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10.7.5 KOBTAB - Controller Table 

The table KDBTAB is indexed by device type (.TYxxx). Each entry in the table contains 
the 30-bit address of the first KDB of its type in the system. Offset KDBNXT in the KDB 
contains the 30-bit address of the next KDB of its type in the system. The KDB chain is a 
forward-linked list, terminated by a zero. 

10.7.6 SYSCHN - Channel List 

The word SYSCHN resides in COl\flv.lON and contains the address of the first CHN in the 
system. The left half of the word contains the CHN address. The right half is unused. 

10.7.7 OIAG. UUO Function .OIOVR 

Originally written for diagnostic use, DIAG. DUO function .DIDVR reads device registers. 
You may wonder how it is possible to implement a generic diagnostic function to do something 
that is quite device specific. That's easy for the monitor to do as long as the calling program 
supplies all the necessary information. Given a device name, a starting offset, and a word 
count to return, this function finds the data structure and returns as few or as many words 
as the program desires. 

If this function were to be used as intended, the calling program would most likely GETTAB 
the offset of stored register values and supply that offset to the DIAG. DUO. For example, a 
diagnostic program could read the offset to the start of the stored MASSBUS registers in the 
KDB, using GETrAB %LDMBR. Then it would retrieve those registers from the monitor, 
using DIAG. function .DIDVR as follows: 

MOVE T1, [%LDMBR] iGETTAB ARGUMENT 
GETTAB T1, iREAD OFFSET FROM MONITOR 

HALT iANCIENT MONITOR 
HLRM T1,OFFSET iSTORE OFFSET IN RH OF WORD 
MOVE T1, [-23"ARG] ;23 WORDS AT LOCATION "ARG" 
DIAG. T1, iREAD REGISTERS INTO "DATA" 

HALT iPRE-704 MONITOR 
<program contin~es> 

ARG: EXP 
SIXBIT 

OFFSET: XWD 
DATA: BLOCK 

.DIDVR 
/RPA/ 
-20,0 
20 

;DIAG. FUNCTION CODE 
iDEVICE NAME 
i-NEGATIVE COUNT"OFFSET 
iSTORAGE FOR 16 REGISTERS 

N ow suppose you have to diagnose a software problem with a line printer, and you have 
reason to believe there is something wrong with the DDB. You may retrieve the entire DDB, 
using DIAG. UUO function .DIDVR and save yourself the trouble of having to find the DDB 
in the monitor. To begin, put the appropriate DDB name in ARG+1. Assuming the length 
of the DDB in question is 61 (octal) words, in word OFFSET, put -61,,0. The BLOCK 20 
becomes a BLOCK 61, because you are returning the entire DDB. All that is left to do is put 
-64"ARG in ac Tl and execute a DIAG. DUO. Note that the DDB length of 61 words plus 1 
word for the data structure pointer (-61,,0) plus 1 word for the device name plus 1 word for 
the function code word equals 64. The DIAG. UUO expects a negative argument block length 
in the left half of the ac and the address of the argument block in the right half of the ac. 
Upon completion of the UUO, the entire printer DDB is returned, starting at location DATA. 
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10.8 Device Service Routines 
The device dispatch table in the DDB, not to be confused with the driver dispatch table, DRV, 
provides a standardized set of entry points for all DUO-level functions for this device. There 
are two possible table formats: short and long. The short table format contains only the 
basic entries required of all service routines (initialization, IN, OUT, RELEASE, and others). 
If the device requires any additional functions (such as LOOKUP for directory devices), it 
must have a long dispatch table. The DVLNG bit in the DEVMOD word of the DDB specifies 
the format the corresponding dispatch table has. The base address of the dispatch table is 
contained in the right half of the DEVSER word of the DDB. 

Most of the DUO-level routines depend so much on the nature of the device that they handle, 
that little can be said about them in general. The initialization routine is called during 
system initialization and performs whatever functions might be appropriate. Generally, all 
condition bits for the device are initialized, and its priority-interrupt level assignment is 
cleared. The RELEASE routine usually performs this same function. The CLOSE routine 
does whatever is appropriate for the completion of a file on its device. For example, the 
paper tape punch routine punches several inches of leader. The disk routine adds an entry 
for the new file to a directory upon output CLOSE. 

The only routine in the dispatch table that is not the device-dependent part of the DUO is the 
hung-device routine. When a transfer is started on a device, a hung-device timer is initialized 
in the DEVCHR word. Each second, the clock-interrupt routine calls DEVCHK in UUOCON. 
Here, the timer is decremented for each active device. The expected interrupt clears the 
field. If the field is, however, decremented to zero, the interrupt has not occurred within a 
reasonable amount of time. Assuming that the device is hung, the monitor dispatches to 
the hung routine in the device service routine. This routine can try to either recover from 
the hung condition or reinitialize the device. If the device-hung routine gives a skip return, 
no further action is taken by DEVCHK. If the device-hung routine gives a non-skip return, 
DEVCHK calls the DEVHNG routine in ERRCON. DEVHNG clears the IOACT bit for the 
device and types an error message on the job's controlling TTY. The job is stopped unless it 
has enabled error trapping for hung devices. 

The function of the input and output routines is to start the device. Normally, this is 
done by executing a DATAIIDATAO on a KL10 or a RDIOIWRIO on a KS10. For disks, 
however, usually only a request is added for a transfer to an appropriate queue, and the 
actual transfer is started at a later time. The IOACT bit is always set before returning to 
device-independent code, indicating that an interrupt is expected from this device. As long 
as IOACT remains set, the device-independent code does not call the device-dependent code 
again, because the function of starting the device does not need to be performed. 

Several other housekeeping functions are performed. The hung time is initialized, if one is 
specified for this device. The IOFST bit in DEVIOS is set to inform the interrupt routine 
that the next interrupt is the first for the buffer. 
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Chapter 11 

Disk service 

The disk-service routine is the most complicated of all the service routines, because it must 
manage a sharable resource, and it has a complicated in-core data base. This module 
explains how jobs compete for use of the disk, how that competition is resolved by the queue 
mechanism, and how I/O is done within the framework of the file structure. 

All device-dependent functions for disk files are performed by a group of modules known as 
the disk service. The disk service performs two different and logically independent types of 
functions: I/O operations and file operations. I/O operations are the reading and writing 
of specific blocks on specific units. File operations involve the processing of directories, 
pointers, and related items. The file-processing software accepts logical requests stated in 
terms of file names, file structures, and relative blocks within a file. From such requests, it 
sets up physical requests for operations on specific blocks that can then be handled by the 
I/O software. The file processor frequently calls upon the I/O processor to read and write 
various special disk blocks. 

The disk software includes several modules that are assembled separately and included in 
the monitor, as needed, at load time. Most of the executable code is included in FILFND, 
FILIO, and FILUUO. (These modules are frequently referred to as FILSER, the name taken 
from the early disk service module that was eventually separated into the three we have 
today.) These modules perform all operations that are independent of the controller type 
and are present in all monitors. There are separate routines to handle controller-dependent 
functions on each controller. These routines (RPXKON for RHl0/11/20s, RNXKON for 
DX201RP20s, RAX.KON for HSC/CI20s, DSXKON for SAlOs, and others) are loaded only if 
needed. SWPSER creates I/O requests for the swapper and interfaces with FILIO. The data 
base for the disk service is contained in the modules named COMDEV and COMMOD. 

11.1 Hardware Principles 
Each disk unit is connected to a channel controller, and all communications to that unit 
must go through the controller. 
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A channel is connected to the CPU by way of an 110 BUS, MASSBUS, or Interconnect Port 
Adapter. Internally to the CPU, each of the above-mentioned paths uses the CBUS, which 
provides Direct Memory Access (DMA) facilities. Thus, memory accesses do not interrupt the 
CPU. Ultimately, data passes through the MBOX and in or out of memory. 

Each disk transfer is started by the CPU executing a DATAO to a specific controller. As a 
result of the DATAO, a word is sent to the controller. This word specifies one particular unit 
of those connected to the controller, a physical disk address (track number and other items) 
and the core address of a list of core areas. The transfer is to or from consecutive locations 
on the disk, but may be scattered among an arbitrary number of core areas. The length 
and address of each of these core areas are on the list whose core address is sent to the 
controller. This list is known as the Channel Command List. The total length of the areas 
on the Channel Command List determines the number of words transferred. 

Before a transfer can be started, the unit must be positioned, and the controller and the 
data channel must be idle. All are busy until the transfer is complete. The CPU, however, 
is needed only for the time required to send the instruction to the controller. It can then go 
on processing while the transfer to memory takes place. When the transfer is complete, the 
controller causes an interrupt on its assigned channel. 

Note 
Some units can perform implied positioning. That is, the monitor is not required to 
position the heads before a transfer is to take place. Still other units have no separate 
positioning commands. The monitor attempts to optimize I/O and minimize head 
movements by performing head positioning before starting a transfer. Regardless of 
the unit capabilities, the movements of the I/O requests through the various disk 
queues assume independent positioning will take place. However, for some units, 
certain states within I/O queuing are essentially noops. 

Before a request can be positioned, the unit must be idle. The unit is then busy until it 
reaches the designated track, but the controller is almost immediately available for other 
operations. When the unit reaches position, it informs the controller. The controller causes 
a priority interrupt at that time if it does not have a transfer in progress. If the controller 
is busy when the unit reaches position, there is no interrupt, but an attention bit for the 
unit is set in the controller. When the interrupt occurs upon completion of a transfer, the 
attention bits indicate which units reached position (or had errors) during the transfer. 

Note 
Some controllers, such as an RH10/11l20, can initiate multiple positioning requests 
to idle units even though an I/O transfer is taking place on a busy unit. Other 
controllers, such as a CI20IHSC, allow multiple transfers on one or more units. And 
block multiplex channels, such as an SA10, allow multiple operations, but only one to 
any given unit. 

The basic addressable unit of disk storage is a sector. It is sometimes useful to know which 
sector (of each track currently accessible) will reach the read-write heads next. Therefore, 
the controller has a sector counter for each of its units. The contents of the sector counter 
for a given unit may be obtained by reading the appropriate device register for the channel 
in question. 
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11.2 Structure of disk files 
To the software, the basic unit of disk storage is a block, which is always 128 words. Any 
number of blocks may be combined to make up a file. To normal user programs, disk blocks 
can be read or written only as part of a file. The file is identified by a file name and extension, 
and by the project-programmer number of its owner. The program may read or write the 
blocks of a file either sequentially or randomly (directly). Likewise, the file may be accessed 
in either buffered mode or dump mode. The structure of a file is independent of the manner 
in which it was written or is to be read. 

The first block of every file is a Retrieval Information Block (RIB). The RIB contains a great 
deal of descriptive information about the file, and tells where the data blocks of the file are 
located. The RIB itself, however, is not a data block and is never seen by a program reading 
the file nor directly written by a program writing a file. The monitor reads and writes RIBs 
as necessary in order to perform functions requested by user programs. 

Files are usually written as groups of consecutive blocks. There is a pointer in the RIB 
corresponding to each group. The pointer tells the location of the first block of the group and 
the number of blocks in the group. It is desirable to have as few separate groups as possible. 

11.3 Oi rectories 
The locations of all files belonging to one user are found in a User File Directory (UFD) for 
that user. The UFD is itself a file with an RIB and the normal structure of a file. The 
file name of a UFD is the binary project-programmer number of the user. The extension is 
always UFD. The data blocks of a UFD contain two-word entries. Each entry points to the 
RIB of a file belonging to that user, and specifies its name and extension. 

All the UFDs belong to an "artificial user" with project-programmer number [1,1]. No other 
files belong to [1,1]. Hence, the UFD for [1,1] is a directory to the directories. It is commonly 
called the Master File Directory (MFD). The collection of files consisting of an MFD, all the 
UFDs to which it points, and all the user files to which the UFDs point to is called a file 
structure. 

11.4 File Structures 
As a collection of files, the file structure is logically independent of any hardware 
considerations, such as units and controllers. In actual practice, however, there are 
several restrictions. All the files on a single pack or unit must belong to the same structure. 
A single structure may be spread over several separate units. . 

The file structure, rather than the unit, is the logical entity recognized by the file processing 
software. On every LOOKUP or ENTER, a structure or list of structures must be specified. 
(Note that a file name and extension and project-programmer number uniquely identify a 
file only within a given structure). If any part of the structure is removed from the system, 
the entire structure becomes inaccessible. There is only one case in which data is accessed 
without necessarily being part of a file structure: the swapper addresses the disk system in 
terms of physical disk addresses. 
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11.5 Allocation of Disk Space 
Before a block can be added to a file, it must be allocated for that file. Disk space is allocated 
in clusters, where a cluster is a fixed number of consecutive blocks. On each unit, there are 
Storage Allocation Tables, or SAT blocks that have a bit corresponding to each cluster of the 
unit. If a cluster is allocated, the corresponding bit is set in the SAT block. The bit's being 
set prevents that block from being allocated to any other file. 

The number of blocks per cluster is a parameter of the file structure and can be changed 
only when the structure is refreshed, or reinitialized. The total number of clusters for a unit 
depends on the size of the unit and the number of blocks per cluster. There may be more 
clusters than can be accounted for with a single SAT block. In this case, there are as many 
separate blocks of SATs as necessary, and each SAT block is physically near the blocks that 
it describes. All the SAT blocks for a file structure are combined into a file called SAT.SYS. 
This file is initially set up by the REFRESH code, and the information in it is updated 
regularly as the system operates. However, SAT.SYS is not normally read or written as a 
file. There is, in core, a Storage Allocation Pointer Table (SFT) for each unit, which tells the 
physical disk address of each SAT block for that unit. When the monitor needs to read or 
write a SAT block, it sets up a request for the specific block that is needed. 

When an SAT block is in core, it resides in a Storage Allocation Block (SAB). All the SABs for 
a unit are linked together and to the SPT for that unit. If a unit has several SAT blocks, all 
of them may, or may not, be in core at one time. The number of SAT blocks to be kept in core 
is a parameter of each unit. This parameter may be changed without needing to refresh the 
structure. The SABs and SPTs are kept in Section MS.SAT of the monitor's address space. 

Disk space is allocated in two different ways. If a user is writing a file and reaches the end 
of the space previously allocated, additional space is allocated at that time. If possible, the 
space is allocated immediately after the last group, so that an additional pointer will not 
have to be set up. The number of blocks to be allocated is a parameter of the structure and 
may be changed without refreshing. The user may explicitly allocate any number of blocks 
at the time he builds a file, by doing an extended ENTER. These blocks are allocated as 
a single group of consecutive blocks, allowing the file to be written or read with the least 
amount of overhead processing. When the file is closed, any unused blocks are returned. 

The disk I/O-processing software maintains information about each piece of disk hardware in 
three main data structures whose definitions can be found in DEVPRM.MAC. These include 
the Unit Data Block (UDB), Controller Data Block (KDB), and Channel Data Block (CHN). 
The I/O processor acts on requests set up by other processors. Each request resides in a 
disk device data block, and specifies a unit, block number, core address, and operation to be 
performed. Significantly, the number of words to be read or written is not specified initially, 
but is determined just before the transfer is initiated. A disk device data block (DDB) has 
all the standard features of any DDB, plus a great deal of additional information unique to 
a disk. Disk DDBs are set up dynamically as INIT UUOs, and·ASSIGN commands, which 
give a logical name to disk, are executed. There is, therefore, a DDB for each user software 
channel that may do disk I/O. Every disk transfer is the result of a request being set up in a 
disk DDB and presented to the I/O processor. This includes reading and writing of user files, 
swapping transfers, and all transfers done by the monitor for its own purposes. 
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11.6 Request Queues 
When an 110 request is presented to the 110 processor, the transfer or positioning is started 
immediately if all the necessary devices are available. Sometimes, however, the request must 
be added to a queue of requests for a specific device. If the request requires positioning, it 
is added to the Position Wait (PW) queue for a specific unit. If the request does not require 
positioning (that is, the unit is positioned properly), it is added to the Transfer Wait (TW) 
queue for the data channel. The queues are formed simply by linking together the DDBs 
beginning with the UDB for a PW queue or the CHN for a TW queue. 

Every time there is a disk interrupt, each unit that needs positioning is positioned for one of 
the requests in its PW queue. Then a transfer is started for one of the requests in the TW 
queue for that channel. Two optimization routines choose the request to process next. 

11.7 Optimization Routines 
The positioning and latency optimization routines try to choose the best request to process 
next from the PW and TW queues. To decide what is meant by best is somewhat difficult, 
but there are two basic considerations. First, an attempt is made to minimize the time that 
each unit is not doing data transfers. In addition, an attempt is made to try not be grossly 
unfair to any individual request. It is undesirable to delay one request indefinitely in favor 
of requests that can be processed more efficiently. Therefore, each optimization routine 
chooses, every so often, the request that has been waiting the longest. 

Fairness counts are maintained for positioning and for transfers on each data channel. Each 
time there is a transfer-done interrupt, the fairness counts for that channel are decremented. 
On an interrupt when the positioning fairness count has expired, each unit that needs 
positioning is sent to the track required by the oldest request in its PW queue. Similarly, if 
the fairness count for transfers has expired, the transfer is initiated for the oldest request in 
the TW queue. Whenever either count expires, it is reset to a value that may be specified 
when the monitor is built. 

Bottlenecks can occur at both unit and channel levels. Contention at these levels can be 
reduced by spreading demand over several channels, and if possible, by avoiding keeping 
high-use system files, user files, and swapping space on the same unit. 

11.8 Data Structures 
Many data structures support disk service. They are fairly complex, mainly because each 
data structure is often linked to one or more other disk-related data structures. Because 
there are so many data structures, it is difficult to define one without making references to 
others. So, they are presented in the following sections in a hierarchical fashion and logically 
separated into groups that are file-structure, data-file, and hardware related. 
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11.8.1 FiI~ Structure Data Base 

User file data resides on file structures. A file structure is a logical organization of one or 
more (up to 63) disk packs, arranged by the monitor for reading and writing data on behalf 
of a timesharing user. This organization makes it possible for a user to perform I/O to any 
data file without specific knowledge about the physical disk types involved or the number of 
disks that constitute the file structure. Once a file structure is made available (mounted) on 
the system, it may be referred to as a device. The monitor always treats file structure names 
as physical devices. 

All user disk information is stored as named files according to a method that allows the 
information to be accessed by name instead of by physical disk address. A named file is 
uniquely identified in the system by a file name and extension. A file name consists of one to 
six alphanumeric characters, and extensions can have between zero and three alphanumeric 
characters. File names and extensions are stored in ordered lists called directories. A 
directory is no different from any user data file, except that its contents describe file names, 
extensions, and locations on a structure. 

11.8.1.1 TABSTR 

This is a table that contains the addresses of each structure data base (STR) in the system. 
The table is indexed by file-structure number, the range being from 1 to 36. File-structure 
numbers are used only by the monitor. A user has no need to know the number of a file 
structure. Therefore, it is impossible for a user to obtain this information. File structures 
are typically referred to by name. 

TABSTR is defined in COMMOD. 

11.8.1.2 Structure Data Block (STR) 

One STR exists for each file structure mounted on the system. The STR contains, among 
other thin&"s, the structure name, the file-structure number, its size, the amount of free space 
remaining on the structure, the number of jobs that have mounted the structure, and the 
owner (if any). The STR also contains the address of the first Unit Data Block (UDB) in the 
structure. +-5 ··iI~LUJ I 
When a structure is defined (mounted by a privileged program), a STR is dynamically 
allocated out of section zero free core. When a structure is removed (dismounted by a 
privileged program), the STR is returned to the free core pool. 

11.8.1.3 Job Search List (JSL) 

A JSL defines a list of one or more structures that represent device DSK If a user program 
specifies DSK for the device name and instructs the monitor to read a file, the monitor looks 
for the file starting with the first structure in the JSL, and tries each additional file structure 
in the JSL until the file is found or the end of the JSL is reached. 

The JSL resides in the PDB. The format is a simple nine-bit byte stream, each byte containing 
a file structure number or special codes that delimit portions of the search list. 
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11.8.1.4 System Search List (SSL) 

An SSL defines a list of one or more structures that represent device SYS. In all other 
respects, the use of the SSL is identical to the JSL. 

The SSL resides in COMMOD at location SYSSRC. The format is the same as the JSL. 

11.8.2 File Data Base 

A data file is the logical organization of one or more disk blocks that contain user data and 
one or more disk blocks of monitor-related data for retrieving the file. File 110 is performed 
in a fashion independent of the type of disks involved. 

11.8.2.1 Job Device Assignment Table (USRJDA) 

The USRJDA is part of the job's UPr, at location USRJDA, with an extension that .USCTA 
points to. It has one entry per user channel. Each entry is zero if the channel has not 
been initialized. Otherwise, it has flags in the left half, indicating which UUOs have been 
performed on behalf of the channel, and the right half contains the address of a DDB. In 
particular, it contains the addresses of any disk DDB that the user has initialized as an 110 
device. 

11.8.2.2 Disk Device Data Block (DDB) 

One DDB must exist for each file opened by a user program. This is true not only for disks, 
but for all other devices as well. The disk DDB is different from most other DDBs in that 
one does not exist for each device, as is the case for unit record devices. 

When a disk file is opened, the monitor dynamically creates a DDB by allocating per-process 
(funny space) core. A prototype DDB (DSKDDB) is copied into the newly allocated core, and 
relevent words are then filled in with data specific to the file being opened. When the file is 
closed and the software channel released, the DDB is returned to the funny space core pool. 

The disk DDB definitions are in COMMOD.MAC. 

11.8.2.3 Retrieval Information Blocks (RIB) 

An RIB resides on disk and contains all file attributes and data necessary for the monitor 
to locate the user data blocks associated with a file. There are usually two RIBs associated 
with each file on disk. The first is called the prime RIB. The second is the redundant or 
spare RIB. The spare RIB is a copy of the prime RIB and immediately follows the last data 
block in the file. It is written by the monitor but never read. It is used by disk damage 
assessment and recovery programs. 

An extensible portion of the RIB contains retrieval pointers, or words of information that 
describe regions of the disk that hold user data. The monitor allocates disk blocks for user 
data as the file is being written. To optimize disk usage, the monitor attempts to allocate 
contiguous regions on disk. However, due to fragmentation, this is not always possible. 
Therefore, it is conceivable that for a very large file, or on a badly fragmented disk, the 
storage area for retrieval pointers may be exhausted. When this occurs, the monitor creates 
an extended RIB on disk. The last retrieval pointer in the prime RIB points to the extended 
RIB. In the event that the retrieval pointer storage is exhasted in the extended RIB, a second 
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extended RIB is created. A file may have a maximum of eight extended RIBs. Regardless of 
the number of extended RIBs, a spare RIB is always written following the last data block. 

A retrieval pointer has one of two formats. The first format is always found in the first 
retrieval pointer of prime RIBs. It is called a change of unit pointer. Because a file structure 
can span more than one physical disk unit, a change of unit pointer is used to direct the 
monitor's 110 to a particular logical unit within the structure. The second type of retrieval 
pointer is used to describe a region of the disk that contains data. The items contained 
within this pointer are a cluster count, a checksum, and a cluster address. The cluster 
count indictates the size of the disk region (in clusters) where data is stored, and the cluster 
address indicates the beginning of the data. The checksum is used as a consistency check to 
insure that data within the first block of the region is valid. 

11.8.2.4 Access Tables (ACC) 

An ACC block is created for every different version of an opened file. The ACC is essentially 
a cache of frequently referenced per-file data. The information contained within an ACe 
block includes the highest relative block allocated, the written file size, file read and write 
counts, address of the Name Block (NMB), address of the Project-Programmer Block (PPB), 
and portions of the RIB for quick file access. Every time a file is opened for reading, the file's 
read counts are incremented. When a file is closed, the read or write counts are decremented 
appropriately. If both counts are zero, the ACC is said to be dormant; that is, there are 
no users reading or writing the file. Dormant ACCs are not deleted. Instead, they remain 
available to the monitor to provide quick access on subsequent operations to the same file. 

ACCs are dynamically allocated out of FILSER core. This core pool is created at system 
initialization time and consists of a fixed number of words. When the FILSER core pool 
is exhausted, the monitor scans the ACCs, looking for those that are marked as dormant. 
Dormant ACCs may be deleted, thus providing the necessary storage for additional ACCs or 
other FILSER-related core blocks. . 

The ACC definitions are in COMMOD.MAC. 

11.8.2.5 Name Blocks (NMB) 

To optimize locating files, the monitor memorizes file-name information on a per-directory 
basis in an NMB. The NMB contains the ACC address, the directory use count, and the 
know and yes words. Use counts indicate how many users of a directory exist. The know 
and yes words are bit masks, one bit for each structure on the system. Bit n in the know 
mask indicates the monitor knows whether or not a file exists on file structure n. The 
corresponding bit in the yes mask is turned on if the file definitely exists. 

NMBs are dynamically allocated out of FILSER core. 

The NMB definitions are in COMMOD.MAC. 
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11.8.2.6 Project-Programmer Blocks (PPB) 

PPBs are used to retain directory-related information. One PPB is created for each logged-in 
PPN, or for every file which is opened in a unique directory. The PPB contains a link word 
to an NMB, and like the NMB, also contains the know and yes masks. These two masks are 
used for the same purpose as their counterparts in the NMB, except that the masks refer to 
directories rather than to specific files wi thin directories. 

PPBs are dynamically allocated out of FILSER core. 

The PPB definitions are in COMMOn.MAC. 
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Chapter 12 

Scanner Service 

The terminal scanner service (SCNSER) is the interface between the terminal device service 
routines and the monitor. It processes special terminal characters and directs the 110 to the 
correct process. This chapter presents the important scanner service data structures and 
concepts. 

All device dependent functions for terminals are performed by the Scanner Service comprising 
SCNSER and an additional routine depending on the type of scanner. This additional routine 
might contain actual I/O instructions, and will contain the beginning of the interrupt routine, 
and other sections which vary according to the scanner being used. The bulk of the service 
routine is independent of scanner type, and is contained in SCNSER. The data line scanner 
acts as a relay station connecting the DECsystem-10 to all user terminals. Terminals 
communicate with the scanner and the scanner communicates with the DECsystem-10. 
Along with every character received from the scanner is a line number identifying the 
terminal from which it was sent. Similarly, a line number must be included with every 
character sent to the scanner. Whenever a line scanner has finished an operation, it causes a 
transmit done interrupt to call scanner service. The scanner scans the flags for all terminals 
and causes an interrupt in the DECsystem-10 whenever any terminal is ready for service. 
One of the major functions of the scanner service is handling these interrupts. 

SCNSER considers all data line scanners to be equivalent interfaces for allowing terminals 
to communicate with the DECsystem-10. While the various interfaces may have significant 
protocols and complexities of their own, they will not be covered here. 

12.1 Data Structures (General) 
The DECsystem-10 has two major divisions of data structures for its terminal data: line
based information and job-based information. Loosely speaking, the line information is used 
primarily at the device interrupt and clock interrupt levels, and the job information is used 
mainly at UUO level. 
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12.1.1 Line Information 

There are three main structures for line information: LINTAB (the line table), the Line Data 
Block or LDB, and the TrY chunk. 

12.1.1.1 Line Data Blocks (LOBs) 

LDBs contain information about a terminal line. There is one LDB for each terminal line 
which is can be connected to the system. They are created at once-only time in the SCNCFG 
routine. While there is a free pool of available LDBs for dynamic terminal connections, the 
LDBs themselves statically allocated in memory. This allows commands to be typed on a 
terminal without the need to allocate a new data structure to handle the command, and 
without need to buffer characters in a special way until the LDB can be created. 

For a complete description of an LDB, see the monitor tables or the definitions in 
SCNSER.MAC. However, it is important to remember that the LDB contains the following 
information: 

1. Pointers to the various input and output chunk streams 

2. Line status bits 

3. Line characteristic bits 

4. Horizontal position counter 

5. MIC information 

6. User-defined break characters 

7. Count of characters to echo 

8. A pointer to the associated TTY DDB (if assigned) 

12.1.1.2 LINTAB 

LINTAB (the line table) is used to locate the LDB for a particular terminal line given its line 
number. It contains one entry for each terminal in the system, including PTYs and CTYs. 
Each entry LINTAB + n contains the global address of the LDB line number n. 

12.1.1.3 TTY Chunks 

The TTY chunks are a set of eightt word blocks of core, in which the first word is used to 
maintain doubly-linked lists. They can be in one of five data streams for an LDB, or on the 
"free list". 

The remaining words in the TTY chunk contain 12-bit bytes for character data information 
(three per word). Each byte contains either a character code, possibly with flags, or a special 
function code. These function codes are referred to as "meta characters". 

The chunks are allocated and placed on the free list by the SCNCFG routine at system 
startup. Location Tl'FTAK is the head of the list, from which free chunks will be allocated. 
The list tail is pointed to by TTFPUT. If any further chunks are released, they will be linked 
after this one. The count of free chunks is contained in TTFREN. 

t The size of the chunks can be changed with MONGEN, by changing the value of symbol TTCHKS. This value must be 
a power of two and at least four. Eight is the default value. 
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12.1.2 Job Information 

The job-related terminal information is contained in the following data structures and tables: 
the TTY DDB, TTYTAB, and the JDA. 

12.1.2.1 The TTY DDB 

TTY DDBs are assigned and deassigned from a pool of available DDBs as jobs are created 
and destroyed or terminals are initialized and released. The TTY DDB contains information 
which relates to the job, such" as the following: 

1. Pointers to the user buffers 

2. Device physical and logical names for the terminal 

3. 110 status and usage information (DEVIOS, DEVSTA) 

4. Device mode information (DEVMOD) 

5. A pointer to the LDB 

The TTY DDB is a short-dispatch DDB. 

12.1.2.2 TTYTAB 

TTYTAB is a table in COMMON which has one entry per job and points to the TTY DDB of 
the controlling terminal for that job. A zero entry indicates that the job has no controlling 
terminal, which means that the job number is not assigned, or is in the process of being 
created or destroyed. 

12.1.2.3 USRJDA 

The Job Device Assignment table, or JDA, is part of the job's UPT, at location USRJDA with 
an extension pointed to by .USCTA. It has one entry per user channel. Each entry is zero 
if the channel has not been initialized. Otherwise, it has flags in the left half indicating 
which UUOs have been performed on behalf of the channel, and the right half contains the 
address of a DDB. In particular, it contains the addresses of any TTY DDBs which the user 
has initialized as 110 devices. 

12.1.3 Linking Job and Line Information 

As noted above, the LDB and TTY DDB contain pointers to each other. These links are 
established by the following events: 

1. A command which requires a job number to be assigned is typed on an unused line. 

2. An ATTACH command is typed which does not need to run LOGIN. 

3. An unused line is initialized as an 110 device. 

The links are broken by these events: 

1. The user detaches from the line. 

2. A job logs out or is destroyed without ever logging in. 

3. An attached line is disconnected from the system (e.g., a dataset is hung up). 

Scanner Service 12-3 



The association for an ATTACH command or UUO are made by TTYATT, the association for 
a new job or command are made by TTYATI, and that for an I/O device is made by GETDDB. 

The routines to break the links are TTYDET, TTYDTC, PTYDET, and PTYDTC. The 
DTC flavors will wait wait for command processing to complete if necessary, and are for 
asynchronous disconnects which could conflict with command processing. The TTY flavors 
will force a job which is not logged in to be destroyed. 

12.2 Chunk Management 
As I/O devices, terminals are unique in having buffer space in the monitor. One important 
consequence of this is that a job may be swapped out while having terminal I/O in progress. 
Also, since a user may type on a terminal at any time, the monitor must have a place to 
put the characters. Characters from a terminal keyboard are stored in an input chunk 
stream until they are requested as input by the program or as a command by the monitor. 
Characters put out to a terminal are stored in an output chunk list and are sent to the 
terminal by an interrupt routine as the line scanner requests them. Chunks can be allocated 
from the free list to one of five streams associated with an LDB: 

1. The input stream 

2. The echo filler stream 

3. The primary output stream 

4. The output filler stream 

5. The out-of-band stream 

Each such chunk stream has a set of words in the LDB to describe it: 

1. The count of characters in this chunk stream 

2. The list head (where to remove the next character) 

3. The list tail (where to add the next character) 

The input stream is logically divided into two streams, to keep track of which characters 
have been echoed. The input stream also has a pair of counters for deleted characters, since 
we can't really delete a single character from the middle of the chunk stream efficiently. 

12.2.1 Initial allocation 

The total number of chunks to be allocated is found at system startup iri the left half of 
location TTCLST in COMMON. This location is initialized with the value of'ITCHKN when 
the monitor is built. TTCHKN defaults to the value TTCHKK * TTPLEN, but can be changed 
with MONGEN. It is usually best to not to define TrCHKN, however. If it is necessary to 
override the default number of chunks, the value ofTTCHKK should be set in the MONGEN 
dialog. Its default value is sufficient to allow for one chunk for each of the five data streams 
for each LDB, plus at least TTYWID characters more per LDB. If there are not many lines 
defined in the system, TTCHKK will be increased beyond this value in an attempt to ensure 
that there will be enough TTY chunks. 
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In the above calculations, TTPLEN is the total number of LDBs in the system (TTYs and 
PTY s), and TTYWID is the assumed average TTY WIDTH setting of terminals which will 
be connected to the system. TTYWID defaults to 80, but this value can be changed with 
MONGEN. 

12.2.2 Dynamic Chunk Allocation 

Characters are placed in and removed from the TrY chunks using three macros: LDCHK., 
LDCHKR, and STCHK Macros are used rather than subroutines to speed up the handling 
of characters in the monitor. This expedient adds very little to the size of the code. These 
macros do the following: 

LDCHK 
Take a character out of a chunk without returning any chunks to the free list. This is most 
useful when echoing input. 

LDCHKR 
Take a character out of a chunk, and return any just-emptied chunk to the free list. 

STCHK 
Put a character in a chunk, allocating a new chunk from the free list if necessary. 

These macros must be called only while scanner interrupts have been disabled by obtaining 
the SCNSER interlock. The SCNOFF macro disables scanner interrupts and the SCNON 
macro enables them again. Both are defined in S.MAC. 

12.3 Terminal 1/0 Overview 
In this section we give a general overview of the major structure of liD processing in 
SCNSER, to lay the foundation for a more thorough examination of its methods. SCNSER 
contains both terminal-specific device-dispatch code for lID DUOs, and some UUOs which 
are unique to terminals. It also functions for DUOCON as a device service routine, even 
though it depends in turn on other modules of the monitor to function as device service 
routines for it. Some of these, in turn, will be dependent upon still other modules to serve 
as device drivers, etc., for many levels. Since SCNSER is also called from clock level, we will 
examine it briefly from each of these three levels: DUO, clock, and interrupt. 

12.3.1 UUO Level 

Viewed from UUOCON as an liD device, a terminal is actually quite simple. When it receives 
an input request from the user's program, it tries to fill the user's buffer with data from the 
terminal, and will place the program into an input wait state (TI) if the input request can't 
be satisfied immediately. When DUOCON gives it an output request, it extracts the data 
from the user's buffer and sends it in the general direction of the terminal as fast as it can, 
returning if it can send all the data immediately, and blocking only if it cannot empty the 
user's buffer right away. 

What SCNSER is really doing at UUO level for output is taking data from the user's buffer 
and stuffing it into the output chunks until they're full or the user's buffer is finally empty. 
Mter each character it deposits into the output chunk stream, it makes sure that the output 
routine knows that the line has data to send. For input, SCNSER reads only fully-echoed 
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characters from the input chunks and stuffs them into the user's buffer. The buffer is 
terminated when it fills or when a break character is finally deposited into it. The definition 
of a break character varies with the current 110 mode. 

12.3.2 Clock Level 

SCNSER is called every clock tickt or so to start terminal output. This call appears just 
after label STOPAT in module CLOCK!. This call will result in calling a device-dependent 
routine to send the data out from the DECsystem-10 to the destination terminal. Once the 
line has finally been queued to the device-dependent output routine, it is the responsibility 
of interrupt level to finish the data transmission and to keep trying to empty the output 
chunks for the line. 

SCNSER is also called every second to perform some timing and housekeeping function. This 
is where idle lines are disconnected and lines which appear hung are given another chance 
to try to complete their output. 

SCNSER is also responsible for maintaining the count of commands waiting to be processed 
(COMCNT). COMCON is called to process any pending commands when COMCNT is 
positive. SCNSER has a set of routines for the use of COMCON which are very similar 
to those provided for user terminal 110, except that the monitor processes the characters 
directly rather than moving them into and out of user buffers. 

12.3.3 Interrupt Level 

This is where we find the most complicated portions of terminal service. At interrupt level, 
SCNSER must receive characters from the device drivers, determine what sort of special 
processing they need, and insert them into the input chunk stream. It must also process 
output characters, determine whether they need special processing or filler characters and 
synchronize them as necessary with any special terminal functions which may have been 
requested at UUO level. SCNSER must also handle the echoing of characters here, and will 
wake up blocked jobs which have finally received sufficient input or now have enough room 
in the TTY for more output. It is also at this level that COMCNT might be incremented, 
thus initiating command processing. 

12.4 Terminal I/O Details 
In this section we analyze the flow of characters through SCNSER in greater detail. We 
will see just how various special terminal functions are implemented and synchronized with 
ordinary user terminal 110. 

We will ignore such details as the handling of user buffers as much as possible, since they 
are not unique to scanner service. We will start with some relatively simple cases, and add 
complexity as we go. To begin with, we will assume that only TTCALLs are used for 110, 
and that no unusual special characters have been enabled. 

t Actually, once every M.STOF + 1 clock ticks. M.STOF can be defined in MONGEN. Its default value is O. Its value 
must be one less than a power of two. This frequency can be patched by changing the value in the right half of location 
STOPAT. 
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12.4.1 Output 
Output is the easiest case to consider. It can come from two sources: UUOCON (the user 
wants to print something) or COMCON (the monitor wants to print something). Terminal 
output is essentially non-blocking: once the output has been placed into the TTY chunks 
for the line, the job or process can continue to run without having to wait for the output to 
finish. 

12.4.1.1 A Simple OUTCHR 

Consider the case of the OUTCHR UUO TTCALL 1,. When the UUO is issued, control 
passes from UUOCON to TTYUUO in SCNSER. This routine will check to be sure that the 
user is attached to a terminal line (it will block waiting for that to be true), and it will also 
check to be sure that the terminal is at user level rather than command level. It will then 
dispatch to routine ONEOUT. This routine will record user response data (if necessary) and 
will fetch the user's character for output. If the character is not null, it will inserted in the 
output TTY chunks and the line will be queued for output if it was previously idle. These 
steps happen in routine TY07W, which will queue the output in routine PTYPE if it is a 
PTY or in routine TOPOKE (typeout poke) if it is a real terminal. 

TY07W checks to be sure that there are enough free chunks available, that this is not a 
data line which has been detached, and that CTRUO has not been typed to suppress the 
output. If these conditions are not satisfied, the output may be throwaway or the user's job 
will block, whichever is appropriate to the failing condition. 

At this point, the UUO will return to the user program, which is still runnable. The character 
as not yet reached the terminal, nor even the device service routine, but it has been queued 
to the TTY chunks for output. 

So when does the output get started? During the once-a-tick code of the monitor cycle, 
there is a test at location STOPAT in module CLOCK1 to see whether it is time to scan the 
terminal output queues. If it is time to do so, we execute the instruction 

~USHJ P, .CPSTO## 

.CPSTO is a location within the CPU data block which holds the address of the terminal 
output routine, SCnTIC.This is a routine defined in COMDEV which is simply a set of calls 
to routines in various device drivers to start output which has been queued to formerly idle 
lines. Here is a list of some sample routines which could be called: 

CTYSTO 
CTY output service for the KS10 

TTDSTO 
CFE-based terminals (KL10 only) 

NETSTO 
ANF-10 network terminals 

NRTSTO 
DECnet virtual terminals 
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DZSTO 
DZll-based terminals for the KSIO 

We will ignore the specifics of any particular driver for now. It is sufficient to note that each 
LDB is associated with a particular queue of terminals, and that the header of that queue is 
known to the device service routine. This routine will then call routine TOTAKE in SCNSER 
to get the address of the next LDB which has been placed on its queue. Some device drivers 
can only start output for one line at a time, but others can start output for several lines. Any 
driver which can start several lines in one clock tick will have a loop which calls TOTAKE 
until it gives the non-skip return, indicating that the queue has been emptied. 

In any case, once the device driver has found an LDB which has been queued, it will check 
to see why it was queued, and whether it can service the request for this line. The bit 
LIRCHP (change hardware parameters) may be set, in which case the driver will check to 
see whether any parameters have changed which its device or protocol needs to know about. 
If so, it will update the device characteristics. At this point, if this line is marked as idle for 
output, it was queued only for a characteristics change. In the case of our example, this is 
not so, and we proceed to determine whether we can perform the requested output. For now, 
let us assume that we can. 

The device service routine will then call XMTCHR for this line, to obtain an output character. 
If this is not successful, the routine will either return to SCnTIC or it will loop back to call 
TOTAKE again, depending on the capabilities of the device. In our case, however, this call 
will succeed. We will do whatever device-dependent processing is required to queue this 
character to the eventual output device. For most of the device-dependent processors, we 
will not process this line further, but we will wait for an interrupt (which we have probably 
just initiated). For network lines, however, we may well loop calling XMTCHR and queueing 
characters to the output device until its message queue is filled or we empty the output TTY 
chunks. 

Assuming a non-network line, our processing of this line is complete at clock level. Any 
further output processing (including additional characters queued for this line by the user 
program, 'which is still running) will wait until interrupt level. 

When the device completes the request to send the character to the terminal, it will give a 
"transmit done" interrupt. This will cause the device driver to call XMTCHR again, possibly 
sending another character (or string of characters). If there are no more characters to send, 
the line will be marked as idle once again, and it will once again need to be queued from 
clock level for any additional output. 

12.4.1.2 A Complication 

Yes, that was the simple case. Now it is time to start adding complications. We now turn 
our attention to the OUTSTR UUO (TTCALL 3,). In addition, we suppose that the user has 
enabled TTY CRLF processing, and that the UUO begins with the line near or at the right 
margin as set by the TTY WIDTH command. 

Once again, UUOCON will dispatch to routine TTYUUO in SeNSER. There again, we will 
block until we are attached to a terminal at user level. We then dispatch to routine OUTSTR. 
Here, we record the terminal response if appropriate, and we will address check the string 

12-8 Scanner Service 



if it is not in a sharable page. This is done to avoid a page fault in the middle of the UUO, 
and the problem of restarting the UUO and possibly seeing the first part of the string twicet 

We will then loop over the user's string argument looking for a null character to terminate 
it, and sending any non-null characters found to the chunks by calling TY07W, the same 
routine which was used by ONEOUT. If the string is long, we will allow the monitor cycle to 
run by calling SCDCHK after every 200s words of the user's string. 

Things proceed much as before, until we need to insert a carriage return, linefeed pair 
(CRLF) into the output. To see how that happens, we need to delve into the mechanics of 
the routine XMTCHR. 

XMTCHR starts out by checking to see whether we have been at interrupt level too long. If 
seven ticks have gone by since we last ran the monitor cycle, we refuse to transmit any more 
characters. The once-per-second code will eventually restart any lines which this leaves in a 
hung state. 

After that, we test to see whether the line is in a special output state. If so, we dispatch 
through table XM:TDSP to handle the condition. In our case, at the moment, the line is not 
in a special output state, so we proceed to look for a character to send from the output TTY 
chunks. We interlock the chunk database, test and decrement the output character count, 
and remove a character from the output chunk stream. We check to see whether it needs 
expansion as a two-part character (it doesn't), and we release the interlock. 

We then check to see whether we may have just counted down the number of characters to 
5010 If so, we call XMTWAK, which will remove the user's job from TO state if it was blocked 
for terminal output. 

We now check whether the character we extracted from the chunk stream was a meta 
character which needs special dispatching. Again, in our example of an OUTSTR UUO, this 
is not the case. Our character was.not queued in image mode, and let's assume that it does 
not normally need special output handling. 

Finally, we check to see whether we are about to try to print past the right margin, and find 
that we are. We fudge some bits for communication with SETCRF, the routine which will set 
up ,our free CRLF, and then we call it. SETCRF will return non-skip, so we will loop back to 
XMTCHl, where the test for special output states is made. 

This time, however, we do have a special output state. We dispatch through XMTDSP and 
arrive at XMTESP. From the echo/fill chunk stream we will extract a carriage return, and 
finally exit through XMTCN7 back to the device driver. The next call to XMTCHR will 
dispatch to XMTESP and return a linefeed through XMTCN7. 

The call after that will dispatch to XMTESP, find nothing more to do there, and clear 
LOLESP to avoid returning there again. It will then loop back to XMTCHl, where we will 
find that we still have a special output state. We will then dispatch to XMTREO, from which 
we will finally return the character which caused us to try to print beyond the margin. 

t handling of the string in OUTSTR is actually a bug, even though it has never been reported as such. Can you tell why 
it is a bug? Can you tell why it has always worked in practice? 
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12.4.1.3 Additional Complications 

Now, let us consider output from the monitor, rather than the user. COMCON uses routine 
CCTYO rather than TY07W, but mostly looks the same as user output. The main differences 
are that COMCON cannot block for output, and it can use meta characters directly. 

For example, COMCON will normally call COMFLM when it wants to print a prompt. This 
routine will insert the meta character MC.FLM into the output chunks. When XMTCHR 
finds this character, it will jump off to XMTMET, which will call METFLM to handle this 
function. METFLM will decide, based on the carriage position at that point in the output, 
whether to print a CRLF. 

Functions of the TRMOP. UUO will also insert meta characters into the output chunks. 

12.4.2 Input Processing 

Terminal input is generally more difficult to understand because of echo processing the fact 
that the job will probably block and need to be requeued when a break character is ready to 
be read by the program. Thus, we shall once again start with a simple case. 

12.4.2.1 A simple case 

The program performs an INCHWL UUO (TTCALL 2,). When this monitor call is issued, 
the job goes into TI wait until a break character is received. Only the first character in the 
chunks is returned at that time. Successive UUOs return the remaining characters one at a 
time. 

When the INCHWL is executed, control passes from UUOCON to TTYUUO in SCNSER, and 
from there to the routine INCHWL. This routine in turn calls TWAITL to wait for a line, TYI 
to get a character and PUTWDU to give the character to the user. If a line has already been 
received, the return from TWAITL is immediate, otherwise the job will be placed in \ TI wait 
and will not be run again until a break character is received. In other words, the job blocks. 

So, how does the job get requeued to read its input? First, a line has to be received by the 
DECsystem-10 from the terminal. Once a character is received, the device service routine 
will call SCNSER at one of the following two entry points: RECPTY, for those drivers that 
use the LDB themselves; or at RECINT for those which use only a line number. (RECINT 
falls into RECPTY, so we will ignore the difference here.) 

RECINT must handle many special cases before the character is ever placed into the input 
chunk stream. If the MIC interlock is not free for this line, the character must be deferred 
into the RECINT queue, RECINQ. If the line is a local dataset which needs to be ignored 
until its carrier stabilizes, the call to RECINT must be ignored. If this line is a remote 
terminal, which is not in use by a job, and the system is stand-alone, the user will be told 
that without the chunks ever being touched. 

Mter all these tests, which merely determine whether this line is allowed to receive input, 
the character which has been received must be checked to see whether it needs special 
processing. Most special processing will be avoided if the line is in image mode or packed 
image mode (PIM). 
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If the character is to be received, and it does not need special processing at this time, and 
there is sufficient room to store the character into the input chunk stream, then the character 
will be stored by SCNSER. If the character is stored, then the user's program may receive a 
software interrupt infonning it that input is available. Finally, TOPOKE will be called, to 
start echo processing, and SCNSER will return to the device service routine. 

Echo processing is handled through Xl\1TECH. When no characters are present in the output 
chunk stream, XM:TCHR jumps to ZAPBUF. ZAPBUF is responsible for waking up the user's 
job if it was blocked in TO state, and for calling XMTECH to provide echo of the user's in put. 
Xl\1TCHR will only give a non-skip return if it cannot continue with the output stream due 
to a characteristics change, or if we need to execute the monitor cycle, or if neither output 
nor echo need to be done. 

Xl\1TECH will check whether echoing is needed or even allowed, based on such things as 
whether a CTRUR is being processed, or whether deferred echo is in effect and the program 
has not asked for any input. Xl\1TCHR is also responsible for most of special character 
processing. This includes such things as the conversion of a space to a CRLF when an 
automatic carriage return (ACR) setting is in effect, the conversion of lowercase input to 
uppercase, and the input line editing features of CTRUU, CTRUW, and CTRUR, etc. 

The processing of such special characters is left to Xl\1TECH, rather than being handled in 
RECINT, so that a user who sets deferred echo will see the characters behave as expected 
according to the 110 mode of the program which reads them, rather than the modes in effect 
at the time they were received (possibly as typeahead) by the DECsystem-10. Xl\1TCHR will 
handle expansion of two-part characters, and the processing of break characters. When a 
line break is examined for echo processing, either the user's program or COMCON may be 
notified of available input. 

If the character requires echoing, it will be returned by Xl\1TECH on behalf of XMTCHR. If 
not, XlVITECH will keep advancing the chunk stream until no more echo processing can be 
done. 

Finally, after XMTECH has requeued the user's job, it calls TYI, as previously mentioned. 
This routine, like all terminal input routines, will eventually reach TYICC4. This routine 
checks for interlocks with XlVITECH due to CTRUR processing, and eventually will either 
return a failure to its caller (if in asynchronous mode) or will return a character (possibly 
with expansion in the case of two-part characters). 

12.4.2.2 Complications 

Control characters tend to need special handling. Some few of them need it at RECINT time, 
but most can wait until XlVITECH. Some of those which cannot wait are CTRUO, CTRUC, 
CTRUS, and CTRUQ. Some which can wait are CTRUR, CTRUW, runout, and carriage 
return. 

When a rub out or similar editing character is processed, it would like to be able to leave a 
hole in the TTY chunks. Since this is not feasible, however, it marks the deleted characters 
with the bit CKNIS (not in stream). Both XMTECH and TYICC4 will skip over any 
characters so marked is though they had never been present. 
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When a carriage return is processed, it might want to become a CRLF. Since it is in the 
middle of a chunk, and might have other characters following it already, this cannot be done. 
Instead, it becomes a the meta character MC.NL. This meta character will be expanded as a 
two-part character into a CRLF, as was desired. 

When an eight-bit ASCII character is received for input to a program which is running in 
seven-bit mode, it must be translated to the appropriate seven-bit fallback representation. 
This usually involves expansion into two or three characters. Similarly, output from a 
program using eight-bit I/O which is destined for a seven-bit terminal must be expanded. 

In order to see how control characters, two-part characters, and other special characters are 
handled, look at the tables CHTABL, METABL, CHREQV, and METEQV. Also examine the 
routines TPCOUT, TPCECH, TPCINP, and TPCCOM. 

12.5 Pseudo-Teletypes (PTYs) 
For detailed information on the purpose and use of PTY s, see the Monitor Calls Manual 
Here, we only note the distinction between the different kinds of PTY s. There are old-style 
PTYs , the newer or full-SCNSER PTYs, and the latter are frequently given special handling 
when they are in use for batch processing, so we can say that batch PTY s are a third kind. 

The old-style PTYs are not capable of supporting terminal types, eight-bit ASCII, or indeed 
most of the special features which distinguish a terminal from any other bi-directional I/O 
device. Routine PTYPUT in SCNSER handles input destined for a terminals which are 
associated with old-style PTYs. 

The full-SCNSER PTY s are capable of supporting anything which a normal user terminal 
can support, with the exception of image mode I/O. Packed Image Mode (PIM) I/O is 
allowed, however. This flexibility of full-SCNSER PTYs makes them quite useful for virtual 
windowing programs, but the fact that they will support CTRUS and CTRUQ , along with 
TTY STOP mode, can sometimes get a user into trouble. 

The batch PTY s do not do free CRLF processing or similar such terminal-specific formatting, 
but since they are otherwise a full-SCNSER PTY, they do support most terminal functions. 
In case of any doubts, search in SCNSER for references to the routine PI'BTCH (defined in 
PTYSER). This routine is used to confine the full terminal functions to full-SCNSER PTYs 
which are under the control of interactive jobs. Search also for references to the bit LDLFSP, 
which is the full-SCNSER PTY bit in the LDB. 

12.6 Macro Interpreted Commands (MIC) 
The MIC facility is a feature of TOPS-IO that allows a user to execute a command file at 
the terminal. The commands are processed in a similar manner to BATCH commands with 
several notable exceptions. The commands are processed for the user directly, not through 
another job logged in on a PTY. The user sees the commands and their results printing 
directly on the terminal. The batch controller (BATCON) is not involved at all. For a 
complete description of the features and operation of MIC, see the documentation supplied 
with it on the distribution tapes. This discussion is concerned with the special processing in 
SCNSER to accommodate MIC. 

12-12 Scanner Service 



The MIC system revolves around a copy ofMIC.EXE which is always running as a detached 
operator job. That one copy of MIC controls all jobs that are using the MIC facility. In the 
low segment of this MIC "master" is a process data block (PDB) for each job wanting to use 
MIC. This PDB holds such items as the file from which to fetch commands, the arguments 
from the DO command line, and information about labels with the file. The master responds 
to the needs of the "slaves", feeding them command lines from the appropriate files. The 
command lines are sent directly to the terminal's input chunk stream where they can be 
processed by the usual means. 

When the user issues a DO command, COMCON sets up and runs the MIC program. The 
user enters a section of code different from that of the MIC master, setting up the PDB for 
itself. Once the user exits from MIC, the master takes control. It will open the command 
file. For each line in the command file, it resolves the parameters and then issues a TRMOP. 
UUO, function .TOTYP. This places an ASCIZ string directly into the terminal's input 
chunks. The routine in SCNSER to handle this function is TOPMTY. Characters are entered 
one by one via calls to RECINM, which is in the receive interrupt routine. SCNSER then 
performs the usual echoing, eventually notifying COMCON or the scheduler when a break 
character is received. 

SCNSER also watches for the ERROR character and the OPERATOR character when they 
have been set. It notifies the MIC master job of any changes in state of the user terminal 
or job in which MIC might be interested. When not servicing slaves, the master executes 
a HIBER UUO. Thus, SCNSER takes care of notifying MIC of significant events simply by 
awakening that job. This is handled in the routine MICWAK. 

Note that there is nothing to prevent the user from typing during the processing of a MIC 
command file. However, if the master decides to type while the user is typing, neither is 
likely to get the intended results. 
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Appendix A 

EBOX/MBOX Accounting 

A.1 Summary 
A customer finds that 20% of his KL goes missing - lost or not charged. This appendix 
describes the problem and questions the idea of accounting by time. 

A.2 Introduction 
We recently had a problem on-site in which it appeared that a great deal of computer time 
was being lost in prime shift. That is, when we totaled over a prime shift the figures for 
lost, null, and overhead, and added these to the time charged to users (from the accounting 
files), we could not account for 20% of the elapsed time. Stated like that, that's a significant 
amount of the KL that was being lost or given away, and we were required to find it. 

Note 
The site was a 1090 with 512K ofMH-10 Memory. 

A.3 Explanation 
The problem primarily comes down to EBOXIMBOX accounting and cache. This was noted 
by Claude Barbe in "Copy'n Mail", in which he concluded that: 

Note 
"EBOXtM:BOX accounting is as good as your cache hit ratio" 

Unfortunately even this is not quite true. When EBOXIMBOX accounting is used, use of 
the system is measured by two hardware meters counting micro instructions (EBOX) and 
memory references (MBOX). This is converted to time by the use of two divisors, which are 
CPU-model dependent. 

The MBOX counts all memory references, irrespective of whether the required data is in 
cache or not. Its divisor is such that, if a program of the form JRST . is running, then the 
total time charged (that is, null + lost + overhead + user) approximates, very closely, 100% 
of elapsed time. JRST . is completely cache effective. 
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If a completely cache ineffective program is running (for example, a large JRST . + 4 loop) 
the time charged is around 18% of elapsed time. 

So far this seems to agree with Claude's statement. However, in attempting to map a 
relationship between cache hit ratio and charged time during prime shift, we find that 
similar cache hit ratios give widely differing charged times, and similar charged times come 
from different cache ratios. Part of the reason for this is that a cache hit is two quite different 
things. 

The whole problem condenses rather neatly into two simple programs. Consider: 

(A) (B) 

SETOM (T2) MOVE Tl, (T2) 
ADD I T2,lOOO ADDI T2,lOOO 
AOBJN T3, .-2 AOBJN T3, .-2 

(outer loop control) 

• Now, the program JRST . was' 100% cache hit, charging 100% of elapsed time. 

• Program (A) here is 100% cache hit, charging 74% of elapsed time. 

• Program (B) here is 76% cache hit, charging 53% of elapsed time. 

The obvious questions here are: 

1. Why does A at 100% cache effective charge 74% while JRST. charges 100%? 

2. Why is Program A 100% cache effective and Program B only 76%? 

3. Why should Program A charge 74% but Program B charge 53% of elapsed time? 

It is best to answer the second question first. All B's (and ~s) instructions are in cache 
since they are at a virtual page offset which does not clash with the page offset of the 
memory reference, and therefore need never move. B is doing a read every third instruction, 
which always fails to find a match in cache, since there is only space there for four memory 
locations of page offset 0 (or whatever). The three instruction fetches +1 memory fetch give 
us a cache hit ratio of three in every four, or 75%. Program A is the same but does a write 
to memory instead,. It appears that, because we always put the write in cache we score a 
cache hit, whether or not it was first necessary to write away valid written data. Because a 
cache hit is now two different things--no memory reference required on a read, on a write 
it matters no~Program A is 100% effective, against Program B's 76%. (Strictly, of course, 
a cache hit can be consistently defined as the referenced data being put into or gotten from 
cache with no regard to whether a memory referance was required, but that differs certainly 
from my original conception of it). 

The clue to the differing charged times came in the ratio 74% to 53%, which nicely matches 
the ratio of read time to write time for MH memory, that is, 1.767 to 1.267. Observe what 
happens with Program A in Figure A-I. 

The SETOM requires that a valid written word in cache first be put in memory. We must 
now wait for the memory cycle to finish before we can fetch and execute the ADDI and 
AOBJN, and fetch the SETOM. All of these come from cache, and do not reference memory. 
Execution of the SETOM then causes another memory reference, and so on. 
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Figure A-1: Comparison of Program A and B Charge Times 

Program A: 

+------------------------------------+ 
I ADDI AOBJN SETOM I Conceptual time 
+------------------------------------+-----------+ 
I Memory Write Lost Time I Actual time 
+------------------------------------------------+ 
<--------------- 74% ----------------> 
Program B: 

+-----------------------+ 
I ADDI AOBJN SETOM I Conceptual time 
+-----------------------+------------------------+ 
I Memory Read Lost Time I Actual time 

+------------------------------------------------+ <-------- 53% ----------> 
Program B is very similar but requires a read from memory. With the much larger memory 
cycle time involved, we charge for an even lower percentage of the real time, only 53%. 

Obviously, varying these two themes on the cache availability of the instructions, this 
effectiveness on cache, and whether we read or write, allows for a totally variable charge 
range. 

A.4 Why EBOXIMBOX ? 
IfEBOXIMBOX accounting causes such problems, why use it? The answer is that it provides 
beautifully consistent user accounting. Regardless of system load, time of day, or scheduling 
vagaries, when a user runs a job it always costs the same amount. This is a good thing, 
and compares favorably with KI accounting, which may in extreme cases show a factor 
of 15 difference in charges between a Sunday run and a prime-shift run on the same job. 
Unfortunately, in being so consistent, EBOXIMBOX gives the internal accountants, that is, 
the computer department in whatever form, a real problem. How do they charge for the 
missing time? 

It is my belief that all these problems are caused by the historical practice of accounting for 
computer usage by time. The EBOXIMBOX meters provide a consistent, tidy account of CPU 
usage in digital units, a measure of work done (Klergs?). This is rightly quite independent 
of prevailing conditions. The real error comes in reducing it to time values. It is a matter for 
site accountants to fix, by the normal in-house procedures for dealing with overheads, the 
means of rating Klergs directly in cash terms, taking account of the probability range of the 
site-specific percentage of "hidden" time taken by users. They must avoid the unnecessary, 
and demonstrably illogical, intermediary step of roughing it out in units of time before 
converting to cash. Monitor and documentation should certainly avoid the same trap, and 
refer to accounting units as such and never in time units. After all, no one would expect to 
charge for line printer output on a time basis, using the optimum time required to fill a page. 
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A.5 Conclusions 

1. EBOXIMBOX accounting is beautiful and consistent. 

2. There is a philosophical error in converting EBOXIMBOX units to time. 

3. Sites selecting EBOXIMBOX should realize and utilize the consistent digital measure 
of work done returned by the two meters, converting that measure directly into cash 
independent of time. 

4. Digital's accounting and documentation should match this thinking and a write into 
cache should only be considered a cache hit if no memory write-back is required. 
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Extended sections, 4-11 

F 
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Low segment, 1-2 

M 
Macro Interpreted Commands 

See MIC 
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See MPPL 
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o 
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Output Scan List, 6-4 
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p 
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Q 

QRT, 6-3, 6-7 
Quantum Run Time, 6-6 

See QRT 
Queued 110, 2-3 

R 
RBQ stopcode, 6-3 
RESET UUO, 4-27 
Rubout character, 12-11 
Rubout characters, 12-11 
RUN command, 4-5 
Run Queue, 3-5 
RUN UUO, 4-29 

s 
SAT, 7-5 
SCDSET, 7-3 
Scheduler, 1-4, 2-3, 3-5, 6-1, 7-1 
Section maps, 4-3 
SET WATCH command, 4-35 
Shadow Area, 2-3 
SLEEP Queue, 7-3 
Smithsonian Date and Time, 2-2 
Software interrupts (PSI), 2-4 
Spare Executive mapping slots, 4-8 
STOP Queue, 7-3 
Storage Allocation Table 

See SAT 
swapper, 6-2, 7-1 
Swapper, 1-4, 2-3, 2-5, 4-1, 4--6 

swapper Frustration, 7-7 

T 
TIM, 2-4 
TI wait, 12-10 
TO state, 12-9, 12-11 
Transmit done interrupt, 12-8 
TTCALL I" 12-7 
TTY chunks, 12-2, 12-4, 12-5, 12-6, 12-7, 12-8, 

12-9, 12-10, 12-11, 12-13 
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TTYTAB, 12-3 
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u 
UBR, 1-2, 2-3, 4-8 
Unimplemented User Operator 

See UUO 
UPM, 1-2,4-2, 4-7, 4-8, 4-21 
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.UPMP, 4-7 
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See UBR 
user mode, 4-22 
User Page Map 

See UPM 
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See UPT 
USRJDA, 12-3 
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v 
Virtual time trap, 4-22 
.VJDT, 4-4 

w 
Wait State Code 

See WSC 
WSC, 6-7 
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