
DECwindows Program

Digital Technical Journal

X Toolkit lnt1in.dc ..

XUb

Digital Equipment Corporation

Volume 2 Number 3
Summer 1990

Cover Design
This issue features papers on DECwindows architecture and

applications. Our cover design is a display of several windows called

up on a VAXstation 3500 screen. The DEC windows applications used

to create the display are DEC write, DEC paint, and DEC image.

The cover was designed by David Comberg of the Corporate Design

Group with technical assistance from Victor Bah/ of the Image

Systems Advanced Development Group.

Editorial
Jane C. Blake, Editor
Barbara Lindmark, Associate Editor
Richard W. Beane, Managing Editor

Circulation
Catherine M. Phillips, AdministratOr
Suzanne). Babineau, Secretary

Production
Helen L. Patterson, Production Editor
Gaye Tatro, Typographer
Peter Woodbury, IllustratOr and Designer

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
Mahendra R. Patel
F. Gram Saviers
Robert K. Spitz
William D. Strecker
VictOr A. Vyssotsky

The Digital Technicaljournal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLOI-3/Il68, Maynard,
Massachusens 01754-2571 . Subscriptions to the Journal are S40.00
for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical journal at the published-by address.

Inquiries can also be sent electronically 10 DTJ@CRL.DEC.COM.
Single copies and back issues are available for S 16.00 each from
Digital Press of Digital Equipment Corporation, 12 Crosby Drive,
Bedford, MA 01730-1493.

Digital employees may send subscription orders on the ENET to
RDVAX,JOURNALor by interoffice mail tO mailstop MLOI-3/Il68.
Orders should include badge number, cost center, site location code
and address. u.s. engineers in Engineering and Manufacturing
receive complimentary subscriptions; engineers in these organi
zations in countries outside the u.s. should contact the Journal office
to receive their complimentary subscriptions. All employees must
advise of changes of address.

Comments on the content of any paper are welcomed and may be
sent to the editor at the published-by or network address.

Copyright<tl 1990 Digital Equipment Corporation. Copying with
out fee is permiued provided that such copies are made for use in
educational institutions by faculty members and are not distributed
for commercial advantage. Abstracting with credit of Digital Equip
ment Corporation's authorship is permiued. All rights reserved.

The information in this Journal is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this Journal.

ISSN 0898-90 I X

Documentation Number EY-E756E-DP

The following are trademarks of Digital Equipment Corporation,
ALL-IN- 1, CDA, DEC net, DECstation 3100, DECwindows, DECwrite,
Digital, the Digital logo, MicroVAX, ULTRIX, VAX, VAX 8000,
VAX 8650, VAXC, VAX SCAN, VAXcluster, VAXset, VAXstation,
VAXstation 100, VAXstation 2000, VAXstation 3100, VAXstation
3540/3520, VAXstation IIIGPX, VAXstation 8000, VMS, XU I.

Apple II, HyperCard, and Macintosh are trademarks of Apple
Computer, Inc.

MS-DOS is a registered trademark and MS-Windows is a trademark of
Microsoft Corporation.

os/2 and Presentation Manager are trademarks of International
Business Machines Corporation.

OSF/Motif is a trademark of Open Software Corporation.

PostScript is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark of American Telephone & Telegraph
Company.

X Window System is a trademark of the Massachuseus Institute of
Technology.

Book production was done by Digital's Educational Services Media
Communications Group in Bedford, MA.

I Contents

7 Foreword
Richard Treadway

9 An Overview of the DECwindows Architecture

Scott A. McGregor

16 The Sample Xll Server Architecture

Susan Angebranndt and Todd D. Newman

24 Development of the XU/ Toolkit

Leo P. Treggiari and Michael D. Collins

34 The DECwindows User Interface Language

Stephen R. Greenwood

44 The Evolution of the X User Interface Style

Thomas M. Spine and Jacob L. VanNoy

DEC windows Program

52 PEX: A Network-transparent Three-dimensional Graphics System

Randi). Rost, jeffrey D. Friedberg, and Peter L. Nishimoto

64 XDPS: A Display PostScript System Extension for DECwindows

Christopher A. Kent

7 4 The Development of DECwindows VMS Mail

Michael R. Ryan and James H. VanGilder

84 Ethernet Performance of Remote DECwindows Applications

Dinesh Mirchandani and Prabuddha Biswas

I Editor's Introduction

Jane C. Blake
Editor

This issue of the Digital Technical journal focuses

on Digital's DECwindows program, its architecture,

and applications for the window environment. The

DECwindows program begins with the X Window

Svstem, which was developed at ;VIIT with the sup

p
-
ort of Digital and IBM. Parers herein describe how

Digital's engineers have built on X as well as con

tributed to related industry standards that help to

ensure comratibi lity across systems.
Involved early in b01h the X Window and the

OECwindows projects, Scott McGregor describes

the DECwindows architecture as an upwardly com
patible superset of X. In his overview paper for this

issue, Scott reviews aspects of the X design and the

significant enhancements made by Digital in the

development of its DEC windows program.

The backbone of this program is the XU protocol

for which Digital has developed a sample server

implementation. In their paper, Susan Angebranndt
and Todd Newman review the development of the

X 1 1 server, which is the basis for all Digital product

servers. Now publicly available, the XII server is

also a sample for all developers of X server product

implement:aions.

Several layers above the X11 server is the XUI

toolkit. Leo Treggiari and Mike Collins discuss this
set of run-time routines and application develop

menr tools, which is the primary programming

interface to OECwindows applications. This toolkit

was chosen as the base programming interface for
the Oren Software roundation's Motif toolkit.

The Xlll toolkit contains hundreds of attributes,

actions, and widgets, which can contain thousands

of lines of code. Steve Greenwood relates how

the user interface language (UlL) was developed

to manage the complexity of the toolkit. UIL pre

serves the conceptual simplicity of the toolkit by

allowing :1pplicttion developers to specify inter

faces without writing the multitude of code lines

normally required.

2

The style of user interaction with computers is
then addressed by Tom Spine and jake VanNoy. As

they point out, the XUI style represents a change in

approach for Digital to modern, graphic, direct

manipulation user interfaces and to consistency
across applications. XUI has evolved to provide a

consistent means of user interaction for applica

tions across the VMS, ULTRIX, and MS-OOS systems.

Extensions to the X architecture are the topics of

two papers. PEX, an extension of X to support the

PHIGS standard, is the subject of a paper by Randi

Rost, jeff Friedberg, and Peter Nishimoto. The

authors describe some unique features of PEX and

present the major design decisions made in its

development

Chris Kent is the author of a paper about XDPS.

another extension supported by DECwindows.

XDPS was jointly developed by Digital and Adobe

Systems Inc. to integrate the X imaging model and

Display PostScript. As Chris explains, XDPS was

designed to give application programmers the best

features of t he X and PostScript systems.

Our last two papers address the topics of appli

cation development for the DECwindows environ

ment and explain how the performance of such

applications can be measured. The implementation

of DECwindows VMS mail is an example of an appli
cation development effort described here by Mike

Ryan and jim VanGilder. Among the develop

ment issues discussed is the coordination needed

between the VMS and ULTRlX mail applications

developers to design a common interface for both

mail applications.

Dinesh Mirchandani and Prabuddha Biswas then
present the results of a study made to determine

whether distributed DECwindows applications

have an impact on the Ethernet network. The

Juthors developed a simulation model running on

a local area VAXcluster (LAVe) on the Ethernet to

predict the limiting system configuration in this

scenario.
I thank john Hurd of the DECwindows pro

gram and jesse Grodnik of the Western Software

Laboratory for their help in preparing this issue.

Biographies

Susan Angebranndt A consulting engineer for the Open Systems Group in

Digital 's Western Software Laboratory, Susan Angebranndt was the project

leader for the sample Xll server. Susan also worked on the team that designed

and implemented the Display PostScript extension for the DECwindows

X servers. She joined Digital in 1986 and is a graduate of Carnegie-Mellon

University (1980) with a B.S. in applied mathematics.

Prabuddha Biswas Prabuddha Biswas joined Digital in 1985 after receiving a

B . Tech. from liT, Delhi, India , and an M.S. from the University of Massachuset ts.

Among the projects with which he has been involved are the performance

analysis and modeling of software systems for the Business and Office Systems

Engineering (BOSE) Group and characterization of file system activity from com

mercial J/0 traces. Prabuddha has applied for a patent and has authored papers

for presentation to IEEE, ACM, and CMG con ferences. He has received the BOSE
Achievemen t Award for outstanding contribution.

Michael D. Collins A member of the XUI toolkit team , Michae l Collins con

tributed to the design and implementation of the toolkit version 1 ancl version 3,
and served as project leader for version 2. He is a principal software engineer in

the Commercial Languages and Tools Group of the Software Development

Technology organization. Mike is a member of ACM and AAAS and joined Digital

in 1987. He received a Bachelor of Environmental Design (1981) from the

University of Minnesota's School of Architecture.

Jeffrey D. Friedberg One of the chief architects of PEX , Jeffrey Friedberg is a

principal engineer in the Workstations Advanced Technology Group. Jeff is the

principal architect and document editor of the X multibuffering extension and

developer of a suite of software tools that allow distributed source control within

a networked ULTRIX environment. Currently, he is the project leader of the

group implementing PEX on the DECstation 5000 Model 200 workstation. Jeff

received a B.S. (1980) in computer science from Cornell University and is a

member of ACM and ACM SIGGRAPH.

I

3

Biographies

Stephen R. Greenwood Stephen Greenwood is a consult ing soft\varc
engineer in the Commercial Langu ages and Tools Group. At presem, he is a
member of the team building a new OF.Cw indows design roo! . He was the pro
ject leader and chief designer of t he OECwindows user interface language (llll.)
and VAX SCAN programming language. Prior to joining D igital in 19�1. Steve was
a principal engineer for Sperry Univac. He received a B . S . (1973) in physics from
Bucknell Univers i ty and an M.S. (1975) in computer science from the University
of W isconsin .

Christopher A. Kent The project leader for the Display PostScript server
extension , Christopher Kent is a principal engineer in Digital's Western Software
Laboratory. He was also one of the developers of the TCP/JP version of the
PrintServer 40 software and was a member of the development t<:::.tm for the
Mult iTitan processor board . Chris received a B.S. (1979, magna cum laude) in
physics from Xavier University, and a Ph . D. (1986) in compmer science from
Purdue Un iversity. He is a member of AC:M and Uscnix Association.

Scott A. McGregor Scott McGregor manages the Western Software Labora
tory in Palo Alto and is responsible for ULTRIX workstation software at Digi tal.
Previously, he was the DEC windows Program Architect and was one of the
designers of the X W i ndow System . Be fore joining Digital i n 1985 , Scott led
the design and implementation of M icrosoft's MS-W indows, and spent se\'en
years at the Xerox Palo Al to Research Center working on the Xerox Star and tht.:
Cedar programming environment. He has degrees in Psychology and Comp uter
Science from Stanford Un iversity .

Dinesh Mirchandarti As a senior software engi neer in the W•IS Engineering
Group, Dinesh M irchandani is now working on the advanced development
of VAX cluster systems. Since joi ning Digital in 1985, he has evaluated the per
formance of Rdb/V,vtS and CI)J) Plus and, through modeling , characterized the
performance of distributed systems based on DECwindows software. Dinesh
received a B.E. (19HL honors) in EEE from Birla Institute of Tech nology and
Science, India, and an M.S. (19H5) in computer science from North Carol ina
University. He is a member of Upsilon Pi Epsi lon .

Todd D. Newman A principal engi neer in the Workstation Ad \'anced Tech
nology Development Group, Todd Newman has been invol ved w ith several
projects based on the sample X II server. He was a member of the design and
implemen tation team of that server, as well as a member of the te:tms that
adapted the server to the DFCstation 3100 workstation and extended the server
for the PEX graphics application . Todd worked at M icrosoft Corpora tion before
joining D igital in 1986. He received an A. B. (1981) from Harvard Univers ity.

Peter L. Nishimoto Peter Nishimoto was project leader for the PEX imple

mentations on the DECstation 3100 and VAXstation 3100/SPX workstations. He

is also the coarchitect of the PEX protocol and a member of the multi vendor PEX

architecture team. Peter is a principal software engineer in the Workstations

Software Group. Before joining Digital in 1986, he worked for Daisy Systems and

Vulcan Software. He holds a B. A . (1976, cum laude) in mathematics from Colgate

University and is a member of IEEE, ACM, and ACI'vl SIGGR.APH.

RandiJ. Rost Principal engineer Randi Rost was the project leader for the PEX

specification effort, one of PEX's chief architects, and the PEX document editor.

Randi currently manages a group within the Workstations Advanced Tech nology

Group that is concentrating on photorealistic rendering. He has published over a

dozen technical papers and is the author of the X/J'v!otif Quick Reference Guide.

He received a B.S. (1980, summa cum laude) from Mankato State University and

an M.S. from the University of California, both in computer science.

Michael R. Ryan Since joining Digital in 1984, Michael Ryan has worked

on several software development projects. He is the project leader for the

DKwindows VMS mail application and a contributing member of the develop

ment team for ALL-IN-I MAIL for DECwindows mail on the VMS system. Prior

to his involvement with the mail program, Mike did advanced development

for Business Communications Systems Engineering and VMS DIBOL compiler

development. Mike holds a B.S. and M.S. in computer science from Rensselaer

Polytechnic Institute.

Thomas M. Spine As a principal software engineer in the Software Usability

Engineering Group , Thomas Spine is developing software usability engineering

methodologies and contr ibuting to the user interface design of several products.

Tom has published a number of papers on the usability of speech recognition

devices, file management with interactive computers, and usability engineering .

He received an A.B. (1982) in mathematics and psychology from Washington

University and an M.S. (1984) in industrial engineering from Virginia Polytechnic

Institute and State University.

Leo P. Treggiari Currently responsible for the development of the architec

ture of the XUI and Motif toolkits, Leo Treggiari is a consulting software engineer

with the Commercial Languages and Tools Group. He has acted as project leader

for a number of products within the group, including version 1.0 of the XU!

toolkit. Leo was a senior software engineer for Wang Laboratories before joining

Digital in 1979 He is a member of ACM and holds a B.S. (1975, summa cum laude)

in chemistry from Boston College.

I

5

Biographies

6

James H. VanGilder James VanGilder has developed several products for

Digital since joining the company in 1979, including the PDP-II RPG I I , VAX

DI BOL, BCSE advanced development, and DEC windows VMS mail version 1 .0. He

is a principal software engineer in the Commercial Languages and Tools Group,

where he is at present acting as project leader for the development of the

DECwindows implementation of the OSF!Motif toolkit . J im worked for Motorola,

Inc . , and Kollsman, Inc. before coming to Digita l . He has a B .S (1973) from

Arizona State University.

jacob L. VanNoy A consult ing software engineer,Jacob VanNoy has been the

DECwindows program architect since January 1989. He joined Digital in 19RO

in the VMS Development Group and was part of the initial VMS workstation

software development team. During t he DECwindows project version I, jake

was responsib le for the content of the XUI Style Guide. He was also involved

in the design of many aspects of the user interface, inc luding the design of XU!
toolkit . jake received a B . S . and an M.S. in computer science from the Universi ty

of Pittsburgh.

I Foreword

Richard Treadway

Director

Open Software Strategy

I n 1986 Digital's desktop strategy could only be

described as fragmented. On VMS workstations

we offered a proprietary windowing system, on

ULTRJX workstations we offered an early version of

the X Window System , and on PCs we offered

MS-Windows. Because of the diversity of systems, it

was very difficult to convince an application

builder to support our range of desktop systems.

Furthermore, this strategy was unsatisfactory to

customers. Our customers wanted a consistent user

interface that would allow them to access and

execute applications on the appropriate processor

anywhere in the distributed network.

In January I987, Digital announced the

DECwindows system, which was a major design

change intended to solve these problems. The

system would provide a single application pro

gramming interface for application builders and

give users network-wide access to applications

through a common graphic user interface. The

DECwindows system also would have the exten

sibility and flexibility to grow into the next decade

and provide access to not only Digital systems , but

to any system in a multi vendor network. In essence ,

the DECwindows system would bring the resources

of the network to a single point on the desk.

To rally the entire corporation behind such a

major change in direction , the DECwindows pro

gram put forward a simple vision to Digital's

engineers and customers. Unified access to the VMS
and ULTRIX operating systems would be provided

through a single programming interface for i nterac

tive graphic applications and a common user inter

face for all the desktop devices we support. This

simple and concerted focus made it possible

to manage the complexity involved in delivering

more than 50 components built by nine separate

groups located throughout the world in Nashua,

New Hampshire, Reading, England, Littleton,

Massachusetts , Palo Alto, California, and Valbonne,

France.

Our strategy was to base the DECwindows system

on standards and enhance that base. Standards

enable application designers to port applications

between different hardware and software plat

forms. I n late 1986, no standards existed for

networked windowing systems. Therefore, i n

choosing a basis for the DECwindows program ,

we had to select a technology that not only met

our requirements but could be put forward to the

industry as a potential standard. For this reason, we

chose to base the DECwindows architecture on

MIT's X W indow System.

After Digital's endorsement of the X Window

System in january 1987, eight other vendors, includ

ing Apollo and Hewlett-Packard, announced the X
Window System as the basis for their future

graphics-based computers.

Because the X Window System is hardware and

software platform-independent , we could provide

it on the VMS, ULTRlX, and MS-DOS operating

systems. The X architecture allows applications to

be transparently distributed throughout the net

work. This capability is critical in fulfilling our goal

to be the leader in distributed computing. The

X system allows applications executing anywhere

in the network ro be displayed and conrrolled from

the user's desktop computer. I n addition, the win

dowed computing model offers significant benefits

over the time-sharing , character-cell terminal

model. For example, sharing data among simulta

neously executing character-cell applications is

difficult, bur in the X system , data-sharing is a fun

damenral property. Finally, the X system protocol

can be extended to include future subsystems. This

feature is important in providing a path for the inte

gration of future tech nologies. As you will read in

this issue of the Digital Technicaljoumal, we used

this capability to develop Display PostScript as an

extension to X.
The value the DECwindows system adds to the X

system is a consistenr user interface, and a high

performance, robust, and flexible toolkit. The XUI

toolkit and style guide make possible the implemen

tation of applications that offer good interactive

7

I

performance. Because the same X 1 toolkit runs

on both the VMS and ULTR!X systems, developers

can provide their applications on both operating

systems with a single implementation.

To test the robustness, performance, and usabil

ity of the toolkit and style guide, we committed ro

develop a highly complex interactive application,

the DECwrite editor, on both the VMS and ULTR!X

operating systems. We learned a great deal about

DECwindows performance and quality from that

project. The ability to test our enabling technology

while we were building it was fundamental to our

success.

In :�ddition to performance and completeness,

the DECwindows toolkit separates the definition of

user interfaces from application coding. The user

interface can be specified with a nonprocedural

language, called the user interface language (UIL).

The resultant definition is accessed at run-time by

the application. Separating form and function in

the OECwindows system is very important for

the development of international applications and

for the separation of user interface design from

application implementation.

For international applications, the user interface

can be completely translated without changes to

application code. This approach significantly

reduces the cost and complexity of translating

applications. Since the toolkit supports multiple

user interfaces, applications can switch languages

dynamically.

For user interface design, UlL 's separation of form

and function allows rapid prototyping in the user

interface. With UIL the user interface design need

no longer be entirely the programmer's respon

sibility. User interface design specialists can con

centrate solely on the interactive aspects of the

application without making programming changes.

All this can lead to better designed and easier ro use

applications.

The DECwindows system is very significant to

Digital in two important ways. First, it is our first

open systems product. We initially thought the

value added by the DECwindows user interface and

toolkit would be our competitive advantage.

However, we came to realize that in a fully dis

tributed computing environment the user really

8

needs that same interface for all applications

regardless of the vendor's system. Therefore, the

DECwindows user interface had to support mul

tivendor systems to encourage application builders

to base their designs on it. That conclusion and the

opportunity to create a de facto standard led us

to create the X user interface (Xlil) :.�s a separate

component of the DECwindows system that we

would license to run on any system. When the

Open Software Foundation (OSF) announced a

request for technology to specify the user envi

ronment component, XU! was submitted and

eventually accepted as OSF/Motif. Xlll marked the

first time Digital released technology that it once

considered proprietary to the industry.

Second, the OECwinclows system initiated a new

design center for applications. The system was a

fundamental change from a time-sharing, character

cell model to a graphic, windowed, distributed

computing model. In this regard, the OECwindows

system presented application designers with a

whole set of opportunities for new application

capability and an associated set of complex

problems to solve.

As with any enabling technology. it takes time

and creativity to evolve techniques and method

ologies that allow the technology to be used effec

tively. The series of articles in this journal, which

includes papers on the style guide, toolkit. l'll.. and

XUI, will help you better understand how far we

have come and where we still have to go.

Scott A. McGregor I

An Overview of the
DECwindows Architecture

The DECwindows architecture builds on industry standards and adds enhancements

to provide greater performance and reliability in the window environment. The

architecture is based on the X Window System developed at MIT, which consists

of three main components -the X server, X lib, and the toolkit intrinsics. The

DECwindows implementation extends X in several ways. DECwindows uses

algorithms that expose additional interfaces, supports a broader choice of pro

gramming languages, provides a complete set of tools for application development,

and promotes ease of use and user-interface consistency by means of a style guide.

In addition, the DECwindows architecture includes industry-standard interfaces

and extends the server to take advantage of PostScript, three-dimensional graphics,

and imaging.

The DEC windows architecture provides a complete

set of mechanisms that control windowing,

graphics, the user interface, and data interchange

in order to make easy the task of building high
quality applications that work well cogether. In this

role, the DECwindows architecture is a key com

ponent in Digital's Network Application Support

(NAS) in conjunction with other components such

as networking and printing.

It can be argued that the move from character

cell-oriented applications co window-based appli

cations is as significant as the move from batch

computing to time-sharing. The reasons for choos

ing to adopt the X Window System are as many as

they are varied; some of the most important are as

follows:

• Windowing systems provide a richer computing

environment that includes detailed graphics art

work and significantly improved ease of use.

• The direct manipulation of objects on the screen
is a more intuitive model of computer

applications.

• The prevalence of windowing systems has led
to increased expectations on the part of our

users. For example, users can start any number

of applications simultaneously, allow them to

remain running all day, and shift between them

by using a pointing device.

• Window-based applications allow for a natural

separation of form and function.

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

• _lust as time-sharing allowed the creation of

applications that were inconceivable or impos

sible in batch-oriented systems, windowing

systems support problem-solving approaches

that cannot be made to fit the time-sharing

model. For example, sharing data between

applications has often been cumbersome for

applications designed to run on character-cell

terminals. In contrast, the ability to share data

among cooperating applications is a fundamen

tal property of the X window model.

The DECwindows theme is to build on standards

and to add incremental value. Standards make sense

because application designers want portability

between hardware platforms. Users of applications

also want standards because it rarely makes sense to

learn new interaction techniques that are unique to

specific applications. The DECwindows architec

ture is built on and compatible with industry stan

dards such as the X Window System from MIT,

Motif from the Open Software Foundation, and
Adobe's PostScript page-description language. The

architecture is designed to allow easy integration

with various personal computer (PC) systems such

as those produced by IBM and Apple. The value of

Digital's offerings is in the performance and reliabil

ity of the implementation, the set of additional lay

ered libraries and services available, and integration

with other services defined by NAS.

Prior to the DECwindows "unification," there

were different windowing and applications solu

tions for each of the operating systems supported

9

DECwindows Program

by Digital (VMS, ULTRI X , and MS-DOS). A goal of the
DECwindows architecture is to provide a common
user interface that spans all three operating
systems, and a programming interface common
across V!'v!S and ULTRIX . Although memory limita
tions of the MS-DOS environment prevent us from
supporting the full DECwindows applications inter
face for current PCs (that is, until OS/2), the intent
is to make it easy to port DECwindows applications
between VMS and ULTRIX operating systems, and
straightforward to port applications that use
MS-Windows, the Presentation Manager, or Apple's
Macintosh.

Although the DECwindows architecture is based
on the X Window System, DECwindows is an
upward-compatible superset of that design. This
means that the DEC windows architecture has all the
advantages of the X Window System, as well as the
advantages of the Digital enhancements. The bal
ance of this paper presents a summary of the
X Window System and the additional components
and design enhancements that make up the
DEC windows products.

The X Window System

The history of the X Window System seems surpris
ing, given the role it plays today as a workstation
industry standard. X started out at Stanford
University as W. W became X when it was jointly
adopted by MIT's Laboratory for Computer Science
and Project Athena (an educational program jointly
funded by Digital and IBM). The first version of X
to be widely usee! and shipped as a product
was version 10 (XlO). X had three important fea
tures that made it popular: it provided a high
performance network protocol for windowing and
graphics, it was independent of workstation hard
ware, and it was available in source form to anyone
for the cost of the media.

Work on X version ll (Xll) began in 1986. This
effort was a serious attempt to reconsider some of
the original design ideas in order to make X into a
more functional system that would meet the needs
of a larger class of application developers. Graphics
state was added for performance, and precise
semantics were defined for the output routines.
Input events were generalized, and perhaps most
important, work began on a toolkit for applications
developers. Digital agreed to implement the sample
server, Xlib (the library of X routines), and the
toolkit that are available on the MIT Xl l tape. MIT
has agreed to continue to support X and to control
the architecture and evolution of the system design.

10

X consists of three main components: the
X server, Xlib, and the toolkit intrinsics (also
known as Xt). The substructure of each of these
components is briefly described in the following
sections.u The overall architecture of the
X Window System, showing the relationship of
the server, network protocol, Xlib, Xt, and appli
cations is shown in Figure 1.

The X Server and the X Protocol
The task of an X server is to implement the
requests defined in the protocol and encoding
specifications.

The X server runs on the hardware where the
display and keyboard are located and provides low
level graphics, windowing, and user input func
tions. It relies on a very low-level interface that is
supplied for each type of supported workstation.
Clients communicate with an X server by means of
the network or "wire" protocol. This protocol, also
known as the X protocol, is a very precisely defined
interface. By tightly defining the semantics of the
wire protocol, it is made independent of the operat
ing system, the network transport technology, and
the programming language.

The X protocol defines the data structures used
to transmit requests between applications and
user-interface stations over the network_�
Applications do not normally generate protocol
requests themselves, but instead use Xlib or other
layered libraries.

Most X requests are asynchronous, meaning that
a client can send requests without waiting for the
completion of previous requests. This approach
allows for fast request processing through the use
of pipelining techniques in the server implemen
tation and in Xlib, and it means that the application
usually does not have to wait for the completion of
an operation. Some X requests (state queries, for
example) have return values, which the server

APPLICATION

II XT (INTRINSICS)

X LIB

EXTENSION
LIBRARIES

1 X eROTOCOC

CLIENT

X SERVER EXTENSIONS SERVER

Figure 1 X Architecture

Vol. 2 No.3 Summer 1990 Digital Tecbnicaljournal

handles by generating a reply and sending it to
the client. Although the protocol does not provide
any explicit synchronization requests, any request
that depends on the completion of other requests
will block, pending execution of those requests.
(For example, Xlib synthesizes the XSync interface
by making a XGetlnputFocus request and discard
ing the return value.) Errors are also generated
asynchronously, and clients must be prepared to
receive error replies at arbitrary times after the
offending request.

The X protocol also describes the following:

• Connections, which provide the communication
path between server and client

• Windows, which provide the mechanism for
interaction between the user and the application

• Events, which provide notification of mouse
and keyboard actions, as well as a mechanism
for control of (and communication between)
multiple, simultaneous applications

• Graphics routines, which provide the mech
anism for an application to draw information on
a display

X lib and the Xt Intrinsics
Xlib is the basic library of X routines. Xr, or
intrinsics, is a library of routines that introduces the
"widget" model and that can be thought of as a
toolkit for builders of user interfaces.

The distinction between Xlib and the intrinsics is
partly architectural and partly due to the incremen
tal evolution of the X standard. Originally, X lib was
simply a procedural interface ro the X wire proto
col; but it soon became a repository for commonly
used utility routines as well. During the design
phase of X version 1 1 , it made sense to create a sepa
rate " toolkit" library to introduce (I) more con
ventions for windows (that is, "widgets") than were
originally envisioned in the protocol , and (2) a
mechanism for dispatching events.

Because of the difficulty of separating widget
functionality from the calling interface, a distinc
tion was made between the Xt intrinsics and the
widget set. The intrinsics supplied a mechanism for
creating widgets without imposing policy, and
the widget set (with its associated calling interface)
defined a particular look and feel. Thus, the
DEC windows toolkit (now known as XU!) was born,
consisting of the standard intrinsics library shared
with MIT and a set of widgets unique to Digital.
The Xl ' I toolkit is described further below. MIT also

Digital Tecbnlcaljournal Vol. 2 No. 3 Summer 1990

An Overview of the DEC windows Architecture

provides some sample widgets, known as the
Athena widgets.

X lib X lib provides a "veneer" library over the wire
protocol so that applications can use a procedure
call interface. Xlib converts the parameters passed
to the procedural interface into the network proto
col format and translates messages from the server
into return values for the application. Xlib also pro
vides a set of utility routines needed by most
applications.

The Xlib interface consists of almost 300 routines
that either map directly to X protocol requests or
provide utility functions on the client side.
DECwindows follows the standard MIT definition of
Xlib very closely, with a few additions noted below.

The functions available in Xlib include setting up
connections with a server, querying the server, cre
ating resources and windows, performing graphics
output, and obtaining user input events from the
keyboard and pointing device.

The Xlib interface is the lowest level interface
that applications are expected to use; in other
words, an application should not use the worksta
tion hardware interface directly, nor should it
directly generate X protocol requests.

Intrinsics The intrinsics are a set of routines that
make it easy to create the window types that imple
ment user-interface features such as scroll bars,
dialog boxes, and editable text fields. Such a win
dow type is called a widget. Since intrinsics aid
in building widgets, the intrinsics are sometimes
called a toolkit for builders of toolkits. Although
the definition of the widget model is the primary
task of the intrinsics, utility routines are also
included to handle user input (event management)
and to provide caching services so that widgets can
share graphics contexts.

Like the lower layers of X, the intrinsics layer
is "policy free" in that it seeks to provide a mech
anism rather than to enforce a particular style
of user-interface or program interaction. The XU!
toolkit, described briefly below, is the layer
that specifies DECwindows user-interface policies
by providing a common set of widgets layered on
the intrinsics.

DECwindows Enhancements to X

DECwindows extends the X Window System in a
number of significant ways.

• Quality of implementation for the standard
X components -DEC windows enhances the

l l

DECwindows Program

sample M IT implementation by using algorithms
that expose additional interfaces, or by allowing
more flexibility. Examples include faster win
dow repositioning algorithms, international key
board support, and font caching. Robustness
is another important implementation quality;
Digital has led the effort in developing an
X validation test suite.

• A choice of programming languages - MIT
supports only a C and a Common L ISP interface
for X l ib. DECwindows supports standard UNIX
C as well as the complete set of VAX stan
dard language bindings, inc luding FORTRAN ,
ADA , and PASCAL .

• XUJ toolkit - The X Window System compo
nents stop short of rroviding a complete set
of tools needed for application development.
DECwindows provides libraries for user
interface primitives (widgets), resource man
agement, and internationalization. Additional
development tools are also included. The XU!
toolkit makes it easy to write applications that
follow the XU! Sty le Guide.

• XU ! Style Guide - To promote ease of use and
user-interface consistency among applications,
DECwindows includes a set of guidelines for
application developers. All applications devel
oped by Digital conform to these guidelines.

• Industry-standard interfaces - In addition to the
X interfaces, DECwindows includes industry
standard libraries such as PH IGS and G KS.

• Extension libraries - X provides a mechanism
for extensions to the server's capabilities.
The DECwindows architecture takes advantage
of this feature to provide PostScript, three
dimensional graphics, and imaging capabilities.

• Base applications - DEC windows includes a
set of base applications useful to all work
station users, such as window and session
managers, terminal emulators, and personal
productivity tools.

The X architecture (shown in Figure I) is
expanded in DEC windows as shown in Figure 2 .

In Figure 2 , the X I I wire protocol denotes the
line between client and server. On the client side,
the "staircase layering" of the application layer
shows the ability for applications to intermix calls
to any of the client-side libraries. In other words,
the application can use whatever level of abstrac
tion is most appropriate for the job at hand.

1 2

APPLICATION

I L£1 ' N DUSOAY
STANDARD
LIBRARIES EXTENSION

LIBRARIES
XUI TOOLKIT

• PEX

' I XT (INTRI NSICS)
• POSTSCRIPT
• I MAG I NG

X L I B

I
TRANSPORT M ECHANISM

7 W e<OWCOL

TRANSPORT M ECHANISM

I
EXTENSIONS

X S ERVER K E R N E L • PEX
• POSTSCRIPT
• I MAGING

Figure 2 DEC windows Architecture

CLIENT

SERVER

The remaining sections of this paper describe
DECwindows enhancements to the X server, the
extension of Xlib, the X U I toolkit and style guide,
and the extension and industry-standard libraries.

DECwindows Enhancements to the

X Server
Although the semantics of the server operations
are tightly constrained by the X protocol, there
is a fair degree of freedom in the design and
implementation of the server itself. The ULTRIX
implementation has tracked the M IT version quite
closely, whereas the VMS implementation diverged
early on in an attempt to add value. In both cases,
there are some significant enhancements that
Digital has made to the standard MIT server.

The MIT sample server is divided into two major
components: device-dependent X (DDX) and
device-independent X (DIX). The DIX code is highly
portable and designed to be independent of operat
ing system and hardware. The DDX code contains
both operating system (e.g. , memory management)
and display hardware dependencies. The goal for
the original server design was to maximize the
portability of the code, making the DIX component
as large as possible, even at the cost of performance.
Re-implementing the server to be entirely device
dependent would provide the best performance,
but would require a major effort to support each
new workstation product. The goal for the

Vol. 2 No. 3 Summer 1<)<)0 Digital Technicaljournal

DECwindows server is to seek a compromise that
provides higher performance without completely
sacrificing portability.

The DECwindows X server implementation dif
fers from the MIT X server implementation in the
following ways:

• Font and glyph caching - In the MIT X server,
a font is either in memory or it is not. The
DECwindows X server provides glyph caching,
so that a portion of a font may be stored in
memory. Glyph caching is especially important
for users of ideographic (e.g. , Far Eastern) fonts.

• Run-time loading of DDX, DlX, transport mecha
nisms, and extensions (on VMS) - The advantage
of run-time loading is that an application need
not load code until it is actually needed. Thus the
apparent performance of an application can
improve, because it does not need to initialize all
functions before it invokes any function.

• Multiple, simultaneous transport mechanisms
The X server can have an arbitrary number of
open connections at a time, and these connec
tions can use the transport mechanism available
(e.g. , to a given remote node) or most desirable
(e.g. , shared memory for a local client).

DECwindows Extension to Xlib
As noted earlier, the DECwindows X lib implemen
tation follows the standard MIT definition of Xlib
very closely. Some of the few differences from the
X implementation are summarized below.

Exteru:kd Keyboard Support The XLookupString
routine has been extended to support international
character sets. The DECwindows Xlib implemen
tation supports the Alt-Space (Compose-Space)
introducer sequence to enter key sequences that
generate characters not available on the user's key
board. The intention is to expand these capabilities
further to support Asian languages and "soft" key
board displays on the user's screen.

Asynchronous Event Notification Events from the
X server are synchronous, meaning the events must
be read from a queue by the application. A
DECwindows specific enhancement allows for an
asynchronous notification of the arrival of an event,
through an AST on the VMS system, and a signal on
the ULTRlX system. In addition, Xlib may be called
from this asynchronous event call.

Digital Tecbnicaljourna/ Vol. 2 No. 3 Summer 1990

An Overview of the DECwindows Architecture

VMS-speci.fic Extensions Under the VMS operating
system, Xlib (along with the other layered libraries)
is a shareable library. Shareable libraries reduce the
size of an application's image.

XU/ Toolkit
The XUI toolkit is layered on top of X lib and the Xt
intrinsics and is the first layer that defines the user
interface policy of the DECwindows architecture:�
The XU ! toolkit consists of three major com
ponents:

• The XU! toolkit widgets

• The DECwindows resource management facil
ities

• The cut-and-paste interfaces

The goal of the XU! toolkit is to make it easy for
an application designer to write an application by
providing the designer with widgets for almost all
the common user-interface components. Applica
tions are expected to write widgets for their own
unique function, but functions that are common
across applications are supported by the XU!
toolkit. For example, a spreadsheet application
would likely create its own widget class for the
cell array, but it would use XU! toolkit widgets to
display error messages and menus. Although the
application needs to create its own widgets to
differentiate it from other applications, sharing
the commonly used widgets has two advantages:
the application writer has less code to write and
maintain, and consistency between application
is increased.

To achieve the goal of interapplication consis
tency, the XU! toolkit is closely tied to the xur Style
Guide in its selection of widgets to implement, and
in the functions and visual appearance of those
widgets. In other words, the XUI toolkit is an imple
mentation of the user interface specified by the
style guide.

XU/ Style Guide
The XU! Style Guide is a set of user-interface guide
lines that describe preferred screen appearance,
types of application/user interactions, proper use
of keyboard and mouse functions, and so on. In
human terms, it might be described as a guide to
effective communication.4 ·5

The xur Style Guide has three main areas of
emphasis:

1 3

DECwindows Program

• Use of graphics to present information

• Use of direct manipulation, in cases in which
users point at and directly interact with objects
on the screen

• User-interface consistency

The style guide provides enough detail to let
application designers achieve a high level of consis
tency, but by itself, it cannot guarantee that the
designer will do a good job. Guiding the creation of
consistent applications might be compared to guid
ing the creation of musical compositions in a
specific style, like jazz or the blues. Although a good
guide might provide the fundamentals, the com
poser still needs to hear examples of the music in
order to copy the style. And a composer can still
write bad compositions even if the guide is followed
to the letter.

Extension Libraries
The X architecture supports an extension facility so
that functions can be added to the core routines.
Extensions allow support for special workstation
hardware capabilities as well as for operations that
are seldom used.

An extension consists of two components: a
hardware-dependent extension to the X server, and
a client-side library that sends requests to the server
using the extension protocol. Figure 2 illustrates
the position of the extensions within the X server.
A routine is provided in Xlib to rest whether a par
ticular named extension is supported in a server or
ro query the set of supported extensions.

Extension libraries supported by DECwindows
include the following :

• PEX , a high-performance three-dimensional
graphics library

• Display PostScript, a graphics output library that
uses Adobe's PostScript imaging model

In addition, some anticipated extension libraries
include the following:

• Input, extended support for tablets, dial boxes
and other user input devices (part of the MIT
Xll R4 release)

• Nonrectangular windows, which permits win
dows to be defined as arbitrary shapes rather
than limited to rectangles

14

• Imaging, a library of functions that support oper
ations on scanned images

• Multimedia, support for sound and video

Industry-standard Libraries

Industry-standard libraries are either officially sanc
tioned or de facto standards that enjoy wide popu
larity in the industry. Application developers use
these interfaces when they want ro minimize the
cost of supporting multiple graphics and/or win
dowing environments (including DECwindows)
from a single application.

DECwindows implements GKS, PHIGS, and other
industry-standard programming interfaces by: (I)
providing shells on top of Xlib and other standard
X libraries, (2) by extending the X l l wire protocol
and using it directly, or (3) by some combination of
the two.

Since GKS is a two-dimensional interface, it is
strictly layered on top of Xlib and the X LII toolkit.

Since PH IGS seeks to take advantage of three
dimensional hardware capabilities nor exposed by
Xlib, PHIGS uses a combination of the PEX three
dimensional extension to X I I and the existing pro
gramming libraries.

Summary

The DECwindows architecture offers significant
new technology for building applications; it is
based on the graphical user interface and the use
of an operating-system-independem "diem-server"
model to distinguish between where an application
is run versus where it appears to the user. The archi
tecture also provides a high degree of source-level
compatibility between ULTRIX and VMS, which per
mits applications to be easily ported between the
two operating systems.

DECwindows is based on the industry-standard
X Window System, including the X server, the
X wire protocol, Xlib, and the Xt inrrinsics. It offers
value beyond these standards through improved
implementation as well as by incremental func
tionality. The architecture has proven both robust
and extensible, making it the preferred base for
new applications created by Digital and by our
software partners.

A Postscript

Since the original creation of the DECwindows
product, a new organization came into being to
drive convergence of open systems standards. The
Open Software Foundation (OSF) evaluated tech-

Vol. 2 No. 3 Summer J<J<JO Digital Tecbnicaljournal

nology from a number of companies and created a
toolkit called Motif that combines X U I from D igital
and the visual appearance from M icrosoft and
Hewlett-Packard. In 1990, Motif wil l replace X U I as
the toolkit in Digital 's DECwindows architecture.

Given the w ide acceptance of X and Motif, the
DECwindows architecture has truly become an
industry standard, much to the credit of the many
Digital engineers who put in their imagination and
hard work .

References

1 . R . Scheifler,] . Gettys, and R . Newman,
X Window System C Library and Protocol
Reference (Bedford: Digital Press, 1988).

2.]. McCormack, P. Asente, and R . Swick, X Toolkit

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

An Overview of the DECwindows A rchitecture

Library - C Language Interface, X Version 11
Release 3 (Cambridge: Massachusetts Institute of
Technology, 1988).

3. L. Treggiari and M . Collins, "Development of the
XLII Toolkit , " Digital Technical]ournal, vol . 2 ,

no. 3 (Summer 1990, this issue): 24-33.

4. T. Spine and). VanNoy, "The Evolution of the X
User Interface Style," Digital Teclmical]ournal,
vol . 2 , no. 3 (Summer 1990, this issue): 44 -51 .

5 . XU/ Style Guide (Maynard: Digital Equipment
Corporation, Order No. AA-MB20A-TE , 1988).

General Reference

R. Scheifler and]. Gettys, "The X Window System,"
ACM Transactions on Graphics, vol . 5, no. 2 (April
1986).

IS

Susan Angebranndt

I Todd D. Newman

The Sample Xll Server
Architecture

The Xll protocol is the backbone of Digital's DECwindows program. The sample

seroer is an implementation of the protocol. The seroer was developed by Digital and

has become the basis for all Digital product seroers. As part of Digital's commitment

to support open system standards within the industry, the seroer code was donated to

MIT. Because the software is now publicly available, the seroer is the starting point

for the X seroer product implementations for all other vendors. Ibis paper describes

the architecture of the sample server and comments on the implementation.

The Need for a Sample Server

The X Window System protocol was developed
jointly by MIT and Digital.1 The protocol permits
network-transparent access to the input, window
ing, and two-dimensional graphics capabilities
of workstations and display systems. Further, the
protocol presents a high-performance, device
independent graphics model. As such, it provides
a hierarchy of resizable, overlapping windows,
which support the easy building of a wide variety
of applications and user interface styles.

The server is an implementation of the
X protocol. Its job is ro arbitrate access to the
display and to the keyboard and pointing device,
generally a mouse. Applications that use the
X protocol are called clients. Clients communi
cate with a server through an 8-bit byte stream.
A simple packet stream protocol is layered on top
of the byte stream. For example, a packet of com
mands might create a window and draw an arc.

Our goal was to design and implement a sample
server based on the X Window System version 1 1
(X I I) protocol. By sample we mean an example
implementation of the protocol that other devel
opers can use to implement the X protocol on
their workstations. When we began, there was a
sample implementation of version 10 (XlO) of the
X Window System already in use on UNIX system
based products. This X lO sample server had been
ported to Digital, Sun, Apollo, and IBM Pc/RT
workstations, among others. But the X lO protocol
was not suited to advanced graphics devices. The
X IO implementation was based on the VAXstation
100 graphics primitives and architecture. There
fore, it was difficult to make performance enhance
ments on hardware other than the VAXstation 100

16

workstation because of assumptions in the X IO
protocol and its sample code.

X ll was more advanced that X 10 2 X I I com
pletely overhauled the X IO protocol. It considered
the needs of operating systems other than the UNIX
system, as well as graphics devices other than the
VAXstation 100. Because of the massive changes
from X lO to Xll , the sample server had to be
reimplemented from scratch . It was important
that this implementation not depend on a specific
device but apply to a wide range of workstations.

Digital wanted to develop and promote X I I as a
de facto standard in the workstation market, just as
we promote the UNIX system (in the form of
Digital's U LTRIX system) as a standard. We felt a
common, open windowing environment was as
important as a common, open operating system
environment. XlO was too limited in scope and
capabilities to become popular on workstations
with advanced graphics. By making the sample
implementation publici y available, other vendors
would be more likely to adopt X I I as a standard.

Digital receives several direct benefits from
making the sample server publicly available. It is
the basis for all current Digital server implementa
tions on the VMS, ULTRIX, and PC systems. MIT
maintains the bulk of the source code. Therefore,
Digital benefits from the changes, enhancements,
and bug fixes done not only by MIT but by other
companies that use the server. Also, we can easily
incorporate server extensions, such as Hewlett
Packard's input extension. Over 75 percent of the
code in the ULTRIX system-based DECstation 3100
color server is from MIT. Therefore, this server can
be ported easily to new graphics devices because
few lines of code need to be modified.

Vol. 2 No. 3 Summer /')')0 Digital Tecbnicaljournal

Design Goals and Constraints

Designing and writing software to be used on a
wide class of machines is a lesson in compromises.
In this section, we list our goals and constraints. In
the sections following, we give an overview of the
server architecture and some porting concerns.
Finally, we evaluate our end result.

Tailorable
The primary technical goal of the project was to
provide code that would remai n useful on current
and future operating systems and graphics devices.
Writing portable code is not new. Software is often
ported. Just as often, performance is decreased in
favor of the increased portabil ity. For example, the

UNIX operating system has been ported often, but
the system's performance is diminished on all but a
few architectures.-1 Customization is needed to
regain the speed lost in favor of generality. There
fore, our server design had to emphasize portability
and customization in equal measure. We term the
software design using this approach as tailorable.
Almost every other design consideration or con
straint grew out of the requirement tailorability.

Standards

The sample server is used by a wide audience, on
a variety of workstations. Our implementation was
constrained by some of the " least common denomi
nator" features found on most workstations. We
wanted to be assured that most vendors would be
able to use our implementation.

An example of such a constraint was in the choice
of language used for the server. We preferred to
implement the X protocol in a multithreaded,
object-oriented language. However, the implemen

tation is in the C language because most other
vendors provide C compilers. Therefore, the C
language would provide a more universal s�an
dard. The problems with using the C language are
discussed in more detail in the Sample Server in
Retrospect section of this paper.

Firewalls and Layering
Modularity makes software easier to maintain and
modify. Whole modules can be reimplemented
with different internal data structures and proce
dures. As long as interfaces and ftrewalls are main
tained, the rest of the system will continue to
function.

We also chose to use modularity because we
could reuse software by partitioning the software

Digital Tecbnical]ounral Vol. 2 No. 3 Summer 1990

The Sample Xll Server Architecture

into layers. Layers that were machine-independent
could be completely portable. Machine-defined
layers required modification to port to a new archi
tecture. Therefore, our goal was to provide as much
machine-independent code as possible.

Simplicity
Because of our time constraints , we opted to keep
our approach simple. Simplicity meant adding an
extra level of indirection or an extra procedure call
in some cases. However, it is easier to optimize the
code later by deletion than by addition .

Simplicity was also achieved by setting restric
tions and understanding l im its. The bitmap
graph ics workstations that might run the
X protocol currently range from the 8-bit Apple I I
through the 1 6-bit I BM PC to Digital's 32-bit
VA.Xstation 3520 workstation. Frame buffers range
from the 1 -bit-deep VAXstation 2000 workstation to
the 24-bit-deep frame buffer of the VAXstation 3520
workstation . The X protocol supports frame buffers
up to 32 bits deep . As a practical observation, no
machines with 8-bit integers would have enough
performance to run the X protocol.

Although the X protocol supports many different
graphics devices, we had to i mplement for only
one device for practical purposes. We chose the

most general device, one with no graphics hard
ware, which would enable us to write all the
drawing algorithms in software. When other
developers use the sample code, they can replace
our software algorithms with calls to their hard
ware graphics routines. We selected the mono
chrome VAXstation 2000, running the ULTRJX
operating system. The frame buffer is treated as
main memory. However, it is impossible to gen
eralize from one example. Therefore, as we were
writing the sample, we had two other development
engineers port it to the VAXstation 8000 and
VAXstation 11-GPX workstations.

Architecture

The server architecture reflects our perception of
how the code would be ported to new machines
and operating systems. The architecture has three
major layers: device-independent X (DIX), operat
ing system (OS), and device-dependent X (DDX).

The DIX layer contains device-independent
routines, OS contains operating system-specific
routines, and DDX contains device-specific rou
tines. The operating system interface insulates
DIX from the details of file access, network com-

17

DECwindows Program

munication, and the keyboard and mouse. DDX is
the graphics interface, which is a virtual interface to
the painting routines.

Procedures in DIX should rarely require changes,
OS should be written once per operating system
(or version of the UNIX operating system), and DDX
should be modified for each graphics platform.
For example, when porting from one U LTRIX
graphics subsystem to another, the only layer to
be modified would be DDX . However, some rou
tines in DDX will be shared across different ULTRIX
graphics subsystems.

Shared Data Structure

Firewalls are created by strictly defining the
exported routines and the data structures that are
shared by the layers. Although the C language docs
not explicitly support objects, we treated the
shared data structures as objects, which let us
hide information between any two layers. Each
structure contains state variables, i.e., attributes,
and procedure vectors, i.e. , methods. DIX writes
the state and calls the methods. DDX and OS read
the state and set the methods. In addition, each
structure has an opaque pointer, which is usually an
implementation-specific structure that belongs to
either DDX or OS. Screens, drawables, and graphics
contexts are the primary data structures shared
between the different layers in the server.

The X protocol supports multiple screens that are
connected to the same server. I n other words, one
workstation can have multiple displays connected
to the same keyboard and pointer. Therefore, all
information about a particular screen is bundled
into one data structure of attributes and proce
dures. Resources that are defined per screen are
color maps, cursors, and fonts.

Windows and pixmaps are considered draw
abies. Windows are rectangular graphic areas on
the screen into which graphics routines can be
drawn. Pixmaps are graphics drawing areas located
off-screen. All graphics operations work on draw
abies, and operations can copy areas from one
drawable to another.

Graphics contexts contain state variables, such as
foreground and background pixel value (i.e. , color);
the current line style and width; the current tile
or stipple for pattern generation; and the current
font for text generation. Graphics contexts also
include functions that support fundamental paint
ing operations, e.g. , drawing lines, polygons, arcs,
text, and copying areas of drawables.

18

Device-independent X

DIX dispatches requests to either DDX or OS,
manipulates a tree of windows and their associated
properties, maintains the input focus, and sends
mouse and keyboard events to the appropriate
clients. In addition, DDX checks client requests for
the correct length and maps identifiers created by
a client ro the server's internal data structures.

The core of DIX is a loop, called the dispatch
loop. Each time around the loop, DIX sends the
accumulated input events and processes requests
from the clients to DDX or OS. The loop, shown
below, is the most organized way for the sen'er to
process the asynchronous client requests.

w h i l e (t r u e) {
i f (i n p u t Pe n d i n g)

P r o c e s s l n p u t Ev e n t s () ;
n e x t R e g u e s t = Wa i t F o r S o m e t h i n g () ;
i f (n e w C o n n e c t i o n)

l n i t i a l i z e C o n n e c t i o n () ;
i f (C o n n e c t i o n D i e d)

C l e a n U p C o n n e c t i o n () ;
D i s p a t c h R e g u e s t (n e x t R e g u e s t) ;

Requests fall into three categories:

• Edits to internal data structures, e.g., setting the
keyboard click on or off

• Queries on internal resources, e.g. , asking the
placement of a window on the display

• Drawing requests, which are handled by calls ro
DDX

Edit requests usually set some state shared by DIX
and either DDX or OS. A side effect of the edit is a
bear trap set by DIX . When a painting request
occurs, the bear trap is triggered. DDX notices the
state change and sets the method associated with
the new attribute values.

Keyboard and Mouse Handling
InpLH events from the keyboard and mouse travel
in the reverse direction of requests, that is, from the
workstation to the client application.

Some examples of synchronous events are grabs
and input focus change. Synchronous events are
initiated by clients or the window manager and are
very similar to requests. These events result in state
changes, some of which arc visible on the screen.
However, whereas requests generate at most one
reply or error, events may cause the creation of
more events.

Vol. 2 No . .) Summer 1')')0 Digital Technical journal

A l inked list of clients and the interest the clients
have expressed in an event or events is stored in the
window. The direct path in the window hierarchy
is cached. The path extends from the root window
down to the window containing the mouse (i .e . ,
pointer focus) and from the root to the window
where the keyboard events are sent (i .e . , keyboard
focus) . This method makes it easier to generate
events, such as not ificat ion that the pointer has
crossed a window boundary, which are then passed
to al l the windows in the chain.

Asynchronous events occur outside the server's
control . The events include button presses, key
board events, and mouse motion events. Once
started , many server operat ions must be performed
to completion. However, the asynchronous events
continue to occur while the server is busy process

ing requests. Even if the server itself is synchro
nous, it must look to the cl ients as though events
are occurring asynchronously. The C language
does not support interrupt hand ling. Therefore,
the server cannot handle the events while perform
ing a cl ient request . The device driver notes new
input events. The server then attempts to simulate
an asynchronous response by pol l ing for events
between each request the server processes.

We learned from the X IO implementation that a
rapid response to new input events was required
to achieve the responsiveness necessary for good
user interaction. Copying data from one layer to
another would degrade response time substantially.
Because of this need , DJX and DDX had to use the
same physical memory location and data structure
to represent the event state.

A problem existed in that different devices want
to represent their input queue differently. For
example, some may want head and tail pointers,
a single or double l inked list, or a circular buffer.
Further, some may want a J ist and a count , whereas
others might use a nul l-terminated l ist and not need
a second value at al l . The server solves the problem
by representing the input stream by two 32-bit
words. The two words are not required to be
adjacent because they are pointed ro by a two-entry
array. If the values in the words are different , there
is keyboard or mouse input . The DDX implemen
tation decides which representation for the input
queue is best-suited to its hardware.

The relative sequence between keyboard and
mouse events must be maintained to implement the
X protocol properly. Cl ients must be able to deter
mine the order that the user pressed the keys or
moved the mouse. A l l Digital workstations merge

Digital Technical journal Vol. 2 No. 3 Summer l'J<JO

The Sample X II Serwr Architecture

these input streams at the device driver leve l , which
makes event processing easy for the server. If
merging were not done at the device driver level ,
DDX would need to ensure that each event was
time-stamped very accurately in order to tell if a
mouse event occurred before a keyboard event .

Operating System Layer
The X protocol is operating system-independent . A
few operat ing system functions are provided, such
as file access. In keeping with the operating system
independence, our server implementat ion design
hides the specific details of the operating system
from DIX as much as possible. A narrow OS layer
ensures that our code is more portable. Below are
two examples of operating system independence :
the font interface and the scheduler that determines
which c lient request to service next .

Font Interface If the cl ient wishes to open a font
by name, the server must find the font . The
X protocol does not dictate how or where the font
is stored . For example, there might be a file per
font, or fonts may be stored in read-only memory
(ROM) . Our interface provides only one routine to
translate from the name the c l ient gives to t he oper
ating system-specific name. We allow the developer
to provide the most appropriate implementation.

Scheduler Interface The OS interface hides cl ient
communication and scheduling from D I X . The
specific policy and details for deciding which cl ient
should be serviced next is hidden in the OS layer.
Again, one basic routine is provided in the interface
ro the scheduler.

Our implementation of the sample server sched
u ler was based on the X lO code. The XIO version
had performed fairly wel l . Sti l l , we felt that on dif
ferent operating systems or after the sample server
had been t uned, the X lO scheduler performance
might nor be sufficient . To al low for tailoring, we
put the scheduling decisions in the OS implemen
tation. Thus, tuning the scheduler policy for a
specific operating system v-muld not necessitate
changes to the DIX layer.

Device-dependent X
The DDX interface was the most difficult interface
to design because it is the interface to the painting
routines. The two goals for the interface were to
provide enough flexibi l i ty for easy adaptation to
different graphics devices and to provide a fast path
between DIX and DDX for painting requests.

l9

DECwindows Program

The goal of the DDX implementation was to pro

vide enough code to enable developers to quickly

port our sample to their hardware. In l ine with our

goal to provide as much device-independent code

as possible, we wrote general-purpose routines,

called machine-independent (MI) routines , for each

routine in DDX. These routines make minimal

assumptions about the underlying graphics device.

The server is ported to a new device by writing

painting methods that take advantage of that dev

ice's particular graphics capabilities and by using

the general-purpose (i.e. , software-only) methods

for operations the device does not support .

In what follows, the software graphics algo

rithms that we provide in the sample server are

called device and machine-independent algorithms.

When a developer ports our server to a device, the

implementation of these algorithms is called device

dependent.

DDX and DIX share two main data structures :

windows and graphics state. A window describes a
painting surface and the painting that may have

already been done on it . A graphics state describes

the painting process. In other words, a window is

similar to a canvas, and a graphics state is similar to

a paintbrush.

The key to our design is to allow each implemen

tation of DDX to select the appropriate painting

method based on the graphics attributes at runtime.

The DDX implementation updates the general

purpose methods by marking the graphics state

dirty whenever an attribute changes. However,

DDX does not change any of the procedures until

a graphics request actually occurs. This process is

called validation. When DIX receives a painting

request , only one comparison is needed to validate

that the graphics state is consistent. If it is, the

correct method can immediately be used. This pro

cess provides a fast path between DIX and DDX .

If the methods are not set correctly, DIX ftrst calls

the more time-consuming process of updating the

methods.

For example, on Digital's VAXstation ll-GPX

workstations, lines can be drawn using hardware

assist. However, the method used to draw thin solid

Jines, i .e . , width equals zero , differs from the
one used to draw line widths greater than zero.

On-off dashed lines are also separate routines,

depending on the line width. The developer must

write four special-purpose routines for the cases

the hardware can handle: GPXZero LineSolid,

GPXZeroLineDashed , GPXWideLineSolid, and

GPXWideLineDashed. A sample of the code to

20

set the line routine in the graphics state is shown in

Figure I .
When DIX receives a line drawing request, part of

the code in Figure 1 would become

i f (g c . d i r t y)
(• gc . va l i da t e) (g c) ;

(* gc . l i n e H g c , w i n d o w , d a t a) ;

Each X protocol graphics request encapsulates

substantial functionality. Some vendors' devices

provide hardware assistance for all functions

specified by the X protocol, whereas o thers

provide only a subset or none at all. However, the

X protocol states that any server implementation

must be able to paint in all possible styles on

any drawable. To make compliance easier, we pro

vided machine-independent implementations of

the painting code to supplement the hardware.

Because of machine differences, we could

not provide a completely generic, machine

independent server. As a result , we designed the

M I routines to assume three bootstrapping pro
cedures. Developers must write these routines to

port our server to their machines. (Note: A span is

a row of pixels and a region is a column of spans.)

• FillSpans ftl ls a region with the texture specified

in the current graphics state.

• SetSpans copies the contents of a source region

to a destination window using the bitwise com

position function from the current graphics

state.

• GetSpans reads a region from the current

contents of a window.

These bootstrapping procedures must be written

for each port and turn the bits in the frame buffer

on or off. Our sample server provides an example

software implementation of the bootstrap routines

for a frame buffer with no hardware-assist.

Fonts
Another important function of the X server is the

ability to paint text on the display. A font is stored in

a file and contains the character bitmaps (i. e. , the

glyphs), information about each character (e.g. ,
bounding box or kerning data), and information

about the overall font (e. g . , family or number of

characters).

Text must be painted quickly and efficiently.

Users also want to share fonts with each other,

for example, through electronic mail. Thus, easy

exchange requires a portable, ASCII format. How-

Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

The Sample Xll Server A rchitecture

i f < g c . l i n e W i d t h = = 0) I
s w i t c h < g c . l i n eS t y l e) I

c a s e S o l i d :

c a s e D n D f fDa s h :

e l s e

s w i t c h < g c . l i n e S t y l e)

c a s e S o l i d :

c a s e D n O f f D a s h :

g c . 1 i n e

b r ea k ;

g c . 1 i n e

b r ea k ;

g c . 1 i n e

b r e a k ;

g c . l i n e

b r ea k ;

G P X Z e r o l i n e S o l i d ;

G P X Z e r o l i n e Da s h e d ;

GP X W i d e l i n e S o l i d ;

G P X W i d e l i n eD a s h e d ;

Figure I Sample Line Drawing Routine

ever, different graphics devices represent their font
data in a variety of ways. The VAXstation 11-GPX
workstation stores fonts in off-screen memory and
expects a specific format defined by the hardware.
On the other hand, the DECstation 3100 worksta

tion is a main memory frame buffer, and the font
format is more flexible because it is defined by soft
ware. On the VAXstation 1 1 -GPX workstation, an
ASCII format wou ld require a trans lation . ASCI I
formats are not generally compact and would
require extra performance overhead to be read
and accessed .

An alternative to the ASCI I format was to use a
binary font format . Such a format would allow
quick access, and the ASCI I fonts could be converted
from a general format to a device-specific format.

However, this alternative would lead to a prolif
eration of on-disk font files, one for each device.
For example, ULTRIX systems would need three
separate formats: one for the VAXstation 3540/3520
workstation, one for the VAXstation 1 1-GPX and the
VAXstation 3100 workstations, and one for the
DECstation 3 100 workstation . Therefore, a binary
format alone was not the solution.

As a compromise, we provided an ASC I I format
and a binary format. We expect each vendor to use
one binary format, regardless of operating system
or machine architecture. Thus, our ULTRIX imple
mentation uses the same binary format on both the

VAX system-based workstations and the RISC based
systems. Because the VAXstation ii-GPX servers have
hardware-assist for font drawing and require a spe-

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

cia! format , these servers must translate when ini
tializing a font ; but the performance impact is sma l l .

The ASCII format we chose was a modification of

the Adobe bitmap distribution format. The format
required a few enhancements for information that
X required but Adobe had not provided.

Tailoring Strategies

Many workstations have their own graphics proces
sors that can substantially increase drawing per
formance. Because of this, developers frequently
want to implement DDX on top of these graphics
subsystems. However, many X cl ients only draw
small objects or a few objects ar a time. Also , the
semantics of the graphics primitives might not
match the definitions in the X protocol. The
overhead for translating X requests into graphics
system primitives may dominate the drawing time.
As a result, the server is slower than a simple main
memory frame buffer system.

Because dedicated graphics hardware usual ly
performs high-level operations, e.g . , line and text
drawing, a port hegins hy replacing the drawing
methods in the graphics state to routines that sup
port the graphics subsystem. However, a graphics
processor might not support the full generality
of the X protocol . One typical situation in older
hardware is text drawing that can only be drawn as
the bitwise composite function OR , whereas the
X routines require more sophisticated text-drawing
capabilities.

The strategy is to use the hardware capabilities

21

DECwindows Program

when they m:uch the X protocol specification. If

the hardware does not match , then the M I rout ines

are used . The correct drawing methods, based on

the cu rrent grarh ics attributes , are selected by the
graphics stare \'a l idare rou ti ne.

The fol l owing two examples describe what a

developer m ight do w hen porting the sample server

to hardware that docs nor comply with the
X protocol .

Hardwired Fonts 'J'he X rrorocol a l lows the glyph

in a single font ro vary in width . However, some
graphics processors can draw onl y glyphs with a
fixed width . During val idation, the text-painting

method is changed in the graphics state, depending

upon w hether the font is fixed or variable width .
Fixed-width fonts go d irectl y to the graphics pro

cessor. Variab le-width fonts are drawn in software,

using routi nes based upon MI routines. Val idation
works in this examp le hecause the font is an
attribute of the graphics state.

Hardware Clipping Restrictions The capabil ity to
clip graphics requests LO an irregular region is a

requirement of t he X protocol . However, some

graphics processors have c l ipring restrictions. For
example, the VAX sration 1 1 -c; px workstation cannot

paint some text strings rh:�.t Jre c l ipped on t he left.
U nJike the hardw ired font example abo\'e, the

string is nor an attribute of the grarhics state. At
\'a l idation , the DI)X layer cannot tel l w hether a

string w i l l be cl ipred ro the left , it on l y knows t he

fon t . Therefore, the actual p:t inting routine must
check if the string is cl ipped to the left . l f so, the

painr i ng is executed by the grarh ics processor.

If any part is c l ipred , the entire oreration is done
by Ml code. This restriction cannot be h::mdled in

the same m anner as font widths because it is i mpos

sible to know in advance if the drawing request w i l l
b e cJirred

Sample Server in Retrospect

As noted earlier, designing software to be used on
a wide variety of devices requi res making many
comrromises. Some of our decisions were good ,

and some cou ld have been better.

Problem Areas

Some areas of the samrle ser\'er implementation
cou ld h ave heen i m p roved . For e x a m p le , we
learned a valuable lesson from using the U LT R I X

system-based VA X station workst:nions a s our devel
opment environment. A mach i ne that tolerates
N ULL pointer access wi l l not discover when code

22

is w ri tten carelessl y. Many errors were found only
after the system was ported to Sun workstations.

Other problems were the result of design con
straints over which we had no contro l . A lso. we
cou ld haYe improved the tun ing we did for sma l l
memory m a c h i nes. There is l i t t l e hope o f

recovering i f the server runs out of memory.

The C Lm1f?uage The C l anguage caused many

problems. A lthough the language is relat i\ 'el y stan

dardized , i t has many drawbacks. For our purposes,

the major deficiency was a lack of sur port for infor
mation hiding. The language provides no support

for h iding data structures defined in DDX or OS
from the D I X layer.

A nother problem w it h the C l a nguage is the

ambiguous representation of int. The only certain
fact about int is that short is no longer than long. '
G i ven our t ime constraints and the class of
machines we planned to su rport , we had [() :lssume
that C type long is at least :)2 bits and the C type

short is at least !6, which was a bad assum rtion .
Machines with 16-bi t words were not add ressed

adeq uately because the sample assumes that the C
type int is a 32-bit i nteger. Therefore, our server

must be substant ia l ly reworked for 16-bit machines .
We also had C compiler problems. \Xie tried not ro

rely on the implementation of the portable C com

pi ler that comes with the l ' LT H I X system because
not every \'endor suprons this comri lcr.

Ml Routines The MI rainting methods are usefu l
for quick bootstrarping. However, by designing ,VI I

routines to support general ity, we s:.�crificed per

formance. W riting general-purpose code requires
care ancl d i l igent adherence to the rules for w rit i ng
portable code. The rules include not rel ying on
machine i nstructions , compi ler idiosyncrasies, or

know ledge of the h:trdware. No assembly language
was a l lowed . The i\ 1 1 wide-l ine code is an example
of a feature in which performance was severely
affected by these constraints because we had to use

tloating poi nt ari thmetic r:�.rher t han write a
m:Jchine-independent, fixed-point math package.

The Best of the Server
The biggest issue raised by our design was the

potential performance degradation that could
result from the inclusion of so m uch device

i ndependent software. Was the cost of a common
code base and dev ice indepcnd<.:nce too great1
We estimated the impact to b<.: '; percent for the

simplest request and even less for more com-

Vol. .2 No. 3 Swnnu!r i'J'JO Digital Techn ical journal

plicated , t ime-consuming rendering requests. We
felt this performance impact was relatively smal l
and worth the t ime saved in future software
development and maintenance.

Our server can be ported to a new device in a few
days, simply by writing the bootstrapping routines.
An undergraduate at MIT ported the server to a
U N I X system-based IBM PC/RT in three days.

To test our server ideas, we chose to implement
our sample to run on a monochrome VAXstation
2000 workstation, where the frame buffer is treated
as main memory. Our DDX implementation
includes the MI routines. Also, we included some
examples of less general , device-specific , faster
procedures that can be plugged in, such as thin
l ines, terminal emulator text, and bitblt . These less
general routines are called monochrome frame
buffers (MFB) and are the device-specific routines

that most implementers w i l l rewrite for their
graphics hardware.

As shown in Figure 2, 45 percent of the server's
code resides in DIX . If MI routines are included as
part of DIX , then 67 percent of the code is device
independent. Therefore, we believe we met our
original goal to p ro vide as much device
independent code as possible. We provided a fast
path between DDX and DIX . Approximately 25 l ines
of C code - 90 percent of which is error-checking
on the request packe t - exist between the points at
which DIX receives a request and then sends it on to
DDX .

The DDX interface is moderately large, i . e . , 102
routines , but contains well-defined, completely
separate functions. The ability to customize the
DDX implementation provides flexibility. Although
we cannot predict what display capabilities w ill

be available in the future, we did provide the ability
to easi ly patch in unforeseen functions as they
develop.

Of the 102 routines in t he interface, 29 are paint
ing methods in the graphics state. Another 8 are
routines to update and validate the graphics state.
In our implementation, some of the 29 painting
methods are broken down further into special cases
that are selected at validation time. For example, the
l ine-painting method has 5 routines, but the arc
painting method has only 1 MI routine.

Our sample sen,er's speed had to be at least as
good as the X10 implementation to entice XIO users
to switch to X l l . Overal l , our implementation
running on the VAX station 2000 runs about 25 per
cent faster than the X IO implementation on the
same machine.

Digital Technical journal Vol. 2 No. 3 Summer 1990

The Sample XII Server Architecture

OPERATI N G
SYSTEM
CODE (7%)

MONOCHROME F R A M E
B U FFER (26%)

DEVICE- I N DEPENDENT
CODE (45%)

M AC H I N E- I N DEPENDENT
ROUTI NES (22%)

Figure 2 Implementation Sizes

Writing software that is portable to a wide range
of operating systems, compilers, and graphics
devices requires many design trade-offs. Our
implementation of the X I I protocol is tailorable
to other systems, without a loss of performance
or generality.

Acknowledgments

First and foremost, we thank the other members of
the server implementation team, Raymond D rewry,
who was responsible for the DDX interface design;
and Phi l Karlton, who was on the protocol design
team, and designed and implemented the event
code and font format . Because there were so many
contributors to the X l l server, especially at Digital
and MIT, it is difficult to name them all, but we
would especially l ike to thank Burns Fisher (Digital)
and Bob Scheifler (MIT) for assisting with the
design; Jim Gettys (Digital) for writing X lib; and
David Carver (Digital), Adam de Boor (Berkeley),
Richard Johnsson (Digital), Jack Pa lovich (Hewlett
Packard), and David Rosenthal (Sun) for testing our
porting capabilities.

References

1 . R . Scheifler et a! . , X Window System (Bedford :
Digital Press, Order No. EY-67373-DP, I988).

2. R . Scheifler and J . Gettys, "The X Window
System," A CM Transactions on Graphics, vol . 5 ,
no. 2 (April 1986): 79- 109.

3 . S. Johnson and D. Richie, " Portabi lity of C
Programs and the UNIX System," The Bell System
Technical journal, vol . 57, no. 6 (Ju ly-August
1978): 2021 -2048.

4 . B . Kernighan and D. Richie, The C Programming
Language (Englewood C liffs : Prentice-Hall , Inc . ,
1978).

23

Leo P. Treggiari

I Michael D. Collins

Development of the XU/
Toolkit

Tbe X UI toolkit is a set of rnn-time routines and application development tools based

upon the X Window System version 11 (XJJ). A programmer can use these tools to

create application programs that implement the user inteiface techniques and

appearance guidelines used by a DECwindows system. Tbe toolkit was developed in

parallel with the X toolkit intrinsics and is layered on top of the intrinsics. Within the

architecture, no layer is hidden from another layer. Programmers can mix calls to

all layers. Because of the toolkits maturity, performance, and adherence to stan

dards in its design, XU/ was chosen as the base programming interface for the Open

Software Foundation s Motif toolkit.

The XUI tOolkit consists of a set of user interface
objects, caUed widgets and gadgets. It is layered on
top of the MIT X Window System toolkit intrinsics,
which provides routines for manipulating widgets.
The XU! toolkit also contains a number of utility
routines, including compound string manipulation,
cut and paste, and a resource manager used in con
junction with the user interface language (UIL) .12

Figure 1 illustrates the toolkit and its relationship
to the other layers of t he DEC windows architecture.

As stated, the XU! toolkit is layered upon the
X toolkit intrinsics which, in turn, is layered upon
X lib. The architectural design of these layers is such
that no layer masks the other layers. An application
can mix and match ca!Js to all three libraries. For
example, X lib provides the basic graphic primitives
to draw items, such as lines or arcs. Therefore,
neither the intrinsics nor toolkit libraries attempts
to provide that functionality. If the application
needs to perform low-level graphics drawing, it
uses Xlib.

Genesis of the Toolkit

In 1 985, our group perceived the need for a
graphical user interface toolkit for Digital's work
stations. At that t ime, we were part of the Software

Development Technologies (SDT) organization and
were developing layered software and run-time
libraries for the VMS operating system. I nitially,
our goal was to build a toolkit for use within
SDT. H owever, w h e n we learned t h a t the VMS
Engineering Group was in the early s tages of design
ing a toolkit for the VAX Workstation Software

24

(VWS), which was the windowing system on the
VMS system, we began working with them. At the
same time, engineers from the ULTRIX Engineering
Group were working with MIT to design and
implement the X Window System. In late 1 986,

Digital evaluated the VMS and X windowing sys
tems and selected the MIT X 11 Window System as
its strategic windowing system . Once this decision
was made, the VMS, ULTRI X , and SDT groups all

began working together towards a common goal .
The goal was twofold : work with M I T t o define a

standard set of X toolkit intrinsics, and define for
Digital a widget set layered on top of these stan
dard intrinsics. Separating the imrinsic or generic

support facilit ies from the actual widget set being
implemented meant that Digital 's user interface
policy could be embedded only in the widgets,
which increased the probability that the intrinsics
would become standardized .

APPLICATIONS

XUI TOOLKIT

X TOOLKIT INTRINSICS

X LIB

X PROTOCOL

X SERVER

Figure 1 DECwindows Architecture

Vol. 2 No. 3 Summer 1990 Digital Technical journal

Therefore, we did not define the intrinsics to
support any particular user interface style. The
intrinsics try to support any possible X system
based user in terface s ty le , and the w idget set
implements a particular user interface style.

Design Goals
A s the pr imary program mi n g i n terface to
DECwindows applications, the XU! toolkit had
many design goals :

• Programming ease for application developers to
support a w indowing environment

• Conformance to the xur Style G uide

• Conversion ease to a foreign language for an
application built using the toolkit

• Performance suitability for a direct manipulation
user interface

• Portabi l ity to all Digital development platforms

• Increased application interoperabi l ity between
the VMS and ULTRIX operating systems

• Optimization of the network transparency pro
v ided by the underlying windowing system

Programming Ease
Applications developers first had to learn to design
and program a direct manipulation user interface
before building a DECwindows application. To
make this learning easier, the XUI Style Guide
was developed as an aid to designing user inter-

\
faces. A number of decisions were made during
the design of the intrinsics and the toolkit that
aided programming.

Object-oriented Method Early in the design of the
X toolkit intrinsics, we decided to use an object
oriented approach for programming simplicit y and
more flexibility in sharing data and functionality.
The basic object of the intrinsics is a widget, which
is a combination of an X window and particular
input and output semantics. Examples of widgets
are menus, push-buttons, and scroll bars.

Object-oriented programming provides a level of
data abstraction that helps manage the complexity
of direct manipulation user interfaces. Widgets can
be manipulated generically, regardless of the type of
widget. For example, any w idget can be destroyed
by calling the intrinsics routine XtDestroyWidget.
Therefore, the number of programming calls

Digital Tecbnlcaljournal Vol. 2 No. 3 Summer 1990

Development of the XUJ Toolkit

that an application developer must remember is
reduced. Also, it is easier to write tools that do not
need a specific knowledge of any widget.

Object-oriented programming uses the concept
of classes and inheritance. A class is a type of
widget . AU widgets of a particular class share a
certain amount of commonality. The w idgets have
the same set of resources that can be set to modify
appearance and function . Widgets also share many
methods or procedures. For example, the same
routine is used to draw the contents of any label
widget . By using classes, the toolkit can define the
attributes that are common to a widget type once in
the application, rather than store attributes in every
widget in a class (i .e. , a widget instance). Thus,
classes reduce the amount of memory needed by
widget instances. Widget classes in the XUI toolkit
are arranged in a class hierarchy as i l lustrated in
Figure 2.

In this hierarchy, a widget class can inherit func
tionality from its superclasses. As shown in Fig
ure 2, the push-button widget class is a subclass of
the label widget class. As such, it can inherit all of
the label widget's functionality to perform layout ,
and display pixmaps and strings. The functionality
need onJy be rewritten i f the push-button needs to
operate in a manner different from the label . Inheri
tance makes it easier for the widget developer to
create new widget classes and add functionality to
the existing classes.

The object orientation of the inrrinsics and the
toolkit are implemented using programming con
ventions of the C programming language rather
than directly in an object-oriented language, such as
C++. When we made this decision, C was already
the implementat ion language for all X Window
System base components and neither C++ nor any
other object-oriented programming language was
widely available or used . Relying on object-oriented
conventions rather than language features did, how
ever, make it more awkward to create a new w idget
class than would have been the case with C++.

Separation of Form and Function A major goal in
designing any user interface programming software
package is the separation of form, i . e. , user interface
and function. The advantages of this separation are

• The user interface can be designed separately
from the application functions.

• The user interface can be tested and iteratively
modi fied based upon user feedback, w ithout
affecting the rest of the application .

25

Figure 2 XU/ Toolkit Widget Class Hierarchy

• An application can support more than one user
interface that is using the same application code.
This feature is especially useful for changing the
language and other aspects of an application for
a user in another culture . .Multiple interfaces can
also be used to tailor a single application to sup
port different classes of users.

The DECwindows user interface language (U IL)
and resource manager (DRM) are the tools which
al low form and function to be separated . UIL is
a specification language that describes the init.ial
state of a user interface, i . e . , i t describes the objects
used in the i nterface and the application callbacks
to be invoked when the interface changes state.

�

DRM provides the application with a mn-time
library for accessing the compiled UIL descriptions.
ORM , therefore, builds the run-time structures nec
essary to actual ly create the user interface during
execution of the application .

Conformance to the XU/ S�yle The toolkit had to
support XU! style at a detai l level in both look and
feel . Supporting the look primarily meant sett ing
default values for the many graphic aspects of a
widget, such as the border width of a push-button .
Supporting the feel meant establishing tables that
translate user events, such as button press, into
a widget action, such as highlight . Defining the

w idgets that compose the toolkit was based on
partitioning the XUI style look and feel demands
into logical pieces and on predicting application
needs.

Although a widget would have many cusromiz
able attributes, all of which could be controlled by
the application, we wanted to make it easy for an
application developer to design and implement a
DECwindows application that conformed to the
XUI style. A widget should, by default , select
conforming values for any attribute the application
could have but did not set . Therefore, we imple
mented a default look and feel that matched the
precise user interactions defined in the style guide
and the precise graphic design that was defined
for XUI by our graphic artists. However, we also
made the widgets as flexible as possible. Al though
w idgets defau lted to the XUI style, the custom
ization methods inherent in the intrinsics, e .g . ,
resource and translation management, could be
used to customize a widget to another style. This
design philosophy helped give applications a con
sistent look and feel but did not constrain user
interface innovation.

Digital Technical journal Vol. 2 No. 3 Summer 1990

Development of the X UI Toolkit

Further, we decided to structure the set of
widgets based upon the object's function as seen by
the application 's developer rather than as seen
by the application's user. An example is the use
of buttons in menus and dialog boxes. Both
menus and dialog boxes contain buttons that
directly invoke application actions (i .e . , push
buttons). However, the graphical appearance and
user invocation syntax of the buttons is different
depending upon whether the button is placed
within a menu or a dialog box. The toolkit,
however, presents only one push-button class
to the application programmer. The buttons are
dynamically configured based upon the environ
ment in which they are placed . Thus, an application
developer can change the env ironment of a widget
w ithout changing any other code.

Confonnance to Standards The DECwindows
program was i ntended to be based on MIT's
X Window System standard . Therefore, the tool
kit had to be based upon the standard X toolkit
intrinsics. I t was a challenge to do so because the
toolki t and the intrinsics were designed, imple
mented , and standardized in paral lel.

The standard language bindings for the intrinsics
were designed for the C language. However,
we were mindful of the requirements of other
languages and attempted not to prohibit other
language bindings from being possible. It is a well
known technology to provide multiple language
bindings, in the form of header file definitions
and entry point names, for a single set of run-time
routines. Digital used this approach in providing
VAX procedure calling standard bindings for Xlib,
the intrinsics, and the toolkit .

A special problem arose in defining the bindings

for the intrinsics because the intrinsics would call
back into the application code to provide noti
fication of a user action such as a button press. The
intrinsics, however, has no knowledge of the
language used in the called procedure. Therefore,
we had to restrict the parameter passing mech
anism in callbacks to the set that could be under
stood by most languages. Parameters to callbacks
are passed by a reference mechanism as opposed to
a value mechanism that is commonly used when
cal l ing C procedures.

Performance
From the beginning of the DECwindows program
development, a team of Digital software usabil ity
engineers worked closely with the DECwindows
developers to design the XU! style and define user

27

DECwindows Program

interaction performance goals for the DEC windows

interface. The DECwindows environment uses a

direct manipulation user interface model that

requires real-time responses to user actions. The
success of direct manipulation is dependent upon

creating the illusion that objects are being phys

ically manipulated. For example, if the interface
is sufficiently slow, the user fails to perceive a
cause-and-effect relationship between a button

press and a push-button highlighting. Once such a

relationship is lost , much of the interface i l lusion

breaks down.
To test the interface's performance, the software

usability engineers defined a number of scenarios

that consisted of test scripts and covered six major

functional areas:

• Menu manipulation

• Dialog box manipulation

• Window manager operations

• Text operations

• Dragging graphics objects within a window

• Application start-up and shutdown

Each test was described in enough detail to sup

port designing a simple DECwindows application

that would measure the system performance. Our

goal was to use a smal l number of tests to cover the
most critical areas of user interface performance.

For each test, performance numbers were given in

terms of worst case, planned level , best case, and
competitive level. The worst case defined the worst

acceptable level. The planned level represented
success. Once the planned level was attained for

an attribute, further resources would be focused on
those attributes that did not yet meet the planned

level. The best case was a state-of-the-art limit for
the test . The competit ive level was the average
performance seen on competitive systems.

Obviously, the design of the intrinsics and the

toolkit played a major role in our ability to meet
these goals. The problems we encountered are
included in the performance discussion in the Initial

Implementation section of this paper.

Internationalization

UIL and DRM are major components of the i nter
nationalization of DECwindows applications. The
majority of an appl ication's cul ture-specific infor

mation can be separated from the executable image

28

by putting text strings and other culturally variant

data into UIL files rather than the application code.

Because an application is bound to a U IL description

at run-time as opposed to compilation or l ink time,
an application can be moved from one country to

another without a different application executable

image.

Compound strings are another major internation
al ization component . The initial design of the tool

kit was based upon ASCI I null-terminated strings,

which acted as the data representation for text

strings passed between the application and the
widgets. However, based on input from engineering

groups around the world, we decided that ASCI I was

not sufficient. A simple example demonstrates why

this is true. The Digital corporate name inJapan was
Nihon Digital in English, in Japanese i t is B *
Digital. To display this name as the title of

a window, the application must pass a widget a

single string with characters in Japanese Kanji and
Latin fonts.

Compound strings allow a single text object to be

composed of multiple segments. Each segment has

i ts own character set and characters. Thus, N ihon

Digital is a compound string with two segments.

The first segment is in the Japanese Kanji character

set, with the characters B * , and the second seg
ment is in a Latin character set, with the characters

Digital.

We implemented a compound string l ibrary that
provided applications with basic string manipu

lation faci.l ities. The toolk.it was revised to enable

application-widget i nterfaces to use compound

str ings rather than ASCI I s tr ings. As the
DECwindows program and the Open Software

Foundation's (OSF) Motif evolved, the actual data
representation also evolved . Currently, both sys
tems use the International Standards Organization's

(ISO) Abstract Syntax Notation (ASN. l) encoding
that is compatible with D igita l 's document inter

change syntax, DDIS .s

The toolkit also provides a mechanism that

dynamically selects the appropriate U IL description
based on a run-time determination of the user's
cultural preference. This mechanism further capi

talizes on the run-time binding of UIL descriptions

and application code. The mechanism was designed

as a logical extension to the X/Open portability
guide native language switching mechanism (XPG

NLS)
6

The XPG NLS is a de facto standard supported
by OSF that is primarily targeted at character-celJ

environments. We extended the XPG N LS model to

encompass run-time selection of cultural databases

Vol. 2 No. 3 Summer 1990 Digital Teclmlcaljournal

that affect such things as UIL descriptions and HELP
databases.

Resource and schedule pressures precluded
changing the text widget from ASCII to compound
strings in conjunction with the rest of the toolkit.
As a result, we had to build a non-ASCII text widget
for the Asian and Hebrew markets. The second
major release of the toolkit included a compound
string text w idget and an ASCII text widget.

Portability and Interoperability

A goal of the entire DECwindows program was to
define an application programming environment
that would be the same for the VMS and U LTRJX

operating systems. If the VMS and U LTRIX engineers
worked together to design and implement the base
software, expenses would be reduced. Therefore,
the toolkit and the intrinsics were written simul
taneously in the C language for the VMS and ULTRIX

systems.
We wanted all DECwindows components to

capitalize on the network transparency provided
by the underlying windowing system. That is, the
DECwindows components should interoperate
with other systems that supported the X protocol
i n a heterogeneous networked environme n t .
Therefore, w e were careful not t o build specific
DEC windows features into the toolkit.

Initial Implementation

The initial development of the toolkit presented
the software engineers with a number of challenges.
The major challenge was to develop several differ
ent layers of the architecture at the same time.

Further, none of the layers had proven suitable
for their designed task. Therefore, it was difficult
to predict the performance characteristics of the
layers.

To reduce the inherent risks of this situation,
we established a development plan that allowed
major functionality to become available for serious
application development early in the product devel
opment cycle. We then used the applications to
determine whether the goals of the DECwindows
program, in general, and the toolkit, in particular,
were being met.

/ntrinsics and Toolkit Codevelopment

Our plan to design and implement the toolkit and
the intrinsics simultaneously was further com
plicated by the fact that the layers below the intrin
sics , i .e . , Xlib and the X protocol, also were being
changed. Some of the changes were driven by the

Digital Tecbnicaljourna/ Vol. 2 No. 3 Summer 1990

Development of the XU/ Toolkit

needs of the toolkit and intrinsics. Others were due
to the lack of maturity of the Xll protocol . Because
of these changes, we had to respond to a number of
releases of the lower layers of the architecture.

The intrinsics design was changed several times
during the ftrst year of development as a result of
two major factors. First, the problems and defi
ciencies of the intrinsics and the toolkit became
apparent when we began to write serious appli

cations. Second, other companies became more
i nvolved in the definition of the intrinsics standard.
Therefore, we had to work with a formal process of
proposing and reviewing changes to the standard
and negotiating the inclusion of those changes with
engineers from MIT and other companies. As each
of these changes then became standardized, each
would, in turn, cause changes in widget code,
which caused changes in application code.

Each time a significant change in a layer of the
architecture occurred, all of the layers above it had
to change in a coordinated manner to provide a
consistent development environment. Much time
was spent in planning the management of these

changes. Also, the changes necessitated rewriting
code that had already been completed . We had not
accounted for the time taken by these unanticipated
changes in our original development plans.

Distributed Engineering for
Multiple Platforms
The development of the toolkit involved Digital

engineering teams worldwide. The intrinsics were
developed in California, primarily on U LTRIX

system-based workstations, by a team of engineers

familiar with the ULTRJX system. The toolkit was
developed in New Hampshire, primarily on VMS
system-based workstations, by a team of engineers
familiar with the VMS system . As a result, some
problems occurred at software integration points.
However, the codevelopment effort ensured that
the final software provided the same programming
interface, with the same quality, on multiple operat
ing system platforms.

Performance

Performance was the most serious problem encoun
tered during early implementation. The ftrst inter
nal field test of the DEC windows software provided
fairly complete functionality for the toolkit and the
layers below it. However, the DECwindows devel
opers, including the toolkit team, had devoted
nearly all their efforts toward developing the func
tionality and postponed measuring, examining, and

29

DECwindows Program

improving performance. Now that we had an exist
ing collection of applications , serious work could

begin on performance.
In the initial measurements of the system's per

formance against the goals described earlier, even

the worst-case goal was missed in man y are:�s. Early
investigation also indicated that the performance
problem did no r seem to be localized . That is , the
problems could not be isolated to a single compo
nent in the architecture. Wi th this information, a
task force wi th members from most DECwindows
development groups was convened to determine
where the performance problems were and what
could be done about them.

We quickly learned that we could nor determine
where the performance problems were as easily
as we could have in the typical engineering
environment to which we were accustomed.
Our experience was in evaluating isolated layered
app lications , such as compilers, and individual
primitive operations , such as system calls. How
ever, the user imerface actions that were being
measured involved the issuance of possibly hun
dreds of X primitives, and the interaction of up to

three separate processes (i.e., the application , the
X server, and the window man:1ger). Although the
usual evaluation tools were of some help, additional
tools were needed.

Existing tools, such as the VA X performance and
coverage analyzer on the VMS system , were used to
locate performance bottlenecks. These tools helped
but did not provide the level of improvemems that
were necessary. A number of intern:� I tools to :1id in
X performance :1nalysis were used to supplement

the traditional tools. These X performance tools
included :

• An instrumented X server that counted the
resources an application requested , such as
graphic con texts, windows, and pixmaps

• A set of tests that measured the performance of
Xlib primitive calls

• A protocol monitor that recorded the inter
actions between an application and the X server

• A tool that recorded the dynamic memory
allocation of an application

By using these tools on the applications, a large
amount of data was collected and evaluated. Some
of the more important observations were:

30

• Applications were using more server resources
than anticipated. The most common overuse
was windows because each user interface object
had its own X window. However , application usc
of other resources . such as graphic con texts .
pix.maps, and fonts was also at a higher level than
anticipated.

• Applications were using too much memory. The
object-oriented design of the tool kit and the X t l l
Style Guide encouraged applications to use hun
dreds or thousands of widgets, and each widget
was then using about 600 by tes of memory. A
number of X toolkit intrinsics fea tures, such :1s
resource managemenr and translation manage
men t, also used a large amount of memory.

• Application starr-up was slow. Loading the
large programming libraries , connecting to the
X server. and creating widgets were some of
the princip:�l functions that slowed app lication
start-up.

• The Digital X I I server design was optimized for
graphic primitives , e.g., line and text drawing .
The performance of these operations \vas ver y
good. However, in optimizing the graphics
aspect , the design had traded performance in

windowing operations, for example, window
creation :1nd mapping . The analysis showed that
windowing operation performance was impor
tant throughout much of the direct manipulation
style user interface.

• Many context switches existed lx:tween the
server and the application during time-critical
operations. Even simple applications required
the coordinated efforts of the application , a
window manager, and a server. Careful analysis
and planning were needed to minimize the
communication tra tfic and switching among the
processes.

• The basic round-trip time between the server
and the application using the DECnet transport
was higher than an ticipated . This factor
increased the need to reduce the amoun t of com
munication traffic between the application and
the server.

Solutions were designed and tasks defined to help

fix the problems. Steps were taken in all layers of
the architecture ro reduce CPU utilization , memory
utilization , and communication traffic. The two
most radical design changes were the design and

Vol. 2 No. 3 Summer /')')II Digital Technical journal

implementation of both a shared memory transport
and gadgets.

Shared memory transports were implemented

hy the server groups. The transports significantly
lowered the basic round-trip communication time
between the application and the server. The toolkit
group led the design of gadgets.

Gadgets Given the results of the performance
analysis, it became clear that the performance goals
would never be met if every user interface object
required irs own X window. We had to significantly
reduce the number of windows without substan
tially redesigning the application programming
interfaces of the intrinsics or toolkit. The perfor
mance data showed that at least 50 percent of the
widgets created by a typical application consisted
of labels, push-buttons, and toggle buttons used in
menus and dialog boxes. If we could eliminate the

windows for these objects, we would significantly
reduce the number of X windows. The intrinsics
developers proposed a solution that was nor a
radical departure from the existing widget model,
could be implemented quickly in the intrinsics, and
coul.d be taken advantage of easily in applications.

The answer was gadgets.
Gadgets are windowless widgets. Prior to

gadgets, the lowest level class in the intrinsics
was the core class, which contained all the fields
necessary to support a windowed widget. Because
the too lkit was object-oriented , the intrinsics

developers suggested that we break the core class
into smaller subclasses that could support generic
objects, as well as windowless user interface
objects. We defined three classes above the core

class:

• The object class contains the base information
required to define any type of object in the
intrinsics object mechanism , which eliminates
the user interface objects restriction.

• The rectangle object class contains the infor
mation necessary to define a rectangular user
interface object , and is used as the superclass for
gadgets.

• The window object class contains the remaining
fields from the core class, which are the fields
necessary for a windowed user interface object.

As a result of these classes, gadgets for labels,
push buttons, toggle buttons, and separators were
implemented in the toolkit and used by the

Digital Tecbnicaljournal Vol. 2 No. 3 Summer IY'JO

De uelopment of the X UI]()()/kit

applications. The XU! roolkit gadget class hierarchy
is shown in Figure 3.

r - - - - - - - - - - - -,

I I
I
I I I WINDOW I

I
I OBJECT

OBJECT l..--- EQUIVALENT TO I
I � � I

CORE CLASS

I I I RECTANGLE I I
I OBJECT I I I I
L - - - - - - _ _ _ _ _ _ j

l

LABEL GADGET
SEPARATOR

GADGET

PULL DOWN M E N U PUSH BUTTON

ENTRY GADGET GADGET

TOGGLE BU TTON

GADGET

Figure 3 X Ul Toolkit Gadget Class Hierarchy

Gadgets reduced the number of X windows,
reduced the use of application memory, and
reduced application start-up time. Although we
provided gadget support in the sample X toolkit
intrinsics release 3 implementation, the capability
was not documented in the specification because
of time constraints. Gadget support is included in
the X toolkit inrrinsics release 4 specification, the
current X Window System release.

Retrospective

Much of the design and implementation of the XUI

toolkit was accurate, and some of it could have been
improved.

W'hat Worked Well
Some of the things that worked exceptionally well
during the toolkit's design were

• The VAX notes conferencing system provided
a high-speed communication channel between

the toolkit developers and users. It proved
invaluable in facilitating the developmem and
usage of the toolkit.

3 1

DEC windows Program

• Developing the toolkit s imultaneously on the
VMS and ULTRIX systems was easier than antici
pated . We were able to l imi t ourselves to the use
of standard C language and X Window System
features. The amount of operating system depen
dent code in the toolkit is very smal l .

• Distributed development worked fairly wel l .
At t imes there might have been too many
developers i nvolved, but published schedu les
and extensive use of electronic mail allowed
us to integrate pieces being simultaneously
developed in Israel , France, New Hampshire,
California, and Japan. We believe the history of
the DECwindows program shows that it is
possible to do large-scale distributed software
development .

Improvement Areas

The text widget was designed with more function
al ity than was required for most usage. If we had
recognized earlier that not as much design intricacy
was needed, we could have devoted more time and
resources to addressing the issue of a compound
string text widget .

The intrinsics were designed around a single
t hread of execution . There is considerable pressure
from applications that are multithreaded to allow
use of the toolki t from mult iple simu ltaneous
threads of execution. Currently, this is not possible.

Documentation was started ear ly and proved
i nvaluable, but we did not have sufficient resources
to produce less formal , " how-to" manuals. The
scope and scale of the DECwindows programming
environment is quite large. Some basic but com
prehensive manuals on how to get started would
have complemented the documentation we did
produce and made programming much easier for
application developers.

The XVI Toolkit as the Basis for

OSFIMOTIF
Early in the DECwindows program development,
Digital and several other companies founded the
Open Software Foundation (OSF). Towards the end
of DEC windows version I development, OSF issued
a request for technology to become OSF's User
Environment Component. In response, Digital
submiued the X U ! Style Guide, X U! toolkit , and
window manager as a package. Altogether, OSF
received a total of 38 submissions.

32

OSF chose the XUI toolkit as the base application
programming interface and implementation for the
Motif toolkit? Because of the OSF's members desire
for Presentation Manager compatibi l i ty, the XU!
toolkit was modi fied to use Hewlett-Packard's
three-dimensional appearance and be compatible
w ith Microsoft's Presentation Manager behavior.

Digital is currently transitiorting from the XUI
toolkit to the Motif toolkit for the DECwindows
program. Although the transition for an appli cation
requires some changes, most of the XU! toolkit
programming concepts remain. The group that
designed and implemented the XU! toolkit is now
focused on del ivering the Digital implementation
of the OSF/Motif toolkit . We are working closely
with OSf on the evolution of the toolkit through
specification and design reviews. We are also work
ing with other Digital groups to make the transition
as smooth as possible.

The Future and Standards
Jn summary, the XUI toolkit prov ided a success
ful user interface programming toolki t for the
DECwindows program and provided the basis for
OSF's graphical user interface toolkit , OSF/Motif.
For the future, the definit ion of the OSF/Motif tool
kit belongs to OSF and its member companies,
which is a major benefit for application developers.
The user interface component of an application can
now be ported to many different systems. End users
also benefit because a consistent user interface will
exist on many different systems.

We wi l l remain heavily involved in the evolution
of the Moti f toolkit to help ensure that it maintains
the quality required of it as the user interface toolkit
for the DECwindows programming environment.
However, now that the toolkit is an OSF standard
rather than a Digital proprietary interface, we are
faced w ith some new challenges.

We can no longer change (or not change) the
Motif toolkit to fit our proprietary needs. If we
want to make changes, we must propose the
changes through the OSF process. A lso, we must
accept changes made by OSF , even if those changes
create rather than solve problems for us.

For example, the XUI toolkit , as with all other
VMS run-time libraries, is packaged as a shareable
image. One of the goals of VMS shareable images is
binary-upward compatibility. This compatibility
a l lows the VMS system to ship new versions of a
shareable image, which may fix bugs or improve

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

performance, without requiring the application to
be relinked. However, with OSF-defined changes,
we cannot ensure binary-upward compatibility
between releases of Motif. At present , we are work
ing on how to solve these problems.

Acknowledgments
We would like to thank the many people who

contributed to the development of the intrinsics
and the XU! toolkit , especially the members of
the toolkit and UIL teams who combined excep
tional talent and dedication to produce the toolkit
programming environment: Vick Bennison, Jeff
Orthober, Jay Bolgatz, Steve Greenwood, Scott
Smith, Ross Faneuf, Marc Zehngut , Dave Utz, John

Ronan, Dan Mullen, Jerry Harrow , Steve Grass,
Pat Chandler, Jeff Reyer, Jim VanGilder, Roger
Brinkley, and Bob Pellegrino. We would also like to
thank the engineering groups who provided

essential components to the XUI toolki t : the
Western Software Lab in Palo Alto, California;
Asian-based Systems in New Hampshire, Japan, and
Israel ; the Commercial Languages and Tools Group

in Valbonne, France; and the Software Usability
Group in New Hampshire.

Digital Tecb,icaljournal Vol. 2 No. 3 Summer 1')90

Development of the X U1 Toolkit

References

1 . VMS DECwindows Toolkit Routines Reference

Manual (Maynard: Digital Equ ipment Corpora
tion, Order Nos. AA-MG 23B-TE, AA-MK88B-TE,

October 1989).

2 . VMS DECwindows Guide to Application
Programming (Maynard: Digital Equipmem
Corporation, Order No. AA-MG2 1 A -TE, October

1989).

3. T. Spine and J. VanNoy, "The Evolution of the

X User Interface Style," Digital Technical

journa� vol . 2 . , no. 3 (Summer 1990, this issue):
44-5 1.

4 . S. Greenwood , "The DEC windows User Inter
face Language," Digital Technical journal, vol.
2, no. 3 (Summer 1990, this issue): 34-43.

5 . R. Travis, " CDA Overview," Digital Technical

journal, vol. 2, no. 1 (Winter 1990): 8- 1 5 .

6. X!Open Portability Guide XSI Supplementary

Definitions (Englewood Cliffs : Prentice-H all ,
I nc . , U.S .A. , December 1988).

7. SF/Motif Programmer's Reference Manual, revi
sion 1 .0 (Cambridge: Open Software Foundation,
Inc . , August 1989).

33

Stephen R. Greenwood I

The DECwindows User
Interface Language

A key theme of the DECwindows program is to impmue productiui�)l for both the

end user and the developer of an afJplication. End user productivity can improve

through the use of a windowing enuironment; the developers ' productivi�)l is

improved by the the availability of a high-leuel set of constmcts for building a win

dou,ing application. The user inteJface language (UIL) plays an important role in

enhancing productiuity UJL significantly reduces the cost to build and maintain

DECwindows applications by providing a specification Language for describing an

application inteiface. This paper analyzes the motivation for deueloping U I L, its key

features, several interesting implementation issues. and possible future directions

for the language and the product.

The DEC \vindows user interface l:mguage (Ull.)
aids app lication developers in managing the com
plexi ty of DECwindows interfaces. This paper
i n vestiga tes llll 's re.lat ionship to the other
DECwi ndows program components and how l l ll.
deals with managing interface complexity. Speci
fically, the paper discusses the history of l i ! L , i ts key
concepts . major implemen lation issues, and the
future of the language.

History of the User Interface
Language
January 1988 was the target date for the first inrer
nal release of the DECwindows progra m. To meet
that deadline, much of the high-level strategy for
t he DECw indows program had been set by August
1987. Digital was making a major move into the
workstation marker with products built around the
X wi ndows p rotocol developed at MIT1 florh the
ULTR I X and VMS system development groups were
producing servers and host l ibraries that conformed
to the X standard . The object-oriented X l l l toolkit
was under development . It would implement the
standard set of objects and operations (often cal led
the " look and feel " or style) of the DECw indows
program . The toolkit would layer on top of the
X windows platform being developed on both
operating systems.

To be viable in the marketplace, the DEC windows
program had to be more than a toolkit based on the
X W indow System. Applications had to i l lustrate
t he DECwi ndows style, capture the growing seg-

34

mcn t of the market that had no i nterest i n typing a
command line, and show D igita l 's commitment to
t 11e workstation market t hrough the DECwindows
progra m .

The X l !l toolkit was, and st i l l i � . the key to
leveraging applications. It presents DECwindows
concepts at a high level and sti l l a l lows substantial
tlexibil iry in controll ing those concepts. W idgets
are t he high-level abstractions that map one-to-one
with the graphic components of an interface. If a

dialog box that contains a set of roggJe burrons is
needed, a dialog box widget that contains a set of
toggle button widgets is created. W idget� provide
tlexibi l ity through their attributes. Each attribute
controls some visual aspect of the w idget's appear
ance on the screen. B y gi ving most attributes a
default set ting that conforms ro the DECwindows
style, applications can look similar but have the
power to be different .

A DECwindows interface can be created b y
invoking procedures i n the X U l toolki t . These
procedures create widgets, specify the widgets'
attributes . specify the actions to be invoked w hen
the widgets are manipulated , and control w hen
widgets should be displayed or hidden from view.
Attributes and t heir corresponding values are
passed to a creation routine, using a variable length
array. If one w idget wi l l contain other w idgets, as
in the case of a dialog box, the container is created
first . Each of the w idgets contained w ith in the
dialog box is then creared by designating the dialog
box as its paren t . Once the entire structure has been

\'rJI. 2 No j Summer 19')0 Digital Tecbnlcaljout·nal

comtructed, another call is made to an XUI tool kit
routine to display t he dialog box and its contents on
the screen.

Alt hough the toolkit made the process of
mapping widgets to screen artifacts conceptually
simple, the coordi nation and sheer number of arti
facts made the process complex. An applicat ion's
attribute�. actions, and contained widgets, which
could nu mber in the hundreds, might req uire
several thousand l ines of code to construct. To �ee
t he struct u re of t he application interface within that
code req uired discipline.

l !IL was the tool developed to manage the
complexity of the interface. UIL preserves the
simple conceptual model established by the tool
kit . Through the UIL specification language, an
application developer states t he widgets that com
pose the i nterface, their attributes, and the relation
ships among them. M issing from a UIL-specified
interface are the thousands of l ines of code to
construct the interface.

Range of Solutions

Several approaches to the problem of managing a
large number of wi ndows exist in the i nd ustry.

One approach is M icrosoft's Resource Script F i le,
which contains ASC!I descriptions of user interface
components." The resource script fi le gives textual
descriptions of fonts and windows. For d ialog
boxes, the attributes of the box and the objects that
are with in the box are specified. An application
uses the i nformation in the script filL to create its
interface. The application controls the degree to
which the application interface is described by a
script fi le versus being described in the code of the
application.

Another approach is to build i nterfaces through
direct manipulation -' With this approach. the inter
face designer uses a workstation to construct the
i nterface as i t will appear to the user of the
application. The i nterface is built by selecting the
appropriate components from a palette or l ist and
p !Jcing them on the screen . For example, if the
designer chooses a dialog box , a default dialog box
is displayed on the screen. The designer cJn then
manipulate the borders of the box unt i l it is the
correct size. Toggle bu ttons and l.ist boxes can be
selected from a palette and placed wherever desired
within the dialog box . Each graphical artifJct has
a l ist of attributes that can be displayed and mod
ified by the designer. The effects of the changes
to the attributes are displayed immediJtely. The
Macintosh resource editor and SuperCard are
examples of this approach:� ."

Digital Technical journal Vol. 2 No 3 Summer 1')')0

The DECwindows User Interface Language

Graphical sol utions are the best method for a
designer to see how each window wi l l look. The
designer receives an immediate picture of the place
ment , size, and visual characteristics of each
graphic component . To buil d such a system , a
working toolkit with dialog boxes, list boxes,
labels , and toggles is necessary. In fact, the tool.ki t
had best be quite mat ure. The XUI toolkit was not
ready in August 1987. Therefore, despite the many
advantages of graphical solutions, a specification
language w� the correct solut ion to support inter
face building in the DEC w indows program at that
t ime. The language could be constructed and ready
to leverage building DECwindows i nterfaces by the
target date of January 1988 .

UIL Constructs

The user interfJce language (UIL) is a simple, text
based langu age. Its objective is to specify t he

• G raph ical objects in a DECwindows interface

• At tributes of each graphical object

• Actions each graphical object can t rigger

• Relationsh ips among these graph ical objects

The code fragment in Figure I illustrates the
specification of two widgets using UIL .1' Widgets
are the most common graphical objects in the XUI
toolki t . (Note: The XUI toolkit supports both
widgets and gadgets, the latter being a restrict ive
form of w idget. U I L defines objects that may be
either w idgets or gadgets. A more detailed explana
tion is provided in the Support for Defining UIL
Objects section of this paper.)

The first declaration i n F igure I defines a popup
dialog box , called OPEN_LIBRA RY. T h is dec laration
contains two subparts that specify the attributes for
the d ialog box and also the other w idgets that the
dialog box contains. The attributes l isted are
specific to the popup_dialog_box widget. Each
attribute also has a type, such as integer, string,
Boolean, or another object . A l l of the attributes of a
popup_dialog_box widget need not be listed . Each
attribute has a ddault value that is used when a
value is not specified for that attribute.

The OPEN_LIBRARY widget contains six other
objects listed in its controls clause, which specifies
the objects contained within the object being
defined . Both the X U I toolkit and the X Window
System use a tree to describe the relationships
between objects, i . e . , widgets in the case of the
toolkit, and wi ndows in the case of the X Window

35

DEC windows Program

! + +

I D i a l o g b o x f o r d e t e rm i n i n g t h e l i b ra r y t o o p e n
I _ _

o b j e c t O P E N _ L ! B R A R Y

{ a r g um e n t s
p o p up _ d i a l o g _ b o x w i d g e t

{ t i t l e " O p e n L i b r a r y " ;

DWH C _ M O D E L E S S ;

T R U E ;

} ;

s t y l e

d e f a u l t _ p o s i t i o n

d e f a u l L b u t t o n

t a k e _ f o c u s

he i gh t

w i d t h

p u s h _ b u t t o n O K _ PUS HBUTTON ;

T R U E ;

4 0 0 ;
350 ;

c o n t r o l s

} ;

} ;

s i mp l e _ t e x t

l ab e l

l i s L b o x

t o gg l e _ b u t t o n

p u s h _ b u t t o n

p u s h _ b u t t o n

L I B R A R L T E X T ;

L I B R A R Y _ LA B E L ;

L I BR A R Y _ L I ST ;

A DD _ T O _ L ! S T ;

O K _ P U S H B U TT O N ;

D I SM J S S _ P U S H BU T T O N ;

I t e x t f i e l d

I l a b e l f o r t e x t f i e l d

I e x i s t i ng l i b r a r y l i s t

I add t e x t f i e l d t o l i s t

d o t h e o p e n

I c an c e l t he o p e n

o b j e c t O K _ PUSHBUTT ON : p u s h _ b u t t on w i d g e t

{ a r g umen t s

} ;

{ l ab e l _ l a b e l " O K " ;

X

y
} ;

c a l l b a c k s

{ a c t i va t e

h e l p

} ;

10 0 ;
30 0 ;

p r o c e d u r e C L I C K C L I B R AR Y _ O K _ P U S H B U T T O N l ;

p r o c e d u r e H E L P C L I B R A R Y _ O K _ P U S H B U T T O N l ;

Figure 1 UJL Specification of Two Widgets

System. The object that controls or contains all
other objects is at the root of the tree. Each child of
the root lists the objects that the child controls. This
paradigm is represented in UIL with the controls
clause. In the example illustrated in Figure 1 , the
popup_dialog_box widget controls a

• Push button to start the open library operation

• Dismiss button to cancel the open library
operation

The second object definition describes the third
property of a widget, called caUbacks. Callbacks
are DECwindows terminology for actions that
the widget can trigger. The term ca l lback is used
because the widget is calling the creator of the
widget back to react to an event defined by that
widget. The widget OK_PUSH BUTTON states that
for the activate action, the procedure CLICK should
be called; for the help action, the procedure HELP

should be called.

• Text object for soliciting the name of the l ibrary

• Label for the text object just described

• List box with the names of existing libraries

• Toggle button that wil l cause the library named
in the text object to be placed in the list

36 Vol. 2 No. J Summer 1990 Digital Tecbnicaljournal

Each widget has a specific set of callbacks that it

makes. Many of the callbacks, such as help and

activate, are common to more than one widget.
The sequence of actions performed by the user to
trigger the callback can also be programmed by the
application through its translation table attribute.

Most applications, however, accept the defaults for

these sequences since the defaults are programmed
to conform to the DECwindows style. For example,

activate is a down click on mouse button (MB) 1 .

B y convention, a procedure invoked as a call
back has three arguments. One of these arguments

is the widget identifier, a unique value used to

distinguish one widget from another. Using this

identifier, a callback can inquire about any of the

widget's attributes at run-time. The second argu
ment is application-defined information that can
be designated in U IL . The value of this second argu

ment is often used to distinguish which widget has

initiated the callback. In the example in Figure 1 ,
all help callbacks may invoke the HELP procedure.

The HELP procedure determines the i nformation

to be displayed based on the value of t he

application-defined argument. The third argument
varies widely from one type of widget to another.

It normally contains useful state i nformation about

the widget, such as the state of a toggle button.

The concepts covered so far in this section are
the core of a U I L specification. UIL is a declarative

language. It contains no constructs that specify

flow of control, such as the if-then-else or loop
constructs found in programming languages l ike C
or FORTRAN. The language simply states the objects

in an interface, the attributes of each object, the

procedures to i nvoke when an object is manipu

lated , which objects :�re contained within other
objects, and what those other objects are.

Creating an Interface with UIL

To create an interface for an application, the infor

mation in a UJ L specification must be transformed

into a series of calls that wil l i nvoke the necessary
XUI toolkit routines to create that interface.

This transformation can be implemented in
many ways. The Challenges in Implementing U IL

section of this paper discusses a few of those possi

bilities. D igital 's solution consists of compiling the
UIL specification into a binary format that resides

on disk, called a user interface description (UID)

ftle. The XU! toolkit includes routines that can cre
ate all or part of an interface from the description in

a UID file. The steps to create an interface using UIL

are discussed in more detail below.

Digital Techntcaljourna/ Vol. 2 No. 3 Summer 19<JO

The DECwindows User Interface Language

Step 1: Creating a UIL Specification File The U IL

specifications are ASCII files that contain the defini

tions of the widgets in the interface, the w idgets'

attributes, and actions that result in callbacks to the
application. The order of the widget definitions in a

UIL specification is irrelevant. The controls clause

indicates the parent-child relationship between the

widgets. The MANAGED attribute controls whether
a child is v isible when its parent is visible. The

MANAGED attribute is also the default attribute

in U IL . I f a child widget is attributed as being

MANAGED, it w ill be v isible when the parent

widget is visible.

Step 2: Compiling the UIL Specification Two pur

poses are served by compiling the specification .
First, the compiler checks the specification to

ensure that the attributes, callbacks, and children

described for a widget are valid for that widget .

Furthermore, for attributes, the compiler checks
that the type of value for that attribute is correct .

Checking is very important and is done before the

application is run. The checks need not be per

formed by the XUI toolki t creation routines and

actual ly are not . Attributes or callbacks not sup

ported by a widget are simply ignored at run-time.

Attribute values of the wrong type cause the

application to misbehave. The second purpose of

aompilation is to produce the UID file.

Step 3: Creating the Callback and Driving Routines

An application is a program written in a progr:�m
ming language, such as the C language. The applicJ
tion must call several XUI toolk i t routines to create

the interface:

• Call A initializes the toolkit

• Call B registers the U !D files that describe the

interface

• Call C designates addresses of callback routines

• Call D builds the interface

• Call E starts delivering events to the application

Calls A and E are standard to all DECwindows

applications. Calls B, C, and D are unique to UIL and
take the place of the thousands of l ines of code

described earlier.

The callback routines listed in the UIL specifi

cation must also be a part of the application pro

gram. UID files are not object ftles. Therefore, the

addresses in the application that correspond to the

37

DECwindows Program

cJI Ibacks listed in rhe UID filt: must be registered

with rhe toolkit . This is call C in the l is t above.
Cal l 0 in the l ist above is the subject of rhe nexr

step.

Step 4: Building the Interface To create and display

a pan of rhe interface, rhe appl ication program

must fetch r ha r parr of rhe interface using a routine
in the tool ki t . The fetch operation specifies an
object i n the in terface. The toolkit then creates
that object with rhe speci fied attributes and call

backs. Furthermore, the fetch cal l fetches any
chi ld of rhe object and creates the child object

as well . In fJct, the entire tree of objects con

tained within the original object is created. In the

case shown in Figure 1 , if the popup_dialog_box
OPEN _ LI BRA R Y were fetched, the w idgets for the
popup_dialog_box , the s ix children of rhe box, Jnd

the children's chi ldren wou ld be created .
The fetch routine returns the widget identifier of

the widget the romine created. The tree of widgets

is displayed by cal l ing the toolkit routine to manage

rhat widget. Because rhe UIL specification l isted rhe
containing widgets to be displayed, rhe single call to

manage the fetched widget displays both the widget

and the containing widgets.
UID files actual ly hole! a template of each tree

of widgets. Consequently, a tree of widgets can
be fetched as many times as needed. Each fetch

produCl'S a new set of widgets.

UIL Hierarchies

Customization is another important facet of an

in terface. Users of a tool prefer that the too l 's inter

face be tai lored for the user's environment.
Customization can involve such things as changing

all text to a foreign language, omitting advanced

features , or changing the default setti ngs of toggle
buttons and rexr fields. Separati ng rhe interface
from the functions that imp lement the interface, as
is the case with UJ L, inherently provides some

degree of customizarion capabi l i ty. However, UIL

also provides h ierarchies of interfaces rhat simplify

customization.

A UIL hierarchy is a list of um files. The XUI

toolki t receives the UJO l ist when a user declares an
intent to use UIL (ca l l B in the last section). When an

application directs the XLII toolkit ro fetch a widget,

rhe toolkit init ial ly searches for the w idget in the

first IO file on the list. ff the widget is nor found,
the wol kir continues to search down the l ist until it

fi nds the widget. In this hierarch r. parts of an inter
face can be overridden by redefining the interface

38

in another file that is located earlier in rhe hierarchy

l ist . The balance of rhe interface is located i n
another l ID file later i n the l ist .

UIL further supports the hierarchy concept by
permitting every named resource to have one of

three attributes: exported, imported, or private. An

exported resource is visible outside the UID file.

Thus, an exported resource is a value or widget that
can be fetched at ru n-time. An imported resource is

not defined in the LJI O fi k. The resource is expected

ro be supplied by a correspond ing exported
resource in another UID file in t he hierarchy. Private
resources :.tre local ro a um file and cannot be

overridden by another definition of rhe same name

in the hierarchy list .

W ith these attributes and rhe hierarchy, UIL

al lows a designer considerable control in tailor ing

an application . Those parts of the appl ic:Hion rhar

can be tailored without breaking the app lication
can be exported. The names of buttons. labels, and

t it les are commonly exported resources where a

user can supply alternJte definitions. On the other

hand, the designer may designate that a button
widget, e.g. , the buttons used ro insert the control

rods, may nor be al tered. In this case, the burton

widget is designated private, and rhe button cannot

be customized.

Support for Defining UIL Objects

UIL is nor a large language. However, it extensively
supports widget definit ion .

The val ues of tool kit Jrtribures include strings,

compound strings (e.g . , non- Latin rext, such as

Kanji and Hebrew), icons, i n tegers, w idgets ,
Booleans, and fonts. UIL contains prim itives to

express these values. Arithmetic operations are

provided for integers and concatenation for strings.

UIL also provides l ists for common sets of a t t ributes.
cal lbac ks, and controls. The l ist can be defined once
and subsequently used in multiple p laces.

Combining the widgets i n the toolkit to build

more specialized or complex widgets is an impor
tant part of the XU! tool kit . UIL supports rhis con

cept in two ways. First, UIL contains constructs for

defining new attributes and cal lbacks. These can be
used in conjunction with a user-defined widget to
specify widgets for wh ich rhe compiler has no

knowledge. The second tech nique is to reconfigure

the compiler to understand the new widget. The

Challenges in Imp lementing UIL section of this
paper discusses this technique in more detai l .

A U I L specification defines objects. The XU!

toolkit creates w idgets. We use two different terms

Vol. 2 No. 3 Summer /'J'JO Digital Tecbn icaljournal

because the toolk it creates two kinds of objects:
widgets and gadgets. A gadget is a more efficient
and more restricted form of widget. An application
that does not need all the capabilities of a label or
push-button widget may use a label or push-button
gadget. In general , gadgets use less time and mem
ory than the corresponding widget. U!L supports
gadgets and widgets, but calls them both objects.
Users can change from one to the other i n the UlL

specification. Thus , it is simple to develop an appli
cation by using widgets and then convert ing parts
to gadgets during the tuning of the applicat ion.

The Challenges in Implementing UIL
The ch:tllenges in implementing U!L are typical of
the constraints that most software projects face in

the 1990s. Resources are limited, and the product
has to have the vision to last a decade.

Time and personnel were at the top of the
resources list. In September 1987, UJL was a thought
with no concrete language specificatio n. By January
1988 , it was in f ield test. The project started with
one engineer ; it was staffed w ith two engineers by
the end of September. Engineering resources
equivalent to the time of 1 . 5 engineers were added
to perform the run-time fetch ing of widgets in
October. Thus, by the field test date, the equivalent
of 3.5 engineers was assigned ro the t J !L project.

Neither of the starting engineers had any
experience in developing an application in the C
language. The C language was, however, the logical
choice for an implementation language because
UIL needed ro run on both the VJVIS and UI..TR !X

operating systems , and both sys tems had reason
ably compatible C compilers and run-time libraries.

The principles of the XUI toolkit were in place.
However, the list of widgets to be implemented and
their attributes and supported callbacks conrinual. ly
changed up until the last f ield rest update.

Thus, in addition to the personnel and time
constraints, the team was forced to deal with a new
implementation language and a toolkit whose
spec if ication was in tlux.

Careful planning of the parts and interfaces of the
compiler was the key ro delivering the product on
schedule. To be ready in January, it was essential
that communications among the developers be
frequent and thorough because there was no time in
the schedule to redesign parts. To make the project
simpler, the compiler was separated into operating
system specific parts (those that needed to be
recoded for each operating system) and operating
system-independent parts (portable code that

Digital Tecbnicaljournal Vol. .! Nn . .3 Summer f<J90

The DEC windows User Interface Language

would run on all systems). The operating system
specific sections were the command l ine parsing,
and within the I/0 : reading the source, writing the
list ing file, issuing diagnostics, and writing the U l D

file. The remaining parts were common code.

Changes in the Widgets
The compiler group worked closely with the XU!

toolkit group . Therefore, we knew early that the

specification of the widgets would change during
the implementation of the compiler. As a resul t ,
we developed a small spec ification language for
describing the widgets, their at tributes , their call
backs, and the kinds of widgets that could act as
children. A program was written in VAX SCAN to
read the widget specifications and create tables that
the compiler could use to validate widgets.

�
Once

this mechanism was in place, the XUI toolkit
developers could provide the compiler group with
a new specification for a widget, and, within a few

hours, the compiler could be regenerated ro include
the new spec ification.

The specification language aided the develop
ment of UIL in several ways. First , the compiler

group could concentrate more on the development
of the compiler and less on the validation of current
widgets in the toolk it. Seco nd, commu nication
between the too lkit and the compiler groups was

enhanced . The toolkit group better understood the
impact of changes. The group recognized that new
widgets with attributes similar ro those already
developed could be added lO the compiler easily.

However, new types of arguments and new types of
relationships between widgets required more \VOrk
in the compiler.

The Open Systems Foundation (OSF) recognized
the advantage of a configurable compiler. The con
figurable compiler was one of the reasons OSF chose
the XU! toolk it as the basis for its windowing stat -

dard. OSF env isioned that each of its members

might want a different set of widgets in their indi
vidual toolkits. The UlL compiler could be altered to
support each vendor w ithout each vendor hav ing
its own version of the source. Therefore, bugs fixes
and enhancements could be made to the base com
piler. Each vendor need only regenerate irs version
of the comp iler to incorporate the changes. The
vendor need not apply the set of changes to its
version of rhe compiler sources .

OSF was less impressed with the implementation
technique for configuring the compiler. VAX SCAN

is a Digital product that runs on VAX computers
supporting VMS systems. I n accepting UIL , OSF

3 9

DECwindows Program

stipulated that the table generators be recoded in
a portable language. Due to time constraints, the
first version of Motif UIL emulated the work of the
VAX SCAN program in the C language.

Version 2 provided a better solution. A formal
language was devised for specifying widgets, and a
compiler was built to produce the tables needed by
thl: UJL compiler to perform its val idations. These
tables also could be used by other tools, such as the
direct manipulation version of l!IL or even the
toolkit, for a formal defini tion of a w idget.

Determining the Form of a UID File

Several requirements were placed on the imple
mentation of UIL interfaces. First , the interface
needed to be created efficiently. I f UIL -based inter
faces made the application nm appreciably slower,
application developers would nor use UIL for per
formance reasons. Second, an interface that used
UIL could not significantly increase the memory
requirements of the appl ication. Third, operating
system independence was important to minimize
the additional work needed to port UIL to another
platform . Finally, the technique had to support rhe
hierarchy concept discussed in the last section.

We explored two designs for the form of UID

files. The first design was to produce an object fi le,
i .e . , .o files for ULTRIX systems and .obj files for VMS

systems. The second design was to encode U IL using
the X resource manager (XRM), a database already
used in the XU! toolk i t to retrieve user preferences.

Object files were appealing since they already
are a standard component of an appl ication and
programmers have experience with using them.
With object files, the UIL compiler might be able to
produce the X U I tool kit's internal structures for
widgets. J f it could , the creation of interfaces coded
using UIL would be even faster than using the
creation routines supplied by the toolkit . We opted ,
however, not to use object files because they made
the compiler too dependent on the internal struc
ture of the toolkit . Each time the toolkit 's internal
structures changed, the compiler would need to be
modified. We would also need to establish mech
anisms to handle the inevitable changes ro the
toolkit in subsequent releases. If we did not, appli
cations that used UIL would need to be recompi led
for each subsequent release of the toolkit . This
violates the VAX and VMS systems convention of
upward compatibility, i .e. , old programs continue
to run with newer versions of the operating system.

The second difficulty with object files was their
portabi l ity. Object files are different for each ope rat-

4 0

i n g system, and storage allocation varies with each
hardware platform. The logistics of creating a new
object file emitter for each operating system and
hardware platform involved a considerable amount
of work , especially in an environmenr such as OSF.

XRM , the second potential solution, is an in
memory database that has a rather elegant retrieval
mechanism. Arbitrary values can be stored in the
database. Each value is associated with a key in the
form of:

s t r i n g 1 . s t r i n g2 . s t r i n g N

where stringl through stringN are ASCII strings. To
retrieve a value from the database, the user provides
the retrieval key for that value, such as

C M S O P E N _ L I B R A R Y O K _ P U S H B U T T O N . C O L O R

X RM then matches the key in the database that most
exactly matches the retrieval key. A l l of the database
keys in Figure 2, except the second and sixth keys,
match the retrieval key in some form.

XIUvt returns the fourth key because i t most
exactly matches the start of the retrieval key and
does not contain any string not found in the
retrieval key.

The XU! toolkit includes routines to read an ASCII

file containing records, such as those shown in
Figure 2, and to create an XR.NI dat:tbase. Routines
a lso exist to merge XRM databases . Given a retrieval
key, routines exist to find the value whose key best
matches the retrieval key.

The XRM database was al ready an integral p:trt
of the toolkit . On creation, a widget determines the
value of its attributes hy first looking at the attri
butes passed on the creation cal l . J f the attributes
are not found in that J ist , the widget checks the XRM

database for a value for the attribute. The key used
to retrieve the value consists of the names of the
widgets from the root of the widget tree to the
widget interested in retrieving the value. Thus,

CMS . O P E N _ L I B R A R Y O K _ P U S H B U T T O N . C O L OR

i s the retrieval key for the color attribute con
tained within the OK_I'USH BUTTON widget, within
the OPEN_LIBRARY widget , and within the CMS root
widget. If XRM does not find a match, the widget
uses a default value for the attribute.

To use XRM databases for UID fi les, the U I L com
piler emits an ASCII XRM file containing records that
encode the widgets described in a UIL specification.
However, the primitive parser for reading key-value
pairs into an XRM database cou ld understand only
string and integer values. New types of values

Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

The DECwindows User Inte1jace Language

1 . C O L O R = " b l a c k "

2 . D I SM I S S _ P U S H B U T T O N . COLOR = " mauve "

3 . C M S. C O LO R = " c i a n "

4 . C M S. O P EN _ L I B R A R Y C O L O R = " o r a n g e "

5 . O K _ P U S H B U T T ON . C O L OR = " p i n k "

6 . CMS . O P E N _ L 1 B R A R Y O K _ P U S H B U T T O N . LABEL. C O L O R = " b 1 u e "

Figure 2 XRM Database Keys and Values

were needed to represent widgets and their call
backs . These minor problems would be easy to
overcome . Overall, this plan seemed to provide a
portable solution.

Unfortunately , one major problem that could not
be surmounted was performance in both the time
and space dimensions. The routines to create XRM

databases took 1 2 seconds to load 2000 values.
(Note: Measurements were taken on a standalone
VAXstation 2000 with 6 megabytes [MB] of mem
ory and one RD32 disk drive.)

An object , such as the popup_dialog_box
OPEN_UBRARY , consisted of I widget, 7 attributes,
and (J controls , for a total of 14 items. Each of these
items needed to be a value. If the average were 10

values per object , 2000 values only represented 200

objects. A system that could handle 10,000 objects
was needed .

Customization hierarchies also presented a
resource problem using XRM . Each of the files in
the hierarchy had to be initially loaded into its
own XR.M database. These databases could then be
merged one at a time into the first database of the
hierarchy. Merging 2000 values into an XRM data
base took 10 seconds.

Memory was also an issue with XR.JVI databases,
which are memory resident. Testing showed that
memory usage of 250 to 500 bytes per value was
common. A small to moderate application with
200 objects, each having 10 values, would produce
a 0.'5 to 1 M B database. Once the X R.M database was
built, the XLII toolkit would create another copy of
much of this information in its widget data struc
tures. Deleting the XRM database after it had been
used was a possibility. However, to follow that solu
tion required being able to predict when the last
request to fetch a widget tree had taken place.

Based on these problems , we determined that
storing UID files in X R.J\1 databases was not the
right solution. XRM is targeted at customizing attri-

Digital Tecbnicaljournal Vol. 2 No. 3 Summer /')90

butes of specific widgets or classes of widgets and
not at creating entire interfJces. UIL needed its own
specialized database.

UID files and the software that retrieves data from
the files are designed to best fit all the requirements
stated at the start of this subsection. In the balance
of this section, the techniques used to meet the
requirements are discussed briefly.

Memory Usage

To meet the memory objective , only the part of a
U ID file needed at the current time is kept in mem
ory. The rest of the interface description remains on
disk. The U I D file is structured as a sequence of
blocks. Fetching a widget requires fetching the
block or blocks that hold that widget 's description.
Once the description is fetched and used to create
the widget , the memory blocks can be released to
be used to read yet another widget description.

Performance

To meet the performance objective, a resource in
a UID file is located in one of two ways: by using
its ASCII name or by using an offset into the UID
file. The name mechanism is used for exported
resources , and the offset mechanism is employed
for private resources. The ASCII names are kep t in
an i ndex and mapped to their UID file offset by
using a 8-tree algori thm .H

This scheme is a good compromise between the
requirements for efficiency and those for support
ing the hierarchy. The B -tree algorithm lets the
toolkit find a named resource with a minimum
number of reads from the U ID files in the hierarchy.
Private resources can be addressed directly in the
UID file. The compiler attempts to write trees of
widgets in the order that the widgets will be
fetched. This decreases the number of disk reads
needed to fetch the interface from the U ID file by

4 1

DECwindows Program

increasing the probability that the next widget

needed is in blocks currently in memory.

Operating System Independence
Operating system independence is addressed by

dividing the system into two layers. Only the lower

level has system-dependent routines for reading

blocks of the U !D file into memory. The majority of
the code resides in the higher level of the system

and is operating system independent. This layer

interfaces with the xur toolkit . It implements rou

tines to fetch a tree of widgets or fetch a value from
the UID file. The raw data kept in the LllD file is simi

lar in structure to the data structures needed to call

the widget creation routines.

To create a widget, the higher level first loads

the description for this widget. I t next builds the

argument list for the creation routine for this

w idget . This l ist specifies the attributes and call

backs for the widget . Any of these arguments may
reference another named resou rce that needs to be

found in the hierarchy. Once the a rgument list is

built , the widget is created. The children of the

widget are built by using a recursive algorithm. The

final step is to manage the widget if that was

requested in the LJ!D file.

The �ystem works well. Most widgets are only

created once and in a serial order. The system can
read thousands of widget specifications th rough

J 4 kilobyte (KB) buffer wit hout thrashing. The

system Jlso allows the flexibility to resolve any

resource at run-t ime by looking through the hier
archy. At the same t ime, the system provides a much

faster mechanism for the private resources that are

more common .

Conclusions and the Future

The initial goal of the l i !L project was to reduce the

burden of bu ilding DF.Cwindows application inrer
faces. The suite of DECwindows tools announced

with DECwindows version 1 .0 impressed the indus

try VA.,'<Set, the VMS Debugger, DECwrite, and

many other products were all available shortly after
the DECwindows software was released. Almost all
of the products had t ilL-based interfaces.

l J IL offers many advantages. First, the user inter

face is ext racted from the applicat ion. The many

objects used by an application arc not mi,'(ed with

the other code of the application. The objects, their

attributes. <md their rel::tt ionships are clearly visible

in th specification and not subject to studying the
tlow of control within the application. Because

the interface has been extracted into a specifica-

4 2

tion, its complexity i s managed more easily. For

example, searching to see where an attribute is used

or if there is a lready a button that can be reused are

simple tasks.
Another advantage of UIL is the checking per

formed by the compiler. The compiler understands

the constraints posed by each widget. It will diag

nose many common constniCtion errors when
describing or combining widgets. These are all

checks that can be made before an application is run

to ensure that the Xl l l toolkit's w idgets are used

correctly. The toolkit, in fact, does not make many

of these checks. Invalid attributes, attribute values,

and relationships bet ween widgets are sometimes

ignored and sometimes result in unpredictable

behavior. The toolkit is coded in this fashion for
two reasons. First, if an attribute does not apply ro a

widget, the widget assumes it applies to its parent,

which may not be true. Second, each check made

decreases the efficiency of the roolkit. Therefore,
the toolkit relies on tools, such as U I L, to catch

construction errors .

l ! IL helped improve the XU! toolkit . Because it is

a language with a formal grammar, U I L provides an
excellent method to monitor the regularity of the

interfaces to the toolkit. Extensions to the toolkit

often require extensions to l i ! L . Therefore, in mak

ing a change, UIL makes it easier to understand how
the change will affect the entire toolkit.

t JIL all owed the toolkit to grow. For example,

compound strings and gadgets were not part of the

January 1988 version of the toolkit . In the case of
compound strings, many text arguments changed

to require a compound string rather than an ASC I I

string. Applications using LIIL made very few

adjustments as a result of the compound string

changes. The lJIL compiler allowed the designer

to continue to think in terms of strings. The com

piler, knowing the type of each attribute value,
determines whether an ASC I I or compound string is

needed. Non-UIL-based applications had to be

edited wherever an ASCI I string was replaced with a

compound string.
Gadgets req uire changes in a U l L specifica tion.

An application developer can specify a particular

object or a class of objects to be gadgets. The com

piler supports experimenting with gadgets. First , it

tells the developer if a widget does not have a corre

sponding gadget form. Changing between widgets

and gadgets is performed simply by changing an

attribute. Because U I D files are separate from the
application itself (i .e . , nor object modules), a new

li!D file can be created and tried with the existing

Vol. 2 No. 3 Summer I<)'JO Digital Tecbnical]ounwl

application . Non-U IL-based solutions are forced to
edit the application at each call site . The application
then needs to be recompiled and rei inked .

Areas to Improve UIL
UIL is not the perfect solution w creat ing
DECwindows application interf:�ces. Trying to
adjust the geometry of an application , e .g . , the size
and loc:�tion of widgets, in a specification language
can be difficul t . It may require fine-tuning and
rerunning programs several times before the solu
t ion is found . Direct manipulation tools are far
superior in this area.

This is not to say that a specification language is
a lways i nferior to direct manipulation. Changing an
interface from English to another language is easier
with a specification. The translawr can read the
specification and be assured that al l cases were
seen. If the need for multiple languages is antici

pated, al l text strings can be isolated into a separate
area of the specification . With direct manipulat ion ,
the entire app l ication must be manipulated and
every piece of that application must be examined .
Maintaining a history of changes to an interface or
ensuring that a part of an interface is the same
in two applications is also difficult with direct
manipulation but does not present problems in a
specification .

Digita l 's U I L implementation also has areas that
can be improved. U I L. attempted to support both
case-sensitive and case-insensit ive names for both

C and non-C programmers. The wolki t attempted
to do the same thing. The intent was to make some
of the nuancc:s of C programming less of an issue
to non-C programmers. M a ny C constructs
remained, and the programmer needed to remem
ber which interfaces adhered to C rules and which
did not. Motif wisely chose to use on ly one con
sistent interface.

Another are:t for improvement is the mapping
of callback names in U IL to the corresponding cal l
back procedures i n a n appl ication . The application
developer must specify the mapp ing. The U IL com
piler can and should emit a segment of code that
will build the map.

User-defined widgets are another weak point of
the language. Although a vendor with access to
the sources of the compiler ctn add widgets to the
compiler, an application developer cannot. By
using the mechanism in the language, the developer
can define new attributes, callbacks, and widgets.
However, in doing so, the developer sacrifices the
normal error-checking performed by the compiler.
L I I L needs a mechanism that a l lows the developer to

Digital Technical journal vbl. .! No. j Summer I<J<JO

The DEC windows User Interface Language

define new widgets and ensure that uses of the new
widgets are consistent with the definit ion .

Future Development
The future of U I L is bright . OSF has adopted U I L.
a s part of its Motif offering. Consequent ly , U I L
will b e available o n many Motif platforms. U I L. will
also continue to mature within Digita l by address

ing many of the weaknesses listed above and
continuing to support changes in the XUI toolk i t .

Direct manipulation tools that support the XU!
toolkit wi l l emerge in the not too distant future and
wil l play an important role in managing interfaces .

In fact , the coexistence of UIL. and direct manipula
tion tools w ill be an interesting topic to monitor.
Vendors that combine the two ideas should do well
because they wi l l be prov iding the best set of tools
to aid application developers in managing the com
plexity of their interfaces .

Acknowledgments

The development, documentation, and mainte
nance of ULL. is a team effort, and I would l ike ro
acknowledge the people who contributed to that
effort : Roger Brinkley, Ross Faneuf, Jerry Harrow,
Dan Mu l l en , Bob Pellegrino, Marybeth Raven,
Valerie Rodgers , Steve Rosenholm, CJ Schiraldi ,
Scott Smith , A I Wojtas, and Marc Zehngut .

References

I . R . Schei fler, et a l . , X Window System C Library
and Protocol Reference (Bedford : D igital Press,
Order No. EY-6737E-DP, 1988).

2. Microsoft Windows Software Development Kit
Programmer's Reference (Redmond , \VA :
M icrosoft Corporation, 1986): 2HI -310.

3. L . Cardell i , Building User Interfaces by Direct
Manipulation (Palo Alto: Digital Equipmt:nt
Corporation, DEC-TR 526, 1987)

4 . J H ied and P. Norton , Inside the Apple Macintosh
(New York, NY : Simon and Schuster, 19H9):
3 17-376

5 . D. Gookin, The Complete SuperCard Handbook
(Radnor, PA : Computc1 Books, l9H9)

6. VMS DECwindows User Interface Language
Reference Manual (Maynard: Digital Equipment
Corporation, Order No. AA - MG 2 2 B-TE , 19H9).

7. Guide to VAX SCAN (Maynard : Digital Equip
ment Corporation , Order No. AA-FU79C-TE,
1990).

8. D. Knuth, "Sorting and Searching," The Art of
Computer Programming, vol 3 . (Reading, M A :
Addison-Wesley Pub! ishing Co. , 197 3) : 4 7 3-4 HO.

4 3

Thomas M. Spine

Jacob L. VanNoy

The Evolution of the
X User Interface Style

The X user interface (X Ul} was a key element of the DECwindows program, version

1 .0. XUJ changed Digital's approach to modern, graphic, direct-manipulation user
interfaces and consistency across applications. The XU/ style provides a consistent

means of user interaction across the VMS, ULTR!X, and MS-DOS operating systems

and the applications auailable on these operating system platforms. The design was

used by the developers of the XUJ toolkit, as well as application designers. Further,
detailed attention to the iterative development of an application s graphic user

inte1jace is now a standard aspect of the software development process.

I n September 1986, Digital began work on a new
workstation software project, the DECwindows
architecture. Publ icly announced in January 1987,
customers began receiving the first version of
the OECwindows base system and applicat ions
in)anuary 1989

The DECwindows architecture integr:�tes the
user and graphical programming interfaces for the
MS-OOS, ULTRI X , and VMS operating systems. This
integration was accomplished in three ways. First,
the architecture offers network transparent win
dowing and interoperabi l ity between operating
systems by using the X Window System. Second ,
it provides a common appl ication development
environment with a Digital proprietary toolkit .
Third , a common workstation user interface
supports a consistent style of user-computer inter
action across the operating systems.

The X user interface (XUI) style ful fi l ls the
requirements of the th ird component. The XUI sty le
is a consistent method of user-computer interaction
across operating systems and between applications.
Regardless of the operating system or appl ication
used, common operations are performed by con
sistent actions. For ex:�mple, resizing a window,
choosing a menu item, and selecting a file name are
all common operations that are independent of the
operating system or application being used .

Articulating an Interface Style

An interface style is sometimes cal led the l ook and
feel of an interface. The first part of this term, the
look , refers to the graphic or visual appearance of
the interface. The second part , the feel , refers to the

44

interface's interactive behavior. The look and th<.:
fee l of an interface are not independent. In response
to a user's input, for example, c l icking a mouse but
ton, the interface's appearance wi l l change. The
interface's behavior is indicated by this changing
appearance in direct response to a user's action.

Having gained experience with using a particular
computer system, most users tend to be quite good
:J.t recognizing its look and feel. An analogy can be
drawn between interface styles and art styles. Given
a certain l evel of famil iarity with an art style, many
people can easi l y categorize a painting that they
have never seen before. Thus, one can view a paint
ing by Monet never seen before, yet automatica l l y
know that the painting belongs to the Impressionist
style of art . Simi larly, a user may have gained
enough experience with the DECwindows system
to be able to automatical ly categorize a new appli
cation as belonging to the XUI style the first time
they see it .

A lthough most people tend to be fai rly good at
recognizing styles, articulat ing the characteristics of
a style tends to be a more difficult task . What are the
characteristics of a painting by Monet that make it
an example of I mpressionist art' What are the char
acteristics of an XUI application that make it an
example of the XUI style? It is often easier to cate
gorize an example as belonging to a style than it is
to explain the characteristics that form the essence
of the style.

One of the chal lenges in the development of the
DECwindows architecture was to find ways to
describe the characteristics of the XUI style. This
articu lation of the XUI look and feel was accom-

Vol. 2 No. 3 Summer /'J'JO Digital Tecbnlca/]ollrnal

plished by using many different approaches. These

approaches can be categorized as either describing

the style by analysis or by synthesis.
A style can be separated into parts, and the

functions and relationships of the parts can be

explained. Such an approach is description by

analysis. For example, a painting by Monet might

be analyzed by separating it into color and brush
strokes and explaining the relationship of these

components. In the development of the XU! style,

we used this approach in writing a technical speci

fication for the design. The XU! Style Guide was
then derived from this specification .'

Both the specification and the style guide provide

analytical descriptions of the XU! style. The inter

face style is separated into its pans, and the function
and relationship of the parts is explained. For exam

ple, the style guide specifies that a window consists

of a title bar, an optional menu bar, and a work area.

The relationship of these areas is explained and,

in turn, each area is then separated into its constit

uent parts. In this way, the XU! style is articu lated by

successive decomposit ion and analysis.

An alternative way to describe a style is by syn

thesis. A synthetic approach to describing a style

relies on experiencing the coherent whole. For

example, the synthetic experience of Impression

ism can be obtained by viewing several paintings by

Impressionist artists. The most complete way to

accomplish a synthetic experience with computers

is through using the working system and its appli
cations. However, a working system did not exist

when the DECwindows architecture was being

developed. Therefore, we had to create alternative
ways to articulate a synthetic experience of the

style. The most common method was to use com

puter graphics programs to draw static pictures of

the interface design. We also used a computer pro

gram that would l ink static pictures together to

form facade prototypes. In fact, the entire XLII style

and many application interfaces were prototyped
i n this fashion . These pictures and prototypes
articulated the XU! style by showing the interface's
composition as the component parts come together

to form the whole.

Styles Evolve Over Time

Interface styles, like most art styles, are not created
in a s ingle moment of inspiration and design .

Rather, they are designed and developed over a

period of time. The XU! style is the result of an

evolut ionary design process.

Digital Technical journal Vol. 2 No. 3 Summer 1990

The Evolution of the X User Interface Style

The XUI style evolved over a period of more than

two years. The style has its roots in an advanced

development project that was underway prior to

the DECwindows program. During the two years of
the DEC windows program, the XLII style underwent

hundreds of updates, with each update evolving

from its predecessor.

This paper illustrates the evolution of the X LI I
style from an exploratory advanced development

project to a finished product . We use five figures

from our design archives to show this evolution.

These figures show a sample text-editing applica
tion that we used to approximate understanding

the XLII style during its development . By i l lustrating

the XLII style through a sample application, this

paper attempts to describe the style through syn
thesis. However, we also describe the style through

analysis by explaining the nature and relationship of

many of the style's features.

Early Style Design

As early as 1984 , customers were giving Digital a

clear message that they wanted consistency among

Digital applications. One customer noted that no

two Digital applications looked like they came from

the same company. Digital did not have a consistent
i nterface style among its workstation software

environments and applications. Clearly, a new and

better interface style was needed.

In response to the customer feedback, D igital's
VMS and Software Usability Engineering (SUE)
groups began to improve the interface to the VMS

workstation software (VWS). Incremental usabil ity

improvements were used to influence the user
interface of vws versions 2 and 3. By early 1986,
the scope of these vws usabil i ty efforts had evolved

into designing a new full-scale user interface design
(UID) for workstation products. A lthough never

implemented in production software, the UID work

was the starting point for the development of the

X U I style.

Characteristics of the UID

Figure 1 shows an example text editor design that
was produced for the UID project in 1986. This

figure is representative of the design work that pre
ceded the development of the XU! style. The design

in Figure 1 shows two primary characteristics of the
UID effort . One characteristic is the influence of

the existing vws software. The other is an emphasis

on innovation and exploration of new methods of

user-computer interaction.

4 5

DECwindows Program

From top to bottom the text editor w indow con

tains a t it le region , a button region , a work region ,

a command region, and a message regio n . The

entire w i ndow's border was taken directly from the
current V WS software.

The t it le region was also heavily i nfluenced by

the then current vws software. As in the vws

software, the application's name is horizonta l l y
centered. A menu icon is o n t h e left. C licking the

primary mouse button on this icon would display a

menu of window manager operations. A keyboard

icon is on the righ t . When h ighlighted , as shown in

Figure I , th is icon would indicate that the window

wou ld receive input from the keyboard These

::tspects of the t it le region were taken directly from

the existing YWS i nterface.
To the left of the keyboard icon is a button

labeled " K NOB ." This button i l lustr::ttes the explor

atory nature of the U I D effort. At the t ime, we

thought that workstations m ight be outfitted with a
knob similar to the knob attached to typewriter

platens. users could click the primary mouse button

on this button and then turn the physical knob to

scrol l the disp lay backwards or forwards. The knob
idea was short-Jived and was never documented in

any of the UID specifications. However, it is an

example of how we were trying to develop in no

vative ideas that went beyond the capabilit ies of

existing computer hardware and software.

The button bar is another exploratory feature of

the design . At the time, pull-down menus \vt:re

becoming a common feature in personal computer
and direct manipulation interfaces. One disadvan

tage of pul l-down menus is that the menu i tems they

contain are hidden u nti l the pull-down men u is
activated . This design used a button bar instead of

pul l -down menus to ensure that all choices were

always \'isible to the user.
Another innovative aspect of the design is that

there.: are also no scrol l bars. Instead, scrol l borders
provide the primary navigation device. These bor
ders are depicted as a cross-hatch pattern in the
editing buffer, the command region , and the mes
sage region. When the mouse cursor is posi tioned
over these borders, the cursor shape woul d change

to a scroJJ cursor shape. Pressing or cl icking the

primary mouse button on these borders would then
cause the file to scrol l .

The Posi t ion button in the button region was

i ntended as a secondary, long-range navigation

device. Cl icking the primary mouse button on the

Position button would result i n a navigation win
dow This window would represent the entire file

46

and contain an outl ine of w hat is currently being

viewed . This out line cou ld then be moved by drag

ging it with t he mouse to navigate to other parts of
the file. The navigation window was not described
in the style guide because it was not implemented i n

the X L! I toolkit . However, i t was implemented i n the

structured visual navigation (SYN) a nd graphical

object editor (GOb E) w idgets. This is an example of
how the DF.Cwindows style is defined by more than

j ust the Xl ' l style.

The dark horizontal regions separating the sub

area..<; of the w indow were intended to be window
pane borders, w h ich coul d be dragged with the

mouse to increase or decrease t he area Llevoted to a

given subarea.

Another prominent feature of the design is the
com nund l ine. We wantcLI to provide command

l i ne equivalents for a l l direct manipu lation com

mands. Users would have more flexibi l i ty because

they cou ld choose their own input method, i . e. ,
command l ine or direct manipulat ion. Also, macros

and init ia l ization files could be created more easily

because there would be a language for all direct

manipu lation commands.
The design in Figure 1 is a mixture of the existing

Y\VS software and our init ial attempt at creating a

new interface style that empowered users with new
methods of user-computer interaction .

The First XVI Style Design

I n September 1986, Digital redefined its desktop
strategy and started developing the DECwindows

architecture. This new program ended the l 1 1 D

A p p l i c a t i o n s f o r w h i c h s c ro l l i n g makes n o sense s h o u l d n o t :
h a v e s c ro l l i ng b o r d e rs

·

7. 1 1 . 1 1 .2 F i n e -grained N a v i g a t i on in T h e Work S u b-reg i on

Some appl i cati ons, such as graphics ed i t ors, m a y re q u i re
n a v i g a t i o n more prec 1 s e than that afforded by scrol l i ng b o
I n t h i s case a f i n e p o s i t i o n i n g 1 con i s avai l a b l e 1 n the menu
re g 1 o n . S e l e c t i n g t h i s i co n c a u s e s the cursor to change int
f i ne-pos 1 t i o m n g cursor a s 1 o n g a s it is in t h e w o rk s u tJ - re
Mov i n g the f i n e - p o s i t i o n i n g cursor o n t o t h e work re g i o n and·
c l i c k i ng c a u s e s t h e work reg i o n contents t o be a t t a c h e d t o .:
cursor, such t h a t s u b s e q u e n t cursor movements are mi rror • .

Figure 1 U1 D for an Example Text Editor

Vol. 2 No. 3 Summer 1'}')0 Digital Tecbnicaljounml

project , but Digital st i l l needed a user interface
design that specified the look and feel of its appli
cations. Because the DECwindows architecture
was bridging three operating systems, it was more
important than ever that applications be consistent
with each other.

Because the U I D project had a lready produced a
good start on a user interface design that promoted
i nterapp lication consistency, t he VMS and SUE
groups saw the OECwindows program as an oppor
tunity to expand the U I D effort. Within three
months of the start of the DECwindows program,
we had revised the U ID specification to meet the
requirements of the DECwindows effort . The new
design was the start ing point for the XUI style, i . e. ,
the user interface look and feel for the DECwindows
architecture.

Initial XU! Style Characteristics

Figure 2 shows the initial design for the XU! style.
As with Figure I , we used an example text editor
to show the synthesis of the design . Evolved from
the U I D work, this design reflects some of the
influences of the earlier design, part icularly the
influence of the vws software and the emphasis on

innovation . There are two other strong features of
this design . One is that compatibil ity with other
workstation and personal computer software was
more important than innovation . The other feature
is minimalist design.

The minimal ist design influence is the strongest
aspect of the design shown in Figure 2, particularly
in contrast to Figure I . The source of this influence
was Tufte's The Visual Display of Quantitative
Information, which calls for a minimum of clutter
in visual displays." All of the complex l ines and pat
terns of the earlier l i i D design have been rt:placed

by simpler l ines. A thin, sol id l ine omlines the entire
window and i ts t it le bar. Dotted J ines separate the
subareas within the window. The v isual effect of
these design changes is much l ighter than the earlier
design.

Tufte also advocates the use of graphic and not

text representations to convey mean.ing. The key
board icon shown in Figure 1 has been rep laced by
a graphic representat ion of a keyboard. The t i t le bar
menu icon is sti l l in the design . However, the word
" tvtEN U " has been removed from the icon, leav ing

just a series of horizonta l l ines to suggest v isua l l y a

men u .

Tufte's influence can also be seen i n the modified
Digital logo to the right of the t it le bar menu icon .
By providing a styl ized Digital logo, we were giving

Digital Technical]ournal 11!1 2 No. 3 Summer 1')')0

The Evolution of the X User Interface Style

the design a Digital corporate ident i ty that would be
quickly recognized by users. This logo also had a
uti l i tarian purpose, however. A user customization
menu was generated by cl icking the primary mouse
button on the logo .

One other graphic representation is included in
the tit le bar. This is the window resize icon shown
at the far right. By drawing a square within a square,
this icon was designed to suggest visually the
changing size of an application window. As subse
quent figures wil l show, the usc of squares, and
squares within squares, became a central character
istic of the XUI design .

The U I D scrol l border feature was removed to
improve compatibil ity with other workstation and
personal computer software. Scrol l bars, a naviga
tion feature of several other interface styles, were
used instead. One innovative aspect of the design of
the scrol l bars is that the sl ider size represents the
proportion of the file currently visible. In Figure 2 ,
the size o f tht: horizontal s l ider is approximately 90

percent of the size of the scrol l ing region . T h is rep
resentation means that approximately 90 percent
of the horizontal w idth of the file is be ing viewed.
The vertical slider shows that approximately 20

percent of the vert ical portion of the document is
being viewed. This proportional aspect of the scrol l
bar design remains a feature of the current XUI style_

The UID button bar was replaced by a region that
contains both pul l-down menus and buttons. Pul l
down mem1s were added because using buttons for
a l l of an application's functions required too much
screen real estate. The use of pu l l -down menus also
helped to promote industry compat ibi l i ty. Several
other personal computer and workstation interface
styles were a l ready using this feature . Industry
compatibil ity was further enhanced by using Fi le
and Edit menus.

However, the pull-down menu and button region
does contain some innovative features. Vertical
l ines were used to partition the region into several
sections. The first section contains the File and Edit
menus. The second contains application-specific

pull-down menus, for example, Commands and
Fonts. The arrow pointing ro the right indicates
that there are more application-speci fic pull-down
menus. Cl icking the primary mouse b utton on this
arrow would scroll the application-specific menus
to reveal the ot her menus. This design a lso required

an arrow pointed to the left, to scroll the menus
in the other direction. However, the left-pointing
arrow is not depicted in Figure 2 . The region
contains both pul l -down menus and direct-action

47

DECwindows Program

buttons. Help and Undo buttons were i ntended ro

be standard parts of appl ication i nrcrfaces. The use

of partitions, scroll ing menus, and d irect-action

buttons in this region are unique aspects of this
design .

T he command and message regions from the

earlier UID project are still a part of t h is design.

They have been moved, however, to the top of the
window, just below the title region . Human factors

studies of t he earlier design indicated that these

regions were often overlooked by users, and, there

fore, important messages migh t not be seen. The
regions were moved from the bottom to the top of

t he window to increase their visibi l i ty. The two

regions were placed above t he pull-down menu

region to ensure that t he p u ll-down menus, when

act ivated, would not obscure them .

The ini tial XU! style design was derived from t he

earlier design work of t he U I D project . I t contains

features that were i nfl uenced by t he VWS software
and the UID emphasis on innovation. The design in

Figure 2 reflects a minimal use of complex patterns

and a reliance on graph ic representat ions. The

design also contains features designed tO promote
i ndustry compatibi l i t y.

Design Iterations
Because the DECwindows architecture was a

corporate-wide effort, it was important t hat a w ide

range of development groups participate in the

design of t he XU! style. Besides the SUE and VMS
grou ps , representatives from the U l.TRIX , H igh

Performance Workstations, Software Development

Technologies, and the Personal Computer Systems

groups were key participants in the design effort.
A software engineer with training in both film and

Eve - myfi le . tx t
Eve>

Se I ec t i on s tor ted . Press remove when f i n i shed

F i l e E d i t : C o m m a nds . . . F o n t s . . . + IHelp) lun�oj
' +

Th i s i s the m i dd l e o f a text f i l e . No t i ce the thumb on the
r i gh t shows that I om ha l f way down the f i l e , and that th i s
screen takes up obout one th i rd o f the en t i re f i I e .
There i s a l so some- sma l l amount of mater i a l o f f the screen hor i :
a s shown b y the thUif'lb o n the b o t lam.

·

No t i ce lhe s tandard screen, w i lh lhe add i l i on of on op t i ona l l,l I command I i ne and h i nts re9 i on . The menu bar has pu I I down
menus, as we I I as ;enero l i n; pone I s . On the r i gh t Ol"'e some .
i lllmed i a te ac t i on buttons, made more access i b l e by pu t t i n; them :

r i ghl on lhe menu bar .

The i con in the upper" l e f t ;enerates a syslem·-wi ndow menu w i th :
move, etc opt i ons . The i con next to i t i s the OECI..J i r:'dows ·

s:pec i f i c i con a I I ow i ng you lo turn the command and h 1 n ls
regi ons on or o f f , odd seM I I bord•rs, and other opp l i ca l i on- : +

i + l
., H H : + • Hi

48

Figure 2 Initial XU/ Style Design

design was also recru i ted to assu me p r i m a ry

responsibi l i ty for t he v isual aspects of t he design.

From the starting point shown in Figure 2 to the
beta test of t he DECwindows system, the XU! style
underwent dozens of revisions and updates. There

were five corporate-wide design reviews for the

style guide. The DEC wi ndows i n terface designer

produced over 600 sketches of the style. Many of
t hese sketches were i terations and refinements

of previous sketches. Dozens, if not hundreds , of

sketches were also p roduced by appl ication devel

opment groups as application-specific XU! style
interfaces were designed. Many of the development

groups also produced facade prototypes of t heir

application interfaces. Using these facade proto

types and early base levels of the DECwindows
system , t he SUE group conducted human factors

studies with over 300 participants. A l l of these

activities were used to influence the further refine

ment of t he XU! style.

The XU! Style Takes Shape

One of the first designs resul ting from t his w ider
sphere of i nfluence is shown in Figure 3. In terms of

characteristics of the style, this design represents an

intermediate step between the init ial XU! style

design shown i n Figure 2 and the style at the end of
the development cycle.

One aspect of Figure 3 that is unrelated to t he

design of the XU! style but very noticeable in the

figure is the use of vertical l i nes in p lace of tex t . We
made this change because we found t hat partici

pants in design stud ies and reviews were concen

trating on reading the i l lustrative text rather than

on the elements of t he design. We changed later
designs to English letters arranged in random pat

terns, which gave reviewers a feel for how text

would appear in the design but w h ich did not

distract t heir attention .
The minimalist design influence shown in Fig

ure 2 has been tempered in t his design . Al t hough
the previous design was an improvement over the

complex l ines and patterns of the I J I O work , we had
taken roo much away. From a v isual standpoin t ,
t he design in Figure 2 has very l i t t le defi nition .

In Figure 3 , there are no dotted l i nes, only solid

l ines. T he design now has v isual weight , yet it is
not too heavy.

The t it le bar has been simplified . In the previous

design, it had four different icons. Because we
were concerned that we were overloading t he t i t le
bar with functions , only t he window menu icon

remains in t his area .

Vol. 2 No. 3 Summer I'J'JIJ Digllal Technlcaljou,.nal

The graphic design of the window menu icon
has been changed to resemble a miniature w indow.
The icon design now indicates visually that the
meou is related to window-specific functions. The
p revious design , a series of parallel J ines, only
suggested the existence of a menu rather than what
the menu might contain.

The modified Digital logo has been el iminated .
Because the X U ! toolki t , which implements the
X U I style, wou ld be used by both Digital and t hird
party application developers, a Digital-specific logo
would have been inappropriate. With this change,
the style guide specified that application custom
ization functions should be placed in a Customize
pul l-down men u .

T h e keyboard represen tation also has been elimi
nated . The window that is receiving keyboard
input is now indicated by highlighting the entire
title bar (not shown in Figure 3). This change makes
the indicator physically larger to enable users to tel l
quickly which window is receiving keyboard input
without searching for the sma ll keyboard indicator.

The resize icon has been moved from the title
bar to the intersection of the vertical and horizontal
scroll bars. One reason for this change was to put
a useful function in the empty space at this inter
section. This design change gave application win
dows some diagonal balance, with the window
menu icon in the upper left and the resize icon in
the lower right.

An additional square has also been added to the
resize icon. Instead of just a square within a square,
it is now composed of three squares. This change
helped to suggest variable-sized windows, where
the previous design might have been interpreted
as suggesting only minimum and maximum-sized
windows.

The menu bar has been simp l i fied and moved
to below the title bar, which increases standard

ization with the industry and decreases the com
plexity of the earlier design. The vertical partitions
and scrolling the application-specific menus have
been removed. These ideas were too complex to
promote usability and ease-of-learning.

On the right of the menu bar are a Hints pull
down menu and a Help icon, shown as a question
mark in Figure 3. These were placed at the right,
away from the other pull-down menus, to give users
a standard place to find functions pertaining to user
assistance.

Below the menu bar is a hints bar. In the previous
designs, this area was called the message region . We
changed the name from message to hints to obtain a

Digital Tecbnicaljournal Vol. 2 Nu. 3 Summer I'J'JO

The Evolution of the X User Interface Style

Fl E v e : myfi 1 e. txt
F i l e Edi t Text Fonts H i nt s I?

1

1 �
1
1
1

1
1
1
1
1
1
1

l i l
1
1
1
1
1 11 1 1 1 1 1 1 1 1 1 1
1

� l--�
Eve> I

Figure 3 Intermediate XU/ Style Design

better association with the Hints pull-down men u ,
w hich contains functions pertaining t o the h ints
bar. These functions include the level of detail for
the hints, and tu rning hints on and off. The hints are
right-justified to be physically close to the hints
menu and ensure that they would not be obscured
by the other pull-down menus.

The visual appearance of the scroll bars has been
modified. By adding a l ine to the scrolling region ,
the new design is i ntended to suggest physical
sliders similar to those found on modern stereo
equipment. The stepping arrows have also been
redesigned as double arrow heads. This change was
simply an attempt to design a more interesting and
distinct arrow.

The command l i ne has been moved to the
bottom of the window to place less emphasis on the
command line equivalents of direct manipulation
actions. From a competitive v iewpoint, command
line equivalents were viewed as less important t han
the direct manipulation aspects of the XU! style.

The use of squares as a fa mi liar bui lding block in
the XU! style started to emerge in this design. The
window menu icon, the help icon, the scroll bar
stepping arrows, and the resize icon are all squares
of equal size. Squares are pleasing to the eye, and
they provide a visual symmetry and regu larity to
much of the design.

The Beta Test XU! Style

Figure 4 shows the XUI style as it appeared in the

beta test of the DEC windows system .
In a reversal of the title bar simplification shown

in Figure 3, three icons are now in the tit le bar. On

49

DECwindows Program

the left is the shrink-to-icon icon . On the right are

the push-to-back and resize icons. These icons are

located in the tit le bar to provide the user with

w i ndow manager functions. In the DECwindows
architecture, the w indow manager controls t it le

bars and window borders and applications control

every thing in the window. Thus, w indow manager

functions could be placed only in the title bar.
The w indow menu from the previous designs

has been el iminated completely. Once the spec

i fication of the DEC windows w i ndow m anager

was completed, i t was dear that this menu was not
necessary. The functions from this menu are now

provided by the three title bar icons or by direct

manipulation actions.

Each of the three title bar icons is constructed of
squares, and squares within squares. The square

subsequently became a strong characteristic of the

X UJ sty le . The shrink-to-icon icon is composed of

four squares set within a square and is designed to

n:scmble a real window Al though applications are

encouraged ro design their own shrink-to-icon

icons, this design is used as a default design. The

push-to-back icon is designed as two overlapping
squares set within a square that suggest overlapping

window corners.
There are two changes to the menu bar. One is

that the font used for the menu names has been
finalized. This font , Pel lucida San Serif 12 point,

was chosen because i t was designed specifically for

screen readabi lity. This font is also used for the

appl ication name i n the tit le bar. The other change
is the specification of a Help pull-down menu rather

than the H ints menu and Help icon from the

previous design . The h ints region and menu were

removed from the design because the constantly
changing hints were more d istracting than usefu l .

The word " Help" was chosen t o provide a consis

tency in the menu bar. Pul l-clown menus are al l

indicated by words rather th:m a m ixture of words
and graphic representations.

The visual appearance of the scroll bars' scroll ing
regions has been mod i fied again. The single l ine

shown in Figure 3 did not provide enough visib i l i ty.
It was lost i n the context of an entire appl ication

w indow To increase the visual contrast, a series of

para l lel l i nes were used to add darkness to the

appearance of this region.
When the design in Figure 3 was reviewed within

D igital , a comment consistent ly made was that the

stepping arrows were very similar to the stripes

worn by a sergean t in the U . S . Army. We were
searching for an arrow design that evoked a feel ing

of direction not a feeling of m i l i tary regimentation .

50

The design of the stepping arrows was changed to a
simple, triangul a r arrowhead. The intent of the new

design is to suggest visual l y the essence of direction

through the tip of an arrow.

The intersection of the two scro l l bars contained
the resize icon i n the previous design. When the

icon was moved to the t itle bar, the area had no

uti l itarian function. The area is decorated with a
square so that it is not vacant , and an empty square

has been chosen to rei nforce further the design
characteristic of squares as X U ! style bui l d i ng

blocks.

The concept of a standard command region and
semantic equivalence of direct manipulation com

mands was removed. The debate over the syntax of

command l ines never reached consensus w ithin the
D igital review community. Some favored a new,

common syntax. Others favored a user-selectable

(i .e. , Vl\·IS versus L ILTRIX operat ing system) s yntax.
Others fel t that a common syntax was not a t a l l nec
essary. Ultimately, the idea was removed because

there was no apparent good solution to the problem

in a heterogeneous environment .

Figure 4 shows a clean a n d well-defined left
margin. The application name, which was centered

in the previous designs, has been moved to the left .

The first menu i tem, File, i s positioned below and
flush left with the application name. The left margin
is further strengthened by the placement of the text

in the appl ication 's work area . This left margin,

however, is a fai led aspect of the XUI sty le as

i ntended by the style guide versus w hat was imple

mented by the XUJ wolk i t . Although the left margin
was intended to be a feature of the XUI style, it was

specified in the style guide figures but not the text .

The toolkit developers did not notice this aspect
of the figures, and, therefore, d id not implement a

left margi n . This example h igh l ights the difficulty

of specifying an i nterface style with the hundreds of

details that make up a style.
The design shown i n Figure 4 virtually com

pleted the basis of the XLII style. One by one, the

influences of the earlier vws software and the U I D
project were a l l removed or h ighly modi fied .
Design reviews w it h i n Digit a l , h u m a n fac cors

studies, and the i nfluence of a dedicated i nter

face designer were the primary forces behind the

evolu tion of the style.

Final Style Details

The XUI style was nearl y complete in the beta test

design shown in Figure 4 . Human factors stud ies
and customer interviews duri ng the beta test were

used to identify any serious problems that might

Vol. 2 No. 3 Summer 19')0 Digital Tecbnical]oun�al

� .

�

'

Fi le Ed it Text Format Help
lkdsf lkjdsfli ldsn fpo dslkuo slkj doi dkj slkd� slkjn oi dnocidw
lkjds o akj od ghu lkdjfo ewjnfudhc dl�s sjh sdjfh ndoi dbo s ks
ldkj dhi w ud wgi ndo wei auh o soio e jhgjhp aksp jh w hfo w
hjso no djo wno akjho slj wnoi

kjddoiu ni pij akj s pijdjso djo hos ojoisu skj jwoun soio w jol
lsj dihjo w joiu wkjbiy ap shih eboiw cniw sdfhiw kjweb hi wb
nsih akh a wsoi wjbi akjb vrhfuk ahdi lnoa wihof shoa ebiae
snoe ajhdie abii eboanoih minajnb wnoh ahoye dnoh ajbiw
sbiub whbuw bn a jh anuh ajbnjp nk hih lsneu

dih sihjo wjno wlknogbiygvq�oih sn dhfouh w fhiuhreg
hfoh wehbi a fhoue dhjo cmhjo joius ejhi sno zhouh qn
ntiu sjghe dnue siho kpq dujh dhiow djhiq dhgiw ybnos ihf
nti sbu dh ebuyfa fniuga �i abdby abuy dngkuc dbica bncyga
cbis bti aljniuf ghnia nq hu ca ihjondf s aihof lnak o funguih a
fnbiuw dbnug indi a oigj aniunf ihj sbug dh kugy djbiw ubf

ihj g uhi a! fuh w b og oih ubgakuh w p tiuhia dow bnu a
hln� · � · � ·

� �

Figure 4 XU/ Style during Beta Test

@)
b.

v

exist in the design and to gather input for require
ments for subsequent releases of the DECwindows
base system .

Figure 5 shows the final XU! style design for the

fir�t release of the DECwindows system. We found
only one �ignificant design problem with the X U !
style during the beta test : the visual design of the
scroll bars.

During the DECwindows system beta test, many
users complained of a figure-ground disorientation
with the scroll bars. They could not tell if the white
area was the scrol l b;�r slider or the scrolling region .
This effect can be seen by examining the horizontal
scrol l bar in Figure 4 . The design change can be seen
in Figure 5 . The parallel l ines were removed from
the scrol l ing region and the width of the area was
reduced. Since the sl ider is now wider than the
scroll ing region , there is no v isual confusion about
which part is the sl ider. This design change also
required modification of the scrol l bar arrows to
make the base of the arrows the same width as the
scro l l ing region .

Summary

The DECwindows X U ! style development repre
sents a breakthrough in user interface development
for Digital . Before the project, l ittle attention was
given to modern, graphic, direct-manipulation user
interfaces. Also, l itt le attention was given to consis
tency across applications. With the DECwindows
X U I sty le, we now have a consistent means of user
interaction across the VMS, ULTRI X , and MS- DOS

operat ing systems and the applications available on
these operating system platforms. Further, detailed
attention to the iterative development of an applica-

Digital Technical journal Vol 2 No. 3 Summer /'J'JO

The Evolution of the X User Interface Style

m Editor: MVFILE.TXT l!ilfml
File Edit Text Format Help
lkdsf lkjdsfli idsn fpo dsikuo sikj doi dkj slkd� slkjn oi dnocidw 6
lkjds o akj od ghu lkdjfo ewjnfudhc dl�s sjh sdjfh ndoi dbo s ks
idkj dhi w ud wgi ndo wei auh o soio e jhgjhp aksp jh w hfo w
hjso no djo wno akjho slj wnoi

kjddoiu ni pij akj s pijdjso djo hos ojoisu skj jwoun soio w joi
isj dihjo w joiu wkjbiy ap shih eboiw cniw sdfhiw kjweb hi wb
nsih akh a wsoi wjbi akjb vrhfuk ahdi lnoa wihof shoa ebiae
snoe ajhdie abii eboanoih mlnajnb wnoh ahoye dnoh ajbiw
sbiub whbuw bn a jh anuh ajbnjp nk hih lsneu

dih sihjo wjno wlknogbiygvq gnoih sn dhfouh w fhiuhreg
hfoh wehbi a fhoue dhjo cmhjo fhjoius ejhi sno zhouh qn
ntiu sjghe dnue siho kpq dujh dhiow djhiq dhgiw ybnos ihf
nfi sbu dh ebuyfa fniuga � i abdby abuy dngkuc dbica bncyga
chis bti aljniuf ghnia nq hu ca ihjondf s aihof tnak o funguih a
fnbiuw dbnug indi a oigj aniunfihj sbug dh kugy djbiw ubf

_h ihj g uhi ai fuh w b ogoih ubg akuh w p fiuhia dow bnu � Q
(J I) 0

Figure 5 Completed X VI Style Design

tion's graphic user interface is now a standard
aspect of the software development process.

Acknowledgments

The authors would l ike to acknowledge those who
have contributed to the X U ! style: Sue Bonde,
Alana Brassard, Tom Dahl , Charl ie Frean, Hania
Gajewska, Peter George, Michael Good, Joel
Gringorten, Charles Haynes, Harry Hersh , Sandy
Jones, Phil Karlton , Scott McGregor, E l iot Tarl in ,
Leo Treggiari, Smokey Wal lace, John Whiteside,
Chauncey Wilson, Dennis W ixon, and the many
others who reviewed the revisions of the XUJ Style
Guide and provided comments, suggestions , and
inspired ideas.

References

I . X U/ Style Guide (Maynard : Digital Equipment
Corporation, Order No. AA-MG 20A -TE, 1988).

2. E. Tufte, The Visual Display of Quantitative
Information (Cheshire, Connecticut : G raphics
Press, 1983).

5 1

RandiJ. Rost

Jeffrey D. Friedberg

Peter L. Nishimoto

PEX: A Network-transparent
Three-dimensional
Graphics System

PEX is an extension to the X Window System that is designed to efficiently support

PHIGS and much of the functionali�J' in the proposed PHIGS + extension to PHIGS

PEX allows each window on the screen display to act as a complete, independent,
virtual three-dimensional graphics workstation. This paper presents a brief ouer
uieto of PEX and describes how it fits into the netu,ork enuironment of X In addition,

the paper gives some details about X and PHIGS and discusses the major design
decisions made during the PEX design. as well as the ramifications of those decisions.
The intent of this paper is to share s(mJe of the things designers teamed in their efforts

to umfy the different environments of X and PH I GS.

The X Window System is a network-transparem
windowing system developed at the M assachusetts
Institute of Technology. X contains support for win
dow management operations, input, and simple
two-dimensional graphics operations. X has rapidly
become a de facto industry standard in today's
raster graphics workstation marketplace because i t
works wel l in the increasingly common comput ing
environment that consists of a network of dissimilar
workstations. Despite its populari ty, X sti l l h;L�
some shortcomings. I rs developers deliberately con
centrated on solving the problems of supporting
windowing, input, and simple graphics output
operations in the heterogeneous network environ
mem, and deferred other difficult problems, such
as providing direct support for three-dimensional
graphics and image processing.1

This paper provides a brief overview of PEX

(PH IGS/PHIGS+ extension to X) , which is an exten
sion to the core X Window System that provides
three-dimensional graphics support in the X envi
ronment .1· 1· i PEX is designed to efficient ly support
three-dimensional graphics standards (PHIGS,

(;KS-3 0 , and the majority of the proposed PHI<;s+

extension to P H IGS) in a standard network window

ing environment (the X W indow System).'i.(•.7 This
paper describes the overall architecture of PEX ,

with emphasis on the features that make it unique.

@ l ')H"H HT . Repri nted, with permission . from tF/:'1'
Computer (,'mphics and Applications Magazine, Vo lume ') ,
Numhcr .J . j u l y I ')H').

5 2

The first two sections describe the history of the
PEX effort , and the problems and requirements that
motivated it. Subsequent sections describe the
major features of PEX and contain discussions of the
tradc-offs that were evaluated during the design
process. Final ly, the remaining open issues and their
current status are described.

History

Development of the X Window System began at M I T
in 1984 . By 1986, X had evolved to the point that
i t was receiving widespread usc, had been ported
to many di fferent workstation architectures, and
was supported as a product by some workstation
vendors. The version that was in use at that t ime
was known 2s X Version 10, or X 10.

In the spring of 1986, Digita l 's Workstat ion
Systems Engineering Group began looking at ways
to support three-dimensional graphics applicat ions
using X 10. A four-month project was launched
to define and implement an extension to the
X 10 server and a c l ient-side programming interface
that would provide efficient support for inter
active three-dimensional graphics applications. A
programming interface l ibrary called X) l ib was
wri tten . It contained routines to perform trans
formation , cl ipping, and l ight-source shading com
putations on primit ives. The X 10 server \·vas
extended to include support for two-dimensional
scan-conversion operations. Thus, the trad itional
rendering pipeline was broken into two parts , with

Vol. 2 No. 3 Summer 1')<)0 Digital Tecbnicaljournal

PEX: A Network-transparent Three-dimensional Graphics System

floating point intensive operations occurring on the
cl ient side of the network interface and p i.c'Xel
intensive operations carried out within the server
extension. A solid modeling application, cal led
X Model , was developed to run on top of X 31ib.
Considering the hardware capabil it ies of the target
device, the overall level of i nteractivity that w;L�
achieved with XModel was q uite acceptable.

During this t ime, a public effort was u nderway to
redesign X to make it a more commercially viable
product . The mechan ism we designed for our pro
totype extension tO X 10 became the basis for the
general extcnsion mechanism for X version I I . The
specification for X II was largely completed by
November 1986, a t which t ime a sample implemen
tation of the server and a rewrite of the X cl ient-side
library interface (XI ib) were begun . (Throughout
the remainder of this paper the terms "X" and " X
Window System" are meant t o imply X version 11 .)

In November 19H6, an architecture group was
formed within Digit;tl to design a three-dimensional
extension to X that cou ld form the basis for a cor
poratc three-dimensional graphics interface. The
major goals of this extension would be to extend
X gracefully to support three-dimensional graphics
in a windowing environment , to ach ieve good per
form:.tnce on a range of raster graphics devices in a
network env ironment , to support graphics stan
dards products, such as PHIGS and c ;KS- 3 0 , and to
incorporate support for features , such as light
sources and reflection models, that were not found
in the current graphics standards. Timel iness was
also a key goal , since customers were demanding
access to the three-d imensional capabi l ities of the
hardware that were not accessible through X or the
current standards products. A first draft of the
specification was completed in january 1987, and
·was revised several t imes before it was made
publicly available in May 1987 as X 3D

The PHIGS+ etiort began in a public forum in
November 19H6. I ts goal was to extend PHIGS to
include more advanced rendering capabil it ies (light
sources, depth cuing, reflection models) and more
advanced primitives (parametric curves and sur
faces , meshes). In one respect, the goals of this
group and the Digital design team were similar: to
come up with ways to provide the advanced three
dimensional graphics capabilities that users were
demanding. The resu lts of these two parallel efforts
(which started out being unrelated) were function
ally identical in many areas.

At a meeting at MIT in june 1987, representa
t ives from Digital Equipment Corporation and

Digital Technical journal Vol. 2 No. 3 Summer 1990

Sun M icrosystems jointly presented the X 3 D speci
fication and recommended that it be used as the
basis for defining an industry-standard three
dimensional extension to the X Window System .
At this meeting, an architecture team was formed
and chartered to revise and finalize the speci
fication . A series of three public reviews was held,
and the architecture team released a completed
version of the specification, now cal led PEX in
December 1987. Changes to the specification dur
ing this time were primarily aimed at providing
even better support for PHIGS and at supporting
more of the PHIGS+ functionality. A public
implementation of the PEX extension and a PH!GS/
PHIGS+ cl ient interface library is now underway.
The software, when complete, wil l be freely
distributed in the same manner in which the
X software is currently available.

PEX Requirements

PEX had five major design requirements :

• Extend X in a graceful fash ion to support three
dimensional graphics

• Support a performance range of X platforms

• Provide efficient support for PHI<;s ami the sta
ble portions of PHIGS+

• Establish the definit ion of the PEX protocol in a
timely fash ion

• Acceptance by the X community

Extend X to Support Three-dimensional Graphics

PEX was required to support three-d imensional
graphics in windows efficiently across a network
interface. Furthermore, it was important to provide
an extension to X that supported three-dimensional
graphics but did not violate any of the requirements
or philosophy that made X popular in the first
place. Central to the X phi losophy is that the proto
col and the server support mechanism, not policy.
Therefore, it was a requirement that PEX provide
the mec h a n i s m to s u pport t h ree-d i mens iona l
graphics, but defer policy to clients.

Support a Performance Range of X Platforms
Part of the appeal of the X Window System was
that it would soon be avai lable on a w ide variety
of raster graphics workstation products. PEX had
to be designed for the same class of worksta
tion devices as X - those with keyboard, pointing
device, and raster graphics display. Consequently,

53

DECwindows Program

consideration had to be given to supporting render
ing computations on devices with l i tt le or no color
capabil i ty and to supporting d isplay list travers:!l
on devices with l i ttle or no available displ:ly list
memory.

Provide Support for Pf-IJGS and PH!GS+ Many end
users have conunined themselves to applications
development using PHIGS, an emerging three
dimensional graphics standard , and many vendors
are trying to provide efficient P H IGS implemen
tations. To be widely accepted and used, PEX had
to support PHIGS very efficient ly Many customers
were demanding at least some additional attributes
to control l ighting and depth-cuing operations and
higher order drawing primitives such as polygon
meshes and parametric c urves and surfaces.
Supporting PHIGS+ features was desirable; bur s ince
PHIGS+ was st i l l under development , i t was neces
sary only to incorporate functionality that was
considered to be stable. We had also convinced
ourselves that by supporting PHIGS efficiently, we
would automatically provide efficient support for
GKS-3D B It was not a goal that rhe PEX protocol
map one-to-one with the PHIGS functional speci
fication. Had this been a goal , we would have been
incapable of meeting our first two requirements.

!:.stab/ish the Definition of the PEX Protocol Like
any development project, PEX had time pressure.
The group that met at MIT in June 1987 decided on
an aggressive six-month schedule that would see
the PEX protocol final ized by December 1987. In an
effort to avoid large committee involvement that
would slow down development , a small working
group, the PEX architecture team, was chosen to
complete the PEX protocol specification. This
group, with representatives i n Massachusetts, New
Hampshire, Colorado, and Northern California met
several times during the revision period and con
ducted most discussions through electronic mail
or by telephone. Without the abi l ity to com
municate efficiently by electronic mail , the revision
process undoubtedly would have taken much
longer than i t did. Through the use of electronic
mail , i t was possible to formulate, discuss, and
resolve issues without the need for continual face

to-face meetings.

Acceptance by the X Communizy Rather th:m
develop still another proprietary three-dimensional
interface, it was a goal that we achieve consensus
within the X community for a three-d imensional

54

extension that would be widely supported and
available. Due to the network transparent nature of
X, this extension would provide customers with
true binary portability for their three-dimensional
app l ications. Such portabi l i ty was not currently
possible (nor will i t be possible) solely with graphics
standards such as PH IGS.

As in most software projects, extensibil ity,
ease of use, simplicity, and consistency of the net
work interface were also considered important
architectural goals.

PBX System Model

Data Flow
X is designed as a client/server system, as shown i n
Figure I . An X server process, containing the core
X server and any extensions, runs continuously on
each display system in a network. The server is
responsible for receiving and executing requests
from all clients and for reporting asynchronous
events back to any interested c l ients. Application
processes (clients) can establish a connection and
send requests to any device on the network that
is executing an X server process. Communication
between cl ient and server is carried out using some
form of existing i nterprocess commun ication
protocol, such as TCP/IP, DECnet, or U NIX sockets.
The nature of the information that is passed
between X clients and servers is strictly defined
by the X protocol specification and the protocol
specifications for any extensions 9

The strict definition of the X communication
protocol provides the concept of network trans par-

CLIENT
PROCESS

SERVER
PROCESS

APP LICATIONS

PEX CLIENT :
I NTERFACE I

I
l

j
PEX SERVER I
EXTENS ION I

I

X TOOLKIT

X L I B

X 1 1 PROTOC OL A N D
COL PEX PROTO

N ETW ORK INTERFACE

CORE X
SERVER

DISPLAY HARDWARE I N T E R FACE

Figure 1 XIPEX System Model

Vol. 2 No. 3 Summer 1')')0 Digital Technical journal

PEX: A Network-transparent Three-dimensional Graphics System

ency. If a l l client and server processes strict ly
adhere to the protocol , a cl ient process on one
machine can send requests to a server process on
any machine on the network , regardless of the C P U ,

operating system, or architecture of either of the
two machines. Similarly, a server process can exe
cute requests issued by any cl ient on the network,
as long as the requests conform to the X protocol .
This capabil i ty can make the fact that the two
machines are connected through a network trans
parent to the end user. C lient applications can be
written in such a way that they can access any
X server on the network without being rewritten,
recompiled, or even relinked.

Figure I also shows how data flows from
applications down to the target display device. It is
possible to bui ld eit her PH IGS/PHIGS+ or G KS-3 D

programming interface libraries on top of PEX.

An application can make calls to PHIGS/PH IGS+ ,

G KS-30, X lib, and X Toolkit l ibraries 10• 1 1 11 These
libraries, in turn, format PEX and X protocol
request packets and send them to the designated
server process ro be executed . The core X server
receives al l incoming requests and hands PEX

requests over ro the PEX server extension to be pro
cessed . The X server and the PEX server extension
are capable of issuing commands that cause primi
tives to be drawn on the display screen. Part of the
difficulty in designing PEX was i n opt imizing th is
flow of data from the appl ication, across the net
work interface, and down to the hardware for a per
formance range of devices.

Several problems arise in passing data in a hetero
geneous network enviromnent . The first , handled
by X itself, is the potential discrepancy in the byte
ordering technique that is used on client and server
CP!Js. In X , the server performs byte swapping, if
necessary, on incoming client data. Thus the byte
swapping problem is solved by definition, and the
PEX server extension must perform byte swapping
on PFX requests as necessary. One of the issues on
which we wavered considerably during the course
of designing PEX was the method to be used to
overcome potential differences in floating point
format between client and server CPUs, a problem
that X successfu lly avoided. It was clearly impor
t:.Jnt to al low clients and servers to send floating
point values back and forth, but it was unclear as ro
the most efficient mechanism to support this capa
bi l i ty. This problem did not seem to be identical to
the brte swapping problem since i t was conceivable
that a device might be capable of deal ing efficiently
with more than one floating point format . Conse-

Digital Technicaljourntll Vol. 2 No 3 Summer I'J')O

quently, we included a PEX request that reports the
floating point types that are supported by the
server. Clients are expected to send floating point
data to the server in one of the formats supported
by the server and to perform a translation them
selves, if necessary. Color formats are treated
similarly. A server may be efficient at dealing with
color values that are defined as RGB floating point
values, RGB short integers , RGB bytes, HLS float
ing point values, HSV floating point values, or CIE
floating point values. The c lient may query the
color formats that are supported by the server,
and convert color values (if necessary) to one of the
supported types.

Execution Semantics

PEX operations obey the execution semantics
defined by X . These state that :

• Each request is considered to be atomic
(indivisible)

• There is no implied schedu ling between requests
received over separate connections

• Requests received over a single connection are
executed in the order they are received

Most X server implementations (including the
sample server from MJT) are s ingle-threaded and ,
thus, follow the X execution semantics by defini
tion. The semantics of various PEX operations have
been carefully defined to allow servers to be imple
mented with i nterna l concurrency and yet preserve
the X execution semantics.

PEX operations, such as structure traversal and
rendering, may take considerable time to complete
t ha t can lead to unacceptable behavior from a
cl ient's point of view. For example, a client that
init iates a structure traversal can monopolize the
server's abil ity to process requests, effectively
preventing another c l ient from doing simple text
edit ing in another window. Multithreaded or
yie lding servers may avoid this behavior by a llow
ing other requests to be processed while lengthy
operations are occurring. A connection blocks if a
request requires access to a resource that is already
engaged in a lengthy operation. After the lengthy
operation is completed, the connection unblocks
and t he request is processed. For instance, if a client
init iates :.1 structure traversal and then reads back
the pixels using a core X request , the "read pixels"
operation does not occur unt i l the traversal has
completed. On the other hand , an application

55

DECwindows Program

performing lengthy rendering operations and a

text editing application may be supported simul

taneously i f they are operating in independent

windows on the display.

Resources

Like X itself, the PEX architecture is object-oriented ,

creating an environment that is flexible as well as

extensible. Clients can create, free, and manipulate

objects called resources. Partitioning the desired

functionality into resource types was a difficult

task. Earlier versions of PEX attempted to embed

some of the functionality into existing X resource

types. For example, we proposed adding three

dimensional rendering capability to X window

and pixmap resources. We ultimately decided th at

it was better to create PEX-s peci fic resource

types than to burden X resources with additional

attributes and semantics. The resources de fined for

PEX are

• Looh.'Up tables

• Pipeline contcxts

• Renderers

• Name sets

• Structures

• Search contexts

• PH J(; S workstations

• Pick measures

• PEX fonts

Lookup table resources are used to maintain lists

of attributes , such as those used for viewing, depth

cuing, illumination computations, and defining the

appearance of output primitives. A few generic PEX
requests are used to support the numerous table and

bundle functions defined in the PHIG S and PJ-IIGS+

interfaces.

Pipeline contexts are used to provide the initial
state for the PEX rendering pipeline. Every attribute

that affects the behavior of the rendering pipeline is

defined as an attribute of the pipeline context.

Renderers encapsulate the functionality of a

structure traverser and a rendering pipeline.

Renderers are responsible for converting output

primitive conunands into raster information that

can be displayed.
Name set resources contain arbitrary length lists

of identifiers that can be used to provide condi-

56

tiona! control over operations , such as h ighlighting,

visibility, structure searching, and detectability for

picking purposes.

Structures are simply lists of PEX output com

mands whose execution has been deferred.

PEX supports hierarchical display lists , since PEX

structures can call other structures.

Search context resources allow clients to estab

lish the parameters for performing an incremental

spatial search in world coordinates on output

primitives stored in a structure hierarchy.

The PHI G S abstraction of a "vorkstation is sup

ported by the PHIGS workstation resource. These

resources conceptually have a built-in rcnderer and

implement the PHK;s notions of pick devices,
picture correctness, de ferral modes, posted struc

tures and priorities, and view priorities.

The pick measure resource assists the P H I< iS
workstation resource in implementing PHIGS pick

ing (hit-testing) semantics. Cl ients a rc allowed to
establish the parameters of the picking operation by

modifying the initial stare of a pick measure
resource, and pick results are obtained by querying

the attributes of the pick measure.

Finally, PEX fonts have been de fined to facili

tate three-dimensional transformations on text

primitives.

Rendering

The ability to transform geometric ancl color infor

mation into raster information (pixel locations aml

pixel values) is embodied in a PEX resource called a

renderer, as shown in Figure 2 . Conceptually, ren

derers contain a structure traverser (discussed in a

subsequent section), a state block that defines an
instance of a rendering pipeline, the resource iden

tification of the drawable element (window or

pixmap) to which raster data will be directed, and

an associated buffer of some sort for doing visible
surface computations. Clients may associate various

lookup table resources with a renderer. Certain

attributes that define the rendering pipeline (e.g. ,

viewing, depth cuing, light source information)
may be obtained indirectly from these lookup

tables. Name set resources may a lso be associated

with renderers in order to provide control over

those output primitives that a re to be highlighted or

treated as invisible.

A rendering pipeline can process output com

mands. Output commands consist of: commands

that modify anributes that affect all primitives (e. g . ,
set view index), commands that modify attributes

of a certain class of output primitive (e. g. , set line

Vol. 2 No. 3 Sum me?' /')')0 Digital Tecbn ical]ournal

PEX: A Network-transparent Three-dimensional Graphics System

" R ENDER OUTPUT COMMANDS"
REQUEST

" R ENDER NETWORK"
REQUEST

r - - - - - - - - - - - - - - - - - ,

I I
I YES STRUCTURE I
I TRAVERSER I
I I
I I

: r _ _ _ j_ __ L, �
I I I I I RENDERI N G II STRUCTURES 1,'
I

PIPELINE 1 1 I
I I I

I L - - - - - - - - - J I L - J

RASTER
DATA

Figure 2 Renderer Resource

color), and commands that contain geometric
information that is to be rendered (e.g . , draw poly
line). Output primitives in P EX i nclude the P H IGS

primitives marker, polyl ine, text , annotation text,
fi l l area (polygon), fill area set (polygon with holes),
cell array, and the PH lGS+ extensions to these
primitives; plus the P H IGS+ primitives polyhedron
(indexed polygons), triangle strip, quadrilateral
mesh , parametric polynomial curves and surfaces,
and trimmed nonuniform B-sp!ine cun'eS and
surfaces.

A renderer is made ready for rendering by an
explicit "begin rendering" command . This com
mand provides an opportunity for the renderer
to allocate and initial ize hidden surface buffers
depending on the hidden surface algorithm to be
used, to copy initial rendering pipeline attributes
from a pipeline context , and to create a procedure
vector based on the root and depth of the target
drawable for efficient processing of output com
mands. An "end rendering" request causes any
buffered primitives to be rendered . A renderer
inunediately processes any output commands i t
receives. Clients that maintain their own display
lists may send output commands to a PEX renderer
for i mmediate execution . Al ternatively, clients can
build up l ists of output commands in structure
resources for later execution by a renderer.

Vertices, control points, and normals that pass
through the P EX rendering pipeline are transformed
by the stages defined in Figure 3. These stages are
identical to the PH IGS transformation pipeline.
First, geometry is transformed according to the
current composite modeling transformation and
cl ipped according to the modeling cl ipping volume.
Geometry is then further transformed by the view

Digital Technical journal Vol. 2 No. 3 Summer 1990

orientation (viewing) and v iew mapping (projec
tion) transformations. Finally, cl ipping is performed
and the result ing geometry is transformed into win
dow coordinates, and then into physical device
coordinates.

PEX greatly expands the capabilities of the PHIGS

rendering pipeline by defining a series of color
transformations that must also occur. Just as geo
metry information is ultimately transformed to
pi-""<el positions, colors must also be transformed
into physica l ly realizable pixel values. A color that is
passed to P EX as part of a request consists of a color
type/color value pair. There are two fundamental
color types in PEX: direct and indexed . If the color
type is direct, the color value may be in one of a

OUTPUT PRIMITIVES

X WINDOW
COOR DINATE SYSTEM

PHYSICAL DEVICE
COORDINATE SYSTEM

PHYSICAL DEVICE COORDINATES

Figure 3 Geomet1y Transfonnation Stages of the
Rendering Pipeline

57

DECwindows Program

nu mber of supported color formats (e. g . , RGB tloat
ing point. I lLS tloating point, ere .) . If the color type
is indexed, the color value is a 1 6-bit i nteger value.
As shmvn in Figure 4, the first step of the color
transformation pipeline is to dereference indexed
colors using the color lookup tabl e associated with
the renderer. Within the rendering pipel ine, al l
co lor compu tat ions (e.g. , i l lum ination, depth cuing,
c l ipping) are carried out in an implemen tation
dependen t true color space, even for dev ices that
have a monochromic display.

After dereferencing, color val ues and geometry
are clipped together during the modeling cl ipping
stage. L ight sources, geometry, the object's intrinsic
color, and the current rd1ection model are used to
compute t he color of the i l lum inated object. The
result is fu rther modified according to the current
depth-cuing parameters. Colors and geometry are
then simul taneous] y c l i pped to a three-dimensional
Yo lume for disp lay pu rposes. Color approximation,

the final color transformation step, converts color

I N P U T COLOR

COLOR
DERE F E R ENCING

I N T R I NSIC COLOR

CLIPPED INTRINSIC COLOR

Figure 4 Color Tra nsforma lion Stages of the
Rendering Pipeline

58

values from t he true color, rendering pipel i ne for
mat into pixel values that the device is capable of
displaying. C l ients must provide renderers with
information on how to perform the quantization
through the use of a color approximation table. This
table contains information to compensate for the
drawable element's v isual type and for the contents
of the color map associ:lted with the device. At th is
step dithering or conversion to monochromic
i ntensity values can be performed to produce out
put onto drawable elements with l im ited color
capabi l i t ies.

Except for the addition of color, there were few
issues surrounding the dl'sign of the rendering
pipel ine since i t was based on the t ransformation
pipeline contained in PHIGS. The major decision ,
whether the majority of the rendering pipeline
was above t he network interface or below it , was
made ear l y in the project . Our fi rst prototype,
X :\ lib, partit ioned t he problem so that all floating
point intensive transformation, shading. and three
dimensiona l c l ipping operations were performed
by t he client CPU , and scan conversion and pixel
copy operations were performed by the server CPU .
This parti tioning was ideal for ou r development
env ironment, w hich consisted of a VAX 8650
system as our main development machi ne a nd
MicroVAX GPX workstations acting as display
servers. Since the GPX workstation has no bui l t- in
hardware to supporr structure traversal or floating
point intensive three-dimensional graphics opera
tions, and since we were dealing with fairly simple

models, i t made sense to do these th ings on t he
faster machine . A proposal calls for partition ing the

prob lem in a fash ion very s imi lar to that of the

X :)lib project, since such a partit ioning a lso works
we l l in an env ironment where the c l ient and server

processes are closely coupled using a h igh band

width connection , as would be possible on the
Titan superworkstation.

PEX supports the ent ire rendering pipeline in the
server extension for two major reasons: to reduce
the amou nt of data flowi ng back and forth across
the network interface and to a l low server extension
implcmenters to take advantage of any buil t- in
rendering hardware support that may exist in the
target device. The connection bandwidth assump
tion is a critical one. The attempt was to design
PEX so that i t would perform reasonably well i n
a n environment where t he c l ient/server commu ni
cation occurs over a (comparatively) s low network
connection. Since the network connection can
form the performance bottleneck in such an

Vol. 2 No . . l Summer I')<JO Digital Techn icaljournal

PEX: A Network-transparent Three-dimensional Graphics System

enviromnent, it is important to reduce the amount

of data that must be transmitted. As an i l lustra

t ion, transferring the control points of a B-spl ine

surface would be faster than transferring the list of

polygons generated by tessellating the surface.

Structures
A struct ure resource consists of a l ist of output

commands whose execution has been deferred.

PEX structures are hierarchical, in that a structure

may include commands to execute other struc

tures. Structure resources are intended to be device

independen t , allowi ng t he same structure to be

displayed on screens with very different character

istics (e.g. , monochrome versus color), albeit with a

very different appearance. Unl ike PHIGS, which

maintains the concept of a single open structure for

the purposes of addi ng, deleting, or changing struc

ture elements, PEX structures each contain an ele

ment pointer, making each structure available for

editing at any time. In PEX , nonexistent structures

are nm created automat ical ly as in PHIGS PEX struc

ture resources must be created explicitly, implying

that i t is left to the PHIGS client l ibrary to detect ref

erences to nonexistenr structu res and expl icitly cre

ate the PEX structures. This requirement is not

considered a problem since the PHIGS l ibrary must

maintain a list of created structure resources to

perform the application name- to-resou rce iden

tification mapping. like any X resource, structure

resources may be shared by cooperating clients.

For example, a l i brary of machine parts Gill be

downloaded into the server and accessed by several

clients.

Structure Traversal
Structure traversal is the process of flattening a

hierarchical database i n to a s ingle stream of ren

dering requests. PEX has several different ways to

support structure traversal . To reduce network

traffic ami to al low implementers to take advantage

of any built-in hardware support for structure

traversal , PEX provides support for structures on

the server side of the network interface, as shown in

Figure ';a . To perform a traversal of a server-side

structure network, the cl ient sends a " render net

work " request. A renderer resource then traverses

the specified structure network and internally gen

erates a stream of ou tput commands for processing

by the rendering pipel ine. As a resu l t , a client may

convert its database into PEX st ructure resources to

regenerate the displayed i mage at any t ime without

retransmitting the entire database.

Digital Tecbnicaljournal Vol. 1 No. 3 Summer 1')')0

While many graphics devices contain buil t- in

support for display l ists, many other devices have

extremely l imi ted capability to support structures

in t he server. Serious main-memory constraints in a

system w ithout dedicated structure memory could

cripple performance if the only way to do graphics

through PEX was to create structures and traverse

them . Therefore, as shown in Figure 5b, PEX pro

vides immediate mode, or cl ient-side traversal

support . Here, the cl ient has the responsibi l i ty of

maintaining its own database and issu i ng output

commands directly to a renderer to regenerate the

image. The cl ient is also provided with hooks to

save and restore the state of the rendering pipeline

during the traversal of the database. An additional

benefit of immediate mode capability is that it may

be used to support the GKS and GKS-3D notion

of unretained segments. Furthermore, since the

capability to create user-defined data struct ures in

the server is not provided, immediate mode is

beneficial to applications that cannot take advan

tage of PEX stnJctures. Immediate mode capability

allows such applications to maintain their unique

data structures themselves and issue immediate

mode requests to perform output .

Since structures may also b e executed wi th an

immediate mode execute structure output com

mand , a client may choose to keep part of i ts data

base in server-side structure resources and retain

part on the client side, as shown in Figure 5c. This

allows a client to cache large or frequently used

structu res i n the server.

Figure ')d il lustrates the final option for structure

traversa l , which is provided by the PHIC;s work

station resource. While the other met hods attempt

to provide a mechanism for assisting with the

traversal of an application's graphical database, this

method provides a way for appl ications to relin

quish di rect cont rol of the traversal operation to the

server. I t is possible to designate a l ist of structurt:

networks asposted to (associated with) a PHIGS
workstation resource. PEX incl udes requests that

can be used to explicitly ret raverse a PHIGS work

station's l ist of posted structure networks to regen

erate a displayed image. Furthermore, requests that

affect the picture's correctness (e.g. , modi fications

to a posted struct ure) may cause the disp layed

image to be regenerated implicitly

Supporting PRIGS
Providing a rich , flexible environment to support

PHIGS was an important goal of PEX . However,

PHIGS and X have fundamentally ditierent design

59

DECwindows Program

" R ENDER N ETWORK"
R EQUEST

r - - - - - ,

I
STRUCTURES :

L. _ _ _ _ _ ..J

(a) Semer-side Trat1ersa/

r - - - - - ,
: STRUCTU R ES :
L - _ _ _ _ .J

OUTPUT COMMANDS A N D
" EXECUTE STRUCTU R E "

.- - - - - - - ,
I

STRUCT U R ES :
L _ _ _ _ _ ...J

(() Mixed Trauersa/

r- - - - - - ,

I
STRUCTU RES l

L. _ _ _ _ _ .J

OUTPUT COM M A N DS

(b) Client-side Trauersal

" R EDRAW ALL STRUCT U R E S "
R EQU EST

r - - - - - - , r - - - - - -,
: R E N D E R E R H STRUCT U R E S :
L - - _ _ J L - - - - - - J

(ct) PHIG'S Workstation Trauersal

Figure 5 Display L ist Trat,ersal Options

philosophies, and resolvi ng these differences i n the

PEX (ksign was not al ways easy. The fundamental

tenet of X is that the system must provide hooks

(mechanisms) rathn than religion (policy).1 The
goal was to design PEX so that it provided hooks

to support PHJGS, but P HIGS defines functional i ty
that is not easi ly decomposed into modular build

i ng bl ocks. A further complicat ion is that certain
capabil i t ies (e .g . , high l ighti ng) are very hardware
specific, and it is impossible to define a general
mechanism that wil l address a l l of t he methods t hat

are in use in the indust ry. For such things, there was
no alternat ive to leaving the PEX specificat ion as

general as the PHIGS specification to al low cl ients to

take advantage of the various hardware-assisted

methods that haw been developed.
PHIGS is based on the concepts of the workstation

and the cent ral structu re store, both of which are

defined in a way that is less than ideal ly suited to the

network w i ndowing env ironment of X. The P H IGS

60

concept of structures maps rather read i ly into the

X concept of resources that can be cr ·:w.:J, manipu

lated, and deleted. However, the possibi l i ty that an

appl icat ion may be separated from t he structures it
has created by a slow network connection is not

explicitly addressed in the PHIGS model . Using PEX ,

the PI-Il(;S central structure store is implemented as
a collection of c l ien t-side or server-side structures
t hat the PHIGS client l ibrary manages. In this

respect, PEX follows the lead of X by providing

mechanism, and leaves it to the P H IGS cl ient l ibrary

to map its abstraction of a central structure store
onto the capabil i t ies provided by PEX .

The component t hat caused the most difficul ty

was the PHIGS abstraction of a workstat ion , which

is defined as a device w i t h a single, stat ic-sized
display and one or more i nput devices. The PHIGS

interface does not address t he possibi l i ty of outside

agents (such as window managers) that may alter

the size or posit ion of an appl ication's windows, but

Vol. 2 No. 3 Summer 1')')0 Digital Tecbnicaljournal

PEX: A Network-transparent Three-dimensional Graphics System

it is possible for the P H IGS client l ibrary to handle
the dynamics of windows in X without reporting
such occurrences back to P H IGS applications. The
P H IGS workstation abstraction also states that the
workstation has the ability to control when and
how picture changes are visualized. For example, a
P H IGS application can suggest that the workstation
simulate changes when possible rather than per
form another rendering of the entire picture. P H IGS

does not specify how these changes should be
simulated, only that they can be simulated if and
when the workstation finds it convenient to do so.
This P H !GS attitude of let the workstation decide is
exactly the opposite of the X phi losophy of let the
c l ient decide.

Rather than completely discard the philosophy
of X in order to support P HIGS, the compromise that
was reached was to provide a resource devoted to
supporting a l l of the attributes and state of the
PH JC�S workstation abstraction. The P HlGS work
station resource has the same functionality as a
renderer resource, but also supports the P HIGS

workstation abstraction's concepts of posted struc
tures, picture correctness, deferral and modifica
tion modes, view priorities, and picking.

This resource requires additional bookkeeping to
determine whether or not the displayed image is
correct. Because i t has a bui lt-in renderer and stnJC
ture traverser, it can automatically regenerate the
image when changes have been made to resources
that affect the displayed image. Since the PH!GS

workstation resource is capable of regenerating
the image implicitly, it must also maintain a l ist
of structures that are to be traversed whenever
regeneration occurs.

Supporting PHJGS virtual input devices also
involved some trade-offs. In X, a l l input events
are sent up to the cl ients for processing. In PH IGS,

the workstation handles al l input. Due to general
experience with X and our work with the proto
type three-dimensional extension, it was bel ieved
that most P H IGS input capabilit ies cou ld be layered
on top of existing X input mechanisms. P H !GS

" locator" and "stroke" input may be implemented
using the X pointing device, but need to map device
coordinates to world coordinates. The P H IGS work
station supports a request to do such a mapping.
PEX includes support for picking operations, since
preselection and selection h ighl ighting are usually
hardware-dependent and must be performed
efficiently to be usefu l . The PEX pick measure
resource is used to measure output primitives to
determine which ones satisfy a specific set of selec-

Digital Technical journal Vnl. 2 No. 3 s·ummer 1990

tion criteria. A device-dependent input record that
is passed lO a pick measure initiates the p icking
operation . It is hoped that at least one common
inpm record wil l be supported by all PEX imple
mentations (implementations are free to support
others as well) so that PEX clients may avoid one
of the portability problems that plague P HIGS

applications.

Open Issues

Lengthy Operations
Certain PEX requests, such as a complete structure
traversal , initiate operations that can take a long
time, particularly on devices with l ittle or no hard
ware support for three-dimensional graphics
operations. However, this problem is not unique to
PEX . Certain core X requests (get/put pi;xmaps,
draw many polyl ines/polygons) and requests from
other X extensions can also take considerable time.
Although the ability to execute these types of

requests is usefu l , it is also desirable to execute
requests on other connections while the lengthy
operations are occurring. Furthermore, it is often
necessary to terminate (abort) a lengthy operation
that has been started .

Whether or not a server supports concurrency is
an implementation detail that shou ld not be visible
to cl ients above the network interface. Conse
quently, the design of the PEX protocol does not
prohibit either single threaded or multithreaded
server implementations. How wel l PEX supports
multithreaded implementations cannot accurately
be gauged until a multithreaded X server proposal
(or implementation) is publicly available. The addi
tion of an "abort operation" request that is specific

to PEX is currently under consideration. If an abort
mechanism is designed that works across X and all
extensions, i t can be considered in a future revision
of PEX .

Input

There is still some question as to whether the use
of the X input mechanisms will be sufficient to
meet three-dimensional interactivity requirements.
Obtaining the mouse position from X and using it
as input to a PEX picking request requires a net
work round trip. The possibility of defining tightly
coupled input loops within the server has been
briefly explored. Interest has a lso been expressed in
supporting input devices other than the standard
X pointing device. It seems likely that these issues
wil l be investigated as part of a general effort to

6 1

DECwindows Program

extend the input capabil ities of X. Until then,
because of general experience with X and with the
three-dimensional prototype extension, we bel ieve
the X input mechanisms 'vi i i suffice.

Fonts

The type of font required for P H IGS text support
requires more information than is present in
X fonts. PH I<iS text fonts must be fully transform
able, hence they require a representation in some
normalized coordinate space. Although the type of
fonts that ::1.re required for P HIGS support may be
useful to other extensions, such fon ts were defined
only within the aegis of PEX. This defin ition made it
possible ro control the design of the font support
for PF.X and the schedule for such support indepen
dently of other extension efforts. If PEX fonts prove
to be generally useful , a separate extension could be
defined ro support them in the future.

Double Buffering

Certain appl ications find the use of double buffer
ing, or mulri buffering, to be necessary ro hide the
construction of displayed images or ro produce
tlicker-free ani mation . Neither P H lGS nor PHJGS+

explicit ly includes double-buffering capabi l ities,
although some implemen tations of these stan
dards include double buffering implicit ly or as an
extension . X itself does nor inc lude support for dou
ble buffering beyond draw ing to an offscreen pix
map and copying t he pixmap ro a v isible wi ndow.
Double buffering i n PEX has been deferred as a
general X problem. Several proposals for double
buffering in X already exist, and work is underway
to establish a general solution, which may also
include accessing overlay p lanes and stereoscopic
viewing.15

Z-buffers

Most (but not al l) of today's h igh-performance
rendering systems are based on some form of hard
ware Z-bu ffer support. Consequently, there has
been a strong temptation ro expose Z-buffer capa
bi l i t ies to c l ients. This temptation has been resisted ,
mostly on the grounds that exposing such capabil
ities wou ld lead to a great many device-dependent
applications. However, as proposals for including
double-buffering support in X are firmed up, i t may
be advantageous to incorporate addi t ional Z-buffer
semantics and capabil i t ies, such as defi ning init ial Z
values and reading them back.

62

Conclusion

P E X is an extension to the X Window System that
bas been designed ro provide the capabil i t ies of
P H IGS and other three-dimensional graphics stan
dards i n the X environment. We consider the origi
nal design goals of PEX to have been wel l met. With
PF.X, it is possible to create windows on the display
that function exactly as independent, three-dimen
sional workstations. A single workstation device
supporting PEX can maintain several virtual three
d imensional workstations on its screen simu lta
neously, and resources can be shared among these
v irtual workstations to reduce overall server load.
PEX can be implemented, with varying levels of per
formance, on a wide range of raster graphics work
stations. Cl ient applications com municate with the
PEX server extension through a network connec
tion, which makes the fact that a network separates
the client and server CPUs transparent to the end
user. This network transparency provides the possi
bil ity of true applications portabi l i ty within the
X environment. Application code need not be
rewritlen, recompi led, or even rel inked ro take
advantage of a new workstation that supports X
and PEX .

The length of time between in itial proposal and
publ ic acceptance (si x months) is unprecedented i n
the computer graphics i ndustry. With a public
implementation effort in progress, it is antic ipated
that PEX wil l become widely ava i lable, thus giving
users windowing support and three-dimensional
graphics capabi l ity in a well- integrated, industry
standard environment for the first time.

Acknowledgments
The authors gratefu l ly acknowledge the people
who have contributed ro the design and develop
ment of PEX. ln addition to the authors , the mem
bers of the PEX architecture team who were
responsible for revising and fi nalizing the PEX
specification after it was originally subm itted to the
public forum were Jeffrey S. Saltz and John
McConnell (D igital), Marty Hess and Jim Van Loo
(Sun M icrosystems , Inc.) , Dave Gorgen and Tom
Gross (Apollo Computer Inc.), and Jeff Stevenson
(Hew lett-Packard Company). Bertram Herzog of
the University of M ich igan is the chairman of the
X 3D committee and was responsible for seeing that
the public process was carried out in a timely
fash ion . Special thanks go to Robert W. Scheifler,
director of the X Consortium, for his invaluable
review and suggestions t hroughout the PEX effort .

Vol. 2 No. 3 Summer 1')90 Digital Technical journal

PEX: A Network-transparent Three-dimensional Graphics System

Finally, we acknowledge Jeff Lane, director of
graphics software development for workstations at
Digita l , whose advice, criticism, support, and
unbounded enthusiasm always seemed to come at
the right t ime.

References

1 . R . Scheitler and) . Gettys, "The X Window
.S),stem, " A CM Transactions on Graphics, vol .
S, no . 2 (Apri l 1986): 79- 109

2. R. Rost , PEX Introduction and Overview
(Cambridge: MIT X Consortium, May l , 1988).

:). R. Rost , ed . , PEX Protocol Specification
(Cambridge: M IT X Consortium, April 2 ,
1990).

4 . S. Barry, ed . , PEX Protocol Encoding Docu
ment (Cambridge: MIT X Consortium, April 2 ,
1990).

'; . Programmer's Hierarchical Interactive
Graphics !'J�)Istem (J>HIG'�) (International
S tandards Organizat ion. Draft Standard ISO

dp9592 1 : 1987(E), October 1987) .

6. Graphical Kernel System for Three Dimen
sions (GKS-3D) (Int ernational Standards
Organizat ion, ISO/DIS 8HO';, Apri l l9H7).

Digital Technical journal Vol. 1 No. 3 Sllllllller 1990

7 . " PH IGS+ Functional Description Revision 3 .0,"
Computer Graphics, vol 22, no. 3 (July,
1988): 1 25 - 2 1 8 .

8 . W. Clifford, Jr. e t al . , "The Development of
PEX , a Three-dimensional Graphics Extension
to X I I ," £urographies '88 Proceedings (Nice,
France, September 1988).

9. R. Scheitler, X Window System Protocol,
Version ll (Cambridge : M IT Laboratory for
Computer Science, February 27, 1988).

10. J . Gettys et a l . , Xlib - C Language X Interface,
Protocol Version 11 (Cambridge: MIT Project
Athena, February 27, 1988).

1 1 . j . McCormack et al . , X Toolkit lntrinsics - C
Language X lnte1jace, X version I I , release 2
(Cambridge: MIT Project Athena, February 27,
1988).

12 . R. Swick and T. Weissman, X Toolkit
Widgets - C Language X Interface, X version
I I , re lease 2 (Cambridge: M IT Project Athena,
February 27, 1988).

13. J Friedberg et al . , t'xtending X for Double
Buffering, Multibuffering, and Stereo, version
3 . 3 (Cambridge: M IT X Consortium, January

1 1 , 1990).

63

Christopher A. Kent I

XDPS: A Display
PostScript System
Extension for DEC windows

XDPS extends the Display PostScript �)'Stem into the DECwindows environment.
The extension integrates the capabilities of both the X irn£tging model within
DEC windows and the PostScript language for scree-n display- Display PostScnpt.
Designe-rs resolued differences between X and PostScript �ystems in orde-r to add
a complete PostScript inte1preter to the DECwindows server and a protocol that
defines application access. Most significant among the diffe-rences encounte-red was
each :;ystem s approach to graphical attributes, coordinate systems, color strategies,

and communications models. In their implementation of the extension protocol

and merge-r of the- two graphics systems, the designers ' ouerall goal was to provide
applications programmers the best features of each system without imposing

constraints on their use.

The Displ:ty PostScript System is Adobe Systems
Incorporated 's implementation of the PostScript
language for workstations. The subject of this
paper, XDPS. is an extension to the X protocol
that brings the Display PostScript system to the
DEC:windows program . (The DEC:windows pro
gram is D igital 's implementation of the X Window
System.) The extension is the result of a joint effort
by Digital and Adobe.

X DPS makes ava ilable the fu ll capabi l it ies of the
PostScript language and adapts these capabi l ities
for screen d isplay, as opposed to printed pages. Fur
ther, XDPS fully integrates the PostScript imaging
model with the basic X imaging model . Applica
tions can freely mix standard X graphics requests
with X DPS requests. Thus the application pro
grJmmer can use either X graphics commands or
PostScript programs as appropriate.

XDPS is designed to be complementary to X. It
provides new capabilit ies that are missing from the
basic X imaging model . With X DPS, applicat ions
can show text with arbitrarily rotated and scaled
fonts, ignore resolution and color model differ
ences, manipulate the coordinate system to be the
most convenient one, and deal more easily w ith
complex curves and shapes. Applications have
access to the entire Adobe font library. Application
writers can use PostScript for all graphics and be
assured that what is seen on the screen is exJctly

64

what w il l be seen when the same graphics are
printed on a PostScript printer.

This paper discusses the design decisions made in
the development of XDPS and describes the major
features of the final extension. An overview of the
Display PostScript System's features is presented
as a preface to the main d iscussion . (All instances
of the name PostScript in this paper arc rc..:ferences
to the PostScript language as defined by Adobe
Systems Incorporated, unless otherwise stated .)

Features of the Display PostScript
System
PostScript is the de facto industry standard page
description language. Unlike most of its predeces
sors, a PostScript fi le does not describe a set of bits
on a page. Rather, it is a program that is interpreted
in the printer. The effect of this i nterpretation is
thJt some bits get "painted" on the page. In this
mJnner, the interpreter, rather than the program,
can handle details concerning the device, such as
output resolution, spot size, and color mode l . The
same program can be used to describe a page on a
:)00 dpi (dot per i nch) bitonal printer and a 1200 dpi
full-color film recorder. Each device's interpreter
can be tuned to make the output look as good as
possible.

The basic concept of the PostScript imaging
model is called "stencil and paint . " The program-

Vol. 2 No. j Summer 1')')0 Digital Tecbnlcaljounwl

XDPS: A Display PostScript System Extension for DEC windows

mer constructs an arbitrarily complex stencil
(known as a path) and then squeezes paint through
it . Paint can be a single color, a pattern, or a scanned
image. It is the interpreter's job to decide exactly
which bits get painted. The progranuner can con
centrate on describing the desired image, rather
than on the details of the device.

The Display PostScript System (DPS) is an imple
mentation of PostScript for workstation displays.
It retains a l l the features of the PostScript language,
but serves an environment quite different from
that of printers. Screen displays require interactive
manipulation of graphics, freq uent redisplays, com
plicated clipping and repaint ing to acconunodate
overlapping, movable and resizable windows, and
simultaneous display of complex images in multiple
windows.

The Display PostScript System adds a number of
features to the PostScript language l .2

. . > The major
new features are as follows:

• Mu ltiple execution contexts. A context can be
thought of as a v irtual printer, or a separate pro

cess. A context is an instance of the interpreter
with its own input stream and output device.
Several contexts can share the same output
device. In its most simple usage, several appli
cations can simultaneously draw to the work
station display. In a more complicated usage,
several contexts can draw to the same window,
and each context is responsible for managing a
portion of the window's appearance.

• Multiprocessing support. Given multiple con
texts, application programmers need mecha
nisms to control them. DPS provides a range
of mechanisms, including fork, join, detach,
and monitor.

• Shared program memory (YM). Shared YM is

an implementation of shared memory for the
multiple contexts. One context can define a
variable, procedure, or resource (such as a font)
in shared YM and al low it to be used by other
contexts in the system .

• Garbage collection. In the D isplay PostScript
System , programs are long lived in comparison
to the duration of PostScript print jobs. Conse
quently, the system requ ires more dynamic
memory management . DPS provides a garbage
collector that runs automatically and can be
activated at any time by programs.

• Graphics state objects. The Display PostScript
System adds the abi l ity to encapsulate the

Digital Technical journal Vol. 2 No. 3 Summer 1990

PostScript graphics state i n an object. With this
mechanism, appl ication p rograms can switch
between several graphics states with a single
conunand, rather than rebuilding the graphics
state every time it is needed or using the standard
graphics state stack mechanism.

• Screen fonts. PostScript allows the user to paint
text with fonts at any size or orientation. Fonts
are described in terms of outlines, and the inter
preter scan converts these outlines into rasters of
the appropriate size and orientation. At large
point sizes and printer resolutions, this tech
nique works very wel l . At smaller poim sizes
on low-resolution devices, the output is not as
clearly defined as one would like. To enhance the
readability of the resu lting text in such cases, the
Display PostScript System provides a mechanism
to use tuned bitmaps for characters at certain
sizes and orientations instead of the output of the
scan converter.

• Optimized rendering operators. Many of the
operations in window system applications
involve operations on rectangles. The Display
PostScript System provides optimized versions
of several operators (such as fil l and stroke)
that execute more quickly on rectangles than on
general paths.

• User paths. DPS prov ides a mechanism for the
user to cache paths that are to be used more than
once, and several operators for working with

these user paths.

Relationship of the Display PostScript

System and DECwindows

The Display PostScript System, described above, is
not a window system. Instead, i t is a component
that can be i ntegrated into any window system.
Vendors that license the Display PostScript System
from Adobe Systems must decide how best to inte
grate it into their window system offerings. Our
decision was to use the X protocol extension mech
anism to add the PostScript imaging model to the
DEC wi ndows server:'

X applications (also known as clients) conunun
icate w ith the server by sending a stream of asyn
chronous requests and receiving back a stream of
results and events. The core set of requests covers
all facets of window manipulation (geometry, loca

tion , visibility) and provides a simple, pixel-based
graphical model.5

Extensions add to the requests in the protocol,
and therefore add to the functionality available to

65

DECwindows Program

applications. XDPS adds a complete PostScript
interpreter to the DECwindows server, and the
extension's protocol defines how appli cations can
access and control the interpreter's operation.

In particular, applications can send PostScript
programs to the server and have the output appear
in a wi ndow or a pixmap. Core X requests and D PS
painting requests can be intermixed in the same
communications stream. Our task was to define the
semantics of the extension to the protocol to
provide the best interplay between the two sets of
requests.

X and PostScript have some sim i larities and dif

ferences that we had to consider when designing
the protocol. Table I compares characteristics of
X and PostScript.

The most sign ificant difference between the two
models is that PostScript is a programming language
that produces graphical output as a side effect of

interpreta tion , whereas X is a window system pro
tocol with explicit graphics requests. In PostScript,
applications can define procedu res to be invoked
later and can declare variables that have persistent
values. When invoked, these procedures can take
an arbitrary amount of time to execute. In X , all
graphics operations are immediate, and there is
very l ittle persistent state.

Further, X has an input model, as well as a

graphical output model. Applications may elect to
be notified when certain input events occur or may
prescribe actions that the server should take on their
behalf (such as changing cursor shape on window
boundary crossings). The Display PostScript System
was nor designed to handle input. In designing

the extension, we had to decide i f i t was important
to expose the input processing to the PostScript
programs running in the server.

PostScript allows users access to the file system
for purposes of fi le storage and retrieval, whereas
the X protocol al lows no such access. We had to
decide how to trade off the convenience that file
access provides with fi le security.

X is pixel based; in PostScript, the user can define
the coordinate system that is most convenient. The
interpreter then translates to the device. In X , the
upper left corner of a drawable is always the origin
of its coord inate system. In PostScript, the user can

define the origin to be anywhere. As described fur
ther in the Coord inate Systems section, our task was
to determine how the two coordinate systems
would interact, which of the models are application
programs most likely to be used, and which model
is the least restrictive.

66

Ta ble 1 The PostSc ript and X Models

PostScript

Program ming language
with graphics as a s ide
effect

Page description
language

Disp lay output only

User access to f i le
system

Resolut ion independent,
user-defined coord i nate
system

Coord inate transforms

Fonts are scalable

Abstract, "true" color
model

Arbitrary execution t imes

X

Wi ndow system with
explicit graphics
requests

Wi ndowing interface to
bitmap graphics device

Display output and
input devices

No exp l ic i t access to
f i le system

Resolut ion-dependent,
p ixel-based system

No coord inate
transforms

Fonts are d iscrete

Many device-specif ic
color models

Discrete, f ixed-length
requests

PostScript is based on a true color model: it
always attempts to give the user the best color the
device can provide, using halftone approximations
(dithering) if necessary6 X makes no decisions
about colors and gives little help about colormap

and color strategies. Instea d , X exposes the display
hardware's color model and forces the application
to handle the details of rendering colors across dif
ferent display hardware. On most disp lays , cells i n
the colormap are a scarce resource. The X D P S team
therefore had to determine how to provide good
color rendition for PostScript programs while not
restricting the operation of other applications. Does
this mean that the PostScript interpreter needs to
preal locate a colormap for its own use' How can
the XDPS extension coexist with non-XDPS pro
grams that want to allocate many colors or use the
plane mask? A discussion of our solution is given
below in the section Color.

Finally, X has discrete requests of fL'<ed length .
AU the requests are atomic, and synchronization has
an exact meaning. The PostScript interpreter com
municates data to the application by means of a
readable/writable continuous stream of characters.

Figure 1 shows an example PostScript la nguage
procedure. When invoked , it reads 10 l ines (termi
nated by newlines) from the standard input stream
currentfile and prints them up the page (initiated by
show). All the text is painted red (initiated by 1 0 0

setrgbcolor in the example). A n application defines
this procedure, and the PostScript interpreter stores

Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

XDPS: A Display PostScript System Extension for DEC windows

/ p r i n t 1 0 L i ne s O f Tex t { % d e f

l y 1 0 de f

1 0 0 s e t r g b c o l o r

1 1 1 0 { % f o r

d e f

c u r r en t f i l e s t r r e a d l i n e

l y y 1 0 a d d d e f

1 0 e x c h mo v e t o

p o p sh ow
f o r

Figure I A Simple PostScript Program

it . Later, the user can invoke the procedure and send

the 10 l ines of text . The server cannot determine, by

simply examining the input stream, how long the

l ines of text are, because it does nor parse the

incoming PostScript language stream. Contrast this

procedure with the X protocol mechanism for the

same task. Each l i ne is displayed by sending an

expl icit PolyText request . The length of each l ine is

encoded in the request . The color for each line is

stored i n the X graphics context that is passed w i th

each PolyText request . Again, the X DPS team had to

decide what mechanisms were needed to synchro

nize the applications and t he server. Also, how

wou ld we ensure fair sched ul ing of all appl icat ions'

These communications models are quite different.

How can an application sy nchronize the X and

PostScript streams'

Implementation
Figure 2 i l l ustrates the i ntegration of the Display

PostScript System into the DECwindows environ

ment. The portions labeled in i tal ics are the com

ponents that we added.

In the following sections, we discuss how the

design questions outl ined above were resol ved

in the X OPS system . We begin with the Graphics

Attributes section to address the most significant

point of di fference between X and PostScript.

Graphics Attributes
One goal of the X DPS project was to integrate

PostScript with the core protocol and preserve the

principa l X tenet: offer mechanism but do nOt

impose policy. We wanted applications to be able to

render into a drawable (a window or a pi.xmap)

with both X graphics requests and PostScript pro

grams. What ramifications would this place on the

protocol' For example, should every XDPS request

Digital Tecbnicaljournal Vol 2 No. J Summer 1990

require an explicit drawable and graphics context'

First with reference to the X att ributes, recall

that we did not want to enforce policy, but rather

give the applicat ion the tools needed to do the job

without constraints on how the tools are used. For

example, an application should be able to draw

rotated text using DPS and also draw l ines using

X requests.

PostScript has a graphics state that defines t he

coordinate system , current drawing color, pos ition,

pat h , cl ipping path, font , l ine style, halftone screen,

and transfer function . X also has a graphics context

(known as the GC). We looked at those attributes of

the X GC t hat are not dupl icated by the PostScript

graphics state. Every th ing was covered except the

attributes controlling the cl ipping area in a w i ndow

(the cl ient cl ip) and the p lane mas k . We t herefore

decided to stat ically associate a GC with each

PostScript context . When imaging PostScript

graphics, the extension uses only t he fol lowing

X att ributes .

• Clip mask

• Clip x origin

• Clip y origin

• Subwindow mode

• Plane mask

APPLICATION

XUI TOOLKIT I I DPSL/8

I XT (INTRINS ICS)

X LIB XDPSL/8

�
X SERVER

DPS KERNEL OS
ADAPTER

DEVICE-DEPENDENT DPS

DEVICE

Figure 2 The Extension and the Display

PostScript System

OS

67

DECwindows Program

Every thing else comes from the PostScript
graphics state. This approach al lows the application
to use the same GC for X or PostScript graphics. The
X requests use all the arrribures, e.g . , foreground
and background colors , l i ne style, and join style.

Coordinate Systems

The PostScript language, unlike X , a l lows an appli
cation to specify the drawing origin of the window.
When a PostScr ipt conte x t is c rea ted in X IWS,

the application specifies the origin relative to
the X coordinate system in the window. If the win
dow's size is changed, should the extension move
the PostScript origi n , and if so, where?

We decided that it was most important to keep
the origin in the same position relative to any
graphics that the PostScript context has already
displayed. G raphics created at a later time wil l then
line up with any existing graphics. X provides a
mechanism called bit grav ity for this operation .
We were able to exploit hit gravity without any
exp licit work by the extension .

F igure 3 shows the effect of resizing a window
with north west and sourhwest window gravity.
For example, in the first picture in the upper left,
there is a w indow with t he PostScript contex t 's
user coord inate origin at the lower left corner. The
w indow is resized to be taller and thinner. S ince
the window has northwest gravity (the default
X origin is northwest), the graphics that a lread y
appear in the w indow stay in the same position
relative to the upper left corner of the window. The
user coord inate origin stays in the same position
relative to the upper left corner. In this way, the
graphics stay in the same position relative to the
user coord inate origin .

The second example shows southwest gravity
set . In this case, the user coordinate origin stays in
t he lower left corner, and the graphic moves lower
in the window so that it remains t he same distance
from the bottom edge. Aga i n , the graphic retains
the same position relative to the context 's origin .

Since PostScript programs usual ly keep the origin
at the lower left corner of the drawing space, most
users of XDPS wil l want to set up their windows to
use southwest bit gravity. Note t hat the extension
does not force this origin. Also, the user's PostScript
transformation matrix is not cha nged in any way on
resize; the resize is seen as a change in cl ip, nor a
scaling operation .

Color
Our primary decisions relative to color were
w hether the application or the extension would

68

NORTHWEST GRAVITY

ABC -

ABC

I
11
: � POSTSCRIPT ORIGIN_/ :

- -

SOUTHWEST GRAVITY

ABC -

ABC

: � POSTSCRIPT ORIGIN ----.....__ I

�J. - g:l =-----'
I

Figure 3 Bit Grauity

a l locate color cells, and w hat the a llocation policy
would be. The Display PostScript System tries to
paint with the "best " color avai lable, using a true
color model . I t chooses colors from a smoot h ly
shaded cube of RGB colors, or ramp of gray sh:�dcs,
stored in a colormap. When possible, XDPS matches
actual RGB values if they are already associated with
a pixel in t he colormap. l f an exact match is not
available, X DPS dithers to approximate t he color.

The default colormap is a scarce resource and
must be shared by multiple applications and
w i ndows. We had to decide how to manage the
color cells used by the extension . To get h igh color
fidel i ty, we could use many cells. But if the exten
sion fi lls in most or all of the default colormap with
its ramp and cube, the other, non-PostScript appli
cations are not able to al locate from the default
map. These applications have to allocate our
of private colormaps. On displays with only one
colormap, the screen become techn icolor while
applications switch between different colormaps.

On the other hand, some PostScript applications
use only a few colors. F i ll ing in the map to get those
colors exactly right wi thout dithering might be
wastefu l .

Our solution i s t o use the standard colormap
mechanism described in the X l ib manual ." The
i ntention of the standard colormap mechanism is to
provide a shared, fi lled-in color cube for appli
cations that want to use the true color model.

Vol. 2 No. 3 Summer 1')90 Digital Tecbn lcaljournal

XDPS: A Display PostScript System Extension for DEC windows

Sharing is the key ; multiple applicat ions use the
same colormap entries to avoid turning t he screen
technicolor. The cells in the map are allocated and
ftl led in with the cube; then a property is placed on
the root w indow that describes the color cube and
to which map it corresponds. X DPS applications
pass this i nformation to the extension when a con
text is created . They can use the standard map
or create their own, and any v isual can be used .
By default , on an eight-plane display, the exten
sion cl ient library uses a standard colormap of 64
colors: four colors along each of the red , green, and
blue axes.

An X DPS application might know that i t only uses
a few colors and does not want dithering. When it
draws in orange, for instance, i t wants the exact
RGB values and not a halftone approximation . In
this case, the application can ask the extension to
allocate the colors when needed . When creating a
context , the application specifies a color cube
(which can be two entries - black and white) and
indicates that the extension should try to a l locate
colormap cells with the actual RGB values and not
dither. If the extension tries to allocate a cell and the
colormap is ful l , the extension falls back and uses
the supplied color cube tO dither.

Communication and Synchronization
As noted earlier, we had to determine how the
extension protocol would provide synchronization
between cl ients and the server. Also, we had to
ensure fair schedul ing of all clients , whether or nOt
they use XDPS. This section discusses how we
layered PostScript's stream-based communication
model on top of the X request/reply/event model ,
and how the extension protocol resolves these two
problems.

The PostScript communication model is a contin
uous stream of bytes. PostScript programs not only
read but a lso w rite a stream to the user. A program
can write data back. The program

SharedFon t D i r e c t o r y
{ pop dup = = f i n d f on t beg i n Un i que ! D = = end }
f o r a ! !

prints to the standard output stream the name and
unique identifier (!D) for all fonts known to the
PostScript interpreter. In contrast, X replies have a
well-known length .

The extension layers the PostScript standard out
put stream on top of X events. These events are 32

bytes long, with the first 5 bytes taken up with
overhead information which al lows events to be
dispatched by a toolki t . The cl ient l ibrary merges

Digital Tecbnicaljournal Vol. 2 Nn. 3 Summer 1990

these events into the event stream that an X DPS
program expects.

Following is a summary of the available protocol
requests:

• Initial ize (indicate floating point format)

• Create a context (and specify color cube and
ramp)

• Give input (ASCI I or binary)

• Get status of a context

- Running or needs input

- Not ify when next state change occurs

• Destroy or interrupt a context

• Reset a context

At initial ization, the server tells the application
which floating point representation it prefers, such
as the I EEE or the VAX format, and the expected byte
ordering. (All servers must support I EEE.)

Context creation requires a drawable, a <iC (for
the c l i en t c l i p and p lane mask) , and t h e co lor
cube and gray ramp required for rendering colors.
These requests start another thread of execution in
the server and associate the new context with the
specified drawable.

Givelnput, the main request, prov ides data to the
standard input stream of the PostScript interpreter.

GetStatus and Destroy are nonsynchronous, out
of-band requests used to control contexts.

ResetContext al lows the application to handle
PostScript language exceptions and return the
interpreter to a known state.

G iven the two different communication models
for PostScript and X, what does it mean to synchro
nize the PostScript stream and the X request
stream' The Xlib routine XSync() is a handy tOol
for debugging programs, and has a well-known
meaning. We wanted to provide the same sort of
capabil ity for the PostScript stream.

Suppose the application sends the set of requests
shown in Figure 4 . First, the client creates a
context , then maps two windows. Next, an XOPS
request defines the PostScr ipt p rocedu re
printlOLinesOfText (see Figure 1), which reads
10 newline-terminated strings from the standard
input stream and prints them up the page. These
strings are only the definition , so the interpreter just
saves them and does not execute anything. The
next request is XSync. Since the PostScript inter
preter is not active, the X request buffer in the
server is empty, and both streams are synchronized .

69

DECwindows Program

P1

X2

X3

P4
X5

P6
X?

Create PS context

MapWindow

MapWindow

Givelnput (define print1 OLinesOfText)

X Sync

invoke print1 OLinesOfText

X Sync

Figure 4 Synchronizing X and PostScript
Request Streams

At P6, the application invokes printiOLinesOffext .
The G ivelnput requests that fol low are interpreted
as strings to be printed. If the next request is xsync ,
it is not considered a string because it is not an
extension request . XSync has a different meaning to
the application at th is point . The X request buffer is
empty; the PostScript interpreter neit her has input
to process nor is i t in a "done" state.

Requests must continue to be processed for this
application in order for the strings to be displayed .
Further, XDPS and X requests must be allowed to be
intermingled .

We defined the " done" state to mean that the
interpreter has been given input bm has not neces
sarily executed it or finished a loop. In this state, the
two streams must be synchronized separately
with different requests. In practice, this synchro
nization is not difficult . I t a l lows the application
to send X requests that monitor and control
(destroy, reset, interrupt) a context using only
one connection. We did not want to require an
application to start a new connection to control
the context, because this would require too much
communication overhead .

The GetStatus request is used to determine the
state of the interpreter. DPSWaitContext() , a cl ient
routine, waits for the interpreter to finish execution
and return a value. The application then knows that
the interpreter is completely finished processing
a l l inpuL

Custom X Operators

We added several operators to the language that the
PostScript interpreter understands. These operators
supply the functionality that applications need .

• c lientsync - The cl ientsync operator causes the
current context to pause and sends an event
to the application program. The context stays

70

frozen until the application sends a request to
resume the context . This operator complements
DPSWaitContext() in that it a l lows the PostScript
program executing in the server to wait for the
application program.

• setXgcdrawable, currentXgcdrawable - Appl ica
tions may wish to switch the output of a single
XDPS context among several drawah les, or
change the G C . These operatOrs a l low PostScript
programs to set the GC and drawable associated
with a context and to query the current values.

• setXgcdrawablecolor, currentXgcdrawablecolor
- These operators are extended versions of
setXgcdrawable and currentXgcdrawable,
respect ively. They additional l y address color
rendering parameters in use by the current
context .

• setXoffset, currentXoffset - The origin o f a con
text 's device coordinate system is movable.
These operators al low the current origin to be
set or queried.

• setXrgbactual - The setXrgbactual operator tries

to al locate a new colormap entry that stores
the specified color. This allows applications
that need precise control over colors (that is ,
they never want to dither) to a lways a l locate
" exact" colors.

Scheduling

A user can define a PostScript program of arbitrary
length, that is, long in length or long in running
time. X requests, on the other hand , are more
predictable. The server schedules X requests only if
all the data is available (i .e . , there is a length field at
the beginning of each packet), and the server knows
that a cl ient has to be scheduled only when input is
available. As a resul t , X requests are always com
pleted before returning to the scheduler.

The PostScript interpreter in a context is never
really done, which conflicted with our goal to make
the scheduling fair . So each context is al lowed to
run for 50 operators, and then returns to the sched
u ler. In addition , there is a mechanism that forces
the interpreter to y ield if t here is any user input .
As a result , a cl ient using the extension might be
rescheduled even when there are no requests in t he
request buffer.

Therefore, we added y ield ing to the server sched
u ler, as well as the abil ity to schedule an extension
application when there is no input pending. The
Givelnput extension request yields when conven-

Vol. 2 No. J Summer 1990 Digital Tecbnicaljournal

XDPS: A Display PostScript System l:.xtensionjor DECwindows

it:nt (as described above); X requests y ield when
completed , j ust as before.

File System Access

The PostScript language defines file system opera
tors, but al lows each device lO define access restric
tions. In devices without file systems, for example,
t he LaserWriter and t he LPS40, these file syst"em
operators do not work.

The X protocol does not provide for explicit
access to the file system of the machi ne on which
the server is running. Access is not al lowed both
because the applicat ion's file system m ight reside
on another machine and because the server might
be running with higher access permissions than
the appl ication .

We felt that completely disallowing access was
too restrictive. A balance between open access and
no access was needed. We al lowed access to
restricted directories, based on the file name. This
approach kts PostScript programs share irnage
data, libraries of procedures, or user-defined fonts,
but does not a l low arbitrary access. There are
two directories: % tempd ir% and %pe::rmdir%.
'% tempdir% is emptied every time:: the server is
reset (when the user logs out or the:: machine is
re::booted), but %pe::rmdir% persists.

The Application Programmer

Perspective

For the app lication programmer, XDPS supplies a
l ibrary laye::red on top of the protocol . The library
provides mec hanisms for creating, destroying, and
manipu lating contexts. The:: l ibrary is re::sponsible
for folding extension events into the normal X
event stream.

I n addition, a ut i l i ty, pswrap, al lows program
mers to define C i nterfaces to arbitrary PostScript
la nguage routines. Such an in terface is cal led a
wrap. We also provide wraps for al l the PostScript
operators.

Figure 5 is a simple example of a working applica
tion using XOI'S. The applicat ion opens the display,
creates a window, creates a PostScript context ,
associates the context w i t h the wi ndow, executes
Pos tScript code in the contex t , and manipulates
the result ing ourpul.

(Note Figure 5 is a complete working program,
not a pseudo-code example. As such , some derails
are important to its execution but not to the discus
sion at hand . Also, the program is an example of
several bad progranuning practices: i t ignores possi-

Digital Tecbnicaljou•·nal Vi>l. l No. 3 Sll/11111er 1990

ble errors and is not event driven. Again, these
detai ls are not relevant to this discussion and are
therefore ignored .)

This program builds a s imple animat ion . I t
creates 3 6 frames, each o f which contains the string
" D isplay PostScript" in a differen t s ize, orien tation,
and color. Each of these frames is rendered with
PostScript operators and saved in a n X pixmap.
After all the rendering is complete, the program
loops through the 36 frames and copies them to the
screen without any delay between frames.

The program begins by opening the display, cre
ati ng a simple window, and causing t he:: window to
appear on the screen. The program then creates a
DPS context; it does not associate the ou tput with
any drawable. Then the program begins the loop to
create frames.

Each time through the loop, the program creates
a p ixmap and attaches the ou tput of the context
to the pixmap, with the user coordinate system
origin at the center of the pixmap. The program
then chooses and scales the Helvetica-bold font ,
clears the pixmap to white, sets the drawing color,
and paints the text . Finally, when all the frames
have been created , the program goes into a t ight
display loop.

The performance of this example program is
not greatly improved by t he combination of
X Copy Area() and PostScript wraps. The same effect
could have been ach ieved by writing a s imple
PostScript program and downloading it into the
server. A PostScript program can draw text in XDPS
relatively quickly. Most notable here is that t he loop
that created the frames cou ld have executed any
PostScript program - even one read from a file. The
final rate of display would be the same no matter
which PostScript program were used; only the
delay between program execution and the display
of the first frame ·vou ld vary. A programmer work
ing only with X cou ld not draw rotated text ; and a
programmer using OPS cou ld not write fl ip-book
style animation. The extension combine::s these
capabi l i t ies so the be-. features of each system can
be used .

Summary
It has been said that X is a w i ndow system, not
a grap hics syste::m . The XDPS extension for the
DEC windows program provides applications wit h a
rich graphical model that can be freely intermixed
with the core protocol . XDPS provides all the mech
anisms avai lable in the Display PostScript System,
without imposing constraint s on their use.

7 1

DEC windows Program

i n c l ud e <X 1 1 I X 1 i b . h >

i n c l ud e <DPS i dp s X c l i e n t . h>

i n c l ude <s t d i o .

d e f i n e S I Z E

d e f i n e S T E P

d e f i n e N S T E P

ma i n (a r g c , a rg v l

c h a r • • a r gv ;

D i sp l a y

W i n d ow

D P SC o n t e x t

h>

4 0 0

1 0

360 1 S T E P

* d p y ;

w ;

c t x ;

I * h a d b e t t e r d i v i d e 360 even J y l * I

P i xmap maps f N S T E P l , * pMap ,

i n t i j
GC g c ;

d p y X O p e n D i sp l ay (" " l ;

w ; X C r e a t e S i mp l eW i n d o w (dpy , R o o t W i n d ow (d p y , O l , 0 , 0 , S I Z E , S I Z E ,

1 , B l a c k P i x e l (d py , O l , Wh i t eP i x e l (d py , O l l ;

X MapW i n d o w (d p y , w l ;

g c ; De f a u l tG C (dp y , O l ;

X S e t G r a ph i c s E x p o s u r e s (dp y , g c , F a l s e) ;

c t x ; X D PS C r e a t e S i m p l e C o n t e x t C d py , N U L L , N U L L , 0 , 0 ,

D P S S e t C o n t e x t C c t x l ;

f o r (i ; 0 ; i < N S T E P ; i • + l {

pMap ; & m a p s [i l ;

NULL , DPSDe f a u l t E r r o r P r o c , N U L L) ;

* pMap ; X C r e a t e P i x m ap C d py , w , S I Z E , S I Z E , X D e f a u l t De p t h (d py , O l l

P S s e t X g c d r awab l e < X G C o n t e x t F r omGC < g c l , * pMap , S I Z E / 2 , S I Z E / 2) ;

P S s e l e c t f o n t (" H e l ve t i ca - Bo l d " , 1 2 . 0 + (i • 0 . 5)) ;

P S e r a s e p ag e < l ,

P S s e t r g b c o l o r (1 . 0 - i * S T E P 1 3 60 . 0 , 0 . , i ' S T E P 1 360 . 0 l ;

P S r o t a t e ((f l oa t l S T E P • i l ;

PSmove t o (O . O , O . O l ;

P S s ho w (" D i s p l a y Po s t S c r i p t ") ;

DPSWa i t C o n t e x t (c t x l ;

f o r (i ; 0 ; ;) {

X C o p yA r e a (d py , map s f i l , w , g c , 0 , 0 , S I Z E , S I Z E , 0 , O J ;

i + .. j
i 7. : N S TE P ;

X F l u s h C d py l ;

Figure 5 A Simple Program Using Core Graphics Requests

72 Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljounlal

XDPS: A Display PostScript System Extension for DECwindows

Acknowledgments

X DPS is t he result of work by many people. The
original protocol definition is the work of Susan
Angebranndt, Phil Karlton, and Terry Weissman of
Digital, and Ramin Behtash, lvor Durham, and J im
Sandman of Adobe. Perry Caro and joe Pasqua of
Adobe have done further work w ith Burns Fisher,
Terry Weissman, and the author to nail down the
final protocol . All of us at Digital have had a hand in
the implementation . Erik Fortune added t he font
support we needed to the server.

References

1 . Adobe Systems Inc . , PostScript Language
Reference Manual (Reading: Addison-Wesley
Publishing Company, Inc . , 1985).

2. PostScript Language Extensions for the Display
PostScrzpt System (Mountain View, CA: Adobe
Systems, Inc . , 1988, 1989).

3. PostScript Language Color Extensions

(Mountain View, CA : Adobe Systems, Inc . ,
1988, 1989).

4 . B. Fisher, Xll Server Extensions Engineering
Specification XJJ R3 edition (Cambridge:

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

Massachusetts Institute of Technology, 1987).

5. R. Scheitler,). Gettys, and R. Newman,
X Window System C Library and Protocn/
Reference (Bedford : Digital Press, 1988).

6. R. Ulichney, Digital Ha(ftoning (Cambridge:
The MIT Press, 1987).

General References

The Display PostScript System: Perspective for
Software Developers (Mountain View, CA : Adobe
Systems, I nc . , 1988).

p�;wrap Reference Manual (Mountain View, CA :

Adobe Systems, Inc . , 1988) .

Client Library Reference Manual (Mountain View,
CA : Adobe Systems, I nc . , 1988, 1989).

X Window System Programmer's Supplement to
the Client Library Reference Manual (Mountain
View, CA : Adobe Systems, Inc . , 1990).

ULTRIX Worksystem Software Guide to Developing
Applications for the Display PostScript System,
UWS2. 2 edition (Maynard : Digital Equipment
Corporation , 1989).

73

Michael R. Ryan I james H. VanGilder

The Development of
DECwindows VMS Mail

In the DECwindows program, the windowing interface to the VMS mail utility

demonstrates the power of window-based user interfaces. Users can access mail from

either character-cell terminals or workstations, exchange mail between all Digital

systems, and exchange compound documents. DECwindows VMS mail also supports

a common user interface with its counterpart on the ULTRIX system. 1be develop

ment of DECwindows VMS mail illustrates many of the issues faced in developing

DECwindows applications of moderate size. Further, the development exemplifies

the more general probleJns encountered by developers who must integrate applica

tions with components which are themselves in initial development stages.

Project Start-up

When Digital began the DECwindows engineering
effort, a number of applications were identified as
being crit ical to irs success. One of these applica
tions was electronic mail , w hich is one of the most
widely used system uti l i t ies. A windowing interface
to an electronic mail application would he very
beneficial to the DECwindows program because it
would help demonstrate the power of window
based user interfaces.

The Business and Office Systems Engineering
(BOSE) Group, in conjunction with the Telecom
munications and Networks (TaN) Group, was
responsible for Digital 's corporate mail stra tegy.
Therefore, BOSE was assigned responsibil ity to
deliver the DECwindows mail i nterface. The engi
neering team within BOS E that produced the inter
face is called the Electronic Mail Engineering (EME)
Group .

EME began the project by evaluating three exist
ing Digita l mail technologies : the A LL-I N - I mail
component, the PC ALL- I N - 1 mail component ,
and the VMS mail util ity. After careful ly studying
each technology for potential adaptabi lity to rhe
DECwindows system, the group opted to produce
an interface that was compatible with the VMS mail
uti l ity for several reasons. First , the interface cou ld
be developed in a relatively short time frame.
Second, VMS mail is the most w idely used mail
system on VMS systems and the only mail system
bundled with the VMS operating system. Therefore,
a DECwindows interface to VMS mail would receive
the most exposure and wou ld not require addi-

74

tiona! products to be bundled with the VMS system .
Third, the VMS mail callable i nterface would pro
vide the necessary electronic mail functionality
needed and be compatible with the exist ing
character-cell terminal i nterface. Thus, the develop
ers would have to concentrate only on implement
ing the DEC windows user interface.

Finally, an interface based on VMS mail would
not be an obstruction ro D igital's long-term mail
strategy. It is the corporate plan to have al l of
Digital 's mail systems conform to the Consultative
Committee on International Telephony and Teleg
raphy (cern) X. 400 recommendations for mes
sage handling systems. 1 Therefore, the code
developed for this interface would also serve as the
basis for the strategic layered product ro be built on
top of the Message Router and the X .400 standards l

Design Goals and Trade-offs
First and foremost among the design goals was to
enable users to access mail either through the
DECwindows interface or from a character-cell
terminal . Although we wanted DECwindows to
be the interface of choice for the workstation
user, we also acknowledged that sometimes users
were away from their workstations. The Vi'v!S mail
callable interface ensured that this goal would be
mer. A second goal was to enable users to exchange
mail between a l l of D igital's systems, from per
sonal computers to ULTRIX systems to ALL-IN- 1

office systems. The third goal was support i n the
DECwindows VMS mail interface for Digital 's
emerging CDA architecture by allowing users to

Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

exchange compound documents. Fourth , we had to
provide a user interface on VMS systems that was
consistent with the user interface on ULTRIX
systems.

The major constraint of the DECwindows VMS
mail project was the t ime available for develop
ment . DECwindows ULTRIX mail and some-of the
other bundled applications started as applications
built on X widgets and X Window System version 10
(X 10). However, the DECwindows VMS mail system
was developed from scratch. The initial field test of
the DECwindows system was scheduled for Jess
than nine months after the start of the mail project.
Because of this short t ime frame, we opted for a
compromise implementation approach. We used
the standard features and widgets of the XUI toolkit
as they became available. We also shared other soft
ware to the greatest extent possible rather than
develop custom software. This compromise meant
that the user interface might not be as ideal as we
would have preferred , however, the mail
application is consistent with other DECwindows
applications and conforms to the XUI Style Guide. l

This paper discusses the development process of
the DECwindows VMS mai l application, hereafter
referred to as DECwindows mail , in its first two
functional releases. Version 1 was shipped with
version 5 . 1 of the VMS system, and version 2 was
shipped with the VMS system version 5 . 3 . The first
part of the paper focuses on the project definition
and development. The second part discusses some
of the specific implementation details.

Project Definition and Development

Once the project goals were defined, the next step
was to assemble a development team. The team
consisted of a manager, a supervisor, and engineers
who could work well together and who were wil l
ing to put in the extra effort and hours that would
be required . In addi t ion, the BOSE user interface
(U I) group dedicated the services of one of their
engineers to help in the design and specification of
the user interface.

The next step was to begin training. The
DECwindows system is based on M IT 's X Window
System version 1 1 (X 1 1) and X toolkit (Xt) intrinsics
l ibrary, which are written in the C programming
language."

VAX language bindings to these l ibraries would
be provided as part of the DECwindows program .
However, the bindings were not available early
in our development schedule and were not the
most natura l interface. As a result , we chose to use

Digital Tecbnicaljournal Vol. 2 No. 3 Summer /')90

The Development of DECwindows VMS Mail

C as our implementation language, although only
a few engineers on t h e team had experience
programming with C . A course on C programming
and hands-on experience with initial X 1 1 -based
prototypes helped us become more famil iar with
the language.

We also assessed computer-aided software engi
neering (CASE) tools that we hoped would help
speed the development of DECwindows mail . We
analyzed the tools commonly used i n Digital ,
including the language sensit ive editor (LSE), code
management system (CMS), and module manage
ment system (MMS), as well as design tools from
outside vendors. We chose not to use the external
tools for a number of reasons. We were not con
vinced that they were applicable to the project. The
tools were also expensive. Further, we had a short
schedule and could not afford the t ime required to
learn to use the tools.

When the project began, the XUI toolkit was
st i l l under development and not available for use.
Therefore, our early prototypes were based on
M I T 's widget set . The prototypes primarily gave us a
basic understanding of the X l l programming inter
face and X t intrinsics widget architecture. The early
prototypes also allowed us to become more pro
ficient in coding in C . In addit ion , we studied the
user interfaces of mail products on other window
ing systems, including Apple Macintosh products,
Vsmail (an internal tool layered on VMS mail), as
well as xmh, an ULTRIX system-based mail handler
that uses the X lO toolkit .

The Initial Interface

The init ial design of the DECwindows mail applica
tion user interface was based on the ideas we gath
ered from other app l ications, our own experience
using VMS mail , and suggest ions from the BOSE UI
group. This i nterface was repeatedly revised as we
learned more about the capabil i t ies of X l 1 and the
X U I toolkit . At first, our early screen designs were
created using the internal Sight tool under the VAX
workstation software (VWS). However, our UI engi
neer soon took advantage of the tools available on
the Apple Macintosh to create screen designs using
SuperPaint and HyperCard. These tools al lowed us
to generate PostScript images of the screens, which
could then be transferred to the VMS system for
inclusion in speci fications and documentation using
VAX Document .

The design o f the user interface had progressed
substant ially when management decided that the
DECwindows interfaces to ULTRIX mail and VMS

75

DECwindows Program

mai l should be identica l . We rea l ized immediately
that it was impractical to develop both interfaces
from common code because of the completely dif
ferent underly ing mail systems. However, the
abstract functional ity provided by both systems
was close, which would make it possible to pro
duce nearly identical interfaces. Developers and
managers from both the ULTRIX and VMS develop
ment groups mer to design a common interface. We
all soon learned that the only way that both systems
could look and behave as identica l ly as possible
would be to compromise some of the functional i ty
in each interface.

The compromise that caused the most trouble for
DEC windows VJ\IIS mail was del ivery of mai l. W hen
new mail arrives in VMS mail , i t is inserted directly
into the '\i EWMAIL folder of the user's primary mail
fi le, i .e. , MAI L . When new mail is read, it is auto
matical ly refi1ed to the MAIL folder. However, when
new mail arrives on the ULTRIX system, the mail
is held i n a system area. To read new mai l , users
type the " inc" (i .e. , incorporate) command, which
moves the new mail into the INBOX folder. Mai l
read from I N BOX i s not automatical ly refi led to
another folder.

The abstraction for mail delivery chosen for
the common user interface specification was the
ULTR!X model . New mail for the user would not
be visible in the DEC:windows user interface unti l
the user delivered i t . Delivery could be done
explicitly by using the " Del iver Mai l " push button,
or implicit ly by executing " Read New Mail" or at
app l icat ion start-up. Mail would be delivered by
default to the I NBOX , and read mail would not be
automatically refi led .

In VMS mail , new mail is initially delivered to the
NEWMAIL folder. To implement the ULTRIX mode l ,
w e had t o move new messages from the NEWMAI!_
folder to the I N BOX folder. At the same r ime, we
had ro be careful to preserve the NEWIV1AIL state of
each message and prevent messages from being
automatica l ly refi led as they were read .

Moving the messages had a negative impact on
performance. How to keep track of the number of
remaining new messages was a problem wel l into

development for version 2 of DEC:windows mai l .
However, the greatest resistance t o this process
came from VMS mail users who did not l ike having
messages delivered to the INBOX . If a user accessed
mail using character-cel l VMS mail , new messages
were not in the expected folders, i . e. , N EWMAIL and
MAIL. In response to this feedback, we made the
name of the folder to which new mail would be

76

del ivered and the automatic refi l ing of a message to
the MAIL folder customizable options. In addit ion ,
we made the default values for these options depen
dent on the presence of a MAIL fi le. Thus, users who
already have a ,'\1AJ L fi le are presumed to be exper
ienced VMS mail users and are given values consis
tent with VMS mail behavior. Users who do not have
a MAIL fi le are presumed to be new DEC:windows
users and are given J N BOX as a del ivery folder ami
messages are not refilecl, which is consistent with
the l i LTRIX interface.

Whi le EME was working on the common inter
face prob lem, the BOSE UI group was eva luating the
use of a h ierarch ical display as the user interface
for structured data, such as mail messages within
mail folders within mail drawers. This hierarchical
disp lay eventual ly became known as structured
visual navigation (SVN). SVN had the potential ro be
used in a wide range of applications and could
be developed as a general X user interface (Xl l l)
widget that could be incorporated wherever usefu l .
S V N 's first test i n a real application would b e on
DEC windows VMS mai l . To do the rest without jeop
ardizing the delivery of a mai l interface on schedule,
one engineer from the BOSE group was assigned to
the design and development of SVN . In addition,
two engineers were assigned to integrate SVN into
the mail interface, in parallel with the a l ready
planned interface. Software Design Tools' (SDT)
Software Usabi l ity Engineering (SUE) Group agreed
to evaluate the completed interface.

Once both the SVN interface and the ULTR IX
system-compatible interface were compkted , the
SUE group interviewed and videotaped users for
reactions to each. From these videotaped inter
views. the group produced a set of recommenda
tions for improving both interfaces and a survey of
preferences about the two interfaces. Based on this
evaluation and other factors, we decided to inte
grate the SVN interface into the existing interface. A
single version would be produced that could be
switched from one interface to the other.

Because this i ntegration had not been designed
into the code from the beginning, the integrating
process was more difficult than we had first
thought. As a result , we chose not to incorporate
the abi l ity to switch interfaces at run-time but to
start-up one interface or the other through a cus
tomization option. The decision to produce a single
executable image that supported both interfaces
became significant when the DECwindows VMS
group later decided that the SVN interface should be
the default interface on the VMS system.

Vol. 2 No. 3 Summt>r 1990 Digital Tecbnicaljournal

User Feedback
Because many different groups were developing
many DECwindows applications in parallel , it
was decided to hold a DECwindows Trade Fair in
November 1987, two months prior to the sched uled
initial field test of the product. The trade fair pro
vided a centralized location for developers to show
their development designs and to learn from other
developers. At th is time, the DECwindows VMS mail
application was not yet a finished product. How
ever, our design was far enough developed that
we were able to demonstrate how the finished
product would work . The SVN developers also ran
HyperCard prototypes of SVN and demonstrated
how it would work within DECwindows VMS mail .
Reactions were positive, and other development
groups began seeking ways to use the SVN widget
within other products.

At the trade fair, with the exclusion of the
DECwindows terminal emulator (DECterm), the
mail application was the first DECwindows appl i
cation to be demonstrated as actually running on
the VMS system. It was also one of the first applica
tions running on either the VMS or ULTRIX systems
to use the new ly available X U! tool kit. Because
DECwindows VMS mail was st i l l in its fundamental
design stage, we did have some stabi l i ty problems
in demonstrating the application . However, the
abi l ity to demonstrate a working appl ication, even
in a fundamental state, was a major step for the
development team.

The remain ing engineering effort for the initial
release covered several areas, incl uding

• Fin ishing the planned functionality

• Improving performance

• Supporting the CDA program by providing the
ability to read and send Digital Data Interchange

- (Syntax (DDIS) encoded messages'· '

• Supporting the evolving Interclient Com
munications Conventions Manual (ICCCM) global
selection standards'

• Dealing with changes to all the system compo
nents that are used by DEC windows VMS mail

Besides the various components of DEC windows
architecture, the system components include the
DECwindows print widget, the CDA library and
CDA v iewer, the VMS mail callable interface, the
application inrerface library (AIL) , and DECterm H

Digital Technical journal Vol. 2 No. J Summer JI}'JO

The Development of DEC windows VMS Mail

The dependencies for building mail made it
one of the most complex applications in the
DECwindows VMS system builds. Therefore, it was
also one of tbe most vulnerable to changes in other
components. For example, one DECwindows base
level changed the X toolkit intrinsics call ing
sequences, added toolkit support for global select
and accelerator keys, and changed all widget label
strings from simple ASCI I text strings to compound
strings. By the t ime these changes had rippled
through all the layers up to DECwindows VMS mai l ,
the ripple resembled a tidal wave.

DECwindows mail version 1 was submitted to
Digital 's Software Distribution Center in December
1988. Planning for version 2 began short ly there
after. Approximately half the EME engineers
involved in version 1 began working on the major
tasks for version 2 : using the user interface language
(UIL) compiler and supporting internationa l ization.
The remaining engineers transferred to the related
product development project for X .400-based mail.
Much of the code developed for DEC windows mail
application was being used in this project.

UIL was available too late to use in version I .
Usability enhancements, particu larly new custom
ization features, continue to be made as more user
feedback is received, and new requirements are
incorporated, such as support for the OSF/Motif
toolki t .

Figure 1 shows the DECwindows Mai l Main
(index) window using the SVN interface. Figures 2
and 3 show the Read and Send windows.

Implementation Issues

As with any programming project, there were some
unexpected complications. Most of the complica
tions centered around working in the unfamil iar

File Edit Pick Create-Send Read Maintenance r1atomlle HPip
S on-Mall Projects
Gl Personal

eJ Computers
0 Fltntn
eJ Mrsctlantou�
� f, ,, f ,. • ::' <�1• �·1·'

9 1 6 -APR- H I 90 I(.QAJ..A . JACKSO!l
B 2 6-APR- �9 0 KOAI..A JACJ:su:l

j OeliverMall l l Read N�w Mau l l Create Send ���§JB
�

Figure I DEC windows VMS' Mail Main Window

77

DECwindows Program

rile [tfll CreRtP-S e ud Read
l�t· �·APR·lQ9t) 11 1·; Z2 4) rr-o111 �:IJisi.JI .1111 r�1.1t1
Sub) r .. .,. n--e· �n9 K nd"J' .tlprt I T J .. bon ,..,

Help

Thi!C'" "lll b� .. r-•" -..-et.lno; H\ u,,. Jone' Cor1f erc-r1�� CenLer on Monde.y a t 1 · 30 0

l)0 - :: PO C'C�ck R�·; 1ev 'SI'rui J1ocktlt-
: UO - 2 15 St�t.u' ot cl:t-1 <1l�t.' : 15 '.! JU Wol'k pl�n, ! or t.ho: wuJ.

Figure 2 DECwindows VMS Mail Read Window

environment of the X Wi ndow System and the need
to interface with other OECwindows components.
A lso, as is i nevitable with any real istic project, the
off-the-shelf components did not al ways meet ou r
needs. Some of the more i nteresting problems we
facecl are discussed below.

Events

One issue faced by the developers was the paradigm
of event-driven programming. In our experiences
wi th nonwi ndowed systems , a program needs only
to wait for user input. Once the i nput was received,
the program progresses in a straight l ine until i t is
comp leted. However, when using the X Window
System, events may be generated at any t ime and in
an u npredictable order. Learning to think asyn
chronousl y was a major hurdle for the developers.

fill Mall: Create
_ _ _ :ll.(:5! � I II e I rUt Change fdilor

JAC".SCN I L----------------------------
j T•1 lt�e• ��----------------------------- 1

tc 1'-------------------- 1
Sub]"'C:t lteo��a lleettng Hon1Di'· 9 ltprt 1:

l lO • :.! Co � Ae•: 1 e\ ' - S!:l'ld Ho.Joh '! 00 - � 15 !;t!J.'!:U) 1Jof def .. c: t 't 'l!: lS - 2)0 llort. plMI t Dt tl� y,.e}:

Q

Figure 3 DECwindows VMS Mail Send Window

78

Two particular aspects of event hand li ng that were
especially difficult were keeping the event queue
clear and handl ing keyboard input focus.

Keeping the Event Queue Clear In event-driven
progranuning, the event queue must not be al lowed
to fi l l up . Thus . events must be processed in a timely
fash ion. In the i n it ial design of the DECwindows
server, the queue could easi ly fi l l and cause the
server to hang until the queue was processed ,
w hich prevents any further work from being done
on the workstation. A hung cl ient could perma
nently hang the server in early OECwindows base
levels. The server design was subsequent l y
enhanced to recognize t h e hung stare and abort the
connection after a spec ified period. However,
because the workstation would be hung during this
period, it was still important for app licat ions to try
to prevent hanging from happening at a l l . Further
work on the OECwindows server and transports
eventually e l im inated most occu rrences of the
problem, but the appl ications st i l l had to min imize
the possibil ity of hanging.

One possible solut ion was to support multi
threadi ng, which al lows the event queue to be pro
cessed in one thread and callbacks to be processed
in one or more other threads. True multithreading
was impractical , h owever, because there was no
underlying support for i t in the system and the Xt
intrinsics-based DEC windows l ibrary was not
reentrant . That is, we could nor safely i nterrupt one
toolkit routine, execute another tool kit rout ine, and
then return to the first one.

Another possibi l ity was to use the toolkit work
procedure mechanism. Rather than doing the
actual application's tasks, each callback would reg
ister a work procedure that wou ld be called by the
event loop the next time the loop had no events to
process. This solution was not available in ea rly
OECwindows base levels . A lso, i t required that func
tions be substantial l y redesigned and broken down
into small parts, because work procedures had to
exit qu ickly to keep the event queue clear. Finally,
this solution d id not address one of t he major
impediments to keeping the event queue clear: the
i nabil i ty to process events w h i le in a cal l to the VMS
mail callable i nterface.

The solution we chose to implement was a macro
which we referred to as the m ini-XtMainLoop, or
FlushEvents. This macro basical ly duplicates the
XtMainLoop function of retrieving and dispatching
events, wi th the notable difference that it returns
w hen there are no more events in the queue. Plac
i ng calls to FlushEvents at regu lar intervals in ou r

Vol. 2 No. 3 Summer 1990 Digital Technical journal

callbacks solved the problem of keeping the event
queue clear, except w h i le in lengthy calls to VMS
mail . This problem w i U require true multithread ing
support to solve completely. Fortunately, t he s�rver
and transport im.provements mentioned earlier
have l imited the consequences to occasional delays
in repaint ing areas of the screen rather than tempo
rary workstation hangs.

The Fl ushEvents macro introduced other prob
lems, however. One problem was a tendency for the
macro to hang unti l events were generated , which
was caused when a text widget with a blinki ng cur
sor was mapped. The timer event used by the text
widget would cause the loop test to always return
TRUE, but X t NextEvent would block wait ing for a
true X even t . The problem was solved by adding a
c lause to expl icitly process t imer even ts.

A more serious problem occu rred when the
events dispatched within a callback resulted in
other callbacks. The other callbacks may have oper
ated on i ntnnal data struct ures or widgets used by
the in itial cal lback . As a resul t , the in i t ial callback
became confused w hen i t regained control . To pro
cess callbacks within callbacks, a major redesign of
the callback mechanism was required . However,
the t ime and resources needed to do such a redesign
were not available. Therefore, we tried to deal with
these types of problems on a case-by-case basis, but
th is approach was imprac tical because there were
too many cases that could occur.

The handl ing of callbacks within callbacks is
perceived by t he user as mouse-ahead. A l lowing
mouse-ahead raises several questions that do not
exist for the ana logous case of type-ahead. For
example, should the recursive events be processed
immed iately upon receipt or queued in order; or
does it depend on the specific evenr' When events
that result in appl ication functions are queued, the
best solut ion might be to process resize and scroll
ing events immediately. However, would such
processing confuse users as an app:uent i ncon
sistency' What if the push button t hat is clicked
on is subsequent ly removed from the screen by a
previous as-yet-unprocessed event'

We asked the SUE group, wh ich had more
experience than we did in user interface design, to
help us resolve these questions. We developed a
simple prototype as an example of one way i n
w h ich mouse-ahead might b e rel iably supported,
and we demonstrated this prototype to members of
the SUE group. Based on their feedback that the
mouse-ahead feature in a window environment was
not desirable, we disallowed mouse-ahead in the

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

The Development of DECwindows VMS Mail

FlushEvents macro by ignoring all button and key
events. The final version of the FlushEvents macro
is shown in Figure 4. However, this version was gen
erated late in the development schedule. As a resul t ,
many nonreprod ucible bug reports generated by
this problem obscured some bugs with other, s imi
lar subtle causes.

Input Focus I n the X Window System , only one
window may have i nput focus at a t ime and the
w i ndow must be v iewable to receive focus. (Note:
Viewable does not necessarily mean vis ible. A win
dow that is completely obscured is st i l l considered
viewable, although an iconified window is not .)
A n attempt to set focus to a window that is not
viewable res ults in a BadMatch error event , which
in tu rn results i n a bug report . For example, setting
focus to a window as soon as it is mapped generates
th is error. By the time al l subwindows, including
the one that actually takes focus, are mapped by the
server, the set input focus event most l ikely has
already been processed and rejected.

It is impossible to prevent BadMatch errors. I t is
always possible that the window may be unmapped
between an app lication's cal l to set input focus and
the server's receipt of the event . This s i tuation can
occur even if the application first ensures that the
window is viewable.

To solve this problem, the applicat ion must set
up an X error handler that wi l l ignore BadMatch
errors associated with set i nput focus events. The
most rel iable prevention method is to implement a
map not ify event handler that contains the actual
call to XtCal lAccept Focus, which ult imately calls
the XSetl nput Focus romine. However, there were
several problems with this sol ution. We did not
have the t ime needed to make al l the necessary
changes. A lso, we were concerned about interac
tions between our event handlers and those of the
widgets, and had to solve the problem of how to
pass the original event time to the map event
handler. Therefore, we had to find an alternative
solution. We opted to use a cal l to FlushEvents at a
poin t between the mapping of the window and the
setting of input focus. Al though this sol ut ion does
not guarantee that the w i ndow is mapped w hen it
returns, it has so far proven to be effective.

Input focus handl ing also requires a valid
time stamp. \Vhen the server receives an
X _Set lnput Focus event, it compares the t ime
stamp with the time of the last such event i t
accepted . If the t ime stamp is not more recent , the
request is ignored. There i s a special t ime stamp

79

DECwindows Program

d e f i n e F l u s h Ev e n t s \

{ \

X E ve n t even t ; \

X t l n p u tMa s k e v e n t t yp e ; \

wh i l e ((ev e n t t y p e � X t A p p P e n d i n g (A p p C o n t ex t)) ' � 0) \

{ \

i f (e ven t t ype � � X t ! MT i me r) \

{ \

X t A p p P r o c e s s Ev e n t < A p p C o n t e x t , X t ! M A l l) , \

) \

e l s e \

{ \

X t A p p Ne x t E ven t (A p p C o n t e x t , & e ve n t) ; \

i f (e ve n t . t y p e ! � B u t t o n P r e s s & & eve n t . t y pe ' � Bu t t o n R e l ea s e & & \

even t . t ype 1 � Key P r e s s & & even t . t y p e ! � KeyRe l ea s e) \

{ \

X t D i s p a t c h Ev e n t (& even t) ; \

} \

l \

} ; \

Figure 4 Flush£ vents Macro

(CurrentTime) that will always succeed, bur irs use
is discouraged .

To il lustrate the problem encountered when
using CurrentTime, consider the case in which a
user initiates a long operation that will eventually
generate a new window that should receive input
focus. While waiting for the new window, the user
sets focus tO another w indow and begins typing. If
the first application uses CurrentTime, it takes the
focus when it completes and generates a set input
focus event . The user's typing in progress in the sec
ond window then enters the window generated by
the input focus event first set.

In the same example, if each application uses the
time stamp of the event that triggered its request for
focus, the first event is rejected because the time
stamp is earlier t han that of the second application.
In this case, the user may continue typing undis
turbed. In early versions of the tool kit , the time
stamp of the triggering event was not directly
available. However, a pointer to the event structure,
which contains the t ime stamp, was added to the
standard widget callback structure in time for the
initial DECwindows release.

80

Debugging

The debugging process for the DEC windows
mail application was complicated by two things :
reproducing bugs and the interaction among the
DECwindows components. The first problem was
improved in the second functional release. The sec
ond problem is dealt with on a case-by-case basis,
but the general problem of dealing with complex
cross-application integration remains unsolved.

Reproducing Bugs The best way to find the
cause of a bug is to reproduce the sequence of
events that produced the bug. Unfortunately, bugs
in DECwindows applications can often trigger
access violations deep within the DECwindows
libraries. Also, incorrect behavior is usual ly caused
by an inconsistent interna l state that may have been
triggered by some event long before anything
wrong was apparent to the user.

As a result , a major problem in handling bug
reports for the DECwindows VMS mail application
was the lack of useful information accompanying
the reports. Many bugs are triggered by subt le inter
actions in a very specific sequence of events. I t is

Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

unrea listic to expect users to recal l every detai l of
the sequence leading ro the appearance of the bug,
particularly after a few days have passed. Further
more, when trying to recount actions , users often
s kip those that appear to he too trivial to have
affected the application. For example, resizing w in
dows m ight appear to the user to only affect the
appearance of the display and not any internal state.
However, we did find one hug in which resizing
under particular circumstances caused the wrong
messages to be associated with the visible index
l ines, resulting in access v iolations at a later t ime.

To aid in tracing a hug-generation sequence,
macros were defined in version 2 to log all
DECwindows callbacks, user cusromizations, and
certain other information to a special fi le. This
method was helpful in tracking down bugs because
i t is quicker to fol low a step-by-step log to repro
duce the problem . Some bugs that were fixed
would otherwise have been closed as not repro
ducible without this process. When trace support is
disabled at compilation time, the macros do nor
generate any code. This disabling feature was
included in the external field rest update and final
releases to maximize performance.

The trace log was also used by the SL IF group to
help improve usabil ity. By examining the log, SUE
engineers determined which features were used
frequently, which fearurcs were seldom used , and
which actions were used in combinations.

Interaction among Components The effects that
DECwinclows applications can have on each other
also make it difficult to find and resolve bugs. For
example, when spawning several DECwindows
applications from the same parent, job-wide quotas
may q u ick ly run o u t . Compone n t i n teract ion
through the global selection mechanism causes
more subtle problems. A bug in one application
may crash another application. A specific example
that occurred was a user report of a crash in
the Fi leView application caused by a memory
al location fai lure in the XLJ I toolkit .

The true source of the problem was only
d iscovered when the user noted that the crash
happened fol low ing the deselection of a folder i n
DECwindows VMS mai l . When the global selec
tion was requested , OECwindows VMS mail would
accept the request rather than reject it and return
a length of - 1 . The tool kit routine would n:ceive the
length and attempt to al locate 4 , 294 ,967,295
(i .e . , the unsigned value of - 1) bytes to hold the
se lect ion va l ue and fa i l . A s c ross-app l i c a t ion

Digital Tecbnicaljournal Vi>/. 1 No 3 Summer /'J<JO

Tbe Development of DEC windows VMS 1Hail

integration increases using X global selections,
client messages, and other means, for example,
L iveLink connections, these problems can be
expected to become more and more frequent . Test
ing and debugging tools suitable for these multiple
application interactions are needed .

CDA Support
In order to support the interchange of compound
documents across the network, DFCwindows VMS

mail incorporates a number of compound docu
ment functions. Messages received in compound
document format arc stored as files with a special
tag indicating the format . The compound docu
ment viewer widget replaces the text w idget to
display these messages when read. By using the
compound document converters, DECwindows
VMS mail can conven these messages to other
formats such as plain text or PostScript .

To deal with documents that contain references
to other documents , the Digital Object Transport
Syntax (DOTS) was developed in conjunction wi th
the CDA group. The DOTS syntax a l lows us to
incorporate the primary document and a l l of its
references i nto a single file t hat can then be mailed.
When a DOTS message is received and read , the
message is split back into i ts multiple components
for use by the v iewer. Testing the exchange of
messages in various formats between the VMS and
l !LTR IX systems involved the use of several differ
ent mail applications, and required cooperation
among mail groups from Palo A l to, Cal ifornia,
Nashua, New Hampshire, and Reading, England, as
wel l as the CDA architecture and l iLTR!X DECoct
developers.

Context-sensitive Help

One aspect of rhe OECwindows style is context
sensitive help. By cl icking mouse button I while
holding the Help key, a user should be able to point
at any screen artifact and view a help frame on that
object . The implication is that each object must
have a help topic associated with it. Therefore,
a certain amount of coordination between the
developers and the help library writer is essentia l .

To be able to change the help frames associated
with each widget, the writer must be kept informed
of changes in the w idget hierarchy and any changes
in functionality or the user interface. Therefore, the
method of associating widgets with help topics
must be reasonably straightforward .

Our initial approach to this problem was to docu
ment the widget hierarchy in a text file and organize

8 1

DEC windows Program

the hierarchy of the help l ibrary to match. The
writer periodica lly would fetch the hierarchy fi le,
check for any changes, and alter the help library
hierarchy to match the changes. The help callback
would proceed up the widget hierarchy, using the
widget names to bui ld the topic string.

This approach introduced significant problems.
The method of forcing the help l ibrary structure to
reflect the widget structure seemed intuitive to the
developers. However, a task-oriented structure is
better suited to end users, who rely most heavi ly on
t he onl ine help ut i l i ty. Another problem was the
need to specify a help frame for each and every
widget, when, in many cases, one help frame could
serve the purpose for several widgets. To address
these problems, we borrowed a design from the
developers of the DEC windows calendar. We added
a help frame resource to each widget. Each widget
was assigned a fu l l help topic name by a resource
l ine, which el iminated the dependence on the
widget h ierarchy.

Through the use of resource wi lc.lcards, one
resource l ine could assign the same topic string to
several widgets at once. The developers added a line
to the resource table whenever the h ierarchy was
changed . Init ia l ly, the resources were specified in
the system resource fi le. Later, resources were hard
codecJ in an internal tab le w improve performance.

Dummy topic strings were inserted, which the
writer would later edit to the correct topic strings.
The help callback would then find the help frame
resource associated with the widget . This process
was an improvement, but it st i l l required that the
developers add a l ine to the table for new widgets,
and required the w riter to edit C code.

An easier method was implemented as part of the
DECwindows VMS mail conversion to U I L . The help
topic string is now passed as an argument to the
help cal lback when the widget is defined. The help
topic strings are kept in a separate file where they
are defined by the developers and later edited by
the writer.

Toolkit Restrictions

A t times, the defaul t behavior of toolkit widgets was
not the best user interface behavior in the specific
context of our app l ication . Sometimes no existing
widgets provided the functional ity we needed.
Thus, in certain cases, we had to write our own
widgets or borrow w idgets from other develop
ment groups. In other cases , we had to find ways to
override the toolkit widgets' default behavior. Two
particular cases of th is were in the text widget's

82

handling of word \Vrapping, :1nd the d ialog box
widget's hanc.l l ing of navigation with the Tab key.

Line Wrapping The DECwindows text widget sup
ports automatic wrapping of l ines when the cursor
reaches the right edge if the word wrap resource is
set. Because this setting eliminates the need for the
user to hit a return at the end of each l ine, it w:1s
enabled as a default for the Create-Send window
in DECwindows mail . However, the wrapping
was done on the screen only. The text sent by the
mail application only contained t he hard returns
entered by the user. Jn genera l , there was no
problem as long as the mail message was read with
DEC windows VMS mail . The word wrap is set in the
Read window as well , and the l ines are w rapped
to fit the reader's window width. However, if the
reader were using VMS mail , the paragraph would
be displayed as a single l ine with only the first
80 characters visible. Also, if the paragraph was
very long, the VMS mail protocol record length
restrictions would prevent transmission of the
message.

We considered two options to solve the word
wrapping problem because we did not have a direct
way to obtain the wrapped text from the text
widget. First , we could e l iminate the default word
wrap and require users to enter a return at the end
of each line. The other possibi l i ty was to insert
returns at an arbitrary point near the end of each
line, e .g . , the last white space previous to the 80th
character of each l ine. However, in read ing the
sources for the text widget, we found that it might
be possible to query the text widget indirectly to
find where it had wrapped the text on the screen.
Word wrapping was achieved by using undocu
mented text widget calls and data structures and
forcing the text widget to move through the entire
message text one screen at a time.

Tab Navigation According to the XU! Style Guide,
the Tab key navigates from one text field to the next
one within the same window and selects the field's
entire contents for pending delete. In other worc.ls,
the next keystroke automatically inserts i tself after
deleting the selected text . This feature was designed
for dialog boxes containing several short text fields,
but was less appropriate for DECwindows VMS mail
Create-Send window's message area . I n fact, i t cre
ated problems. For example , if a user pressed t he
Tab key while in the message area, the cursor would
move to the personal name field, which is the first
text field in the window A tab character could not

Vol. 2 No. J Summer 1990 Dtgital Technicaljountal

be inserted into a text widget , even a widget being
used more as a text editor than a text field .

A more serious problem was that o f selection
for pending delete. When users would tab to the
message area and begin typing, the first keystroke
would wipe out the previous contents. Since the
text widget provides no practical way to undo such
changes, the user could not recover from a s imple
and common error. We had to override the dialog
box's t ranslation for tab and reimplement t he nor
mal processing to fix the problem. In this case,
normal processing means process as normal for
envelope text widgets and insert the tab for the mes
sage area.

Summary

DECwindows VMS mail was one component in the
integrated development effort of the DECwindows
system. The problems we faced and solved and
those which st i l l need to be addressed, reflect many
of the problems of developing integrated systems
in an environment in which some components are
constrained by external standards, the compo
nents interact in potentially complex ways, and
many components are under active development .
Our experiences in developing DECwindows VMS
mail have left us better prepared to deal with the
continuing trends toward software integration.

Acknowledgments

We would l ike to thank everyone who has worked
on and helped with DECwindows VMS mail during
its development. This includes the members of the
XUI toolkit team, the VMS DECwindows team, as
well as the many people throughout Digital who
used and helped test mai l . In particular we would
l ike to thank Terry Weissman , the U LT R I X system
based DECwindows mail developer, for his help and
cooperation throughout the project , and the engi
neers, writers, and managers who were direct ly
involved in the development of DECwindows VMS
mai l : Pam Bantis, Roger Brinkley, Mike Daugherty,
Elaine Egolf, Eric Hansen, Gerry Hornik, Debbie
Huffman, Craig jackson, Lorri Menard, Cheryl
Mrozienski , Linda Nallctt , Ke l l y Sol inas, and Duane
Smith.

References

I . CCI1'T Data Communication Networks .Message
Handling Systems Recommendations X. 40()
X. 430, Volume VI I I - Fascicle YJ!I .7, CCITT,
ISBN 92-6 1 -0236 1 -4 .

Digital Tecbnicaljournal Vol. 2 No. 3 S11mmer /')')()

The Development of DEC windows VMS Mail

2 . P. Mierswa, "The Evolution of the MAILbus,"
Digital Technical journal, vol. I , no. 9 (June
1989): 37-43 .

3 . XU! Style Guide (Maynard : Digital Equipment
Corporation, Order No. AA-MG 20A -TE , 1988).

4 . R. Scheifler et a l . , " Introduction" and " Introduc
t ion to Xlib," X Window System, C Library' and
Protocol Reference (Bedford : Digital Press,
Order No. EY-6737£ - DP , 1988).

5. R. Travis, "CDA Overview," Digital Technical
journal, vol . 2 , no. 1 (Winter 1990): 8- 1 5 .

6. W . Laurune and R . Travis, "The Digital Docu
ment Interchange Format ," Digital Tee/mica/

journal, vol . 2 , no. I (Winter 1990): 16-27.

7. D. Rosenthal, X Window System, Version 11-
/nterclient Communication Conventions Man
u.al Version 1 .0.

8. B . Cheung and N. Jacobson , " lnterapplication
Access and Integration," Digital Technicaljour
nal, vol . 2 , no. I (Winter 1990): 49-59.

83

Dinesh Mirchandani

I Prabuddha Biswas

Ethernet Performance of
Remote DECwindows
Applications

In Digital's windowed am1puting system, the Ethernet is the communication

medium for both DECwindows traffic and remote disk 110 traffic. Ibis level of traffic
prompted a study to inuestigate whether or not the Ethernet would be a system-leue!
bottleneck for DECwindows applications lbe methodology deueloped characterizes
the Ethernet traffic generated by a DECwindows application executing remoteZJ' on

the workstatiOIJS in a local area VAX cluster. A simu!£ltion model was used to predict
the Ethernet pe�jorrnance of a !£lrge cluster running this application and a range of
other hypothetical re?note DEC windows appiicatiollS. lbe results of this study can be

extended in many ways and should be of interest to those iml(){ued in sizing local
area clusters running re?note DECwin.dows applicatiollS.

In the past few years, we have seen a prol iferation in
t he number of local area networks (LANs) insta l led
worldwide. This development largely results from
advances in workstation technology and inno
vations in the design ami performance of various
communication protocols. These protocols are
now the building blocks of distributed computing
environments.

These advances also have affected the ways in
which LANs are used . Initial applications of LANs
were for remote terminal access and fi le transfer.
Disk less workstations and distributed processing
came next . Today's environment is a network
oriented, windowed user interface standard : the
X Window System.1 DECwindows is Digital 's imple
mentation of the X Window System . As each of
these networking environments was developed,
researchers reviewed the performance impl ica
tions of the new environment on the network.n.·•
Following in that tradition , the study presented
in this paper investigates t he impact of the distri
buted DECwindows computing environment on the
performance of the Ethernet.

The study was based on a distributed comput
ing model using Digital's local area VAXcluster
(LAVe) systems in which a few large systems are con
nected to several workstations over an Ethernet seg
ment .' These larger systems provide distri
buted fi le services and the resources to run many

84

DECwindows cl ients (or applications) that present
their user interfaces remotely on the workstations.

This paper is organized into four sections. The
first section describes the methodology and tools
used in the c haracter izat ion of E t h ernet t raffic
generated by a DECwindows workload. The next
section analyzes the traffic both at the application
level and at the Ethernet leve l . The th ird section pre
sents the results of a modeling study that extended
the measurement data to predict Ethernet perfor
mance in large configurations. The paper concludes
with a brief discussion of areas to which this study
may be extended in the hiture.

Methodology

Our preliminary monitoring of network traffic
indicated that the network would not be a perfor
nlance bottleneck for small LAN configurations.
Therefore, our goal was to investigate what would
happen when hundreds of workstations simultane
ously ran DECwindows applications remotely over
the network _ To set up and execute a workload on
a large network of workstations is a difficult
task. We had to careful ly characterize the network
traffic generated by one workstation and, through
modeling, extend this characterization to a large
network of workstations. This approach is similar
to a study that was successful ly done for terminal
environments.2

Vol. 2 No . .> Summl'r 1')90 Digital Tecbnicaljournal

Ethernet Performance of Remote DEC windows Applications

I n this distributed environment , the DECnet
protocol is used as a transport for X protocol
communication between remote cl ients and the
DECwindows server on each workstation. The
DECnet protocol can run on different base net
working technologies, one of which is the Ethernet
for LANs. VAXcluster software provides distributed
disk services. The VAX cluster software is also used
by the VMS distributed lock manager to execute
remote lock operations. Therefore, there are three
components of data traffic on the Ethernet:
X protocol messages , remote disk accesses, and
remote lock traffic. Measurement data for these
components was collected using Digital 's tracing
and monitoring tools. The performance impact of
the data collection tools was c losely examined and
found to be minimal .

The traces and counters from these tools were
postprocessed to extract the relevant i nformation,
which was then input to a program that emulates
the DECnet and VAXcluster protocols. The program
transformed the input data i nto packet size and
interarrival time distributions that would be seen
on the Ethernet . The emulator also added packet
headers, segmented larger data messages, and
inserted DECnet and VAXcluster protocol messages
appropriately. The protocol emulations were care
fully validated for each component of Ethernet
traffic, using data collected with a LAN analyzer.
The entire process is shown in Figure 1 .

The workload used was a relatively intense user
activity session on DECwrite , a "what you see is
what you get" (\VYSIWYG) compound document
editor. The session involved extensive manipula
tion of text and graphics in a large (i .e. , 65-page)
document. Procedures included opening windows,
pul l ing clown menus, cutting and pasting, refresh
ing the screen, searching and rep lacing text strings,
accessing online help, and creating several new
pages that consisted of multiple font text and two
dimensional graphics. The duration of the work
load was about 22 minutes . The workload emulated
a very confident user traversing the document ami
making changes with minimal time between
actions. The workload was driven by an internally
developed workstation user emulation package.

The test configuration was an LAVe system that
consisted of two VAXstation 2000 workstations,
each with 6 megabytes (MB) of memory. One work
station acted as a disk server and the other as a
satellite connected by an isolated Ethernet segment .
The disk server had a system disk and a paging disk.
The satellite was equipped with a local paging disk .

Digital Technical journal Vol. 2 No. 3 Summer 1990

DECWIN DOWS WOR K LOAD

DECN ETjVAXCLU STER E M U LATOR

PACKET S I Z E/ INTERARR IVAL T I M E D I STR IBUTIONS

S I M U LAT ION MODEL

Figure 1 Workload Characterization
Methodology

Data Analysis

In this section, we analyze remote DECwindows
cl ient-server communication , remote disk I /0, and
remote lock requests clone by the LAVe work
stations, at the application level and at the Ethernet
level . We were also interested in the impact, if any,
i n LAVe environments on the Ethernet utilization of
remote paging done by diskless workstations. This
issue is addressed in the following analysis.

DECwindows Traffic

Table I presents the DECwindows traffic generated
by the DECwindows server ami the DECwrite client
in terms of X protocol activity and DECnet mes
sages. Analysis of these distributions revealed the
following information.

• The server generates more than twice as many
DECnet buffers than the client . The server trans
mits 9 164 events and replies in 6816 packets,
which is a message to packet ratio of 1 . 3 to 1 .
The cl ient transmits !6232 requests i n 2864
packets, which is a ratio of 5 . 7 to I . The server
is unable to b u i l d l a rger network buffers
because certain events and most replies require
immediate delivery.

• The average server DECnet buffer is almost four
times smaller than the average cl ient buffer. The

85

DECwindows Program

data shown in Table I indicates that buffer sizes
vary greatly. This variation is also reflected in the
high standard deviations in buffer size. The
median server and client message sizes are much
lower than the mean. The size distributions have
a large peak (many smal l messages) and a long tail
(fewer large messages) .

• X protocol message transmission occurs in
bursts. The server transmits in more bursts than
the client, as i ndicated by the larger coefficient
of variation (ratio of the standard deviation to the
mean) in interarrival times for the server. Nearly
90 percent of the server message interarrival
t imes are less than the mean. Hence, the curve
has a large peak (many messages arriving in
bursts) and a long tail (a few periods of silence) .

These observations regarding X protocol mes
sage distributions are intuitive because the server
comm u n ic ates w i t h t h e user , w h o t y p i c a l l y
generates input events (for example, KeyPress,
KeyRelease) in random bursts. W hen a client needs
information from the server or wishes to write
text and graphics objects to the display, i t issues
one or more requests to the server (for example,
XPolytext, XCopyplane). The server only responds
to the synchronous client requests w ith replies (for
example, XGetProperty, XGetGeometry).1

The server almost immediately transmits events
and repl ies. Events are typicall y a few bytes long,
and replies are slightly larger. However, the cl ient
tends to aggregate multiple requests into larger
messages before dispatching them to the server.

Table 1 DECwi ndows Traffic Prof i le

Metric Server Client

X p rotocol traffic
Events and repl ies 9 1 54 NA
Requests NA 1 6232

D EC net pac kets 68 1 6 2864
Size (bytes)

Mean 64 246
Standard deviation 2 1 3 468
Median 32 1 84
M i n i m u m 32 4
Maximum 3 1 48 8 1 84

l nterarrival (m i l l iseconds)
Mean 4 1 7
Standard deviation 2286 251
Median 28 1 26

86

Total

9 1 54
1 6232

9680

1 1 8
322

32
4

8 1 84

1 24
1 263

Remote Disk 1/0 and Lock Traffic

Table 2 shows the distribution of the remote disk
accesses, as well as the remote lock operations per
formed by the system. Data reads are used for initial
image activation and for accessing resources, such
as font files. Data writes are usua lly made to system
log fi les. Paging reads and paging writes are done on
demand to the system paging file. In addition, we
noted the fol lowing results.

• Read requests by the workstation outnumbered
write requests by an order of magnitude. The
average disk request is much larger than the aver
age DECwindows message because a disk request
is done at block granularity (i . e . , 1 block equals
5 12 bytes), whereas the average DECwindows
message is only a few bytes.

• Average disk request interarrival times are an

order of magnitude higher than DECwindows
messages. Disk request interarrival t imes are
about .)6 percent lower w hen remote paging is
included with local paging because of the
increased packet arrival rate.

• Paging requests are about 50 percent more fre
quent than regular disk requests. The frequency
varies with total system memory size, process
working-set size, and page-reference patterns.
The average request size with remote paging
is much h igher because paging write requests
are much larger. The VMS modified page writer
typical ly flushes modified pages to disk in 96-
block chunks.

• The number of remote lock operations is the
same for both the local and remote paging case
because VMS process paging does not use the dis
tributed lock manager. The average remote lock
operation rate was I every 2.6 seconds.

Ethernet Traffic
Table 3 shows Ethernet traffic statistics for local and
remote paging scenarios. This data was generated
by running the DECwindows and disk i/O traffic
data through the DECnet!VAXcluster protocol emu
lator. Figures 2 and 3 show the frequency distribu
tions for Ethernet packet size for local and remote
paging cases, respectively. Figures 4 and 5 show the
frequency distributions for Ethernet packet inter
arrival t imes for local and remote paging cases,
respectively.

Vol. 2 No. ,) Summer 1990 Digital Technicaljournal

Ethernet Performance of Remote DEC windows Applications

Table 2 Remote Disk and Lock Traffic
Profi le

Local Remote
Metric Paging Paging

N u mber 435 686
Data reads 423 423
Data writes 1 2 1 2
Pag ing reads NA 226
Pag ing w rites NA 23
Remote lock operations 502 502

D isk 1/0 size (bytes)
Mean 1 1 80 2838
Standard deviation 1 766 8290
Median 5 1 2 5 1 2
M i n i m u m 51 2 5 1 2
M axi m u m 8 1 92 491 52

Disk 1/0 i nterarrival t ime
(m i l l iseconds)

Mean 3240 2060
Standard deviation 1 6360 1 1 880
Median 61 43

Packet Size Distributions

The Ethernet packet size distribut ions appear to be
trimoclal , that is, there are three separate peaks. The
wider, more dominant peak is in t he 100 byte range.
This peak is caused by the DECoct and VAXcluster
protocol messages and the DECwindows server
messages. The other two peaks are at 600 and
1 350 bytes. They are a result of the s ingle block
(577 byte) and 2 . 5 block (1345 byte) segments gen
erated by the cluster software. The packet size dis
t ributions for local and remote paging are almost
identica l . With remote paging, boosts occur in the
fi rst (10 0 byte) and third (2 . 5 blocks) peaks. That is,
the frequency of VAXcl uster protocol messages and

Table 3 Ethernet Packet Size and
l ntera rrival T i m e Distributions

Metric
Local
Paging

Remote
Paging

Ethernet packets
N u m ber 1 47 1 1

Size (bytes)
Mean
Standard deviation
Median
M i n i m u m
M ax i m u m

lnterarrival t i m e (m i l l iseconds)
Mean
Standard deviation
Median
M i n i m u m
M ax i m u m

1 75
249

79
64

1 505

96
235

23
0

1 500

1 6902

246
368

79
64

1 505

84
220

1 9
0

1 500

Digital Technical journal Vol. 2 Nu. J Summer /<)90

(f) I-w
�
u <(CL
LL
0
a: w
CD
2
�
z

9000
8000
7000
6000
5000
4000
3000
2000

1 000
ETHERNET PACKET SIZE (BYTES)

K EY:

• DECNET PROTOCOL
D LAVC PROTOCOL

Figure 2 Ethernet Packet Size Distribution

for Local Paging

1 500

2 . 5 b lock packets is h igher because of the greater
segmentation that results from larger disk requests.
The median packet size is 79 bytes, which is much
lower than the mean, in both scenarios. The tr imo
dality of the packet size distribut ion tends to skew
the mean h igher than the median for local paging
and remote paging scenarios.

Packet lnterarrival Time Distributions
A curve-fitting exercise showed that the interarrival
time distributions for both local and remote paging
could be accurately represented by the GAMMA
probabi l ity distribution 6 The GAM!VlA distribution
has two parameters: the shape parameter and the
scale parameter. The mean is the product of the

(f)
\....

w
�
u <(CL
LL
0
a: w
CD
2 � z

1 0000
9000
8000
7000
6000
5000
4000
3000

1 000
1 000 1 500

ETH E R N ET PACKET S I Z E (BYTES)

KEY:

• DECNET PROTOCOL
D LAVC PROTOCOL

Figure 3 Ethernet Packet Size Distribution
for Remote Paging

87

DEC windows Program

(f) rLU
':>!
u <(D._
LJ_ 0
a: w CD :2
::>
z

8000

500 1 000
ETHERNET PACKET I N T E R A R R IVAL

TIME (M I L L I S ECONDS)

1 500

Figure 4 £/bernet Packet /nterarrit •al Time
Distribution for Local Paging

shape parameter and t he scale parameter, and the
varianct: i s the product of t he shape para meter and

the square of the scale parameter. The shape
parameter was fou nd to be nearly 0. 1 7 for both
lm:al pagi ng and remort: paging interarriYal t i me
dist rib n ions for this work load . We are not sure at

t h is t ime whether th is is a property of al l DECwri te

workloads or whether it hol ds true across al l
DECw indows appl ications.

T h · inrerJ.rri val t ime distributions peak in the

0 to "i O m i l l isecond range :ll1d deca · rapid ly there

after. C loser exami nat ion of the data shows t hat a

spike of approximatel y 2 mill iseconds is produced
by t he i ntersegment latency for large packets and

mass storage ·ontrol protocol (MSCP) messages 'i

Because the med ian is aga in much lower than the

mean, t his i nd icates a skew, i . e. , a long tail a.'i a result
of a few large i nterarrival t imes.

Traffic Ana�vsis
Table ·� presents the DEener and VAXcluster com

poncms of Ethernet traffic in terms of total packets

and total bytes transferred. DECnet t raffic is a
greater percentage f t otal p;Kkets than VAXduster
traffic for local and remote paging scenarios.

(f) rLU
�
u
if
LJ_ 0
a: w al :2 ::> z

500 1 000
E T H E R NET PAC KET I N T E R A R R IVAL
T I M E (MI LLISECONDS)

1 500

Figure 5 Etbemet Packet lnterarrir'al Tirne
Distribution for Remote Paging

DF.Cnet software transfers twice as man y bytes as
the VAXcluster software. However, this ratio is

inverted with remote paging.

Table ; presents the data and p rotocol compo
nents of DEener and VAX c l uster traffic The terms

data and protocol are defined in rdation to the

DEC:net and VAXcl uster software. Tl1e m ssages

passed by the applicat ion to t hese protocol layers

:tre cal led data. The conrrol messages generated by
t hese layers arc designated protocol overhead . Our

objective was to i ntegrate and present t he t raffic at a

common level (i .e . , the Ethernet) and examine the

data and protocol components of t he total traffic at
that J evt: l . For t h is workload, data packets and by tes

:tre approximately t h ree t imes more numerous than

protocol packets and bytes.

Discussion
Table 6 shows t hat the average Ethernet uti l ization
of :t s i ngle VAXstation 2000 workstation running a

t ypical remote DEC w i ndows application in a cluster
is 0. 16 percen t w ith loca l paging, a nd 0. 2'; percent
with remote paging. To verify t he accuracy of the

numbers, we measured Et hernet u t i l ization w i t h a

LA1 analyzer for the local paging scenario and

Table 4 Ethernet Traff ic : DECnet and Local Area VAXcluster Compone nts

local Paging Remote Paging
Metric (Nu mber) (Percent) (Number) (Percent)

Ethernet packets (total) 1 47 1 1 1 00 1 6902 1 00
D E C n et component 1 07 1 2 73 1 07 1 2 63
VAXcl u ster component 3999 27 61 90 37

Ethernet bytes (total) 2570772 1 00 4 1 52742 1 00
DEC net component 1 660353 65 1 660353 40
VAXcl uster component 9 1 04 1 2 35 2492404 60

88 Vol. 2 No. 3 Summer 1<)<)1) Digital Tecbnicaljournal

Ethernet Performance of Remote DEC windows Applications

Table 5 Ethernet Traffic: Data and Protocol Com ponents

Local Paging Remote Paging
Metric (Number)

Ethernet packets (total) 1 47 1 1
Data component 1 1 558
Protocol component 31 53

Ethernet bytes (total) 2570765
Data component 1 76 1 1 56
Protocol component 809609

fou nd avnage Ethernet util ization to be 0. 13 per
c<::nt, as compared to the 0 . 16 percent predicted
by the DECnet!VAXcluster emu lator. For remote
paging, avnage Ethernet ut i l ization was measured
at 0 . 2 3 p<::rcent , as compared to the 0 . 2 5 percent
shown w i t h the DECnet!VAXclus ter emulator.
These comparisons indicat<:: that the protocol
emulation , w ith all its in herent assumptions, was
reasonably successful in measuring performance
impact.

Measurements also were collected from an LAVe
located in a software group within Digital . The
workgroup had nearly 4 0 workstations connected
to two VAX 8000 disk servers on a single Ethernet
segmen t . These were monochrome or color
VA Xstation 2000 models, equipped with local
paging disks and at least 6MB of memory. This was
a software development environment where, the
activities were primari ly interactive computing
with some batch jobs ru nning on the disk servers.
All workstations ran DECwi ndows appl ications
under the VMS operating system. The most popular
DEC net applications were electronic mai l , compu
ter conferencing, and other remote DECwindows
cl ients. Some VAX cluster traffic existed , as well as
local area transport (LAT) traffic from a nu mber of
term inals connected to a terminal server.

On a typical day, the average Ethernet ut i l ization
was about 4 percent. This i s 0 . 10 percent on average

Table 6 Average Ethernet Uti l ization of an
LAVe Node Running DECwrite
Remotely

Local Remote
Paging Paging

Metric (Percent) (Percent)

Ethernet ut i l ization 0 . 1 5 0 . 25
DECnet component 0 . 1 0 0 . 1 0
LAVe component 0 . 05 0 . 1 5
Data component 0. 1 0 0 . 1 9
Protocol component 0.05 0 . 06

Digital Tecbnlcaljournal Vol. 2 No. 3 Summer 1<)90

(Percent) (Number) (Percent)

1 00 1 6902 1 00
79 1 2795 76
2 1 4 1 07 24

1 00 4 1 52757 1 00
69 3 1 88564 77
31 964 1 93 23

per workstation, compared to 0 . 16 percent in our
modeled DEC write environmenr . A lthough the data
in Table 6 shows that the average network use of a
single workstation running DEC w indows in a clus
ter is l ow, a large c luster of workstations can pro
duce peaks that are an order of magnitude h igher
than t he average. For i nstance, t he peak Ethernet
ut i l ization observed was 38 percent . Reasons for
these peaks include large files being copied over the
network or workstations entering or leaving the
cluster. A detai led analysis of peaks in Ethernet use
in actual LANs was not done hut should be consid
ered when applying the resu l ts presented in this
paper to a network capacity planning exercise.

Modeling Study
In a previous section, \Ve presented data that char
acterized the Ethernet bandwidth requirements of a
single workstation running a typical DECwindows
application executing remotely. Through the use
of a packet-level Ethernet simulation model, this
data can be used to predict network performance
when many workstations are c lustered on t he same
Ethernet segment 7 For the DECwrite workload, we
drove the simulation model to the point of satura
tion of t he Ethernet to investigate the theoret ical
maximum nu mber of workstations that a s ingle
Ethernet segment could support . We investigated
whether the Ethernet adapter at the disk server(s)
could become a bottleneck, and if so, at w hat load
the bottleneck would happen. Final ly, by vary
ing a few selected input parameters , we used the
model to conunent on the performance of different
hypothetical remote DEC wi ndows environments.

In an interactive computing environment similar
to the one provided by the DECwindows software,
it may be desirable to predict the end-to-end or

user-perceived response t imes to perform various
fu nctions, such as menu p u lldown , w indow
deiconification, or mouse movement . Such an anal
ysis would capture the effect of network util ization
at the user level . To build and validate a model at

89

DECwindows Program

this level was beyond the scope of our study. How
ever, we do include some information on the degra
dation in the overal l elapsed time of the workload
that results from con tention at the Ethernet, assum

ing that none of the other resources is a bottleneck.

Modeling Methodology

The most important characteristics of Ethernet
traffic are the packet size and packet in terarri val
time d istributions. This model accepts the cumula

t i ve distributions for packet size and interarriva l
time that are generated by the DECnet!VAXcluster
emulator and uses these distribut ions to drive t he
simul ation . The model itself is a closed queuing

model in which each workstat ion is represented
by a transaction that circul ates through the model

for the duration of rhe simulation. With each pass
through the Ethernet model, the packet size and

arrival rime are assigned to the transact ion from
rhe distribu tions that characterize the traffic of
the DEC write work load . The advantage of usi ng the
c u m u la tive d istri bution technique is that no

assu mptions are made about the Ethernet packet
size and in rerarrival time distribu tions . This model
a l lowed us to use separate distribu tions for di fferent
classes of workloads and simu late a user per formi ng

different workload sessions.

The Ethernet simu lation model deve loped for
this project captures the fu nctiona l ity and physical
princip les of the Ethernet. The model was cardu l l y

val idated against publ ished measurement results

and also against network data collected for rhe

DEC write workload H

Performance Metrics

The fol low ing metrics were used i n this study.

• Load. The load variable in the simu lat ion is

the nu mber of DEC: wi ndows workstations rhat
are act ive ly executing the remote DEC:w rite

work load . For s i mp l icity, we ass umed that the

workstations were a l l s i m ilar.

(Note : Ethernet load, packet s ize, and i nr erarrival

time distributions are the input variables to the
simu lation model . The fo l l ow i ng are ::t l l outputs

from the simu lation .)

• Ut i l ization . Ethernet uti l izat ion is computed by
d ividing the total number of bits transferred
per second by the theoretical maximum

bandwidth of rhe Ethernet (10 megabits per sec
ond) for the d urat ion of the simulation . Unless

90

otherwise specified, this metric refers to average
uti lization .

• Packet delay. The packet delay consists of the
waiting rime to acquire the channel and the
actual transmission time of the packet . Packer
delay is usual ly measured in mi croseconds as
opposed t o disk access or processor service
times that are measured in mil l iseconds. As
the load incn:ases, packet delay t hrough the

Ethernet degrades dramat ica l l y at a particular

point that we refer to as the kn<:e o f th<: curve.

• Adap ter saturation. The throughput at which t he

Ethernet adapter at the d isk serv<:r or computing
system saturates is a crit i cal performance metric
in this env i ronment . We consider only on<: adap
ter i n this study, rhe DEBN I , which is avai lable

on the high-end VA X computers. Extendi ng the
analysis ro other adapters is eas i l y done. The sat
uration threshold is representcd in t<:rms of the
Ethernet util iza t ion level at which the adap ter

saturates for a given mean packet size rath<:r than

the usual packets or megabytes per second .

Modeling Results: DECwrite Workload

We first addressed t he question of how many

workstations actively run n i ng DECwrite appl ica

tions remotely on a client computing system can be
supported on a s ingle Ethernet segmen t .

We assumed that the system o n which these
DECwrite cl ient processes would execute had an
i n fi n ite capacity. In other words, content ion for
system resources (e. g. , C Pl' , mcmory and d isk

J/0) among the DEC:write c l ients was not i ncorpo

rated i n the model . Because any such contention

woul d reduce network traffic intensity, we pre
sented an upper-bou nd or worst-cas<.: analysis . We
also assumed that there was no comm unication

among the workstations, which would he rrue
when a l l app l i ca tions were run rc:mo tely. The sim

ulation was run for both local paging and remote
paging scenarios.

Figure () shows that the average: Ethernet uti l iza
tion curves increase with load and then !<:vel off at
600 workstations (60 percent ut i l ization) w i th loca l

paging and 400 workstations (69 pcrcmt mil iza
tion) with remote pagi ng. The DEBNI threshold in

Figure 6 a lso shows that the Ethernet adapter wou ld
saturate at :)')0 workstat ions with local paging and
at 300 workstations w irh remote paging. In Fig
ure 7, t he average packet delay cu rves ind icate that

the knee in the curve is at a much lower load of :)00

Vol. 2 No . .i Summer 1990 Digital Technicaljournal

Ethernet Performance of Remote DEC windows Applications

workstations with local paging and 200 work
stations with remote pagi ng. Also indicated in this
figure are the poi nts at which network congestion
causes the elapsed time for the workload to degrade
by 10 percent and 100 percent .

We used the point at which packet delay started
to degrade, in Figure 7, as the l imi t ing factor. With
th is criterion, the theoretical size of an LAVe system
in a typical remote DECwindows environment
would be about 300 active workstations, assuming
all of the satel l i tes have local paging disks and
steady-state operation. Further, the d is k server and
DECwrite cl ients might need to be distributed over
multiple systems to obtain the requi red processing
power especial ly if lower capacity Ethernet adap
ters are being used . (Note: These are average num
bers and the user-perceived response time might
degrade if large amounts of data are transferred
often or if many nodes frequently transition in and
out of the c luster.)

Modeling Results: Performance Predictions

We used the simulation model to predict Ethernet
performance over a range of DEC windows environ
ments by varying DECwrite client packet size and
Ethernet packet interarrival t ime individual ly and
together. The anal ysis was done for the local paging
case only. The two assumpt ions made in the p revi
ous section were used here also. We replaced the
cumulative frequency distribut ion tables with the
GA MMA distribut ion to generate packet interarrival
time samples in the simulation. The mean and stan
dard deviation of packet interarrival time, which
arc direct functions of the input parameters of
the GAMMA d istribution, could be varied more

tu 40
z
a: w
J: fw 0

KEY

200 400 600 BOO
LOAD (NUMBER OF WORK STATIONS)

D LOCAL PAG I N G
0 REMOTE PAGING
t:; DEBNI : LOCAL PAGING
\1 D E B N I : RE MOTE PAGING

Figure 6 Auerage Ethernet Utilization
versus Load

1 000

Dfgllal Tecbnfcaljournal Vol. 2 No. 3 Summer /')<)0

(jj §1 200
0 u � 1 50

1 000
LOAD (N U M BER OF WORK STATIONS)

KEY:

D LOCAL PAGING
0 R E MOTE PAGING
t:; 10 PERCENT DEGRADATION
\1 1 00 PERCENT DEGR ADATION. LOCAL PAG I N G
e 1 00 P E R C E N T DEGRADATION, R EMOTE PAGING

Figure 7 A fie rage Packet Delay flersus Load

conven ient l y than with the distribution tables. A
cal ibration exercise showed that th is method d id
nor affect accuracy.

Varying Client Packet Size

We assumed that if we replaced the DEC write client
with another sim ilar DEC windows appl ication , the
DECwindows cl ient packet size distribution would
change. However, t he server packet size d istribut ion
would not because user activity would be s imilar.
We also assumed that the remote l/0 size distribu
tion w::1s t he same as for DECwri tc T his is a \'alid
assumption because the remote 1 /0 traffic gener
ated by the processes on the workstations is not
st rongl y correlated to t he remote DECwindows
client activity.

We varied DECw rite c l ient packet size by twice
and four t imes as much and regenerated the Ether
net packet size distribut ions with the DECnet and
VAXcluster emulator. However, we did not alter the
overa l l packet i nterarrival time distribut ion . As a

resu l t , we captured the effects of the addit ional
segmentation and protocol messages generated by
the larger client packets in the new overal l traffic
size distributions.

Figure 8 shows average Et hernet uti l izat ion .
Figure 9 i l l ustrates average packet delay against
increasing load for this workload and workloads
t hat were two and four t imes larger t han the original
DEC write cl ient packet sizes. The Ethernet ut i l iza
t ion leveled at higher values as the packet size
increased. Degradation in average packet delay is
the l imit ing cri terion in th is scenario, since it occurs
before other metrics start to degrade. Average
packet delay begins to degrade at approximately

9 1

DECwindows Program

200 workstations at tw ice the size and 160 work
stations at four t imes the size. Ethernet and adapter
saturation occurs at much h igher loads .

Varying Ou(..orall Packet lntemrriua! Time at the
Ethernet We wanted to know what the perfor
mance impact would be if we executed multiple
remote DECwindows applications simultaneousl y
on the same workstation . For example, a user could
be s w i tc h i ng frequenrly between two open
DECwrite documents or between VMS mail and
notes applications active on the same workstat ion .
The model was used to pred ict the impact on net
work uti l ization and packet delay of the i ncreased
traffic intensity from this activity.

We simu lated the effect of multiple active: c l ients
by using smaller i nterarrival ti mes. c;At'•IMA distribu
tions of the same shape but with 50 percent and
2'5 percent of the mean interarrival time for the base
workload were used . We a lso assumed that the
coefficient of variance of packet inrerarrival time
remai ned constant across environments. We com
puted this factor for the DEC write workloJd and
scaled the standard deviations that were input w
the GAMMA distributions for the sim ulated multiple
active cl ients.

Figure lO depicts average Ethernet uti l ization.
The DECw rite packet interarrival time is assumed to
be the base. The average packet delay against num
ber of workstations and hypothetical workloads
wi th 50 percent and 25 percent of rhe DEC:wri re
packer intcrarrival time is shown in Figure 1 1 .

Degrada tion i n average packer delay is aga in the
l imit ing criterion in th is scenario because it occurs
before the other metrics start to degrade. Average

z 1 00
Q f-<{
�
-'

f= ::::l
f-w z a: w I f-w

LOAD (N U M B E R OF WORK STATIONS)

K E Y :

0 B A S E SIZE, DECW R I T E
0 B A S E S I Z E x 2
6 BASE SIZE x 4

1 000

Figure 8 Varying Client Packet Size -A uerage
Ethernet Utilization uersus Load

� 200 z 0 u � 1 50
-'
-'

� 1 00
?;:
Ld 50 Q
f-w � u 0 <{ 0..

200
LOAD (N U M B E R OF WORKSTATIONS)

KEY:

0 BASE SIZE, DECW R I T E
0 BA S E S I Z E x 2
6 BASE S I Z E x 4

1 000

Figure 9 Varying Client Packet Size - A uerage
Packet Delay uersus Locu:.t

packet delay begins lO degrade at about 300 work
stations for the base DECwrite workload. Degrada
tion begins at 100 and 50 work;,tations for the
50 percent and 2 5 percent cases, respectively.
Ethernet saturation occurs at much h igher loads.
Because the packet size is held constant in this exer
cise, the Lthernet saturates at the same level of use,
near ly 60 percent . However, that level is reached
with fewer workstations as inrerarrival t ime is
decreased . We found the Ethernet adapter capacity
at t he disk server not to be a performance bottle
neck across all variations i n the packet interarrival
t imes considered .

Varying Client Packet Size and Jnterarn·val Time
We combi ned the variations in client packet size and
interarrival time from the base DECw ritc.: case to

z 1 00
Q f-<(80
�
-'

f= ::::l
f-w z a: w I f-w 0

LOAD (N U M B E R OF WORKSTATIONS)

K E Y :

0 BASE IN TERARRIVAL T I M E , DECWRITE
0 50 PERCENT OF BASE I N T E R A R R IVAL TIME
6 25 P E R C ENT OF BASE I N T E R A R R IVAL T I M E

800

Figure 10 Varying Ethernet Packet lnterarriual
Time - A verage Ethernet
Utilization versus Locut

Vol. 2 No 3 Summt>r 1990 Digital Tecbn icaljournal

Ethernet Performance of Remote DEC window s Applications

� 1 20
z
8 1 00
w (/) BO :J
=!
� 60
>-<{ 40 _j w
Cl 20 1-w :.:: u 0 <{ ()_

KEY:

400 500 600
LOAD (NUMBER O F WORK STATIONS)

0 BASE I N T E R A R R IVAL T I M E . DECWRITE
0 50 PERCENT OF BASE INT E RA R R IVAL TIME
6 25 PERCENT OF BASE I N T E R A RR IVAL T I M E

700 800

Figure I 1 Varying Packet Jnterarrival Time -
Average Packet Delay versus Load

synthesize four more h ypothetical work loads. Fig
ure 12 shows the average Ethernet ut i l ization, and
Figure 13 shows the average packet delay against
increasing load . Once again, degradation in average
overall packet delay is the l imit ing criterion.

The resu lts of t he modeling study presented
in th is section cou ld be used by an experienced
network consu ltant to size local area VAX cl uster
systems running a range of differen t remote
DEC windows applications.

Conclusions
We have presented a methodology that a l lows us
to characterize the Ethernet traffic generated by

z 1 00 0
� BO N
:J f= 60
:::>
1-w
z
a: w
I 1-w

KEY:

0 200 400 600
LOAD (N U M B E R OF WORKSTATIONS)

0 BASE SIZE AND INTERAR RIVAL T I M E . DECWRITE

BOO

6 BASE SIZE x 2 AT 25 PERCENT OF BASE INTERARR IVAL TIME
0 BASE SIZE x 2 AT 50 PERCENT OF BASE INTERARR IVAL TIME
e BASE SIZE x 4 AT 25 PERCENT OF BASE I N TERARR IVAL T I M E
\7 BASE SIZE x 4 A T 50 PERCENT OF BASE INTERARR IVAL T I M E

Figure 12 Vmying Client Packet Size and
Ethernet lnterarriual Time
A uerage Ethernet Utilization
uersus Load

Digital Techllicaljournal Vol 2 No. 3 Summer 19')0

iJi
Cl 200 z
0 u � 1 50
:J _J
� 100
� _J w 50 Cl
1-w :.::
u 0 ct 200 600

LOAD (NUMBER OF WORKSTATIONS)

BOO

KEY:

0 BASE SIZE AND INTERARR IVAL TIME, DECWRITE
6 BASE SIZE x 2 AT 25 PERCENT OF BASE IN TERAR RIVAL TIME
0 BASE SIZE x 2 AT 50 PERCENT OF BASE IN TERARR IVAL TIME
e BASE SIZE x 4 AT 25 PERCENT OF BASE INTERAR R IVAL TIME
\7 BASE SIZE x 4 AT 50 PERCENT OF BASE INTERARRIVAL TIME

Figure 13 Varying Client Packet Size and
Ethernet lnteranit;af Time

A verage Packet Delay uersus Load

remote DECwindows app l ications executing on
workstations in a local area VA Xcl uster system. The
traffic generated by a typica l DECwi ndows applic:t
tion was analyzed in det a i l , with some in teresting
prelim inary results. Our model ing study a l lowed us
w predict t he l im it ing system configurations and
extend the analysis to other workloads by varying
some of the input traffic parameters. We concluded
that t he Ethernet em support large configurations
running DECwindows applications without aver:J.ge
performance degrading sign ificant ly.

A detai led performance eval uation of any com
plex system invariably produces new insights about
the way the system behaves and performs. Some of
these insights may be ancil lary to the main goals of
the study. For example, this project discovered a
performance improvement to the DECwi ndows
systems software that significant ly decreases the
number of disk !lOs requi red for font file access.
The effect of specific system tuning parameters on
remote lock ing traffic was also calibrated , and the
performance of the recently introduced and more
powerful DEBNI Ethernet adapter was examined in
system environments.

This study could be extended in several ways .
Other DECwi ndows applications, such as e lectronic
mail and computer conferencing. cou ld be charac
terized using the methodology discussed in th is
paper. Bursts in DEC windows traffic patterns cou ld
be further investigated through analyt ic techn iques ,
for example, packet train models. Finally, the tools
and protocol emulation sui te cou ld be extended to
i nclude Digita l 's dist ributed file service (VAX DFS),

9.3

DECwindows Program

and local area transport (LAT), as well JS other
network protocols.

This paper presems a checkpoiming study of a
new tech nology. By cxtending this work in some of
the directions proposed, we would increase our
understanding of the network pcrformancc issues
Jssociated with the X Window System computing
paradigm

Acknowledgments
We wish to thank a l l those w ho made va luable
contributions to this project . We would particularly
l ike to acknowledge Mike Fox , VMS VA Xcluster
Systems Engineering Manager, for sponsoring this
study; Ken Miller, formerly of HOSE Performance
Engineering, for developing the DECwrite work
load used in this project; K . K . Ramakrishnan,
D istributed Systems Architecture and Performance,
for providing information regard ing Ethernct per
formance; and our colleagues in the �1S Systems
Analysis and Availabi l i ty Engineering and BOSE

Functional Analysis G roups for providing useful
suggestions Jt different stages of the project.

References

I . R. Scheitler et a t . , X Window System C Library
and Protocol Reference (Bed ford : Digital Press ,
1988).

94

2 . M . Marathe and W. Hawe, " Prcdicting Ethernet
Capac ity - A Case Study," Proceedings of the
Computer Performance Emluation User's
Group (1982): 37'5-387.

3. W. Adams, " LA N Performance for Distributed
Manufacturing Applications," !SA '89 Trade
Conference Paper (October 22-27, 1989) :
693-702.

4 . R. G ussella, "The Analysis of Diskless Worksta
tion Traffic on an Ethernet ," Report No. UCBI
CSD 87/379 Computer Sciences Diuision (EECS)

(Berkeley: University of Cali forniJ, November
1987).

') M. Fox and] . Ywoskus, " Local A rea VAX cluster
Systems , ' ' Digital Technicaljournal, vol . I, no. 5
(September 1987) : 56-68.

6. A. Law and D. K<::l ron, Simulation Modeling

and Analysis (New York : McGraw-Hi l l Book
CompJny, 1982).

7. V. Fernandes et a ! . , " Some PerfonnJnce Models
of D istributed Systems ," Proceedings oftbe CMG
XV International Conference (December, 1 984) :

30-37

H. D. Boggs et a! . , " Measured C::�pacity of an
Ethernet : M yths and Real ity," Proceedings of
S!GCOMM '88 (ACM SIGCOM M , 1988) : 222-2 34 .

Vol. 2 No. 3 Summer 1')90 Digital Tecbntcaljountal

I Further Readings

The D igital Technical Journal
publishes papen; that explore
the techm Jlogical foundations
ojDigital s major products.
Each jou mal focuses on at least
one product area and presents
a compilation of papers U1ritten
by the enginee1·s who developed
the product. The content fl >r the
journal is selected by the journal
Aduismy Rom·d.

Topics covered in previous issues of the Digital

Technical}ournal an: :1s fol lows:

VAX 8600 Pr ocessor
Vol. I, No. I, A ugust 1<)85

Micro VAX I I System
vbl. I, No. 2, March lr.J86

Networ king Pr oduc t s
Vol. I , No. 3, September N86

VAX 8800 Family
vbl. I, No. 4, Febi'U{//JI 1()87

VAX cluster Systems
l.f>l. I, No. 5, September 1()87

Software Productivity Tools
\f)/. I, No. 6, FebrUCIIJ' 1988
CVAX-based Systems
If>!. I, No. 7, August N88
Storage Technol ogy
Vol. I, No. 8, Febntm)' N8<J

Distr ibuted Systems
\f)/. 1, No. 9, june 198r.J

Compound Document Architect ure
\f)/. 2, No. 1 , Winter 1990

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring /<J<JO

Digital Tecbnicaljournal Vol. l No . . 1 Sl/111111('1' 11.)')0

Sub�cript ions to the Digital Technical journal are
av:1 i lable on a yearly, prepaid basis. The sub�crip-
tion rate is £40.00 per year (four issues) . Requests
should be sent to Cathy Ph i ll ips, Digital Equipment
Corporat ion. ML01 -)IB6H, 1 4 6 Main Street , Maynard ,
MA 0 1754 , l . S .A . Subscriptions must be paid in lJ . S .
dol lars, a n d checks shou ld b e made payable to Digital
Equipmem Corporation .

Single copies and past issues of the Digital
Technical journal can be onkred from Digit:.tl Press
at a cost of S 1 6.00 per copy.

Readings Related to Thjs Issue
Listed below are articles and books that provide
further reading on some of the topics covered in
this issue . In addition, three books on rebted topics
wi l l be avai lable from Digital Press in the ncar
future. (See D igital Press section .)

" Add ing a Dimension to X "
R:1ndi j. Rost, UNiX Re11ieu� vol . 6 , no . 10 (October
1 9HH): 50-59

" P EX Bri ngs Networking to 3-D Graphics"
R:1mli). Rost and Je ffrey 0. Friedberg, Computer

Graphics Reuiew, vol . 5 , no. 5 (September/October
1 988): 1 3- 1 6

"The Development of P E X . a 3D G r:1ph ics Exten
sion to X I I "
Wi l l iam H . Cl ifford, J r. , John f . McConnel l , and

Jeffrey S. Saltz, Proceedings of EUROGRA PHICS
'88, Elscviers Science Publ ishing Co. (New York :
September 1 988): 2 1 -29

" User Interface Consistency in the DEC windows
Program"
Michael Good, Proceedings of the Human Factors

Sociel){)2nd Annual Meeting, Vol . 1 (Santa Monica:
1 9HH): 2 5 9-263

" Developing the X U ! Style"
Mich:1el Good, Coordinating User lnteJjacesfor
Consisteruy(Academic Press, 1 989): 75-7H

" User-derived Impact Analysis as a Tool for
Useabi l i ty Engineering"
Michael Good et al . , Proceedings CHI '86 Human
Factors in Computing Systems (New York: 1986):
24 1 -246

95

Furtber Readings

OSF!JJ1otiJStyle Guide
Open Software Fou ndation (Prentice H a l l ,

ISBN 0-13-64 04 9 1 -X)

OSF!J'v!otlf Used; Guide

Open Softwan: Foundation (Prent ice Hall ,

ISBN 0-13-640509-6)

OSHMottf Programmer's Reference

Open Software Foundation (Prentice Hal l ,

ISBN 0- 13-6405 1 7-7)

OSF!lHotif Programmer's Guide
Open Software Fou ndation (Prent ice H a l l ,

I S B N 0- 13-64052 5-H)

OSF!Motif Application Environment SjJeClficalions

(A ES)

Open Software Fou ndat ion (Prentice Hal l ,

ISBN 0-13-64 04 113-9)

The X Windmt ' .�),stem, Progmmming witb Xt

Douglas A . Young, OSF/Moti f edit ion (Prentice

H a l l , ISBN 0-1 3-4 97074 -8)

Digital Press

Digital Press is t he book publishing group of Digital

Equipment Corporat ion . Digital Press publ ishes

books international l y for computer professionals

w ho special ize in the areas of networking and data

commun ication , artificial intel l igence, com ruter
integrated manufactur i ng, w i ndowing systems, and

the VMS operat i ng system . Copies of the new t i t les

now ava i l able from D igita l Pn.:ss that are listed below
can be ordered by w ri t i ng to Digital Press, Dep:ut

ment DTJ . 1 2 Crosby Drive, Bed ford , MA 01730, l i . S A .

UNIX for VMS Users

P h i l ip E. Bourne, 1990 (S28. 95)

The VMS User's Guide
James F. Peters I l l and Patrick J. Holmay, 1990
($28 .95)

A Beginner's Guide to VAX/VMS Utilities and
Applications

Ronald M. Sawey and Troy T Stokes, 1989 (S26 . 95)

Working with WPS-PLUS
Charlotte Temple and Dol ores Cordeiro, 1990
(S24 .95)

Information Technology Standardization:
Theory, Practice, and Organizations

Carl F. Cargi l l , 1989 ($24 .95)

The Digital Guide to Software Development
Corrorate User Publication G roup of Digital Equip

ment Corporation, 1990 (S27.9'5)

96

VMS Internals and Data Structures: Version 5
Update X press

Ruth E. Goldenberg and Lawrence J Kenah, Vol

umes I, 2, 3, 4, 5, 198<), JC)<JO, 1991 (S)5 .00 each)

VAXNMS I nternals and Data Structur s:

Version 4.4

Lawrenc<: J Kenah, Ruth E. Goldenberg , and Simon

F. B:ue, 19H8 (S75.00)

Computer Programming and Architecture:

The VAX, Second Edition
H<:nry M . Levy and Richard H . Eckhous<:. Jr. , 1989
(538.00)

Using MS-DOS Kermit: Connecting Your PC to
the Electronic World
Christ i n<: M . Gianone, 1990 (529.95 with Kermi t

disket te)

Technical Aspects of Data Communication,
Third Edition

John E. McNamara, 1 98H (S4 2 .00)

The Matrix: Computer Networks and

Conferencing Systems Worldwide

John S Quarterman, 1990 (S--1 9.95)

The User's Directory of Computer Networks
Tracy L. LaQuey, February 1990 (S34 .9'5)

Fifth Generation Management: Integrating

Enterprises Through Human Networking
Charles M . Sa,·age, 1990 (528.95)

Common LISP: The Language, Second Edition

Guy L. Stee le Jr. , 1990 (S3H .95 in soft cover, S -16 .95
i n c loth cover)

LISP Style and Design

Mol ly M . M i l ler and Eric Renson, 1990 (S26. 95)

ABCs of MUMPS: An Introduction for Novice

and Intermediate Programmers

Richard F. Walters, 1989 ($25 .95)

Fort hcoming from Digital Press i n the near future arc

X Window System, Second Edition

Robert Scheifler and james Gettys (due j u l y 1990,
$49 .95)

X W indow System Toolkit: The Complete

Programmer's Guide and Specification
Paul Asente and Ralph Swick (due August 1 990,
S44 .95)

X/MOTIF Quick Reference Guide

Randi Rost (due October 1990, S24 .95)

Software Design Techniques for Large Ada

Systems
W i ll iam Byrne (due September 1990, S44 .95 hard

cover)

Vol. 2 No. j Summer /'J'JII Digital Technical journal

-

'� DECWrlttt V1 .0: likertSdub1 :[COl

Fit dit rth Typ

. ·-........... · .

•

•

ISSN 0898-90 1 X

Printed in U.S.A. EY-E756E-DP/90 06 02 26.0 BUO Copyright 1990 Digital Equipment Corporation All Rights Reserved
;

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the DECwindows Architecture
	The Sample X11 Server Architecture
	Development of the XUI Toolkit
	The DECwindows User Interface Language
	The Evolution of the X User Interface Style
	PEX: A Network-transparent Three-dimensional Graphics System
	XDPS: A Display Postscript System Extension for DECwindows
	The Development of DECwindows VMS Mail
	Ethernet Performance of Remote DECwindows Applications
	Further Readings
	Back cover

