
DEC aSP/1

mamaoma , Writing Device Drivers
for 'the SCSI/CAM Architecture Interfaces

Part Number: AA-PS3G8-TE

DEC OSF/1

Writing Device Drivers for the
SCSI/CAM Architecture Interfaces
Order Number: AA-PS3GB-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This manual contains information on how to write device drivers for the
SCSI/CAM Architecture interfaces.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sub licensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DEC station, DECsystem, DECUS, DECwindows, DTIF, LinkWorks, MASSBUS, MicroVAX,
Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS,
V AX, V AXstation, VMS, XUI, the AXP logo, the AXP signature, and the DIGITAL logo.

Open Software Foundation, OSF, OSF/l, OSFlMotif, and Motif are trademarks of the Open
Software Foundation, Inc. UNIX is a registered trademark licensed exclusively by XlOpen
Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

Audience XXllI

Organization xxiii

Related Documentation ... xxv

Reader's Comments

Conventions

1 SCSI/CAM Software Architecture

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Overview

CAM User Agent Device Driver .. .

SCSI/CAM Peripheral Device Drivers

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

SICA Common Device Driver Modules
SICA Generic Device Driver Modules
CAM SCSI Disk Device Driver Modules
CAM SCSI Tape Device Driver Modules
CAM SCSI CD-ROM/AUDIO Device Driver Modules

SCSI/CAM Special I/O Interface

The SCSI/CAM Configuration Driver

CAM Transport Layer (XPT)

SCSI Interface Module Layers (SIM)

XXVI

xxvii

1-2

1-4

1-5

1-6
1-6
1-6
1-6
1-6

1-6

1-7

1-7

1-7

2 CAM User Agent Modules

2.1

2.2

User Agent Introduction

User Agent Error Handling

2.3 User Agent Data Structures

2.3.1 The UAGT_CAM_CCB Data Structure

2.3.1.1 The uagt_ccb Member
2.3.1.2 The uagt_ccblen Member
2.3.1.3 The uagt_buffer Member
2.3.1.4 The uagt_buften Member
2.3.1.5 The uagt_snsbuf Member
2.3.1.6 The uagt_snslen Member
2.3.1.7 The uagt_cdb Member
2.3.1.8 The uagt_cdblen Member
2.3.1.9 The uagt_ftags Member .. .

2.3.2 The UAGT_CAM_SCAN Data Structure

2-1

2-2

2-2

2-2

2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-4
2-4

2-4

2.4 User Agent Routines .. 2-5

2.5

2.4.1 The uagt_open Routine .. 2-5
2.4.2 The uagt_close Routine ... 2-5
2.4.3 The uagt_ioctl Routine .. 2-5

Sample User Agent Drivers

2.5.1 Sample User Agent Driver Inquiry Program

2.5.1.1
2.5.1.2
2.5.1.3
2.5.1.4

2.5.1.5

2.5.1.6
2.5.1.7
2.5.1.8
2.5.1.9
2.5.1.10
2.5.1.11

The include Files and Definitions Section
The Main Program Section
The User Agent Open Section
Filling in XPT_SCSI_IO Request CCB_HEADER
Fields
Filling in INQUIRY Command CCB_HEADER
Fields
Filling in the UAGT_CAM_CCB Fields
Sending the CCB to the CAM Subsystem
Print INQUIRY Data Routine
Print CAM Status Routine

Sample Output for a Valid Nexus
Sample Output for an Invalid Nexus

2-6

2-6

2-6
2-7
2-8

2-8

2-9
2-10
2-11
2-12
2-14
2-16
2-16

ivContents

2.5.1.12 Sample Shell Script 2-17

2.5.2 Sample User Agent Scanner Driver Program 2-17

2.5.2.1 Scanner Program Header File 2-17
2.5.2.2 The include Files Section 2-18
2.5.2.3 The CDB Setup Section 2-19
2.5.2.4 The Definitions Section ... 2-20
2.5.2.5 The Main Program Section 2-20
2.5.2.6 The Nexus Conversion Section 2-22
2.5.2.7 The Parameter Assignment Section 2-23
2.5.2.8 The Data Structure Setup Section 2-24
2.5.2.9 The Window Parameters Setup Section 2-26
2.5.2.10 CCB Setup for the DEFINE WINDOW Command 2-28
2.5.2.11 The Error Checking Section 2-30
2.5.2.12 CCB Setup for the READ Command 2-33
2.5.2.13 The Read and Write Loop Section 2-34
2.5.2.14 The Local Function Definition Section 2-36

3 SICA Common Modules

3.1

3.2

3.3

Common SCSI Device Driver Data Structures 3-1

3.1.1 Peripheral Device Unit Table .. 3-1
3.1.2 Peripheral Device Structure .. 3-2

3.1.3
3.1.4
3.1.5

3.1.2.1 The pd_dev Member ... 3-3
3.1.2.2 The pd_spec_size Member 3-3

Device Descriptor Structure
Mode Select Table Structure
Density Table Structure .. .

3.1.5.1 The den_blocking Member

3-3
3--4
3-5

3-5

3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure. 3-5

3.1.6.1 The pws_flink Member ... 3-6
3.1.6.2 The pws_blink Member 3-6
3.1.6.3 The pws_ccb Member 3-6

Common SCSI Device Driver Macros

Common SCSI Device Driver Routines

3-6

3-8

Contents v

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5
3.3.6

3.3.7

3.3.8

vi Contents

Common I/O Routines .. .

3.3.1.1
3.3.1.2
3.3.1.3

The ccmn_init Routine
The ccmn_open_unit Routine
The ccmn_close_unit Routine

Common Queue Manipulation Routines

3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5

The ccmn_send_ccb_wait Routine
The ccmn_rem_ccb Routine
The ccmn_abort_que Routine
The ccmn_term_que Routine

Common CCB Management Routines

3.3.3.1 The ccmn_get_ccb Routine
3.3.3.2 The ccmn_rel_ccb Routine
3.3.3.3 The ccmn_io_ccb_bld Routine
3.3.3.4 The ccmn_gdev _ccb_bld Routine
3.3.3.5 The ccmn_sdev _ccb_bld Routine
3.3.3.6 The ccmn_sasy _ccb_bld Routine
3.3.3.7 The ccmn_rsq_ccb_bld Routine
3.3.3.8 The ccmn_pinq_ccb_bld Routine
3.3.3.9 The ccmn_abort_ccb_bld Routine
3.3.3.1 0 The ccmn_term_ccb_bld Routine
3.3.3.11 The ccmn_bdr_ccb_bld Routine
3.3.3.12 The ccmn_br_ccb_bld Routine

Common SCSI I/O Command Building Routines

3.3.4.1
3.3.4.2
3.3.4.3

The ccmn_tur Routine .. .
The ccmn_start_unit Routine
The ccmn_mode_select Routine

Common CCB Status Routine
Common Buf Structure Pool Management Routines

3.3.6.1 The ccmn_get_bp Routine
3.3.6.2 The ccmn_rel_bp Routine

Common Data Buffer Pool Management Routines

3.3.7.1 The ccmn_get_dbuf Routine
3.3.7.2 The ccmn_rel_dbuf Routine

Common Routines for Loadable Drivers

3.3.8.1 The ccmn_check_idle Routine

3-9

3-10
3-10
3-10

3-11

3-11
3-12
3-12
3-12
3-12

3-13

3-13
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-16
3-16

3-16

3-17
3-17
3-17

3-17
3-18

3-18
3-18

3-19

3-19
3-19

3-19

3-19

3.3.9

3.3.8.2
3.3.8.3 The ccmn_attach_device Routine

Miscellaneous Common Routines

3.3.9.1
3.3.9.2
3.3.9.3

The ccmn_DoSpecialCmd Routine
The ccmn_SysSpecialCmd Routine
The ccmn_errlog Routine

4 SICA Generic Modules

4.1

4.2

4.3

4.4

Prerequisites for Using the CAM Generic Routines

4.1.1
4.1.2
4.1.3

Ioctl Commands
Error Handling
Kernel Interface

Data Structures Used by Generic Routines

4.2.1

4.2.2

The Generic-Specific Structure .. .

4.2.1.1 The gen_flags Member
4.2.1.2 The gen_state_flags Member ~
4.2.1.3 The gen_resid Member .. .

The Generic Action Structure

4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6

The act_ccb Member
The act_reCerror Member
The act_fatal Member .. .
The act_ccb_status Member
The act_scsi_status Member
The act_chkcond_error Member

Generic I/O Routines

4.3.1 The cgen_open Routine .. .
4.3.2 The cgen_c1ose Routine
4.3.3 The cgen_read Routine
4.3.4 The cgen_write Routine .. .
4.3.5 The cgen_strategy Routine .. .
4.3.6 The cgen_ioctl Routine

Generic Internal Routines

3-20
3-20

3-20

3-20
3-21
3-21

4-1

4-1
4-2
4-2

4-2

4-2

4-3
4-3
4-4

4-4

4-4
4-4
4-5
4-5
4-5
4-5

4-5

4-6
4-7
4-7
4-7
4-7
4-7

4-8

Contents vii

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

The cgen_ccb_chkcond Routine
The cgen_done Routine .. .
The cgen_iodone Routine
The cgen_async Routine
The cgen_minphys Routine
The cgen_slave Routine .. .
The cgen_attach Routine

4-8
4-9
4-9
4-9

4-10
4-10
4-10

4.5 Generic Command Support Routines ... 4-10

4.5.1 The cgen_ready Routine .. 4-11
4.5.2 The cgen_open_sel Routine 4-11
4.5.3 The cgen_mode_sns Routine 4-11

5 CAM Data Structures

5.1

5.L

5.3

5.4

CAM Control Blocks

5.1.1 The CCB_HEADER Structure

5.1.1.1
5.1.1.2
5.1.1.3

The my_addr and cam_ccb_len Members
The cam_func_code Member
The cam_status Member

I/O Data Structure

5.2.1
5.2.2

The CCB_SCSIIO Structure .. .
The CDB_UN Structure .. .

Control CCB Structures

5.3.1 The CCB_RELSIM Structure .. .
5.3.2 The CCB_SETASYNC Structure
5.3.3 The CCB_ABORT Structure
5.3.4 The CCB_RESETBUS Structure
5.3.5 The CCB_RESETDEV Structure
5.3.6 The CCB_TERMIO Structure

Configuration CCB Structures .. .

5.4.1 The CCB_GETDEV Structure
5.4.2 The CCB_SETDEV Structure
5.4.3 The CCB_PATHINQ Structure .. .

viii Contents

5-1

5-2

5-2
5-2
5-3

5-5

5-5
5-6

5-6

5-6
5-7
5-7
5-7
5-8
5-8

5-8

5-8
5-9
5-9

6 SCSIICAM Configuration Driver Modules

6.1

6.2

6.3

Configuration Driver Introduction

Configuration Driver XPT Interface

Configuration Driver Data Structures

6-1

6-1

6-2

6.3.1 The Configuration Driver Control Structure ... , 6-2

6.3.1.1 The ccfg_flags Member 6-2
6.3.1.2 The inq_buf Member 6-2

6.3.2 The CAM Equipment Device Table 6-2

6.3.2.1 The edt Member ., 6-3
6.3.2.2 The edt_scan_count Member 6-3
6.3.2.3 The edt_flags Member 6-3

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure 6-3

6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4

The cpd_name Member
The cpd_slave Member
The cpd_attach Member
The cpd_unload Member

6-3
6-4
6-4
6-4

6.4 The cam_config.c File .. 6-4

6.5 Configuration Driver Entry Point Routines 6-5

6.5.1 The ccfg_slave Routine ... 6-5
6.5.2 The ccfg_attach Routine .. 6-6
6.5.3 The ccfg_action Routine .. 6-6
6.5.4 The ccfg_edtscan Routine .. 6-6

7 CAM XPT 1/0 Support Routines

7.1 The xpt_action Routine .. 7-1

7.2 The xpt_ccb_alloc Routine ... 7-1

7.3

7.4 The xpt_init Routine

7-2

7-2

Contents ix

8 CAM SIM Modules

8.1

8.2

SIM Asynchronous Callback Handling

SIM Routines Used by Device Driver Writers

8.2.1
8.2.2

The sim_action Routine .. .
The sim_init Routine .. .

8-1

8-2

8-2
8-2

8.3 Digital-Specific Features of the SIM Layers 8-3

8.3.1 SCSI 110 CCB Priorities .. 8-3
8.3.2 SCSI 110 CCB Reordering 8-4

9 SICA Error Handling

9.1

9.2

CAM Error Handling Macro

CAM Error Logging Structures

9-1

9-2

9.2.1 The Error Entry Structure .. 9-2

9.2.1.1 The enCtype Member 9-2
9.2.1.2 The encsize Member .. 9-2
9.2.1.3 The enCtotal_size Member 9-2
9.2.1.4 The enC vers Member 9-2
9.2.1.5 The ent_data Member ... 9-3
9.2.1.6 The ent_pri Member ... 9-3

9.2.2 The Error Header Structure

9.2.2.1
9.2.2.2
9.2.2.3
9.2.2.4
9.2.2.5
9.2.2.6
9.2.2.7

The hdr_type Member .. .
The hdr_size Member .. .
The hdr_class Member
The hdr_subsystem Member
The hdr_entries Member
The hdr_list Member
The hdr_pri Member .. .

9-3

9-3
9-3
9-4
9-4
9-4
9-4
9-4

9.3 Event Reporting .. 9-4

9.3.1 The uerf Utility.. 9-4

9.4 The cam_logger Routine 9-5

x Contents

10 SICA Debugging Facilities

10.1 CAM Debugging Variables ... 10-1

10.1.1 The camdbg_ftag Variable .. 10-1
10.1.2 The camdbg_id Variable .. 10-3

10.2 CAM Debugging Macros .. 10-3

10.3 CAM Debugging Routines .. 10-4

10.3.1 CAM Debugging Status Routines 10-5

10.3.1.1
10.3.1.2
10.3.1.3
10.3.1.4

The cdbg_CamFunction Routine
The cdbg_ CamStatus Routine
The cdbg_ScsiStatus Routine
The cdbg_SystemStatus Routine

10-5
10-5
10-6
10-6

10.3.2 CAM Dump Routines .. 10-6

10.3.2.1 The cdbg_DumpCCBHeader Routine 10-7
10.3.2.2 The cdbg_DumpCCBHeaderFlags Routine 10-7
10.3.2.3 The cdbg_DumpSCSIIO Routine 10-7
10.3.2.4 The cdbg_DumpPDRVws Routine 10-7
10.3.2.5 The cdbg_DumpABORT Routine 10-7
10.3.2.6 The cdbg_DumpTERMIO Routine 10-7
10.3.2.7 The cdbg_DumpBuffer Routine 10-7
10.3.2.8 The cdbg_GetDeviceName Routine 10-8
10.3.2.9 The cdbg_DumpInquiryData Routine 10-8

11 Programmer-Defined SCSIICAM Device Drivers

11.1 Programmer-Defined SCSI/CAM Data Structures 11-1

11.1.1 Programmer-Defined Peripheral Device Unit Table 11-1

11.1.1.1
11.1.1.2
11.1.1.3
11.1.1.4

The pu_device Member
The pu_opens Member
The pu_config Member
The pu_type Member

11.1.2
11.1.3

Programmer-Defined Peripheral Device Structure
Programmer-Defined Device Descriptor Structure

11.1.3.1 The dd_dev _name Member

11-2
11-2
11-2
11-2

11-2
11-5

11-6

Contents xi

11.2

11.1.3.2
11.1.3.3
11.1.3.4
11.1.3.5
11.1.3.6
11.1.3.7
11.1.3.8
11.1.3.9
11.1.3.10
11.1.3.11
11.1.3.12
11.1.3.13
11.1.3.14

The dd_device_type Member
The dd_def_partition Member
The dd_block_size Member
The dd_max_record Member
The dd_density _tbl Member
The dd_modesel_tbl Member
The dd_flags Member .. .
The dd_scsi_optcmds Member

The dd_ready _time Member
The dd_que_depth Member
The dd_ valid Member
The dd_inq_Ien Member
The dd_req_sense_Ien Member

11-6
11-6
11-7
11-7
11-7
11-7
11-7
11-7
11-8
11-8
11-8
11-8
11-8

11.1.4 Programmer-Defined Density Table Structure 11-8

11.1.4.1 The den_flags Member .. 11-9
11.1.4.2 The den_density_code Member 11-9
11.1.4.3 The den_compress_code Member 11-9
11.1.4.4 The den_speed_setting Member 11-9
11.1.4.5 The den_buffered_setting Member 11-9
11.1.4.6 The den_blocking Member 11-9
11.1.4.7 Sample Density Table Structure Entry 11-9

11.1.5 Programmer-Defined Mode Select Table Structure 11-10

11.1.5.1
11.1.5.2
11.1.5.3
11.1.5.4
11.1.5.5

The ms_page Member .. .
The ms_data Member
The ms_data_Ien Member
The ms_ent_sp_pf Member
Sample Mode Select Table Structure Entry

Sample SCSI/CAM Device-Specific Data Structures

11.2.1 Programmer-Defined Tape-Specific Structure

11.2.1.1 The ts_flags Member .. .
11.2.1.2 The ts_state_flags Member
11.2.1.3 The ts_resid Member
11.2.1.4 The ts_block_size Member
11.2.1.5 The ts_density Member
11.2.1.6 The ts_records Member
11.2.1. 7 The ts_num_filemarks Member

11-11
11-11
11-12
11-12
11-12

11-12

11-12

11-13
11-14
11-15
11-15
11-15
11-15
11-15

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure. 11-15

xii Contents

11.2.3 SCSI/CAM CDROM/AUDIO 110 Control Commands 11-17

11.2.3.1 Structures Used by SCSIICAM CDROM/AUDIO 110
Control Commands ... 11-18

11.2.3.1.1 Structure Used by All SCSIICAM
CDROM/AUDIO 1/0 Control Commands 11-19

11.2.3.1.2 Structure Used by the
CDROM_PLA Y _AUDIO and
CDROM_PLA Y _ V AUDIO Commands 11-20

11.2.3.1.3 Structure Used by the
CDROM_PLAY_AUDIO_MSF and
CDROM_PLA Y _MSF Commands 11-21

11.2.3.1.4 Structure Used by the
CDROM_PLAY_AUDIO_TI Command 11-21

11.2.3.1.5 Structure Used by the
CDROM_PLAY_AUDIO_TR Command 11-22

11.2.3.1.6 Structure Used by the
CDROM_ TOC_HEADER Command 11-22

11.2.3.1.7 Structures Used by the
CDROM_TOC_ENTRYS Command 11-23

11.2.3.1.8 Structures Used by the
CDROM_READ_SUBCHANNEL Command 11-24

11.2.3.1.9 Structures Used by the
CDROM_READ_HEADER Command 11-29

11.2.3.1.10 Structure Used by the
CDROM_PLAY_TRACK Command 11-30

11.2.3.1.11 Structure Used by the
CDROM_PLA YBACK_CONTROL and
CDROM_PLAYBACK_STATUS Commands 11-30

11.2.3.1.12 Structure Used by the
CDROM_PLA YBACK_CONTROL Command 11-31

11.2.3.1.13 Structure Used by the
CDROM_PLAYBACK_STATUS Command 11-32

11.3 Adding a Programmer-Defined SCSI/CAM Device 11-34

12 SCSI/CAM Special I/O Interface

12.1 Application Program Access 12-1

12.2 Device Driver Access ... 12-3

Contents xiii

12.3

12.4

SCSI/CAM Special Command Tables

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5

The sph_flink and sph_blink Members
The sph_cmd_table Member .. .
The sph_device_type Member .. .
The sph_table_flags Member
The sph_table_name Member .. .

SCSI/CAM Special Command Table Entries

12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9
12.4.10
12.4.11
12.4.12
12.4.13
12.4.14
12.4.15

The spc_ioctl_cmd and spc_sub_command Members
The spc_cmd_flags Member .. .
The spc_command_code Member
The spc_device_type Member .. .
The spc_cmd_parameter Member
The spc_cam_flags Member .. .
The spc_file_flags Member .. .
The spc_data_Iength Member .. .
The spc_timeout Member .. .

The spc_docmd Member
The spc_mkcdb Member
The spc_setup Member
The spc_cdbp Member .. .
The spc_cmdp Member
Sample SCSI/CAM Special Command Table

12-5

12-5
12-5
12-5
12-6
12-6

12-6

12-6
12-6
12-7
12-7
12-7
12-8
12-8
12-8
12-8
12-8
12-8
12-8
12-9
12-9
12-9

12.5 SCSI/CAM Special I/O Argument Structure 12-10

12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6
12.5.7
12.5.8
12.5.9
12.5.10
12.5.11
12.5.12
12.5.13
12.5.14

xiv Contents

The sa_flags Member
The sa_dey Member
The sa_unit, sa_bus, sa_target, and sa_Iun Members
The sa_ioctLcmd Member .. .
The sa_ioctLscmd Member
The sa_ioctLdata Member
The sa_device_name Member .. .
The sa_device_type Member
The sa_iop_length and sa_iop_buffer Members

The sa_file_flags Member .. .
The sa_sense_Iength and sa_sense_buffer Members
The sa_user_Iength and sa_user_buffer Members
The sa_bp Member
The sa_ccb Member .. .

12-13
12-13
12-13
12-13
12-13
12-14
12-14
12-14
12-14
12-14
12-14
12-14
12-15
12-15

12.5.15
12.5.16
12.5.17
12.5.18
12.5.19
12.5.20
12.5.21
12.5.22
12.5.23
12.5.24
12.5.25
12.5.26
12.5.27
12.5.28
12.5.29
12.5.30

The special_cmd Member .. .
The special_header Member
The sa_cmd_parameter Member
The sa_error Member .. .
The sa_start Member .. .
The sa_data_Iength and sa_data_buffer Members
The sa_cdb_pointer Member .. .
The sa_cdb_Iength Member
The sa_cmd_flags Member .. .
The sa_retry _count Member .. .
The sa_retry _limit Member .. .
The sa_timeout Member .. .
The sa_xfer_resid Member .. .
The sa_specific Member .. .
Sample Function to Create a CDB
Sample Function to Set Up Parameters

12.6 SCSIICAM Special 110 Control Command

12.6.1 The sp_flags Member
12.6.2 The sp_dev, sp_unit, sp_bus, sp_target, and sp_lun Members.
12.6.3 The sp_sub_command Member
12.6.4 The sp_cmd_parameter Member
12.6.5 The sp_iop_length and sp_iop_buffer Members
12.6.6 The sp_sense_Iength, sp_sense_resid, and sp_sense_buffer

Members .. .
12.6.7 The sp_user_Iength and sp_user_buffer Members
12.6.8 The sp_timeout Member
12.6.9 The sp_retry_count Member .. .
12.6.10 The sp_retry_limit Member
12.6.11 The sp_xfer_resid Member
12.6.12 Sample Function to Create an 110 Control Command

12.7 Other Sample Code

12.7.1
12.7.2

Sample Code to Open a Device
Sample Code to Create a Driver Entry Point

12-15
12-15
12-15
12-15
12-16
12-16
12-16
12-16
12-17
12-17
12-17
12-17
12-17
12-17
12-18
12-19

12-20

12-21
12-22
12-22
12-22
12-22

12-22
12-23
12-23
12-23
12-23
12-23
12-23

12-25

12-25
12-27

Contents xv

A Header Files Used by Device Drivers

B SCSI/CAM Utility Program

B.1

B.2

B.3

B.4

Introduction

B.1.1 SCU Utility Conventions

General SCU Commands

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.2.7
B.2.8

The evaluate Command .. .
The exit Command .. .
The help Command
The scan Command
The set Command
The show Command .. .
The source Command .. .
The switch Command .. .

Device and Bus Management Commands

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B.3.7
B.3.8
B.3.9
B.3.10
B.3.11
B.3.12
B.3.13
B.3.14

The allow Command
The eject Command
The mt Commands
The pause Command
The play Command
The prevent Command
The release Command
The reserve Command
The reset Command .. .

The resume Command
The start Command
The stop Command
The tur Command
The verify Command

Device and Bus Maintenance Commands

B.4.1
BA.2
B.4.3
B.4.4

The change pages Command .. .
The download Command
The format Command .. .
The read Command

xvi Contents

B-1

B-1

B-3

B-3
B-4
B-4
B-5
B-6

B-11
B-11
B-12

B-12

B-13
B-13
B-13
B-15
B-15
B-16
B-16
B-16
B-17
B-17
B-17
B-17
B-18
B-18

B-19

B-19
B-21
B-21
B-21

B.4.5
B.4.6
B.4.7

The reassign Command .. .
The test Command .. .
The write Command

C SCSI/CAM Routines

C.l

C.2

C.3

cam_logger

ccfg_attach

ccfg_edtscan

B-22
B-22
B-23

C-2

C-3

C-4

C.4 ccfg_slave .. C-5

C.5 ccmn_DoSpecialCmd .. C-6

C.6

C.7

C.8

C.9

C.lO

C.ll

C.l2

C.l3

C.14

C.15

C.l6

C.l7

C.18

C.l9

C.20

C.2l

C.22

C.23

ccmn_SysSpecialCmd

ccmn_abort_ccb_bld

ccmn_attach_device

ccmn_bdr_ccb_bld

ccmn_br_ccb_bld

ccmn_ccb_status

ccmn_check_idle

ccmn_close_unit

ccmn_find_ctlr

ccmn_get_bp

ccmn_get_ccb

ccmn_get_dbuf

ccmn_init .. .

ccmn_io _ccb _bId

ccmn_mode_select

C-8

C-lO

C-13

C-14

C-15

C-18

C-2l

C-23

C-25

C-26

C-28

C-29

C-32

C-33

C-36

C-37

C-38

C-4l

Contents xvii

C.24

C.25

C.26

C.27

C.28

C.29

C.30

C.31

C.32

C.33

C.34

C.35

C.36

C.38

C.39

C.40

C.41

C.42

C.43

C.44

C.45

C.46

C.47

C.48

C.49

C.50

C.51

ccmn_open_unit

ccmn_pinq_ccb_bld .. .

ccmn_rel_bp .. .

ccmn_rel_ccb

ccmn_rel_dbuf

ccmn_rem_ccb

ccmn_rsq_ccb_bld .. .

ccmn_sasy _ccb_bld

ccmn_sdev _ccb_bld

ccmn_send_ccb .. .

ccmn_send_ccb_ wait .. .

ccmn_start_unit

ccmn_term_ccb_bld

ccmn_tur .. .

cdbg_ CamFunction .. .

cdbg_ CamStatus .. .

cdbg_DumpABORT

cdbg_DumpBuffer .. .

cdbg_DumpCCBHeader .. .

cdbg_DumpCCBHeaderFlags

cdbg_DumpInquiryData .. .

cdbg_DumpPDRVws

cdbg_DumpSCSIIO .. .

cdbg_DumpTERMIO

cdbg_GetDeviceName .. .

cdbg_ScsiStatus

cdbg_SystemStatus

xviii Contents

C-44

C-46

C-49

C-50

C-51

C-52

C-53

C-56

C-59

C-62

C-64

C-66

C-69

C-72

C-73

C-76

C-77

C-78

C-79

C-80

C-81

C-83

C-84

C-85

C-86

C-87

C-88

C-89

C.52

C.53

C.54

C.55

C.56

C.57

C.58

C.59

C.60

cgen_async

cgen_attach

cgen_ccb_chkcond

cgen_close

cgen_done

cgen_ioctl

cgen_iodone

cgen_minphys

cgen_mode_sns

C-90

C-91

C-92

C-94

C-95

C-96

C-98

C-IOO

C-IOI

C.61 cgen_open .. C-I03

C.62 cgen_open_sel .. C-I05

C.63

C.64

C.65

C.66

C.67

C.68

C.69

C.70

C.71

C.72

C.73

C.74

C.75

cgen_read

cgen_ready

cgen_slave

cgen_strategy

cgen_write

sim_action

sim_init

uagt_close

uagt_ioctl

uagcopen

C-I07

C-lp8

C-I09

C-II0

C-lll

C-112

C-114

C-115

C-116

C-118

xpt_action .. C-119

xpt_ccb_alloc ... C-120

C-121

C.76 xpt_init .. C-122

Contents xix

D Sample Generic CAM Peripheral Driver

Index

Examples

D-l: cam_generic.h ... D-l

D-2: cam~eneric.c Source File .. D-6

Figures

1-1: CAM Environment Model ... 1-3

1-2: SCSIICAM Architecture Implementation Model 1-4

1-3: Major/Minor Device-Number Pair .. 1-5

12-1: Application Program Flow Through SCSIICAM Special 110 Interface. 12-2

12-2: Device Driver Flow Through SCSIICAM Special I/O Interface 12-4

Tables

2-1: User Agent Routines ... 2-5

3-1: Members of the PDRV _DEVICE Structure 3-2

3-2: Common Identification Macros .. 3-6

3-3: Common Lock Macros .. 3-7

3-4: Common I/O Routines .. 3-10

3-5: Common Queue Manipulation Routines 3-11

3-6: Common CCB Management Routines ... 3-13

3-7: Common SCSI I/O Command Building Routines 3-16

3-8: Common Routines for Loadable Drivers 3-19

3-9: Miscellaneous Common Routines ... 3-20

4-1: Generic 110 Routines .. 4-6

xx Contents

4-2: Generic Internal Routines

4-3: Generic Command Support Routines .. .

5-1: CAM Control Blocks

5-2: CAM Function Codes

5-3: CAM Status Codes

6-1: Configuration Driver Entry Point Routines

7-1: XPT 110 Support Routines .. .

10-1: CAM Debugging Status Routines .. .

10-2: CAM Dump Routines .. .

11-1: SCSIICAM CDROM/AUDIO 110 Control Commands

11-2: Structures Used by SCSIICAM CDROM/AUDIO 110 Control
Commands

12-1: SCSIICAM Special 110 Argument Structure

4-8

4-10

5-1

5-3

5-4

6-5

7-1

10-5

10-6

11-18

11-18

12-10

A-I: Header Files Used by Device Drivers ... A-I

A-2: Header Files Used by SCSIICAM Peripheral Drivers A-4

Contents xxi

About This Manual

This manual contains information needed by systems programmers who write
device drivers for the SCSI/CAM Architecture interfaces.

Audience
This manual is intended for systems programmers who:

• Develop programs in the C language using standard library routines

• Know one or more UNIX shells, other than csh

• Understand basic DEC OSFIl components such as the kernel, shells,
processes, configuration, autoconfiguration, and so forth

• Understand how to use the DEC OSFIl programming tools, compilers,
and debuggers

• Develop programs in an environment that includes dynamic memory
allocation, linked list data structures, multitasking and symmetric
multiprocessing (SMP)

• Understand the hardware device for which the driver is being written

Organization
This manual is organized as follows:

Chapter 1 SCSI/CAM Software Architecture

Chapter 2

Chapter 3

Chapter 4

Presents an overview of the DEC OSFIl SCSI/CAM
Architecture (SICA).

CAM User Agent Modules
Describes the User Agent routines provided by Digital for
SCSI/CAM peripheral device driver writers.

SICA Common Modules
Describes the common data structures, routines, and macros
provided by Digital for SCSIICAM peripheral device driver
writers.

SICA Generic Modules
Describes the generic routines provided by Digital for
SCSI/CAM peripheral device driver writers.

Chapter 5 CAM Data Structures
Describes members of the CAM data structures used by SCSI
device drivers.

Chapter 6 SCSI/CAM Configuration Driver Modules
Describes the CAM Configuration driver data structures and
routines that call the initialization routines in all the CAM
subsystem modules.

Chapter 7 CAM XPT 1/0 Support Routines
Discusses the Transport (XPT) layer routines used with SCSI
device drivers.

Chapter 8 CAM SIM Modules
Discusses the data structures and routines used with the SCSI
Interface Module (SIM) layers that interface with the CAM
subsystem.

Chapter 9 SICA Error Handling
Discusses the macro, data structures, and routines supplied by
Digital for error handling in SCSI/CAM device drivers.

Chapter 10 SICA Debugging Facilities
Describes the debugging routines supplied by Digital for
SCSI/CAM peripheral device driver writers.

Chapter 11 Programmer-Defined SCSI/CAM Device Drivers
Describes and provides examples of how programmers can
define SCSIICAM device drivers.

Chapter 12 SCSI/CAM Special I/O Interface
Describes and provides examples of the SCSI/CAM special
I/O interface supplied by Digital to process special SCSI 1/0
commands.

Appendix A Header Files Used by SCSI/CAM Device Drivers
Summarizes the header files used by SCSIICAM device
drivers.

Appendix B The SCSI/CAM Utility (SCU)
Describes the SCSI/CAM Utility (SCU) used for maintenance
and diagnostics of SCSI peripheral devices and the CAM
subsystem.

Appendix C SCSI/CAM Routines in Reference Page Format
Provides more detailed descriptions of the SICA routines in
reference page format.

Appendix D Sample Generic CAM Peripheral Driver

xxiv About This Manual

Contains the header file and source file for a sample generic
CAM peripheral driver.

Related Documentation
The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Readers of this guide are assumed to be familiar with the following
documents:

• American National Standard for Information Systems, SCSJ-2 Common
Access Method: Transport and SCSI Interface Module, working draft,
X3T9.2/90-186

Terms used throughout this guide, such as CAM Control Block (CCB),
are defined in the American National Standard document. Copies can be
purchased from Global Engineering, 2805 McGaw St, Irvine, CA 92714.
(Telephone: 800-854-7179)

• American National Standard for Information Systems, Small Computer
Systems Inteiface - 2 (SCSI - 2), X3.131-199X

The following documents contain information that pertains to writing device
drivers:

• Writing Device Drivers, Volume 1: Tutorial

This manual provides information for systems engineers who write device
drivers for hardware that runs the DEC OSFIl operating system. Systems
engineers can find information on driver concepts, device driver
interfaces, kernel interfaces used by device drivers, kernel data structures,

About This Manual xxv

configuration of device drivers, and header files related to device drivers.

• Writing Device Drivers, Volume 2: Reference

This manual contains descriptions of the header files, kernel support
interfaces, ioctl commands, global variables, data structures, device
driver interfaces, and bus configuration interfaces associated with device
drivers. The descriptions are formatted similar to the DEC OSFIl
reference pages.

• System Administration

This manual describes how to configure, use, and maintain the DEC
OSFIl operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating and
eliminating sources of trouble.

This manual is for the system administrators responsible for managing the
operating system. It assumes a knowledge of operating system concepts,
commands, and configurations.

• Kernel Debugging

This manual provides information on debugging a kernel and analyzing a
crash dump of a DEC OSFIl operating system. The manual provides an
overview of kernel debugging and crash dump analysis and describes the
tools used to perform these tasks. The manual includes examples with
commentary that show how to analyze a running kernel or crash dump.
The manual also describes how to write a kdbx utility extension and
how to use the various utilities for exercising disk, tape, memory, and
communications devices.

This manual is for system administrators responsible for managing the
operating system and for systems programmers writing applications and
device drivers for the operating system.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title" order number, and section numbers. Digital also

xxvi About This Manual

welcomes general comments.

Conventions
This document uses the following conventions:

%

$

% cat

file

[I]
{ I }

A percent sign represents the C shell system prompt. A dollar sign
represents the system prompt for the Bourne and Korn shells.

Boldface type in interactive examples indicates typed user input.

Italic (slanted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating items
inside brackets or braces indicate that you choose one item from
among those listed.

About This Manual xxvii

SCSI/CAM Software Architecture 1

This chapter provides an overview of the DEC OSFIl Small Computer
System Interface (SCSI) Common Access Method (CAM) Architecture
(SICA), which is a reliable, maintainable, and high performance SCSI
subsystem based on the industry-standard CAM architecture. Readers of this
guide should be familiar with the following documents:

• American National Standard for Information Systems, SCSI-2 Common
Access Method: Transport and SCSI Interface Module, working draft,
X3T9.2/90-186

Terms used in this guide, such as CAM Control Block (CCB), are defined in
that document. Copies can be purchased from Global Engineering, 2805
McGaw St, Irvine, CA 92714. (Telephone: 800-854-7179)

• American National Standard for Information Systems, Small Computer
Systems Inteiface - 2 (SCSI - 2), X3.131-199X

Readers should also be familiar with the following two manuals that are part
of the DEC OSFIl documentation:

• Writing Device Drivers, Volume 1: Tutorial

• Writing Device Drivers, Volume 2: Reference

This chapter describes the following:

• CAM and DEC OSFIl SICA environment models

• User Agent driver

• SCSI/CAM peripheral device driver routines:

- CAM common routines supplied by Digital

- Generic routines supplied by Digital

- SCSI disk device routines

- SCSI tape device routines

- SCSI CD-ROM/AUDIO device commands

- SCSI/CAM Special 1/0 interface

• CAM Configuration driver

• CAM Transport layer

• SCSI Interface Module (SIM)

1.1 Overview
The CAM architecture defines a software model that is layered, providing
hardware independence for SCSI device drivers and SCSI system software.
In the CAM model, which is illustrated in Figure 1-1, a single SCSI/CAM
peripheral driver controls SCSI devices of the same type, for example, direct
access devices. This driver communicates with a device on the bus through a
defined interface. Using this interface makes a SCSI/CAM peripheral device
driver independent of the underlying SCSI Host Bus Adapter (HBA).

This hardware independence is achieved by using the Transport (XPT) and
SCSI Interface Module (SIM) components of CAM. Because the XPT/SIM
interface is defined and standardized, users and third parties can write
SCSI/CAM peripheral device drivers for a variety of devices and use existing
operating system support for SCSI. The drivers do not contain SCSI HBA
dependencies; therefore, they can run on any hardware platform that has an
XPT/SIM interface present.

1-2 SCSI/CAM Software Architecture

Figure 1-1: CAM Environment Model

Disk
Driver

SCSI Interface
Module-SIM

Host Bus
Adaptor-HBA

Tape
Driver

Other
SCSI

Drivers

Transport Layer - XPT

Intelligent
HBA

User
Level

Pass-Thru

Intelligent
SIM

ZK-0359U-R

Figure 1-2 illustrates the DEC OSFIl SCSI/CAM implementation of that
model.

SCSI/CAM Software Architecture 1-3

Figure 1-2: SCSI/CAM Architecture Implementation Model

Peripheral
Drivers

Transport Layer - XPT

1.2 CAM User Agent Device Driver

ZK-0252U-R

The User Agent driver routes user-process CAM Control Block (CCB)
requests to the XPT for processing. The CCB contains all information
required to fulfill the request. The user process calls the User Agent
indirectly, using the ioctl(2) system call. A new User Agent CCB is
allocated by a call to the XPT layer, and the user-process CCB information is
copied into kernel space. The new CCB is filled in with the CCB values from
the user process. If necessary, the user data areas are locked in memory. The
CCB is then sent to the CAM subsystem for processing.

1-4 SCSI/CAM Software Architecture

When the request has completed, the User Agent driver's completion routine
is called. That routine performs all necessary cleanup operations and notifies
the user process that the request is complete.

The User Agent allows multiple processes to issue CCBs, so there may be
mUltiple processes sleeping on the User Agent. All CCBs are queued at the
SIM layer.

1.3 SCSI/CAM Peripheral Device Drivers
SCSVCAM peripheral device drivers convert operating system requests, such
as user-process reads or writes, into CAM requests that the SCSVCAM
subsystem can process. Each type of SCSI/CAM peripheral driver is
responsible for a specific class of SCSI device, such as SCSI tape devices.
The SCSVCAM peripheral driver handles error codes and conditions for its
SCSI device class.

SCSVCAM peripheral drivers convert input/output (I/O) requests into CAM
Control Blocks (CCBs) that contain SCSI Command Descriptor Blocks
(CDBs). CCBs are presented to the underlying transport layer, XPT, to
initiate VO requests. SCSVCAM peripheral drivers implement SCSI device
error recovery, for example, dynamic bad block replacement (DBBR). The
SCSI device driver has no access to SCSI device control and status registers
(CSRs) and receives no SCSI device interrupts.

The major/minor device-number pair, which is 32 bits wide, is used as an
argument when creating the device special file associated with a specific
SCSI device and is contained in the bu f structure when accessing the device
in raw or blocked mode. Figure 1-3 shows how the 32 bits are allocated.

Figure 1-3: Major/Minor Device-Number Pair

31 2019 1413 10 9 65 o

Major Index Bus # Target 10 LUN Device Specific

ZK-0403U-R

This section provides overviews of the following:

• Common SCSI device driver modules

• Generic SCSI device driver modules

• SCSI disk device driver modules

• SCSI tape device driver modules

SCSI/CAM Software Architecture 1-5

• SCSI CD-ROM/AUDIO device driver modules

Chapters 3, 4, and 11 describe the data structures and the routines associated
with each module.

1.3.1 SICA Common Device Driver Modules
The common SCSI device driver structures and routines can be shared among
all the SCSI/CAM peripheral drivers written by device driver writers for
DEC OSFIl. Using these common routines can speed the process of writing
a SCSI device driver because they are routines that any SCSI device driver
can use to perform operations.

1.3.2 SICA Generic Device Driver Modules
Digital supplies predefined data structures and formats that SCSI device
driver writers can use to write generic SCSI/CAM peripheral device drivers.
These data structures and formats can be used in conjunction with the
common routines.

1.3.3 CAM SCSI Disk Device Driver Modules
The SCSI/CAM peripheral disk driver supports removable (floppy) and
nonremovable direct access SCSI disk devices and CD-ROM devices. The
user interface consists of the major/minor device number pair and the ioct 1
commands supported by the SCSI disk device driver. The SCSI disk device
driver also uses the common routines.

1.3.4 CAM SCSI Tape Device Driver Modules
The SCSI tape device structures and routines are exclusive to the SCSI/CAM
peripheral tape driver. The user interface consists of the major/minor device
number pair and the ioctl commands supported by the SCSI tape device
driver. The SCSI tape device driver also uses the common routines.

1.3.5 CAM SCSI CD-ROM/AUDIO Device Driver Modules
The SCSI CD-ROM/AUDIO device commands, which are described in
Chapter 11, use the SCSI CD-ROM/AUDIO device structures. The SCSI
CD-ROM/AUDIO device driver also uses the common routines.

1.4 SCSI/CAM Special I/O Interface
The SICA software includes an interface developed to process special SCSI
I/O control commands used by the existing Digital SCSI subsystem and to
aid in porting new or existing SCSI device drivers from other vendors to the

1-6 SCSI/CAM Software Architecture

SICA. With the SCSIICAM special I/O interface, SCSI/CAM peripheral
driver writers do not need detailed knowledge of either the system-specific or
the CAM-specific structures and routines used to issue a SCSI command to
the CAM 110 subsystem.

1.5 The SCSI/CAM Configuration Driver
The Configuration driver is responsible for configuring and initializing the
CAM subsystem. This driver is also responsible for maintaining the
cam_edt [] information structure.

When the system powers up, the Configuration driver initializes the local and
global CAM subsystem data structures. The Configuration driver also calls
the XPT and SIM initialization routines. When the subsystems are initialized,
the Configuration driver performs a SCSI-bus scan by sending the SCSI
Device Inquiry command. The edt dir [] structure contains pointers to
the EDT (Equipment Device Table) Structure for each bus. The EDT
contains the returned SCSI inquiry data for the SCSIICAM peripheral drivers
to access. The drivers, using the XPT_GDEV _TYPE and XPT_SDEV _TYPE
get and set device information CCBs and can access the data contained in
cam_edt [].

1.6 CAM Transport Layer (XPT)
The CAM Transport layer, XPT, handles the CAM requests from the
SCSIICAM peripheral drivers and routes them to the appropriate SIM
module. The XPT provides routines which are called by the SCSI/CAM
peripheral driver to allocate and deallocate CAM control blocks (CCBs). In
addition, the XPT provides routines that are used to initiate requests to the
SIM and to issue asynchronous callbacks.

1.7 SCSI Interface Module Layers (SIM)
The SCSI Interface Module, SIM, has the most interaction with the SCSI bus
protocol, timings, and other hardware-specific operations. Although this is a
single component in the CAM model, it is divided into four logical sublayers
in DEC OSFIl:

• SIM XPT - The SIM layer that interfaces to the XPT to initiate 110 on
behalf of the SCSIICAM peripheral drivers

• SIM SCHEDULER - The SIM layer that schedules requests to the SIM
HBAs

• SIM HBA - The SIM layer that contains the HBA device-specific
information

SCSI/CAM Software Architecture 1-7

• SIM DME - A low level layer that contains the architecture-specific
data-movement code

1-8 SCSI/CAM Software Architecture

CAM User Agent Modules 2

This chapter describes the functions of the DEC OSFIl User Agent SCSI
device driver. It also describes the User Agent data structures and routines
used by the User Agent SCSI device driver.

2.1 User Agent Introduction
The DEC OSFIl User Agent SCSI device driver lets device driver writers
write an application program to build a CAM Control Block (CCB) request.
The User Agent driver lets the user-process request pass through to the XPT
layer for processing. This gives user processes access to the SCSUCAM
subsystem and to all types of SCSUCAM peripheral devices attached to the
system.

This is a simple method for passing the CCB' s SCSI request to the devices
using the SIMs. The kernel does not have to be rebuilt if the device driver
writer wants to change values within the CCBs.

The CCB contains all the information required to perform the request. The
user process must first open the user agent driver using / dev / cam to obtain
a file descriptor. The user process calls the User Agent SCSI device driver
using the ioctl system call. See ioctl(2) for more information. The
User Agent ioctl routine, uagt ioctl, is called through the device switch
table, which is indexed by the major device number of the User Agent driver
specified in the file descriptor obtained from the open system call passed in
the ioctl call. The ioctl commands supported by the User Agent SCSI
device driver are: DEVIOCGET, which returns the SCSI device driver
status; UAGT_CAM_IO, which sends the specified CCB to the XPT layer
for processing; UAGT_CAM_SINGLE_SCAN, which causes the scan of a
bus, target, and LUN; and UAGT_CAM_FULL_SCAN, which causes the
scan of a bus.

A CCB is allocated in the kernel and the user process's CCB is copied to the
kernel CCB. The User Agent SCSI device driver sleeps waiting for the
request to complete; then, all necessary cleanup is performed, and the user
process is notified of the completion of the request. If a signal is caught, an
ABORT CCB is issued to try to terminate the outstanding CCB for the user
process.

The User Agent SCSI device driver allows multiple processes access to the
XPT layer; therefore, there may be multiple processes sleeping on the User

Agent. All CCBs passed through by the User Agent are queued at the SIM
layer.

2.2 User Agent Error Handling
The User Agent SCSI device driver performs limited error checking on the
CCB pointed to in the UAGT_CAM_CCB structure passed from the user
process. The User Agent driver verifies that the uagt ccblen is not
greater than the maximum length for a CCB, checks that the XPT function
code is valid, and checks that the Target ID and LUN specified are within the
range allowed. The User Agent does not issue a REQUEST SENSE
command in response to a CHECK CONDITION status. Autosensing is
assumed to be enabled in the cam ch. cam flags field of the SCSI I/O
CCB. The application program is responsibie for issuing a RELEASE SIM
QUEUECCB.

The following error codes are returned by the User Agent ioctl function:

• EFAULT - An error occurred in copying to or from user space.

• EBUSY - Out of resources (the User Agent request table is full).

• EINV AL - An invalid target or LUN was passed to the User Agent
driver, the CCB copied from the user process contained an invalid
parameter, or an invalid ioctl command.

2.3 User Agent Data Structures
This section describes the data structures the User Agent uses.

2.3.1 The UAGT_CAM_CCB Data Structure
The User Agent SCSI device driver uses the UAGT_CAM_CCB data
structure with the UAGT_CAM_IO ioctl command to communicate with the
user processes requesting access to the SCSI/CAM subsystem.

The user process fills in the pointers in the UAGT_CAM_CCB data
structure. The structure is copied into kernel space. The user process's CCB
is copied into kernel space by the User Agent.

If necessary, the user data area and the sense data area are locked in memory.
If any pointers in the UAGT_CAM_CCB structure are not needed with the
requested CCB, the pointers must be set to NULL.

The CCB contains all the information necessary to execute the requested
XPT function. The addresses in the CCB are used by the SIM and must be
valid. The User Agent will not modify the corresponding pointers in the
user's CCB.

2-2 CAM User Agent Modules

The CCB definition is different for each of the following XPT functions
supported by the User Agent SCSI device driver:

• XPT_NOOP - Execute nothing

• XPT _SCSI_IO - Execute the requested SCSI 10

• XPT_GDEV _TYPE - Get the device type information

• XPT _PA TH_INQ - Path inquiry

• XPT_REL_SIMQ - Release the SIM queue that was frozen intentionally
or by a previous error.

• XPT_SDEV _TYPE - Set the device type information

• XPT_ABORT - Abort the selected CCB

• XPT_RESET_BUS - Reset the SCSI bus

• XPT_RESET_DEV - Reset the SCSI device, BDR

• XPT_TERM_IO - Terminate the selected CCB

If a signal is generated by the user process, the User Agent creates an
XPT_ABORT CCB to abort the outstanding 110 and then waits for the
completion of the I/O and notifies the user process when the aborted CCB is
returned to the User Agent.

The UAGT_CAM_CCB structure is defined as follows:

typedef struct uagt_cam_ccb
{

CCB_HEADER *uagt_ccb;
u long uagt ccblen;
u-char *uagt buffer;
u=long uagt_buflen;
u char *uagt snsbuf;
u=long uagt_snslen;
CDB UN *uagt cdb;
u_long uagt cdblen;
u_long uagt=flags;

} UAGT_CAM_CCB;

2.3.1.1 The uagt_ccb Member

/* pointer to the users CCB */
/* length of the users CCB */
/* pointer for the data buffer */
/* length of user request */
/* pointer for the sense buffer */
/* length of user's sense buffer */
/* ptr for a CDB if not in CCB */
/* CDB length if appropriate */
/* See below */

The uagt ccb member contains a pointer to the user process's CCB that
will be coPIed into kernel space.

2.3.1.2 The uagt_ccblen Member

The uagt_ccblen member contains the length of the user process's CCB.

CAM User Agent Modules 2-3

2.3.1.3 The uagt_buffer Member

The uagt buffer member contains a pointer to the user process's data
buffer. ThIs member is used only by the User Agent.

2.3.1.4 The uagt_buflen Member

The uagt buflen member contains the length of the user process's data
buffer. ThIs member is used only by the User Agent.

2.3.1.5 The uagt_snsbuf Member

The uagt snsbuf member contains a pointer to the user process's
autosense data buffer. This member is used only by the User Agent.

2.3.1.6 The uagt_snslen Member

The uagt snslen member contains the length of the user process's
autosense data buffer. This member is used only by the User Agent.

2.3.1.7 The uagt_cdb Member

If the user process's CCB contains a pointer to a CDB, then the uagt cdb
also contains a pointer to a Command Descriptor Block (CDB) that is to be
locked in memory. This member and the uagt cdblen member are used
only by the User Agent driver. The CCB must also contain valid pointers
and counts.

2.3.1.8 The uagt_cdblen Member

The uagt cdblen contains the length of the Command Descriptor Block,
if appropriate.

2.3.1.9 The uagt_flags Member

The uagt flags contains the UAGT_NO_INT_SLEEP bit, which, if set,
indicates that the User Agent should not sleep at an interruptible priority.

2.3.2 The UAGT_CAM_SCAN Data Structure
The User Agent SCSI device driver uses the UAGT_CAM_SCAN data
structure to communicate with user level programs that need to have access
to the CAM subsystem. The structure is copied into kernel space as part of
the ioctl system call from user space for the
UAGT_CAM_SINGLE_SCAN and UAGT_CAM_FULL_SCAN commands.
The user program fills in the pointers in this structure and the User Agent
SCSI device driver correctly fills in the corresponding pointers in the CCB.

2-4 CAM User Agent Modules

The UAGT_CAM_SCAN structure is defined as follows:

typedef struct uagt cam scan
u char ucs-bus;
u-char ucs-target;
u=char ucs=lun;

} UAGT_CAM_SCAN;

2.4 User Agent Routines

/* Bus id for scan */
/* Target id for scan */
/* LUN for scan */

This section describes the User Agent routines supplied by Digital. Table
2-1 lists the name of each routine and gives a summary description of its
function. The sections that follow contain a more detailed description of
each User Agent routine. Descriptions of the routines with syntax
information, in DEC OSFIl reference page format, are included in
alphabetical order in Appendix C.

Table 2-1: User Agent Routines

Routine

uagt_open
uagt close
uagt:=ioctl

Summary Description

Handles the open of the User Agent driver
Handles the close of the User Agent driver
Handles the ioctl system call for the User Agent
driver

2.4.1 The uagt_open Routine
The uagt _open routine handles the open of the User Agent driver.

The character device special file name used for the open is I dev I cam.

2.4.2 The uagt_close Routine
The uagt close routine handles the close of the User Agent driver. For
the last close operation for the driver, if any queues are frozen, a RELEASE
SIM QUEUE CCB is sent to the XPT layer for each frozen queue detected
by the User Agent.

2.4.3 The uagt_ioctl Routine
The uagt ioctl routine handles the ioctl system call for the User
Agent driver. The ioctl commands supported are: DEVIOCGET, to obtain
the User Agent driver's SCSI device status; UAGT_CAM_IO, the ioctl
define for sending CCBs to the User Agent driver;

CAM User Agent Modules 2-5

UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and LUN; and
UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI 110 CCB requests, the user data area is locked before passing the
CCB to the XPT. The User Agent sleeps waiting for the 110 to complete and
issues an ABORT CCB if a signal is caught while sleeping.

2.5 Sample User Agent Drivers
Two sample User Agent driver programs follow. The first sample program
uses the User Agent driver to perform a SCSI INQUIRY command to a
device on a selected nexus.

The second sample program is a scanner control program that sets up a
scanner, reads scan line data from the device, and writes the data to a file,
using the User Agent driver.

Both programs are included with the SICA software and reside in the
/usr / examples directory.

2.5.1 Sample User Agent Driver Inquiry Program
This section contains the User Agent sample inquiry application program,
caminq. c, with annotations to the code. The user enters the string inq
followed by the numbers identifying the bus, target, and LUN nexus to be
checked for a valid device. If the device is valid, the INQUIRY data is
displayed at the console. If the device is invalid, an error message appears.

2.5.1.1 The include Files and Definitions Section

This section describes the portion of the User Agent sample inquiry
application program that lists the inc 1 ude files, local definitions, and data
initialization for the program.

/* -- */
/* Include files needed for this program. */

#include <stdio.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <strings.h>
#include <ctype.h>
#include <io/common/iotypes.h>
#include <io/cam/cam.h> /* CAM defines from the CAM document */
#include <io/cam/dec cam.h>/* CAM defines for Digital CAM source files */
#include <io/cam/uagt.h> /* CAM defines for the UAgt driver */
#include <io/cam/scsi_all.h> /* CAM defines for ALL SCSI devices */

2-6 CAM User Agent Modules

/* -- */
/* Local defines */

#define INQUIRY_LEN 36 /* general inquiry length */ ill

/* -- */
/* Initialized and uninitialized data. */

u_char buff INQUIRY_LEN]; ~

11] This line defines a constant of 36 bytes for the length of the inquiry
expected by the user from the SCSI device.

121 This line declares a global character array, buf, with a size of 36 bytes
as defined by the INQUIRY_LEN constant.

2.5.1.2 The Main Program Section

This section describes the main program portion of the User Agent sample
inquiry application program.

/* --- */
/* The main code path. The CCB/CDB and UAGT CAM CCB are set up for

an INQUIRY command to the Bus/Target/Lun selected by the command
line arguments. The returned INQUIRY data is displayed to the
user if the status is valid. If the returned status indicates
an error, the error is reported instead of the INQUIRY data. */

main(argc, argv)
int argc;
char *argv[];
{

extern void print inq data(); ill
extern void print=ccb=status();

u char id, targid, lun; /* from the command line */
int fd; /* unit number from the open */ ~

UAGT_CAM_CCB ua_ccb; /* local uagt structure */ ~
CCB_SCSIIO ccb; /* local CCB */ ~
ALL_INQ_CDB *inq; /* pointer for the CDB */ ~

/* Make sure that all the arguments are there. */ ~

if (argc != 4)
printf("SCSI INQ bus target lun\n");
exit() ;

/* Convert the nexus information from the command line. */ ~

id atoi(argv[l]);
targid atoi(argv[2]);
lun atoi(argv[3]);

11] These two forward references define routines that are used later in the
program to print out the INQUIRY data or to print out the CAM status if
there was an error.

121 The file descriptor for the User Agent driver returned by the open
system call, which executes in Section 2.5.1.3.

CAM User Agent Modules 2-7

131 This line declares an uninitialized local data structure, ua ccb, of the
type UAGT_CAM_CCB, which is defined in the file -
lusr I sys I includel iol cam/uagt. h. This structure is copied
from user space into kernel space as part of the ioct 1 system call.
Section 2.5.1.7 describes this procedure.

~ This line declares an uninitialized local data structure, ccb, of the type
CCB _SCSIIO , which is defined in the file
lusr I sys I includel iol caml cam. h. The members of this
structure needed for the XPT _SCSI_IO request are filled in Section
2.5.1.4. The members of this structure needed for the INQUIRY
command are filled in Section 2.5.1.5.

[5] This line declares a pointer, inq, to a data structure, ALL_INQ_CDB,
which is defined in the file
lusrlsys/include/io/cam/scsi all.h. This structure is
filled in Section 2.5.1.5. -

I§] This section of code makes sure the user entered the correct number of
arguments. The user should have entered the string inq, followed by
three numeric characters representing the bus, target, and LUN to be
checked for a valid status.

IZI This section of code converts the numeric characters entered and assigns
them, in order, to bus, target, and LUN.

2.5.1.3 The User Agent Open Section

This section describes the portion of the User Agent sample inquiry
application program where the User Agent is opened.

/* Open the User Agent driver and report any errors. */

if ((fd = open("/dev/cam", O_RDWR, 0)) < 0) [j]
{

perror("Error on CAM UAgt Open:");
exit(l);

[j] The program attempts to open the User Agent device special file,
I dev I cam, with the O_RDWR flag, which allows reading and writing.
If the file descriptor returned by the open system call indicates that the
open failed by returning a negative value, < 0, the program reports an
error and exits. Otherwise, the program opens the device.

2.5.1.4 Filling in XPT_SCSI_IO Request CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry
application program where the members of the CCB_HEADER needed for an

2-8 CAM User Agent Modules

XPT_SCSI_IO request are filled in.

bzero((caddr t)&ccb,sizeof(CCB SCSIIO))
- /* Clear the CCB structure */

/* Set up the CCB for an XPT SCSI 10 request. The INQUIRY command
will be sent to the device, instead of sending an XPT_GDEV_TYPE. */

/* Set up the CAM header for the XPT_SCSI_IO function. */

ccb.cam ch.my addr = (struct ccb header *)&ccb; /* "Its" address */ [j]
ccb.cam-ch.cam ccb len = sizeof(CCB SCSIIO); /* a SCSI I/O CCB */
ccb.cam-ch.cam-func code = XPT SCSI-IO; /* the ope ode */
ccb.cam-ch.cam-path-id = id; - - /* selected bus */ ~
ccb.cam-ch.cam-target id = targid; /* selected target */
ccb.cam=ch.cam=target=lun = lun; /* selected lun */

/* The needed CAM flags are : CAM DIR IN - The data will come from
the target, CAM DIS AUTOSENSE - Do not issue a REQUEST SENSE packet
if there is an error. */

cCb.cam_ch.cam_flags = CAM_DIR_IN I CAM_DIS_AUTOSENSE; ~

ill This section of code fills in some of the CCB_HEADER fields of the
SCSI I/O CCB structure defined as ccb, for processing by the XPT layer.
The structure was declared in Section 2.5.2.5.

12I These three lines assign the bus, target, and LUN to the corresponding
fields in the CCB_HEADER structure.

@! This line sets the necessary CAM flags for the INQUIRY:
CAM_DIR_IN, which specifies that the direction of the data is incoming;
and CAM_DIS_AUTOSENSE, which disables the autosense feature.
These flags are defined in lusr I sysl includel io/caml cam. h.

2.5.1.5 Filling in INQUIRY Command CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry
application program where the members of the CCB_HEADER needed for
the INQUIRY command are filled in. This is the structure that is passed to
the XPT layer by the User Agent driver.

/* Set up the rest of the CCB for the INQUIRY command. */

cCb.cam_data_ptr = &buf[O]; /* where the data goes */ [j]
ccb.cam dxfer len = INQUIRY LEN; /* how much data */
ccb.cam-timeout = CAM TIME DEFAULT; /* use the default timeout */ ~
ccb.cam-cdb len = sizeof(ALL INQ CDB);

- - - /* how many bytes for inquiry */~

/* Use a local pointer to access the particular fields in the INQUIRY
COB. */

inq = (ALL_INQ_CDB *)&ccb.cam_cdb_io.cam_cdb_bytes[O]; ~

inq->opcode = ALL INQ OP;
inq->evpd = 0; - -
inq->lun = 0;
inq->page = 0;
inq->alloc len = INQUIRY_LEN;
inq->control = 0;

/* inquiry command */ ~
/* no product data */

/* not used in SCSI-2 */
/* no product pages */
/* for the buffer space */

/* no control flags */

CAM User Agent Modules 2-9

[j] This line sets the cam data ptr member of the SCSI 110 CCB
structure to the address of the first element in the bu f array, which is
defined as 36 bytes in Section 2.5.1.1.

121 This line specifies using the default timeout, which is the value assigned
to the CAM_TIME_DEFAULT constant. This constant is set in the
lusrlsys/include/io/cam/cam.h file to indicate that the SIM
layer's default timeout is to be used. The current value of the SIM
layer's default timeout is five seconds.

13] This line sets the length of the Command Descriptor Block in the CCB to
the length of an inquiry CDB.. The inquiry CDB, ALL_INQ_CDB,
which is defined in the lusrlsys/include/io/cam/scsi all.h
file, is six bytes. -

~ This line assigns the inq pointer, which is type ALL_INQ_CDB, to the
address of the cam cdb bytes member of the CDB_UN union. This
union is defined in lusrl sysl includel iol caml cam. h as the
cam cdb io member of the SCSI 110 CCB structure.

151 These lines use the inq pointer to access the fields of the
cam cdb bytes array within the ccb structure as though it is an
ALL-=INQ=CDB structure. The ALL_INQ_CDB structure is defined in
ilie/usrlsys/include/io/cam/scsi_all.hfi~.

2.5.1.6 Filling in the UAGT _CAM_CCB Fields

This section describes the portion of the User Agent sample inquiry
application program where the members of the UAGT_CAM_CCB structure
are filled in for the ioctl call. This is the structure that is passed to the
User Agent driver.
bzero((caddr t)&ua ccb,sizeof(UAGI CAM CCB))

- - /* Clear the ua ccb structure */

/* Set up the fields for the User Agent Ioctl call. */

ua ccb.uagt ccb = (CCB HEADER *)&ccb; /* where the CCB is */ rn
ua-ccb.uagt-ccblen = sizeof(CCB SCSIIO);

- - - /* how many bytes to pull in */ ~
ua ccb.uagt buffer = &buf[O]; /* where the data goes */ ~
ua=ccb.uagt=buflen = INQUIRY_LEN; /* how much data */ ~

ua_ccb.uagt_snsbuf = (u char *)NULL;
ua ccb.uagt snslen = 0;
ua=ccb.uagt=cdb = (CDB_UN *)NULL;
ua_ccb.uagt_cdblen = 0;

/* no Autosense data */ ~
/* no Autosense data */
/* CDB is in the CCB */ ~
/* CDB is in the CCB */

[j] This line initializes the uagt ccb member of the ua ccb structure
with the address of the local CCB_HEADER structure~ ccb.

121 This line sets the length of the uagt ccblen member to the length of
the SCSI 110 CCB structure that willbe used for this call.

2-10 CAM User Agent Modules

131 This line initializes the uagt bu f fer member with the user space
address of the array buf, which was allocated 36 bytes in Section
2.5.1.1.

~ This line initializes the uagt buflen member with the value of the
constant INQUIRY_LEN, whiCh is the number of bytes of inquiry data
that will be returned.

[5] These two lines reflect that the autosense features are turned off in the
CAM flags.

!§] These two lines reflect that the Command Descriptor Block information is
in the SCSI I/O CCB structure filled in Section 2.5.1.4.

2.5.1.7 Sending the CCB to the CAM Subsystem

This section describes the portion of the User Agent sample inquiry
application program where the ccb is sent to the CAM subsystem.

/* Send the CCB to the CAM subsystem using the User Agent driver,
and report any errors. */

if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb) < 0) 00
{
perror("Error on CAM UAGT Ioctl:");
close(fd); /* close the CAM file */ ~

exit(l);

/* If the CCB completed successfully, then print out the INQUIRY
information; if not, report the error. */

if (ccb.cam_ch.cam_status 1= CAM_REQ_CMP)
{

print_ccb_status(& (ccb.cam_ch));
/* report the error values */ ~

else

/* report the INQUIRY info */ ~

111 This line passes the local UAGT_CAM_CCB structure, ua ccb, to the
User Agent driver, using the ioctl system call. The arguments passed
are the file descriptor returned by the open system call; the User Agent
ioctl command, UAGT_CAM_IO, which is defined in the
lusrlsys/include/io/cam/uagt.h file; and the contents of the
ua ccb structure. The User Agent driver copies in the SCSI I/O CCB
andsends it to the XPT layer. When the I/O completes, the User Agent
returns to the application program, returning status within the ua _ ccb
structure.

I2J If the ioctl call fails, this code displays an error message, closes the
device special file, I dev I c am, and exits.

CAM User Agent Modules 2-11

~ If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed with an error, then an error message is printed
indicating the CAM status returned.

~ If the request completes, the print inq data routine is called to
display the INQUIRY data. --

2.5.1.8 Print INQUIRY Data Routine

This section of the User Agent sample inquiry application program converts
the rest of the fields of inquiry data to a human-readable form and sends it to
the user's screen.
/* Define the type and qualifier string arrays as globals to allow for

compile-time initialization of the information. */

caddr t periph_type[] = { /* Peripheral Device Type */
"Direct-access", /* OOh */
"Sequential-access", /* 01h */
"Printer", /* 02h */
"Processor", /* 03h */
"Write-once", /* 04h */
"CD-ROM", /* OSh */
"Scanner", /* 06h */
"Optical memory", /* 07h */
"Medium changer", /* 08h */
"Communications", /* 09h */
"Graphics Arts" /* OAh */

}; /* Same as OA */ /* OBh */
/* Reserved */ /* OCh - 1Eh */
/* Unknown */ /* 1Fh */

caddr t periph qual[] = /* Peripheral Qualifier */
"Device supported, is (may be) connected", /* OOOb */
"Device supported, is not connected", /* 001b */
"<Reserved qualifier>", /* 010b */
"No device supported for this Lun" /* 011b */

} ; /* Vendor specific */ /* 1xxb */

/* -- */
/* Local routine to print out the INQUIRY data to the user. */

void
print_in~data(ip) m

ALL_INQ_DATA *ip;

char vendor id[9]; ~
char prod id[17];
char prod-rev Ivl[S];

caddr t-periph type ptr, periph qual ptr;
int ptype; - - --

/* Make local copies of the ASCII text, so that it can be NULL
terminated for the printf() routine. */

strncpy(vendor id, (caddr t)ip->vid, 8); ~
vendor id[8] =-'\0'; -
strncpy(prod id, (caddr t)ip->pid, 16);
prod id[16] ~ '\0'; -
strncpy(prod rev lvI, (caddr t)ip->revlevel, 4);
prod_r~v_lvIT4] ~ , \0'; -

2-12 CAM User Agent Modules

1* Convert sparse device type and qualifier values into strings *1

ptype = ip->dtype; ~
periph type ptr = "Reserved";
if (ptype - OxlF) periph type ptr "Unknown";
if (ptype == OxOB) ptype ~ OxOA;
if (ptype <= OxOA) periph_type_ptr periph_type[ptype);

periph qual ptr = "<Vendor Specific qualifier>";
if (ip=>pqual <= 3) periph_qual_ptr = periph_qual[ip->pqual);

printf("Periph Device Type = Ox%X = %s Device\n", ~
ip->dtype, periph type ptr);

printf("Periph Qualifier - -Ox%X = %s\n", ip->pqual,
periph qual ptr);

printf("Device-Type-Modifier = Ox%X\tRMB = Ox%X = Medium %s\n",
ip->dmodify, ip->rmb, (ip->rmb?"is removable":
"is not removable"));

printf("ANSI Version = Ox%X\t\tECMA Version = Ox%X\n",
ip->ansi, ip->ecma);

printf("ISO Version = Ox%X\t\tAENC = Ox%X\tTrmIOP = Ox%x\n",
ip->iso, ip->aenc, ip->trmiop);

printf("Response Data Format = Ox%X\tAddit Length = Ox%d\n",
ip->rdf, ip->addlen);

printf("SftRe = Ox%XCmdQue = Ox%X\tLinked = Ox%X\tSync = Ox%X\n",
ip->sftre, ip->cmdque, ip->linked, ip->sync);

printf("Wbus16 = Ox%X\tWbus32 = Ox%X\tRelAdr = Ox%X\n",
ip->wbus16, ip->wbus32, ip->reladdr);

printf("Vendor Identification = %s\nProduct Identification %s\n",
vendor id, prod id);

printf("Product Revision Level = %s\n\n",
prod rev lvl);

fflush(stdout); I§I

ill This line declares the print inq data function that prints out the
INQUIRY data for a valid nexus. The function's argument, ip, is a
pointer to the ALL_INQ_DATA structure defined in the
/usr/sys/include/io/cam/scsi_all.hill~

12] These three lines declare three character arrays to contain the Vendor ID,
the Product ID, and the Product revision level to be displayed. Each
array is declared with one extra byte to hold the NULL string terminator.

~ This section copies the ALL_INQ_DATA member, vid, into the local
array vendor id; the ALL_INQ_DA TA member, pid, into the local
array prod id; and the ALL_INQ_DATA member, revlevel, into
the local array, prod rev 1 vI. The arrays are passed to the standard
C library function, strncpy, which copies the data and then terminates
each string copy with a NULL, so that it can be output to the printf
function in the format desired.

~ This section converts the device type and qualifier values into human
readable words. The conversions are performed on defined and undefined
numeric combinations.

151 This section decodes and displays the inquiry data as hexadecimal
numbers and strings.

CAM User Agent Modules 2-13

I§I This line calls the standard C I/O function, fflush, to write out the data
from the internal buffers.

2.5.1.9 Print CAM Status Routine

This section describes the portion of the User Agent sample inquiry
application program that defines the routine to print out the CAM status for
an invalid nexus.

/* -- */
/* Local routines and data structure
form the returned CAM status. */

to report in text and Hex

struct cam_statustable { m

};

u char cam_status;
caddr t status msg;

cam_statustable[] = {~
{ CAM_REQ_INPROG,
{ CAM_REQ_CMP,
{ CAM_REQ_ABORTED,
{ CAM_UA_ABORT,
{ CAM_REQ_CMP_ERR,
{ CAM_BUSY,
{ CAM_REQ_INVALID,
{ CAM_PATH_INVALID,
{ CAM_DEV_NOT_THERE,
{ CAM_UA_TERMIO,
{ CAM_SEL_TIMEOUT,
{ CAM_CMD_TIMEOUT,
{ CAM_MSG_REJECT_REC,
{ CAM_SCSI_BUS_RESET,
{ CAM_UNCOR_PARITY,
{ CAM_AUTOSENSE_FAIL,
{ CAM_NO_HBA,
{ CAM_DATA_RUN_ERR,
{ CAM_UNEXP_BUSFREE,
{ CAM_SEQUENCE_FAIL,
{ C~CCB_LEN_ERR,

{ CAM_PROVIDE_FAIL,
{ CAM_BDR_SENT,
{ CAM_REQ_TERMIO,
{ C~LUN_INVALID,

{ CAM_TID_INVALID,
{ CAM_FUNC_NOTAVAIL,
{ CAM_NO_NEXUS,
{ CAM_I I D_INVALID,
{ CAM_CDB_RECVD,
{ CAM_SCSI_BUSY,

"CCB request is in progress"
"CCB request completed w/out error"
"CCB request aborted by the host"
"Unable to Abort CCB request"
"CCB request completed with an err"
"CAM subsystem is busy"
"CCB request is invalid"
"Bus ID supplied is invalid"
"Device not installed/there"
"Unable to Terminate I/O CCB req"
"Target selection timeout"
"Command timeout"
"Reject received"
"Bus reset sent/received"
"Parity error occurred"
"Request sense cmd fail"
"No HBA detected Error"
"Overrun/underrun error"
"BUS free" },

} ,
} ,

} ,

} ,

} ,
} ,
} ,
} ,
} ,

} ,
} ,
} ,
} ,
} ,
} ,

} ,
} ,

} ,

"Bus phase sequence failure" },
"CCB length supplied is inadequate" },
"To provide requ. capability" },
"A SCSI BDR msg was sent to target" },
"CCB request terminated by the host" },
"LUN supplied is invalid" },
"Target ID supplied is invalid"},
"Requested function is not available" },
"Nexus is not established" },
"The initiator ID is invalid" },
"The SCSI CDB has been received"
"SCSI bus busy"

} ,
}

int cam_statusentrys sizeof(cam statustable) / \
sizeof(cam_statustable[O]); ~

char *
camstatus(cam status) ~

register u=char ca~status;

register struct cam statustable *cst = cam_statustable; ~
register entrys; -

for(entrys = 0; entrys < cam_statusentrys; cst++) { ~

2-14 CAM User Agent Modules

if(cst->cam_status == cam_status) {
return(cst->status_msg);

return("Unknown CAM Status");

void
print_ccb_status(cp) ~
CCB_HEADER *cp;
{

printf("cam status = Ox%X\t (%s%s%s)\n", cp->cam status,
((cp->cam_status & CAM_AUTOSNS_VAL1D) ? "AutoSns Valid-"),
((cp->cam_status & CAM_SIM_QFRZN) ? "S1M Q Frozen-" : ""),
camstatus(cp->cam status & CAM STATUS MASK));
fflush(stdout); ~ - --

[] This line defines an array of structures. It is declared as a global array to
allow compile-time initialization. Each structure element of the array
contains two members, cam status, the CAM status code, and
status msg, a brief descrIption of the meaning of the status code. The
CAM status codes and messages are defined in the
/usr/sys/include/io/cam/cam.hfik.

I2l These lines initialize the CAM status array with the status values and
their text equivalents.

@! This line declares an integer variable whose contents equal the size of the
total CAM status array divided by the size of an individual array element.
This integer is the number of the element in the array.

I!I The next two lines define a function that returns a pointer to a text string
with the cam status field of the CCB_HEADER as an argument. The
cam status member is declared as a register variable so that its values
are stored in a machine register for efficiency.

~ This line declares a register structure pointer to point to each element of
the CAM status array and initializes it to point to the beginning of the
CAM status array. A local register variable, entrys, will be used to
traverse the CAM status array.

!§] This section of code examines each element in the array, incrementing
cst until a match between the status from the CCB and a status value in
the array is found, in which case the address of the CAM status
description string, status msg, is returned. If all the elements are
examined without a match, the "Unknown CAM Status" message address
is returned.

IZI The next two lines define a routine that uses a pointer to the
CCB_HEADER structure of the INQUIRY CCB and calls the C library
routine, printf, to print out the hexadecimal value and the appropriate
description of the CAM status returned.

CAM User Agent Modules 2-15

~ This line calls the standard C I/O function, fflush, to write out the data
from the internal buffers.

2.5.1.10 Sample Output for a Valid Nexus

This section contains an example of the output of the User Agent sample
inquiry application program when the user enters a valid nexus.
#inq 0 0 0

Periph Device Type = OxO
Device Type Modifier = OxO
ANSI Version = Oxl
ISO version = OxO
Response Data Format = Oxl
SftRe = OxO CmdQue = OxO
Wbus16 = OxO Wbus32 = OxO
Vendor ID = DEC ~
Product ID = RZ56 (C) DEC ~
Product Rev Level = 0300 @

Periph Qualifier = OxO m
RMB = OxO
ECMA version = OxO
AENC = OxO TrmIOP = OxO
Addit Length = Ox31
Linked = OxO Sync = Oxl
RelAdr = OxO

III See the American National Standard for Information Systems, Small
Computer Systems Interface - 2 (SCSI - 2), X3.131-199X for a
description of each of the fields of the inquiry data returned.

121 This line shows the value of the vendor id variable declared in the
print _ inq_ data routine in Section 2.5.1.8 as a local copy of the text
string.

~ This line shows the value of the prod id variable declared in the
print_inq_data routine in Section-2.5.1.8 as a local copy of the text
string.

~ This line shows the value of the prod rev Iv 1 variable declared in
the print _ inq_ data routine in Section 23.1.8 as a local copy of the
text string.

2.5.1.11 Sample Output for an Invalid Nexus

This section contains an example of the output of the User Agent sample
inquiry application program when the user enters an invalid nexus.
#inq 0 2 0

cam status = Ox4A (SIM Q Frozen-Target selection timeout) m

III This line shows that the contents of the cam status member of the
CCB_HEADER structure returned was CAM-=-SIM_QFRZN, which
indicates a lack of response from the specified nexus. See the
cam statustable in Section 2.5.1.9.

2-16 CAM User Agent Modules

2.5.1.12 Sample Shell Script

This section contains a sample C-shell script, caminq. c sh, that compiles
and executes the User Agent sample inquiry application program.
#cc -0 caminq caminq.c

inq 0 6 0
inq 0 2 0
inq 0 5 0
inq 0 3 0

2.5.2 Sample User Agent Scanner Driver Program
This section contains the User Agent sample scanner program, cscan. c,
with annotations to the code. It also contains the cscan. h file, which
defines the WINDOW _P ARAM_BLOCK structure used in the program.

The cscan. c program assumes that the environment variable SCAN
NEXUS has been set. The sample C-shell script that follows, cscan. csh,
compiles the program and sets SCAN-NEXUS to bus 1, target 3, and LUN 0:
#cc -0 cscan cscan.c
#setenv SCAN-NEXUS "1 3 0"

2.5.2.1 Scanner Program Header File

This section describes the header file, cscan. h, that contains definitions of
structures for the program to use.
/* cscan.h Header file for cscan.c (CAM Scanner driver) 28-0ct-1991 */

/* Scanner Window Parameter Block definition; all multi-byte quantities
are defined as unsigned bytes due to the need to store the values in
swapped order. */

typedef struct {
u char rsvd1[6];
u=char WDBLen[2];

u char WID;
u char rsvd2;
u-char XRes[2];
u char YRes[2];
u char UpLeftX[4];
u char UpLeftY[4];
u char Width[4];
u char Length[4];
u char Bright;
u char Thresh;
u char Contrast;
u char ImgTyp;

u char PixBits;

/* Reserved bytes in Header: Must Be Zero */
/* Number of Window Parameter bytes

following * / [1]
/* Window ID: Must Be Zero */
/* Reserved bytes in Header: Must Be Zero */
/* X-axis resolution: MUST be same as YRes */
/* Y-axis resolution: MUST be same as XRes */
/* Upper left X positon of scan window */
/* Upper left Y positon of scan window */
/* Scan width (Y-axis length) */
/* Scan length (X-axis length) */
/* Brightness: Must Be Zero */
/* Threshold: Must Be Zero */
/* Contrast: Must Be Zero */
/* Image type: 0 = bi-level mono; 2 = multi-level

mono; 3 = bi-level full color; 5 = multi
level full color; others reserved */

/* Bits per pixel: 1 = bi-leve1; 4 = 16 shades;
8 = 256 shades; others reserved */

u char HalfTone[2];/* Halftone Pattern: Must Be Zero */
u-char PadTyp:3; /* Padding type for non-byte pixels: MUST BE 1 */

CAM User Agent Modules 2-17

u char rsvd3:4; /* Reserved bits: Must Be Zero */
u char RevImg:l; /* 0 = normal image; 1 = reverse image */
u char BitOrder[2];/* Bit ordering: Must Be Zero */
u-char CompTyp; /* Compression type: Must Be Zero */
u-char CompArg; /* Compression argument: Must Be Zero */
u char rsvd4[6]; /* Reserved: Must Be Zero */
u char HdrSel; /* Header select (return with data):

u char ColorSel;

u char ImgCorr;

u char ThreshR;
u char ThreshG;
u char ThreshB;
u-char ShtTyp:l;

u char rsvd5:3;
u-char ShtDen:4;

o = no header;
1 = return header with data;
others reserved */

/* Color select (selects color to use when doing a
mono-color scan): 0 = default to Green; 1
scan using Red; 2 = scan using Green; 3 =
scan using Blue; others reserved */

/* Image data correction method: 0 = default to
normal; 1 = soft image; 2 = enhance (low);
3 = enhance (high); others reserved */

/* Threshold level, Red: 0 = default level */
/* Threshold level, Green: 0 = default level */
/* Threshold level, Blue: 0 = default level */
/* Sheet type: 0 = reflection;

1 = transparency */
/* Reserved bits: Must Be Zero */
/* Sheet density (transparency): 0 normal; 1

light; 2 = dark; others reserved */

ill The length in bytes of a single scan window descriptor. The first 48
bytes are defined in the American National Standard for Information
Systems, Small Computer Systems Interface - 2 (SCSI - 2), X3.131-199X
and the remaining bytes are vendor-specific. The specific structure
members used may depend on the scanner device.

2.5.2.2 The include Files Section

This section, which is the beginning of the cscan program, describes the
portion of the User Agent sample scanner program that lists the include
files for the program.

/* -- */
/* Include files needed for this program. */

#include <stdio.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <strings.h>
#include <ctype.h>
#include <math.h>
#include <io/common/iotypes>
#include <io/cam/cam.h> /* CAM defines from the CAM document */
#include <io/cam/dec cam.h> /* CAM defines for Digital CAM source files */
#include <io/cam/uagt.h> /* CAM defines for the UAgt driver */
#include <io/cam/scsi_all.h> /* CAM defines for ALL SCSI devices */
.include "cscan.h" /* Scanner structure definitions */

2-18 CAM User Agent Modules

2.5.2.3 The COB Setup Section

This section describes the portion of the User Agent sample scanner program
that defines the CDBs for the program.
/* The Define Window Parameters CDB (10 bytes). */

typedef struct
u char opcode; /* 24 hex
u char 5, /* 5 bits reserved

lun 3· , /* logical unit number
u char 8; /* Reserved byte
u-char 8; /* Reserved byte
u char 8; /* Reserved byte
u char 8; /* Reserved byte
u char param_len2; /* MSB parameter list
u char param _lenl; /* parameter list
u char param_lenO; /* LSB parameter list
u char control; /* The control byte

}SCAN_DEF_WIN_CDB;

/* The Define Window Parameters op code */

#define SCAN DEF WIN OP Ox24 - - -
/* The Read (data or gamma table) CDB (10 bytes). */

typedef struct
u char opcode; /* 28 hex
u char : 5, /* 5 bits reserved

lun : 3; /* logical unit number
u char tran_type; /* transfer data type:

/* O=data, 3=gamma
u char 8; /* Reserved byte

*/
*/

*/
*/
*/
*/
*/

length */ I1l
length */
length */

*/

*/
*/
*/
*/

* / 121
*/

u char tran idl; /* MSB transfer identification */ ~
u char tran id2;

u char param_len2;
u char param_lenl;
u char param lenO;
u-char control;

}SCAN_READ_CDB;

/*
/*
/*
/*
/*
/*

LSB
0

MSB

LSB
The

trans id: */
=data, 1/2/3= gamma */
parameter list length */
parameter list length */
parameter list length */
control byte */

/* The Read (data or gamma table) op code */

#define SCAN READ OP Ox28

III The parameter list length members specify the number of bytes sent
during the DATAOUT phase. The parameters are usually mode
parameters, diagnostic parameters, and log parameters that are sent to a
target. If set to 0 (zero), no data is to be transferred.

I2l The types of data that are to be read. The choices are: image data scan
lines or gamma correction table data.

~ These two bytes are used with the transfer type byte to indicate that the
data to be read is image scan lines, 0 (zero), or one of the following types
of gamma correction table data: red, 1; green, 2; or blue, 3.

CAM User Agent Modules 2-19

2.5.2.4 The Definitions Section

This section describes the portion of the User Agent sample scanner program
that specifies the local definitions and initializes data.

/* --- */
/* Local defines */
#define SENSE_LENI8 /* max sense length from scanner */ rn
/* --- */
/* Initialized and uninitialized data. */

u_char sense[SENSE_LEN); ~

[j] This line defines a constant of 18 bytes for the length of the sense data
from the scanner.

121 This line declares a character array, sense, with a size of 18 bytes as
defined by the SENSE_LEN constant.

2.5.2.5 The Main Program Section

This section describes the main program portion of the User Agent sample
scanner program.

/* --- */
/* The main code path. The CCB/CDB and UAGT CAM CCB are set up for the

DEFINE WINDOW PARAMETERS and READ commands to-the Bus/Target/LUN. */

UAGT_CAM_CCB ua_ccb_sim_rel; /* uagt structure */ rn
/* for the RELEASE SIMQUE CCB */

CCB_RELSIM ccb_sim_rel; /* RELEASE SIMQUE CCB */ ~
UAGT_CAM_CCB ua_ccb_reset_dev; /* uagt structure */ ~

/* for the RESET DEVICE CCB */
CCB RESETDEV ccb_reset_dev; /* RESET DEVICE CCB */ ~

UAGT CAM CCB ua_ccb;

CCB SCSIIO ccb;

main(argc, argv,envp)
int argc;
char *argv[);
char *envp [) ;
{

/* uagt structure */ ~
/* for the SCSI I/O CCB */

/* SCSI I/O CCB */ ~

/*-- */
/* Local variables and structures */

extern void clear mem(); ~
extern void swap short store();
extern void swap=long_store();

u char id, targid, lun;
char *cp;
int nexus;

int fd;
int od;
char FileHead[200);
int i, n;
u char *bp;
int retry_cnt;

2-20 CAM User Agent Modules

/* from envir variable SCAN-NEXUS */ ~

/* unit number for the CAM open */ ~
/* unit number for the file open */ ~
/* buffer for file header info */

/* general usage byte pointer */
/* error retry counter */

int reset_flag; /* flag to indicate reset tried */

double Xwid, Ylen; /* scan area in inches */ []
u short WXYRes; /* variables for window calculations */
u-Iong wwidth, WLength, WinPix, LineBytes, TotalBytes; ~
u:char WHdrSel; ~

SCAN_DEF_WIN_CDB *win;
SCAN_READ_CDB *read;

WINDOW_PARAM_BLOCK Window;

u_char ReadData[400*12*3];
u char *RDRp, *RDGp, *RDBp;
u:char WriteData[400*12*3];
u_char *WDp;

/* pointer for window def CDB */ ~
/* pointer for read CDB */ ~

/* parameter block, window def */ ~

/* Max bytes/line */ ~
/* Red, Green, Blue pointers */
/* Max bytes/line */ ffID
/* WriteData pointer */

[j] This line declares a global data structure, ua ccb sim reI, to be used
with the RELEASE SIM QUEUE CCB for the UAGT_CAM_IO ioctl
command.

121 This line declares a global data structure, ccb sim reI, of the type
CCB_RELSIM, which is defined in the file - -
/usr/sys/include/io/cam/cam.h.

131 This line declares a global data structure, ua ccb reset dev, to be
used for the BUS DEVICE RESET CCB forthe UAGT_CAM_IO ioctl
command.

@ This line declares a global data structure, ccb reset dev, of the type
CCB_RESETDEV, which is defined in the file -
/usr/sys/include/io/cam/cam.h.

~ This line declares a global data structure, ua ccb, of the type
UAGT_CAM_CCB, which is defined in the file
/usr / sys / include/ io/ cam/uagt. h. This structure is copied
from user space into kernel space as part of the ioct I system call for
the UAGT_CAM_IO ioctl command.

!§] This line declares a global data structure, ccb, of the type CCB_SCSIIO,
which is defined in the file /usr / sys/ include/ io/cam/ cam. h.

111 These forward references declare routines that are used later in the
program. The routines are defined in Section 2.5.2.14.

~ The bus, target, and LUN are specified in octal digits in the SCAN
NEXUS environment variable. The value for the LUN should be 0
(zero).

~ The file descriptor for the User Agent driver returned by the open
system call, which executes in Section 2.5.2.7.

[j]] The file descriptor for the output file returned by the open system call,
which executes in Section 2.5.2.7.

[UJ Real values to contain the X and Y dimensions of the scan window.

CAM User Agent Modules 2-21

II2l Variables to hold calculated information about the scan window.

[j]] Variable to hold the flag bytes indicating whether window header is to be
returned with the data. The value of the variable is stored in the HdrSel
member of the WINDOW _P ARAM_BLOCK structure is set to 1. The
WINDOW _PARAM_BLOCK is defined in Section 2.5.2.1.

IHI This line declares a pointer to the data structure SCAN_DEF _ WIN_CDB,
which is defined in Section 2.5.2.3.

[j]] This line declares a pointer to the data structure SCAN_READ_CDB,
which is defined in Section 2.5.2.3.

II§] This line declares an uninitialized local data structure, Window, of the
type WINDOW _PARAM_BLOCK, which is defined in Section 2.5.2.1.

!IZI This line declares an array to contain a scan line of the maximum size
that can be read, which is 14,400 bytes. This array is used to read a scan
line from the scanner.

[jj] This line declares an array large enough to contain the maximum-size
scan line, which is 14,400 bytes. This array is used to write the scan line,
converted to 3-byte pixels, to the output file.

2.5.2.6 The Nexus Conversion Section

This section describes the portion of the User Agent sample scanner program
where the nexus information contained in the SCAN-NEXUS environment
variable is converted to the values for bus, target, and LUN.
/* Find the environment variable SCAN-NEXUS. If not found, return

error message. If found, convert the nexus information from the
variable to bus, target ID and LUN values. Return an error
message if any of the values are not octal digits. */

nexus = 0; /* Reset valid data flag */
for (i=O; envp[i] 1= NULL; i++)
{

cp = envp[i]; ill
if (strncmp(cp,"SCAN-NEXUS=",II) 0)

/* Find environment variable */

nexus = -1; /* set tentative flag */
cp += 11; /* Advance to data */
if (*cp < ' 0' II *cp > ' 7') break; 121
id = (u char) (*cp++) - (u char)('O');
if (*cp++ 1= ' ') break; -
if (*cp < '0' II *cp> '7') break;
targid = (u char) (*cp++) - (u char)('O');
if (*cp++ 1= ' ') break; -
if (*cp < ' 0' I I *cp > ' 7 ') break;
lun = (u char) (*cp) - (u char)('O');
nexus = 1; - /* Set good data flag */

if (nexus == -1) ~

2-22 CAM User Agent Modules

{

}

printf("Invalid SCAN-NEXUS; set to octal digits 'bus target lun'\n");
exit(l);

if (nexus == 0) ~
{

printf("Set environment variable SCAN-NEXUS to 'bus target lun'
(octal\ digits)\n\n");

exit(l);

printf("Scanner nexus set to: bus %d, target %d, LUN %d\n\n",id, \
targid, lun); 151

[j] This section scans through all of the environment variables passed to the
program by the system, looking for the variable SCAN-NEXUS.

121 This section checks to make sure SCAN-NEXUS contains octal digits for
bus, target, and LUN.

~ This error message appears if the digits are not octal.

@ This error message appears if SCAN-NEXUS is not set.

~ This message displays the values for bus, target, and LUN.

2.5.2.7 The Parameter Assignment Section

This section describes the portion of the User Agent sample scanner program
that assigns the parameters entered by the user on the command line to the
appropriate variables and opens the necessary files.
/* Make sure that the correct number of arguments are present.

If not, return an error message with usage information. */

if (argc 1= 5) { m
printf("Usage is: cscan XYres Xwid Ylen out file\n");
printf(" XYres is integer pix/inch; Xwid & Ylen are real \

inches\n\n");
exit() ;

/* Convert the parameter information from the command line. */

WXYRes atoi(argv[l]); /* X & Y resolution */
xwid = atof(argv[2]); /* X width in inches */
Ylen = atof(argv[3]); /* Y length in inches */

/* Verify that the X & Y resolution is one of the legal values */

switch (WXYRes) ~

case 25:
case 150:
case 200:
case 300:
case 400:

break;
default:

printf("Illegal X & Y resolution; must be 25, 150, 200, \
300, 400\n");

exit(l);

CAM User Agent Modules 2-23

j* Verify that the X width is positive and less than 11.69 inches *j ~

if (Xwid < 0 I I xwid > 11.69)
{

printf("X width must be positive and less than 11.69 inches\n");
exit(l);

j* Verify that the Y length is positive and less than 17.00 inches *j

if (Ylen < 0 II Ylen> 17.00)
{

printf("Y length must be positive and less than 17.00 inches\n");
exit(l);

j* Open the output file ("truncating" it if it exists) and report *j
j* any errors. *j ~

if ((od = open(argv[4], o_WRONLYIO_CREATlo_TRUNC, 0666)) < 0)
{

perror("Error on Output File Open");
exit(l);

j* Open the User Agent driver and report any errors. *j

if ((fd = open("jdevjcam", O_RDWR, 0)) < 0)
{

perror("Error on CAM UAgt Open");
exit(l);

ill The user enters the X and Y scan resolutions in pixels per inch, the width
(X) and length (Y) of the scan area in inches, and the name of the
output file on the command line.

I2J This section checks for the legal scan resolutions the user can enter.

[3] These two sections check that the user entered legal values for X and Y.

~ These two sections open the User Agent driver and the output file.

2.5.2.8 The Data Structure Setup Section

This section describes the portion of the User Agent sample scanner program
that sets up the data structures for the XPT_REL_SIMQ and
XPT_RESET_DEV commands.
j* - Begin static setups of SIMQ Release and Device Reset structures - *j

j* Set up the CCB for an XPT_REL_SIMQ request. *j

j* Set up the CAM header for the XPT_REL_SIMQ function. */

ccb sim rel.cam ch.my addr = (struct ccb header *)&ccb sim rel;
- - - - - j* "Its" address *j II]

ccb sim rel.cam eh.cam ceb len = sizeof(CCB RELSIM);
- - - - - - j* a SIMQ release *j

ceb sim rel.eam eh.eam fune code = XPT_REL_SIMQ; j* the ope ode *j
eeb-sim-rel.cam-eh.cam-path-id id; j* selected bus *j
eeb=sim=rel.eam=eh.eam=target_id = targid; j* selected target */

2-24 CAM User Agent Modules

cCb_sim_rel.cam ch.cam target lun = lun; /* selected lun */

/* The needed CAM flags are: CAM_DIR_NONE - No data will be transferred. */

ccb_sim_rel.cam_ch.cam_flags = CAM_DIR_NONE;

/* Set up the fields for the User Agent Ioctl call. */

ua_ccb_sim_rel.uagt_ccb = (CCB_HEADER *)&ccb_sim_rel;
/* where the CCB is * / 121

ua ccb sim rel.uagt ccblen sizeof(CCB_RELSIM); /* bytes in CCB */
ua-ccb-sim-rel.uagt-buffer (u_char *)NULL; /* no data */
ua-ccb-sim-rel.uagt-buflen 0; /* no data */
ua-ccb-sim-rel.uagt-snsbuf (u_char *)NULL; /* no Autosense data
ua-ccb-sim-rel.uagt-snslen 0; /* no Autosense data
ua-ccb-sim-rel.uagt-cdb (CDB_UN *)NULL; /* CDB is in the CCB
ua=ccb=sim=rel.uagt=cdblen 0; /* CDB is in the CCB

/* Set up the CCB for an XPT_RESET_DEV request. */

/* Set up the CAM header for the XPT RESET DEV function. */

ccb reset_dev.cam_ch.my_addr = (struct ccb header *)&ccb reset dev;
/* "Its" address-*/ @I

ccb reset dev.cam ch.cam ccb len = sizeof(CCB RESETDEV);
- - - - - -/* a SCSI 1/0 CCB */

*/
*/
*/
*/

ccb reset dev.cam ch.cam func code XPT RESET DEV; /* the opcode */
ccb-reset-dev.cam-ch.cam-path-id id; /* selected bus */
ccb-reset-dev.cam-ch.cam-target id = targid; /* selected target */
ccb=reset=dev.cam=ch.cam=target=lun = lun; /* selected lun */

/* The needed CAM flags are: CAM_DIR_NONE - No data will be transferred. */

cCb_reset_dev.cam_ch.cam_flags = CAM_DIR_NONE;

/* Set up the fields for the User Agent Ioctl call. */

ua ccb reset dev.uagt ccb = (CCB HEADER *)&ccb reset dev;
- - - - - /* where the CCB is */ ~

ua_ccb_reset_dev.uagt_ccblen sizeof(CCB RESETDEV);
- /* bytes in CCB */

ua_ccb_reset_dev.uagt_buffer (u_char *)NULL;
/* no data */

ua ccb reset dev.uagt buflen 0; /* no data */
ua=ccb=reset=dev.uagt=snsbuf (u_char *)NULL;

/* no Autosense data */
ua_ccb_reset_dev.uagt_snslen 0; /* no Autosense data */
ua_ccb_reset_dev.uagt_cdb (CDB_UN *)NULL;

/* CDB is in the CCB */
ua ccb reset dev.uagt cdblen 0; /* CDB is in the CCB */

/* -- End ~f static setup; of SIMQ Release and Device Reset structures */

[j] This section of code fills in some of the CCB_HEADER fields of the
CCB_RELSIM structure defined as ccb sim rel, for the
XPT_REL_SIMQ command. The structure was declared in Section
2.5.1.2.

121 This section of code fills in the UAGT_CAM_CCB structure defined as
ua ccb sim rel, for the UAGT_CAM_IO ioctl command. The
structure was declared in Section 2.5.1.2.

~ This section of code fills in some of the CCB_HEADER fields of the
CCB_RESETDEV structure defined as ccb reset dev, for the
XPT_RESET_DEV command. The structure was declared in Section
2.5.1.2.

CAM User Agent Modules 2-25

~ This section of code fills in the UAGT_CAM_IO structure defined as
ua ccb reset dev, for the UAGT_CAM_IO ioctl command. The
structure was deciared in Section 2.5.1.2.

2.5.2.9 The Window Parameters Setup Section

This section describes the portion of the User Agent sample inquiry
application program that fills in the scan window parameters and sends a
SCSI SET WINDOW PARAMETERS command to the scanner.
/* Fill in window parameters for scanner and send DEFINE WINDOW */
/* PARAMETERS command to the scanner. Note that the X&Y resolution */
/* and the X width and Y length are specified on the command line. */

wwidth = Xwid*(double)WXYRes; /* X width inches to pixels */ rn
WLength = Ylen*(double)WXYRes; /* Y length inches to lines */
WHdrSel = 0; /* Don't return header */

#ifdef NO HEADER FOR NOW
WHdrSel = 1;- - /* Return header w. data */

#endif

WinPix = WWidth*WLength; /* Pixels in window */ ~
LineBytes = WWidth*3; /* Full color, 8-bit pixels */
TotalBytes = WHdrSel*256 + WinPix*3; /* Full color, 8-bit pixels */

printf ("Window parameters: \n"); ~
printf(" Width = %6d pixels/line, Length = %6d lines;

Total = %10d pixels\n",
WWidth, WLength, WinPix);

printf(" Bytes/line = %6d; Total bytes/image = %10d\n", LineBytes,
TotalBytes) ;

/* Fill in window parameters for scanner and
send DEFINE WINDOW PARAMETERS */

/* command to the scanner. */

clear mem(&Window, sizeof(Window)); /* Clear whole DWP block */ ~
swap short store(&Window.WDBLen[O], Ox2F); /* REQUIRED length */ ~
swap-short-store(&Window.XReS[O], WXYRes);

- - /* X and Y MUST BE THE SAME */
swap_short_store(&Window.YRes[O], WXYRes);

/* X and Y MUST BE THE SAME */
/* Upper Left X & Y left at zero */
swap long store(&Window.Width[O], WWidth);
swap-long-store(&Window.Length[O], WLength);
Window.ImgTyp = 5; /* Multi-level full color */ ~
Window.pixBits = 8; /* 8-bit pixels */ ~
Window.PadTyp 1; /* REQUIRED value */ ~
Window.RevImg = 1; /* Reverse == 0,0,0 = black */ ~
Window.HdrSel = WHdrSel; /* Set return header control */ ~
/* All other values left at zero */

/* Display current contents of bytes in window parameter block */ ff]

printf ("Window Parameter block (in hex): \n") ;
for(i=O, bp=(u char *)&Window; i < sizeof(Window); i++, bp++)

printf("%.2i ", *bp);
if (i 7) printf("\n");
if (i == 8+21) printf("\n");

printf("\n\n");

2-26 CAM User Agent Modules

[] This section converts the X and Y values entered from the command line
in inches into pixels. The value of WXYRes is an int; however, the
values of xwid and Ylen are floating point values. To perform the
calculations to determine the values of wwidth, the number of pixels per
line, and WLength, the number of scan lines, the value of WXYRes must
be converted to a real number. For example, if the value entered for X
were 4.5 and the resolution selected were 300, WWidth would equal
1,350 pixels per line. If the value entered for Y were 3.5, the result
would be 1,050 scan lines.

f2] This section of the program calculates the number of bytes in the scan
window based on the total number of pixels. For example, the
calculation using the previous figures would yield 1,417,500 pixels as the
value of WinP ix. To calculate the number of bytes per line, wwidth is
multiplied by 3, which is the number of bytes per pixel. The total
number of bytes in the scan window, using the figures in the example,
would be 4,252,500 bytes.

~ These lines display the results of the calculations.

~ This line calls the clear mem function to set the local
WINDOW_PARAM_BLOCK structure, Window, to O's (zeroes) in
preparation for storing the byte values in swapped order. The
WINDOW _PARAM_BLOCK structure was defined in Section 2.5.2.1.
The clear mem function is defined in Section 2.5.2.14.

~ This section of code calls the functions that put the bytes of short and
long integer values into big -endian storage. The functions are defined in
Section 2.5.2.14.

I§] This line sets the image type for the scanner. The setting of 5 means
multilevel, full color.

IZI This line sets the number of bits per pixel. The setting of 8 means 256
shades.

~ This line sets the padding type for non byte pixels. The setting of 1
means pad with 0 (zero).

191 This line sets the reverse image. The setting of 1 means white pixels are
indicated by 1 (one) and black pixels are indicated by 0 (zero).

[1]] This line sets the selection for returning a header with the data. The
setting of WHdrSel was set to 0 (do not include the header).

[j] This section displays the contents of the bytes in the window parameter
block.

CAM User Agent Modules 2-27

2.5.2.10 CCB Setup for the DEFINE WINDOW Command

This section describes the portion of the User Agent sample scanner program
where the fields of the CCB_HEADER needed for an XPT_SCSI_IO request
are filled in.
/* Set up the CCB for an XPT SCSI IO request. The DEFINE WINDOW

PARAMETERS command will be sent to the device. */

/* Set up the CAM header for the XPT SCSI IO function. */

ccb.cam_ch.my_addr = (struct ccb header *)&ccb;
- /* "Its" address */ m

cCb.cam_ch.cam_ccb len = sizeof(CCB_SCSIIO); /* a SCSI I/O CCB */
ccb.cam ch.cam func code XPT_SCSI_IO; /* the opcode */
ccb.cam-ch.cam-path-id = id; /* selected bus */
ccb.cam=ch.cam=target_id = targid; /* selected target */
ccb.cam_ch.cam_target_Iun = lun; /* selected lun */

/* The needed CAM flags are: CAM_DIR_OUT -
The data will go to the target. */

ccb.cam_ch.cam_flags = CAM_DIR_OUT;

/* Set up the rest of the CCB for the DEFINE WINDOW PARAMETERS
command. */

ccb.cam data ptr = (u char *)&Window;
- /* where the parameters are */ ~

cCb.cam_dxfer_Ien = sizeof(Window); /* how much data */ ~
ccb.cam timeout CAM TIME DEFAULT; /* use the default timeout */ ~
ccb.cam cdb len = sizeof(SCAN DEF WIN CDB);

- - /* how many bytes for cdb */ ~
ccb.cam_sense_ptr = &sense[O]; /* Autosense data area */
cCb.cam_sense_Ien = SENSE_LEN; /* Autosense data length */

/* Use a local pointer to access the fields in the DEFINE WINDOW
PARAMETERS CDB. */

win = (SCAN_DEF_WIN_CDB *)&ccb.cam_cdb_io.cam_cdb_bytes[O]; ~

clear mem(win,sizeof(SCAN DEF WIN CDB));
- - - - /* clear all bits in CDB */ IZI

win->opcode = SCAN DEF WIN OP; /* define window command */ ~
win->lun = lun; - - - /* lun on target */
win->param lenO sizeof(Window); /* for the buffer space */
win->param=lenl 0;
win->param len2 0;
win->control 0; /* no control flags */

/* Set up the fields for the User Agent Ioctl call. */ ~

ua_ccb.uagt_ccb = (CCB_HEADER *)&ccb;
/* where the CCB is */ ~

ua_ccb.uagt_ccblen sizeof(CCB SCSIIO);
- /* how many bytes to gather */ ~

ua_ccb.uagt_buffer (u char *)&Window;

ua ccb.uagt snsbuf
ua=ccb.uagt=snslen
ua_ccb.uagt_cdb

2-28 CAM User Agent Modules

- /* where the parameters are */ ~
sizeof (Window) ;

/* how much data */ ~

&sense[O]; /* Autosense data area */ ~
SENSE_LEN; /* Autosense data length */
(CDB_UN *)NULL;

/* CDB is in the CCB */ ~
0; /* CDB is in the CCB */

III This section of code fills in some of the CCB_HEADER fields of the
SCSI 110 CCB structure defined as ccb, for processing by the XPT layer.
The structure was declared in Section 2.5.1.2.

121 This line assigns the cam data ptr member of the local
CCB_SCSIIO data structure, cCb, to the address of the Window
parameter block. The Window parameter block structure was filled in
Section 2.5.2.9.

~ This line sets the data transfer length to the length of the Window
structure.

~ This line specifies using the default timeout, which is the value assigned
to the CAM_TIME_DEFAULT constant. This constant is set in the
/usr/sys/include/io/cam/cam.h file to indicate that the SIM
layer's default timeout is to be used. The current value of the SIM
layer's default timeout is five seconds.

[5] This line sets the length of the cam cdblen member to the length of
the SCAN_DEF _ WIN_CDB structure.

[§] This line assigns the win pointer, which is type
SCAN_DEF _ WIN_CDB, to the address of the cam cdb bytes
member of the CDB_UN union. This union is defined in
/usr/sys/include/io/cam/cam.h as the cam cdb io member
of the SCSI I/O CCB structure. - -

III This line calls the clear mem function to clear the local
SCAN_DEF _ WIN_CDB structure in preparation for storing the values
needed for the DEFINE WINDOW operation. The
SCAN_DEF _ WIN_CDB structure is defined in Section 2.5.2.3. The
clear mem function is defined in Section 2.5.2.14.

~ These lines use the win pointer to access the bytes of the
cam cdb bytes array as though it is a SCAN_DEF _ WIN_CDB
structure. The SCAN_DEF _ WIN_CDB structure is defined in Section
2.5.2.3.

~ This section of the code assigns the program address of the CCB into the
CCB pointer member and the program address of the Window parameter
block into the data pointer member of the ua ccb structure of type
UAGT_CAM_CCB, as defined in the -
/usr/sys/include/io/cam/uagt.h file. This structure is copied
from user space into kernel space as part of the ioctl system call that is
executed in Section 2.5.2.11. This structure was declared in Section
2.5.2.3.

[g] This line initializes the uagt ccb member of the ua ccb structure
with the address of the local CCB_SCSIIO structure, ccb.

CAM User Agent Modules 2-29

II1I This line sets the length of the uagt ccblen member to the length of
the SCSI I/O CCB structure that willbe used for this call.

[2] This line initializes the uagt buffer member with the user space
address of the Window parameter block.

[j]] This line initializes the uagt buflen member with the number of
bytes in the Window parameter block.

[H] These two lines reflect that the autosense features are turned on in the
CAM flags.

[j]] These two lines reflect that the Command Descriptor Block information is
in the SCSI I/O CCB structure filled in Section 2.5.1.2.

2.5.2.11 The Error Checking Section

This section describes the portion of the User Agent sample scanner program
that attempts to set the window parameters and recover from possible scanner
errors.
j* Send the CCB to the CAM subsystem using the User Agent driver.

If an error occurs, report it and attempt corrective action. *j

retry cnt = 10; j* initialize retry counter *j
reset=flag = 0; j* initialize reset flag *j

retry SWP:
printf(nAttempt to Set Window Parameters\nn);
if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb) < 0) rn
{

perror(nError on CAM UAgt Ioctl to Define Window Parameters n);
close(fd); j* close the CAM file *j
exit(l);

j* If the CCB did not complete successfully then report the error. *j

if ((ccb.cam_ch.cam_status & CAM_STATUS_MASK) 1= CAM_REQ_CMP)
{

print ccb status(nCAM UAgt Define Window Ioctl n,
&(ccb.cam ch)); j* report the error values *j

printf(n cam_scsi_status = Ox%.2X\nn, ccb.cam_scsi_status); 121

j* 1st check if the SIM Queue is frozen. If it is, release it. *j

if (ccb.cam ch.cam status & CAM SIM QFRZN) {
printf(7r"Attempt to release 81M Queue\nn);
if(ioctl(fd, UAGT CAM la, (caddr t)&ua ccb sim reI) < 0) { ~

perror(nError on CAM UAgt Release sim Queue-Ioctl n);
close(fd); j* close the CAM file *j
exit(l);

j* If the Release Sim Q CCB did not complete successfully then
report the error and exit. *j

print ccb status(nCAM UAgt Release SIM Queue Ioctl n,
& (ccb_sim_rel.cam_ch)); j* report the error values *j

if (ccb sim rel.cam ch.cam status 1= CAM REQ CMP) {
print -ccb -status (;;-CAM UAgt Release SIM -Queue Ioctl n ,

& (ccb_sim_rel.cam_ch)); j* report the error values *j ~

2-30 CAM User Agent Modules

close(fd);
exit(l);

/* close the CAM file */

/* Next, if we haven't done one yet, attempt a device reset to clear any
device error. */

if (reset_flag++ == 0)
{

printf("Attempt to Reset the scanner\n");
if(ioctl(fd, UAGT CAM 10, (caddr t)&ua ccb reset dev) < 0) { ~

perror("Error on CAM UAgt DevIce Reset Ioctl");
close(fd); /* close the CAM file */
exit(l);

/* If the Reset Device CCB did not complete successfully then
report the error and exit. */

print_ccb_status("CAM UAgt Device Reset Ioctl",
& (ccb_reset_dev.cam_ch));

/* report the error values */

if (ccb reset dev.cam ch.cam status 1= CAM REQ CMP) { ~
print -ccb status ("CAM UAgt -Device Reset Ioctl",

& (ccb_reset_dev.cam_ch));

}

close(fd);
exit(l);

/* report the error values */
/* close the CAM file *j

/* wait the 28 seconds that the scanner takes to come back to life
after a reset; no use to do anything else. */

printf("Scanner was reset.
wait 28 Seconds for it to recover .•. \n");

sleep(28);

/* Last, count if all retries are used up. If not, try the SWP again.
If so, give up and exit. */

printf("Retry counter value = %d\n",retry cnt);
if (retry_cnt-- > 0) goto retry_SWP; -

close(fd); /* close the CAM file */
exit(l);

}
else
{

/* Output status information on success for debugging. */

print ccb status("CAM UAgt SET WINDOW PARAMETERS Ioctl",
&(ccb~cam ch)); /* report the error values */

printf (" cam- scsi status = Ox%. 2X\n", ccb. cam scsi status);
printf("\nWindow parameter set up successful\n-;;-); -
}

/* Output header information (magic number, informational comment,
X and Y dimensions and maximum pixel values) to the data file
and display it for the user. */

sprintf(FileHead,"P6\n\# X&Y resolution = %d dpi, %d pixels/line, \
%d lines", 111

WXYRes,WWidth,WLength);
.sprintf(strchr(FileHead,NULL),"\n%d %d 255\n",WWidth,WLength);
write(od,FileHead,strlen(FileHead»;

CAM User Agent Modules 2-31

printf("File header data --\n%s\n",FileHead)~

ill This section of code attempts to set the window parameters. This line
passes the local UAGT_CAM_CCB structure, ua ccb, to the User
Agent driver, using the ioctl system call. The arguments passed are
the file descriptor returned by the open system call; the User Agent
ioctl command, UAGT_CAM_IO, which is defined in the
lusrlsys/include/io/caro/uagt.h file; and the contents of the
ua ccb structure. The User Agent driver copies in the SCSI 110 CCB
andsends it to the XPT layer. When the 110 completes, the User Agent
returns to the application program, returning status within the ua _ ccb
structure.

I2l If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed, an error message is printed indicating the CAM
status returned.

@! This section of code attempts to clear the SIM queue if it is frozen. This
line passes the local UAGT_CAM_CCB structure, ua ccb siro reI,
to the User Agent driver, using the ioctl system call Thearguments
passed are the file descriptor returned by the open system call; the User
Agent ioctl command, UAGT_CAM_IO, which is defined in the
lusrlsys/include/io/caro/uagt.h file; and the contents of the
ua ccb siro reI structure. The User Agent driver copies in the SCSI
IIO-CCBand sends it to the XPT layer. When the operation completes,
the User Agent returns to the application program, returning status within
the ua ccb structure.

~ If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed, an error message is printed indicating the CAM
status returned. An error message is displayed and the program exits.

~ This section of code attempts a device reset. This line passes the local
UAGT_CAM_CCB structure, ua ccb reset dev, to the User Agent
driver, using the ioctl system call. The argun1ents passed are: the file
descriptor returned by the open system call; the User Agent ioctl
command, UAGT_CAM_IO, which is defined in the
lusr I sys I includel iol caro/uagt. h file; and the contents of the
ua ccb reset dev structure. The User Agent driver copies in the
SCSIIIO-CCB and sends it to the XPT layer. When the operation
completes, the User Agent returns to the application program, returning
status within the ua ccb structure.

!§] If the CAM status is anything other than CAM_REQ_ CMP, indicating
the request completed, an error message is printed indicating the CAM
status returned. An error message is displayed and the program exits.

IZI If the scan window parameters were set up successfully, a portable
pixmap P6 file is created. This section displays the X and Y resolutions

2-32 CAM User Agent Modules

in dots per inch, pixels per line, and number of lines, taking the values
that were generated from the code in Section 2.5.2.9.

2.5.2.12 CCB Setup for the READ Command

This section describes the portion of the User Agent sample scanner
application program that sets up the CCBs for a READ command.
/* Set up the CCB for an XPT SCSI IO request. The READ (data) command

will be sent to the device. -*/

/* Set up the CAM header for the XPT SCSI IO function. */

(struct ccb header *)&ccb;

ccb.cam ch.cam ccb len = sizeof(CCB_SCSIIO);
ccb.cam-ch.cam-func code XPT SCSI_IO;
ccb.cam-ch.cam-path-id = id;
ccb.cam-ch.cam-target id = targid;
ccb.cam=ch.cam=target=lun = lun;

/*
/*
/*
/*
/*
/*

"Its" address */ rn
a SCSI I/O CCB */
the opcode */
selected bus */
selected target */
selected lun */

/* The needed CAM flags are: CAM DIR IN - The data will come from
the target. */ - -

cCb.cam_ch.cam_flags = CAM_DIR_IN;

/* Set up the rest of the CCB for the READ command. */

ccb.cam data ptr = (u char *)ReadData; /* where the data goes */ ~
ccb.cam-dxfer len = LineBytes; /* how much data */
ccb.cam-timeout 100; /* use timeout of 100Sec */
cCb.cam=cdb_len = sizeof(SCAN_READ CDB);

-/* how many bytes for read */ ~
/* Autosense data area */ ccb.cam sense ptr = &sense[O];

ccb.cam=sense=len = SENSE_LEN; /* Autosense data length */

/* Use a local pointer to access the fields in the DEFINE WINDOW
PARAMETERS CDB. */

read = (SCAN_READ_CDB *)&ccb.cam_cdb_io.cam_cdb_bytes[O]; ~

clear mem(read,sizeof(SCAN READ CDB)); /* clear all bits in CDB */ ~
read->opcode = SCAN READ OF; - /* define window command */
read->lun = lun; - - /* lun on target */
read->param lenO LineBytes&255; /* for the buffer space */
read->param=lenl (LineBytes»8)&255;
read->param_len2 (LineBytes»16)&255;
read->control 0; /* no control flags */

/* Set up the fields for the User Agent Ioctl call. */

ua ccb.uagt ccb = (CCB HEADER *)&ccb; /* where the CCB is */ ~
ua-ccb.uagt-ccblen sizeof(CCB SCSIIO);

- - - /* how many bytes to pull in */ ~
ua ccb.uagt buffer ReadData; /* where the data goes */ i
ua=ccb.uagt=buflen LineBytes; /* how much data */ ~

ua_ccb.uagt_snsbuf &sense[O]; /* Autosense data area */ [g]
ua_ccb.uagt_snslen SENSE_LEN; /* Autosense data length */
ua_ccb.uagt_cdb (CDB_UN *)NULL; /* CDB is in the CCB */ !TIl
ua_ccb.uagt_cdblen 0; /* CDB is in the CCB */

n = TotalBytes + strlen(FileHead);
printf("Total bytes in file %12d.\n", n);

printf("\nRead data from scanner and write to file\n");

CAM User Agent Modules 2-33

III This section of code fills in some of the CCB_HEADER fields of the
SCSI I/O CCB structure defined as ccb, for processing by the XPT layer.
The structure was declared in Section 2.5.1.2.

121 This line sets the cam data ptr to the address of the ReadData
array defined in Section 2.5.12.

~ This line sets the data transfer length to the length of the
SCAN_READ_CDB structure.

~ This line sets the read pointer, which is type SCAN_READ_CDB, to
the address of the cam cdb len member of the CDB_UN union. This
union is defined in /usr/sYs/include/io/carn/carn.h as the
cam cdb io member of the SCSI I/O CCB structure.

~ This line calls the clear rnern function to clear the local
SCAN_READ_CDB structure, read, in preparation for storing the
values needed for the READ operation. The SCAN_READ_CDB
structure was defined in Section 2.5.2.3. The clear rnern function is
defined in Section 2.5.2.14.

[§J These lines use the read pointer to access the bytes of the
cam cdb bytes array as though they are in a SCAN_DEF _ WIN_CDB
structure. The SCAN_READ_CDB structure is defined in Section
2.5.2.3.

III This line sets the length of the uagt ccblen member to the length of
the SCSI I/O CCB structure that willbe used for this call.

~ This line sets the uagt _buffer member of the ua _ ccb structure.

191 This line sets the size of the data buffer to the number of bytes contained
in the buffer pointed to by the cam_data _ptr member of the ccb L

structure.

[Q] These two lines reflect that the autosense features are turned on in the
CAM flags.

[1jJ These two lines reflect that the Command Descriptor Block information is
in the SCSI I/O CCB structure filled in Section 2.5.1.2.

2.5.2.13 The Read and Write Loop Section

This section describes the portion of the program where the data is read,
reformatted, and placed in the output buffer.

2-34 CAM User Agent Modules

/* ****************** Beginning of read/write loop ***************** */

for (i=O; i<WLength; i++) {

printf(" Read scanner line number %8d\r",i);
fflush(stdout); ill

/* Send the CCB to the CAM subsystem via the User Agent driver,
and report any errors. */

if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb) < 0) ~
{

perror("\nError on CAM UAgt Ioctl to Read data line");
close(fd); /* close the CAM file */
exit(l);

/* If the CCB completed successfully then print out the data read,
if not report the error. */

if (ccb.cam_ch.cam_status 1= CAM_REQ_CMP)
{

printf("\n");
print ccb status("CAM UAgt Read data line Ioctl",

&(ccb.cam ch)); /* report the error values */
printf(" cam scsi status = Ox%.2X\n", cCb.cam_scsi_status);
close(fd); /*- close the CAM file */
exit(l);

else
{

#ifdef CUT FOR NOW
printf (" -Data line read successfully\n");

#endif

/* Re-format the data from blocks of R, G and B data to tuples
of (R,G,B) data for the data file. Set up pointers to the
beginning of each of the blocks of the Red, the Green and the
Blue data bytes and another pointer to the output buffer.
Then loop, collecting one each of Red, Green and Blue,
putting each into the output data buffer. */ ~

RDRp ReadData; /* Red bytes are first */
RDGp RDRp + wwidth; /* Green bytes are next */
RDBp RDGp + WWidth; /* Blue bytes are last */
WDp WriteData;

for (n
{

*WDp++
*WDp++
*WDp++

o ; n < WWidth; n++)

*RDRp++;
*RDGp++;
*RDBp++;

/* Now write the re-formatted data to the output file. */

write(od,WriteData,LineBytes); /* write data to file */
}

/* ****************** End of read/write loop ***************** */
printf("\nSuccessful read and write to file\n");
close (fd); /* close the CAM file * /
close(od); /* close the output file */

[j] This line calls the standard C I/O function, fflush, to force the scan
line number to the user's display.

CAM User Agent Modules 2-35

I2l This section of code attempts to read a scan line. This line passes the
local UAGT_CAM_CCB structure, ua ccb, to the User Agent driver,
using the ioctl system call. The arguments passed are the file
descriptor returned by the open system call; the User Agent ioctl
command, UAGT_CAM_IO, which is defined in the
lusrlsys/include/io/cam/uagt.h file; and the contents of the
ua ccb structure. The User Agent driver copies in the SCSI 110 CCB
andsends it to the XPT layer. When the 110 completes, the User Agent
returns to the application program, returning status within the ua _ ccb
structure.

@] The scan line read in contains all the red bytes, then all the green bytes,
then all the blue bytes, in sequence. This section of code reformats the
bytes into pixels for the output file by placing a red byte, then a green
byte, then a blue byte together on the output file scan line.

2.5.2.14 The Local Function Definition Section

This section describes the portion of the User Agent sample scanner program
that defines functions used within the program.
/* Local routines and data structure to report in text and Hex form the
returned CAM status. */
struct cam_statustable { rn

u char cam status;
caddr_t status_msg;

cam_statustable[] = {
{ CAM_REQ_INPROG,
{ CAM_REQ_CMP,
{ CAM_REQ_ABORTED,
{ CAM_UA_ABORT,
{ CAM_REQ_CMP_ERR,
{ CAM_BUSY,
{ CAM_REQ_INVALID,
{ CAM_PATH_INVALID,
{ C~DEV_NOT_THERE,

{ CAM_UA_TERMIO,
{ CAM_SEL_TIMEOUT,
{ CAM_CMD_TIMEOUT,
{ CAM_MSG_REJECT_REC,
{ CAM_SCSI_BUS_RESET,
{ CAM_UNCOR_PARITY,
{ CAM_AUTOSENSE_FAIL,
{ CAM_NO_HBA,
{ CAM_DATA_RUN_ERR,
{ CAM_UNEXP_BUSFREE,
{ CAM_SEQUENCE_FAIL,
{ CAM_CCB_LEN_ERR,
{ CAM_PROVIDE_FAIL,
{ CAM_BDR_SENT,
{ CAM_REQ_TERMIO,
{ CAM_LUN_INVALID,
{ CAM_TID_INVALID,
{ CAM_FUNC_NOTAVAIL,
{ CAM_NO_NEXUS,

2-36 CAM User Agent Modules

"CCB request is in progress"
"CCB request completed w/out error"
"CCB request aborted by the host"
"Unable to Abort CCB request"
"CCB request completed with an err"
"CAM subsystem is busy"
"CCB request is invalid"
"Bus ID supplied is invalid"
"Device not installed/there"
"Unable to Terminate I/O CCB req"
"Target selection timeout"
"Command timeout" },
"Reject received" },
"Bus reset sent/received"
"Parity error occurred"
"Request sense cmd fail" },
"No HBA detected Error"
"Overrun/underrun error" },
"BUS free" },

} ,
} ,
} ,
} ,
} ,

} ,
} ,
} ,
} ,
} ,
} ,

} ,
} ,

} ,

"Bus phase sequence failure" },
"CCB length supplied is inadequate" },
"To provide requ. capability" },
"A SCSI BDR msg was sent to target" },
"CCB request terminated by the host" },
"LUN supplied is invalid" },
"Target ID supplied is invalid"},
"Requested function is not available" },
"Nexus is not established" },

} ;

CAM _ IID _ INVALID,
CAM_CDB_RECVD,
CAM_SCSI_BUSY,

"The initiator ID is invalid" },
"The SCSI CDB has been received"
"SCSI bus busy"

int cam statusentrys = sizeof(cam statustable) j
sizeof(cam statustable[O]);
char * camstatus(cam status
register u_char cam_status;
{

register struct cam_statustable *cst = cam_statustable;
register entrys;
for(entrys = 0; entrys < cam_statusentrys; cst++) {

if(cst->cam_status == cam_status) {
return(cst->status_msg);

return ("Unknown CAM Status");

void print ccb status(id string,cp) ~
char *id_string; -
CCB_HEADER *cp;
{

register i;

printf("Status from %sO,id string);

} ,
}

printf(" cam status = Ox%.2X (%s%s%s)O, cp->cam status,
«cp->cam_status & CAM_AUTOSNS_VALID) ? "AutoSns Valid-"),
«cp->cam_status & CAM_SIM_QFRZN) ? "SIM Q Frozen-" : ""),
camstatus(cp->cam_status & CAM_STATUS_MASK));

if (cp->cam status & CAM AUTOSNS VALID) {
printf("AutoSense Data (In hex):O);
for(i=O; i < SENSE LEN; i++)

printf("%.2i ", sense[i]);
printf("O);

fflush(stdout);

void clear_mem(bp,n)
u_char *bp;

j* Clear n bytes of memory beginning at bp *j ~

int n;

register i;
register u char *ptr;
for(i=O, ptr=bp; i<n; i++, ptr++) *ptr 0;

void swap short store(bp,val)
- - j* Store short into byte-reversed storage *j ~

u char *bp;
u=short val;
{

u short temp;
register u_char *ptr;
ptr = bPi
*(bp++)
*bp

(u_char) (val»8);
(u_char)val;

void swap long store(bp,val)

j* Copy pointer *j
j* Store high byte first *j
j* Then store low byte *j

- - j* Store long into byte-reversed storage *j ~
u char *bp;

CAM User Agent Modules 2-37

u_long val;
{

}

*(bp++)
*(bp++)
*(bp++)
*bp

(u_char) (val»24); j* Store high byte first *j
(u char) (val»16);
(u=char) (val»8);
(u_char)val; j* Store low byte last *j

ill This function is described in Section 2.5.1.9.

121 This function prints out the CCB status.

131 This function clears out all the bits in an area of memory, such as a
structure or an array, to be sure all are set to 0 (zero) and that there is no
extraneous data before executing a SCSI/CAM command.

~ This function puts the bytes of a short (16-bit) integer value into big
endian storage to conform with SCSI byte ordering.

151 This function puts the bytes of a long (32-bit) integer value into byte
reversed storage to conform with SCSI byte ordering.

2-38 CAM User Agent Modules

SICA Common Modules 3

This chapter describes the common data structures, macros, and routines
provided by Digital for SCSI/CAM peripheral device driver writers. These
data structures, macros, and routines are used by the generic SCSI/CAM
peripheral device driver routines described in Chapter 4.

U sing the common and generic routines helps ensure that your SCSI/CAM
peripheral device drivers are consistent with the SCSI/CAM Architecture.
See Chapter 11 if you plan to define your own SCSI/CAM peripheral device
drivers. See Chapter 12 for information about the SCSI/CAM special I/O
interface to process special SCSI I/O commands.

3.1 Common SCSI Device Driver Data Structures
This section describes the following SCSI/CAM peripheral common data
structures:

• PDRV _UNIT_ELEM, the Peripheral Device Unit Table

• PDRV _DEVICE, the Peripheral Device Structure

• DEV _DESC, the Device Descriptor Structure

• MODESEL_TBL, the Mode Select Table Structure

• DENSITY_TBL, the Density Table Structure

• PDRV _ WS, the SCSI/CAM Peripheral Device Driver Working Set
Structure

The descriptions provide information only for those members of a data
structure that a SCSI/CAM device driver writer needs to understand.

3.1.1 Peripheral Device Unit Table
The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device
unit elements. The size of the array is the maximum number of possible
devices, which is determined by the maximum number of SCSI controllers
allowed for the system.

The structure is allocated statically and is defined as follows:

typedef struct pdrv unit elem {
PDRV DEVICE *pu device;

- - /* Pointer to peripheral device structure */
u short pu opens; /* Total number of opens against unit */
u short pu=config; /* Indicates whether the device type */

/* configured at this address */
u char pu_type; /* Device type - byte 0 from inquiry data */

PDRV UNIT_ELEM;

The pu device field is filled in with a pointer to a CAM-allocated
peripheral SCSI device (PDRV _DEVICE) structure when the first call to the
ccrnn _open _ uni t routine is issued for a SCSI device that exists.

3.1.2 Peripheral Device Structure
A SCSI/CAM peripheral device structure, PDRV _DEVICE, is allocated for
each SCSI device that exists in the system. This structure contains the queue
header structure for the SCSI/CAM peripheral device driver CCB request
queue. It also contains the Inquiry data obtained from a GET DEVICE
TYPE CCB. Table 3-1 lists the members of the PDRV _DEVICE structure
that a SCSI/CAM peripheral device driver writer using the common routines
provided by Digital must use. Chapter 11 shows the complete structure for
those driver writers who are not using the common routines.

Table 3-1: Members of the PDRV _DEVICE Structure

Member Name Data Type

dev t

pd_bus u char

pd_target u char

pd_lun u char

pd_flags u_long

pd_state u char

pd_abort_cnt u char

pd_dev_inq[INQLEN] u char

3-2 SICA Common Modules

Description

The major/minor device number
pair that identifies the bus number,
target ID, and LUN associated
with this SCSI device. Passed to
the common open routine.

SCSI target's bus controller
number.

SCSI target's ID number.

SCSI target's logical unit number.

May be used to indicate the state
of a SCSI device driver.

May be used for recovery.

May be used for recovery.

Inquiry data obtained from issuing
a GET DEVICE TYPE CCB.

Table 3-1: (continued)

Member Name Data Type

DEV DESC

pd_specific caddr t

*(pd_recov_hand)() void

pd_lk_device lock t

Description

Pointer to the SCSI device
descriptor.

Pointer to device-specific
information.

Size of device-specific information
structure.

Recovery handler.

SMP lock for the device.

The pd specific field is filled in with a pointer to an allocated structure
that contains device-specific information.

3.1.2.1 The pd_dev Member

The major/minor device number pair that identifies the bus number, target
ID, and LUN associated with this SCSI device.

3.1.2.2 The pd_spec_size Member

The size, in bytes, of the device-specific information structure passed from
the SCSI device driver to the common open routine.

3.1.3 Device Descriptor Structure
There is a read-only SCSI device descriptor structure, DEV _DESC,
defined for each device supported by Digital. A user may supply a new
DEV_DESC structure by adding it to /usr/sys/data/cam data.c and
relinking the kernel. The DEV _DESC structure follows: -
typedef struct dev_desc {

u char dd pv name[IDSTRING SIZE];
- - /* Product ID and vendor string from */

/* Inquiry data */
u char dd length;

- /* Length of dd pv name string */
u char dd dev name[DEV NAME SIZE]; -

- - /* Device name string - see defines */
/* in devio.h */

U32 dd device type;
- - /* Bits 0 - 23 contain the device */

/* class, bits 24-31 contain the */
/* SCSI device type */

struct pt_info *dd_def_partition;

SICA Common Modules 3-3

/* Default partition sizes - disks */
U32 dd block size;

- /* Block/sector size */
U32 dd'max record;

- - /* Maximum transfer size in bytes */
/* allowed for the device */

DENSITY TBL *dd density tbl;
- /* poInter to density table - tapes */

MODESEL TBL *dd modesel tbl;
- /* Mode select table pointer - used */

/* on open and recovery */

/* Option flags (bbr, etc) */
U32 dd scsi optcmds;

- - /* Optional commands supported */
U32 dd ready time;

- /* Time in seconds for powerup dev ready */
u short dd que depth;

- - /* Device queue depth for devices */
/* which support command queueing */

u char dd_valid;
/* Indicates which data length */
/* fields are valid */

u char dd_inq_len;
/* Inquiry data length for device */

u char dd req sense len;
/*-Request sense data length for */
/* this device */

3.1 ~4 Mode Select Table Structure
The Mode Select Table Structure is read and sent to the SCSI device when
the first call to the SCSI/CAM peripheral open routine is issued on a SCSI
device. There can be a maximum of eight entries in the Mode Select Table
Structure. Chapter 11 contains a description of each structure member. The
definition for the Mode Select Table Structure, MODESEL_TBL, follows:
typedef struct modesel_tbl {

struct ms_entry{
u char ms_page; /* Page number */
u-char *ms_data; /* Pointer to Mode Select data */
u char ms data len; /* Mode Select data length */
u-char ms-ent sp pf;

- - -/* Save Page and Page format bits */
/* BIT 0 l=Save Page, */
/* O=Don't Save Page */
/* BIT 1 1=SCSI-2, O=SCSI-l */

}ms entry[MAX OPEN_SELS];
}MODESEL_TBL;

3-4 SICA Common Modules

3.1.5 Density Table Structure
The Density Table Structure allows for the definition of eight densities for
each type of SCSI tape device unit. Chapter 11 contains a description of
each structure member. The definition for the Density Table Structure,
DENSITY _ TBL, follows:
typedef struct density tbl {

struct density{
u char den flags; /* VALID, ONE FM etc */
u-char den=density_code;
u char den compress code;

- /* Compression code if supported */
u char den speed setting;

- - /* for this density */
u char den buffered setting;

- - /* Buffer control setting */
u_long den blocking; /* 0 variable etc. */

}density[MAX_TAPE_DENSITY];
}DENSITY_TBL;

3.1.5.1 The den_blocking Member

The den blocking member contains the blocking factor for this SCSI
tape device. A NULL (0) setting specifies that the blocking factor is variable.
A positive value represents the number of bytes in a block, for example, 512
or 1024.

3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure
The SCSI I/O CCB contains cam pdrv ptr, a pointer to the SCSI/CAM
peripheral device driver working set area for the CCB. This structure is also
allocated by the XPT when the xpt ccb alloc routine is called to
allocate a CCB. The PDRV _ WS structurefollows:

typedef struct pdrv ws {
struct pdrv ws *pws flink;

- - /* Linkage of working set CCBs */
struct pdrv_ws *pws blink;

- /* that we have queued */
CCB SCSIIO

u_long

u char

u char
} PDRV_WS;

*pws ccb;
- /* Pointer to this CCB. */

pws flags;
- /* Generic to driver */

pws retry cnt;
- /* Retry count for this request */

*pws pdrv;
- /* Pointer to peripheral device */

/* structure */
pws_sense_buf[DEC_AUTO_SENSE_SIZE];

SICA Common Modules 3-5

3.1.6.1 The pws_flink Member

The pws flink member of the pdrv ws structure is a pointer to the
forward iillk of the working set CCBs that have been queued.

3.1.6.2 The pws_blink Member

The pws blink member of the pdrv ws structure is a pointer to the
backward link of the working set CCBs that have been queued.

3.1.6.3 The pws_ccb Member

The pws ccb member is a pointer to this CCB. The CCB header is filled in
by the common routines.

3.2 Common SCSI Device Driver Macros
The SCSI/CAM peripheral device driver common macros are supplied by
Digital for SCSI device driver writers to use. These macros are defined in
the /usr/sys/include/io/cam/pdrv.h file. There are two
categories of macros:

• Macros to obtain identification information about each SCSI device

• Locking macros

Table 3-2 lists each identification macro name, its call syntax, and a brief
description of its purpose.

Table 3-2: Common Identification Macros

Name Syntax

DEV _TARGET(dev)

DEV _LUN(dev)

Description

Returns the bus ID of the device
that is identified in the
major/minor device number pair

Returns the target ID of the
device that is identified in the
major/minor device number pair

Returns the target LUN of the
device that is identified in the
major/minor device number pair

GET_PDRV _UNIT_ELEM GET_PDRV _UNIT_ELEM(dev)

3-6 SICA Common Modules

Table 3-2: (continued)

Name Syntax Descri ption

Returns the Peripheral Device
Unit Table entry for the device
that is identified in the
major/minor device number pair

GET_PDRV _PTR(dev)
Returns the pointer to the
Peripheral Device Structure for
the device that is identified in the
major/minor device number pair

Table 3-3 lists each locking macro name, its call syntax, and a brief
description of its purpose.

Note

Symmetric Multiprocessing (SMP) is not enabled in this release.

Table 3-3: Common Lock Macros

Name Syntax Description

PDRV _INIT_LOCK PDRV _INIT_LOCK(pd)
Initializes the Peripheral Device
Structure lock

PDRV _IPLSMP _LOCK PDRV _IPLSMP _LOCK(pd, lk_type, saveipl)
Raises the IPL and locks the
Peripheral Device Structure

PDRV _IPLSMP _UNLOCK PDRV _IPLSMP _UNLOCK(pd, saveipl)
Unlocks the Peripheral Device
Structure and lowers the IPL

PDRV _SMP _LOCK PDRV _SMP _LOCK(pd)
Locks the Peripheral Device
Structure

PDRV _SMP _SLEEPUNLOCK PDRV _SMP _SLEEPUNLOCK(chan, pri, pd)
Unlocks the Peripheral Device
Structure

SICA Common Modules 3-7

3.3 Common SCSI Device Driver Routines
The SCSIICAM peripheral common device driver routines can be allocated
into categories as follows:

• Initialization, open, and close routines, which handle the initialization of
SCSIICAM peripheral device drivers and the common open and close of
the drivers. The following routines are in this category:

- ccmn init

- ccmn_ open _ uni t

- ccmn close unit

• CCB queue manipulation routines, which manage placing and removing
CCBs from the appropriate queues as well as aborting and terminating
110 for SCSI 110 CCBs on the queue's active list. The following routines
are in this category:

- ccmn send ccb

- ccmn rem ccb

- ccmn_abort_que

- ccmn_term_que

• CCB allocation, build, and deallocation routines, which allocate CCB s,
fill in the common portion of the CCB_HEADER, as well as create and
send specific types of CCB requests to the XPT. The following routines
are in this category:

- ccmn _get _ ccb

- ccmn reI ccb

- ccmn io ccb bId

- ccmn _gdev _ ccb _ bId

- ccmn sdev ccb bId

- ccmn _ sasy _ ccb _bId

- ccmn_rsq_ccb_bld

- ccmn_pinq_ ccb _ bId

- ccmn abort ccb bId

- ccmn term ccb bId

- ccmn bdr ccb bId

- ccmn br ccb bId

• Common routines to build and send SCSI 110 commands, which are
called during the open or recovery sequence of a device. The calling

3-8 SICA Common Modules

routine must sleep while the command completes, if necessary. The
following routines are in this category:

- ccmn tur

- ccmn start unit

- ccmn mode select

• CCB status routine, which assigns CAM status values to a few general
classifications. The following routine is in this category:

- ccmn ccb status

• Buf structure pool allocation and deallocation routines, which allocate
and deallocate bu f structures from the buffer pool. The following
routines are in this category:

- ccmn_get_bp

- ccmn_rel_bp

• Data buffer pool allocation and deallocation routines, which allocate and
deallocate data buffer areas from the pool. The following routines are in
this category:

- ccmn_get_dbuf

- ccmn reI dbuf

• Routines used specifically for loadable device drivers. The following
rou tines are in this category:

- ccmn check idle

- ccmn find ctlr

- ccmn attach device

• Routines to perform miscellaneous operations. The following routines
are in this category:

- ccmn ccbwai t

- ccmn _SysSpecialCmd

- ccmn_DoSpecialCmd

- ccmn _ errlog

Descriptions of the routines with syntax information, in DEC OSFIl
reference page format, are included in alphabetical order in Appendix D.

3.3.1 Common 1/0 Routines
This section describes the common SCSIICAM peripheral device driver
initialization and 110 routines. Table 3-4 lists the name of each routine and
gives a summary description of its function. The sections that follow contain

SICA Common Modules 3-9

a more detailed description of each routine.

Table 3-4: Common 1/0 Routines

Routine

ccmn init

ccmn_open_unit

ccmn close unit

Summary Description

Initializes the XPT and the unit table lock
structure
Handles the common open for all SCSI/CAM
peripheral device drivers
Handles the common close for all SCSI/CAM
peripheral device drivers

3.3.1.1 The ccmn_init Routine

The ccmn ini t routine initializes the XPT and the unit table lock
structure. The first time the ccmn ini t routine is called, it calls the
xpt _ ini t routine to request the XPT to initialize the CAM subsystem.

3.3.1.2 The ccmn_open_unit Routine

The ccmn open unit routine handles the common open for all
SCSI/CAM peripheral device drivers. It must be called for each open before
any SCSI device-specific open code is executed.

On the first call to the ccmn open unit routine for a device, the
ccmn gdev ccb bId routine is called to issue a GET DEVICE TYPE
CCB to obtain the fuquiry data. The ccmn open unit routine allocates
the Peripheral Device Structure, PDRV _DEVICE, and a device-specific
structure, either TAPE_SPECIFIC or DISK_SPECIFIC, based on the device
size argument passed. The routine also searches the cam devdesc tab to
obtain a pointer to the Device Descriptor Structure for theSCSI device and
increments the open count. The statically allocated pdrv unit table
structure contains a pointer to the PDRV _DEVICE structure. The
PDRV _DEVICE structure contains pointers to the DEV _DESC structure and
to the device-specific structure.

3.3.1.3 The ccmn_close_unit Routine

The ccmn close unit routine handles the common close for all
SCSI/CAM peripheral device drivers. It sets the open count to zero.

3-10 SICA Common Modules

3.3.2 Common Queue Manipulation Routines
This section describes the common SCSI/CAM peripheral device driver
queue manipulation routines. Table 3-5 lists the name of each routine and
gives a summary description of its function. The sections that follow contain
a more detailed description of each routine.

Table 3-5: Common Queue Manipulation Routines

Routine Summary Description

ccmn send ccb Sends CCBs to the XPT layer by calling the
xpt action routine

ccmn send ccb wait Sends SCSI 1/0 CCBs to the XPT layer by
calling the xpt action routine and then
sleeps while waiting for the CCB to complete.
This function assumes that the callback
completion function for the SCSI I/O CCB will
issue the wakeup.

ccmn rem ccb Removes a SCSI I/O CCB request from the
SCSI/CAM peripheral driver active queue and
starts a tagged request if a tagged CCB is
pending.

ccmn _abort_que Sends an ABORT CCB request for each SCSI
I/O CCB on the active queue.

ccmn _ term_que Sends a TERMINATE I/O CCB request for
each SCSI I/O CCB on the active queue.

3.3.2.1 The ccmn_send_ccb Routine

The ccrnn send ccb routine sends CCBs to the XPT layer by calling the
xpt actIon routine. This routine must be called with the Peripheral
Devtee Structure locked.

For SCSI va CCBs that are not retries, the request is placed on the active
queue. If the CCB is a tagged request and the tag queue size for the device
has been reached, the request is placed on the tagged pending queue so that
the request can be sent to the XPT at a later time. A high-water mark of
half the queue depth for the SCSI device is used for tagged requests so that
other initiators on the SCSI bus will not be blocked from using the device.
(The queue depth is defined in the device descriptor entry for the device.)

SICA Common Modules 3-11

3.3.2.2 The ccmn_send_ccb_wait Routine

The ccmn send ccb wait routine sends SCSI I/O CCBs to the XPT
layer by calling xpt action. The routine then calls sleep to wait for
the CCB to complete-:- This routine must be called with the peripheral device
structure locked. The ccmn send ccb wait routine requires the
callback completion function-to issue a wakeup on the address of the CCB.
If the sleep priority is greater than PZERO, the ccmn send ccb wait
routine sleeps at an interruptible priority in order to catch signals. -

For SCSI I/O CCBs that are not retries, the request is placed on the active
queue. If the CCB is a tagged request and the tag queue size for the device
has been reached, the request is placed on the tagged pending queue so that
the request can be sent to the XPT at a later time. A high-water mark of
half the queue depth for the SCSI device is used for tagged requests so that
other initiators on the SCSI bus will not be blocked from using the device.
(The queue depth is defined in the device descriptor entry for the device.)

3.3.2.3 The ccmn_rem_ccb Routine

The ccmn rem ccb routine removes a SCSI I/O CCB request from the
SCSI/CAM peripheral driver active queue and starts a tagged request if a
tagged CCB is pending. If a tagged CCB is pending, the ccmn rem ccb
routine places the request on the active queue and calls the xpt -action
routine to start the tagged request. -

3.3.2.4 The ccmn_abort_que Routine

The ccmn abort que routine sends an ABORT CCB request for each
SCSI I/O CCB on the active queue. This routine must be called with the
Peripheral Device Structure locked.

The ccmn abort que routine calls the ccmn abort ccb bId routine
to create an ABORT CCB for the first active CCB on theactivequeue and
send it to the XPT. It calls the ccmn send ccb routine to send the
ABORT CCB for each of the other CCBs onthe active queue that are
marked as active to the XPT. The ccmn abort que routine then calls the
ccmn reI ccb routine to return the ABORT CCB to the XPT.

3.3.2.5 The ccmn_term_que Routine

The ccmn term que routine sends a TERMINATE I/O CCB request for
each scsl1io CCB on the active queue. This routine must be called with
the Peripheral Device Structure locked.

The ccmn term que routine calls the ccmn term ccb bId routine to
create a TERMINATE I/O CCB for the first active CCB on the active queue
and send it to the XPT. It calls the ccmn send ccb routine to send the

3-12 SICA Common Modules

TERMINATE 110 CCB for each of the other CCBs on the active queue that
are marked as active to the XPT. The ccmn term que routine then calls
the ccmn reI ccb routine to return the TERMINATE I/O CCB to the
XPT.

3.3.3 Common CCB Management Routines
This section describes the common SCSI/CAM peripheral device driver CCB
allocation, build, and deallocation routines. Table 3-6 lists the name of each
routine and gives a summary description of its function. The sections that
follow contain a more detailed description of each routine.

Table 3-6: Common CCB Management Routines

Routine

ccmn reI ccb

ccmn io ccb bId - - -
ccmn_gdev_ccb_bId

ccmn sdev ccb bId

ccmn abort ccb bId

ccmn term ccb bId

ccmn bdr ccb bId

ccmn br ccb bId

Summary Description

Allocates a CCB and fills in the common
portion of the CCB header
Releases a CCB and returns the sense data
buffer for SCSI 1/0 CCBs, if allocated
Allocates a SCSI 1/0 CCB and fills it in
Creates a GET DEVICE TYPE CCB and sends
it to the XPT
Creates a SET DEVICE TYPE CCB and sends
it to the XPT
Creates a SET ASYNCHRONOUS
CALLBACK CCB and sends it to the XPT
Creates a RELEASE SIM QUEUE CCB and
sends it to the XPT
Creates a PATH INQUIRY CCB and sends it to
the XPT
Creates an ABORT CCB and sends it to the
XPT
Creates a TERMINATE 110 CCB and sends it
to the XPT
Creates a BUS DEVICE RESET CCB and
sends it to the XPT
Creates a BUS RESET CCB and sends it to the
XPT

3.3.3.1 The ccmn_get_ccb Routine

The ccmn get ccb routine allocates a CCB and fills in the common
portion of the CCB header. The routine calls the xpt ccb aIIoc routine
to allocate a CCB structure. The ccmn _get _ ccb routine fills in the

SICA Common Modules 3-13

common portion of the CCB header and returns a pointer to that
CCB_HEADER.

3.3.3.2 The ccmn_rel_ccb Routine

The ccmn reI ccb routine releases a CCB and returns the sense data
buffer for SCSI i/o CCBs, if allocated. The routine calls the
xpt ccb free routine to release a CCB structure. For SCSI I/O CCBs, if
the sense data length is greater than the default sense data length, the
ccmn reI ccb routine calls the ccmn reI dbuf routine to return the
sense data buffer to the data buffer pool.

3.3.3.3 The ccmn_io_ccb_bld Routine

The ccmn io ccb bId routine allocates a SCSI 1/0 CCB and fills it in.
The routine calls the ccmn get ccb routine to obtain a CCB structure
with the header portion filled in. The ccmn io ccb bId routine fills in
the SCSI I/O-specific fields from the parameters passed and checks the length
of the sense data to see if it exceeds the length of the reserved sense buffer.
If it does, a sense buffer is allocated using the ccmn _get _ dbuf routine.

3.3.3.4 The ccmn_9dev_ccb_bld Routine

The ccmn gdev ccb bId routine creates a GET DEVICE TYPE CCB
and sends It to the-XPT~The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portIOn o(ihe CCB header.
The ccmn gdev ccb bId routine calls the ccmn send ccb routine to
send the CCB structure to the XPT. The request is carried out immediately,
so it is not placed on the device driver's active queue.

3.3.3.5 The ccmn_sdev_ccb_bld Routine

The ccmn sdev ccb bId routine creates a SET DEVICE TYPE CCB
and sends It to the-XPT~The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portIOn of the CCB header.
The routine fills in the device type field of the CCB and calls the
ccmn send ccb routine to send the CCB structure to the XPT. The
request is carned out immediately, so it is not placed on the device driver's
active queue.

3.3.3.6 The ccmn_sasy_ccb_bld Routine

The ccmn sasy ccb bId routine creates a SET ASYNCHRONOUS
CALLBACK CCB and sends it to the XPT. The routine calls the
ccmn get ccb routine to allocate a CCB structure and fill in the common
portion of the CCB header. The routine fills in the asynchronous fields of the

3-14 SICA Common Modules

CCB and calls the ccmn send ccb routine to send the CCB structure to
the XPT. The request is carriedout immediately, so it is not placed on the
device driver's active queue.

3.3.3.7 The ccmn_rsq_ccb_bld Routine

The ccmn rsq ccb bId routine creates a RELEASE SIM QUEUE CCB
and sends It to the XPT. The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portIOn of the CCB header.
The routine calls the ccmn send ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

3.3.3.8 The ccmn_pinq_ccb_bld Routine

The ccmn pinq ccb bId routine creates a PATH INQUIRY CCB and
sends it to the XPT. The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine calls the ccmn send ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

3.3.3.9 The ccmn_abort_ccb_bld Routine

The ccmn abort ccb bId routine creates an ABORT CCB and sends it
to the XPT~ The routine calls the ccmn get ccb routine to allocate a
CCB structure and fill in the common portion 'Of the CCB header. The
routine fills in the address of the CCB to be aborted and calls the
ccmn send ccb routine to send the CCB structure to the XPT. The
requeSt is carned out immediately, so it is not placed on the device driver's
active queue.

3.3.3.10 The ccmn_term_ccb_bld Routine

The ccmn term ccb bId routine creates a TERMINATE 1/0 CCB and
sends it to the XPT. The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine fills in the CCB to be terminated and calls the
ccmn send ccb routine to send the CCB structure to the XPT. The
requeStis carned out immediately, so it is not placed on the device driver's
active queue.

SICA Common Modules 3-15

3.3.3.11 The ccmn_bdr _ccb_bld Routine

The ccmn bdr ccb bId routine creates a BUS DEVICE RESET CCB
and sends It to the XPT. The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portwn of the CCB header.
The routine calls the ccmn send ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

3.3.3.12 The ccmn_br _ccb_bld Routine

The ccmn br ccb bId routine creates a BUS RESET CCB and sends it
to the XPT~ The routine calls the ccmn get ccb routine to allocate a
CCB structure and fill in the common portion of the CCB header. The
routine calls the ccmn send ccb routine to send the CCB structure to the
XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

3.3.4 Common SCSI 1/0 Command Building Routines
This section describes the common SCSUCAM peripheral device driver SCSI
ua command build and send routines. Table 3-7 lists the name of the
routine and gives a summary description of its function. The sections that
follow contain a more detailed description of each routine.

Table 3-7: Common SCSI I/O Command Building Routines

Routine

ccmn tur

ccmn start unit

ccmn mode select

3-16 SICA Common Modules

Summary Description

Creates a SCSI I/O CCB for the TEST UNIT
READY command and sends it to the XPT for
processing and sleeps waiting for its
completion.
Creates a SCSI I/O CCB for the START UNIT
command and sends it to the XPT for
processing and sleeps waiting for its
completion.
Creates a SCSI I/O CCB for the MODE
SELECT command and sends it to the XPT for
processing and sleeps waiting for its
completion.

3.3.4.1 The ccmn_tur Routine

The ccmn tur routine creates a SCSI 110 CCB for the TEST UNIT
READY command, sends it to the XPT for processing, and waits for it to
complete.

The ccmn tur routine calls the ccmn io ccb bId routine to obtain a
SCSI 110 CCB structure. The ccmn tur routine-calls the
ccmn send ccb wait routine tosend the SCSI I/O CCB to the XPT and
wait for it to complete.

3.3.4.2 The ccmn_start_unit Routine

The ccmn start unit routine creates a SCSI 110 CCB for the START
UNIT command, sends it to the XPT for processing, and waits for it to
complete.

The ccmn start unit routine calls the ccmn io ccb bId routine to
obtain a SCSI 110 CCB structure. The ccmn start-unit routine calls
the ccmn send ccb wait routine to sendthe SCSI 110 CCB to the XPT
and wait tOr it to complete.

3.3.4.3 The ccmn_mode_select Routine

The ccmn mode select routine creates a SCSI 110 CCB for the MODE
SELECT command, sends it to the XPT for processing and waits for it to
complete.

The routine calls the ccmn io ccb bId routine to obtain a SCSI 110
CCB structure. It uses the ms_iiidex''Parameter to index into the Mode
Select Table pointed to by the dd modesel tbl member of the Device
Descriptor Structure for the SCSI device. The ccmn mode select
routine calls the ccmn send ccb wait routine to-send the SCSI I/O
CCB to the XPT and Wait for It to complete.

3.3.5 Common CCB Status Routine
This section describes the common SCSIICAM peripheral device driver CCB
status routine. The ccmn ccb status routine assigns individual CAM
status values to generic categories. The following table shows the returned
category for each CAM status value:

CAM Status

CAM_REQ_INPROG
CAM_REQ_CMP
CAM_REQ_ABORTED
CAM UA ABORT
CAM_REQ_CMP_ERR

Assigned Category

CAT_INPROG
CAT_CMP
CAT_ABORT
CAT_ABORT
CAT_CMP_ERR

SICA Common Modules 3-17

CAM Status Assigned Category

CAM BUSY CAT_BUSY
CAM_REQ_INVALID CAT_ CCB_ERR
CAM PATH INVALID CAT _NOJ)EVICE
CAM DEV NOT THERE CAT_NO_DEVICE
CAM UA TERMIO CAT_ABORT
CAM SEL TIMEOUT CAT _DEVICE_ERR
CAM CMD TIMEOUT CAT_DEVICE_ERR
CAM MSG REJECT REC CAT_DEVICE_ERR
CAM SCSI BUS RESET CAT_RESET - - -
CAM UNCOR PARITY CAT_DEVICE_ERR
CAM AUTOSENSE FAIL CAT_BAD_AUTO
CAM NO HBA CAT_NO_DEVICE
CAM DATA RUN ERR CAT_DEVICE_ERR
CAM UNEXP BUSFREE CAT_DEVICE_ERR

- -
CAM_SEQUENCE_FAIL CAT_DEVICE_ERR
CAM CCB LEN ERR CAT_CCB_ERR
CAM PROVIDE FAIL CAT _CCB_ERR
CAM BDR SENT CAT_RESET
CAM_REQ_TERMIO CAT_ABORT
CAM LUN INVALID CAT_NO_DEVICE
CAM TID INVALID CAT_NO_DEVICE
CAM FUNC NOTAVAIL CAT_ CCB_ERR
CAM NO NEXUS CAT_NO_DEVICE
CAM lID INVALID CAT_NO_DEVICE
CAM SCSI BUSY CAT_SCSCBUSY
Other CAT_UNKNOWN

3.3.6 Common Buf Structure Pool Management Routines
This section describes the common SCSI/CAM peripheral device driver buf
structure pool allocation and deallocation routines.

3.3.6.1 The ccmn_get_bp Routine

The ccmn get bp routine allocates a buf structure. This function must
not be called at mterrupt context. The function may sleep waiting for
resources.

3.3.6.2 The ccmn_rel_bp Routine

The ccmn _ rel_ bp routine deallocates a buf structure.

3-18 SICA Common Modules

3.3.7 Common Data Buffer Pool Management Routines
This section describes the common SCSI/CAM peripheral device driver data
buffer pool allocation and deallocation routines.

3.3.7.1 The ccmn_get_dbuf Routine

The ccmn get dbuf routine allocates a data buffer area of the size
specified by callmg the kernel memory allocation routines.

3.3.7.2 The ccmn rel_dbuf Routine

The ccmn rel dbuf routine deallocates a data buffer.

3.3.8 Common Routines for Loadable Drivers
This section describes the common SCSI/CAM peripheral device driver
routines specific to loadable device drivers. Table 3-8 provides a summary
description of the routines specific to loadable drivers.

Table 3-8: Common Routines for Loadable Drivers

Routine Summary Description

ccmn check idle Checks that there are no opens against a device
ccmn -find ctlr Finds the controller structure that corresponds to

the SCSI controller that the device must be
attached to

ccmn attach device Creates and attaches a device structure to the
controller structure that corresponds to the SCSI
controller

3.3.8.1 The ccmn_check_idle Routine

The ccmn check idle routine checks that there are no opens against a
device. Tills routine calls the ccmn rel dbuf routine to deallocate all
structures pertaining to the device whose clfiver is being unloaded.

The ccmn check idle routine scans the Peripheral Device Unit Table
looking for devices that match the block device major number and the
character device major number in the PDRV _DEVICE structure members,
pd bmajor and pd cmajor. If no opens exist for the devices that are to
be unloaded, it rescans the Peripheral Device Unit Table and deallocates all
structures relating to the devices whose driver is being unloaded. The
ccmn _cheek_idle routine must be called with the Peripheral Device Unit

SICA Common Modules 3-19

Table locked.

3.3.8.2 The ccmn_find_ctlr Routine

The ccmn find ctlr routine finds the controller structure that
corresponds to the-SCSI controller that the device must be attached to. This
routine must be called with the Peripheral Device Unit Table locked.

3.3.8.3 The ccmn_attach_device Routine

The ccmn attach device routine creates and attaches a device structure
to the controller structure that corresponds to the SCSI controller. The
routine finds the controller structure for a device, fills in the device structure,
and attaches the device structure to the controller structure.

3.3.9 Miscellaneous Common Routines
This section describes the common SCSI/CAM peripheral device driver
routines that perform miscellaneous operations. Table 3-9 lists the name of
each routine and gives a summary description of its function.

Table 3-9: Miscellaneous Common Routines

Routine Summary Description

ccrnn _DoSpecialCrnd Provides a simplified interface to the special
command routine.

ccrnn_SysSpecialCrnd Lets a system request issue SCSI I/O commands
to the SCSI/CAM special I/O interface.

ccrnn _ err log Reports error conditions for the SCSI/CAM
peripheral device driver.

3.3.9.1 The ccmn_DoSpecialCmd Routine

The ccmn DoSpecialCmd routine provides a simplified interface to the
special command routine. The routine prepares for and issues special
commands.

3-20 SICA Common Modules

3.3.9.2 The ccmn_SysSpecialCmd Routine

The ccmn SysSpecialCmd routine lets a system request issue SCSI 110
commandsto the SCSIICAM special 110 interface. This permits existing
SCSI commands to be issued from within kernel code.

3.3.9.3 The ccmn_errlog Routine

The ccmn errlog routine reports error conditions for the SCSI/CAM
peripheral device driver. The routine is passed a pointer to the name of the
function in which the error was detected. The routine builds informational
strings based on the error condition.

SICA Common Modules 3-21

SICA Generic Modules 4

This chapter describes the generic data structures and routines provided by
Digital for SCSIICAM peripheral device driver writers. The generic data
structures and routines can be used as templates for SCSIICAM peripheral
device drivers to interface with the CAM subsystem to perform standard 110
operations. See Chapter 12 for a description of the SCSIICAM special 110
interface, which processes special 110 control commands that are not issued
to the device through the standard driver entry points.

The generic routines use the common SCSIICAM peripheral device driver
routines described in Chapter 3. Using the common and generic routines
helps ensure that SCSIICAM peripheral device drivers are consistent with the
SCSIICAM Architecture. See Chapter 11 if you plan to define your own
SCSIICAM peripheral device drivers. See Appendix D for the source to the
generic driver.

4.1 Prerequisites for Using the CAM Generic Routines
The generic device driver routines use the common routines and data
structures supplied by Digital. See Chapter 3 for information about how to
use the common data structures and routines.

The following routines must be called with the Peripheral Device Structure
locked:

•
•
•
•

ccmn send ccb

ccmn send ccb wait

ccmn_abort_que

ccmn_term_que

4.1.1 loctl Commands
The writer of a generic SCSI/CAM peripheral device driver has two options
for implementing ioctl commands within the driver:

• Use the ioctl commands that are already defined in
lusrlsys/include/sys/ioctl.h and implement those that are
appropriate for the type of device.

• Create new ioctl definitions by modifying the
/usr / sys/ include/ sys/ ioctl. h file to reflect the new ioctl
definitions and to implement the new ioctl commands within the
driver. See the Writing Device Drivers, Volume 1: Tutorial and Writing
Device Drivers, Volume 2: Reference for more information.

It is possible that conflicts with future releases of the operating system may
result when new ioctl commands are implemented.

See Chapter 12 for information about the SCSI/CAM special I/O interface to
handle SCSI special I/O commands.

4.1.2 Error Handling
The writer of the device driver is responsible for all error handling within the
driver and for notifying the user process of the error.

4.1.3 Kernel Interface
The kernel entry points for any device driver are defined for both character
and block devices in the structures cdevsw and bdevsw defined in the
/usr/sys/include/sys/conf.h file. The kernel entry points are
implemented in the cdevsw and bdevsw switch tables in the
/usr / sys/ io/ common/ conf. c file. If the device driver does not
implement a specific kernel entry point, then the corresponding entries in the
cdevsw and bdevsw switch tables must be null.

4.2 Data Structures Used by Generic Routines
This section describes the generic data structures programmers adapt when
they write their own SCSI/CAM peripheral device drivers. The following
data structures are described:

• CGEN_SPECIFIC, the Generic-Specific Structure

• CGEN_ACTION, the Generic Action Structure

4.2.1 The Generic-Specific Structure
A SCSI/CAM peripheral device structure, CGEN_SPECIFIC, is defined for
the device controlled by the driver. The CGEN_SPECIFIC structure is

4-2 SICA Generic Modules

defined as follows:
typedef generic specific struct {

u long -gen flagsi /* flags - EOM, write locked */
u-long gen-state flagsi/* STATE - UNIT ATTEN, RESET etc. */
u=long gen=resid; /* Last operation residual count */

}CGEN_SPECIFICi

4.2.1.1 The gen_flags Member

The gen f lags member is used to indicate certain conditions of the SCSI
unit. The possible flags are:

Flag Name

CGEN EOM

CGEN OFFLINE

CGEN WRT PROT

CGEN SOFTERR

CGEN HARDERR

Description

The unit is positioned at the end of media.

The device is returning DEVICE NOT READY
in response to a command. The media is either
not loaded or is being loaded.

The unit is either write protected or is opened
read only.

A soft error has been reported by the SCSI unit.

A hard error has been reported by the SCSI unit.
It can be reported either through an ioctl or
by marking the buf structure as EIO.

4.2.1.2 The gen_state_flags Member

The gen state flags member is used to indicate certain states of the
driver and of the SCSI unit. The possible flags are:

Flag Name

CGEN NOT READY STATE

CGEN UNIT ATTEN STATE

CGEN RESET STATE

Description

The unit was opened with the FNDELA Y flag
and the unit had a failure during the open, but
was seen.

A check condition occurred and the sense key
was UNIT ATTENTION. This usually
indicates that a media change has occurred, but
it could indicate power up or reset. Either way,
current settings are lost.

Indicates notification of a reset condition on the
device or bus.

CGEN RESET PENDING STATE A reset is pending.

SICA Generic Modules 4-3

Flag Name Description

CGEN OPENED STATE The unit is opened.

4.2.1.3 The gen_resid Member

The gen _ resid member contains the residual byte count from the last
operation.

4.2.2 The Generic Action Structure
The SCSIICAM peripheral device structure, CGEN_ACTION, is passed to
the generic driver's action routines to be filled in according to the success or
failure of the command. The CGEN_ACTION structure definition is:
typedef struct generic_action {

CCB SCSIIO *act ccb;
- - /* The CCB that is returned to caller */

long

u_long

}CGEN_ACTION;

act ret error;
- /* Error code if any */

act fatal;
- /* Is this considered fatal? */

act ccb status;
- /* The CCB status code */

act scsi status;
- /*-The SCSI error code */

act chkcond error;
- /* The check condition error */

4.2.2.1 The act_ccb Member

The act ccb member is a pointer to the SCSI 110 CCB returned to the
calling routine.

4.2.2.2 The act ret_error Member

The act _ ret _ error contains the error code, if any, returned from the
operation.

4-4 SICA Generic Modules

4.2.2.3 The act_fatal Member

The act fatal indicates whether an error returned was fatal. The possible
flags are:-

Flag Name

ACT FAILED

ACT RESOURCE

ACT PARAMETER

ACT RETRY EXCEDED

Description

The action has failed.

Memory availability problem.

An invalid parameter was passed.

The maximum retry count for the operation has
been exceeded.

4.2.2.4 The act_ccb_status Member

The act ccb status member indicates the CAM generic category code
for the CCB that was returned from the ccrnn ccb status routine.

4.2.2.5 The act_scsi_status Member

The act scsi status member indicates the SCSI status code if the
CCB completed with an error status. The SCSI status codes are defined in
ilie/usr/sys/include/io/carn/scsi_status.hfi~.

4.2.2.6 The act_chkcond_error Member

The act chkcond error member contains the check condition code
returned from the cgen ccb chkcond routine, if the
cam scsi status member of the SCSI I/O CCB is equal to
SCSLSTA'CCHECK_CONDITION. The Check Condition codes are
defined in the generic. h file shown in Appendix D.

4.3 Generic 1/0 Routines
The generic routines described in this section handle open, close, read, write,
and other I/O requests from user processes. Table 4-1 lists the name of each
routine and gives a short description of its function. The sections that follow
contain a more detailed description of each routine. Descriptions of the
routines with syntax information, in DEC OSFIl reference page format, are
included in alphabetical order in Appendix C.

SICA Generic Modules 4-5

Table 4-1: Generic 1/0 Routines

Routine

cgen_close
cgen_read

cgen_strategy

cgen_ioctl

Summary Description

Called by the kernel when a user process
requests an open of the device.
Closes the device.
Handles synchronous read requests for user
processes through the raw interface.
Handles synchronous write requests for user
processes through the raw interface.
Handles all I/O requests for user processes
through the block inerface and the raw interface
via a call to physio.
Handles user process requests for specific
actions other than read, write, open, or close for
generic devices.

4.3.1 The cgen_open Routine
The cgen open routine is called by the kernel when a user process requests
an open ofihe device. The cgen open routine calls the
ccmn open unit routine, whiCh manages the SMP _LOCKS and, if
passedthe exclusive use flag for SCSI devices, makes sure that no other
process has opened the device. If the ccmn open unit routine returns
success, the necessary data structures are allOcated.-

The cgen open routine calls the ccmn sasy ccb bId routine to
register forasynchronous event notificatiOn for the devlce. The cgen open
routine then enters a for loop based on the power-up time specified in the
Device Descriptor Structure for the device. Within the loop, calls are made
to the cgen ready routine, which calls the ccmn tur routine to issue a
TEST UNIT-READY command to the device. -

The cgen open routine calls the ccmn reI ccb routine to release the
CCB. The-cgen open routine checks certainstate flags for the device to
decide whether to send the initial SCSI mode select pages to the device.
Depending on the setting of the state flags CGEN_UNIT_ATTEN_STATE
and CGEN_RESET_STATE, the cgen open routine calls the
cgen open sel routine for each mode select page to be sent to the
device-:- The cgen open sel routine fills out the Generic Action Structure
based on the compietion status of the CCB for each mode select page it
sends.

4-6 SICA Generic Modules

4.3.2 The cgen_close Routine
The cgen close routine closes the device. The routine checks any device
flags that are defined to see if action is required, such as rewind on close or
release the unit. The cgen close closes the device by calling the
ccmn close unit routine.

4.3.3 The cgen_read Routine
The cgen read routine handles synchronous read requests for user
processes. It passes the user process requests to the cgen strategy
routine. The cgen read routine calls the ccmn get bp routine to
allocate a buf structure for the user process read request. When the 110 is
complete, the cgen read routine calls the ccmn reI bp routine to
deallocate the bu f Structure. - -

4.3.4 The cgen_write Routine
The cgen write routine handles synchronous write requests for user
processes. -The routine passes the user process requests to the
cgen strategy routine. The cgen write routine calls the
ccmn - get bp routine to allocate a bUf structure for the user process write
requeSt. When the 110 is complete, the cgen write routine calls the
ccmn _ rel_ bp routine to deallocate the bufstructure.

4.3.5 The cgen_strategy Routine
The cgen strategy routine handles all 110 requests for user processes. It
performs specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI device type. The cgen strategy routine
calls the ccmn io ccb bId routine to obtain an initIalized SCSI 110 CCB
and build either a read ora write command based on the information
contained in the buf structure. The cgen strategy routine then calls
the ccmn send ccb to place the CCB on the active queue and send it to
the XPT iayer. -

4.3.6 The cgen_ioctl Routine
The cgen ioctl routine handles user process requests for specific actions
other than read, write, open, or close for SCSI tape devices. The routine
currently issues a DEVIOCGET ioctl command for the device, which fills
out the devget structure passed in, and then calls the cgen mode sns
routine which issues a SCSI_MODE_SENSE to the device to-determIne the
device's state. The routine then calls the ccmn reI ccb routine to release
the CCB. When the call to cgen mode sns completes, the cgen ioctl
routine fills out the rest of the devget structure based on information

SICA Generic Modules 4-7

contained in the mode sense data.

4.4 Generic Internal Routines
The generic routines described in this section are examples that show one
method of handling errors, events, and conditions. SCSIICAM peripheral
device driver writers must implement routines for handling errors, events, and
conditions that are compatible with the design and the functionality of the
specific device. Table 4-2 lists the name of each routine and gives a short
description of its function. Descriptions of the routines with syntax
information, in DEC OSFIl reference page format, are included in
alphabetical order in Appendix D.

Table 4-2: Generic Internal Routines

Routine

cgen_ccb_chkcond

cgen_done

cgen_iodone

cgen_async

cgen_minphys

cgen_slave

cgen_attach

Summary Description

Decodes the autosense data for a device driver

The entry point for all nonread and nonwrite I/O
callbacks

The entry point for all read and write 110
callbacks

Handles notification of asynchronous events

Compares the b bcount with the maximum
transfer limit forthe device

Called at system boot to initialize the lower
levels

Called for each bus, target, and LUN after the
cgen_slave routine returns SUCCESS

4.4.1 The cgen_ccb_chkcond Routine
The cgen ccb chkcond routine decodes the autosense data for a device
driver and returns the appropriate status to the calling routine. The routine is
called when a SCSI 110 CCB is returned with a CAM status of
CAM_REQ_CMP _ERR (request completed with error) and a SCSI status of
SCSI_STAT_CHECK_CONDmON. The routine also sets the appropriate
flags in the Generic-Specific Structure.

4-8 SICA Generic Modules

4.4.2 The cgen_done Routine
The cgen done routine is the entry point for all nonread and nonwrite I/O
callbacks. The generic device driver uses two callback entry points, one for
all nonuser 1/0 requests and one for all user I/O requests. The SCSI/CAM
peripheral device driver writer can declare multiple callback routines for each
type of command and can fill the CCB with the address of the appropriate
callback routine.

This is a generic routine for all nonread and nonwrite SCSI 110 CCBs. The
SCSI I/O CCB should not contain a pointer to a bu f structure in the
cam req map member of the structure. If it does, then a wake-up call is
issued on the address of the CCB and the error is reported. If the SCSI I/O
CCB does not contain a pointer to a buf structure in the cam req map
member, then a wake-up call is issued on the address of the CCB and the
CCB is removed from the active queues. No CCB completion status is
checked because that is the responsibility of the routine that created the CCB
and is waiting for completion status. When this routine is entered, context is
on the interrupt stack and the driver cannot sleep waiting for an event.

4.4.3 The cgen_iodone Routine
The cgen iodone routine is the entry point for all read and write I/O
callbacks. This is a generic routine for all read and write SCSI 110 CCBs.
The SCSI I/O CCB should contain a pointer to a bu f structure in the
cam req map member of the structure. If it does not, then a wake-up call
is issued on the address of the CCB and the error is reported. If the SCSI
I/O CCB does contain a pointer to a buf structure in the cam req map
member, as it should, then the completion status is decoded. Depending on
the CCB's completion status, the correct fields within the buf structure are
filled out.

The device's active queues may need to be aborted because of errors or
because the device is a sequential access device and the transaction was an
asynchronous request.

The CCB is removed from the active queues by a call to the
ccmn rem ccb routine and is released back to the free CCB pool by a call
to the ccmn- reI ccb routine. When the cgen iodone routine is
entered, context is on the interrupt stack and the dnver cannot sleep waiting
for an event.

4.4.4 The cgen_8sync Routine
The cgen async routine handles notification of asynchronous events. The
routine is called when an Asynchronous Event Notification(AEN), Bus
Device Reset (BDR), or Bus Reset (BR) occurs. The routine sets the
CGEN_RESET_STATE flag and clears the CGEN_RESET_PEND_STATE

SICA Generic Modules 4-9

flag for BDRs and bus resets. The routine sets the
CGEN_UNIT_ATTEN_STATE flag for AENs.

4.4.5 The cgen_minphys Routine
The cgen minphys routine compares the b bcount with the maximum
transfer linnt for the device. The routine compares the b bcount field in
the buf structure with the maximum transfer limit for the device in the
Device Descriptor Structure. The count is adjusted if it is greater than the
limit.

4.4.6 The cgen_slave Routine
The cgen slave routine is called at system boot to initialize the lower
levels. The routine also checks the bounds for the unit number to ensure it is
within the allowed range and sets the device-configured bit for the device at
the specified bus, target, and LUN.

4.4.7 The cgen_attach Routine
The cgen attach routine is called for each bus, target, and LUN after the
cgen slave routine returns SUCCESS. The routine calls the
ccmn:= open _ uni t routine, passing the bus, target, and LUN information.

The cgen attach routine calls the ccmn close unit routine to close
the device:-If a device of the specified type Is found,the device identification
string is printed.

4.5 Generic Command Support Routines
The generic routines described in this section are SCSI/CAM command
support routines. Table 4-3 lists the name of each routine and gives a short
description of its function. The sections that follow contain a more detailed
description of each routine. Descriptions of the routines with syntax
information, in DEC OSFIl reference page format, are included in
alphabetical order in Appendix D.

Table 4-3: Generic Command Support Routines

Routine

4-10 SICA Generic Modules

Summary Description

Issues a TEST UNIT READY command to the
unit defined

Issues a SCSI_MODE_SELECT command to
the SCSI device

Table 4-3: (continued)

Routine Summary Description

cgen_mode_sns Issues a SCSCMODE_SENSE command to the
unit defined

4.5.1 The cgen_ready Routine
The cgen ready routine issues a TEST UNIT READY command to the
unit defined. The routine calls the ccmn tur routine to issue the TEST
UNIT READY command and sleeps waitIng for command status.

4.5.2 The cgen_open_sel Routine
The cgen open sel routine issues a SCSI_MaDE_SELECT command to
the SCSI device. The mode select data sent to the device is based on the
data contained in the Mode Select Table Structure for the device, if one is
defined. The CGEN_ACTION structure is filled in for the calling routine
based on the completion status of the CCB.

The cgen open sel routine calls the ccmn mode select routine to
create a SCSI I/O CCB and send it to the XPT for processing.

4.5.3 The cgen_mode_sns Routine
The cgen mode sns routine issues a SCSI_MaDE_SENSE command to
the unit defined. The CGEN_ACTION structure is filled in for the calling
routine based on the completion status of the CCB.

SICA Generic Modules 4-11

CAM Data Structures 5

Data structures are the mechanism used to pass information between
peripheral device drivers and the CAM subsystem. This chapter describes
the CAM data structures used by peripheral device drivers. They are defined
in the file lusrlsys/inelude/io/eam/eam.h. This chapter discusses
the following:

• CAM Control Block (CCB)

• Input/Output (I/O) data structures

• Control CCB structures

• Configuration data structures

Other chapters reference these structures. You can read this chapter now to
become familiar with the structures, or you can refer to it when you
encounter references to the structures in other chapters.

5.1 CAM Control Blocks
The CAM Control Block (CCB) data structures let the device driver writer
specify the action to be performed by the XPT and SIM. The CCBs are
allocated by calling the xpt eeb alloe routine. Table 5-1 contains the
name of each CCB data structure and a brief description.

Table 5-1: CAM Control Blocks

CCB Name

CCB_SCSIIO
CCB_GETDEV
CCB_PATHINQ
CCB_RELSIM
CCB_SETASYNC
CCB_SETDEV
CCB_ABORT
CCB_RESETBUS

Description

Requests SCSI 110
Gets device type
Sends a path inquiry
Releases SIM queue
Sets asynchronous callback
Sets device type
Aborts XPT request
Resets SCSI bus

Table 5-1: (continued)

CCB_RESETDEV Resets SCSI device
CCB_TERMIO Terminates I/O process request

All CCBs contain a CCB_HEADER structure. Peripheral device driver
writers need to understand the CCB HEADER data structure, which is
discussed in the section that followS.

5.1.1 The CCB_HEADER Structure
SCSI/CAM peripheral device driver writers allocate a CCB structure by
calling the xpt ccb alloc routine. The CCB_HEADER structure is
common to all CCBs and is the first structure filled in. It contains the
following members:
typedef struct ccb_header
{

struct ccb header *my addr;
u_short cam_ccb_len; -
u_char cam_func_code;
u_char cam_status;

u char cam path id;
u=char cam=target_id;
u char cam target lun;
u=long cam=flags;-

CCB_HEADER;

/* The address of this CCB */
/* Length of the entire CCB */
/* XPT function code */
/* Returned CAM subsystem */
/* status */
/* Path ID for the request */
/* Target device ID */
/* Target LUN number */
/* Flags for operation of */
/* the subsystem */

5.1.1.1 The my_addr and cam_ccb_len Members

The my addr member is set to a pointer to the virtual address of the
starting address of the CAM Control Block (CCB). It is automatically filled
in by the xpt_ccb_alloc routine.

The cam ccb len member is set to the length in bytes of this specific
CCB type. ThIS field is filled in by the ccmn get ccb routine. The
length includes the my _ addr and cam _ ccb ~en members.

5.1.1.2 The cam_func_code Member

The cam func code member lets device-driver writers specify the CCB
type XPT/SIM functions. Device-driver writers can set this member to one of
the function codes listed in Table 5-2. They are defined in the file
lusrlsys/include/io/cam/cam.h.

5-2 CAM Data Structures

Table 5-2: CAM Function Codes

Function Code

XPT NOOP

XPT SCSI 10

XPT GDEV TYPE

XPT_REL_S1MQ

XPT ASYNC CB

XPT SDEV TYPE

XPT ABORT

XPT RESET BUS

XPT RESET DEV

XPT TERM 10

Meaning

Do not execute anything in the XPT/SIM.

Execute the requested SCSI I/O. Specify the
details of the SCSI I/O by setting the
appropriate members of the CCB _SCS110
structure.

Get the device type information. Obtain this
information by referencing the CCB _ GETDEV
structure.

Get the path inquiry information. Obtain this
information by referencing the CCB_PATHINQ
structure.

Release the SIM queue that is frozen.

Set the asynchronous callback parameters.
Obtain asynchronous callback information from
the CCB SETASYNC structure.

Set the device type information. Obtain the
device type information from the
CCB SETDEV structure.

Abort the specified CCB. Specify the abort to
the CCB by setting the appropriate member of
the CCB ABORT structure.

Reset the SCSI bus.

Reset the SCSI device.

Terminate the I/O process. Specify the CCB
process to terminate by setting the appropriate
member of the CCB TERM10 structure.

5.1.1.3 The cam_status Member

The cam status member is the action or event that occurred during this
CAM Control Block (CCB) request. The cam status member is set by
the XPT ISIM after the specified function completes. A CAM REQ" INPROG
status indicates that either the function is still executing or is still Tn the
queue. The XPT/SIM can set this member to one of the CAM status codes
listed in Table 5-3. They are defined in the file
/usr/sys/include/io/cam/cam.h.

CAM Data Structures 5-3

Table 5-3: CAM Status Codes

CAM Status Code

CAM_REQ_INPROG

CAM_REQ_CMP

CAM_REQ_ABORTED

Meaning

A CCB request is in progress.

A CCB request completed without errors.

A CCB request was aborted by the host
processor.

The SIM was not able to abort the specified
CCB.

The specified CCB request completed with an
error.

CAM BUSY The CAM subsystem is busy. The CCB returns
to the caller; the request must be resubmitted.

CAM _ REQ_INVALID The specified CCB request is not valid.

CAM PATH INVALID The path ill specified in the earn path id
member of the CCB HEADER structure IS not
valid.

CAM DEV NOT THERE The specified SCSI device is not installed at this
location.

CAM UA TERMIO The CAM subsystem was unable to terminate
the specified CCB I/O request.

CAM SEL TIMEOUT A target-selection timeout occurred.

CAM CMD TIMEOUT A command timeout occurred.

CAM MSG REJECT REC A message rejection was received by the SIM.

CAM SCSI BUS RESET The SCSI bus-reset was issued by the SIM or
was seen on the bus by the SIM.

CAM UNCOR PARITY An uncorrectable parity error occurred.

CAM AUTOSENSE FAIL The autosense request-sense command failed.

CAM NO HBA No HBA was detected.

CAM DATA RUN ERR A data overflow or underflow error occurred.

CAM UNEXP BUSFREE An unexpected bus free was detected.

CAM _SEQUENCE _FAIL A target bus phase-sequence failure occurred.

CAM CCB LEN ERR The CCB length specified in the

CAM PROVIDE FAIL

CAM BDR SENT

CAM_REQ_TERMIO

5-4 CAM Data Structures

earn ccb len member of the CCB HEADER
structure is incorrect.

The requested capability could not be provided.

A SCSI BDR message was sent to the target.

The CCB request was terminated by the host.

Table 5-3: (continued)

CAM Status Code

CAM LUN INVALID

CAM TID INVALID

CAM FUNC NOTAVAIL

CAM NO NEXUS

CAM lID INVALID

CAM CDB RECVD

CAM SCSI BUSY

CAM_SIM_QFRZN

CAM AUTOSNS VALID

CAM STATUS MASK

5.2 1/0 Data Structure

Meaning

The LUN supplied is invalid.

The target ID suplied is invalid.

The requested function is not available.

A nexus has not been established.

The initiator ID is invalid.

The SCSI CDB has been received.

The SCSI bus is busy.

The SIM queue is frozen.

Autosense data is valid for the target.

The mask bits are only for the status.

Peripheral device drivers make SCSI device action requests through the
following data structures:

• The CCB _SCSIIO structure

• The CDB_UN structure

5.2.1 The CCB_SCSIIO Structure
A peripheral driver indicates to the XPT/SIM that it wants to make a SCSI
device action request by setting the cam func code member of the
CCB HEADER structure to the constant XPT SCSI 10. The peripheral
driver writer then uses the CCB _SCSIIO structure to specify the requests.

The CCB _SCSIIO structure contains the following members:
typedef struct
{

CCB HEADER cam chi
u _char *cam ydrv _ptr;

CCB HEADER *cam next ccb;
u char *cam req - map; -
void (*cam cbfcnp)();
u char *cam data ptr;
u-long cam dxfer-len;
u=char *cam_senseytr;
u char cam sense len;
u=char cam=cdb_len;

/* Header information fields */
/* Ptr to the peripheral driver */
/* working set */
/* Ptr to the next CCB for action */
/* Ptr for mapping info on the Req. */
/* Callback on completion function */
/* Pointer to the data buf/SG list */
/* Data xfer length */
/* Pointer to the sense data buffer */
/* Num of bytes in the Autosense buf */
/* Number of bytes for the CDB */

CAM Data Structures 5-5

ushort cam sglist cnt;
u -long cam sort; -
cam scsi status
cam-sense resid - -
cam osd rsvdi[2]
long cam_resid;

/* Num of scatter/gather list entries */
/* Value used by ~he SIM to sort on */
/* Returned SCSI device status */
/* Autosense residual length: */

/* two's complement */
/* OSD reserved field for alignment */
/* Transfer residual length: */

/* two's complement */
CDB UN cam cdb io; /* Union for CDB bytes/pointer */
u long cam-timeout; /* Timeout value */
u-char *cam msg ptr; /* Pointer to the message buffer */
u-short cam-msgb len; /* Num of bytes in the message buf */
u-short cam-vu flags; /* Vendor unique flags */
u-char cam tag-action; /* What to do for tag queuing */
u-char cam-iorsvdO[3]; /* Reserved field, for alignment */
u=char cam=sim-priv[SIM_PRIV]; /* SIM private data area */

} CCB_SCSIIO;

5.2.2 The COB_UN Structure
The CDB_UN structure contains:
typedef union
{

u char cam_cdb_bytes[IOCDBLEN];

5.3 Control CCB Structures

/* Pointer to the CDB bytes */
/* to send */

/* Area for the inline CDB *?
/* to send */

The control CCB structures allow the driver writer to specify such tasks as
resetting the SCSI bus, terminating an 110 process request, and so forth. This
section discusses the following control structures:

• CCB_RELSIM

• CCB_SETASYNC

• CCB_ABORT

• CCB_RESETBUS

• CCB_RESETDEV

• CCB_TERMIO

These structures are discussed in the sectiQns that follow.

5.3.1 The CCS-'.RELSIM Structure'
Device.:.driver writers use the CCB RELS IM structure to release the SIM's

5-6 CAM Data'Structures

internal CCB queue. The CCB_RELSIM structure contains:
typedef struct
{

CCB_HEADER cam_chi
CCB_RELSIMi

j* Header information fields *j

5.3.2 The CCB_SETASYNC Structure
SCSI/CAM peripheral device driver writers use the CCB_SETASYNC
structure to set the asynchronous callback for notification of the following
events when they occur:

• Unsolicited SCSI BUS DEVICE RESET (BDR)

• Unsolicited RESELECTION

• SCSI AEN (asynchronous event notification enabled)

• Sent BDR to target

• SIM module loaded

• SIM module unloaded

• New devices found

The CCB_SETASYNC structure is defined as follows:
typedef struct
{

CCB HEADER cam chi
u long cam async flags;
void (*cam-async-func)()i
u_char *pdrv_buf;

u_char pdrv_buf_len;
CCB_SETASYNCi

j* Header information fields *j
j* Event enables for Callback response *j
j* Async Callback function address *j
j* Buffer set aside by the *j
j* peripheral driver *j
j* The size of the buffer *j

5.3.3 The CCB _ABORT Structure
Device-driver writers use the CCB ABORT structure to abort a CCB that is
on the SIM queue. The CCB _ABORT structure contains:
typedef struct
{

CCB HEADER cam chi
CCB=HEADER *cam_abort_chi

CCB_ABORTi

j* Header information fields *j
j* Pointer to the CCB to abort *j

5.3.4 The CCB_RESETBUS Structure
Device-driver writers use the CCB RESETBUS structure to reset the SCSI

CAM Data Structures 5-7

bus. The CCB RESETBUS structure is defined as follows:
typedef struct
{

CCB_HEADER cam_ch;
CCB_RESETBUS;

/* Header information fields */

5.3.5 The CCB_RESETDEV Structure
Device-driver writers use the CCB RESETDEV structure to reset a single
SCSI device. The CCB RESETDEV structure is defined as follows:
typedef struct
{

CCB_HEADER cam_ch;
CCB_RESETDEV:

/* Header information fields */

5.3.6 The CCB_ TERMIO Structure
Device-driver writers use the CCB TERMIO structure to terminate an I/O
process request. The CCB _ TERMIO structure is defined as follows:
typedef struct
{

CCB HEADER cam ch:
CCB=HEADER *cam_termio_ch;

CCB_TERMIO;

/* Header information fields */
/* Pointer to the CCB to terminate */

5.4 Configuration CCB Structures
The configuration CCB structures let the driver writer obtain information
such as the device type, version number for the SIMIHBA, and vendor IDS.
The following configuration CCBs are described in this section:

• The CCB_GETDEV structure

• The CDB_SETDEV structure

• The CDB_PATHINQ structure

These structures are discussed in the following sections.

5.4.1 The CCB_GETDEV Structure
Device-driver writers use the CCB _ GETDEV structure to obtain a device type

5-8 CAM Data Structures

and inquiry information. The CCB _ GETDEV structure is defined as follows:
typedef struct
{

CCB HEADER cam chi
u char cam pd type;
char *cam_inq=data;

/* Header information fields */
/* Peripheral device type from the TLUN */
/* Ptr to the inquiry data space */

CCB_GETDEV;

5.4.2 The CCB_SETDEV Structure
Device-driver writers use the CCB SETDEV structure to set the device type.
The CCB SETDEV structure is defined as follows:
typedef struct
{

CCB HEADER cam chi /* Header information fields */
u char cam_dev=type;

CCB_SETDEV;
/* Value for the dey type field in EDT */

5.4.3 The CCB_PATHINQ Structure
Device-driver writers use the CCB_PATHINQ structure to obtain SIM
information such as supported features and version numbers. The
CCB _PATHINQ structure is defined as follows:
typedef struct
{

CCB HEADER cam_chi
u char cam version num;
u char cam=hba_inquiry;
u char cam_target_sprt;
u char cam hba misc;
u-char cam=vuhba_flags[VUHBA];
u_long cam_sim_priv;
u long cam async flags;
u-char cam-hpath-id;
u char cam-initiator id;
char cam sim vid[SIM ID];
char cam=hba=vid[HBA=ID];
u_char *cam_osd_usage;

CCB_PATHINQ;

/* Header information fields */
/* version number for the SIM/HBA */
/* Mimic of INQ byte 7 for the HBA */
/* Flags for target mode support */
/* Misc HBA feature flags */
/* Vendor unique capabilities */
/* Size of SIM private data area */
/* Event cap. for Async Callback */
/* Highest path ID in subsystem */
/* ID of the HBA on the SCSI bus */
/* Vendor ID of the SIM */
/* Vendor ID of the HBA */
/* Ptr for the OSD specific area */

CAM Data Structures 5-9

SCSI/CAM Configuration Driver 6
Modules

This chapter describes the data structures and routines used by the
Configuration driver to interface with the CAM subsystem. It also describes
the lusrlsys/include/io/cam/cam config.c file, which contains
SCSI/CAM peripheral device driver configuration information. SCSI/CAM
peripheral device driver writers add to this file external declarations and
entries to the SCSI/CAM peripheral driver configuration table for their
peripheral device drivers.

6.1 Configuration Driver Introduction
The Configuration driver dynamically initializes the XPT and SIM layers of
the CAM subsystem, at run time. This enables support for a generic kernel
that is configured for all processors and all CAM subsystem software, for
example, all HBA drivers. After initialization is complete, the Configuration
driver scans the SCSI bus and stores INQUIRY information about each SCSI
device detected.

Once the CAM subsystem is initialized and the scanning information stored,
the SCSI/CAM peripheral device drivers can use the subsystem. They can
determine what devices have been detected and allocate memory
appropriately. They can also request resources from the XPT layer using the
XPT_GDEV _TYPE and XPT_SDEV _TYPE get and set device information
CCBs.

The Configuration driver module logically exists in the SCSI/CAM
peripheral device driver layer above the XPT.

6.2 Configuration Driver XPT Interface
The Configuration driver is responsible for supporting the following XPT
commands:

• GET DEVICE TYPE CCB

• SET DEVICE TYPE CCB

• SET ASYNCHRONOUS CALLBACK CCB

The Configuration driver also supports the configuration and bus scanning for
loaded SIM modules.

6.3 Configuration Driver Data Structures
This section describes the following Configuration driver data structures:

• CCFG_CTRL - The Configuration driver control structure

• EDT - The CAM equipment device table

• CAM_PERIPHERAL_DRIVER - The SCSI/CAM peripheral driver
configuration structure

6.3.1 The Configuration Driver Control Structure
The Configuration driver control structure, CCFG_CTRL, contains flags used
by the Configuration driver for the scanning process. It also sets aside an
area to contain the data returned from the INQUIRY CCBs during the initial
scanning process. The structure is defined as follows:
typedef struct ccfg_ctrl
{

u long ccfg flags;
ALL_INQ_DATA inq_buf;
struct lock_t c_lk_ctrl;

} CCFG_CTRL;

6.3.1.1 The ccfg_flags Member

/* controlling flags */
/* scratch area for the INQUIRY data */
/* for locking on the control struct */

The ccfg flags member contains the flags used by the Configuration
driver to control operations. The possible settings are as follows:

• EDT_INS CAN - Which signals that an EDT scan is in progress

• INQ_INPROG - Which indicates that an INQUIRY CCB is in progress

6.3.1.2 The inq_buf Member

The inq buf member sets aside a working or temporary area to hold the
returned data described in the standard INQUIRY structure,
ALL_INQ_DATA, which is defined in the file
lusrlsys/include/io/cam/scsi_all.h.

6.3.2 The CAM Equipment Device Table
The Configuration driver works with the XPT to allocate, initialize, and
maintain the CAM equipment device table structure, EDT. An EDT structure
is allocated for each SCSI bus. The structure is an 8x8-element array that
contains device inquiry information, asynchronous callback flags, and a
signal flag if a device was found, based on the number of targets and the

6-2 SCSI/CAM Configuration Driver Modules

number of LUNs on the SCSI bus. The structure is defined as follows:
typedef struct edt
{

CAM EDT ENTRY edt [NDPS] [NLPT];
u_long edt_flags;
u long edt scan count;
struct lock t c-lk edt - --

EDT;

6.3.2.1 The edt Member

/* A layer for targets/LUNs */
/* Flags for EDT access */
/* # of XPT ASYNC CB readers */
/* For locking per bus */

The edt member is a structure of the type CAM_EDT_ENTRY, which is
defined in the lusrlsys/include/io/cam/cam.h file. Each
CAM_EDT_ENTRY structure is an entry in the CAM equipment device
table containing the SCSI ID and LUN for each device on the SCSI bus. The
array dimensions are the number of devices per SCSI bus (NDPS) and the
number of LUNs per target (NLPT). The structure and constants are defined
in the lusrlsys/include/io/cam/dec_cam.h file.

6.3.2.2 The edt_scan_count Member

The edt scan count member contains the number of processes reading
the EDT Structure.

6.3.2.3 The edt_flags Member

The edt flags member sets the flags for controlling access to the CAM
equipment device table.

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure
CAM_PERIPHERAL_DRIVER, the SCSI/CAM peripheral driver
configuration structure, contains the name of the device and defines the
routines that are accessed as part of the system configuration process. The
structure is defined as follows:
typedef struct cam_peripheral_driver

{
char *cpd name;
int (*cpd_slave)();
int (*cpd attach)();
int (*cpd=unload)();
} CAM_PERIPHERAL_DRlVER;

6.3.3.1 The cpd_name Member

The cpd name member is a pointer to the device name contained in the
dev name member of the kernel data structure, device. See the Writing
DeviCe Drivers, Volume 1: Tutorial and Writing Device Drivers, Volume 2:

SCSI/CAM Configuration Driver Modules 6-3

Reference for more information.

6.3.3.2 The cpd_slave Member

The cpd s lave member is a function pointer to the SCSI/CAM peripheral
device drIver slave routine, which finds the device attached to the SCSI bus
controller.

6.3.3.3 The cpd_attach Member

The cpd attach member is a function pointer to the SCSI/CAM
peripheral device driver attach routine, which attaches the device to the
controller and initializes the driver fields for the device.

6.3.3.4 The cpd_unload Member

Not implemented.

6.4 The cam_config.c File
The Configuration driver file, lusrlsys/io/carn/carn config.c,
contains SCSI/CAM peripheral device driver configuration Information.
SCSI/CAM peripheral device driver writers edit the file, as the superuser, to
add extern declarations for their hardware devices and to add entries for
the device driver to the SCSI/CAM peripheral driver configuration table.

The section of the file where the extern declarations are added looks like
the following:
extern int crzslave(), crzattach();
extern int ctzslave(), ctzattach();
extern int cczslave(), cczattach();

/* Disk Driver */
/* Tape Driver */
/* CD-ROM Driver */

/* VENDOR: Add the extern declarations for your hardware following this
comment line. */

A sample declaration for third-party SCSI/CAM peripheral device driver
might be as follows:
extern int toastslave(), toastattach(); /* Non-tape or -disk Driver */

The section of the file where the SCSI/CAM peripheral driver configuration
table entries are added looks like the following:
/*
* CAM Peripheral Driver Configuration Table.
*/

struct cam peripheral driver cam peripheral drivers[] {
{ -;;-crz", crzslave, crzattach }, -
{ "ctz", ctzslave, ctzattach },
{ "ccz", cczslave, cczattach }

/* VENDOR: Add your hardware entries following this comment line. */
} ;

6-4 SCSI/CAM Configuration Driver Modules

When you add your entry, be sure to place a comma (,) after the last member
in the structure supplied by Digital. A sample entry for third-party hardware
might be as follows:

{ "ccz", cczslave, cczattach },

/* VENDOR: Add your hardware entries following this comment line. */
{ "wheat", toastslave, toastattach} /* Non-tape or -disk Driver */

} ;

6.5 Configuration Driver Entry Point Routines
The following Configuration driver routines are entry point routines that are
accessible to the XPT and SIM modules as part of the Configuration driver
interface. Table 6-1 lists the name of each routine and gives a short
description of its function. The sections that follow contain a more detailed
description of each routine. Descriptions of the routines with syntax
information, in DEC OSFIl reference page format, are included in
alphabetical order in Appendix D.

Table 6-1: Configuration Driver Entry Point Routines

Routine

ccfg_attach

ccfg_action

ccfg_edtscan

Summary Description

Calls a SCSI/CAM peripheral driver's slave routine
after a match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found
Calls a SCSI/CAM peripheral driver's attach routine
after a match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found
Calls the internal routines that handle any CCB that
accesses the CAM equipment device table structure
Issues SCSI INQUIRY commands to all possible
SCSI targets and LUN s attached to a bus or a
particular bus/target/lun.

6.5.1 The ccfg_slave Routine
The ccfg slave routine calls a SCSI/CAM peripheral driver's slave
routine after a match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found. The routine is called
during autoconfiguration. The ccfg slave routine locates the configured
driver in the SCSI/CAM peripheral dnver configuration table. If the driver is
located successfully, the SCSI/CAM peripheral driver's slave routine is

SCSI/CAM Configuration Driver Modules 6-5

called with a pointer to the unit information structure for the device from the
kernel device structure and the virtual address of its control and status
register (CSR). The SCSI/CAM peripheral driver's slave routine performs its
own slave initialization.

6.5.2 The ccf9_attach Routine
The ccfg attach routine calls a SCSI/CAM peripheral driver's attach
routine after a match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found. The routine is called
during autoconfiguration. The ccfg attach routine locates the configured
driver in the SCSI/CAM peripheral dnver configuration table. If the driver is
located successfully, the SCSI/CAM peripheral driver's attach routine is
called with a pointer to the unit information structure for the device from the
kernel device structure. The SCSI/CAM peripheral driver's attach routine
performs its own attach initialization.

6.5.3 The ccf9_action Routine
The cc f g action routine calls the internal routines that handle any CCB
that accesses the CAM equipment device table structure. The CAM function
codes supported are XPT_GDEV _TYPE, XPT_SASYNC_CB, and
XPT_SDEV _TYPE.

6.5.4 The ccf9_edtscan Routine
The ccfg edtscan routine issues SCSI INQUIRY commands to all
possible SCSI targets and LUNs attached to a bus or a particular
bus/target/lun. The routine uses the CAM subsystem in the normal manner
by sending SCSI I/O CCBs to the SIMs. The INQUIRY data returned is
stored in the EDT structures and the cam tlun found flag is set. This
routine can be called by the SCSI/CAM peripherai device drivers to reissue a
full, partial, or single bus scan command.

6-6 SCSI/CAM Configuration Driver Modules

CAM XPT 110 Support Routines 7

This chapter contains descriptions of the Transport (XPT) layer routines used
by SCSI/CAM device driver writers. Table 7-1 contains a list of the routines
with a short description of each. Following the table is a description of each
routine. Descriptions of the routines with syntax information, in DEC OSFIl
reference page format, are included in alphabetical order in Appendix D.

Table 7-1: XPT 1/0 Support Routines

Routine

xpt_action
xpt_ccb_alloc
xpt_ccb_free
xpt_init

Summary Description

Calls the appropriate XPT/SIM routine
Allocates a CAM Control Block (CCB)
Frees a previously allocated CCB
Validates the initialized state of the CAM subsystem

7.1 The xpt_8ction Routine
The xpt action routine calls the appropriate XPT/SIM routine. The
routine routes the specified CCB to the appropriate SIM module or to the
Configuration driver, depending on the CCB type and on the path ID
specified in the CCB. Vendor-unique CCBs are also supported. Those
CCB s are passed to the appropriate SIM module according to the path ID
specified in the CCB.

7.2 The xpt_ccb_8I1oc Routine
The xpt ccb alloc routine allocates a CAM Control Block (CCB) for
use by a SCSI/CAM peripheral device driver. The xpt ccb alloe routine
returns a pointer to a preallocated data buffer large enough to contain any
CCB structure. The peripheral device driver uses this structure for its
XPT/SIM requests. The routine also ensures that the SIM private data space
and peripheral device driver pointer, cam _pdrv _ptr, are set up.

7.3 The xpt_ccb_free Routine
The xpt ccb free routine frees a previously allocated CCB. The routine
returns a CCB,previously allocated by a peripheral device driver, to the CCB
pool.

7.4 The xpt_i n it Routi ne
The xpt ini t routine validates the initialized state of the CAM subsystem.
The routine initializes all global and internal variables used by the CAM
subsystem through a call to the Configuration driver. Peripheral device
drivers must call this routine either during or prior to their own initialization.
The xpt ini t routine simply returns to the calling SCSI/CAM peripheral
device drIver if the CAM subsystem was previously initialized.

7-2 CAM XPT I/O Support Routines

CAM SIM Modules 8

This chapter describes how the SIM layers handle asynchronous callbacks. It
also describes the following SIM routines:

• sim action

• sim init

Descriptions of the routines with syntax information, in DEC OSFIl
reference page format, are included in alphabetical order in Appendix D.

8.1 SIM Asynchronous Callback Handling
This section describes how the SIM layers handle asynchronous callbacks
from the XPT to SCSI/CAM peripheral device drivers when an event such as
a SCSI Bus Device Reset (BDR) or an Asynchronous Event Notification
(AEN) occurs.

Each SCSI/CAM peripheral device driver registers an asynchronous callback
function for each active SCSI device during driver initialization. The
SCSI/CAM peripheral device drivers use the ccmn sasy ccb bId
routine to create a SET ASYNCHRONOUS CALLBACK CCB and send it
to the XPT.

The async flags field of the CCB are set to 1 for those events of which
the SCSI/CAM peripheral device driver wants to be notified using the
asynchronous callback function. The possible async _flags settings are:

Flag Name

AC FOUND DEVICES

AC SIM DEREGISTER

AC SIM REGISTER

ACSENT BDR

AC SCSI AEN

AC UNSOLRESEL

Description

A new device was found during a rescan.

A previously loaded SIM driver has deregistered.

A loaded SIM driver has registered.

A bus device reset (BDR) message was sent to the
target.

A SCSI Asynchronous Event Notification has been
received.

An unsolicited reselection of the system by a device
on the bus has occurred.

Flag Name Description

AC BUS RESET A SCSI bus RESET occurred.

These define statements are in lusrlsys/include/io/cam/cam.h.

B.2 SIM Routines Used by Device Driver Writers
This section describes the SIM routines device driver writers need to
understand.

8.2.1 The sim_8ction Routine
The sim action routine initiates an 110 request from a SCSIICAM
peripheral device driver. The routine is used by the XPT for immediate as
well as for queued operations. for the SCSI 110 CCB, when the operation
completes, the SIM calls back directly to the peripheral driver using the~CCB
callback address, if callbacks are enabled and the operation is not to be
carried out immediately.

The SIM determines whether an operation is to be carried out immediately or
to be queued according to the function code of the CCB structure. All
queued operations, such as "Execute SCSI 110" (reads or writes), are placed
by the SIM on a nexus-specific queue and return with a CAM status of
CAM_INPROG.

Some immediate operations, as described in the American National Standard
for Information Systems, SCSI-2 Common Access Method: Transport and
SCSI Interface Module", working draft, X3T9.2/90-186, may not be executed
immediately. However, all CCBs to be carried out immediately return to the
XPT layer immediately. For example, the ABORT CCB command does not
always complete synchronously with its call; however, the CCB_ABORT is
returned to the XPT immediately. An XPT_RESET_BUS CCB returns to
the XPT following the reset of the bus.

8.2.2 The sim_init Routine
The sim ini t routine initializes the SIM. The SIM clears all its queues
and releases all allocated resources in response to this call. This routine is
called using the function address contained in the CAM_SIM_ENTR Y
structure. This routine can be called at any time; the SIM layer must ensure
that data integrity is maintained.

8-2 CAM SIM Modules

8.3 Digital-Specific Features of the SIM Layers
This section describes Digital-specific features of the SIM layers of the CAM
subsystem.

8.3.1 SCSI 1/0 CCB Priorities
In the Digital implementation of the SCSI/CAM architecture, the SIM layer
of the CAM subsystem can give priority to certain SCSI I/O CCBs based on
the value of the cam vu flags member of the CCB_SCSIIO. The
following priorities are defined in the
lusrlsys/include/io/cam/dec cam.h file and can be set by a
SCSI/CAM peripheral device driver in the cam vu flags member of the
CCB_SCSIIO: - -

Flag Name Description

DEC CAM HIGH PRIOR This CCB is assigned high priority by the SIM.
DEC CAM MED PRIOR This CCB is assigned medium priority by the SIM.
DEC_CAM _LOW _PRIOR This CCB is assigned low priority by the SIM.
DEC CAM ZERO PRIOR This CCB is not assigned a priority by the SIM.

The Digital SCSI/CAM peripheral disk device driver uses this feature in its
cdisk strategy function for reads and writes that do not have the
B_ASYNC bit set in the b flags member of the buf structure associated
with the read or write request.

This feature can be used in conjunction with the Digital SCSI/CAM SCSI
I/O CCB reordering feature.

You can disable this feature by setting the
sim allow io priority sorting variable in the
lusrlsys/data/cam_data.c file to 0 (zero).

The following example shows how the SIM performs priority sorting:

1. The SIM queue for the bus, target, and LUN of 0, 0, 0 contains the
following SCSI I/O CCB:
CCB_SCSIIO #1 - Priority of DEC_CAM_LOW_PRIOR

2. The SIM receives a second SCSI I/O CCB, CCB_SCSIIO #2, with a
priority level of DEC_CAM_HIGH_PRIOR, which is given priority over

CAM 81M Modules 8-3

CCB_SCSIIO #1. The SIM queue now appears as follows:
CCB SCSIIO #2 - Priority of DEC CAM HIGH PRIOR
CCB=SCSIIO #1 - Priority of DEC=CAM=LOW_PRIOR

3. The SIM receives a third SCSI I/O CCB, CCB_SCSIIO #3, with a
priority level of DEC_CAM_HIGH_PRIOR. CCB_SCSIIO #3 is given
priority over CCB_SCSIIO #1, but is placed after CCB_SCSIIO #2:
CCB SCSIIO #2 - Priority of DEC CAM HIGH PRIOR
CCB-SCSIIO #3 - Priority of DEC-CAM-HIGH-PRIOR
CCB=SCSIIO #1 - Priority of DEC=CAM=LOW_PRIOR

8.3.2 SCSI 1/0 CCB Reordering
In the Digital implementation of the SCSI/CAM architecture, the SIM layer
of the CAM subsystem can reorder SCSI I/O CCBs based on a value
provided by the SCSI/CAM peripheral device driver. SCSI 1/0 CCB
reordering obtains maximum performance from the device by minimizing the
head movement of the device.

The SCSI disk device driver uses SCSI I/O CCB reordering for devices that
have the SZ_REORDER flag set in the dd flags member of the device
descriptor entry in the cam devdesc tab device array contained in
lusrlsys/data/cam data.c. file. The following SCSI 1/0 CCBs can
be reordered: -

• Character and block device reads

• Block device writes

SCSI I/O CCB reordering performed in the SIM layer does not affect any
SCSI/CAM peripheral device drivers that do not use it.

The cam sort member has been added to the CCB_SCSIIO structure.
This member replaces the cam osd rsvdO member specified in American
National Standard for InformatIOn Systems, SCSI-2 Common Access Method:
Transport and SCSI Inteiface Module", working draft, X3T9.2/90-186.

The SCSI disk driver specifies that a SCSI 1/0 CCB can be reordered by
assigning a value to the cam sort member. Typically, this value is the
logical block number (LBN) specified by the Command Descriptor Block for
the SCSI I/O CCB. If the cam sort member has a value of a (zero), the
SCSI 1/0 CCB is not reorderedand no SCSI I/O CCBs are placed before it
in the SIM queue for that device. The CAM flag, CAM_SIM_QHEAD,
takes priority over the cam sort member. A CCB with the
CAM_SIM_QHEAD flag set is always placed at the head of the SIM queue
for that device.

You can disable this feature by setting the sim allow io sorting
variable in the lusrlsys/data/cam_data-:c file toO (zero).

8-4 CAM 81M Modules

In a busy system, some SCSI I/O CCBs may have to wait if reordering is
allowing many other SCSI 110 CCBs to be handled first. The SIM has been
configured so that it does not allow a SCSI 110 CCB to wait for more than
two seconds. If a SCSI I/O CCB has reached this maximum wait limit, no
other SCSI 110 CCBs can be inserted before it. You can change the two
second limit by assigning the desired value to the sim sort age time
variable in the lusrlsys/data/cam_data.c file:- - -

The following example shows how the SIM performs SCSI I/O CCB
reordering:

1. Assume that the last cam sort value processed by the SIM was LBN
20. -

2. The SIM receives SCSI I/O CCBs with the following cam_sort values
in the following order:
50 23 1 7 28 15 19 60

3. Sorting produces the following result:
23 28 50 60 1 4 7 15 19

CAM 81M Modules 8-5

SICA Error Handling 9

This chapter describes the error-logging macros, data structures, and routines
provided by Digital for SCSUCAM peripheral device driver writers.

9.1 CAM Error Handling Macro
Digital supplies an error-logging macro, CAM_ERROR, with the SICA
software. SCSI device driver writers can activate the macro by defining the
constant CAMERRLOG. Errors are reported using the same error-logging
interface to each of the modules within the CAM subsystem.

The macro is defined in the
lusrlsys/include/io/cam/cam_errlog.h file as follows:.
static void (*local_errorlog)();

The CAM_ERRORO macro presents a consistent error-logging interface to
the modules within the CAM subsystem. Using the macro lets all the
routines within each module that need to report and log error information use
the same macro call and arguments. Using this macro also keeps each
reported error string with the code within the module that originally reported
the error.

Individual modules contain their own module-specific error-logging routines.
Each source file contains a declaration of the pointer to the local error
logging routine as follows:
static void (*local_errorlog)();

The macro calls the local error-logging routine through the local pointer. The
pointer is loaded with the local error-handler address, either within the
initialization code for that module or as part of the initialized data. The
following example shows the address of the sx errorlog function being
loaded to the local error-logging variable, local. _ err log:
extern void sx errorlog();
static void (*local_errlog)() = sx_errorlog;

SCSUCAM peripheral common modules can declare the local pointer to
contain the error handler from another SCSUCAM peripheral common
module.

9.2 CAM Error Logging Structures
This section describes the following CAM error-logging data structures:

• CAM_ERR_ENTRY, the Error Entry Structure

• CAM_ERR_HDR, the Error Header Structure

The structures are defined in the
lusr I sys I includel iol caml cam_logger. h file.

9.2.1 The Error Entry Structure
The Error Entry Structure, CAM_ERR_ENTRY, describes an entry in the
error log packet. There can be multiple entries in an error log packet. The
structure is defined as follows:
typedef struct cam err entry {

u long ent type; - /* String, TAPE SPECIFIC, CCB, etc */
u-long ent-size; /* Size of the data (CCB, TAPE SPEC)*/
u-long ent-total size; /* To preserve alignment (uerf) */
u-long ent=vers;- /* version number of type */
u-char *ent_data; /* Pointer to whatever string, etc */
u=long ent_pri; /* FULL or Brief uerf output */

}CAM_ERR_ENTRY;

9.2.1.1 The ent_type Member

The en t type member contains the type of data in the entry, which can be
a string, a structure, or a CCB. Numerous types of strings are defined in the
lusrlsys/include/io/cam/cam logger.h file. CCBs are
assigned to one of the XPT function codes listed in the
lusrlsys/include/io/cam/cam.hfik.

9.2.1.2 The ent_size Member

The ent _size member contains the size, in bytes, of the data in the entry.

9.2.1.3 The ent_total_size Member

The ent total size member preserves long-word alignment for
compatibility withthe uerf error-reporting utility. The cam logger
routine fills in this member. See the System Administration for more
information about the uerf utility.

9.2.1.4 The ent_ vers Member

The en t ver s member is the version number of the contents of the
ent type member. See the #define PDRV DEVICE VERS line in the
lusr I sysl includel iol cam/pdrv. h file for an example of

9-2 SICA Error Handling

associating a version number with a structure.

9.2.1.5 The ent_data Member

The ent data member contains a pointer to the contents of the
ent _type member.

9.2.1.6 The ent_pri Member

The ent pri member contains the output from the uerf utility, which can
be in brief or full report format. See the System Administration for
information about the uerf utility.

9.2.2 The Error Header Structure
The Error Header Structure, CAM_ERR_HDR, contains all the data needed
by the uerf utility to determine that the packet is a CAM error log packet.
See the System Administration for information about the uerf utility. The
structure is defined as follows:
typedef struct cam_err_hdr {

u shorthdr type; /* Packet type - CAM ERR PKT */
u-long hdr-size; /* Filled in by cam logger */
u=char hdr=class; /* Sub system class-Tape, disk,

* sii dme , etc ..
*/ -

* Mostly for controller type
* But the current err logger uses
* disk tape etc if no controller
* is known .• So what we will do
* is dup the disk and tape types
* in the lower number 0 - If and
* the controllers asc sii 5380
* etc can use the uppers.
*/

u long hdr entries; /* Number of error entries in list*/
CAM ERR ENTRY *hdr list; /* Pointer to list of error entries*/
u_long hdr_prii - /* Error logger priority. */

}CAM_ERR_HDRi

9.2.2.1 The hdr _type Member

The hdr type member contains the error-packet type, which must be
CAM_ERR_PKT.

9.2.2.2 The hdr _size Member

The hdr _size member is filled in by the cam_logger routine.

SICA Error Handling 9-3

9.2.2.3 The hdr_class Member

The hdr class member identifies the CAM module that detected the error
and assigns it to one of the Defined Device Types listed in the
lusrlsys/include/io/cam/scsi all.h file. The device classes
are defined in the lusr I sys I include! iol caml cam_logger. h file.

9.2.2.4 The hdr _subsystem Member

The hdr subsystem member identifies the CAM subsystem controller
that detected the error and assigns it to one of the Defined Device Types
listed in the lusrlsys/include/io/cam/scsi all.h file. The
device classes are defined in the -
lusr I sys I includel iol caml cam_logger. h file.

9.2.2.5 The hdr _entries Member

The hdr entries member contains the number of entries in the header
list.

9.2.2.6 The hdr _list Member

The hdr _1 i s t member contains a pointer to a list of error entries.

9.2.2.7 The hdr _pri Member

The hdr pr i member identifies the priority of the error and assigns it to
one of the priorities listed in the
lusrlsys/include/io/cam/errlog.hfik.

9.3 Event Reporting
This section contains information about event reporting.

9.3.1 The uerf Utility
To see all the CAM error reports when you use the uerf utility, use the -0

full option. For example:

uerf -0 full I more

9-4 SICA Error Handling

9.4 The cam_logger Routine
The cam logger routine allocates a system error log buffer and fills in a
uerf error log packet. The routine fills in the bus, target, and LUN
information from the Error Header Structure passed to it and copies the Error
Header Structure and the Error Entry Structures and data to the error log
buffer.

SICA Error Handling 9-5

SICA Debugging Facilities 10

This chapter describes the debugging macros and routines provided by
Digital for SCSUCAM peripheral device driver writers.

10.1 CAM Debugging Variables
There are two levels of debugging within the CAM modules: debugging
independent of a bus, target, or LUN, and debugging that tracks a specific
bus, target, or LUN. SICA debugging is turned on by defining the program
constant CAMDEBUG in the
lusrlsys/include/io/cam/cam debug.h file and recompiling the
source files. -

This section describes the variables that contain the information for each
level of debugging the CAM subsystem. The variables are:

• camdbg flag - Which turns on specific cprintf calls within the
kernel, depending on its setting, to capture information independent of a
particular SCSI ID.

• camdbg id - Which contains the specific bus, target, and LUN
information for tracking.

The macros, PRINTD and CALLD, use the variables for tracking target
specific messages and for allowing specific subsets of the DEBUG statements
to be printed. The macros are defined in the
lusrlsys/include/io/cam/cam_debug.h file.

10.1.1 The camdbg_flag Variable
The most significant bit, bit 31, of the camdbg flag variable is the bit that
indicates whether the target information is valid-:- If set, it indicates that the
camdbg id variable contains valid bus, target, and LUN information for
the device to be tracked. Bits 30 to 0 define the debug flag setting. The
possible settings, in ascending hexadecimal order, with a brief description of
each, follow:

Flag Name

CAMD INOUT

CAMD FLOW

CAMD PHASE

CAMD SM

CAMD ERRORS

CAMD CMD EXP

CAMD 10 MAPPING

CAMD DMA FLOW

CAMD DISCONNECT

CAMD TAGS

CAMD POOL

CAMD AUTOS

CAMD CCBALLOC

CAMD MSGOUT

CAMD MSGIN

CAMD STATUS

CAMD CONFIG

CAMD SCHED

CAMD_SIMQ

CAMD TAPE

CAMD COMMON

CAMD DISK

CAMD DISK REC

CAMD DBBR

CAMD CDROM

CAMD INTERRUPT

TVALID

10-2 SICA Debugging Facilities

Description

Routine entry and exit

Code flow through the modules

SCSI phase values

State machine settings

Error handling

Expansion of commands and responses

Data Movement Engine I/O mapping for user space

Data Movement Engine flow

Signal disconnect handling

Tag queuing code

XPT tracking in the DEC CAM packet pool

Autosense handling

CCB allocation and free flow

Messages going out

Messages coming in

SCSI status bytes

CAM configuration paths

SIM scheduler points

SIM queue manipulation

SCSI/CAM peripheral tape flow

SCSI/CAM peripheral common flow

SCSI/CAM peripheral disk flow

SCSI/CAM peripheral disk recovery flow

SCSI/CAM peripheral disk Dynamic Bad Block
Recovery flow

SCSI/CAM peripheral CDROM functions

SIM trace Interrupts

The bus, target, and LUN bits are valid in the
camdbg_id variable

10.1.2 The camdbg_id Variable
The camdbg id variable contains the bus, target, and LUN (B/T/L)
information for a specific target to track for debugging information. In the
current implementation, the bits are divided into three parts, with the
remainder reserved. The bits are allocated as follows: bits 31 to 16,
Reserved; bits 15 to 8, Bus number; bits 7 to 4, Target number; and bits 3 to
0, LUN number. Multiples of four bits are used to assign hexadecimal
values into the camdbg_ id variable.

10.2 CAM Debugging Macros
The PRINTD and CALLD macros track target-specific messages and allow
specific subsets of the debugging statements to be printed.

This PRINTD macro, which prints debugging information if CAMDEBUG is
defined, follows.
/*

* Conditionally Print Debug Information.
*/

#if defined(CAMDEBUG) && 1defined(lint)
define PRINTD(B, T, L, F, X)

\ [jJ
/ * NOSTRICT * / \
if(camdbg flag & (int)F) \ ~
{ \ -

if(((camdbg_flag & TVALID) == 0) I I \ ~
(((camdbg flag & TVALID) 1= 0) && \ ~

}
#endif

{ \

((((camdbg id & BMASK) » BSHIFT) == B) I I (B == NOBTL» && \ ~
((((camdbg=id & TMASK) » TSHIFT) == T) I I (T == NOBTL» && \
((((camdbg_id & LMASK) » LSHIFT) == L) I I (L == NOBTL»)) \

/* VARARGS */ \
(void) (*cdbg printf) X ; \
} \ -
\

ill The B, T, and L arguments are for target-specific tracking. The F
argument is a flag for tracking specific subsets of the pr intf
statements. The F flag argument is compared with the camdbg flag
variable to determine if the user wants to see the message. The X
argument must be a complete printf argument set enclosed within
parentheses () to allow the preprocessor to include it in the final
printf statement.

121 This statement checks to see if any of the flags for the PRINTD macro
are turned on. It does not look for an exact match so that the same
PRINTD macro can be used for different settings of the flags in
camdbg_flag.

SICA Debugging Facilities 10-3

~ This section of code checks for any target information available for
tracing a target. The first condition checks to see if the target valid bit is
not set. If it is not, the OR condition is met and the call to the printf
utility is made.

~ If the TV ALID bit is set, the bus, target, and LUN fields in the
carndbg id variable must be compared to the B, T, and L arguments.
If TVALID is true and bus equals B, target equals T, and LUN equals L,
then also print.

15.1 This construct checks the B, T, and L fields. For example, the following
statement checks the B field:
((((camdbg_id & BMASK) » BSHIFT) == B) I I (B == NOBTL))

The statement masks out the other fields and shifts the bus value down to
allow comparison with the B argument. The arguments can also have a
"wildcard" value, NOBTL. When the wildcard value is used, the B or T
or L comparison is always true.

The CALLD macro uses the same if statement constructs to conditionally
call a debugging function using the following define statement:
define CALLD(B, T, L, F, X)

The X is a call to a CAM debugging routine described in the following
section.

10.3 CAM Debugging Routines
The SCSI/CAM peripheral device debugging routines can be allocated into
categories as follows:

• Routines that generate reports on CAM functions and status in either a
brief form listing the name as it is defined in the applicable header file, or
in the form of a sentence. The following routines are in this category:

- cdbg_ CarnFunction

- cdbg_ CarnStatus

- cdbg_ScsiStatus

- cdbg_ SysternStatus

• Routines that dump the contents of CCBs, SCSI/CAM Peripheral Device
Driver Working Set Structures, and other SCSI/CAM commands for
examination. The following routines are in this category:

- cdbg_ DurnpCCBHeader

- cdbg_DurnpCCBHeaderFlags

10-4 SICA Debugging Facilities

- cdbg_DumpSCSIIO

- cdbg_ DumpPDRVws

- cdbg_DumpABORT

- cdbg_DumpTERMIO

- cdbg_DumpBuffer

- cdbg_ GetDeviceName

- cdbg_DumplnquiryData

Descriptions of the routines with syntax information, in DEC OSFIl
reference page format, are included in alphabetical order in Appendix D.

10.3.1 CAM Debugging Status Routines
This section describes the SCSI/CAM peripheral device debugging routines
that report status. Table 10-1 lists the name of each routine and gives a
summary description of its function. The sections that follow contain a more
detailed description of each routine.

Table 10-1: CAM Debugging Status Routines

Routine

cdbg_CamFunction
cdbg CamStatus
cdbg=scsiStatus
cdbg_Systemstatus

Summary Description

Reports CAM XPT function codes
Decodes CAM CCB status codes
Reports SCSI status codes
Reports system error codes

10.3.1.1 The cdbg_CamFunction Routine

The cdbg CamFunction routine reports CAM XPT function codes.
Program constants are defined to allow either the function code name only or
a brief explanation to be printed. The XPT function codes are defined in the
lusrlsys/include/io/cam/cam.hfik.

10.3.1.2 The cdbg_CamStatus Routine

The cdbg CamStatus routine decodes CAM CCB status codes. Program
constants are defined to allow either the status code name only or a brief
explanation to be printed. The CAM status codes are defined in the
lusr I sysl includel iol caml cam. h file.

SICA Debugging Facilities 10-5

10.3.1.3 The cdb9_ScsiStatus Routine

The cdbg ScsiStatus routine reports SCSI status codes. Program
constants are defined to allow either the status code name only or a brief
explanation to be printed. The SCSI status codes are defined in the
lusrlsys/include/io/cam/scsi_status.hfik.

10.3.1.4 The cdb9_SystemStatus Routine

The cdbg_SystemStatus routine reports system error codes. The system error
codes are defined in the lusrlsys/include/sys/errno.h file.

10.3.2 CAM Dump Routines
This section describes the SCSI/CAM peripheral device debugging routines
that dump contents for examination. Table 10-2 lists the name of each
routine and gives a summary description of its function. The sections that
follow contain a more detailed description of each routine.

Table 10-2: CAM Dump Routines

Routine

cdbg_DumpCCBHeader

cdbg_DumpCCBHeaderFlags

cdbg_DumpSCSIIO
cdbg_DumpPDRVws

cdbg_DumpABORT
cdbg_DumpTERMIO

cdbg_DumpBuffer

cdbg_GetDeviceName

cdbg_DumplnquiryData

10-6 SICA Debugging Facilities

Summary Description

Dumps the contents of a CAM Control Block
(CCB) header structure
Dumps the contents of the cam flags
member of a CAM Control Block (CCB)
header structure
Dumps the contents of a SCSI 1/0 CCB
Dumps the contents of a SCSI/CAM
Peripheral Device Driver Working Set
Structure
Dumps the contents of an ABORT CCB
Dumps the contents of a TERMINATE I/O
CCB
Dumps the contents of a data buffer in
hexadecimal bytes
Returns a pointer to a character string
describing the dtype member of an
ALL_INQ_DATA structure
Dumps the contents of an ALL_INQ_DATA
structure

10.3.2.1 The cdbg_DumpCCBHeader Routine

The cdbg DumpCCBHeader routine dumps the contents of a CAM
Control Biock (CCB) header structure. The CAM Control Block (CCB)
header structure is defined in the /usr / sys / include/ io/ cam/ cam. h
file.

10.3.2.2 The cdbg_DumpCCBHeaderFlags Routine

The cdbg DumpCCBHeaderF lags routine dumps the contents of the
cam flags member of a CAM Control Block (CCB) header structure. The
CAM Control Block (CCB) header structure is defined in the
/usr /sys/ include/ io/cam/ cam. h file.

10.3.2.3 The cdbg_DumpSCSIlO Routine

The cdbg DumpSCSIIO routine dumps the contents of a SCSI 110 CCB.
The SCSI 170 CCB is defined in the
/usr /sys/ include/ io/cam/cam. h file.

10.3.2.4 The cdbg_DumpPDRVws Routine

The cdbg DumpPDRVws routine dumps the contents of a SCSIICAM
Peripheral Device Driver Working Set Structure. The SCSI/CAM Peripheral
Device Driver Working Set Structure is defined in the
/usr /sys/ include/ io/cam/pdrv. h file.

10.3.2.5 The cdbg_DumpABORT Routine

The cdbg DumpABORT routine dumps the contents of an ABORT CCB.
The ABORT CCB is defined in the
/usr /sys/ include/ io/cam/cam. h file.

10.3.2.6 The cdbg_DumpTERMIO Routine

The cdbg DumpTERMIO routine dumps the contents of a TERMINATE
110 CCB. The TERMINATE 110 CCB is defined in the
/usr / sys/ include/ io/ cam/ cam. h file.

10.3.2.7 The cdbg_DumpBuffer Routine

The cdbg DumpBuffer routine dumps the contents of a data buffer in
hexadecimal bytes. The calling routine must display a header line. The
format of the dump is 16 bytes per line.

SICA Debugging Facilities 10-7

10.3.2.8 The cdbg_GetDeviceName Routine

The cdbg GetDeviceName routine returns a pointer to a character string
describing the dtype member of an ALL_INQ_DATA structure. The
ALL_INQ_DATA structure is defined in the
lusr I sysl includel iol caml scsi_all. h file.

10.3.2.9 The cdbg_DumplnquiryData Routine

The cdbg DumplnquiryData routine dumps the contents of an
ALL_INQ=-DATA structure. The ALL_INQ_DATA structure is defined in
the lusr Isys/include/io/cam/scsi_all. h file.

10-8 SICA Debugging Facilities

Programmer-Defined SCSI/CAM
Device Drivers 11

This chapter describes how programmers can write their own device drivers
for SCSI/CAM peripheral devices using a combination of common data
structures and routines provided by Digital and programmer-defined routines
and data structures. This chapter describes only the programmer-defined data
structures and routines. See Chapter 3 for a description of the common data
structures and routines.

The chapter also describes how to add a programmer-defined device driver to
the SICA system.

11.1 Programmer-Defined SCSI/CAM Data Structures
This section describes the SCSI/CAM peripheral data structures programmers
must use if they write their own device drivers. The following data structures
are described:

• PDRV _UNIT_ELEM - The Peripheral Device Unit Table

• PDRV _DEVICE - The Peripheral Device Structure

• DEV _DESC - The Device Descriptor Structure

• DENSITY_TBL - The Density Table Structure

• MODESEL_TBL - The Mode Select Table Structure

11.1.1 Programmer-Defined Peripheral Device Unit Table
The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device
unit elements. The size of the array is the maximum number of possible
devices, which is determined by the maximum number of SCSI controllers
allowed for the system. The structure is allocated statically and is defined as
follows:
typedef struct pdrv unit elem {

PDRV DEVICE-*pu device;
- - /* Pointer to peripheral device structure */

u short pu opens; /* Total number of opens against unit */
u=short pu=config;

/* Indicates whether the device type */
/* configured at this address */

u_char pu_type; /* Device type - byte 0 from inquiry data */
PDRV_UNIT_ELEM;

11.1.1.1 The pu_device Member

The pu device field is filled in with a pointer to a CAM-allocated
peripheral SCSI device (PDRV _DEVICE) structure when the first call to the
ccmn _open _ uni t routine is issued for a SCSI device that exists.

11.1.1.2 The pu_opens Member

The total number of opens against the unit.

11.1.1.3 The pu_config Member

Indicates whether a device of the specified type is configured at this
bus/targetiLUN.

11.1.1.4 The pu_type Member

The device type from byte 0 (zero) of the Inquiry data.

11.1.2 Programmer-Defined Peripheral Device Structure
A SCSI/CAM peripheral device structure, PDRV _DEVICE, is allocated for
each SCSI device that exists in the system. The PDRV _DEVICE structure is
defined as follows:
typedef struct pdrv device {

PD LIST pd active list;
- - 7* Forward active pointer of CCBs */

/* which have been sent to the XPT */
U32 pd active ccb;

- /;; Number of active CCBs on queue * /
U32 pd que depth;

- - /* Tagged queue depth - indicates the */
/* maximum number of commands the unit */
/* can store internally */

PD LIST pd pend list;
- - - /* Forward active pointer of pending CCBs */

/* which have not been sent to the XPT due */
/* to a full queue for tagged requests */

U32 pd pend ccb;
- -/* Number of pending CCBs */

dev t pd dev; /* CAM major/minor number */
u char pd=bus; /* SCSI controller number */
u char pd target;

- /* SCSI target id */
u char pd lun; /* SCSI target lun */
u char pd-unit; /* unit number */
U32 pd-log unit;

- - /* Logical Unit number */
U32 pd soft err;

- -/* Number of soft errors */

11-2 Programmer-Defined SCSI/CAM Device Drivers

U32

u short

u short

U32

u char

u char

U32

u char

u char

U32

DEV DESC

pd_hard_err;
/* Number of hard errors */

pd_soft_err_ limit;
/* Max no. of soft errors to report */

pd_hard_err_ limit;
/* Max no. of hard errors to report */

pd flags;
- /* Specific to peripheral drivers */

pd state;
- /* Specific to peripheral drivers - can */

/* be used for recovery */
pd abort cnt;

- -/* Specific to peripheral drivers - can */
/* be used for recovery */

pd cam flags;
- - /* Used to hold the default settings */

/* for the cam_flags field in CCBs */
pd tag action;

- - /* Used to hold the default settings for */
/* the cam tag action field of the SCSI */
/* I/O CCB-*/ -

pd dev inq[INQLEN];
- /* Inquiry data obtained from GET */

/* DEVICE TYPE CCB */
pd ms index;

- /* Contains the current index into the */
/* Mode Select Table when sending Mode */
/* Select data on first open */

*pd_dev desc;
/* Pointer to our device descriptor */

caddr t pd specific;
- /* Pointer to device specific info */

u short pd spec size;
- - /* Size of device specific info */

caddr t pd sense ptr;

u short

void

U32

U32

U32

U32

dev t

- -/* Pointer to the last sense data */
/* bytes retrieved from device */

pd sense len;
- -/* Length of last sense data */

(*pd recov hand)();
- /* Specific to peripheral drivers - can */

/* be used to point to the recovery */
/* handler for the device */

pd_read_count;
/* Number of reads to device */

pd_write_count;
/* Number of writes to device */

pd_read_bytes;
/* Number of bytes read from device */

pd_write_bytes;
/* Number of bytes written to device */

pd bmajor;
- /* Block major number for loadables */

dev t pd cmajor;
- /* Char major number for loadables */

BOP LOCK STRUCT pd lk device;
/* SMP lock for the device */

PDRV DEVICE

Programmer-Defined SCSI/CAM Device Drivers 11-3

The structure members and their descriptions follow:

Structure Member

pd active list
pd=active=ccb
pd_que_depth

pd pend ccb
pd=dev -

pd_bus
pd_target
pd lun
pd=unit
pd_log_unit
pd_soft_err

pd_abort_cnt

pd_tag_action

pd dev inq
pd=ms_Index

Description

A pointer to the first CCB on the active queue.
The number of CCBs on the active queue.
The depth of the tagged queue, which is the
maximum number of commands that the
peripheral driver will send to the SCSI device.
A pointer to the first CCB on the pending
queue.
The number of CCBs on the pending queue.
The major/minor device number pair that
identifies the bus number, target ID, and LUN
associated with this SCSI device.
SCSI target's bus controller number.
SCSI target's ID number.
SCSI target's logical unit number.
SCSI device's unit number.
Logical Unit Number
Number of soft errors reported by each SCSI
unit.
Number of hard errors reported by each SCSI
unit.
Maximum number of soft errors that can be
reported by each SCSI unit.
Maximum number of hard errors that can be
reported by each SCSI unit.
These are specific to SCSI/CAM peripheral
device drivers. They can be used for recovery.
This is specific to SCSI/CAM peripheral device
drivers. It can be used for recovery.
This contains the default settings for the
cam flags field in the CAM Control Block
(CCS) header structure. The flags are defined
in the
/usr/sys/include/io/cam/cam.hfi~.
This contains the default settings for the
HBAISIM queue actions field,
cam tag action, in the SCSI I/O CCB
structure. The queue actions are defined in the
/usr /sys/ include/ io/cam/cam. h file.
This is inquiry data.
The current index into the Mode Select Table
that is pointed to in the Device Descriptor
Structure.
A pointer to the DEV _DESC structure for the
SCSI device.

11-4 Programmer-Defined SCSI/CAM Device Drivers

Structure Member Description

pd_spec_size
pd_sense_ptr

pd_sense_len

A pointer to a device-specific structure filled in
by the ccrnn open unit routine.
The size of the device-specific information.
A pointer to the last sense data bytes retrieved
from the device.
The length, in bytes, of the last sense data
retrieved from the device.

pd_recov_hand This is specific to SCSI/CAM peripheral device
drivers. It can be used to point to the recovery
handler for the device.
Number of read operations from device. Used
for performance statistics.

pd_write_count Number of write operations to device. Used
for performance statistics.

pd_read_bytes Total number of bytes read from device. Used
for performance statistics.

pd_crnajor

Total number of bytes written to device. Used
for performance statistics.
Block device major number for loadable
drivers.
Character device major number for loadable
drivers.
The lock structure.

11.1.3 Programmer-Defined Device Descriptor Structure
A Device Descriptor Structure entry, DEV _DESC, must be added to the
cam devdesc tab for each programmer-defined SCSI device that exists
in the system. The file /usr/sys/data/cam data.c contains
examples of entries supplied by Digital. The DEV_DESC structure is defined
as follows:
typedef struct

u char

u char
u char

U32

struct

U32
U32

dev_desc {
dd pv name[IDSTRING SIZE];

- - /* Product ID and vendor string from */
/* Inquiry data */

dd length; /* Length of dd pv name string */
dd-dev name[DEV NAME SIZE]; --

- - -/* Device name string - see defines */
/* in devio.h */

dd device type; /* Bits 0 - 23 contain the device */
- /* class, bits 24-31 contain the */

/* SCSI device type */
pt_info *dd def partition;

- -/* Default partition sizes - disks */
dd_block_size; /* Block/sector size */
dd_max_record; /* Maximun transfer size in bytes */

Programmer-Defined SCSI/CAM Device Drivers 11-5

/* allowed for the device */
DENSITY TBL *dd density tbl;

- -/* Pointer to density table - tapes */
MODESEL TBL *dd modesel tbl;

- -/* Mode select table pointer - used */
/* on open and recovery */

U32 dd flags; /* Option flags (bbr, etc) */
U32 dd-scsi optcmds;/* Optional commands supported */
U32 dd-ready time;

- -/* Time in seconds for powerup dev ready */
u short dd que depth; /* Device queue depth for devices */

- - - /* which support command queueing */
u char dd_valid; /* Indicates which data length */

/* fields are valid */
u char dd_inq_len; /* Inquiry data length for device */
u char dd_re~sense_len;

}DEV_DESC;

/* Request sense data length for */
/* this device */

The product ID and vendor returned string identifying the drive obtained
from the Inquiry data. The product ID makes up the first eight characters of
the string. The IDSTRING_SIZE constant is defined in the
/usr / sys/ include/ io/ cam/pdrv. h file. This specifies the length of
the dd pv name string. The match is made on the total string returned by
the unit -

11.1.3.1 The dd_dev_name Member

The DEC OSFIl device name string, which is defined in the
/usr/sys/include/io/common/devio.h file. A generic name of
DEV _RZxx should be used for non-Digital disk devices. The following
generic names are provided for tapes: DEV _TZQIC, for 1/4-inch cartridge
tape units; DEV _TZ9TK for 9-track tape units; DEV _TZ8MM, for 8-
millimeter tape units; DEV _TZRDAT, for RDAT tape units; DEV _TZ3480,
for IBM 3480-compatible tape units; and DEV _ TZxx, for tape units that do
not fit into any of the predefined generic categories.

11.1.3.2 The dd~device_type Member

Bits 24-31 contain the SCSI device class, for example,
ALL_DTYPE_DIRECT, which is defined in the
/usr/sys/include/io/cam/scsi all.h file. The bits 0-23 contain
the device subclass, for example, SZ_HARD_DISK, which is defined in the
/usr/sys/include/io/cam/pdrv.hfik.

11.1.3.3 The dd_def_partition Member

A pointer to the default partition sizes for disks, which are defined in the
/usr/sys/data/cam data.c file. Tape devices should define this as
sz null sizes. Diskdevices may use sz_rzxx_sizes, which

11-6 Programmer-Defined SCSI/CAM Device Drivers

assumes that the disk has at least 48 Mbytes. The sz rzxx sizes should
not be modified. If you want to create your own partition table, make an
entry for your device in the device descriptor table in the
lusrlsys/data/cam_data.c file.

11.1.3.4 The dd_block_size Member

The block or sector size of the unit, in bytes, for disks and CDROMs. You
can obtain the correct number of bytes from the documentation for your
device.

11.1.3.5 The dd_max_record Member

The maximum number of bytes that can be transferred in one request for raw
110. Errors result if your system does not have enough physical memory or
if the unit cannot handle the size of transfer specified.

11.1.3.6 The dd_density _tbl Member

A pointer to the Density Table Structure entry for a tape device.

11.1.3.7 The dd_modesel_tbl Member

A pointer to the Mode Select Table Structure entry for the devices. The
Mode Select Table Structure is read and sent to the SCSI device when the
first open call is issued and during recovery. This field is optional and
should be used only for advanced SCSI device customization.

11.1.3.8 The dd_flags Member

The option flags, which can be SZ_NOSYNC, indicating that the device
cannot handle synchronous transfers; SZ_BBR, indicating that the device
allows bad block recovery; SZ_NO_DISC, indicating that the device cannot
handle disconnects; and SZ_NO_TAG, indicating tagged queueing is not
allowed. SZ_NO_TAG overrides inquiry data. The flags are defined in the
lusrlsys/include/io/cam/pdrv.hfik.

11.1.3.9 The dd_scsi_optcmds Member

The optional SCSI commands that are supported, as defined in the
lusrlsys/include/io/cam/pdrv.h file. The possible commands
are NO_OPT_CMDS; SZ_RWIO, which enables reading and writing IO-byte
CDBs; SZ_PREV _ALLOW, which prevents or allows media removal; and
SZ_EXT_RESRV, which enables reserving or releasing file extents.

Programmer-Defined SCSI/CAM Device Drivers 11-7

11.1.3.10 The dd_ready _time Member

The maximum time, in seconds, allowed for the device to power up. For
disks, this represents power up and spin up time. For tapes, it represents
power up, load, and rewind to Beginning of Tape.

11.1.3.11 The dd_que_depth Member

The maximum number of queued requests for devices that support queueing.
Refer to the documentation for your device to determine if your device
supports tag queuing and, if so, the depth of the queue.

11.1.3.12 The dd_valid Member

This indicates which data length fields are valid. The data length bits,
DD _REQSNS_ VAL and DD _INQ_ V AL, are defined in the
lusrlsys/include/io/cam/pdrv.hfik.

11.1.3.13 The dd_inq_len Member

The inquiry data length for the device. This field must be used in
conjunction with the DD_INQ_ V AL flag.

11.1.3.14 The dd_req_sense_len Member

The request Sense data length for the device. This field must be used in
conjunction with the DD _REQSNS_ V AL flag.

11.1.4 Programmer-Defined Density Table Structure
The Density Table Structure allows for the definition of eight densities for
each type of SCSI tape device unit. A density is defined using the lower
three bits of the unit's minor number. Refer to the SCSI tape device unit
documentation for the density code, compression code, and blocking factor
for each density.

The lusr I sysl datal cam data. c file contains Density Table Structure
entries for all devices known to Digital. Programmers can add entries for
other SCSI tape devices at the end of the Digital entries. The definition for
the Density Table Structure, DENSITY _ TBL, follows:
typedef struct density_tbl {

struct density{
u char
u char
u char

u char
u char

den flags; j* VALID, ONE_FM etc *j
den=density_code;
den compress code;

- -1* Compression code if supported *j
den speed setting; j* for this density *j
den-buffered setting;

- - 1* Buffer control setting *j

11-8 Programmer-Defined SCSI/CAM Device Drivers

u long den blocking;
}density[MAX_TAPE_DENSITY];

}DENSITY_TBL;

11.1.4.1 The den_flags Member

/* 0 variable etc. */

The den flags specified indicate which fields in the DENSITY_TBL
structure are valid for this density. The flags are: DENS_VALID, to indicate
whether the structure is valid; ONE_FM, to write one file mark on closing
for QIC tape units; DENS_SPEED_ VALID, to indicate the speed setting is
valid for mUltispeed tapes; DENS_BUF _ V ALID, to run in buffered mode;
and DENS_COMPRESS_ V ALID, to indicate compression code, if
supported.

11.1.4.2 The den_density _code Member

The den density code member contains the SCSI density code for this
density. - -

11.1.4.3 The den_com press_code Member

The den compres s code member contains the SCSI compression code
for this density, if the unit supports compression.

11.1.4.4 The den_speed_setting Member

The den speed setting member contains the speed setting for this
density. Some units support variable speed for certain densities.

11.1.4.5 The den_buffered_setting Member

The den buffered setting member contains the buffer control setting
for this density. -

11.1.4.6 The den_blocking Member

The den blocking member contains the blocking factor for this SCSI
tape device. A NULL (0) setting specifies that the blocking factor is variable.
A positive value represents the number of bytes in a block, for example, 512
or 1024.

11.1.4.7 Sample Density Table Structure Entry

This section contains a portion of a Density Table Structure entry for the
TZK10 SCSI tape device, which supports both fixed and variable length

Programmer-Defined SCSI/CAM Device Drivers 11-9

records:
DENSITY TBL
tzkl0 dens
{ Minor 00

Flags
DENS VALID I DENS_BUF_VALID IONE_FM ,

Density code
SEQ_8000R_BPI,

Compression code
NULL,

Buffered setting
I,

Blocking
512

} ,

Minor 06

Flags

Speed setting
NULL,

DENS VALID DENS_BUF_VALID IONE_FM ,

Density code
SEQ_QIC320,

Compression code
NULL,

Buffered setting
I,

Blocking
1024

} ,
{ Minor 07

Flags

Speed setting
NULL,

DENS VALID DENS_BUF_VALID IONE_FM ,

Density code
SEQ_QIC320,

Compression code
NULL,

Buffered setting
I,
}
}; end of tzkl0 dens

Blocking
NULL

Speed setting
NULL,

11.1.5 Programmer-Defined Mode Select Table Structure
The Mode Select Table Structure is read and sent to the SCSI device when
the first call to the SCSI/CAM peripheral open routine is issued on a SCSI
device. There can be a maximum of eight entries in the Mode Select Table
Structure. The definition for the Mode Select Table Structure,
MODESEL_ TBL, follows:
typedef struct modesel_tbl {

struct ms_entry{
u char ms page; /*
u char *ms_data; /*
u char ms data len; /*
u char ms-ent sp pf;/*

- - - /*

/*

Page number */
Pointer to Mode Select data */
Mode Select data length */
Save Page and Page format bits */
BIT 0 I=Save Page, */

O=Don't Save Page */

11-10 Programmer-Defined SCSI/CAM Device Drivers

}ms_entry[MAX_OPEN_SELS);
}MODESEL_TBL;

11.1.5.1 The ms_page Member

/* BIT 1 1=SCSI-2, O=SCSI-l */

The ms page member contains the SCSI page number for the device type.
For example, the page number would be Ox 1 0 for the device configuration
page for a SCSI tape device.

11.1.5.2 The ms_data Member

The ms data member contains a pointer to the mode select data for the
device. Set up the page data and place the address of the page structure in
this field. A sample page definition for page OxlO for the TZKIO follows:
SEQ_MODE_DATA6
tzklO_pagelO = {

{ Parameter header

mode len
NULL,

medium type
NULL,

speed
NULL,

Buf mode wp
OxOl, NULL,
} ,
{ Mode descriptor

Density num_blks2
NULL, NULL,

num blksO
NULL,

blk lenl
NULL,
} ,
{

reserved

blk lenO
NULL

Page data for page Ox2

PAGE header
by teO by tel
OxlO, OxOe,

byte2 byte3
OxOO, OxOO,

byte7 byte8
NULL, OxeO,

byte12 byte13
NULL, NULL,
}
} ;

byte4
40,

byte9
NULL,

byte14
NULL,

blk desc len
sizeof(SEQ_MODE_DESC)

num blksl
NULL,

byteS
40,

blk len2
NULL,

byte6
NULL,

bytelO by tell
Ox38, NULL,

bytelS
NULL

Programmer-Defined SCSI/CAM Device Drivers 11-11

11.1.5.3 The ms_data_len Member

The ms data len member contains length of a page, which is the number
of bytesto be sent to the device.

11.1.5.4 The ms_ent_sp_pf Member

The ms ent sp pf member contains flags for the MODE SELECT CDB
that the device driver formats.

11.1.5.5 Sample Mode Select Table Structure Entry

This section contains a sample portion of a Mode Select Table Structure
entry for the TZK 1 0 SCSI tape device:
MODESEL TBL
tzklO_IDod = {
{ MODE PAGE ENTRY 1

Page number
Ox02,

Data len
28,
} ,

{ MODE PAGE ENTRY 8

Page number
NULL,

Data len
NULL,
} ,
} ;

Ox2

The data pointer
(u_char *)&tzklO_page2,

SCSI2??

The data pointer
(u_char *)NULL,

SCSI2??
NULL

11.2 Sample SCSI/CAM Device-Specific Data Structures
This section provides samples of the SCSI/CAM peripheral data structures
programmers must define if they write their own device drivers. The
following data structures are described:

• TAPE_SPECIFIC - The Tape-Specific Structure

• DISK_SPECIFIC - The Disk- and CDROM-Specific Structure

11.2.1 Programmer-Defined Tape-Specific Structure
SCSI/CAM peripheral device driver writers can create their own tape-specific
data structures. Here is a sample TAPE_SPECIFIC structure for a SCSI tape
device, as defined in the lusrlsys/include/io/cam/cam_tape.h

11-12 Programmer-Defined SCSI/CAM Device Drivers

file:
typedef struct

u_long
u long
u~)ong
u_long
u long
u:=long

ts flags; j* Tape flags - BOM,EOT */
ts-state flags; j* STATE - UNIT ATTEN, RESET etc. */
ts-resid~ j* Last operation residual count */
ts-block size; j* See below for a complete desc. */
ts-density; j* What density are we running at */
ts-records;

- /* How many records in since last tpmark */
u_long

}TAPE_SPECIFIC;
ts_num_filemarks; /* number of file marks into tape */

11.2.1.1 The ts_flags Member

Flags used to indicate tape condition. The possible flags are:

Flag Name

CTAPE BOM

CTAPE EOM

CTAPE OFFLINE

CTAPE WRT PROT

CTAPE BLANK

CTAPE WRITTEN

CTAPE CSE

CTAPE SOFTERR

CTAPE HARDERR

CTAPE DONE

CTAPE RETRY

CTAPE ERASED

CTAPE TPMARK

CTAPE SHRTREC

CTAPE RDOPP

CTAPE REWINDING

Description

The tape is positioned at the beginning.

The unit is positioned at the end of media.

The device is returning DEVICE NOT READY in
response to a command. The media is either not
loaded or is being loaded.

The unit is either write protected or is opened read
only.

The tape is blank.

The tape has been written during this procedure.

Clear serious exception.

A soft error has been reported by the SCSI unit.

A hard error has been reported by the SCSI unit. It
can be reported either through an ioctl or by
marking the buf structure as EIO.

The tape procedure is finished.

Indicates a retry can be attempted.

The tape has been erased.

A tape mark has been detected during a read
operation. This cannot occur during a write
operation.

The size of the record retrieved is less than the size
requested. Reported using an ioctl.

Reading in the reverse direction. This is not
implemented.

The tape is rewinding.

Programmer-Defined SCSI/CAM Device Drivers 11-13

Flag Name Description

CTAPE TPMARK PENDING The tape mark is to be reported on the next I/O
operation.

11.2.1.2 The ts_state_flags Member

Flags used to indicate tape state. The possible flags include:

Flag Name Description

CTAPE_NOT_READY_STATE
The unit was opened with the FNDELA Y flag. The
unit was detected, but the open failed.

CTAPE_UNIT_ATTEN_STATE
A check condition occurred and the sense key was
UNIT ATTENTION. This usually indicates that the
media was changed. Current tape position is lost.

Indicates a reset condition on the device or on the
bus.

CTAPE_RESET_PENDING_STATE
A reset is pending.

CTAPE_OPENED_STATE
The unit is opened.

No notification of end of media is required.

CTAPE_ABORT_ TPPEND _STATE
Indicates that a tape mark was detected for a fixed
block operation with nonbuffered I/O. The queue is
aborted.

CTAPE_AUTO_DENSITY_ VALID_STATE
Directs the open routine to call the ctz_auto_density
routine when a unit attention is noticed, because tape
density has been determined and all reads are to
occur at that density.

CTAPE_ORPHAN_CMD_STATE
This flag is set when a command is orphaned. The
process does not wait for completion, such as a
rewind operation.

CTAPE_POSITION_LOST_STATE
Tape position is lost due to command failure.

11-14 Programmer-Defined SCSI/CAM Device Drivers

11.2.1.3 The ts_resid Member

Residual count from the last tape command.

11.2.1.4 The ts_block_size Member

U sed to distinguish between blocks and bytes for fixed-block tapes.
Commands for devices like 9-track tape, which have variable length records,
assume bytes.

11.2.1.5 The ts_density Member

The current density at which the SCSI tape device is operating.

11.2.1.6 The ts_records Member

The number of records read since the last tape mark.

11.2.1.7 The ts_num_filemarks Member

The number of file marks encountered since starting to read the tape.

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure
SCSI/CAM peripheral device driver writers can create their own disk- and
CDROM-specific data structures. A sample DISK_SPECIFIC structure for a
SCSI disk device, as defined in the
lusr I sys I includel iol caml cam_disk. h file, follows:
typedef struct disk_speCific

struct buf *ds_bufhd; /* Anchor for requests which come */
/* into strategy that cannot be */
/* started due to error recovery */
/* in progress. */

int ds dkn; /* Used for syste~ statistics */
U32 ds::::bbr_state; /* Used indicate the current */

/* BBR state if active */
U32 dS_bbr_retry; /* BBR retries for reassignment */
u char *ds_bbr_buf; /* Points to read/write and */

/* reassign data buffer */
CCB SCSIIO *ds_bbr_rwccb; /* R/W ccb used for BBR */
CCB SCSIIO *ds bbr reasccb; /* Reassign ccb used for BBR */
CCB SCSIIO *ds::::bbr::::origccb; /* Ccb which encountered bad block */
CCB SCSIIO *ds_tur_ccb; /* SCSI I/O CCB for tur cmd */

/* during recovery */
CCB SCSIIO *ds start_ccb; /* SCSI I/O CCB for start unit */ -

/* cmd during recovery */
CCB SCSIIO *ds_mdsel_ccb; /* SCSI I/O CCB for mode select */

/* cmd during recovery */
CCB SCSIIO *ds _rdcp_ccb; /* SCSI I/O CCB for read capacity */

/* cmd during recovery */
CCB SCSIIO *ds_read_ccb; /* SCSI I/O CCB for Read cmd */

/* during recovery */
CCB SCSIIO *ds_prev_ccb; /* SCSI I/O CCB for Prevent */

Programmer-Defined SCSI/CAM Device Drivers 11-15

U32 ds block size;
/* Media Removal cmd during recovery */
/* This units block size */

U32 ds-tot size; /* Total disk size in blocks */
/* Number of times media was */
/* changed - removables */

U32 ds=media_changes;

struct pt ds pt; /* Partition structure */
U32 ds-openpart; /* Bit mask of open parts */

/* No of block opens */ U32 ds=bopenpart;
U32 ds copenpart; /* No of char opens */
U32 ds-wlabel; /* write enable label */
struct disklabel ds_label; /* Disk label on device */

}DISK_SPECIFIC;

The structure members and their descriptions follow:

Structure Member

ds bufhd

ds dkn

ds bbr state

dS_bbr_retry

ds bbr buf

ds bbr rwccb

ds bbr reasccb

ds_bbr_origccb

ds tur ccb

ds start ccb

ds mdsel ccb

ds_rdcp_ccb

ds read ccb

Description

Pointer to a buffer header structure to contain
requests that come to the driver but cannot be started
due to error recovery in progress. The requests are
issued when error recovery is complete.

U sed for system statistics.

Used to indicate the current state if bad block
recovery (BBR) is active.

Number of retries to attempt for reassignment of bad
blocks.

Pointer to the readlwrite and the reassign data
buffers.

Pointer for the SCSI I/O CCB for the ReadlW rite
command used for recovery.

Pointer for the SCSI I/O CCB for the Reassign
command used for recovery.

A CCB that encountered a bad block.

Pointer for the SCSI 1/0 CCB for the TEST UNIT
READY command used for recovery.

Pointer for the SCSI I/O CCB for the START UNIT
command used for recovery.

Pointer for the SCSI 1/0 CCB for the MODE
SELECT command used for recovery.

Pointer for the SCSI I/O CCB for the Read Capacity
command used for recovery.

Pointer for the SCSI I/O CCB for the Read
command used for recovery.

Pointer for the SCSI I/O CCB for the Prevent
Removal command during recovery.

11-16 Programmer-Defined SCSIICAM Device Drivers

Structure Member

ds block size

ds tot size

ds_media_changes

ds_pt

ds_openpart

ds_bopenpart

ds_copenpart

ds wlabel

ds label

Description

This SCSI disk device's block size in bytes.

Total SCSI disk device size in blocks.

For removable media, the number of times the
media was changed.

Structure defining the current disk partition layout.

Bit mask of open partitions.

Number of block opens.

Number of character opens.

The write-enable label.

Disk label on device.

11.2.3 SCSI/CAM CORaM/AUDIO I/O Control Commands
This section describes the standard and vendor-unique 110 control commands
to use for SCSI CDROM/AUDIO devices. The commands are defined in the
/usr/sys/include/io/cam/cdrom.h file. See Chapter 13 of
American National Standard for Information Systems, Small Computer
Systems Interface - 2 (SCSI - 2), X3.131-199X for general information about
the CDROM device model. Table 11-1 lists the name of each command and
describes its function.

Programmer-Defined SCSI/CAM Device Drivers 11-17

Table 11-1: SCSI/CAM CORaM/AUDIO I/O Control Commands

Command

Standard Commands
CDROM PAUSE PLAY
CDROM RESUME PLAY - -
CDROM PLAY AUDIO

CDROM PLAY AUDIO MSF

CDROM PLAY AUDIO TI
CDROM PLAY AUDIO TR
CDROM TOC HEADER
CDROM TOC ENTRYS
CDROM EJECT CADDY - -
CDROM READ SUBCHANNEL
CDROM READ HEADER - -
Vendor-Unique Commands
CDROM PLAY VAUDIO
CDROM PLAY MSF - -
CDROM PLAY TRACK

Description

Pauses audio operation
Resumes audio operation
Plays audio in Logical Block Address
(LBA) format
Plays audio in Minute-/Second-lFrame-units
(MSF) format
Plays audio track or index
Plays audio track relative
Reads Table of Contents (TOC) header
Reads Table of Contents (TOC) entries
Ejects the CDROM caddy
Reads subchannel data
Reads track header

CDROM PLAYBACK CONTROL
CDROM PLAYBACK STATUS
CDROM SET ADDRESS FORMAT

Plays audio LBA format
Plays audio MSF format
Plays audio track
Controls playback
Checks playback status
Sets address format

11.2.3.1 Structures Used by SCSI/CAM CORaM/AUDIO I/O Control
Commands

Some of the SCSI CDROM/AUDIO device 1/0 control commands use data
structures. This section describes those data structures. The structures are
defined in the lusrlsys/include/io/cam/cam disk.h file. Table
11-2 lists the name of each structure and the commandS" that use it.

Table 11-2: Structures Used by SCSI/CAM CORaM/AUDIO I/O
Control Commands

Structure

cd address

cd_play_audio

Command

All

CDROM_PLAY_AUDIO
CDROM_PLAY_ VAUDIO

CDROM_PLA Y _AUDIO _MSF
CDROM_PLAY_MSF

11-18 Programmer-Defined SCSI/CAM Device Drivers

Table 11-2: (continued)

Structure Command

cd_play _audio _ ti CDROM_PLA Y _AUDIO_ TI

cd_play _track CDROM_PLA Y _AUDIO_ TR
CDROM_PLAY_TRACK

cd toc header CDR OM_ TOC_HEADER

cd toc CDROM_TOC_ENTRYS

cd_toc_entry CDROM_TOC_ENTRYS

cd sub channel CDROM_READ_SUBCHANNEL

cd _ subc _posi tion CDROM_READ_SUBCHANNEL

cd _ subc _media_catalog CDROM_READ_SUBCHANNEL

cd subc isrc data CDROM_READ_SUBCHANNEL

cd subc header CDROM_READ_SUBCHANNEL

cd subc channel data CDROM_READ_SUBCHANNEL

cd subc information CDROM_READ_SUBCHANNEL

cd read header CDROM_READ_HEADER

cd read header data CDROM_READ_HEADER

cd_playback CDROM_PLA YBACK_CONTROL
CDROM_PLA YB ACK_S TATUS

11.2.3.1.1 Structure Used by All SCSI/CAM CORaM/AUDIO I/O Control
Commands - This section describes the cd address union that defines the SCSI

CDROM/AUDIO device Track Address structure and that all the SCSI
CDROM/AUDIO device I/O control commands use. The SCSI
CDROMI AUDIO device returns track addresses in either LBA or MSF
format.
union cd_address {

};

struct {

} msf;

u char
u char
u char
u char

struct {
u char
u char
u char
u char

lba;

: 8;
m_units;
s units;
f-units;
- /* Minutes/Seconds/Frame format * /

addr3;
addr2;
addrl;
addrO;

/* Logical Block Address format */

Programmer-Defined SCSI/CAM Device Drivers 11-19

/*
* CD-ROM Address Format Definitions.
*/

#define CORaM LBA FORMAT 0
- - /* Logical Block Address format */

#define CORaM MSF FORMAT 1
- - /* Minute Second Frame format */

The structure members and their descriptions follow:

Structure Member

m units

s units

f units

addr3

addr2

addrl

addrO

Description

The minute-units binary number of the MSF format
for CDROM media

The second-units binary number of the MSF format
for CDROM media

The frame-units binary number of the MSF format
for CDROM media

The fourth logical block address of LBA format for
disk media

The third logical block address of LBA format for
disk media

The second logical block address of LBA format for
disk media

The first logical block address of LBA format for
disk media

11.2.3.1.2 Structure Used by the COROM_PLAY _AUOIO and
COROM_PLAY _ VAUOIO Commands - This section describes the structure that

is used by the CDROM_PLA Y _AUDIO and CDROM_PLA Y _ V AUDIO
commands. The structure is defined as follows:
struct cd play audio {

u-long- pa lba; /* Logical block address. */
u=long pa=length; /* Transfer length in blocks. */

} ;

The structure members and their descriptions follow:

Structure Member

pa_length

Description

The LBA where the audio playback operation is to
begin.

The number of contiguous logical blocks to be
played.

11-20 Programmer-Defined SCSI/CAM Device Drivers

11.2.3.1.3 Structure Used by the COROM_PLAY _AUOIO_MSF and
COROM_PLAY _MSF Commands - This section describes the structure that is

used by the CDROM_PLAY_AUDIO_MSF and CDROM_PLAY_MSF
commands. The structure is defined as follows:
struct cd play audio msf {

u-char-msf starting M unit;
u-char msf-starting-S-unit;
u-char msf-starting-F-unit;
u-char msf-ending M-unit;
u-char msf-ending-S-unit;
u=char msf=ending=F=unit;

} ;

/* Starting M-unit */
/* Starting S-unit */
/* Starting F-unit */
/* Ending M-unit */
/* Ending S-unit */
/* Ending F-unit */

The structure members and their descriptions follow:

Structure Member Description

msf _ starting_ M _ uni t The minute-unit field of the absolute MSF address at
which the audio play operation is to begin.

ms f _ starting_ S _ uni t The second-unit field of the absolute MSF address at
which the audio play operation is to begin.

msf_starting_F_unit The frame-unit field of the absolute MSF address at
which the audio play operation is to begin.

ms f _ ending_ M _ uni t The minute-unit field of the absolute MSF address at
which the audio play operation is to end.

ms f _ ending_ S _ uni t The second-unit field of the absolute MSF address at
which the audio play operation is to end.

msf _ ending_F _unit The frame-unit field of the absolute MSF address at
which the audio play operation is to end.

11.2.3.1.4 Structure Used by the COROM_PLAY_AUOIO_TI Command
This section describes the structure that is used by the
CDROM_PLAY_AUDIO_TI command. The structure is defined as follows:
/*
* Define Minimum and Maximum Values for Track & Index.
*/

#define CDROM MIN TRACK
#define CDROM MAX TRACK
#define CDROM MIN INDEX
#define CDROM=MAX=INDEX

1
99
1
99

struct cd play audio ti
u-char- ti starting track;
u-char ti-starting-index;
u char ti-ending track;
u char ti=ending=index;

};

/* Minimum track number */
/* Maximum track number */
/* Minimum index value */
/* Maximum index value */

/* Starting track number */
/* Starting index value */
/* Ending track number */
/* Ending index value */

Programmer-Defined SCSI/CAM Device Drivers 11-21

The structure members and their descriptions follow:

Structure Member

ti_ending_track

ti_ending_index

Description

The track number at which the audio play operation
starts.

The index number within the track at which the
audio play operation starts.

The track number at which the audio play operation
ends.

The index number within the track at which the
audio play operation ends.

11.2.3.1.5 Structure Used by the CDROM_PLAY_AUDIO_TR Command
- This section describes the structure that is used by the

CDROM_PLAY_AUDIO_TR command. The structure is defined as follows:
struct cd_play_audio_tr {

u long tr lba; /* Track relative LBA */
u=char tr=starting_track;
u_short tr_xfer_length;

/* Starting track number */
/* Transfer length */

} ;

The structure members and their descriptions follow:

Structure Member

tr Iba

tr_starting_track

tr_xfer_length

Description

The logical block address relative to the track being
played. A negative value indicates a start location
within the audio pause area at the beginning of the
track.

Track number at which play is to start.

The number of contiguous logical blocks to be
output as audio data.

11.2.3.1.6 Structure Used by the CDROM_ TOC_HEADER Command -
This section describes the structure that is used by the

11-22 Programmer-Defined SCSI/CAM Device Drivers

CDROM_ TOC_HEADER command. The structure is defined as follows:
struct cd toc header {

u-char th data len1;
u-char th-data-lenO;

/* Toe data length MSB */
/* Toe data length LSB */
/* Starting track number */
/* Ending track number */

} ;

u char th-starting track;
u char th=ending_track;

The structure members and their descriptions follow:

Structure Member

th data lenl

th data lenD

th_ending_track

Description

The total number of bytes in the table of contents for
MSF format.

The total number of bytes in the table of contents for
LBA format.

Starting track number for which data is to be
returned. If the value is 0 (zero), data is to be
returned starting with the first track on the medium.

The track number at which the audio play operation
ends.

11.2.3.1.7 Structures Used by the CDROM_ TOC_ENTRYS Command -
This section describes the structures that are used by the
CDROM_TOC_ENTRYS command. The structures are defined as follows:
struct cd_toc {

};

u char toc address format;
u-char toc-starting track;
u=short toc=alloc_length;
caddr_t toc_buffer;

/* Address format to return */
/* Starting track number */
/* Allocation length */
/* Pointer to Toe buffer */

The structure members and their descriptions follow:

Structure Member Description

toc address format The address format, LBA or MSF.

toc_starting_track The track number at which the audio play operation
starts.

toc _ alloc _length The allocation length of the table of contents buffer
in bytes

toc buffer A pointer to the TOe buffer.

Programmer-Defined SCSI/CAM Device Drivers 11-23

struct cd toc entry {
u-char 8 /* Reserved */

};

u char te control 4
u-char te addr type : 4
u-char te=track_number;
u char 8;
union cd address te_absaddr;

/* Control field (attributes) */
/* Address type information */
/* The track number */
/* Reserved */
/* Absolute CD-ROM Address */

The structure members and their descriptions follow:

Structure Member Description

te control The control field containing attributes. The possible
settings follow:

Bit No. Set to 0 (Zero) Set to 1

o Audio without Audio with preemphasis
preemphasis

2

3

Digital copy prohibited Digital copy permitted

Audio track

Two-channel audio

Data track

Four-channel audio

te_addr_type Address-type information, MSF or LBA

te track number

te absaddr

The current track number that is being played.

The absolute address of the audio track, MSF or
LBA format.

11.2.3.1.8 Structures Used by the CDROM_READ_SUBCHANNEL
Command - The CDROM_READ _SUB CHANNEL command requests subchannel

data and the state of audio play operations from the target device. This
section describes the structure that is used by the
CDROM_READ _SUB CHANNEL command. The structure is defined as
follows:
/*
* CD-ROM Sub-Channel Q Address Field Definitions.
*/

#define
#define
#define
#define

CORaM NO INFO SUPPLIED OxO - - -
CORaM CURRENT POS DATA Oxl - --
CORaM MEDIA CATALOG NUM Ox2 - - -
CORaM ENCODES ISRC Ox3 - -

/* Codes Ox4 through Ox7 are Reserved

11-24 Programmer-Defined SCSI/CAM Device Drivers

/* Information not supplied */
/* Encodes current position data */
/* Encodes media catalog number */
/* Encodes ISRC */
/* ISRC=International-Standard- */
/* Recording-Code */
*/

/*
* CD-ROM Data Track Definitions
*/

#define CDROM AUDIO PREMPH Ox01 - -

#define CDROM COpy PERMITTED
#define CDROM DATA TRACK
#define CDROM FOUR CHAN AUDIO

/* 0/1 = Without/With Pre-emphasis */
Ox02 /* 0/1 = Copy Prohibited/Allowed */
Ox04 /* 0 Audio, 1 = Data track */
Ox10 /* 0 = 2 Channel, 1 = 4 Channel */

/*
* Sub-Channel Data Format Codes
*/

#define CDROM_SUBQ_DATA
#define CDROM CURRENT POSITION
#define CDROM MEDIA CATALOG - -
#define CDROM ISRC

OxOO
OxOl
Ox02
Ox03

/* Sub-Channel data information */
/* Current position information */
/* Media catalog number */
/* ISRC information */
/*
/*

ISRC=International-Standard- */
Recording-Code */

/* Codes Ox4 through OxEF are Reserved */
/* Codes OxFO through OxFF are Vendor Specific */

/*
* Audio Status Definitions returned by Read Sub-Channel Data Command
*/

#define AS AUDIO INVALID OxOO /* Audio status not supported */
#define AS PLAY IN PROGRESS Oxll /* Audio play operation in prog */ - --
#define AS PLAY PAUSED Ox12 /* Audio play operation paused */
#define AS PLAY COMPLETED Ox13 /* Audio play completed */
#define AS PLAY COMPLETED Ox13 /* Audio play completed */
#define AS PLAY ERROR Ox14 /* Audio play stopped by error */
#define AS NO STATUS OxlS /* No current audio status */

struct cd sub channel
/* Address format to return */ u-char sch_address_format;

u char sch data format;
u char sch-track number;

/* Sub-channel data format code */
/* Track number */

u short sch=alloc=length;
caddr t sCh_buffer;

/* Allocation length */
/* Pointer to SUBCHAN buffer */

} ;

The structure members and their descriptions follow:

Structure Member

sch address format

sch data format

sch track number

sch_alloc_length

sch buffer

Description

The address format, LBA or MSF.

The type of subchannel data to be returned.

The track from which ISRC data is read.

The allocation length of the table of contents buffer
in bytes

A pointer to the SUB CHAN buffer defined by the
sch data format member.

struct

} ;

cd_subc_position {
u_char scp_data_format;
u char scp control
u char scp-addr type
u-char scp-track number;

4 • ,
4 • ,

u char scp-index-number;
union cd address scp absaddr;
union cd=address scp=reladdr;

/* Data Format code */
/* Control field (attributes) */
/* Address type information */
/* The track number */
/* The index number */
/* Absolute CD-ROM Address */
/* Relative CD-ROM Address */

#define scp absmsf scp_absaddr.msf
#define scp-abslba scp_absaddr.lba
#define scp-relmsf scp_reladdr.msf
#define scp=rellba scp_reladdr.lba

The structure members and their descriptions follow:

Structure Member

scp_data_format

scp_control

Description

Data format code.

The control field containing attributes. The possible
settings follow:

Bit No. Set to 0 (Zero) Set to 1

o Audio without
preemphasis

Audio with preemphasis

1 Digital copy prohibited Digital copy permitted

2 Audio track Data track

3 Two-channel audio Four-channel audio

scp_addr_type

scp_track_number

scp_index_number

scp_absaddr

scp_reladdr

Address-type information, MSF or LBA format.
The address format, LBA or MSF.

The current track number that is being played.

The index number within an audio track.

The absolute address of the audio track, MSF or
LBA format.

The CDROM address relative to the track being
played.

11-26 Programmer-Defined SCSI/CAM Device Drivers

struct cd_subc_media_catalog {
u char smc data format; /* Data Format code */ -u char 8 /* Reserved */
u char 8 /* Reserved */
u char 8 /* Reserved */
u char 7, /* Reserved */

smc mc valid 1-, /* Media catalog valid 1 = True */
u char smc=mc=number[15]; /* Media catalog

} ;

The structure members and their descriptions follow:

Structure Member

smc data format

smc mc valid

smc mc number

Descri ption

Data format code.

Media catalog number is valid.

Media catalog number.

number ASCII

struct cd subc isrc data {
u=char- sid=data_format; /* Data Format code */
u char
u char
u char
u char

8;

8;
7,

Reserved */
The track number */
Reserved */
Reserved */

*/

sid tc valid 1;
u char sid=tc=number[15];

/*
/*
/*
/*
/*
/*
/*

Track code valid, 1 = True */
International-Standard- */

Recording-Code (ASCII) */
};

The structure members and their descriptions follow:

Structure Member Descri ption

Data format code. sid data format

sid track number

sid tc valid

sid_tc_number[15]

The current track number at which ISRC is located.

The track code is valid.

The track code number.

struct cd subc header {
u char 8; /* Reserved */
u char sh audio status; /* Audio status */
u char sh=data_lenl; /* Sub-Channel Data length MSB
u-char sh data lenD; /* Sub-Channel Data length LSB

} ;

*/
*/

Proarammer-Defined SCSI/CAM Device Drivers 11-27

The structure members and their descriptions follow:

Structure Member

sh audio status

sh data lenl

sh data lenO

Description

The audio status code.

The subchannel data length for MSF format.

The subchannel data length for LBA format.

struct cd_subc_channel_data {
struct cd subc header scd header;
struct cd subc position scd position data;
struct cd-subc-media catalog scd media catalog;
struct cd=subc=isrc_data sCd_isrc_data;

} ;

The structure members and their descriptions follow:

Structure Member

scd header

sCd_position_data

scd_media_catalog

scd isrc data

Description

The subchannel data header, which is four bytes.

CDROM current-position data information.

The Media Catalog Number data information.

Track Intemational-Standard-Recording-Code
(ISRC) data information.

struct cd_subc_information {
struct cd subc header sci_header;
union {

struct cd subc channel data sci channel data;
struct cd-subc-position sci position data;
struct cd-subc-media catalog sci media catalog;
struct cd=subc=isrc_data sCi_isrc_data;

sci_data;
};

#define sci scd
#define sci_scp
#define sci smc
#define sci-sid

sci data. sci channel data - - -
sci data. sci position data
sci-data. sci-media catalog
sci-data.sci-isrc data - --

#define CDROM DATA MODE ZERO 0 j* All bytes zero *j - - -
#define CDROM_DATA_MODE_ONE 1
#define CDROM DATA MODE TWO 2
j* Modes Ox03=OxFF-are reserved. *j

11-28 Programmer-Defined SCSI/CAM Device Drivers

j* Data mode one format *j
j* Data mode two format *j

This structure is used to allocate data space. The structure members and their
descriptions follow:

Structure Member Description

sci channel data

sci_position_data

sci_media_catalog

sci isrc data

Space for channel data.

Space for current position data.

Space for Media Catalog data.

Space for ISRC data.

11.2.3.1.9 Structures Used by the CDROM_READ_HEADER Command -
This section describes the structures that are used by the
CDROM_READ_HEADER command. The structures are defined as
follows:
struct cd read header {

} ;

u=char- rh_address_format;
u_long rh_lba;
u short rh alloc length;
caddr t rh=buffer;

/* Address format to return */
/* Logical block address */
/* Allocation length */
/* Pointer to header buffer */

The structure members and their descriptions follow:

Structure Member Description

rh address format

rh lba

The address format, LBA or MSF.

rh alloc_length

rh buffer

The logical block address for LBA format.

The allocation length of the header buffer.

A pointer to the header buffer.

struct cd_read_header_data {
u_char rhd_data_mode;
u char
u char

: 8;
: 8;

u char : 8;
union cd address rhd_absaddr;

} ;

#define rhd msf rhd absaddr.msf
#define rhd=lba rhd=absaddr.lba

/* CD-ROM data mode */
/* Reserved */
/* Reserved */
/* Reserved */
/* Absolute CD-ROM address */

Programmer-Defined SCSI/CAM Device Drivers 11-29

The structure members and their descriptions follow:

Structure Member

rhd data mode

rhd absaddr

Description

The CDR OM data mode type.

The absolute address of the audio track, MSF or
LBA format.

11.2.3.1.10 Structure Used by the COROM_PlA Y _ TRACK Command -
This section describes the structure that is used by the
CDROM_PLA Y _TRACK command. The structure is defined as follows:
struct cd play track {

u-char- pt starting track;
u-char pt-starting-index;
u=char pt=number_indexes;

/* Starting track number */
/* Starting index value */
/* Number of indexes */

};

The structure members and their descriptions follow:

Structure Member Description

The track number at which the audio play operation
starts.

The index number within the track at which the
audio play operation starts.

The number of index values in the audio encoding
on CDROM media.

11.2.3.1.11 Structure Used by the COROM_PlA YBACK_ CONTROL and
COROM_PlAYBACK_STATUS Commands - This section describes the

structures that are used by the CDROM_PLA YBACK_CONTROL and
CDROM_PLA YBACK_STATUS commands. The structures are defined as
follows:
/*
* Definitions for Playback Control/Playback Status Output Selection

Codes */
#define CDROM MIN VOLUME
#define CDROM-MAX-VOLUME
#define CDROM-PORT MUTED
#define CDROM-CHANNEL 0
#define CDROM-CHANNEL-l
#define CDROM=CHANNEL=O_l

struct cd_playback

OxO
OxFF
OxO
Oxl
Ox2
Ox3

11-30 Programmer-Defined SCSI/CAM Device Drivers

/* Minimum volume level */
/* Maximum volume level */
/* Output port is muted */
/* Channel 0 to output port */
/* Channell to output port */
/* Channel 0 & 1 to output port */

/* Allocation length */ u short pb alloc length;
caddr t pb=buffer; /* Pointer to playback buffer */

} ;

The structure members and their descriptions follow:

Structure Member

pb_allce_length

pb_buffer

Description

Allocation length of the playback buffer.

A pointer to the playback buffer.

11.2.3.1.12 Structure Used by the CORaM_PLAYBACK_CONTROL
Command - This section describes the structure that is used by the

CDROM_PLA YBACK_ CONTROL command. The structure is defined as
follows:
struct cd_playback_control

u char pc reserved[lO]; /* Reserved */ -
u char pc_ chanO - select : 4, /* Channel 0 selection code */

4· , /* Reserved */
u char pc chanO _volume; /* Channel 0 volume level */
u char pc chanl select : 4, /* Channel 1 selection code */ - -

4· , /* Reserved */
u char pc_ chanl volume; /* Channel 1 volume level */ -
u char pc_ chan2 select : 4, /* Channel 2 selection code */ -

4· , /* Reserved */
u char pc_ chan2 _volume; /* Channel 2 volume level */
u char pc chan3 select : 4, /* Channel 3 selection code */ - -

4· , /* Reserved */
u char pc chan3 _volume; /* Channel 3 volume level */ -

} ;

Programmer-Defined SCSI/CAM Device Drivers 11-31

The structure members and their descriptions follow:

Structure Member

pc_chana_select

pc_chana_volume

pc_chanI_select

pc_chan I_volume

pc_chan2_select

pc_chan2_volume

pc_chan3_select

pc_chan3_volume

Description

The selection code for Channel O. The low four bits
are reserved.

The volume level value for Channel O.

The selection code for Channel 1. The low four bits
are reserved.

The volume level value for Channell.

The selection code for Channel 2. The low four bits
are reserved.

The volume level value for Channel 2.

The selection code for Channel 3. The low four bits
are reserved.

The volume level value for Channel 3.

11.2.3.1.13 Structure Used by the COROM_PlAYBACK_STATUS
Command - This section describes the structure that is used by the

CDROM_PLAYBACK_STATUS command. The structure is defined as
follows:
/*
* Audio status return by Playback status Command.
*/

PS PLAY IN PROGRESS OxOO /* Audio Play Oper In Progress */ - --#define
#define
#define
#define
#define
#define

PS PLAY PAUSED Ox01 /* Audio Pause Oper In Progress */
PS MUTING ON Ox02 /* Audio Muting On */
PS PLAY COMPLETED Ox03 /* Audio Play Oper Completed */
PS PLAY ERROR Ox04 /* Error Occurred During Play */
PS_PLAY_NOT_REQUESTED OxOS /* Audio Play Oper Not Requested */

/*
* Data structure returned by Playback Status Command.
*/

struct cd_playback_status
u char 8 • ,
u char ps lbamsf I, -

7 ;
u char ps_ data lenl;
u char ps data lenO;

char
-

audio u ps_ status;
u char ps control 4, -

4 • ,
union cd_address ps_absaddr;
u_char ps_chanO_select: 4,

4 • ,
u char
u char

ps chanO volume;
ps=:chan1=:select 4,

11-32 Programmer-Defined SCSI/CAM Device Drivers

/* Reserved */
/* Address format 0/1 = LBA/MSF */
/* Reserved */
/* Audio data length MSB */
/* Audio data length LSB */
/* Audio status */
/* Control field (attributes) */
/* Reserved */
/* Absolute CD-ROM address */
/* Channel 0 selection code */
/* Reserved */
/* Channel 0 volume level */
/* Channell selection code */

4 ; /* Reserved */
u char ps_ chanl - volume; /* Channel 1 volume level */
u char ps_ chan2 - select : 4, /* Channel 2 selection code */

4· , /* Reserved */
u char ps_ chan2 _volume; /* Channel 2 volume level */
u char ps_ chan3 - select : 4, /* Channel 3 selection code */

4 ; /* Reserved */
u char ps_ chan3 - volume; /* Channel 3 volume level */

} ;

The structure members and their descriptions follow:

Structure Member

ps_lbamsf

pS_data_lenl

pS_data_lenO

ps_audio_status

ps_control

Description

The address format: a 0 (zero) means LBA; a 1
means MSF.

The audio data length if the address format is MSF.

The audio data length if the address format is LBA.

The audio status

The control field containing attributes. The possible
settings follow:

Bit No. Set to 0 (Zero) Set to 1

o Audio without Audio with preemphasis
preemphasis

Digital copy prohibited Digital copy permitted

2

3

Audio track

Two-channel audio

Data track

Four-channel audio

ps_chanO_select

ps_chanO_volume

ps_chanO_select

ps_chanl_volume

ps_chanl_select

ps_chan2_volume

The low four bits are reserved.

The absolute address of the audio track, MSF or
LBA format.

The selection code for Channel O. The low four bits
are reserved.

The volume level setting for Channel O.

The selection code for Channel o. The low four bits
are reserved.

The volume level setting for Channell.

The selection code for Channell. The low four bits
are reserved.

The volume level setting for Channel 2.

PY()nr~mmp.r-Dp.fined SCSI/CAM Device Drivers 11-33

ps_chan2_select

ps_chan3_volume

The selection code for Channel 2. The low four bits
are reserved.

The volume level setting for Channel 3.

11.3 Adding a Programmer-Defined SCSI/CAM Device
The procedure for installing device drivers described in Writing Device
Drivers, Volume 1: Tutorial applies to adding SCSI/CAM peripheral device
drivers to your system. Follow that procedure after completing the entries to
the SCSI/CAM-specific structures described in this chapter and in Chapter 3.

11-34 Programmer-Defined SCSI/CAM Device Drivers

SCSI/CAM Special I/O Interface 12

This chapter describes the SCSIICAM special I/O interface. The SICA
software includes an interface developed to process special SCSI 110 control
commands used by the existing Digital SCSI subsystem and to aid in porting
new or existing SCSI device drivers from other vendors to the SICA.

Application programs issue 110 control commands using the ioctl system
call to send special SCSI I/O commands to a peripheral device. The term
"special" refers to commands that are not usually issued to the device
through the standard driver entry points. SCSI device drivers usually require
the special 110 control commands in addition to the standard read and
wr i te system calls. With the SCSIICAM special 110 interface, SCSIICAM
peripheral driver writers do not need detailed knowledge of either the
system-specific or the CAM-specific structures and routines used to issue a
SCSI command to the CAM 110 subsystem.

12.1 Application Program Access
Application programs access the SCSI/CAM special 110 interface by making
requests to peripheral drivers using the ioctl system call. This system call
is processed by system kernel support routines that invoke the device driver's
110 control command entry point in the character device switch table defined
in the /usr / sys/ io/ cornmon/ conf. c file. The device driver's I/O
control routine accesses the special 110 interface using either the supplied
SCSIICAM peripheral common routine, ccmn DoSpecialCmd, or a
driver-specific routine. Figure 12-1 shows the flow of application program
requests through the operating system to the SCSIICAM special 110 interface
and the CAM 110 subsystem.

Figure 12-1: Application Program Flow Through SCSI/CAM
Special I/O Interface

Application Program Interface
Issues I/O Control System Call via

int ioctl (jnt fd, int cmd, char* data)

CAM Peripheral Driver I/O Control
Command Entry Point Entered via

int xxioctl(dev_t de v, int cmd, caddr_t data, int flags)

Invoke Peripheral Common Routine via
intccmn DoSpecialCmd (dev_t de v, int cmd, caddct data

lnt flags CCB_SCSIIO *ccb, int sflags)

Invoke SCSI Special I/O Command
Processing Entry Point

1

12-2 SCSI/CAM Special I/O Interface

ZK-0264U-R

12.2 Device Driver Access
SCSIICAM peripheral device drivers access the SCSIICAM special 110
interface using either the supplied SCSIICAM peripheral common routine,
ccmn SysSpecialCmd, or using a driver-specific routine. Figure 12-2
shows the flow of system requests from device drivers through the
SCSIICAM special 110 interface and the CAM 110 subsystem.

SCSI/CAM Special I/O Interface 12-3

Figure 12-2: Device Driver Flow Through SCSIICAM Special 1/0
Interface

Driver Interface Entry from
User Application via system call for

open(), close(), read(), write(), or ioctl()

Driver Entry Points
Entered in Process Context

int xxx_open(dev_t dev, int flags)

Allocate I/O Parameters Buffer
for Command on the Kernel Stack.

Stack part of 'struct user '(user area)

Allocate Kernel Data Buffer,
if required, for Data Movement via

u_char ccmm_get_dbuf (u_long size)

Set Up I/O Parameter Fields as
Required for this Special Command

Peripheral Driver Common Routine
intccmm_SysSpecialCmd(dev_t de v, int cmd, caddr_t data,

int flags, CCB_SCSIIO *ccb, int sflags)

Common Processing via Routine
intccmm DoSpecialCmd (dev_t dev, int cmd, caddr_t data,

-int flags, CCB_SCSIIO *ccb, int sflags)

Same Processing as Application Program Interface

ZK-0470U-R

12-4 SCSI/CAM Special I/O Interface

12.3 SCSI/CAM Special Command Tables
The SCSI/CAM special I/O interface includes default command tables that
provide backwards compatibility with existing SCSI I/O control commands.
The following predefined SCSI/CAM Special Command Tables are included:

• cam GenericCmds

• cam DirectCmds

• cam AudioCmds

• cam_SequentialCmds

• cam MtCmds

The interface also allows commands to be added to the existing command
tables and new command tables to be added. The SCSI/CAM special I/O
interface includes routines that manipulate the tables so programmers can
write device drivers to easily add and remove command tables.

The command table header structure, SPECIAL_HEADER, provides a bit
mask of device types that can be used with a command table. The Special
Command Header Structure is defined as follows:
/*

* Special Command Header Structure:
*/

typedef struct special header {
struct special header *sph flink;
struct special-header *sph-blink;
struct special-cmd *sph cmd table;
U32 sph_device_type;- -
U32 sph_table_flags;
caddr_t sph_table_name;

SPECIAL_HEADER;

/* Forward link to next table */
/* Backward link to prev table */
/* Pointer to command table */
/* The device types supported */
/* Flags to control cmd lookup */
/* Name of this command table */

12.3.1 The sph_flink and sph_blink Members
These are table-linkage members that allow command tables to be
dynamically added or removed from the list of tables searched by the
SCSI/CAM special I/O interface when processing commands.

12.3.2 The sph_cmd_table Member
A pointer to the Special Command Entry Structure.

12.3.3 The sph_device_type Member
The device types supported by this SCSI/CAM Special Command Table.

SCSI/CAM Special I/O Interface 12-5

12.3.4 The sph_table_flags Member
The SPH_SUB_COMMAND, which indicates that the command table
contains subcommands.

12.3.5 The sph_table_name Member
The name of this SCSI/CAM Special Command Table.

12.4 SCSI/CAM Special Command Table Entries
Each SCSIICAM Special Command Table contains multiple entries. Each
entry provides enough information to process the command associated with
that entry. The command tables can be dynamically added, but the entries
within the command tables are not dynamic. Each command table's entries
are statically defined so that individual entries cannot be appended to the
table. The Special Command Entry Structure structure is defined as follows:
/*

* Special Command Entry Structure:
*/

typedef struct special_cmd {
u int spc ioctl cmd;
u int spc-sub command;
u-char spc-cmd-flags;
u char spc=cmd=code;
u short : 16;
U32 spc_device_type;
U32 spc cmd parameter;
U32 spc-cam-flags;
U32 spc=file_flags;
int spc data length;
int spc=timeouti
int (*spc_docmd)();
int (*spc_mkcdb)();
int (*spc_setup)();
caddr t spc cdbp;
caddr-t spc=cmdp;

SPECIAL_CMD;

/* The I/O control command code */
/* The I/O control sub-command */
/* The special command flags */
/* The special command code */
/* Unused •.. align next field */
/* The device types supported */
/* Command parameter (if any) */
/* The CAM flags field for CCB */
/* File control flags (fcntl) */
/* Kernel data buffer length */
/* Timeout for this command */
/* Function to do the command */
/* Function to make SCSI CDB */
/* Setup parameters routine */
/* Pointer to prototype CDB */
/* Pointer to the command name */

12.4.1 The spc_ioctl_cmd and spc_sub_command Members
These members contain the SCSI 110 control command code and
subcommand used to locate the appropriate table entry. The subcommand is
checked only if flags are set that indicate a subcommand exists.

12.4.2 The spc_cmd_flags Member
This member contains flags to control the action of the SCSI/CAM special
110 interface routines. The flag definitions are described in the following
table:

12-6 SCSI/CAM Special I/O Interface

Flag Name

SPC SUSER

SPC COPYIN

SPC COPYOUT

SPC NOINTR

SPC DATA IN

SPC DATA OUT

SPC DATA NONE

SPC SUB COMMAND

SPC INOUT

SPC DATA INOUT

Description

Restricted to superuser.

User buffer to copy from.

User buffer to copy to.

Do not allow sleep interrupts.

Data direction is from device.

Data direction is to device.

No data movement for command.

Entry contains subcommand.

Copy in and out.

Copy data in and out.

12.4.3 The spc_command_code Member
This member contains the special SCSI opcode used to execute this
command. This member is used during the creation of the CDB.

12.4.4 The spc_device_type Member
This member defines the specific device types with which this command is
used. For example, direct-access and readonly direct-access devices share
many of the same commands. Therefore, rather than duplicating command
table entries, both device types can use the same command table. The values
that are valid for this member are those defined in the Inquiry data device
type member of the inquiry info structure, which is defined in the
lusr I sysl includel io/Caml scsi_all. h file.

12.4.5 The spc_cmd_parameter Member
This member is used to define any special parameters used by the command.
For example, the SCSI START CDB command, which is defined in the
lusr I sys I includel iol caml scsi direct. h file, is used for
stopping, starting, and ejecting a CDROM-caddy. The parameter member
can be defined as the subcommand code so a common routine can be used to
create the CDB.

SCSI/CAM Special I/O Interface 12-7

12.4.6 The spc_cam_flags Member
This member contains the CAM flags necessary for processing the command.
The CAM flags are defined in the file
lusrlsys/include/io/cam/cam.h.

12.4.7 The spc_file_flags Member
This member contains the file access bits required for accessing the
command. For example, the command can be restricted to device files
opened for read and write access. The file flags are defined in the file
lusrlsys/include/sys/file.h.

12.4.8 The spc_data_length Member
This member describes the length of the buffer to hold additional kernel data
that is required to process the command. Usually, this member is set to 0
(zero), since the data buffer lengths are normally decoded from the I/O
command code or taken from a member in the I/O parameter buffer.

12.4.9 The spc_timeout Member
This member defines the default timeout for this command. This value is
used for the SCSI I/O CCB timeout member, unless it is overridden by the
timeout member in the Special I/O Argument Structure.

12.4.10 The spc_docmd Member
This member specifies the routine to invoke to execute the command. A
routine is required by I/O commands that need special servicing. For
example, if the I/O command does not return all the data read by the SCSI
command, then a routine is needed to handle this special servicing.

12.4.11 The spc_mkcdb Member
This member specifies the routine that is invoked to create the CDB for the
command. A routine is not necessary for simple commands, such as TEST
UNIT READY. However, any command that requires additional members to
be set up in the CDB prior to issuing the SCSI command must define this
routine.

12.4.12 The spc_setup Member
This member is required by any command that has special setup
requirements. For example, commands that pass a user buffer and length as
part of the I/O parameters buffer structure must have a setup routine to copy

12-8 SCSIICAM Special 1/0 Interface

these members to the Special I/O Argument Structure. This applies to all
previously defined commands, but does not apply to commands implemented
using the new SCSI_SPECIAL I/O control command code.

12.4.13 The spc_cdbp Member
This member is used by commands that can be implemented using a
prototype CDB. A prototype CDB is a SCSI command that can be
implemented using a statically defined SCSI CDB. Fields within the CDB
do not change. Usually, simple SCSI commands, such as
SCSI_START_UNIT, can be implemented with a prototype CDB so that the
make CDB routine is not required.

12.4.14 The spc_cmdp Member
This member points to a string that describes the name of the command.
This string is used during error reporting and during debugging.

12.4.15 Sample SCSI/CAM Special Command Table
The example that follows shows a sample SCSI/CAM Special Command
Table with one entry defined:
'include "<cdrom.h"
'include "<mtio.h"
'include "<rzdisk.h"

'include <cam.h>
'include <cam_special.h>
'include <dec cam.h>
'include <scsI all.h>
'include <scsi-direct.h>
'include <scsi rodirect.h>
'include <scsi-sequential.h>
'include <scsi=special.h>

extern int scmn_MakeFormatUnit(), scmn_SetupFormatunit()i

j*
* Command Header for Direct-Access Command Table:
*j

struct special header cam DirectCmdsHdr = {
(struct special header *) 0,
(struct special-header *) 0,

} i

cam DirectCmds,
(BITMASK(ALL_DTYPE_DIRECT) I

BITMASK(ALL_DTYPE_RODIRECT)),
0,
"Direct Access Commands"

j* sph flink * j
j* sph=blink *j
j* sph_cmd_table *j

j* sph device type *j
j* sph-table flags *j
j* sph=table=name *j

j*** *****************
* *
*
*

Special Direct Access Command Table *
*

**j

SCSIICAM Special 1/0 Interface 12-9

struct special_cmd Cam_DirectCmds[] =
{ SCSI_FORMAT_UNIT,

} ,

0,
(SPC_COPYIN I SPC_DATA_OUT),
DIR_FORMAT_OP,
BITMASK(ALL DTYPE DIRECT),
0, --
CAM_DIR_OUT,
FWRITE,
-1,
(120 * ONE MINUTE),
(int (*) () To,
scmn MakeFormatUnit,
scmn=setupFormatunit,
(caddr t) 0,
"format unit"

j* spc ioctl cmd *j
j* spc-sub command *j
j* spc-cmd-flags *j
j* spc-cmd-code *j
j* spc-device type *j
j* spc-cmd parameter *j
j* spc-cam-flags *j
j* spc-file flags *j
j* spc-data-length *j
j* spc-timeout *j
j* spc-docmd *j
j* spc-mkcdb *j
j* spc-setup *j
j* spc-cdbp *j
j* spc=cmdp *j

END OF CMD TABLE - - - j* End of cam_DirectCmds[] Table. *j
} ;

j*
* Define Special Commands Header & Table for Initialization Routine.
*j

struct special_header *cam_SpecialCmds = &cam_SpecialCmdsHdr;

struct special header *cam SpecialHdrs[] =
{ &cam-GenericCmdsHdr, &cam DirectCmdsHdr, &cam AudioCmdsHdr,

&cam=sequentialcmdsHdr, &Cam_MtCmdsHdr, 0 }; -

12.5 SCSIICAM Special 1/0 Argument Structure
A Special I/O Argument Structure is passed to the SCSI/CAM special I/O
interface to control processing of the I/O control command being executed.
The structure members provide information to process a special command for
different SCSI subsystems. Default settings and routines invoked by the
SCSI/CAM special I/O interface can be overridden by the calling routine.
Table 12-1 shows the members that are mandatory for the calling routine to
set up, the members that are optional, and the members that are used or filled
in by the SCSI/CAM special I/O interface.

Table 12-1: SCSI/CAM Special I/O Argument Structure

Member Name

U32 sa_flags;

dev_t sa_dev;

u char sa_unit;

u char sa_bus;

u char set_target;

12-10 SCSI/CAM Special I/O Interface

Type

M

M

U

M

M

Descri ption

Flags to control command

Device major/minor number

Device logical unit number

SCSI host adapter bus number

SCSI device target number

Table 12-1: (continued)

Member Name

u_char sa_lun;

u int sa ioctl_cmd;

u int sa_ioctl_scmd;

caddr t sa_ioctl_data;

caddr t sa_device_name;

int sa_device_type;

int sa_iop_length;

caddr_t sa_iop_buffer;

int sa_file_flags;

u char sa_sense_length;

u_char sa_sense_resid;

caddr_t sa_sense_buffer;

u_char sa_user_length;

caddr_t sa_user_buffer;

struct buf *sa_bp;

CCB_SCSIIO *sa_ccb;

struct special_cmd *sa_spc;

struct special_header *sa_sph;

U32 sa_cmd_parameter;

int (*sa_error)();

int (*sa_start)();

int sa_data_length;

caddr t sa_data_buffer;

caddr t sa_cdb_pointer;

u char sa_cdb_length;

u char sa_cmd_flags;

u char sa_retry_count;

u char sa_retry_limit;

int sa_timeout;

int sa_xfer_resid;

caddr t sa_specific;

Type Descri ption

M SCSI logical unit number

M The 110 control command

C The subcommand, if any

C The command data pointer

M Pointer to the device name

M The peripheral device type

I Parameters' buffer length

I Parameters' buffer address

M The file control flags

0 Sense data buffer length

I Sense data residual count

0 Sense data buffer address

I User data buffer length

I User data buffer address

0 Kernel-only I/O request buffer

0 CAM control block buffer

I Special command table entry

0 Special command table header

I Command parameter, if any

0 The error report routine

0 The driver start routine

I Kernel data buffer length

I Kernel data buffer address

I Pointer to the CDB buffer

I Length of the CDB buffer

I The special command flags

I The current retry count

0 Times to retry this command

0 Timeout for this command

I Transfer residual count

0 Dri ver -specific information

SCSI/CAM Special I/O Interface 12-11

Legend: M = Mandatory. Must be set up by the caller.
C = Command-dependent. Depends on special command.
o = Optional. Optionally overrides defaults.
I = Interface. Used or filled in by SCSI/CAM spedal I/O interface.
U = Unused. Not used by SCSI/CAM special I/O interface.

Several of the members marked as mandatory in Table 12-1 are set up
initially by the routine that allocates the Special 110 Argument Structure.
The following members are initialized by the allocation routine: sa bus;
sa target; sa lun; sa unit (same as target); sa retry limit
(selio 30); and sa_start (set to .xpt_action) - -

Fields that are identified as optional in Table 12-1 can be defined by the
caller to override some of the defaults used by the SCSIICAM special 1/0
interface. The following table describes the defaults used by the SCSI/CAM
special 1/0 interface:

Member Name

sa_sense_length

sa sense buffer

sa_bp

sa ccb

sa_error()

sa_start ()

sa timeout

sa_specific

12-12 SCSI/CAM Special 110 Interface

Default

Set to DEC_AUTO_SENSE_SIZE, which is defined
in lusr I sysl includel iol caml dec_cam. h.

Sense buffer in SCSI/CAM Peripheral Device Driver
Working Set Structure.

Allocated as needed for data movement commands.

Allocated by the CAM xpt_ccb_alloc routine.

Special interface error report routine.

Uses the CAM xpt_action routine.

Uses the timeout value from the SCSI/CAM Special
Command Table entry.

Is not set up or used by SCSI/CAM special I/O
interface.

12.5.1 The sa_flags Member
This member is used to control the actions of the SCSI/CAM special I/O
interface. The low order five bits of this member can be set by the calling
routine. All other bits in this member are reserved. The table that follows
shows the control flags that can be set by the calling routine:

Flag Name Description

SA NO ERROR RECOVERY Do not perform error recovery.

SA NO ERROR LOGGING Do not log error messages.

SA NO SLEEP INTR Do not allow sleep interrupts.

SA _ NO _ S IMQ_ THAW Leave SIM queue frozen on errors.

SA NO WAIT FOR 10 Do not wait for I/O to complete.

12.5.2 The sa_dey Member
This member contains the device major/minor number pair passed into the
device driver routines. It is used to fill in the bp dev member of the
system 110 request member. -

12.5.3 The sa_unit, sa_bus, sa_target, and sa_lun Members
These members are used to address the SCSI device to which the command
is being sent. The sa unit member is not used, but has been included for
device drivers that imPlement logical device mapping.

12.5.4 The sa_ioctl_cmd Member
This member contains the I/O control command to be processed. This
command usually maps directly to a SCSI 110 Command, but that is not
necessary. For example, the Digital-specific SCSI_GET_SENSE command
returns the sense data from the last failing command. A REQUEST SENSE
command is not issued to the device, because autosense is assumed to have
been enabled on the failing command, and the sense data is part of the
common Peripheral Device Structure.

12.5.5 The sa_ioctl_scmd Member
This member must be filled in for special commands implemented with a
subcommand code. For example, magnetic tape 110 control commands have
both an I/O control command code and a subroutine command code.

SCSI/CAM Special I/O Interface 12-13

12.5.6 The sa_ioctl_data Member
An 110 parameters buffer is required if the 110 control command transfers
data to and from the kernel. If the request came from an application
program, this buffer is normally passed into the driver ioctl routine.

12.5.7 The sa_device_name Member
This member contains a pointer to the device name string that is used when
reporting device errors.

12.5.8 The sa_device_type Member
This member contains the device type member from the Inquiry data. This
member controls the SCSIICAM Special Command Tables and the entries
within each command table that are searched for the SCSIICAM special 1/0
command being issued.

12.5.9 The sa_iop_length and sa_iop_buffer Members
These members are used internally by the SCSIICAM special 110 interface
when processing a command. If 110 would normally be performed directly to
the 1/0 parameters buffer because no other buffer was set up, then a kernel
buffer is allocated and set up in these members.

12.5.10 The sa_file_flags Member
This member contains the file flags passed into the device driver routines.
The flags describe access control bits associated with the device. The file
access flags are defined in the lusrlsys/include/io/cam/fcntl.h
file.

12.5.11 The sa_sense_length and sa_sense_buffer Members
These members set up the sense buffer and expected sense data length that
are used by autosense when device errors occur. If these members are not set
up by the calling routine, then the SCSIICAM special 110 interface uses the
sense buffer allocated in the SCSIICAM Peripheral Device Driver Working
Set Structure that is pointed to by the SCSI 110 CCB.

12.5.12 The sa_user _length and sa_user _buffer Members
These members are set up by command setup routines to describe the user
buffer and user data length required by a command. Requests from
application programs that pass a user buffer and length in the 110 parameter
buffers require a setup routine to copy this information into those members .

12-14 SCSI/CAM Special I/O Interface

The SCSIICAM special 110 interface checks access and locking on this
address range and sets up the address and length in the SCSI 1/0 CCB for the
command.

12.5.13 The sa_bp Member
This member contains a pointer to a system 110 request buffer for commands
that perform data movement directly to user address space. A system buffer
is not required if a kernel data buffer is used for 110. If the calling routine
does not pass a previously allocated request buffer in this member, and the
SCSIICAM special I/O interface determines that the I/O requires one based
on the 110 buffer address, then a request buffer is allocated and deallocated
automatically by the SCSI/CAM special I/O interface.

12.5.14 The sa_ccb Member
This member contains a pointer to the SCSI I/O CCB for a command. If the
calling routine does not specify a SCSI I/O CCB in this member, then the
SCSI/CAM special I/O interface automatically allocates and deallocates a
SCSI I/O CCB for the command.

12.5.15 The special_cmd Member
This member is used internally by the SCSIICAM special I/O interface to
save the SPECIAL_CMD after a command is located.

12.5.16 The special_header Member
This member can be used by the calling routine to specify the SCSI/CAM
Special Command Table to search for the special command. This lets device
drivers restrict the SCSIICAM Special Command Tables that are searched. If
this member is not used, then all the SCSI/CAM Special Command Tables in
the list are searched for an entry that matches the special command being
processed.

12.5.17 The sa_cmd_parameter Member
This member is used to store the command parameter, if any, from the
command entry associated with this special command. This member is used
by special support routines when setting up members for a particular CDB.

12.5.18 The sa_error Member
This member contains the routine to be invoked when an error condition is
detected. If not specified, a SCSI/CAM special I/O interface support routine

SCSI/CAM Special I/O Interface 12-15

handles the error condition. Otherwise, the routine is called as follows:
status = (*sap->sa_error)(ccb, sense);

This member can be specified for drivers requiring specialized error handling
and for specific error logging. The SCSI/CAM special I/O interface's error
logging uses the mprintf facility to report errors. Both sense key and
CAM status members are logged.

12.5.19 The sa_start Member
This member contains the routine that starts processing the SCSI I/O CCB.
If not specified, the CAM xpt action routine is used. The routine is
invoked as follows: -
(void) ((sap->sa_start) (ccb);

12.5.20 The sa_data_length and sa_data_buffer Members
These members are used internally by the SCSI/CAM special I/O interface to
store the address and length of an additional kernel buffer required for a
command. These members are usually initialized by the resulting value of
the Special Command Entry Structure member, spc data length, but
can be used by SCSI/CAM special I/O command developerS-if needed.

12.5.21 The sa_cdb_pointer Member
This member is used internally by the SCSI/CAM special I/O interface to
save a pointer to the CDB for this special command. This member may
point to a prototype CDB; to a driver-allocated CDB buffer, if the
CAM_CDB_POINTER flag is set in CCB header; or to the CDB buffer
allocated within the SCSI I/O CCB. This member is set up with the CDB
buffer address before the Special Command Header Structure make CDB
routine is invoked as follows:
status = (*spc->spc_mkcdb)(sap, cdbp);

12.5.22 The sa_cdb_length Member
This member is used to specify the size in bytes of the CDB required by a
SCSI command. If the Special Command Header Structure make CDB
routine does not set up this member, then the SCSI Group Code is decoded
to determine the length.

12-16 SCSI/CAM Special I/O Interface

12.5.23 The sa_cmd_flags Member
This member is initialized from the Special Command Header Structure
spc cmd flags member so SCSI/CAM special I/O command support
routines have easy and quick access to the flags.

12.5.24 The sa_retry _count Member
This member contains the number of retrys that were required to successfully
complete the request. It is filled in by the SCSI/CAM special I/O interface
after processing the command.

12.5.25 The sa_retry _limit Member
This member contains the maximum number of times a command is retried.
The only retries automatically handled by the SCSI/CAM special 110
interface are a sense key of Unit Attention, or a SCSI bus status of Bus Busy
or Reservation Conflict. All other error conditions must be handled by the
calling routine.

12.5.26 The sa_timeout Member
This member contains the timeout value, in seconds, to use with the
command being processed. This member can be specified by the calling
routine. If it is not specified, the timeout value is taken from the Special
Command Entry Structure. This member is used to initialize the
cam_timeout member of the SCSI I/O CCB before issuing the command.

12.5.27 The sa_xfer _resid Member
This member contains the residual byte count of data movement commands.
This member is copied from the cam resid member of the SCSI I/O CCB
before returning to the caller. -

12.5.28 The sa_specific Member
This member is not set up or used by the SCSIICAM special I/O interface. It
provides a mechanism for device driver code to pass driver-dependent
information to SCSIICAM special 110 command support routines. The
SCSIICAM peripheral driver common routine ccmn DoSpecialCmd
passes the pointer to the Peripheral Device Structure Tn this member.

SCSI/CAM Special I/O Interface 12-17

12.5.29 Sample Function to Create a COB
The following sample function illustrates how to use the SCSI/CAM special
I/O interface to create a CDB for a SCSI FORMAT_UNIT command:
/***

* *
* scmn_MakeFormatunit() - Make Format Unit Command Descriptor Block.*

*
* Inputs:

*
*
* Return Value:

*
*

sap = Special command argument block pointer.
cdbp = Pointer to command descriptor block.

Returns 0 for SUCCESS, or error code on failures.

*
*
*
*
*
*
*

***/
int
scmn MakeFormatUnit (sap, cdbp)
register struct special args *sap; m
register struct dir_format_cdb6 *cdbp; ~
{

register struct special cmd *spc = sap->sa spc; ~
register struct format_params *fp; ~ -

fp = (struct format params *) sap->sa iop buffer;
cdbp->opcode = (u char) spc->spc cmd code;
if (fp->fp defects == VENDOR DEFECTS) { ~

cdbp->fmt data = 1; -
cdbp->cmp-list = 1;

else if (fp=>fp defects KNOWN_DEFECTS)
cdbp->fmt data = 1;
cdbp->cmp-list = 0;

else if (fp=>fp defects NO_DEFECTS)
cdbp->fmt data 0;
cdbp->cmp=list = 0;

}
cdbp->defect list fmt = fp->fp format; ~
cdbp->vendor-speclfic = fp->fp=pattern;
cdbp->interleavel 0;
cdbp->interleaveO fp->fp_interleave;
return (SUCCESS);

[1] This line declares a register structure pointer to a Special I/O Argument
Structure that controls processing of the 1/0 command. The Special I/O
Argument Structure is defined in the
lusr I sys I includel iol caml cam_special. h file.

[2] This line declares a register structure pointer to a structure containing the
format for a 6-byte CDB. The structure is defined in the
lusr I sys I includel iol caml scsi_direct. h file.

~ This line declares a register structure pointer to a Special I/O Control
Commands Structure that saves the SPECIAL_CMD after it is located in
the sa spc member of the Special 1/0 Argument Structure. The Special
I/O Control Commands Structure is defined in the
lusr I sys I includel iol caml cam_special. h file.

12-18 SCSI/CAM Special 110 Interface

~ This line declares a register structure pointer to a structure containing the
format parameters for a SCSI FORMAT UNIT command. The structure
is defined in the /usr/sys/include/io/cam/rzdisk.h file.

[§] This section tests the contents of the fp defects member of the
format parameters structure to determine the contents of the fmt data
and cmp _list members of the dir _ format _ cdb6 structure~

[§] This section assigns the contents of the dir format cdb6 members
to the equivalent members of the format _params structure.

12.5.30 Sample Function to Set Up Parameters
The following sample function illustrates how to use the SCSI/CAM special
I/O interface to set up parameters for a SCSI FORMAT_UNIT command:
/***
* *
* scmn_SetupFormatUnit() - Set up Format unit Parameters.
*
* Inputs:
*
*
* Return Value:
*
*

sap = Special command argument block pointer.
data = The address of input/output arguments.

Returns 0 for SUCCESS, or error code on failures.

*
*
*
*
*
*
*
*

***/
int
scmn SetupFormatUnit (sap, data)
register struct special_args *sap; m
caddr_t data;
{

struct form2 defect list header defect header; ~
register struct form2 defect list header *ddh = &defect header;
register struct format_params *fp; ~ -

fp = (struct format params *) data;
sap->sa_user_buffer-= (caddr_t) fp->fp_addr; ~

/*
* For diskettes, there are no defect lists.
*/

if (((sap->sa user length = fp->fp length) == 0) &&
(fp->fp defects == NO DEFECTS)-) {

sap->sa_cmd_flags &= -(SPC_INOUT I SPC_DATA_INOUT);
return (SUCCESS);

#ifdef KERNEL
/*

* Ensure the defect list address is valid (user address).
*/

if (((sap->sa flags & SA SYSTEM REQUEST) == 0) &&
!CAM_IS_KUSEG(fp->fp_addr)) {

return (EINVAL);
}

SCSI/CAM Special I/O Interface 12-19

#else

/*
* The format parameters structure is not set up with the length
* of the defect lists as it should be. Therefore, we must copy
* in the defect list header then calculate the defect list length.
*/

if (copyin ((caddr_t)fp->fp_addr, (caddr_t)ddh, sizeof(*ddh)) 1= 0)
return (EFAULT);

(void) bcopy ((caddr_t)fp->
fp addr, (caddr t)ddh,
sizeof (* ddh)) -

#endif

sap->sa_user_length = (int) (

return (SUCCESS);

(ddh->defect lenl « 8) +
ddh->defect=lenO + sizeof(*ddh));

III This line declares a register structure pointer to a Special 110 Argument
Structure that controls processing of the I/O command. The Special 110
Argument Structure is defined in the
/usr / sys/ include/ io/carn/carn _special. h file.

I2l This line declares a structure pointer to a structure containing the format
defect list header for a SCSI FORMAT UNIT command. The structure is
defined in the /usr/sys/include/io/carn/rzdisk.h file.

@] This line declares a register structure pointer to a structure containing the
format parameters for a SCSI FORMAT UNIT command. The structure
is defined in the /usr/sys/include/io/carn/rzdisk.h file.

~ This line assigns the user buffer data address to the defect list address.

12.6 SCSI/CAM Special I/O Control Command
A SCSI/CAM special 110 control command has been defined to provide a
single standard method of implementing new SCSIICAM special 110
commands. A subcommand member is used to determine the specific SCSI
command being issued.

The SCSIICAM special I/O control command structure can be used both in
porting applications using existing SCSI I/O control commands and in
implementing new SCSI commands. Applications can be modified to use this
structure to gain control over subsystem processing. For example, the
SCSIICAM special I/O command flags can be set to control error recovery
and error reporting; sense data can be returned automatically by specifying a
sense buffer address and length; and the command timeout and retry limit can
be specified.

A member in the Special 110 Control Commands Structure must be
initialized to zero if a default value is desired. A nonzero member is used to
override the default value.

12-20 SCSI/CAM Special liD Interface

The SCSI 110 control command and its associated structure and definitions
are included in the file
/usr/sys/include/io/cam/scsi special.h The
scsi_special structure is defined as follows:
/*
* Structure for Processing Special I/O Control Commands.
*/

struct scsi_special {

};

U32 sp flags;
dev t sp=:dev;
u char sp unit;
u-char sp=:bus;
u char sp_target;
u-char sp lun;
u int sp=:sub_command;
U32 sp cmd parameter;
int sp-iop-length;
caddr t sp=:iop=:buffer;
u char sp sense length;
u-char sp=:sense=:resid;
caddr t sp sense buffer;
int sp=:user_length;
caddr t sp_user_buffer;
int sp_timeout;
u char sp retry count;
u-char sp-retry-limit;
int sp=:xfer_resid;

/* The special command flags */
/* Device major/minor number */
/* Device logical unit number */
/* SCSI host adapter bus number */
/* SCSI device target number */
/* SCSI logical unit number */
/* The subcommand */
/* Command parameter (if any) */
/* Parameters buffer length */
/* Parameters buffer address */
/* Sense data buffer length */
/* Sense data residual count */
/* Sense data buffer address */
/* User data buffer length */
/* User data buffer address */
/* Timeout for this command */
/* Retrys performed on command */
/* Times to retry this command */
/* Transfer residual count */

This structure is used with the following SCSI Special 110 Control
Command:
#define SCSI SPECIAL _IOWR('p', 100, struct scsi_special)

12.6.1 The sp_flags Member
This member controls the actions of the SCSIICAM special 110 interface.
The low order three bits can be set by the calling routine. The other bits are
reserved for use by SCSI/CAM peripheral drivers and the SCSIICAM special
110 interface routines. The bits that can be set by the calling routine are
described as follows:

Flag Name Description

SA NO ERROR RECOVERY Do not perform error recovery.

SA NO ERROR LOGGING Do not log error messages.

SA NO SLEEP INTR Do not allow sleep interrupts.

SCSIICAM Special liD Interface 12-21

12.6.2 The sp_dev, sp_unit, sp_bus, sp_target, and sp_lun
Members

These members pass the device major/minor number pair and the device bus,
target, LUN, and unit information to the SCSI/CAM special I/O interface
when the I/O control command is not being issued to a SCSI/CAM
peripheral device driver. These members provide the necessary hooks to
allow software pseudodevice drivers, such as the User Agent driver, to send
requests to the SCSI/CAM special I/O interface.

12.6.3 The sp_sub_command Member
This member contains the SCSI/CAM special I/O subcommand code of the
SCSI command to execute. This member can also be defined as an I/O
control command to support backwards compatibility with preexisting SCSI
I/O control commands. The SCSI/CAM special I/O interface detects an I/O
control command, as opposed to a subcommand code, and coerces the
arguments into the appropriate format for processing by the support routines
associated with that I/O control command. The predefined subcommand
codes are listed in the file
/usr/sys/include/io/cam/scsi_special.h.

12.6.4 The sp_cmd_parameter Member
This member contains the command parameter, if any, for the SCSI special
I/O command being issued. This parameter is specific to the special
command processing routines and is not used directly by the SCSI/CAM
special I/O interface routines.

12.6.5 The sp_iop_length and sp_iop_buffer Members
These members contain the I/O parameters buffer and length for those
commands that require additional parameters. These members are used by
the special command processing routines to obtain and set up additional
information prior to issuing the SCSI command. For example, the SCSI
FORMAT_UNIT I/O control command passes a format params structure
that describes the format, length, pattern, and interleave information for the
defect list. This information is used by the scmn MakeFormatUni t
support routine when creating the CDB for this command.

12.6.6 The sp_sense_length, sp_sense_resid, and
sp_sense_buffer Members

These members contain the buffer, length, and residual byte count for the
sense data that is returned when device errors occur. If these members are
specified, then the last sense data is saved in the Peripheral Device Structure

12-22 SCSIICAM Special 1/0 Interface

from which it can be obtained by the Digital-specific SCSCGET_SENSE I/O
control command.

12.6.7 The sp_user_length and sp_user_buffer Members
These members contain the user buffer and length for those commands that
require them. The SCSI/CAM special I/O interface performs verification,
locking, and unlocking of the user pages when processing the command.

12.6.8 The sp_timeout Member
This member can be specified to override the default timeout, in seconds,
which is usually taken from the Special Command Entry Structure.

12.6.9 The sp_retry_count Member
This member contains the number of retrys that were required to successfully
complete the request. It is filled in by the SCSI/CAM special I/O interface
after processing the command.

12.6.10 The sp_retry_limit Member
This member contains the maximum number of times a command is retried.
The only retries automatically handled by the SCSI/CAM special I/O
interface are a sense key of Unit Attention, or a SCSI bus status of Bus Busy
or Reservation Conflict. All other error conditions must be handled by the
calling routine.

12.6.11 The sp_xfer _resid Member
This member is filled in with the transfer residual byte count when a
command completes. The SCSI/CAM special I/O interface copies the
cam resid member of the SCSI I/O CCB to this member before
compjeting the request.

12.6.12 Sample Function to Create an 1/0 Control Command
The following sample function illustrates how to use the SCSI/CAM special
I/O interface to create an I/O control command:
/***

* *
* Doloctl() Do An I/O Control Command.

*
* Description:
* This routine issues the specified I/O control command to the
* file descriptor associated with the CD-ROM device driver.

*

*
*
*
*
*
*

SCSI/CAM Special I/O Interface 12-23

* Inputs:
*
*
*
* Return Value:
*
*

cmd = The I/O control command.
argp The command argument to pass.
msgp The message to display on errors.

Returns 0 / -1 = SUCCESS / FAILURE.

*
*
*
*
*
*
*

***/
int
Doloctl (cmd, argp, msgp)
int cmd;
caddr t argp;
caddr=:t msgp;
{

int status;
#if defined(CAM)

struct scsi special special cmd; ill
register struct scsi special *sp = &special cmd;
register struct extended_sense *es; ~ -

es = (struct extended sense *)SenseBufPtr;
bzero ((char *) sp, sizeof(*sp));
bzero ((char *) es, sizeof(*es));
sp->sp sub command = cmd; ~
sp->sp-sense length = sizeof(*es);
sp->sp-sense-buffer = (caddr t) es;
sp->sp-iop length = ((cmd & =(IOC INOUTI IOC VOID)) » 16);
sp->sp-iop-buffer = argp; - - --
if ((status = ioctl (CdrFd, SCSI_SPECIAL, sp)) < 0) { ~

perror (msgp);
if (es->snskey)

cdbg_DumpSenseData (es);

}
#else /* !defined(CAM) */

if ((status = ioctl (CdrFd, cmd, argp)) < 0) {
perror (msgp);

}
#endif /* defined(CAM) */

return (status);

I1J This line declares a structure to process a special I/O control command.
The scsi special structure is defined in the
/usr/sy~/include/io/cam/scsi_special.hfi~.

12.1 This line declares a structure defining the extended sense format for a
REQUEST SENSE command. The extended sense structure is
defined in the /usr/sys/include/io/cam/rzdisk.h file.

@! This section assigns the program parameters to the special cmd
members. -

~ This is a standard I/O control call issued from application code. The
SCSI_SPECIAL argument is defined in the
/usr /sys/ include/ io/cam/scsi _special. h file.

12-24 SCSI/CAM Special I/O Interface

12.7 Other Sample Code

12.7.1

This section contains other driver code samples that use the SCSI/CAM
special I/O interface.

Sample Code to Open a Device

The following sample code illustrates how to use the SCSI/CAM special I/O
interface to open a CDROM device from a device driver:
/***

* *
* cdrom_open() - Driver Entry Point to Open CD-ROM Device.

*
* Inputs:

*
*
* Outputs:

*

dev = The device major/minor number pair.
flags The file open flags (read/write/nodelay).

Returns 0 for Success or error code on Failure.

*
*
*
*
*
*
*

***/
cdrom_open (dev, flags)
dev t dev;
int-flags;

register PDRV DEVICE *pd; rn
DIR READ CAP DATA read capacity; ~
DIR_READ=CAP=DATA *capacity = &read_capacity;

pd = GET PDRV PTR(dev); ~
status =-cdrom_read_capacity (pd, capacity, flags);

return (status);

/**

* *
* cdrom_read_capacity() - Obtain Disk Capacity Information.

*
* Inputs:

*
*
*
* Outputs:

*

pd = Pointer to peripheral driver structure.
capacity = Pointer to read capacity data buffer.
flags = The file open flags.

Returns 0 for Success or error code on Failure.

*
*
*
*
*
*
*
*

**/
int
cdrom_read_capacity (pd, capacity, flags)
PDRV_DEVICE *pd;
DIR READ CAP DATA *capacity;
int flags;

int status;

PRINTD(DEV BUS ID(pd->pd dev), DEV TARGET(pd->pd dev) ,
DEV_LUN(pd->pd_dev), CAMD_CDROM, ~ -

SCSIICAM Special 1/0 Interface 12-25

("[%d/%d/%d] cdrom read capacity: ENTRY - pd = Ox%x, \
capacity = Ox%x, flags ~ Ox%xO,
DEV BUS ID(pd->pd dev) , DEV TARGET(pd->pd dev) ,
DEV=LUN(pd->pd_dev), pd, capacity, flags);

bzero ((char *)capacity, sizeof(*capacity));

status = ccmn SysSpecialCmd (pd->pd dev, SCSI READ CAPACITY, ~
(caddr_t) capacity, flags, (CCB_SCSIIO *) 0, SA_NO=ERROR_LOGGING);

PRINTD(DEV BUS ID(pd->pd dev) , DEV TARGET(pd->pd dev),
DEV LUN(pd->pd dev) , CAMD CDROM, -
("[%d/%d/%d] cdrom read capacity: EXIT - status = %d (%s)O,
DEV BUS ID(pd->pd dev),-DEV TARGET(pd->pd dev),
DEV=LUN(pd->pd_dev), status~ cdbg_systemStatus(status))); ~

return (status);

ill This line assigns a register to a Peripheral Device Structure pointer for
the device to be opened. The Peripheral Device Structure is defined in
ilie/usrlsys/include/io/cam/pdrv.hfi~.

12I This line declares a structure to contain the capacity data returned for the
device. The DIR_READ_CAP _DATA structure is defined in the
lusrl sysl includel iol caml scsi_direct.h file.

@] This line calls the GET_PDRV _PTR macro to return a pointer to the
Peripheral Device Structure for the device. The GET_PDRV _PTR macro
is defined in the lusr I sys I includel iol cam/pdrv. h file.

~ This section uses the bus, target, and LUN information to be printed if
the CAMD_CDROM flag is set. The CAMD_CDROM flag is defined in
the lusrlsys/include/io/cam/cam_debug.h file.

~ This section calls the SCSIICAM peripheral common routine
ccmn SysSpecialCmd, to issue the SCSI 110 command, passing the
majoriillinor device number pair for the device and the
SCSI_READ_CAPACITY ioctl command, which is defined in the
lusrlsys/include/io/cam/rzdisk.h file. It sets the
SA_NO_ERROR_LOGGING flag, which is defined in the
lusrlsys/include/io/cam/cam special.h file for device
drivers, and in the -
lusr I sys I includel iol caml scsi special. h file for
application programs. -

I§] This debug line calls the cdbg_ SystemStatus routine, passing the
status as an argument.

12-26 SCSIICAM Special 1/0 Interface

12.7.2 Sample Code to Create a Driver Entry Point
The following sample code illustrates how to use the SCSI/CAM special 110
interface to create a driver entry point for 110 control commands:
/***
*
* cdrom_ioctl() - Driver Entry Point for I/O Control Commands.

*
* Inputs:

*
*
*
*
* Outputs:

*

dey = The device major/minor number pair.
cmd = The I/O control command code.
data = The I/O parameters data buffer.
flags = The file open flags (read/write/nodelay).

Returns a for Success or error code on Failure.

*
*
*
*
*
*
*
*
*
*

***/
int
cdrom ioctl (dev, cmd, data, flags)
dey t-dev;
register int cmd;
caddr t data;
int flags;
{

register PDRV DEVICE *pd; rn
register DISK=SPECIFIC *cdisk;
register DEV DESC *dd;
int status;

pd GET PDRV PTR(dev); ~
dd pd->pd dey desc;
cdisk (DISK_SPECIFIC *)pd->pd_specific;

switch (cmd)

/* Process Expected I/O Control Commands */

default:
/*

* Process Special I/O Control Commands.
*/

status

break;

return (status);

ccmn_DoSpecialCmd (dev, cmd, data, flags, ~
(CCB_SCSIIO *) 0, 0);

[j] This section reserves registers for pointers to a Peripheral Device
Structure and a Device Descriptor Structure, both of which are defined in
the /usr/sys/include/io/cam/pdrv.h file, and to a
DISK_SPECIFIC structure, which is defined in the
/usr / sys/ include/ io/ cam/cam_disk. h file.

121 This line calls the GET_PDRV _PTR macro to return a pointer to the
Peripheral Device Structure for the device. The GET_PDRV _PTR macro

SCSIICAM Special 1/0 Interface 12-27

is defined in the lusrlsys/include/io/cam/pdrv.h

131 This section calls the SCSI/CAM peripheral common routine,
ccmn _ DoSpecialCmd, to issue the special I/O command.

12-28 SCSIICAM Special 1/0 Interface

Header Files Used by Device Drivers A

This appendix contains the following:

• A list of header files used by all device drivers

• A list of header files used by SCSI/CAM peripheral device drivers

• The contents of the /usr/sys/include/io/cam/cam.h file.

Table A-I lists the header files used by all SCSI device drivers, with a short
description of the contents of each. For convenience, the full path name for
the file is given and the files are listed in alphabetical order. However,
device driver code should be written to include header files by specifying the
relative path name instead of the full path name. For example,
/usr/sys/include/sys/buf .h, is the full path name for the file
buf . h , but device driver code to include buf. h should be written as
follows:
#include <sys/buf.h>

For a more complete list, refer to the Writing Device Drivers, Volume 1:
Tutorial.

Table A-1: Header Files Used by Device Drivers

Header File Contents

/usr/sys/include/io/common/devio.h

/usr/sys/include/sys/buf.h

Defines cornman structures
and definitions for device
drivers and the crnd
DEVIOCGET ioctl.

Defines the bu f structure
used to pass I/O requests to
the strategy routine of a
block driver.

Table A-1: (continued)

Header File Contents

/usr/sys/include/sys/conf.h

/usr/sys/include/sys/errno.h

/usr/sys/include/sys/fcntl.h

/usr/sys/include/sys/ioctl.h

Defines the bdevsw (block
device switch), cdevsw
(character device switch), and
linesw (tty control line
switch) structures. This file
is included in the source file
/usr/sys/io/comrnon/conf.c.

Defines the error codes
returned to a user process by
a driver.

Defines I/O mode flags
supplied by user programs to
open and fcntl system
calls.

Defines commands for
ioctl interfaces in different
drivers.

/usr / sys / include/ sys /kernel . h Defines global variables used
by the kernel.

/usr / sys/ include/ sys/map. h Defines structures associated
with resource allocation
maps.

/usr/sys/include/sys/mbuf.h Defines macros to allocate
memory resources.

/usr/sys/include/sys/mtio.h Defines commands and
structures for magnetic tape
operations.

/usr/sys/include/sys/param.h Defines constants and
interfaces used by the DEC
OSPIl kernel.

/usr/sys/include/sys/proc.h Defines the proc structure,
which defines a user process.

/usr/sys/include/sys/systm.h Defines generic kernel global
variables.

/usr/sys/include/sys/time.h Defines structures and
symbolic names used by
time-related routines and
macros.

A-2 Header Files Used by Device Drivers

Table A-1: (continued)

Header Fi Ie Contents

/usr/sys/include/sys/tty.h

/usr/sys/include/sys/types.h

/usr/sys/include/sys/uia.h

/usr/sys/include/sys/user.h

/usr/sys/include/sys/vrn.h

/usr/sys/include/sys/vrnrnac.h

/usr/sys/include/ufs/inade.h

Defines parameters and
structures associated with
interactive terminals; also
defines the c 1 i s t structure.
This file can be included by
any device driver that uses
the clist structure.

Defines system data types and
major and minor device
macros.

Contains the definition of the
uia structure, used by
character device drivers that
need to access the uia
structure.

Defines the use r structure
that describes a user process.

Contains a sequence of
include statements that
includes all of the virtual
memory-related files.
Including this file is a quick
way of including all of the
virtual memory-related files.

Definitions for converting
from bytes to pages or from
pages to bytes.

Defines values associated
with the generic file system.

Table A-2 lists the header files used by SCSI/CAM peripheral device drivers,
along with a short description of the contents of each. For convenience, the
full path name for the file is given and the files are listed in alphabetical
order.

Header Files Used by Device Drivers A-3

Table A-2: Header Files Used by SCSI/CAM Peripheral Drivers

Header File Contents

/usr/sys/include/io/cam/cam.h Definitions and data
structures for the CAM
subsystem interface.

/usr/sys/include/io/cam/cam logger.h
- Definitions and data

structures for CAM
subsystem error logging.

/usr/sys/include/io/cam/cam_special.h
Definitions for the
SCSI/CAM special I/O
interface.

/usr/sys/include/io/cam/dec_cam.h
Digital-specific definitions
and data structures for the
CAM routines.

/usr/sys/include/io/cam/pdrv.h Definitions and data
structures for the SCSI/CAM
common routines.

/usr/sys/include/io/cam/scsi_special.h
Definitions and data
structures for the SCSI/CAM
special I/O control interface.

/usr/sys/include/io/cam/uagt.h Definitions and data
structures for the User Agent
Device Driver (UAGT) that
controls access to the CAM
subsystem from a user
process.

/usr/sys/include/io/cam/xpt.h Definitions and data
structures for the Transport
Layer, XPT, in the CAM
subsystem.

/usr/sys/include/io/cam/cam_config.h
SCSI/CAM peripheral device
driver configuration
definitions.

/usr/sys/include/io/cam/cam_debug.h
CAM debugging macros.

/usr/sys/include/io/cam/cam_disk.h

A-4 Header Files Used by Device Drivers

Table A-2: (continued)

Header File Contents

Definitions and data
structures for SCSVCAM
disk devices.

/usr/sys/include/io/cam/cam_errlog.h
CAM error logging macros.

/usr/sys/include/io/cam/cam tape.h
- Definitions and data

structures for SCSVCAM
tape devices.

/usr/sys/include/io/cam/ccfg.h Definitions and data

/usr/sys/include/io/cam/rzdisk.h

structures for the
Configuration driver module
in the CAM subsystem.

Definitions and data
structures for SCSI disks.

/usr/sys/include/io/cam/scsi_all.h
Definitions and data
structures that apply to all
SCSI device types according
to Chapter 7 of the SCSI-2
specification.

/usr/sys/include/io/cam/scsi_cdbs.h
Definitions and data
structures that apply to
Command Descriptor Blocks.

/usr/sys/include/io/cam/scsi_direct.h
Definitions and data
structures that apply to all
SCSI direct-access devices
according to Chapter 8 of the
SCSI-2 specification.

/usr/sys/include/io/cam/scsi_opcodes.h
Definitions of operation codes
according to Chapter 6 of the
SCSI-2 specification.

/usr/sys/include/io/cam/scsi_phases.h
Definitions of SCSI bus
phases according to Chapter 5
of the SCSI-2 specification.

/usr/sys/include/io/cam/scsi_rodirect.h

Header Files Used by Device Drivers A-5

Table A-2: (continued)

Header Fi Ie Contents

Definitions and data
structures that apply to read
only direct-access devices
according to Chapter 13 of
the SCSI 2 specification.

/usr/sys/include/io/cam/scsi_sequential.h
Definitions and data
structures that apply to all
SCSI sequential-access
devices according to Chapter
9 of the SCSI-2 specification.

/usr/sys/include/io/cam/scsi_status.h
Definitions and data
structures that apply to SCSI
commands and status
according to Chapter 6 of the
SCSI 2 specification.

The contents of lusrlsys/include/io/cam/cam.h follow:

/* -- */

/* cam.h Version 1.09 Jul. 18, 1991 */

/* This file contains the definitions and data structures for the CAM
Subsystem interface. The contents of this file should match what
data structures and constants that are specified in the CAM document,
X3T9.2/90-186 Rev 2.5 that is produced by the SCSI-2 committee.

/* -- */

/* Defines for the XPT function codes, Table 8-2 in the CAM spec. */

/* Common function commands, OxOO - OxOF */
#define XPT NOOP OxOO /* Execute Nothing */
#define XPT-SCSI IO Ox01 /* Execute the requested SCSI IO */
#define XPT-GDEV-TYPE Ox02 /* Get the device type information */
#define XPT_PATH_INQ Ox03 /* Path Inquiry */
#define XPT_REL_SIMQ Ox04 /* Release the SIM queue that is frozen */
#define XPT_SASYNC_CB Ox05 /* Set Async callback parameters */
#define XPT SDEV TYPE Ox06 /* Set the device type information */

/* XPT SCSI control functions, Ox10 - Ox1F */
#define XPT ABORTOxlO
#define XPT RESET BUS - -
#define XPT RESET DEV - -
#define XPT TERM IO

/* Abort the selected CCB */
Ox1l /* Reset the SCSI bus */
Ox12 /* Reset the SCSI device, BDR */
Ox13 /* Terminate the I/O process */

A-6 Header Files Used by Device Drivers

/* HBA engine commands, Ox20 - Ox2F */
#define XPT ENG INQ Ox20 /* HBA engine inquiry */
#define XPT=ENG=EXEC Ox21 /* HBA execute engine request */

/* Target mode commands, Ox30 - Ox3F */
#define XPT EN LUN Ox30 /* Enable LUN, Target mode support */
#define XPT=TARGET_IO Ox31 /* Execute the target IO request */

/* TEMPLATE */ #define XPT FUNC Ox7F
#define XPT_VUNIQUE Ox80 /* All the rest are vendor unique commands */

/* --- */

/* General allocation length defines for the CCB structures. */

#define IOCDBLEN 12 /* Space for the CDB bytes/pointer */
#define VUHBA 14 /* Vendor Unique HBA length */
#define SIM ID 16 /* ASCII string len for SIM ID */
#define HBA ID 16 /* ASCII string len for HBA ID */
#define SIM PRIV 50 /* Length of SIM private data area */

/* Structure definitions for the CAM control blocks, CCB's for the
subsystem. */

/* Common CCB header definition. */
typedef struct ccb header
{

struct ccb header *my addr;
u_short cam_ccb_len; - /*
u char cam_func_code; /*
u char cam_status; /*
u-char cam hrsvdO; /*

/* The address of this CCB */
Length of the entire CCB */
XPT function code */
Returned CAM subsystem status */
Reserved field, for alignment */

u char cam-path id;
u-char cam=target_id;
u char cam target lun;
U32 cam_flags; -

/* Path ID for the request *j
/* Target device ID */
/* Target LUN number */
/* Flags for operation of the subsystem */

CCB_HEADER;

/* Common SCSI functions. */

/* Union definition for the CDB space in the SCSI I/O request CCB */
typedef union cdb_un
{

u char *cam_cdb_ptr; /* Pointer to the CDB bytes to send */
u char cam_cdb_bytes[IOCDBLEN]; j* Area for the CDB to send */

CDB_UN;

/* Get device type CCB */
typedef struct ccb_getdev
{

CCB HEADER cam chi
char *cam_inq_data;
u_char cam_pd_type;

CCB_GETDEVi

/* Path inquiry CCB *j
typedef struct ccb_pathinq
{

CCB HEADER cam_chi
u char cam_version_numi

/* Header information fields */
/* Ptr to the inquiry data space */
/* Periph device type from the TLUN

/* Header information fields */
/* Version number for the SIM/HBA */

*/

Header Files Used by Device Drivers A-7

u char cam_hba_inquiry; /* Mimic of INQ byte 7 for the HBA */
u char cam target sprt; /* Flags for target mode support */
u char cam-hba misc; /* Misc HBA feature flags */
u-short cam hba eng cnt; /* HBA engine count */
u-char cam vuhba flags[VUHBA]; /* Vendor unique capabilities */
U32 cam_sirn-priv; /* Size of SIM private data area */
U32 cam async flags; /* Event cap. for Async Callback */
u char cam hpath id; /* Highest path ID in the subsystem */
u-char cam-initiator id; /* ID of the HBA on the SCSI bus */
u char cam=prsvdO; - /* Reserved field, for alignment */
u char cam prsvdl; /* Reserved field, for alignment */
char cam sTm vid[SIM ID]; /* Vendor ID of the SIM */
char cam-hba-vid[HBA-ID]; /* Vendor ID of the HBA */
u_char *cam_osd_usage; /* Ptr for the OSD specific area */

CCB_PATHINQ;

/* Release SIM Queue CCB */
typedef struct ccb relsim
{

CCB HEADER cam_chi
CCB_RELSIM;

/* Header information fields */

/* SCSI I/O Request CCB */
typedef struct ccb scsiio
{

CCB_HEADER ca~ch; /* Header information fields */
u_char *cam_pdrv_ptr; /* Ptr used by the Peripheral driver */
CCB HEADER *cam next ccb; /* Ptr to the next CCB for action */
u char *cam req-map;- /* Ptr for mapping info on the Req. */
void (*cam_cbfcnp)(); /* Callback on completion function */
u_char *cam_data-ptr; /* Pointer to the data buf/SG list */
U32 cam_dxfer_len; /* Data xfer length */
u char *cam sense ptr; /* Pointer to the sense data buffer */
u-char cam sense len; /* Num of bytes in the Autosense buf */
u-char cam-cdb len; /* Number of bytes for the CDB */
u=short carn_sglist_cnt; /* Num of scatter gather list entries */
U32 cam sort; /* Value used by SIM to sort on */
u char cam scsi status; /* Returned scsi device status */
u-char cam-sense resid; /* Autosense resid length: 2's comp */
u-char cam-osd rsvdl[2]; /* OSD Reserved field, for alignment */
132 cam resid;- /* Transfer residual length: 2's comp */
CDB UN cam cdb io; /* Union for CDB bytes/pointer */
U32-cam_tirneout; /* Timeout value */
u char *cam msg ptr; /* Pointer to the message buffer */
u-short cam-msgb len; /* Num of bytes in the message buf */
u-short cam-vu flags; /* Vendor unique flags */
u-char cam tag-action; /* What to do for tag queuing */
u-char cam-iorsvdO[3]; /* Reserved field, for alignment */
u=char cam=sim_priv[SIM_PRIV]; /* SIM private data area */

CCB_SCSIIO;

/* Set Async Callback CCB */
typedef struct cCb_setasync
{

CCB HEADER cam chi
U32-cam async flags;
void (*cam async func)();
u_char *pdrv_buf;
u_char pdrv_buf_len;

CCB_SETASYNC;

A-8 Header Files Used by Device Drivers

/* Header information fields */
/* Event enables for Callback resp */
/* Async Callback function address */
/* Buffer set aside by the Per. drv */
/* The size of the buffer */

/* Set device type CCB */
typedef struct ccb_setdev
{

CCB HEADER cam_chi
u char cam_dev_type;

CCB_SETDEV;

/* SCSI Control Functions. */

/* Abort XPT Request CCB */
typedef struct ccb_abort
{

CCB HEADER cam_chi
CCB HEADER *cam abort chi

CCB_ABORT;

/* Reset SCSI Bus CCB */
typedef struct ccb resetbus
{

CCB HEADER cam_chi
CCB_RESETBUS;

/* Reset SCSI Device CCB */
typedef struct ccb resetdev
{

CCB HEADER cam_chi
CCB_RESETDEV;

/* Header information fields */
/* Val for the dev type field in EDT */

/* Header information fields */
/* Pointer to the CCB to abort */

/* Header information fields */

/* Header information fields */

/* Terminate I/O Process Request CCB */
typedef struct ccb termio
{

CCB HEADER cam chi
CCB HEADER *cam_termio_ch;

CCB_TERMIO;

/* Target mode structures. */

typedef struct ccb en lun
{

CCB HEADER cam_chi
u_short cam_grp6_len;
u short cam grp7 len;
u-char *cam-ccb listptr;
u=short cam=ccb=listcnt;

CCB_EN_LUN;

/* HBA engine structures. */

typedef struct ccb_eng_inq
{

CCB_HEADER cam_chi
u_short cam_eng_num;
u_char cam_eng_type;
u_char cam_eng_algo;
U32 cam_eng_memory;

CCB_ENG_INQ;

/* Header information fields */
/* Pointer to the CCB to terminate */

/* Header information fields */
/* Group 6 VU CDB length */
/* Group 7 VU CDB length */
/* Pointer to the target CCB list */
/* Count of Target CCBs in the list */

/* Header information fields */
/* The number for this inquiry */
/* Returned engine type */
/* Returned algorithm type */
/* Returned engine memory size */

typedef struct ccb_eng_exec
{

/* NOTE: must match SCSIIO size */

CCB HEADER cam_chi /* Header information fields */

Header Files Used by Device Drivers A-9

u char *cam pdrv ptr;
U32 cam_engrsvdO;
u char *cam req map;
void (*cam cbfcnp)();
u_char *cam_data_ptr;
U32 cam dxfer len;
u char *cam engdata ptr;
u-char cam engrsvdl;
u-char cam-engrsvd2;
u=short cam_sglist_cnt;
U32 cam dmax len;
U32 cam-dest-len;
132 cam=src_resid;
u char cam engrsvd3[12];
U32 cam_timeout;
U32 cam_engrsvd4;
u short cam eng num;
u-short cam-vu flags;
u-char cam engrsvd5;
u-char cam-engrsvd6[3];
u=char cam=sim_priv[SIM PRIV

CCB_ENG_EXEC;

/* Ptr used by the Peripheral driver */
/* Reserved field, for alignment */
/* Ptr for mapping info on the Req. */
/* Callback on completion function */
/* Pointer to the data buf/SG list */
/* Data xfer length */
/* Pointer to the engine buffer data */
/* Reserved field, for alignment */
/* Reserved field, for alignment */
/* Num of scatter gather list entries */
/* Destination data maximum length */
/* Destination data length */
/* Source residual length: 2's comp */
/* Reserved field, for alignment */
/* Timeout value */
/* Reserved field, for alignment */
/* Engine number for this request */
/* Vendor unique flags */
/* Reserved field, for alignment */
/* Reserved field, for alignment */

];/* SIM private data area */

/* The CAM SIM ENTRY definition is used to define the entry points for
the SIMs contained in the SCSI CAM subsystem. Each SIM file will
contain a declaration for it's entry. The address for this entry will
be stored in the cam_conftbl[] array along will all the other SIM
entries. */

typedef struct cam_sim_entry
{

132 (*sim init)();
132 (*sim=action)();

CAM_SIM_ENTRY;

/* Pointer to the SIM init routine */
/* Pointer to the SIM CCB go routine */

/* -- */

/* Defines for the CAM status field in the CCB header. */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CAM_REQ_INPROG
CAM_REQ_CMP
CAM_REQ_ABORTED
CAM UA ABORT
CAM_REQ_CMP_ERR
CAM BUSY
CAM_REQ_INVALID
CAM PATH INVALID
CAM DEV NOT THERE - - -
CAM UA TERMIO
CAM SEL TIMEOUT
CAM CMD TIMEOUT
CAM MSG REJECT REC
CAM SCSI BUS RESET
CAM UNCOR PARITY - -
CAM AUTOSENSE FAIL - -
CAM NO HBA

#define CAM DATA RUN ERR - - -
#define CAM_UNEXP_BUSFREE
#define CAM_SEQUENCE_FAIL
#define CAM CCB LEN ERR

OxOO
OxOI
Ox02
Ox03
Ox04
Ox05
Ox06
Ox07
Ox08
Ox09
OxOA
OxOB
OxOD
OxOE
OxOF
OxlO
Oxll
OxI2
Ox13
OxI4
OxI5

A-10 Header Files Used by Device Drivers

/* CCB request is in progress */
/* CCB request completed w/out error */
/* CCB request aborted by the host */
/* Unable to Abort CCB request */
/* CCB request completed with an err */
/* CAM subsystem is busy */
/* CCB request is invalid */
/* Path ID supplied is invalid */
/* SCSI device not installed/there */
/* Unable to Terminate I/O CCB req */
/* Target selection timeout */
/* Command timeout */
/* Message reject received */
/* SCSI bus reset sent/received */
/* Uncorrectable parity err occurred */
/* Autosense: Request sense cmd fail */
/* No HBA detected Error */
/* Data overrun/underrun error */
/* Unexpected BUS free */
/* Target bus phase sequence failure */
/* CCB length supplied is inadequate */

#define CAM PROVIDE FAIL - -
#define CAM BDR SENT
#define CAM_REQ_TERMIO

Ox16
Ox17
Ox18

/* Unable to provide requ. capability */
/* A SCSI BDR msg was sent to target */
/* CCB request terminated by the host */

#define CAM LUN INVALID
#define CAM TID INVALID
#define CAM FUNC NOTAVAIL
#define CAM NO NEXUS
#define CAM IID INVALID
#define CAM CDB RECVD
#define CAM SCSI BUSY

Ox38
Ox39
Ox3A
Ox3B
Ox3C
Ox3E
Ox3F

/* LUN supplied is invalid */
/* Target ID supplied is invalid */
/* The requ. func is not available */
/* Nexus is not established */
/* The initiator ID is invalid */
/* The SCSI CDB has been received */
/* SCSI bus busy */

#define CAM_SIM_QFRZN
#define CAM AUTOSNS VALID - -

Ox40
Ox80

/* The SIM queue is frozen w/this err */
/* Autosense data valid for target */

Ox3F /* Mask bits for just the status # */

/* -- */

/* Defines for the CAM flags field in the CCB header. */

#define CAM DIR RESV
#define CAM DIR IN
#define CAM DIR OUT

OxOOOOOOOO
Ox00000040
Ox00000080

#define CAM DIR NONE OxOOOOOOCO
#define CAM DIS AUTOSENSE Ox00000020
#define CAM SCATTER VALID Ox00000010
#define CAM DIS CALLBACK
#define CAM CDB LINKED
#define CAM_QUEUE_ENABLE
#define CAM CDB POINTER

Ox00000008
Ox00000004
Ox00000002
Ox00000001

#define CAM DIS DISCONNECT Ox00008000
#define CAM INITIATE SYNC Ox00004000 - -
#define CAM DIS SYNC Ox00002000
#define CAM_SIM_QHEAD OxOOOOlOOO
#define CAM_SIM_QFREEZE Ox00000800
#define CAM_SIM_QFRZDIS
#define CAM ENG SYNC

#define CAM ENG SGLIST
#define CAM CDB PHYS
#define CAM DATA PHYS
#define CAM SNS BUF PHYS - - -
#define CAM MSG BUF PHYS - - -
#define CAM NXT CCB PHYS - - -
#define CAM CALLBCK PHYS - -

Ox00000400
Ox00000200

Ox00800000
Ox00400000
Ox00200000
OxOOlOOOOO
Ox00080000
Ox00040000
Ox00020000

#define CAM DATAB VALID Ox80000000 - -
#define CAM_STATUS_VALID Ox40000000
#define CAM MSGB VALID Ox20000000
#define CAM TGT PHASE MOD Ox08000000
#define CAM TGT CCB AVAIL Ox04000000 - - -
#define CAM DIS AUTODISC Ox02000000
#define CAM DIS AUTOSRP OxOlOOOOOO

/* Data direction (00: reserved) */
/* Data direction (01: DATA IN) */
/* Data direction (10: DATA OUT) */
/* Data direction (11: no data) */
/* Disable autosense feature */
/* Scatter/gather list is valid */
/* Disable callback feature */
/* The CCB contains a linked CDB */
/* SIM queue actions are enabled */
/* The CDB field contains a pointer */

/* Disable disconnect */
/* Attempt Sync data xfer, and SDTR */
/* Disable sync, go to async */
/* Place CCB at the head of SIM Q */
/* Return the SIM Q to frozen state */
/* Disable the SIM Q frozen state */
/* Flush resid bytes before cmplt */

/* The SG list is for the HBA engine */
/* CDB pointer is physical */
/* SG/Buffer data ptrs are physical */
/* Autosense data ptr is physical */
/* Message buffer ptr is physical */
/* Next CCB pointer is physical */
/* Callback func ptr is physical */

/* Data buffer valid */
/* Status buffer valid */
/* Message buffer valid */
/* The SIM will run in phase mode */
/* Target CCB available */
/* Disable autodisconnect */
/* Disable autosave/restore ptrs */

/* --- */

/* Defines for the SIM/HBA queue actions. These value are used in the
SCSI I/O CCB, for the queue action field. [These values should match

Header Files Used by Device Drivers A-11

the defines from some other include file for the SCSI message phases.
We may not need these definitions here.] */

#define CAM_SIMPLE_QTAG
#define CAM_HEAD_QTAG
#define CAM_ORDERED_QTAG

Ox21
Ox22

Ox20 /* Tag for a simple queue */
/* Tag for head of queue */
/* Tag for ordered queue */

/* --- */

/* Defines for the timeout field in the SCSI I/O CCB. At this time a
value of OxF-F indicates a infinite timeout. A value of OxO-O
indicates that the SIM's default timeout can take effect. */

#define CAM TIME DEFAULT
#define CAM TIME INFINITY

OxOOOOOOOO
OxFFFFFFFF

/* Use SIM default value */
/* Infinite timeout for I/O */

/* --- */

/* Defines for the Path Inquiry CCB fields. */

#define CAM VERSION

#define PI MDP ABLE
#define PI WIDE 3
#define PI WIDE 1
#define PI SDTR ABLE
#define PI_LINKED_CDB
#define PI TAG ABLE
#define PI SOFT RST

#define PIT PROCESSOR
#define PIT PHASE

Ox25

Ox80
Ox40
Ox20
Ox10
Ox08
Ox02
Ox01

Ox80
Ox40

/* Binary value for the current ver */

/* Supports MDP message */
/* Supports 32 bit wide SCSI */
/* Supports 16 bit wide SCSI */
/* Supports SDTR message */
/* Supports linked CDBs */
/* Supports tag queue message */
/* Supports soft reset */

/* Target mode processor mode */
/* Target mode phase cog. mode */

/* Bus scans from ID 7 to ID 0 */ #define PIM SCANHILO
#define PIM NO REMOVE
#define PIM_NOINQUIRY

Ox80
Ox40
Ox20

/* Removable dev not included in scan */
/* Inquiry data not kept by XPT */

/* -- */

/* Defines for Asynchronous Callback CCB fields. */

#define AC FOUND DEVICES Ox80 /* During a rescan new device found */ - -
#define AC SIM DEREGISTER Ox40 /* A loaded SIM has de-registered */
#define AC SIM REGISTER Ox20 /* A loaded SIM has registered */
#define AC SENT BDR Ox10 /* A BDR message was sent to target */
#define AC SCSI AEN Ox08 /* A SCSI AEN has been received */
#define AC UNSOL RESEL Ox02 /* A unsolicited reselection occurred - -
#define AC BUS RESET Ox01 /* A SCSI bus RESET occurred */

/* --- */

/* Typedef for a scatter/gather list element. */

typedef struct sg_elem
{

u_char *cam_sg_address;
U32 cam_sg_count;

SG_ELEM;

/* Scatter/Gather address */
/* Scatter/Gather count */

/* --- */

A-12 Header Files Used by Device Drivers

*/

/* Defines for the HBA engine inquiry CCB fields. */

#define EIT BUFFER OxOO /* Engine type: Buffer memory */
#define EIT LOSSLESS Ox01 /* Engine type: Lossless compression */
#define EIT LOSSLY Ox02 /* Engine type: Lossly compression */
#define EIT ENCRYPT Ox03 /* Engine type: Encryption */

#define EAD_VUNIQUE OxOO /* Eng algorithm ID: vendor unique */
#define EAD LZ1V1 OxOO /* Eng algorithm ID: LZ1 var. 1*/
#define EAD LZ2V1 OxOO /* Eng algorithm ID: LZ2 var. 1*/
#define EAD LZ2V2 OxOO /* Eng algorithm ID: LZ2 var. 2*/

/* --- */
/* --- */

/* UNIX OSD defines and data structures. */

#define INQLEN 36

#define CAM SUCCESS
#define CAM FAILURE

#define CAM FALSEO
#define CAM TRUE 1

#define XPT CCB INVALID

0
1

/*
/*

/* Inquiry string length to store. */

/* For signaling general success */
/* For signaling general failure */

General purpose flag value */
General purpose flag value */

-1 /* for signaling a bad CCB to free */

/* General Union for Kernel Space allocation. Contains all the possible
CCB structures. This union should never be used for manipulating CCB's
its only use is for the allocation and deal location of raw CCB space. */

typedef union cCb_size_union
{

CCB SCSIIO
CCB GETDEV
CCB_PATHINQ
CCB RELSIM
CCB SETASYNC
CCB SETDEV
CCB ABORT
CCB RESETBUS
CCB RESETDEV
CCB TERMIO
CCB EN LUN
CCB_ENG_INQ
CCB ENG EXEC

csio;
cgd;
cpi;
crs;
csa;
csd;
cab;
crb;
crd;
ctio;
cel;
cei;
cee;

/* Please keep this first, for debug/print */

CCB_SIZE_UNION;

/* The typedef for the Async callback information. This structure is
used to store the supplied info from the Set Async Callback CCB, in the
EDT table in a linked list structure. */

typedef struct async_info
{

struct async info *cam async next; /* pointer to the next structure */
U32 cam event enable; - - /* Event enables for Callback resp */
void (*cam async func)(); /* Async Callback function address */
U32 cam async bIen; /* Length of "information" buffer */
u_char *cam_async_ptr; /* Address for the "information */
ASYNC_INFO;

Header Files Used by Device Drivers A-13

/* The CAM EDT table contains the device information for all the
devices, SCSI ID and LUN, for all the SCSI busses in the system. The
table contains a CAM EDT ENTRY structure for each device on the bus.
*/

typedef struct cam_edt_entry
{

132 cam tlun found; /* Flag for the existence of the target/LUN */
ASYNC INFO *cam ainfo; /* Async callback list info for this B/T/L */
U32 cam owner tag; /* Tag for the peripheral driver's ownership */
char cam_inq_data[INQLEN];/* storage for the inquiry data */

CAM_EDT_ENTRY;

/* --- */

A-14 Header Files Used by Device Drivers

SCSI/CAM Utility Program B

B.1 Introduction
The SCSIICAM Utility Program, SCU, interfaces with the Common Access
Method (CAM) 110 subsystem and the peripheral devices attached to Small
Computer System Interface (SCSI) busses. This utility implements the SCSI
commands necessary for normal maintenance and diagnostics of SCSI
peripheral devices and the CAM 1/0 subsystem.

The format of a SCU command is as follows:

scu> [-f device-name-path] [command[keyword ...]

If the device-name-path is not specified on the command line, the
program checks the environment variable SCU _DEVICE to determine the
device name. If SCU_DEVICE is not set, the set nexus command must
be used to select the device and operation of some commands may be
restricted. For example, if you do not specify a device-name-path and
SCU_DEVICE is not set, you cannot format a disk because the seu utility
cannot perform a mounted file system check. See Section B .2.4 for a
description of the set command and its arguments.

If a command is not entered on the command line, the program prompts for
commands until you terminate the program. In most cases, you can
abbreviate commands to the lowest un-ambiguous number of characters.

This appendix contains an overview of the seu functions that device driver
writers use. Detailed information is available through the online help for the
seu utility. Once you are in the seu utility, issue the help command at
the seu> prompt.

8.1.1 SCU Utility Conventions
The following conventions are used in describing seu utility syntax:

Convention

keyword (alias)

address-format

Meaning

Use a keyword or the specified alias.

Optionally accepts an address format.

Convention

nexus-information

test-parameters

D: value or string

R : minimum-maximum

Meaning

Optionally accepts nexus information.

Optionally accepts test parameters.

The value or string shown is the default.

Enter a value within the range specified.

The address-format parameter is optional. It is available for use with
most CDROM Show Audio commands that specify the address format of
information returned by the drive. The possible address formats are:

Format Description

Iba
msf

Logical Block Address.
Minute, Second, and Frame.

The syntax of a command using the address-format parameter follows:

scu> command [address-format { Iba I msf }]

The nexus-information parameter lets users specify values to override
the bus, target, and LUN values normally taken from the selected SCSI
device. The nexus-information keywords are:

Parameter

bus (pid) R:O-3
target (tid) R:O-7
lun R:O-7

Description

SCSI bus number (path ID)
SCSI target number (target ID)
SCSI Logical Unit Number (LUN)

The test-parameter variables are used to specify the physical limits of
the media on which the command can operate. For example, these may be
the starting and ending logical block numbers on a disk. The test parameters
for a command use the following syntax:

scu> command [media-limits] [test-control]

The media-limi ts parameter, which controls the media tested, has the

8-2 SCSI/CAM Utility Program

following syntax:

{ lba n} {length n }
scu> command [{ starting n }] [{ ending n }] [size n]

{limit n}
{ records n }

The alias bs (block size) is accepted for the size keyword.

The test-control parameters control aspects of the test operation. The
test-control parameters supported are listed below:

{ align Align-Offset }
{ compare { on I off} }

scu> command [{ errors Error-Limit }]
{ passes Pass-Limit }
{ pattern Data-Pattern }
{ recovery { on I off } }

B.2 General SCU Commands

8.2.1

This section describes scu utility commands that are used for general
purposes. The commands are:

• evaluate

• exit

• help

• scan

• set

• show

• source

• switch

The evaluate Command
The evaluate command evaulates the given expression and displays
values in decimal, hexadecimal, blocks, kilobytes, megabytes, and gigabytes.
The expression argument is the same as that described for test paramater
values. The output depends on whether the verbose display flag is set. The
format of the evaluate command is as follows:

scu> evaluate expression

The following example sets verbose mode for the first two evaluate

SCSI/CAM Utility Program 8-3

commands and then turns off verbose mode for the last one.
scu> set verbose on
scu> evaluate Oxffff
Expression Values:

Decimal: 65535
Hexadecimal: Oxffff

512 byte Blocks: 128.00
Kilobytes: 64.00
Megabytes: 0.06
Gigabytes: 0.00

scu> evaluate 64k*512
Expression Values:

Decimal: 33554432
Hexadecimal: Ox2000000

512 byte Blocks: 65536.00
Kilobytes: 32768.00
Megabytes: 32.00
Gigabytes: 0.03

scu> set verbose off
scu> evaluate Oxffff
Dec: 65525 Hex: Oxffff Blks: 128.00 Kb: 64.00 Mb: 0.06 Gb: 0.00

B.2.2 The exit Command
The exit command is used to exit the program. You can use qui t as an
alias for exit. You can terminate the program in interactive mode by
entering the end-of-file character (usually CTRL/D). The format of the exit
command is as follows:

scu> exit

B.2.3 The help Command

The help command displays help information on topics. You can use a
question mark (?) as an alias. If you issue the help command without
specifying a topic, a list of all available topics is displayed. The format of
the he 1 p command is as follows:

scu> help [topic]

8-4 SCSI/CAM Utility Program

8.2.4 The scan Command
The scan command scans either device media or the CAM Equipment
Device Table (EDT). The format of the scan command is as follows:

scu> scan edt [[nexus-information] [report-format]]

scu> scan media [test-parameters]

The edt argument allows scanning of the SCSI bus which results in the
CAM Equipment Device Table (EDT) being updated to reflect the devices
found. If nexus information is omitted, the selected device is scanned.

The format of the command using the edt argument is as follows:

scu> scan edt [nexus-information]

Section B.l.l contains a list of the valid test parameters.

The following examples use the scan edt command. The first example
illustrates the command followed by the show device command to
display the information resulting from the scan:

scu> scan edt
Scanning bus 1, target 6, lun 0, please be patient ...

scu> show device
Inquiry Information:

SCSI Bus ID: 1
SCSI Target ID: 6

SCSI Target LUN: 0
Peripheral Device Type: Direct Access

Peripheral Qualifier: Peripheral Device Connected
Device Type Qualifier: 0

Removable Media: No
ANSI Version: SCSI-1 Compliant
ECMA Version: 0

ISO Version: 0
Response Data Format: CCS

Additional Length: 31
Vendor Identification: DEC

Product Identification: RZ55
Firmware Revision Level: 0700

scu> scan edt bus 1

(C) DEC

Scanning bus 1, target 6, lun 0, please be patient .•.

The media argument causes the device media to be scanned. This involves
writing a data pattern to the media and then reading and verifying the data
written. You must include test parameters that specify the media area to be
scanned.

SCSI/CAM Utility Program 8-5

The format of the command using the media argument is as follows:

scu> scan media [test-parameters]

The following examples use the sean media command with different
test -parameters:
scu> scan media
scu: No defaults, please specify test parameters for transfer •••

scu> scan media length 100 recovery off
Scanning 100 blocks on /dev/rrz10c (RX23) with pattern

Ox39c39c39 ...

scu> scan media lba 200 limit 25k align 'lp-1'
Scanning 50 blocks on /dev/rrz10c (RX23) with pattern

Ox39c39c39 ...

scu> scan media starting 0 bs 32k records 10
Scanning 640 blocks on /dev/rrz10c (RX23) with pattern

Ox39c39c39 ••.
Scanning blocks 0 through 63] ...
Scanning blocks 64 through 127] ...
Scanning blocks 128 through 191] ...
Scanning blocks 192 through 255] ...
Scanning blocks 256 through 319] ...
Scanning blocks 320 through 383] ...
Scanning blocks 384 through 447] ...
Scanning blocks 448 through 511] ...
Scanning blocks 512 through 575] ...
Scanning blocks 576 through 639] ...

B.2.5 The set Command
The set command sets parameters for a device or sets environment
parameters for the seu program. The format of the set command is as
follows:

{ audio keywords ••• }
{ cam debug hex-flags }
{ debug { on I off } }
{ default parameter }

scu> set { device device-type }
{ dump { on I off } }
{ dump-limit value }
{ log file-name-path }
{ nexus nexus-information }
{ pages [mode-page [pcf page-control-field] }
{ pager paging-filter }
{ paging { on I off } }
{ recovery { on I off } }
{ verbose { on I off } }
{ watch { on I off } }

8-6 SCSI/CAM Utility Program

The audio keyword sets parameters for a CDROM audio device. The
format of the command using the audio keyword is as follows:

{ address format { lba I msf } }
seu> set audio { volume [ehannel-{ 0 I}] level n }

The address format parameter sets the default address format associated
with CDROM audio commands. You must have write access to the device
to issue this command because it modifies the device parameters. The
possible address formats are:

Format Description

Iba Logical Block Address
ms f Minute, Second, and Frame

The format of the command using the address format parameter is as
follows:

scu> set audio address format { lba I msf }

The volume parameter sets the audio volume control levels. You can
change either the right or left channel individually, or both channels at the
same time.

The format of the command using the volume parameter is as follows:

scu> set audio volume [channel-{ 0 II}] level n

You can use the aliases chO for channel-O and chI for channel-I.

The cam argument lets you set parameters associated with the CAM
subsystem. The format of the command using the cam argument is as
follows:
scu> set cam { debug debug-flags}

{ flags ccb-flags }

The cam debug parameter lets you set the CAM debug flags that the user
level SCSIICAM Special 110 interface functions use. The debug flags that
you can specify are:

Debug Flag Hex Value Descri ption

CAMD INOUT OxOOOOOOOl Routine entry and exit
CAMD FLOW OxOOOOOOO2 Code flow through the

modules
CAMD ERRORS OxOOOOOOlO Error handling

SCSI/CAM Utility Program 8-7

Debug Flag

CAMD CMD EXP

Hex Value

Ox00000020

Descri ption

Expansion of commands and
responses

The format of the command using the cam debug parameter is as follows:
seu> set earn debug hex-flags

For example:
seu> set cam debug Oxffff

The flags parameter lets you specify CAM flags to be set in CCBs sent to
the CAM subsystem. The flags that you can specify are:

CAM CCB Flag Hex Value Description

CAM DIS DISCONNECT OxOOOO8000 Disable disconnect.
CAM INITIATE SYNC OxOOOO4000 Attempt synchronous data

transfer.
CAM DIS SYNC OxOOOO2000 Disable synchronous data

transfer.
CAM_SIM_QHEAD OxOOOOlOOO Place the CCB at the head of

the SIM queue.
CAM_SIM_QFREEZE OxOOOOO800 Return the SIM queue to the

frozen state.
CAM_SIM_QFRZDIS OxOOOOO400 Disable the SIM queue, that is,

freeze on errors.
CAM ENG SYNC OxOOOOO200 Flush residual bytes before

completion.

The default CAM CCB flag used by the seu program is
CAM_SIM_QFRZDIS.

The format of the command using the cam flags parameter is as follows:
seu> set earn flags hex-flags

For example:

seu> set cam flags Ox4oool0x400

, The debug argument enables or disables the program debugging flag. When
the flag is enabled, the program displays additional debugging information
during command processing. By default, debugging output is disabled.

8-8 SCSI/CAM Utility Program

The format of the command using the f lags parameter is as follows:

seu> set debug { on I off }

The default argument lets you change certain program defaults.

The format of the command using the defaul t argument is as follows:
seu> set default { savable I test-parameters}

The savable parameter lets you specify whether or not the mode page
parameters are saved. By default, if the mode page is savable, the mode page
parameters set by the set page or change page command are saved.

The format of the command using the savable parameter is as follows:

seu> set default savable { on I off }

The test-parameters parameter lets you set up the I/O test parameter
defaults. The following test-parameters can be set:

Parameter Type Default Description

align value 0 Data buffer alignment offset.
compare flag On Compare data during read

operations. The possible values
are: 1/0; on/off; or true/false.

errors value 10 Error limit value.
passes value 1 Number of passes to perform.
pattern value Ox39c39c39 Data pattern to use (first pass).
size (bs) value 512 Block size per I/O request.

The device argument issues a CAM Set Device Type CCB to change the
device type in the EDT. If the nexus-information parameter is
omitted, the command is issued to the selected device. This command is
restricted to the superuser because the Set Device Type CCB overwrites
existing device information in the CAM EDT.

The set device command can also be used to set up the device type or to
override the existing device type.

The format of the command using the device argument is as follows:
seu> set device device-type [nexus-information]

SCSI/CAM Utility Program 8-9

The device-type argument specifies the device type to which the device
is to be changed in the EDT. The valid SCSI device types are:

Device Type CAM Definition Value

direct-access 0
sequential-access ALL_DTYPE_SEQUENTIAL 1
printer ALL DTYPE PRINTER 2
processor ALL DTYPE PROCESSOR 3
worm ALL DTYPE WORM 4
rodirect ALL DTYPE RODIRECT 5 - -
scanner ALL DTYPE SCANNER 6
optical ALL DTYPE OPTICAL 7
changer ALL DTYPE CHANGER 8 - -
communication ALL DTYPE COMM 9

The dump argument enables or disables the dump buffer flag. When the
dump buffer flag is enabled, the program dumps the entire data buffer being
operated on instead of the length returned from the CAM subsystem. By
default, this flag is disabled.

If the dump buffer flag is enabled and the CAM debug flag,
CAMD_CMD_EXP, is set during a data-in operation, the entire data buffer,
up to the value of the dump-limi t parameter, is dumped instead of the
number of bytes indicated by the CCB fields.

If the dump buffer flag is enabled when performing diagnostic functions, the
entire data buffer, up to the value of the dump-limit parameter, is dumped
during data verification failures.

The format of the command using the dump argument is as follows:

seu> set dump { on I off }

The dump-limit argument limits the number of bytes dumped during
debugging. This value is used in conjunction with the dump buffer control
flag and it limits the number of data bytes displayed when buffer dumping is
enabled or when the CAM debug flag, CAMD_CMD_EXP, is enabled during
command execution. The default value is 512 bytes.

The format of the command using the dump-limi t argument is as follows:
seu> set dump-limit value

The log argument opens a log file to capture text displayed by the program.
When logging is active, text output is written both to the log file and to the
terminal. Both standard output and standard error text is captured in the log
file. The text displayed by the help command is not saved in the log file.
This command is also used to close an existing log file by specifying a null
file name string.

8-10 SCSI/CAM Utility Program

This command provides a simple mechanism to log an interactive session.

The format of the command using the log argument is as follows:
scu> set log jile-name-path

The paging keyword controls paging when output is sent to a terminal
device. By default, paging is enabled when standard output is a terminal
device.

The format of the command using the pag ing keyword is as follows:

scu> set paging { on I off }

The recovery argument enables or disables the error-control parameters for
the selected device. Ordinarily, the current parameters are used. The
parameters are set from either the saved or the default error-control pages
when the drive is powered on. The normal default is for error correction to
be enabled. Disabling error correction is useful during device testing.

The format of the command using the recovery argument is as follows:

scu> set recovery { on I off }

The following conditions apply to the set recovery command:

• When error recovery is disabled, the previous error-control bits are saved
and the disable correction (DCR), disable transfer on error (DTE), post
recoverable error (PER), and transfer block on error (TB) bits are set,
while all other bits are cleared.

• When error recovery is enabled, either the previously saved error-control
bits or the error-control bits from the default error page are used.

• Only the current device's error mode-page parameters are affected when
error recovery is enabled or disabled.

8.2.6 The show Command
The show command is used to display parameters for a device or the
program. The parameter argument can be audio keywords, capacity,
defects,device,edt,nexus,pages,orpath-inquiry. The
format for the show command is as follows:
scu> show parameter

8.2.7 The source Command
The source command allows you to source input from an external
command file. If any errors occur during command parsing or execution, the
command file is closed at that point. The format for the source command

SCSI/CAM Utility Program 8-11

is as follows:
scu> source input-file

The default file name extension. seu is appended to the name of the input
file if no extension is supplied. If the seu utility cannot find a file with the
. seu extension, it attempts to locate the original input file.

8.2.8 The switch Command
The swi teh command accesses a new device or a previous device. If no
device name is specified, the command acts as a toggle and simply switches
to the previous device, if one exists. If a device is specified, it is validated
and becomes the active device. The format of the swi teh command is as
follows:
scu> switch [device-name]

B.3 Device and Bus Management Commands
This section describes seu utility commands that are used to manage SCSI
devices and the CAM I/O subsystem. The commands are:

• allow

• ejeet

• mt

• pause

• play

• prevent

• release

• reserve

• reset

• resume

• start

• stop

• tur

• verify

8-12 SCSI/CAM Utility Program

8.3.1 The allow Command
The allow command allows media to be removed from the selected device.
The format of the allow command is as follows:
seu> allow

8.3.2 The eject Command
The eject command is used with CD-ROMs to stop play and eject the
caddy. The format of the eject command is as follows:
seu> ejeet

8.3.3 The mt Commands
The mt command issues one of the supported mt commands. Only those mt
commands that do not require additional driver information have been
implemented. Unless errors occur, the mt commands execute silently.
Otherwise, the sense data, if any, returned from the failing command is
displayed.

The format of the mt command is as follows:
seu> mt command [count]

For commands that accept a count parameter, if count is omitted, the
default value is 1.

The mt bsf command is used to backward space count file marks. The
format of the mt bs f command is as follows:
seu> mt bsf [count]

The mt bsr command is used to backward space count file records. The
format of the mt bsr command is as follows:
seu> mt bsr [count]

The mt erase command is used to erase the tape. However, some tape
drives reject this command unless the tape is positioned at beginning of
media.

The syntax of the mt erase command is as follows:
seu> mt erase

SCSI/CAM Utility Program 8-13

The mt fsf command is used to forward space count file marks. The
syntax of the mt f sf command is as follows:
seu> mt fsf [count]

The mt fsr command is used to forward space count file records. The
syntax of the mt fsr command is as follows:
seu> mt fsr [count]

The mt load command is used to load a tape. This command is the same
as the mt online command, except the immediate bit is enabled so that
the command completes after the load is initiated.

The syntax of the mt load command is as follows:
seu> mt load

The mt offline command is used to take a tape offline, that is, to perform
an unload operation. The syntax of the mt offline command is as
follows:
seu> mt offline

You can use the alias rewoffl for the mt offline command.

The mt onl ine command is used to bring a tape online, that is, to perform
a load operation. The syntax of the mt online command is as follows:
seu> mt online

The mt rewind command rewinds a tape. The syntax of the mt rewind
command is as follows:
seu> mt rewind

The mt retension command retensions a tape. Retension means moving
the tape one complete pass between EaT and BOT. The syntax of the mt
retension command is as follows:
seu> mt retension

The mt seod command spaces to end of data, that is, to the end of recorded
media. The syntax of the mt seod command is as follows:
seu> mt seod

The mt unload command unloads a tape. This command is the same as
the mt offline command, except the immediate bit is enabled so that the
command completes after the unload operation is initiated.

8-14 SCSI/CAM Utility Program

The syntax of the mt unload command is as follows:

seu> mt unload

The mt weof command writes tape file marks. The syntax of the mt
weof command is as follows:
seu> mt weof [count]

You can use the alias eof for the mt weof command.

B.3.4 The pause Command
The pause command is used to pause the playing of a CD-ROM audio disc.
The format of the pause command is as follows:
seu> pause

B.3.5 The play Command
The play command is used to play audio tracks on a CD-ROM audio disc.
If no keywords are specified, all audio tracks are played by default. You can
specify a track number, a range of audio tracks, a logical block address, or a
time address. The formats of the play command are as follows:

seu> play { [starting n] [ending n] }
{ [traek n] }

seu> play audio { lba n }
{ length n }
{ lba n length n }

seu> play msf { starting keyword }
{ ending keyword }
{ starting keyword ending keyword }

The starting and ending keywords can be any conbination of the
following:

• minute-units n

• second-units n

• frame-units n

SCSI/CAM Utility Program 8-15

B.3.6 The prevent Command
The prevent command prevents media removal from the selected device.
The syntax of the prevent command is as follows:
seu> prevent

B.3.7 The release Command
The release command releases a reserved SCSI device or releases a frozen
SIM queue after an error. The format of the release command is as
follows:

seu> release { device I simqueue } [nexus-information]

The device argument specifies a reserved SCSI device to be released. The
format of the command using the device argument is as follows:

seu> release device [nexus-information]

The extent release capability for direct access devices is not implemented.

The s imqueue argument issues a Release SIMQ CCB to thaw a frozen SIM
queue. Ordinarily, this command is not necessary because the SIM queue is
automatically released after errors occur. If the nexus information is omitted,
the SIM queue for the selected SCSI device is released.

The format of the command using the s imqueue argument is as follows:
seu> release simqueue [nexus-information]

For example:

seu> release simqueue bus 1 target 6 lun 0

B.3.8 The reserve Command
The reserve command issues a SCSI Reserve command to the selected
device. The entire logical unit is reserved for the exclusive use of the
initiator. Extent reservation for direct access devices is not implemented.
The format of the reserve command is as follows:

seu> reserve ~vke

8-16 SCSI/CAM Utility Program

8.3.9 The reset Command
The reset command resets the SCSI bus or the selected SCSI device. The
format of the reset command is as follows:
scu> reset { bus I device } [nexus-information]

The bus argument issues a CAM Bus Reset CCB. If the nexus information
is omitted, the bus associated with the selected SCSI device is reset. The
reset bus command is restricted to superuser (root) access because it can
cause loss of data to some devices.

The format of the command using the bus argument is as follows:
scu> reset bus [nexus-information]

The device argument issues a CAM Bus Device Reset CCB. If the nexus
information is omitted, the selected device is reset. The reset device
command requires write access to the selected device because command can
cause loss of data to some devices. If nexus information is specified, this
command is restricted to the superuser.

The format of the command using the device argument is as follows:
scu> reset device [nexus-information]

8.3.10 The resume Command
The resume command causes a CD-ROM audio disc to resume play after it
has been paused with the pause command. The format of the resume
command is as follows:
scu> resume

8.3.11 The start Command
The start command issues a SCSI Start Unit command to the selected
device. This action enables the selected device to allow media access
operations. The format of the start command is as follows:
scu> start

8.3.12 The stop Command
The stop command issues a SCSI Stop Unit command to the selected
device. This action disables the selected device from allowing media access
operations.

SCSI/CAM Utility Program 8-17

The format of the stop command is as follows:
scu> stop

8.3.13 The tur Command
The tur command issues a Test Unit Ready command to determine the
readiness of a device. If the command detects a failure, it automatically
reports the sense data. The format of the tur command is as follows:
scu> tur

8.3.14 The verify Command
The verify command performs verify operations on the selected device.
The format of the verify command is as follows:

scu> verify { media [test-parameters]}

The media argument verifies the data written on the device media. This
activity involves reading and performing an ECC check of the data. If the
test parameters are omitted, the entire device media is verified.

The format of the command using the media argument is as follows:
scu> verify media [test-parameters]

If the device does not support the verify command, the following error
message appears:
scu> verify media starting 1000 length 1024
Verifying 1024 blocks on /dev/rrz10c (RX23),

please be patient •..
Verifying blocks [1000 through 2023] .•.
scu: Sense Key = Ox5 = ILLEGAL REQUEST -

Illegal request or CDB parameter,
Sense Code/Qualifier = (Ox20, 0) =

Invalid command operation c,ode

When an error occurs, the sense key is examined. The expected sense keys
are Recovered Error COxal) or Medium Error COx03). When these errors are
detected, the following error message is displayed and verification continues
with the block following the failing block:
scu: Verify error at logical block number 464392 (Ox71608).
scu: Sense Key = Ox1 = RECOVERED ERROR -

Recovery action performed,
Sense Code/Qualifier = (Ox17, 0) = Recovered data with no

error correction applied

If any other sense key error occurs, the full sense data is displayed and the
verification process is aborted.

8-18 SCSI/CAM Utility Program

The following conditions apply to the verify command:

• On failure, the failing logical block number (LBN) is reported and
verification continues with the block following the failing block.

• By default, verification is performed using the current parameters in the
Error Recovery mode page. Drive recovery can be disabled using the
set recovery off command.

For example:
scu> verify media Iba 464388
Verifying 1 blocks on /dev/rrz14c (RZ55), please be patient ...
Verifying blocks [464388 through 464388] •.•

scu> verify media starting 640000
Verifying 9040 blocks on /dev/rrz14c (RZ55), please be patient ..•
Verifying blocks [640000 through 649039] ..•

scu> verify media starting 1000 length 250
Verifying 250 blocks on /dev/rrz14c (RZ55), please be patient •.•
Verifying blocks [1000 through 1249] ...

scu> verify media starting 1000 ending 2000
Verifying 1001 blocks on /dev/rrz14c (RZ55), please be patient ...
Verifying blocks [1000 through 2000] .•.

B.4 Device and Bus Maintenance Commands

8.4.1

This section describes SCll utility commands that are used to maintain SCSI
devices and the CAM I/O subsystem. The commands are:

• change pages

• download

• format

• read

• reassign

• test

• write

The change pages Command
The change pages command changes the mode pages for a device. The
program prompts you with a list of the page fields that are marked as
changeable. If you do not specify a mode page, all pages supported by the
device are requested for changing. After you enter the new fields for each
page, you use a mode select command to set the new page parameters.

SCSI/CAM Utility Program 8-19

The format for the change pages command is as follows:

scu> change pages [mode-page ... [pcf page-control-field]]

The mode-page argument describes the mode page to change. The mode
pages are:

scu Keyword Page Code Description

error-recovery OxOl Error recovery page

disconnect Ox02 Disconnect/reconnect page

direct-access Ox03 Direct access format page

geometry Ox04 Disk geometry page

flexible Ox05 Flexible disk page

cache-control Ox08 Cache control page

cdrom OxOD CD-ROM device page

audio-control OxOE Audio control page

device-configuration OxlO Device configuration page

medium-partition-l Ox 11 Medium partition page 1

dec-specific Ox25 Digital specific page

readahead-control Ox38 Read-ahead control page

The page-control-field argument specifies the type of mode pages to
obtain from device. The page control fields that you can specify are as
follows:

• changeable

• current

• default

• saved

The following example changes the error recover parameters:

scu> change pages error
Changing Error Recovery Parameters (Page 1 - current values):

Disable Transfer on Error (DTE) [R:O-l D:O]:
Post Recoverable Error (PER} [R:O-l D:l]:
Transfer Block (TB) [R:O-l D:l]:
Retry Count [R:O-255 D:l]: 25
scu>

8-20 SCSI/CAM Utility Program

8.4.2 The download Command
The download command can be used with any device that supports the
downloading of operating software through the Write Buffer command. The
format for the download command is as follows:
scu> download filename [save]

The save keyword directs the device to save the new operating software in
non-volatile memory if the download command completes successfully.
With save specified, the downloaded code remains in effect after each
power cycle and reset. If the save keyword is not specified, the downloaded
software is placed in the control memory of the device. After a power cycle
or reset, the device operation would revert to a vendor-specific condition.

8.4.3 The format Command
The format command formats both hard and flexible disk media. Since
this command modifies the disk media, the full command name must be
entered to be recognized. The format for the format command is as
follows:
scu> format [density density-type] [defects defect-list]

The densi ty-type parameter specifies the density type for flexible disk
media. The defect-list parameter can be all, primary, or none.
The default is to format with all known defects.

If you enter the seu utility using the default device / dev / earn and then set
the device to format using the set nexus command, the code associated
with checking for mounted file systems fails This failure avoids the
possibility of accidentally formatting disks with mounted file systems.

8.4.4 The read Command
The read command performs read operations from the selected device. The
command reads the device media and performs a data comparison of the data
read. You must include test parameters that specify the media area to be
read. Section B .1.1 contains a list of the valid test parameters.

The format of the read command is as follows:
scu> read { media [test-parameters]}

SCSI/CAM Utility Program 8-21

The examples that follow illustrate the use of the read command with
several test-parameters:
scu> read media
scu: No defaults, please specify test parameters for transfer .•.

scu> read media Iba 100
Reading 1 block on /dev/rrzlOc (RX23) using pattern Ox39c39c39 ...

scu> read media Iba 100 pattern Ox12345678
Reading 1 block on /dev/rrz10c (RX23) using pattern Ox12345678 .•.
scu: Data compare error at byte position 0
scu: Data expected = Ox78, data found = Ox39

scu> read media ending 100 compare off bs 10k
Reading 101 blocks on /dev/rrz10c (RX23) ..•
Reading blocks [0 through 19] ...
Reading blocks [20 through 39] ..•
Reading blocks [40 through 59] •..
Reading blocks [60 through 79] .••
Reading blocks [80 through 99] ••.

8.4.5 The reassign Command
The reassign command allows you to reassign a defective block on a disk
device. Since this command modifies the disk media, the full command
name must be entered to be recognized. The format of the reassign
command is as follows:
scu> reassign lba logical-block

8.4.6 The test Command
The test command performs tests on a controller by issuing send and
receive diagnostic commands or wri te buffer and read buffer
commands for memory testing to the selected device. If you issue the te s t
command with no arguments, the utility performs a self test, which is
supported by most controllers. The format for the test command is as
follows:

scu> test [controller I drive I memory I self test]

8-22 SCSI/CAM Utility Program

8.4.7 The write Command
The wr i te command writes to the selected device. The format of the
wr i te command is as follows:

scu> wr i te { media [test-parameters]}

The media argument writes to the device media using various data patterns.
The patterns default to Ox39c39c39 for the first pass, Oxc6dec6de for the
second, and so on as shown in the last example. You must specify transfer
parameters that specify the media area to be written.

The format of the command using the media argument is as follows:

scu> write media [test-parameters]

Section B.l.l contains a list of the valid test parameters.

For example:

scu> write media
scu: No defaults, please specify test parameters for transfer ...

scu> write media lba 100
Writing 1 block on /dev/rrz10c (RX23) with pattern Ox39c39c39 ...

scu> write media starting 100 ending 250
Writing 151 blocks on /dev/rrz10c (RX23) with pattern Ox39c39c39 .•.

scu> write media starting 2800 limit 1m bs 10k
Writing 80 blocks on /dev/rrz10c (RX23) with pattern Ox39c39c39 ...
Writing blocks [2800 through 2819] •..
Writing blocks [2820 through 2839] .••
Writing blocks [2840 through 2859] •..
Writing blocks [2860 through 2879] •..

scu> write media lba 2879 passes 5
Writing 1 block on /dev/rrz10c (RX23) with pattern Ox39c39c39 •..
Writing 1 block on /dev/rrz10c (RX23) with pattern Oxc6dec6de ...
Writing 1 block on /dev/rrz10c (RX23) with pattern Ox6db6db6d •..
Writing 1 block on /dev/rrz10c (RX23) with pattern OxOOOOOOOO ...
Writing 1 block on /dev/rrz10c (RX23) with pattern Oxffffffff ...

SCSI/CAM Utility Program 8-23

SCSI/CAM Routines C

This appendix contains a description of each of the routines described in this
guide, in reference page format. The routines are included in alphabetical
order.

C.1 cam_logger

Name
cam_logger - Allocates a system error log buffer and fills in a uerf error
log packet

Syntax
u_long cam_logger(cam_err _hdr, bus, target, [un)
CAM_ERR_HDR *cam_err _hdr;
long bus;
long target;
long [un;

Arguments

cam_err _hdr Pointer to the Error Header Structure.

bus

target

[un

Description

SCSI target's bus controller number.

SCSI target's ID number.

SCSI target's logical unit number.

The cam logger routine allocates a system error log buffer and fills in a
uerf error log packet. The routine fills in the bus, target, and LUN
information from the Error Header Structure passed to it and copies the Error
Header Structure and the Error Entry Structures and data to the error log
buffer.

Return Value
None

C-2 SCSI/CAM Routines

C.2 ccf9_attach

Name
ccfg_attach - Calls a SCSI/CAM peripheral driver's attach routine after a
match on the cpd name member of the CAM_PERIPHERAL_DRIVER
structure is found -

Syntax
int ccf9_attach(attach)
struct device *attach;

Arguments

attach Pointer to the device information contained in the device
structure.

Description
The ccfg attach routine calls a SCSI/CAM peripheral driver's attach
routine after a match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found. The routine is called
during autoconfiguration. The ccfg attach routine locates the
configured driver in the SCSI/CAM peripheral driver configuration table. If
the driver is located successfully, the SCSI/CAM peripheral driver's attach
routine is called with a pointer to the unit information structure for the device
from the kernel device structure. The SCSI/CAM peripheral driver's
attach routine performs its own attach initialization.

Return Value
0= success
1 = failure
The return value is ignored by autoconfiguration code.

SCSI/CAM Routines C-3

C.3 ccf9_edtscan

Name
ccfg_edtscan - Issues SCSI INQUIRY commands to all possible SCSI targets
and LUNs attached to a bus or a particular bus/target/lun

Syntax
U32 ccf9_edtscan(scan_type, bus, target, lun)
long scan_type;
long bus;
long target;
long lun;

Arguments

bus

target

lun

Description

Types of scans are: EDT_FULLSCAN, which traverses the
CAM_EDT_ENTRY structure and sends an INQUIRY command
to each target and LUN; EDT_PARTSCAN, which sends an
INQUIRY command only to targets and LUNs flagged as "not
found"; or EDT_SINGLES CAN, which sends an INQUIRY
command to the selected bus, target, and LUN passed as
arguments.

SCSI target's bus controller number.

SCSI target's ID number.

SCSI target's logical unit number.

The ccfg edtscan routine issues SCSI INQUIRY commands to all
possible SCSI targets and LUN s attached to a bus or a particular
bus/target/lun The routine uses the CAM subsystem in the normal
manner by sending SCSI I/O CCBs to the SIMs. The INQUIRY data
returned is stored in the EDT structures and the cam tlun found flag is
set. This routine can be called by the SCSI/CAM perlpheraldevice drivers to
reissue a full, partial, or single bus scan command.

Return Value
CAM_SUCCESS
CAM_FAILURE

C-4 SCSI/CAM Routines

C.4 ccfQ_slave

Name
ccfg_slave - Calls a SCSI/CAM peripheral driver's slave routine after a
match on the cpd name member of the CAM_PERIPHERAL_DRIVER
structure is found -

Syntax
int ccfg_slave(attach, csr)
struct device *attach;
caddr_t csr;

Arguments

attach Pointer to the device information contained in the device
structure.

csr The virtual address of the control and status register (CSR) address.

Description
The ccfg slave routine calls a SCSI/CAM peripheral driver's slave
routine after a match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found. The routine is called
during autoconfiguration. The ccfg slave routine locates the configured
driver in the SCSI/CAM peripheral drIVer configuration table. If the driver is
located successfully, the SCSI/CAM peripheral driver's slave routine is
called with a pointer to the unit information structure for the device from the
kernel device structure and the virtual address of its control and status
register (CSR). The SCSI/CAM peripheral driver's slave routine performs its
own slave initialization.

Return Value
o = slave is alive
1 = slave is not alive

SCSI/CAM Routines C-5

C.s ccmn_DoSpecialCmd

Name
ccmn_DoSpecialCmd - Provides a simplified interface to the special
command routine

Syntax
ccmn_DoSpeciaICmd(dev, cmd, data, flags, ccb, sflags)
dev_t dev;
int cmd;
caddr_t data;
int flags;
CCB_SCSIIO *ccb;
int sflags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

cmd The ioctl command such as SCSI_FORMAT_UNIT. The ioctl
commands are defined in
/usr/sys/include/io/cam/rzdisk.h.

data

flags

ccb

sflags

The user data buffer.

Flags set when a file is open.

Pointer to the SCSI I/O CCB structure or NULL.

SCSIICAM special 110 control flags. Setting this field is
optional. The available bits are:

Flag Name

SA NO ERROR RECOVERY
SA NO ERROR LOGGING
SA NO SLEEP INTR - - -
SA_NO_SIMQ_THAW

SA NO WAIT FOR 10

Description

Do not perform error recovery
Do not log error messages
Do not allow sleep interrupts
Leave SIM queue frozen when
there are errors

Do not wait for I/O to complete

. C-6 SCSI/CAM Routines

Description
The ccmn DoSpecialCmd routine provides a simplified interface to the
special command routine. The routine prepares for and issues special SCSI
ioctl commands.

Return Value
The ccmn DoSpecialCmd routine returns a value of 0 (zero) upon
successful completion. It returns the appropriate error code on failure.

SCSI/CAM Routines C-7

C.6 ccmn_SysSpecialCmd

Name
ccmn_SysSpecialCmd - Lets a system request issue SCSI I/O commands to
the SCSI/CAM special I/O interface

Syntax
ccmn_SysSpeciaICmd(dev, cmd, data,flags, ccb, sflags)
dev_t dev;
int cmd;
caddr_t data;
int flags;
CCB_SCSIIO *ccb;
int sflags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

cmd

data

flags

ccb

sflags

The ioctl command. Refer to the commands defined in
/usr/sys/include/io/cam/rzdisk.h.

The kernel data buffer.

Flags set when a file is open.

Pointer to the SCSI I/O CCB structure. This field is optional.

SCSI/CAM special I/O control flags. The available flags are:

Flag Name

SA NO ERROR RECOVERY
SA NO ERROR LOGGING
SA NO SLEEP INTR - - -
SA_NO_SIMQ_THAW

SA NO WAIT FOR 10

Description

Do not perform error recovery
Do not log error messages
Do not allow sleep interrupts
Leave SIM queue frozen when
there are errors

Do not wait for I/O to complete

C-8 SCSI/CAM Routines

Description
The ccrnn SysSpecialCrnd routine lets a system request issue SCSI I/O
commands to the SCSI/CAM special I/O interface. This permits existing
SCSI commands to be issued from within kernel code.

Return Value
The ccrnn DoSpecialCrnd routine returns a value of 0 (zero) upon
successful completion. It returns the appropriate error code on failure.

SCSI/CAM Routines C-9

Name
ccmn_abort_ccb_bld - Creates an ABORT CCB and sends it to the XPT

Syntax
ccmn_abort_ccb_bld(dev, camJlags, abort_ccb)
dev_t dev;
u_Iong camJlags;
CCB_HEADER *abort_ccb;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJlags The camJlags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

C-10 SCSI/CAM Routines

Flag Name Description

CAM _ SIM _QFREEZE Return SIM queue to frozen state

CAM _ SIM _QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHY S Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

aborcccb Pointer to the CAM Control Block (CCB) header structure to
abort.

Description
The ccmn abort ccb bld routine creates an ABORT CCB and sends it
to the XPT:-The routine calls the ccmn get ccb routine to allocate a
CCB structure and fill in the common portion Of the CCB header. The
routine fills in the address of the CCB to be aborted and calls the
ccmn send ccb routine to send the CCB structure to the XPT. The
requeS'tis carrIed out immediately, so it is not placed on the device driver's
active queue.

SCSI/CAM Routines C-11

Return Value
CCB_ABORT pointer

See Also
ccmn _get _ ccb, ccmn send ccb

C-12 SCSI/CAM Routines

Name
ccmn_abort_que - Sends an ABORT CCB request for each SCSI I/O CCB
on the active queue

Syntax
ccmn_abort_que(pd)
PDRV _DEVICE *pd;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each
SCSI device in the system.

Description
The ccmn abort que routine sends an ABORT CCB request for each
SCSI 110 CCB on the active queue. This routine must be called with the
Peripheral Device Structure locked.

The ccmn abort que routine calls the ccmn abort ccb bId
routine to create an ABORT CCB for the first active CCB on the-active
queue and send it to the XPT. It calls the ccmn send ccb routine to send
the ABORT CCB for each of the other CCBs onthe actTve queue that are
marked as active to the XPT. The ccmn abort que routine then calls
the ccmn reI ccb routine to return the ABORT CCB to the XPT.

Return Value
None

See Also

SCSI/CAM Routines C-13

Name
ccmn_attach_device - Creates and attaches a device structure to the controller
structure that corresponds to the SCSI controller

Syntax
ccmn_attach_device(dev, dev_type, dev_name)
dev_t dev;
caddr_t dev _type;
caddr_t dev _name;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

dev_type Pointer to the device-type string, for example, "disk" or "tape".

dev _name Pointer to the device-name string as it appears in the / dev
directory, for example, "rzO".

Description
The ccmn attach device routine creates and attaches a device
structure to the controller structure that corresponds to the SCSI controller.
The routine finds the controller structure for a device, fills in the device
structure, and attaches the device structure to the controller structure.

Return Value
None

See Also
ccmn_errlog, ccmn find ctlr

C-14 SCSI/CAM Routines

Name
ccmn_bdr_ccb_bld - Creates a BUS DEVICE RESET CCB and sends it to
the XPT

Syntax
ccmn_bdr_ccb_bld(dev, camJiags)
dev_t dev;
u_Iong camJiags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM _SIM _QHEAD Place CCB at head of SIM queue

SCSI/CAM Routines C-15

Description

Flag Name Description

CAM_SIM_QFREEZE Return SIM queue to frozen state

CAM_SIM_QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating 110

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autos ave/restore pointers

The ccmn bdr ccb blp routine creates a BUS DEVICE RESET CCB
and sends it to theXPT~ The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine calls the ccmn send ccb routine to send the CCB structure
to the XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

C-16 SCSI/CAM Routines

Return Value
CCB_RESETDEV pointer

See Also
ccmn_get_ccb, ccmn send ccb

SCSI/CAM Routines C-17

Name
ccmn_br_ccb_bld - Creates a BUS RESET CCB and sends it to the XPT

Syntax
ccmn_br_ccb_bld(dev, camJiags)
dev_t dev;
u_Iong camJiags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

CAM _ SIM_QFREEZE Return SIM queue to frozen state

C-18 SCSI/CAM Routines

Description

Flag Name Description

CAM _ SIM _QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gather/buffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHY S Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

The ccmn br ccb bld routine creates a BUS RESET CCB and sends it
to the XPT:- The routIne calls the ccmn get ccb routine to allocate a
CCB structure and fill in the common portion Of the CCB header. The
routine calls the ccmn send ccb routine to send the CCB structure to the
XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

Return Value
CCB_RESETBUS pointer

SCSI/CAM Routines C-19

See Also
ccmn_get_ccb, ccmn send ccb

C-20 SCSI/CAM Routines

Name
ccmn_ccb_status - Assigns individual CAM status values to generic
categories

Syntax
ccmn_ccb_status{ccb)
CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure whose
status is to be categorized.

Description
The ccmn ccb status routine assigns individual CAM status values to
generic categorieS. The following table shows the returned category for each
CAM status value:

CAM Status

CAM_REQ_INPROG
CAM_REQ_CMP
CAM_REQ_ABORTED
CAM UA ABORT
CAM_REQ_CMP_ERR
CAM BUSY
CAM_REQ_INVALID
CAM PATH INVALID - -
CAM DEV NOT THERE
CAM UA TERMIO
CAM SEL TIMEOUT
CAM CMD TIMEOUT
CAM MSG REJECT REC - - -
CAM SCSI BUS RESET
CAM UNCOR PARITY
CAM AUTOSENSE FAIL
CAM NO HBA
CAM DATA RUN ERR - - -
CAM UNEXP BUSFREE
CAM_SEQUENCE_FAIL
CAM CCB LEN ERR

Assigned Category

CAT_INPROG
CAT_CMP
CAT_ABORT
CAT_ABORT
CAT_CMP_ERR
CAT_BUSY
CAT_CCB _ERR
CAT_NO_DEVICE
CAT_NO _DEVICE
CAT_ABORT
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_RESET
CAT_DEVICE_ERR
CAT_BAD_AUTO
CAT_NO_DEVICE
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_CCB_ERR

SCSI/CAM Routines C-21

CAM Status

CAM PROVIDE FAIL
CAM BDR SENT
CAM_RE Q_TERM I 0
CAM LUN INVALID
CAM TID INVALID
CAM FUNC NOTAVAIL
CAM NO NEXUS
CAM 110 INVALID
CAM SCSI BUSY
Other

Return Value

Assigned Category

CAT_CCB_ERR
CAT_RESET
CAT_ABORT
CAT_NO _DEVICE
CAT_NO _DEVICE
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_SCSCBUSY
CAT_UNKNOWN

The following categories can be returned:

CAM Status

CAT INPROG
CAT CMP
CAT CMP ERR
CAT ABORT

CAT BUSY
CAT SCSI BUSY
CAT NO DEVICE
CAT DEVICE ERR
CAT BAD AUTO
CAT CCB ERR
CAT RESET
CAT UNKNOWN

C-22 SCSI/CAM Routines

Assigned Category

Request is in progress.
Request has completed without error.
Request has completed with error.
Request either has been aborted or terminated, or it
cannot be aborted or terminated.
CAM is busy.
SCSI is busy.
No device at address specified in request.
Bus or device problems.
Invalid auto sense data.
Invalid CCB.
Unit or bus has detected a reset condition.
Invalid CAM status.

Name
ccmn_check_idle - Checks that there are no opens against a device

Syntax
ccmn_check_idle(starCunit, num_units, cmajor, bmajor, spec_size)
U32 starCunit;
U32 num_units;
dev _t cmajor;
dev _t bmajor;
U32 spec_size;

Arguments

start_unit The address (bus, target, and LUN) of the first unit to check for
opens.

num_units The number of units to check for opens.

cmajor The character device major number.

bmajor The block device major number.

spec_size The size of the device-specific structure for the device.

Description
The ccmn check idle routine checks that there are no opens against a
device. ThIS routine-calls the ccmn reI dbuf routine to deallocate all
structures pertaining to the device whose dnver is being unloaded.

The ccmn check idle routine scans the Peripheral Device Unit Table
looking for devices that match the block device major number and the
character device major number in the PDRV _DEVICE structure members,
pd bmajor and pd cmajor. If no opens exist for the devices that are to
be unloaded, it rescans the Peripheral Device Unit Table and deallocates all
structures relating to the devices whose driver is being unloaded. The
ccmn check idle routine must be called with the Peripheral Device Unit
Table locked. -

SCSI/CAM Routines C-23

Return Value
None

See Also
ccrnn reI dbuf

C-24 SCSI/CAM Routines

Name
ccmn_close_unit - Handles the common close for all SCSI/CAM peripheral
device drivers

Syntax
ccmn_close_unit(dev)
dev_t dev;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

Description
The ccmn close unit routine handles the common close for all
SCSIICAMperipheral device drivers. It sets the open count to zero.

Return Value
None

See Also
ccmn_open_unit

SCSI/CAM Routines C-25

C.15 ccmn_errlog

Name
ccmn_errlog - Reports error conditions for the SCSI/CAM peripheral device
driver

Syntax
ccmn_errlog(func_str, opCstr, flags, ccb, dev, unused)
u_char *func_str;
u_char *opcstr;
u_long flags;
CCB_HEADER *ccb;
dev_t dev;
u_char *unused;

Arguments

func_str

opCstr

flags

ccb

dev

unused

Description

Pointer to function in which the error was detected.

Pointer to optional logging string.

Flags for peripheral drivers error types. The flags are:
CAM_INFORMATIONAL; CAM_SOFTERR;
CAM_HARDERR; CAM_SOFTWARE; and
CAM_DUMP _ALL. They are defined in the
lusr I sys I includel iol caml cam_logger. h file.

Pointer to the CAM Control Block (CCB) header structure.

The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

Unused. It is needed to match the number of arguments expected
by the CAM_ERROR macro, which is defined in the
lusrlsys/include/io/cam/cam_errlog.h file

The ccmn errlog routine reports error conditions for the SCSI/CAM
peripheral device driver. The routine is passed a pointer to the name of the
function in which the error was detected. The routine builds informational
strings based on the error condition.

C-26 SCSI/CAM Routines

Return Value
None

SCSI/CAM Routines C-27

Name
ccmn_find_ctlr - Finds the controller structure that corresponds to the SCSI
controller that the device must be attached to

Syntax
struct controller *
ccmn_find_ctlr(dev)
dev_t dev;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

Description
The ccmn find ctlr routine finds the controller structure that
correspondsto the SCSI controller that the device must be attached to. This
routine must be called with the Peripheral Device Unit Table locked.

Return Value
Controller for the device or NULL if no controller is found.

C-28 SCSI/CAM Routines

Name
ccmn_gdev _ccb_bld - Creates a GET DEVICE TYPE CCB and sends it to
the XPT

Syntax
ccmn_gdev_ccb_bld(dev, camJiags, inq_addr)
dev_t dev;
u_Iong camJiags;
u_char *inq_addr;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

SCSI/CAM Routines C-29

Flag Name Description

CAM_SIM_QHEAD Place CCB at head of SIM queue

CAM_SIM_QFREEZE Return SIM queue to frozen state

CAM_SIM_QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

inq_addr Pointer to the address for Inquiry data returned.

Description
The ccmn gdev ccb bId routine creates a GET DEVICE TYPE CCB
and sends itto the XPT. The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The ccmn gdev ccb bId routine calls the ccmn send ccb routine
to send the CCB structure to the XPT. The request is carried out
immediately, so it is not placed on the device driver's active queue.

C-30 SCSI/CAM Routines

Return Value
CCB_GETDEV pointer

See Also
ccmn _get _ ccb, ccmn send ccb

SCSI/CAM Routines C-31

Name
ccmn_gecbp - Allocates a buf structure

Syntax
ccmn_get_bpO

Arguments
None

Description
The ccmn get bp routine allocates a buf structure. This function must
not be called at interrupt context. The function may sleep waiting for
resources.

Return Value
Pointer to buf structure. This pointer may be NULL.

C-32 SCSI/CAM Routines

Name
ccmn_gecccb - Allocates a CCB and fills in the common portion of the
CCB header

Syntax
ccmn_get_ccb(dev, Junc_code, camJlags, ccb_Ien)
dev_t dev;
u_char Junc_code;
u_Iong camJlags;
u_short ccb _len;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

Junc_code The XPT function code for the CCB. See American National
Standard for Information Systems, SCSI-2 Common Access
Method: Transport and SCSI InterJace Module, working draft,
X3T9.2/90-186, Section 8.1.2, for a list of the function codes.

camJlags The camJlags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable auto sense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM _QUEUE_ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

SCSI/CAM Routines C-33

ccb_len

Flag Name

CAM INITIATE SYNC

CAM DIS SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_SIM_QFRZDIS

CAM ENG SYNC

CAM ENG SGLIST

CAM CDB PHYS

CAM DATA PHYS

CAM SNS BUF PHYS

CAM MSG BUF PHYS

CAM NXT CCB PHYS

CAM CALLBCK PHYS

CAM DATAB VALID

CAM STATUS VALID

CAM MSGB VALID

CAM TGT PHASE MODE

CAM TGT CCB AVAIL

CAM DIS AUTODISC

CAM DIS AUTOSRP

The length of the CCB.

C-34 SCSI/CAM Routines

Description

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Disable the SIM Q frozen state

Flush residual bytes from HBA
data engine before terminating I/O

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gatherlbuffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

Description
The eemn get eeb routine allocates a CCB and fills in the common
portion of the CCB header. The routine calls the xpt ecb alloe routine
to allocate a CCB structure. The eemn get eeb routine fills in the
common portion of the CCB header and returns a pointer to that
CCB_HEADER.

Return Value
Pointer to newly allocated CCB header.

See Also
xpt_eeb alloe

SCSI/CAM Routines C-35

Name
ccmn_get_dbuf - Allocates a data buffer area of the size specified by calling
the kernel memory allocation routines

Syntax
ccmn_get_dbuf(size)
u_Iong size;

Arguments

size Size of buffer in bytes.

Description
The ccmn get dbuf routine allocates a data buffer area of the size
specified by calling the kernel memory allocation routines .

Return Value
Pointer to kernel data space. If this is NULL, no data buffers are available
and no more can be allocated.

C-36 SCSI/CAM Routines

C.21 ccrnn init

Name
ccmn_init - Initializes the XPT and the unit table lock structure

Syntax
ccmn_init 0

Description
The ccmn ini t routine initializes the XPT and the unit table lock
structure. The first time the ccmn ini t routine is called, it calls the
xpt _ ini t routine to request the XPT to initialize the CAM subsystem.

Return Value
None

See Also
xpt_init

SCSI/CAM Routines C-37

Name
ccmn_io_ccb_bld - Allocates a SCSI 110 CCB and fills it in

Syntax

ccmn_io_ccb_bld(dev, data_addr, data_len, sense_len, camJlags, \
compJunc, tag_action, timeout, bp)

dev_t dev;
u_char *data_addr;
u_Iong data_len;
u_short sense_len;
u_Iong camJlags;
void (*compJunc) 0;
u_char tag_action;
u_Iong timeout;
struct buf * bp;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

data_addr Pointer to the data buffer.

data_len Size of the data transfer.

sense_len Length of the sense data buffer to be returned on autosense,
which is predefined as 64 bytes in the
DEC_AUTO_SENSE_SIZE environment variable but can be
larger.

camJlags The camJlags flag names and their bit definitions are listed in
the table that follows:

Flag Name

CAM OIR RESV

CAM OIR IN

CAM OIR OUT

CAM OIR NONE

CAM OIS AUTOSENSE

C-38 SCSI/CAM Routines

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Flag Name

CAM SCATTER VALID

CAM DIS CALLBACK

CAM CDB LINKED

CAM_QUEUE_ENABLE

CAM CDB POINTER

CAM DIS DISCONNECT

CAM INITIATE SYNC

CAM DIS SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_SIM_QFRZDIS

CAM ENG SYNC

CAM ENG SGLIST

CAM CDB PHYS

CAM DATA PHYS

CAM SNS BUF PHYS

CAM MSG BUF PHYS

CAM NXT CCB PHYS

CAM CALLBCK PHYS

CAM DATAB VALID

CAM STATUS VALID

CAM MSGB VALID

CAM TGT PHASE MODE

CAM TGT CCB AVAIL

CAM DIS AUTODISC

CAM DIS AUTOSRP

Description

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Disable the SIM Q frozen state

Flush residual bytes from HBA
data engine before terminating 110

Scatter/gather list is for RBA
engine

CDB pointer is physical address

Scatter/gatherlbuffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

SCSI/CAM Routines C-39

compJunc SCSI device driver I/O callback completion function. This
pointer may be NULL if the CAM DISABLE CALLBACK bit is
set in the CAM FLAGS field.

tag_action Type of action to perform for tagged requests:

timeout

bp

Description

CAM_SIMPLE_QTAG
CAM_HEAD_QTAG
CAM_ORDERED_QTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

Timeout for the request in seconds. A value of 0 (zero) indicates
the default, which is five seconds.

A buf structure pointer, which is used for request mapping.
This pointer may be NULL.

The ccmn io ccb bId routine allocates a SCSI I/O CCB and fills it in.
The routine calis the ccmn get ccb routine to obtain a CCB structure
with the header portion filled in. The ccmn io ccb bId routine fills in
the SCSI I/O-specific fields from the parameters passedand checks the length
of the sense data to see if it exceeds the length of the reserved sense buffer.
If it does, a sense buffer is allocated using the ccmn _get _ dbuf routine.

Return Value
Pointer to a SCSI I/O CCB

See Also

C-40 SCSI/CAM Routines

C.23 ccmn mode_select

Name
ccmn_mode_select - Creates a SCSI VO CCB for the MODE SELECT
command, sends it to the XPT for processing, and sleeps waiting for it to
complete.

Syntax
ccmn_mode_select(pd, sense_len, camJiags, compJunc, tag_action, \

timeout, ms_index)
PDRV _DEVICE *pd;
u_short sense_len;
u_Iong camJiags;
void (*compJunc) 0;
u_char tag_action;
u_Iong timeout;
unsigned ms _index;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

sense_len Length of the sense data buffer to be returned on autosense,
which is predefined as 64 bytes in the
DEC_AUTO_SENSE_SIZE environment variable but can be
larger.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name

CAM DIR RESV

CAM DIR IN

CAM DIR OUT

CAM DIR NONE

CAM DIS AUTOSENSE

CAM SCATTER VALID

CAM DIS CALLBACK

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable auto sense feature

Scatter/gather list is valid

Disable callback feature

SCSI/CAM Routines C-41

Flag Name

CAM CDB LINKED

CAM_QUE UE_ENABL E

CAM CDB POINTER

CAM DIS DISCONNECT

CAM INITIATE SYNC

CAM DIS SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_SIM_QFRZDIS

CAM ENG SYNC

CAM ENG SGLIST

CAM CDB PHYS

CAM DATA PHYS

CAM SNS BUF PHYS

CAM MSG BUF PHYS

CAM NXT CCB PHYS

CAM CALLBCK PHYS

CAM DATAB VALID

CAM STATUS VALID

CAM MSGB VALID

CAM TGT PHASE MODE

CAM TGT CCB AVAIL

CAM DIS AUTODISC

CAM DIS AUTOSRP

C-42 SCSI/CAM Routines

Description

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Disable the SIM Q frozen state

Flush residual bytes from HBA
data engine before terminating I/O

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

compJunc SCSI device driver I/O callback completion function. This
pointer may be NULL if the CAM DISABLE CALLBACK bit is
set in the CAM FLAGS field.

tag_action Type of action to perform for tagged requests:

CAM_SIMPLE_QTAG
CAM_HEAD_QTAG
CAM_ORDERED_QTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates
the default, which is five seconds.

ms_index An index into a page in the Mode Select Table that is pointed to
in the Device Descriptor Structure.

Description
The ccmn mode select routine creates a SCSI I/O CCB for the MODE
SELECT command and sends it to the XPT for processing. The routine calls
the ccmn io ccb bld routine to obtain a SCSI 110 CCB structure. It
uses the ms_index parameter to index into the Mode Select Table pointed to
by the dd modsel tbl member of the Device Descriptor Structure for
the SCSI device. The ccmn mode select routine calls the
ccmn send ccb wait routine tosend the SCSI 110 CCB to the XPT and
wait for it to compiete. The ccmn mode select routine sleeps at a non
interruptible priority. It requires the callback completion function to issue a
wakeup call on the address of the CCB.

Return Value
CCB _SCSIIO pointer

See Also
ccmn io _ ccb _ bld, ccmn send ccb wait

SCSI/CAM Routines C-43

Name

ccmn_open_unit - Handles the common open for all SCSI/CAM peripheral
device drivers

Syntax
ccmn_open_unit(dev, scsi_dev_type, flag, dev_size)
dev_t dev;
u_Iong scsCdev _type;
u_Iong flag;
u_Iong dev _size;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

scsCdev _type

flag

dev_size

Descri ption

SCSI device type value from Inquiry data.

Indicates whether or not the device is being opened for exclusive
use. A setting of 1 means exclusive use; a setting of 0 (zero)
means nonexclusive use.

The device-specific structure size in bytes.

The ccmn open unit routine handles the common open for all
SCSI/CAM-peripheral device drivers. It must be called for each open before
any SCSI device-specific open code is executed.

On the first call to the ccmn open unit routine for a device, the
ccmn gdev ccb bId routIne is called to issue a GET DEVICE TYPE
CCB to obtain the inquiry data. The ccmn open unit routine allocates
the Peripheral Device Structure, PDRV _DEVicE, and a device-specific
structure, either TAPE_SPECIFIC or DISK_SPECIFIC, based on the device
size argument passed. The routine also searches the cam devdesc tab
to obtain a pointer to the Device Descriptor Structure for the SCSI deVIce and
increments the open count. The statically allocated pdrv unit table
structure contains a pointer to the PDRV _DEVICE structure. The-
PDRV _DEVICE structure contains pointers to the DEV _DESC structure and
to the device-specific structure.

C-44 SCSI/CAM Routines

Return Value
The ccmn open unit routine returns a value of 0 (zero) upon successful
completion:- -

Diagnostics
The ccmn _ open _ uni t routine fails under the following conditions:

[EBUSY] The device is already opened and the exclusive use bit is
set.

[ENXIO]

[EFAULT]

See Also

The device does not exist or the scsi_dev _type parameter
does not match the device type in the Inquiry data returned
by GET DEVICE TYPE CCB. The scsi_dev_type was not
configured.

The device requested would go beyond the size of the
pdrv _ uni t _table.

SCSI/CAM Routines C-4S

Name
ccmn_pinq_ccb_bld - Creates a PATH INQUIRY CCB and sends it to the
XPT

Syntax
ccmn_pinq_ccb_bld(dev, camJlags)
dev_t dev;
u_long camJlags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJlags The camJlags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

C-46 SCSI/CAM Routines

Description

Flag Name Description

CAM _ SIM _QFREEZE Return SIM queue to frozen state

CAM _ SIM _QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

The ccmn pinq ccb bId routine creates a PATH INQUIRY CCB and
sends it to the XPT. Theroutine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion-of the CCB header.
The routine calls the ccmn send ccb routine to send the CCB structure
to the XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

SCSI/CAM Routines C-47

Return Value
CCB_PATHINQ pointer

See Also
ccmn_get_ccb, ccmn send ccb

C-48 SCSI/CAM Routines

Name
ccmn_rel_bp - Deallocates a bu f structure

Syntax
ccmn_reLbp(bp)
struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The ccmn _ rel_ bp routine deallocates a buf structure.

Return Value
None

SCSI/CAM Routines C-49

Name
ccmn_rel_ccb - Releases a CCB and returns the sense data buffer for SCSI
I/O CCBs, if allocated

Syntax
ccmn_reLccb(ccb)
CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure to be
released.

Description
The ccmn rel ccb routine releases a CCB and returns the sense data
buffer for SCSI I/O CCBs, if allocated. The routine calls the
xpt ccb free routine to release a CCB structure. For SCSI I/O CCBs, if
the sense data length is greater than the default sense data length, the
ccmn rel ccb routine calls the ccmn rel dbuf routine to return the
sense data buffer to the data buffer pool.

Return Value
None

See Also

C-50 SCSI/CAM Routines

Name
ccmn_rel_dbuf - Deallocates a data buffer

Syntax
ccmn_re'-dbuf(addr, size)
u_char *addr;
U32 size;

Arguments

addr Pointer to the address of the data buffer to deallocate.

size Number of bytes to deallocate.

Description
The ccmn reI dbuf routine deallocates a data buffer.

Return Value
None

SCSI/CAM Routines C-51

Name
ccmn_rem_ccb - Removes a SCSI 110 CCB request from the SCSIICAM
peripheral driver active queue and starts a tagged request if a tagged CCB is
pending

Syntax
ccmn_rem_ccb(pd,ccb)
PDRV _DEVICE *pd;
CCB_SCSIIO *ccb;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each
SCSI device in the system.

ccb Pointer to the SCSI 110 CCB structure to remove from the active
queue.

Description
The ccmn rem ccb routine removes a SCSI 110 CCB request from the
SCSIICAM-peripheral driver active queue and starts a tagged request if a
tagged CCB is pending. If a tagged CCB is pending, the ccmn rem ccb
routine places the request on the active queue and calls the xpt - actIon
routine to start the tagged request. -

Return Value
None

See Also
xpt_action

C-52 SCSI/CAM Routines

Name
ccmn_rsq_ccb_bld - Creates a RELEASE SIM QUEUE CCB and sends it to
the XPT

Syntax
ccmn_rsq_ccb_bld(dev, camJiags)
dev_t dev;
u_Iong camJiags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM _ S IM _QHEAD Place CCB at head of SIM queue

SCSI/CAM Routines C-53

Description

Flag Name Description

CAM_SIM_QFREEZE Return SIM queue to frozen state

CAM_SIM _QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from RBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for RBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gather/buffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHY S Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

The ccmn rsq ccb bld routine creates a RELEASE SIM QUEUE CCB
and sends itto theXPT-:- The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion of die CCB header.
The routine calls the ccmn send ccb routine to send the CCB structure
to the XPT. The request is carried out immediately, so it is not placed on the
device driver's active queue.

C-S4 SCSI/CAM Routines

Return Value
CCB_RELSIM pointer

See Also
ccmn _get _ ccb, ccmn send ccb

SCSI/CAM Routines C-55

Name
ccmn_sasy _ccb_bld - Creates a SET ASYNCHRONOUS CALLBACK CCB

. and sends it to the XPT

Syntax
ccmn_sasy_ccb_bld(dev, camJlags, asyncJlags, callbJunc, buf, buflen)
dev_t dev;
u_Iong camJlags;
u_Iong asyncJlags;
void (*callbJunc) 0;
u_char *buf;
u_char buflen;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJlags The camJlags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

C-56 SCSI/CAM Routines

Flag Name

CAM DIS SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_SIM_QFRZDIS

CAM ENG SYNC

CAM ENG SGLIST

CAM CDB PHYS

CAM DATA PHYS

CAM SNS BUF PHYS

CAM MSG BUF PHYS

CAM NXT CCB PHYS

CAM CALLBCK PHYS

CAM DATAB VALID

CAM STATUS VALID

CAM MSGB VALID

CAM TGT PHASE MODE

CAM TGT CCB AVAIL

CAM DIS AUTODISC

CAM DIS AUTOSRP

Description

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Disable the SIM Q frozen state

Flush residual bytes from RBA
data engine before terminating I/O

Scatter/gather list is for RBA
engine

CDB pointer is physical address

Scatter/gatherlbuffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

asyncJlags Asynchronous Callback CCB flags for registering a callback
routine for a specific bus, target, and LUN. The flags are defined
in the /usr/sys/include/io/cam/cam.h file.

callbJunc Asynchronous callback function.

buf SCSI/CAM peripheral buffer for asynchronous information.

bufien Allocated SCSI/CAM peripheral buffer length.

SCSI/CAM Routines C-57

Description
The ccmn sasy ccb bId routine creates a SET ASYNCHRONOUS
CALLBACK CCB-and sends it to the XPT. The routine calls the
ccmn get ccb routine to allocate a CCB structure and fill in the common
portion of the CCB header. The routine fills in the asynchronous fields of the
CCB and calls the ccmn send ccb routine to send the CCB structure to
the XPT. The request is carried Out immediately, so it is not placed on the
device driver's active queue.

Return Value
CCB_SETASYNC pointer

See Also
ccmn _get _ ccb, ccmn send ccb

C-58 SCSI/CAM Routines

Name
ccmn_sdev _ccb_bld - Creates a SET DEVICE TYPE CCB and sends it to
the XPT

Syntax
ccmn_sdev_ccb_bld(dev, camJiags, scsLdev_type)
dev_t dev;
u_Iong camJiags;
u_char scsLdev _type;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable autosense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

SCSI/CAM Routines C-59

Flag Name

CAM ENG SYNC

CAM ENG SGLIST

Description

Place CCB at head of SIM queue

Return SIM queue to frozen state

Disable the SIM Q frozen state

Flush residual bytes from HBA
data engine before terminating I/O

Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

scsLdev _type
SCSI device type value from Inquiry data.

Description
The ccmn sdev ccb bId routine creates a SET DEVICE TYPE CCB
and sends itto the)CPT. -The routine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine fills in the device type field of the CCB and calls the
ccmn send ccb routine to send the CCB structure to the XPT. The
requeSt is carrIed out immediately, so it is not placed on the device driver's
active queue.

C-60 SCSI/CAM Routines

Return Value
CCB_SETDEV pointer

See Also
ccmn _get _ ccb, ccmn send ccb

SCSI/CAM Routines C-61

Name
ccmn_send_ccb - Sends CCBs to the XPT layer by calling the
xpt _action routine

Syntax
ccmn_send_ccb(pd,ccb, retry)
PDRV _DEVICE *pd;
CCB_HEADER *ccb;
u_char retry

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each
SCSI device in the system.

ccb Pointer to the CAM Control Block (CCB) header structure to be sent
to the xpt _action routine to handle the request.

retry Indicates whether this request is a retry of a request that is already
on the active queue. A 1 indicates RETRY, and a 0 (zero) indicates
NOT_RETRY.

Description
The ccmn send ccb routine sends CCBs to the XPT layer by calling the
xpt action routine. This routine must be called with the Peripheral
DevICe Structure locked.

For SCSI I/O CCBs that are not retries, the request is placed on the active
queue. If the CCB is a tagged request and the tag queue size for the device
has been reached, the request is placed on the tagged pending queue so that
the request can be sent to the XPT at a later time. A high-water mark of
half the queue depth for the SCSI device is used for tagged requests so that
other initiators on the SCSI bus will not be blocked from using the device.

Return Value
Value returned from the xpt _action routine.

C-62 SCSI/CAM Routines

See Also
xpt_action

SCSI/CAM Routines C-63

Name
ccmn_send_ccb_wait - Sends CCBs to the XPT layer by calling the
xpt _action routine and sleeps while waiting for the CCB to complete.

Syntax
ccmn_send_ccb_wait(pd,ccb, retry, sleep-pri)
PDRV _DEVICE *pd;
CCB_HEADER *ccb;
u_char retry
int sleep-pri

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each
SCSI device in the system.

ccb Pointer to the CAM Control Block (CCB) header structure to be
sent to the xpt _action routine to handle the request.

retry Indicates whether this request is a retry of a request that is already
on the active queue. A 1 indicates RETRY, and a 0 (zero)
indicates NOT_RETRY.

sleep-pri Specifies the priority at which to sleep.

Description
The ccmn send ccb wait routine sends CCBs to the XPT layer by
calling the xpt action routine. Then, it calls sleep to wait for the
CCB to complete. The routine sleeps on the address of the CCB at the
priority specified by sleep-pri. This routine requires the callback completion
function for the SCSI IJO CCB to issue a wakeup call on the address of the
CCB. The ccmn send ccb wait routine should only be called to send
SCSI IJO CCBs tothe XPT layer. This routine must be called with the
Peripheral Device Structure locked.

For SCSI IJO CCBs that are not retries, the request is placed on the active
queue. If the CCB is a tagged request and the tag queue size for the device
has been reached, the request is placed on the tagged pending queue so that
the request can be sent to the XPT at a later time. A high-water mark of
half the queue depth for the SCSI device is used for tagged requests so that
other initiators on the SCSI bus will not be blocked from using the device.

C-64 SCSI/CAM Routines

Return Value
The following values can be returned:

Value

EINTR

o

See Also

Description

The sleep was interrupted by a signal. This status
can only occur if the sleep-priority is interruptible.
The CCB has completed either because it received
the return value from xpt action or because a
wakeup was issued by the callback completion
function.

SCSI/CAM Routines C-65

Name
ccmn_start_unit - Creates a SCSI 110 CCB for the START UNIT command,
sends it to the XPT for processing, and sleeps waiting for it to complete

Syntax
ccmn_start_unit(pd, sense_len, camJiags, compJunc, tag_action, timeout)
PDRV _DEVICE *pd;
u_short sense_len;
u_Iong camJiags;
void (*compJunc) 0;
u_char tag_action;
u_Iong timeout;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

sense_len Length of the sense data buffer to be returned on autosense,
which is predefined as 64 bytes in the
DEC_AUTO_SENSE_SIZE environment variable but can be
larger.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name

CAM DIR RESV

CAM DIR IN

CAM DIR OUT

CAM DIR NONE

CAM DIS AUTOSENSE

CAM SCATTER VALID

CAM DIS CALLBACK

CAM CDB LINKED

CAM_QUEUE_ENABLE

CAM CDB POINTER

C-66 SCSI/CAM Routines

Descri ption

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable auto sense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Flag Name Description

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

CAM _ SIM _QFREEZE Return SIM queue to frozen state

CAM_SIM_QFRZDIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHY S Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

compJunc SCSI device driver I/O callback completion function. This
pointer may be NULL if the CAM DISABLE CALLBACK bit is
set in the CAM FLAGS field.

tag_action Type of action to perform for tagged requests:

SCSI/CAM Routines C-67

CAM_SIMPLE_QTAG
CAM_HEAD_QTAG
CAM_ORDERED_QTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates
the default, which is five seconds.

Description
The ccmn start unit routine creates a SCSI 110 CCB for the START
UNIT command and-sends it to the XPT for processing.

The ccmn start unit routine calls the ccmn io ccb bld routine
to obtain a SCSI IIO-CCB structure. The ccmn start unit routine
calls the ccmn send ccb wait routine to send the SCSI 110 CCB to the
XPT and wait for it to complete. The ccmn start unit routine sleeps at
a non-interruptible priority. It requires the cailback completion function to
issue a wakeup call on the address of the CCB.

Return Value
CCB_SCSIIO pointer

See Also
ccmn io_ccb_bld, ccmn send ccb wait

C-68 SCSI/CAM Routines

Name
ccmn_term_ccb_bld - Creates a TERMINATE I/O CCB and sends it to the
XPT

Syntax
ccmn_term_ccb_bld{dev, camJiags, term_ccb)
dev_t dev;
u_Iong camJiags;
CCB_HEADER *term_ccb;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Description

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable auto sense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

SCSI/CAM Routines C-69

Flag Name

CAM_SIM_QFRZDIS

CAM ENG SYNC

CAM ENG SGLIST

Descri ption

Place CCB at head of SIM queue

Return SIM queue to frozen state

Disable the SIM Q frozen state

Flush residual bytes from HBA
data engine before terminating I/O

Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

term_ccb Pointer to the CAM Control Block (CCB) header structure to
terminate.

Description
The ccmn term ccb bId routine creates a TERMINATE 1/0 CCB and
sends it to the XPT. Theroutine calls the ccmn get ccb routine to
allocate a CCB structure and fill in the common portion-of the CCB header.
The routine fills in the CCB to be terminated and calls the
ccmn send ccb routine to send the CCB structure to the XPT. The
request is carrIed out immediately, so it is not placed on the device driver's
active queue.

C-70 SCSI/CAM Routines

Return Value
CCB_TERMIO pointer

See Also
ccmn _get _ ccb, ccmn send ccb

SCSI/CAM Routines C-71

Name
ccmn_term_que - Sends a TERMINATE va CCB request for each SCSI va
CCB on the active queue

Syntax
ccmn_term_que(pd)
PDRV _DEVICE *pd;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each
SCSI device in the system.

Description
The ccmn term que routine sends a TERM INA TE I/O CCB request for
each SCSI 170 CCB on the active queue. This routine must be called with
the Peripheral Device Structure locked.

The ccmn term que routine calls the ccmn term ccb bId routine
to create a TERMINATE va CCB for the first active CCB onthe active
queue and send it to the XPT. It calls the ccmn send ccb routine to send
the TERMINATE va CCB for each of the other-CCBs on the active queue
that are marked as active to the XPT. The ccmn term que routine then
calls the ccmn reI ccb routine to return the TERMINATE va CCB to
the XPT.

Return Value
None

See Also
ccmn _ rel_ ccb, ccmn send ccb

C-72 SCSI/CAM Routines

Name
ccmn_tur - Creates a SCSI I/O CCB for the TEST UNIT READY command,
sends it to the XPT for processing, and sleeps while waiting for it to
complete.

Syntax
ccmn_tur(pd, sense_len, camJiags, compJunc, tag_action, timeout)
PDRV _DEVICE *pd;
u_short sense_len;
u_Iong camJiags;
void (*compJunc) 0;
u_char tag_action;
u_Iong timeout;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

sense_len Length of the sense data buffer to be returned on autosense,
which is predefined as 64 bytes in the
DEC_AUTO_SENSE_SIZE environment variable but can be
larger.

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name

CAM DIR RESV

CAM DIR IN

CAM DIR OUT

CAM DIR NONE

CAM DIS AUTOSENSE

CAM SCATTER VALID

CAM DIS CALLBACK

CAM CDB LINKED

CAM_QUEUE_ENABLE

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable auto sense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

SCSI/CAM Routines C-73

Flag Name Description

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

CAM_ SIM _QFREEZE Return SIM queue to frozen state

CAM _ S 1M _ QFRZ DIS Disable the SIM Q frozen state

CAM ENG SYNC Flush residual bytes from HBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for HBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gather/buffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUP PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

compJunc SCSI device driver I/O callback completion function. This
pointer may be NULL if the CAM DISABLE CALLBACK bit is
set in the CAM FLAGS field.

C-74 SCSI/CAM Routines

tag_action Type of action to perform for tagged requests:

CAM_SIMPLE_QTAG
CAM_HEAD_QTAG
CAM_ORDERED_QTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates
the default, which is five seconds.

Description
The ccmn tur routine creates a SCSI I/O CCB for the TEST UNIT
READY command and sends it to the XPT for processing.

The ccmn tur routine calls the ccmn io ccb bId routine to obtain a
SCSI I/O CCB structure. The ccmn tur routine calls the
ccmn send ccb wait routine to send the SCSI I/O CCB to the XPT and
waits fur it tocomplete. The ccmn tur routine sleeps at a non
interruptible priority. It requires the-callback completion function to issue a
wakeup call on the address of the CCB.

Return Value
CCB_SCSIIO pointer

See Also
ccmn io_ccb_bld, ccmn send ccb wait

SCSI/CAM Routines C-75

C.39 cdbg_CamFunction

Name
cdbg_CamFunction - Reports CAM XPT function codes

Syntax
char * cdb9_CamFunction(camJunction, reportJormat)
register u_char camJunction;
int reportJormat;

Arguments

camJunction The entry from the CAM XPT Function Code Table.

reportJormat The format of the message text returned, which can be
CDBG_BRIEF or CDBG_FULL.

Description
The cdbg CamFunction routine reports CAM XPT function codes.
Program constants are defined to allow either the function code name only or
a brief explanation to be printed. The XPT function codes are defined in the
/usr /sys/ include/ io/cam/cam. h file.

Return Value
Returns a character pointer to a text string.

C-76 SCSI/CAM Routines

C.40 cdbg_CamStatus

Name
cdbg_CamStatus - Decodes CAM CCB status codes

Syntax
char * cdb9_CamStatus(cam_status, reportJormat)
register u_char cam_status;
int reportJormat;

Arguments

cam_status The information from the CAM SCSI 110 CCB.

reportJormat The format of the message text returned, which can be
CDBG_BRIEF or CDBG_FULL.

Description
The cdbg CamStatus routine decodes CAM CCB status codes. Program
constants are defined to allow either the status code name only or a brief
explanation to be printed. The CAM status codes are defined in the
/usr/sys/include/io/cam/cam.hfi~.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines C-77

C.41 cdbg_DumpABORT

Name
cdbg_DumpABORT - Dumps the contents of an ABORT CCB

Syntax
void cdbg_DumpABORT(ccb)
register CCB_ABORT *ccb;

Arguments

ccb Pointer to the ABORT CCB.

Description
The cdbg DumpABORT routine dumps the contents of an ABORT CCB.
The ABORT CCB is defined in the
/usr/sys/include/io/cam/cam.hfi~.

Return Value
None

C-78 SCSI/CAM Routines

C.42 cdbg_DumpBuffer

Name
void cdbg_DumpBuffer - Dumps the contents of a data buffer in hexadecimal
bytes

Syntax
void cdbg_DumpBuffer(bujfer, size)
char * buffer;
register int size;

Arguments

buffer SCSI/CAM peripheral buffer pointer.

size Size of buffer in bytes.

Description
The cdbg DumpBuffer routine dumps the contents of a data buffer in
hexadecimal bytes. The calling routine must display a header line. The
format of the dump is 16 bytes per line.

Return Value
None

SCSI/CAM Routines C-79

C.43 cdbg_DumpCCBHeader

Name
cdbg_DumpCCBHeader - Dumps the contents of a CAM Control Block
(CCB) header structure

Syntax
void cdbg_DumpCCBHeader(ccb)
register CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure.

Description
The cdbg DumpCCBHeader routine dumps the contents of a CAM
Control Block (CCB) header structure. The CAM Control Block (CCB)
header structure is defined in the lusrlsys/include/io/cam/cam.h
file.

Return Value
None

C-80 SCSI/CAM Routines

C.44 cdbg_DumpCCBHeaderFlags

Name
cdbg_DumpCCBHeaderFlags - Dumps the contents of the cam _flags
member of a CAM Control Block (CCB) header structure

Syntax
void cdbg_DumpCCBHeaderFlags(camJiags)
register u_Iong camJiags;

Arguments

camJiags The camJiags flag names and their bit definitions are listed in
the table that follows:

Flag Name Descri ption

CAM DIR RESV Data direction (00: reserved)

CAM DIR IN Data direction (01: DATA IN)

CAM DIR OUT Data direction (10: DATA OUT)

CAM DIR NONE Data direction (11: no data)

CAM DIS AUTOSENSE Disable auto sense feature

CAM SCATTER VALID Scatter/gather list is valid

CAM DIS CALLBACK Disable callback feature

CAM CDB LINKED CCB contains linked CDB

CAM_QUEUE _ENABLE SIM queue actions are enabled

CAM CDB POINTER CDB field contains pointer

CAM DIS DISCONNECT Disable disconnect

CAM INITIATE SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

CAM DIS SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

CAM_SIM_QFREEZE Return SIM queue to frozen state

CAM _ SIM _QFRZDIS Disable the SIM Q frozen state

SCSI/CAM Routines C-81

Description

Flag Name Description

CAM ENG SYNC Flush residual bytes from RBA
data engine before terminating I/O

CAM ENG SGLIST Scatter/gather list is for RBA
engine

CAM CDB PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gatherlbuffer data pointers
are physical address

CAM SNS BUF PHYS Autosense data pointer is physical
address

CAM MSG BUF PHYS Message buffer pointer is physical
address

CAM NXT CCB PHYS Next CCB pointer is physical
address

CAM CALLBCK PHYS Callback function pointer is
physical address

CAM DATAB VALID Data buffer valid

CAM STATUS VALID Status buffer valid

CAM MSGB VALID Message buffer valid

CAM TGT PHASE MODE SIM will run in phase mode

CAM TGT CCB AVAIL Target CCB available

CAM DIS AUTODISC Disable autodisconnect

CAM DIS AUTOSRP Disable autosave/restore pointers

The cdbg DumpCCBHeaderFlags routine dumps the contents of the
cam flags member of a CAM Control Block (CCB) header structure. The
CAM Control Block (CCB) header structure is defined in the
/usr/sys/include/io/cam/cam.hfi~.

Return Value
None

C-82 SCSI/CAM Routines

C.4S cdbg_DumplnquiryData

Name
cdbg_DumplnquiryData - Dumps the contents of an ALL_INQ_DAT A
structure

Syntax
void cdbg_Dumpl nqui ryData(inquiry)
register ALL_INQ_DA TA *inquiry;

Arguments

inquiry Pointer to the ALL_INQ_DATA structure.

Description
The cdbg DumplnquiryData routine dumps the contents of an
ALL_INQj)ATA structure. The ALL_INQ_DATA structure is defined in
ilie /usr/sys/include/io/cam/scsi_all.hfi~.

Return Value
None

SCSI/CAM Routines C-83

C.46 cdbg_DumpPDRVws

Name
cdbg_DumpPDRVws - Dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure

Syntax
void cdbg_DumpPDRVws(pws)
register PDRV _ WS *pws;

Arguments

pws Pointer to the SCSI/CAM Peripheral Device Driver Working Set
Structure.

Description
The cdbg DumpPDRVws routine dumps the contents of a SCSI/CAM
Peripheral Device Driver Working Set Structure. The SCSI/CAM Peripheral
Device Driver Working Set Structure is defined in the
/usr/sys/include/io/cam/pdrv.hfi~.

Return Value
None

C-84 SCSI/CAM Routines

C.47 cdbg_DumpSCSIlO

Name
cdbg_DumpSCSIIO - Dumps the contents of a SCSI I/O CCB

Syntax
void cdbg_DumpSCSIIO(ccb)
register CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI I/O CCB structure.

Description
The cdbg DumpSCSIIO routine dumps the contents of a SCSI I/O CCB.
The SCSI jio CCB is defined in the
/usr/sys/include/io/cam/cam.hfi~.

Return Value
None

SCSI/CAM Routines C-85

C.48 cdbg_DumpTERMIO

Name
cdbg_DumpTERMIO - Dumps the contents of a TERMINATE 110 CCB

Syntax
void cdbg_DumpTERMIO(ccb)
register CCB_TERMIO *ccb;

Arguments

ccb Pointer to the TERMINATE 110 CCB.

Description
The cdbg DumpTERMIO routine dumps the contents of a TERMINATE
110 CCB. The TERMINATE 110 CCB is defined in the
lusrlsys/include/io/cam/cam.hfik.

Return Value
None

C-86 SCSI/CAM Routines

C.49 cdbg_GetDeviceName

Name
cdbg_GetDeviceName - Returns a pointer to a character string describing the
dtype member of an ALL_INQ_DATA structure

Syntax
char * cdbg_GetDeviceName(device_type)
register device_type;

Arguments

device_type SCSI device type value from Inquiry data.

Description
The cdbg GetDeviceName routine returns a pointer to a character string
describing iiie dtype member of an ALL_INQ_DATA structure. The
ALL_INQ_DATA structure is defined in the
/usr/sys/include/io/cam/scsi_all.hfi~.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines C-87

C.50 cdbg_ScsiStatus

Name
cdbg_ScsiStatus - Reports SCSI status codes

Syntax
char * cdb9_ScsiStatus(scsi_status, reportJormat)
register u_char scsi_status;
int rep 0 rtJo rmat;

Arguments

scsi_status The SCSI status from the CAM SCSI VO CCB.

rep 0 rtJo rmat

Description

The format of the message text returned, which can be
CDBG_BRIEF or CDBG_FULL.

The cdbg ScsiStatus routine reports SCSI status codes. Program
constants are defined to allow either the status code name only or a brief
explanation to be printed. The SCSI status codes are defined in the
/usr/sys/include/io/cam/scsi_status.hfik.

Return Value
Returns a character pointer to a text string.

C-88 SCSI/CAM Routines

C.S1 cdbg_SystemStatus

Name
cdbg_SystemStatus - Reports system error codes

Syntax
char * cdb9_SystemStatus(errno)
int errno;

Arguments

errno The error number.

Description
The cdbg_SystemStatus routine reports system error codes. The system error
codes are defined in the /usr/sys/include/sys/errno.h file.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines C-89

C.S2 cgen_async

Name
cgen_async - Handles notification of asynchronous events

Syntax
void cgen_async(opcode, path_id, target, fun, buj-ptr, data_cnt)
u_Iong opcode;
u_char path_id;
u_char target;
u_char fun;
caddr_t buj-ptr;
u_char data_cnt;

Arguments

opcode

path_id

target

fun

buj-ptr

data_cnt

Description

SCSI asynchronous callback operation code.

SCSI target's bus controller number.

SCSI target's ID number.

SCSI target's logical unit number.

Buffer address for Asynchronous Event Notification (AEN).

Number of bytes the XPT had to transfer from the SIM's buffer
or the limit of the SCSI/CAM peripheral buffer.

The cgen async routine handles notification of asynchronous events. The
routine is cailed when an Asynchronous Event Notification(AEN), Bus
Device Reset (BDR), or Bus Reset (BR) occurs. The routine sets the
CGEN_RESET_STATE flag and clears the CGEN_RESET_PEND_STATE
flag for BDRs and bus resets. The routine sets the
CGEN_UNIT_ATTEN_STATE flag for AENs.

Return Value
None

C-90 SCSI/CAM Routines

C.S3 cgen_attach

Name
cgen_attach - Is called for each bus, target, and LUN after the
cgen _slave routine returns SUCCESS

Syntax
cgen_attach (device)
struct device *device;

Arguments

device Pointer to the device information contained in the device
structure.

Description
The cgen attach routine is called for each bus, target, and LUN after the
cgen slave routine returns SUCCESS. The routine calls the
ccmn:= open _ uni t routine, passing the bus, target, and LUN information.

The cgen attach routine calls the ccmn close unit routine to
close the device. If a device of the specified tYpe is found, the device
identification string is printed.

Return Value
PROBE_FAILURE
PROBE_SUCCESS

See Also

SCSI/CAM Routines C-91

Name
cgen_ccb_chkcond - Decodes the autosense data for a device driver

Syntax
cgen_ ccb _ch kcond(pdrv _dev, ccb)
PDRV _DEVICE *pdrv_dev;
CCB_SCSIIO *ccb;

Arguments

pdrv _de v Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

ccb Pointer to the SCSI I/O CCB structure.

Description
The cgen ccb chkcond routine decodes the autosense data for a device
driver and returnsthe appropriate status to the calling routine. The routine is
called when a SCSI 110 CCB is returned with a CAM status of
CAM_REQ_CMP _ERR (request completed with error) and a SCSI status of
SCSI_STAT_CHECK_CONDITION. The routine also sets the appropriate
flags in the Generic-Specific Structure.

Return Value
An integer indicating one of the following values:

Flag Name

CHK CHK NOSENSE

Description

Request sense did not complete
without error. Sense buffer
contents cannot be used to
determine error condition.

CHK SENSE NOT VALID Valid bit in sense buffer is not set;
sense data is useless.

CHK EOM End of media detected.

CHK FILEMARK Filemark detected.

CHK ILl Incorrect record length detected.

C-92 SCSI/CAM Routines

Flag Name

CHK NOSENSE BITS

CHK SOFTERR

CHK NOT READY

CHK HARDERR

CHK UNIT ATTEN

CHK DATA PROT

CHK UNSUPPORTED

CHK CMD ABORTED

CHK INFORMATIONAL

CHK UNKNOWN KEY

Description

Sense key equals no sense, but
there are no bits set in byte 2 of
sense data.

Soft error detected; corrected by
unit.

Unit is not ready.

Unit has detected a hard error.

Unit has either had media change
or just powered up.

Unit is write protected.

Sense key that is unsupported has
been returned.

Unit aborted this command.

Unit is reporting informational
message.

Unit has returned sense key that is
not supported by SCSI 2
specification.

SCSI/CAM Routines C-93

C.S5 cgen_close

Name
cgen_close - Closes the device

Syntax
cgen_close(dev, flags, fmt)
dev_t dev;
intflags;
intfmt;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

flags Flags set when a file is open.

fmt Indicates whether to close the character or block device.

Description
The cgen close routine closes the device. The routine checks any
device flagsthat are defined to see if action is required, such as rewind on
close or release the unit. The cgen close closes the device by calling the
ccrnn close unit routine. -

Return Value
The cgen close routine returns GENERIC_SUCCESS upon successful
completion:-

Diagnostics
The cgen _close routine fails under the following condition:

[ENOMEM] Resource problem

See Also
ccrnn close unit

C-94 SCSI/CAM Routines

C.S6 cgen_done

Name
cgen_done - Serves as the entry point for all nonread and non write I/O
callbacks

Syntax
cgen_done(ccb)
CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 110 CCB structure.

Description
The cgen done routine is the the entry point for all nonread and nonwrite
I/O callbacks. The generic device driver uses two callback entry points, one
for all nonuser 110 requests and one for all user I/O requests. The
SCSI/CAM peripheral device driver writer can declare multiple callback
routines for each type of command and can fill the CCB with the address of
the appropriate callback routine.

This is a generic routine for all nonread and nonwrite SCSI I/O CCBs. The
SCSI 1/0 CCB should not contain a pointer to a buf structure in the
cam req map member of the structure. If it does, then a wake-up call is
issued on the address of the CCB and the error is reported. If the SCSI I/O
CCB does not contain a pointer to a buf structure in the cam req map
member, then a wake-up call is issued on the address of the CCB andthe
CCB is removed from the active queues. No CCB completion status is
checked because that is the responsibility of the routine that created the CCB
and is waiting for completion status. When this routine is entered, context is
on the interrupt stack and the driver cannot sleep waiting for an event.

Return Value
None

SCSI/CAM Routines C-95

C.S7 cgen_ioctl

Name
cgen_ioctl - Handles user process requests for specific actions other than
read, write, open, or close for SCSI tape devices

Syntax
cgen_ioctl(dev, cmd, data, flags)
dev_t dev;
int cmd;
caddt_t data;
intflags;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

cmd The ioctl command, DEVIOCGET.

data Pointer to the kernel copy of the structure passed by the user
process.

flags User process flags.

Description
The cgen ioctl routine handles user process requests for specific actions
other than read, write, open, or close for SCSI tape devices. The routine
currently issues a DEVIOCGET ioctl command for the device, which fills
out the devget structure passed in, and then calls the cgen mode sns
routine which issues a SCSI_MODE_SENSE to the device to determine the
device's state. The routine then calls the ccmn reI ccb routine to
release the CCB. When the call to cgen mode sns completes, the
cgen ioctl routine fills out the rest of the devget structure based on
information contained in the mode sense data.

Return Value
[EINV AL] Invalid command.

C-96 SCSI/CAM Routines

See Also
ccmn_rel_ccb, cgen_mode_sns, ioctl(2)

SCSI/CAM Routines C-97

C.58 cgen_iodone

Name
cgen_iodone - Serves as the entry point for all read and write I/O callbacks

Syntax
cgen_iodone(ccb)
CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 110 CCB structure.

Description
The cgen iodone routine is the entry point for all read and write I/O
callbacks. This is a generic routine for all read and write SCSI 110 CCBs.
The SCSI 110 CCB should contain a pointer to a bu f structure in the
cam req map member of the structure. If it does not, then a wake-up call
is issued on the address of the CCB and the error is reported. If the SCSI
110 CCB does contain a pointer to a buf structure in the cam req map
member, as it should, then the completion status is decoded. Dependmg on
the CCB' s completion status, the correct fields within the buf structure are
filled out.

The device's active queues may need to be aborted because of errors or
because the device is a sequential access device and the transaction was an
asynchronous request.

The CCB is removed from the active queues by a call to the
ccmn rem ccb routine and is released back to the free CCB pool by a call
to the -ccmn rel ccb routine. When the cgen iodone routine is
entered, context is on the interrupt stack and the driver cannot sleep waiting
for an event.

Return Value
None

C-98 SCSI/CAM Routines

See Also
ccmn_rem_ccb, ccmn reI ccb

SCSI/CAM Routines C-99

C.S9 cgen_minphys

Name
cgen_minphys - Compares the b bcount with the maximum transfer limit
for the device

Syntax
cgen_minphys(bp)
register struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The cgen minphys routine compares the b bcount with the maximum
transfer limIt for the device. The routine compares the b bcount field in
the buf structure with the maximum transfer limit for the device in the
Device Descriptor Structure. The count is adjusted if it is greater than the
limit.

Return Value
None

C-100 SCSI/CAM Routines

Name
cgen_mode_sns - Issues a SCSI_MODE_SENSE command to the unit
defined

Syntax
cgen_mode_sns(pdrv_dev, action, done, page_code, page_ctrl, sleep)
PDRV _DEVICE *pdrv_dev;
CGEN_ACTION *action;
void (*done) 0;
u_char page_code;
u_char page_ctrl;
u_Iong sleep;

Arguments

pdrv _dev Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

action Pointer to the caller's Generic Action Structure.

done The address of the completion routine to be called when the
SCSI command completes.

page_code The user process's target page.

page_ctrl The page control settings field.

sleep Whether or not the GENERIC_SLEEP flag is set.

Description
The cgen mode sns routine issues a SCSI_MODE_SENSE command to
the unit defined. The CGEN_ACTION structure is filled in for the calling
routine based on the completion status of the CCB.

Return Value
NULL - command could not be issued
CCB_SCSIIO pointer

SCSI/CAM Routines C-101

See Also
ccmn ccb status

C-102 SCSI/CAM Routines

C.61 egen_open

Name
cgen_open - Is called by the kernel when a user process requests an open of
the device

Syntax
cgen_open(dev, flags, Imt)
dev_t dev;
intflags;
intlmt;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

flags Flags set when a file is open.

Imt Indicates whether to open the character or block device.

Description
The c gen open routine is called by the kernel when a user process
requests an open of the device. The cgen open routine calls the
ccmn open unit routine, which manages the SMP _LOCKS and, if
passedthe exclusive use flag for SCSI devices, makes sure that no other
process has opened the device. If the ccmn open unit routine returns
success, the necessary data structures are allocated. -

The cgen open routine calls the ccmn sasy ccb bId routine to
register for asynchronous event notification-for the-device. The
cgen open routine then enters a for loop based on the power-up time
specified in the Device Descriptor Structure for the device. Within the loop,
calls are made to the cgen ready routine, which calls the ccmn tur
routine to issue a TEST UNIT READY command to the device. -

The cgen open routine calls the ccmn reI ccb routine to release the
CCB. The -cgen open routine checks certain state flags for the device to
decide whether to send the initial SCSI mode select pages to the device.
Depending on the setting of the state flags CGEN_ UNIT _A TTEN_STA TE
and CGEN_RESET_STATE, the cgen open routine calls the
cgen open sel routine for each mode select page to be sent to the
devic;- The cgen_ open _ sel routine fills out the Generic Action

SCSI/CAM Routines C-103

Structure based on the completion status of the CCB for each mode select
page it sends.

Return Value
The cgen open routine returns GENERIC_SUCCESS upon successful
completion~

Diagnostics
The cgen _open routine fails under the following conditions:

[EBUSY] The device is already opened and the exclusive use bit is
set.

[ENOMEM]

[EINVAL]

[ENXIO]

[EIO]

See Also

Resource problem

The scsi_dev _type parameter does not match the device
type in the Inquiry data returned by GET DEVICE TYPE
CCB. The scsi_dev _type was not configured.

The device does not exist.

Check device conditions.

ccmn_close_unit, ccmn_open_unit, ccmn_rel_ccb,
ccmn sasy ccb bld, ccmn_tur, cgen open sel,
cgen=close - - -

C-104 SCSI/CAM Routines

Name
cgen_open_sel- Issues a SCSI_MaDE_SELECT command to the SCSI
device

Syntax
cgen_open_sel(pdrv_dev, action, ms_index, done, sleep)
PDRV _DEVICE *pdrv_dev;
CGEN_ACTION *action;
u_Iong ms_index;
void (*done) 0;
u_Iong sleep;

Arguments

pdrv _de v Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

action Pointer to the caller's Generic Action Structure.

ms_index An index into a page in the Mode Select Table that is pointed to
in the Device Descriptor Structure.

done The address of the completion routine to be called when the
SCSI command completes.

sleep Whether or not the GENERIC_SLEEP flag is set.

Description
The cgen open sel routine issues a SCSI_MaDE_SELECT command
to the SCSldevice~ The mode select data sent to the device is based on the
data contained in the Mode Select Table Structure for the device, if one is
defined. The CGEN_ACTION structure is filled in for the calling routine
based on the completion status of the CCB.

The cgen open sel routine calls the ccmn mode select routine to
create a SCSI 110 CCB and send it to the XPT for processing.

Return Value
None

SCSI/CAM Routines C-105

See Also
ccmn_ccb_status, ccmn mode select

C-106 SCSI/CAM Routines

C.63 cgen_read

Name
cgen_read - Handles synchronous read requests for user processes

Syntax
cgen_read(dev, uio)
dev_t dev;
struct uio *uio;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

uio Pointer to the device information contained in the uio I/O
structure.

Description
The c gen read routine handles synchronous read requests for user
processes. It passes the user process requests to the cgen strategy
routine. The cgen read routine calls the ccmn get bp routine to
allocate a buf structure for the user process read request~When the I/O is
complete, the cgen read routine calls the ccmn rel bp routine to
deallocate the buf structure. - -

Return Value
The cgen _read routine passes the return from the physio routine.

See Also

SCSI/CAM Routines C-107

C.64 cgen_ready

Name
cgen_ready - Issues a TEST UNIT READY command to the unit defined

Syntax
cgen_ready(pdrv_dev, action, done, sleep)
PDRV _DEVICE *pdrv_dev;
CGEN_ACTION *action;
void (*done) 0;
u_Iong sleep;

Arguments

pdrv _dev Pointer to the CAM Peripheral Device Structure allocated for
each SCSI device in the system.

action Pointer to the caller's Generic Action Structure.

done The address of the completion routine to be called when the
SCSI command completes.

sleep Whether or not the GENERIC_SLEEP flag is set.

Description
The cgen ready routine issues a TEST UNIT READY command to the
unit defined." The routine calls the ccmn tur routine to issue the TEST
UNIT READY command and sleeps waitmg for command status.

Return Value
None

See Also
ccmn tur

C-108 SCSI/CAM Routines

C.65 cgen_slave

Name
cgen_slave - Is called at system boot to initialize the lower levels

Syntax
cgen_slave(device, reg)
struct device *device;
caddr_t reg;

Arguments

device Pointer to the device information contained in the device
structure.

reg The virtual address of the controller.

Description
The cgen slave routine is called at system boot to initialize the lower
levels. The-routine also checks the bounds for the unit number to ensure it is
within the allowed range and sets the device-configured bit for the device at
the specified bus, target, and LUN.

Return Value
PROBE_FAILURE
PROBE_SUCCESS

See Also

SCSI/CAM Routines C-109

C.66 cgen_strategy

Name
cgen_strategy - Handles all UO requests for user processes

Syntax
cgen_strategy(bp)
struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The cgen strategy routine handles all UO requests for user processes. It
performs specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI device type. The cgen strategy routine
calls the ccmn io ccb bId routine to obtain an initIalized SCSI UO
CCB and build either a read or a write command based on the information
contained in the buf structure. The cgen strategy routine then calls
the ccmn send ccb to place the CCB onthe active queue and send it to
the XPT layer. -

Return Value
[EINVAL] Device not ready.
[EIO]

See Also

C-110 SCSI/CAM Routines

C.67 cgen_write

Name
cgen_ write - Handles synchronous write requests for user processes

Syntax
cgen_write(dev, uio)
dev_t dev;
struct uio *uio;

Arguments

dev The major/minor device number pair that identifies the bus
number, target ID, and LUN associated with this SCSI device.

uio Pointer to the device information contained in the uio I/O
structure.

Description
The c gen wr i te routine handles synchronous write requests for user
processes. The routine passes the user process requests to the
cgen strategy routine. The cgen write routine calls the
ccmn - get bp routine to allocate a bUf structure for the user process
write request. When the I/O is complete, the cgen write routine calls
the ccmn _ rel_ bp routine to deallocate the buf structure.

Return Value
The cgen _wri te routine passes the return from the physio routine.

See Also

SCSI/CAM Routines C-111

C.68 Sim_8ction

Name
sim_action - Initiates an VO request from a SCSI/CAM peripheral device
driver

Syntax
sim_action (ccb _hdr)
CCB_HEADER *ccb_hdr;

Arguments

ccb _hdr Address of the header for the ccb.

Description
The sim action routine initiates an VO request from a SCSVCAM
peripheral-device driver. The routine is used by the XPT for immediate as
well as for queued operations. When the operation completes, the SIM calls
back directly to the peripheral driver using the CCB callback address, if
callbacks are enabled and the operation is not to be carried out immediately.

The SIM determines whether an operation is to be carried out immediately or
to be queued according to the function code of the CCB structure. All
queued operations, such as "Execute SCSI I/O" (reads or writes), are placed
by the SIM on a nexus-specific queue and return with a CAM status of
CAM_INPROG.

Some immediate operations, as described in the American National Standard
for Information Systems, SCSI-2 Common Access Method: Transport and
SCSI Interface Module, working draft, X3T9.2/90-186, may not be executed
immediately. However, all CCBs to be carried out immediately return to the
XPT layer immediately. For example, the ABORT CCB command does not
always complete synchronously with its call; however, the CCB_ABORT is
returned to the XPT immediately. An XPT_RESET_BUS CCB returns to
the XPT following the reset of the bus.

Return Value
CAM_REQ_INPROG for queued commands
CAM_REQ_ CMP for immediate commands
A valid CAM error value

C-112 SCSI/CAM Routines

See Also
American National Standard for Information Systems, SCSI-2 Common
Access Method: Transport and SCSI Interface Module, working draft,
X3 T9. 2/90-186

SCSI/CAM Routines C-113

Name
sim_init - Initializes the SIM

Syntax
sim_init(pathid)
u_Iong pathid;

Arguments

pathid SCSI target's bus controller number.

Description
The s im ini t routine initializes the SIM. The SIM clears all its queues
and releases all allocated resources in response to this call. This routine is
called using the function address contained in the CAM_SIM_ENTR Y
structure. This routine can be called at any time; the SIM layer must ensure
that data integrity is maintained.

Return Value
CAM_REQ_CMP

C-114 SCSI/CAM Routines

C.70 uagt_close

Name
uagcclose - Handles the close of the User Agent driver

Syntax
uagt_close(dev, flag)
dev_t dev;
int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.

flag Unused.

Description
The uagt close routine handles the close of the User Agent driver. For
the last close operation for the driver, if any queues are frozen, a RELEASE
SIM QUEUE CCB is sent to the XPT layer for each frozen queue detected
by the User Agent.

Return Value
None

See Also
uagt _open, xpt _ ccb _free

SCSI/CAM Routines C-115

C.71 uagt_ioctl

Name
uagt_ioctl - Handles the ioctl system call for the User Agent driver

Syntax
uagt_ioctl(dev, cmd, data, flag)
dev_t dev;
register int cmd;
caddr_t data;
int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.

cmd The ioctl command, UAGT_CAM_IO.

data Pointer to the UAGT_CAM_CCB structure passed by the user
process.

flag Unused.

Description
The uagt ioctl routine handles the ioctl system call for the User
Agent driver. The ioctl commands supported are: DEVIOCGET, to
obtain the User Agent driver's SCSI device status; UAGT_CAM_IO, the
ioctl define for calls to the User Agent driver;
UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and LUN; and
UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI I/O CCB requests, the user data area is locked before passing the
CCB to the XPT. The User Agent sleeps waiting for the I/O to complete and
issues an ABORT CCB if a signal is caught while sleeping.

Return Value
The uagt ioctl routine returns a value of 0 (zero) upon successful
completion:-

C-116 SCSI/CAM Routines

Diagnostics
The uagt _ ioctl routine fails under the following conditions:

[EFAULT]

[EINVALJ

[EBUSY]

See Also

Copy to or from user space failed.

An unsupported cmd value was passed to ioctlO. The
CCB copied from the user process contained an invalid
XPT function code, or an invalid target or LUN.

The maximum allowable number of User Agent requests
has been reached (MAX_UAGT_REQ).

ioctl(2), xpt _action, xpt _ ccb _ alloc

SCSI/CAM Routines C-117

C.72 uagt_open

Name
uagt_open - Handles the open of the User Agent driver

Syntax
uagt_open(dev, flag)
dev_t dev;
int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.

flag Unused.

Description
The uagt _open routine handles the open of the User Agent driver.

The character device special file name used for the open is / dev / cam.

Return Value
The uagt open routine returns a value of 0 (zero) upon successful
completion~

See Also

C-118 SCSI/CAM Routines

C.73 xpt_8ction

Name
xpt_action - Calls the appropriate XPT/SIM routine

Syntax
132 xpt_action (ch)
CCB_HEADER * ch;

Arguments

ch Specifies a pointer to the CAM Control Block (CCB) on which to
act.

Description
The xpt action routine calls the appropriate XPT/SIM routine. The
routine routes the specified CCB to the appropriate SIM module or to the
Configuration driver, depending on the CCB type and on the path ID
specified in the CCB. Vendor-unique CCBs are also supported. Those
CCBs are passed to the appropriate SIM module according to the path ID
specified in the CCB.

Return Value
Upon completion, the xpt _ action routine returns a valid CAM status
value.

See Also

SCSI/CAM Routines C-119

Name
xpt_ccb_alloc - Allocates a CAM Control Block (CCB)

Syntax
CCB_HEADER *xpt_ccb_alloc 0

Arguments
None

Description
The xpt eeb alloe routine allocates a CAM Control Block (CCB) for
use by a SCSI/CAM peripheral device driver. The xpt eeb alloe
routine returns a pointer to a preallocated data buffer large enough to contain
any CCB structure. The peripheral device driver uses this structure for its
XPT/SIM requests. The routine also ensures that the SIM private data space
and peripheral device driver pointer, eam_pdrv _ptr , are set up.

Return Value

Upon successful completion, xpt eeb alloe returns a pointer to a
preallocated data buffer. The data buffer returned by xpt eeb alloe is
initialized to be a SCSI I/O CCB. For other types of CCBs, some fields may
have to be reinitialized for the specific CCB.

See Also

C-120 SCSI/CAM Routines

Name
xPcccb_free - Frees a previously allocated CCB

Syntax
132 xpt_ccb_free(ch)
CCB_HEADER *ch;

Arguments

ch Specifies a pointer to the CCB to be freed. This CCB was allocated
in a call to xpt_ccb_alloc.

Description
The xpt ccb free routine frees a previously allocated CCB. The
routine returns a CCB, previously allocated by a peripheral device driver, to
the CCB pool.

Return Value
XPT_CCB_INV ALID or CAM_SUCCESS

See Also
xpt_ccb alloc

SCSI/CAM Routines C-121

Name
xpt_init - Validates the initialized state of the CAM subsystem

Syntax
long xptjnitO

Arguments
None

Description
The xpt ini t routine validates the initialized state of the CAM
subsystem~ The routine initializes all global and internal variables used by
the CAM subsystem through a call to the Configuration driver. Peripheral
device drivers must call this routine either during or prior to their own
initialization. The xpt ini t routine simply returns to the calling
SCSI/CAM peripheral device driver if the CAM subsystem was previously
initialized.

Return Value
Upon completion, xpt _ ini t returns one of the following values:

Return Value Meaning

CAM_SUCCESS The xpt ini t routine initialized the CAM
subsystem-:-

CAM_FAILURE The xpt init routine did not initialize the CAM
subsystem-and the CAM subsystem cannot be used.

C-122 SCSI/CAM Routines

Sample Generic CAM Peripheral Driver o

This chapter contains a sample generic CAM peripheral driver. There are
two sample files: the first contains the cam generic. h header file; the
second contains the driver source file cam_generic. c.

Example 0-1: cam_generic.h

===

/**

*
*
*
*
*

Copyright (c) 1990 by
Digital Equipment Corporation, Maynard, MA

All rights reserved.

*
*
*
*
*

* This software is furnished under a license and may be used *
* and copied only in accordance with the terms of such *
* license and with the inclusion of the above copyright *
* notice. This software or any other copies thereof may not *
* otherwise made available to any other person. No title to *
* and ownership of the software is hereby transferred. *

*
*

*
*

* The information in this software is subject to change *
* without notice and should not be construed as a commitment *
* by Digital Equipment Corporation. *

* *
* Digital assumes no responsibility for the use or reliability*
* of its software on equipment which is not supplied by *
* Digital. *
* *
***/

/* --- */

/*
This file contains examples of a CAM generic driver's defines.

Modification History

version Date Who Reason

*/

Example 0-1: (continued)

/* --- */

/* Include Files */
/ / None

/* --- */

/* Defines */

/*
The following flags are used in the CGEN SPECIFIC structure in
member gen state flags. The state flags are used to determine and
indicate certain-states of the driver and the SCSI unit.
*/

#define CGEN NOT READY STATE OxOOOOOOOl
/* Indicates that the unit was opened with the FNDELAY
* flag and the unit had a failure during the open, but
* was seen
*/

#define CGEN UNIT ATTEN STATE Ox00000002
/* Indicates that a check condition occurred and the
* sense key was UNIT ATTENTION. This usually indicates
* that a media change has occurred, but it could
* indicate power up or reset. Either way, current
* settings are lost.
*/

#define CGEN RESET STATE Ox00000004
/* Indicates notification of a reset set condition
* on the device or bus.
*/

#define CGEN RESET PENDING STATE
/*

Ox00000008

* A reset is pending will be notified shortly
*/

#define CGEN OPENED STATE OxOOOOOOlO
/*
* The unit is opened
*/

#define CGEN xxx STATE
/*

Ox00000020

* Sample state used in generic driver.
*/

/* --- */

/*
The following flags are used in the CGEN SPECIFIC structure in
member gen flags. The flags are used to determine and indicate
certain conditions of the SCSI unit.
*/

0-2 Sample Generic CAM Peripheral Driver

Example 0-1: (continued)
#define CGEN EOM OxOOOOOOOl

/* At End of Tape
*/

#define CGEN OFFLINE Ox00000002
/* Indicates the device is returning DEVICE NOT READY

* in response to a command.
*/

#define CGEN WRT PROT Ox00000004
/* Hardware write protected or opened read only
*/

#define CGEN SOFTERR Ox00000008
/* Indicates that a soft error has been reported by the

* SCSI unit.
*/

#define CGEN HARDERR OxOOOOOOlO
/* Indicates a hard error has occurred. This flag can be

* reported to the user process either through an ioctl
* orby the buf struct being marked as EIO.
*/

#define CGEN XXX Ox00000020
/* Sample flag used in generic driver.
*/

#define CGEN YYY Ox00000040
/* Sample flag used in generic driver.
*/

/* --- */

/*
Generic Structure Declarations
*/

/* Generic-Specific Structure */

typedef struct generic specific {
u long gen flags; - /* flags - EOM, write locked */
u-long gen-state flags; /* STATE - UNIT ATTEN, RESET etc. */
u=long gen=resid; /* Last operation residual count */

}CGEN_SPECIFIC;

/*
* Generic Action Structure

*
* The generic action struct is passed down to the action
* routines to-be filled in based on success or failure of the
* command.
*/

typedef struct generic_action {
CCB SCSIIO *ccb; /* CCB that is returned to caller*/
long ret_error; /* Error code if any*/
u_long fatal; /* Is this considered fatal?*/
u_long ccb_status; /* The CCB status code*/

Sample Generic CAM Peripheral Driver 0-3

(continued) Example 0-1:
u_Iong
u_Iong

}CGEN_ACTION;

scsi status; /* The SCSI error code*/
chkcond_error; /* The check condition error*/

/*
* CGEN ACTION defines
* action. fatal flags;
*/

#define ACT FAILED Ox00000001 /* This action has failed */
#define ACT RESOURCE Ox00000002 /* Resource problem (memory)*/
#define ACT PARAMETER Ox00000004 /* Invalid parameter */
#define ACT RETRY EXCEDED Ox00000008 /* The retry operation count

* has been exceeded
*/

/*
* CGEN REL MEM will examine a SCSI I/O CCB to see if the data
* buffer pointer is non NULL. If so, the macro will call
* ccmn reI dbuf with the size of the buffer, to release the
* memory back to the pools.
*/

#define CGEN REL MEM(ccb); { \
if«(CCB SCSIIO *)(ccb»->cam data ptr 1= (u char *)NULL) { \

ccmn reI dbuf«(CCB SCSIIO-*) (ccb»->cam data ptr, \
- - «CCB SCSIIO *)(ccb»->cam dxfer len); \

«CCB SCSIIO *)(ccb»->cam data ptr =-(U char *)NULL; \
«CCB-SCSIIO *)(ccb»->cam-dxfer len (u 10ng)NULL; \

} \ - - - -
}

/*
* Maximum I/O size.
*/

#define CGEN MAXPHYS

/*

(16 * (1024 * 1024» /* 16 meg */

* Default time-out value for NON read/write operations
* (rewind,space)
*/

#define CGEN DEF TIMEO 600

/*
* 5-second time
*/

#define CGEN TIME 5 5

/*
* Whether to sleep in the work routines
*/

#define CGEN SLEEP
#define CGEN NOSLEEP

OxOOOOOOOO
Ox00000001

0-4 Sample Generic CAM Peripheral Driver

Example 0-1: (continued)
/*

* Success and failure defines
*/

#define CGEN SUCCESS 00
#define CGEN FAIL -1

/*
* Defines for return values from CGEN ccb chkcond
*/

#define CHK SENSE NOT VALID Ox0001

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define

/*

/* Valid bit is not set in sense */
CHK EOM
CHK FILEMARK
CHK ILl
CHK NOSENSE BITS
CHK SOFTERR
CHK NOT READY
CHK HARD ERR

CHK UNIT ATTEN
CHK DATA PROT
CHK CMD ABORTED
CHK UNSUPPORTED
CHK UNKNOWN KEY - -
CHK CHK NOSENSE

CHK INFORMATIONAL

Ox0002 /* End of media */
Ox0003 /* File mark detected */
Ox0004 /* Incorrect length */
Ox0005 /* NOSENSE key and no bits */
Ox0006 /* Soft error reported */
Ox0007 /* Device is not ready */
Ox0008 /* Device reported */

OxOO09 /*
OxOOOa /*
OxOOOb /*
OxOOOc /*
OxOOOd /*
OxOOOe /*

OxOOOf /*

/* hard error */
Unit attention (ready?) */
Write protected */
Command has been aborted */
We don't handle them */
Bogus sense key */
Sense Auto sense */

/* valid bit 0 */
Informational message .. */

* Clear the fields in the CCB which will be filled in on a retry
* of the CCB.
*/

#define CGEN CLEAR CCB(ccb) {
(ccb)->ca~ch.cam_status = 0;
(ccb)->cam scsi status
(ccb)->cam=resid = 0;

O· I

}

#define CGEN_BTOL(ptr, long_val) {
char *p = (char *)(ptr);
union {

}

unsigned char
unsigned long

}tmp;
tmp.c[3]
tmp.c[2]
tmp.c[l]
tmp.c[O]
(long_val)

*p++;
*p++;
*p++;
*p++;
= tmp.l;

c[4];
1;

\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

#define CGEN LOCK OR STATE(pd, ts, flags) { \
int - - ipl; \

Sample Generic CAM Peripheral Driver 0-5

Example 0-1: (continued)
PDRV IPLSMP LOCK((pd), LK RETRY, ipl); \
(ts)=>gen_state_flags 1= (flags); \
PDRV_IPLSMP_UNLOCK((pd), ipl); \

}

#define CGEN LOCK OR FLAGS(pd, ts, flags) { \
int - - ipI; \
PDRV IPLSMP LOCK((pd), LK RETRY, ipl); \
(ts)=>gen_flags 1= (flags); \
PDRV_IPLSMP_UNLOCK((pd), ipl); \

}

#define CGEN BERROR(buf , count, error) {
(buf)->b_resid = (count);

\
\
\
\

}

(buf)->b error = (error);
(buf)->b=flags 1= B_ERROR;

#define CGEN NULLCCB ERR(act_ptr, pd, mod) { \
int - ipl; - \

PDRV IPLSMP LOCK((pd), LK RETRY, ipl); \
CAM ERROR«mod), "NULL CCB-returned", CAM SOFTWARE, \

- (CCB HEADER *)NULL, (pd)->pd dev,-\
(u char *)NULL); - \

PDRV IPLSMP UNLOCK«pd), ipl); \
(act=ptr)->fatal 1= (ACT_RESOURCE ACT FAILED); \
(act_ptr)->ret_error = ENOMEM; - \

}

/*
You should inplement your own error logging.
*/
#define LOG ERR printf

The following file contains source code for a generic peripheral driver.

Example 0-2: cam_generic.c Source File

/**
*
*
*
*
*

Copyright (c) 1990 by
Digital Equipment Corporation, Maynard, MA

All rights reserved.

* This software is furnished under a license and may be
* and copied only in accordance with the terms of such
* license and with the inclusion of the above copyright
* notice. This software or any other copies thereof may

0-6 Sample Generic CAM Peripheral Driver

*
*
*
*
*

used *
*
*

not *

Example 0-2: (continued)

*
*

be provided or otherwise made available to any other person. *
No title to and ownership of the software is hereby *

* transferred.

*
*
*

* The information in this software is subject to change *
* without notice and should not be construed as a commitment *
* by Digital Equipment Corporation. *
*
* Digital assumes no responsibility for the use or
* reliability of its software on equipment which is not
* supplied by Digital.

*

*
*
*
*
*

**/

/* --- */

/* cam_generic.c Version 1. 00 Aug. 05, 1991

This module is the upper layer (class) for a generic SCSI
device driver.
The module is an example of a device driver for the CAM
interface only.

Modification History

Version Date Who Reason

*/

/* --- */

/* Include files. */

#include <sys/types.h>
#include <sys/file.h>
#include <sys/param.h>
#include <sys/uio.h>
#include <sys/time.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/mtio.h>
#include <sys/errno.h>
#include <io/common/devio.h>
#include <io/common/devdriver.h>
#include <io/common/iotypes.h>
#include <io/cam/cam debug.h>
#include <io/cam/cam:h>
#include <io/cam/dec cam.h>
#include <io/cam/scsI status.h>
#include <io/cam/scsi-all.h>
#include <io/cam/pdrv:h>
#include <io/cam/scsi_sequential.h>

Sample Generic CAM Peripheral Driver 0-7

Example 0-2: (continued)
#include "cam_generic.h"

/* --- */

/* Local defines. */

void cgen_done();
void cgen async();
void cgen-iodone();
void ccmn=minphys();
void cgen_strategy();
void cgen_ready();
void cgen open sel();
void cgen-mode-sns();
void cgen=minphys();
u_Iong cgen_ccb_chkcond();

/* --- */

/* External declarations. */
extern int lbolt;
extern int nCAMBUS;
extern void ccmn init();
extern long ccmn-open unit();
extern void ccmn-close unit();
extern u long ccmn send ccb();
extern void ccmn rem CCb();
extern void ccmn-abort que();
extern void ccmn=term_que();
extern CCB HEADER *ccmn getccb();
extern void ccmn reI ccb();
extern CCB SCSIIO *ccmn io ccb bld();
extern CCB-GETDEV *ccmn-gdev ccb bld();
extern CCB-SETDEV *ccmn-sdev-ccb-bld();
extern CCB-SETASYNC *ccmn sasy ccb bld();
extern CCB-RELSIM *ccmn rsq ccb bld();
extern CCB-PATHINQ *ccmn pinq ccb bld();
extern CCB-ABORT *ccmn abort ccb bld();
extern CCB-TERMIO *ccmn term-ccb-bld();
extern CCB-RESETDEV *ccmn bdr ccb bld();
extern CCB=RESETBUS *ccmn=br_ccb_bld();
extern CCB_SCSIIO *ccmn_tur();
extern CCB SCSIIO *ccmn mode select();
extern u long ccmn ccb status();
extern struct buf *ccmn get bp();
extern void ccmn_rel_bp(); -
extern u char *ccmn get dbuf();
extern void ccmn_rel_dbuf();

extern struct device *camdinfo[];

0-8 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
extern struct controller *camrninfo[];

extern PDRV UNIT ELEM pdrv_unit_table[];

/* --- */

/* Initialized and uninitialized data. */

/* --- */
/* Function description.

*
* Routine name cgen_slave

*
* This routine is called at boot. The main purposes of the
* routine are to initialize the lower levels, to check the unit
* number to make sure it falls within range, and to set the
* device-configured bit for this device type at this
* bus/target/lun.

*
* Call syntax
* cgen slave(attach)
* struct device *attach
* caddr t reg

*
*
* Implicit inputs
* NONE

*
* Implicit outputs
* NONE

*
* Return values
* PROBE FAILURE
* PROBE SUCCESS

*
*/

Pointer to the device struct
Virtual address of controller
DO NOT USE

int
cgen slave(attach, reg)
struct device *attach;
caddr t reg;

{

/*
* Local variables
*/

u_long unit;

/* Pointer to device struct */
/* Virtual register address - unused */

/* Unit number */

PDRV DEVICE *pdrv_dev;
/* Peripheral Device Structure pointer */

Sample Generic CAM Peripheral Driver 0-9

Example 0-2: (continued)
dey t dey; /* For the PRINTD statements */
static u char module[] "cgen_slave"; /* Module name */

/*
* The UBA UNIT TO DEV UNIT macro assumes unit has bits
* 0-2 = lun, bIts-3-S-= target id, and 6-7 = bus num.
*/

dey = makedev(O, MAKEMINOR(UBA UNIT TO DEV UNIT(attach), 0»;
unit = DEV_UNIT(dev); --

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: entry\n" ,
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

/*
* Call common initialization routine because we do not know
* if the subsystem has been initialized
*/

ccmn_init() ;

if(unit> MAX_UNITS) {
/*
* Unit number is greater than maximum allowed.
*/

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD GENERIC ICAMD-INOUT),
("[%d7%d/%d] %s: UnIt number too large %d\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),

}
/*

-module, unit»; -
return(PROBE_FAILURE);

* Set the configured bit in the unit table with the device
* type of your device - we will use sequential access
* devices.
*/

pdrv_unit_table[unit].pu_config 1= (1 « ALL_DTYPE_SEQUENTIAL);

/*
* Call the common open unit routine to see if a device is
* there. Shift the unit number left by 4 to move over the
* device-specific bits such as density, no rewind, disk's
* partition number, etc.
*/

unit = (unit « 4);

/*
* ccmn open unit args = device number (major/minor pair);
* SCSI-device type; exclusive use flag if exclusive access
* is desired; and the size of the device-specific structure.
*/

0-10 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)

}

if(ccmn open unit((dev t)unit, ALL DTYPE SEQUENTIAL,
CCMN EXCLUSIVE, sizeof(CGEN_SPECIFIC») 1= (long)NULL){

/* -
* Could not open unit.
*/

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),

}

/*

("[%d/%d/%d] %s: ccmn_open_unit failed\n",

DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module));
return(PROBE_FAILURE)i

* Close the unit.
*/

ccmn_close_unit((dev_t)unit);

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: exit\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module))i

return(PROBE_SUCCESS);

/* --- */
/* Function description.

*
* Routine name cgen_attach

*
* This routine is called at boot to find out if there are any
* devices at this BUS/TARGET/LUN. If a device is found for
* our device type print out unit identification

*
* Call syntax
* cgen attach(attach)
* struct device *attach Pointer to the uba struct

*
* Implicit inputs
* NONE

*
* Implicit outputs
* NONE

*
* Return values
* PROBE FAILURE
* PROBE SUCCESS

*
*/

Sample Generic CAM Peripheral Driver 0-11

Example 0-2: (continued)
int
cgen attach (attach)

{
struct device *attach; /* Pointer to device struct */

/* Local Varibles */

PDRV DEVICE *pdrv dev;

dev t dev;
unit;

- /* Peripheral Device Structure pointer */
/* For the PRINTD statements */

u_long
static u char module[] = "cgen_attach"; /* Module name */

/*
* The UBA UNIT TO DEV UNIT macro assumes unit
* has bits 0-2 = lun, bits 3-5 = target id,
* and 6-7 = bus num.
*/

dev = makedev(O, MAKEMINOR(UBA_UNIT_TO_DEV_UNIT(attach), 0));
unit = DEV_UNIT(dev);

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: entry\n" ,
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module));

/*
* Determine whether a device exists at this address by
* calling ccmn_open_unit which checks the Equipment Device
* Table.
*/

if(ccmn open unit(dev, (u long)ALL DTYPE SEQUENTIAL,

}

CCMN=EXCLUSIVE, (u_long)sizeof(CGEN_SPECIFIC)) != OL) {
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
("[%d/%d/%d] %s: ccmn open unit failed\n",

DEV_BUS_ID(dev), DE V_TARGET (dev), DEV_LUN(dev), module));
return(PROBE_FAILURE);

/*
* Get the pointer to the PDRV DEVICE structure
*/

if((pdrv dev = GET PDRV PTR(dev)) == (PDRV DEVICE *)NULL) {
ccmn close unit(dev);
PRINTD(DEV=BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
("[%d/%d/%d] %s: No peripheral device structure allocated\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module));

return(PROBE_FAILURE);
}

0-12 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)

}

/* Output the identification string */
printf(" (%s %S)", pdrv dev->pd dev desc->dd dev name,

pdrv_dev->pd_dev_desc->dd_pv_name)i -

/*
* Close the unit.
*/

ccmn_close_unit(dev)i

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: exit\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module))i

return(PROBE_SUCCESS)i

/* --- */
/* Function description.

*
* Routine name cgen_open

*
*
*
*
*
*
*
*
*
*
*

This routine opens the unit.
For a flag of FNDELAY and all errors other than
reservation conflicts and memory resource conflicts, always
return success. This is based on the POSIX standard.

First do a TEST UNIT READY command to see if the device is
ready to use.

* Call syntax
* cgen_open(dev, flags)

*
* Implicit inputs
* Flags of CGEN_UNIT AT TEN STATE, CGEN RESET STATE from
* last open.

*
* Implicit outputs
* Flags of CGEN NOT READY STATE, if the FNDELAY flag was
* passed in this routine and the device had an error.

*
* Return values
* CGEN SUCCESS

*
*
*
*
*

EBUSY
ENOMEM
EINVAL
ENXIO
EIO

Device reserved by another initiator
Resource problem
CCB problems
Device path problems.
Device check conditions

Sample Generic CAM Peripheral Driver 0-13

Example 0-2: (continued)

*
* TO DO:
*/

int
cgen_open(dev, flags)

dev t dev;
int-flags;

/* Major/minor number pair */

{

/* Flags RDONLY, READ, WRITE, FNDELAY, etc. */

/*
* LOCAL VARIABLES
*/

PDRV DEVICE

DEV DESC

MODESEL TBL

CGEN SPECIFIC

CCB SETASYNC

CGEN ACTION

long

u_long

long

long

*pdrv dev;
/* Peripheral Device Structure pointer */

*dev desc;
/* Device Descriptor Structure pointer */

*modsel tab;
/* Pointer to Mode Select Table

* structure to read for the open.
*/

*gen spec;
/* Generic-Specific Structure pointer */

*ccb async;
/* CAM SET ASYNCHRONOUS CALLBACK CCB */
action;
/* Generic Action Structure */

ret val;
/* Return value from sub-routines */

ready time;
/* Time it takes for this type

* unit to become ready (seconds)
*/

state flags;
/* Saved state */
success;
/* Test unit ready loop indicator */
fndelay;

0-14 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)

long
/* Test unit ready loop indicator */
fatal;
/* Test unit ready loop indicator */

int
int
int

i· ,
s· ,
s1;
module []

/* For loop counter */
/* For our saved IPL */
/* Throwaway IPL */

static u char "cgen_open"; /* Module name */

/*
*END OF LOCAL VARIABLES
*/

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: entry\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module));

/*
* Call peripherial driver common routine to
* open the device. This routine locks the Peripheral
* Device Unit Table and makes sure everything matches.
* Arguments are dev; device type (tape ,disk,scanner);
* whether exclusive use or not; size of device-specific
* struct (CGEN_SPECIFIC).

*
* Refer to ccmn_open_unit() for a full description.
*/

ret val ccmn open unit(dev, ALL DTYPE SEQUENTIAL,
CCMN_EXCLUSIVE, sizeof(CGEN_SPECIFIC));

if (ret_val 1= NULL){
/*

* Return ERRNO based on return value:
* EBUSY - Device is already opened exclusive use
* EINVAL- Device types do not match
* ENXIO - Device does not exist even after rescan.
*/

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d/%d/%d] %s: Dev failed ccmn_open_unit dev = %d\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module,
dev)) ;

return (ret val);

}

/*
* Can now set up structure pointers

Sample Generic CAM Peripheral Driver 0-15

Example 0-2: (continued)
*/

/*
* Get Peripherial Device Structure pointer
*/

if((pdrv dev = GET PDRV PTR(dev» == (PDRV_DEVICE *)NULL){
/* - --

}

* This should not happen - no PDRV DEVICE struct.
*/

LOG_ERROR("Implement your error logging");

return (ENOMEM) ;

/*
* Get pointer to Device Descriptor Structure
*/

dev desc

/*
* Get pointer to Mode Select Table Structure
*/

modsel tab

/*
* Get pointer to Generic-Specific Structure
*/

if((gen_spec = (CGEN_SPECIFIC *)pdrv_dev->pd_specific)

}

(CGEN SPECIFIC *)NULL){
PDRV IPLSMP LOCK (pdrv dev, LK RETRY, s);
LOG_ERROR ("Implement your error logging");
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);
return (ENOMEM) ;

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),

/*

("[%d/%d/%d] %s: state flags = %X\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev), module,
gen=spec->gen_state_flags»;

* Initialize state flags and regular flags
* The flags of CGEN UNIT ATTEN STATE and CGEN RESET STATE,
* will be preserved-across opens if the open has faIled due
* to device problems.
*/

0-16 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
state_flags = gen spec->gen_state_flags;

if«state_flags &
(CGEN_UNIT_ATTEN_STATE CGEN RESET STATE » != NULL) {

}

/*
* Flags for known state.
*/

CGEN_XXX;

else {

}

/*
* Do you want to save any flags set from
* the last unit open. CGEN XXX and CGEN YYY are
* example flags.
*/
gen_spec->gen_flags &= (CGEN_XXX CGEN_YYY);

/*
* Register for a SET ASYNCHRONOUS CALLBACK CCB
* The events to notice are:

*
* Bus Device resets, SCSI Attens, Asynchronous Event
* Notifications (AEN) , Bus Resets
*/

/*

ccmn sasy ccb bld(dev, (u_long)CAM_DIR_NONE,
- (AC SENT BDR I

AC SCSI AEN I AC BUS RESET), cgen_async,
(u=char-*)NULL, NULL);

* This command is carried out immediately, so status should
* be valid
*/

if(CAM STATUS(ccb async) != CAM REQ CMP){
/* - -

* The SET ASYNCHRONOUS CALLBACK CCB can not be
* registered. If FNDELAY is set, continue.
*/

PRINTD(DEV_BUS_ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD GENERIC),
(1I[%d7%d/%d] %s: Can't set async ccb status = %x\n",
Cannot SET ASYNCHRONOUS CALLBACK CCB; status =

DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module,
ccb_async->cam_ch.cam_status»i

LOG_ERROR("Implement your error logging");

Sample Generic CAM Peripheral Driver 0-17

Example 0-2: (continued)
/*

}

* Release the CCB
*/

ccmn_rel_ccb((CCB_HEADER *)ccb_async);

if((flags & FNDELAY) == NULL){

}

CGEN LOCK OR STATE(pdrv dev, gen_spec, state_flags);
ccmn=close_unit(dev); -
return(EIO) ;

/* end of if status 1= CAM REQ CMP for SET */
/* ASYNCHRONOUS CALLBACK CCB */

else {

}
/* end of else (SET ASYNCHRONOUS CALLBACK */
/* CCB status == CAM_REQ_CMP) */

/*
* Everything is in place to start operations
* Check the dev descriptor to get the device ready
* time in seconds. If null, take the default of 45 seconds.
*/

ready_time = dev_desc->dd_ready_time;

if(ready time == NULL) {
ready:=time = 45;

}

/*
* The following 3 variables are VERY important. They direct
* actions at the bottom of the for loop that issues the TEST
* UNIT READY command. If success is nonzero, then the TUR
* succeeded with no errors. If fndelay is non zero the TUR
* failed but the FNDELAY flag was set. Either way, get out
* of for loop. If fatal is ever positive, then either the
* unit is reserved to another initiator or there is a driver
* problem.
*/

success = 0;
fndelay = 0;
fatal = 0;

/*
* Start of the for loop that looks for the device to become

0-18 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
* ready. Take into account the FNDELAY flag and SCSI BUSY
* status. POSIX definition of the FNDELAY flags say don't
* wait for the unit to become ready. If the unit is not
* there or is reserved by another initiator, return failure;
* else return success. SCSI BUSY status indicates that the
* device is unable to accept the command at this time.
*/

for (i = 0; i < ready_time; i++) {
/*
* Zero out action structure
*/

bzero(&action, sizeof(CGEN_ACTION));

/*
* Issue a TEST UNIT READY command. The autosense feature
* performs the REQUEST SENSE operation, if there is a
* SCSI status of check condition.
*/

cgen_ready(pdrv_dev, &action, cgen_done, CGEN_SLEEP);

if(action.ccb == NULL) {
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV LUN(dev),

(CAMD GENERIC),

/*

("[%d/%d/%d] %s: TUR, CCB_IO = NULL\n",
DEV BUS ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module));

-/* -

}

* Resource problem? If so, get out.
*/

if((action.fatal & ACT RESOURCE) 1= NULL) {
fatal++;

}
/*

break;

* Some other gross error
*/

else if((flags & FNDELAY
fndelay++;
break;

}
else {

fatal++;
break;

}

1= NULL){

* Check to see if this is a successfully completed CCB
*/

if (action. ccb_status

Sample Generic CAM Peripheral Driver 0-19

Example 0-2: (continued)
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
("[%d/%d/%d] %s: TUR, SUCCESS\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

success++;

} /* end if status CAT CMP */

else {
/*
* If the CCB status does not equal
* CAT CMP ERR, then this open failed.
*/ - -

if(action.ccb status 1= CAT CMP ERR){
fatal++i

}

/*
* The only error that will cause an open to fail with
* the FNDELAY flag set is EBUSY (reservation
* conflict) to return.
* Check for Reservation conflict
*/

else if(action. scsi status SCSI STAT RESERVATION CONFLICT){
fatal++; -

}

/*

}

* Check the device state for SCSI STAT BUSY. If the status
* is BUSY, the device could be powering up or rewinding.
* If the status is BUSY, then retry the TUR operation again.
* If the status is not BUSY, a UNIT ATTENTION status may have
* been seen.
* The ((flags & FNDELAY) 1= NULL) && (i > 1 » statement
* covers this possibility.
* The UNIT ATTENTION status is also a common condition
* with power up, resets and cartridge changes. Just retry
* the TUR operation again.

*

*/

if((action. scsi status 1= SCSI STAT BUSY &&

}

((flags & FNDELAY) 1= NULL) && (i > 1 » {
fndelay++;

/*
* Check the release queue prior to releasing the CCB
*/

0-20 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
CHK_RELEASE_QUEUE(pdrv_dev, action.ccb);

/*
* Release the CCB
*/

ccmn_rel_ccb«CCB_HEADER *)action.ccb);

/*
* Check for POSIX nodelay or sucessful open or fatal error
*/

if«fndelay != NULL) I I (success != NULL) I I (fatal != NULL»{
/*

* Break out of for loop
*/

break;
}

/*
* No success, so sleep
*/

if(mpsleep(&lbolt, (PCATCH I (PZERO+l», \

/*

}

"Zzzzzz",O,(void *)0,0» {
/*

* Set interruptable sleeps. If
* non zero comes back, a signal was delivered.
* Restore the flags as they were at the start
* of the for loop.
*/

CGEN LOCK OR STATE(pdrv dey, gen_spec, state_flags);
ccmn=close_unit(dev); -
return (EINTR);

} /* end of TUR for loop */

* Check to see if fatal is set (reservation conflict)
*/

if (fatal != NULL){
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d/%d/%d] %s: TUR, FATAL\n",
DEV BUS ID(dev), DEV TARGET(dev), DEV LUN(dev), module»;

CGEN LOCK-OR STATE(pdrv dey, gen_spec, state_flags);
ccmn-close unit(dev); -
return(actlon.ret_error);
}
else if(fndelay != NULL){

/*
* Broke out of loop because of some failure

Sample Generic CAM Peripheral Driver 0-21

Example 0-2: (continued)

}

* and the FNDELAY flag is set.
* Set the flag indicating device has not gone through
* the full online sequence.
*/

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d7%d/%d] %s: TUR, FNDELAY\n" ,
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV LUN(dev), module));

CGEN LOCK OR STATE(pdrv dev, gen spec,
Tstat~flags 1 CGEN=NOT_READY_STATE));

return(CGEN_SUCCESS);

else if (success == NULL) {

}

/*
* The TUR command never completed successfully and
* FNDELAY flag WAS NOT set, so return the last error
* value
*/

PRINTD(DEV_BUS_ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d7%d/%d] %s: TUR, NO SUCCESS\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV LUN(dev), module));

CGEN LOCK OR STATE(pdrv dev, gen_spec, state flags);
ccmn=close_unit(dev); - -
return(action.ret_error);

/*
* If there has been a reset or unit attention, do
* as directed in the Mode Select Table.
*/

/*
* The if statement checks to see if there was a reset when
* the unit was closed and if one has occurred while it was
* opening.
*/

if«(state flags & (CGEN UNIT ATTEN STATE
NULL)-11 «gen_spec=>gen=state=flags &
CGEN_UNIT_ATTEN_STATE)) != NULL)) {

CGEN RESET STATE)) !=
(CGEN_RESET_STATE 1

/*
* There was a unit attention or reset, so the
* Mode Select Table page must be sent to the
* device.
*/

PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

0-22 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
/*

* Read the Mode Select Table for this device,
* passing the index into the Mode Select Table to send
* to the device.
*/

if(modsel tab 1= NULL) {
/*

* The Mode Select Table contains a pointer to the
* page definition for this device.
*/

for(i = 0; (modsel tab->ms entry[i].ms data 1= NULL) &&
- (i-< MAX_OPEN_SELS); i++) {

/*
* Zero out the action structure
*/

bzero(&action, sizeof(CGEN ACTION));
cgen_open_sel(pdrv_dev, &action, i,

cgen_done, CGEN_SLEEP);

if(action.ccb == (CCB SCSIIO *)NULL) {
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d/%d/%d] %s: MODSEL, CCB = NULL\n",
DEV BUS ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
module);

if((action.fatal & ACT_RESOURCE) 1= NULL){
/*

}

}

* Could not get resources (ccb's) needed;
*/

CGEN LOCK OR STATE(pdrv dev, gen_spec, state_flags);
ccmn=close_unit(dev); -
return(action.ret_error); /* driver/resource problem */

if((flags & FNDELAY) == NULL) {
/*

* Close the unit and return errno
*/

CGEN LOCK OR STATE(pdrv dev, gen_spec, state_flags);
ccmn=close_unit(dev); -
return (action.ret_error);

/*
* The FNDELAY flag is set; must return success
*/

else {
CGEN LOCK OR STATE(pdrv dev, gen spec,

(state_flags CGEN_NOT_READY_STATE));

Sample Generic CAM Peripheral Driver 0-23

Example 0-2: (continued)
return(CGEN_SUCCESS);

}

}

/*
* Check to see if the CCB completed successfully
*/

if(action.ccb_status CAT_CMP){

}

/*
* Release the CCB back to the pool
*/

ccmn_rel_ccb«CCB_HEADER *)action.ccb);

/* do next page if any */
continue;

/*
* The Mode Select for this page failed.
* The only error that causes an open to fail with
* the FNDELAY flag set is a SCSI statua of
* RESERVATION CONFLICT.
*/

else {
PRINTD(DEV_BUS ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d7%d/%d] %s: MODSEL FAILED index = Ox%x\n",
DEV BUS ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
module, -i));

/*
* Check the release queue prior to releasing the CCB
*/

CHK_RELEASE_QUEUE(pdrv_dev, action.ccb);

/*
* Release the ccb
*/

ccmn_rel_ccb«CCB_HEADER *)action.ccb);

/*
* If the returned SCSI status is RESERVATION CONFLICT
* or FNDELAY == NULL, then fail this open.
*/

if«action.scsi status SCSI_STAT_RESERVATION_CONFLICT) I I
«flags & FNDELAY) == NULL)){
/*

0-24 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
* Close the unit and return EBUSY
*/

CGEN LOCK OR STATE(pdrv dev, gen_spec, state_flags);
ccmn-close unit(dev); -
return (action.ret error);

/*
* The FNDELAY flag is set; must return success
*/

else {

}
}

CGEN LOCK OR STATE(pdrv dev, gen spec,
- (state_flags I CGEN_NOT_READY_STATE»;

return(CGEN_SUCCESS);

} /* end of for loop */
} /* End of if modsel 1= NULL */

} /* End of reset or unit attention */

/*
* Unlock the struct
*/

else {
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

}

/*
* At this point, you can set up any other device
* features you need.
*/

/*
* Add your device-specific code here.
*/

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: exit\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module»;

return(CGEN SUCCESS);
} /* End of cgen_open() */

/* --- */
/* Function description.

Sample Generic CAM Peripheral Driver 0-25

Example 0-2: (continued)

*
* Routine name cgen_close

*
* This routine closes the unit.

*
*
* Call syntax
* cgen_close(dev, flags)

*
* Implicit inputs
* Flags of XXXX

*
* Implicit outputs
* NONE

*
* Return values
* CGEN SUCCESS

*
*

ENOMEM

* TO DO:
*/

Resource problem

int
cgen_close(dev, flags)

{

dev t dev;
int-flags;

/*
* LOCAL VARIABLES
*/

PDRV DEVICE

CGEN SPECIFIC

CGEN ACTION

u_Iong

static u char

/* Major/minor number pair */
/* Flags RDONLY READ WRITE FNDELAY etc. */

*pdrv dev;
/* Peripheral Device Structure pointer */

*gen spec;
/* Generic-Specific Structure pointer */

action;
/* Generic Action Structure */

s; /* For saved IPL */

module[] = "cgen_close"i /* Module name */

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),

0-26 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
("[%d/%d/%d] is: entry\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

/*
* Get Peripheral Device Structure pointer
*/

if((pdrv dev = GET PDRV PTR(dev» == (PDRV_DEVICE *)NULL){
/* - --

}

* This should not happen--no Peripheral Device Structure.
*/
LOG_ERROR("Implement your error logging");
return (ENOMEM) ;

/*
* Get device-specific structure pointer
*/

gen spec = (CGEN SPECIFIC *)pdrv dev->pd specific;
if(-(gen_spec = (CGEN_SPECIFIC *)pdrv_dev->pd_specific)

}

(CGEN SPECIFIC *)NULL){
PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
LOG ERROR ("Implement your error logging");
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);
return (ENOMEM) ;

/*
* Check to see if a unit attention has been seen; if so,
* close the unit. Since we can not determine what type
* of device the driver is being written for, this is
* only an example of UNIT ATTENTIONS and RESETS being
* detected at the close of the device.
*/

PDRV IPLSMP_LOCK(pdrv_dev, LK_RETRY, s);

if((gen_spec->gen_state flags & (CGEN UNIT ATTEN STATE
CGEN_RESET_STATE» 1= NULL){

}

/*
* Close unit
*/

PDRV IPLSMP UNLOCK(pdrv dev, s);
ccmn=close_unit(dev);
return(CGEN_SUCCESS);

Sample Generic CAM Peripheral Driver 0-27

Example 0-2: (continued)
/*

* Do device-specific close steps.
*/

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC ICAMD INOUT),
("[%d/%d/%d] %s: exIt\n" ,
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module»i

return (CGEN SUCCESS)i

} /* End of cgen_close() */

/* --- */
/* Function description.

*
* Routine cgen_read
*
* Functional Description:
* This routine handles user processes' synchronous read
* requests. This is a pass through function that gets a buf
* struct allocated and then passes the work to cgen_strategy.

*
* Call syntax
* cgen_read(dev, uio)
* dev t devi
* struct *uio

*
* Implicit inputs
* NONE

*
* Implicit outputs
* NONE

*
* Return values

Major/minor number pair
Pointer to the uio struct

* Passes return from physio()

*
* TO DO:
*/

int
cgen_read(dev, uio)

dev t
struct uio

{

devi
*uiOi

0-28 Sample Generic CAM Peripheral Driver

/* Major/minor number pair */
/* Pointer to the uio struct */

Example 0-2: (continued)
/*

* Local variables
*/

int ret val;
struct buf *bp;
static u char module[]

/* Value to be returned */
/* Allocated buf struct */

"cgen_read"; /* Module name */

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC ICAMD INOUT),
(1I[%d7%d/%d] %s: entry\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

/*
* Allocate buf struct
*/

bp = ccmn_get_bp();

if(bp == NULL){

}

LOG_ERROR(IIImplement your error logging");
return (ENOMEM);

ret val physio(cgen_strategy, bp, dev, BREAD,
cgen_minphys, uio);

/*
* Release the buf struct
*/

ccmn_rel_bp(bp);

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD GENERIC ICAMD INOUT),
(" [%d7%d/%d] %s: exit\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module»;

return (ret_val);

} /* end of cgen_read */

/* --- */
/* Function description.

*
* Routine cgen_write

*
* Functional Description:
* This routine handles synchronous write requests for user
* processes. This is a pass through function, that gets a
* buf struct and then passes the work to cgen_strategy

Sample Generic CAM Peripheral Driver 0-29

Example 0-2: (continued)

*
* Call syntax
* cgen_write(dev, uio)
* dev t dev;

*
*

struct

* Implicit inputs
* NONE

*
* Implicit outputs
* NONE

*
* Return values

*uio;

* Passes return from physio()

*
* TO DO:
*/

Major/minor number pair
Pointer to the uio struct

int
cgen_write(dev, uio)

{

dev t
struct uio

/*

dev;
*uio;

* Local variables
*/

int
struct buf
static u char

ret val;
*bp;
module []

/* Major/minor number pair */
/* Pointer to the uio struct */

/* Value to be returned */
/* Allocated buf struct */

"cgen_write"; /* Module name */

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: entry\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

/*
* Allocate buf struct
*/

bp = ccmn_get_bp();

if(bp == NULL){

}

LOG_ERROR(IIImplement your error logging");
return (ENOMEM);

ret val physio(cgen_strategy, bp, dev, B WRITE,
cgen_minphys, uio);

0-30 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
/*

* Release the bp
*/

ccmn_rel_bp(bp);

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] is: exit\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev) ,module));

return(ret_val);

} /* end of cgen_write */

/* --- */
/* Function description.

*
* This routine handles all I/O requests for user processes.
* A number of checks based on whether the request
* is synchronous or asynchronous are made.

*
* Call syntax
* cgen_strategy(bp)
* struct buf *bp Pointer to the struct buf

*
*
* Implicit inputs
* In the bp, whether the request is a read or a write,
* synchronous or asynchronous.
* In the CGEN SPECIFIC structure, various state conditions.

*
* Implicit outputs
* None.

*
* Return values

*
* TO DO:

*
*/

void
cgen_strategy(bp)

{

struct buf

/*
* Local variables.
*/

bp; / Pointer to the buf struct */

Sample Generic CAM Peripheral Driver 0-31

Example 0-2: (continued)
PDRV DEVICE *pdrv dev;

/*-peripheral Device Structure pointer */

DEV DESC *dev_desc;
/* Device Descriptor Structure pointer */

CGEN SPECIFIC *gen spec;
7* Generic-Specific Structure pointer */

CCB SCSIIO /* SCSI I/O CCB pointer */

ccb flags;
- /* The flags to be set in the ccb */

SEQ READ CDB6 *rd cdb;
- /*-pointer to CDB within the CCB for a read command. */

SEQ WRITE CDB6 *wt cdb;
- /* Pointer to CDB within the CCB for a write command. */

send stat; u_long

static u char
- /* Value send CCB routine returns */

module[] "cgen_strategy"; /* Module name */

int
u char
SEQ_WRITE_CDB6

s;
sense size;
*wt_cdb;

/* Saved IPL */
/* The request sense size */

/* Pointer to write CDB */

PRINTD(DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev),
(CAMD GENERIC ICAMD INOUT),
("[%d7%d/%d] %s: entry\n" ,
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module));

/*
* Get Peripheral Device Structure pointer
*/

pdrv_dev

/*
* Get Device Descriptor Structure pointer
*/

dev desc = pdrv dev->pd dev desc;
/* - - --

* Get Generic-Specific Structure pointer
*/

gen_spec (CGEN_SPECIFIC *)pdrv_dev->pd_specific;

/*
* Lock the structure now because throughout the routine we
* examine flags within the CGEN SPECIFIC structure and do
* not want any other routine to-be clearing or setting flags
* while decisons on the flags are being made.
*/

PDRV_IPLSMP_LOCK(pdrv_dev, LK_RETRY, s);

0-32 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
/*

* Check to see if the device was opened with the FNDELAY
* flag set and it was not ready.
*/

if((gen spec->gen state flags & CGEN NOT READY STATE) 1= NULL) {
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev),-DEV_LUN(dev),

(CAMD GENERIC),

/*

("[%d7%d/%d] %s: NOT ready state flags = %OxX\n",
DEV BUS ID(dev), DEV TARGET(dev), DEV LUN(dev),
module,-gen_spec->gen_state_flags»; -

* Do not allow I/O operations to the unit
*/

PDRV IPLSMP UNLOCK(pdrv dev, s);
CGEN-BERROR(bp, bp->b bcount, EINVAL);
biodone(bp); -
return;

}
/*

* This section of code notices various state conditions and
* handles according to device.
*/

if((gen spec->gen state flags & CGEN XXX STATE) 1= NULL){

}

PRINTD(DEV_BUS=ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d/%d/%d] %s: CGEN XXX STATE: stateflags = Ox%X\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
module, gen_spec->gen_state_flags»;

/*
* Do not allow I/O operations to the unit
*/

PDRV IPLSMP UNLOCK (pdrv dev, s);
CGEN-BERROR(bp, bp->b bcount, EIO);
biodone(bp); -
return;

/*
* Build the CDB (SCSI Command)
* EXAMPLE of a sequential access device.
*/

/*
* Check the buf structure flags to determine if the user
* has requested a read or write operation.
*/

if((bp->b flags & BREAD) 1= NULL) {
rd_cdb =-(SEQ_READ=CDB6 *)ccb_io->cam_cdb io.cam cdb bytes;

rd cdb->opcode = SEQ_READ_OP;
rd-cdb->lun = 0;

Sample Generic CAM Peripheral Driver 0-33

Example 0-2: (continued)
SEQTRANS_TO_READ6(bp->b_bcount, rd cdb);

/*
* Set the length of the CDB
*/

ccb io->cam cdb len - - sizeof(SEQ_READ CDB6);
}
/*

* Must be user write command.
*/

else {

}

wt cdb = (SEQ_WRITE_CDB6 *)ccb_io->cam_cdb_io.cam_cdb_bytes;

wt_cdb->lun = 0;

/*
* Set the length of the CDB
*/

ccb io->cam cdb len sizeof(SEQ_WRITE CDB6);

/*
* Send it down to the XPT layer
*/

send stat ccmn_send_ccb(pdrv_dev, (CCB_HEADER *)ccb_io,
NOT_RETRY) ;

/*
* If the CCB is not in progress •.•
*/

if((send stat & CAM_STATUS_MASK) != CAM_REQ_INPROG){
/* -

* The CCB has been returned and has not gone through
* cgen iodone. Call the CCB and return.
*/ -

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),

}

("[%d7%d/%d] %s: send status NOT inprog\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

PDRV IPLSMP UNLOCK(pdrv dev, s);
cgen=iodone(ccb_io); -
return;

0-34 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC \CAMD INOUT),
("[%d/%d/%d] %s: exlt\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module));

return;

} /* end of cgen_strategy */

/* --- */
/* Function description.

*
* Routine name cgen_ioctl

*
* This routine handles specific requests for actions other
* than read and write.

*
* Call syntax
* cgen_ioctl(dev, cmd, data, flags)

*
* Implicit inputs
* flags of CGEN_XXX
*
* Implicit outputs

*
*
* Return values

*
* TO DO:
*/

int
cgen_ioctl(dev, cmd, data, flag

{

dev t dev;

/*

int
caddr t

int

* Local Variables
*/

PDRV DEVICE

CGEN SPECIFIC

cmd;
data;

flag;

/*

/* Major/minor number pair */
/* The command we are doing */

* Pointer to kernel's copy of user
* request struct
*/

/* User flags */

*pdrv dev;
/* peripheral Device Structure pointer */
*gen_spec;

Sample Generic CAM Peripheral Driver 0-35

Example 0-2: (continued)

DEV DESC
/* Generic-Specific Structure pointer */

*dev desc;
/* Device Descriptor Structure pointer */

SEQ_MODE_DATA6
CGEN ACTION
struct devget
struct device
struct controller
long

msdp; / Mode sense data pointer */
action; /* Generic Action Structure */
devget; / Device get ioctl */
device; / Used for devget only */
cont; / Used for devget only */
retries;

/* The number of times to try to
* do a mode sense for devget
*/

int s· , /* Saved IPL */

u long
u~)ong
static u char

/* Device unit number
ccb status; /* CCB status
chk-status; /* Check condition status

module[] = "cgen_ioctl"; /* Module name

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] is: entry\n" ,

*/
*/
*/
*/

DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

/*
* Get pointers
*/

pdrv dev = GET PDRV PTR(dev);
if(pdrv dev - (PDRV DEVICE *)NULL) {

}

/* - -
* There is no Peripheral Device Structure
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
LOG_ERROR("Implement your error logging");
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);
return(ENXIO);

gen spec = (CGEN_SPECIFIC *)pdrv_dev->pd_specific;
if(-gen spec == (CGEN SPECIFIC *)NULL){

}

/* - -
* No Generic-Specific Structure
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
LOG_ERROR ("Implement your error logging");
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);
return (ENXIO) ;

device = camdinfo[pdrv_dev->pd_log_unit];

cont = camminfo[device->ctlr_num];

0-36 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
dev desc pdrv dev->pd_dev_desc;

/*
* Look at command to determine next action.
*/

switch (cmd) {

case DEVIOCGET: /* device status */
devget = (struct devget *)data;
bzero(devget,sizeof(struct devget»;
devget->category = DEV SCSI;
devget->bus = DEV SCSI;
bcopy(DEV SCSI GEN, devget->interface,

- - strlen(DEV SCSI GEN»;
bcopy(dev desc->dd dev name, devget->device, DEV SIZE);
devget->adpt_num =-cont->slot; -
devget->nexus num = 0;
devget->bus num = DEV BUS ID(dev);
devget->ctlr_num = device=>ctlr_num;
devget->rctlr num = 0;
devget->slave-num = DEV TARGET(dev) ;
bcopy("generic", devget=>dev name, 6);
devget->unit num «pdrv dev->pd target « 3)

- - - I pdrv_dev->pd_lun);

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
devget->soft count pdrv dev=>pd soft err;
devget->hard=count = pdrv=dev->pd=hard=err;

devget->stat = gen_spec->gen_flags;
devget->category stat = gen spec->gen flags;
PDRV_IPLSMP_UNLOCK(pdrv_de~ s); -

/*
* Do a mode sense to check for write-locked drive.
* The first SCSI mode sense command can fail due to
* unit attention.
*/

retries
do {

o· ,

/*
* Issue a mode sense command
*/

/*
* Clear out Generic Action Structure
*/

bzero(&action, sizeof(CGEN_ACTION»;

cgen_mode_sns(pdrv_dev, &action, cgen_done,SEQ_NO PAGE,
ALL_PCFM_CURRENT, CGEN_SLEEP);

Sample Generic CAM Peripheral Driver 0-37

Example 0-2: (continued)
if(action.ccb == (CCB_SCSIIO *)NULL) {

PRINTD(DEV BUS ID(dev), DEV TARGET(dev),
DEV-LUN(dev), (CAMD GENERIC),
("[%d/%d/%d] %s: devget NULL CCB\n",
DEV BUS ID(dev), DEV TARGET (dev),
DEV=LUN(dev), module));

/* Must return 0 for devget */
return(O);
}

if (action.ccb_status CAT CMP) {

}

/*
* GOOD Status. Fill in rest of devget struct
*/

msdp = (SEQ_MODE_DATA6 *)action.ccb->cam_data_ptr;

if(msdp->sel head.wp 1= NULL){

}

/*

/* -
* DEVICE is write locked.
*/

devget->stat 1= DEV_WRTLCKi

* Do you need to set up the device's specifics?
* For tapes, need to look at the density field
* returned in the MODE SENSE data. Implement
* the specifics for your device.
*/

/*
* Release the CCB and the memory used for the
* mode sense data back to the system.
*/

if(action.ccb 1= (CCB SCSIIO *)NULL) {
CHK_RELEASE_QUEUE(pdrv_dev, action.ccb);

ccmn_rel_ccb((CCB_HEADER *)action.ccb);
}

retries++;

} while((retries < 3) && (action.ccb_status 1= CAT_CMP));

/*
* Since this is a devget, always return success.
*/

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

0-38 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: exit\n",
DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
module); -

return(O);
break;

default:
return (ENXIO);
break;

return (0);

} /* end of cgen_ioctl */

/* --- */
/*

* Generic *done routines
*/

/* --- */
/* Function description.
*
*
* Routine Name: cgen_done()

*
* Functional Description:

*
* Entry point for all NON-user I/O requests.
* If the CCB does not contain a buf struct pointer in the
* Peripheral Device Driver Working Set Structure, then
* issue a wakeup system call on the address of the CCB.

*
*
*
* Call Syntax:

*
*
*
*
*
*
*
*
*

cgen_done(ccb)

CCB SCSIIO *ccb;

* Returns :
* None
*/

Sample Generic CAM Peripheral Driver 0-39

Example 0-2: (continued)
void
cgen_done (ccb)

CCB SCSIIO *ccb; /* SCSI I/O CCB pointer */
{

/*
* Local variable
*/

PDRV DEVICE

int
static u char

pdrv_dev =

*pdrv dev;
/* Peripheral Device Structure pointer */

s;
module []

/* Saved IPL */
"cgen_done"; /* Module name */

(PDRV_DEVICE *)((PDRV_WS *)ccb->cam_pdrv_ptr)->pws_pdrv;

if(pdrv dev == NULL){
panic(lIcgen_done: NULL PDRV DEVICE pointer");
return;

}
PRINTD(DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev),

DEV-LUN(pdrv dev->pd dev) , (CAMD GENERIC ICAMD INOUT)~
("(%d/%d/%d]-%s: entry\n", - -
DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev),
DEV = LUN (pdrv _ dev->pd _ dev) , module)"); - -

/*
* Remove from active lists
*/

ccmn_rem_ccb(pdrv_dev, ccb);

/*
* To prevent race conditions on smp machines ••.
*/

PDRV_IPLSMP_LOCK(pdrv_dev, LK_RETRY, s);

/*
* Check to see if buf struct pointer is filled in.
* It should not be for this routine.
*/

if((struct buf *)ccb->cam_req_map NULL) {

}

/*
* This is not an user I/O CCB
*/

wakeup (ccb) ;

else {

0-40 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
LOG_ERROR("Implement your error logging");

wakeup(ccb);
}
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

PRINTD(DEV BUS ID(pdrv dev->pd dey), DEV TARGET(pdrv dev->pd dey),
DEV=LUN(pdrv_dev->pd_dev), (CAMD_GENERIC ICAMD_INOUT)~
("[%d/%d/%d] is: exit\n",
DEV BUS ID(pdrv dev->pd dey), DEV TARGET(pdrv dev->pd dey),
DEV = LUN (pdrv _ dev->pd _ dev) , module)"); - -

return;

} /* end of cgen_done */

/* --- */
/* Function description.

*
* Routine Name: cgen_iodone

*
* Functional description:

*
* This routine is called by lower levels when a user I/O
* request has been acted on by the lower levels.

*
* Due the its buffered-mode operation, the target can
* return good status without transferring the data to
* media Notifcation of media error occurs sometime later.

*
* Side Effects:
* Based on CAM status, the user buffer StrUCt is modified
* to reflect either successful completion of the I/O
* transfer or error status.

*
* Flags are set in the CGEN SPECIFIC structure to reflect
* events detected.

*
* Call Syntax
* cgen_iodone(ccb)
* CCB SCSIIO * ccb;

*
*
* Returns:
* None

*
*/

void
cgen_iodone(ccb

CCB SCSIIO *ccb; /* SCSI I/O CCB pointer */

Sample Generic CAM Peripheral Driver 0-41

Example 0-2: (continued)
{

PDRV DEVICE *pdrv dev;
/* Peripheral Device Structure

CGEN SPECIFIC *gen _spec;
/* Generic-Specific Structure

struct buf *bp;
/* User I/O buf struct

u_long ccb_status;
/* Result of CCB

chk status;

pointer */

pointer */

pointer */

status */

7* Result of check condition status */
int
dev t

s;
dev;

module []

/* Saved IPL */
/* Major/minor number pair */

"cgen_iodone"; /* Module name */ static u char

/*
* peripheral Device Structure and Generic-Specific Structure
*/

pdrv dev =
-(PDRV_DEVICE *)((PDRV_WS *)ccb->cam_pdrv_ptr)->pws_pdrv;

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: entry\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

/*
* Get user buf struct
*/

bp = (struct buf *)ccb->cam req map;
if(bp == (struct buf *)NULL) {

}
/*

/*
* There should be a buf struct if this routine is called.
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
LOG ERROR("Implement your error logging");
PDRV IPLSMP UNLOCK (pdrv dev, s);
ccmn-rem ccb(pdrv dev, ccb);
/* - - -

* Issue a wakeup system calIon this CCB
*/

wakeup (ccb);
return;

* Lock to prevent race conditions for asynchronous
* I/O (nbuf I/O).

0-42 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
*/

PDRV_IPLSMP_LOCK(pdrv_dev, LK_RETRY, s);

/*
* Remove this CCB from the active list
*/

ccmn_rem_ccb(pdrv_dev, ccb);

/* Get completion status */

ccb status

/*
* Save residual counts
*/

bp->b resid = ccb->cam resid;
gen_spec->gen_resid = ccb->cam_resid;

switch (cCb_status) {

case CAT CMP:

/*
* The cam_resid flag indicates the number
* of bytes that were not transferred.
* If anything but NULL, the device has problems.
*/

if(ccb->cam resid 1= NULL){

}

LOG_ERROR(~Implement your error logging");
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
("[%d/%d/%d] %s: Status = CMP but resid not NULL\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module));

CGEN_BERROR(bp, ccb->cam_resid, EIO);

break;

case CAT CMP ERR:

/*
* Had some sort of SCSI status other than GOOD, so
* must look at each SCSI status type to determine
* how to handle.
*/

/*
* Reason is either a check
* condition or reservation conflict.

Sample Generic CAM Peripheral Driver 0-43

Example 0-2: (continued)
*/

switch(ccb->cam scsi status) {
default: --
case SCSI STAT GOOD:
case SCSI STAT CONDITION MET: - - -
case SCSI STAT INTERMEDIATE:
case SCSI STAT INTER COND MET:
case SCSI STAT COMMAND TERMINATED:
case SCSI STAT QUEUE FULL:

CGEN_BERROR(bp, ccb->cam_resid, EIO);

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
(" [%d7%d/%d] %s: default SCSI STATUS = Ox%x\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV LUN(dev) ,
module,-ccb->cam_scsI_status»; -

LOG_ERROR(IIImplement your error logging");

break;

case SCSI STAT BUSY:
CGEN BERROR(bp, ccb->cam resid, EIO);
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
(" [%d7%d/%d] %s: device BUSY STATUS\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

LOG_ERROR("Implement your error logging");

break;

case SCSI STAT RESERVATION CONFLICT:
/*
* This unit is reserved by another initiator.
* This should not happen
*/

CGEN_BERROR(bp, ccb->cam_resid, EBUSY);

LOG_ERROR(IIImplement your error logging");
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
(" [%d7%d/%d] %s: Reservation conflict.\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module»;

break;

case SCSI STAT CHECK CONDITION:

/*

0-44 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
* Call cgen ccb chkcond()
* to handle-the-check condition
*/

chk status

/*
* Determine what to do.
*/

switch (chk status) {
/* -
* Look at common conditions first.
* Note that the gen spec->ts resid is handled
* in the check condItion ~
*/

case CHK EOM :

case CHK FILEMARK:

case CHK ILl:

case CHK SOFTERR:

case CHK INFORMATIONAL:

case CHK CHK NOSENSE:

case CHK SENSE NOT VALID:

case CHK NOSENSE BITS:

case CHK NOT READY:

case CHK HARDERR:

case CHK UNIT ATTEN:

case CHK DATA PROT:

case CHK UNSUPPORTED:

case CHK CMD ABORTED:

case CHK UNKNOWN KEY:

default:
break;

} /* end of switch for check condition */

break; /* end of scsi_status check condition */

} /* end of switch of SCSI status */

Sample Generic CAM Peripheral Driver 0-45

Example 0-2: (continued)
break;

case CAT INPROG:
case CAT UNKNOWN:
case CAT CCB ERR:

CGEN_BERROR(bp, bp->b_bcount, EIO);

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
(" [%d7%d/%d] %s: CCB status: %s\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module,
cam ccb str«CCB HEADER *)ccb)));

break; - -

case CAT RESET:
case CAT BUSY:

/*
* Status should only be busy.
* Don't have to abort the active queues.The CCBs that
* are queued will be returned to use. This action is
* defined in the CAM specification.
* Don't error log this because the error log will fill
* up with reset pending messages ••••
*/
if(CAM STATUS(ccb) == CAM BUSY) {

gen_spec->gen_state_flags 1= CGEN_RESET_PENDING_STATE;
}
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
(" [%d7%d/%d] %s: CCB status: %s\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev), module,
cam_ccb_str«CCB_HEADER *)ccb)));

CGEN_BERROR(bp, ccb->cam_resid, EIO);

break;

case CAT SCSI BUSY:
case CAT BAD AUTO:
case CAT DEVICE ERR:

/*
* Error log this
*/

LOG_ERROR(IIImplement your error logging");

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
(" [%d7%d/%d] %s: CCB status: %s\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev), module,
cam=ccb=str«CCB_HEADER *)ccb)));

0-46 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
CGEN_BERROR(bp, ccb->cam_resid, EIO);

break;

case CAT NO DEVICE:
/*

* Error log this.
*/

LOG ERROR("Implement your error logging");
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

(CAMD GENERIC),
("[%d7%d/%d] %s: CCB status: %s\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev), module,
cam=ccb=str«CCB_HEADER *)ccb)));

CGEN_BERROR(bp, ccb->cam_resid, ENXIO);

break;

case CAT ABORT:

/*
* Return is a result of walking the
* active lists and aborting the ccb's
*/

PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC),
("[%d7%d/%d] %s: CCB status: %s\n",
DEV BUS ID(dev), DEV TARGET (dev), DEV_LUN(dev), module,
cam=ccb=str«CCB_HEADER *)ccb)));

if(CAM_STATUS (ccb) == CAM_REQ_ABORTED){
}
else if(CAM_STATUS (ccb) == CAM UA ABORT){

}
else if(
}
else if(
}
else {
}
break;

default:
/*

CAM_STATUS (ccb

CAM_STATUS (ccb

* Error log this; should never get the default condition.
*/

LOG ERROR("Implement your error logging");
PRINTD(DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),

Sample Generic CAM Peripheral Driver 0-47

Example 0-2: (continued)
(CAMD GENERIC),
("[%d/%d/%d] %s: CCB status: %s\n",
DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev), module,
cam=ccb=str«CCB_HEADER *)ccb»);

CGEN_BERROR(bp, bp->b_bcount, EIO);

break;

} /* end switch on cam status */

/*
* Unlock
*/

PDRV IPLSMP_UNLOCK(pdrv_dev, s)

/* All flags are set; call iodone on this buf struct.
*/

iodone (bp);

/*
* Do not attempt to release data buffers for user I/O,
* because a system panic will result.
*/

/*
* Check the release queue prior to releasing the CCB
*/

CHK_RELEASE_QUEUE(pdrv_dev, ccb);

/*
* Release the CCB
*/

ccmn_rel_ccb«CCB_HEADER *)ccb);

PRINTD(DEV BUS ID(dev), DEV TARGET(dev), DEV_LUN(dev),
(CAMD GENERIC ICAMD INOUT),
("[%d/%d/%d] %s: exIt\n",
DEV_BUS_ID(dev), DEV_TARGET(dev), DEV_LUN(dev),module»;

return;

} /* end of cgen_iodone */

/* --- */
/*

* Asynchronous notification routine.
*/

/* --- */

0-48 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
/* Function description.

* This routine is called when an AEN, BDR, or Bus reset has
* occurred. This routine sets CGEN RESET STATE and clears
* CGEN RESET PEND STATE for BDR's and Bus resets. For AEN's - - -
* set CGEN UNIT ATTEN STATE.

*
*
* Call syntax
* cgen_async(opcode,
* u long
* u-char
* u char
* u-char
* cadd t
* u char

*
* Implicit inputs
* NONE

*
* Implicit outputs

path id, target,
opcode;
path_id;
target;
lun;
buf ptr;
data_cnt;

lun, buf ptr, data cnt)
Reason why called -
Bus number
Target number
Logical unit number
Buffer address AEN's
Number of bytes valid;

* Setting and clearing of state flags

*
* Return values
* NONE

*
* TO DO:
* Recovery for unit.
*/

void
cgen_async(opcode,

u long
u-char

{

/*

u char
u char
caddr t
u char

path id, target,
opcode;
path_id;
target;
lun;
buf ptr;
data_cnt;

lun, buf ptr, data cnt)
/* Reason called *7
/* Bus number */
/* Target number */
/* Logical unit number */
/* Buffer address AEN's */
/* Number of bytes valid; */

* Local Variables
*/

PDRV DEVICE

CGEN SPECIFIC

dev t
int
static u char

*pdrv dev;
/* Peripheral Device Structure pointer */

*gen spec;
/* Generic-Specific Structure pointer */

dev;
S;

module []

/* Device number */
/* Saved IPL */

"cgen_async"; /* Module name */

Sample Generic CAM Peripheral Driver 0-49

Example 0-2: (continued)
PRINTD(path id, target, lun, (CAMD GENERIC ICAMD_INOUT),

("[%d/%~/%d] is: entry\n" ,
path_id, target, lun, module»;

/*
* Get device number
*/

dev = MAKE_DEV(path_id, target, lun);

/*
* If pdrv device == NUll, then the device has never been
* opened and this section should not have been reached.
*/

if(pdrv dev == (PDRV DEVICE *)NULL){

}

LOG ERROR("Implement your error logging");
PRINTD(path id, target, lun, (CAMD GENERIC ICAMD INOUT),

("[%d/%~/%d] is: pdrv dev == O\n",
path_id, target, lun,-module»;

return;

/*
* If gen spec == NUll, then the device has never been opened
* and thIs section should not have been reached
*/

if(gen spec == (CGEN SPECIFIC *)NULL){

}

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
LOG ERROR ("Implement your error logging");
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);
return;

/*
* Find out why this section was reached
*/

if«opcode & AC SENT BDR) 1= NULL){

}

PDRV IPLSMP-LOCK(pdrv dev, LK RETRY, s);
gen spec->gen state flags 1= CGEN RESET STATE;
gen-spec->gen-state-flags &= -CGEN RESET PENDING STATE;
LOG-ERROR("Implement your error logging"); -
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

if«opcode & AC BUS RESET) 1= NULL) {
PDRV IPLSMP-LOCK(pdrv dev, LK RETRY, s);
gen_spec->gen_state_flags 1= CGEN_RESET_STATE;
gen spec->gen state flags &= -CGEN RESET PENDING_STATE;
LOG~)RROR("Implement your error logging");

0-50 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

}
if((opcode & AC SCSI AEN) 1= NULL) {

CGEN_LOCK_OR_STATE(pdrv_dev, gen_spec, CGEN_UNIT_ATTEN_STATE);
}

PRINTD(path id, target, lun, (CAMD GENERIC ICAMD_INOUT),
("[%d/%d/%d] %s: exit\n", -
path_id, target, lun, module»;

return;

} /* End of cgen_async() */

/* --- */

/*
* Command Support Routines
*/

/* --- */
/* Function description.

*
* This routine issues a SCSI TEST UNIT READY command
* to the unit.

*
* The varible sleep for this version will always be TRUE. This
* directs the code to sleep waiting for comand status.
*
* Call syntax
* cgen_ready(pdrv dev, action, done, sleep)
* PDRV DEVICE *pdrv dev;
* -peripheral Device Structure pointer
* CGEN ACTION *action; Generic Action Structure pointer
* void (*done)(); Completion routine
* u _long sleep; Whether to sleep
*
* Implicit inputs
* NONE

*
* Implicit outputs
* The various statuses into the caller's action struct.

*
* Return values
* NONE

*
* TO DO:

*
*/

Sample Generic CAM Peripheral Driver 0-51

Example 0-2: (continued)
void
cgen_ready(pdrv_dev,

PDRV DEVICE
action, done, sleep)

*pdrv dev;

{

/*

CGEN ACTION

void
u_long

* LOCAL variables
*/

DEV DESC

int
int
u char

/* Peripheral Device Structure pointer */
*action;

/* Generic Action Structure pointer */
(*done)(); /* Completion routine */
sleep; /* Whether to sleep */

*dev desc = pdrv dev->pd dev desc;
/* - --

* Device Descriptor Structure pointer
*/

s; /* Saved IPL */
sl; /* Throwaway IPL */
sense size; -

/* Reguest sense buffer size */
static u char module [] = "cgen_ready" ; /* Module name */

PRINTD(DEV BUS ID(pdrv dev->pd dev) , DEV TARGET(pdrv dev->pd dev),
DEV=LUN(pdrv_dev->pd_dev), (CAMD_GENERIC ICAMD_INOUT)~
("[%d/%d/%d] is: entry\n",
DEV BUS ID(pdrv dev->pd dev) , DEV TARGET(pdrv dev->pd dev),
DEV=LUN(pdrv_dev->pd_dev), module»; - -

/*
* See if the System administrator has set the request sense
* size. This is for autosense. If there is an error,
* the lower levels will do a request sense.
*/

sense size

/*
* Call the common routine to create the CCB for the test
* unit ready. It will return a CCB that is already being
* processed.
*/

action->act ccb

/*

ccmn_tur(pdrv_dev, sense size,(u 10ng)CAM DIR NONE, done,
(u_char)NULL, CGEN_TME_5);

* Check if CCB is NULL. If so, the generic macro fills out
* the error logs and the action return values.
*/
if(action->act ccb == (CCB SCSIIO *)NULL){

CGEN_NULLCCB_ERR(action, pdrv_dev, module);

0-52 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
return;

}

/*
* Check to see if sleep is not set
*/

if(sleep 1= CGEN_SLEEP){
return;

}

/*
* Check the CCB to make sure it is in progress before
* going to sleep. Raise the IPL to block the
* interrupt; the sleep will lower it.
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
while(CAM STATUS(actIon->act-ccb) == CAM_REQ_INPROG){

/* - -

}

* Sleep on address of CCB, but NON interruptable
*/

PDRV_SMP_SLEEPUNLOCK(action->act_ccb, PRIBIO, pdrv_dev);

/*
* Get the lock again
*/
PDRV_IPLSMP_LOCK(pdrv_dev, LK_RETRY, sl);

/*
* At this point, the command has been sent down and
* completed. Now check for status.
*/

action->act ccb status =
ccmn_ccb_statuS((CCB_HEADER *)action->act_ccb);

switch (action->act ccb status) {

case CAT CMP:

/*
* GOOD status; just return.
*/

break;

case CAT CMP ERR:

/*

Sample Generic CAM Peripheral Driver 0-53

Example 0-2: (continued)
* Had a SCSI status other than good;
* must look at each possible SCSI status to
* determine our action.
*/

action->act scsi status = action->act ccb->cam scsi status;
switch(action->act_scsi_status) - --

{
default:
case SCSI STAT GOOD:
case SCSI STAT CONDITION MET:
case SCSI STAT BUSY:
case SCSI STAT INTERMEDIATE:
case SCSI STAT INTER COND MET:
case SCSI STAT COMMAND TERMINATED:
case SCSI_STAT_QUEUE_FULL:
case SCSI STAT RESERVATION CONFLICT:
case SCSI STAT CHECK CONDITION:

/* Call cgen ccb chkcond()
* to handle-the-check condition.
*/

action->act chkcond error - -
pdrv_dev) ;

/*
* Now determine what to do.
*/

switch (action->act_chkcond_error) {

case CHK UNIT ATTEN:
case CHK NOT READY:
case CHK INFORMATIONAL:
case CHK SOFTERR:
case CHK EOM :
case CHK FILEMARK:
case CHK ILl:
case CHK CHK NOSENSE:
case CHK SENSE NOT VALID:
case CHK NOSENSE BITS:
case CHK HARDERR:
case CHK DATA PROT: - -
case CHK UNSUPPORTED:
case CHK CMD ABORTED:
case CHK UNKNOWN KEY:
default:

break;
}

break; /* end of scsi status check condition */

} /* end of switch of scsi status */

0-54 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
break; /* End of CAM CMP ERR */

case CAT INPROG:
case CAT UNKNOWN:
case CAT CCB ERR:
case CAT RESET:
case CAT BUSY:
case CAT SCSI BUSY:
case CAT BAD AUTO:
case CAT DEVICE ERR:
case CAT NO DEVICE:
case CAT ABORT:

action->act fatal 1= ACT_FAILED;
action->act ret error = EIO;

default:
/*

* Error log this; it should never occur.
*/

action->act fatal 1= ACT FAILED;
action->act ret error = ErO;
LOG_ERROR(IIImplement your error logging");

break;

} /* end switch on cam status */

/*
* Now unlock
*/

PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

PRINTD(DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev) ,
DEV=LUN(pdrv_dev->pd_dev), (CAMD_GENERIC ICAMD_INOUT)~
("[%d/%d/%d] is: exit\n",
DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev) ,
DEV = LUN (pdrv _ dev->pd _ dev) , module)"); - -

return;

} /* End of cgen_ready() */

/* --- */
/* Function description.

* This routine runs down the Mode Select Table Structure for
* this device, if one is defined.

*
* Call syntax
* cgen_open_sel(pdrv dev, action,index, done, sleep)
* PDRV DEVICE -*pdrv dev;

Pointer to the peripheral Device Structure

* CGEN ACTION *action;

Sample Generic CAM Peripheral Driver 0-55

Example 0-2: (continued)

*

*
*
*

long

void
u_long

* Implicit inputs
* NONE

*
* Implicit outputs

Generic Action Structure pointer
ms index;

- The index of the Mode Select Table
(*done) ();
sleep;

Completion routine
Whether to sleep

* Return values of status of command placed in the action
* struct.

*
* Return values
* NONE

*
* TO DO:
* No sleep and state step
* Interrupted sleeps
*/

void
cgen_open_sel(pdrv_dev, action, index, done, sleep)

{

PDRV DEVICE *pdrv dev;

/*

CGEN ACTION

void
u_long

/* Peripheral Device Structure pointer */
*action;

/* Generic Action Structure pointer */
(*done)(); /* Completion routine */
sleep; /* Whether to sleep */

* Local Variables
*/

DEV DESC *dev_desc = pdrv_dev->pd_dev_desc;
/*

* Device Descriptor Structure pointer
*/

MODESEL TBL *mod tbl = pdrv_dev->pd_dev_desc->dd_modesel_tbl;
7*

* Pointer to Mode Select Table Structure
*/

int s· , /* Saved IPL */
int s1; /* Throwaway IPL */
u char sense size; -

/* Request sense buffer size */
static u char module [] = "cgen_open_ sel" ; /* Module name */

0-56 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
PRINTD(DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev),

DEV LUN(pdrv dev=>pd dev), (CAMD GENERIC ICAMD-INOUT),-
("(%d/%d/%d] -%s: entry\n", - -
DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev),
DEV=LUN(pdrv_dev->pd_dev), module); - -

/*
* Validate this Mode Select Table index
*/

if((index >=
MAX_OPEN_SELS) 1 1 (mod_tbl->ms_entry[index].ms_data NULL» {

/*
* The caller of this routine passed a invalid index.
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
LOG_ERROR ("Implement your error logging");
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

PRINTD(DEV_BUS_ID(pdrv_dev->pd_dev), DEV_TARGET(pdrv_dev->pd dev),
DEV LUN(pdrv dev->pd dev), (CAMD GENERIC), .

}

(" (%d/%d/%d]-%s: Data pointer 0 or excede OPEN_SELS\n",
DEV_BUS_ID(pdrv_dev->pd_dev), DEV_TARGET(pdrv_dev->pd_dev),
DEV_LUN(pdrv_dev->pd_dev), module»;

action->act_fatal 1= (ACT_PARAMETER 1 ACT_FAILED);
action->act ret error = EINVAL;
return;

/*
* See if the System Administrator has set the request sense
* size. This is for autosense. If there is an error,
* the lower levels will do a request sense.
*/

sense size

action->act ccb =
ccmn mode select(pdrv dev, sense_size, (u 10ng)CAM DIR OUT,

- -done, (u_char) NULL, CGEN TIME_S,-index); - -

/*
* Check if CCB is NULL. If so, the macro fills out
* the error logs and the action return values.
*/
if(action->act ccb == (CCB SCSIIO *)NULL){

CGEN_NULLCCB_ERR(action, pdrv_dev, module);
return;

}

/*
* Check to see if sleep is set ...

Sample Generic CAM Peripheral Driver 0-57

Example 0-2: (continued)
*/

if(sleep == CGEN NOSLEEP){
return;

}

/*
* Check the CCB to make sure it is in progress
* before going to sleep. Raise the
* IPL to block the interrupt, the sleep
* will lower it.
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
while(CAM STATUS(actlon->act-ccb) == CAM REQ INPROG){

}

/* - --
* Sleep NON interruptable on address of CCB
*/

PDRV_SMP_SLEEPUNLOCK(action->act_ccb, PRIBIO, pdrv_dev);

/*
* Get the lock again
*/

PDRV_IPLSMP_LOCK(pdrv_dev, LK_RETRY, s1);

action->act ccb status =
ccmn_ccb_statuS«CCB_HEADER *)action->act_ccb);

switch (action->act ccb status) {

case CAT CMP:

/*
* GOOD status; just return.
*/

break;

case CAT CMP ERR:

/*
* Had SCSI status other than GOOD;
* must look at each possibile status and
* determine what to do ••
*/

action->act scsi status = action->act ccb->cam scsi status;
sWitch(action->act_scsi_status) - --

{
default:
case SCSI STAT GOOD:
case SCSI STAT CONDITION MET:
case SCSI STAT BUSY:

0-58 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)

case
case
case
case
case
case

case SCSI STAT INTERMEDIATE:
case SCSI STAT INTER COND MET:
case SCSI STAT COMMAND TERMINATED: - - -
case SCSI STAT QUEUE FULL:
case SCSI-STAT-RESERVATION CONFLICT:

case SCSI STAT CHECK CONDITION:

/* call cgen ccb chkcond()
* to handle-the-check condition
*/

action->act chkcond error =
cgen_ccb_chkcond(action->act_ccb, pdrv_dev);

/*
* Now determine what to do.
*/

switch (action->act_chkcond_error) {
/*
* Look at conditions.
*/

case CHK INFORMATIONAL:
case CHK SOFTERR:
case CHK EOM :
case CHK FILEMARK:
case CHK ILl:
case CHK CHK NOSENSE:
case CHK SENSE NOT VALID:
case CHK NOSENSE BITS:
case CHK NOT READY:
case CHK HARDERR:
case CHK UNIT ATTEN: - -
case CHK DATA PROT:
case CHK UNSUPPORTED:
case CHK CMD ABORTED:
case CHK UNKNOWN KEY:
default:

break;
} /* end of switch for check condition */

break; /* end of scsi_status check condition */

} /* end of switch of scsi status */

break; /* End of CAM CMP ERR */

CAT INPROG:
CAT UNKNOWN:
CAT CCB ERR:
CAT RESET:
CAT BUSY:
CAT SCSI BUSY:

Sample Generic CAM Peripheral Driver D-59

Example 0-2: (continued)
case CAT BAD AUTO:
case CAT DEVICE ERR:
case CAT NO DEVICE:
case CAT ABORT:

action->act_fatal 1= ACT_FAILED;
action->act ret error = EIO;
break;

default:
/*

* Error log this; it should never occur
*/

action->act_fatal 1= ACT_FAILED;
action->act ret error = EIO;
LOG_ERROR("Implement your error logging");

break;

} /* end switch on cam status */

/*
* Now unlock
*/

PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

PRINTD(DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev) ,
DEV LUN(pdrv dev=>pd dev), (CAMD GENERIC ICAMD-INOUT),-
("[%d/%d/%d]-%s: exi"t\n", - -
DEV BUS ID(pdrv dev->pd dev) , DEV TARGET(pdrv dev->pd dev),
DEV=LUN(pdrv_dev->pd_dev), module»; - -

return;

/* --- */
/* Function description.

*
* This routine issues a SCSI MODE SENSE command
* to the unit. The CGEN ACTION structure is filled in for the
* the caller. The varible sleep directs the code to sleep
* waiting for comand status.

*
* Call syntax
* cgen mode sns

- (pdrv_dev, action, done, page code, page_cntl, sleep)
* PDRV DEVICE *pdrv dev; -

*

*
*

CGEN ACTION

void
u char

-peripheral Device Structure pointer
*action;

Generic Action Structure pointer
(*done)(); Completion routine
page_code; The page we want

0-60 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)

*
*
*

u char
u_long

* Implicit inputs
* NONE

*
* Implicit outputs

page cntl;
sleep;

The page control field
Whether we sleep

* CGEN ACTION structure is filled in based on the CCB's

*
*

completion status.

* Return values

*
* TO DO:

*
*
*/

No sleep and state step
Interrupted sleeps

void
cgen_mode sns

{

(pdrv_dev, action, done, page code, page cntl, sleep)
PDRV DEVICE *pdrv dev; - -

/*

CGEN ACTION

void
u char
u char
u=)ong

* Local Variables
*/

/* Peripheral Device Structure pointer */
*action;

/* Generic
(*done)();
page code;
page-cntl;
sleep;

Action Structure pointer */
/* Completion routine */

/* The page wanted */
/* The page control field */

/* Whether to sleep */

DEV DESC *dev desc = pdrv dev->pd dev desc;
7* - --

* Device Descriptor Structure pointer
*/

ALL MODE SENSE CDB6 *mod cdb; /* Mode sense CDB pointer */
data buf; / Data buffer pointer */
data buf size;

u char
u::)ong

int
int
u char

static u char

- - /* Size of the data buffer */
s; 1* Saved IPL */
sl; /* Throwaway IPL */
sense size;

7* Size of request sense buffer */
module[] = "cgen mode_sns"; /* Module name */

Sample Generic CAM Peripheral Driver 0-61

Example 0-2: (continued)
DEV LUN(pdrv dev->pd dev), (CAMD_GENERIC ICAMD_INOUT),
(" (%d/%d/%d] -%s: entry\n" ,
DEV BUS ID(pdrv dev->pd dev) , DEV TARGET(pdrv dev->pd dev),
DEV-LUN(pdrv dev->pd dev) , module»; - -

/* - - -
* Get data buffer size for the mode sense command which will
* use the 6-byte mode select CDB. The mode sense data will
* have a 4-byte parameter header and an 8-byte descriptor.
*/

data buf size

/*
* Now get the page size
*/

switch (page_code) {

case SEQ NO PAGE:

/*

/* - -
* The caller of the routine does not want any page data
* for the device. Get only the mode parameter header and
* mode descriptor.
*/

break;

* Check on generic pages first.
*/

case ALL PGM DISCO RECO:
data-buf-size += sizeof(ALL_DISC_RECO_PG);
break;

case ALL PGM PERIPH DEVICE:
data-buf-size +~ sizeof(ALL_PERIPH_DEV_PG);
break;

case ALL PGM CONTROL MODE:

/*

data-buf-size +=-sizeof(ALL_CONTROL_PG);
break;

* Check on the sequential pages (tapes).
*/

case SEQ PGM ERR RECOV:
data-buf-size += sizeof(SEQ_ERR_RECOV_PG);
break;

case SEQ PGM DEV CONF:
data-buf-size += sizeof(SEQ_DEV_CONF_PG);
break;

case SEQ PGM PART1:
data-buf-size += sizeof(SEQ_PART1_PG);
break;

0-62 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
case SEQ PGM PART2:

data-buf-size += sizeof(SEQ_PARTl_PG);
break;

case SEQ PGM PART3:
data-buf-size += sizeof(SEQ_PARTl_PG);
break;

case SEQ PGM PART4:
data-buf-size += sizeof(SEQ_PARTl_PG);
break;

default:
/*

* Invalid PAGE code.
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s)i
LOG ERROR ("Implement your error logging") i
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

action->act_fatal 1= (ACT_PARAMETER
action->act ret error = EINVAL;
return;
break;

} /* end switch */

if((data buf = ccmn get_dbuf(data_buf_size))
l*
* Log the error
*/

(u_char *)NULL){

PDRV IPLSMP LOCK (pdrv dev, LK RETRY, s);
LOG ERROR ("Implement your error logging") i
PDRV_IPLSMP_UNLOCK(pdrv_dev, s)i

}
/*

action->act_fatal 1= (ACT_RESOURCE
action->act ret error = ENOMEM;
return;

* See if the System Administrator has set its request sense
* size. This is for autosense. If there is an error,
* the lower levels will do a request sense.
*/

sense size

/*
* Get a SCSI I/O CCB
*/

action->act ccb = ccmn io ccb bld(pdrv dev->pd dev,data buf,
data bUf size, sense size~
(u long)CAM DIR IN, done,(u char)NULL, CGEN_TIME_5,
(struct buf-*)NULL); -

Sample Generic CAM Peripheral Driver 0-63

Example 0-2: (continued)
/*

* Check if CCB is NULL. If so, the macro
* error logs it and fills out action return values.
*/
if(action->act ccb == (CCB SCSIIO *)NULL){

CGEN NULLCCB ERR(action, pdrv dev, module);

}

/* - - -
* Release data buffer
*/

ccmn_rel_dbuf(data_buf, data_buf_size);
return;

/*
* Build 6-byte mode select command in the CDB.
*/

mod cdb = (ALL MODE SENSE CDB6 *)
- action=>act cCb->cam_cdb_io.cam_cdb_bytes;

mod_cdb->opcode = ALL_MODE_SENSE6_0P;
mod cdb->lun = 0;
mod-cdb->page code = page code;
mod-cdb->pc =-page cntl; -
mod-cdb->alloc len- data_buf_size;

/*
* set CDB length
*/

action->act ccb->cam cdb len

/*
* Send the mode sense command down to the lower levels.
*/

PDRV IPLSMP LOCK (pdrv dev, LK RETRY, s);
ccmn=send_ccb(pdrv_dev, (CCB_HEADER *)

action->act_ccb, NOT_RETRY);
PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

/*
* Do we go to sleep.
*/

if(sleep == CGEN_NOSLEEP) {
return;

}

/*
* Check the CCB to make sure it is in progress
* before going to sleep. Raise the IPL to
* block the interrupt; the sleep will lower it.
*/

PDRV IPLSMP LOCK(pdrv dev, LK RETRY, s);
while(CAM STATUS(actIon->act-ccb) CAM_REQ_INPROG){

/* - -

0-64 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)

}

* Sleep NON-interruptable on address of CCB
*/

PDRV_SMP_SLEEPUNLOCK(action->act_ccb, PRIBIO, pdrv_dev);

/*
* Get the lock again
*/

PDRV_IPLSMP_LOCK(pdrv_dev, LK_RETRY, sl);

action->act ccb status =
ccmn_ccb_statuS«CCB_HEADER *)action->act_ccb);

switch (action->act ccb status) {

case CAT CMP:

/*
* GOOD Status; just return.
*/

break;

case CAT CMP ERR:

/*
* Received SCSI status other than GOOD
* must look at each of the SCSI statuses to determine
* our action.
*/

action->act scsi status = action->act ccb->cam scsi status;
switch(action->act_scsi_status) - --

{
default:
case SCSI STAT GOOD:
case SCSI STAT CONDITION MET:
case SCSI STAT BUSY:
case SCSI STAT INTERMEDIATE:
case SCSI STAT INTER COND MET:
case SCSI STAT COMMAND TERMINATED:
case SCSI STAT QUEUE FULL:

LOG ERROR(-;;-Implement your error logging");
actIon->act_fatal 1= ACT_FAILED;
action->act ret error = EIO;
break;

case SCSI STAT RESERVATION CONFLICT:
/*

* This unit reserved by another
* initiator this should not
* happen
*/

Sample Generic CAM Peripheral Driver 0-65

Example 0-2: (continued)
LOG ERROR("Implement your error logging");
actIon->act_fatal 1= ACT_FAILED;
action->act ret error = EBUSY;
break;

case SCSI STAT CHECK CONDITION:

/*
* Call cgen ccb chkcond()
* to handle-the-check condition
*/

action->act chkcond error = cgen_ccb_chkcond(action->act_ccb,
pdrv_dev) ;

/*
* Now determine what to do.
*/

switch (action->act_chkcond_error) {
/*
* Look at conditions.
*/

case CHK INFORMATIONAL:
LOG_ERROR("Implement your error logging");
break;

case CHK SOFTERR:

case
case
case
case
case
case
case
case
case
case
case
case

LOG ERROR("Implement your error logging");
break;

CHK EOM
CHK FILEMARK:
CHK ILl:
CHK CHK NOSENSE:
CHK SENSE NOT VALID:
CHK NOSENSE BITS:
CHK NOT READY:
CHK HARDERR:
CHK UNIT ATTEN:
CHK DATA PROT:

- -
CHK UNSUPPORTED:
CHK CMD ABORTED:

case CHK UNKNOWN KEY:
default:

LOG ERROR("Implement your error logging");
actIon->act_fatal 1= ACT_FAILED;
action->act_ret_error = EIO;

} /* end of switch for check condition */

break; /* end of scsi_status check condition */

} /* end of switch of scsi status */

0-66 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
break; /* End of CAM CMP ERR */

case CAT INPROG:
case CAT UNKNOWN:
case CAT CCB ERR:
case CAT RESET:
case CAT BUSY:
case CAT SCSI BUSY:
case CAT BAD AUTO:
case CAT DEVICE ERR: - -
case CAT NO DEVICE:
case CAT ABORT:

action->act fatal 1= ACT_FAILED;
action->act ret error = EIO;
/*
* Error log this; should never get this error.
*/

LOG ERROR ("Implement your error logging");
break;

default:
/*
* Error log this; should never get this error.
*/

action->act_fatal 1= ACT_FAILED;
action->act ret error = EIO;
LOG_ERROR ("Impfement your error logging");

break;

} /* end switch on cam status */

/*
* Now unlock
*/

PDRV_IPLSMP_UNLOCK(pdrv_dev, s);

PRINTD(DEV BUS ID(pdrv dev->pd dey), DEV TARGET(pdrv dev->pd dey),
DEV LUN(pdrv dev=>pd dey), (CAMD GENERIC ICAMD-INOUT),-
("(%d/%d/%d]-%s: exi't\n", - -
DEV BUS ID(pdrv dev->pd dev) , DEV TARGET(pdrv dev->pd dey),
DEV:= LUN"(pdrv _ dev->pd _ dev) , module)); - -

return;

}

/* --- */
/*
* Error Checking Routines

Sample Generic CAM Peripheral Driver 0-67

Example 0-2: (continued)
*/

/* --- */
/* Function description. */

/*
* cgen_ccb_chkcond()

*
* Routine Name : cgen_ccb chkcond

*
* Functional Description:

*
*
* This routine handles the sns data (sense data) for the
* GENERIC driver and returns the appropriate status to the
* caller. The routine is called when a CCB SCSIIO is
* returned with a CAM STATUS of CAM REQ CMP-ERR (request
* completed with error) and the cam-scsI status equals
* SCSI CHECK CONDITION.
* NOTE ...
* This routine must be called with the device SMP LOCKED.

*
* Call Syntax:

*
*
*
*
*

cgen ccb chkcond(ccb, pdrv dev
-PDRV_DEVICE *pdrv_dev;

CCB SCSIIO *ccb;

* Return Values:
* int:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CHK CHK NOSENSE
-The-AUTO SENSE code, in the lower levels could

not get the request sense to complete without
error. Sense buffer not valid.

CHK SENSE NOT VALID
-The valid-bit in the sense buffer is not set;

sense data is useless.

CHK EOM
End of media detected.

CHK FILEMARK
-Filemark detected.

CHK ILI
Incorrect length detected.

CHK NOSENSE BITS
-Sense key equals no sense, but there are

no bits set in byte 2 of sense data.

0-68 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

CHK SOFTERR
Soft error detected; corrected by the
unit.

CHK NOT READY
-The-unit is not ready.

CHK HARDERR
-The unit has detected a hard error.

CHK UNIT ATTEN
-The unit has either had a media change or

just powered up.

CHK DATA PROT
-The unit is write protected.

CHK UNSUPPORTED
A sense key that is unsupported
has been returned.

CHK CMD ABORTED
-The unit aborted this command.

CHK INFORMATIONAL
Unit is reporting an informational message.

CHK UNKNOWN KEY
The unit has returned a sense key that
is not supported by the SCSI 2 spec.

u long
cgen_ccb_chkcond(ccb, pdrv dev

{

PDRV DEVICE *pdrv dev;
- /* Peripheral Device Structure pointer */

CCB SCSIIO *ccb;
7* Pointer to SCSI I/O CCB that had the check condition */

/*
* Local declarations
*j

Sample Generic CAM Peripheral Driver 0-69

Example 0-2: (continued)
/* Pointer to generic device-specific structure */
CGEN SPECIFIC *gen_spec =

(CGEN_SPECIFIC *)pdrv dev->pd_specific;

/* Pointer to the sense data */
ALL_REQ_SNS_DATA *sns data =

(ALL_REQ_SNS_DATA *)ccb->cam_sense_ptr;

int ret_val; /* What we return */
int i;
u short asc asq; /* The combined asc(MSB) and asq(LSB) */
static u char module[] = "cgen_ccb_chkcond"; /* Module name */

PRINTD(DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev),
DEV LUN(pdrv dev=>pd dev), (CAMD GENERIC ICAMD-INOUT),-
("(%d/%d/%d]-%s: entry\n", - -
DEV BUS ID(pdrv dev->pd dev), DEV TARGET(pdrv dev->pd dev),
DEV=LUN(pdrv_dev->pd_dev), module); - -

/*
* Check to see if there is valid sense data
*/

if« ccb->cam ch.cam status & CAM_AUTOSNS_VALID) == NULL){
/* - -

}

* Sense data is not valid, so return CHK CHK NOSENSE.
*/

return (CHK_CHK_NOSENSE);

if(sns data == NULL) {
panIc("cgen_ccb_chkcond:

}

CCB-AUTOSNS VALID but data pointer
return(CHK_CHK_NOSENSE)i

NULL") ;

/*
* Sense data is valid; find out why
* and report it.
*/

PRINTD(DEV BUS ID(pdrv dev->pd dev),
DEV TARGET(pdrv dev->pd dev) ,
DEV-LUN(pdrv dev->pd dev) , (CAMD GENERIC),
("[%d/%d/%d]-%s: error code, -

Ox%x sense_key Ox%x asc Ox%x asq Ox%x\n",
DEV BUS ID(pdrv dev->pd dev) ,
DEV-TARGET(pdrv-dev->pd-dev),
DEV-LUN(pdrv dev->pd dev) , module,
sns-data->error code~ sns data->sns_key, sns_data->asc,
sns=data->asq»;

0-70 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
/*
* Make sure that the error code is valid. The only valid
* error codes defined in SCSI 2 are Ox70 and Ox71
*/

if((sns data->error_code 1= Ox70) &&
(sns_data->error_code 1= Ox71 »{

return(CHK SENSE NOT VALID);
}

/*
* Get the sense key and check each case
*/

switch(sns_data->sns key){

case ALL NO SENSE:
/*
* Must look at the bit fields
*/

if(sns data->filemark 1= NULL) {
/*

}

* Set flag
*/

gen spec->gen flags 1= CGEN TPMARK;
BTOL(&Sns_data->info_byte3,-gen_spec->ts_resid);
ret val CHK_FILEMARK;

break;

else if(sns data->eom 1= NULL) {
/* -
* Set flag
*/

gen_spec->gen_flags 1= CGEN_EOM;
CGEN_BTOL(&Sns_data->info_byte3, gen_spec->ts_resid);
ret val CHK_EOM;

break;
}
else if(sns data->ili 1= NULL) {

}

/* -
* Set flag
*/

gen spec->gen flags 1= CGEN SHRTREC;
CGEN_BTOL(&Sns_data->info_byte3, gen_spec->ts resid);
ret val CHK_ILI;

break;

else {
/*
* Nothing is set, so more than likely an

Sample Generic CAM Peripheral Driver 0-71

Example 0-2: (continued)

}

* informational warning has been sent. Make sure
* that all the data went across. If it did not,
* then the device has a problem.

*
* Check to see if there is a residual count. If
* there is, fail it. ret val CHK NOSENSE BITS
* else CHK INFORMATIONAL-
*/

if(gen_spec->ts_resid 1= NULL) {
ret val CHK_NOSENSE_BITS;

}
else {

ret val CHK_INFORMATIONAL;
}

break;

case ALL BLANK CHECK:
case ALL VOL OVERFLOW:

7*
* End of media, set the flag
*/

gen spec->gen flags 1= CGEN EOM;
CGEN BTOL(&SnS data->info byte3, gen_spec->ts_resid);
ret val CHK_EOM; -

break;

case ALL RECOVER ERR:
7*

* Soft error
*/

gen spec->gen flags 1= CGEN SOFTERR;
CGEN BTOL(&SnS data->info byte3, gen spec->ts resid);
ret val CHK_SOFTERR; - -

break;

case ALL NOT READY:
gen spec->gen flags 1= CGEN OFFLINE;
CGEN BTOL(&SnS data->info byte3, gen spec->ts resid);
ret val CHK_NOT_READY; - -

break;

case ALL MEDIUM ERR:
If(sns data->eom 1= NULL) {

/*

0-72 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
* Set flag
*/

gen_spec->gen_flags 1= CGEN_EOM;
CGEN BTOL(&sns data->info byte3, gen_spec->ts_resid);
ret_val = CHK_EOM; -

}
/*

break;

* Hard error on the device
*/

gen_spec->gen_flags 1= CGEN_HARDERR;
CGEN BTOL(&sns data->info byte3, gen spec->ts resid);
ret val CHK_HARDERR; - -

break;

case ALL HARDWARE ERR:
case ALL_ILLEGAL_REQ:
case ALL COPY ABORT:
case ALL MISCOMPARE:

7*
* Hard error on the device
*/

gen_spec->gen_flags 1= CGEN_HARDERR;
CGEN BTOL(&sns data->info byte3, gen spec->ts resid);
ret_val CHK jiARDERR; - -

break;

case ALL UNIT ATTEN:
7*

* Unit has had a media change or has
* been powered up.
*/

gen spec->gen state flags 1= CGEN UNIT ATTEN STATE;
CGEN BTOL(&sns data=>info byte3, gen spec->ts resid);
ret val CHK_UNIT_ATTEN;- - -

break;

case ALL DATA PROTECT:
7*

* Unit is write protected
*/

gen_spec->gen_flags 1= CGEN_WRT_PROT;
CGEN BTOL(&sns data->info byte3, gen spec->ts resid);
ret val CHK_DATA_PROT; - - -

break;

case ALL VENDOR SPEC:
case ALL_EQUAL:

Sample Generic CAM Peripheral Driver 0-73

Example 0-2: (continued)
/*

*These are not supported for this unit.
*/

ret val = CHK UNSUPPORTED;
CGEN_BTOL(&Sns_data->info_byte3, gen_spec->ts_resid);

break;

case ALL ABORTED CMD:
CGEN BTOL(&sns_data->info_byte3, gen_spec->ts_resid);
ret val CHK_CMD_ABORTED;

break;

default:
/*

}

* Unknown sense key
*/

CGEN_BTOL(&sns_data->info_byte3, gen_spec->ts_resid);
ret val CHK_UNKNOWN_KEY;

break;

PRINTD(DEV BUS ID(pdrv device->pd dev),
DEV TARGET(pdrv device->pd dev),
DEV-LUN(pdrv device->pd dev),
(CAMD_GENERIC ICAMD_INOUT),
("[%d/%d/%d] is: exit\n",

}

/*

DEV BUS ID(pdrv device->pd dev),
DEV-TARGET(pdrv-device->pd-dev),
DEV=LUN(pdrv_device->pd_dev), module»;

* Return result of the checks.
*/

return(ret_val);

/**
*
* ROUTINE NAME: cgen_minphys()
*
* FUNCTIONAL DESCRIPTION:
* This function compares the b bcount field in the buf
* structure with the maximum transfer limit for the device

0-74 Sample Generic CAM Peripheral Driver

Example 0-2: (continued)
* (dd max record) in the Device Descriptor Structure. The
* count is adjusted if it is greater than the limit.

*
* FORMAL PARAMETERS:
* bp - Buf structure pointer.

*
* IMPLICIT INPUTS:
* None.

*
* IMPLICIT OUTPUTS:
* Modified b bcount field of buf structure.

*
* RETURN VALUE:
* None.

*
* SIDE EFFECTS:
* None.

*
* ADDITIONAL INFORMATION:
* None.

*
***/

void
cgen minphys(bp)
struct buf *bp;
{

PDRV DEVICE *pdrv dev;
- /* Peripheral Device Structure pointer */

DEV DESC *dd; /* Device Descriptor Structure */

PRINTD(DEV_BUS_ID(bp->b_dev), DEV_TARGET(bp->b_dev),
DEV LUN(bp->b dev) , CAMD GENERIC,
("(%d/%d/%d] cgen minphys: entry bp=%xx bcount=%xx\n",
DEV BUS ID(bp->b dev), DEV TARGET(bp->b dev) ,
DEV=LUN(bp->b_dev), - -
bp, bp->b_bcount»;

if ((pdrv_dev = GET PDRV_PTR(bp->b_dev» == (PDRV_DEVICE *)NULL)
{
PRINTD(DEV BUS ID(bp->b dev), DEV TARGET(bp->b dev),

DEV LUN(bp->b dev)~ CAMD GENERIC,
("[%d/%d/%d] cgen minphys: No-periheral device struct\n",
DEV BUS ID(bp->b dev) , DEV TARGET(bp->b dev),
D~V=LUN(bp->b_dev»); - -
return;
}

/*

Sample Generic CAM Peripheral Driver 0-75

Example 0-2: (continued)

}

* Get the maximun transfer size for this device. If b bcount
* is greater than maximum, then adjust it.
*/

if (bp->b bcount > dd->dd max record){
bp->b:=bcount dd->dd:=max:=record;

PRINTD(DEV BUS ID(bp->b dev) , DEV TARGET(bp->b dev) ,
DEV LUN(bp->b dev) , CAMD GENERIC, -
(" (%d/%d/%d] cgen minphys: exit - success\n",
BUS ID(bp->b dev) , DEV TARGET(bp->b dev),

DEV_LUN(bp->b:=dev»); - -

0-76 Sample Generic CAM Peripheral Driver

A

ABORT CCB (CAM), 5-7

8

BUS DEVICE RESET CCB (CAM), 5-8

BUS RESET CCB (CAM), 5-7

c
CALLD macro (CAM), 10-1

CAM

common structures and routines, 1-6

Configuration driver structures and routines,

1-7

generic structures and routines, 1-6

overview, 1-2

SCSI CD-ROM/AUDIO device structures

and commands, 1-6

SCSI disk device structures and routines, 1-6

SCSI tape device structures and routines, 1-6

SCSI/CAM peripheral drivers, 1-5

SCSI/CAM special I/O interface, 1-6

SIM SCSI Interface layer, 1-7

User Agent driver structures and routines,

1-4

XPT transport layer, 1-7

CAM common close unit routine

See also CAM open unit routine

CAM common data structures

introduction, 3-1

CAM common macros

introduction, 3-6

CAM common routines

introduction, 3-1, 3-8

CAM Control Block (CAM), 5-1

Index

CAM Control Block (CCB) header structure

(CAM),5-2

CAM Control Blocks

described, 5-11

CAM debug macros

described, 10-1

introduction, 10-1

CAM debug routines

introduction, 10-1

CAM equipment device table (CAM), 6-2

CAM error handling

CAM_ERROR macro, 9-1

introduction, 9-1

CAM error-logging data structures

introduction, 9-2

CAM generic maximum transfer limit

routine, 4-10, C-lOO

CAM identification macros

described, 3-6t

CAM locking macros

described, 3-7t

CAM programmer-defined routines

introduction, 11-1

CAM programmer-defined structures

introduction, 11-1

samples, 11-12

CAM routines

cam_logger, 9-5, C-2

ccfg_action, 6-6

ccfg_attach, 6-6, C-3

ccfg_edtscan, 6-6, C-4

ccfg_slave, 6-5, C-5

ccmn_aborcccb_bld, 3-15, C-l1

ccmn_aborcque, 3-12, C-13

ccmn_attach_device, 3-20, C-14

ccmn_bdcccb_bld, 3-16, C-16

ccmn_bcccb_bld, 3-16, C-19

ccmn_ccb_status, 3-17, C-21

ccmn_check_idle, 3-19, C-23

ccmn_close_unit, 3-10, C-25

ccmn_DoSpeciaICmd, 3-20, C-7

ccmn_errlog, 3-21, C-26

ccmn_find_ctlr, 3-20, C-28

ccmn_gdev_ccb_bld, 3-14, C-30

ccmn_gecbp, 3-18, C-32

ccmn_gecccb, 3-13, C-35

ccmn_gecdbuf, 3-19, C-36

ccmn_init, 3-10, C-37

ccmn_io_ccb_bld, 3-14, C-40

ccmn_mode_select, 3-17, C-43

ccmn_open_unit, 3-10, C-44

ccmn_pinq_ccb_bld, 3-15, C-47

ccmn_rel_bp, 3-18, C-49

ccmn_reLccb, 3-14, C-50

ccmn_rel_dbuf, 3-19, C-51

ccmn_rem_ccb, 3-12, C-52

ccmn_rsq_ccb_bld, 3-15, C-54

Index-2

CAM routines (cont.)

ccmn_sasy_ccb_bld, 3-14, C-58

ccmn_sdev_ccb_bld, 3-14, C-60

ccmn_send_ccb, 3-11, C-62

ccmn_send_ccb_wait, 3-12, C-64

ccmn_starCunit, 3-17, C-68

ccmn_SysSpeciaICmd, 3-21, C-9

ccmn_term_ccb_bld, 3-15, C-70

ccmn_term_que, 3-12, C-72

ccmn_tur, 3-17, C-75

cdbg_CamFunction, 10-5, C-76

cdbg_CamStatus, 10-5, C-77

cdbg_DumpABORT, 10-7, C-78

cdbg_DumpBuffer, 10-7, C-79

cdbg_DumpCCBHeader, 10-7, C-80

cdbg_DumpCCBHeaderFlags, 10-7, C-82

cdbg_DumplnquiryData, 10-8, C-83

cdbg_DumpPDRVws, 10-7, C-84

cdbg_DumpSCSIIO, 10-7, C-85

cdbg_DumpTERMIO, 10-7, C-86

cdbg_GetDeviceName, 10-8, C-87

cdbg_ScsiStatus, 10-6, C-88

cdbg_SystemStatus, 10-6, C-89

cgen_async, 4-9, C-90

cgen_attach, 4-10, C-91

cgen_ccb_chkcond, 4-8, C-92

cgen_close, 4-7, C-94

cgen_done, 4-9, C-95

cgen_ioctl, 4-7, C-96

cgen_iodone, 4-9, C-98

cgen_minphys, 4-10, C-100

cgen_mode_sns, 4-11, C-101

cgen_open,4-6,C-103

cgen_open_sel, 4-11, C-I05

cgen_read, 4-7, C-107

cgen_ready, 4-11, C-I08

CAM routines (cont.)

cgen_slave, 4-10, C-109

cgen_strategy, 4-7, C-I IO

cgen_write, 4-7, C-III

SCSVCAM special 1/0 interface, 12-1

sim_action, 8-2, C-112

sim_init, 8-2, C-114

uagcclose, 2-5, C-II5

uagCioctl, 2-5, C-116

uagCopen, 2-5, C-118

xpcaction, 7-1, C-119

xPcccb_free, 7-2, C-121

xPCinit, 7-2, C-122

CAM SIM callback handling

description, 8-1

CAM SIM routines

introduction, 8-2

CAM SIM SCSI 110 CCB priority

description, 8-3

CAM SIM SCSI 110 CCB reordering

description, 8-4

CAM structures

ABORT CCB, 5-7

BUS DEVICE RESET CCB, 5-8

BUS RESET CCB, 5-7

CAM Control Block (CCB) header structure,

5-2, 5-7, 5-8

CAM Control Block structures, 5-1

CAM_ERR_ENTRY, 9-2

CAM_ERR_HDR, 9-3

CAM_PERIPHERAL_DRIVER, 6-3

CCB_ABORT,5-7

CCB_GETDEV, 5-8

CCB_HEADER,5-2

CCB_PATHINQ,5-9

CCB_RELSIM, 5-6

CAM structures (cont.)

CCB_RESETDEV, 5-8

CCB_SCSIIO, 5-5

CCB_SETASYNC, 5-7

CCB_SETDEV, 5-9

CCFG_CTRL, 6-2

cd_address, I 1-19

CDB_UN,5-6

CDROM_PLA Y _AUDIO and

CDROM_PLAY_ VAUDIO

commands, 11-20

CDROM_PLAY _AUDIO_MSF and

CDROM_PLA Y _MSF commands,

11-21

CDROM_PLAY _AUDIO_TI command,

11-21

CDROM_PLA Y _AUDIO_TR command,

11-22

CDROM_PLAY_TRACK command, 11-30

CDROM_PLA YBACK_CONTROL and

CDROMYLAYBACK_STATUS

commands, 11-30

CDROM_PLA YBACK_CONTROL

command, 11-31

CDROM_PLA YBACK_STATUS command,

11-32

CDROM_READ_HEADER command,

11-29

CDROM_READ_SUBCHANNEL

command, 11-24

CDROM_TOC_ENTRYS command, 11-23

CDROM_TOC_HEADER command, 11-22

CGEN_ACTION, 4-4

CGEN_SPECIFIC, 4-2

Density Table Structure, 11-8

DENSITY_TBL, 11-8,3-5

Index-3

CAM structures (cont.)

DEV _DESC, 11-5

Device Descriptor Structure, 11-5

DISK_SPECIFIC, 11-15

EDT,6-2

GET DEVICE TYPE CCB, 5-8

MODESEL_TBL, 11-10, 3-4

PA TH INQUIRY CCB, 5-9

PDRV _DEVICE, 11-2, 3-2

PDRV _ WS, 3-5

Peripheral Device Unit Table, 11-1, 11-2,

3-1

RELEASE SIM QUEUE CCB, 5-6

SCSI 110 CCB, 5-5

SCSIICAM Special Command Table, 12-5

SCSIICAM Special Command Table

example, 12-9

SET ASYNCHRONOUS CALLBACK CCB,

5-7

SET DEVICE TYPE CCB, 5-9

Special 110 Argument Structure, 12-10

Special 110 Control Commands Structure,

12-20, 12-21

SPECIAL_HEADER,12-5

TAPE_SPECIFIC, 11-12

TERMINATE 110 CCB, 5-8

UAGT_CAM_CCB, 2-2

UAGT_CAM_SCAN,2-4

CAM User Agent driver

error handling, 2-2

introduction, 2-1

CAM XPT routines

introduction, 7-1

CAM_ERROR macro (CAM)

defined, 9-1

described, 9-1

Index-4

cam~eneric.c, D-6e

cam~eneric.h, D-l e

cam_logger (CAM), 9-5, C-2

CCB_ABORT structure (CAM), 5-7

CCB_GETDEV structure (CAM), 5-8

CCB_HEADER structure (CAM), 5-2

CCB_PATHINQ structure (CAM), 5-9

CCB_RELSIM structure (CAM), 5-6

CCB_RESETBUS structure (CAM), 5-7

CCB_RESETDEV structure (CAM), 5-8

CCB_SCSIIO structure (CAM), 5-5

CCB_SETASYNC structure (CAM), 5-7

CCB_SETDEV structure (CAM), 5-9

CCB_TERMIO structure (CAM), 5-8

ccffLaction (CAM), 6-6

ccffLattach (CAM), 6-6, C-3

ccffLedtscan (CAM), 6-6, C-4

ccffLslave (CAM), 6-5, C-5

ccmn_aborCccb_bld (CAM), 3-15, C-ll

ccmn_aborCque (CAM), 3-12, C-13

ccmn_attach_device (CAM), 3-20, C-14

ccmn_bdr_ccb_bld (CAM), 3-16, C-16

ccmn_br_ccb_bld (CAM), 3-16, C-19

ccmn_ccb_status (CAM), 3-17, C-21

ccmn_check_idle (CAM), 3-19, C-23

ccmn_close_unit (CAM), 3-10, C-25

ccmn_DoSpecialCmd (CAM), 3-20, C-7

ccmn_errlog (CAM), 3-21, C-26

ccmn_find_ctlr (CAM), 3-20, C-28

ccmn_gdev_ccb_bld (CAM), 3-14, C-30

ccmn_geCbp (CAM), 3-18, C-32

ccmn_geCccb (CAM), 3-13, C-35

ccmn_geCdbuf (CAM), 3-19, C-36

ccmn_init (CAM), 3-10, C-37

ccmn_io_ccb_bld (CAM), 3-14, C-40

ccmn_mode_select (CAM), 3-17, C-43

ccmn_open_unit (CAM), 3-10, C-44

ccmn_pinq_ccb_bld (CAM), 3-15, C-47

ccmn_rel_bp (CAM), 3-18, C-49

ccmn_rel_ccb (CAM), 3-14, C-50

ccmn_rel_dbuf (CAM), 3-19, C-51

ccmn_rem_ccb (CAM), 3-12, C-52

ccmn_rsq_ccb_bld (CAM), 3-15, C-54

ccmn_sasy_ccb_bld (CAM), 3-14, C-58

ccmn_sdev_ccb_bld (CAM), 3-14, C-60

ccmn_send_ccb (CAM), 3-11, C-62

ccmn_send_ccb_wait (CAM), 3-12, C-64

ccmn_starCunit (CAM), 3-17, C-68

ccmn_SysSpecialCmd (CAM), 3-21, C-9

ccmn_term_ccb_bld (CAM), 3-15, C-70

ccmn_term_que (CAM), 3-12, C-72

ccmn_tur (CAM), 3-17, C-75

CDB_UN structure (CAM), 5-6

cdbg_CamFunction (CAM), 10-5, C-76

cdbg_CamStatus (CAM), 10-5, C-77

cdbg_DumpABORT (CAM), 10-7, C-78

cdb~DumpBuffer (CAM), 10-7, C-79

cdbg_DumpCCBHeader (CAM), 10-7, C-80

cdbg_DumpCCBHeaderFlags (CAM), 10-7,

C-82

cdbg_DumpInquiryData (CAM), 10-8, C-83

cdb~DumpPDRVws (CAM), 10-7, C-84

cdbg_DumpSCSIIO (CAM), 10-7, C-85

cdbgJ)umpTERMIO (CAM), 10-7, C-86

cdbg_GetDeviceName (CAM), 10-8, C-87

cdbg_ScsiStatus (CAM), 10-6, C-88

cdbg_SystemStatus (CAM), 10-6, C-89

CGEN_ACTION (CAM), 4-4

cgen_async (CAM), 4-9, C-90

cgen_attach (CAM), 4-10, C-91

cgcn_ccb_chkcond (CAM), 4-8, C-92

cgen_c1ose (CAM), 4-7, C-94

cgen_done (CAM), 4-9, C-95

cgen_ioctl (CAM), 4-7, C-96

cgen_iodone (CAM), 4-9, C-98

cgen_minphys (CAM), 4-10, C-IOO

cgen_mode_sns (CAM), 4-11, C-IOI

cgen_open (CAM), 4-6, C-I03

cgen_open_sel (CAM), 4--11, C-I05

cgen_read (CAM), 4-7, C-l 07

cgen_ready (CAM), 4-11, C-108

cgen_slave (CAM), 4-10, C-109

CGEN_SPECIFIC (CAM), 4-2

cgen_strategy (CAM), 4-7, C-ll 0

cgen_write (CAM), 4-7, C-l11

common abort CCB routine (CAM), 3-12,

3-15, C-ll, C-13

common bus-device-reset CCB routine

(CAM), 3-16, C-16

common bus-reset CCB routine (CAM), 3-16,

C-19

common close unit routine (CAM), 3-10,

C-25

common create SCSI 110 CCB for

ccmn_mode_select command (CAM),

3-17, C-43

common create SCSI 110 CCB for START

UNIT command (CAM), 3-17, C-68

common create SCSI 110 CCB for TEST

UNIT READY command (CAM), 3-17,

C-75

common create SCSI 110 CCB routine

(CAM), 3-14, C-40

common data structures (CAM)

introduction, 3-1

Index-5

common deallocate buf structure routine

(CAM), 3-18, C-49·

common deallocate data buffer routine

(CAM), 3-19, C-51

common error logging routine (CAM), 3-21,

C-26

common get buf structure routine (CAM),

3-18, C-32

common get CCB routine (CAM), 3-13, C-35

common get data buffer routine (CAM),

3-19, C-36

common get-device-type CCB routine (CAM),

3-14, C-30

common initialization routine (CAM), 3-10,

C-37

common open unit routine (CAM), 3-10,

C-44

See also common close unit routine (CAM)

common path-inquiry CCB routine (CAM),

3-15, C-47

common release CCB routine (CAM), 3-14,

C-50

common release-SIM-queue CCB routine

(CAM), 3-15, C-54

common remove CCB routine (CAM), 3-12,

C-52

common routine to assign generic status

categories (CAM), 3-17, C-21

common routines (CAM)

introduction, 3-1

common send CCB routine (CAM), 3-11,

3-12, C-62, C-64

common set-asynchronous-callback CCB

routine (CAM), 3-14, C-58

common set-device-type CCB routine (CAM),

3-14, C-60

Index-6

common special command interface routine

(CAM), 3-20, 3-21, C-7, C-9

common terminate CCB routine (CAM),

3-12, C-72

common terminate I/O CCB routine (CAM),

3-15, C-70

Configuration driver (CAM)

and XPT commands, 6-1

Configuration driver configuration file

(CAM),6-4

sample entry, 6-5

Configuration driver control structure

(CAM),6-2

Configuration driver data structures (CAM)

CAM_PERIPHERAL_DRIVER, 6-3

CCFG_CTRL,6-2

EDT,6-2

introduction, 6-2

Configuration driver routines

entry-point routine introduction, 6-5

Configuration driver routines (CAM)

ccfg_action, 6-6

ccfg_attach, 6-6, C-3

ccfg_edtscan, 6-6, C-4

ccfg_slave, 6-5, C-5

description, 6-1

introduction, 6-1

D
debug macros (CAM)

introduction, 10-1

debug routines (CAM)

introduction, 10-1

Density Table Structure (CAM), 3-5

Density Table Structure structure (CAM),

11-8

Density Table Structure structure (CAM)

(cont.)

sample entry, 11-9

DENSITY_TBL structure (CAM), 11-8,3-5

DEV _DESC structure (CAM), 11-5

Device Descriptor Structure structure

(CAM),11-5

device driver

generic, D-6e

DISK_SPECIFIC structure (CAM), II-IS

E
Error Entry Structure (CAM), 9-2

error handling (CAM)

CAM_ERROR macro, 9-1

introduction, 9-1

Error Header Structure (CAM), 9-3

error-logging data structures (CAM)

CAM_ERR_ENTRY, 9-2

CAM_ERR_HDR, 9-3

introduction, 9-2

G

generic action data structure (CAM), 4-4

generic asynchronous event handling routine

(CAM), 4-9, C-90

generic attach routine (CAM), 4-10, C-91

generic close unit routine (CAM), 4-7, C-94

See also generic open unit routine (CAM)

generic completion routine (CAM), 4-9, C-95

generic data structures (CAM)

introduction, 4-2

generic 110 completion routine (CAM), 4-9,

C-98

generic ioctl command routine (CAM), 4-7,

C-96

generic open unit routine (CAM), 4-6, C-I03

See also generic close unit routine (CAM)

generic read routine (CAM), 4-7, C-I07

See also generic write routine (CAM)

generic routines (CAM)

error handling, 4-2

implementing ioctl commands, 4-1

introduction, 4-1

kernel entry points, 4-2

rules, 4-1

generic slave routine (CAM), 4-10, C-109

generic strategy routine (CAM), 4-7, C-11O

generic write routine (CAM), 4-7, C-lll

See also generic read routine (CAM)

generic-specific data structure (CAM), 4-2

GET DEVICE TYPE CCB (CAM), 5-8

H
header files

cam~eneric.h, D-le

M

header files Used by device drivers, A-It

header files Used by SCSI/CAM peripheral

drivers, A-4t

Mode Select Table Structure (CAM), 11-10,

3-4

Mode Select Table Structure structure

(CAM)

sample entry, 11-12

MODESEL_TBL structure (CAM), 11-10,

3-4

Index-7

p

PATH INQUIRY CCB (CAM), 5-9

PDRV _DEVICE structure (CAM), 11-2, 3-2

PDRV _ WS structure (CAM), 3-5

Peripheral Device Unit Table structure

(CAM), 11-1, 11-2,3-1

PRINTD macro (CAM), 10-1

programmer-defined routines (CAM)

introduction, 11-1

programmer-defined structures (CAM)

introduction, 11-1

samples, 11-12

R

RELEASE SIM QUEUE CCB (CAM), 5-6

routine to dump a CCB_ABORT (CAM),

10-7, C-78

routine to dump a CCB_HEADER (CAM),

10-7, C-80

routine to dump a CCB_SCSIIO (CAM),

10-7, C-85

routine to dump a CCB_TERMIO (CAM),

10-7, C-86

routine to dump a data buffer (CAM), 10-7,

C-79

routine to dump a PDRV _ WS (CAM), 10-7,

C-84

routine to dump an ALL_INQ_DATA

structure (CAM), 10-8, C-83

routine to dump cam_flags from a

CCB_HEADER (CAM), 10-7, C-82

routine to dump the device type (CAM),

10-8, C-87

routine to fill in an error log packet (CAM),

9-5, C-2

Index-8

routine to print CAM status codes (CAM),

10-5, C-77

routine to print SCSI status codes (CAM),

10-6, C-88

routine to print system error codes (CAM),

10-6, C-89

routine to print XPT function codes (CAM),

10-5, C-76

s
SICA (CAM)

common structures and routines, 1-6

Configuration driver structures and routines,

1-7

generic structures and routines, 1-6

overview, 1-2

SCSI CD-ROM/AUDIO device structures

and commands, 1-6

SCSI disk device structures and routines, 1-6

SCSI tape device structures and routines, 1-6

SCSI/CAM peripheral drivers, 1-5

SCSI/CAM special I/O interface, 1-6

SIM SCSI Interface layer, 1-7

User Agent driver structures and routines,

1-4

XPT transport layer, 1-7

SCSI CDROMIAUDIO device cd_address

structure (CAM), 11-19

SCSI CDROMIAUDIO device

CDROM_PLA Y _AUDIO command

structure (CAM), 11-20, 11-21, 11-30

SCSI CDROMIAUDIO device

CDROM_PLAY_AUDIO_TI command

structure (CAM), 11-21

SCSI CDROMIAUDIO device

CDROM_PLAY _AUDIO_TR

command structure (CAM)

SCSI CDROM/AUDIO device

CDROM_PLAY _AUDIO_TR

command structure (CAM) (cont.)

Book Title (cont.)

11-22 (cont.)

(cont.)

(cont.) , 11-22

SCSI CDROM/AUDIO device

CDROM_PLAY _TRACK command

structure (CAM), 11-30

SrSI CDROM/AUDIO device

CDROM_PLAY_VAUDIO command

structure (CAM), 11-20, 11-21, 11-30

SCSI CDROM/AUDIO device

CDROM_PLAYBACK_CONTROL

command structure (CAM), 11-31

SCSI CDROM/AUDIO device

CDROM_PLAYBACK_STATUS

command structure (CAM), 11-32

SCSI CDROM/AUDIO device

CDROM_READ_HEADER command

structures (CAM), 11-29

SCSI CDROM/AUDIO device

CDROM_READ_SUBCHANNEL

command structure (CAM), 11-24

SCSI CDROM/AUDIO device

CDROM_TOC_ENTRYS command

structures (CAM), 11-23

SCSI CDROM/AUDIO device

CDROM_TOC_HEADER command

structure (CAM), 11-22

SCSI CDROM/AUDIO device Track Address

structure (CAM), 11-19

SCSI device

attaching, 4-10, C-91

SCSI device (cont.)

closing, 2-5, 3-10,4-7, C-25, C-94, C-115

opening, 2-5, 3-10, 4-6, C-44, C-103,

C-118

reading, 4-7, C-107

writing, 4-7, C-l11

SCSI I/O CCB (CAM), 5-5

SCSI/CAM peripheral driver configuration

structure (CAM), 6-3

SCSIICAM peripheral driver configuration

table (CAM)

adding entries, 6-4

sample entry, 6-5

SCSIICAM Special Command Table (CAM),

12-5

entries, 12-6

SCSIICAM Special Command Table (CAM)

example, 12-9

SCSIICAM special 110 interface (CAM), 12-1

See also generic routines (CAM)

application program access, 12-1

command table entries, 12-6

command table example, 12-9

command tables, 12-5

control command, 12-20, 12-21

device driver access, 12-3

110 control command processing, 12-10

introduction, 12-1

sample code, 12-25, 12-27

sample function, 12-18, 12-19, 12-23

SCSIICAM Special Command Table, 12-5

SCSIICAM Special Command Table entries,

12-6

SCSIICAM Special Command Table

example, 12-9

Special I/O Control Commands Structure,

12-20, 12-21

Index-9

SCSIICAM special 110 interface (CAM)

(cont.)

SPECIAL_HEADER, 12-5

SET ASYNCHRONOUS CALLBACK CCB

(CAM), 5-7

SET DEVICE TYPE CCB (CAM), 5-9

SIM action routine (CAM), 8-2, C-112

SIM initialization routine (CAM), 8-2, C-114

SIM routines (CAM)

introduction, 8-1

sim_action (CAM), 8-2, C-1l2

simjnit (CAM), 8-2, C-114

Special 110 Argument Structure (CAM),

12-10

Special 110 Control Commands Structure

(CAM), 12-20, 12-21

SPECIAL_HEADER (CAM), 12-5

T

TAPE_SPECIFIC structure (CAM), 11-12

TERMINATE 110 CCB (CAM), 5-8

u
UAGT_CAM_CCB (CAM), 2-2

UAGT_CAM_SCAN (CAM), 2-4

uagCclose (CAM), 2-5, C-115

uagCioctl (CAM), 2-5, C-116

uagCopen routine (CAM), 2-5, C-118

User Agent close routine

See also User Agent open routine

User Agent close routine (CAM), 2-5, C-1l5

User Agent driver (CAM)

error handling, 2-2

introduction, 2-1

sample inquiry programs, 2-6

Index-10

User Agent driver (CAM) (cont.)

sample programs, 2-6

sample scanner programs, 2-17

User Agent ioctl routine (CAM), 2-5, C-116

User Agent open routine

See also User Agent close routine

x
XPT free CCB routine (CAM), 7-2, C-121

XPT initialization routine (CAM), 7-2, C-122

XPT routines

xpcccb_aUoc, 7-1, C-120

XPT routines (CAM)

introduction, 7-1

XPT routing routine (CAM), 7-1, C-1l9

xpCaction (CAM), 7-1, C-119

xpCccb_alloc, 7-1, C-120

xpCccb_free (CAM), 7-2, C-121

xpCinit (CAM), 7-2, C-122

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

InternaP

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQO/VI9
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
Writing Device Drivers for the

SCSI/CAM Architecture Interfaces
AA-PS3G8-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Excellent
D
D
D
D
D
D
D
D

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

Good
D
D
D
D
D
o
D
D

What version of the software described by this manual are you using?

Name/Title
Company
Mailing Address

Email

Dept.

____________________ Phone

Fair
D
D
D
D
D
D
D
D

Date

Poor
D
D
D
D
D
D o
D

- - - - Do Not Tear - Fold Here and Tape . .,.. - .

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-31Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIhih IlIlh Ilih Ihlllllllllllh hllhllill

- - - Do Not Tear - Fold Here

No Postage
Necessary

if Mailed in the
United States

Cut
Along
Dotted
Line

Reader's Comments DEC OSF/1
Writing Device Drivers for the

SCSI/CAM Architecture Interfaces
AA-PS3G8-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

Excellent
o o
o
o
o
o o
o

Good
o
o
o
o o
o
o
o

Fair
o
o
o
o o
o
o
o

Poor
o
o
o
o
o o
o
o

What do you like best about this manual? __________________ _

What do you like least about this manual? _________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______ _

Name/Title _________________ _ Dept.
Company ______________________________ Date

Mailing Address ___________________________ _

____________ Email ___________ Phone

- - - - Do Not Tear - Fold Here and Tape . -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111111111111111111111 1IIIIIIIIIIIIIhllllllllili

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

