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PREFACE

This document describes and specifies the VAXBI bus. It serves as the
reference document for designers who are designing to the bus. The
manual defines all aspects of the bus, including protocol,
architecture, and bus components.

INTENDED AUDIENCE

The VAXBI Standard provides information needed by all engineering
disciplines, from system architecture to mechanical packaging. The
Reading Path section at the end of the Preface 1lists which chapters
will be of most interest to particular disciplines.

STRUCTURE OF THIS DOCUMENT

The VAXBI Standard has four major parts:

PART ONE Bus Description and Requirements
PART TWO The BIIC

PART THREE Bus Support Components

PART FOUR Application Notes

Chapter 1 provides an overview of the VAXBI bus and the primary
interface to the bus, the BIIC. The chapter describes the major
features of the bus and introduces the terms used in this document. A
glossary appears at the end of the manual.

The chapters in each part are summarized below.

PART ONE Bus Description and Requirements
Chapter 2 describes the partitioning and use of VAXBI address space.
Chapter 3 describes the VAXBI protocol. The chapter explains how

nodes arbitrate for wuse of the bus and then defines the cycles of a
transaction.
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Chapter 4 defines the signals on the VAXBI bus.

Chapter 5 describes the transactions that the VAXBI bus supports and
gives requirements for their use. The chapter explains how single-
and multi-responder transactions differ and provides background on the
rationale for defining the different kinds of transactions.

Chapter 6 defines initialization requirements for systems and for
individual nodes.

Chapter 7 defines the VAXBI registers. A subset of these registers is
required by all nodes; the use of the other registers depends on the
node class.

Chapter 8 provides an architectural framework for how requirements on
nodes depend on the node class. The chapter categorizes nodes into
three classes: processors, memories, and adapters.

Chapter 9 describes the VAXBI console protocol which provides for
communication among processors on a VAXBI bus.

Chapter 10 discusses bus bandwidth and the effects on bus access
latency and interrupt latency.

Chapter 11 discusses the following features that contribute to the
efficient functioning of VAXBI systems: self-test, error checking,
and stopping a node.

Chapter 12 is the electrical specification for the signals on the
VAXBI bus.

Chapter 13 defines the physical requirements that VAXBI modules,
cages, and other subassembly components must meet.

PART TWO The BIIC

Chapter 14 gives an overview of the BIIC (the bus interconnect
interface chip) that serves as the primary interface between the VAXBI

bus and the user interface logic of a node.

Chapter 15 deals with the BIIC signals but concentrates on the BCI
signals, those that connect the BIIC and the user interface logic.

Chapter 16 gives requirements for the use of BIIC registers. The
descriptions of the registers appear in Chapter 7.

Chapter 17 describes the BIIC’s diagnostic facilities: self-test,
error detection, and error recovery.



Chapter 18 gives a detailed description of BIIC o
chapter explains what the BIIC does on power-up, what the BIIC retry
state is, and what the role of the BIIC is in each type of
transaction.

Chapter 19 gives BIIC packaging information.

Chapter 20 gives the electrical specifications for the BIIC.

Chapter 21 consists of 28 functional timing diagrams of various types
of transactions and sequences as implemented by the BIIC.

PART THREE Bus Support Components

Chapter 22 is the specification for the VAXBI clock driver.

Chapter 23 is the specification for the VAXBI clock receiver.

PART FOUR Application Notes

Some information that appears in these notes 1is required for the
implementation of some functions on the VAXBI bus.

Note 1 describes various types of adapters and the kinds of functions
they perform.

Note 2 explains how the VAXBI provides for caching in multiprocessor
systems. The VAXBI requirements primarily apply to systems with
write-through cache. The note also gives suggestions for designing
systems with write-back cache.

Note 3 offers strategies for using the BIIC registers. The strategies
should be helpful to node designers and software users of the VAXBI
bus.

Note 4 discusses the intended goals of self-test and comments on the
implementation of self-test for various lengths of self-test.

Note 5 describes use of the RETRY response code and how to avoid or
deal with extraneous retry timeouts.

Note 6 describes the wuse of the VAXBI clock receiver. It also
presents a suggested method of generating a family of clock waveforms
for use by VAXBI node logic.

Note 7 discusses the power sequence timing from the BCI viewpoint.
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Note 8 discusses the bandwidth that can be achieved by the master port
and slave port resident on a node using the BIIC.

Note 9 describes use of the RXCD Register when wusing diagnostics in
read-only memory in a VAXBI node.

READING PATH

This document is a compendium of VAXBI system requirements that cover
a wide range of engineering disciplines to assure a high level of
compatibility between nodes. A thorough knowledge of this entire
document by all readers is beneficial to the success of any design.
However, some readers may want to concentrate on certain sections of
the manual that are of greater importance to their task and their area
of expertise. The following list suggests areas of the specifications
that may warrant more of an in-depth understanding by engineers in
certain fields of expertise:

System architects --
Chapters 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Application Notes 1, 2, 3, 5, 9
Appendixes C, D

Node logic designers —-
Chapters 1, 2, 3, 4, 5, 6, 12, 14, 15, 16, 18, 20, 21, 23
Application Notes 1, 3, 4, 5, 6, 7
Appendixes C, E

System programmers --
Chapters 1, 2, 6, 7
Application Notes 3, 9
Appendixes C, D, E

System mechanical engineers --
Chapter 13

Node module layout designers --
Chapters 1, 13, 19

Maintainability engineers
Chapters 1, 3, 4, 5, 6, 7, 11
Application Notes 3, 4
Appendixes C, D, E

Diagnostic programmers --
Chapters 1, 2, 5, 6, 7, 11, 17, 18
Application Notes 1, 3, 9
Appendixes C, D, E

System power supply designers --
Chapters 1, 6,
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VAX-11 Architecture Reference Manual

VAXBI Designer’s Notebook (EK-VBIDS-RM)

VAXBI Options Handbook (EB-29228-46)

VAXBI Module Layout Database Package (BLVBI-BA). Includes module
control drawings and magnetic tapes.
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CHAPTER 1

OVERVIEW OF THE VAXBI BUS AND THE BIIC

1.1 DIGITAL’S COMMITMENT TC FUTURE COMPUTING NEEDS

DIGITAL introduced its first 32-bit . computer in 1978, the VAX
computer. With its 32-bit architecture, the VAX computer quickly
became the industry standard for minicomputers. Since then VAX
computers have increased in speed, power, and reliability. At the
heart of the VAX computer family is its architecture, which offers
power and extensibility.

Advancing technology offers new ways of solving computing problems,
but DIGITAL will continue to maintain its commitment to customers who
have invested in DIGITAL hardware and software. Over the years
DIGITAL has adhered to its standard of compatibility, first assuring
that PDP-11 users could migrate into the VAX family and now using the
VAX architecture as the foundation for new, more powerful systems.

In developing new systems, DIGITAL formulated an interconnect strategy
to offer solutions for the needs of future generations of computers.
Part of DIGITAL’s overall interconnect strategy was to develop the
VAXBI[TM]* bus. The VAXBI system uses state of the art integrated
circuit technology and has the flexibility to incorporate the
anticipated advances in systems and logic technology.

The VAXBI Standard defines all aspects of VAXBI operation required to
assure compatibility. This includes logical bus protocol, electrical
characteristics, mechanical components, and higher level system
architectural requirements.

The VAXBI design provides for the evolution in computing styles.
Growth of distributed processing in the next decade will be based
largely on progressive development in I/0 architectures. Cooperative
performance of distributed computing resources and their ability to
expand and diversify can be enhanced by the hardware interconnects
that link their components at all levels, from individual terminals to
networks. In particular, system integrators and designers of I/O

*VAXBI is a trademark of Digital Equipment Corporation.
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devices will be looking for superior functionality and compatibility
throughout the interconnect hierarchy of distributed processing
systems. The VAXBI bus provides for a diversity of computing
resources. A single VAXBI bus can accommodate a high-speed processor
with a private memory, several processors that may share memory and
I1/0 devices, and single board computers. The VAXBI protocol provides
for communication among them all.

DIGITAL has designed a custom integrated circuit that implements the
VAXBI protocol, including all required bus error detection and error
logging functions. Therefore, instead of developing the complex
circuitry required to implement a bus protocol, node designers can
devote their efforts to the requirements of their specific
application.

The rest of this chapter describes the main features of VAXBI systems
and defines the terms wused to describe the operation of the bus.
Section 1.2 introduces the bus and summarizes the VAXBI addressing
capability and the ©peak transfer rate. Section 1.3 presents the
transactions supported by the VAXBI bus. Section 1.4 describes the
BIIC, the control chip that is the primary interface to the VAXBI bus.
Section 1.5 describes the BCI, the interconnect to the wuser logic.
And, finally, Section 1.6 ©presents some typical configurations of
systems using the VAXBI bus.

1.2 DESCRIPTION OF THE VAXBI BUS

The VAXBI bus is a 32-bit synchronous, wire-ORed bus used to join a
processor to I/O controllers, I/O bus adapters, memories, and other
processors. Its characteristics are low cost, high bandwidth, a large
addressing range, and high data integrity. The VAXBI bus is the
interconnect successor to the UNIBUS for VAX computer systems.

Arbitration for use of the VAXBI bus 1is distributed among all the
users of the bus, so no processor needs to be dedicated to controlling
bus use. The distributed design of arbitration maximizes the use of
multiple processors so systems can be configured to meet a variety of
needs. Each user on the VAXBI bus is called a node. A single VAXBI
bus can service 16 nodes, which can be processors, memory, and
adapters. An adapter is a node that connects other buses,
communication lines, and peripheral devices to the VAXBI bus. Each of
the 16 nodes can control the bus, and the slot placement has no effect
on the relative priority of the node. A node receives its node ID, a
number from 0 to 15, from a plug on the VAXBI backplane slot into
which the node module is inserted. (Chapter 13 specifies the
mechanical characteristics of VAXBI components.)

Arbitration logic, which is distributed among all the nodes, is based
on a dual round robin priority scheme within the system. When all

1-2



nodes arbitrate in dual round robin mode, over time each node has

h | Ao + +h hiie an 3 1 3 3
equal access to the bus and after winning an arbitration can become

bus master. The master issues a transaction that is responded to by

one or more slaves.

The VAXBI protocol specifies that arbitration for bus mastership can
take place during an ongoing transaction. The winner of an
arbitration that occurs when a transaction is in process becomes the
pending master.

1.2.1 Addressing Capability

The VAXBI bus supports 30-bit addressing capability, which provides
one gigabyte of address space. This address space is split equally
between memory and I/O0 space (512 megabytes each) (see Figure 1-1).

Hex Address

0000 0000
Memory Space
512M8B
2000 0000
/O Space
512MB
3FFF FFFF
MLO-001-85

Figure 1-1: VAXBI Bus Address Space

In I/0 space, each node has an 8-Kbyte block of addresses known as its
nodespace. The first 256 bytes of each nodespace, the BIIC CSR space,
are reserved for VAXBI registers. The rest of each nodespace is user
interface CSR space. In addition,; each node has 256 Kbytes (called
its node window) and may have another node-specifiable number of
megabytes (called 1its assignable window) in I/O space for use in
mapping addresses to other buses, and so forth (see Figure 1-2).

The basic unit of data that the VAXBI bus handles is the longword (4
bytes), but transactions can transfer from 1 to 16 bytes.

Chapter 2 describes VAXBI address space.
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| Node 0 Nodespace | —=> VAXBI Registers
| (8 KB) | (256 Bytes)

| |

I . I

I . I

| Node 15 Nodespace | ==> VAXBI Registers
| (8 KB) | (256 Bytes)

| I

| I

| |

I I

| Node Window 0 | N\

, (256 KB) |
_________________________________________ l

I . ||

| . | |--> Node Window Space

| Node Window 15 I
| (256 KB) |/
| Assignable Window Space |

| (24 MB) |

Figure 1-2: VAXBI I/O Address Space

1.2.2 Peak Transfer Rate

Data transmission is at fixed lengths of 4, 8, and 16 bytes (longword,
quadword, and octaword 1lengths) on naturally aligned addressing
boundaries. Data transferred within these lengths, however, can be
from 1 to 16 bytes in any transaction. As implemented by the BIIC,
the maximum data transfer rate on the VAXBI bus, the bandwidth, for
l6-byte transfers is 13.3 megabytes per second. For 4-byte transfers
the rate is 6.6 megabytes per second. Nodes that are slow responders
can stall data cycles of a transaction so that the attempted transfer
will be repeated.

Chapter 10 describes VAXBI bus performance, and Application Note 8
explains how the bandwidth is determined for nodes using the BIIC.
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1.2.3 VAXBI Signals

The VAXBI bus has 52 signal lines, 44 of which connect to the BIIC.
Four signal 1lines are for clock signals, and the remaining 4 go
elsewhere on the board. The signals can be divided by function into
four categories:

@ Data Path Signals
32 data lines
4 status lines
1 parity line

] Synchronous Control Signals
1 no arbitration line
1 busy line
3 confirmation lines

® Clock Signals
4 lines

e Asynchronous Control Signals
AC line

DC line

reset line

self-test fast line

bad line

spare line

e

The term asserted indicates that a signal line is in the "true" state,
while deasserted indicates a "false" state. Assertion is the
transition from the false to the true state; deassertion 1is the
transition from the true to the false state. When the absolute level
of a signal is specified, the letters H and L indicate a high voltage
level and a low voltage level, respectively.

The VAXBI bus is a synchronous interconnect with bus events occurring
at fixed intervals. Data is clocked onto the bus at the leading edge
of a transmit clock and received and latched with a receive <clock at
the end of a bus cycle. Information processing occurs during the
cycle following the one in which data is transmitted.

Bus arbitration and address and data transmissions are time
multiplexed over 32 data lines. 1Interrupt sequences are performed
with VAXBI transactions which may be directed to a single processor or
to several processors.

Chapter 4 describes the VAXBI signals.
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1.2.4 VAXBI Bus Features
The following list is a summary of key VAXBI features:

® Symmetric and asymmetric multiprocessing.

® Distributed arbitration.

® Slot interchangeability.

@ Standardized interface for all designs.

® Address capability of 1 gigabyte.

e Up to 16 full master/slave/interrupt type nodes.

e BRandwidth of 13.3 megabytes per second.

® High degree of data integrity.

@ Extensive error logging in all nodes.

e Parity on bus data path.

@ Extensive error checking provided on-chip. The BIIC provides
for:

o Checking of parity on the data lines

o A comparison of data received against data transmitted

0 Protocol checking at all nodes involved in a transaction
® Worst-case design analyzed.

® Power-up self-test in all nodes.

1.3 TRANSACTIONS

The VAXBI bus is a nonpended bus in that only one transaction can be
on the bus at any given time. However, a node can execute a
transaction without using the bus. This type of operation, called a
loopback transaction, <can occur at the same time that the bus is
dedicated to an ongoing VAXBI transaction.
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Both single- and multi-responder transactions are supported. Every
single-responder command is confirmed with a positive acknowledgment
for command accepted or command retry, a negative acknowledgment for
no responder selected or error detected, or a stall acknowledgment to
delay either of the two positive acknowledgments. Multiple responder
commands are confirmed as command accepted (by at least one responder)
or no responder selected.

Transactions are defined in terms of cycles. The basic bus cycle is
200 nanoseconds.

The VAXBI protocol requires confirmation messages at the end of bus
cycles. Depending on the type of cycle and type of transaction, these
messages give feedback on errors and on slave status. Parity checking
monitors the accuracy of data transfer.

The node that gains control of the VAXBI bus for a command transaction
is known as the master. The node that responds is the slave.

The first cycle in a transaction is the command/address cycle during
which the node that has gained control of the bus transmits the code
for a particular transaction and identifies the node or nodes to
respond. The second cycle in any transaction is given over to
arbitration. An arbitration cycle that occurs when a transaction is
in process is known as an imbedded arbitration cycle. Any nodes other
than the current master can negotiate for control of the bus to carry
out the next transaction.

During the third cycle of a transaction, the slave sends a command
confirmation in response to the command of the first cycle. The slave
sends an ACK if it can respond to the request. If the slave can
respond and the command was a read or write transaction, then the
third cycle is also a data cycle. Data cycles continue until all the
data has been transferred. 1If the slave cannot respond to the command
at this time, it issues a STALL or RETRY command confirmation. Upon
receipt of a RETRY, the master terminates the transaction and reissues
the command at a later time. STALLs delay the continuation of the
transaction until the slave can take action. A node returns a NO ACK
if the command has not been received successfully.
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VAXBI commands are either single-responder commands or multi-responder
commands. The single-responder commands include the following:

@ READ

e RCI (Read with Cache Intent)

@ IRCI (Interlock Read with Cache Intent)

® WRITE

® WCI (Write with Cache Intent)

® WMCI (Write Mask with Cache Intent)

® UWMCI (Unlock Write Mask with Cache Intent)

® IDENT (Identify)
The multi-responder commands include:

@ INTR (Interrupt)

e IPINTR (Interprocessor Interrupt)

e INVAL (Invalidate)

e STOP

e BDCST (Broadcast)
The VAXBI protocol provides for the use of caches, so that reads and
writes <can be specified depending upon whether data is cached. The
terms read-type and write~type are used to describe all the read and
write transactions. The transactions "with cache intent" are used
when data may be cached. Nodes monitor the bus to see if any
transactions with cache intent affect the data that they may have in
their cache or in a private memory. 1If a transaction is specified as
a READ or WRITE transaction (in uppercase), this means that data will

not be cached. Having the READ and WRITE transactions improves system
performance.

The INVAL command is used by processors and adapters to signal other
nodes that they may have <cached data that 1is no longer valid.
Ordinarily, nodes monitor the bus to see if any transactions with
cache intent affect their cached data. However, nodes that do reads
or writes to a private memory without performing a VAXBI transaction
must have another means of notifying the other nodes that their data
may be invalid. The INVAL command meets this need.



Interrupts are initiated and carried out over the data path. The INTR
command is used by nodes to post interrupts. In response, the
interrupted processor sends an IDENT command to request vector
information from the node that issued the INTR. A processor can also

LRASAN S Lilal L2o20LC88 LSRR L STV ~liaae

interrupt another processor by sending an IPINTR command.

The BDCST command is reserved for use by DIGITAL. Its operation 1is
described in Appendix A.

Chapter 5 describes the VAXBI transactions.

1.4 THE BIIC

A node’'s primary interface to the VAXBI bus is the BIIC (bus
interconnect interface chip). Figure 1-3 shows a block diagram of a
VAXBI node. The BIIC is shown as the VAXBI primary interface
(abbreviated VPI) between the VAXBI bus and the user interface logic.

USER INTERFACE BiIC
BCI BUS VAXBI BUS
BCI RQ<1:0> L
BCIMAB L
MASTER BC!I RAK L
PORT BCINXT L
INTERFACE BCIMDE L
BIBSY L [
BINOARBL  f[=—
BI CNF<2:0> L [+
4
BCI D<31:0> H BI D<31:0> L [~
BC! I<3:0> H Bl 1<3:0> L [
BCIPOH BIPOL | B
- BCl EV<4:0> L
-— BCIACLOL BIACLOL -
--— BCIDCLOL BIDCLOL ad—
SLAVE
PORT BCI RS<1:.0> L
INTERFACE BCICLE H
- BC! SDE L
BCI SEL L
- BCI SC<2.0> L
INTERRUPT = BCIINT<74> L
PORT
INTERFACE BCI TIME L BC! PHASE L
\ f $ |
\
(_
FROM VAXBI CLOCK RECEIVER
MLO-003-25

Figure 1-3: Block Diagram of VAXBI Node
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The BIIC contains all the logic and registers needed for a node to
respond to transactions on the VAXBI bus. 1In addition, the user
interface -- that is, all the logic exclusive of the BIIC -- «can
request that the BIIC initiate a transaction. The BCI (backplane
interconnect chip interface) provides for all communication between
the BIIC and the wuser interface. Since any node can act as either
master or as slave, the BCI is represented as having a master port and
a slave port. The master port consists of the signal lines used to
generate transactions, and the slave port consists of the signal lines
used to respond to transactions. The BCI also has an interrupt port,
signal lines used in generating interrupt transactions.

Transactions that involve two different nodes are internode
transactions, while those that are confined +to the same node are
intranode transactions. Intranode transactions can be VAXBI
transactions (that is, the master port issues a transaction on the
VAXBI bus), or they can be loopback transactions (the VAXBI bus is not
used). Loopback transactions can occur concurrently with VAXBI
transactions.

The type of request is determined by a request code from the user
interface logic. Certain transactions can be initiated by the user
interface logic setting a force bit in the BIIC. These transactions
are known as BIIC-generated transactions.

The BIIC is described in Part Two of this manual.

1.5 DESCRIPTION OF THE BCI
1.5.1 How the BCI Relates to the VAXBI Bus

The BCI, the bus between the BIIC and the wuser interface, has 64
signal lines. The data path signals of the VAXBI bus and the BCI have
a one-to-one correspondence except that the VAXBI signals are low true
while the BCI signals are high true. Both buses also have power
signal lines, but the remaining 1lines of the BCI serve functions
different from those of the VAXBI bus. The BCI has separate interrupt
lines, unlike the VAXBI bus which uses the data and information 1lines
for sending interrupts. The remaining lines serve as the
communication path between the BIIC and the master port interface and
the slave port interface.
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1.5.2 BCI Signals

The BCI has 64 signal lines. The signals can be divided by function
into seven categories:

@ Data Path Signals
32 data lines
4 status lines
1 parity line

° Master Signals

request lines

master abort line

request acknowledgment line
data ready line

master data enable line

N

° Slave Signals

response lines

command latch enable line
slave data enable line
select line

select code lines

W= N

° Interrupt Signals
4 interrupt request lines

® Transaction Status Signals
5 event code lines

® Power Status Signals
1 AC line
1 DC line

® Clock Signals
2 timing signals

Chapter 15 describes the BCI signals.

1.6 SYSTEM CONFIGURATIONS

The VAXBI bus connects processors, I/0 controllers, I/O bus adapters,
and memory. Because of the potential overlap in functions among
processors, adapters, and memory, it is important to know the VAXBI
requirements for various classes of nodes. The requirements are
designed to ensure that VAXBI nodes will be compatible in the types of
configurations for which the VAXBI bus and VAXBI nodes are intended.
The descriptions of various types of configurations follow.
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See Chapter 8 for a description of node classes and the VAXBI
requirements that each class must meet.

1.6.1 Low-End System Configurations

Figures 1-4 and 1-5 show the VAXBI bus in low-end configurations. The
VAXBI can be used in low-end systems either as an I/O bus or as both
memory bus and I/O bus.

Figure 1-4 shows a configuration in which the VAXBI bus is wused both
as memory bus and 1I/O bus. Such a system would probably include a
mass storage adapter for disk storage and a multipurpose
communications adapter.

Figure 1-5 shows a configuration in which the VAXBI bus is used only
as an I/0 bus. With a single board computer (SBC) the processor and
memory have a separate memory bus (MB), and the VAXBI bus is used only
as an I/0 bus. This figure also shows a different approach to mass
storage and input/output. A single adapter provides access to disks
and tapes and to a local area network (LAN).

PROCESSOR MEMORY

MASS COMMUNI-

STORAGE CATIONS

ADAPTER ADAPTER
DISKS, TAPES TERMINALS

Figure 1-4: Small System Configuration with One Processor
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Multiprocessor System Configurations

Figures 1-6 and 1-7 are extensions of the configurations described in
the last section; these extensions provide greater computing power.
One way to increase computing power is to add processors. Figure 1-6

shows a multiprocessor system configuration that uses the VAXBI bus as

a memory bus.

o

The software may operate this configuration in
"master-slave" mode or in "symmetric multiprocessing" mode:
In master-slave mode, the master processor runs the operating

system and manages the other processors, which are called
"attached processors." Each processor may have its own console

terminal, or there may be a console terminal at the master
processor only, which can be wused to control any of the
processors.

In symmetric multiprocessing mode, a distributed operating

system 1is wused, different parts of which may be executing on
different processors at various times. Again, each processor
may have its own console terminal, or only one of them may
have a console terminal.
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Computing power can also be increased by adding SBCs. Figure 1-7
shows a VAXBI bus with two SBCs. Such a system can be operated in
master-slave mode or in symmetric multiprocessing mode, as described
above. This system can also be operated as a cluster of separate,
independent processors, each running its own operating systenm,
communicating through shared memory space.

SBCs can also be mixed in with processors and memories on a single
VAXBI bus. Whether one should add SBCs or more processors depends on
the amount of interprocessor communication expected. If processors
primarily will access memory in their own node, system performance is
likely to be better by using SBCs than by using processors that must
use the VAXBI bus to access memory. However, if interprocessor
communication is expected to be heavy, system performance will be
better when processors have more direct access to the VAXBI bus than
that provided by SBCs.

PROCESSOR MEMORY PROCESSCR

MASS COMMUNI-

STORAGE CATIONS

ADAPTER ADAPTER
DISKS, TAPES TERMINALS

Figure 1-6: Multiprocessor Configuration
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Figure 1-7: Multiprocessor SBC Configuration

1.6.3 Midrange and High-End System Configurations

With more powerful processors, it becomes necessary to improve memory
access times by having a dedicated memory interconnect. 1In such
systems the VAXBI bus becomes purely an I/O bus. Such systems can
support more input/output than the low-end configurations, and will
probably use a local area network adapter instead of the multipurpose
input/output adapter. Figure 1-8 shows a midrange system
configuration.
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High-end systems can wuse multiple processors on the memory
interconnect as shown in Figure 1-9. 1In this configuration the VAXBI
bus is part of an I/0 subsystem. High-end systems can also require
more I/0 traffic than can be supported by a single VAXBI bus, in which
case several VAXBI buses may be connected to the same memory
interconnect. Such a configuration is shown in Figure 1-10.

PROCESSOR

MEMORY BUS

MASS NETWORK

MEMORY STORAGE
[ ADAPTER ADAPTER

DISKS, TAPES LOCAL AREA NETWORK

MLO-008-85

Figure 1-8: Midrange System Configuration
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Figure 1-10: Multiprocessor High-End System Configuration with
Multiple VAXBI Buses

1.6.4 Clusters and Networking

A system -- whether a low-end system or a high-end system -- can be
connected to other systems by a Computer Interconnect (CI), forming a
cluster. 1In Fiqure 1-11 a VAXBI system with two SBCs is part of a
cluster, which might be be wused in a real-time process control
environment, with process control input/output connected by a
multifunction adapter. Mass storage facilities are provided solely
through the CI.
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CHAPTER 2

VAXBI ADDRESS SPACE

This chapter describes the partitioning of VAXBI address space and how
to wuse the space. The VAXBI bus,has 2**30 bytes of address space,
which is divided into memory space and I/0 space. All addresses are
given in hexadecimal notation.

During the first cycle of read-type, write-type, and INVAL
transactions, a 30-bit physical byte address is transmitted on the BI
D<29:0> L lines. We will refer to this address as A<29:0>. When
A<29> is a zero, the 512-megabyte memory space is accessed, and when
A<29> is a one, the 512-megabyte I/0O space is accessed. During the
same cycle, D<31:30> indicate the length of the transfer.

2.1 ALLOCATION OF MEMORY SPACE

All memory locations (from 0000 0000 through 1FFF FFFF) are addressed
using memory space addresses (A<29> 1is a zero). Addresses on the
VAXBI bus are physical rather than virtual addresses. 1In other words,
any virtual-to-physical translation is performed before the address is
transmitted on the VAXBI bus.

Information stored in memory locations can also be stored in a cache
and be wused many times without an access to the actual memory
location. Although cache contents may be wvalid or invalid, memory
locations always contain valid information -- they never contain
obsolete information (see Application Note 2 for more information on
cachesj.

VAXBI memory is assigned addresses starting at 0000 0000.
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2.2 ALLOCATION OF I/O SPACE

I/0 space (from 2000 0000 through 3FFF FFFF) is sparsely filled. In
1/0 space addresses, A<29> is a one. Figure 2-1 shows the breakdown
of VAXBI I/0 address space. Figure 2-2 summarizes the addressing of
I/0 space.

Two blocks of I/O space are partitioned according to node 1ID. (The
node ID is provided by individual ID plugs on the VAXBI backplane.)

® Nodespace. At the low end of I/0 space are 16 address blocks
of 8 Kbytes each, called "nodespace," one of which is assigned
to each node based on its node 1ID. Each node’s nodespace
consists of BIIC CSR space (the first 256 bytes) and user
interface CSR space (the remainder of the 8K nodespace). The
BIIC CSR space contains VAXBI registers (see Figure 2-3).

® Node Window Space. Starting at address 2040 0000 are 16
address blocks of 256 Kbytes each, called "node window space."
Node window space can be wused by adapters to map VAXBI
transactions onto a target bus.

Another region of I/O space starts at address 2080 0000, runs through
address 21FF FFFF, and 1is referred to as "assignable window space".
Each node can require that a single n-megabyte block within this
address region (n being a positive integer between 1 and 24 inclusive)
be allocated to it. This block 1is referred to as the node’'s
"assignable window." For restrictions governing this allocation, see
Section 2.2.5, Assignable Window Space.

The VAXBI architecture defines the use of all of I/O space. There is
an addressing convention for multiple VAXBI buses that uses the
address bits A<28:25>.* These four bits can define the mapping
mechanism for access of up to 16 VAXBI buses. Therefore, these four
bits must be cleared before the address is issued on the VAXBI bus.
For this reason, the VAXBI address range 2200 0000 through 3FFF FFFF
is RESERVED. This allocation also limits the available I/O space to
32 megabytes.

*VAX 8800 systems follow this addressing convention.
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Hex Address

| Node 0 Nodespace | <==-- 2000 0000
I (8 KB) I 2000 1FFF
I I
I . I
I . I
| Node 15 Nodespace | <=--=-— 2001 EO0O00
| (8 KB) | 2001 FFFF
| Multicast Space ] <==—— 2002 0000
| (128 KB) | 2003 FFFF
| Node Private Space | <--—- 2004 0000
i {3840 KB) i 203F FFFF
| Node Window 0 | <---- 2040 0000
| (256 KB) _ I 2043 FFFF
I I
| |
| I
| Node Window 15 | <=-==- 207C 0000
| (256 KB) i 207F FFFF
| Assignable Window Space | <=—-- 2080 0000
| (24 MB) | 21FF FFFF
| RESERVED | <=-=-- 2200 0000
| (480 MB) I
| (for multiple VAXBI systems) | 3FFF FFFF

Figure 2-1: VAXBI I/0 Address Space



Digital Equipment Corporation -- Confidential and Proprietary
VAXBI ADDRESS SPACE

29

D 170 SPACE

28 25

[:j SPECIFIES WHICH VAXBI 8US

24 23

0 O IF NOT ZERO BITS<24:23>INDICATE ASSIGNABLE WINDOW SPACE

22
t | NODE WINDOW SPACE
21 18
:] SPECIFIES WHICH NODE WINDOW
17 0
I | NODE WINDOW ADDRESS
22
B NON-WINDOW SPACE
21 20 19 18
0coo0o0 IF NOT ZERO BITS<21:18>INDICATE NODE PRIVATE SPACE
17
E} NODESPACE
16 13
—
12 0

I j NODESPACE ADDRESS

17
IZ] MULTICAST SPACE
16 Q

MULTICAST SPACE ADDRESS

.0-013-85

Figure 2-2: Addressing of I/O Space
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BIIC CSR SPACE VAXBI REGISTERS

(256 8YTES)
NODESPACE
(8 KBYTES) USER INTERFACE
CSR SPACE

MLO-014-85

Figure 2-3: Nodespace Allocation

2.2.1 Nodespace

The address range 2000 0000 through 2001 FFFF contains 16 address
blocks of 8 Kbytes each. A node’s nodespace assignment is based on
the node’s ID (0 to 15). The starting address of nodespaces for nodes
0 through 15 is 2000 0000 plus 8K times the node ID. We will use "bb"
to indicate the base address of a particular node’s nodespace.

2.2,1.1 BIIC CSR Space - The first 256 bytes of each node’s nodespace
are reserved for VAXBI registers.

2.2.1.2 User Interface CSR Space - Within user interface CSR space
the use of two locations is defined.

Location bb + 100 is reserved for the Slave-Only Status Register
(SOSR), which 1is used by those nodes that do not implement the Broke
bit in the VAXBICSR. This location is not reserved for other nodes.
(See Section 7.16 for the register description and Chapter 11 for an
explanation of the register’s use in node self-test.)

Location bb + 200 is reserved for the Receive Console Data (RXCD)
Register. This register must be implemented by nodes capable of
performing console terminal transactions. Nodes that do not implement
a VAXBI console must respond to reads to that location with either a
NO ACK confirmation or a longword in which the RXCD Busy 1 bit is set.
(See Section 7.17 for the register description and Section 9.2 for an
explanation of the register’s use in the VAXBI console protocol.)
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2.2.2 Multicast Space

Multicast space consists of the range of addresses 2002 0000 through
2003 FFFF. Multicast space is reserved for use by DIGITAL.

A VAXBI transaction to multicast space can be used to target more than
one VAXBI node. Since the full read- and write-type protocols cannot
support multiple targets, certain restrictions must be applied to the
use of this space. Multicast space can also be used for situations in
which a function resides in different nodes at different times. The
appropriate node can be accessed with a multicast space address that
is node independent. The node that possesses the function at the
given time will respond to a transaction that uses that address.

2.2.3 Node Private Space

Node private space consists of the range of addresses 2004 0000
through 203F FFFF. Locations beginning at 2004 0000 are used for
storage of bootstrap firmware and software. VAXBI nodes are not
permitted to issue or respond to VAXBI transactions targeting
locations in node private space. For programmable VAXBI nodes, this
restriction may be interpreted as a restriction on the software and/or
firmware rather than a requirement for a hardware check that ensures
that such accesses cannot happen.

2.2.4 Node Window Space

The address range 2040 0000 through 207F FFFF contains 16 address
blocks of 256 Kbytes each, which can be used by bus adapters to map
VAXBI transactions onto a target bus.

A node’s window space assignment is based on its node ID. A<21:18> in
an I/O0 space address specify the node window of a particular node.
Nodes are not required to implement the address locations in the node
window allocated to thenm.
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A contiguous range of one or more naturally aligned megabytes within
assignable window space can be statically allocated to a particular
node by the 0S (operating system). The range associated with a node
is referred to as that node’s "assignable window."

Node designers must request the number of megabytes needed by the node
for 1its assignable window; this number can be any integer between 1
and 24 inclusive. This size must be a constant determined by the
device type <code of the node. So that other nodes that request an
assignable window are not <crowded out, only the exact number of
megabytes needed should be specified {(for instance, the number should
not be rounded up to a power of 2). However, in predicting whether a
given combination of nodes can be configured, it must be assumed that
the 0S can round this up to a power of 2 anyway. Any node regquesting
more than 16 megabytes will be allocated the full 24 megabytes of
assignable window space.

Any node requesting the allocation of an assignable window must not
require a particular starting address, but must allow its starting
address to be assigned by the O0S. However, the node designer is
allowed to require "alignment." When alignment is required, the 0S
must align the starting address of the assignable window at an address
that is a multiple of the smallest k such that:

1. k >= max(the requested size, 1 megabyte), and
2. k is a power of 2.

However, if more than 16 megabytes are requested, the entire 24
megabytes of assignable window space will be allocated to the node.

The purpose of the alignment rule is to allow the node designer some
economy in address decoding.

In predicting whether a given combination of nodes can be configured,
it must be assumed that the O0S can perform the allocation as if
alignment has been specified for every requesting node.

An example:

A node designer needs a 5-megabyte assignable window and requires
alignment. The OS must then align the starting address of this
nocde on an 8-megabyte boundary. This restricts the possible
starting addresses to 2080 0000, 2100 0000, and 2180 0000. The OS
can allocate exactly 5 megabytes to the adapter, or it can round up
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to the next power of 2 and allocate 8 megabytes. 1In the latter
case, the adapter’s assignable window would span one of these three
address ranges:

e 2080 0000 to 20FF FFFF
e 2100 0000 to 217F FFFF
e 2180 0000 to 21FF FFFF

The reason for requiring separate specification of window size and
alignment 1is to make possible a set of address assignments that
otherwise might be impossible.

An example:

A second adapter (reference previous example) requires a
2-megabyte assignable window with no alignment restriction. The
second adapter can be mapped into the last 2 megabytes of the
8-megabyte address range that the first adapter is mapped into.

Note that configuration problems can arise in allocating assignable
windows when more than one node requires an assignable window. The
likelihood and severity of configuration problems increases with
both the size o0of the requested window and the number of nodes
requesting an assignable window.

A node is not required to implement address locations in an
assignable window allocated to that node.

2.3 BIIC RESTRICTIONS

The BIIC can be configured to respond to accesses to any
combination of the following address spaces:

® The node’s nodespace.
® The space defined by the node’s Starting and Ending Address
Registers. (For example, this space could be this node’s node
window or a region in memory space.)
e Multicast space.
Because a BIIC has only one pair of Starting and Ending Address
Registers, it cannot be set to allow a node to respond to both its
node window (or an assignable window) and a region of memory space.
Response to accesses to multicast space can be disabled through a

bit in the BCI Control and Status Register, as can accesses to the
user interface CSR space portion of nodespace.
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CHAPTER 3

VAXBI PROTOCOL AND CYCLE TYPES

Section 3.1 describes how nodes are identified and the use of the node
ID. Section 3.2 describes how nodes arbitrate for control of the bus
and explains the priority scheme. Section 3.3 gives an overview of
the types of VAXBI cycles.

3.1 NODE IDENTIFICATION

Each node that interfaces to the VAXBI bus has an identification
number (0 to 15) <called the "node ID." The node ID is provided by
individual ID plugs on the backplane. This 1ID code determines bus
priority, interrupt sublevel priority, and the location of the node’s
registers. Lower number IDs have higher priorities.

3.2 ARBITRATION

Arbitration logic is distributed among all VAXBI nodes. To become bus
master, a node arbitrates by asserting one of the 32 data lines during

an "arbitration cycle." During thig cvcle the node determines if there

Qi MiLilileaUir Vyo . L~ ] —asa e A VRT KRT LT LanaaaT

are any lower number data lines asserted. 1If not, that node wins the
bus and may send command/address information when the current bus
transaction (if one exists) has completed.

The BI NO ARB L line controls access to the bus data path for
arbitration. Arbitration can occur in any cycle following the
deasserted state of BI NO ARB L. Arbitration cycles can occur during
and outside of bus transactions.

After a master sends the command/address, nodes require the next cycle
to decode addresses. The VAXBI protocol allows use of this cycle for
arbitration. Within a transaction this cycle is called an "imbedded
arbitration cycle.” A master cannot arbitrate in the imbedded
arbitration cycle of its own transaction.
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During imbedded arbitration cycles, the master of the current
transaction transmits its encoded ID on the BI I<3:0> L lines; parity
is generated by the master for these 1lines and 1is checked by all
nodes. Nodes use this encoded ID information to calculate arbitration
priority.

3.2.1 Arbitration Modes

The VAXBI protocol defines three arbitration modes that a node can be
assigned:

o Dual round robin
o Fixed-high priority

o Fixed-low priority

3.2.1.1 Setting the Mode - These modes are determined by a two-bit
field (see Table 3-1) within the VAXBI Control and Status Register
(see Section 7.2). Any combination of arbitration modes can coexist
among nodes on the VAXBI bus; however, fixed-high and fixed-low
priority arbitration modes are reserved for use by DIGITAL. A node’s
arbitration mode can be changed during system operation. However, all
nodes must default to the dual round robin arbitration mode at
power-up time. Arbitration can also be disabled.x*

Table 3-1: Arbitration Codes

0 0 Dual round robin arbitration
0 1 Fixed-high priority (RESERVED)
1 0 Fixed-low priority (RESERVED)
1 1 Disable arbitration (RESERVED)

*Arbitration must be disabled on a target node before issuing a node
reset to that target node.



ion on the VAXBI bus is
h node. During each imbedded
to update the1

+

1
he current master’s ID

2 Two Priority Levels - Arbit

r
d in two p"lOl’l*" levels £
e

m

Al

n cycle, all nodes are r
d on the arbitration

Low-priority nodes assert the bit corresponding to their node ID on BI
D<31:16> L where D<16> corresponds to ID 0, and bit D<31> corresponds
to ID 15. High-priority nodes assert the bit corresponding to their
node ID on BI D<15:0> L during the arbitration cycle. The relative
position within the low- or high-priority word is the same. Figure
3-1 shows the mapping of node ID to arbitration priority on the 32
data lines. At power-up all nodes must default to the 1low-priority
word,
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Figure 3-1: Node ID and Arbitration

3.2.1.3 Dual Round Robin - The dual round robin arbitration mode
operates as follows. A node will arbitrate on the low-priority word
for the next arbitration cycle if its ID is less than or equal (that
is, equal or higher priority) to the node ID of the previous bus
master. A node will arbitrate on the high-priority word if its node
ID is greater (that 1is, 1lower priority) than the node ID of the
previous bus master.

If all nodes arbitrate in dual round robin mode, then cocver time each
has equal access to the bus. The dual round robin mode is important,
for example, in multiprocessor configurations. In these systems a
fixed-priority scheme could cause extremely long bus latency times for
some nodes that were denied bus access by several processors executing
in tight instruction 1loops. (Chapter 10 describes performance
differences between a simple round robin and a dual round robin.)

3.2.1.4 Fixed-Low Priority - When a node is set to arbitrate at a
fixed-low priority, it will win the bus a smaller percentage of the
time than with the dual round robin mode. Since this mode can coexist
with other arbitration modes, it may be advantageous to use it in a
system with nodes that are relatively latency insensitive.
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3.2.1.5 Fixed-High Priority - When a node is set to arbitrate at a
fixed-high priority, it will win the bus a greater percentage of the
time than if the arbitration mode were dual round robin. Nodes with
critical access times can benefit by having a fixed-high priority.

3.2.1.6 Restricted Use of Arbitration Modes - The use of arbitration
modes other than dual round robin mode is prohibited. The other modes
are reserved for use by DIGITAL.

3.3 TRANSACTION CYCLES

All VAXBI transactions have three types of cycles: command/address,
imbedded arbitration, and data. Figure 3-2 shows the basic format of
VAXBI transactions.

COMMANDY IMBEDDED
ADDRESS ARBITRATION C‘:DYAJ:E gfg&
(C/A) CYCLE (1A) CYCLE

MLO-018-85

Figure 3-2: Format of VAXBI Transactions

The basic operation of the VAXBI bus is controlled by the BI NO ARB L
and BI BSY L lines. These lines are used to detect the occurrence of
VAXBI transaction cycles.

3.3.1 Command/Address Cycle

The command/address cycle is the first cycle of all VAXBI
transactions. During this cycle the master transmits a 4-bit command
code on the BI I<3:0> L lines and information required to select the
appropriate slave on the BI D<31:0> L 1lines. This selection
information can take many forms. Each transaction type uses only one
form of selection information. The transactions and their
corresponding selection information form are shown in Table 3-2.



One form of selection information is a 30-bit address, accompanied by
a 2-bit length code. This form is used by all read-type, write-type

and INVAL transactions. The selection information can also take the
form of a 16-bit destination mask in which each bit corresponds to a
particular node ID. This form of selection allows for from 1 to 16
slaves to be 1involved 1in the transaction. The destination mask is
used for all multi-responder transactions (except INVAL). The IPINTR
transaction uses the destination mask along with the decoded master ID
to select the proper slave(s). The IDENT transaction wuses a level
field as the slave selection information.

Nodes identify the command/address cycle by detecting the assertion of

BI BSY L in a cycle following one in which BI NO ARB L was in the
asserted state.

Table 3-2: Command/Address Format by Transaction

Transaction BI D<31:16> L BI D<15:0> L
Read-type Length code and 30-bit address
Write-type Length code and 30-bit address
INVAL Length code and 30-bit address
IPINTR Decoded master ID Destination mask
INTR Level Destination mask
STOP RESERVED Destination mask
BDCST RESERVED Destination mask
IDENT Level RESERVED

3.3.2 1Imbedded Arbitration Cycle

The second cycle of a transaction is called the "imbe

cycle." During this cycle the master transmits its encoded ID on the
BI 1I<3:0> L lines, and the VAXBI data path 1is available for
arbitration by other nodes (except in burst mode).

3.3.3 Data Cycles

Data cycles follow the imbedded arbitration cycle. All transactions
include at least one data cycle. A data cycle is a cycle in which the
VAXBI data path is reserved for transferring data (such as read or
write data, as opposed to command/address or arbitration information)
between the master and slave(s). Table 3-3 shows the type of data
transferred during data cycles of the different kinds of transactions.
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The number of data cycles in a read- or write-type transaction depends
on both the length of the transfer and the number of STALL responses
issued by the slave. For IDENT transactions the number of data cycles
depends only on the number of STALLs issued by the slave. All
multi-responder transactions (except for BDCST) have only a single
data cycle (this data cycle is currently a RESERVED cycle). For BDCST
transactions the number of data cycles depends only on the 1length of
the transfer. (BDCST data cycles cannot be stalled.)

Table 3-3: Data Transferred During Data Cycles

Transaction BI D<31:0> L BI I<3:0> L
Read-type Read data Read status
WRITE Write data RESERVED
WCI Write data RESERVED
WMCI Write data Write mask
UWMCI Write data Write mask
INVAL RESERVED RESERVED
IPINTR RESERVED RESERVED
INTR RESERVED RESERVED
STOP RESERVED RESERVED
BDCST BDCST data RESERVED
IDENT Interrupt vector Vector status
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CHAPTER 4

VAXBI SIGNALS

The VAXBI bus consists of 52 signals. As shown in Figure 4-1, these
lines can be divided by function into four categories:

e 37 data path signals

e b5 synchronous control signals
® 4 clock signals

® 6 asynchronous control signals

All signal 1lines except the asynchronous control signals are
synchronous and are asserted on a transmit clock’s leading edge.
Table 4-1 briefly describes the VAXBI signals.

For a given line, each VAXBI open drain or open collector driver is
electrically connected. This type of connection produces a wired-OR
signal. That is, since VAXBI signals are defined to assert low true,
if any VAXBI driver on a particular 1line asserts, then the
corresponding VAXBI signal as observed at every VAXBI node tied to
that line is said to be asserted. Conversely, no VAXBI signal can be

.
said to be deasserted unless all drivers on that particular 1line are

deasserted. When no drivers are asserted, a terminator network
defaults a line to the deasserted state.

Also included on the VAXBI bus are power and ground lines Each slot
in a VAXBI system provides access to its own unique backplane ID plug.
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Figure 4-1: VAXBI Signals
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Table 4-1: VAXBI Signals

Number/
Signal Name Type Description

BI D<31:0> L 32/0D Used for the transfer of addresses and data and for
arbitration.

BI I<3:0> L 4/0D Carry commands, encoded master IDs, read status codes, and
write masks.

BI PO L 1/0D Carries the parity for the D and I lines; asserted if the
number of asserted bits on the D and I lines is an even
number (ODD parity).

BI NO ARB L 1/0D Used to inhibit arbitration on the BI D lines; also asserted
during BIIC self-test to prevent other nodes from starting
transactions until all nodes are ready to participate.

BI BSY L 1/0D Used to indicate that a transaction is in progress.

BI CNF<2:0> L 3/0D Used to send responses for command and data cycles.

BI ACIO L 1/0D Used with BI DC LO L to perform power sequences.

BI DC 1O L 1/0D Used with BI AC LO L to perform power sequences.

BI TIME + 2/DECL A 20 MHz clock reference used with BI PHASE +/-

BI TIME - to generate all required timing signals.

BI PHASE + 2 /DECL A 5 MHz clock reference used with BI TIME +/-

BI PHASE - to generate all required timing signals.

BI STF L 1/0C A static control line used to enable a faster VAXBI system
self-test.

BI BAD L 1/0cC Used for reporting node failures.

BI RESET L 1/0c Used for initiating a VAXBI system reset.

BI SPARE L i/~ Reserved for use by DIGITAL.

Key to abbreviations:
oD open drain
ocC open collector
DECL differential ECL
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4.1 DATA PATH SIGNALS

The VAXBI data path signals include:

o BI D<31:0> L -- data lines
o BI 1<3:0> L -- information lines
o BI PO L -- parity line

All arbitration and transfers of commands, addresses, and data occur
over these signal lines. These 1lines carry different information
depending on the particular cycle and transaction type. See Chapter 5
for details on the use of these lines.

4.1.1 BI D<31:0> L

These are the VAXBI data lines. All address and data transfers and
arbitration sequences occur on these lines.

4.1.2 BI I<3:0> L

These lines carry commands, encoded master IDs, read status codes, and
write masks.

4.1.3 BI PO L

This signal carries the parity of the BI D<31:0> L and BI 1I<3:0> L
lines. (See Section 11.2.1.1 on parity checking and generation.)

4.2 SYNCHRONOUS CONTROL SIGNALS
The VAXBI synchronous control signals include:
o BI NO ARB L
o BI BSY L
0 BI CNF<2:0> L
BI NO ARB L and BI BSY L are the primary control signals on the VAXBI

bus. The BI CNF<2:0> L lines carry confirmation codes that provide
"handshakes" between the master and slave nodes.
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BI NO ARB L (No Arbitration)

NO ARB L signal is used to control access to the VAXBI data
for arbitration. If BI NO ARB L is asserted in a given VAXBI
then nodes may not arbitrate during the next VAXBI cycle.
monitor the BI NO ARB L signal so that data and command/address

information do not contend with arbitration information.

The BI

NO ARB L signal is asserted by the following:
Nodes arbitrating for the bus during the arbitration cycle.

The pending bus master from the <cycle after it wins the
arbitration until it becomes bus master.

The bus master during the following cycles of its transaction:

Transaction Length . Cycles
Longword Imbedded ARB
Quadword Imbedded ARB and following cycle
Octaword Imbedded ARB through the cycle after

the second ACK data cycle
The slave for all data cycles except the last.
All potential slaves for the third (decoded master 1ID)} cycle
of an IDENT command and for the IDENT arbitration cycle of an
IDENT command.

Nodes doing loopback transactions (see Section 4.2.3.2).

The bus master during its command/address cycle to prevent bus
arbitration from occurring, so it can start another bus

transaction following the current one. This mode of
operation; called "burst mode," is reserved for use by
DIGITAL.

Nodes during their power-up self-test, until the VAXBI
registers can be accessed.
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4.2.2 BI BSY L (Busy)

The BI BSY L signal is used to provide the orderly transition of bus
mastership from one node +to another. Nodes monitor the BI BSY L
signal to determine the action that should be taken during the
following cycle. The node that won the last arbitration may become
bus master in the cycle following one in which it detects the
deasserted state of BI BSY L (deassertion of BI BSY L means a
transaction has ended). The new master asserts BI BSY L on the first
cycle of the new transaction.

The BI BSY L signal is asserted by the following:

e The bus master during the following cycles of its transaction:

Transaction Length Cycles
Longword Command/address, imbedded ARB
Quadword Command/address, imbedded ARB, and
following cycle
Octaword Command/address, imbedded ARB

through the cycle after the
second ACK data cycle

@ A node to delay the start of the next bus transaction until it
is prepared to respond to another bus transaction. A timeout
limits any node from extending BI BSY L in this way for more
than 127 consecutive cycles. Cycles of this type are referred
to as "busy extension cycles." Nodes should not extend BI BSY
L for more than 16 consecutive cycles. (Section 10.2.1
explains these requirements.)

e The slave for all data cycles except the last.

® Nodes doing loopback transactions (see Section 4.2.3.2).
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4.2.3 Use of BI NO ARB L and BI BSY L

Figure 4-2 shows which nodes assert BI NO ARB L and BI BSY L during
each cycle of a transaction. Figure 4-3 shows the state sequences of

BI NO ARB L and BI BSY L that can occur.

T | LAST
ACK STALL| ACK

CYCLE ARB C/A IA | DATA DATA | DATA| C/A
BINC ARBL wm

assertad by: \_—/ N y B

Arbitrating Nodes

Pending Master

Master

Slave

BIasy L
asserted by: [ \__.

Arbitrating Nodes

Pending Master

Master

Stave

MLO-018.85

Figure 4-2: Transaction Showing BI NO ARB L and BI BSY L
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Figure 4-3: State Sequences of BI NO ARB L and BI BSY L

4.2.3.1 Arbitration State - Figure 4-4 shows the state diagram for a
node’s arbitration control circuitry. Each state represents one bus
cycle. The BI NO ARB L signal is asserted in all states except the
idle state.

When in the idle state, a node waits for a request to transfer
information over the bus. When a request is received, the node enters
the arbitration cycle state as soon as the data lines are free, as
indicated by a deasserted BI NO ARB L signal. The node then asserts
the bit corresponding to its node ID in either the low-priority word
or the high-priority word. The node compares the received data lines
with the bit that it asserted. If the node 1is not the highest
priority, it returns to the 1idle state and waits for the next
arbitration cycle. 1If it is the highest priority, and if no bus
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transaction is in progress (as indicated by a deasserted BI BSY L
signal), it enters the master state. If a bus transaction is in
progress, the node goes into the pending master state and waits for
+Fha hiie +~n hacAama 2 13 1alhl ~
Cii€ BUusS TO Oelfome avaiiagae,

During the first cycle of a node’s bus transaction, the node is in the
master state. The BI BSY L signal is asserted, along with the data
and information lines, which carry the command and address. Control
is passed to the master control circuitry. The request condition is
cleared during this state.

iIDLE NO ARB & REQ

NO ARB & REQ

LOSE WIN & BSY
ARBITRATION ———————}

PENDING
MASTER BSY

WIN & BSY

4

MASTER

MLO-019-88

Figure 4-4: Arbitration State Diagram

4.2.3.2 Loopback Transactions - To perform loopback transactions, a
node must monitor the state of BI NO ARB L and BI BSY L. A node can
start a loopback transaction only if there is no chance that it will
be selected by a VAXBI transaction. This is assured by requiring that
nodes only start loopback transactions when the next cycle cannot be a

VAXBI command/address cycle.
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In the following cases the next cycle cannot be a VAXBI
command/address cycle:

e BI NO ARB L 1is deasserted (indicates that no node is
arbitrating and that there is no pending master).

@ BI BSY L is asserted (indicates that a transaction is on the
VAXBI bus; as long as the transaction is not targeted at this
node, it may initiate a loopback transaction).

See Section 4.2.2 for restrictions on asserting BI BSY L.

4,.2.4 BI CNF<2:0> L (Confirmation)

The confirmation signal lines (BI CNF<2:0> L) are used to provide
"handshakes" between the master and slave nodes. These handshakes
reflect detected errors and the current status of the slave. (Table
4-2 lists the response codes.)

During a transaction a node must first respond to the command (Section
4.2.4.1 describes the command responses). For read- and write-type
and IDENT transactions, the slave must respond during each data cycle
following the command confirmation cycle (Section 4.2.4.2 describes
the data responses). Table 4-3 summarizes the use of the CNF codes.
Note that werror feedback occurs two cycles after an error occurs.
During the two cycles following a read-type, write-type, or IDENT
transaction, the receiver of the data confirms its proper receipt.

The CNF lines are not parity checked. However, the response codes are

assigned so that bad data is never interpreted as good data for
single-bit failure cases (see Table 4-2).

Table 4-2: Response Codes
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H NO ACK
L Illegal
H Illegal
L ACK

H Illegal
L STALL

H RETRY

L Illegal



4.2.4.1 Command Responses - The ACK, NO ACK, RETRY, and STALL
responses are permitted £for single-responder commands. The slave
sends the command confirmation response during the third cycle of all
transactions, except for IDENTs. Command responses £for IDENT

transactions are sent in the fifth cycle.

Only the ACK and NO ACK responses are permitted for multi-responder
commands (INTR, IPINTR, INVAL, STOP, and BDCST). An ACK response
indicates that at least one node has responded to the command.

ACK (Acknowledge) Response —— The node selected to respond to a
command returns ACK to indicate that it is capable of executing the
command at this time. For multi-responder commands, the receipt of an
ACK response indicates that at least one node has been selected by the
current transaction.

Masters always presume acknowledgment and send data for write-type and
BDCST commands.

NO ACK (No Acknowledgment) Response —-- The NO ACK response to commands
indicates that no node has been selected. Either no node is available
or an error has occurred during the command/address cycle. The
deasserted state of the three confirmation lines produces the NO ACK
code.

RETRY Response -— If a node cannot immediately execute the command
sent to it, it returns the RETRY response. A response of this type
may be expected from a node:

e¢ That is still locked from an IRCI command
@ That has been locked from another port

e That is a bus adapter whose target bus 1is busy and it is
waiting for a transfer path to the VAXBI (the deadlock case)

® That must perform a long internal sequence in response to a
STOP command

® That must perform a 1long internal initialization sequence
following the deassertion of BI DC LO L

A node should not return a RETRY response if it will be busy for a
short period of time such as during a memory refresh or the completion
of a memory write access. The STALL response is the proper action for
those cases.
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All masters are required to implement a retry timeout. If a nmaster
cannot complete a transaction within 4096 attempts, it must log this
as an error condition.

Application Note 5 discusses use of the RETRY response code.

STALL Response ——- The STALL response from a node indicates that it
needs additional time. It may need more time to acknowledge the
command sent to it, to return the first data word on read-type
commands or vector data on an IDENT command, or to accept data words
on write-type commands. The STALL response 1is not permitted for
multi-responder commands. A node may not send a STALL response to
delay the recognition of proper address range. Therefore, a node can
use STALL preceding a NO ACK response only when an address allocated
to the node does not correspond to an implemented register or memory
location.

The STALL response can be sent by the following:

® Nodes that take longer than one cycle to perform a read or a
write

® Memories that are selected during a refresh sequence

® Memories that are to receive write data, when their write
buffer is full

® Adapters that need to synchronize with the protocol of another
bus

An ACK, NO ACK, RETRY, or another STALL response is permitted after a
STALL single-responder command confirmation.

All nodes must implement a stall timeout that will force a slave node
to release the bus if the node attempts to stall for more than 127
consecutive cycles. At a stall timeout, the slave sets the STALL
Timeout bit in the Bus Error Register and deasserts all bus lines.
The master interprets the deasserted CNF lines as a NO ACK response
and terminates its involvement in the transaction.

4.2.4.2 Data Responses - A slave must transmit an ACK, NO ACK, or
STALL response for each data cycle after the command confirmation
cycle of data transfer commands (STALL, however, is not permitted for
BDCST). During the two cycles following the last data cycle of a data
transfer command, the node(s) receiving the data must respond with
either an ACK or a NO ACK.
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ACK Data Response -- The slave or slaves send the ACK response during
data cycles to indicate that no error has been detected and that the

cycle is not to be stalled.

An ACK response is also returned by the node receiving the data during
each of the two cycles following the last data cycle of a successful
transaction. These ACK responses are sent by the master for read-type
and IDENT transactions and by the slave(s) for write-type and BDCST
transactions.

Receipt of the final ACK response indicates to the node that
transmitted the data that the transaction has completed successfully.

NO ACK Data Response -~ The NO ACK response indicates that an error
has been detected. The response is returned by either the master or
slave when an error in a transaction is discovered. A node that
detects an error must transmit only NO ACK responses for the remainder
of the transaction.

STALL Data Response —-- A slave can send a STALL response to delay the
transmission of data. The cycle is repeated until the STALL response
is removed.

During read-type transactions, a slave can stall any data cycle by
returning a STALL response in place of the data. The vector cycle
during an IDENT transaction can be stalled in the same manner. For
read-type transactions, the master inhibits a parity check on STALL
data cycles, since the BI 1I<3:0> L and BI D<31:0> L 1lines are
UNDEFINED fields during these cycles. For write-type transactions,
however, slaves must check parity on STALL data cycles. The STALL
response is not permitted for BDCST data cycles.

The master deasserts BI BSY L and BI NO ARB L. on the 1last expected

cycle of a bus transaction. It has noc way of knowing whether that
cycle may be stalled. However, the VAXBI bus will remain dedicated to
this transaction, since the slave asserts BI BSY L and BI NO ARB L for

all STALL data cycles, as well as all ACK data cycles except the last.

All nodes must implement a stall timeout that will force a slave node
to release the bus if the node attempts to stall for more than 127
consecutive cycles. At a stall timeout the slave node sets the STALL
Timeout bit in the Bus Error Register and deasserts all bus lines.
The master interprets the deasserted CNF lines as a NO ACK response
and terminates its involvement in the transaction.

4-13
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Table 4-3: Meaning and Use of Response (CNF) Code

Multiple-Responder Transactions (except BDCST)

c/a | 1A | p1 |
Confirmation Type CR
Error Feedback c/a
Slave Status D1
Source ]
Permitted Response AN

Write-Type Transaction (and BDCST)*

Octaword Length

C/A | IA i D1 i D2 i D3 | D4 | | i
Confirmation Type CR DR DR DR DR DR
Error Feedback c/A NA D1 D2 D3 D4
Slave Status D1 D2 D3 D4 NA NA
Source S S S S S S
Permitted Response ASRN ASN ASN ASN AN AN

Quadword Length

c/A | IA | D1 I D2 | I | | 1
Confirmation Type CR DR DR DR
Error Feedback c/A NA D1 D2
Slave Status D1 D2 NA NA
Source S S s ]
Permitted Response ASRN ASN AN AN

Longword Length

c/a | IA | D1 | | | 1 I |
Confirmation Type CR DR DR
Error Feedback c/A NA D1
Slave Status D1 NA NA
Source S 5 S
Permitted Response ASRN AN AN

*The CNF codes are used similarly for write-type and BDCST transactions except that the
response is not permitted for BDCST transactions.

Abbreviations for each category:
Confirmation Type: CR = command response, DR = data response.
Error Feedback: The cycle for which the error feedback is given; for example,
C/A = command/address, D1 = the first data cycle. NA = not applicable.
Slave Status: The cycle for which the slave is reporting its status. NA = not applicable.
Source: S (slave) and M (master) identify the node sending the CNF code.
Permitted Response: A = ACK, N = NO ACK, S = STALL, R = RETRY.

4-14
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Table 4-3: Meaning and Use of Response (CNF) Codes (Cont.)

Read-Type Transactions

Octaword Length

C/A | IA | D1 | D2 | D3 | D4 | | |
Confirmation Type CR DR DR DR DR DR
Error Feedback c/Aa NA NA NA D1-D3 D4
Slave Status D1 D2 D3 D4 NA NA
Source S S S s M M
Permitted Response ASRN ASN ASN ASN AN(1) AN(1)

Quadword Length

c/A 1 Ia | D1 | D2 | | | | I
Confirmation Type CR DR DR DR
Error Feedback c/A NA D1 D2
Slave Status D1 D2 NA NA
Sourcse S S M M
Permitted Response ASRN ASN AN(1) AN(1)

Longword Length with STALLs

STALIL STALL . ACK

c/Aa | IA | D1 | D1 | D1 | | | |
Confirmation Type CR CR CR DR DR
Erroxr Feedback C/A NA D1 NA NA
Slave Status D1 D1 D1 NA NA
Source S S S M M
Permitted Response ASRN ASRN ASRN AN(1) AN(1)
IDENT Transaction

IDENT

c/A | IA | DMID | ARB | VECTOR | | |
Confirmation Type CR DR DR
Error Feedback c/a NA C/A,DMID NA VECTOR
Slave Status D1 D1 VECTOR NA NA
Source s ) S M M
Permitted Response - - ASRN AN (2) AN (2)
NOTES
i. The master sends an ACK only if it did oot detest a tramsmit

check error during C/A and data cycles.

2. The master sends an ACK only if it did not detect a transmit
check error during C/A and DMID cycles.
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4.3 CLOCK SIGNALS
The VAXBI clock signals include:
¢ BI TIME + and BI TIME -
¢ BI PHASE + and BI PHASE -

See Chapter 12, Electrical Specification, for detailed clock
specifications.

4.3.1 BI TIME + and BI TIME -
The BI TIME + and BI TIME - signals are a pair of 20 MHz differential
ECL square waves that are 1input to a clock receiver at each node.

These signals and BI PHASE +/- provide the reference for timing at
each node.

4.3.2 BI PHASE + and BI PHASE -
The BI PHASE + and BI PHASE - signals are a pair of 5 MHz differential
ECL square waves that are input to a clock receiver at each node.

These signals and BI TIME +/- provide the reference for timing at each
node.

4.4 ASYNCHRONOUS CONTROL SIGNALS

The following control signals are asynchronous to the VAXBI clock
signals:

¢ BI AC LO L
e BI DC LO L
e BI RESET L
e BI STF L
e BI BAD L
e BI SPARE L

These signals are not limited to VAXBI backplane and cable extensions
and may be extended off the backplane to other points in the system.
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The BI AC LO L and BI DC LO L signals are used to control power-up and

Anrten

power-down sequences, which guarantee sufficient time for the system
to store (on power-down) and then retrieve (on power-up) the
parameters regquired for continued operation. In the descriptions of

these signals, the term "DC power" is used to indicate only that DC
power which may cause bus control 1logic, drivers, receivers, and
terminators to cease to meet their electrical specifications, thereby
rendering the bus inoperable. The DC power tolerance requirements are
in Section 13.1.8. The BI RESET L signal is used with the BI AC LO L
and BI DC LO L signals to provide the facility for simulating a
power-up initialization in the system. (See Chapter 6,
Initialization, for a detailed description on the wuse of these
signals.)

The BI STF L signal is used to control the length of self-test. The
BI BAD L signal is used to indicate various node failures.

4.4.1 BI AC LO L

The BI AC LO L signal is asserted when the 1line voltage 1is below
minimum specifications. The deassertion of BI AC LO L indicates that
processors and adapters may access memory and begin execution. The
full description of BI AC LO L appears in Section 6.3.

4.4.2 BI DC LO L

The BI DC LO L signal warns of the impending loss of DC power and is
used for initialization on power restoration. Specifically, a node
must use the BI DC LO L signal to force its circuitry into an
initialized state. VAXBI node designs must not use other reset

methods such as the "RC time constant type." Following the deassertion
1l self-tests. The full

LR~ e~

£ DT neo 3 3
of BI DC LC L, ncdes run their intern

al
description of BI DC LO L appears in Section 6.4.

4.4.3 BI RESET L

The BI RESET L signal is asserted by nodes that need to initialize the
system to the power-up state. BI RESET L is received by a device
called a "reset module" which, following the assertion of BI RESET L,
sequences BI AC LO L and BI DC LO L just as in the case of a true
power-down/power-up sequence. See Sections 6.2.2 and 6.5 for more
detail on BI RESET L and its use with reset modules.
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4.4.4 BI STF L (Self-Test Fast)

The BI STF L signal is used to control the length of self-test. 1If BI
STF L is in the asserted state when BI DC LO L is asserted, nodes will
execute a fast self-test. (See Section 11.1.5 and Application Note 4
for details on the use of this signal.)

4.4.5 BI BAD L

The BI BAD L signal is used for reporting the failure of a node in a
VAXBI systenm. BI BAD L 1is asserted by a node if it fails its
self-test or if the node fails any time after the power-up self-test.

The BI BAD L signal may be synchronously or asynchronously asserted.
BI BAD L is deasserted only when all nodes have passed self-test.

(See Section 11.1.4 and Application Note 4 for details on the wuse of
this signal.)

4.4.6 BI SPARE L

The BI SPARE L signal is reserved for use by DIGITAL.
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CHAPTER 5

VAXBI TRANSACTIONS

This chapter describes the transactions that the VAXBI bus supports
and gives requirements for their use. Section 5.1 defines the two
major classes of transactions. Section 5.2 discusses how the VAXBI

bus provides for interprocessor communication. Section 5.3 first
presents general information needed for understanding the transactions
that perform data transfers. The transactions themselves are then

presented in the following order: the write-type transactions (WRITE,
WCI, WMCI, and UWMCI) and then the read-type transactions (READ, RCI,
and IRCI). The INVAL transaction is included with the data transfer
transactions. Section 5.4 discusses the transactions that support
interrupts: INTR, IDENT, and IPINTR. Finally, Section 5.5 deals with
the STOP transaction, which is wused for diagnosing node and bus
failures.

5.1 SINGLE-RESPONDER AND MULTI-RESPONDER TRANSACTIONS

VAXBI transactions can be directed at one node -- single-responder
transactions -- or at multiple nodes -- multi-responder transactions.

Sinale-res

.......

ponder transactions cause data to be transferred between a
master and a single slave. The master targets a node to be slave by
means of a 30-bit address. The node at that address wuses other
information transmitted during the command/address cycle (command and
data length) in determining if it will become slave.

Multi-responder transactions can be directed at more than one node and
allow for more than one responder. The master sends a destination
mask instead of an address. These multi-responder transactions are
INTR, IPINTR, INVAL, STOP, and BDCST. INTRs are generated by means of
a command message from an interrupting master to an interrupt fielding
slave or set of slaves. The IPINTR command is used to interrupt other
processors. The INVAL command is used to notify nodes with cache
memory that they may have cached data that is no longer valid. The
STOP command is used for error diagnosis. The BDCST command, which is
reserved for wuse by DIGITAL, permits the systemwide broadcast of
information (see Appendix A for a description of the BDCST command).

5-1
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Table 5-1 lists the VAXBI command codes.

Table 5-1: VAXBI Command Codes

3210 Type Name Description

HHHH - - RESERVED

HHHL SR* READ

HHLH SR IRCI Interlock Read with Cache Intent
HHLL SR RCI Read with Cache Intent

HLHH SR WRITE

HLHL SR WCI Write with Cache Intent

HLLH SR UWMCI Unlock Write Mask with Cache Intent
HLLL SR WMCI Write Mask with Cache Intent
LHHH MR INTR Interrupt

LHHL SR IDENT Identify

LHLH - - RESERVED

LEHLL - - RESERVED

LLHH MR STOP

L LHL MR INVAL Invalidate

LLLH MR BDCST** Broadcast (RESERVED)

L LLL MR IPINTR Interprocessor Interrupt

**See Appendix A.

5.2 INTERPROCESSOR COMMUNICATION

The interlock transactions (IRCI and UWMCI) and interprocessor
interrupts (IPINTRs) support interprocessor communication. 1Interlock
commands allow processors to communicate by exchanging messages
deposited in a shared memory. Accesses to the shared memory must be
synchronized because one processor’s memory accesses may be
interspersed in time with another processor’s accesses to the same
locations. Software-level synchronization is wusually achieved with
the wuse of indivisible operations such as the VAX interlock and queue
instructions. These operations are implemented by wusing the VAXBI
interlock transactions IRCI and UWMCI.
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5.2.1 IPINTR Transactions

Interprocessor interrupts, in which one processor interrupts the

cther, is a simpler method of interprocessor communication. A
combination of shared memory and interprocessor interrupts can also be
used. For example, one processor can deposit a message in a specific

area of shared memory and then notify the other processor by sending
an IPINTR transaction. (See Section 5.4.3 for details on the IPINTR
transaction.)

5.2.2 VAXBI Requirements for Interlock Transactions

Processor nodes and adapters use the VAXBI interlock transactions IRCI
and UWMCI to carry out indivisible operations. The interlock feature
of these transactions must be implemented £for all memory space
addresses but may or may not be implemented for I/O space addresses.
When the interlock feature is not implemented, IRCI must have the same
effect as READ and RCI, and UWMCI must have the same effect as WCI,
WMCI, and WRITE (with the possible exception of the write mask).

An IRCI transaction that "locks" a block of addresses must always be
paired with a subsequent UWMCI transaction that "unlocks" the block.
A node must issue a UWMCI transaction as soon as possible after
issuing an IRCI. If another VAXBI node issues an IRCI to a locked
location, that node will receive a RETRY response. If the node
continues to repeat the transaction and the lock is not cleared, a
retry timeout error will occur.

Note that, in the case of VAX queues, a secondary lock exists in the
queue header. The secondary lock should be examined with an IRCI and
set with a UWMCI before the queue is manipulated. After the secondary
lock 1is set, processing of the queue can be performed without using
the interlock transactions. The timing consideration therefore
applies only to the time required to set the secondary lock, without
waiting to determine if the secondary lock was originally set. This
can help reduce the time between the IRCI and the UWMCI.

In memory space, read- and write-type transactions other than IRCI and
MCI, such as RCI and WMCI, must not be affected by the lock and must
be able to proceed unhindered. Since the block 1is 1locked only to
nodes issuing IRCI transactions, whether a large or small block is
locked in general should not affect system operation. In I/O space,
whether any transaction type is affected by the lock is implementation
dependent.

g
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The length of a block of data fetched from memory may differ from that
requested by a node in an IRCI transaction because of cacheing
requirements. For example, a processor with cache may have filled a
cache block that is longer than the length of the block to be unlocked
by the UWMCI, and the address of the block to be unlocked may be
different from that given in the IRCI. The master must comply with
the following rules; the slave need not check for compliance.

@ The length of a UWMCI transaction can be less than the length
of the IRCI transaction, but it cannot be greater.

@ The UWMCI transaction must wunlock the block of addresses
locked by the IRCI transaction.

@ The address of the UWMCI transaction must be within the
address range of the IRCI transaction; it does not have to be
the same.

One processor may use IRCIs of one length while another processor uses
IRCIs of a different length.* For all processors to be compatible, the
following must be observed:

e In memory space, an IRCI must lock a naturally aligned block
that is at least an octaword long.**

e In I/O space, an IRCI locks as little as an aligned longword,
except when the location is in a word-accessible or
byte-accessible adapter, in which case IRCI locks as little as
an aligned word or byte respectively. (See Section 5.3.1,
Address Interpretation, for the meaning of word-accessible and
byte-accessible adapters.) For example, the UNIBUS adapter is
a word-accessible adapter.

The IRCI transaction also sets the Unlock Write Pending (UWP) bit of
the VAXBI Control and Status Register (VAXBICSR) at the issuing node.
A UWMCI clears this bit. If a UWMCI is issued and the UWP bit is not
set (that 1is, an IRCI had not been issued), the Interlock Sequence
Error (ISE) bit is set in the node’s Bus Error Register. Setting of
the 1ISE bit generates an error interrupt if the Hard Error Interrupt
Enable bit is set in the VAXBICSR register. The UWMCI transaction is

*For example, the KA820 processor uses octaword IRCIs (because of its
cache) while the KA800 processor uses longword IRCIs.

**In MS820 series memories, the lock will lock the entire memory node.
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carried out regardless of whether the UWP bit is set. IRCI and UWMCI
transactions should always be issued in pairs, and such pairs should
not be nested, because of the uncertainty as to the extent of the

~ -

VAX interlock instructions are not the only VAX instructions that
generate VAXBI interlock transactions: byte- and word-length modify
type 1instructions in 1I/O space may also generate interlock
transactions. All these instructions generate IRCI/UWMCI pairs.

5.3 TRANSACTIONS TO SUPPORT DATA TRANSFER

This section describes the read-type and write-type commands and the
INVAL command. During a command/address cycle the data lines specify
the number of bytes being transferred (on BI D<31:30> L; see Table
5-2) and a 30-bit address (on BI D<29:0> L). The low address of the
block of data transferred is always a multiple of the size of the
block of data, in bytes. Note that during read-type transactions, the
address supplied during the command/address cycle is not always the
low address of the block of data transferred. (See Section 5.3.1.1.)
The information lines (BI I<3:0> L) carry the VAXBI command code
during the command/address cycle (see Table 5-1).

Table 5-2: Data Length Codes

31 30 Data Length

H H RESERVED

H L Longword (LW) 4 bytes
L H Quadword (QW) 8 bytes
L L Octaword (OW) 16 byvtes

5.3.1 Address Interpretation

The following two subsections give rules for data transmission based
on the transaction type, address space, data length field, and
low-order address bits. Figure 5-1 shows longword and byte references
in an octaword block.
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The abbreviations used in Tables 5-3 and 5-4 are explained below:

ALL

NWS

WS

/B

/W

/L

All address space; includes all of I/O and memory space.

Non-window space; includes all I/0 addresses that are not in
node window space as well as all memory space addresses.

Node window space.

The node is byte-accessible; that 1is, longword read-type
commands are treated by the node as reads of single bytes.

The node is word-accessible; that 1is, longword read-type
commands are treated by the node as reads of single words.

The node is longword-accessible, that is, the smallest wunit
that can be read from the node with a VAXBI read-type
transaction is a longword. Nodes that are not explicitly
specified as byte- or word-accessible are
longword-accessible.

An X in the address field indicates that the master can
drive any data on these lines during the command/address
cycle.

A dash in a received address entry indicates bits that the
slave must ignore for a particular transaction length. A
dash in returned read data indicates bytes that must be
ignored by the master (that is, the bytes contain undefined
data).

An apostrophe indicates concatenation.

5-6
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3i o]
Dt = 83 82 81 80
02 = 87 86 85 84
D3 = B11 810 B9 88
D4 = B1S 814 B13 812
MLO-020-88

Address of BO is:

A<29:2>700 for longword data length
A<29:3>7000 for quadword data length
A<29:4>'0000 for octaword data length

Figure 5-1: Longword and Byte References in an Octaword Block

5.3.1.1 Read-Type Transactions - Table 5-3 describes the rules for
address interpretation for VAXBI read-type transactions. The order in
which the longwords of data are returned is shown in the last column.

No masters may generate the RESERVED (H H) data length code, and the
response by nodes that receive the RESERVED data length code is
implementation dependent.

The slave to a read-type transaction transmits the addressed longword
of data first. The way in which the remaining longwords are
transmitted depends on the address that was transmitted. In most
cases, the address transmitted during a read-type transaction will be
data-length aligned (for example, if the transaction 1is of octaword
length and address bits A<3:0> = 0000). 1In these cases, the remaining
longwords (one for quadword and three for octaword length
transactions) will be transmitted 1in ascending address order.
However, if the initially addressed 1longword was not data-length
aligned (for -example, an octaword transaction with address bits
A<3:0> = 1000), then the remaining longwords will be transmitted in
ascending address order until the top of the data-length aligned block
is reached, at which time a "wrap" will occur, and the next
transferred longword will be 1located at the base address of the
data-length aligned block. Longwords are then transferred in
ascending address order until the entire block has been transferred.
A read-type transaction in which the address 1is not data-length
aligned is called a "wrapped read."
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No slave should rely on masters having the capability to perform
quadword or octaword transactions to any part of VAXBI address space.

Table 5-3: Read-Type Transaction Address Interpretation
Data Address Transmitted Received Order of the Returned
Length Space Address Address Data (first to last)
ow ALL A<29:4>'00XX A<29:4>'00-- D1, D2, D3, D4

oW ALL A<29:4>'01XX A<29:4>'01-- D2, D3, D4, D1

oW ALL A<29:4>"10XX A<29:4>710-- D3, D4, D1, D2

oW ALL A<29:4>'11XX AC29:4>711-- D4, pl, D2, D3

Qw ALL A<29:3>'0XX A<29:3>'0-- D1, D2

ow ALL A<29:3>71XX A<29:3>"'1-- D2, D1

LW NWS A<29:2>'XX A<29:2>"—— Dl (B3,B2,B1,B0)
LW WS/L  A<29:2>'XX A<29:2>7—- pl (B3,B2,B1,B0)
LW WS/W A<29:2>'0X A<29:2>'0- D1 (XX,XX,B1,B0)
LW WS/W  A<29:2>'1X A<29:2>71- pl (B3,B2,XX,XX)
LW WS/B  A<29:2>'00 A<29:2>700 D1 (XX,XX,XX,B0)
LW WS/B A<29:2>'01 A<29:2>'01 D1 (XX,XX,Bl,XX)
LW WS/B A<29:2>'10 A<29:2>'10 Dl (XX,B2,XX,XX)
LW WS/B  A<29:2>'11 A<29:2>'11 D1 (B3,XX,XX,XX)

*The slave must respond with a NO ACK.

5.3.1.2 Write-Type Transactions - Table 5-4 describes the rules for
address interpretation for VAXBI write-type transactions. The order
in which the longwords of data are transmitted is shown in the last
column.

No masters may generate the RESERVED (H H) data length code, and the
response by nodes that receive the RESERVED data length code is
implementation dependent.

VAXBI writes transmit write data in ascending address order (that is,
there are no wrapped writes on the VAXBI bus). As shown in Table 5-5,
masters must not issue quadword write-type transactions with A<2>
equal to one or octaword write-type transactions with either A<3> or
A<2> equal to one.

No slave should rely on masters having the capability to perform
quadword or octaword transactions to any part of VAXBI address space.
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Table 5-4: Write-Type Transaction Address Interpretation
Data Address Transmitted eceived Order of the Transmitted
Length Space Address Address Data (first to last)

ow ALL A<29:4>'00XX  A<29:4>'00-- D1, D2, D3, D4

oW ALL A<29:3>'0XX A29:3>'0—- D1, D2

LW NWS A<29:2>'XX AL29:2>"—- D1

LW WS/L A<29:2>'XX AL29:2>"— pl (B3,B2,B1,B0)

LW WS/W A<29:2>'0X A29:2>'0- nl (--,--,B1,B0)

LW WS/W A<29:2>'1X AC29:2>'1-~ Dl (B3,B2,-—,—-)

LW WS/B A<29:2>'00 A<29:2>'00 pl (--,--,--,B0)

LW WS/B A<29:2>'01 A<29:2>'01 pl (--,--,B1,--)

LW WS/B A<29:2>7'10 A<29:2>'10 pl (--,B2,--,--)

LW WS/B A<29:2>'11 A<29:2>'11 Dl (B3,--,——,—-)

*The slave must respond with a NO ACK.

5.3.2 Caching and the VAXBI Bus

In a multiprocessing system in which data from memory is cached, the

danger exists that the data in the cache will be "stale," that is, not
up to date. 1In a VAXBI system, it 1is required that memory must
contain the up-to-date copy of the data.

To provide for the caching of data, the VAXBI protocol specifies

various kinds of reads and writes. The assumption is that most data
transfers will involve caches. RCI and IRCI are the read transactions
for use with caches, while WCI, UWMCI, and WMCI are the write
transactions for use with caches. The INVAL transaction is wused to
notify nodes that the data in their caches might be invalid. The

following discussion describes the way in which these transactions are
used.
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To ensure that data in caches that may have become stale are marked
invalid, each VAXBI node that caches data must monitor all VAXBI
write-type transactions, and if such a transaction is directed to a
location that is cached at the node, then the cached data must be
marked invalid.* If the node cannot mark the cached data invalid
within the time it takes the monitored transaction to complete, the
node must extend the monitored transaction by asserting the BI BSY L
signal as described in Section 4.2.2.

Because VAXBI nodes are not permitted to cache VAXBI I/O space data,
there is no need to provide for invalidating I/O space locations. The
discussion below regarding invalidation of cached data therefore
pertains only to VAXBI memory space data. To emphasize the difference
between those VAXBI nodes that implement memory 1locations and those
that cache data, the former will be referred to as "memory VAXBI
nodes" and the latter as "cache VAXBI nodes," respectively, since they
are the memory nodes and cache nodes of the data transfer
transactions. When memory is located at the cache node, the rules
below do not apply to the node as memory node because they assume that
the memory node cannot learn of actions at the cache node except
through VAXBI transactions.

By monitoring all VAXBI write-type transactions, cache VAXBI nodes can
ensure that, should a memory 1location be updated through a VAXBI

transaction, the cached data will always be marked invalid. Should
the memory location be updated without the use of a VAXBI transaction,
however, this monitoring activity cannot detect the wupdate. Such

updating of a memory location is referred to as a "local write." To
ensure that stale data is marked 1invalid, memory VAXBI nodes must
issue INVAL transactions for a set of locations when the locations are
updated with a local write, provided that the data «could have been
cached.

To reduce the number of INVAL transactions that have to be 1issued,
cache VAXBI nodes should use the READ and WRITE transactions instead
of the RCI and WCI transactions when they read or write data that they
do not cache. As long as the READ transaction is not used, VAXBI
nodes are allowed to cache any memory space data returned on read-type
transactions unless the data is returned with one of the "don’t cache"
status codes (see Section 5.3.4). If a "don't cache" status code 1is
returned, the memory node will not issue an INVAL transaction when it
is updated with a local write, so the data must not be cached.

*In fact, the node could update its cache, rather than just
invalidate, if the write-type command is with cache intent.

5-10



. .
Digital Equipment Corporation —— Confidential and Proprietary
WAVRT MDANCAOCMTANS
VEiAIniS A = LALLLNWIS S - e WA W

In contrast to the case of reads, VAXBI nodes are not allowed to cache

data when they write data to a memory location unless at the time of
the write they have been holding a valid cached copy of the original
contents of that lecation, Thi is referred to as the "no write

allocate" rule. Because of this rule, it is sufficient that "don’t
cache" be returned only on read-type transactions. Without this rule,
the bus protocol would have to support a "don’t cache" indication to
be returned on write-type transactions. Cache nodes would then have
to implement the cache in such a way that the data is not cached in
case the "don’'t cache" indication is returned; this would be awkward
since writes are often pipelined.

To take advantage of the READ and WRITE transactions, a memory VAXBI
node can implement a "cached bit" for each memory location. The
"cached bit" is originally cleared, and is set if the location is read
with an RCI or an IRCI transaction, indicating that the data in the
location might be cached. The bit is not set on a READ transaction
since the data is not cached, and is not set on a write-type
transaction because the "no write allocate" rule guarantees that the
data is cached only if it had already been cached on an earlier RCI or
IRCI transaction and was still valid. If the location is written with
a local write while the cached bit is set, the memory VAXBI node must
issue an INVAL transaction for the 1location. If the 1location 1is
written with a local write while the cached bit is cleared, however,
the memory VAXBI node need not issue the INVAL transaction. The
cached bit <can be cleared if the location is written with a WRITE
transaction (but not if the location is written with a WCI, WMCI, or
UWMCI transaction), and is cleared when an INVAL transaction is issued
for the location.

It may not be feasible to implement a cached bit for each memory
location. Instead, a cached bit can be implemented for a large block
of memory locations. This bit would be set if any 1locations in the
block are accessed with an RCI or IRCI transaction. (If "don’'t cache"
status is returned on receipt of IRCI transactions, the cached bit

~aea 1+ nranhahler
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need t only on RCI t actions.)
not worthwhile to ever clear the bit. Should the bit ever be set,
INVAL transactions must be issued on each local write to any memory
location in the block of locations. However, if the bit is never set,
INVAL transactions need not be issued. Not setting the bit is useful
when the node can be used both in configurations where cache nodes
occur and in configurations where they do not occur. In the latter
case better performance can be obtained because INVAL transactions

need never be issued.

a
(=1
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Rather than implement cached bits, memory VAXBI nodes can simply issue
INVAL transactions on all local writes. This alternative is desirable
when local writes are rare. Or memory VAXBI nodes can avoid ever
issuing INVAL transactions on local writes, by returning "don’t cache"
status on RCI and IRCI transactions (and, optionally, also on READ
transactions). This alternative is desirable when defeating the cache
at the memory VAXBI node is judged to have a small performance impact.
Application Note 2 provides an expanded discussion on the use of the
various alternatives.

The rules are summarized below.

® Nodes while not caching data should issue READ and WRITE
commands on the VAXBI bus to access locations not in local
memory (that is, memory which is not part of the node itself).

@ Nodes while caching data must wuse cache-intent read- and
write-type commands on the VAXBI bus to access locations not
in local memory.

® Nodes that cache data must monitor the VAXBI bus; locations
designated in write-type commands and INVAL commands must be
invalidated.

e Nodes must not cache any data returned with a "don’t cache"
status.*

e Nodes must not cache data on a write transaction unless, just
before the data is written, the cache contained valid data for
the location. This rule is known as "no write allocates."

e Nodes that respond to read- and write-type commands to memory
space must either (a) issue INVAL commands on writes to local
memory or (b) return "don’t cache" status to RCI and 1IRCI
commands if writes to local memory are possible to the
specified locations. It is optional for these nodes to return
"don’t cache" status to other read-type commands.

@ Reads to I/O space and all interlock reads must not result in
cache hits. Even if the data being read has been cached
locally, the cached data must be ignored on these transactions
and a VAXBI read-type transaction must be generated.

Note that memory nodes accessible only through the VAXBI bus do not

have to return "don’'t cache" status or issue INVAL commands, because
local writes are not possible.

*The KA820 processor has an exception to this rule.
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When applied to specific cases, the rules 1listed above can be
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e o! cal memory (although, of course, it may have
he) has no need to issue INVAL commands.

@ A node with no cache memory should not issue cache intent
commands.

e¢ A node with local memory need not record whether RCI or WCI
transactions have been issued to locations in the local memory
since the last write-type transaction. If this information is
not recorded, either all accesses to local memory receive
"don’'t cache" confirmations or all local writes generate INVAL
commands.

5.3.3 Write Mask

During data cycles of WMCI and UWMCI transactions, the BI I<3:0> L
lines carry a write mask. When a bit in the mask is set to a one, the
corresponding byte is to be modified by the contents of the data
lines. Table 5-5 shows which byte of the VAXBI data lines is written
to when the information lines are asserted.

In memory space, the exact bytes corresponding to the mask bits that
are set must be written, for any combination of mask bits. 1In node
window space, byte- and word-accessible nodes ignore the write mask
bits for the bytes or word, respectively, not addressed by the
low-order address bits. 1In the rest of I/O space, the effect of the
mask bits is implementation dependent. See Section 5.3.1.2 for more
details.

The BI I<3:0> L lines are an UNDEFINED field during data cycles of
write-type transactions that do not use a mask.

Table 5-5: Write Mask Codes

Signal Byte to
Asserted Be Written
BI I<3> BI D<31:24> L

L

L BI D<23:16> L
BI I<1> L BI D<15:8> L

L BI D<7:0> L
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5.3.4 Read Status

The BI I<3:0> L lines are used to transmit a read status code during
each ACK data cycle of read-type and IDENT transactions. The slave
sends the code describing the type of data that is being returned to
the master. Both the slave and master continue the bus transaction
regardless of the status. Table 5-6 lists the read status codes.

Note that there are two versions for each of the three types of
status. One version is for data that can be cached, and the other is

for data that must not be cached. Because the slave can make this
restriction, the number of INVALs can be reduced.

Table 5-6: Read Status Codes

3210 Description

H * HH RESERVED

H* HL Read Data

H* LH Corrected Read Data

H* L L Read Data Substitute

L *HH RESERVED

L *HL Read Data/Don’t Cache

L *L H Corrected Read Data/Don’t Cache
L *L L Read Data Substitute/Don’t Cache

*Bit <2> is RESERVED. Slaves must drive this 1line
to H for all status types, and masters must ignore
the state of this line.

The Read Data status code indicates that data is being returned
without error.

The Corrected Read Data status code indicates that the data being
returned has been corrected.

The Read Data Substitute status code warns that the data that was
accessed contained an uncorrectable error. If possible, the data
lines should contain the uncorrected data.

The master’s response to RESERVED status codes should be the same as
that to Read Data Substitute.

Parity must be generated, regardless of the data and status returned.
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™
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The WRITE transaction is used to transfer data from a master to a
slave when the master does not cache the data (see Figure 5-2%).
During the command/address cycle, the master sends the data length
(longword, quadword, or octaword) on BI D<31:30> L, the address on BI
D<29:0> L, and the command on BI I<3:0> L. Parity is generated by the
master and is checked by all nodes. BI BSY L is asserted until the
last ACK data cycle. BI NO ARB L is deasserted for the C/A cycle but
then is asserted, along with BI BSY L, until BI BSY L is deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

The slave sends a command confirmation during the third cycle. This
CNF code provides feedback to the master about errors and about the
slave’s status. Later CNF codes provide information about data cycles
of the transaction. The type of feedback depends upon the cycle and
the type of transaction. Error feedback occurs two cycles after the
cycle being reported. (See Table 4-3 for more information on CNF
codes.)

The master sends write data in the third and succeeding data cycles.
If a slave cannot receive data at the specified time, it can send a
STALL response until it is ready to receive the data. The slave may
stall for at most 127 consecutive cycles (see Section 4.2.4.1, STALL
response). During data cycles the BI I<3:0> L lines are an UNDEFINED
field in WRITE and WCI transactions, whereas in WMCI and UWMCI
transactions these lines carry the write mask. During all data cycles
the master generates parity, and the slave checks parity.

*The following abbreviations are used in the figures in this chapter
that show the format of VAXBI transactions:

M Master node

] Slave

Ss Slaves

AAN All arbitrating nodes

AN All nodes

APS All potential slaves (only for IDENT, prior to

IDENT ARB selection)
All the CNF codes are listed as they might occur in the specified

cycles. A > in front of a CNF code indicates the CNF code that would
be transmitted during the transaction illustrated.
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CYCLE CiA 1A o1 D2 03 D4
31| DATA { I
30| LENGTH
P i I
28
i I I
25 DECODED | I
2 10 | I
23 Low | I
PRIORITY | |
21 | |
. | |
18 { I
1
16 08T | |
81 D<31:0> L 1s| ADOR DATA 1 DATA 2 DATA 3 DATA 4 I |
1
. } i
1
1 | I
10l | |
,a DECODED I I
10
7 HIGH I I
o PRIORITY | |
& | I
3 ' |
3 I I
, | I
9 | I
SOURCE M AAN M M M M | |
MASTER | UNDEFINED | UNDEFINED | UNDEFINED | UNDEFINED I —I
Bl 1<3:0> L CCMMAND 0 FIELD FIELD FIELD FIELD I I
SOURCE M M M M M M ! I
8IPOL GEN M M M M M M i i
CHK AN AN S S S S
>ACK >ACK >ACK >ACK >ACK >ACK
BI CNF<2:0> L NQO ACK NO ACK NO ACK NQO ACK NO ACK NO ACK
STALL STALL STALL STALL
AETRY
SOURCE s s s S s s
M M ' M.S I M.S I MS . ! _
BiesyL \ 4 i i i
M.AAN M.S M.S M.S
8INO ARB L 4f \ 4
MLO-021-88

Figure 5-2: WRITE and WCI Transactions (octaword length shown)
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WCI (Write with Cache Intent)

The WCI trans

Q

The ransaction performs a write but the data transferred may be
cached. A node while caching must issue a WCI rather than a WRITE to
alert the slave that the data is being cached. Note that caching can
occur only if, just before the write is performed, the cache already
contains valid data for the location written to. Should the same
location in the slave node be written to later without the use of a
VAXBI transaction, the slave must issue an INVAL on the bus. If a
caching node cannot determine if data is being cached,* then the
caching node must assume that the data is being cached and issue a
WCI rather than a WRITE. For example, in the case of a bus adapter,
if a processor on the target bus originated the write, the bus adapter

may not be able to determine if the processor cached the data.

The slave’s response to a WCI command is the same as that to a WRITE
command (see Figure 5-2).

During data cycles the BI I<3:0> L lines are an UNDEFINED field in
WRITE and WCI transactions, whereas in WMCI and UWMCI transactions
these lines carry the write mask.

*In the sense used here, a caching node 1is any VAXBI node that
behaves like a caching processor (when looking into the node from the
VAXBI bus). For example, a DB88 (VAX 8800 system to VAXBI bus
adapter) behaves 1like a caching processor even though it really
connects the VAXBI bus to a processor-memory interconnect and not
directly to a processor’s cache.
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WMCI (Write Mask with Cache Intent)

This command is the same as the WCI command except that the master
selects which bytes of the addressed location(s) it wants to modify.
The write mask is transmitted on the BI I<3:0> L 1lines during each
data «cycle. (Note that these lines are UNDEFINED during data cycles
in WRITE and WCI transactions.) However, if a master sets all bits to
write all bytes, instead of using the WCI command, performance may be
degraded (because WMCI execution may require a local read-modify-write
operation). The master generates parity for the entire VAXBI data
path regardless of which bytes are tagged for modification.

The format for the WMCI transaction is shown in Figure 5-3.
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CYCLE CA 1A D1 02 03 04
31| DATA {V }
30| LENGTH i i
29|
: | |
1 | |
26 | |
25 DECODED
24 0 l |
23 Low | |
22 PRIORITY | |
21 | l
20| I |
19|
8 l l
17t l l
16 30817 | |
Bl D<31:0> L 15  AODR DATA 1 DATA 2 DATA 3 DATA & | |
14
13 I |
121 | |
11 | |
10§ | |
3 DECODED i |
8 o)
7 HIGH | |
8 PRIORITY | |
5 | |
: | I
z -
) | !
1
SOURCE M AAN M M M M ! !
MASTER WRITE WRITE WRITE WRITE = —{
Bl 1<3:0> L COMMAND 10 MASK MASK MASK MASK | |
SOURCE M M M M M M ! !
1 B
8IPOL GEN M M M M M M | |
CHK AN AN S S S S
>ACK >ACK >ACK >ACK >ACK - >ACK
BICNF<2:0> L NO ACK NO ACK NO ACK NO ACK NOQ ACK NO ACK
STALL STALL STALL STALL
RETRY
SOURCE s S s S s S
M l M | Ms | wMs M.S L |
818sY L \ | k |r ﬁ‘
M.AAN MS M.S M.S |
8I NO ARB L 4’ \ i * l
b
MLO-022-88

Figure 5-3:

WMCI and UWMCI Transactions (octaword length shown)
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UWMCI (Unlock Write Mask with Cache Intent)

The UWMCI (Unlock Write Mask with Cache Intent) command is wused to
complete an atomic read-modify-write operation that was begun with an
IRCI (Interlock Read with Cache Intent) command. It is used to unlock
a shared memory structure. The slave should not reset the lock bit if
a parity error occurs during a data cycle of a UWMCI transaction. A
node must issue a UWMCI transaction as soon as possible after issuing
an IRCI transaction.

A write mask is transmitted on the BI I<3:0> L lines during each data
cycle. (Note that these 1lines are UNDEFINED during data cycles in
WRITE and WCI transactions.)

The format of the UWMCI transaction is the same as that shown for the
WMCI transaction (see Figure 5-3).
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The READ transaction is used to transfer data from a slave to a master
when the data will not be cached (see Figure 5-4).

During the command/address cycle, the master sends the data 1length
(longword, quadword, or octaword) on BI D<31:30> L, the address on BI
D<29:0> L, and the command on BI I<3:0> L. Parity is generated by the
master and 1is checked by all nodes. BI BSY L is asserted until the
last ACK data cycle. BI NO ARB L is deasserted for the C/A cycle but
then is asserted along with BI BSY L, until BI BSY L is deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

The slave sends a command confirmation during the third cycle. This
CNF code provides feedback to the master about errors and about the
slave’s status. Later CNF codes provide response about data cycles of
the transaction. The type of feedback depends upon the cycle and the
type of transaction. Error feedback occurs two cycles after the cycle
being reported. Read-type transactions differ from write-type
transactions in that the CNF code providing feedback for the last two
data cycles is sent by the master to the slave. (See Table 4-3 for
more information on CNF codes.)

The slave sends read data in the third and succeeding data cycles. 1If
a slave cannot send data at the specified time, it can send a STALL
response until it is ready to send the data. The slave may stall for
at most 127 consecutive cycles (see Section 4.2.4.1, STALL response).
During all data cycles the slave generates parity, and the master

rhacke naritxy
ChecCcXs parity.

During data cycles the slave sends read status on the BI I<3:0> L
lines. The read status tells the master the status of the data being
4

[N~ a]
Dl e
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CYCLE C/A 1A o} D2 03 D4
31| DATA I 1
30| LENGTH i }
2 | l
1 | |
= | |
25| DECODED
244 0 I I
23 Low l ‘
22 PRIOCAITY | |
21 I *
20
| | '
18 | l
| | |
16| Joerm | |
Bl D<31:0> L 1s| ADDA DATA 1 DATA 2 DATA 3 DATA 4 | [
14}
13 | l
124 ! l
11 I l
10 | |
! DECODED | '
7 HIGH |
o PRIORITY | l
5 | |
4 | |
; | |
| | I
0 I I
SOURCE M AAN s s s S | |
MASTER STATUS STATUS STATUS STATUS |[ Tl
Bl1<3:0> L COMMAND 0 | I
SOURCE M M s s s s ! J
8iPOL GEN M M s ] S s r _i
CHK AN AN v M M M M
>ACK >ACK >ACK >ACK >ACK >ACK
81 CNF<2:0> L NO ACK NO ACK NQ ACK NO ACK NO ACK NO ACK
STALL STALL STALL STALL
RETRY
SOURCE s ] S s M M
M M MS MS I M.S [N 1 {
818sy L \ 4 | T ]
M.AAN M.S M.S M.S !
81 NO ARB L 4f \ / | i
ML.O-023-88

Figure 5-4: READ, RCI, and IRCI Transactions (octaword length shown)
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RCI (Read with Cache Intent)

The RCI transaction performs a read but the data transferred is
intended to be cached. However, if the slave returns a "don’t cache"
status code, the master must not cache the data* (see Section 5.3.4).

The slave’s response to an RCI command is the same as that to a READ
command (see Figure 5-4). The command is used in cached
multiprocessor systems. The RCI command is generated on a cache miss
by processors to signal the slave that the requested read data will be
placed in the master’s cache. This permits an efficient mapping
mechanism or "cached" bit for efficient generation of INVAL commands.
(See Application Note 2, Section 2.1.1.)

*The KA820 processor has an exception to this rule.
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IRCI (Interlock Read with Cache Intent)

The IRCI command supports atomic read-modify-write operations and 1is
used with the UWMCI command. The format of the IRCI transaction is
the same as that shown for the READ transaction (see Figure 5-4). A
node that has been successfully accessed in memory space by the IRCI
command must set a "lock bit," which while set, causes subsequent IRCI
transactions directed to the same locked address range to be retried.
This lock bit must remain set until a successful UWMCI transaction
accesses the same locked address range (see Section 5.2.2).

In node window space the minimum size of the address range covered by
a single 1lock bit 1is a Dbyte. Outside of node window space, the
minimum size of the address range covered by a single lock bit 1is an
octaword.

If the master returns a NO ACK during either of the two cycles
following the data cycles of an IRCI transaction (for example, as the
result of detecting a parity error), the slave must not set the 1lock
bit.

If the Read Data Substitute status code is sent by the slave, the IRCI
transaction 1is considered unsuccessful. The slave, therefore, should
not set a lock bit, and the master should not perform the
corresponding UWMCI to complete the atomic operation.

If a subsequent IRCI or UWMCI command is received before it is known
that no errors have occurred for the prior IRCI transaction, the slave
should issue a STALL or RETRY command confirmation until the state of
the lock is determined.

A multiport memory will issue a RETRY response to IRCI commands if its
lock bit has been set from any port.

An IRCI directed to a UNIBUS adapter from the VAXBI bus will be

interpreted as a DATAIP to the UNIBUS. A UNIBUS DATAIP must be
translated as an IRCI to the VAXBI.

5.3.7 1Invalidate Transaction

INVAL (Invalidate)

The INVAL command is used to signal other nodes that they may have
cached data that 1is no longer valid. This command would be used by
processors and other intelligent nodes when they perform a write to a
local memory. Since a local write is not visible on the VAXBI bus,
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VAXBI nodes that monitor the VAXBI would not see this

a ion. The other nodes then must be notified by the node
erf ng the write. That node issues a VAXBI INVAL transaction.
See Application Note 2, Section 2.1.) The format of the INVAL
ran

During the command/address cycle, the master sends the data 1length
(longword, gquadword, or octaword) on BI D<31:30> L, the address on BI
D<29:0> L, and the command on BI I<3:0> L. The data 1length code
indicates the number of consecutive addresses to be invalidated. The
low-order address bits are RESERVED fields during INVAL commands.
Parity 1is generated by the master and checked by all nodes. BI BSY L
is asserted for the first and second cycles. BI NO ARB L is
deasserted for the C/A cycle, asserted for the imbedded ARB cycle, and
then deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

The slave or slaves send a command confirmation during the third
cycle. The only valid responses to an INVAL command are ACK and NO
ACK.

During the third cycle, the BI D, I, and P lines are RESERVED fields.
To have time to invalidate its cache, a node can delay the start of
the next bus transaction. It does so by continuing to assert BI BSY L
through the third cycle and until its cache is invalidated.

Table 5-7 describes the rules for address interpretation for the INVAL
transaction.

Table 5-7: Address Interpretation for INVAL Transaction

Data Transmitted Received
Length Address Address
Octaword A<29:4>70000 AL29:4> " ———-
Quadword A<29:3>7000 A<29:3>7"——-
Longword A<29:2>'00 A<29:2>"—
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CA 1A 01
CYCLE
31 DATA
300 LENGTH
28]
27
261
254 DECODED
244 0
23 Low
22| PRICAITY
21
20{
19
18
17]
161 30 8IT RESERVED
BI D<31:0> L 15 ‘ADDR FIELD
144
13
12]
iR}
10
9 OECODED
8 D
7] HIGH
8 PRICRITY
5
4l
3
2
1
ol
SQURCE M AAN
COMMAND MASTER RESERVED
8l 1<3:0> L 10 FIELD
SQURCE M M
BIPOL GEN M M RESERVED
CHK AN AN FIELD
>ACK
8l CNF<2:0> L NO ACK
SQURCE Ss
L L }',____._J
818SY L \ , |
| i ]
I I Maan | |
Bl NO ARB L A \ /4 ]
l ! | ]
MLO-024-88

Figure 5-5: INVAL Transaction
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5.4 TRANSACTIONS TO SUPPORT INTERRUPTS

The VAXBI bus provides for device interrupts (in the form of INTR and
IDENT transactions) and interprocessor interrupts (in the form of
IPINTR transactions). With device interrupts, the interrupting device
supplies an interrupt vector in response to an IDENT transaction. The
vector is specific to the device’s node 1ID. With interprocessor
interrupts, the interrupt vector and interrupt level are stored in the
receiving node and are the same for all interprocessor interrupts.

5.4.1 Device Interrupts

Each node capable of generating interrupts contains a vector that 1is
used by VAX processors to index into one or more 512-byte pages of
memory containing address pointers to interrupt service routines.

During the command/address cycle of the INTR transaction, the D 1lines
<19:16> each correspond to an interrupt level. D<19> corresponds to
VAXBI interrupt level 7, the highest priority interrupt level, while
D<16> <corresponds to VAXBI interrupt 1level 4, the lowest priority
interrupt level. One or more of these lines may be asserted during
the command/address <cycle to indicate the 1levels at which the
interrupt is issued. VAXBI interrupt levels 7 through 4 correspond to
interrupt priority levels (IPLs) 17 through 14 on VAX processors.

When an interrupted node is ready to service the interrupt, it issues
an IDENT transaction. In the IDENT Level field, the node specifies
the interrupt level it is ready to service. The node must specify
only one IDENT level; that is, only one bit in the IDENT Level field
should be set. This IDENT level must be the highest priority
interrupt level for which the bus master has received an INTR and has
not yet responded with a successful IDENT.

v i t pending at the IDENT level respond by
arbitrating during the IDENT arbitration cycle in the IDENT
transaction. The winner of this arbitration returns 1its interrupt
vector during the next cycle. Note that this "VAXBI interrupt vector"
is different from the VAX ‘"interrupt vector" as described in the
VAX-11 Architecture Reference Manual. In a VAX system, the VAXBI
interrupt vector is used as an offset into the system control block
(sCB), and the location thus obtained contains the VAX interrupt
vector. In this document, "interrupt vector" means "VAXBI interrupt
vector."

The interrupt vector 0 and interrupt vectors that are a multiple of
200 (hex) are reserved to indicate a "null interrupt"; that is, no
action is needed to service the interrupting device.
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If a node has more than one bit set in its destination mask when it
issues an INTR transaction, two or more processors (at different
times) will attempt to service this interrupt. Each interrupted
processor will issue an IDENT transaction. 1If this is the only node
issuing an INTR, the first processor to respond with an IDENT services
the interrupt. The remaining processors issue IDENT transactions, but
there will be no contenders during the interrupt arbitration cycle,
and no interrupt vector will be returned. This is a case of a "null
interrupt," where a servicing processor finds no node waiting to be
serviced. The processor must then either cancel the interrupt (so
that, as far as the software 1is concerned, the interrupt never
happened) or take the interrupt with a vector of zero. The latter
alternative is preferred, as it allows the software to 1log the
occurrence.*

Consider a system where the interrupting node may send its INTR
transaction to more than one processor. The interrupting node issues
an interrupt at level L. Processor A services this interrupt. Now
suppose the interrupting node issues another interrupt at level L. 1In
systems where all interrupts are directed to one processor, an IDENT
may not be issued for the second interrupt until the first interrupt
has been serviced and the processor’s interrupt 1level has dropped
below L. In systems with multiple processors, however, processor B
may attempt to service the second interrupt before processor A has
completed servicing the first interrupt and dropped its interrupt
priority level. 1If it is important to service these interrupts in
sequence, some arrangement has to be made in software, perhaps through
the use of semaphores.

*The KA88, KA820, and KA800 processors all use this alternative.
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INTR (Interrupt)

he INTR command is used to signal interrupts to one or more nodes on
he bus (see Figure 5-6).

(1]

3

During the command/address cycle, the master sends the interrupt level
on BI D<19:16> L, the INTR destination mask on BI D<15:0» L, and the
command on BI I<3:0> L; BI D<31:20> L is a RESERVED field. Parity is
generated by the master and is checked by all nodes. BI BSY L is
asserted for the first and second cycles. BI NO ARB L is deasserted
for the C/A cycle, asserted for the imbedded ARB cycle, and then
deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

During the third cycle all slaves respond with an ACK confirmation.

buring this cycle the BI D, I, and P lines are RESERVED fields.

By transmitting an IDENT command on the bus, an interrupt fielding
node solicits a vector from the node that issued the INTR command.
Multiple nodes may be targeted to receive the IDENT command, but only
one of them 1is permitted to transmit a vector. Nodes that lose an
IDENT arbitration must retransmit an INTR command at the IDENT level.

Note that it is possible to interrupt at more than one priority level
during any given INTR command. It is also permissible for an INTR
command to contain zeros in the INTR Level field of the
command/address cycle. In this case the slave must still respond with
an ACK confirmation.

Nodes determine whether they are selected by the INTR command by
performing an AND operation for each bit of their decoded ID and the
destination c¢code transmitted on BI D <15:0> L during the
command/address cycle. If any bit is a one (that is, the interrupt
fielding node’s decoded ID matches a bit in the destination field),

the node is permitted to respond to this interrupt.

Nodes responding to INTR commands must retain sufficient state
information to permit them to generate subsequent IDENT commands to
solicit vectors for the INTR commands received. The state required is
an interrupt pending bit at each of the four INTR levels.
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Nodes may inhibit interrupts from other nodes in several ways. They
may:

o Respond with NO ACK to INTR commands directed at them.

0 Manipulate the INTR Destination Register of the interrupting
node (see Section 7.5).

o Manipulate the control register(s) for the node in question.

Nodes may defer interrupt service simply by delaying the IDENT
transaction that provides the vector.

Interrupt Priority

A node’s interrupt priority is broken down into two groupings -- level
and sublevel.

Level is the higher order priority structure and consists of four
priorities, 7 through 4. These priorities are used to determine the
level at which a processor is interrupted.

For each level, 16 interrupt sublevels can be indicated to sort out
which interrupting node will respond with an interrupt vector when
polled. During the IDENT ARB cycle of an IDENT command, all potential
slaves drive their sublevel on BI D<31:16> L; the node with the lowest
number bit asserted is designated to return the vector. Sublevel
priority is determined by the node’s ID and remains fixed. A node’s
ID, therefore, affects how quickly that node is serviced.
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IDENT (Identify)

In response to the INTR command, nodes use the IDENT command to
solicit the interrupt vector. The format of the IDENT transaction is
shown in Figure 5-7.

During the command/address cycle, the master sends the command on BI
I<3:0> L and the IDENT level (decoded) on BI D<19:16> L. The IDENT
Level field can contain only one asserted bit. D<31:20> and D<15:0>
are RESERVED fields. Parity is generated by the master and is checked
by all nodes. BI BSY L is asserted until the vector is sent. BI NO
ARB L is deasserted for the C/A cycle but then is asserted, along with
BI BSY L, until BI BSY L is deasserted.

During the second cycle, the imbedded arbitration cycle, nodes can
arbitrate for control of +the bus £for the next transaction. The
present master cannot participate. During the imbedded ARB cycle of
an IDENT transaction, nodes cannot arbitrate for an INTR transaction.
This requirement prevents a pending master with an INTR transaction
from taking part in the IDENT arbitration cycle that follows, possibly
winning, and necessarily aborting to prevent the already serviced INTR
from being reposted.

During the third cycle, the master transmits its decoded ID on BI
D<31:16> L. Parity is generated by the master and is checked by all
potential slaves. Nodes detecting bad parity must not participate in
the IDENT arbitration cycle, and must return a NO ACK response.

The fourth cycle is an IDENT arbitration cycle. Nodes determine if
they must participate in this IDENT arbitration by testing to see if
they meet all the following criteria:

e An interrupt is pending at the node and corresponds to the
level sent during the command/address cycle of the IDENT
command. Note that an INTR command need not have actually
been sent out on the VAXBI bus prior to the IDENT being
received. All that is necessary to determine the level match
is that an interrupt be pending at this node at the level of
the IDENT command received.

e No Command Parity Error is detected by the node.
® No Master Decoded ID Parity Error is detected by the node.

@ A bit match exists between the master’s decoded ID and the
INTR destination mask.
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If all four criteria are satisfied, the slaves arbitrate by asserting
the bit corresponding to their interrupt sublevel priority (that is,
their node ID) on BI D<31:16> L. Parlty is not checked for the IDENT

rbitraticon cycle. The BI D<15:0> L., BI 1<3:0> L, and BI PO L lines
are RESERVED fields during this cycle.

The slave with the highest sublevel priority (lowest 1ID) wins the
IDENT ARB cycle and responds in the next cycle with an ACK, RETRY, or
STALL. Note that in Figure 5-7 the slave sends a STALL. For this
cycle the BI D, I, and P lines are UNDEFINED fields. Along with the
vector (on BI D<13:2> L), the slave sends status on BI I<3:0> L (see
Table 5-6 for the read status codes) and a CNF code. If the transfer
is unsuccessful because of a parity error, the master sends a NO ACK
response two cycles after the attempted transfer by the slave. The
master resends the IDENT command at the same level to reattempt the
vector transfer. A Dbuffer for the vector may be necessary in some
adapters that are unable to resolicit the same vector from a device on
the bus they adapt to. Upon receiving the ACK response, with no
parity error, the master resets the interrupt pending bit at the IDENT
level. BI D<31:14> L and BI D<1:0> L must be zeros at the time the
vector is sent. Parity is generated by the slave and is checked by
the master for the vector.

During the two cycles after the vector has been transmitted, the
master sends ACK confirmations if no parity error has occurred. The
responding slave must wait until the final ACK confirmation before
assuming that the vector has been correctly received. 1If a NO ACK or
illegal confirmation is received, the slave must retransmit the INTR
command and be prepared to retransmit the vector when another IDENT is
issued.

Nodes that met the criteria for IDENT selection, but which 1lost the
IDENT arbitration, must reissue the INTR transaction at the IDENTed
level. This reissue of INTR ensures that the interrupt fielding nodes
do not lose previously posted interrupts at the IDENTed level. It is
possible that additional level or destination information will be
present when the INTR command is repeated.

The reissuing of interrupts 1is not expected to cause significant
performance degradation in the system. It is assumed that in the

typical interrupt service model only a few interrupts are pending at
any time.

If the interrupting condition no longer exists or the interrupt has
been serviced by another node, nodes return the NO ACK response.
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5.4.2 VAXBI Interrupt Vectors
Interrupt vectors issued by VAXBI adapters are of two -types. Each
adapter is allotted 4 interrupt vectors of the first type and 128

interrupt vectors of the second type.

The first type of vector lies between 100 and 1FF (hexadecimal) and
has the form:

13 98765 210

0’s 1| S | NODEID {0j0

MLO-027-85

Node ID is the node ID of the interrupting node (0 to 15), and § is
the interrupt vector number. With the four possible values for §,
each node may use up to four different interrupt vectors. It is
expected that many types of interrupting nodes will record the
interrupting condition in a register in nodespace and then interrupt
using one of the four vectors. The interrupt handler will examine the
nodespace register to discover the interrupting condition. If two or
three of the interrupting conditions require an especially fast
response, a separate vector (out of the four possible vectors) may be
assigned to each of them, so that the interrupt handling routine need
not read the nodespace register to discover the interrupting
condition.

The second type of interrupt vector has the following form:

13 9 8 210

ADAP NO TARGETVEC (0|0

MLO-028-85

The bit pattern in the target vector field specifies one of up to 128
interrupt service routines. The adapter number, a small, nonzero
integer assigned by the operating system software, is stored in a
register in the adapter, to be used in constructing the interrupt
vector. In a given system, each adapter that issues this second type
of interrupt vector has a unique adapter number, and the range of
adapter numbers determines the range of possible interrupt vectors in
a given system. A target vector of all zeros must indicate a null
interrupt, as described in Section 5.4.1.
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On a VAX processor, the first type of interrupt vector, regardless of
which VAXBI node issued the vector, uses the first page of the system
control block. On the other hand, each VAXBI node that wuses the
second type of interrupt vector requires an additional page of the
system control block. The largest adapter number determines the
number of pages in the system control block. Since the system control
block must reside in main memory, there is some motivation to keep it
small. The VAX-11 Architecture Reference Manual explains the system
control block.

All adapters are encouraged to use the first type of interrupt vector.
Bus adapters that map interrupts from a target bus onto the VAXBI bus
typically use the second type of interrupt vector. A device on the
target bus may interrupt a processor on the VAXBI bus and provide an
interrupt vector on the target bus when the processor responds with an
IDENT transaction. The interrupt vector provided on the target bus is
then used for the target vector field of the VAXBI interrupt vector.
The UNIBUS adapter, for example, uses the second type of interrupt.
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5.4.3 1Interprocessor Interrupts
IPINTR (Interprocessor Interrupt)

The IPINTR command 1is wused by processors to interrupt  other
processors. The operation of the command is similar to that of the
INTR command except that the level and the vector are stored in the
receiving node rather than sent. The format of the IPINTR transaction
is shown in Figure 5-8.

During the command/address cycle, the master sends its decoded 1ID on
BI D<31:16> L (rather than level information), the command on BI
I<3:0> L, and the IPINTR destination mask on BI D<15:0> L. Parity is
generated by the master and is checked by all nodes. BI BSY L is
asserted for the first and second cycles. BI NO ARB L. is deasserted
for the C/A cycle, asserted for the imbedded ARB cycle, and then
deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

Receiving nodes determine if they have been selected by checking their
IPINTR Mask Register. Nodes compare the decoded ID received with the
corresponding bit position in the IPINTR Mask Register. All slaves
respond with an ACK on BI CNF<2:0> L in the third cycle. Since there
can be multiple responders, only ACK and NO ACK are valid responses.

During the third cycle, the D, I, and P 1lines are RESERVED fields.
Parity is neither generated nor checked.

With VAX processors, when an interprocessor interrupt arrives at a
processor node, the processor receives a VAX interrupt level 14 (hex)
interrupt, with an interrupt vector at SCB offset 80 (hex).

To identify the processor that sent the interrupt, the interrupted
processor examines the IPINTR Source Register. A set bit in this
register indicates that an interprocessor interrupt has been received
from a processor with the corresponding node ID. The bits are
write-l-to-clear, and they should be cleared after being read.

By the use of the IPINTR Mask Register, a VAXBI node can specify which
nodes are allowed to send it interprocessor interrupts.

It is expected that the normal mode of operation is as follows: (a)
the interrupting processor deposits an item in an agreed-upon queue in
memory, containing the information to be passed to the interrupted
processor; then, (b) upon receiving the interprocessor interrupt, the
interrupted processor looks in this gueue for the information. With
this mode of operation, the interrupted processor then does not need
to access the Force-Bit IPINTR/STOP Destination and Mask Registers.
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5.5 TRANSACTION TO SUPPORT DIAGNOSTICS

STOP

The STOP command is used to selectively force nodes to a state (the
stopped state) in which they will not issue VAXBI transactions but
will retain as much error information as possible. In this state,
nodes can be accessed and diagnosed for error information. Whether a
node can be restarted by software after receiving STOP without going
through a complete power-down/power-up or reset sequence 1is
implementation dependent.

The format of a STOP transaction is the same as that for an INTR
transaction, except that no 1level information is sent (see Figure
5-9). During the command/address cycle, the master sends a
destination mask on BI D<15:0> L and the command on 8I I<3:0> L. The
BI D<31:16> L lines are a RESERVED field. Parity is generated by the
master nd is <checked by 2all nodes. BI BSY L ig agserted for the
first and second cycles. BI NO ARB L is deasserted for the C/A cycle
but then 1is asserted, along with BI BSY L, wuntil BI BSY L is
deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

During the third cycle the slave sends a command confirmation. The
only valid responses are ACK and NO ACK. A node must do one of the
following while proceeding to the stopped state:

® Respond with RETRY confirmations for subsequent
single-responder commands and NO ACKs for subsequent
multi-responder commands that it receives.

e Extend the STOP transaction by holding BI BSY L asserted.

The node should not abort any brief operations (such as a memory
refresh) that might leave the node in an undefined state.

A node must retain as much state as possible to facilitate error

analysis. Node documentation must specify the node registers whose
contents could be changed in response to a STOP command.
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All nodes selected by a STOP command are required to do the following:
® Cease issuing transactions as soon as feasible.

@ Clear any Sent and Force bits set in the User 1Interface and
Error Interrupt Control Registers to clear any posted
interrupts.

@ Set the INIT bit in the VAXBI Control and Status Register.

Since the STOP command may be used for maintenance purposes, it must

have a low-level implementation so that the node reaches the stopped
state as soon and as reliably as possible.
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CHAPTER 6

INITIALIZATION

The VAXBI bus provides three mechanisms for initialization:

® Power-Down/Power-Up -- On power-up, the BI AC LO L and BI DC
LO L lines are sequenced to provide initialization of the
system.

® System Reset -- A power-down/power-up sequence can be emulated

through the wuse of the BI RESET L line, which causes the
sequencing of BI AC LO L and BI DC LO L in the same way that
would occur for a "real" power-down/power-up sequence. In
this way the system can be returned ("reset") to its power-up
state without actually cycling the power supplies. Note that
throughout the system reset sequence the power supply voltages
remain in tolerance, whereas in a "real" power-down/power-up
sequence the power supplies generally go out of tolerance.
(DC power supply output voltages may not drop out of tolerance
during brownout conditions.)

® Node Reset -- A single node in a system can be reset without
resetting the entire system. This mechanism involves the use
of the Node Reset bit in the VAXBI Control and Status
Register Node reset of BIIC-based nodes is discussed in

DC Y - T Lo P TRT - e ST TL2 LA AN A i s u

Application Note 7.

Section 6.1 gives the general requirements of a VAXBI node’s

initialization process. Section 6.2 describes the two system
initialization mechanisms: the power-down/power-up sequence and the
system reset sequence. The section on system reset also gives

requirements for reset modules, which are wused to cause a system
reset, and discusses how "extended system reset" can be used to
down-line 1load software. Section 6.2.3 discusses node reset.
Sections 6.3 through 6.5 provide detailed information on the VAXBI
signals that support the initialization mechanisms: BI AC LO L, BI DC
LO L, and BI RESET L. Section 6.6 describes the timing for the
power-down/power-up and system reset segquences.
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6.1 VAXBI NODE INITIALIZATION REQUIREMENTS

Regardless of the method used to cause a node to initialize, the
initialization process must consist of the following:

@ All node logic must be reset by an asserted BI DC LO L (in
BIIC-based nodes BCI DC LO L 1is used). Whether the
initialization of a node causes the initialization of another
bus attached to this node is implementation dependent.*

® On the assertion of BI DC LO L, the BI BAD L 1line must be
asserted and the Broke bit must be set. These states must
remain until the successful completion of node self-test.

® A complete node self-test must run following the deassertion
of BI DC LO L. The specific requirements for this test are
discussed in Section 1i.1.

@ Following a successful self-test, a node must reset its Broke
bit (in the VAXBI Control and Status Register or Slave-Only
Status Register) and release the BI BAD L line.

® At the conclusion of initialization, all nodespace 1locations
must be in a defined state (as defined in the node
specification). The Device Register must be loaded with the
appropriate device type (See Section 11.1.7).

6.2 INITIALIZATION MECHANISMS

The VAXBI supports two mechanisms to initialize all nodes in a VAXBI
system. These two methods are discussed in Sections 6.2.1 and 6.2.2.
A third mechanism, discussed in Section 6.3, permits selective
initialization of individual nodes.

*The DWBUA asserts UNIBUS INIT during its initialization process.
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6.2.1 Power-Down/Power-Up

In a power outage, first AC power is lost, and then, if it is not
recovered gquickly, DC power falls below acceptable levels. These two

...... Y, table vels. These
events trigger the following:

@ First BI AC LO L is asserted.
@ Then BI DC LO L is asserted.
On power-up, these two lines are deasserted in the reverse order:
@ First BI DC LO L is deasserted.
e Then BI AC LO L is deasserted.

Power is restored after a delay to ensure that the clock is stabilized
and substrate bias voltages are established in integrated circuits.
The deassertion of BI DC LO L. indicates to VAXBI nodes that they
should start their self-test and initialization process; however,
VAXBI-accessible memory should not be accessed until BI AC LO L is
deasserted. Finally, deassertion of BI AC LO L indicates that
software execution can begin, and a warm restart or a cold start (as

described in the VAX-11 Architecture Reference Manual) is attempted.

During a power outage, memory nodes with battery backup continue to be
supplied with battery power, allowing memory contents to be retained.
When power 1is restored, these memory nodes should not be
reinitialized. However, 1if the power outage 1is lengthy, battery
backup power may be exhausted and backup voltages may drop out of
bounds. 1If this happens, the data in memory is no longer reliable.

What is required, therefore, is an indication, at the time that BI DC
LO L 1is deasserted, whether backup power was maintained during the

period that external power was lost. This indication is provided by a
"reset module." (See Section 6.2.2.1 for requirements for the reset
module.) The reset module monitors the battery backup power voltages.
(The reset module also has another function, described below.) If

these voltages drop out of bounds, the reset module asserts the BI
RESET line before the deassertion of BI DC LO L. Memory nodes with
battery backup monitor the BI RESET line at the deassertion of BI DC
LO L and perform self-test and initialization only if the RESET line

is asserted.



Digital Equipment Corporation -- Confidential and Proprietary
INITIALIZATION

6.2.2 System Reset

The reset sequence emulates the power-down/power-up sequence of the BI
AC LO L and BI DC LO L signals. The reset sequence causes all VAXBI
nodes to initialize themselves.

A reset module is used to carry out a reset sequence. The reset
module monitors the BI RESET L line and drives the BI AC LO L and BI
DC LO L lines. Upon the detection of an asserted BI RESET L line, the
reset module begins a reset sequence. Typically, only adapters that
provide a remote reset capability and processors can assert the RESET
line.

If the reset module finds that the RESET line is asserted while BI AC
LO L and BI DC LO L are deasserted, it asserts BI AC LO L and then BI
DC LO L; it then deasserts BI DC LO L. These three transitions are
subject to the timing constraints given in Table 6-1. 1In response,
all VAXBI nodes perform self-test and initialization. When the RESET
line 1s deasserted, the reset module also deasserts BI AC LO L,
completing the emulation of the power-down/power—-up sequence. Note
that if the RESET 1line remains asserted until after BI DC LO L is
deasserted, then all memory nodes will wundergo self-test and
initialization, including memory with battery backup. If memory with
battery backup should retain its data, the RESET 1line must be
deasserted before BI DC LO L is deasserted.

6.2.2.1 Reset Module Requirements - A VAXBI system must have a reset
module if the system is intended to support one of the following:

e VAXBI memory modules that are operated with battery backup
power supplies.

® VAXBI nodes that require the ability to reset the VAXBI
system. Such nodes are referred to as "resetting nodes."”

The following requirements apply to the operation of reset modules in
VAXBI systems with battery backup:

® BI RESET L must be monitored by any VAXBI memory node with
battery backup.

®¢ The RM must monitor the DC outputs of all voltages needed for
battery backup and assert the BI RESET L signal if any of
these backup voltages goes out of bounds.

It is not required that the RM physically sense each voltage.
Since the purpose is to guarantee power outage sequences with
correctly working hardware, an RM can be designed to take
advantage of power sequencing or relative power loading to
reduce the design and product cost.
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@ VAXBI memory modules with battery backup should sample BI
RESET L at the deassertion of BI DC LO L. These memory
modules should test and initialize their RAMs if BI RESET L is

sserted at that time. 1If BI RESET L ig not then asgserted

s voew wil N ek ot A - LA I S V]

these memory modules must not modify the contents of RAM.

The following requirements apply to the operation of reset modules in
VAXBI systems with node reset support:

e¢ BI RESET L must be monitored by the RM.

® Nodes that assert BI RESET L must maintain that assertion
until BI DC LO L is asserted.

@ If BI RESET L is asserted when BI AC LO L is not asserted, the
RM will generate a full sequence of BI AC LO L and BI DC LO L
which simulates a power-down/power-up Ssequence.

® VAXBI nodes that are not asserting BI RESET L may not access
VAXBI memory space addresses between the deassertion of BI DC
LO L and the deassertion of BI AC LO L. This prevents
processors from reading memory, for example, while a resetting
node may be modifying memory.

6.2.2.2 Use of System Reset for Down-line Loading Software - A
variation of the system reset sequence (called "extended system
reset") allows software to be down-line loaded. This 1is possible
because the reset module does not deassert BI AC LO L until the RESET
line is deasserted. (As explained later in this section, however, the
desired effect may or may not be achieved depending on the system that
is being down-line loaded.)

The node that asserts the RESET line is the "resetting node." When the
resetting node asserts the RESET line, the reset module asserts BI AC
LO L and BI DC LO L and then deasserts BI DC LO L. To attempt to
down-line load software, the resetting node holds RESET asserted until
after BI DC LO L is deasserted. When BI DC LO L is deasserted, all
VAXBI nodes {(except perhaps the resetting node) perform self-test and
initialization. When these operations are completed, the resetting
node can attempt to write the software into memory space, including a
restart parameter block.

The reset sequence also causes the BIICs to perform their self-test so
that initialization 1is required, without regard to the state of the
RESET line. Thus, Starting and Ending Address Registers are cleared
to all =zeros and must be set before writing memory. Various control
registers are also set to their initial states.
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After the software has been written, the resetting node deasserts the
RESET 1line. What happens at this point is implementation dependent.
With some systems the processor will attempt a warm restart. The warm
restart finds the restart parameter block that has just been loaded
into memory and begins to execute the down-line-loaded software. With
other systems, however, the processor will attempt to perform a cold
start, in which case the down-line-loaded software will be
overwritten. Therefore, although there 1is provision for down-line
loading software, whether this is effective is implementation
dependent. *

6.2.3 Node Reset

Node reset causes an individual node to be initialized. Writing a one
to the Node Reset (NRST) bit in the VAXBI Control and Status Register
of a particular node causes that node to initialize.** (In BIIC-based
nodes, setting the NRST bit causes BCI DC LO L to be asserted). As
with the other types of initialization mechanisms, the node will be
inaccessible for the duration of its initialization and BI BAD L will
be asserted during this time.***

During VPI (VAXBI primary interface) self-test, any access of a
targeted node’s address space by any other node may fail (the targeted
node’'s VPI will return a NOACK confirmation). This might result in a
machine check at the accessing node and might cause the targeted
node’s self-test to fail.

A target node’s address space must not be written to at any time
during the target’s node self-test (note distinction between node
self-test and VPI self-test) by another node. This is because such a
write access may disturb node self-test and thus cause the targeted
node to fail self-test. Successful completion of node self-test 1is
signaled by the clearing of the BROKE bit in the VAXBICSR or SOSR of
the targeted node.

*When BI AC LO L is deasserted, both the KA820 and KA88 processors
cold start.

**Node reset can be performed only after arbitration is disabled on
the target node. See the description of the VAXBICSR NRST bit.

**%*0n the VAX 8200, the fault LED on the control panel will be lit.
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Locations in a target node’s address space must not be read at any
time during node self-test by another node to avoid disturbing the
targeted node’s self-test. The only exceptions are:

@ The Device Register (DTYPE<K14:8> determines the location of
the BROKE bit)

¢ The VAXBI Control and Status Register (contains the BROKE bit
if DTYPE<14:8> not equal 0)

@ The Slave Only Status Register (contains the BROKE bit if
DTYPE<14:8> equals 0)

At the completion of and as a result of a VPI self-test caused by a
node reset, the NPE bit of the Bus Error Register in the target VPI
might have been set spuriously by the target VPI. It is therefore
advisable for the operating system to clear the NPE bit on the target
VPI after the node reset, but before causing another operation on the
target node. However, NPE must not be cleared until the BROKE bit in
the target node’s VAXBICSR or SOSR has been <cleared by the target
node’s user interface.

Software drivers that share a node* should agree in advance that a
node needs to be reset. 1In this way lock states can be cleaned up,
and the selection limitations can be supported.

To perform a node reset operation on another VAXBI node, a resetting
node** should perform the following steps in sequence:***

1. Disable interrupts on the resetting node (if applicable).

2. Set the STS bit to 1 and Arbitration Control (VAXBICSR<5:4>)
bits on the target node to 11 (binary). All of these bits
should be set by a single longword write.

3. Set STS, NRST (VAXBICSR<11:10>) on the target node to 11
(binary).

4. Reenable interrupts on the resetting node (if applicable).

*For example, a DWBUA.

**Here the term "resetting node" means the node writing to the NRST
bit on the target node. Note that this is a different usage of
"resetting node" than that in sections 6.2.2.2 and 6.3.

**x*This procedure will work for a wuniprocessor or asymmetric
multiprocessor system. Symmetric multiprocessor systems will require
a different synchronisation mechanism from setting processor IPL to
ensure that the described sequence executes as a critical section.

6-7



Digital Equipment Corporation -- Confidential and Proprietary
INITIALIZATION

This procedure works because the disabling of arbitration prevents the
target node from arbitrating for and beginning a transaction right
after the NRST bit is set.

Interrupts are disabled on the resetting node to prevent the targeted
node from interrupting the resetting node immediately after the ARB
bits are set but before the NRST bit is set on the target. This
disabling prevents the resetting node from reading a control/status
register on the targeted node (for example, as part of an interrupt
service routine) when the targeted node may have experienced a Bus
Time Out. A resetting node that attempted such a read might
experience a machine check.

6.3 BI AC LO L

The BI AC LO L signal is asserted when the 1line voltage 1is below
minimum specifications. Following the assertion of BI AC LO L, nodes
are guaranteed Tbips2(min) + Tbips8(min) of valid DC power (see Table
6-1).

Wwhen the BI AC LO L signal 1is asserted, processors and other
intelligent nodes initiate a power-fail routine. Power-fail routines
must be designed to complete execution in Tbips2(min).

During power-up a node must not access VAXBI-accessible memory space
locations until the deassertion of BI AC LO L; however, memory nodes
will clear memory locations following the deassertion of BI DC LO L if
a cold start was indicated. During a system reset sequence it is
permissible for the resetting node to access memory prior to the
deassertion of BI AC LO L. As with a normal power-up, no other node
may access memory prior to the deassertion of BI AC LO L.

With certain power supplies, during certain brownout power conditions,
BI AC LO L may assert and later deassert without an assertion of BI DC
LO L.*

BI AC LO L must remain asserted for Tbips3(min) after the deassertion
of BI DC LO L to allow a node’s internal initialization signals to be
removed before a power restart interrupt is raised.

The BI AC LO L and BI DC LO L signals must remain asserted both when
power has gone away and when DC power is in transition and not in
tolerance.

*In a VAX 8200 system, BI DC LO L 1is always asserted after the
assertion of BI AC LO L.
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The power status lines BI AC LO L and BI DC LO L may be driven
asynchronously. To guarantee rejection of short spurious
deassertions, nodes must synchronize BI AC LO L and BI DC LO L
deagssertions to the bus clock and must not recognize deassertions that
are less than one cycle in length. (See Appendix B for a description
of the transmission line problem that mandates this requirement.) In
addition, nodes must synchronize the assertion of BI AC LO L and must
not recognize assertions 1less than one cycle in length. To reject
assertion glitches, nodes must not recognize assertions of BI DC LO L
of less than 50 nanoseconds.

6.4 BI DC LO L

The BI DC LO L signal warns of the impending loss of DC power and is
used for initialization on power-up. Specifically, a node uses the BI
DC LO L signal to force 1its «circuitry into an initialized state.
VAXBI node designs must not use other reset methods such as "RC time
constant type" reset circuits (since VAXBI nodes must be resettable
without regard to the state of the power supply outputs). Vvalid bC
power and VAXBI clock signals will be provided prior to the
deassertion BI DC LO L.

BI DC LO L must not be asserted until Tbips2(min) after the assertion
of BI AC LO L to allow the power-fail routine to save processor state
in memory and to halt. The result of any VAXBI transaction in
progress when BI DC LO L is asserted is indeterminate.

BI DC LO L must be asserted for Tbips8(min) before the 1loss of DC
power so that nodes such as disk controllers can stop certain
activities before power is removed.

Tbips9(min) of within-tolerance DC power must be provided prior to the
deassertion of BI DC LO L. This allows time for power-up
stabilization of components (such as the establishment of proper
substrate biases on ICs). The circuitry generating BI TIME +/- and BI
PHASE +/- must ensure that these clock signals are valid at least

Tbipsl0(min) prior to the deassertion of BI DC LO L.

There can be no more than Tbips9(max) from valid DC power restoration
to the deassertion of BI DC LO L. This helps guarantee a maximum
power-fail restart time for all systems.

The BI DC LO L signal must be asserted for Tbips4(min). BI AC LO L
will always be in the asserted state when BI DC LO L is asserted, but
the opposite is not true. All bus signals except BI AC LO L, BI TIME
+/-, and BI PHASE +/- remain deasserted during the assertion of BI DC
LO L.

From the deassertion of BI DC LO L, the BIIC asserts BI NO ARB L for
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up to 5000 cycles while it performs BIIC self-test. Assertion of NO
ARB suppresses bus traffic during BIIC self-test. The self-test must
be implemented so that no bus signals (including BI NO ARB L) are
asserted if the BIIC fails self-test.

The BI AC LO L and BI DC LO L signals must remain asserted both when
power has gone away and when DC power is in transition and not in
tolerance.

The power status lines BI AC LOL and BI DC LO L may be driven
asynchronously. To guarantee rejection of short spurious
deassertions, nodes must synchronize BI AC LO L and BI DC LO L
deassertions to the bus clock and must not recognize deassertions that
are less than one cycle in length. (See Appendix B for a description
of the transmission line problem that mandates this requirement.) In
addition, nodes must synchronize the assertion of BI AC LO L and must
not recognize assertions of less than one cycle in length. To reject
assertion glitches, nodes must not recognize assertions of BI DC LO L
of less than 50 nanoseconds.
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6.5 BI RESET L

The assertion of BI RESET L initiates a system reset. The signal is
received by a reset module (RM), a device that is used to generate a
system reset in response to the assertion of BI RESET L.

Regardless of whether there is an RM in the VAXBI system, the proper
power-down/power-up sequence of BI AC LO L and BI DC LO L must be
generated as described in Figure 6-1. This functionality can be
included within the RM design. In systems without an RM, the power
supply (or supplies) is expected to supply the proper waveforms.

Thipst
BIACLOL \ . /
”
Thips2 Toips3
e Tbips4
BIOCLOL \J\ o, //ﬁ
o ThipsS Toipsé
Thios?
81 RESET L (WARM START) J,;-_A
e
b; /_-—-—
Bl RESET L (COLD START) ’ j\ A
| POWER DOWN -] POWER UP ..]1
DC POWER XX-XX ‘
Thios8 VTbrosQ
Tbiosic‘
B se < scsocoooc ([ ITIIMIATIAIN:
1-38

MLO-33

Figure 6-1: System Reset Sequence
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6.6 INITIALIZATION TIMING SEQUENCES
6.6.1 Power-Down/Power-Up Sequence

Figure 6-1 shows a power-down/power-up sequence and the definitions of
the associated timing parameters. In this example, after power-down,
power goes away for some length of time before coming back. BI RESET
L in VAXBI systems with battery backed-up memory must reflect the
state of the battery backup voltage during the power-up sequence.
When DC power is available, the RM asserts BI RESET L if it had sensed
that 5VBB (volts battery backed up) had dropped below tolerance. It
continues to assert the line until the specified time after BI DC LO L
is deasserted. This same BI RESET L assertion would occur in systems
without battery backup. For systems in which 5VBB was maintained, the
BI RESET L line would remain deasserted during this time.

6.6.2 System Reset Sequence

Figure 6-2 demonstrates the system reset sequence timing required of a
VAXBI system when the resetting node does not extend the assertion of
BI AC LO L. In this example, the node’s assertion of BI RESET L
initiates the RM's emulation of a power-down/power-up sequence. In
the system reset case, the assertion window for the node’s BI RESET L
signal assertion ends soon after the BI DC LO L assertion. The RM
continues to assert BI RESET L past the deassertion of BI DC LO L.

In Figure 6-3 the node continues to assert BI RESET L past the time
that the RM stops its assertion of the signal. As long as BI RESET L
is asserted by the node, the RM will continue to assert BI AC LO L.
The sequence completes when the node deasserts BI RESET L and the RM
correspondingly deasserts BI AC LO L.
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B RESET L \ L
asseneq by: N\ A
Thipsi1
|
Node d=
Thips12 ’.I
AM -t .
Toios13 Thips? | Thips6
i
BIAC LOL ‘\\ /'
Thins2 Tbios3
Toips4
8IDCLOL \\ Af

~

Figure 6-2: System Reset Timing Diagram

BIRESETL
asserted by: \ f,(./
Node |at= e
Toips12
RM t .-I
Tbips13 Toips? { Tbipslﬂ
i |
BIACLOL N e
Tbips2
Thips4
£%
BIDCLOL V /
N_ /A

Figure 6-3: "Extended" System Reset Timing Diagram
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Table 6-1:

INITIALIZATION

RESET L

Timing Specifications for BI AC LO L,

BI DC LO L, and BI

Tbips3

Tbips4

Tbips5

Tbips6

Tbips7

Tbips8

Tbips9

Tbipsl0

Tbipsll

Thipsl2

Tbipsl3

Tbipsl4

Tr, Tf

BI AC LO L assertion width

BI DC LO L assertion delay

from BI

AC LO L assertion

BI AC LO L deassertion delay

from BI

DC LO L deassertion

BI DC LO L assertion width

RM’'s BI

RESET L setup time to

BI DC LO L deassertion

RM's BI
RM's BI

RM’'s BI
RM’'s BI

RESET L setup time to
AC LO L deassertion

RESET L hold time from
DC LO L deassertion

Duration of valid DC power
following BI DC LO L assertion

BI DC LO L deassertion from
valid DC power

vValid clock signals to
BI DC LO L deassertion

Node’s BI RESET L deassertion delay

from RM’s BI DC LO L assertion

RM’'s BI
RM’'s BI

RM’s BI

RM’s BI AC LO L deassertion delay
from node’'s BI RESET L deassertion

BI RESET L rise time,

RESET L assertion delay to

AC LO L assertion

AC LO L assertion delay
from node’s BI RESET L assertion

(10% to 90%)

fall time

.105

100

100

70

50

30

150

150

10

100

150

us -

ms 1

ms 2

ms 2

us -

us -

ms -

ms -

ms -

ms -

us 4



With certain power supplies, during c¢
conditions, BI AC LO L may assert and
an assertion of BI DC LO L.

in brownout power
r deassert without

Maximum specification does not apply for a "real" power
sequence case.

This specification means that the RM must assert BI RESET L
upon the detection of a BI RESET L assertion by a node, at
least by the time it asserts BI AC LO L.

The maximum time of 1 microsecond corresponds to a maximum
capacitance 1load of 3000 pF. With present VAXBI card cages,
terminators, and extension cables, the signal loading
exclusive of BI RESET L cables is approximately 500 pF.
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CHAPTER 7

VAXBI REGISTERS

Each VAXBI node is required to implement a minimum set of registers
contained 1in specific 1locations within the node’s nodespace. Table
7-1 indicates which registers are required by node class. For
example, a node of the processor class (as defined in Chapter 8) is
required to implement registers indicated by AN (meaning all nodes
must implement this register) AND AP (meaning processor nodes must
also implement this additional register).

Unless otherwise noted, the VAXBI registers have the following
characteristics:

@ READ, RCI, and IRCI commands are all treated as READ commands.
There is no lock and should be no cacheing.

® WRITE and WCI commands are treated the same.

® WMCI and UWMCI are treated the same. Mask functionality is
implemented.

e No STALL or RETRY responses are permitted.
® Only

All registers except the Slave-Only Status Register (SOSR) and the
Receive Console Data Register (RXCD) are located in the BIIC. Unless
otherwise noted, register addresses are reserved for the use specified
even if a node does not implement the register.

Transactions to BIIC registers are limited to a maximum 1length of
longword. The BIIC interprets the RESERVED data length code H H as a
word data 1length code. As such, the results of write-type
transactions to BIIC CSR space depend on C/A D<1>» if the L L (BCI
polarity) data length code is received.
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Table 7-1: VAXBI Registers

Node
Name Abbrev. Address Requirements

Device Register DTYPE bb + 0* AN**
VAXBI Control and Status Register VAXBICSR bb + 4 AN
Bus Error Register BER bb + 8 AN
Error Interrupt Control Register EINTRCSR bb + C AN
Interrupt Destination Register INTRDES bb + 10 AN
IPINTR Mask Register IPINTRMSK bb + 14 AP
Force-Bit IPINTR/STOP

Destination Register FIPSDES bb + 18 AP
IPINTR Source Register IPINTRSRC bb + 1C AP
Starting Address Register SADR bb + 20 AM
Ending Address Register . EADR bb + 24 AM
BCI Control and Status Register BCICSR bb + 28 None
Write Status Register WSTAT bb + 2C None
Force-Bit IPINTR/STOP Command

Register FIPSCMD bb + 30 None
User Interface Interrupt

Control Register UINTRCSR bb + 40 None
General Purpose Register 0 GPRO bb + FO None
General Purpose Register 1 GPR1 bb + F4 None
General Purpose Register 2 GPR2 bb + F8 None
General Purpose Register 3 GPR3 bb + FC None
Slave-Only Status

Register SOSR bb + 100 SO
Receive Console Data Register RXCD bb + 200 None

*"bb" refers to the base address of a node (the address of the first
location of the nodespace).

**Key to Node Requirements column:

AN Register must be implemented by all nodes.

AP Register must be implemented by all processor-class nodes.
AM Register must be implemented by all memory-class nodes.

SO Register must be implemented by all slave-only nodes.

None Register not required for any node class.
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The register descriptions use the codes listed below to describe the
type of bits in the VAXBI register
DCLCC Cleared by the BIIC at the successful completion of BIIC
self-test.
DCLOL Loaded by the BIIC on the last cycle in which BCI DC LO L is
asserted. If the BCI signal lines are not driven during this

cycle, these bits are set.
DCLOS Set by the BIIC at the successful completion of BIIC

self-test.

DMW BIIC diagnostic mode writable; reserved for use by DIGITAL.

RO Read-only bit. Write-type transactions do not change the
value of this bit.

R/W Normal read/write bit.

SC Special case; operation defined in detailed description.

STOPC Cleared by the BIIC on receipt of a STOP command to the node.

STOPS Set by the BIIC on receipt of a STOP command to the node.

WlcC Write-l-to-clear bit. Write-type transactions cannot set this
bit.

Unless otherwise noted, "set" and "clear" refer to high and 1low
states, respectively.
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7.1 DEVICE REGISTER

31 1615 0
bb+0 DEVICE REVISION DEVICE TYPE

The Device Register contains information to identify the node. Both
fields are loaded from the BCI D<31:0> H lines during the last cycle
in which BCI DC LO L is asserted. Internal pullups on the BCI D<31:0>
H lines will 1load this register with all ones if the BCI data lines
are not driven while BCI DC LO L is asserted. Designers should verify
that the output current characteristics of these pullup devices are
sufficient for their needs (see Section 20.2 for DC characteristics).

Section 11.1.7 discusses the use of this register.

Bits: 31:16 Name: Device Revision (DREV)
Type: R/W, DMW, DCLOL

Identifies the revision level of the device. The use of the Device
Revision field is implementation dependent.

Bits: 15:0 Name: Device Type (DTYPE)
Type: R/W, DMW, DCLOL

Identifies the type of node. The device type must be initialized as
specified in Section 11.1.7.
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31 24 23 161514131211 10

3
bb+4 0

VAXBI INTERFACE REVISION |
VAXBI INTERFACE TYPE
HARD ERROR SUMMIARY
SOFT ERROR SUMMARY
INITIALIZE

BROKE

SELF-TEST STATUS

NODE RESET

UNLOCK WRITE PENDING
HARD ERROR INTR ENABLE
SOFT ERROR INTR ENABLE
ARBITRATION CONTROL
NODE 1D

Bits: 31:24 Name: VAXBI Interface Revision (IREV)
Type: RO

Indicates the revision of the device that provides the primary
interface to the VAXBI bus. The contents of the BIIC’s VAXBI
Interface Revision field will be incremented for each major revision
of the mask set (that is, each "pass").

Bits: 23:16 Name: VAXBI Interface Type (ITYPE)
Type: RO

Indicates the type of device that provides the primary interface to
the VAXBI. The BIIC’'s VAXBI Interface field will always contain 0000
0001.

Bit: 15 Name: Hard Error Summary (HES)
T : R

a
o

When set, indicates that one or more of the hard error bits in the Bus
Error Register is set.

Bit: 14 Name: Soft Error Summary (SES)
Type: RO

When set, indicates that one or more of the soft error bits in the Bus
Error Register is set.

Bit: 13 Name: Initialize (INIT)
Type: WiC, DCLOS, STOPS

Usage of this bit is implementation dependent.
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Bit: 12 Name: Broke
Type: W1C, DCLOS

When set, indicates that the node has not yet passed its self-test.
The wuser interface must clear this bit when the node has passed its
self-test.

Slave-only nodes use bit <12> in the Slave-Only Status Register as the
Broke Dbit. For these nodes, bit <12> in the VAXBICSR can remain set
even after the node has passed its self-test.

Bit: 11 Name: Self-Test Status (STS)
Type: R/W, DCLOS

When set, indicates that the BIIC has passed its self-test. Since
this bit directly enables the BIIC’s VAXBI drivers, a chip that fails
self-test will be unable to drive the VAXBI bus. If a node has a
reset STS Dbit, then a write that sets this bit will receive a NO ACK
response. Because the node’s VAXBI driver is disabled, the write must
be either a loopback or a VAXBI internode transaction.

Bit: 10 Name: Node Reset (NRST)
Type: SC

Writing a one to this location initiates a complete node self-test.
When this bit is written as a one, the Self-Test Status (STS) bit must
also be written as a one to ensure proper operation of the write-type
transaction. Reads to this bit location will return a zero. During
the self-test sequence the STS bit will automatically be reset by the
BIIC to allow proper recording of the new self-test results at the end
of self-test. Unlike self-test during power-up operation, the BIIC
does not assert the BI NO ARB L line.

Before writing to NRST, the resetting node must disable arbitration on
the target node by setting both VAXBICSR ARB bits on the target node.

The BIIC asserts the BCI DC LO L line for Tnrw (see BIIC AC Timing
Specifications, Section 20.3) following the setting of the NRST bit.
When the BCI DC LO L 1line 1is deasserted, the BIIC begins its
self-test. The node reset operation simulates a power-down/power-up
sequence at the node (except that BI AC LO L is not asserted and power
remains valid at all times). The capability of resetting individual
VAXBI nodes complements the full "system reset" functionality provided
by sequencing the BI AC LO L and BI DC LO L lines. (For more
information on use of this bit, see Section 6.2.3, Node Reset, and
Section 11.1, Self-Test Operation.)

The Null Bus Parity Error bit in the Bus Error Register may set
spuriously at the conclusion of a BIIC self-test triggered by a node
reset.
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Bit: 9 Name: RESERVED and zeros
Type: RO
Bit: 8 Nam Unlock Write Pending (UWP)

Name:
Type: W1C, DCLOC, SC

When set, indicates that an IRCI transaction has been completed
successfully by the master port interface at this node, and this node
has not yet issued a subsequent UWMCI command. The bit is cleared by
a UWMCI transaction that is completed successfully by the master port
interface. If a UWMCI transaction is attempted by the master port
interface when the UWP bit is not set, the ISE bit in the Bus Error
Register will be set. (The BIIC completes the UWMCI transaction in
the normal manner.)

Bit: 7 Name: Hard Error INTR Enable (HEIE)
Type: R/W, DCLOC, STOPC

When set, enables an error interrupt to be generated by the node when
the Hard Error Summary (HES) bit is set.

Bit: 6 Name: Soft Error INTR Enable (SEIE)
Type: R/W, DCLOC, STOPC

When set, enables an error interrupt to be generated by the node when
the Soft Error Summary (SES) bit is set.

Bits: 5:4 Name: Arbitration Control (ARB)
Type: R/W, DCLOC

Indicates the mode of arbitration to be used by the node (see Table
7-2).

Table 7-2: Arbitration Codes

Bit

5 4 Meaning

0 0 Dual round robin arbitration

0 1 Fixed-high priority (RESERVED)
1 0 Fixed-low priority (RESERVED)
1 1 Disable arbitration (RESERVED)

The arbitration following the writing of bits <5:4> is performed based
on the old bit setting. The arbitration mode is not updated until the
end of the next imbedded ARB cycle. Subseguent arbitrations will
reflect the new setting.
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The "disable arbitration" mode can be used to prevent a node from
starting a VAXBI transaction. When bits <5:4> are both set, the BIIC
can assert the BI NO ARB L line, but it cannot assert its node ID, so
it will not win an arbitration.

Bits: 3:0 Name: Node ID
Type: RO, DMW, DCLOL

Indicates the node’s ID. This information is loaded from the BCI
I<3:0> H lines during the last cycle in which BCI DC LO L is asserted.
The user interface must drive the node ID on the BCI 1I<3:0> H lines
while BCI DC LO L is asserted.
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7.3 BUS ERROR REGISTER

3130292827262524232221201918171615 4 3210

bb+8{0 0's

NO ACK TO MULTI-RESPONDER COMMAND RECEIVED |
MASTER TRANSMIT CHECK ERROR
CONTROL TRANSMIT ERROR
MASTER PARITY ERROR
INTERLOCK SEQUENCE ERROR
TRANSMITTER DURING FAULT
IDENT VECTOR ERROR

COMMAND PARITY ERROR

SLAVE PARITY ERROR

READ DATA SUBSTITUTE

RETRY TIMEQUT

STALL TIMEQUT

BUS TIMEQUT

NONEXISTENT ADDRESS

ILLEGAL CONFIRMATION ERROR

USER PARITY ENABLE
1D PARITY ERROR

CORRECTED READ DATA
NULL BUS PARITY ERROR

HARD ERROR BITS SOFT ERROR BITS
<30:16> <2:0>

MLO-036-86-R

Unless otherwise noted, all bits in the Bus Error Register can be set
during VAXBI and loopback transactions. Bits <30:16> are hard error
bits, and bits <2:0> are soft error bits. Bit <3>, the User Parity
Enable (UPEN) bit, is not an error bit but indicates the BIIC parity

mode. (All logic required to set Bus Error Register bits is contained
in the BIIC.)

Bits: 31 Name: RESERVED and zero
Type: RO
Bit: 30 Name: NO ACK to Multi-Responder Command Received (NMR)

Type: W1C, DCLOC

m

ter re s a NO ACK command response for a

t the maste ceive INVAL,
OP, INTR, IPINTR, BDCST, or RESERVED command.

0 n
=K
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Bit: 29 Name: Master Transmit Check Error (MTCE)
Type: W1C, DCLOC

Set if the data that was intended to be transmitted and that received
differ. During cycles of a transaction in which the master is the
only source of data on the VAXBI D, I, and P lines, the BIIC verifies
that the data the master intends to transmit matches the data that the
master receives from the VAXBI bus. If the two do not match, this bit
is set. This check is not performed for the master’s assertion of its
encoded ID on the I lines during imbedded ARB cycles.

Bit: 28 Name: Control Transmit Error (CTE)
Type: W1C, DCLOC

Set if a node detects a deasserted state on BI NO ARB L, BI BSY L, or
BI CNF<2:0> L in a cycle 1in which it is attempting to assert the
signal.

The BIIC does not check for the assertion of BI NO ARB L during burst
mode transactions.

Bit: 27 Name: Master Parity Error (MPE)
Type: W1C, DCLOC

Set if the master detects a parity error on the bus during a read-type
or vector ACK data cycle.

Bit: 26 Name: Interlock Sequence Error (ISE)
Type: W1C, DCLOC

Set if the node successfully completes a UWMCI transaction when no
corresponding IRCI transaction had been issued previously. This
sequence error is evident because the Unlock Write Pending (UWP) bit
in the VAXBI Control and Status Register was not set.

Bit: 25 Name: Transmitter During Fault (TDF)
Type: W1C, DCLOC

Set if either the master or slave detected a parity error during a
cycle in which the master or slave was responsible for transmitting
proper parity on the VAXBI bus.
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These cycles include the following types:
e Command/address cycles (set by the master)
e Read-type ACK data cycles (set by the slave)
e Write-type data cycles (set by the master)
e BDCST data cycles (set by the master)
® Vector ACK data cycles (set by the slave)

® Imbedded ARB cycles —-- Encoded Master ID Parity Error (set by
the master)

@ Master decoded ID cycle of IDENT (set by the master)

This bit is not set for parity -errors that occur during loopback
transactions.

Bit: 24 Name: IDENT Vector Error (IVE)
Type: W1C, DCLOC

Set if an ACK response is not received from the master. A set Dbit
indicates that the interrupt vector was not correctly received.

Bit: 23 Name: Command Parity Error (CPE)
Type: W1C, DCLOC

Set if a parity error is detected in a command/address cycle. The
transaction can be either a VAXBI or a loopback transaction.

Bit: 22 Name: Slave Parity Error (SPE)
Type: W1C, DCLOC

Set if a parity error is detected by the slave during a write-type ACK
or write-type STALL data cycle or BDCST ACK data cycle.

Bit: 21 Name: Read Data Substitute (RDS)
Type: W1C, DCLOC

Set if a Read Data Substitute or RESERVED status code 1is received
during a read-type or IDENT (for vector status) transaction. For this
bit to be set, the BIIC logic also requires the receipt of good parity
for the data cycle that contains the RDS or RESERVED code. This bit
is set even if the transaction is aborted some time after the receipt
of the RDS or RESERVED code. (See Section 5.3.4 for a description of
the read status codes.)
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Bit: 20 Name: RETRY Timeout (RTO)
Type: W1C, DCLOC

Set if the master receives 4096 consecutive RETRY responses from the
slave for the same master port transaction.

Bit: 19 Name: STALL Timeout (STO)
Type: W1C, DCLOC

Set if the slave port asserts the STALL code on the BCI RS<1:0> L
lines for 128 consecutive cycles.

Bit: 18 Name: Bus Timeout (BTO)
Type: W1C, DCLOC

Set if the node is unable to start at least one transaction (out of
possibly several that are pending) before 4096 cycles have elapsed.

Bit: 17 Name: Nonexistent Address (NEX)
Type: W1C, DCLOC

Set when the node receives a NO ACK response for a read- or write-type
command. This bit is set only if this node’s parity check and master
transmit check of the command/address data were successful (that is,
CPE and MTCE were not set for this C/A cycle). This bit is not set
for NO ACK responses to other commands.

Bit: 16 Name: Illegal Confirmation Errocr (ICE)
Type: W1C, DCLOC

Set if a RESERVED or illegal confirmation code 1is received by this
node. This bit can be set by either the master or slave node. Note
that a NO ACK command confirmation is not an illegal response.

Bits: 15:4 Name: RESERVED and zeros
Type: RO
Bit: 3 Name: User Parity Enable (UPEN)

Type: RO, DCLOL

Indicates the BIIC parity mode. A one indicates that the wuser
interface 1is to generate parity; a zero indicates that the BIIC is to
generate parity. These codes are the reverse of those on the BCI PO
line during BI DC LO L which indicate who generates parity. On
power-up a high (default) on BCI PO confiqures the BIIC for
BIIC-generated parity, whereas a low configures the chip for user
interface-generated parity.

When UPEN is set, the user interface is required to provide parity on

the BCI PO L line whenever BCI SDE L or BCI MDE L is asserted (that
is, whenever data is solicited from the user interface).
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Bit: 2 Name: ID Parity Error (IPE)

Type: W1C, DCLOC
Set if a parity error is detected on the BI I lines when the master’ s
encoded 1ID is asserted during imbedded ARB cycles. All nodes perfor

this parity check.
This bit is not set during loopback transactions.

Bit: 1 Name: Corrected Read Data (CRD)
Type: W1C, DCLOC

Set if the master receives a Corrected Read Data status code. For
this bit to be set, the BIIC logic also requires the receipt of good
parity for the data cycle that contains the CRD code. This bit is set
even 1if the transaction aborts after the CRD status code has been
received. (See Section 5.3.4 for a description of the read status
codes.)

Bit: 0 Name: Null Bus Parity Error (
Type: W1C, SC

=z
")
m

Set if ODD parity is detected on the bus during the second cycle of a
two-cycle sequence during which BI NO ARB L and BI BSY L were not
asserted. This bit is cleared on power-up; however the state of NPE
that results from undergoing a node reset is UNPREDICTABLE.
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7.4 ERROR INTERRUPT CONTROL REGISTER

31 25242322212019 16151413 210
bb+C 0's 0 0 O 00

INTR ABORT
INTR COMPLETE |
INTR SENT

INTR FORCE
LEVEL <7:4>
VECTOR

MLO-037-85

The Error Interrupt Control Register controls the operation of
interrupts initiated by a BIIC-detected bus error (which sets a bit in
the Bus Error Register) or by the setting of a force bit in this
register. In the descriptions that follow, an error interrupt request
can be initiated either by the setting of a force bit or by the
setting of a Bus Error Register bit (assuming the appropriate error
interrupt enables are set in the VAXBI Control and Status Register).

Bits: 31:25 Name: RESERVED and zeros
Type: RO
Bit: 24 Name: INTR Abort (INTRAB)

Type: W1C, DCLOC, SC

Set if an INTR command sent under the control of this register 1is
aborted (that is, a NO ACK or illegal confirmation code is received).
INTRAB is a status bit set by the BIIC and can be reset only by the
user interface. The bit has no effect on the ability of the BIIC to
send or respond to further INTR or IDENT transactions.

Bit: 23 Name: INTR Complete (INTRC)
Type: W1C, DCLOC, SC

Set when the vector for an error interrupt has been successfully
transmitted or if an INTR command sent under the control of this
register has aborted. Removal of the error interrupt request resets
this bit. No interrupts are generated by this register when the INTRC
bit is set. Further, no IDENTS will be responded to by this register
when the INTRC bit is set.

Bit: 22 Name: RESERVED and zero
Type: RO
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Bit: 21 Name: INTR Sent
Type: W1C, DCLOC, STOPC, SC
Set when an INTR command has been sent. This bit is cleared during an

IDENT transaction following the detection of a level and master ID
match. Clearing the bit allows the interrupt to be resent if the node
loses the IDENT arbitration or if the node wins but the vector
transmission fails. Removal of the error interrupt request resets the
INTR Sent bit.

Bit: 20 Name: INTR Force
Type: R/W, DCLOC, STOPC

When set, posts an error interrupt request in the same way as a bit
set in the Bus Error Register, except that the request is not
qualified by the HEIE and SEIE bits.

Bit: 19:16 Name: Level <7:4>
Type: R/W, DCLOC

Indicates the level(s) at which INTR commands wunder the control of
this register are transmitted.

Also, the Level field is used by the node to determine whether it will
respond to an IDENT command. If any level bits of the received IDENT
command match the bits set in the Level field of this register, the
node will participate in the IDENT arbitration, provided there is also
a match in the INTR Destination Register.

A level bit must be set for the BIIC to transmit an error interrupt.

Bits: 15:14 Name: RESERVED and zeros
Type: RO

Bits: 13:2 Name: Vector
Type: R/W, DCLOC

Bits: 1:0 Name: RE

E
Type: RO
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7.5 INTR DESTINATION REGISTER

3 1615 Q
bb+10 0's INTR DESTINATION
MLO-G38-88
Bits: 31:16 Name: RESERVED and zeros
Type: RO
Bits: 15:0 Name: INTR Destination (INTRDES)

Type: R/W, DCLOC

Indicates which nodes are to be selected by INTR commands. The
destination 1is sent out during the INTR command and is monitored by
all nodes to determine whether to respond.

During an IDENT command, a node compares the transmitted master’s
decoded ID to the nodes in the INTR Destination field. 1If there is no
match, this node will not respond to the IDENT. If there is a match,
that is, if the bit corresponding to the master’s decoded ID is set in
the INTR Destination Register, then the node will respond to the
IDENT, provided that it has an unserviced INTR request that matches
the level transmitted in the IDENT command.
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7.6 IPINTR MASK REGISTER
EL 1615 9
bb+14 IPINTR MASK Q's
MLO-C39-85
Bits: 31:16 Name: IPINTR Mask

Type: R/W, DCLOC

Indicates which nodes are permitted to send IPINTRs to this node. If
a bit in the IPINTR Mask field is a one, IPINTRs directed at this node
from the corresponding node will cause selection (assuming the
IPINTREN bit in the BCI Control and Status Register is set). 1If the
bit is a zero, IPINTRs from that node will not cause selection.

Bits: 15:0 Name: RESERVED and zeros
Type: RO
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7.7 FORCE-BIT IPINTR/STOP DESTINATION REGISTER

31 1615 Q
o's EQRCE-3IT IPINTR/STOP DESTINATION
bb+18
MLO-040-85
Bits: 31:16 Name: RESERVED and zeros
Type: RO
Bits: 15:0 Name: Force-Bit IPINTR/STOP Destination

Type: R/W, DCLOC
Indicates which nodes are to be targeted by force-bit IPINTR or STOP

commands sent by this node. Master port IPINTR transactions use
command/address data for this field supplied by the user interface.
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7.8 IPINTR SOURCE REGISTER
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31 i8
BB+1C IPINTR SOURCE 0's

MLO-041-85

Bits: 31:16 Name: IPINTR Source
Type: W1C, DCLOC, SC

Used by the BIIC to store the decoded ID of a node that sends an
IPINTR command to the node. Each bit corresponds to one node on the
VAXBI bus. The bit corresponding to the IPINTR master’s ID is set
when an IPINTR command whose destination matches the ID of this node
and whose ID matches a bit in the IPINTR Mask Register is received.
The bit in the IPINTR Source Register is set only if the IPINTR
command is received with good parity. It is not required that the
IPINTREN bit be set in the BCI Control and Status Register for the

=~

appropriate IPINTR Source Register bit to be set.

Bits: 15:0 Name: RESERVED and zeros
Type: RO
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7.9 STARTING ADDRESS REGISTER

313029 1817 0
bb+20 [0 O STARTING ADDRESS 0

The Starting and Ending Address Registers define storage blocks in
either memory or I/O space.

The Starting and Ending Address Registers must not be configured to
include nodespace or multicast space. Software should set up the
Starting Address Register before the Ending Address Register to avoid
selection problems that may be caused by loading the Ending Address
Register with a nonzero value while the Starting Address Register
remains cleared.

If the Starting Address Register is set to a value greater than or
equal to the contents of the Ending Address Register, no addresses
will be recognized.

Bits: 31:30 Name: RESERVED and zeros
Type: RO
Bits: 29:18 Name: Starting Address

Type: R/W, DCLOC
Determines the address of the first location of a 256-Kbyte block of
addresses to be recognized by the BIIC for selection of the slave
port.

Bits: 17:0 Name: RESERVED and zeros
Type: RO
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7.10 ENDING ADDRESS REGISTER
313029 7 1817 0
bb+24|0 O ENDING ADDRESS 0's

The Starting and Ending Address Registers define storage blocks 1in
either memory or I/O space.

The Starting and Ending Address Registers must not be configured to
include nodespace or multicast space. Software should set up the
Starting Address Register before the Ending Address Register to avoid
selection problems that may be caused by loading the Ending Address
Register with a nonzero value while the Starting Address Register
remains cleared.

If the Starting Address Register is set to a wvalue greater than or
equal to the contents of the Ending Address Register, nc addresses
will be recognized.

Bits: 31:30 Name: RESERVED and zeros
Type: RO
Bits: 29:18 Name: Ending Address

Type: R/W, DCLOC

Indicates the address that is one greater than the highest address
recognized by the BIIC for selection of the slave port. The address
must be the first location of a 256-Kbyte block of addresses. For
example, 1if the Starting Address Register contains 1C44 0000 and the
Ending Address Register contains 1D68 0000, then the BIIC will
recognize addresses 1C44 0000 through 1D67 FFFF for selection of the
slave port. The register definition prevents VAXBI accesses to the
top 256 Kbytes of I/0 space. {(This block is also in RESERVED space.)

COP 450 AJY + /0 space., (1N11e DIOCK 18 also
Bits: 17:0 Name: RESERVED and zeros
Type: RO
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7.11 BCI CONTROL AND STATUS REGISTER

31 1817161514131211109 8 7 6 5 4 3 2 0
bb+28 0's 0's

BURST ENABLE
IPINTR/STOP FORCE
MULTICAST SPACE ENABLE
BDCST ENABLE

STOP ENABLE

RESERVED ENABLE

IDENT ENABLE

INVAL ENABLE

WRITE INVALIDATE ENABLE

USER INTERFACE CSR SPACE ENABLE
B11C CSR SPACE ENABLE

INTR ENABLE

IPINTR ENABLE

PIPELINE NXT ENABLE

RTO EV ENABLE

MLO-G44-85

This register description makes reference to the BCI SEL L and BCI
SC<2:0> L lines, which are described in Sections 15.5.4 and 15.5.5.

The following categories describe the effects of the enable bits in
the BCI Control and Status Register on BIIC operation. The category
for each bit is given after the other bit characteristics.

o Disables selection. When a bit of this type 1is reset, the
BIIC both suppresses the appropriate SEL/SC assertion and does
not respond in any way to transactions corresponding to that
enable bit. For example, if the INTREN bit is reset, the node
will not be selected for any INTR transactions received from
the VAXBI bus. Most of the enable bits are in this class.

o Special case. Some bits do not simply disable participation.
Details on how the bit operates are in the bit description.

o Not applicable. These bits have no effect on slave selection.

Bits: 31:18 Name: RESERVED and zeros
Type: RO
Bit: 17 Name: Burst Enable (BURSTEN)

Type: R/W, DCLOC - Not applicable

When set, the BIIC asserts BI NO ARB L after the next successful
arbitration by this node until the BURSTEN bit is reset or BCI MAB L
is asserted. The assertion of BCI MAB L does not reset the BURSTEN
bit. It merely clears the burst mode state in the BIIC, which is
holding BI NO ARB L. Unless a subsequent transaction clears this bit,

7-22



oration -- Confidential and Proprietary
VAXBRI REGISTERS

then the next successful arbitration by this node will cause the BIIC
to once again hold BI NO ARB L continuously.

lon

Burst mode must no
loopback transacti
of BI NO ARB L.

e used with loopback transactions, since the

t
io will not be able to start, due to the assertion

Bit: 16 Name: IPINTR/STOP Force (IPINTR/STOP FORCE)
Type: R/W, DCLOC, SC - Not applicable

When set, the BIIC arbitrates for the bus and transmits an IPINTR or
STOP command (depending on the command stored in the Force-Bit
IPINTR/STOP Command Register), wusing the Force-Bit IPINTR/STOP
Destination Register for the destination field. The IPINTR/STOP Force
bit is reset by the BIIC following the transmission of the IPINTR
transaction. If the transmission fails, the NICIPS (NO ACK or Illegal
CNF Received for Force-Bit IPINTR/STOP Command) EV code is output and
the NMR (NO ACK to Multi-Responder Command Received) bit is set.

Bit: 15 Name: Multicast Space Enable (MSEN)
Type: R/W, DCLOC - Dlsables selection

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a read- or write-type command directed at
multicast space.

Bit: 14 Name: BDCST Enable (BDCSTEN)
Type: R/W, DCLOC - Disables selection

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a BDCST command directed at this node. (See
Appendix A for the description of the BDCST transaction.)

Bit: 13 Name: STOP Enable (STOPEN)
Type: R/W, DCLOC - Disables selection

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a STOP command directed at this node.

Bit: 12 Name: RESERVED Enable (RESEN)
Type: R/W, DCLOC - Special case

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a RESERVED command code. (See Section
18.3.10 on RESERVED commands. )

Bit: 11 Name: IDENT Enable (IDENTEN)
Type: R/W, DCLOC - Special case

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of an IDENT command. This bit affects only the
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output of SEL and the IDENT SC code. Therefore, the BIIC will always
participate in IDENT transactions that select this node even if this
enable bit is reset.

Bit: 10 Name: INVAL Enable (INVALEN)
Type: R/W, DCLOC - Disables selection

When set, the BIIC asserts SEL and the appropriate 8C<2:0> code
following the receipt of an INVAL command.

Bit: 9 Name: WRITE Invalidate Enable (WINVALEN)
Type: R/W, DCLOC - Special case

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a write-type command whose address does not
fall within the bounds set by the Starting and Ending Address
Registers, but which has D<29> equal to zero (that is, not I/O space).

Nodes that monitor VAXBI write-type transactions by using the WINVALEN
SC code cannot participate in these transactions.

Bit: 8 Name: User Interface CSR Space Enable (UCSREN)
Type: R/W, DCLOC - Disables selection

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a read- or write-type command directed at
this node’s user interface CSR space.

Bit: 7 Name: BIIC CSR Space Enable (BICSREN)
Type: R/W, DCLOC - Special case

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of a read- or write-type command directed at
this node’s BIIC CSR space. The BIIC's response to BIIC CSR space
accesses cannot be disabled; the BIIC always participates in
transactions that access its BIIC CSR space.

Note that this bit makes it easy to keep "shadow copies" of BIIC
internal registers, as writes to these registers can be treated the
same as writes to user interface CSR space (with the exception that
the slave cannot stall).

Bit: 6 Name: INTR Enable (INTREN)
Type: R/W, DCLOC - Disables selection

When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of an INTR command directed at this node.

Bit: 5 Name: IPINTR Enable (IPINTREN)
Type: R/W, DCLOC - Special case
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When set, the BIIC asserts SEL and the appropriate SC<2:0> code
following the receipt of an IPINTR command from a node that is
included in the IPINTR Mask Register. The state of this enable bit
does not affect whether the node receives IPINTR commands. To ensure
that a node does not receive IPINTRs, the user interface should clear
the IPINTR Mask Register.

Bit: 4 Name: Pipeline NXT Enable (PNXTEN)
Type: R/W, DCLOC - Not applicable

When set, the BIIC provides an extra BCI NXT L cycle (that 1is, one
more than the number of longwords transferred) during write-type and
BDCST transactions. This extra BCI NXT L cycle occurs after the last
NXT L cycle for write data and makes it easier to implement FIFO
pointers for some types of master port interface designs.

Bit: 3 Name: RTO EV Enable (RTOEVEN)
Type: R/W, DCLOC - Not applicable

When set, the BIIC outputs the RETRY Timeout (RTO) EV code in place of
the RETRY CNF Received for Master Port Command (RCR) EV code following
the occurrence of a retry timeout. 1If the bit is not set, the BIIC
will not output the RTO EV code in place of the RCR EV code following
a retry timeout; however, the RTO bit in the BER will be set and an
error interrupt will be generated if enabled.

Bits: 2:0 Name: RESERVED and zeros
Type: RO
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7.12 WRITE STATUS REGISTER

3130292827 0
bb+2C Qs

GENERAL PURPOSE REGISTER @
GENERAL PURPOSE REGISTER 1
GENERAL PURPQSE REGISTER 2
GENERAL PURPOSE REGISTER 3

MLO-045-35

Bit: 31 Name: General Purpose Register 3 (GPR3)
Type: W1C, DCLOC

Bit: 30 Name: General Purpose Register 2 (GPR2)
Type: WiC, DCLOC

Bit: 29 Name: General Purpose Register 1 (GPR1)
Type: W1C, DCLOC

Bit: 28 Name: General Purpose Register 0 (GPRO)

Type: W1C, DCLOC
Bits <31:28> when set indicate which general purpose registers have
been written to by a VAXBI transaction. The bit is set only if good
parity is received with the write data.

These bits are not set by loopback transactions.

Bits: 27:0 Name: RESERVED and zeros
Type: RO



7.13 FORCE-BIT IPINTR/STOP COMMAND REGISTER

21 1615 121110 0
bb + 30 0's 0's
COMMAND |
MASTER 1D ENABLE 004585
Bits: 31:16 Name: RESERVED and zeros
Type: RO
Bits: 15:12 Name: Command (CMD)

Type: R/W, DCLOS

Indicates the 4-bit command code for either an IPINTR or STOP
transaction that 1is initiated by setting the IPINTR/STOP Force bit.
Only the IPINTR (HHHH) and STOP (HHLL) command codes should be loaded
into this field.

Bit: 11 Name: Master ID Enable (MIDEN)
Type: R/W, DCLOS

Determines whether the master’s ID is transmitted on the BI D<31:16> L
lines during the C/A cycle of a transaction initiated by setting the
IPINTR/STOP Force bit. If the MIDEN bit is cleared, the BI D«<31:0> L
lines remain deasserted during the C/A cycle. The MIDEN bit should be
set to one when the Command field contains the IPINTR command code.
(The IPINTR transaction requires that the master’s decoded ID be
transmitted on BI D<31:16> L.) The MIDEN bit should be cleared when
the Command field contains the STOP command code. (The STOP
transaction requires that during the C/A cycle the BI D«<31:16> L lines
be a RESERVED field and should not be driven).

Bits: 10:0 Name: RESERVED and zeros
T
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7.14 USER INTERFACE INTERRUPT CONTROL REGISTER

31 2827 2423 2019 16151413 210
bb+40 Q 00

INTR ABORT <7:4>
INTR COMPLETE <7:4>
INTR SENT <7:4>

INTR FORCE <7:4>
EXTERNAL VECTOR
VECTOR

MLO-047-85

The User Interface Interrupt Control Register controls the operation
of interrupts initiated by the wuser interface. 1In the following
discussion, the phrase "interrupt request" refers to interrupts
initiated either by the assertion of any of the BCI INT<7:4> L lines
or by the setting of any of the force bits in this register.

Bits: 31:28 Name: INTR Abort <7:4> (INTRAB)
Type: W1C, DCLOC, SC

The four INTR Abort bits correspond to the four interrupt levels. An
INTR Abort bit 1is set if an INTR command sent under the control of
this register is aborted (that is, a NO ACK or illegal confirmation
code 1is received). INTRAB is a status bit set by the BIIC and can be
reset only by the user interface. The bit has no effect on the
ability of the BIIC to send or respond to further INTR or IDENT
transactions.

Bits: 27:24 Name: INTR Complete <7:4> (INTRC)
Type: W1lC, DCLOC, SC

The four INTR Complete bits correspond to the four interrupt levels.
An INTR Complete bit is set when the vector for an interrupt has been
successfully transmitted or if an INTR command sent under the control
of this register is aborted. Removal of the interrupt request clears
the corresponding INTRC bit. While an INTRC bit is set, no further
interrupts at that level are generated by this register. Further, no
IDENTS will be responded to by this register when the INTRC bit is set
at the IDENT level.

Bits: 23:20 Name: INTR Sent <7:4> (SENT)
Type: W1lC, DCLOC, STOPC, SC

The four INTR Sent bits correspond to the four interrupt levels. A
set INTR Sent bit indicates that an INTR command for the corresponding
level has been successfully transmitted. This bit is cleared during
an IDENT command following the detection of a level and master ID
match. Clearing the bit allows the interrupt to be resent if this
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node loses the IDENT arbitration or if the node wins but the vector
transmigsion failg. Deassertion of an interrupt request clears the

INTR Sent bit.

It is not necessary for the INTR Sent bit at a given level to be set
for the BIIC to respond to an IDENT at that level (that is, the
interrupt need not have actually been transmitted on the VAXBI). All
that is required is that an interrupt request have been posted that
matches the IDENT level.

Bits: 19:16 Name: INTR Force <7:4> (FORCE)
Type: R/W, DCLOC, STOPC

When set, the BIIC generates interrupts at the specified 1level. The
four INTR Force bits correspond to the four interrupt levels. Setting
an INTR Force bit is equivalent to asserting the corresponding BCI
INT<7:4> L line.

When multiple interrupt requests are asserted simultaneously, the BIIC
transmits INTR commands for the highest priority requests first.
Similarly, when an IDENT command solicits more than one 1level, the
BIIC responds with the highest pending level. (See Section 18.4 for a
discussion of the priority of transactions.)

Bit: 15 Name: External Vector (EX VECTOR)
Type: R/W, DCLOC

When set, the BIIC solicits the interrupt vector from the BCI D<31:0>
H lines (rather than transmitting the vector contained in this control
register) in response to an IDENT transaction that matches this
register. The BIIC's slave port asserts an External Vector Selected
at Level n EV code the cycle before the vector can be driven on the
BCI D lines. A slave port interface using the BIIC must stall the
vector at least one cycle (by asserting the STALL code on the RS lines
during the IDENT arbitration cycle) before transmitting an ACK (with

sarntanr) Anr 2 RRET
vecior, Cr a RETRY respcnse.*

Bit: 14 Name: RESERVED and zero
Type: RO

*To comply with VAXBI protocol, BIIC protocol requires a minimum of
one STALL cycle before either of these two responses is generated. 1If
no STALL is generated, the BIIC will not properly suppress the
transmission of ACK or RETRY CNF codes from nodes that lose the IDENT
arbitration during the cycle after the IDENT arbitration. The

subsequent collision of CNF codes will then cause bus errors to occur.

7-29



Digital Equipment Corporation -- Confidential and Proprietary
VAXBI REGISTERS

Bits: 13:2 Name: Vector
Type: R/W, DCLOC

Contains the vector used during wuser interface interrupt sequences
(unless the External Vector bit is set). The vector is transmitted
when this node wins an IDENT arbitration that matches the conditions
given in the User Interface Interrupt Control Register.

Bits: 1:0 Name: RESERVED and zeros
Type: RO
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7.15 GENERAL PURPOSE REGISTERS

bb+FO GENERAL PURPOSE REGISTER 0

bb+F4 GENERAL PURPOSE REGISTER 1

bb+F8 GENERAL PURPOSE REGISTER 2

bb+FC GENERAL PURPOSE REGISTER 3

MLO-048-85
The use of the general purpose registers is implementation specific.

The type of the bits in these registers is R/W, DCLOC.

Whenever one of these registers is written, a bit is set in the Write

Status Register to indicate which register was written.



Digital Equipment Corporation -- Confidential and Proprietary
VAXBI REGISTERS

7.16 SLAVE-ONLY STATUS REGISTER

31 2928 1817 131211 0

bb + 100

MEMORY SIZE l

BROKE

MLO-049-86-R

The Slave-Only Status Register (SOSR), which 1is outside BIIC CSR
space, 1is wused by slave-only nodes to implement a Broke bit. This
register must be implemented by nodes that have a Device Type code
with 2zeros in bits <14:8>). When implemented, both the Broke bit and
the Memory Size field must have wvalid values. This register must
never be written.

Bits: 31:29 Implementation dependent
Bits: 28:18 Name: Memory Size (MSIZE)
Type: RO

Indicates the size of the memory as a multiple of 2**18 bytes (256
Kbytes) expressed as a binary number.

Bits: 17:13 Implementation dependent
Bit: 12 Name: Broke

Type: RO, SC
When set, indicates that the node has not yet passed 1its self-test.
The user interface must clear this bit when the node has passed its
self-test. This bit must be set by the user interface by the time
that BCI DC LO L from the BIIC is deasserted.

Bits: 11:0 Implementation dependent
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7.17 RECEIVE CONSOLE DATA REGISTER
3130 2827 2423 161514 1211 8 7 a
bb + 200 o's 0's
8USY 2
NODE ID 2
CHARACTER 2
BUSY ! |
NODE D 1
CHARACTER 1
OPTIONAL REQUIRED
<31:16> <15:0>
MLO-050-85

The Receive Console Data Register (RXCD), which is implemented by
VAXBI nodes that have a console on the VAXBI, is used to receive data
from other consoles. Nodes that do not implement a VAXBI console must
respond to reads to the RXCD location with either a NO ACK response or
return a longword of data in which the RXCD Busy 1 bit is set. 1In the
latter case, the Busy 1 bit must be set before the Broke bit is
cleared at the completion of self-test.

The RXCD Register is also used for exercising ROM-based diagnostics
(this use is explained in Application Note 9).

A node that implements the RXCD Register responds to longword VAXBI
transactions to the RXCD Register. A lock bit must be implemented for
the RXCD if it is local to a node that may be a primary console node.
(This requirement overrides the statement that implementation of a
lock bit is implementation dependent when the operand is in I/O space
outside of node window space). Nodes that will never be a primary
console need not implement a lock bit for the RXCD. In a UWMCI
command to an RXCD where the optional upper word is not implemented,

+h 3 3 . N
the mask bits may be igncred; that is, the command may act as 1if the

mask bits were all set, regardless of whether they are set.

tional

A\
w
[
[y
[¢))
v

Bits: 31 Name: Busy 2
Type: R/W

When set, indicates that the CHAR2 field contains a character that has
not yet been read by the remote node. The Busy 2 bit must be cleared
before the CHAR2 field is available for another character.

Bits: 30:28 Name: RESERVED and zeros
Type: RO
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Bits: 27:24 Name: Node ID 2
Type: R/W

Contains the node ID of the 1local node (the node that sent the
character in the CHAR2 field).

Bits: 23:16 Name: Character 2 (CHAR2)
Type: R/W

Contains the console command character or console message being sent
from the local node to the remote node.

REQUIRED <15:0>

Bit: 15 Name: Busy 1
Type: R/W

When set, indicates that the CHAR1l field contains a character that has
not vyet Dbeen read by the local node. The Busy 1 bit must be cleared
before the CHAR1l field is available for another character.

Bits: 14:12 Name: RESERVED and zeros
Type: RO

Bits: 11:8 Name: Node ID 1
Type: R/W

Contains the node ID of the remote node (the node that sent the
character in the CHAR1 field).

Bits: 7:0 Name: Character 1 (CHAR1)
Type: R/W

Contains the consocle command character or console message being sent
from the remote node to the local node.
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CHAPTER 8

CLASSES OF VAXBI NODES

We tend to consider nodes on a bus to be either processors, memories,
or adapters. And we expect a certain functionality from each class.
Sometimes, however, a node serves multiple functions. This chapter
describes the expectations we have for the various classes of nodes
and the requirements that a node must meet depending upon its function
and the address space that it accesses.

Section 8.1 describes our expectations for each class of nodes, and
Section 8.2 defines the requirements that VAXBI nodes of a particular
class must meet. Section 8.3 discusses what is required of nodes if
the VAXBI bus serves a specific function. 1In the example presented,
the VAXBI bus performs as an I/O bus.

8.1 PROCESSORS, MEMORIES, AND ADAPTERS

Certain informal expectations have evolved of what processors,
memories, and adapters do. A single VAXBI node may, in fact, perform
-a variety of functions.*

Nevertheless, it is useful to classify nodes by function. The names
of the <classes then are processor, memory, and adapter. The same
hardware/firmware can function as a node of one <class in a certain
configuration and as a node of another <class in another
configuration,**

*For example, the Nautilus-Memory-Interconnect-to-VAXBI adapter (DB88)
behaves as both a processor and a memory on the VAXBI, because it
responds to both interrupts (a typical processor function) and to
reads and writes in memory space (a typical memory function).

**For example, a KA820 processor in a single-processor VAX 8200 system
clearly belongs to the processor class. But when a KA820 processor is
on the VAXBI bus in a VAX 8800 system, that processor may act as an
adapter or as adapter and processor.
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This section describes our informal expectations of node <classes in
terms of the types of VAXBI transactions that a node of each class
will generate or respond to. These "informal expectations" are not
hard-and-fast rules. For example, we generally expect that adapters
can access memory, but this does not mean that they have to. By
describing our informal expectations, we hope to establish some basis
for the formal requirements that nodes of each class must observe.

To simplify our discussion, we have excluded VAXBI transactions that
are issued or responded to spontaneously by the BIIC (without any
specific action by the node to which the BIIC belongs). These
transactions include error interrupts generated by the BIIC on
detection of bus errors, responses to the corresponding IDENT
transactions, and responses to VAXBI transactions that access BIIC
registers.

8.1.1 Processors

We expect a processor node to execute machine instructions, to access
memory, and to control the action of adapters.

In carrying out these functions, a processor node accesses memory
space locations in memory nodes and CSR (control and status register)
locations in nodes of all types. (A CSR is an I/0 space location,
usually in nodespace but sometimes in a node’s node window or
assignable window, that is used to control or monitor the node.) A
processor node issues IDENT transactions to adapters and memories,
IPINTR transactions to adapters and to other processors, and STOP
transactions to nodes of all types. A processor responds to INTRs and
IPINTRs. It also responds to longword accesses to its RXCD Register,
if it implements a VAXBI console. (See Section 9.2 for an explanation
of the RXCD Register.)

What distinguishes "processors" from nodes of other classes 1is their
ability to respond to INTR transactions and to issue IDENT and IPINTR
transactions. Note that, according to this point of wview, an array
processor would not be a processor but an adapter. This anomaly
results from our bus-oriented point of view.



8.1.2 Memories

A memory node stores instructions and data for processors and
adapters.

In general, memories are only slaves on the VAXBI. A memory responds
to all read- and write-type VAXBI transactions to memory space. A
memory node that can be written to without use of the VAXBI may or may
not issue INVAL commands; a memory node that cannot be written to
except from a given VAXBI bus need never issue INVAL commands on that
VAXBI bus. .

What distinguishes a memory node from nodes of other classes 1is that
it responds to memory space accesses.

8.1.3 Adapters

An adapter node transfers data to and from memory and accepts control
from a processor.

An adapter generally does not access CSR locations of other adapters.
However, because memory can be implemented in I/0O space, adapters
might perform DMA transfers to and from locations in I/O space that
reside either within themselves or on other nodes. Adapters can issue
INTRs to processors and respond to IPINTRs, STOPs, IDENTs, and
accesses to their own CSRs.

8.2 REQUIREMENTS ON NODES OF EACH CLASS

Section 8.2.1 specifies what transactions nodes of each class must
issue or respond to so that compatibility of VAXBI nodes is not
compromised.

Section 8.2.2 then discusses those requirements by node class.
Section 8.2.3 discusses VAXBI requirements that relate to I/0O space.

8.2.1 Required Sets of Transactions

The capabilities required of nodes of each class can be described by
examining how nodes participate in transactions. Two distinct sets of
transactions are involved. One set consists of transactions that
nodes of one <class must be able to respond to (MRS). The other set
consists of transactions that nodes of a given class must be able to
issue (MIS).
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Must Respond Set (MRS)

Suppose Cl and C2 are two arbitrary node classes. If a node of <class
Cl "may" issue transaction type TR to a node of class C2, then for the
sake of compatibility all nodes of class C2 "must" respond to TR,
(For example, an adapter can issue quadword transactions to memories;
therefore, all memories must respond to quadword transactions.)

Consider all the types of transactions that nodes of class C2 must
respond to. (In our example, for memories this would be transactions
like the quadword transactions.) This set of transactions is the Must
Respond Set (MRS) for class C2. Nodes of class Cl MUST NOT depend on
nodes of class C2 to respond to any transactions outside of MRS. (In
terms of the example, had quadword transactions not been in MRS,
adapters could not depend on all memory nodes to respond to quadword
transactions. In this case, an adapter that issues quadword
transactions to memory nodes might be incompatible with some memory
nodes.)

Must Issue Set (MIS)

Suppose a node of class Cl "may" depend on receiving transactions of
type TR from nodes of class C2, that is, a function of some nodes of
class Cl cannot be exercised without the node receiving TR-type
transactions. Then all nodes of class C2 "must" be capable of issuing
TR. (For example, adapters depend on processors to issue longword
transactions to I/0 space; therefore, all processors must be capable
of issuing longword transactions to I/O space.)

The set of transactions that nodes of class C2 must be capable of
issuing 1is the Must Issue Set (MIS) for class C2. Nodes of class Cl
must not depend on receiving any transactions of any type outside of
MIS. (For example, processors must not depend on receiving INTR
transactions, since INTR is not in the MIS of any node class.)

The MRS and MIS for each of the three classes of nodes 1is shown in
Figure 8-1.
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MUST RESPOND SET MUST iSSUE SET
MRS} IMIS)
PROCESSOR PS PM
MEMQRY MS MM
ADAPTER AS AM
MLO-a51-88

Figure 8-1: Required Sets of Transactions

Note that there is no simple relation between any MIS and any MRS.
For instance, quadword transfers are in the MRS of memories, but they
are not in the MIS of processors or adapters. On the other hand,
IPINTR 1is in the MIS of processors but not in the MRS of memories or
adapters.

8.2.2 Requirements by Node Class

The rationale for why certain transactions are required for processor
and memory nodes is given below.

Processor Nodes

The required transactions for processor nodes are mainly the result of
adapter design. Adapters communicate with processors and memories by
means of memory accesses, processor accesses to adapter CSRs, and
interrupts. To be compatible with future processor designs, an
adapter must issue to processors only those transactions which all
processors can respond to, and must depend on receiving only those
transactions which all processors can generate.

Processors must also cooperate to implement Findivisible"” actions.
These indivisible actions are used to ensure the integrity of data
structures that are updated by more than one VAXBI node, or by more
than one process running on the same VAXBI node. The protocols that
implement these actions must involve transactions that all processors
can generate.
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As defined in Section 8.2.1, let PM (processor as master) and PS
(processor as slave) be the MIS and MRS, respectively, for
processors.* The following requirements dictate the contents of the PM
and PS subsets. Processors must be able to:

® Generate all the appropriate accesses to any adapter’s CSRs.
e Field interrupts from the adapter.

e Generate IPINTR transactions to signal processors and adapters
that depend on this capability.

® Generate the IRCI and UWMCI transactions needed to implement
indivisible actions.

The PM subset consists of:

@ All longword data transfer transactions to I/0 space, except:
(a) Only READ or RCI and only WRITE or WCI need be included.
(The data transfer transactions are READ, RCI, IRCI, WRITE,
WCI, WMCI, and UWMCI.)

(b) Data transfer transactions to node private space are
excluded from the PM subset.

Word addressability is required for longword-length node

window space data transfer transactions, so that
word-accessible adapters will be compatible with the
processor.

@ IRCI and UWMCI transactions of any one or more lengths, to
memory space. The IRCI and UWMCI transactions implemented can
be of different lengths.

® The IDENT, IPINTR, and STOP transactions.

*For example, both the KA820 processor and the DB88 adapter must be
able to 1issue the transactions in PM and respond to the transactions
in PS.
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The PS subset consists of:
® INTR transaction
¢ IPINTR transaction
® STOP transactionx*

Only those processors that must communicate with adapters or with
other processors need to implement the PM and PS subsets. Processors
that do not need to perform this communication are exempt from this
requirement. Such processors may be considered adapters for the
purposes of this chapter. For example, array processors that do not
need to communicate with adapters or other processors are exempt.

Memory Nodes

There are no transaction types that every memory must be capable of
issuing. Therefore, MM is an empty set.

All memory nodes must respond to the same set of VAXBI data transfer
transactions when these transactions access memory space. This
requirement allows software to handle different memory node designs in
the same way except when initializing the system. It also allows
adapters to access any memory location using any VAXBI transaction in
this set. This set of transactions is the MRS for memory class nodes,
which we will call MS (for memory as slave). The transactions may
originate either from a processor or from an adapter.

The MS set includes:**

® All data transfer transactions of any length, for the memory
space that selects the node. (The data transfer transactions
are READ, RCI, IRCI, WRITE, WCI, WMCI, and UWMCI. Longword,
quadword, and octaword lengths are all included.)

® STOP transaction

*The KA820, KA800, and KA88 processors have been granted exceptions
and are not required to respond to STOP transactions.

**The DB88 adapter, for example, must respond to these transactions

that are required for memory nodes. (An exception has been granted so
that the DB88 and the KA800 need not respond to the STOP transaction.)
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Adapter Nodes

There are no transaction types that every adapter must be capable of

issuing. Therefore, the set AM is empty. All adapters must respond
to STOP transactions, and this is the only transaction to which they
must all respond. Therefore, the set AS contains just the STOP
transaction.

In conclusion, the MS, PM, and PS sets constrain the design of
memories and processors but also provide assurances. An adapter (or
any other node) may depend on all memories to respond to any of the
transactions in MS, and may depend on all processors to respond to
those in PS and issue those in PM.

8.2.3 Requirements in I/0 Space

8.2.3.1 Read Side Effects - Read-type transactions targeting 1I/O
space locations must not have any side effects. An example of a read
side effect is provided in the next paragraph.

Consider a case where on a read-type transaction the bus master
obtains the data with bad parity, but the slave node does not detect
bad parity. 1If this transaction has caused side effects, then it
cannot be reissued without causing the side effects to recur. 1In this
particular case, the master then cannot reissue the read-type
transaction and cannot potentially recover from the original error.

This rule does not mean that the value read cannot change in the
interim. If a transaction 1is reissued, the data obtained by the
second read can be different from that obtained by the first read.
What 1is required 1is that the data obtained by the second read is
independent of whether or not the first read took place (that is, the
read was not responsible for causing the data to change).

For example, if the data being read is a timer of some sort, the
second read might be expected to produce a different value from the
first. On the other hand, if the data 1is being read from a
first-in/first-out queue, and the transaction causes the top entry of
the queue to be "popped" and discarded, then the transaction has a
side effect. Therefore, the queue design violates this rule. To
conform to the rule, the top entry can be discarded only on some
transaction other than a read-type transaction; for example, the top
entry may be discarded on a write-type transaction.
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8.2.3.2 Cacheing in I/O Space - Data fetched from I/0O space must not
be cached by a master.

8.2.3.3 Read-Type Value Equivalence - If an 1I/0 space location J
returns a read data value V to any of {IRCI, RCI, READ}, then location
J must return value V to all of {IRCI, RCI, READ}. That is, the read
value must be independent of which particular read-type transaction
was issued.

8.2.3.4 Write-Type Reaction Equivalence - If an I/O space location L
reacts to any of {UWMCI, WCI, WMCI, WRITE}, then location L must react
in the same way to all of {UWMCI, WCI, WMCI, WRITE}. This means that
any actions and state changes triggered at the slave by the write-type
transaction must be independent of which write-type transaction was
issued. There are two exceptions:

@ UWMCI may clear a lock bit associated with location L at the
slave that must not be cleared by any of {WCI, WMCI, WRITE}.

®

The reaction of location L to one of {UWMCI, WMCI} may be a
function of the received mask bits during D cycles of the
transaction. The reaction of 1location L to one of
{WCI, WRITE} must not be a function of the received mask bits

during D cycles of the transaction.

8.2.3.5 Longword Data Length Transactions - Each I/0 address location
that responds to read-type commands must respond to longword-length
read-type commands. Each I/0 address location that responds to
write-type commands must respond to longword-length write-type
commands. In node window space, nodes that respond to longword-length
transactions may perform only a byte or word transfer naturally
aligned within the longword.

8.2.3.6 Quadword and Octaword Data Length Transactions - Throughout
I1/0 space, response to transactions with data lengths greater than
longword is implementation dependent. Nodes must respond with NO ACK
for data lengths that are not implemented.

8.2.3.7 Locks in I/0 Space - For rules regarding locks in I/0 space,
see Section 5.2.2.

8.2.3.8 Write Masks in I/O Space - The interpretation of the write
mask in I/0 space is implementation dependent. However, certain rules
apply for specific I/0O space locations. These include:

® Registers in BIIC CSR space must interpret write masks in
accordance with the semantics of the write-type transaction.

® The RXCD Register must interpret write masks in accordance
with the semantics of the write-type transaction, except
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that, if the optional upper word is not implemented, the mask
bits of a UWMCI may be ignored.

8.2.3.9 Translations of VAXBI Transactions to and from the UNIBUS -
In UNIBUS window space, an IRCI directed to the adapter from the VAXBI
will be interpreted as a DATIP to the UNIBUS. A UNIBUS DATIP must be
translated as an IRCI to the VAXBI bus.

8.2.3.10 Rationale for I/O Space Requirements - The I/0 space
requirements cited above guarantee certain desirable results. For
example:

® The response equivalence of RCI to READ and WCI to WRITE
ensures that processors have the flexibility to issue
cache-intent commands regardless of whether the target
address is in memory space or I/0 space.

@ The response equivalence of READ and RCI to 1IRCI, and of
WRITE, WCI, and WMCI to UWMCI ensures that noninterlocked VAX
instructions that generate interlocked VAXBI transactions
will not fail, and that registers normally read and written
using interlocked transactions can also be read and written
using noninterlocked transactions.

8.3 THE VAXBI AS AN I/O BUS

Not all of +the VAXBI transactions are required in certain
configurations. In a high-performance system, the VAXBI may serve as
an I/0 bus and occasionally as an interprocessor bus, without serving
as a memory bus. It is useful to examine this case as an example of
how the principles described above apply in a specific situation.

Figure 8-2 shows a configuration in which a memory bus (MB) connects
processor and memory and in turn is connected to two VAXBIs by memory
bus adapters (MBAs). Each VAXBI has several adapter nodes that
interface to I/0 devices.

The MBA acts as a processor node, because it generates I/O space
accesses but not memory space accesses on the VAXBI (except for
diagnostic purposes). The MBA also acts as a memory node, because
VAXBI adapters access memory through the MBA.*

*The VAX 8800 system is a case in point.
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Because the MBA acts as both processor and memory, it must implement
the MS, PM, and PS subsets of VAXBI transactions:
e It must respond to all 1lengths of VAXBI data transfer
transactions to memory space.
@ It must generate these commands of longword length:
- Either READ or RCI
— Either WRITE or WCI
- IRCI, WMCI, and UWMCI
@ It must respond to INTR, IPINTR, and STOP transactions and
generate IDENT, IPINTR, and STOP transactions.
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Figure 8-2: The VAXBI as an I/O Bus






CHAPTER 9

VAXBI CONSOLE PROTOCOL

A VAXBI console is a console at a node (or remotely connected to the
VAXBI bus by an adapter) that supports the control of processors on a
VAXBI system. 1In some VAXBI systems, the source of console commands
may be a console terminal attached to the node; in others, it might be
a program running on a system connected to the node over a local area

network. The VAX-11 Architecture Reference Manual specifies the
characteristics of VAX consoles. This chapter describes the
characteristics of VAXBI consoles -- VAX consoles that are also VAXBI
nodes.

A single VAXBI bus can support multiple processor nodes. The VAXBI
console protocol allows a single console to control all the
processors. The VAXBI console 1issuing the console commands is
considered the master console.

Console communication between VAXBI nodes consists of console commands
and console messages. Typically, console commands are typed, and
console messages are displayed at a console terminal. These
communications are carried out with VAXBI read- and write-type
transactions to VAXBI nodespace addresses. This chapter describes the
protocol for such communication: the addresses written to, the data
written, and the responses to these VAXBI transactions. Also

described 1is the Z console command, which has been designed to meet
the needs of VAXBI consoles.

9.1 MASTER CONSOLE

On the VAXBI bus only one node, the master console, 1is allowed to
issue console commands at any one time. Other VAXBI consoles can only
send messages to the master console; they cannot communicate with each
other. Different nodes can be master console at different times. 1In
the confiquration shown in Figure 9-1, processor A can be master
console at one time and processor B at other times, but they cannot
both be master console at the same time. While processor A is master
console, console commands can only be issued from the console terminal
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attached to it. The method of determining which node 1is master
console during the power—-up sequence and at other times is
implementation dependent.

CONSCLE
TERMINAL

CONSOLE
TERMINAL

PROCESSCR A
NODE 3

PROCESSOR B
NODE 3

PROCESSOR C
NQDE 7

MEMORY ADAPTER

NODE 4 NCDE &

MLO-053-85

Figure 9-1: Console Configuration
9.2 RECEIVE CONSOLE DATA REGISTER (RXCD)
Each VAXBI console has a nodespace register, the Receive Console Data
Register (RXCD), for receiving data from other VAXBI consoles. The
RXCD Register occupies the address bb + 200 in the nodespace of the
node (bb is the starting address for the node’s nodespace). The RXCD
Register address is reserved for the RXCD. If a VAXBI node does not

implement a VAXBI console, then that node must respond to reads to
that location with either a NO ACK confirmation or a longword in which
the RXCD Busy 1 bit is set (described below).

The RXCD Register will respond to longword VAXBI transactions. Since
VAXBI interlock commands are wused in the protocol, locks must be
implemented for the RXCD Register. This is true notwithstanding the
VAXBI rule that interlock commands are implementation dependent with
respect to interlocking when the operand is in I/0 space outside of
node window space. However, in a UWMCI command to the RXCD the mask
bits may be ignored; that is, the command may act as if the mask bits
were all set, regardless of whether they are set. VAXBI nodes that do
not implement a VAXBI console need not implement locks for the RXCD
Register location.

The RXCD Register is described in Section 7.17.
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9.3 CONSOLE COMMUNICATIONS

To send a character in a console communication, the sending console
in

carries out the followi

1.

1g protocol:

Issue a VAXBI IRCI to the receiving console’s RXCD Register.
Examine the Busy 1 bit (bit 15) of the returned value. 1If it
is one, go to step 2; otherwise go to step 3.

The Busy 1 bit is a one, so the receiving node is not ready
to receive. Write Dback what was read with a VAXBI UWMCI
transaction to unlock the RXCD. After a short wait (the
length of which is implementation dependent), start again at
step 1. If the Busy 1 bit remains set for over 1 second, the
sending console can WRITE a longword of all zeros into the
receiving console’s RXCD Register to clear the Busy 1 bit, if
the following conditions are met:

0 The sending console is the master consocle.

o The sending console is transmitting on behalf of input
from the console terminal; that is, the console terminal
is in console mode.

After attempting to clear the RXCD Register, the sending
console can repeat step 1 above. Note that, since the
sending console is the master console in this case, no other
console can be writing to the receiving console, and the RXCD
contents that were erased must have been deposited by the
sending console itself.

The Busy 1 bit is a zero, so the receiving node 1is ready.
Issue a VAXBI UWMCI with the mask bits set to 1111, conveying
one character to the receiving node. The issuing node must
load the Node 1ID field with its node ID and set the Busy 1

| AL
LDice.

Each node monitors its RXCD Register. The Busy 1 bit, which 1is
initially zero, 1is set to one when the RXCD is written by another

LUIlbUJ.U .

da +han icanunc IRCTI transaction to read the

ml~ 1 ~al -~
1{ieé 10Ca+i NoGe Thnen issues an 4 icon cChe

character, followed by a UWMCI to clear the Busy 1 bit and unlock the
RXCD.* The protocol for the RXCD Register is described in pseudocode
in Figure 9-2.

The receiving node should sort incoming characters according to

sending
this way,

node, using the node ID in the Node ID field of the RXCD. 1In
if two nodes simultaneously send characters to the same

node, the two messages will not be interleaved.

*In the KA820 case, if the processor is not halted, an interrupt is
generated when the RXCD receives the character.
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byte to send()
more to send
new

old

my id

dest RXCD

while more to send begin

new<1l5> := 1
new<l1:8> :=

.
r

my id;

Character
There are

of command/data to be sent
more characters to send
Longword, set up ready to transmit
Longword, read from destination RXCD
4-bit encoded node ID of sending node
Address of RXCD of destination node

new<7:0> := byte to send();
locked := true;
while (locked = true) begin

issue (IRCI, dest RXCD, old);
if (0l1ld<15> = 0) then
begin
issue (UWMCI, dest RXCD, new);
locked := false;
end
else

issue (UWMCI, dest RXCD, old);

end
end

Receive from Remote VAXBI Console

newchar ()

RXCD Busy 1 bit became set

0=s oo e g pum

issue (trans,
my RXCD
process
newdata

addr,

data)

Initiate transaction to address
Address of this node’s RXCD Register
Start processing new character
Longword for holding RXCD contents

while newchar() begin
issue (IRCI, my RXCD, newdata);
issue (UWMCI, my RXCD, 0);
process(newdata);

end

Figure 9-2: RXCD Protocol
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9.4 THE Z CONSOLE COMMAND

All VAXBI consoles must the console
command causes conscle comma
forwarded to another console.

are as follows:

implement pA

ndg

ER L0 ¥

The format and effec

Z <value>

The <value>
Subsequent

destination
echoes back

is a hexadecimal digit indicating the
characters input at this console
console, except as described below.
to this console.

a

The first ASCII escape character indicates that a
That is, any character immediately following
character is to be forwarded, including CTRL/P
character. Since the character immediately after
forwarded as a literal, an escape can also be
manner.

Unless it is a literal, a CTRL/P is not forwar
terminates the Z command (that is, it terminates
causes the local console to enter console mode.

Figure 9-3 shows how the Z console command handles

Two Z commands must not be issued from a processor when it

consocle, without an intervening CTRL/P. For ins
configuration shown in Figure 9-1. Suppose "7 5"
from processor A as master console, without an

received or typed a

The destination

and

command. The 2
t one console t

vvvvvvvv to be
t of the command

destination node.
re forwarded to the
node

"literal"
the first escape
or another escape
the first escape is
forwarded in this

follows.

ded. Instead, it
the forwarding) and

escape characters.

is master
tance, consider the
"z 7" are issued
intervening CTRL/P.

The first Z command causes subsequent commands to be forwarded to node

5, while the second Z command might be expected
commands to be forwarded first to node 5 (processor
7 (processor C). The effect of subseque

from pnrocessor A undefined in this case.
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to cause subsequent
B) and then to
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Z CCMMAND

|

GET A CHARACTER

YES

{NEXT CHARACTER
IS A LITERAL)

ISIT AN ESC

NO.

TERMINATE
YES FORWARDING;
GET ANOTHER _
CHARACTER IS 1T ACTRLP ENTER LOCAL

CONSOLE MODE

NO
i

FORWARD THE
CHARACTER

; MLO-054-85

Figure 9-3: Handling of Escape Characters in the 2z Console Command

9-6



CHAPTER 10

PERFORMANCE

This chapter discusses bus bandwidth and bus access latency and
interrupt latency on the VAXBI bus. These measures in general cannot
be calculated because they are dependent largely on factors such as
memory performance characteristics, which are not characteristics of
the bus. However, if the specified restrictions on the number of
certain types of «cycles are adhered to (or if vioclations of the
restrictions are documented and it is known how many of which
violating nodes are in the configuration), an upper bound can be
determined from clock frequency and protocol limits.

10.1 VAXBI BANDWIDTH

Bandwidth, the measure of data throughput on the VAXBI bus, 1is
directly related to the 1length of data transferred. That is, the
longer the length of data, the higher the bandwidth. The bandwidth
increases as the bus overhead cycles take a smaller proportion of the
total transaction time.

Assuming that all transactions are of the same length, the maximum
bandwidth that can be achieved on the VAXBI bus for each of the
different transaction lengths is as follows:

For octaword transactions (16 bytes): 13.3 megabytes per second
For quadword transactions (8 bytes): 10.0 megabytes per second
For longword transactions (4 bytes): 6.7 megabytes per second

Figure 10-1 shows the VAXBI bandwidths for transactions of each length
with no STALL <cycles versus one STALL cycle per transaction. The
figure also shows the bandwidths for 1longword transactions that
transfer a single word or byte. 1In each case, all transactions are
assumed to be of the same length.
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Maximum
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cycte memory stail
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INFORMATION TRANSFERRED
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Figure 10-1: Bandwidth Ranges
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10.2 LATENCY

Latency properties of the bus may be largely inferred from bus access
latency and interrupt latency. Bus access latency is the delay from
the time a node desires to assert its arbitration request on the bus
until it becomes bus master. Interrupt latency is the delay from the
time a node desires to transmit an interrupt transaction wuntil the
start of execution of the node’s interrupt service routine.

The minimum bus access latency is one clock cycle or 200 nanoseconds
nominal. In many systems this will be the typical latency. To obtain
an upper bound on bus access latency, we need to know the longest
possible duration of a VAXBI transaction. Bus access latency depends
on the arbitration mode of this and other nodes and on the 1length of
VAXBI transactions. The effect of the arbitration mode is discussed
in the following sections.

Interrupt latency includes the following components:
0 Bus access latency for sending the INTR transaction
o INTR bus transaction time
o Priority 1level of the interrupt, the number of other
interrupts that must be serviced £first and the interrupt
service time for these interrupts, and other processing that
must be performed first
0 Bus access latency to send an IDENT transaction
o IDENT bus transaction time
o Context switching time of the processor
All VAXBI nodes should be designed to tolerate 1long latencies. A
worst-case latency time cannot be defined, and any node that makes

assumptions about the worst-case latency cannot be guaranteed to work
in all configurations.

10.2.1 Extension Cycles

In addition to the command/address, imbedded arbitration, and data
cycles, a VAXBI transaction can have additional cycles due to the
following:

o STALL data cycles. A slave may extend a transaction by

asserting the STALL cocde on its BCI RS lines. In response,
the BIIC asserts the STALL code on the BI CNF lines.
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o Busy extension cycles. A node not involved in a VAXBI
transaction may assert BI BSY L to extend the transaction.

o Loopback cycles. A node not involved in a VAXBI transaction
may access registers in its own nodespace with a loopback
request. When such a request is made during a transaction,
the BIIC extends the transaction by asserting BI BSY L at the
end of the transaction.

Busy extension cycles and loopback cycles increase bus access latency.
Suppose, for example, a node extends a VAXBI transaction by asserting
a loopback request. During one of the extension cycles, another node
could extend the transaction by another loopback or busy extension,
and the new extension could again be extended.

The following rules limit extension cycles to control bus access
latency:

o Slave nodes must not issue more than eight STALLs in data
transfer transactions. If a node could exceed the limit, the
extent to which it may exceed the limit must be documented.
An exception must be obtained if the node is DIGITAL-supplied.

0 Nodes must not use more than 16 consecutive extension cycles
without issuing a VAXBI transaction request.

10.2.2 Effect of Arbitration Modes on Bus Latency

The VAXBI protocol specifies three modes for arbitration: dual round
robin, fixed-low priority, and fixed-high priority.

If fixed-low priority and fixed-high priority modes are wused, some
nodes may encounter long waiting times to use the VAXBI or may even be
shut out of the VAXBI bus. So that all nodes can gain access to the
VAXBI bus and so that responsiveness is not affected, nodes should not
depend on arbitrating using any arbitration mode other than the dual
round robin mode. The fixed-low priority and fixed-high priority
modes, 1intended only as a last resort for special real-time
requirements, should be used only after careful analysis of the set of
specific node ID assignments and VAXBI utilization patterns for the
particular configuration.*

*Node designers should assume that in almost all cases nodes will
arbitrate in dual round robin mode. If it is expected that this will
not be the case, the designer should reconsider whether the node
should interface to the VAXBI bus.
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To arbitrate, a node requests the use of the VAXBI bus by asserting
one of the data lines corresponding to its node ID. With 16 node IDs

and 32 data bits, two bits correspond to each node 1ID: one in the
high-priority word (BI lines D<15:0>) and one in the low-priority word
(BI lines D<31:16>) (see Chapter 3, Figure 3-1). The node’s

arbitration mode determines which of these two bits is asserted. 1In
fixed-low priority mode, the node asserts the bit in the low-priority
word. In fixed-high priority mode, it asserts the bit in the
high-priority word. In dual round robin mode, the node asserts the
bit in the high-priority word if and only if its node ID is greater
than the node ID of the previous master. Otherwise, it asserts the
bit in the low-priority word.

Figure 10-2 shows the arbitration algorithm as implemented at each
VAXBI node. When all nodes arbitrate in dual round robin mode, the
nodes may not attain bus mastership in strict round robin order.
However, the important advantages of round robin are preserved: no
node is ever locked out of accessing the bus, bus mastership is
awarded "fairly" to all nodes, and the maximum wait for bus mastership
is quite low.

The node asserting the lowest numbered data line wins the arbitration.
When two nodes arbitrate in the same word (that is, assert bits in the
same word of the longword), the one with the numerically smaller node
ID wins the arbitration. Because it is confusing to say that the node
with the lower number ID has higher priority, we will refer to nodes
with "smaller® or "larger" IDs.
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(* Signals to be driven are assigned during the "previous" cycle. *)

! my id: This node's encoded ID

! buE_request: This node requests/keeps mastership

! i _am master: This node is current master

! i am pend master: This node is pending master

! arb mode: Arbitration mode

! nextmcycle (cycltype): True: next cycle is of "cycltype" type
! this cycle (cycltype): True: this cycle is of "cycltype" type
! highest priority (): Lowest number D line asserted, encoded
1

assert _bit (bitposition): Next cycle, assert D<bitposition>

i am master := false;
i am pend master := false;
while true do
begin
if this_cycle(imbedded _arb) then prev_master := I<3:0> H;
if (bus request and
(next cycle(arb) or next cycle(imbedded arb)) and
(not i am master))
then begin
if (arb_mode fixed high) then assert bit(my id);
if (arb_mode fixed low) then assert b1t(my id + 16);
if (arb_mode = dual round robin) then
if (prev _master < my id)
then assert bit(my_ id)
else assert bit(my id + 16)

end;
if (bus_request and (this cycle(arb) or this cycle(imbedded arb))
and (highest priority() = my id)) then
1_am_pend_master 1= true;
if ((next_cycle(cmdaddr) and i _am pend master) then
begin
i am master := true;
i am pend master := false;
end
if (next_cycle(imbedded arb) and i am master) then
I<3:0>_H := my id;
if (not bus request) then i am master := false;
advance_ to next cycle();
end.

Figure 10-2: Arbitration Algorithm
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10.2.3 Dual Round Robin Mode Behavior

Even when all nodes arbitrate in dual round robin mode, bus mastership
can be allocated in other than strict round robin order. Figure 10-3
gives an example of how this can happen. Assume all transactions are,
say, longword writes. Notice that all nodes arbitrate in the
high-priority word. The decimal numbers indicate node IDs, and each
transaction is separated by a line.

Arbitrating Cycle Pending Bus
Nodes Type Master Master
1 ARB None None
C/A None 1
7 Imbedded ARB None 1
Data 7
C/A None 7
5, 12 Imbedded ARB None 7
Data 5 7
C/A None 5
10, 12 Imbedded ARB None 5
Data 10 5
C/A None 10
8, 12 Imbedded ARB None 10
Data 8 10
C/A None 8
12 Imbedded ARB None 8
Data 12 8
C/A None 12
None Imbedded ARB None 12
Data None 12

Figure 10-3: Example of Dual Round Robin Mode Behavior

In this example, node 8 gets to be bus master after node 10 but before
node 12, which wviolates strict round robin. 1In effect, two round
robins are operating on alternate transactions. 1In one of them, the
sequence of bus masters was nodes 1, 5, and 8; in the other, the
sequence was nodes 7, 10, and 12. Each node arbitrates in both round
robins until it obtains bus mastership. The first round robin is in
effect in imbedded arbitration cycles when the bus master belongs to
the second round robin. Thus, when node 8 started arbitrating, node

10-7



Digital Equipment Corporation -- Confidential and Proprietary
PERFORMANCE

10 was master, and the first round robin was in effect. Since in the
first round robin the previous bus master was node 5, node 8 wins the
arbitration over node 12.

This dual round robin behavior is produced because the criterion wused
in determining whether nodes arbitrate in the high- or low-priority
word is the node ID of the 1last previous bus master, not of the
current bus master. If the criterion used was the current bus master,
the result would be true round robin behavior. Since the dual round
robin behavior depends on the use of the imbedded arbitration cycle,
this behavior is not apparent unless traffic is heavy enough to make
significant use of the imbedded arbitration cycle.

The dual round robin mode preserves all the desirable properties of
the round robin. The two round robins operate as true round robins,
and no node ID is favored over any other node ID. 1In both cases, the
worst-~case latency for bus mastership (that is, the longest wait to
become bus master) is finite, so no node can be locked out of the bus.

In fact, the worst-case latency is the same 1in both cases: the
longest wait arises when all nodes (in turn) arbitrate for the bus,
and the node in question has just missed its turn for the bus (that
is, in the dual round robin case, the node starts arbitrating when the
node with the next higher ID is previous bus master).

It is interesting to note that if there is quite a lot of bus traffic,
then the winning node in an arbitration is most often a node that is
arbitrating in the high-priority word. The following scenario
illustrates this.

Suppose that several nodes are arbitrating, initially all in the
high-priority word. As nodes with smaller IDs win the bus, their next
request for the bus causes them to arbitrate in the low-priority word.
The next bus master has a larger (lower priority) node ID. As the bus
master’s node ID gets larger, more nodes arbitrate in the low-priority
word, and fewer arbitrate in the high-priority word. All this time,
however, the winning node is one that arbitrates in the high-priority
word. This pattern continues until finally no node arbitrates in the
high-priority word. All nodes now arbitrate in the low-priority word,
and the node with the smallest ID wins the arbitration. This is the
one time that the winner arbitrates in the low-priority word. At the
next arbitration, all nodes that arbitrated but did not win this time
arbitrate again in the high-priority word. The winning node is again
from the high-priority word, and the pattern repeats.
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10.2.4 Dual Round Robin Mode Latency

For a VAXBI system in which all nodes arbitrate in dual round robin
mode, the maximum waiting time occurs when a node, say node A,
requests the bus and must wait until all the other nodes use the bus
before it gets its turn.

Suppose the VAXBI bus has k nodes, of which t nodes are
transaction-generating nodes. Since node A 1is waiting for Dbus
mastership, (t — 1) transactions pass before node A gains mastership.

The master and slave nodes of each transaction carry out an octaword
transaction for (Si + 6) <cycles, where Si is the limit on stalled
cycles for node i. This accounts for (St + 6(t - 1)) cycles, where St
is the largest sum of the Si for (t - 1) slave nodes (that is, pick
the set of (t - 1) slave nodes that yields the largest sum).

During the first transaction, the master node, the slave node, and
node A cannot create extension cycles. However, the slave node may be
ncde A. Therefore, during this transaction there may be up to (k - 2)
nodes creating extension cycles. These extension cycles will be
denoted by Xk.

During the second transaction, again the current master node and node
A cannot <create any extension cycles. Except for the master of the
last transaction, other nodes also cannot <create extension cycles
because they have reached their limit of extension cycles. Therefore,
during this transaction, only the last transaction’s bus master can
create extension cycles, and it can do so to its limit.

In all succeeding transactions, the previous master is the only node
that can create -extension cycles. The extension cycles in these
transactions are denoted by Xi.

The maximum total contribution of extension <cycles 1is therefore
(Xk + Xt), where Xk is the sum of the Xi for all nodes except node A,
and Xt is the largest sum of the Xi for (t - 3) nodes. {(The (t - 3)
factor arises because there are (t - 1) transactions, and the
contribution of the first two of these constitutes the Xk term,
leaving (t - 3) transactions.) Since node A should be chosen to yield
the maximum Xk, Xk is the largest sum of the Xi for (k - 1) nodes.
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In summary, then:

Si 1is the limit on stalled cycles for node i

Xi 1is the limit on consecutive extension cycles for node i
k is the number of nodes

t is the number of transaction-generating nodes

St is the maximum sum of the Si for (t - 1) nodes

Xk is the maximum sum of the Xi for (k - 1) nodes

Xt 1is the maximum sum of the Xi for (t - 3) nodes

The following equation gives the upper bound Tm on the bus mastership
latency.

™Tm = (St + Xk + Xt + 6(k - 1)) cycles
For example:
For t = k = 6, 8i = 8 for all i, and Xi = 32 for all i
St is 40 cycles (8 microseconds)
Xk 1is 160 cycles (32 microseconds)

Xt 1is 96 cycles (19.2 microseconds)

Therefore, Tm is 326 cycles (65.2 microseconds).

On the other hand, for t = 3, k =5, 8i = 8, and Xi = 16
St is 16 cycles (3.2 microseconds)
Xk 1is 64 cycles (12.8 microseconds)
Xt 1is 32 cycles (6.4 microseconds)
Therefore, Tm is 124 cycles (24.8 microseconds).
Note that t is not necessarily the total number of nodes. For

example, a node that is purely memory probably will not generate any
transactions, and so it does not count as a transaction-generating
node. However, in this analysis we assumed that any node, other than
the nodes involved in an ongoing transaction, could <create extension
cycles.

10.2.5 Fixed-Low Priority and Dual Round Robin

The following gives an upper bound on the latency time if one node,
node A, arbitrates in fixed-low priority mode, and all the other nodes
use dual round robin.

Suppose node A also has the smallest node ID (that is, the highest

priority). Then it arbitrates in the same way as dual round robin,
and there is no effect on the maximum waiting time. But then there is
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no reason to use fixed-low priority rather than dual round robin.

Suppose then that node A dces not have the smallest node ID. If node
A arbitrates when no other node is arbitrating, it of course wins the
arbitration. Otherwise, it wins the arbitration only if all other

nodes arbitrate in the 1low-priority word and these nodes all have
larger node IDs. This situation happens only if the last bus master
had a larger node ID and all currently arbitrating nodes have node IDs
between the last bus master’s and this node’s.

Waiting times will therefore be comparable to dual round robin for all
but node A, while node A may have waiting times ranging from just like
dual round robin (in the case where it has a small node 1ID}) to
extremely long (in the case where it has a large node ID and the VAXBI
bus is heavily used).

If there is a good chance that no other node is arbitrating when node
A is arbitrating, then it does not matter what mode node A arbitrates
in, and it might as well use dual round robin. Otherwise, node A
stands a reasonable chance of winning an arbitration only if it has a
small node ID compared to other nodes.

It is difficult to see the utility of wusing the fixed-low priority
mode, except in one notable case: If a node wants to win an
arbitration only when no other node is arbitrating, it should have the
largest node ID and use fixed-low priority.

10.2.6 Fixed-High Priority and Dual Round Robin

The following considers the latency time if a node arbitrates in
fixed-high priority mode and all other nodes use dual round robin.

o If node A has the largest node ID, it behaves as if it were
arbitrating in dual round robin mode. The situation is then
no different from the pure dual round robin mode.

o If node A has the smallest node 1ID, then whenever it
arbitrates it will cause all other nodes to "arbitrate in the
high-priority word," so that, if it arbitrates very often, the
effect is the same as a fixed priority scheme, and nodes with
large node IDs may wait for a long time.

o If node A has neither the largest nor the smallest node ID, an
interesting situation arises, which is discussed below.

Suppose node A has neither the 1largest nor the smallest node 1ID.
Consider the situation where five nodes are using the bus heavily,
where the five nodes are B, C, A, D, and E, in order of increasing
node 1ID. Node A is arbitrating in fixed-high priority mode, and all
others are arbitrating im dual round robin mode. Suppose that
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initially they all arbitrate in the high-priority word. Nodes B and C
will win, followed by nodes A and D. Suppose nodes A, B, and C again
request the bus before the imbedded arbitration cycle of D. Node A
will win over nodes B and C, which are arbitrating in the low-priority
word, Dbecause node A always arbitrates in the high-priority word. If
before node A’'s imbedded arbitration cycle, node E should request the
VAXBI bus, it will arbitrate in the high-priority word and win over
nodes B and C. 1If now node D arbitrates before node E’'s imbedded
arbitration cycle, node D will arbitrate in the high-priority word
because the previous bus master was node A; node D will then win over
nodes B and C. If node A next arbitrates before node D’'s imbedded
arbitration cycle, it will again win over nodes B and C. This pattern
can repeat in an A-E-D-A-E-D sequence locking out nodes B and C. 1In
short, if node A and nodes with larger node 1IDs arbitrate often
enough, in some order such as the A-E-D sequence, they can shut out
nodes such as B and C that have smaller node IDs.

In general, the following statements can be made regarding the case
where only a single node (say node A) arbitrates in fixed-high
priority mode and other nodes arbitrate in dual round robin mode:

® Whenever node A wins an arbitration, it starts something 1like
a fixed-priority queue with itself at the highest priority.
The effect would be exactly like a fixed-priority gqueue 1if
each node decides which word to arbitrate in depending on the
previous or current bus master’s node ID, rather than just the
previous bus master’s node ID.

e The larger node A's 1ID, the 1less often will it win an
arbitration, and the more will the effect be like dual round
robin.

® The smaller node A’s 1ID, the more often will it win an
arbitration, and the more will the effect be like fixed
priority such as on the UNIBUS, with node A as the highest
priority node.

Given the fixed-priority effect of arbitrating in fixed-high priority
mode, this mode must be used with great care. For if the node using
this mode is given a large node ID, the gain for the node will be
minimal. On the other hand, giving the node a small node ID may cause
nodes with large node IDs to get a much smaller share of the bus than
is desirable. In particular, the following situation should be noted:

® Suppose that the transfer rate of an unbuffered disk,
transferring through node A, is such that dual round robin
does not ensure fast enough response time to always keep up
with the disk. The temptation would be to use fixed-high
priority for node A.
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@ If dual round robin does not ensure sufficiently fast response
time, then node A arbitrates often enough that the total
effect will be close to fixed priority for all nodes.

® Some other node having a large node ID (which may, say, have
an interrupt to raise) may then be denied access to the VAXBI
bus for long periods, even though that node and all nodes but
node A arbitrate in the dual round robin mode.

If more than one node arbitrates in the fixed-high priority mode, the
situation 1is more complicated, but the effect would be similar to the
case with just one such node. The fixed-high priority nodes would
have a tendency to restart the dual round robin at their node 1IDs,
producing a fixed-priority effect.

10.2.7 One Fixed-High Priority Node

If only one node is arbitrating in the fixed-high priority mode (
other nodes arbitrating using dual round robin), and if that node w
not arbitrate more often than a certain 1limiting frequency, it 1is
still possible to calculate a maximum waiting time for all nodes. The
rule suggested here relates the maximum waiting time to the frequency
with which the fixed-high priority node arbitrates.

Suppose that node A, which is arbitrating in fixed-high priority mode,
has just wused the bus. Wwhen node B arbitrates for the bus, the
waiting time is lengthened because node A used the bus. What 1is the
upper bound on this waiting time?

The upper bound can be produced with the following scenario: node B
has to wait for all the other nodes, except node A, to use the bus.
When its turn finally arrives, node B doesn’t get it because node A
arbitrates and wins. Due to node A’'s winning, all the other nodes
again arbitrate in the high-priority word, and node B has to wait for
all of them again.

Retaining the notation of the previous subsection on dual round robin
mode latency, the first step of the above scenario may take up to

( st + Xk + Xt + 6 (k - 1)) cycles
while the rest may take up to

( St + Xt + 6 (k - 1)) cycles,
for a total of

(28t + Xk + 2Xt + 12 (k - 1)) cycles.
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Let T be this maximum waiting time. Now, if node A does not arbitrate
more than once in any span of time T, then our assumption is
satisfied: in all this time node A uses the bus at most once.

In summary, then:

If just one node arbitrates in fixed-high priority mode, and it
does not arbitrate more than once in any interval of time T, and
no more than R extension cycles occur in the same interval T,
where

T = (28t + 2Xt + Xk + 12 (k - 1)) cycles
then the maximum waiting time for any node is also T cycles.

For the two examples in the subsection on dual round robin mode
latency, T would be 556 cycles (111.2 microseconds) and 216 cycles
(43.2 microseconds), respectively.

The gain by having node A arbitrate in fixed-high priority mode 1is a
shorter maximum waiting time for node A. The longest waiting time for
node A depends on the number of nodes with node IDs smaller than node
A's. If among these t of them are transaction-generating nodes, the
maximum waiting time would be:

St + Xk + Xt + 6 * (t - 1)) cycles

Although this looks very much like the latency in the dual round robin
mode latency subsection, this t is different since only nodes with
smaller node IDs count here. Supposing that in the examples in that
subsection all transaction-generating nodes had larger node IDs, then
the maximum waiting time for node A would be 110 cycles (22
microseconds) in the first case and 46 cycles (9.2 microseconds) in
the second case. These figures compare with 65.2 microseconds and
24.8 microseconds as computed in that subsection.

These results assume that node A does not arbitrate more than once in
any interval of 1length T, and T 1is greater than the guaranteed
response interval if all nodes are arbitrating in dual round robin
mode. The results above are useful, therefore, only for a node which
requires faster response than can be guaranteed by dual round robin
but also requires quite a bit 1less throughput rate than the fast
response time requirement might suggest.

In particular, if fast response time is required because of a node's
peak transfer rate (for example, that of a fast unbuffered disk device
connected to a VAXBI node), the results above are not useful for
achieving the required response, because the throughput rate
requirement would conflict with the assumption of no second request in
any interval T.
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CHAPTER 11

ERROR DETECTION AND MAINTAINABILITY

This chapter discusses features that contribute to the efficient
functioning of VAXBI systems.

e Self-Test —-— Each node automatically performs a self-test on
initialization.

e Error Checking -- Data integrity is ensured by parity
checking, comparison of transmitted and received data, and
protocol checking. The BIIC provides these functions.

® Stopping a Node -- Hardware malfunctions can be diagnosed
using the STOP transaction, which causes a node to stop
generating VAXBI transactions and allows it to be examined.

11.1 SELF-TEST OPERATION

This section first gives VAXBI requirements for self-test and then
specifies self-test operation for nodes that use the BIIC. Other
information on self-test appears in Chapter 6 and Application Note 4.
Chapter 6 details initialization, which includes self-test, and
Application Note 4 gives more information on the operation of
self-test.

On initialization every VAXBI node must automatically perform a
self-test, which includes a self-test of the VAXBI primary interface
(the logic that interfaces directly to the VAXBI signal lines) and a
self-test of the rest of the node. Node self-test must not depend on
other VAXBI nodes to complete.

Q

The mechanism for self-test reporting utilizes the BI BAD L line, the
Broke bit, and a pair of yellow LEDs on each VAXBI module. One of the
LEDs is on the top of the module, and one is on the front of the
module. Both LEDs indicate the same information: a lit LED indicates
self-test passed.
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The VAXBI primary interface self-test verifies VAXBI control logic and
the accessibility of the VAXBI registers required of all nodes. The
remainder of node self-test may be performed after, in parallel with,
or partially overlapped with the VAXBI primary interface self-test.

11.1.1

Self-Test Requirements

The specified sequence of self-test is detailed below.

1.

On power-up, the Broke bit must be set, the LEDs must be off,
and the BI BAD L line must be asserted. The VAXBI primary
interface must assure that all data path and synchronous
control signals (except BI NO ARB L) are deasserted.

The node begins its self-test following either the
deassertion of BI DC LO L or the setting of the Node Reset
(NRST) bit in the VAXBICSR. During power-up self-test, and
until the VAXBI registers that are required of all nodes are
functional, the node must assert BI NO ARB L. However,
during node reset self-test, the node must not assert BI NO
ARB L. Also, during node reset self-test, and wuntil the
VAXBI registers that are required of all nodes are
functional, the node must respond with a NO ACK when the
VAXBI required registers are accessed. (Table 7-1 lists the
registers required of all nodes.) With the exception of the
VAXBI registers, other nodes must not access locations within
a node undergoing self-test.

Node designs must make every effort to assure that the BI NO
ARB L line deasserts so that a node that fails self-test does
not prevent other nodes from gaining access to the VAXBI bus.
The VAXBI primary interface 1is therefore required to
implement a "watchdog timer"” or equivalent that will disable
the data path and synchronous control signals (including BI
NO ARB L).

The node self-test tests the whole node, and its results
include those of the VAXBI primary interface self-test. A
node passes node self-test only if 1its VAXBI primary
interface passed its self-test. Two kinds of self-test must
be implemented at each node: a fast one and a slower but
more thorough one.
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3. 1If the node’s self-test indicates that the node may corrupt

11.1.2

the busg, the node should disable all data path and
synchronous control signals. This assures that a failed node
will not prevent future bus transactions. If the node does
not pass self-test, then the Broke bit must remain set, the
BI BAD L line must remain asserted, and the LEDs must remain
off.

If the node passes self-test, the Broke bit must be cleared,
the LEDs must be lit, and the BAD line must be deasserted,
with the following timing constraints:

® The BAD line must be deasserted within 100 ms after the
clearing of the Broke bit.

¢ The LEDs must be lit within 100 ms of the clearing of the
Broke bit.

Self-Test Operation with a BIIC

Self-test operation for nodes that use a BIIC as their VAXBI primary

interface

is detailed below. This operation complies with the steps

in Section 11.1.1.

1.

On power-up, for all but slave-only nodes, the Broke bit is
set by the BIIC. User interface logic in slave-only nodes
must set the Broke bit in the SOSR. User interface 1logic
must assure that the LEDs are off and the BI BAD L line is
asserted. The BIIC as VAXBI primary interface assures that
all data path and synchronous control signals (except BI NO
ARB L) are deasserted per the requirement.

he BIIC deasserts BCI DC LO L either due to the deassertion
f BI DC LO L or the setting of the Node Reset (NRST) bit in
the VAXBICSR. The BIIC and user interface 1logic must
therefore begin self-test following the deassertion of BCI DC
LC L. (There is no need for user interface logic to monitor

the NRST bit to determine when to begin self-test.)

During power-up self-test, and until the VAXBI registers that
are required of all nodes are functional, the BIIC as the
VAXBI primary interface must assert BI NO ARB L. However,
during node reset self-test, the BIIC does not assert BI NO
ARB L. Also, during node reset self-test, the BIIC as the
VAXBI primary interface must respond with a NO ACK when the
required registers are accessed.
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The BIIC design includes a "watchdog timer" to assure that
the BI NO ARB L line deasserts at the completion of power-up

self-test so that a node that fails self-test does
prevent other nodes from gaining access to the VAXBI bus.

the BIIC's self-test indicates that it may corrupt the bus,
the BIIC disables all data path and synchronous control
signals. The user interface logic must not reset the Broke
bit if the node fails its BIIC self-test. User interface
logic must keep the BI BAD L line asserted, and the LEDs must

remain off in this case.

4, 1If self-test completes successfully, the user interface must
clear the Broke bit and must ensure that:

@ The user interface 1logic must deassert the BAD line
within 100 ms after the user interface clears the Broke
bit.

® The user interface logic must light the LEDs within
ms of the clearing of the Broke bit.

Figure 11-1 summarizes the self-test process. Note that node

self-test cannot complete until the BIIC self-test completes.
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Figure 11-1: Self-Test Flow

If the BIIC fails self-test, the output drivers of the BIIC are
disabled so that the BIIC cannot drive the VAXBI lines. Setting the
Self-Test Status (STS) bit in the VAXBICSR to one enables these
drivers, but this should be done only for diagnostic purposes.
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11.1.3 Location of the Broke Bit

11.1.3.1 VAXBI Control and Status Register - Most nodes use bit 12 of
the VAXBICSR as the Broke bit.

11.1.3.2 Slave-Only Status Register - Slave-only nodes must use a
register outside BIIC CSR space in which to implement a Broke bit, the
Slave-Only Status Register (SOSR). A slave-only node implements the
Broke bit in bit 12 of the SOSR which must be located at VAXBI address
bb + 100 (hex).

11.1.4 Using the BI BAD L Line

The BI BAD L line, a wired-OR signal, can be used to monitor node
self-test results. An asserted BI BAD L line indicates that a node
failed self-test. This information is useful in determining how (or
if) to start system software. The state of the line can also be used
to drive a systemwide fault indicator to alert an operator.

Transitions of the BI BAD L line are permitted for only three events:

® When BI DC LO L is deasserted. All VAXBI nocdes must then
assert the BI BAD L line.

@ When a node completes its self-test. Each VAXBI node must
deassert the BI BAD L line when it passes self-test. A node
that fails self-test must continue to assert the BI BAD L line
until BI DC LO L is asserted.

¢ When a node passes self-test but subsequently discovers an
error condition. The node should then assert the BI BAD L
line. Once so asserted, the BI BAD L line must remain
asserted until the node is initialized. The node
specification must define the error conditions that cause the
assertion of BI BAD L.

11.1.5 Self-Test Time Limits
VAXBI Primary Interface Self-Test

If the VAXBI primary interface passes its self-test, its VAXBI
registers must be functional and BI NO ARB L must be deasserted within
5 milliseconds (ms) after the deassertion of BI DC LO L. If the VAXBI
primary interface self-test fails, BI NO ARB L must be deasserted
within 500 ms after the deassertion of BI DC LO L.
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VAXBI nodes are required to complete normal self-test in 10 seconds,
regardless of how much VAXBI traffic there is. This is referred to as
the "global normal self-test time requirement." There is an analogous
global fast self-test time requirement of 250 ms.

These global self-test time requirements make it simple for the
primary processor to decide when it can examine nodes to see if they
successfully completed self-test. The node designer must somehow
allow for worst-case bus latencies for the VAXBI transactions that the
node issues during self-test to help ensure that self-test is
completed in time.

Suppose each individual node is capable of completing normal self-test
on an otherwise-idle* VAXBI bus within 9.9 seconds of the deassertion
of BI DC LO L. Then all nodes will be capable of completing normal
self-test on a fully populated VAXBI bus within 10 seconds.** The
condition in the first sentences is referred to as the "9.9 second

criterion.”

Note that the 9.9 second criterion is sufficient but not necessary.
That is, a node may fail to meet the criterion but still be capable of
satisfying the global normal self-test time requirement. However, 1if
the node fails to meet the criterion, then the designer must prove the
node satisfies the global normal self-test time requirement.

The primary processor need not conform to the 10 second 1limit, since
this limit is intended to act as a guarantee that all other nodes make
to the primary processor. The primary processor is, in this context,
the node that determines the action to be taken after self-test. A
processor that is not the primary processor must conform to the 10
second limit.

Fast Self-Test

When BI STF L 1is asserted, all nodes are required to complete
self-test within 250 ms after the deassertion of BI DC LO L,
independent of the state of BI AC LO L.

Suppose each individual node is capable of completing fast self-test
on an otherwise idle bus* within 220 ms of the deassertion of BI DC LO

*That is, with transactions generated only by the node wundergoing

self-test.

**Discussed in Application Note 4, Section 4.2.1.
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L. Then all nodes on a fully populated VAXBI bus will be able to
complete fast self-test within 250 ms (discussed in Application Note
4, Section 4.2.2).

Note that the 220 ms criterion (from the example above) is sufficient
but not necessary. That is, a node may fail to meet the criterion but
still be capable of satisfying the global fast self-test time
requirement. However, if a node fails to meet the criterion, then the
designer must prove the node satisfies the global fast self-test time
requirement.

The 250 ms requirement only applies to nodes that pass self-test.
This requirement reverts to the 10 second limit for battery-backed-up
memory nodes if the battery was discharged or not installed, or if
self-test was initiated in response to the assertion of the BI RESET L
line by a node (rather than in response to a power outage).

Extended Self-Test

If a node cannot complete adequate testing within the 10 second limit,
it can use an extended self-test (discussed in Application Note 4).

11.1.6 Using the VAXBI Bus During Self-Test

As part of its self-test, a node should perform VAXBI transactions to
verify the correct functioning of the node’s VAXBI transceivers and
data paths. Any VAXBI transactions performed are subject to the
following rules:

® Except for reads to the Broke bit, a node must not access
another node until the other node completes its self-test.

e All VAXBI transactions must be directed to I/0 space allocated
to the 1issuing node. Although the intended segment is
nodespace, the node’s node window can also be used.

e INVAL, BDCST, and RESERVED code transactions are forbidden.
Read- and write-type transactions are limited to longwords.

o IPINTR transactions cannot be sent to other nodes. If INTR or
IDENT transactions are issued, or if the HEIE or SEIE bits are
set, the Interrupt Destination Register cannot point to any
other node.

® Only dual round robin arbitration can be used.
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@ The time required by a node for VAXBI transactions 1is
restricted:

o If BI STF L is asserted, a VAXBI node should perform no
more than a combined total of 512 VAXBI and loopback
transactions.

o If BI STF L is not asserted, a VAXBI node should perform no
more than a combined total of 2048 VAXBI and loopback
transactions.

o No transaction should have more than 10 stalls; the average
number of stalls should not exceed 4 per transaction.

e Upon completion of self-test, the node must be in a
well-defined state, with no interrupts pending:

o The Device Register must be valid. The VAXBI Control and
Status Register must be valid; and the UWP, HEIE, and SEIE
bits and the ARB field must all be cleared.

o The Error Interrupt Control Register, the Interrupt
Destination Register, the IPINTR Mask Register, the
Force-Bit IPINTR/STOP Destination Register, the IPINTR
Source Register, and the User Interface Interrupt Control
Register must all be cleared.

o The Starting and Ending Address Registers must either be
cleared or set to the node’s node window space.

11.1.7 Device Type Requirements

The Device Register contains a Device Type field and a Device Revision

Bit <15> of the Device Type field 1is =zero for DIGITAL-supplied
devices, while device type codes with bit <15> set to one are reserved
for devices not supplied by DIGITAL.

Slave-only nodes will have bits <14:8> set to all zeros. These nodes
implement the Broke bit in a nodespace register, the Slave-Only Status
Register (see Section 7.16). DIGITAL-supplied slave-only nodes will
therefore have the high-order byte in the Device Type field set to all
zeros, while non-DIGITAL-supplied slave-only nodes will have bit <15>
set to one and bits <14:8> set to all zeros.

A device type code of all zeros is reserved for wuse by DIGITAL. A

device type code of all ones indicates that the Device Type field has
not yet been loaded.
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The Device Type field is either loaded with a device type at power-up
and node reset or remains all ones until written with a device type
code by the node. Once the device type is 1loaded, it must not be
changed.

The device type code at one node may be examined by another node any
time after the VAXBI primary interface passes self-test to determine
if the node is a slave-only node (that is, to determine the location
of the Broke bit). This may happen before the node completes
self-test. Therefore, at the deassertion of BI DC LO L, every node
must:

@ Allow the VAXBI primary interface to default the Device Type

field to all ones. A field of all ones indicates that the
device type has not yet been loaded,
or

e Set the Device Register so that it contains the device type
code.

Thus, if the Device Register is examined before the device type 1is
loaded, a device type code of all ones will be found. 1If this
condition persists beyond the self-test time limit, the node did not
pass self-test.

For procedures related to the assignment of device type codes to VAXBI
licensees, see Appendix G.

11.2 ERROR DETECTION AND RESPONSE

All VAXBI nodes are required to implement several forms of error
detection and error logging. These functions must be provided by the
VAXBI primary interface without support from the user interface. At
each node the VAXBI primary interface (for example, the BIIC) checks
parity, compares transmitted and received data, and performs protocol
checking. Any errors detected by the VAXBI primary interface are
logged in the Bus Error Register (BER) (see Section 7.3).

Section 11.2.1 discusses three types of error detection that are
required. Section 11.2.2 discusses conditions that will cause an

operation to abort and the sequence of an abort. Section 11.2.3
discusses how nodes should respond to exception conditions.

11.2.1 Error Detection
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11.2.1.1 Parity Checking - System integrity is enhanced through the
use of parity generation and checking during command/address and data
cycles. ODD parity is generated on the BI PO L signal 1line for the
data path signals. ODD parity is used since VAXBI parity defaults to
incorrect when all data 1lines are deasserted (this allows the
immediate notification at the receiving node that the transmitting
node has aborted and released the VAXBI bus). Masters generate parity
for:

@ Command/address data

@ Their encoded ID during imbedded arbitration cycles

@ Write-type and BDCST data

@ Master’s decoded ID during IDENT transactions
Slaves generate parity for:

# Read data cycles

® Vector data that is being returned
Masters check parity for:

® Read-type ACK data cycles and vector ACK data cycles
Slaves check parity for:

® Write-type STALL and ACK data cycles

e BDCST ACK data cycles
All nodes check parity for:

e Command/address cycles

@ Node ID on imbedded ARB cycles

e Null bus cycles
Upon detection of a parity error in the command/address cycle, nodes
should set the Command Parity Error status bit in their Bus Error
Register. 1If error interrupts are enabled, the nodes should also send
an error interrupt. Any node detecting a command/address parity error
must not allow itself to be selected by the address information.
Detection of a parity error by one of the participants of the read and
write transactions specified above <causes either a Master or Slave

Parity Error status bit to be set in the node’s Bus Error Register.
If error interrupts are enabled, the node also sends an error
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interrupt. All nodes check parity on the BI I<3:0> L lines during the
imbedded arbitration cycle of a transaction. Since data errors on the
received ID do not affect system data transfer integrity, these parity
errors must be recorded as a soft error bit (ID Parity Error) set in
the Bus Error Register. The detection of a soft error condition must
not cause the node to abort the transaction.

In the null cycle state of the bus, the BI I<3:0> L and BI D<31:0> L
lines are deasserted. Nodes determine the presence of this condition
by monitoring the BI NO ARB L and BI BSY L signals. 1If both BI NO ARB
L and BI BSY L are not asserted for two consecutive bus cycles, then
the second cycle of this sequence and all subsequent consecutive bus
cycles with BI NO ARB L and BI BSY L deasserted are defined as null
bus cycles. Null bus cycles are parity checked. If ODD parity is
detected (that is, the BI data path lines were not all deasserted),
then a null bus parity error is logged.* Hard Error Interrupts are not
generated for this error condition since system integrity has not been
compromised and disruption of system operation might be wundesirable.
A Soft Error Interrupt can be transmitted if failure statistics are to
be recorded in an error log.

11.2.1.2 Transmit Check Error Detection - Each master is required to
compare transmitted data with data received at its node during cycles
when it is the only source of data on the data path. The transaction
must be aborted if the transmitted data does not match the received
data. This check prevents data from being corrupted in the event that
a transient error causes two masters to take the bus. The detection
of a transmit check data error by the transaction master results in
the setting of the Master Transmit Check Error (MTCE) bit in the Bus
Error Register. This check must not be made during the assertion of
the master’s encoded ID on the I lines during the imbedded arbitration
cycle.

Each VAXBI master and slave is required to verify its assertion of BI
BSY L, BI NO ARB L, and BI CNF<2:0> L control lines. If a node
detects a deasserted state on one of these lines while it is expected
to be driving the signal, this is an error condition and results in
the setting of the Control Transmit Error (CTE) bit in the Bus Error
Register.

*Spurious null bus parity errors may be logged in a node’s BER as a
result of that node undergoing a node reset.
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11.2.1.3 Protocol Checking - The Bus Error Register also logs errors
that relate to th VAXBI protocol. For example, the Interlock
Sequence Error (ISE) bit is set when IRCI and UWMCI transactions are
performed out of sequence. Other BER bits are used to indicate that

the confirmation responses received are illegal.

11.2.2 VAXBI Primary Interface Abort Conditions
The VAXBI primary interface must determine when a transaction should
be aborted. As master, it must abort a bus transaction when it
detects one or more of the following:

e A RETRY command response to a single-responder command

® A NO ACK command response

® An illegal or RESERVED command or data response

A parity error on read data
® A parity error on vector data
e A transmit check error on the D, I, or P lines

As slave, the VAXBI primary interface must abort a bus transaction
when it detects one or more of the following:

®¢ A stall timeout condition
® A parity error on write-type or BDCST data

It is important that an orderly transition occurs to end the
transaction. Once a transaction has begun, it must be continued for
at least three cycles to the command confirmation cycle. 1In this way
the aborting master’s 1ID can be recognized and the reason for the
abort can be determined.

A master must abort a bus transaction by concurrently deasserting all
VAXBI signals within two bus cycles after the occurrence of the abort
condition unless the cycle following the error cycle is stalled by the
slave. In this case the master may delay its abort until two cycles
after the next non-STALL confirmation from the slave. The master must
inhibit parity checking and recognizing CNF responses from the slave
for cycles that occur after the master aborts the transaction. This
prevents secondary errors from being recorded by the master.

Pending masters may delay their assertion of BI BSY L for up to two

cycles after an aborted transaction so that the node has time to
complete the abort recovery.
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11.2.3 Response to Exception Conditions

This section describes appropriate responses of nodes to unusual
conditions on the bus, most of which indicate some sort of error.
Generally, a node can repeat a transaction if a slave 1is temporarily
unable to service the transaction or if some error condition occurred
during the transaction. However, repeating a transaction is not
appropriate in the following situations:

@ If a NO ACK confirmation code 1is received for an IDENT
transaction, the transaction should not be reissued, since NO
ACK is an acceptable response. A NO ACK confirmation code is
acceptable for an IDENT transaction because the interrupting
node may have sent the interrupt to more than one processor,
in which case all processors except the first one to respond
may receive a NO ACK confirmation.

e A write-type transaction to I/O space during which a bus error
occurred must not be repeated, since the transaction may have
caused a side effect. However, READ and RCI transactions may
be repeated, since they are required not to have any side
effects. (Read-type transactions to a UNIBUS adapter’s node
window are an exception to this statement.) (Side effects are
described in Section 8.2.3.) :

e An unsuccessful UWMCI transaction (that is, one during which a
bus error occurred, such as a parity error) must not be
repeated. The transaction may have been completed at the
slave, so if the transaction is repeated, the second UWMCI may
clear a lock that was set after the first UWMCI.

If the bus master repeats an IPINTR transaction on receiving a
RESERVED or illegal confirmation code, the slave may receive a
redundant IPINTR. (For example, a slave may have sent an ACK
response, but the ACK was corrupted and then interpreted as an illegal
CNF code). 1In this case the repetition is permissible.

If exception conditions persist and the issuing node is a processor,
the processor should signal the condition to the software if any of
the following apply:

® The limit is reached on the number of times a transaction 1is
reissued after receiving a RETRY confirmation.

e Bad parity is received.

@ An illegal confirmation code is received.
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