
Product Internationalization

Digital Technical Journal
Digital Equipment Corporation

J9�,._, C U L T U R A L .. - : ,... -------------------------------- - --- -.� I WRITTEN LANGU AGE C) l:<l >-l 1 '-"

�eJ?OnG@AL� : CHARACTER PLACEMENT � �: :�
y - DIACRITICS ttl 0 (") 1

i:<l z 0 I

"Not chaos·! ike, together crushed and brUJ.ted,

But as the world harmoniously confusc<i

\X'hcrc order in variety we sec, 1
And where, though all things differ, all ag'fc"

PRESENTATION VARIANTS

TEXT INPUT

BI - DIRECTIONAL TEXT

NATIONAL CONV ENTIONS

DATE FORMATS

TIME OF DAY FORMATS

NUMBER FORMATS

CURRENCY FORMATS

USER INTERFACE

GEOMETRY MANAGEMENT

IMAGES

SYMBOLS

OLOR

C) l:<l •tor:�
(") - i:<l I

C:: Z ttl I
t"' � (") •t-r:l >-l >-l

z z 0
>-l

I
'tr1 I

I
·� I

:z

Number 3

Summer 1993

Cover Design
Scripts, symbols, and writing directions

are elements of written communication

that are addressed by product international

ization, the featured topic in this issue. Like

engineering designs and standards for inter

nationalization, the graphic design on the

cover provides a framework that accommo

dates a rich diversity of the world's written

languages.

The cover was designed by joe Poze1ycki,jr., of

Digital's Corporate Design Group.

Editorial
Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, E ditor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Arme S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
Richard]. Hollingsworth
Alan G. Nemeth

Jeffrey H. Rudy
Stan Smits
Michael C. T hurk
Gayn B. Winters

The Digital Teclmicaljournal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/DIO, Littleton, Massachusetts 01460.
Subscriptions to thejoumal are $40.00 (non-U.S. $60) for four issues and $75.00 (non
U.S. $115) for eight issues and must be prepaid in U.S. funds. University and college
professors and Ph.D. students in the electrical engineering and computer science
fields receive complimentary subscriptions upon request. Orders, inquiries, and
address changes should be sent to the Digital Teclmicaljournal at the published-by
address. Inquiries can also be sent electronically to DTJ@CRL.DEC .COM. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1- 800-D IGITAL
(1- 800-344- 4825). Recent back issues of the journal are also available on the Internet
at gatekeeper.clec.com in the directory /pub/DEC/DECinfo/DTJ.

Digital employees may send subscription orders on the ENET to RDVAX::JOU RN AL.
Orders should include badge number, site location code, and address.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright© 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in thejoun1al is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.

ISSN 0898- 901X

Documentation Number EY-P986E-DP

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP,
COD/Plus, COD/Repository, DEC, DEC OSF/1 AXP, DEC Rclb, DECwindows, DECwrite,
Digital, the Digital logo, EDT, Open VMS, Open VMS AXP, Open VMS VAX, TeamRoute,
UURIX, VAX, VMS, and VT.
Apple is a registered trademark of Apple Cori1puter, Inc.

AT&T is a registered trademark of American Telephone and Telegraph Company.

Hewlett-Packard is a trademark of Hewlett-Packard Corporation.

fBM is a registered trademark of International Business Mad1ines Corporation.

lntel is a trademark of Intel Corporation.

Lotus 1-2-3 is a registered trademark of Lonos Development Corporation.

Microsoft, MS-DOS, and MS Windows are registered trademarks and Win32 and
Windows NT are trademarks of Microsoft Corporation.

Motif, OSF/Motif, and OSF/1 are registered trademarks and Open Software Foundation
is a trademark of Open Software Foundation, Inc.

Motorola is a registered trademark of Motorola, Inc.

PIC is a trademark of Wang Laboratories, Inc.

PostScript is a registered trademark of Adobe Systems Inc.

U nicode is a trademark of Unicode, Inc.

UNIX is a registered trademark of UNIX System Laboratories, lnc.

X Window System is a trademark of the Massachusetts Institute of Technology.

X/Open is a trademark of X/Open Company Limited.

Book production was clone by Quantic Communications, lnc.

I Contents

6 Foreword
Claude Henri Pesquet

8 IntertUttional Cultural Differences in Software
Timothy G. Greenwood

21 Unicode: A Universal Character Code
)tirgcn Settels and f Avery Bishop

32 The X/ Open Internationalization Model
Wendy Rannenberg and]Urgen Bettels

43 The Ordering of Universal Character Strirzgs
Rene Haentjens

53 International Distributed Systems
Architectural and Practical Issues
Gayn B. Winters

63 Supporting the Chinese, japanese, and Korean
Languages in the OpenVMS Operating System
Michael M . T. Yau

80 Character Internationalization in Databases:
A Case Study
Hirotaka Yoshioka and)im Melton

Product Internationalization

97 japanese Input Method Independent of ApplicatiollS
Takahide Honma, Hiroyoshi Baba, and Kuniaki Tak izawa

I Editor's Introduction

Jane C. Blake
Managing Editor

1 I

Engineering products for international markers is a
multifaceted undertaking, as it entails the adaptation
of computer technology to the unique ami varied
ways cultures communicate in written languages.
Papers in this issue describe some of the cultural
and teclmological challenges to software engineers
and their responses. Topics include conventions of
culture and language, internationalization stan
dards, and design of products for local markets.

Product internationalization begins with identi
fying the cultural elements and user expectations

that the software must accommodate. Tim
Greenwood has written a tutorial that provides
insight into the cultural differences and the com
plexities of written languages as they relate to prod
uct development. Among the topics he discusses
are scripts and orthography, writing directions, key
board input methods, conventions for values such
as time, and user interfaces.

As a counterpoint to the complexity of languages
and cultures, industry engineers and organizations
have developed standards that lend simplicity and
uniformity. Unicode, described here by Ji.irgen
Bertels and Avery Bishop, is a significant interna
tionalization standard that accommodates many
more complex character sets than does 8-bit ASCI!;
software produced using Unicode character encod
ing can be localized for any language. The authors
discuss the principles behind the 16-bit encoding

scheme and considerations for application pro
cessing of Unicode text. T hey conclude with
approaches for the support of Unicode and refer
ence the Microsoft Windows NT implementation.

Wendy Rannenberg and Jiirgen Bertels have writ
ten a paper on another important standard, the
X/Open internationalization modeL X/Open sup
ports multibyte code sets ami provides a compre
hensive set of application interfaces. T he authors

2

examine benefits and limitations of the standard,
referencing Digital's DEC OSF/1 AXP implementation,
and close with proposed changes to the model.

Rene Haentjens' paper is not about a standard per
se but about the ways in which various cultures
order words and names and the methods used in
computers to emulate this ordering. He examines
the table-driven multilevel method for ordering uni
versal character strings, its variations and its draw
backs. The implications of Unicode relative to
ordering are also considered.

T he development and adaptation of software for
use in local markets is the common theme of three
papers. Gayn Winters identifies several program
ming practices for the development of distributed
systems and discusses the benefits of moclu larity in
systems and in run-time libraries to reduce reengi
neering effort and costs. However, as Michael Yau
notes in his paper, reengineering is necessary for
systems designed when English was the only lan
guage supported in computer systems. Michael pre
sents an overview of the engineering challenges
encountered and resolved in the creation of local
variants of the OpenVMS operating system to sup
port the Japanese, Chinese, and Korean languages.
A third paper, written by Hiro Yoshioka and Jim
Melton, provides a case study of a coengineering
project, i.e., a project in which engineers from the
local environment (or market) join in the product
development. The case references the internation
alization of the DEC Rdb database (specifically for
Asian markets) utilizing an SQL standard.

The concluding paper focuses on software
designed to facilitate .Japanese keyboard input and to
reduce reengineering/localization effort. Takahide
Honma, Hiroyoshi Baba, and Kuniaki Takizawa
review the methods of Japanese keyboard input
and then describe a three-layer, application
independent software implementation that is
embedded in the operating system and offers users
flexibility in the choice of an input operation.

The editors are grateful to Tim Greenwood, an
architect of Unicode currently working in the
Software Development Tools Group, for his help in
coordinating the development of papers and to
Gayn Winters, Corporate Consulting Engineer.

Note to Internet Users: Recent back issues of
the D1J are now available in ASCII and PostScript for
mats on gatekeeper.dec.com in the /pub/DEC/
DECinfo/DTJ directory.

Biographies

Hiroyoshi Baba Hiroyoshi Baba is an engineer in the Japanese Input Method

Group in Digitaljapan, Research and Development Center. He is currently devel

oping the japanese front-end input system on OpenVMS VAX and OpenVMS AXP

and the Japanese language conversion server system. He received a B.S.

(1989) and an M.S. (1991) in electronics engineering from Muroran Institute of

Technology, Japan. He joined Digital in April 1991 .

Ji.irgen Settels Ji.irgen Bettels is an internationalization architect and the stan

dards manager for the International Systems Engineering Group. Since 1986, he

has worked on many internationalization architectures starting with DECwindows.

He participated in the Unicode consortium, ECMA, and X/Open on internation

alization. He contributed to the IS O/IEC WG2/SC2, whose work m<.:rged Unicode

and ISO 10646 into a single universal character encoding. Prior to joining Digital,

he was a physicist at the European particle laboratory, CERN.)i.irgen has the

degree of Diplom Physiker (physicist) from the University of Aachen.

F. Avery Bishop Avery Bishop is the program manager for Windows NT/Alpha

internationalization. Prior to this position, he worked in ISE as Digital's represen

tative to the Unicode consortium and the ANSI X3L2 technical advisory group on

character encoding. He worked with IS O/IEC WG2/SC2, Unicode, and others in

Digital to merge Unicode and IS O 10646 into a single universal character encod

ing. Prior to that, he managed projects at DECwest and worked as the product

management manager for ISE in Japan. Avery has a Ph.D. in electrical engineering

from the University of Utah.

Timothy G. Greenwood Since 1981, Tim Greenwood has held various posi

tions relat<.:d to internationalization at Digital. He was the architect for the

Japanese and Chinese versions of DECwindows. This software introduced the

compound string technology that was incorporated into Motif. Tim conceived

of, managed, and wrote much of the software section of the internal version of

the handbook on Producing International Products. He also participat<.:d in the

d<.:sign of international support on the X Window System. Tim is curr<.:ntly

responsible for guiding the introduction of Unicode into Digital.

I

3

Biographies

4

Rene H aentjens Rene Haentjens is a software consultant working for both

Digital Consulting Rclgium and Corporate Standards and Consortia. lie was the

Belgian local engineering manager for two years. Today, Rene is a member of the

Belgian, the European (CEN), and the ISO committees on character sels and inter

nationalization. He contributed significantly to the ISO/IEC 10646-1: 1993 stan

dard. He has a civil engineering degree (chemistry) from the University of Ghent

and has contributed to publications on compiler portability, on software engi

neering, and on developing international software and user information.

Takahide Honma A senior software engineer, Takahide Honma leads the

Japanese Input Method Group. He joined Digital in 1985 as a soft ware service

engineer. He has worked on systems such as real-time drivers, network system

(PS.I.), and database on VMS and was a consultant to customers. At the same time ,

he also took the role of a sales advisory support engineer. Since 1990, he has

been with Research and Development in Japan and has worked on the Japanese

input method. He has an lvi.S. (1983) in high-energy physics from Kyoto

University and is a member of the Physics Society of Japan.

Jim Melton A consulting engineer with Database Systems. Jim Melton repre

sents Digital to the ANSI X:1H2 Technical Committee for Database. He represents

the United States to the ISO/IECJTC1/SC21/\XIG3 Working Group for Database. He

edited the SQL-92 standard and continues to edit the emerging SQL3 standard.

Jim also represents Digital to the X/Open Data Management Working Group and

to the SQL Access Group. Jim is the author of Understanding the New SQL:

A Complete Guide, published in 1992, and is a regular columnist (SQL (pdate)

for Database Prugramming & Design.

Wendy Rannenberg Principal software engineer Wendy Rannenberg man

ages the UNIX Software Group's internationalization team. She is responsible for

the delivery of Digital's internationalization technology on both the ULTRIX and

the DEC OSF/1 AXP platforms. Prior to joining Digital in 1988, she held engineer

ing positions with Lockheed Sanders Associates and the Naval Underwatt:r

Systems Center. Wendy holds a B.S. (1980) in engineering from the University of

Connecticut at Storrs and is a member of !FEE, SWE, and ACvl. She has written

or contributed to numerous technical pub! ications.

Kuniaki Takizawa Kuniaki Takizawa is an engineer with Digital Japan,

Research and Development Center and is a member of the japanese Input

Method Group. 1 Ie joined Digital in April 1991 and is currently developing and

porting the henkan module and the input method library (IMLIB) on OpenVMS,

UITRIX, and OSF/1. Ik graduated from the University of Electronic Communi

cations (Denki-Tsushin (jniversity) in Japan in 1991. His speciality area was the

structure of opera ling sysLems.

,

Gayn B. Winters Corporate consulting engineer Gayn Winters has 25 years'

experience developing compilers, operating systems, distributed systems, and

PC software and hardware. He joined D igital in 1984 and managed the DECmate,

Rainbow, VAXmate, and PC i ntegration architecture. He was appointed Technical

Director for Software in 1989 and contributes to the Corporate software strat

egy. From 1990 to 1992, Gayn led the international ization systems architecture

effort and is on the Board of Directors for Unicode, Inc. He has a B.S. from the

University of California at Berkeley and a Ph .D. from MIT.

Michael M. T. Yau Michael Yau is a principal software engineer in the

International Systems Engineering Group. S ince 1984, he has worked on Asian

language support in the OpenVMS operating system. He led and m anaged the

development team in Hong Kong from 1986 to 1991. Currently, he provides archi

tecture and product i nternationalization support to U.S. engineering groups.

Prior to joining Digital , Michael worked for GEC Marcon i Avionics (U.K.). Michael

holds a B.Sc. (Hons) in mathematics and an M .Sc. in communication engineering

from the Imperial Col lege of Science and Technology, University of London.

Hirotaka Yoshioka A senior software engineer in the International Software

Engineering Group, Hiro Yoshioka is the project leader of the COD/Repository/

Japanese. He is a member of the international ization special com mit tee of ITSCJ
(Information Technology Standards Commission of Japan) and ISO/IEC JTC1

SC22,1\.\1(;2Q international ization. During the past nine years, he has designed and

implemented the Japanese COBOL, the Japanese COBOL generator, and the inter

nationalized DEC Rdb. Hiro joined Digital in 1984, after receiving an M.S. in engi

neering from Keio University, Yokohama.

I

5

Foreword

Claude Henri Pesquet
Engineering Group Manager,

International Systems

Engineering

In the late 1970s, Digit al began to ship its first office
products outside the u.S. We real i zed then that it
was n o longer an option to provide users with the
abil ity to input, view, edit, and print foreign lan
guage text; it was instead a necessity, as wel l as a
passport for Digital into world markets.

The foreign-language requ irement came as a
shock to the appl icati on developers who had been

trained in the late 1960s, at a time when the U.S.
English-speaking market represented more than 70
p ercent of the total worldwide information tech
nology market. Toclay's real i ty is quite different.
The Engl ish-speaking IT market is below 40 per
cent, and trends ind icate that it will continue to
decline. This is not surprising, because only 8.41
percent of the world's population is native Engl ish
speaking. Moreover, each year the com moditization
of computers lowers the entry point for the acquisi
tion of computer products; consequently the mar
ket is expanding to encompass a much broader
socioeconomic com munity. Further, starting in the
1980s, the creation of gl obal markets-for labor,
materials, intel lectual talent, financing, and d istri
bution channels-has forced businesses to continu
al ly reach ou tside their domestic markets.
Government mandates also have an i mpact, requ ir
ing that products sold within country boundaries
have l.ocal-language capability. Together these fac
tors wilJ increase the demand for and requirements
of international products-products that wil l pro
vide users with linguistic choices.

In recent years, Digital has broadened its market
focus to include not only the scientific/technical,
mainly English-speaking markets, but also com
mercial markets-a large market comprising many

6

languages. To serve these markets wel l, we are com
pel led to adopt a strategy for the international iza
ti on'' of our products.

The strategy, i.e . , to devdop products that
"speak" the local language, has evolved from a fas
tidious reengineering of a product after the fact to
an architectural definition that ensures products
;m: designed origina l ly to meet local-language
requirements. Digital had three goals:

• Reduce development costs.

• Shorten the time to market.

• Increase product qual i ty.

The cost of reengineering prod ucts that were
designed based upon a North American paradigm is
similar to the cost of maintaining an application
that was designed without regard to future main
tenance. Such costs cou ld meet, if not exceed, the
original prod uct development cost. This was dis
couraging, because the markers outside the U.S.
were smaller and emerging; producing the local
product compared in cost to producing the original
U.S. product. It became obvious that it was too
expensive to continually rebuild products that sold
only to a small market.

Local-language products were late to market
when compared with ava i l abi l ity of the.: same prod
ucts in the LS. This presented a twofold problem. It
den ied our m u l tinati onal customers the capabil ity
of insta l ling products and applications s imul
taneously in their worldwide operations. Further,
prod uct launches, training, sell ing, support, and
retirement had to be addressed one country at a
rime because specific local-language components
were not availabl e s imul taneously.

In add ressing short-term "surface" issues, we had
utilized the brute force of reengineering to pro
duce one language version at a time. As a result, we
delayed addressing the "deep" qual ity issue of origi
nal ly designing and building into our products the
international ization features that would a l low for
easy adaptation to any language wi thollt modifica
tion of a product's core.

A vision on how to address the internationaliza
tion of prod ucts was developed by a worldwide
team of architects led by Gayn Winters. The m ajor
ity of this team was located outside the u.s. and had

• Th<: term internationalization as it is used within the context

ofthisjourna/ include; hotll rile technologiL·s and the pro

cesses applied to enable a product to meer rile need of any

local-language marker wirhour requiring modification of the
hase functionality of rhe producr.

been closely involved in Digital's reengineering
efforts for many years. The team's prime motivation
was to eliminate the need for reengineering. The
vision they developed is one in which all Digital
integrated systems can process electronic informa
tion containing multiple languages and character
sets, and can satisfy end-user linguistic preferences.
An inherent part of this vision is to make all systems
available simultaneously worldwide.

One of the major difficulties in implementing the
vision was that internationalization was not aimed
at specific products, rather it was a pervasive
attribute required across systems. For product
development groups trained to develop compo
nents, this represented a difficult change in mind
set. The implementation also required a huge

paradigm shift-

From one character
and . . .

One input method
One cell
One collation point
One geometry
Alphabet
"Frozen" alphabet

To one character
and . ..

Many input methods
Multiple cells
Several collation points

Many geometries
Ideograms
User-defined characters

The paradigm shift led to a redefinition of the
elements to be incorporated in the basic design
of new products. The strategy from a product
perspective was to start with the base system
(CPU, peripherals, network, and operating system),
and then move to the application side. From an

I
engineering-resource perspective, we would start
with parallel internationalization development,
and then inject internationalization expertise into
the original product development group. The strat
egy from a process perspective was to customize
code for specific countries. and then roll back the
country-specific code into the original product
code base and continue future development from
this unique code base. The implementation has
resulted in major achievements, for example, the
simultaneous shipment of products to which this

approach was applied.
To illustrate our progress, the latest version of

Rdb (relational database application) was devel
oped with the injection of internationalization
expertise. The approach resulted in one common
code base and achieved worldwide simultaneous
shipment.

Many challenges remain. Standards have to be
defined and implemented in areas such as naming
conventions. user profiles, and character attributes.
Emerging technologies such as object-oriented soft
ware and multimedia need to be addressed. And
real-time multilinguality (the simultaneous transla
tion from one language to another) must be tackled.

This issue of the journal provides a broad sam
pling of our product internationalization efforts
from the concept of cultural differences to the
specific internationalization of our Rdb product.
The papers herein represent only a few of the hun
dreds of projects dedicated to the internationaliza
tion of Digital's products.

7

Timothy G. Greenwood I

International Cultural
Di.fferences in Software

Throughout the world, computer users approach a computer system with a specific
set of cultural requirements. In all cultures, they expect computer systems to accom
modate their needs. A major part of interaction with computers occurs through
written language. Cultural requirements, particularly written languages, influ
ence the way computer systems must operate. Cultural differences concerning
national conventions for tbe presentation of date, time, and number and user inter

face design for the components of images, color, sound, and the overall layout of
the screen also affect the development of computer technology Successful computer
systems must respond to tbe multicultural needs of users.

Not chaos-like, together crushed and bruised,
But, as the world harmonious!)' confuscd:
Where order in variety we scc,
And where, though all things differ, all agree.

- Alcxander Pope

I n the first years of the computer age, users adapted
themselves to the requirements of the compu ter.
They had to learn the language of the machine to

interact with it. Now the compu ter is part of daily
l ife , a tool to complete a task. Computer systems
must be adapted to the needs of their users.
Compu ter users approach a compu ter system with
a specific set of cultural requirements. Successful
systems respond to these requirements.

International Adaptation of
Computer Systems

Each nation has developed its own cu lture, and
some areas of the world share a cu ltural back
grou nd. Adaptation of compu ter systems to d iffer
ent cu ltures u ses processes known as localization
and internationalization.

Localization is the process of changing produ cts
to suit users from different cu ltural backgrounds.
Local ization is a chieved by taking the sou rce code
for a product developed for one cou ntry and modify
ing the source code and product to satisfy the needs
of other countries. Often teams of developers in dif
ferent countries are needed to adapt products. If
the origina l product is not built with a view toward
being loca l ized , this can be a very expensive and
time-consu ming process. There is the direct cost of

8

multiple development teams mod ifying the source
code of the original product. This process a lso pro
duces mu ltiple code bases, which makes fu ture
development and maintenance more complex .

Bui lding software that can b e localized with min
imal software changes is cal led internationaliza
tion, often abbreviated to 118N (the letter I fol lowed
by 18 letters and the letter N) . The basis of interna
tionalization is to identify those cu l tu ral elements
that the software must accom modate and to sim
plify the task of adapting the product. This paper
describes a set of these cultural elements. The
remainder of this issue of the Digital Technical

journal details specific aspects of building i nterna
tional software.

Cultural Differences

Language is the most obvious cu l tu ral difference
among people. Written l anguage is an important
method of comm unication with computers. This
paper examines written l anguages and their repre
sentation in computer systems. It also presents cul
tural differences concerning national conventions
for the presentation of date, time, and number and
user interface design for the components of images,
color, sou nd, and the overal l layout of the screen.
The base functions of a product may change in
response to d ifferent needs arou nd the world , and
some examples of these differences are i l lustrated .
Final ly, with a look to the future, the paper presents
deeper cu ltural d ifferences that are only beginning
to be represented in software.

V!Ji. 5 No . .3 Summer 1993 Digital Techuica/ journal

Written Language

The written representation of spoken language
requires a script and an orthography. The script is
the set of symbols that represents the sound or
meaning of components of the language. The
orthography consists of the rules of spel l ing and
pronunciation. Specific spell ing and pronunciation
ru les may differ among locations or communities;
for example, the American Engl ish orthography dif
fers from the British Engl ish orthography. A script
may be tied to a specific language, for example,
Korean Hangu l , but frequently a script can repre
sent several languages. French and Ital ian both use
the Latin script.

A written language may be broad ly categorized
into either an ideographic, a syllabic, or an alpha
betic writing system. The category is determined
by examining the relation between the symbols
in the script and the unit of sound or meaning
represented.

In writing systems based on ideograms, every
symbol has a specific meaning that is not related to
its pronu nciation. The ideograms i mported from
Chinese, and used in Chinese, Japanese, and Sou th
Korean writ ing provide examples in current use . 1
Thus A represents a man or person, even though
it is pronounced ren in Chinese, zin in Japanese,
and in in Korean2 "3" represents "three" even
though it is pronounced tatu in Swahil i and trwa in
French. Ideographic writing systems typical ly con
tain several thousand d iscrete symbols with a sub
set of approximately 2,000 symbols in frequent use.
The users of this writing system continu e to
develop new symbols.

In the syl labic writing systems, each symbol
represents a syl lable. 7 in Japanese katakana

clenotes the ma sound. There is a wide variation in
the number of d iscrete symbols in a syl labic sys
tem. Japanese kana uses some 47 symbols; the
writing of the Yi people (a minority nationality
scattered through provinces in Southwest China)
uses a standardized syllabary of 819 symbols.1

In alphabetic systems, each symbol or letter
approximately matches a phoneme (the smallest
unit of speech distingu ishing meaning). Thus M

in Latin script, ?J in Hebrew, and lf in Armenian
denote them sound. Most alphabets have from 30
to 50 discrete letters.·1 The match between
phonemes and letters is not exact, especial ly i n
English, which has about 40 phonemes.> Some
phonemes are represented by letter sequences,
such illi the th in thank.

Digital TecbllicalJounwl Vol. 5 No.3 Su111mer 1')')3

International Culturctl Dtfferences in Software

No written language uses a pure set of either
a lphabetic, syl labic, or ideographic symbols; each
does use one set of symbols predom inantly. The
Latin script is primarily alphabetic, but numerals

and certain signs such as & are i deograms-'• Other
languagcs use a more even mix. South Korean com
bines the native Hangul alphabet with Hanja, the
Korcan name for their ideographic characters.
Japanesc combines the katakana and hiragana syl
labaries (col lectively cal led kana) with the ideo
graphic characters called kanji in Japanese. Written
Japanese, especially technical and advertising mate
rial, also often uses the Latin alphabet, called romaji.

Character Placement In most European lan
guages, basic symbols are written in a l inear stream
with each character placed on a baseline. In other
writing systems, for example, Korean Hangu l , the
elements do not follow this I in ear layout. Rather
than evolving piecemeal l ike most writing systems,
Hangul is the result of del iberate, I inguistical ly
informed planning. It has been ca lled " . . . probably
the most remarkable writing system ever invented ."7
Korean uses an alphabet of 14 consonants and 10
vowels. These letters, cal ledjamo, are blocked into
syllable clusters. If the same technique were applied
to Engli sh , cat m ight be written c;._ Figure I shows
the Korean Hangu l alphabet, and Figure 2 shows
the jamo blockcd into syllable clusters.

Thai also uses an alphabet and is written with the
symbols arranged in a nonl inear fashion. Thai is a
tonal language; different tones d istingu ish words
that would otherwise be homonyms. Thai words
consist of consonants, vowels, and tone marks.
Each component is an atomic u nit of the language.
A vowel is written in front of, above, below, or
behind the consonant to which it refers. A tone
mark, if present, is u sual ly placed above the conso
nant or above the upper voweL Thai potentially has
symbols at four levels, as shown in Figure 3. Level

CONSONANTS

VOWELS

7t-t:-C.P l:I.A
O A.;i:;7E-JI-<5"

Figure 1 Korean Hangul Conwmant ana

Vowel Signs

Product Internationalization

ol ::<J-.::<1 :: 2�jl� _.� ..<a , "'\-% ") >l.J"-"J<i-J: c.t . ol ::<J-.::<1� %� J<cl "'� 7-1 ��9 . 2-�.:J.� tJJ-tH· 7�� �
tJJ-�l -.5�71 �tH ;�i) ::<J� FCC Rules, Part 15. Subpart]9-\- -'1:!-�� Class A 7J iPa1 ::<J-.::<)ol) ell � �� �
.A�l5J-%- r�tiJ� �ol oJ �5-l�c.t . �7-1 7.1 0�01\"'� oj 7J-:Xj � "-l-%i5�<B_ . :>:J :;t� tJJ-"6\1 7} >l.J".<� "'{£ 4- -u�

ooj, .:Lei � .?J �<>ll .A\-%.;>;)-C fiJA tJJ-"6\j� ;>1) 7-j t>� c�) 51J.R.� �;;.J � � tH o): �q .

Figure 2 Korean Hangul Text Showing Blocking of jamo

LEVEL 1 . TONE MARK 9J
LEVEL 2. VOWEL
LEVEL 3. CONSONANT OR VOWEL

LEVEL 4. VOWEL

Figure 3

one is an optional tone mark. Level two is an

optional vowel. Level three is either a consonant or
a vowel preceding or following a consonant. Level
four is another optional vowel. A consonant never
has a vowel at both level two and level four.

Some level-three consonants have part of their
glyph images rendered in another level. T hey either
dip into level four or rise into level two. The last let
ter (yo ying) in Figure 3 is a level-three consonant,
but it has a small (separate) portion written below
the baseline. When this Jetter is written, this small
portion is written at level four. When this letter is
followed by a true level-four vowel, the vowel is
shown instead of this portion.

In Figure 3, both tone marks are shown at level
one to aid understanding of the script. In high
quality printing of Thai, if a cell does not have a
level-two vowel, then the tone mark falls clown to

1 GU
\Q.I

Thai Script

be positioned directly above the consonant; how
ever, it is also currently acceptable for all tone
marks to be physically positioned at level one. Thai
mechanical typewriters position all tone marks at
level one.

Diacritics and Vowels In Arabic and Hebrew
alphabets, vowels are indicated by placing vowel
points above, below, or beside the letter. (Arabic
also uses the consonant letters alij; ya, and wauJ to
represent the long vowels a, i, and u.) Vowels are
normally used only in religious text ami in teaching
materials for people learning to read the language;
in other texts, vowels are inferred by the reader.
Since vowel points are used, written Hebrew with
vowels is called pointed. Figure 4 shows pointed
Hebrew from a children 's comic and the same text
with the vowels removed.

C'1i1it • T •: . . - . .

1'9� c� ,� .?�s� C�l? N.,, .?�·Q'? l"lN�? PWIJJ;10 �'i?�l'!?'?
.:1-1!l/?tFJ nT! c� P1 ,���� ,-,�

·l117 K�� N�il l:t1

v,,, :l':lN : Cl1l"l f'�Nil C'1iln c �� �
l'C?J CK ,:J , 71'� Cl"lC N ?1 . ?1'�? l"lN�; jilt' nl"l;-t 1'f'1l'!J?

.:-l�llmil l"l11 C3.' J', 1�l,lt' 11N
111? N:lr, N1il 1::11

Figure 4 Pointed and Unpainted Hebrew

1 0 Vul. 5 No. J Summe-r 199.> Digital Tecbnical]ournal

Other Symbols Most languages written with Latin
letters have cJ iacritica l marks on some letters. I n
some cases, the u s e of a d iacritic provides a stress
or pronunciation gu idel i ne, as in the Engl ish word
cooperate. Removing the d iacritic docs not change
the meaning of the word . In other l anguages, a mark
that appears to be a d iacritic is a fu ndamental part
of the l etter. The Danish let ter a is a separate letter
in the alphabet and is not a variant of a. In German,
three vowe l s have um lauts and are separate letters
in the alphabet. The deletion of an umlaut can
change the definition of a word; for example,
schwiil means hot or humid, and schwul means
homosexual.

Presentation Variants The characters in the
Arabic writing systems change form, depending on
whether they are the first, last, or m iddle character
of a word , or if they stand alone. Note that the
abstract characters themselves do not c hange, only
the glyph image . Figure 5, adapted from Nakanishi,
shows the presentation variants of Arabic letters.t�

Writing Direction

In Engl ish and many other writing systems, the let
ters are written from left to right, with l ines pro
gressing from top to bottom. Japanese, Chinese,
and Korean may also be written in this form but are
traditionally written vertical ly. The characters flow
from the top of the page to the bottom, with l i nes
advancing from right to left. The pages are ordered
in the opposite direction to that used for English.
Mongol ian is a lso written vertical ly, but the
colu mns of text advance from left to right.
Consequently, pages of Mongol ian text are ordered
in the same directi on as in Engl ish.

Figure 6 shows a portion of a newspaper printed
in Taiwan. The newspaper exhi bits many styles of
format. Head l i nes may run horizontally from right
to left, or left to right; the text of the article may r u n
vertica l ly; a n d advertisements a n d tables m a y r u n
horizontally from left to right.

In Japanese writing, Latin characters (romaji)

are interspersed with vertical kanji (Han script)
characters. Romaji may be presented with each
character in a horizontal orientation run ning verti
cally down , or they may be presented vertical ly,
with each character rotated by 90 degrees. In addi
tion, if one, two, or three Lati n characters are
mixed with vertical Han script characters, they may
be presented horizontal ly in the vertical stream.
Figure 7 shows mixed characters in a .Japanese text.

Digital Tec1J11ica/]ounwl V,,f. 5 .Vo. 3 Su/11/ller 199.3

International Cultural Differences in Software

INDEPEN-
DENT I N ITIAL MEDIAL FINAL PHONETIC
FORM FORM FORM FORM VALUE

I l a

....... "'! -:- b

.,;.., ; ;. �

..::..., . !. . j

<: .:>:- .:>s. � j

c. � ,.._ C: X

c. :>- ,.._ C: kh

:;, ...1.. d

:;, .i dh

J .)" r

J .)" z

..rr s
• • • .

sh ..rr

v-" ..p ..a. .;A s

v-" ..p ..a. ...,.a. d

.b 1 .6. h

b 1 1. .Ia. z

t. .&- .A. t {']

t. j; ;.. t gh

� j A. 1.-.<1. f
!,.) _; A. ...,. q
!.I s � -.!1 k

J J 1 J
i .. -4. t m

0 � .:. ,J n

It> + h

J J .J" w,u

..s -:- I.S '-:f y,i

NUMERALS Arabic figures are written from right
to left, but the figure written to the left shows the
higher value: rr 23

y r t 0 i v A 4,
2 3 4 5 6 7 8 9 0

Figure 5 Arabic Presentation Forms

1 1

Product Internat ionalizat ion

1 2

NUMBER AND PERCENT READ LEFT TO RIGHT TEXT READS RIGHT TO LEFT

TEXT READS LEFT TO RIGHT MAIN CONTENTS TEXT READS VERTICALLY
TOP TO BOTTOM, COLU MNS ADVANCING
RIGHT TO LEFT

Hgure 6 Taiwanese Newspaper

PARENTHESIS ROTATED IN
VERTICAL TEXT

ARABIC NUMBERS
PRESENTED HORIZONTALLY

Figure 7 japanese Text Sbotl'ing Latin Characters iVlixert with Kanji

"'''· 5 No. 3 Summer IY'J.� Digitttl Technical journal

Semitic language scripts (e.g., Hebrew and
Arabic) are written horizontally from right to left,
with lines advancing from top to bottom, but any
numbers using Arabic n u merals are written left to
right.9 Any fragments of text written in the Latin
script are also presented left to right. This method
leads to nesting segments of reversed writing direc
tion as shown in Figure 8. T he text in this figure
reads "Attention : Kalanit (1984) Tel-Aviv, ISRAEL;"
where " K alanit (1984)'' is a company name. Figure 9
is another example of combining left-to-right and
right-to-left text. It shows a portion of the contents
page from the EL AL airline magazine.

Text Input

The following section discusses techniques for
addressing cultural differences in computer key
board input.

Alphabetic writing systems typically have no
more than 50 discrete symbols. Computer key
boards contain approximately 48 keys with sym
bols from the writing system inscribed. The
depression of a key produces a code from the key
board that is translated into a character coding
according to some predefined coding. Input of a
character not represented directly on the keyboard
requires depression of several keys. For example, in
terminals from Digital, the a character is input on
non-German keyboards by pressing "Compose s s" .

International Cultural Differences in Software

Latin keyboards typically have two possible charac
ters available from each alphabetic key: lowercase
letters are displayed by depressing the key alone,

and uppercase letters are produced by depressing a

shift modifier or a locking shift and the letter key.
Some keyboards have four levels, with three or

four characters available from each key. Figure 10

shows the Arabic keyboard from Digital and the
Khmer keyboard from Apple Computer. T he user
switches into the additional two groups of charac
ters with an additional modifier or shift key. Note
that the Arabic keyboard uses the additional group
to support Latin characters as well as Arabic, but
the Khmer keyboard uses all four grou ps for the
Khmer characters only. 10 A four-group keyboard is
now a national standard in Germany. 11

T he katakana and hiragana syllabaries have
approximately 50 characters each. These can be
input either directly from the keyboard or through
a mapping of the syllable typed with the phoneti
cally equivalent Latin characters. For example, the
character ? (ma) can be input either by typing
the ? key on a Japanese keyboard, or by typing
m and a and using an input method to convert to

?
Although some early keyboards had many ranks

of i ndividual keys, input of ideographic characters
from modern keyboards always requires a multiple
stroke input method, with some user interaction.

Attention: :l�:lN -,n (1984) n'l'� ,ISRAEL
LEFT TO RIGHT RIGHT-TO-LEFT SEGMENT LEFT TO RIGHT

�

�

�

46

48

52

...
(1 984) IS A LEFT-TO-RIGHT
SEGMENT NESTED IN A
R IGHT-TO-LEFT SEGMENT

Figure 8 Nested Bidirectional Text

EL AL News

EL AL Route Maps

EL AL Services

,, � JWL11n

,, � - 0'::1 'J'Il J'l,!)�

,, � 'J'I,,'t.l

Figure 9 Combined Direction Te.x:t

Digital Technical jourual Vol. 5 No. 3 Slllll/1/er I'J'J.i

46

48

so

<ill

<ill

<ill

1 3

Product Internationalization

Figure 10 Arabic Keyboard (above) and Khmer Keyboard

Both Japanese and Korean have phonetic writing
systems. sers of these languages primari ly use

phonetic methods to input ideographic characters.
The Chinese-language user has many different

input methods; these are based on phonetic i nput

or on strokes or shapes in t he character. Almost all
of these methods display a l ist of possible candi

dates as a resul t of the string input, and the user
selects the appropriate candidate . The implementa

tion of Japanese input methods is detai led in a sepa
rate paper in this issue of the]ournal. '2

Bidirectional Text

Hebrew and Arabic user i nterfaces have an addi
tional level of difficulty As discussed earlier, the
text is bidirectional; the primary writing direction

PARKING NO

1 700 _ 0900

(THE HOURS) BETWEEN

progresses from right ro left and includes left
to-right segments of numbers and non-Hebrew or

non-Arabic text. As shown in Figure 8, these seg
ments can nest. The order in which to read bidirec

t ional text can be am biguous and can depend on
the semantics of the text. Figure 1 1 dupl icates the
information on a pair of signs displayed at parking
lots in Tel-Aviv. Urban legend has it that at least one

parking ticket was dismissed by the court on the
argument that the sign indicated that parking was
not al lowed from 5 :00 p .m. to 9:00 a .m.

To some extent the correct direction can be

assigned automatical ly. Hebrew and Arabic charac

ters have an impl icit direction of right to left, and
Latin text has an imp I icit left-to-right direction. Thus
an output method can Jay out simple combinations

0900 _ 1700

Figure 11 "No Parking" Signs in Tel-Aviu

1 4 Vol. 5 No. 3 St.II/111/Cr 1993 D igital Techt1ical]ourllal

of bidirectional text correctly. Beyond these char
acters, direction can be ambiguous. Punctuation
marks are common to both Hebrew and Latin text.
T hus a period or comma or space has no implicit
direction; the software must wait for the next char
acter to determine the direction of the segment. In
more complex cases such as the nested directions
shown in Figure 8, direction attributes must be
explicitly assigned to the segments. 13 As discussed
in the paper on Unicode in this issue, the Unicode
and ISO 10646 characters sets do include a rich set
of directional markers. 14

Insertion of text should be performed in the way
the user finds most convenient, which is not neces

sarily in accordance with the "correct" directional
order of a segment. lf entering a two-digit number
in the "common" direction requires too many oper
ations, or if the user was trained on a manual type
writer, most users would use the easiest typing
order, i.e., entering the least -significant digit first
and the most-significant digit second. "Smart" soft
ware, which puts the digits in the supposedly cor
rect order, is not doing this user a service.

National Conventions

Various entities such as date, time, and numeric val
ues can be presented differently. Such presentation
differences develop both from national and from
personal or company styles. These presentation
differences are not only tied to different writing sys
tems. For example, dates are presented differently
in the United States and in England.

Date Formats

The ninth day of October 1990 is written 9/10/90 in
Europe but 10/9/90 in the United States. The order
of the day and month numerals is well defined for a
particular culture, but there are no overall formats
for the separator used, or indeed for the general
style. The separator may be a slash, hyphen, colon,
space, or another symbol, according to policy or
personal preference. The style may be numeric
date as shown or the name of the month may be
spelled out, and the year may be two or four digits.

Tn Japan, dates are based on the reign of the
emperor. As shown in Figure 12, 1990 was the sec
ond year of Heisei, the reign of the current
emperor. (The first and last years of two eras may
coincide. Showa, the previous era, ended January 7,
1989, and Heisei started on January 8, 1989.) This
date format is routinely used in business in Japan.
The Western date formats are also used, so a date

Digital Technical journal Mil. 5 Nu. 3 Summer 1993

International Cultural Differences in Software

HEISEl 2 YEAR 1 0 MONTH 9 DAY

Figure 12 japanese Date Format

parsing program should be able to process both
formats.

Time-ofday Formats

Similarly, time-of-day formats vary according to per
sonal and, to some extent, national preference.
Possible time formats include

9.15am 09:15 0915 09:15 :36 09 15 09h15

Time-zone abbreviations also change around the
world. Two or more different abbreviations may
indicate the same time zone. Eastern Standard Time
(EST) is a U.S.-specific time-zone indicator. T his
zone is called HNE (Heure Normale de !'Est) in
French-speaking Canada. Central European Time is
known as HEC by the French-speaking populations
and as MEZ by German speakers. T he same time
zone abbreviation may stand for different time
zones. AS T is used for both Alaska Standard Time
and Atlantic Standard Time, which are five hours
apart. Time-zone abbreviations are not standardized
and may change. Time zones are not all at one-hour
intervals. Some countries have time zones at a
30-minute difference from a neighboring zone.
Certain towns in Islamic countries use solar time
and thus can have time differences of several min
utes between towns within one time zone.

Number Formats

T he separators used with numerals to express
quantities vary as part of national and personal
preferences. In the United Kingdom and the United
States, the comma is a thousands separator, and the
period is a decimal separator. In continental
Europe, the opposite is true. Separators include

1 , 234.56 1 .234,56 1 234.56 1234,56
1 ' 234.56 1 ,234·56

Numbers written in Japanese or Chinese using
Chinese ideograms sometimes include the unit indi
cator, as in the number 28 =+)\ ("two " ,"ten",
"eight") and sometimes omit it = J\ .

Positive and negative indicators differ. T he plus
and minus signs may be used before or after the
number. In accounting, negative numbers are usu
ally enclosed in parentheses.

1 5

Product Internationalization

Currency Formats

In currency formats, the currency symbol may be

one or several characters and may be placed before

or at the end of the number, or used instead of the
decimal point. Some examples are: 6s 2 , 50
(Austria); 2,50 $ (French-speaking Canada); 2$50
(Portugal); and $2.50 (United States).

User Interface

As the point of contact between the user and the

machine, the user interface is an obvious area for
potential clashes of cu l ture between the designer

and the recipient. The interface must be localized to
fit the cu ltural expectations of the end user. 15 The

interface designer must be aware of issues of geome
try management, images, symbols, color, and sound.

Geometry Management

Graphical interfaces in Engl ish use menu bars
a l igned at the left, with cascading mem1s fal l ing

from left to right. Menus in Hebrew and Arabic cas
cade from r ight to left. Figure 13 shows a menu
from the Hebrew version of DECwindows XU! .

Although Japanese and Chinese are traditional ly

read from top to bottom with columns advancing

from right to left, most technical materia l is pre
sented with the same flow as English has. Conse
quently, user interfaces have the same left - to-right
flow as Engl ish . This may be considered an aspect

of new technology setting new cul tural norms.

Japanese and Chinese do present some geometry
management challenges. A word processor for
Engl ish uses the right scrol l bar to advance from

r - - -. '\a I I I I
.. __ ...

page to page. The analogy is from writing on a long
scrol l of paper, which is cut i nto pages. For a

Japanese word processor, which enables the user to

type in the traditional top-to-bottom orientation,
does the bottom scrol l bar control page advance by

sliding the selection to the left' There is no one cor

rect answer. A designer can keep consistent with
the traditional horizontal scroll or with word pro
cessors for Latin-based writing systems.

Images

Some designers may consider that using images
instead of text creates an international, cultural ly

neutral product that requires no local i zation. This

is only the case if the image is entirely abstract and
chosen to be equal ly foreign to a l l cultures. This
may meet the requ irements of i nternational ization,

but at the expense of good user interface design.
Most images are chosen to provide a cultural

mnemonic to the action. This l i n k may have l it t le

meaning in another cu lture. The rural mailbox
image '" chosen for certain electronic mail sys
tems is a good example. This i mage is unknown out
side the United States, and some American city
dwellers are u nfamiliar with it as wel l . The conven
tion of raising the flag on the mailbox to indicate

that new mail has arrived is not common through
out American rural communities. It can instead
ind icate the presence of outgoing mail .

I n addition, a graphic may be a play on words that
wi l l not translate. One personal computer product
uses a musical note to indicate that a written note is
associated with an item in its database.

tl �
� j

ilU'7 J.il

i1U'7J.il-' 1Ul

A �
Figure 13 Hebrew DECwindows XU/

16 14>1. 5 No. 3 Summ�r 19.93 D igital Tech11ical]ourtlal

Symbols
Symbols commonly used in one culture may be mis
interpreted by someone from another culture. For
example, the cross [g] is often used to indicate
prohibition. However, in Egypt it does not have
this connotation. 16 Designers should allow for
the replacement of selection symbols such as
ticks (checkmarks) and crosses found in many user
interfaces.

[g] Italic [2] Bold

Color

T he significance of color varies greatly across
cultures. Table 1 , taken from Russo and Boor, gives
the ideas associated with colors in six cultures.l7
For example, red means danger in the United States,
but it has the connotation of life and creativity in
India. Garland found that using a red "X" as a pro
hibitive symbol in Egyptian pictures was not effec
tive because the color red is not associated with
forbiddance, and the "X" is not understood as
prohibitive. 16

Sound

In the book Global Software, Dave Taylor relates
that when Lotus localized its 1-2-3 spreadsheet
for use in Japan, the developers had to remove
all beeps from the program.111 Japanese users, typi
cally seated much closer together than their
Western counterparts, did not appreciate the
computer broadcasting to their col leagues every
time they made an error. Since beeps can be irritat-

Table 1 Significa nce of Color across Cultu res

Red Blue

u.s. Danger Masculinity

France Aristocracy Freedom
Peace

Egypt Death Virtue
Faith
Truth

I nd ia Life
Creativity

Japan Anger Vi l lainy
Danger

China Happi ness Heavens
Clouds

D igita/ 1ecbtlical]ournal Vol. 5 No. 3 Summer 1993

International Cultural Differences in Software

ing in open offices in a l l cultures, wel l-designed
systems allow users to eliminate them or modify
the volume.

Functional Differences in Software

Much of this paper has covered areas where the
form of the information must change for different
cultures. T he software may also require functional
changes for different cultures. Applications that
manipulate text provide a set of operations linked
to the nature of both the writing system and the
code set. We have seen that typing Japanese and
Chinese requires an indirect input method.
Applications using the Latin script provide a user
interface to an operation to change the case of
a character. This operation is not applicable to
Japanese, but a Japanese word processor has an
operation to convert from katakana to biragana.

A delete operation on a Latin Jetter deletes both
the letter and the rectangular cel l, a piece of the
screen real estate, causing the adjacent text to close
up. With the cursor to the right of a Korean syllable
cluster or Thai consonant/vowel/tone combina
tion, the user presses the delete key. What should
be deleted' T hai and Korean do not have the union
between a letter and its linear space that the Latin
alphabet has. Two separate operations with differ
ent user interfaces may be required, whereas one
suffices in English. The code set used also plays a
part in determining the nature of the operation.
The Thai code set independently codes every letter
and tone, so deleting a single letter or tone is practi
cal. T he national Korean code set codes syllable

Green Yellow White

Safety Cowardice Pu rity

Criminality Temporary Neutrality

Ferti l it y Happi ness Joy
Strength Prosperity

Prosperity Success Death
Ferti l ity Pu rity

Futu re Grace Death
Youth Nobi l ity
Energy

Ming Dynasty Birth Death
Heavens Wealth Pu rity
Clouds Power

1 7

Product Internationalization

clusters. 19 Deleting one letter from a cluster may
produce a combination with no code. In Digital's
T ha i and Korean products, the action of the delete
operation is as suggested by the code set. Thai
deletes one letter or tone mark; Korean deletes the
syllable cluster.

In unidirectional writing systems, the right arrow
key navigates the cursor over the logical reading
order of the text as it moves smoothly over the
screen. The operation of logical movement ancl geo
metrical movement across the screen is identical
within one line. This is not the case with bidirec
tional text. The following fragment is from a Hebrew
application one twoJ�t'7� O"n� l n l'(. Pressing the
left arrow key moves the cursor to the left of the
word "one" if the action means to follow reading
order, or to the left of the "o" in "two" if the action
is one of navigating screen real estate.

Functional differences may come from regula
tory constraints. T he United States has export pro
hibitions on certain encryption techniques.
Non-U.S. versions of products may need to remove
them or use different techniques. Standards and
regulations for connection to external devices such
as modems vary around tbe world.

Product features may also need to vary based on
less tangible aspects of a culture. LYRE is a hypertext
product developed in France. The product allows
students to analyze a poem from various viewpoints
selected by the teacher. Students are not allowed to
add their own viewpoints. T his is acceptable in
France bllt not in Scandinavian countries, where
independent discovery is highly valued. 1'

Correct ana Incorrect Actions

Learning the rules concerning cultural sensitivity
does not guarantee that a software developer from
outside, or even inside, that culture will not make
errors. Two examples i llustrate this.

When Lotus localized its 1-2-3 product into
Japanese, the developers were aware that the
Japanese date counts the year from the ascension of
the emperor to the throne. In their initial test of the
product under development in Japan, they included
the ability to reset the counter and to modify the
field naming the reign. T his appears to be admirable
planning, sensitive to the needs of the local date
format; however, the Japanese users strenuously
requested that this feature be removed since it
anticipated the demise of the emperor. zo

In Arabic and Hebrew bidirectional text, deletion
of one segment of text can cause the surrounding

1 8

segments t o be rearranged under certain circum
stances. T his follows from a logical analysis of
ordering of the segments and was implemented in
an early version of Hebrew DECwrite. Studies with
users revealed that they found this rearrangement
of text disconcerting and preferred to manually
rearrange segments. T he program was changed in a
subsequent version. Note that this resolution is
dependent on the specific product. One should not
conclude that automatic reordering of text is
always incorrect. Other bidirectional text systems
perform this .reordering.

Responding to and Setting Culture

New technology in computer applications must
reflect the prevalent existing culture, but it also
pl ays a part in creating new cultural norms. An ear
lier section described how users of a Hebrew word
processor might enter digits into a stream of
Hebrew by reversing the order of the digits. This
cultural behavior was introduced during the days of
manual typewriters or older computer systems,
which required additional keystrokes to change
writing direction. An older technology introduced
a cultural expectation. As users in Israel grow more
accustomed to word processors that enter the cor
rect order automatically, and as the base of users
exposed to older technology shrinks, we can antici
pate that the standard expectation of the order in
which to enter digits will change.

The Arabic and K hmer writing systems modify
the shape of the written glyph based on surround
ing characters. T he Khmer keyboard (Figure 10)
shows separate glyphs for each variation (implying
separate codes). This design follows the lead of ear
lier typewriters and is familiar to users trained on
such typewriters. It adds complexity to the key
board and requires the user to manually enter the
correct glyph. The Arabic keyboard is from a sys
tem that codes each character independently of
glyph; the renderer selects the correct glyph to <lis
play based on context. T his system may require
a longer transition for users trained on manual
typewriters, but it is the preferred use of a more
advanced technology.

As described previously, written Thai and Korean
both use syllable clusters, but the delete operation
on each script differs clue to the different methods
by which the code set represents the script. Which
is the correct action' The question does not have an
easy answer. From a formal analysis of the language,
one might argue that deleting the individual letter

Vol. 5 No. 3 Summer 1993 Digital Technical journal

is correct; but as we have seen, formal analysis
need not yield an appropriate answer. Ultimately
the correct answer is a del icate balance between
users' expectations based on the past and the
requirements of innovation. The users' expecta
tions are set by previous implementations, which
were derived from l imitations in the technology of
the time. We h ave a cycle of computers adapting to
people adapting to computers.

Deeper Cultural Differences

Some of the cultural differences discussed in this
paper such as the presentation of dates and cur
rency are obvious even on a superficial examina
tion of the culture. Others such as the cultural
reaction to color are learned from deeper study.

We can expect the future development of soft
ware to consider as yet unexplored cu ltural differ
ences. New features i n user i nterfaces, the use of
sound, voice, pen-based computers, and anima
tion, wil l tie into aspects of cultural behavior that
are currently little explored by researchers. Higher
resolution screens and the prevalence of color
bring the abi l ity to design applications that relate
more directly to the user's sense of beauty.

The personal computer revolutionized personal
productivity. Applications such as spreadsheets
succeeded because they modeled i nd ividual user's
existing work practices and extended their capabil
ity. A current trend is toward appl ications for
the work group or col laborative comp uting. This
style attempts to revolutionize the way groups
work. Jeffrey Hsu reports that "Col laborative sys
tems can meet stu bborn resistance when they are
i ntroduced in a company, because they chal lenge
the organ izational culture with a new means of
com mu nication." 21 The d ifference in the business
decision-making process between Japan and the
United States is well documented, with Japanese
groups valu i ng group decision and harmony or wa

highly. We can expect the emerging "groupware"
applications both to model existing styles of group
work and to change those styles.

The future wil l also bring software agents 22 This
software wil l act as a collaborator with the user to
process i nformation i n much the same way as a
human personal assistant. As with a human assis
tant, we can anticipate that software agents wil l
adapt to the specific requirements and habits of the
user, a cu lture of one. We can imagine an agent rec
ommending circulation l ists for memos and aiding
i n correctly phrasing t he mail. The forms of address

Digital Techuical jounwl Hi/. 5 No. 3 Summer 1993

International Cultural Differences in Software

will vary not only across national boundaries, but
across companies. As the set of cu l tu ral differences
to be addressed goes deeper, the circles of people
sharing those cultures will shrink.

Techn iques exist to bui ld products with a high
level of internationalization. These are described i n
other papers i n this issue. These techniques w i l l
continue to develop a n d improve, but internation
al ization will never be a ful ly resolved considera
tion. The term may fal l from use as the cultural
differences being addressed have a decreasing
relationship to national boundaries. I nternational
ization is simply making software easy to localize,
and the essence of localization is meeting the indi
vidual needs of the customers. As computer sys
tems become m ore powerfu l and software m ore
sophisticated, adaptation to the individual will con
tinue. Techniques to adjust software to fit personal
preferences will continue to develop.

Acknowledgments

This paper is adapted from an earl ier u npubl ished
work, circulated within D igital Equipment Corpo
ration. The author wou ld l ike to thank Gayn
Winters for init iating and driving the p aper and
for m any valuable comments on early drafts. This
paper took shape as reviews from colleagues
around the world corrected errors and contributed
many examples, some of which are seen in this
paper. The author wou ld l ike to acknowledge the
input from John McConnell and Michael Yau in
the United States; Ji.irgen Bettels i n Switzerland;
K. H. Chan and Fred L i i n Hong Kong; Trin
Tantsetthi in Thailand; Mike Feldman, Moti
Huberman, and Moshe Loterman i n Israel; Hirotaka
Yoshioka in Japan; and Nai-peng Kuang in Taiwan.

References and Notes

1 . South Korean writing uses two scripts.
Hangu l is an alphabetic system. Hanja is the
set of ideograms imported from China and
used as the sole script u ntil the i nvention of
Hangul. There exists a widespread miscon
ception that Hangu l is ideographic. The
au thor wishes to stress that only the Hanja
script uses ideograms.

2. The example shown contains no phonetic ele
ment. Many, m ore complex characters do
have phonetic components. Some scholars
d isparage the use of the term ideograph to
describe Japanese and Chinese writing,

1 9

Product Internationalization

asserting that the phonetic element is pri
mary. (St:c.: rc.:ferences 3 and 5.) This paper
uses the term ideograph since it is in common
use.

3.). DeFrancis, The Chinese Languaf!.e Fact and
FcmtetS)I, Second Paperback Edition (Hon
olulu : Un iversity of Hawaii Press, 1989): 9 1 .

4 . M. Stubbs, Language and l.iterac.;y The Soci
olinguistics of Readi11g (London, Boston, and
Henley: Rou tledge and Kegan Pau l , 1980): 48.

5. J De Francis, Visible Sf>eech: The LJiuerse One

ness of Writing 5)!stems (Honolulu : Univer
sity of Hawaii Press, 1989) .

6. & is an interesting character. It was original ly
tormed as a l igature of e and t and is now used
as an ideogram in many European written
languages.

7 F Cou l mas, The Writing -�vstems of the World
(Oxford: Basil B lackwel l , 1989): 118.

8. A. Nakanish i , Writing .�)'Stems of the World,
third printing (Rutland. VT, and Tokyo : Charles
E. Tu ttle Company, 1988): 1 12 .

9. The numerals I , 2, 3, etc . . are generaJ J y known
as, and refe rred to, as Arabic nu merals; how
ever, by one of those quirks of language, the
Arabic script uses a diffe rent set of symbols for
nu merals, somet imes cal led lndic nu merals.

10. Note that the Khm�:r keyboard has four regis
ters because it is based on a glyph encoding of
Khmer rather than a character encoding,
which wou l d use two registers at most. Also,
the subscript Khmer glyphs on the kevcaps,
which are used in conjuncts, are not neces
sary if more soph isticated d isplay software is
used.

1 1 . DIN 2137, German keyboard for typewriters,
Al location of Characters £0 Keys, Parts 1 , 2, 6,

and 11 (Deutsch Jnstitut fiir Normung, 1988).

12. T. Hon ma, H. Baba, and K . Tak izawa,
"Japanese Input Method Independent of
Applicati ons," Digital Technical journal, vol .
5, no. 3 (Su m mer 1993, this issue): 97-107.

13. There is some dispute in the industry on the
need for expl icit d i rection ma rkers. Under
certain circu mstances, corn�ct rend ition of
nested direction text can be computed. For
example, a renderer cou ld show the structure

20

of the text i n figure 8 correctly without d irec
t ional attr ibutes. The Un icode ami ISO 10646
character sets do inclmk a rich set of d i rec
tional markers.

14. J Bettels and F. Bishop, "Unicode: A Un iversal
Character Code ," Digital Teclmical journal,

vol . 5, no. 3 (Summer 199:3, this issue) : 21-31 .

15. J. N ielsen, 'Tsabi l i ty Test ing of I nternational
I nterfaces," i n Designing User InteJfaces for
International Use, edi ted by J Nielsen (New
York: Elsevier, 1990).

16. K . Garland, "The Use of Short Term Feedback
in the Preparation of Tech nical and Instruc
t ional I l lustration," in Research in 1 llustra
tion: Conference Proceedings Part II (1982).

17 P. Russo and S. Boor, "How Fluent Is You r
Interface? Design ing for Internat ional Users,"
paper presented at INTERCHI , Amsterdam,
Apri l 1993.

18. D. Taylor, Global Software: Developing Appli

cations for the International Market (New
York, Berl in , Heidel berg, Lon don, Paris,
Tokyo, Hong Kong, Barce lona, Budapest:
Springer-Verlag, 1992): 54.

19. The design of the Korean code set reflects
comprom ises made among cultural , eco
nomic, and technological requ irements. The
structure of the writing system leads to inde
pendent coding of each jmno, with the d is
p lay device rendering them i nto syl lable
clusters. Cod i ng as syl l able cl usters great l y
simpl ified t h e preva lent technology o f the
time and reduced the cost of the display
device.

20. F. Hapgoo d, "A Journey East-The Making of
1-2-3 Release 2]. " Lotus: Computing for Man

agers and Professionals (Ca mbridge, MA:
Lotus Development Corporat ion, 1987).

2 1 . .J. Hsu and T. Lockwood, "Col laborative Com
pu ting," BYTE:: Magazine (March 1993): 120.

22. L Tesler, " Networked Computing in the
1990s," Scientific American (September
1991)

Vol. 5 No. j Still/Iller 19'J.) Digital Tecbuical journal

Unicode: A Universal
Character Code

]iirgen Bettels
E Ave1y Bishop

A universal character encoding is required to produce software that can be local
ized for any language or that can process and communicate data in any language.
The Unicode standard is the product of a joint effort of information technology
companies and individual experts; its encoding has been accepted by ISO as
the international standard ISO/IEC 10646 Unicode defines 16-bit codes for the char
acters of most scripts used in the world's languages. Encoding for some missing
scripts will be added over time. The Unicode standard defines a set of rules that help
implementors build text-processing and rendering engines. For Digital, Unicode
represents a strategic direction in internationalization technology Many software
producing companies have also announced future support for Unicode.

A universal character encodi ng-the Unicode stan
dard - has been developed to produce interna
tional software and to process and render data i n
most of the world 's languages. I n this paper, w e pre
sent the background of the development of this
standard among vendors and by the International
Organization for Standardization (ISO). We describe
the character encoding's design goals and princi
ples. We also d iscuss the issues an application han
dles when p rocessing Unicode text. We conclude
with a description of some approaches that can be
taken to support Unicode ami a d iscussion of
M icrosoft's implementation. Microsoft's decision
to use U nicode as the native text encod ing in its
Windows NT (New Technology) operating system
is of particu lar significance for the success of
Unicode .

Background

In the 1980s, software markets grew throughout
the world, and the need for a means to represent
text in many languages became apparent. The com
plexity of writing software to represent text h in
dered the development of global software.

The obstacles to writing internationa l software
were the following.

1. Stateful encoding. The character represented by
a particu lar value in a text stream depended on
values earlier in the stream, for example, the
escape sequences of the ISO/IEC 2022 standard 1

Digital TecfJnicaf journal Vol. 5 No. 3 Summer 1993

2. Variable-length encoding. The character width
varied from one to four bytes, making i t impossi
ble to know how many characters were in a
string of a known n umber of bytes, withou t first
parsing the string.

3. Overloaded character codes a nd font systems.
Character codes tended to encode glyph variants
such as I igatures; font architectures often
included characters to enable d isplay of charac
ters from various l anguages simply by varying
the font.

In the 1980s, character code experts from around
the world began work on two initially parallel proj
ects to el iminate these obstacles. In 1984, the ISO
started work on a u n iversal character encoding.
This effort placed heavy emphasis on compatibil ity
with existing standards. The TSO/IEC comm ittee
published a Draft International Standard (DIS) i n
spring 1991 . 2 B y that time, the work o n Unicode
(described in the next section) was also nearing
completion, and many experts were al armed by the
potential for confusion from two competing stan
dards. Several of the ISO national bod ies therefore
opposed adoption of the DIS and asked that ISO and
Unicode work together to design a u niversal char
acter code standard.

The Origins of Unicode

I n some sense Unicode is an offshoot of the ISO/IEC
10646 work. Peter Fenwick, one of the early

2 1

Product Internationalization

conveners of the ISO working group responsible for
10646, developed a proposal called "Alternative B,"
based on a 16 -bit code with no restriction on the
use of control octets. He presented his ideas to
joseph Becker of Xerox, who had also been work
ing in this area.'

In early 1988, Becker met with other experts in
l inguistics and i nternational software design from
Apple Computer (notably Lee Col l ins and Mark
Davis) to design a new character encoding. As one
of the original designers, Becker gave this code the
name Unicode, to signify the three important ele
ments of its design philosophy:

1 . Universal. The code was to cover all major mod
ern written languages.

2. Unique. Each character was to have exactly one
encoding.

3. Uniform. Each character was to be represented
by a fixed width in bits.

The Unicode design effort was eventually joined
by other vendors, and in 1991 it was incorporated as
a nonprofit consortium to design, promote, and
maintain the Unicode standard . Today member
companies include Aldus, Apple Computer,
Borland, Digital , Hewlett-Packard, International
Business Machines, Lotus, M icrosoft, NeXT, Novell ,
The Research Libraries Group, Sun Microsystems,
Symantec, Tal igent, Unisys, WordPerfect, and
Xerox. Version 1 .0, vol u me 1 of the 16 -bit Unicode
standard was publ ished in October 1991 , fol lowed
by volume 2 in june 1992 4·5

It was sometimes necessary to sacrifice the three
design principles outl ined above to meet conflict
ing needs, such as compatibil it y with existing char
acter code standards. Nevertheless, the Unicode
designers have made much progress toward solving
the problems faced in the past decade by designers
of international software.

The Merger of 10646 and Unicode

U rged by publ ic pressure from user groups such as
IBM's SHARE, as wel l as by industry representatives
from Digital, Hewlett-Packard, IBM, and Xerox,
the ISO 10646 and Unicode design groups met in

August 1991 ; together they began to create a single
universal character encoding. Both groups compro
mised to create a draft standard that i s often
referred to as Unicode/10646. This draft standard
was accepted as an i nternational character code
standard by the votes of the ISO/IEC national bodies
in the spring of 1992 6

22

As a result of t he merger with ISO 10646, the
Unicode standard now includes an errata i nsert
cal led Unicode 1 .0.1 in both vol u mes of version 1 .0
to reflect the changes to character codes in
Unicode 1 .0 7 The Unicode Consortium has also
com mit ted to publ ish a technical report cal led
Un icode 1 .1 that wi l l al ign the Unicode standard
completely with the ISO/IEC 10646 two-octet com
paction form (the 16-bit form) also called UCS-2.

Relationship between Unicode and
150/IEC 10646
Unicode is a 16-bit code, and ISO/TEC 10646 defines
a two-octet (UCS-2) and a four-octet (UCS-4) encod
ing form. The repertoire and code values of UCS-2,
also cal led the base m u lti l ingual plane (BMP), are
identical to Unicode 1 . 1 . No characters are cur
rently encoded beyond the BMP; the UCS-4 codes
defined are the two UCS-2 octets padded with two
zero octets. Although ucs-2 and Unicode are very
close in definition, certain d ifferences remain.

By its scope, ISO/IEC 10646 is l imited to the
cod ing aspects of the standards. Unicode includes
add itional specifications that help aspects of
implementation. Unicode defines the semantics
of characters more expl icitly than 10646 does.
For example, it defines the default d isplay order
of a stream of bidirectional text. (Hebrew text
with numbers or embedded text in Latin script
is described in the section D isplay of Bid irectional
Strings.) Unicode also provides tables of character
attributes and conversion to other character
sets.

In contrast with the Unicode standard, ISO 10646
defines the fol lowing three compliance levels of
support of combining characters:

• Level 1 . Combining characters are not al lowed
(recognized) by the software.

• Level 2. This level is intended to avoid duplicate
coded representations of text for some scripts,
e .g . , Latin, Greek, and Hiragana.

• Level 3. All combining characters are al lowed.

Therefore, Unicode 1 . 1 can be considered a
superset of UCS-2, level 3.

Throughout the remainder of this paper, we refer
to this jointly developed standard as Unicode.
Where d ifferences exist between ISO 10646 and
Unicode standards, we describe the Unicode func
tional ity. We also point out the fact that Unicode
and ISO sometimes use different terms to denote
the same concept. When identifying characters, we

Vol. 5 No. 3 Summer 1993 D igital Teclmicaljournal

use the hexadecimal code identification and the ISO
character names.

General Design of Uni code

This section d iscusses the design goals of Unicode
and its adherence to or variance from the principles
of universality, uniqueness, and uniformity.

Design Goals and Principles

The fundamental design goal of Unicode is to create
a un ique encoding for the characters of a l l scripts
used by l iv i ng l anguages. In addition, the intention
is to encode scripts of historic languages and
symbols or other characters whose use justifies
encod ing.

An important design principle is to encode each
character with equal width , i . e . , with the same
number of bits. The Unicode designers deliberately
resisted any calls for variable- l ength or stateful
encodings. Preserving the simplicity and unifor
m ity of the encod ing was considered more i mpor
tant than considerations of optimization for storage
requirements.

A Unicode character is therefore a 16 -bit entity,
and the complete code space of over 65,000 code
positions is available to encode characters. A text
encoded in Unicode consists of a stream of 16-bit
Unicode characters without any other embedded
controls . Such a text is sometimes referred to as
Unicode plain text. The section Processing Unicode
Text discusses these concepts in more detai l .

Another departure from the trad itional design of
code sets is Unicode's inclusion of combining char
acters, i . e . , characters that are rendered above,
below, or ot herwise in close association with the
preceding character in the text stream. Examples
are the accents used in the Latin scripts, as wel l as
the vowel marks of the Arabic script. Combining
characters are a l lowed to combine with any other
character, so it is possible to create new text ele
ments ou t of such combinations.H This technique
can be used in bibl iographic appl ications, or by l in
guists to create a script for a language that does not
yet have a written representatio n, or to transliter
ate one language using the script of another. An
example in recent times is the conversion of some
Central Asian wri ting systems from the Arabic to
the Latin script, fol lowing Turkey's example in the
1920s (Kazakhstan).

An additional design principle is to avoid dupl ica
tion of characters. Any character that is nearly iden
tical in shape across languages and is used in an

Digita/ 1ecbuical journal Vul. 5 No. 3 Summer 1993

Unicode: A Universal Character Code

equ iva lent way in these languages is assigned a
single code position . This principk led to the un i
fication of the ideographs used i n the Chinese,
Japanese, and Korean written languages. This
so-ca l led CJ K unification was achieved with the
cooperation of official representatives from the
countries involved.

The principle of u niqueness was also appl ied to
decide that certain characters shou ld not be
encoded separately. In general , the principle states
that Un icode encodes characters and not glyphs or
glyph variations. A character in Unicode represents
an abstract concept rather than the manifestation
as a particu lar form or glyph. As shown in Figure 1 ,
t he glyphs o f many fonts that render the Latin
character A a l l correspond to the same abstract
character "a ."

Abstract
Letter Glyph Style

a

a � a
a

� :

Century Schoolbook

Helvetica

Century Gothic

Script

Book Antiqua

Figure 1 Abstract Latin Letter "a" and

Style Variants

Another example is the Arabic presentation
form. An Arabic character may be written in up to
fou r d ifferent shapes. Figure 2 shows an Arabic
character written in its isolated form, and at the
beginning, in the midd le, and at t he end of a word.
Accordi ng to the design principle of encoding
abstract characters, these presentation variants are
all represented by one Unicode characterY

Since much existing text data is encoded using
historic character set standards, a means was pro
vided to ensure the integrity of characters upon
conversion to Unicode. Great care was taken to
create a l nicocle character corresponding to each

. . . • • •
• • •

--"'41
• ••

_t,

Figure 2 Isolated, Final, Initial, and Middle Forms

r?f'the Arabic Chamcter Sheen

23

Product Internationalization

character in existing standards. Characters identical
in shape appearing i n different standards arc identi
fied a nd mapped to a single Unicode character. For
characters appearing twice in the same standard , a
compat ibil ity zone was created. These characters
are encoded as requ ired to make round-trip conver
sion possible between other standards and
Unicode. The Unicode Consort ium has agreed to
create m apping tables for this purpose.

Text Elements and Combining Characters

When a computer application processes a text doc
u ment, it typically breaks down text into smal ler
elements that corre�pond to the sma l lest unit of
data for that process. These u nits are called text ele
ments. The composition of a text element is depen
dent on the particular process it u ndergoes. The
Arabic l igature lam-alef is a text element for the
rendering process but not for other character oper
ations, such as sorting.

In addition, the same process applied to the same
string of text requires different text clements depend

ing on the language associated with the string.
Figure 3 shows sorting appl ied to the string "ch." If
this string is part of English text, the text elements
for the process of sorting are "c" and "h ." In Spanish
text, however, the text element for sorting is "ch"
because it is sorted as if it w<..:rc a single character.

For other text-processing operations, text ele
ments might constitu te u nits smal ler than those
traditionally cal led characters. Examples are the
accents and diacritical marks of the Latin script.
These smal l text elements interact graphically with
a noncombining character cal led a base character.
The acu te accent interacts with the base character
A to form the character A acute. If a given font does
not have the character A acute, but it does have A
and acute accent as separate glyphs, the character
A acute has to be divided i nto smal ler u nits for the
rendering process.

In Thai script, vowels and consonants combine
graphically so that the vowel mark can be either

24

Spanish

�u rra

chasquido

gano

Engl ish

�harm

�urrent

gig it

Figure 3 Text Elements and Collation

before, above, below, or after a consonant, thus
forming one display u nit. This unit becomes the text
element for pu rposes of rendering. For a process
such as advance to next character, however, the indi
vid ual vowels and consonants are the natural u nits
of operation and are therefore the text elements.

There is no simple relationship between text ele
ments and code elements. As we have shown, this
relationship varies both with the language of the
text and with the operation to be performed by the
application. In earlier encod i ng systems such as
ASCII or others with a strong relationship to a lan
guage, this problem was not apparent. When
designing a u n iversal character code, the U nicode
designers acknowledged the issue and analyzed
which character elements have to be encoded as
code elements to represent the scripts of Unicode
across m u l tiple languages. Rather than burden the
character code with the complexity of encoding
a rich set of text elements, the Unicode Technical

Comm ittee decided that the mapping of code ele
ments to more complex text elements shou ld be
performed at the appl ication level.

Code Space Structure

The Un icode code space is the fu l l 16 -bit space,
a l lowing for 65, 536 different character codes. As
shown in Figure 4, approximately 50 percent of this
space is al located . This code space is l ogica l l y
divided i nto four different regions or zones.

The A-zone, or alphabetic zone, contains the
alphabetic scripts. The first 256 posit ions in the
A-zone are occupied by the ISO 8859-1 , or 8-bit ANSI
codes, in such a way that an 8-bit ASCII code maps
to the correspond i ng 16 -bit Unicode character
through padding it with one n u l l byte. The posi
tions correspond i ng to the 32 ASCII control codes
0 to 31 are empty, as wel l as the positions Ox0080
to Ox009F

The characters of other alphabetic scripts
occupy code space in the range from OxOOOO to
Ox2000. Not all of the space is currently occupied,
leaving room to encode more a l phabetic scripts.

The remainder of the A-zone up to Ox4000 is al lo
cated for general symbols and the phonetic (i.e . ,
non ideographic) characters in u s e in t h e Chinese,
Japanese, and Korean languages.

The second zone up to OxAOOO is the ideograph,
or 1-zone, which contains the unified Han charac
ters. Currently abou t 21 ,000 positions have been
fil led, leaving virtually no room for expansion in
the !-zone.

Vol. 5 No . .) Summer 1993 Digital Techt�ical jourt�al

Unicode: A Universal Character Code

1- A-ZONE -----...! I-ZONE - O-ZONE --1 A-ZONE I-

ll II I I 11 11 I I I II
J. illJJ. l t j PRIVATE USE

COMPATIBILITY ZONE

U N I FIED CHINESE, JAPANESE, AND KOREAN
CHI NESE, JAPANESE, AND KOREAN NONIDEOGRAPHIC
SYMBOLS
EXTENDED LATIN AND GREEK

'------- INDIC SCRIPTS
'--------- HEBREW AND ARABIC

'----------- LATIN, G REEK, CYRILLIC, AND ARMENIAN
'------------ IS0-646 INTERNATIONAL REFERENCE VERSION

Figure 4 Code Space Allocation for Scripts

The third zone, or O-zone, is a cu rrently unal lo
cated space of 16K. Al though several uses for this
space have been proposed, its most natural u se
seems to be for more ideographic characters.
However, even 16K can hold only a subset of the
ideographic characters.

The fourth zone, the restricted or R-zone, has
some space reserved for user-defined characters. I t
also contains the area o f codes that are defined for
compatibil ity with other standards and are not al lo
cated elsewhere.

Processing Unicode Text

The si mplest form of Unicode text is often ca lled
plain Unicode. It is a text stream of pure Unicode
characters without add itional formatting or
attribute data embedded in the text stream. In this
section, we discuss the issues any appl ication faces
when processing such text. Processing in this con
text appl ies to the steps such as parsing, ana lyzing,
and transforming that an appl ic;:t ion performs to
execute its required task. In most cases, the text
processing can be divided into a nu mber of primi
tive processing operations that are typical ly offered
as a toolkit service on a system. In describing
Unicode text processing, we discuss some of these
primitives.

Code Conversion

One of the goals of Unicode is to make it possible to
write appl ications that are capable of hand l ing the
text of many writing systems. Such an appi ication
would typical ly apply a model that uses Unicode as
its nat ive process code. The application could then
be writ ten in terms of text operations on Unicode

Digital Tecb11ical jonr11af 11>1. 'i No . .> Summer I')'J.)

data, which does not vary across the d ifferent writ
ing systems.

Today, and for some time to come, however, the
data that the appJ ication has to process is typical ly
encoded in some code other than Unicode. A fre
quent operat ion to be performed is therefore the
conversion from the code (file code) in which data
is presented to Unicode and back.

One of the design goals of Unicode was to al low
compatibil ity with existing data through round-trip
conversion without loss of information. It was not
a goal to be able to convert the codes of other char
acter sets to Unicode by simply adding an offset.
This would violate t he princ iple of uniqueness,
since many characters are dupl icated in the various
character sets. Most exist ing character sets there
fore have to be mapped through a table lookup.
These mapping tables are currently being col lected
by the Unicode Consort ium and will be made avail
able to the publ ic .

I t was, however, decided that the 8-bit ASC I I , or
I S O 8859-1 character set, was to be mapped into the
first 256 positions of Unicode. Other character sets
(or subsets), such as the Thai standard TIS 620-2529,
could also be mapped directly, since character
uniqueness was preserved. Also, one of the blocks
of Korean sy l lables is a direct mapping from the
Korean standard KSC 5601 .

Some character sets contain characters that can
not be assigned code values under the Un icode
design ru les. Often these characters are d ifferent
shapes of encoded characters, and encoding them
would violate the principle of uniqueness. To
a llow round-trip conversion for thcsl' characters,
a special code area, the compatibil ity zone, was set
aside in the R-zone to encode them and to a l low

25

Product Internationalization

interoperation with Unicode. For example, the
wide forms of the Latin letters in the Japanese JIS
208 standard were invented to simplify rendering
on monospacing terminals and printers.

Character Transformations

A frequently used operation in text processing is
the transformation of one character into another
character. For example, Latin lowercase characters
are often transformed into uppercase characters to
execute a case-insensi tive search. In most tradi
tional character sets, this operation would translate
one code value to another. Thus, the output string
of the operation would have the same number of
code values as the input string, and both strings
would have the same length . This assu mption is no
longer true in the case of Unicode strings.

Consider the Unicode characters, Latin small
letter a + combining grave accent, i .e . , a string of
two Unicode characters. If this string were part of
a French text (in France), transtorming a to A would
resu lt in one Unicode character, Latin capital letter
A. If the same string were part of a French Canadian
text, the accent would be retained on the upper
case character. We can therefore make two observa
tions: (1) The string result ing from a character
transformation may contain a different number of
characters than the original string and (2) The
resu lt depends on other attributes of the string, in
this case the language/region attribute .

Another important character transformation
operation is a normal ization transformation. This
operation transforms a string into either the most
uncomposed or the most precomposed form of
Unicode characters. As an example, we consider
the different spel l ings of the combination:

Latin capita/ letter U
with diaeresis and grave accent

This letter has been encoded in precomposed form
in the Additional Extended Latin part of Unicode.
There are two addi tional spell ings possible to
encode the same character shape:

and

26

Latin capita/ letter U with diaeresis
+ combining grave accent

u + ',� + ',�

Latin capita/ letter U

+ combining diaeresis

+ combining grave accent

The most uncomposed and the most precomposed
forms of these spel l ings can be considered normal
ized forms. \Vhen processing Unicode text, an
appl ication would typica l ly transform the charac
ter strings into either of these two forms for further
processing.

Note that the spel l ings:

and

Latin capital letter U

with grave accent + combining diaeresis

Latin capita/ letter U
+ combining grave accent

+ combining diaeresis

would result in a different character:

u

This resu l t is due to the rule that diacritical marks,
which stack, must be ordered from the base charac
ter outwards.

Byte Ordering

Traditional character set encodings, which are con
formant to ISO 2022 and the C language multibyte
model, consider characters to be a stream of bytes,
including cases in which a character consists of
more than one byte. Unicode characters are 16-bit
entities; the standard does not make any expl icit
statement about the order in which the two bytes of
the 16 -bit characters are transmitted when the data
is serial ized as a stream of bytes.

The orclering of bytes becomes an issue when
machines with different internal byte-order archi·
tecrure com m u n icate. The two possible byte
orders are often cal led l ittle endian and big endian.
I n a l ittle-endian machine, a 16 -bit word is
addressed as two consecu tive bytes, with the low
order byte being the first byte ; in a big-endian
machine, the high-order byte is first. Today all com
puters based on the Intel 80x86 chips, as wel l as
Digital's VA X and AJpha AXP systems, implement a

\kJ/. 5 No. J Summer 1993 Digital Technical journal

l it tle-endian arch itecture, whereas machines built
on Motorola's 680x.'<, as we ll as the reduced instruc
tion set computers (RJSC) of Sun, Hewlett-Packard,
and IBM, implement a big-endian architecture. In
blind interchange between systems of possibly dif
ferent byte order, Unicode-encoded text may be
read incorrectly. To avoid such a situation, Unicode
has implemented a byte-order m ark that behaves as
a signature. As shown in Figure 5, the byte-order
mark has the code value OxFEFF. It is defined as a
zerc. -width, no-break space character with no
semantic meaning other than byte-order mark.

The code value corresponding to the byte
inverted form of this character, namely OxFFFE, is an
i l legal Unicode value. If the byte-order mark is
inserted i nto a serial ized data stream and is read by
a machine with a different byte-order arch itecture,
it appears as OxFFFE. This fact signals to the appl ica
tion that the bytes of the data stream have been read
in reverse order from that in which they were
written and should be i nverted . Applications are
encouraged to use the byte-order m ark as the first
character of any data written to a storage medium
or transmitted over a network.

Display ofBidirectional Strings

To facil itate internal text processing, a Unicode
compl iant appl ication always stores characters i n
logical order, that i s , i n the order a human being
would type or write them . This causes compl ica
tions in rendering when text normal ly displayed
right to left (RL) is mixed with text displayed left to
right (LR). Hebrew or Arabic is written right to left,
but m ay contain characters written left to right, if

either language is mixed with Latin characters.
Nu merals or punctuation m ixed with Hebrew or
Arabic can be writte n in either order.

The Default Bidirectional Algorithm

Unicode defines a defau lt algorithm for displaying
such text based on the direction attribu tes of char
acters. We outline the algorithm in this paper; for
details, see both volumes of the Unicode stan-

LITTLE-EN DIAN BYTE-STREAM BIG-EN DIAN
MACH I N E TRAN SFER MAC H I N E

I OxFEFF I - I Ox FE I + I OxFF I - I OxFFFE I
BYTE-ORDER FI RST SECOND I LLEGAL
MARK BYTE BYTE CHARACTER

Figure 5 Byte-order Mark

Digital Tecbnical jotu-nal Vol. 5 No. 3 St/11111/el' I'J')3

Unicode: A Universal Character Code

dard . -•5 (It is important to consu lt the second
vo l u me because it contains corrections to the algo
rithm given in the first volume.)

Al l printing characters are classified as strongly
LR, weakly LR, strongly RL, weakly RL, or neutral . I n
add ition, Unicode defines the concept o f a global
d irection associated with a block of text. A block is
approximately equivalent to a paragraph . The first
task of the rendering software is to determine
the global direction, which becomes the default.
Embedded strings of characters from other scripts
are rendered according to their d i rection attribute.
Neutral characters take o n the attribute of sur
rounding characters and are rendered accordingly.

Directionality Control

Although the default algorithm gives correct ren
dering in most real istic cases, extra information
occasiona l ly is needed to indicate the correct ren
dering order. Therefore, Cnicode includes a num
ber of i mp l icit and expl icit formatting codes to

al low for the embedd ing of bid irectional text:

Left-to- right m ark
Right-to-left mark
R ight-to- left embedding
Left-to-right embedding
Left-to-right override
Right- to-left override
Pop d irectional for matting

(LRM)
(RLM)
(RLE)
(LRE)
(LRO)
(RLO)
(PDF)

It must be pointed out that the directional codes
are to be interpreted only in the case of horizontal
text and ignored for any opt:ration other than bid i
rectional processing. In particular, they must not
be included in compare string operations.

The LRM and RLM characters are nondisplayable
characters with strong directionality attributes.
Since characters with weak or neutral d irectionality
take their rend ition directionality from the sur
rounding characters, LRM and RL\1 are used to influ
ence the directional ity of neighboring characters.

The RLE and LRE embedding characters and the
LRO and RLO override characters introduce sub
strings with respect to di rectional ity. The override
characters enforce a directionality and are used to
enforce rendering of, for instance , Latin letters or
nu mbers from right to left. Substrings can be
nested, and conforming appl ications must support
15 levels of nesting. Each RLE, LRE, LRO, or RLO char
acter introduces a new sublevel, and the next fol
lowing PDF character returns to the previous level.
The directional ity of the uppermost level is impl icit
or determined by t he application.

27

Pn.>duct Intcn1ationalization

Only correct resolut ion of d i rectional ity nesting

gives the correct resul t . In gen eral it cannot be

assumed t hat a st ring of text t ha t is inserted into

ot her bidirectional tex t wi l l have the correct cl irec

t i ona l i t y attribu tes without sp ecial processing.

This m ay resu l t in the removal of di rectional codes

in t he text or in the add it ion of further con t rols. As

shown in Figure 6, particular care needs to be t aken

h>r cut -and-paste operati ons of bid irectional text.

11-mzsmissiun ouer 8-bit Channels

Exi�ting com mu nicat ion systems often require that

data adheres to the ru les of ISO/ I EC 2022, \-Vhi ch

resnve the t>-bit code val ues between OxOO and

Ox I I; (the CO space), bet ween OxHO and Ox9F (the

C l space.:) , and the code position DELETE. 1 Since

Un icode uses these val ues to encode characters,

direct transmission of U n icode data over such trans

mi�sion systems is not possible.

The Un icode designers. in col laborat ion with

ISO, have thcrd(HT proposed an a lgorithm that
transforms Un icode characters so t ha t the CO and

C I characters and DELETE arc avoided. This algo

ri thm, the ucs transformation format (UTF), is part

of the ISO 1064(> standard as an informative annex .

I t i� expected that it wi l l he included in the revised

1 1icode standard.

The t ransfurmat ion a lgurithm has been con

ceived in such a way that the characters corre

spunding to t he 7- hit ASCI I codes and the < : l codes

are repre�cntccl by one byte (see Figure 4). Code

pusit ions OxUOAO through Ox4015 (which include

the rema inder of t he extended Lat i n a lphabet) are

represented by t wo bytes each, and three bytes

each are usecl for the re main ing code values.

Original ly. Tf had been proposed fo r w;e in data

transm ission and to avoid the problem that em bed

ded zero bytes repres ent for C l anguage character

strings in the char data type. Subsequently, it has

been proposed to use UTF i n historical operating

systems (e.g. , UNIX) to stOre Unicode-encoded sys

tem resources such as fi le names. �<>

Modifi cations of UTf have therefore been pro

posed to address other special requirements such

as preserYalion of the slash (!) character. 1 1 It
remains to be seen which of these various transfor

mation methods wi l l be widely adopted .

Handling of Combining Characters

I n some of the operations discussed above, we have

ind icated that the presence of combining charac

ters requires processing Un icode text d ifferently

from text encoded in a character set witho ut com

bining characters. Normalization or transformation

of the characters into a normal ized form is usua l ly

a first helpfu l step for further processing. For exam

ple , to prepare a text for a comparison operation,

one m ay wish to decompose any precomposed

characters. In this way, m u l tiple-pass comparison

ami sorting a lgorith ms, which typica l ly pass

through a level that ignores diacritical marks, can

be appl ied al most unc hanged . 12

For s imple com parison operations, the appl ica

t ion must decide on a pol icy of what constitutes

equal ity of two strings. If the string contains char

acters with a single diacrit ica l mark, it can choose

DEST I NATION TEXT IN LOGICAL ORDER:
D IRECTIONALITY NESTING:

P L E A S E S E N D TO :
(

2H

DES TINATION TEXT IN DISPLAY ORDER:

TEXT TO BE PASTED IN LOGICAL ORDER
D I RECTIONALITY N ESTING

TEXT TO BE PASTED IN DISPLAY ORDER:

PASTED TEXT I N LOGICAL ORDER:

DI RECTIONALI T Y NESTING:
PASTED TEXT I N D ISPLAY ORDER WITHOUT NESTING:

PASTED TEXT IN DISPLAY ORDER WITH NESTING

P L E A S E S E N D T O : -A
insertion point

m r . j . s m i t h , 1 2 j oh n d o e s t r
()

r t s eod n h o j 1 2 , h t i m s . j . r m

P L E A S E S E N D T O : _ m r . j . s m i t h , 1 2 j o hn d o e s t r

((()))
P L E A S E S E N D TO : h t i m s . j . r m , 1 2 r t s eod n h o j incorrect!
P L E A S E S E N D TO :_ r t s e o d n h o j 1 2 , h t i m s . j . rm

Note: Capital letters signify left-to-right \vrtl ing. Small letters stgnily right-to-left writing.

Figure 6 Cut and Paste of Bidirectional Text

l-'<11. 5 No . . l Stiii//J/<!1" I')'J.J Digital Teclmical journal

either strong match ing, which req u i res the diacri ti

cal marks in both strings, or weak matching, which

ignores diacritical marks. If the text incl u des char

acters with more than one d iacritical mark for a

medium -strong match, the presence of certain

marks m ight be required but not of others. Strong

matching is required fo r the Greek word for micro

material f-LLK poiJALK& and the G reek diminu itive

form of smal l f-LLKpouA LKa. Witho u t the d iacritica l

marks, the words wou ld be identical .

Unicode requ i res that combining characters fo l
low the base character. This sol ut ion was chosen

over the alternatives of (1) precede and (2) precede

a nd fol low, for various reasons. 1 ·1 Text-editing oper

ations must ta ke i nto account the p resence and

ordering of d iacritical mark s. A user-friend ly appli

cation should be consistent in its choice of text ele

ment on which operations such as next character

or delete character operate. This choice shou ld feel

natural to the user. For examp le , in Lati n , Greek,

a mi Cyril l ic , the expectation wou ld be that

accented characters are the u n it of operation,

whereas in Dcvanagari and T h a i , where several

com bining characters and a base character com
bine i nto a ce l l , th�: natural un it is the individual

character.

Implementation Issues

In this section we describe some of the approaches

that can be taken to support Un icode. As a concrete
example, we describe how the Microsoft Windows

NT operating system uses Unicode as the native text

encoding and ma intains compatibi l ity with exist ing

appl ications based on a diffe rent encoding.

General Considerations in Adding
Unicode Support

Informal di scussions with vendors plan ning to sup

port Unicode ind icate that the fo l l owing data types

and data access arc being considered when using

the C programming language.

1. A new data type wou ld be designated for

Unicode only. It wou ld be d irect l y accessible by

the appl ication , e .g . , typedef unsigned short
UNICH.AR.

The Un icode-only data type has the advan tage

of being u nencumbered with preconceptio ns

about semantics o r usage. Also, since the appli

cation knows that the contents are i n Unicode, it

can write code-set-dependent appl ications.

Digital Tecbuical journal 14,1. 5 11. j S/11111/l('r /')'))

Unicode: A f ll!i1 1<'1'Sal Owractcr Cod I!

The major d isadvantage is that the data type

wou ld vary from one vendo r or platform to

another and wou l d thnd(Jre have no sta ndard

string-processing l ibraries.

2. An existing data type, such as wcha r_t in C

wou ld be used. (Note that the char data type is
appropriate on ly if char is defined as 16 h its , or

if the string is given some fu rther structure

to define its length by means othn than n u l l
term ination. Similar issues m ay exist i n other

languages.)

The use of an existing data type h as t he al'lv:llltagc

of being widely known and im plemented : how

ever, it a lso has the d isadvantage of preexisting

assu mptions about behav ior and/or semant ics.

3. An opaque object wou ld be used. Since the data
in these objects is not v isi ble to the ca l l i ng p ro

gram, it can only be p rocessed by routines or by

i nvo king its member functions (e.g .. in C++)

Use of an opaque ob ject has the advan tage of h id-

ing much of the complexity inhe rent in the world 's

writing svstems from the appl ication writer. It has

the d isadLtntages common to object -oriented sys
tems, such as the need for software engineers to

learn a new programm ing pa rad igm and a set o f

class I ibraries fo r t h e l nicock ob jects.

How Windows NT Implements Unicode
The Windows NT design team started wi t h several

goals to m ake an operating sy.stem that wou ld pre

serve the investment of cust omers and ckvc lope rs.

These goa ls affected their decisions rega rd i ng t h e

data types and migration strategit·s clescrihcd i n the

p revious section .

The goa ls related to text processing were to

1 . Prov ide hackrward comp :.tt ih i l i ty

a) Support exist ing \IS-DOS and ! () - hit MS
Windows appl ications, including those based

on H-bit and double-byte character set (DBCS)
code pages.

b) Su pport the DOS file a l location table fik
syst<:m .

2 . Provide worldwide characrer support in

a) File names

b) File contents

c) l ser names

As described later in this sect ion. t hese <:onfl i ct

i ng goa ls were met u nder a single Windows , 'T

29

Product Internationalization

architecture, if not simul taneously in the same

appl ication and file system, then by clever segrega

tion of Wimlows NT into multi tasking subsystems.

These goals also affect the way Microsoft recom

mends clevelopns migrate their existing appl ica

tions to Windows NT.

The Basic Approach M icrosoft's overall approach

is close to that of using a standard data l ype that

accesses data mainly through string-processing

functions. In addition, Microsoft defined a special
set of symbols and macros for application develop

ers who wish to continue to develop appl ications

based on DOS (e.g . , to sciJ to those with 286 and

386sx systems), while they migrate their products

to run as native Win32 appl ications on Windows

NT. The developer can then compile the appl i

cation with or without the compiler switch

-DUNICODE to produ ce an object module compiled

for a native Windows NT o r a DOS operating envi

ronment, respectively.

Dual-path Data Types To select the appropriate

compilation path, .\1icrosoft provides C language
header fi les that cond itiona l ly define data types,

macros, and function names for either Un icode or

trad itional 8-bit (and DBCS) support, depend ing on

whether or not the symbol UNICODE has been

defined . An example of a data type that i l lustrates

this approach is TCHAR. If UNICODE is defined ,

TCHA.R is equivalent to wchar_t. Otherwise, i t is the

same as char. The application writer is asked to con

vert all instances of char to TCI-iAR to implement the
dual development strategy.

String-handling Functions Similarly, the macro

TEXT is defined to indicate that string constants are

wide string constants when UNICODE is defined, or

ordinary string constants otherwise. Appl ication
writers should surround a l l instances of a string
or character constant with this macro. Thus,

"Fi lename" becomes TEXT("Fi lename"), and 'Z'
becomes TEXT('Z') . The compiler treats these as a

wide string or character constant if UNICODE is

defined, and as a standard char based string or char

acter otherwise.

Final ly, there are symbol names for each of the

various string-processing functions. For example, if

UNICODE is defined, the function symbol name
_tcscmp is replaced by wcscmp by the C prepro

cessor, ind icating that the wide character function

of that name is to be cal led . Otherwise, _tcscmp

is replaced with the standard C I ibrary fu nction

30

strcmp. Deta ils of t h is procedure can be found in

Win32 Application Programming lnteJface. 1 •

Procedures for Developing/Migrating Applications
in t!Je Dual Pat!J In his paper " Program Migration

to Unicode," Asmus Freytag of Microsoft explains

the steps used to convert an existing appl icat ion to

work in Unicode and retain the ability to compile it

as a DOS or 16 -bit Windows appl ication . 1' The basic

idea is to remove the assumpt ions abo u t bow a

string is represented or processed. AJ I references to
string-related objects (e.g. , char data types), string

constants, and string-processing functions are

replaced with their dual-path equivalents. The tal

lowing steps are then taken.

1. Replace all instances of char with TCHAR, char'''

with LPSTR, etc. (For a complete l isting, see

" Program Migration to Unicode.") 1'

2. Replace all instances of string or character con

stants with the equivalent using the TEXT
macro. 1<• For example,

c h a r f i L e m e s s a g e [J " F i L e n a m e " ;
c h a r y e s c h a r = ' Y ' ;

becomes

T C H A R f i L e m e s s a g e [] = T E X T (" F i l e n a m e ") ;
T C H A R y e s c h a r = T E X T (' Y ') ;

3. Replace standard char based string-processing

fu nctions with the Win32 fu nctions. (See page

221 of Win32 Application Programming Inter
face for a complete l isting.)11

4. Normal ize string-length computati ons using

sizeof() where appropriate. For example, direct

computat ion using address arithmetic should

take the form: stri ng_lengtb = (last_address

fi rst_ad dress)"'sizeof(TCHAR);

5. Mark a l l files with the byte-order mark . 17

6. Make other, more substantial changes.

Most character-code-dependent processing

should be taken care of by step 3, assu ming the
developer has used standard fu nctions. If the

source code makes assumptions about the encod
ing, it wi l l have to be replaced with a neutral func

tion cal l . For example, the wel l-k nown uppercasing

sequence

c h a r_u p p e r = c h a r_ l o w e r + ' a ' -- ' A ' ;

impl icit ly assumes the language and the uppercas

ing rules are English. These must be replaced with a

function call that accesses the Windows NT Natural
Language Services.

Vol. 5 Nu. 3 Stun mer !'}')� Digital Technical]ourual

Summary
A universal character encoding-the Unicode stan

dard- has been developed to prod uce interna

tional software and to process and render data in

most of the world's languages. The standard, often

referred to as Unicode/10646, was jointly devel

oped by vendors and ind ividual experts and by

the I nternational Organization for Standard ization

and International E lectrotechnical Comm ission

(ISO/IEC) . Unicode breaks the (incorrect) principle

that one character equals one byte equals one

glyph. I t stipu lates the use of text elements that
are dependent on the particu lar text operation.

A number of software vendors are now moving to

support Unicode. Microsoft's implementation sup

ports Unicode as the native text encoding in its

Windows NT operating system. At the same time, it

maintains compatibil ity with existing appl ications
based on 8 -bit encoding.

Acknowledgments

The authors wou ld l ike to express their thanks to

Asmus Freytag of Microsoft Corporation and

Masami l l asegawa (ISO/IEC 10646 edi tor) for their

efforts in reviewing this paper.

References and Notes

l . Information Processing-/SO 7-bit and 8-bit
Coded Character Sets- Code Extension Tech

niques, ISO 2022: 1986 (Geneva: International

Organization tor Standardization, 1986).

2. Information Technology-Multiple-Octet

Coded Character Set, JSO!IEC DIS 10646·
1990 (Geneva : International Organization for

Standardization/International Electrotechni
cal Commission, 1990).

3.]. Becker, " Mu lt i l ingual Word Processing,"

Scientific American, vol . 251 (July 1984):
96 - 107.

4. The Unicode Standard, Version 1.0, Volume
1 (Reading, 1\1.A: Addison-Wesley Publ ishing

Company, 1991) .

5 . The Unicode Standard, Version 1.0, Volume

2 (Reading, MA: Addison-Wesley Publ ishing
Company, 1992).

6. Information Technology- Universal Multiple
Octet Coded Character Set (UCS), ISO/IEC
DIS 10646-1 .2: 1991 (Geneva: International

Digital Technicaljounwl Vr!l. 5 Nn. j Su111mer 199.3

Unicode: A Universal Character Code

Organization for Standardizat ion/Interna

tional Electrotechnical Comm ission, 1991).

7 Unicode 1 .0. 1 Errata lnsertfor The Unicode

Standard, Version 1. 0, Volume 1 and Volume

2 (Reading, MA: Addison-Wesley Publishing

Company, 1992).

8. TSO/IEC 10646 restricts the use of combining

characters. See the definitions of level 2 and

level 3 in the section Relationship between

Unicode and ISO/IEC 10646.

9. Some of the presentation variants are

encoded for compatibility with existing stan

dards. For a discussion, see the section Code

Conversion.

10. R. Pike and K. Thompson, " Hello World,"
Usenix Conference, 1993.

1 1 . File System Safe- UCS Transfo ·rmation For
mat (Reading: X/Open Company Limited ,

1993).

12. A. LaBonte, "Mu l tiscript Ordering for Uni

code," Proceedings of the Fourth Unicode

Implementors Workshop, Sulzbach (Unicode

Inc . , 1992).

13. Private communicat ion, joseph D. Becker,

1993.

14. Win32 Application Programming Interface
(Redmond, WA: Microsoft Press, 1992).

15. A. Freytag, " Program Migration to Unicode,"

Proceedings of the Second Unicode Imple

mentors Workshop, Merrimack (Un icode

Inc . , 1992).

16. String constants in source code shou ld be

avoided in a l l cases. They violate one of the

fundamental design ru les of software interna

tional ization, i .e . , that objects dependent on

language and/or cu l ture should be isolated

into easily accessible modules for the purpose
of local ization.

17. Unicode defined the code value OxFEFF to

have the semantic byte-order mark (BOM) and

encourages software developers to place it as

the first character in a Unicode file. (For

details, see the section Byte Ordering.)

31

Wendy Ramumberg
Jiirgen Bettels

TheX/Open
Internationalization Model

Software internationalization standards allow developers to create applications

that are neutral with respect to language and cultural information. X/Open

adopted a model f01· internationalization and bas revised the model several times

to e:xpand tbe range of support. The latest version of tbe X/Open internationaliza

tion model, which supports multibyte code sets, provides a set of interfaces that

enables users in most of Europe and Asia to develop portable applications indepen

dent of the language and code set. One implementation of this model, the interna

tionalized DEC OSF/1 AXP version 1.2 (based on OSF/ 1 release 1.2) supports complex

Asian languages such as Chinese and japanese.

Software international ization standards initiatives

began in the late 1980s. This paper provides a brief
h istory of international izat ion standards activities
fol lowed by a description and an analysis of the
X/Open model for international ization . The Open

Software Foundation's OSF/ 1 release 1 .2 and Digital 's

DEC OSF/ 1 AXP version 1.2 internationa l ization imple·
mentations serve as reference software for the
description. The analysis covers both the strengths
and the l imitations of the model. The paper con
clud<:s with a d iscussion of current and future rela·

tionships between this model and other work in
the field .

Internationalization Standards

The International Organization for Standardization

(ISO) is the primary group that is currently publish·
ing or developing internationa l ization specifica·
tions, including code sets, programming languages,
and frameworks. Defore the ISO adopts emerging
specifications, much work is done by other groups.
In the case of i nterfaces that support the develop
ment of international appl ications, the Uniforum

International ization Technical Work Group, the

X/Open Internat ionalization Work Group, the

Unicode Consortium, and the X Consortium have
been instrumental.

In ternationalization is general ly considered to be

the processes and tools appl ied to create software
that is neutral with respect to l anguage and cultural
information. This neu tral ity can be accomplished
by providing a set of application interfaces clcsignecl

32

to isolate sensitiVIty to language and cu lture
specific information. Such interfaces include func·
tionality to

• Attain character attributes independent of coded
character sets, i .e . , code sets

• Order relationships of characters and strings

• Process cu lturally sensitive format conversion
(e.g . , elate, time, and numbers)

• Maintain user messages for multiple languages

Standardization of international ization interfaces
began predominantly in the UNIX environment .

Companies such as Hewlett-Packard and AT&T pro
vided early proprietary solutions. 1

When X/Open announced its intention to
include support for internationalization in Issue 2

of its X/Open Portabi l ity Guide (X PG2), Hewlett
Packard submitted its Natura l Language Support
System as a proposal for an internationalization
model . X/Open further developed this proposal
and publ ished the guide in 19872 Some principles
developed for these solutions found their way into
the emerging C programming language standard
(ISO/IEC 9899) and the POSIX operating system

interface specification (ISO/ IEC 9945·1) .u
The subsequent version of the X/Open

Portabil ity Guide, X PG3, publ ished in 1989, demon
strated further improvement in international ization
support . ' The guide was al igned with the ISO/IEC C

standard and the JSO/IEC POSIX specification, both
of which meanwhile had been fi nal ized.

litJ/. 5 No . .) Summer 1993 Digital Tecbnical journal

A major drawback of the XPG3 specification is

that it is l imited to single-byte code sets. Such code

sets are used primarily for western European lan

guages and preclude use of the X/Open internation

a l ization model for Asian and eastern European
languages.

The Japanese UNIX Advisory Group developed

specifications to extend support to character sets

that are encoded in more than one byte. These code

sets are general ly known as mult ibyte code sets.

The Multibyte Support Extensions developed by

this group are now included in an addendum to the

ISO/IEC C programming language standard 6 This

work was also adopted by X/Open for inclusion in

Issue 4 of the X/Open Portabil ity Guide (XPG4) ,

which was published in 1992.7.H.�

However, the underlying model used by X/Open

and POSIX does not fu l ly meet the needs of d is
tributed and mu ltil ingual computing environ

ments. Therefore, in 1992 X/Open and Uniforum

created a joint internationalization work group,

commonly referred to as the XoJIG. This group

investigated internationa lization requirements for
distributed and mult i l ingual environments and, in

November 1992, published a revised model for

international ization. 1o

The X/ open Internationalization Model

When X/Open first investigated the need for

international ization services, several needs were

identified :

• Meet the market requirements of the X/Open

member companies. (Many of these require

ments were based on the needs of the European
Economic Community [EEC] .)

• Support more than one language and cultural

environment, including messages and date/time.

• Provide for data transparency, i .e . , remove 7-bit,
U.S. ASCI I restrictions from the environment.

As discussed previously, X/Open adopted a

model for international ization and has updated and

revised the model many t imes. The next section
describes the current X/Open model.

Overview of the X/Open Portability
Model, Issue 4
There are five components to the current X/Open

international ization model, X/Open Portabil i ty
Guide, Issue 4 (XPc;4):

Digital Technical jout·,.al Vol. 5 No. 3 Summer 1')')3

The X/Open Internationalization Model

1 . Locale annou ncement mechanism

2 . Locale databases

3. International ization-specific l ibrary routines

4. International ized interface defi nit ions for stan

dard C language l ibrary rout ines

5. Message catalog subsystem

The locale announcement mechanism provides a

way for an application to load, at run time, a spe

cific set of data that describes a user's native lan

guage and cu ltural information. An appl ication user

can specify a language, a territory, and a code set

by means of environment variables. The locale

announcement mechanism checks the environ

ment variables. If the variables are set, the appl ica

tion attempts to load the locale-specific data. If the

environment variables are not set, most appl ica

tions default to the use of the PO SIX (i.e . , C lan

guage) locale or an implementation-defined locale.

The POSIX locale definition is based on the u.s. ASCII
code set and the U.S. Eng! ish language.

In conjunction with locale databases, the

announcement mechanism provides access to code

set specification data, character col lation informa

tion, date/time/numerical/monetary formatting

information, negative/affi rmative responses, and

appl ication-specific message catalogs.

Figure 1 shows the relationships among the com

ponents of the X/Open internationalization

model . 1 1 Refer to Figure 1 throughout this section,

as the various elements of the figure are described .

The locale announcement mechanism is based

on the set locale() function

c h a r * s e t l o c a l e (i n t c a t e g o r y ,
c o n s t c h a r * l o c a l e)

The categories correspond to components of the

locale database and have a set of corresponding
user environment variables. The announcement
mechanism supports an order of precedence when

querying the user's environment to establ ish the
p referred locale. Table 1 shows the environment
variables specified by XPG4.

The LC_ALL environment variable has prece

dence over a l l others, whereas the LANG environ

ment variable has no precedence. The other l.C_ *

environment variables are of equal weight.

Although it does not provide a nam ing conven
tion for locales, the X/Opcn model cloes specify the

locale argument as a pointer to a string in the form

33

Product Internationalization

r-------------------------------------� � - - - - - - - - - - -
DEVELOPMENT SYSTEM
(XPG4 ONLY)

INTE RNATIONALIZED SYSTEM DEVELOPMENT
SYSTEM

APPLICATION MESSAGE
TEXT FORMAT

LOCALE R
Fl LE l___,-J e CODE INTE RNATIONALIZATION API

I
MESSAGE f==1
FILE L_,-J SET

FILE INTERNATIONALIZATION SERVICES
I I
y y I localedef I STRING AND

CHARACTER
HAN DLING

+

LOCALE MESSAGE
HANDLING RETRIEVAL

�

I
'

gencat

- - - - - - - - - - - - - - 1 1 l
f L-L.....J

- -

l

I
I
I
I

j _ _ _ _ _ _ _ _ _ _ l
._ _ _ _ _ _ _ _ _ _ _ _

l_J
LOCALE
DATABASE

l
MESSAGE
CATALOG

Figure 1 Components of the X/Open lnternationalization Model

Ta ble 1 Locale-specific Environment
Va riables

Variable Use

LC_ALL For all categories

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

LANG

For col lation

For character classification

For responses and message
catalogs

For monetary information

For numeric i nformation

For date/time i nformation

If no others are set

XPG3:
l a n g u a g e [_t e r r i t o r y [. c o d e s e t J] [@ mo d i f i e r J

X PG4:
l a n g u a g e [_ t e r r i t o r y J [. c o d e s e t J [@ m o d i f i e r J

Examples of environment variable settings are

LANG = en_US. IS08859-1

and

LCCOLLATE = ja_jP. jpEUC

The mocli.fier is sometimes used to specify a partic
u lar instance of a language or cultural information
for a locale. For instance, if support for a particular
sort order is necessary, in a German locale the user
m ight specify

LC_COLLA TE = de_DE.IS08859-l @phone

34

to sort a l phabetica l l y according to the telephone
directory rather than the dictionary.

Locale databases can be provided by either
the system vendor or an application developer. A

description of uti l ities that convert a source format
specification of a locale to a binary file fo l lows.

The setlocale() function accesses the binary
locale databases and provides a global locale within
a given appl ication. The global locale is similar to
a global variable in that it is shared by a l l of an appli
cation's procedures. Locale switching can be done
within an appl ication, but within the scope of the
XPG4 model such locale switching is unnecessari ly
complex and costly, in terms of performance. A

later section d iscusses additional l imi tations of this
mechanism.

The set of interfaces shown in Table 2 supports
in ternational appl ication development and was
first introduced as part of the ISO/IEC c and the
XP(i2 and XPG3 specifications. These interfaces are
used primari ly to access data in the locale databases
or to manipu late locale-sensitive data.

The XPG3 specification is based on the use of
ISO/IEC 8859-1 as the transmission code set. 12 Some
implementations use this as an internal code set,
instead of the ASCII code set.

A l imited set of functions that support multibyte
characters is also available: mblen() , mbtowc() ,
mbtowcs() , wctomb() , ancl wcstombs() . Each
of these fu nctions is based on the ISO/IEC C wide
character (wchar_t) data type. The size of the data
type is not specified by the standard and can vary

Vol. 5 Nu . .J Summe-r I')'J.l Digital Technicflljournal

Ta ble 2 Interfaces for International
Appl ication Development

I nterface Use

localeconv()

nl_langinfo()

setlocale()

strco l l ()

strftime()

strxfrm ()

For retrieving locale-dependent
formatting param eters

For extracting information from
the locale database

For locale announcement

For locale-based string collation

For convert ing date/time formats
based on locale

For t ransform ing a string for
col lation in current locale

from one implementation to the next , depe nding

on the code set support offe red by a particular ven

dor. This multibyte function set does not provide

adequate support fo r Asian language appl ication

development.

In addit ion to the m b ' and we''' fu nctions, the

X/Open in ternational ization model specifies a set

of extensions for many l i brary fu nctions and com

mands. These extensions enable the support of

8-bit characters as wei l as provide the fu nctional ity

required to meet the original goal of ensuri ng data

transparency. For example. changes to the printf()

and scanf() fa m i l ies of functions al low the order

i ng of argu ments to be specified in translated mes

sage catalogs. In addit ion, about 80 com mands,

i ncl uding sort and date, were modified to support

the locale categories.

The X PG specifications include a message catalog

su bsystem. Although not very sophisticated , this

subsystem provides mu ch needed fu nctio nal i ty.

M inor updates have been made with each new issue
of the Portabi l i ty G u ide. The subsystem comprises

only three functions: catopen(), catclose(), and

catgets(). A command, gencat, is used to convert a

message source file i nto a binary message catalog
that is accessed at run time by an appl ication. The

behavior of the catopen() function is dependent

on the user's chosen locale al lowing selection of

translated messages.

XPG4 Specification and the OSF/ 1 Release
1.2 Implementation

This section discusses the XPG4 model in terms

of the OSF/ 1 release 1 .2 implemen tation. lbpics

include code set support, the locale definit ion

u t i l ity (the u t i l i t y for hand l ing data in m ixed code

Digital Tecb11ical journal \lrJ/. 5 No. j Summer t')'Jj

The X/ Open Internationalization Model

sets), worldwide portabi l ity i nterfaces, and local

langu age support.

Code Set Support As ment ioned in the previous

section, the XPG3 specification primari ly supports

code sets based on the ISO/IEC 8859-1 specification.

The XPG4 model goes beyond this by includ ing

additional interface specifications to support mu lt i

byte locales and internationalized commands.

The XPG4 model is a superset of the five basic

components of the XPG3 model . The use of the

wchar_t data type is a key feature of the new in ter

face specifications, because this data type supports

multibyte code sets. In the i nternational ized DEC
OSF/1 AXP version 1 .2 system, the size of wchar_t

is 32 bits, wh ich enables the support of complex

Asian languages such as Chinese. This i m plementa

tion is based on the OSF/1 release 1 .2 , which is itself

designed to support 8-, 16-, or 32-bit wchar_t defini

tions. The X/Open international ization model is

based on the concept of process and file codes. In

the international ized DEC OSF/ 1 versio n 1 .2 imple
mentation, the wchar_t data type is used as process

code. That is, in ternal to an appl ication, characters

are converted to the wcha r_t data type before use.

Fi le code, i .e . , on-disk data, is a lways stored as

multibyte characters. An application converts a l l

i nterna l process code (i.e., wchar_t data type) char

acter to multibyte character prior to storing it on

disk . This enables file compression a nd enforces

the use of a constant width for the processing of

character information. The mb" and we• functions

convert between the two types of data. The size of

the wchar_t data type combined with the capabil ity

to support mu l tiple encoding schemes provides the

flexi bil ity required to have a code set-independen t

implementation.

Restrictions exist on the use of certain characters
i n the second and subsequent bytes of a mu lt ibyte

character so that fu l l code set independence is d iffi

cu l t to achieve . An example of such a restriction is

the s lash character /. The UNIX file system uses th is

character as a delimiter in absolute and relative

pathname specifications. Implementations based

on OSF/1 release I .2 restrict the use of characters

in the range Ox00-0x3F to the ASCI I code set.

However, even with this restriction, it is possible to

b u i ld robust systems that support a wide range of

multibyte code sets.

To gain the necessary flexibil ity, the Open Soft

ware Foundation i ntroduced an object-oriented

archi tecture for t he international ization subsystem.

35

Product Internationalization

This architecture specifies the various components
of the X/Open model as subclasses. At run time,
an application instantiates objects bui lt from these
subclasses by means of the sctlocalc() function
ca l l .

localedef, iconu, and Code Set Jndej)e1ldence
X PG3 does not provide a u t i l i ty for describing
locales. Therefore, the number of different
approaches to the p roblem matched the number of
vendors. Introduced in the POSIX specification
ISO/IEC DIS 9945-2 and hence adopted by X/Open,
the localedef uti l ity provides a mechanism for spec
ifying a locale in a portable manner. I -' for each code
set supported in the internat ional ized DEC. OSF/ 1

A X P system, there i s a corresponding charmap fi le
and one or more corresponding locale definition
files that adhere to the POSIX specifications.
Combined with a set of locale-specific methods and
code set converter modules, these subclasses pro
vide the foundation for the OSF international ization
architecture.

Locale-specific methods provide a way for the
ISO/IEC c language mbtowc(), wcromb() family of
functions to work in a mul t iple code set environ
ment. The wchar_t encoding of a multibyte charac
ter in the Japanese SJIS code set is d ifferent from
that for a character in the Super DEC Kanji code set.
At execution time, the corn:ct merhod is instanti
ated based on the user's choice of loca le. An exam
ple of such an instantiation is shown in Figure 2.

A user-level ut i l ity (iconv) and several l ibrary li.111C
tions (iconv() , iconv_open(), and iconv_close())
provide a way to han d le data that may be in mixed
code sets. International ized DEC OSF/ 1 version 1 .2

provides an extensive set of code set conversion
modu les. New conversion methods are easily added
to the system .

Worldwide Portability lntelfoces The XPG4 inter
nationa l ization architecture paral lels the XP<; .VISO
C model . For example, XI'G4 specifies a fami ly of
isw'' functions similar in design to the is· functions

36

LANG = ja_JP .SJIS
mbtowc() - sjis_mbtowc()

or
LANG = zh_ TW.eucTW

mbtowc() - eucTW_mbtowc()

Figure 2 instantiation ofmbtowc()

(e.g . , isalpha) specified in the ISO/I EC c standard. As
mentioned previously, the XP<;;i model docs not
include a l l the interfaces necess:1ry for application
developers to hand le multibyte code sets. A new
set of interfaces, which paral lels the set of ISO/IEC C.
8-bit interfaces, was developed and integrated into
the XPG4 specification. The fina l version of the
interface specification was proposed to the JSO/IEC
C com mittee as the Mu ltibyte Support Extensions.

Cultural Data/Local Language Support Local
language support is achieved through the use of
locale databases and message cata logs. The catalogs
enable trans lat ion of user messages. Locale data
bases have two components: the cbarmap file and
the locale defini tion fi le . These databases are cre
ated by means of the localedef command.

The charmap fi le contains a POSIX-compl iant
specification of the code set, i .e . , a one-to-one
mapping from character to code point. The locale
definition file contains the cul tural information.
Various sections of the definition file correspond
to the categories referenced by the setlocale()
function. The definition fi le conta ins col lation
specifications, numeric and monetary formatting
information, date/time formats, affirmative/
negative response specifications, and character
classification information. In the 051-/ 1 release 1 . 2
implementation, these definition files are indepen
dent of the code set. For example, the definition for
Japanese (ja_JP) can be combined with multiple
charmap files such as SJ IS or eucj l' .

Strengths of the X/Open Model

The greatest strength of the X/Open internationa l
ization model is that i t is in place today and enables
the development of portable, l anguage- and code
set-independent appl iGttions. The international
ized DEC OSf/ 1 AXP version 1 .2 system provides sup
port throughout the commands and tt t i l ities for 20

code sets that represent major Eu ropean and Asian
languages. Al l this is accompl ished using XPG4
appl ication programming interfaces (APis). In addi
tion, the p rogramming paradigm is consistent with
A NSI C, ma king i t easier for appl ication developers
to modify existing applications for international
support.

Limitations of the X/open Model
As described previous ly, the X/Open model for
international ization provides a comprehensive
set of appl ication interfaces, thus enabl ing the

vbl. 5 No. 3 S11111JI/.er 19'J.i Digital Technical journal

development of appl ications that can be used
worldwide. Yet, as with many standards, there are
l imits to what can be accompl ished . In this case,
l imitations man ifest themselves in several areas:

• C language API

• D istributed computing environments

• Multithreaded appl ications

• Multi l ingual appl ications'-;

• Unicode and ISO/IEC 10646 support'' 'r'

Because the X/Open and POSJX specifications are
based on UNIX implementations, the AP!s are speci
fied only for the C program m ing l anguage. For pro
gram ming languages such as COBOL, FORTRAN, and
Ada. it is not necessarily possi ble to match the syn
tax and semantics of the API . The remainder of this
section exp l ores generic problems with the global
locale model and addresses specific issues in more
detai l .

Global Locale Issues

The X/Open model is based on the concept of a
global locale. This aspect of the model is achieved
through the u se of locale data that is maintained i n
a private, process-wide global structure. The use of
a global locale is one of the more severe drawbacks
to using the overal l model .

When working with this model , application
developers typically assume that a single language
territory-code set combination is in use at a given
time and wi l l remain constant on a per-process
basis. Although it is possible to use the annou nce
ment mechanism to determine the run-time locale
of a process, this mechanism is cu mbersome. The
appl ication must both save and restore the locale
information.

Another d rawback of the X/Open model is that
existing APis do not include a way to share locale
specific information between processes. This, com
bined with the difficu lty of locale switching, 1 imits
the ability to support m u lt i l ingual and d istributed
applications.

Distributed Processing Issues

In a client-server environment, the problem of sup
porting m u l tiple locales becomes a serious issue.
Consider the fol lowing examples:

• A server gets requests from various cl iLnts. each
run ning their own locale. These requests are
processed using the locale of the cl ient. The

Digital Tecb11ical jounml V!JI. 5 No . . i St/111111<'1' !')V.i

The X/Open Internationalization Model

process i ncl udes returning locale-specific user
messages to the cl ient and processing user
locale-sensitive date/time formats, col lation
information, and string manipulation.

• A window manager that supports multiple

c l ients displays menus for a c l ient based on the
cl ient's locale. The user error messages displayed
are based on the locale of the server.

When a c l ient sends a request to a server, the
request parameters that are passed between the
client and the server imply an associated locale.
Since the global locale is not an explicit argument in
any of the XPG4 fu nctions, this locale is difficu lt to
pass to the server. Consider the specific case of
remote procedure calls (RPCs), where an interface
definition l anguage (JDL) might be used to generate
client stubs. Because of the global nature of the
locale, i nsufficient information is avai lable to the
IDL to determine if the locale information needs to
be used as an argument to any generated functions.
Thus, the server may need to change its locale for
each cl ient request, which may be unacceptable in
terms of system performance.

Using the current X PG model , synchronizing the
use of a specific locale between a cl ient and server
may not be possible. Even if a client could specify
a locale as part of the request, the locale may not
be avai lable at the server side or may be repl i

cated incorrectly on the server s ide. This situation
exists because loca le names and content are not
standardized.

Although the X PG4 specification includes the
localedef com mand for specifying the content of a
.locale clatabase, there is no provision for standardiz
ing the content. The only locale for which an
X/Open specification exists is the POSLX or C locale.
I n addition, there is no specification for explicitly
naming a locale . Locale names are com posed of lan
guage, territory, and code set components. Many
vendors use ISO/IEC 639 and iSO/IEC .'i166 for the lan
guage and territory components, but there is l i t t le
agreement on code set nam ing conventions l7.1H

This naming scheme is not sufficient for uniquely
identifying locales, as is required in a cl ient-server
model .

Another problem with the X/Open moclel that
impacts application perform ance and the ease with
which an appl ication can be i nternational izecl is
related to the process code. The representation of
the process code, i .e . , wchar_t , is i mplementation
defined, and the mapping of mult ibyte characters
to wide character codes may be locale sensirive.

37

Product Internationalization

Therefore, wchar_t-encoded data cannot be
exchanged freely between the c l ient-server pair.

The only exception wou ld be if the end user guar

anteed that the process code was identical for a

given locale for each part of the c l ient-server pair.

The XPG4 specification does not include function

al ity to identify or to interrogate the wchar_t

encoding scheme used .

Multithreaded Applications

The problems encou ntered in a distributed process

ing environment become more complex if the
application is also mu ltithreaded. Using POSIX
threads, common ly referred to as pthreads, more

than one thread is in the execu tion phase at the
same time. 1� Again, a problem with the globa l , pro
cess-wide locale is evident. The appl ication cannot

maintain the state of the global l ocale, accom
plished by a save/restore process, without blocking

all other threads. Likewise, execution of locale-sen
sitive functions requires locking all threads to

ensure that the global state is not a l tered prior
to completion . The need to continual ly lock and

unlock threads, i n addition to being undesirable,
results in a performance problem for international

ized applications. Another approach is to make

locale data thread-specific .

Multilingual Applications

The X/Open international ization model is oriented
toward the development of mono l i ngual applica
tions. Therefore, the model does not provide func

tions to hand le data that consists of an arbitrary
mixture of languages and code sets.

The fol lowing are some examples of appl ications

that may require m u ltil ingual services:

• Appllcations that simultaneously interact with
a number of users (e .g . , transaction p rocessing
systems), where each user can choose a l anguage

• A word processing application for m u l t i l ingual
texts that need language-sensitive formatt ing,

hyphenation, etc.

Unicode Support

With the arrival of the Unicode universal character

code and the adoption of ISO/IEC 10646 as its form,
both POSIX and X/Open have to address the issues
of support . 1"· 16 The X/Open Internatio nal ization
Working Group is preparing a paper on Unicode

38

support within the ex1stmg specifications; this
publication should be avai lable in l ate 1993. Some

of the issues that the C language, I'OSIX, and XPG4
are fac ing to support Unicode or ISO/IEC 10646 are
character compatibil ity, code restrictions, and valid
character strings.

Unicode characters are incompatible with the

C language char• data type u sed in the POSIX and
X/Open models. Unicode characters are 16 -bit enti

ties, whereas the POSJX and X/Open characters are

in practice 8-bit bytes, even though theoretical ly

the byte size is implementation dependent. lVlost

APis defined in the POSIX and X/Open models
implicitly assume 8- bit characters. This princip le
is extended to cover Asian multibyte characters

by considering each character to be a sequence of

8-bit char data elements. Unicode characters, bow
ever, cannot be broken down into sequences of

va l id 8-bit char data elements.
The POSIX character model requires that the

code val ues for char''' data protect the code ranges
for control characters between OxOO-Ox 1 F and

Ox80-0x9F, the code position DELETE, and the slash

character /. No such restrictions exist in Unicode.

The C language postulates that a n u l l character

terminates a char' ' string. Si nce the Unicode string
most l ikely contains zero bytes, these bytes would

be interpreted as string terminators. In principle,
the C language would al low a compiler to define
the char'' data type to be of 16-bit width . However,

given the prevail ing assumption in POSIX and Xl'G4
that one character equals one 8-bit byte, a Unicode

character string cannot be a val id char'' string.

For these reasons, U nicode can not be a val id fi le

code as defined by the l'OSIX and X/Open specifica

tions. Unicode is not usable as an XPG4 process

code either. Unicode and ISO/IEC 10646 allow the
combining of 16 -bit characters. " However, in many

operations the combining character (e .g . , in the
French character set, the grave accent) and the base
character (e .g . , the letter e) have to be processed

together. This situation contradicts the XPG4
model, where each character of the process code is
individu a l l y addressed and processed.

Using a wel l-defined encoding as X PG4 process

code wou ld a lso violate the principle that the pro

cess code is opaque, implementation defined, and

not valid outside the current process. For a l l these
reasons, the X/Open Joint Internationalization
Group decided to propose using Unicode in a mod

ifiecl form of the universal mu ltiple-octet coded
character set (CS) transformation format (UTF). 1('·20

\k;/. 5 No. j Summer 1')')_1 Digital TeciJnical journal

Proposed Changes to the Model

The XPG4 model l imitations c\escribec\ in the previ
ous sections are we.l l understood in the internation

a l ization community. X/Open has publ ished a
Snapshot specification for a set of distributed inter

national ization services J0 This specification does

not solve a l l the problems identified in this paper. It

does, however, address the problems associated
with the use of the global loca le mechanism, locale
identification, and text object manipulation. Note

that these are proposed changes and have not been
adopted by any standards organization.

The proposed changes include

• A locale naming specification that enables the

identification of a given locale in a d istributed
environment

• Definition and support of a locale registry

• A new set of APl s that enables appl ication soft

ware to

- Concurrently manage and use many d ifferent
locales

- Manip u late opaque text objects2 1

- Support statefu l and nonstateful encodings

and fi le codes that are excluded by the cur
rent standards (e .g . , nonzero byte terminators

used in the Unicode code set)

Locale Naming and the Locale Registry

In an international ized environment, the server

m ust replicate the c l ient's locale. If the c l ient's

Table 3 Network Locale Na ming Specifications

The X/Open Internationalization Model

locale can be u niquely identified, the remote code
can repl icate the locale by obtaining it and specify
ing th is information as part of the operation. To

solve the locale repl ication problem, the Xoj !G
developed a locale naming scheme, referred to as

the locale specification.

The locale specification is a character string that

contains the loca le name for each category that
exists within the locale. The syntax for locale

names is a l ist of keyword-va lue pairs, where each

pair defines a locale category. Certain keywords,
such as cocle set name, encoding name, and owner

or vendor name, are standardized as part of the reg

istration process. Table 3 shows two examples of

locale specifications.

Although this naming scheme provides for

u nique identification of locales, the names are long.

The specification ca l l s for the use of ASCII c harac
ters to name locales. The American English locale

specification is over 200 bytes in length . A short

hand notation cal led network locale specification
token has been proposed.

The network locale specification token is an

u nsigned integer value that can be represented

within fou r bytes. The two most significant bytes
represent the registration au thority. nder the pro

posal, national and international standards bodies,

companies, and consortia, etc. , that wish to use net

work locale specification tokens will receive
u nique identifiers. A block of values wil l be
reserved for private use between consenting sys

tems. A set of new fu nctions wil l a l low conversion

American Engl ish Locale Using the lSO/I EC Latin-1 Code Set

CTYPE=ANS I ;en_ US;01 _00;1S0-88591 -1987; ;/

COLLATE=ANS I ;en_ US;01 _ 00; IS0-88591 -1 987; ;/

M ESSAGES=ANSI;en_US;01 _00;1S0-88591-1987; ;/

MON ETARY =ANSI ;en_ US;01 _ OO; IS0-88591 -1987;;/

NUM ERIC=ANSI ;en_US;01 _00; 1S0-88591-1987; ;/

TIM E=ANSI ;en_US;01 _00; 1S0-88591-1987; ;/

Japanese Locale Using Japanese Extended UNIX Code (EUC) Encoding

CTYPE=ISO;ja_,l P;01 _00;,11S-X0208-1987,JIS-X0201-1987,-I I S-X021 2-1991 ; EUC;/

COLLATE=ISO;ja_J P;01 _00;J IS-X0208-1 987,JIS-X0201-1987,JIS-X021 2-1991 ; EUC;/

M ESSAGES=ISO;ja_J P;01 _ OO;J IS-X0208-1987,J IS-X0201 -1 987,J IS-X021 2-1 991 ; EUC;/

MONETARY=ISO;ja_J P;01 _00;J IS-X0208-1 987,JIS-X0201-1987,JIS-X0212-1 991 ;EUC;/

N U M ERIC=ISO;ja_J P;01 _00;J IS-X0208-1 987,J IS-X0201 -1 987,J IS-X021 2-1991 ;EUC;/

TIM E=ISO;ja_JP;01 _00;JIS-X0208-1987,JIS-X0201-1987,J IS-X021 2-1991 ;EUC;/

Digita1 1ec:huical]ourual H>l. 5 No. 3 Summer I'J'J.> 39

Product Internationalization

between the fu l l locale specification and the locale

specification token.

The locale specification proposal solves the
problem of u nique naming for locales. Combined

with a locale registry, this proposal overcomes

some of the limitations of the cu rrent X/Open

model. Within the registry, each locale wil l have

a name defined accord ing to the new syntax.

Assuming vendors add these registered locales to

their systems, language-sensit ivc operations in a

d istributed environment wi l l obtain the same

results across systems. This registry has been estab

l ished by X/Open, and several locales have been

submitted.

Multilocale Support

A new set of interfaces, the set of o* fun ctions, has

been proposed. These interfaces provide capabil i

ties s imilar to those defined by the XPG4 model .
These ncw fu nctions addrcss many of the model 's

l i mitations, includ ing multithreaded appl ications,

distribu ted systems, and m u ltil ingual appl ications.

Most of the o* functions util ize three new data
types: locale object, attribute object, and text

object. To overcome the l imitation imposed by a
global, per-process locale, the fundamental XPG4
programm ing paradigm is al tered to define loca l i

zation on a per-call rather than a p er-process basis.
This change is accompl ished by defining a new

opaque data typc cal led a locale object. A locale
object identifies the locale and can be passed as an

argument to locale-sensitive functions on a per-cal l
basis. In this way, the basic programming paradigm

becomes

I . Perform operation X on data Y using locale Z

and not

1. Set global locale Z

2. Perform operation X on data Y

An attribute object is a generic opaque object
that serves as a container to other opaque objects,
such as a locale object. Use of an attribute object in

the proposed APis provides a solu tion that is not

specific to solving international ization problems. It

is anticipated that objects, i n addition to the locale

object, will be identified. The additional objects

might result from requirements in such areas as
m ultimedia, network secu rity, and X 1 1 - specific
extensions to the locale.

A text object is a new data type that replaces the
character (char) and wide character (wchar_t) data

40

types used in the XPG4 internationalization modd.

As previously defined, a text object refers to a col

lection of text characters that may or may not have
metadata associated with them. Support for direc

tion a l ity, as required for right-to-left languages

such as Hebrew, is an example of when such meta
data would be introduced. If a text object has a
locale defined as part of the metadata (i .e . , sel f

annou ncing data), the locale specified as part of the
data supersedes the locale passed as an argu ment to

the o* functions. The locale that is passed as a func
tion argument acts as a default locale for operations

that require it . Al l o' functions al low a locale identi

fier to be passed as an argu ment. This capabil ity

eliminates the l imitations of the XPG4 global locale.
The support of metadata associated with text

objects is implementation defined.

A text object data type is represented by a text

pointer of type txt_ptr. A text pointer represents a l l

the information associated with a particular charac

ter position within the text object. This informa

tion is su fficient to perform any kind of operation,

such as c lassification, extraction , or uppercasing.
In sum mary, the o* functions a llow text objects

to be classified, converted , transferred to and from
files, etc. The fu nctiona lity of the o* functions

is designed to paral lel the character-handl ing

functional ity provided by the X/Open internation

al ization model. For example, functions for manipu

lating text pointers and for concatenating text
objects are tuned to the mult i locale model.
Interfaces have also been introd u ced to provide

management functions for new objects.

Conclusions

When introd uced , the X/Open Portabil ity G u ide
Issue 3 model for international ization met about 90
percent of the known requirements in the western
E uropean market. The introdu ction of the XPG4
worldwide portabi l ity i nterfaces expanded the
region to i nclude Asia, japan, and eastern E u rope.
Consequently, appl ication developers can write
portable code that supports a variety of languages.

The use of the worldwide portability interfaces for
computer-aided design appl ications that are dis

tribu ted worldwide is one example of such code.

However, the use of the c l ient-server model

expanded greatly in the time it took to develop

these standards. Also, the need to support truly
m u lti li ngual appl ications in a d istribu ted environ

ment became evident. New code set specifications
(i .e . , U nicode) have been adopted , and systems

\'<;/. 5 No. 3 Surnmer l993 Digital Technical journal

supporti ng U n icode as both file and process code
have been implemented. Appl ication vendors are
beginning to see their markets expand i nto every

corner of the world.

The X PG4 model wil l continue to provide m uch

needed interfaces for qu ite some time. Yet, to meet

the challenges of the truly d istributed environ

ment, a new API, similar to the o* functions pre

sented here, must be developed and accepted.

Acknawledgments

Thanks to Mike Feld man, Richard Hart, and Dave
Lindner, among others, who spent their time pro
vid ing comments and recom mendations du ring the

writing of this pa per.

References and Notes

1 . UNIX System V Release 4 Multi-National Lan

guage Supplement (SVR4 MNLS) Product

Overview (Japan : American Telephone and

Telegraph Co. , 1990).

2 . X/Open Portability Guide, Issue 2 (Read i ng,
U.K . : X/Open Company Ltd . , 1987).

3. Programming Languages-C, ISO/IEC 9899:

1990 (Geneva: International Organization for

Standardization/International E lectrotechni

cal Commission, 1990).

4 . Information Technology-Portable Operat

ing System Interface (POSIX)-Part 1: System

Application Program Interface (API) [C Lan

guage}, ISO/IEC 9945-1 : 1990 (Geneva: Interna

tional Organization for Standard i zation/

International Electrotechnical Comm ission,

1990).

5. X/Open Portability Guide, Issue 3 (Reading,

U.K. : X/Open Company Ltd . , 1989).

6. Multibyte Support Extensions, ISO/IEC
9899: 1990/Amendment 3: 1993(£) (Geneva:
International Organization for Standarcliza
tion/International Electrotechnical Com mis
sion, 1993).

7. X/Open CAE Specification, System Interface

Definitions, Issue 4, ISBN 1-872630-46-4,

C204 (Reading, U.K . : X/Opcn Company Ltd . ,

1992) .

Digital Teclmical journal liJI. 5 No. _; Summer !')').)

The X/Open Internationalization Model

8. X/Open CAE Specification, Commands and

Utilities, Issue 4, ISBN 1-872630 -48-0, C203
(Reading, U.K. : X/Open Company Ltd . , 1992).

9. X/Open Internationalisation Guide (Read

i ng, U.K. : X/Open Company Ltd . , 1992).

10. Distributed Internationalization Services

(Snapshot) (Reading, U.K . : X/Open Company

Ltd . , 1992).

1 1 . L . Laverdure, P. Srite, a n d J Colonna-Romano,

NAS Architecture Reference Manual (May
nard, MA: Digital Press, 1993): 255 - 264.

12. Information Processing-8-bit, Single-byte

Coded Graphic Character Sets-Part 1: Latin

Alphabet No. 1, ISO/IEC 8859-1 (Geneva :

International Organization for Standardiza
tion/International Electrotechnical Comm is

sion, 1987).

13. Information Technology-Portable Operate

ing System Interface (POSIX)-Shell and

Utilities, ISO/ IEC DIS 9945-2 (Geneva: Interna

tional Organization for Standard ization/

International E lectrotechnical Comm ission,

1992).

14. M u l t i l ingual applications can process mu lt i

ple languages at the same time, whereas

imp lementations of the X/Open model can

process several languages but only on an incli

viclual basis.

15.]. Bettels and F. Bishop, " Unicode: A Universal

C haracter Code," Digital Technical journal,

vol. 5, no. 3 (Sum mer 1993, this issue): 21-31 .

16. Information Technology- Universal Multi

ple-Octet Coded Character Set (UCS)-Part 1:

Architecture and Basic Multilingual Plane,

ISO/IEC 10646-1 (Geneva: International Orga
n ization for Standard ization/International
E lectrotechnical Comm ission , 1993).

17. Codes for the Representation of Names and

Languages, ISO/IEC 639 (Geneva: Interna

t ional Organization for Standardization/

International Electrotechnical Commission ,

1988).

18. Codes for the Representation of Names of

Countries, ISO/IEC .1166 (Geneva: International

4 1

Product Internationalization

Organization for Standardization/International

Electrotechnical Com mission, 1988).

19. Information Technology-Portable Operat
ing System Interface (POSIX)- Threads

Extension for Portable Operating Systems,

IEEE 1003.4a/D7 (New York: The Institute of

Electrical and Electronics Engineers, 1993).

20. File System Safe- UCS Transformation For
mat (Reading, U.K. : X/Open Company Ltd . ,

1993).

42

2 1 . As defined in the X/Open Draft International

ization Services Snapshot: A text object is an

implementation-defined representation of a

fragment of text that consists of zero or more

text characters.

General Reference

S. Martin and M. Mori, Internationalization in
OSF/ 1 Release 1. 1 (Cambridge, MA: Open Software

Foundation, Inc . , 1992).

Vol. 5 No. 3 Summe-r 1993 Digital Teclmicaljourrtal

Rene Haentjens I

The Ordering of Universal
Character Strings

In the countries of the world, people have developed various methods to order

words and names based on their cultures. Many challenges and problems are asso

ciated with developing ways for computers to emulate human ordering methods.

A n efficient computer method for obtaining a quality ordering has been devised as

an extension to the single-step compare. It solves many but not all of the problems.

A universal code now exists to store words and names written in many languages

and scripts, but there is no universal way to order words and names. Hence, Jormal

specification methods are needed for computer users to describe culture-specific

ordering rules. This area is still open to research. Meanwhile, international stan

dardization committees endeavor to formulate sensible proposals for multicultural

contexts.

Today, when we access information stored in com

pu ters, we often ask the computer to present us

l ists of items arranged in an order that is meaningful

to us and easy to use. I n the future, wil l the com

puter render obsolete the l ists of words and names

ordered for human reference' Wi l l the computer

look up all information in our place? Wi l l we no

longer need the skills to find our way around in dic
tionaries, telephone d irectories, and the l ike" These

things are not im possible, but we ourselves might

not live to see them happen.

If ordering for hu man consumption is to stay

around for a while, then the next question that we

might ask is whether or not it wou ld be possible

to harmon ize the ways in which lists are ordered
around the world. Most people are aware that alpha

betic order may d iffer from one country to another.

The same is true for scripts that are not based on

an alphabet: al though the Chi nese Han characters
are used to write Japanese and Korean, l ists with
Han characters are not in the same order in the
People's Republ ic of China, Japan, Korea, and

Ta iwan, Republic of China.

Can we change to a universal ordering system
or at least make ordering the same where the

same script is being used' If the order of words

were the same, l ife wou ld surely be easier for the

traveler! Unfortunately (if the rt"ader permits that

expression), the way in which we work with

ordered l ists is a cultural as1Kct and is related to

Digital Technical jounltll l·bl. 5 No . . i Summer I'J'J.>

the languages that we use. A proposal to change
ordering habits is a bit l ike proposing a spel l ing
reform. Everyone is in favor of simpl ification as

long as it applies to other groups of people, but we

see no reason to change things for ourselves. In

fact, looking back to the roots of our own culture,

we fincl many good reasons why things are as they

are today, so a change is seldom perceived as an
improvement.

The conclusion is, for the time being, that we

may as wel l use the computer to help us organize

l ists and to take into account that the task of order

ing l ists is not universally the same.

This paper explores the issues i nvolved with

ordering and the ways the compu ter can deal

with them. It describes how people order words
and names, and consequently, how they expect

words and names to be ordered if a computer does

the ordering. It presents examples of ordering in

various cul tures. This paper concentrates on the
ordering of words and names; it does not include a

d iscussion of numerical ordering.

Words, Names, and Character Strings

Computers store words and names as character

strings. The symbols that we use for writing are

mapped to bit patterns in computers, and these pat
terns are chained together. For pragmatic reasons,

the bit patterns do not correspond to graphic sym

bols in a simple one-to-onl" fashion. Attributes such

43

Product Internationalization

as the font in which the symbol is presented ami the

size of the symbol are usual ly stored in separate

an:as, and t he bit p a t tern for the specific charactn

thar represen t s the symbol re mains the same. A l so,

several characters or bit paltcrns can sometimes he

represented by the same graphic symboL For exam

ple, the characters LATIN CAPITAL LETTER A a mi

(;REI 'K CAPITAL lETTER A LPHA can be renden:d with

the same gra p h i c symbol A. Final ly, the chaining of

characters to strings m ay not completely agree with

the visual a rrangement of corresponding graphic

symbols .

In other words, there arc d i fferences berween

how people order words a nd n a mes and how com

puters order the corresp o n d i ng character s t rings.

People com hi ne knov.·lnlgc about words and

names (fo r example, ho\V to read and pronounce

them) w i t h \'isual aspect s of the writ ten o r pri nted

words and names. Comput ers must work with the

bit patterns.

\Vi t h regard to character cod i ng , the Internct

t iona/ Sta11dard ISO/ILC 10646-J: 1993. Unioersa/

Multiple-Octet (:oded Character Set. and the de

facto standard. Unicode version 1 .1 , are considered

state of t he art. These two coding met hods can con

veniently be considered as identica l , and the same

abbn.:viation, lJCS, refers to both of them . With l i CS

codi ng, words and names can be stored i n many

of t he scri pts of t he world, and C h inese Han clurac

rers can be chained toget her with Lat i n , Greek ,

Cyri l l ic, Hebrew, and Arabic letters and m a ny

more.

Before d iscussing the complexit ies o f UCS

codi ng, this paper explores some i mporrant

aspects of order i ng of character stri ngs in the next

section.

Lexical Ordering
With lexical ordering, the compu ter takes i n to

account only the k i nds of characters t ha t appear i n

t h e strings a n d t h e arrangement of these characters.

Apart from t h e ord ering al go rithm and the associ

a ted data, the computer uses no orher knowledge

th:1t i t m ight have a bo u t the words i n the character

strings. For example, i t does not use a n electron ic

dictionary o r ru les abo u t 11:1tura l l a nguage syntax.

phonetics. and semantics. The idea is to sec how

computers can work with rcason:�bly efficient tech

niques, w h i l e stay i n g close to how people work.

Meaning-based ordering and searching with the

computer is an i nteresting subject in itself, but is

too broad a scope for this paper.

-i-1

When people order words or na mes or when

they are looking fo r them i n an ordered I ist, they

often usc (unconsciously someti mes) the meani ngs

of these words or some other knowledge about t he

words or names. Fo r exam ple, when looking for the

name :Hdli/lcm in a tele phone d i rectory, they

m ight try to fiml it between MacLeod and

LHacNeui/le, knowing that /He is the same as Mac.

They might even look between Melbourne and

Murph]\ ignoring the Me of McMillan altogether. If

the computer has o n ly a character string that repre

sents the letters of the name Mc,llillan, then it lacks

the knowledge to look u p the name any other way.

Lexical ordering cannot i n corporate exp a n d i ng or

ignoring prefixes and abbreviations; there is no lex

ical r u le to determ i ne what part of the character

string m ight be a p refix or an abbreviatio n.

As another example, i n Japanese many Han

characters (called kanji by the Japanese) are pro

noun ced in a different way d e pending on the

contex t . Japanese dict ionaries for general use are

ordered by p ronunciat ion; therefore, if the com

p u t e r has o n l y the kanji character in the character

string, it cannot order o r look up i n the same way

as people do in Japa n . The character for rice, for

example, is pronou nced rnai in a form such as gai

nuti (i mported rice), but as IJei in a form such as

{Jei lwku (America) . The difference is due to the his

torical bac kground of the character or when, i n

i r s specific context, i t was borrowed from the

Chinese. When kanji are used in proper names,

such as names of pers o ns and geograp hical n ames,

there may be no context i n formation, and h u m a n

i nterven tion m ight b e needed t o know t h e correct

pron unciation.

In these cases. si nce the computer m ust m i mic

how p eople order and is l i m ited to lexical tech

niques, more than codes for the letters or for

the kanji must be stored in the character stri ngs.

For exa mple, the computer m ight have a character

s t ring that contains a kanji character plus i t s

p ronunciation represen ted w i t h kana characters.

Or the co mpu ter m ight have strings such as

(Mc)Millan with the convention that the parenthe

ses indicate p arts to be ignored for o rdering and

searching .

Modern dictionaries a nd telephone d i recto ries

use lex ical tech niques as m uch as possible, which is

better in a mu lticu ltural env i ro n ment. I t is m uc h

easier t o u n d e rstand a n d a p p l y lexical ru les for

searching than to acquire i n t u i t ive knowledge of

an unfa m i l iar c u l ture.

11>1. 'i No. 3 Sl/11/lller 1993 Digital TeciJIIical]our11al

Words, Not Individual Letters

It is importan t to understand that people order
words and names, not just the individual letters and
sym bols. Consequent ly, good-qual ity lex ica l order
ing that comes close to how people work cannot be
achieved by look ing at a l l the characters i n a string
only once, from the first one th rough the last one.
This concept can best he i l lustrated with alphabetic
scripts, and some Engl ish examples are given below.

W11en one looks fo r SOS i n a modern English d ic
tion ary, one expects to see i t between sort and
soul. Now, to find SUS between sort and soul, one
must ignore that SOS i s in uppercase letters and sort

and soul are i n lowercase. This type of lookup is
achievable by looking at a l l t he letters once.

Now consider the abbrev iation CAT, meani ng
clear air turbulence. CA l is l isted between casual
and catalyst. In th is case, we cannot ignore the d if
ference between CAT and cat. The d i ction ary l ists
both words, ancl some d icti onaries consistently l ist
lowercase words before uppercase words (or vice
versa), so the order us ing lowercase first wou l d be
casual, cat, CA T, cata�yst. It is not possible to devise
an algorithm or method that wou ld arrange these
four words in the correct order by looking at a l l the
letters once. To guaran tee the correct order in a l l
cases, a first step i s needed i n which uppercase is
considered equal to lowercase: the two words cat
and C4 T must be placed i n the correct order i n a sec
ond step, in which uppercase and lowercase make
a d iffe rence.

Dea l ing with uppercase and lowercase is not the
only issue fo r alphabetic ordering. Many languages
use letters with d i acrit ical marks such as accents.
Words and names may also contain spaces or spe
cial symbols, such as hyphens, apostrophes, and
points. Examples arc big bang, !Jest-seller, rock 'n '
roll, ami PS. When ordering is strictly a lphabetic, as
is the case in many d ictionaries, then accents on let
ters, spacing, and special symbols are ignored in the
first step, but they are taken into accou nt to resolve
a tie. For example, the correct order in French
might be denier; denier, dernier; or Nb, NB, N.B., Nd,
n.d., N. IJ. in English.

Table-driven Multilevel Ordering

The heart of ordering methods is the comparison of
two character strings. If we have an algorithm to
determine whether one string should preced e, fol
low, or bt· considered equal to a second stri ng, then
arranging a l ist of stri ngs in the correct order is
straight forward .

Digital Tee/mica/ jounwl 1.-'IJI . .5 No . .> Stntlllll:'r 19'J3

The Ordering of Uniuersal Uwracter Strings

Single-step or One-level Compare

The single-step compare or o ne-level orde ring algo
rithm is known by most readers:

Compare the first characters of the two stri ngs; if
equal , then compare the second characters; con
tinue unt i l a d ifference is f(>tmd or until at least one
s tring is exhausted . If a difference is found, t hen the
character-col lat ing sequence determi nes wh ich
string precedes the other. (Example: words p re
cedes working because d precedes k.) If one of the
two strings is exhausted , then the shorter string
precedes. (Example: word precedes words.) If both
strings are exhausted , then they are considered
equal .

Multiple-step or Multilevel Compare

The state-of-the-art computer method fo r compar
ing character strings is a genera l izat ion of the s ingle
step compare . If, after using the above algo rithm
with the first col lat ing sequence, both stri ngs are
found to be equal, then in tlw second step the algo
rithm is repeated. Both stri ngs are compared again ,
starting from their first characters, now using the
second col lating sequence. The second step may
be fo llowed by a t h i rd srer and so on, one step for
each co l l ating sequence.

To be p recise, the one collat ing sequence of a l l
characters i s replaced b y a matrix o f col l at ing
weights and col lat ing weight sequences for each
weight (W) col u m n . Consi der the fol lowing
example:

W 1 W 2 W 3
L A T I N C A P I T A L L E T T E R D < D > < N O N E > < U C >
L A T I N S M A L L L E T T E R E < E > < N O N E > < L C >
L A T I N S M A L L L E T T E R E

W I T H A C U T E < E > < A C U T E > < L C >
L A T I N S M A L L L E T T E R E

W I T H G R A V E < E > < G R A V E > < L C >
L A T I N C A P I T A L L E T T E R E < E > < N O N E > < U C >
L A T I N C A P I T A L L E T T E R E

W I T H A C U T E < E > < A C U T E > < U C >
L A T I N C A P I T A L L E T T E R E

W I T H G R A V E < E > < G R A V E > < U C >
L A T I N S M A L L L E T T E R F < F > < N O N E > < L C >

The col lat ing sequence for W l i s < A> , , <C:>,

etc. This means that, with the example matrix, al l
variants of Lat in letter E are equal in the first com
parison step. The col lat ing sequence for W2 i s
<NONE>, <ACUTE>, <GRAVE>, which means that i n
the second step, t he accents make a difference, bur
there is no distinct ion bet ween lowercase.: and
uppercase variants. That d ist inction i s made in t he
third step: the col lat ing sequence fo r W.') is < I.C>.

<UC>.

Product Internationalization

The weight matrix and the collating sequences

can be placed in tables that are used by the ordering

algori thm, hence the name table- driven m u lti level

ordering.

If this example m atrix is extended in a simi lar

way, then the m u l t ilevel algorithm wou ld pl ace the

following words (most of which are real French

words) i n this correct order: denie, DlfNil:', denier,

DENIER, denier, DEVIER, dimie1; dernier.

The method that is described here is also used

in POSIX (!SO/IEC 9945-2. 2 Shell and Utilities,

LC_COI.LATE Definition). ' Rol f Gavare was among

the first to publ ish a paper o n m u l tiple-step com

parisons 2 Al ain LaBonte was the first to describe it

as explained in this paper, and he also implemented
it as a Canadian Standard (\.SA 2243.4.1-1992).

LaBonte devisee! a compl ete and pred ictable order

ing method that corn.:sponds to very fine detail

with the best examples of French and Engl ish di c

tionary ordering. 1

Generate Comparison Key

With the m u l t i level method, it is also possible to
have the algorithm generate a comparison key for

a specific character string rather than always com

pare two strings. These comparison keys can be

stored with the character strings; a one-level com

parison of keys then gives the same resu lt as a m ulti

level comparison of the original character strings.
For example, and again extending the example

m atrix given above, the comparison key for denie

cou ld be a convenient n u merical representation of

<D><E><N><I><E><nil><NONE><ACUTE><NONE>

< N O N E > < N O N E > < n i i > < LC > < LC><LC>< LC> < LC> .

The <nil> precedes all other weights. Its pres

ence at the end of the comparison key subfields
guarantees that shorter stri ngs precede longer
strings. Efficient compression techn i ques exist for
such comparison keys.

Variations oftbe Multilevel Method

The fo l lowing section expands upon the m u l ti level

method and gives examples of changes necessary to

accom modate cu ltural d ifferences in word order.

Special Symbols

Wit h a small extension, the m u l t i level method can

also handle special characters such as the hyphen
and the apostrophe to mimi c tradit ional human
alphabetic ordering. Another weight col u m n m ust

be added to the matrix given above to distinguish
letters from special characters:

46

L A T I N S M A L L

L E T T E R E < E > < N O N E > < L C > < L T R >

H Y P H E N - M I N U S I G N O R E I G N O R E I G N O R E < H P H >

The IGNORE indicates that the character is

skipped i n the comparison algori thm in the first
three steps. A collat i ng sequence for W4, in which
<LTR> precedes all symbols for special characters

such as <HPI:-1 > , guarantees that words and names

without special characters precede the ones with

exactly the same letters, but with special characters.
A four-level ordering such as the one suggested

here is sufficient fo r a good- quality, complete, and

pred ictable al phabetic ordering with the Latin
alphabet.

Additional Letters

For most languages writ ten i n Lat i n characters, the

correct order of words wou ld be senior, seiiorita,

sentimental, separable. To achieve this order, W l
would be . . . , < M > , < N > , <0>, . . . , and the m a trix

wou ld i n clude LATIN SMALL LETTER N \VITH T I I.DE,

where W I is < N > , W 2 is <TI LDE> , and W3 is <LC>.

In Span ish , the N WITH T I LDE i s considered a let

ter to be ordered between N and 0 and the correct

order is senior, sentimental, senorita, separable. To

achieve this type of ordering, W l would be . . . , <M>,

<N>, <NTILDE>. <0>, . . . , and the matrix wou ld add

LAT I N SMALL LETTER N WITH TILDE, where WI is

<NTI LDE>, W2 is <NONE>, and W 3 is <LC> .

Ligatures

The m u l t i level method can also handle l igatures by
a l lowing each matrix element to be a sequence of

weights, rather than one weight. For /f. i n French,

the m atrix would i nclude LAT I N SMALL LI GATl R E

A E , where W l is <A><E>, W2 is <LG><LG>, a n d W.)
is <LC><LC > . In these languages, LI GATU R E A E is
equivalent to two letters when orderi ng words. In
Norwegian, the /f. is a letter o n its own . WI is . . . ,
<Y>, <Z> , <AE>, <OSTRO K E> , <ARJNG>. For the

m a trix element, LATIN SMALL LIGATU R E A E, W I is
<AE>, W2 is <NONE>, and W3 is <LC>.

Logograms

Some special symbols, someti mes cal led logograms,
can be seen as short notations for words: & + %. A

cul ture-specific ordering may replace such symbols

by the corresponding words. If the language is
Engl ish, for example, then Research & Development

can be ordered as Research and Developmen t. As

long as a fixed rule exists for replacing symbols by

1'<>1. 5 No. J Summer f')'J3 Digital Teclmicaljourual

equivalent words, the extension t hat was intro
duced for /E can be applied in a similar way to
obtain the desired ordering. On the other hand, if
the replacement word depends on the language

used in the rest of the string, then lexical ordering
cannot do the job properly without more informa
tion coded in the character strings.

Fine Tuning for the Accents

The table-driven multi level method, as explained so
far, wou ld place French words i n this order: cote,

cote, cote, cote, mar;on, macon. In a traditional,

correct ordering, they shou ld be in the fol lowing
order: cote, cote, cote, cote, macon, mar;on. On gen
era l , accents at the end of a French word are more

i mportant for understanding than other accents.)

To obtain the desired ordering, another exten
sion of the multiple-step method is needed: for the
second step, the one that d iscriminates between
quasi-homographs (words that d iffer only in their
diacritical marks), the comparison algorithm should
start from the end of the strings rather than from
the beginning. For the other Western languages that
use the Latin alphabet, this reverse processing for
the accents is not needed . On the other hand, it
does not hinder either, so the French method is
acceptable as wel l .

French is not the only language with such quasi
homographs. In new-Greek, with the modern

monotoniko spel l ing, all multisyl labic words have
one accent that indicates the stressed syl lable.

New-Greek has many quasi-homographs, including
the following examples, which use a simple tran
scription of Greek letters to Latin letters: arguros,

argur6s, diakonia, diakonia, metro, metro, para,

pm·a. The French method of reverse processing
produces acceptable results for new-Greek as wel l .

Fine Tuning for the Special Symbols

With the tables extended as explained in the
section Special Symbols, the multiple-step algo
rithm wou ld order words as fol lows: unionized,

union- Lzed, un-ionized. For the exceptional cases
such as this one, in which two words are identical
except for the placement of a special symbol , the

order unionized, un-ionized, union-ized may
seem more appropriate. Usual ly, the hyphen is per
ceived as a word break, not on the first level, but on

a subsequent level, and with word breaks, shorter
words always come first.

To obtain the latter ordering, one could use the

same technique as for the diacritical marks: have

Digital Tecbtzical jourtzal Vol. 5 No. 3 Summer 1993

The Ordering of Universal Character Strings

the algorithm start from the end of the strings for
the level that deals with the special symbols. POSIX
has a small extension to the multilevel method that
gives similar resu lts while still moving forward.

This extension adds the position of the symbol to

its table weight during comparison.

Special Symbols in Combination with
Uppercase and Lowercase Characters

This section does not introduce a new extension

but reconsiders the extension for the special sym

bols. This method adds a fourth weight column:

L A T I N S M A L L
L E T T E R E < E > < N O N E > < L C > < L T R >

H Y P H E N - M I N U S I G N O R E I G N O R E I G N O R E < H P H >

With W3 for uppercase and lowercase and W4

for the special characters, the distinctions between
uppercase and lowercase are considered more

important than the presence or absence of spacing

and special symbols. In many cu ltures, this is

indeed the case with proper names of people. The

fol lowing order is desired with names that differ in

use of uppercase or lowercase letters: deGroot, de

Groot, Degroot, De groat, DeGroot, De Groot.

For some geographical names, it could be argued
that special symbols are more significant than the
difference between lowercase and uppercase.

For example, the desired order is Sanssouci,

SANSSOUCI, Sans Souci, SANS SO UCI, Sans-Souci,

SANS-SO UCI. (Sanssouci is a castle near Potsdam in
Germany; Sans Souci i s a city in South Carol ina,
U.S.A , and a suburb of Sydney, Austra lia ; and Sans

Souci is a historical place on Haiti .) To obtain this
order, W3 and W4 must be switched.

Some Problems with the
Multilevel Method

To obtain the correct order, changes are sometimes

necessary to the multi level method. This section
discusses cases in which i t is less easy to adapt the
table-driven mul tilevel method.

Digraphs and Collating Elements

CH and LL have special placement in the Spanish

alphabet. Spanish is not unique in this respect; com

binations of letters also have special placement i n

the Albanian, Hungarian, Vietnamese, and Welsh

alphabets. The Welsh ordering alphabet, for exam
ple, is A B C CH D DD E F FF G NG H I J L LL M N 0 P PH
R RH s T TH U w Y, and the fol lowing l ist of words is

correctly ordered in Welsh: acw, achos, adwy,

47

Product Internationalization

addas, agwedd, angau, almon, allan, anfvnych,

anf/(Jdus, antw; anthem.
Before the multilevel method can he applit:d, i t

i s necessary to replace the multiple-character

combinations by pseudo-characters. In POSIX

LC_COLLATE, such a mechanism is foreseen. One

can declare combinations such as LATI N SMALL

LE'fTER C fol lowed by LATI N SMALL LETI'ER H to be

col lat ing elements and give them a name that can

he used in the matrix.

At first it would seem that this solves the prob

lem. One compl ication, however, is that the two let

ters together do not a lways represent the special

a lphabet letter. In Welsh, for example, the N and G
are separate letters in the Welsh words melyngoch,
dangos, gw,vn{<alchu, and mwynglawdd. The word

mezvngoch then is among words starting with

melyn, not after the words with me�vg. More infor

mation must he coded in t he character strings that

represent Welsh words to define a correct lexical

ordering.
A similar p roblem exists with Danish. In most

Danish words, aa is semantically and phom:t ica l l y

equ ivalent to ci. Danes expect aa and d to be
ordered together, after Z, /£, and 0. But in words of

foreign origin, aa is just A + A .
The reader with a knowledge o f programming

complexity wil l probably also see that the collating

element extension makes the table-driven mu lti

level method less straightforward to implement. I f

there are only a few col lating- element extensions,

then simple workarou nds might help, but what if

there are thousands of them? (Improbable? Wait to

form your opinion unti l you read the section Added

Complexity with UCS Coding.)

Sequences, However Long

Other ordering requirements are difficult to accom
modate with the matrL'< method. For exam ple, the
British standard on ordering, BS 1749: 198';, requires

that (in the first step) spaces, dashes, hyphens, and
diagonal slashes and sequences of them be treated
as a single space (which is significant), except at the

beginning of an entry, where they should be

ignored . Making a space significant for ordering is

easy, but the collating-element extension u nfortu

nately does not al low recmsive definitions, so i t

cannot i ncorporate the sequences o f spaces, etc .

Other Problems

Context dependencies i l l us trate another problem

for collating-element extensions. The Japanese

48

language has several DUP characters, the weights

for which depend on the context. For first-level

ordering, a DUP character in a Japanese word or

name can be considered equ ivalent to the character

that precedes it. Hence, if X represents a Japanese

character, then X fol lowed by DUP is equiva lent to X

fol lowed by X i n the first comparison step. Tie

breaking is done in a subsequent step: X DUP then
precedes X X. If col lating-element defi nitions are

used, definit ions for a l l possible combinat ions are

required.

Added Complexity with UCS Coding

The concepts d iscussed in this section have existed

in other coded character sets for some time. For

example, ISO 6937 has combining characters, and
ISO/IEC 8859-7 contains Latin and Greek letters.

With UCS, script mixing and combining characters

wi l l for the first time be implemented on a wide

scale, not only geograph ica l ly speaking, but also

when counting the number and the importance of
the compu ter platforms on which lJCS coding wil l

exist.

UCS h as room for some 65,000 characters in the

currently defined basic mult i l ingual plane. The first

and most obvious i mpl ication is that the tables for

the mult ilevel method wil l be huge with UCS.

Mixing Scripts

With ucs cod ing, many scripts can be used in a sin

gle character string . Although al l languages with a

non-Lati n script have some trad it ion of i ncorporat

ing words and names wri tten in Latin letters, there
are not many ru les about ordering in such a con

text. For example, where shou ld the Latin- letter

abbreviation SOS be placed in a Greek , Russian, or

Chinese dictionary? The problem with compu ters,

of course, is that everything must be specified,
including the unusual si tuations.

Ordering Han Characters

As previously stated, UCS also codes Han characters.

The people who use them for writing characterize

a Han character with attributes such as its main rad
ical, the number of pen strokes to draw the char

acter, and its Chinese or Japanese pronunciation.
(A radical is a constituent part of the character.)

For example, the Han characters with Japanese

pronunciation tera (temple), kata (type), and shiro
(capital) a l l have the same main radical. Tera has six
strokes; kata and shiro have nine. The Chinese pro

nu nciations areji, kei, andjyou.

Vu/. 5 No. 3 Summer 19')3 Digital 1ecbnical journal

A popular ordering is by radical first, then by
nu mber of keystrokes, and fina l ly by Chinese pro

nunciation. With this ordering, tera comes first (it
has o nly six strokes), and kata precedes shiro

because of the Chinese pronunciation. If this were

the one and only way of ordering Han characters,

then the computer wou l d not need to know about

the rad icals, pen strokes, etc . Each Han character

has a d ifferent code (bit pattern), so a single (but
long) col lation order for the corresponding codes

would be sufficient .
Significant ly, each dictionary o f H a n characters

has developed its own trad ition for ordering.

Depending on the appl ication, audience, school, or
political considerations, the preferred ordering
may be different . For example, the onyomi order

i ng is also in popular use in Japan. It is by Chinese

pronu nciation first, then by stroke cou nt. With

onyomi ordering, kata comes first, then tera, and
shiro is the last one.

Han characters are a lways ordered character by
character, so the m u lti level method that appl ies

m u ltiple weights in mul tiple steps involving com

plete strings is not required. Han characters requ ire
m u ltiple weights with a specific combination that

is dynamical ly selected for a single-step ordering.

It is not evident how this dynamic single step can

be combined with the standard m u ltiple-step

method, which is needed for UCS strings containing
Han characters mixed with other ones.

Combining Characters

UCS also contains the concept of combining charac
ters. In the example matrices given above, it was

assumed that letters with accents such as LATIN
SMALL LETIER E WITH ACUTE are coded as one char
acter. UCS indeed has such one-character cod i ngs,

but it a l lows a letter with an accent to be coded as

two characters as wel l . The sequence of two char
acters LATIN SMALL LETIER E fol lowed by COMBIN
ING ACUTE is also val id in UCS.

UCS does not state that LATIN SMALL LE1TER
E WITH ACUTE is the same as LATIN Si'vlALL LETTER
E fol lowed by COMBINING ACUTE; it leaves it to

appl ications to consider them equ ivalent or not.
Needless to say, many appl ication developers will

want users to have the possibil ity of considering
both forms equ ivalent, at least for ordering.

The notion of equ ivalence becomes quite intri

cate with two or more diacritical marks. Sec the
paper on Unicode in this issue for a discussion on
transformations between equivalent spel l ings. '

Di�ilal Technical journal Vu/. 5 No. 3 Srmrmer I'J'J,)

The Ordering of Universal Character Strings

For our extended matrix method, not only thou

sands, but an u n l imited nu mber of col lating ele

ments wou ld have to be defined. UCS al lows any
number of combining characters to fol low a non

combining character.

Logical Order and Coding Order

With UCS coding, the order of the characters in a

string is the logical or reading order, not the order

in which the symbols have to be printed or dis

played . Hence, UCS encoded text is d ifficult to dis

play and print, but relatively easy to be processed ,

e.g. , for ordering.
In Thai , u nfortunately, this approach was not

implemented total ly. The vowels and diacritics that

appear above or u nder a consonant are coded in

logical (reading) order, but Thai has five so-called

pre-positioned vowels that are written and codeu

before the consonant after which they have to be

pronou nced. This corresponds to cu rrent comput

ing practices in Thailand and was incorporated in

UCS cod ing as a sort of backward compatibil ity. For

example, the word written and encoded as E + CH +
N (ignoring vowel shortener and tone mark) is pro

nounced chen and ordered accordingly. To al low
correct ordering for ucs-encoded Thai, some pre

processing is necessary to arrange the Thai vowels

in the correct position for the ordering step.

Formatting Characters

Many coded character sets contain characters that

do not correspond to some written symbol but

have some control fu nction, often for output for
matting. For ordering, these formatting characters

can u sual l y be hand led in the same ways as special

characters.
The characters ZERO WIDTH JOINER and ZERO

WIDTH NON-JOINER are among the ucs formatting

characters. Their primary purpose is to influence

the display of characters of a cursive script such as
Arabic. Before UCS was finalized. some people sug
gested that ZERO WIDTH NON-JOINER might be used
to ind icate the absence of special d igraphs such as
in the Welsh word melyngoch. It has also been pro
posed that ZERO WIDTH JOINER might be used to
create new letters such as u nusual or newly

invented l igatures. Today, this is no longer consid

ered a valid use of these formatting characters.

Toward a Formal Descri ption
of Ordering

Excellence for computer appl ications means not
only that the appl ication incorporate a different

49

Product Internationalization

way of ordering for each culture, but a lso that it

give fn.:edom to its users to define variations and
use different approaches to ordering. This is impor

tant for some cultures. �ot so long ago, the usc of

mu ltiple letter fonts was considered specialized

work for professional printers; today every word

processor must al low it. Flexibil ity with regard

to ordering may a lso become com monplace a few

ye:us from now. But how can such flexibi l ity be

provided in a computer-digestible yet user-friendly

way?

Many documents describe ordering in an infor

mal way National standards on ordering are seldom

formal definit ions. They contain di rectives sucl1 as

each unbroken sequence of digits, d isregard ing

com mas, spaces, and stops is considered as one

character; or mult iple hyphens col late as one; or ij
is ordered as i + j; or f3 = ss. Such directives are

vague for compu ters. They are imprecise: Is the

hyphen to be understood as the character HYPH EN

MI NUS on ly, or also as related , but distinct clurac
ters in UCS coding such as HYPHEN, MINUS SIGN, and

others' They are al so incomplete: ij is ordered, but

not 1}, lj, and if They use graphic symbols, where

the computer wants to know things about clurac

ters: Does f3 stand for LATIN SMALL LETI"ER SHARP S

or for G R EEK SMALL LETTER BETA?

On the other hand, the descriptions for POSIX

LC_COLLArE are quite formal . They are more or less

bound to a specific implementation, in this case the

table-driven multi level method described above.

A more simple formal description is sometimes sut�

ficient. For example, if the data to be ordered is

filtered and contains only uppercase Latin letters,

then the POSIX syntax may seem an overki l l . In

other cases, the LC_COLLATE formalism lacks

expressive power, as we have seen.

Is it possible to design a formal specification
method that fal l s between the descriptive texts i n
country standards and the almost algorithmic

parameters such as POSIX LOCALEs'

JSO/IEC 10646 -1 : 1993 may provide a first step to
build formal definitions. It is the most comprehen
sive repertoire of characters to date and a strict

superset of many earlier repertoires and coded

character sets. Moreover, it establ ishes a unique and

authoritative naming for characters. This paper

uses character names such as LAI'IN CAPITAL LE'JTER
E WlTH ACUTE. ISO has decided that the 10646

names wi l l be used in a l l future character set stan
dards and standard updates. In a certain sense,

ISO/IEC 10646-1 : 1993 is a character reference

50

manual, and formal definitions about ordering can
be built upon i ts content.

Preprocessing

Preprocessing a character string, transforming it

into text dements or l inguistic units in a logical

sequence, is a second concept that deserves elabo

ration. It was mentioned in relation to Thai with its

pre-positioned vowels in a preceding section.

Breaking down a string into the smal lest u nits to
be processed by an ordering algori thm and arrang

ing these un its in the desired processing order is

a powerfu l mechanism. It could also be used to

detect col. l ating elements, to replace Japanese DUP

characters, or to transform character sequences

that contain combi ning characters. This mecha

nism wou ld then a l low the table-driven multi level

method to be used to its fu l l extent on prepro
cessed strings.

Preprocessing might change the character string:

units are rearranged, characters are replaced by

other ones, etc. It is possible that two origina l ly d if

ferent character strings could be preprocessed to
an identical intermediate form. If ordering is to be

complete and predictable, preprocessing must gen

erate additional tags that are taken into account by

the mul tilevel method.

Consequently, the output of the preprocessing

phase might be more than pieces of character

strings. The l ines used in the matrices for the multi

level method have (names of) characters as labels. If

preprocessing were designed to generate an output

that is easier to consume by the mul tilevel method,

the labels cou ld be anything that seems suitable.
The problem, again, is how to al low for the speci

fication of preprocessing in a formal yet user

friendly way. Transformations based on regu lar

expressions and fini te state machines are a possible

path . These techniques al low an efficient implemen
tation. P). Plauger has publ ished material about

using them for ordering with the C language . , (,

Conclusions
The evolu tion of computer systems is progressing

toward a better qua l ity interaction with people. An
aspect of that interaction is the ordering of words

and names. Efficient methods exist today for obtain

ing a qual ity ordering. Although some software
uses these methods, many appl ications perform

computer-friendly ordering rather than human

friendly ordering. There is no technical l imitation
to improve on that aspect; for example, a multilevel

Vol. 5 No. 3 Su111111er 1993 Digital Teclmicaf journal

algorithm with user-specified tables can replace a
s ingle-step bit-code ordering.

For some cu ltures and in mu lticu ltural environ
ments, not a l l ordering problems are solved .
Research is needed, as wel l as formal ru les to al low

users to specify ordering preferences.

Some usefu l ordering tech niques are in place.
The table-d riven m u lti level method is an i mportant

one. Preprocessing can solve some problems, but a

convenient formal ism is needed to specify it . UCS
coding provides many new chal lenges; but at

the same time it offers a new fixed point, from

which it may be possible to derive user-friendly for
mal definitions.

Appendix:
International Standardization Efforts

Many countries have developed a standard on order

i ng. These standards are not l isted in this section .
lSO/lEC JTCl/SC22/WG 15 (Programming Lan

guages) is the com mittee and work group that is

d iscussing the POSIX work (ISO 9945).
ISO/IEC JTC1/SC22/WG20 (International ization) is

working o n a Technical Report that wil l provide a

framework for i nternational ization. The work
group is also preparing docu ments on the registry

of cultural elements, specification methods for

defining string comparison, and a defaul t-tai lorable

ordering for 10646.
CEN (European Standardization Committee)

BTS7 (Technical Bureau on IT)/TC304 (Character Set
Technology) has a project on European character
string ordering rules. The scope is to establish pro
ced ures for the registration of national and regional

ordering rules and to p repare mu lti l ingual charac
ter ordering rules for E u ropean scripts (Latin,
Greek, and Cyri l l ic) .

ISO TC37/SC2,1\'VG2 is currently working on mu lti

l ingual ordering for terminological and lexico
graphica l purposes. ISO TC46/SC9 has similar work
but for bibl iographical p ur poses. The approach is
appl ication oriented , whereas the other ISO and
CEN efforts mentioned above are compu ter
oriented approaches.

To al low for some level of synchronization of
these efforts and to avoid overlaps, l ia isons have

been established between a l l these comm it tees.

Acknowledgments

Alain LaBonte of the Gouvernement du Quebec,

Direction Gcnerale des Technologies de
! ' Information, has been the inspiration for many

Digital Technical Jourual Vol. 5 No . .) SI/111/JH'r 19'J3

The Ordering of Universal Character Strings

things written in this paper. He has on many occa
sions encouraged me to continue with my explo

rations of ordering. I also owe thanks to Johan van

Wingen, i ndependent consu ltant in Leiden, the

Netherlands, who has gathered and made available

much background information on coded character
sets and ordering practices. A special word of

thanks goes to Kevin P. Donne.l ly, to Denis Garneau ,
a n d t o P.). Plauger for reviewing this paper a n d for
providing many u sefu l comments and suggestions.

Of the many col leagues in D igital who have

helped me, I want to especia l ly mention Masahiro
Morozum i of International Systems Engineering i n

Japan, with whom I cou ld exchange many mails

about ordering in Japanese and about Digital's

implementation of XPG4. I also want to mention

Tim Greenwood of lnternational Systems Engineer

i ng in the U.S. , who has done a lot of coordination
work for this issue of the Digital Technical journal,

and for my contribution to it in particu lar. And I
know that I ' m doing an injustice by not naming the

many other col leagues who contribu ted .

References

I . X/Open CAE Specification, System I nterface Def

in itions, Issue 4, X/Open Doc N C204 (London:

X/Open Company Limited , 1992).

2. R. Gavare, "Alphabetical Ordering in a Lexicolog

ical Perspective,'' Data Linguistica 18 (Almquist

& Wiksel l , 1988).

3. A. LaBonte, Regles du classement alphabetique

en langue franfaise et procedure informatisee

pour le tri (Ministere des Communications du

Quebec, 1988).

4. J Bettels and F. Bishop, " Un icode: A Universal

Character Code," Digital Technical journal, val.

5, no. 3 (Su mmer 1993, this issue): 2 1-31 .

5. P. Plauger, "Translating M u l tibyte Characters,"
The journal of C Language Translation (June
1991) .

6. P. Plauger, The Standard C Library (Englewood
Cliffs, NJ : Prentice Hal l , 1992).

General References

G. Adams, "Introduction to Unicode," Proceedings

of the Fourth Unicode !mplementors Workshop

(Mountain View, CA: Unicode Consorti u m , 1992).

B. Comrie, ed . , The World's Major Languages

(Oxford : Oxford University Press, 1990).

5 1

Product Internationalization

F Cou lmas, The Writing Systems of the World

(Oxford: Basil Blackwell , 1989).

). DeFrancis, The Chinese Language (Honolulu :

niversity of Hawaii Press, 1984).

D. Garneau, Keys to Sort and Search for Culturally

E\pected Results (Ontario: 1!3M National Languagt:

Technical Center, 1990).

S.]ones et al . , Developing International User Infor

mation (Burlington , MA: Digital Press, 1992).

K. Katzner, The Languages of the World (London :

Routledge. 1989).

C. Kennelly. Digital Guide to Developing Interna

tional Software (Uurl ington, i'vlA: Digital Press. 1991)

E. Kohl, "The Art of Arranging Files," ISO Bulletin

(December 1986).

52

A. LaBonte, " Mu ltiscript Ordering for Unicode,"

Proceedings of the Fourth Unicode Implementors

Workshop (Mountain View, CA: Un icode Consor

tium, 1992).

A. Nakanish i , Writing Systems of the World (Ru t

land, VT, and Tokyo: Charles E. Tuttle, Co. , 1980).

G. Sampson . Writing Systems (Hutchinson, 1985).

STRI TS73, Nordic Cultural Requirements on Infor

mation Technology (Reykjavik: Idntaeknistofnum

Islands, 1992).

U. Warotamasikkhadit and D. Londe, Computerized

Alphabetization of Thai, Technical Memo TM-BA-
1000/000/01 (Santa Monica, CA: System Develop

ment Corp. , 1969).

Unicode 1 .0. 1, Report from the Unicode Consor

tium (Mou ntain View, CA: U nicode, I nc . , 1992).

Vol. 5 No . . 3 Summer 1993 Digital Techttical journal

Gayn B. Winters I

International Distributed
Systems-Architectural
and Practical Issues

Building distributed systems for international usage requires addressing many
architectural and practical issues. Key to the efficient construction of such systems,
modularity in systems and in run-time libraries allows greater reuse of compo
nents and thus permits incremental improvements to multilingual systems. Using
safe software practices, such as banishing the use of literals and parameteri-::ing
user preferences, can help minimize the costs associated with localization, reengi
neering, maintenance, and design.

The worldwide deployment of comp u ter systems

has generated the need to support mult iple lan
guages, scripts, and character sets s imultaneously.

A system should focus on natural ease of use and

thus al low end users to read system messages i n the
language of their choice, to have natu ral mem1s,
forms, prompts, etc . , and to enter and d isplay data

in their preferred presentation form.
D igital envisions a computer system that not

only is d istributed but is d istributed geographica l ly
across the world. A single site may have end u sers

with varying language and cultural preferences. For
l:xampk, a Japanese hank in Tel Aviv may have

employees whose native languages are Arabic,

Engl ish, Hebrew, Japanese. or Russian, and may
conduct business i n one or severa l of these lan

guages. Figure l could represent a portion of their

network. The cl ient software, e .g . , a mail cl ient and

the local windowing system, cou ld be completely

mono l ingual . Networking, database, and printing
services, for i nstance, shou ld be mu lti l ingua l in that

they support the various end users by providing

services independent of the natural languages,
scripts, or character sets used.

This paper surveys many of the architectural ami

practical issues i nvolved in the efficient construc

tion of international d istribu ted systems. We begin

by d iscussing some econom ic issues and pitfal ls

related to localization and reengineering. Many of
these topics can be addressed by straightforward
good engineering practices, and we explore several

important techniques. The structure of application

specific and system-level run-t ime l ibraries (RTLs)
is a key issue. We therefore devote several sections

ARABIC USER JAPANESE USER MULTILINGUAL USER

M U LTILINGUAL DATA MULTILINGUAL DATA

WIDE AREA
NETWORK

Figure 1 A Portion of a Multilingual Network

Digita/ 7ecbnical journal H>l. 5 .Yu. 3 Sull/1111!1' I'J93 53

Product Internationalization

of this paper to preferred RTL structures, data rep
resentations, and key RTL services. Distribu ted

systems cause some special problems, which we

briefly discuss, commenting on naming, sccurity,

management, and configuration. In particular, a

desire for client software designed for monolingual
distribu ted systems to work without change in a

multil ingual d istributed system led to a new system

model. In the model, the host servers and the sys

tem management provide the interfaces and con

versions necessary for these clients to interface

with the multi l i ngual world . Finally, we observe
that all the preceding techniques can be del ivered
incremental ly with respect to both increasing func

tional ity and lowering engineering cost.

Localization and Reengineering

When a system component is productized for some
local market, the process of making it competitive

and totally acceptable to that market is cal led local
ization. During this process, changes in the design

and structure of the p roduct may be required .

These changes are cal led reengineering. For exam

ple, U.S. automobiles whose steering l inkages,

engine placement, console, etc . , were not designed

to a l low the choice of left- or right -hand steering

were not competitive in Japan . Rcengineering

these automobiles for right-hand steering was pro
hibitively expensive, so manufacturers had to
redesign later models.

Computer systems have problems similar to the
automobile left -hand - right- hand steering problem.
A good architecture and design is necessary to

avoid expensive reengineering d ur i ng local ization .

The following are examples of areas in which a

local ization effort may encounter problems: user

defined characters and l igatures; geometry prefe r
ences, such as vertical or right-to-left writing
d irection, screen layout, and page size; and policy
d ifferences, such as meeting protocols and requ ired

paper trails. Building l imiting assu mptions into a
software or hardware prod uct can often lead to
costly reengineering efforts and regional time

to-market delays.

On the other hand, an internal su rvey of reengi

neering problems associated with D igital's software

indicates that simple, easy-to-avoid problems are

strikingly frequent. In fact, it is amazing how many

ways a U.S. engineer could find to make use of the
(u ltimately erroneous) assu mption that one charac

ter fits into one 8-bit (or even more constrictive,
one 7-bit) byte'

54

S afe Software Practi ces

Many well-known, straightforward programming

practices, if adopted. can dramatically reduce rccngi

necring efforts. 1 -7 Even for existing systems, the cost

of incremental ly rewriting software to incorporate
some of tlwsc p ractices is often more than recov

ered in lower maintenance and reengineering

costs. This sect ion discusses a few key practices.

Probably the most fundamental and elementary
safe software p ractice is to banis!J literals, i .e . ,

strings, characters, and n u mbers, from the code .

Applying this p ractice does n o t simply redefine YES
to be "yes" or THREE to be the integer 3. Rather, this
practice yields meaningful names, for instance,

affirmative_response and maximum_al ternatives,

to help anyone who is trying to u nderstand how

the code fu nctions. Thus, not only does the prac

tice make the code more maintainable, but it

also makes it easier to parameterize or general ize
the data representation, the user interface p refer

ences, and the functional i ty in ways the original

programmer may have missed . These defin itions
can be gathered into separate declaration files, mes
sage catalogs, resource files, or other databases to

provide flexibil ity in supporting cl ients of different
languages.

The abstraction of I itera ls extends to many data

types. In general, it is best to use opaque data types

to encapsu late objects such as typed numbers (e .g . ,
money and weight), strings, elate and time of clay,
graphics, image, aud io, video, and handwriting.
Providing methods or subrout i nes for data type

manipulation conceals from the appl ication how
these data types are manipu lated. The use of poly

morphism can serve to overload common method

and operation names l .ike create, print, and delete.

Support for multiple presentation forms for each
data type should al low additional ones to be added
easi ly. These presen tation forms are typica lly

strings or images that are formatted according
to end-user preferences. Both input and out p u t
should b e factored first into transformations
between the data type and the presentation form,

and then into input and output on the presentation
form. For example, to input a elate involves

inpu tting and parsing a string that represents a pre

sentation form of the elate, e .g . , " 17 janvier 1977,"

and computing a value whose data type is Date.
The concepts of character and of how a character

is encoded inside a compu ter vary dramatica l ly
worlclwide.u- 1 1 I n aclcl it ion, a p rocess that works

with a single character in one l anguage m ay need to

Vul. 5 Nu. 3 Sttlltllter I'J')J Digital Tecbnicaljournal

International Distributed Systems-Architectural and Practical Issues

work with mul tiple characters in another language.
One simple rule can prevent the problems that this

variation can cause: Banish the Character data
type from applications, ami use an opaque string

data type instead. This rule eliminates the tempting

practice of making pervasive use of how a charac

ter is stored and used in the programmer's native

system. The Array of Character data type is nearly as

insidious, because i t is tempting to use the ith ele

ment for someth ing that wil l not make sense in

another natural l anguage. One shou ld only extract

substrings s[i.j] from a string s. Thus, when in a

given language the object being extracted is only

one code point s [i:i] , the extraction is obviously a

special case. The section Text Elements and Text

Operations discusses this concept further.

Another safe software practice is to parameter

ize preferences, or better yet, to attach them to

the data objects. As discussed previous ly, a
"hardwired" preference such as wri t ing direction

invariably becomes a reengineering problem . The
language represented by the string, the encoding

type, the presentation torm of the object, and the

input method for the object are a l l preferences. In

servers and in a l l kinds of databases, tagging the

data with its encoding type is desirable . In general,

the data type of the object should contain the pref
erence attributes. The client that processes the

object can override the preferences.

Geometry preferences should be user selectable.
Some geometry preferences affect the user's work

ing environment, e .g . , the ways in which dialog

boxes work, windows ancl pop-up menus cascade,

and elevator bars work . 1 These preferences are

almost always determined by the end user's work

ing l anguage. Other geometry preferences relate to

the data on which the user is working, e.g . , paper

size, vertical versus horizontal writing (for some

Asian languages), how pages are oriented in a book,
layouts for tables of contents, and labels on graphs.

Computer programs, in particu lar groupware

appl ications, mi.."X pol icy with processing. " Policy"
refers to the sequence or order of processing activi

ties. For example, in a meeting scheduler, can any

one call a meeting or must the manager be notified
first? Is an invoice a request for payment or is it the

administrative equivalent of del ivered goods requir

ing another document to instigate payment' Often

such pol icy issues are not logical ly forced by the

compu tation, but they need to be e nforced in cer

tain business cultures. A sequence of processing
activit ies that is "'hardwired" into the program can

Digit ttl Tecbnicttl journal Vu/. 5 No . .) S/11111//er 19')3

be ve11' d ifficult to reengineer. Thus, policy descrip
tions should be placed into an external script
or database. The advent of workflow control lers,

such as those in Digital 's EARS, ECHO, and
Team Route products, makes it easy to do this.

Applications shou ld not put date formatting,

sorting, display, or input rout ines into their main
l ine code. Often such operations have been coded

previously, and a new application 's code wi l l prob

ably not be i nternational and may well contain

other bugs. Therefore , program mers shou ld con
struct applications to use, or more precise�y reuse,
run-time libraries, thus i nvesting in the qua l ity and

the mult i l ingual and mu lticultural capabil ities of

these RTLs. When the u n derlying system is not rich

enough and/or competition dictates, the existing

RTL structures must be augmented.

Run-time Library Structure

A common theme for internationalizing software

and for the safe programm ing practices d iscussed

in the previous section is to keep the main applica

t ion code i ndependent of a l l natural language,

script, or character set dependencies. In particular,

the code must use only RTLs with universal applica

tion programming interfaces (APis), i . e . , the name
of the routine and its formal parameter l is t must

accommodate al l such variants. Digital 's early local

ization efforts typically made the mistake of replac

ing the us.-only code with code that called RTLs

specific to the local market. This practice gener
ated multiple versions of the same product, each of

which needed to be changed whenever the perti

nent part of the U.S. version was changed . A better

structure for run-time l ibraries is shown in F igure 2.

The application i l lustrated in Figure 2 cal ls an

RTL routine through the routine's u niversal AP!s.

This routine may in turn cal l another l anguage

specific routine or method, or it may be table driven .

For example, a sort routine may be implemented

APPLICATION

VARIOUS RUN -TIME LIBRARI ES WITH UNIVERSAL
APPLICATION PROGRAMMING I NTERFACES

LANGUAGE 1 LANGUAGE 2 LANGUAGE N
RUN-TIME R U N -TIME . . . RUN-TIME
LIBRARY LIBRARY L IBRARY

Figure 2 Modular Run-time Librmy Structure

55

Product Internationalization

using sort keys rather than compare functions for
better performance. With this structure, localiza

tion to a new language involves only the addition of

the new language-specific RTL or the correspond

ing new table entries.

Note that the appl ication must pass sufficient
structure to the RTL to guarantee that the APis are

un iversal . For example, to sort a l ist of strings, a cal l

sort_algorithm(list_pointer,sort_name,sorl_order)

could be created . The sort_order parameter is of
the type {ascending, dcscending) . The sort_name

parameter is necessary because in many cultu res

numerous methods of sorting are standard L I 2 In

some RTL designs, notably those specified by

X/Open Company Ltd . , these extra parameters are

passed as global variahlcs.'·r' 7 This technique has the
advantage of simpl ifying the APis and making them
almost identical to the APis for the l .S. code. Such
RTLs, however, do not tend to be thread-safe and

have other problems in a d istribu ted environ
ment. 0· 1l· 1 1 An alternative.: and far more flexible

mechanism is more object orientcd -using a sub

type of the List of String data type when al ternate
sorts are meaningfu l . This subtype has the addi

tional information (e.g . , sort_name and sort_order)

used by its Sort method . 12. 1 :.

The next three sections d iscuss the organization
and extensibility of RTI.s with this structure.

Data Representation

Data representation in RTLs incorporates text

e lements and text operations, user-defined text

elements, and document interchange formats.

Text Elements and Text Operations

A text element is a component of a writ ten script
that is a unit of processing for some text operation,
such as sorting, rendering, and substring search.
Sequences of charactcrs, digraphs, conjunct conso
nants, l igatures, syl l ables, words, ph rases, and sen

tences are examples of com mon text elements. 10 ''
An encoded character set E rcpresents some partic
u lar set of text elements as integers (code points).

Typical ly, the range of E is extended so that code

points can represent not only £ext elements in mul

t iple scripts but a lso abstractions that m ay or may

not be part of a script, such as printing control
codes ancl asynchronous communication cocles. 1G
More complex text elements can be represented as

sequences of code points. For example, 0 m ay
be represented by two code points <U> < ' >, and a

56

l igature such as CE may be repn:sc:nted as three:
code: points <0> <joiner> <E>, where a "joint:r'' is
a spt:cial code point reserved for creating text cle

ments. Less complc:x text elemt:nts, i .e . , subcom

ponents of the encoded text elements, are fou nd

by using the code point and the operation name

to index i nto some database that contains this
information . For example, if <e> is a single code

point for e, then the base character e is found by

applying some function or table lookup to the code

point <e>. The same is true for finding a code point
for the acute accent. When a sequence of code

points represents a text element, the precise term

"encoded text element" is often abbreviated as

" text element."

An encoded character set of particular impor
tance is Unicode , which add resses the encoding of
most of the world 's scripts using in tegers from 0 to
2 16 - 1 . 1 1 . 17 The Unicode u n iversal character set is the
basis of ISO 10646, which wil l extend the code

point i nterval to 2°1 - 1 (without u sing the h igh

order bit) 9 Un icode has a rich set of joiner code
points, and it formalizes the construction of many

types of text elements as sequences of code points.

Processing text c lements that are represented as
sequences of code points usual ly requires a three
step process: (l) the original text is parsed into

operation-specific text elements, (2) these text ele
ments are assigned values of some type, and (3) the

operation is performed on the resu lting sequence

of values. Note that each step depends on the text

operation. In particular, a run-time l ibrary must

have a wide variety of parsing capabil it ies. The
fol lowing discussion of rendering, sorting, and
substring search ing operations demonstrates this
need.

I n rendering, the text must be parsed into text

elements that correspond to glyphs in some font
database. The va l ues assigned to these text ele

ments are indexes into this database. The rendering
operation itsel f gets add itional data from a font

server as it renders the text onto a logical page.
The sorting operation is more complicated

because i t i nvolves a l ist of strings and mul tiple

steps. A step in most sorting algorithms involves the

assignment of col lation values (typical ly integers)
to various text e lements in each string. The parsing

step has to take into account not only that mul tiple

code points may represent one character but a lso
that some languages (Spanish, for example) treat
mul tiple characters as one, for the purposes of sort
ing. Thus, a sorting step parses each string into text

lk>l. 5 No. j Summer 1993 Digital Technicaljourual

International Distributed Systems-Arcbitectural and Practical Issues

elements appropriate for the sort, assigns co l lation

values to these elemenrs, and then sorts the result

ing sequences of values. Note that the parsing step

that takes p lace in a sorting operation is somewhat
different from the one that occurs in a rendering

operation, because the sort parse must sometimes

group into one text e lement several characters,

each of which has a separate glyph.

Searching a string s for a substring that matches

a given string s' involves different degrees of

complexity depending on the definition of the

term " matches." The trivial case is when " matches"

means that the substring of s equals s' as an encoded

suhstring. In this case, the parse only returns code

points, and the values assigned are the code point

values. When the definition of " matches" is weaker

than equa l ity, the situation is more compl icated .
For example, when " matches" is "equal after upper

casing," then the parsing step is the same one as for

uppercasing and the values are the code points of

the uppercased strings. (Note that uppercasing has

two subtle points. The code point for a German

sharp s, , actua l ly becomes two code points

<S><S>. Thus, sometimes the values assigned to

the text elements resul t ing from the parse consist
of more code points than in the original string. In

add ition, this substring match involves regional

preferences, for example, uppercasing a French e is

E in france and l in Canada.) The situation is similar
when "matches" equals "equal after removing a l l

accents or similar rendering marks." A more com

plex case would be when s' is a word ancl finding a

match in s means finding a word in s with the same

root as s '. In this case, the operation must first parse

s into words and then do a table or dictionary
lookup for the values, i .e . , the roots.

User-defined Text Elements

When the user of a system wishes to represent

and manipulate a text element that is not cu rrently
represented or manipu lated by the system, a mech

an ism is requ ired to enable the user to extend

the system's capabi l i ties. Examples of the need for

such a mechanism abound . Ch inese ideograms

created as new given names and as new chem
ical compounds, Japanese gaiji (user-defined char
acters), corporate logos, and new dingbats are

often not represented or manipu lated by standard

systems.

User-defined text elements cause two separate

problems. The first problem occurs when E, the

Digital Technical journal Vol. 5 Nu . . i SuJIIIIH'r /'J')J

encoded character set in use, needs to be extended
so that a sequence of E's code points defines the

desired user-defined text clement. The issues

related to this problem are ones of registration

to prevenr one user's extensions from conflicting

with another user's extensions and to al low data

interchange.

The second, more d ifficul t problem concerns the

extensions of the text operations requ ired to manip

u late the new text element. for each such text oper

ation, the parsing, value mapping, and operational

steps d iscussed earlier must be extended to operate

on strings that involve the additional code points of

E. When tables or databases define these steps, the

extensions are tedious but often straightforward.

Careful design of the steps can greatly simpl ify their

extensions. In some cases, new algorithms are

required for the extension. To the extent that these

tables, databases, or algorithms are shared , the

extensions must be registered and shared across the

system.

Document Interchange Formats

Compou nd documents (i .e . , documents that con

tain data types other than text) use encoded charac

ter sets to encode simple text. Al though many new

document interchange formats (DIFs) wil I probably

use Un icode exclusively (as docs Go Compu ter

Corporat ion's internal format for text), existing for
mats should treat U nicode as merely another
encoded character set with each character set

being tagged . 1H This al lows l inks to be made to exist

ing documents in a natural way.

Many so-called revisable Dl fs, such as Standard

Generated Mark-up Language (SGM L) , Digital

Document Interchange Format (DDII'), Office

Document Architecture (ODA), Microsoft Rich Text

Format (RTF), and Lotus spreadsheet format (WKS),

and page description languages (POLs), such as
PostScript, Sixels, or X.l l , can be extended to pro
vide this Unicode support by enhancing the
attribu te structure and extending the text import
map Strings(E) -> Dl F for each encoded character set

E. In doing so, however, many of the richer con
structs in Unicode, e.g. , writing d irection, and

many printing control codes are often best

replaced with the DIF's constructs used for these

featu res instead . 19 In this way, both processing oper

at ions are easier to extend and faci l itate the layout

functions DII' >PDL and the rendering fu nctions

PDL->lmage.

57

Product Internationalization

Presentation Services

The p ractice of factoring input and outpu t of data

types into a transformation T<- >r _Prcst·ntation_

Form and performing the 1!0 on the presentation

form al lows one to focus on each step separately.

This factorization also clarifies the appl icabi l ity of

various user preferences, e .g . , a date for m prefer

ence appl ies to the transformation, anc.J a t(>nt pref

erence appl ies to how the string is displayed . As

mentioned i n the section Safe Software Practices,

preferences such as presentation form are best

at tached to the end user's copy of the data. Data

types such as encoded image, encoded audio, and

encoded video pose few international problems

except for the exchangeabil ity of the encodings and

the viabi l i ty of some algorithms for recognizing

speech and handwriting. Algorithms for presenta

tion services can be distributed, but we view them as

typically residing on the cl ient 20 In Figure 1 , we pre

sume that the local language PCs have this capability.

Input

Existing technology offers several basic input ser

vices, which are presented in the fol lowing partial

l ist of device-data type functions:

• Keystrokes • Encoded Character

• Image-• Encoded Image

• Audio Signal-• Encoded Audio

• Video Signal • Encoded Video

• Handwriting -> Encoded Handwriting

The methods for each input service depend on

both the device and the d igital encoding and often

use mu ltiple algorithms. WJ1ereas for some

languages the mapping of one or more keystrokes
into an encoded character (e.g . , [compose] + [e] +

['] yield ing e) may be considered mundane, input

methods for characters in many Asian languages are
complex, fascinating, and the topic of continu ing
research . The introduction of user-defined text

elements, which is more common among the

Asian cultures, requ ires these input methods to

be easi ly extendable to accommodate user-defined

characters.

Output

The basic output services are similar to the input

services l isted in the previous section.

58

• Strings-> Image

• OIF > POL > Image

• Encoded Image -• Image

• Encoded Audio-> Audio Signal

• Encoded Video-> Video Signal

• Encoded Handwriting-> Image

These ou tput services also vary with encoding,

device, and algori thm. Figure 3 i l lustrates the

sequence DIF -> PDL-•lmage . Optional parameters

are permitted at each step. A viable implementation

of Strings---> Image is to factor this fu nction by means
of the function Strings •DIF, which is discussed in

the Data Representation section . Alternatively, the
data type Strings can be simply viewed as another

DIF to be supported .

A revisable document begins in some DIF such as
plain text, Strings(Unicode), SGML, or DD!F . A lay

out process consumes the document ami some

logical page parameters and creates an intermedi
ate form of the document in some PDL such as

PostScript, Sixels, or even a sequence of X.ll pack

ets. To accomplish this, the layout process needs to

get font metrics from the font server (to compute

relative glyph position, word and line breaks, etc.) .

In turn, the rendering process consumes the PDL
and some physical media parameters to create the
image that the end user actual ly sees. The rendering

process may need to go back to the font server to

get the actual glyphs for the image. Rendering, lay

out, and fon t services are mult i l ingual services. The
servers for these services are the multi l ingual

servers envisioned in Figure 1 .

Computation Services
To build systems that process multi l ingual data,
such as the one shown in F igure 1 , a rich variety of
text operations is necessary. This section catego
rizes such operations, bu t a complete specification
of their interfaces would consume too much space
in this paper. Text operations require parsing, value

mapping, and operational functions, as described
earl ier.

Text Manipulation Services

Text manipul ation services, such as those speci

fied in C program ming language standard ISO/IEC
9899: 1990, System V Release 4 Multi-National

Vol. 5 No. 3 Summer /'J':J.) Digital Teclmical journal

Jntemational Distributed Systems-Architectural and Practical Issues

PARAMETER PARAMETER

� l
DOCUMENT PAGE
INTERCHANGE - LAYOUT r- DESCRIPTION 1- RENDER -
FORMAT LANGUAGE

I J
I I

FONT SERVER

FONT DATABASE

Figure 3 Layout and Rendering Services

Language Supplemen t (MNLS), or XPG4 run-time

l ibraries (includ ing character and text element clas

sification functions, string and substring opera

tions, and compression and encryption services)

need to be extended to mult i l ingual strings such as

Strings(Unicode) and other DI Fs, and to various text

object class I ibraries .u.s. 13

Data Type Tramformations

Data type transformations (e.g. , speech to text,
image-to-text optical character recognition [OCR] ,
and handwriting to text) are operations where the
data is transformed from a representation of one

abstract data type to a representation of another

abstract data type. The presentation form transfor

mations T•--•T_Presentation_Form and the funda

mental input and output services are data type

transformations. Care needs to be taken when

parameterizing these operations with user prefer

ences to keep the transformation thread-safe.

Again, this is best accomplished by keeping the pre
sentation form preferences attached to the data.

Encoding Conversions

Encoding conversions (between encoded character
sets, DIFs, etc.) are operations where only the rep

resentation of a single data type changes. For exam

ple, to support Unicode, a system must have for

each other encoded character set a function

to_uni:Strings(E)-•Strings(Unicode), which con

verts the code points in E to code points in

Unicode . 1 1 The conversion function to_uni has a par

tial inverse from_uni:Strings(Unicode) >Strings(E),

D igital Tecbllical]ounwl Vol. 5 No . . i S11111mer 1993

which is only defined on those encoded text ele

ments in Unicode that can be expressed as encoded

text elements in E. If s is in Strings(E), then

from_uni(to_uni(s)) is equal to s. Other encoding

conversions Strings(E)->Strings(E') can be defined

as a to_uni operation followed by a from_un i oper

ation, for E and E' respectively. Another class of

encoding conversions arises when the character set

encoding remains fixed, but the conversion of a

document in one DIF to a document in another DIF

is required . A third class originates when Unicode

or ISO 10646 strings sent over asynchronous

communication channels must be converted to a

Universal Transmission Format (UTF), thus requir

ing Strings(Unicode)<-> 1T encoding conversions.

Collation or Sorting Services

Another group of computation services, col lation

or sorting services, sorts l ists of strings according
to application-specific requirements. These ser

vices were d iscussed earlier in the paper.

Linguistic Services

Linguistic services such as spell checking, grammar
checking, word and line breaking, content-based
retrieva l , translation (when existent), and style

checking need standard AP!s. Although the imple

mentation of these l inguistic services is natu ral

language-specific, most can be implemented with

the structure shown in Figure 2.
Also, large character sets such as Unicode

and other mul ti l ingual structures require a u ni

form except ion-hand l ing and fal l back mechanism

59

Product Internationalization

because of the large number of un assigned code

points. For example, a system should he able to

uniformly hand le exceptions such as "glyph not

t<Jund for text element." Mechanisms such as global

variables for error codes inhibit concurrent pro

gramming and therefore should be discouraged .

Returning an error code as the return value of the

procedure ca l l is preferred, and when supported,

raising and hand l ing exceptions is even better.

System Naming, Synonyms,
and Security

The multi l ingual aspect of Unicode can simplify

system naming of objects and their attribu tes, e .g. ,

in name services and reposi tories. Using encoded

strings tagged with their encoding type for names is

too rigid, because of the high degree of overlap in

the various encoded character sets. For exam ple,

the str ing "AHC" shou ld represent one name,

independent of the character set in wh ich the

string is encoded. Two tagged strings represent

the same name in the system if they have the same

canonical t{)rm in Unicode according to the fol low

ing definit ions.

Un icode has the property that two different

U nicode strings, u a nd u, may wel l represent the

same sequence of glyphs when rendered . ' ' To deal

with this, a system can define a n in ternal canonical

form c(u) for a Unicode string u. c(u) would

expand every combined character in u to its base

characters fol lowed by their assorted marking char

acters in some prescri bed order. The recom

mended order is the Unicode " priority value :· 1 1 · 2 1

The canonical for m should have the fol lowing prop

erty: When c(u) is equal to c(u), the plain text rep

resentat ions of u and I' are the same. Idea l l y, the

converse should hold as wel L

Thus, u and 11 represent the same name i n the sys

tem if c(u) is equal to c(u). In any directory l isting,

an end user of a language sees only one name per

object, independent of the l a nguage of the owner

who named the object. Further restrictions on the

strings used for names are desirable, e.g. , the absence

of special characters and tra i l i ng blan ks. In a multi

vendor environment, both the canonical form and

the name restrictions should be standard ized . The

X.'500 work ing groups currently studying this prob

lem plan to achieve comparable standard ization.

Since wel l-chosen names convey usefu l informa

tion, and since such names are entered ami d is

played in the end user's writing system of choice, it

is often desirable for the system to store various

translations or "synonyms" for a name. Synonyms,

for whatever purpose, shou ld have attributes such

as long_namc, short_name, language, etc . , so that

d i rectory fu ncti ons can provide easy-to-usc inter

faces. Access to objects or attribute values through

synonyms shou ld be as efficient as access by means

of the primary name.

Jn a global network, publ ic key authentication

using a replicated name service is recommended 22

One principal can look up another i n the name ser

vice by in it ial ly using a (possibly meani ngless)

name for the object in some com mon character set,

e . g . , {A-Z,0-9} . Su bsequently, the principals can

define their own synonyms in their respective lan

guages. Attribu tes for the principals, such as net

work add resses and p ub! ic encryption keys, can

then be accessed through any synonym.

System Management and
Configuration

The system management of a mult i l i ngual dis

tribu ted system is somewhat more complicated

than for a monolingual syste m . The fol lowing is a

partial l ist of the services that must be provided:

• Services for various mono I ingual subsystems

• Registration services for user preferences,

locales, user-defined text elements, formats, etc.

• Both m u l t i l i ngual and mu ltipl e monolingual

run- t i me l ib raries, s imultaneously (see Figure 2)

• M u l t i l i ngual database servers, font servers,

logging and queu i ng mechanisms, and directory

services

• M u lti l ingual synonym services

• M u l t i l i ngual d iagnostic services

Since a system cannot provide all the services for

every possible situation, registering the end users'

needs and the system's capabil i ties in a global name

service is essen tial . The name service mu st be con

figured so that a mult i l ingual server can identify the

la nguage preferences of the cl ients that request ser

v ices. This configuration al lows the servers to tag

or convert data from the cl ient without the mono-

1 ingual cl ient's active participation. Therefore, the

name service database must be u pdated with the

necessary preference data at client instal lation

time.

Typical ly, system managers for d ifferent parts of

the system are mono I ingual end users (see Figure

1) who need to do their job from a standard PC.

llfJI. 5 No. 3 Summer 19'):) Digital Tecbnical]Olii'IICII

International Distributed Systems-Architectural and Practical Issues

Thus, both the normal and the diagnostic manage

ment interfaces to the system must behave as mult i

l ingual servers, sendi ng error codes back to the PC

to be interpreted in the local language. Although

the qual ity of the translation of an error message is

not an architectural issue, translations at the system
management level are general ly poor, and the sys

tem design should accou nt for th is. Systems devel

opers shou ld consider giv ing both an Engl ish and

a local- language error message as well as giving

easy-to-use pointers into local- language reference

manuals.

Data errors wi l l occur more frequently because

of the mixtures of character sets in the system, and

attention to the identification of the location

and error type i s important. Logging to capture

offending text and the operations that generated i t
is desirable.

Incremental Internationalization

Mu lti! ingual systems and international components

can be bu i l t i ncremental ly. Probably the most pow

erful approach is to provide the services to support
mul tiple monolingual subsystems. Even new oper

ating systems, such as the Windows NT system, that

use Un icode internally neecl mechanisms for such

support.25 Mult idimensional improvements in a sys

tem 's abi l i ty to support an increasing number of

variations are poss ible. Some such improvements

are ma king more servers mult i l ingual, support ing

more mult i l i ngual data and end-user preferences,

supporting more sophisticated text elements (the

first release of the Windows NT operating system

will not support Unicode's joiners), as wel l as

adding more character set support, locales, and
user-defined text elements. The key point is that,

l ike safe programming practices, mult i l ingual

support in a d istributed system is not an · 'al i -or

nothing" endeavor.

Summary

Customer demand for mult i l ingual distributed

systems is increas ing. Suppl iers must provide

systems without i ncurring the costs of expen
sive reengineering. This paper gives an overview of

the architectural issues and programming practices

associated with implementing these systems.

Modularity both in systems and in run-time

l ibrarits al lows greater reuse of components and

incremental improvements with regard to interna

tional ization. Using the suggested safe software

practices can lower recnginecring and mainte-

Digital TeciJnical Jounwl Vol. S No . . I Summer 1')93

nance costs and help avoid cost ly redesign

problems. Providing multil ingual services to mono

l ingual subsystems permits increment al improve

ments while at the same time lowers costs through

i ncreased reuse. Final ly. the registration of syn

onyms, user preferences, locales. and services in a

global name service makes the system cohesive.

Acknowledgments

I wish to thank Bob Ayers (Aclohe). JosL·ph Bosurgi

(Univel), Asmus Freytag (\1icrosoft), J im (;ray

(Digital), and jan te Kidte (Digital) for thl'ir helpfu l

comments on earlier drafts. A special thanks to

Digital's internationa l i zation team, whose contribu

tions are always understated . In addition. I would

l ike to acknowledge the Unicode Technical

Com mittee, whose impact on the industry is pro

found and growing; I have learned a great deal from

fo llowing the work of this com mittee.

References

1 . D. Carter, Writing Localizable Software for
the Macintosb (Reading. tviA : Addison-Wesley,

1991).

2. Producing International Products (Maynard.

MA: Digital Equipment Corporat ion, 1989).
This internal document is unavailable to

external readers.

3. Digital Guide to Developing international
Software (Burl ington, MA: Digital Press,

1991).

4. S. Martin, " International ization Made Easy,"

OSF White Paper (Cambridge, MA: Open Soft

ware Foundation, Inc . , 199l) .

5. S. Snyder et a l . , "International ization in the

OSF IKE-A Framework," May 1991 . This doc

ument was an electronic mail mc.ssage trans
mitted on the Internet.

6. X/Open Portability Guide, Issue 3 (Reading,
U. K. X/Open Company Ltd , 1989).

7. X/Open Internationalization Guide, Draft

4.3 (Readi ng, U. K. : X/Open Company Ltd. ,

October 1990).

8. UNIX System V Release 4, Multi-National
Language Supplernent (MNLS) Product

Overview (Japan: American Telephone and

Telegraph, 1990).

61

Product Internationalization

9. Information Technology-Universal Coded
Character Set (UCS) Draft International
Standm·d, ISO/IEC 10646 (Geneva: Interna

tional Organization for Standardization/Inter

nat ional Electrotechnical Commission, 1990).

10. A. Nakanishi , Writing Systems of the World,

third printing (Rutland , Vermont. and Tokyo,

Japan: Charles E. Tutt le Company, 198R).

1 1 . The Unicode Consortium, The Unicode
Standard- Worldwide Character Encoding,
Version 1 .0, Volume l (Reading, MA: Addison

Wesley, 1991) .

12. R . Haentjens, "The Ordering of Universal

Character Strings," Digital Technical journal,
vol . 5, no. 3 (Summer 1993, this issue): 43-52 .

13. Programming Lanf!.uages-C, ISO/lEC 9899:
1990(E) (Geneva: International Organization

for Standardization/International Electrotech

nical Commission, 1990).

14. S. Mart in and M. Mori, Internationalization

in OSF/1 Release 1. 1 (Cambridge, MA: Open

Software Foundation, Inc . , 1992).

15. J. Becker, " Mu lt i l ingual Word Processing," Sci

entific A merican, vol. 251 , no. 1 (Ju ly 1984) :

96-107

16. Coded Character Sets for Text Communica
tion, Parts 1 and 2, ISO/IEC 6937 (Geneva:

62

International Organization for Standardiza

tion/International Electrotechnical Commis

sion, 1983).

17. J Bertels and F. Bishop, " Unicode: A Universal

Character Code," Digital Technical journal,
vol. 5, no. 3 (Summer 1993, this issue): 21-31 .

18 . Go Computer Corporation, "Compaction

Techniques," Second Unicode Implementors'

Conference (1992).

19. J Becker, " Re : Updated [Problems with]

Unbound (Open) Repertoire Paper" (January

18, 1991) . This electronic mail message was

sent to the Unicode mail ing l ist.

20. V Joloboff and W McMahon, X Windozu

System, Version 11, Input Method Specifica
tion, Public Review Draft (Cambridge, MA:

Massachuset ts Institute of Technology, 1990).

21 . M . Davis, (Tal igent) correspondence to the
Unicode Technical Com mittee, 1992.

22. M. Gasser et a ! . , " Digital Distributed Security

Architecture" (Maynard, MA: Digital Equip

ment Corporation, 1988). This in ternal docu

ment is unavailable to external readers.

23. H. Custer, Inside Windows NT (Redmonc!, WA:

Microsoft Press, 1992).

Vol. 5 Nu. 3 Summer 1993 Digital Tecbnical jonnwl

Michael M. T. Yau I

Supporting the Chinese, Japanese,
and Korean Languages in the
OpenVMS Operating System

The Asian language versions of the Open VMS operating system allow Asian-speak

ing users to interact with the Open VMS system in their native languages and

provide a platform for developing Asian applications. Since the Open VMS variants

must be able to handle multibyte character sets, the requirements for the internal

representation, input, and output differ considerably from those for the standard

English version. A review of the japanese, Chinese, and Korean writing systems and

character set standards provides the context for a discussion of the features of the

Asian Open Vi'vlS variants. The localization approach adopted in developing these

Asian variants was shaped by business and engineering constraints; issues related

to this approach are presented.

The OpenVMS operating system was designed in
an era when Engl ish was the only l anguage sup
ported in computer systems. The Digital Com mand
Language (DCL) commands and ut i l ities, system
help and message texts, run-t ime l ibraries and sys
tem services, and names of system objects such
as file names and user names a l l assume Engl ish
text encoded in the 7-bit American Standard Code
for Information Interchange (ASCI I) character set.

As Digita l 's business began to expand into mar
kets where common end users are non-Engl ish
speaking, the requirement for the Open VMS system
to supporr languages other than Engl ish became
inevitable. In contrast to the migration to support
single-byte, 8-bit European characters, OpenVMS
loca l ization efforts to support the Asian languages,
namely Japanese, Chinese, and Korean, must deal
with a more complex issue, i .e . , the hand ling of
multibyte character sets. Requirements for the inter
nal representation, i nput, and output of Asian text
are radica l ly d ifferent from those for E ngl ish text.
As a resu lt , many traditional ASCII program ming
assumptions embedded in the OpenVMS system are
not va l id for hand l ing Asian mult ibyte characters.

Since the early 1980s, Digital 's engineering
groups in Asia have been local izing the OpenVMS
system to support Asian languages. The resu l tant
Asian language extensions a l low As ian-speaking
users to interact with the Open VMS system i n their

Digital Techrticaljountal llrJ/. 5 Nu . .) Summer 1993

native languages. These extensions a lso provide
a platform for developing Asian appl ications. This
paper presents a high-level overview of the major
features of Chinese, Japanese, and Korean support
in the Open VMS operating system and discusses the
localization approach and techniques adopted.

Asian Language Variants of the
OpenVMS System

The fol lowing five separate Asian language variants
of the OpenVMS operating system are available in
the Pacific Rim geographical area:

Language Country OpenVMS Va riant

Japanese Japan OpenVMS/Japanese

Chinese People's OpenVMS/Hanzi
Republic
of China

Chinese Taiwan, OpenVMS/Hanyu
Republic
of China

Korean Republ ic OpenVMS/Hangul
of Korea
(South Korea)

Thai Thai land OpenVMS/Thai

This paper covers the first four variants, omitting
the Thai variant because of space l imitations. Each

63

Product Internationalization

Asian language variant of the OpenVMS system

is designed to be instal led and to run as a separate
system. Currently, no provision exists to formally
support multiple Asian languages simult aneously
on a single OpenVMS system. Each variant provides

a bil ingua l system environment of Engl ish and

one Asian language. Such an environment, cal led

Asian Open\'.VIS mode in this paper, supports ASCII
ami one mu ltibyte Asian character set. The variants

are available on the VA X and the Alpha AXP plat

forms with identical features. Throughout the

paper, the generic name Asian OpenV.\1S variant
denotes any of the Asian language variants of the

Open VMS operating system, regard less of the hard

ware plattorm.

To achieve ful l downward compatibi lity for exist
ing users, appl ications, and data from the standard
OpenVMS system, each Asian OpenVMS variant is

a superset of the standard Open VMS system. In fact,

a user can operate in the standard OpenVMS
mode, i .e . , the 1-byte DEC Multinational Character

Set (DEC MCS), on an Asian OpenVMS variant with

out noticing any difference in the functional behav
ior compared to a standard OpenVMS system. The

components of an Asian OpenVMS variant are

installed on a standard OpenVMS system in a man
ner similar to that of a layered product; fi les (exe
cutable images and other data files) arc added and

replaced on the standard OpenV.\1S syst em. In gen
eral , three types of components are suppl ied in an

instal lation:

1 . A standard OpenVMS component supplanted
by an Asian local ized version that incl udes the

standard OpenV\1S mode as a subset . At the
process level, the user can set the component to

run in either standard OpenVMS mode or Asian
Open VMS mode. The DCL and the terminal driver
are examples of this type of component.

2. A standard OpenVMS component supplemented
by an Asian local ized version that runs only
in Asian OpenVMS mode. Both versions of the
component run simultaneously on the system.
Examples are the TPU/EVE editor and the MAIL
util ity.

3. A new Asian-specific component created to pro

vide fu nctiona l ity for Asian processing that does
not exist in the standard Openv:.1s system. An
example of this type of component is the charac
ter manager (CMGR), which is discussed later in
this paper.

64

Overview of Asian Writing Systems

Before looking at specific features of the Asian

OpenVMS variants, this paper briefly reviews the
Chinese, Japanese, and Korean writing systems.
For a more detai led discussion of the differ
ences among these writing systems, refer to Tim

Greenwood 's paper in this issue of thejourna/. 1

The Chinese Writing System

The Chinese writing system uses ideographic char
acters cal led Hanzi, which originated in ancient

China more than 3,000 years ago. Each ideographic
character (or ideogram) is a symbol made up of ele
mentary root radicals that represent ideas and
things. Some ideograms have very complex glyphs

that consist of up to 30 brush strokes. Over 50,000
Chinese ideograms are known to exist today; how

ever, a subset of 20,000 or less is typical ly sufficient

J(>r general use. Two or more ideograms are often
strung together to represent more complex
thoughts.

Ideographic writing systems have characteristics
that are quite different from those of a lphabetical
writing systems. such as the Latin languages. For

instance, the concept of uppercase and lowercase
docs not apply to ideographic characters, and col la
tion ru les are built on d ifferent attri butes. The
input of ideographic characters on a standard key
board requires addi tional processing.

Two forms of Chinese characters are i n use

today: Traditional Chinese and Simpl ified Chinese.

Traditional Chinese is t he original written form
and is still used in Taiwan and Hong Kong. In the
1940s, the government of the People's Republic of

China (PRC) launched a campaign to simplify the
writing of some traditional Chi nese characters in

an effort to speed up the learning process. The

resu lting simpler set of Chinese characters is
known as Simplified Chinese and is used in the PRC,

Singapore, and Hong Kong.

The japanese Writing System

The Japanese writing system uses three scripts :

Chinese ideographic characters (cal led kanji in
Japan), k.ana (the native phonetic alphabet), and
rrm�aji (the Engl ish a lphabet used for foreign

words). The kanji script commonly used in Japanese

includes abou t 7,000 characters. There are two sets
of kana scripts, namely, hiragana and katakana;

each comprises 52 characters that represent syl la
bles i n the Japanese language. Hiragana is used

l,'rJI. 5 No. 3 Summer 1993 Digital Techuicaljourual

Supporting the Chinese, japanese, and Korean Languages in the Open VMS Operating System

extensively intermixed with kanji. Katakana is used
to represent words borrowed from other languages.

The Korean Writing System

The Korean writing system uses two scripts:
Hangul (the nat ive phonetic characters) and Hanja
(Chinese ideographic characters). The Hangu l
script was invented in 1443 by a group of scholars
in response to a royal directive. Each Hangul char
acter is a grouping of two to five Hangul letters
(phonemes) that forms a square cluster and repre
sents a syl lable in the Korean language. The mod
ern Hangul alphabet contains 24 basic letters- 14
consonants and 10 vowels. Extended letters are
derived by doubli ng or combining the basic letters.

Asian Character Sets

During the early clays of Asian language computeri
zation when de jure standards did not exist for
Asian character sets, individual vendors in the local
countries invented their own local character sets
for use in their Asian language products. Although
most vendors have migrated to conform with the
national standards, a variety of local character sets
sti l l exists today in legacy systems, thus creating
interoperability issues. This paper reviews only the
national standard character sets that are supported
by the Asian Open VMS variants.

National Standards

National standards bodies in each of the Asian
Pacific geographies have establi shed character set
standards to facil itate i nformation interchange for
their local characters. For languages that use Han
characters (which are large in number) in their writ
ing scripts, the character set standards a l l share
a similar structure, which is i l l ustrated in Figure 1 .
Characters are assigned to a 94 -row by 94-column
structure cal led a plane. Each character is repre
sented by a 2-byte (7-bit) value in the range of Ox2l
to Ox7E. A plane, therefore, has a total of 8,836 code
points available. Such a structure avoids the ASCTI

control code values, thus preventing conflicts with
existing operating systems and commun ication
hardware and software.

Japan Japan was the first country to announce a
2-byte character set stanclarcl , the Code of the
Japanese Graphic Character Set for Information
Interchange (J IS c 6226-1978) .! This standard has
since been revised twice, i n 1983 and 1990, and
renamed)IS X 0208. The JIS X 0208-1983 standard

Digital Tecl.m ical]mtnwl Vol. 5 Nu. 3 Stllllll/er 199.)

COLUMN
1 94 ROW COLUMN

10
�1 · 1 ____ 1 1�· 1 __ __

ROW Ox21 - Ox7E Ox21 - Ox7E

TWO-BYTE CODE STRUCTURE
94

A PLANE

• Note !hal the first bit of each row and column can be either 0 or 1

Figure 1 Code Structure in Asian Character

Set Standards

includes 6,353 kanji characters divided into two
levels, according to frequency of usage. :i Level 1 has
2,965 characters, and level 2 has an additional 3,388
characters. This standard also includes complete
sets of characters for hiragana and katakana,
ASCII , and the Greek and Russian scripts-a total of
453 characters. The 1990 revision, JIS X 0208-1990,
added two characters to the standard:' An addi
tional plane of kanji characters became standard in
1990 with the announcement of)IS X 0212-1990."

Prior to the introduction of the 2-byte standards,
Japanese systems that support katakana used the
JIS X 0201-1976 standard for a 1 -byte, 8-bit character
set/• Today, t l1ere is sti l l a demand to support this
standard , in add ition to the 2-byte standards, due
to its pervasive use primari ly in legacy mai nframe
systems.

People 's Republic of China In 1980, China
annou nced a 2-byte standard, Chinese Character
Coded Character Set for Information I nterchange
Basic Set (GB 2312-1980) .7 Its structure, which fol
lows that of the Japanese standard, inc ludes two
levels of Hanzi. Level 1 has 3,755 characters, and
level 2 has an additional 3,008 characters. The stan
dare! also has 682 characters, including ASCII ,

Greek, Russian, and the Japanese kana characters.
Subsequently, China has annou nced additional
character set standards.

Taiwan, Republic of China The Taiwanese
national standard, Standard I nterchange Code for
Gener a l ly Used Chinese Characters (CNS 1 1643-
1986) was first announced in 1986.s Aga in , the
structure is simi lar to the Japanese and PRC stan
dards. It defines two planes of characters with a
total of 13,051 Hanzi, 651 symbols, and 33 control
characters. The standard was revised in 1992 and
renamed Chinese Standard Interchange Code (CNS
1 1643- 1992).9 An additional five planes were
defined in this revision, adding 34,976 characters.

65

Product lnternationali:J:ation

Republic of Korea (South Korea) The latest ver
sion of the Korean 2-byte character set standard
is the Korean Industrial Standards Association
Code for Information Interchange (KS C 5601 -1987),
announced in 1987 1" This standard includes 2 ,350
precomposed Hangul characters, 4,888 Hanja
(Chinese characters), and 352 other characters such
as ASCII , the Hangul alphabets, Japanese kana,

Greek, Russian, and special symbols.

User-defined Characters

Character set standards do not always encode a l l
known charactns o f the writing scripts for which
the standards are intended . For instance, when the
total nu mber of known characters exceeds the
available code space, only subsets of the most com
mon characters are included. In addition, new char
acters are invented over time to describe new ideas
or objects, such as new chemical elements. The
concept of user-defined characters (UOC:s), some
times known as gcnji in Japan, was i ntroduced to
address the user's need for characters that are not
coded in a character set standard. Many computer
vendors, includ ing Digital, provide extended code
areas for assigning UDCs and vendor-defined non
standard characters. Attributes of these characters
for various operations such as display fonts, col la
t ion weights, and input key sequence are often
made available, e .g . , by registering them in a system
database. From an end-user and application per
spective, ·ocs shou ld be processed transparently
and in the same way as standard characters.

Asian OpenVMS System Overview

From an operating system perspective, three basic
issues need to be addressed to support Asian char
acter processing, namely, internal representation,
(i .e . , how As ian characters are represented and
stored inside the computer) , basic text input, and
output.

Internal Representation

Asian OpenVMS variants support the respective
national standard character sets. To achieve fu I I

compatibi l i ty with existing ASCI I data, each Asian
OpenVMS variant simu ltaneously supports one
mu ltibyte Asian character set and ASCII . A variety of
schemes can be used to combine mult iple coded
character sets. In general, the schemes fal l into one
of the fol lowing three types:

66

1 . Shift code- based representation. In this scheme,
the 1-byte code is combined with a 2-byte code
by inserting shift control codes to switch
between the two code sets. A 1-bytc "sh ift out"
control code changes the mode from 1- to 2-byte,
while a 1-byte "shift in" control changes the
mode back to 1 -hyte characters. This scheme is
in common use in mainframes.

2 . ISO 2022-based representation. The ISO 2022
Code Extension Techniques al low a designated
character set to consist of two, three, or fou r
7-bit bytes in addi tion to the 7-bit sets. 1 1 The only
requ irement is that a l l bytes of a character have
the same h igh-order bit setting (a l l 0 or a l l I) .

A simple scheme o f simultaneously supporting
ASCII and one 2-byte character set can be
achieved by statical l y designating ASCI I to GO
and invoking it to graphics left (GI.) and designat
i ng a local 2-byte set (e.g . , one of the Chinese,
Japanese, or Korean sets) to G 1 and invoking i t
to graphics right (GR). The result ing mixed
1 -byte/2-byte representation is shown in Figure 2.

The high-order bit of each 8-bit byte provides
self-identifying information for the local 2-byte
set. This scheme can be further extended to
include two additional character sets by stati
cal ly designating them to G2 and G3 and invok
ing them by the single shift codes SS2 and SS3.
The Extended UNIX Code (El "< :) scheme employs
this addit ional extension.

3 . Shift range-based representation. Th is scheme,
a hybrid of the previous two schemes. is used by
the "Shift .J IS Code" on PC-based systems in
Japan . Bytes with codes 0 to 127 arc interpreted
as 1-byte ASCII , codes 160 to 191 and 192 to 223
are interpreted as 1-byte katakana (as specified
by the .J IS X 0201 standard), and codes 128 to 159
and 224 to 255 are combined with the byte that

FIRST BYTE SECOND BYTE

7-BIT ASCII

1 4-BIT J IS/GB/KS

F(�ure 2 Example of an /SO 2022-based
Representation That Combines
Multiple Coded Character Sets

�'{)/. 5 No . .i Summer 1993 Digital Technical]our11al

Supporting the Chinese,Japanese, and Korean Languages in the OpenVMS Operating System

fo l lows to form a 2-byte code that is interpreted
as a kanji character (as specified by t he J IS X
0208 standard) . This scheme al lows more single
byte characters to be represented at the expense
of the nu mber of 2-byte characters a l lowed.

Asian OpenVMS nriants employ the ISO
2022-based representation for Digital 's Asian code
sets (the DEC Asian code sets) and are named
respectively DEC Kanji, DEC Hanzi, DEC Hanyu, and
DEC Hangu l for the japanese, Simplified Chinese,
Traditional Chinese, and Korean character sets.
This encoding scheme maintains fu l l downward
compatibi l ity with a l l existing ASCI I software and
data. l n particular, a string or record that consists of
only ASCII characters has the form of simp le ASCI I .
Because there is no need to keep state information
about the data, this scheme simplifies processing,
when compared to the shift code-based scheme.
However, without expl icit support for coded char
acter set designation, simu ltaneous support for
Chinese, japanese, and Korean is not possible.

To support LD< :s, each DEC Asian code set con
tains an extended code area for their assignment.
The high-order bit of the second byte no longer has
to be set; thus, an add itional 94 by 94 plane of code
positions is avai lable. The d isadvantages of this
approach are that synchronizing a character bound
ary requires scanning forward from the beginning
of the string and that the second byte can now con
flict with the ASCII characters.

The DEC Asian code set internal representation
corresponds to mapping a character plane (94 by
94) to one of the (1 , 1) and (0, 1) quadrants of the
2-byte code space in Figure 3. The exact mappings
of individua l DEC Asian character sets supported by
Asian Open VMS vary. Table 1 provides a summary of
the common code range assignments.

DEC Kanji The DEC Kanji (OpenVMS/japanese)
code set currently supports ASCII , JIS X 0208-1983,
and an area for UDCs, as shown in Table I . The UDC
area is further divided into the two subareas
described in Table 2 .

Recently, Super DEC Kanji, a revision ancl exten
sion to the DEC Kanji code set, has been proposed

FI RST
BYTE

00 21

SECOND BYTE

80 A1

CONTROLS
21

� G (0, 1)

80 a:
f- CONTROLS z
0 A1
u

(1 ,0) (1 , 1)

FF

FF

Figure 3 DEC Asian Code Set Jntemal
Representation

Table 1 Summary of D EC Asian Code Range Assignme nts

Code Range DEC Kanji DEC Hanzi

(Oxxxxxxx) ASCII ASCII

(1 xxxxxxx 1 xxxxxxx) JIS X 0208 GB 2312-1980

(1 xxxxxxx Oxxxxxxx) U DC UDC

(OOOxxxx) CO Control CO Control

(100xxxx) C1 Control C1 Control

Notes:

• denotes plane 1 of CNS-11643-1986.

r denotes plane 2 of CNS-11643-1986.

Table 2 The DEC Kanji U DC Area

Area Usage Quadrant Rows

User Area (1 ,0) 1 -31

DEC Reserved (1 ,0) 32-94

Digital Tecbn ica f jou nwf 1-1>1. 5 Nu . .) Su/1111/er 199.3

DEC Hanyu DEC Hangul

ASCI I ASCII

CNS 1 1 643-1986(1)* KS C 5601-1987

CNS 1 1643-1986(2)t

CO Control CO Control

C1 Control C1 Control

Number of
Characters Code Range

2,914 OxA1 21-0xBF7E

5,922 OxC021-0xFE7E

67

Product Internationalization

to sup rort add itional character sets such as JIS X

020 1 -197H and JIS X 0212-1990, ·which arc specified as
follows:

Code Range

(SS2 1 xxxxxxx)

(SS3 1 xxxxxxx 1 xxxxxxx)

Additional
Planes

JIS X 0201

JIS X 021 2

The redefined UDC area includes both a user/
vendor-defined area (UDA) and a user-definable
character set (UDCS), as described in hhlc .).

DEC Hmr:i The DEC Hanzi (Open\.\IS/ l lanzi for
Simrlified Chinese) code set su pports ASCII , GB
2312-80, and a UDC area described in Table 4.

DEC Hanyu Tbe DEC Hanyu (OpenVMS/Hanyu
for Tradi tional Chinese) code set currently sup
ports ASCI I , CNS 1 1643-1986 (first ami second
planes), and the Digital Taiwan Supplemental
Character Set (DTSCS). The DTSCS supplements the
characters defined in C:\S l l643-198(l with an addi
tional col lection of characters that address cus
tomer needs. Currently, the DTSCS defines the 6,319
characters recommended by the Electronic Data
Processing Center (EDPC) of the Executive Yuan, a
1;1 iwanese government body. The CNS 1 1613-1992
standard includes the DTSCS.

To support the additional DTSCS, the mixed
1 -byte/2-byte scheme is extended to a 1-byte/
2-byt<.:/4-byte scheme. Each DTSC:S character maps
to a 4-bytc code, in wh ich a fixed kading 2-byte

Table 3 The Super DEC Ka nj i UDC Area

Area Usage Quadrant

JIS X 0208 UDA (1 ,1)

J IS X 021 2 UDA SS3 (1 ,1)

UDCS (1 ,0)

Table 4 The D EC Ha nzi UDC Area

Area Usage Quadrant

DEC Reserved (1 ,1)

User Area (1 ,0)

DEC Area (1 ,0)

6H

Rows

85-94

78-94

1-94

Rows

88-94

1-87

88-94

code (OxC2CB) combines with the fol lowing 2-byte
code to form a 4-byte code. Of course, the code
point OxC2CB is reserved for this purpose. This
scheme makes ava i .l able another two 94 by 94
planes of code positions:

(OxC2CB l x.:xxxxxx I xxxxxx)
(0xC2CB l xxxxxxx Oxxx.x.Je'<)

Table 5 shows the current definit ion of the
DTSCS. An additional area is available for UDCs in the
C:NS planes, as defined in Table 6.

DEC Hc111gul The DEC Hangul (OpenVMS/Hangul)
code set supports ASCI I and KS C 5601-1987 (with
the exception of UDCs).

Asian Text Input

The most widely used computer input device
remains the keyboard. Because it is impossible
to assign thousands of ideographic characters to a
standard QW ERTY keyboard, new methods must be
devised to facil itate the Asian text input process. In
this con text, an inpu t method is basica l ly an algo
rithm that takes keystroke input representing cer
tain attributes (e .g. , phonetics) of a character or
string and uses a lookup table to find characters
or strings that have thost: attribute values. Typical ly,
a user inputs sevt:ral keystrokes and selects the
desired character or string from a candidate l ist by
means of an iterative dia log with the input method.
This process is sometimes referred to as preediting.
Depending on the physical location of where the
d ialog takes place, a preediting user interface can
be o ne of three styles: off-the-spot, over-the-spot,

Number of
Characters Code Range

940 OxF5A 1-0xFEFE

1 ,598 (SS3 + OxEEA1)-0xFEFE

8,836 OxA1 21 -0xFE7E

Number of
Cha racters Code Range

658 OxA1 A1- 0xFEFE

8,178 OxA1 21-0xF77E

658 OxF821-0xFE7E

Vol. 5 ;Vo . .i Stt/1111/er !')'/! Digital Technical journal

Supporting the Chinese.japanese, and Korean Languages in the Open VMS Operating System

Table 5 The DEC Ha nyu DTSCS Area

Area Usage Quadrant Rows

EDPC Recommended
Characters C2CB (1 ,1) 1 -68

Reserved C2CB (1 ,1) 68-94

Reserved C2CB (1 ,0) 1 -94

Table 6 The DEC Ha nyu U DC Area

Area Usage Quadrant Rows

UDC (1 ,1) 93-94

UDC (1 ,0) 82-94

or on-the-spot. Different input methods may have

different preed it interface requirements. Usual ly,

several screen areas are needed for the preed it ing

dialog to take place. Input methods differ from cul
ture to cu lture and from script to script .

The major d ifference i n the implementation of

i np u t method support among t he Asian OpenVMS

variants is in the character cel l term inal envi
ronment. Some input methods are su itable for
programming into the terminal firmware. The

Chinese ami Korean in put methods supported
on the OpenVMS/H;mzi , OpenVMS/ Hanyu, and
OpenVMS/ Hangu l systems are examples of such

methods. Other input methods are too complex or
requ ire so many resources as to make them too

costly for firmware implementation. This is true of

the Japanese: input method , w h ich needs to be

implemented on the host. Such i mplementation
causes a n u mber of techn ical issues with the tracl i

t ional ASCII character cel l terminal- oriented appl i

cation program m i ng model , where an application

does not have to be concerned with input methods
and expects to receive character codes direct ly. The
fol lowing three a lternatives have been used to
im plement host -based input methods on the
OpenVMS/Japanese system:

I . Appl ication. All Japanese appl ications directly
program the input method themselves. An appl i

cation must cal l low-level rou ti nes (a set of
kana-kanji i nput method rou t i nes are ava i l able
in the JSY Run-time Library) to access the input

method d ictionary and d irectly controls the
preedit interface in relation to its own screen
management . This method is used by appl ica-

DipJtal Tecbuical jou nwl VrJI. 5 No . .) Sui/Ill/PI" I'J'J.)

Number of
Characters Code Range

6 , 3 1 9 OxC2CBA1 A1-0xC2CBE485

2 , 51 7 OxC2CBBEB6-0xC2CBFEFE

8,836 OxC2CBA 1 21 - 0xC2CBFE7E

Number of
Cha racters Code Range

1 45 OxFDCC-OxFEFE

1 ,1 86 OxF245-0xFE7E

tions such as text editors, which need to d i rect ly

manage the screen d isplay. The method requ ires

substantial reengineering of a n ASCI I appl ication

to su pport a .Japanese input method.

2 . Ru n-t ime l ibrary (RTL). Japanese appl ications

cal l specia l text l ine i np u t rou ti nes, which han
d le the Japanese input method. This method is
suitabl · tor applications t hat requ ire simple l ine

input of text. The RTL method hides the deta i ls of
the input method from the appl icat ion but l acks
the flexibi l i ty to control the preedit user inter

face. The reengineering needed to handle the

Japa nese inpu t method is sh ifted from the appl i

cation to the RTL rout ines . Th is approach

requires less appl ication reengineering, but a l l
stand ard l i ne input rou tine cal ls i n the appl ica
tion must be replaced by Japanese l i ne inpu t rou

tine cal ls.

3. Front -end input processor (FIP). The Japanese

input method is embedded as a front-end process
i nside the termina l queued I/O (QIO) system ser
vice. Th is method of implementation benefits
cxisting h igh- level RTL text l ine input rout ines
and requires l itt le application or RTL reengineer

ing to support the Japanese inpu t method in the
si ngle- I ine input of]apanese text . 1 2

The Asian OpenVMS graphica l user i n terface o n

workstations is cal led Asian DECwindows/Motif.
Cu rrent input method support is provided through
a Digita l extension im plemented as an X cl ient.
With n.: lcasc 5 of the X l I standard , the implementa
t ion wil l migrate to using the standard X input

method (XIM) support in the Xl ib l ibrary routines.

69

Product lnternationalliation

Most Asian PCs have a front-end processor i mple
mentation of input methods resident on the PC.

Therefore, PC (f<..-sktop computers can s<.:nd Asian
characters d irectly when comm unicating with an

Asian OpenVMS host.

The fol lowing is an overview of the input meth
ods supported by each Asian Open VMS variant.

japanese Input Method Kana characters can be
typed d irectly on a standard keyboard using a !?ana

keyboard layout. For kanji characters, the de facto

standard input method is called the romaji/kana

to-kanji conversion, which is based on phonetic

conversion. The process of entering a kanji string
involves typing the kana (hiragana or katakana)

or the romaji pronunciation of the string. The input

method then looks i n a conversion d ictionary for
the l ist of k.anji strings that have the same pronunci

ation. Since most japanese words have homonyms,

the user usual ly needs to go through a selection
process to find the desired kanji string. More
advanced implementations involve performing syn

tactic and semantic ana lysis of the sentence to

increase the efficiency of the input method . On
the OpenVMS/Japanesc system, the kana-to-kanji

input method has a provision for separating conver

sion u nits into word, c lause, and sentence. The
method a lso has a learni ng capability that reorders

the candidate l ist entries by means of a personal

d ictionary, pu tting the characters selected at the

top of the l ist so that more frequently used words

appear first in the homonym l ist.

Chinese Input Method No standard exists for the
Chinese input method. The l arge n u mber of input

methods that have been proposed over the years
can be classified into one of two major types:

1. Pattern decomposi tion-based method . Each
character is decomposed into basic strokes or
patterns. Each stroke or pattern, e .g. , a root racl i
cal, is assigned a code (mapped to a key) and
each character is retrieved by inputting a
sequence of such codes.

2. Phonetic-based method. Each character is tran

scribed into phonemic letters and retrieved by

th is phonemic transcription. The system used in

Taiwan is based on the National Phonetic Alpha

bet (Bopomofo), whereas the PRC uses Roman
alphabets based on the Wade-Giles system.

The OpenVMS/Hanzi system supports the fol low
ing Chinese input methods:

70

• Five stroke

• Five shape

• Pinyin

• Telex code

• GB 2312 code

The OpenVMS/Hanyu system supports the fol

lowing Chinese input methods, which are imp le

mented by firmware on the Digital VT382 series
Chi nese terminals :

• Tsang-Chi

• Quick Tsang- Chi

• Phonetic

• Internal code

• Phrase

Korean Input Jlllethod Hangul characters are

composed by directly typing the individual Hangul
letters. The composition sequence always starts

with a consonant, is fol lowed by a vowel, and fin

ishes with a consonant, if present. The input method

val idates the composition sequence keyed in by the
user at each step. The d isplay device updates the

i n termediate rendering of the partia l l y formed

Hangu l character as the shape ami posi tion of each
letter changes d u ri ng composition . Hanja charac

ters are entered by typing their Hangul pronu ncia

tion. The input method d isplays a l ist of a l l possible
Hanja characters (homonyms) . More sophist icated

implementations can perform Hangul- to-Hanja
conversion in word units s imi lar to that of the

kana-to-kanji conversion. On the Digital VT382
Korean termina l , both the Hangu l and the Hanja
input methods are implemented by firmware.

Asian Text Output

Asian character fonts are usual ly d isplayed o r
printed a s bit-map graphics. To meet t h e requ ire
ments of specific appl ications such as seal ing and

p lotting, these fonts can also be defined as outline
fonts using vector representation. International
codes of Asian language characters are mapped to

the correspond ing font data when needed for out
put. Predefined character fonts are usua l ly stored in

the read-only memoq' (ROM) of terminals and print
ers for better performance. As for the Engl ish alpha

bet, different standards, styles, and sizes exist for
Asian language character fonts. The fo l lowing l ist

VfJI. .5 No. .) S11mmer 1993 Digital TeciJnicaljournal

Supporting the Chinese, japanese, and Korean Languages in the OpenVMS Operating System

contains some of the more popular font styles used
in the respective markets:

Ma rket

Japan

Korea

PRC

Taiwan

Font Style

Mi ncho, Gothic, Round-Gothic

Myuncho, Gothic

Song, Quasi-Song, Hei (boldface), Kai

Sung, Hei (boldface), Kai

In genera l , Asian ideographic characters require
high-definition fonts, i .e . , at least a 24 -by-24 clot
matrix, to achieve acceptable visual quality. As a
resu lt , memory requirement is a major issue when
supporting Asian fonts.

Hardware

Supporting Asian language processing requires
modifying the standard video terminals and print
ers. In general, software products need to recog
nize the different functional characteristics of Asian
terminals and printers. For example, the character
set designation and invocation defau lts d iffer from
those of standard terminals.

Workstations do not require any modifications
(except for exchanging a local language keyboard
for the standard one), because input and display are
directly supported by software.

Asian Video Terminals The trad itional character
cell terminal provides certain local display and
input functions on behalf of a software program.
For example, the terminal firmware preprocesses
scan codes generated by keyboard input and con
verts them to character code before sending them
to an appl ication . Similarly, character fonts are usu
a l ly stored in the terminal ROM. Digital has devel
oped a variety of video terminals to support Asian
language processing.

Some major hardware considerations for Asian
video terminals arc

• H igh-resolution video d isplay. Ideographic char
acters have complex glyphs, which require at
least a 24-by-24 dot matrix cel l to be of accept
able display quali ty. Such a cel l would occupy
two ASCII col u m ns. As a resu lt, to maintain
a 26- l ine (40 ideograms per l ine) display requires
a screen resolution of at least 960 by 780 pixels.
Typical ly, Digital 's Asian video terminals usc
monitors that run at a 60-hcrtz noninterlaceCI
mode, a mode substantial ly higher than that of
standard ASCII terminal monitors.

Digital Tecbnicaljourna/ Vu/. 5 N" . . i Sltllllll<'r I'.I'J.i

• Font memories and loading protocol . The termi
nal requires additional ROM to hold the fonts of
standard characters in an Asian character set, typ
ical ly 7,000 to 20,000 characters. Also, for char
acters outside the standard set, i . e . , UDCs, the
terminal requires random-access memory (RAM)
to downl ine load the fonts from the host. Digital
Asian terminals support font- loading protocols
that work with the host software to downline
load fonts into RAM either on demand or on a
preloading basis. The font cache i n Digital 's
Asian terminals can usual ly hold about 400 char
acters at once.

• Input method . Implementing input methods on

a video terminal requires additional hardware
modification. The input method algorithms
must be programmed into the firmware together
with extra memory for the input method lookup
tables. In addition to the main d isplay area, one
extra line on the screen is needed as an inp u t
method work area , e .g. , for displaying candidate
l ists for user selection. Some keys must be
assigned permanently for invoking d ifferent
input methods. The printing of legends on the
tops of the keys is now more complex, because
the keytops must include addi tional legends for
the input method keyboard layout. For example,
on D igital 's Hanzi termina ls, fou r ideograms
must appear on the tiny area of one kcytop.

Asian Printers Digital supports a range of

Asian printers. Similar to Asian video terminals,
Asian printers must support font-loading protocols
to downline load fonts for UDC:s by either preloacl
ing or on-demand-loading methods. Add itional
RAM is required to hold these fonts. Also, D igital's
Asian printers generally support multiple font type
faces and sizes.

Asian OpenVMS Structure

The components provided by the Asian OpenVMS
variants on top of the standard OpenVMS system
can be divided into five main groups:

1. System support for transparent processing of
UDC:s

2. An enhanced OpenVMS terminal I/O subsystem
to support Asian terminal devices

3. A set of run- time l ibraries to facil itate Asian
application development on Asian OpenVMS
systems

7 1

Product Internationalization

4. A set of local ized ut i l i ties and commands for
users to perform common tasks on OpenV.\15
systems in their nalivl' languages

5. A ut i l i ty to set the operating modes (standard
Open VMS mode or Asian Open VMS mode) of the

localized components

Figure 4 summarizes the Asian OpenV.VIS system
structure.

Asian OpenVMS Components

This section reviews the major components of the
Asian Open VMS variants.

User-defined Character Support
The Character Manager

Attributes of characters in the standard character
sets supported on an Asian OpenVMS system are
known and fixed. Therefore, attribute support can
be built into the system statical ly. In contrast , UDCs
usual ly require thl'ir attributes to be dynamica l ly
defined and accessed . A new u ti l i ty cal led the char
acter manager (CMGR) enables users to create, man
age (modify and update), and retrieve UDCs and
their attribu tes. LDC support is currently offered
on the OpenVMS/Japanese, OpenVMS/Hanzi , and
OpenVMS/Hanyu systems. In the OpenVMS/Hanyu
system, the CMGR also supports Digital-defined
characters, e .g . , the DTSCS and DEC Recom mended
Characters (DRC).

The CMGR manages a set of systemwide data
bases that store I DC attributes. Two l i DC at tributes
are currently supported , glyph images and col laring
values.

To represent the UDCs in the computer, the CMGR
al lows a user to assign each UDC a code point in the
designated ! 'DC area . Currently, UDC characters are
entered by directly typing their binary code. The

LOCALIZED
OPENVMS
COMMANDS AND
UTILITIES

USER-

code point serves as the key in the CMGR databases
for retrieving other attributes of the character.

The CMCR uti l ity provides a user interface to cre
ate and manage the UDC attribute database. The
user interface includes a fon t editor for users to cre
ate the glyph image of a UDC and entries for other
attributes. To a l low applications ro retrieve the
UDC attributes, the CMGR has a set of application
programming interfaces (AP!s) used to access the
i ndividual attribute databases. In particu lar, the
on-demand font loading of UDCs supported by the
Asian terminal l/0 subsystem employs the CMGR
font databases, and the SORT/ MERGE u t i ! ity uses the
col lation databases for UDC sorting.

CMGR Font Database To output a UDC to a dis
play or printing device, the UDC's glyph image must
first be defined . The CMGR provides a screen font
editor for users to create the glyph images. The
CMGR supports mult iple typefaces (e .g. , Hei, Sug,
and Default) and font sizes (e .g. , 24 by 24, 32 by 32,

and 40 by 40) i n mul tiple databases. There are two
ways to load the UDC fonts to Asian output devices,
namely, preloading and on-demand loading.

Fonts can be preloaded by sending a file that con
tains the appropriate control sequences and fon t
patterns, which are discussed i n more detail later i n
this section. The CMGR provides a command that
generates a preload file from the font database for
required UDCs.

On-demand font loading is a more complicated
mechanism, which involves an on-demand loading
protocol. Font patterns are retrieved from the fon t
database through the CMGR cal lable interface by a
font-hand l ing process.

CMGR Collation Attribute Database To facil itate
the sorting of data, i ncluding UDCs, the collation
weights of the characters must be defined .

USER
APPLICATION

DEFINED MUL TIBYTE PROCESSING RTL
MODE

CHARACTER SWITC H I N G

SUPPORT LOCALIZED SCREEN MANAGEMENT RTL

LOCALIZED OPENVMS CALLABLE
UTILITY ROUT I N ES

I ASIAN TERMI NAL 1/0 SUBSYSTEM I
Figure 4 Asian OjJenVMS System Structure

72 Vol. 5 No. 3 Summer 1993 D igit�1l Technical journal

Supporting the Chinese, japanese, and Korean Languages in the OpenVUS Operating .\)'stem

Currently, only the OpenVMS/Hanzi and Open VMS/
Hanyu systems offer this feature.

Asian Terminal 110 Subsystem

The Asian terminal 1!0 subsystem is an extension
of the standard OpenYMS terminal I/0 subsystem.
It consists mainly of the OpenVMS terminal class
drivers/port drivers, auxil iary class drivers, and
server processes, and hand les both standard and
Asian terminals s imultaneously. For Asian termi
nals, the subsystem provides extended functions
to support multibyte character hand l ing in the ter
minal QIO system service, input method, code set
conversion, and font load ing.

Terminal QIO System Service/Multibyte Character
Handling The enhanced terminal QIO system ser
vice can hand le mixed ASCII and mu ltibyte Asian
characters in l ine input cal ls. Line editing (e .g . ,
character echo, cursor movement, character dele
tion, character insert ion, won.l delimiters, and
character overstrike), l ine wrapping, uppercasing,
and read verifying will hand l e Asian characters
correctly. Because the QIO system service is the
low�:st- level routine that hand les terminal 1/0, a l l
other text 1!0 routines such a s UB$GET_INPUT,
$GET RMS service, and the text 1!0 faci l ity of pro
gramming languages such as C, Fortran, and COBOL
are layered on it. The enhancements automatically
benefit a l l of these higher-level routines.

Font Loading Asian terminal devices have
writable font memory (WFM), and the firmware
supports font - loading sequences and logic. A text
file is scanned by a uti l i ty program prior to ou tput
to a terminal or printer. Tht: Asian terminal 1/0 sub
system then creates a preloading file, which con
tains the font- loading sequence for a l l nonresident
characters fou nd in the fi le. Next, the subsystem
sends this preloading file to the terminal or printer,
causing the requ ired fonts to be loaded in the font
memory. F inally, the text file i s output to the termi
nal or printer. This method is l imited by the size of
the fon t memory, typically 300 to 500 characters.
The font preloading method is used mainly in batch
operations, such as l ine printers, where perfor
mance is an important factor.

When an Asian video terminal or printer receives
an Asian character cocle and determines that i t is a
UDC, the terminal firmware automatica l ly halts the
current processing and generates a font request to
the Open VMS system. The terminal driver traps this

Digital Tecbtlical jou,-,a{ V/J/. 5 /1/(J. 3 Sunnner 1993

request and passes i t on to a process cal led the font
hand ler. On behalf of the terminal, the font hand ler
retrieves the font bit map of the requ�:stcd charac
ter from the system font database and sends it back
to the terminal or printer, which in turn loads it
in to its RAM ancl resumes the display processing.
Because it involves XON/XOFF flow control, which
is done at a very low levd of the system, the process
requ ires modifications to device drivers. The
amount of UDC font is not limited by Wf:\1 capacity,
because the terminal firmware au tomatically
updates the memory.

Front-end Input Process (fJP) 1 2 One of the big
gest differences between Japanese and other Asian
language (e.g. , Chinese and Korean) support on the
OpenV\1S system is in the implementation of the
input method. The natu re of the kana- to-kanji
input method makes it u nsuitable for implementa
tion in terminal firmware. The method requires a
huge input method dictionary (about 1 megabyte in
size) and a dynamic memory work area for syntac
tic and semantic analysis. Also, updating an input
method dictionary that is implemented i n firmware
is a very costly operation.

Code Set Conversion Prior to the introduction of
the Asian OpenVMS variants, D igital 's customers
used video terminals and printers that support pro
prietary loca l language code sets from th ird-party
vendors. To protect customer investments and to
ensure a smooth m igration path for legacy equip
ment, the Asian terminal l/0 subsystem provides an
appl ication-transparent, code set conversion facil
ity. This facil ity is bas<.:d on the terminal fal lback
facil ity (TFF) introduced in OpenVMS version 5.0,

which provides a similar function for conversion
between 7-bit National Replacement Character Sets
(NRCSs) and the 8-bit DEC MCS . TFF provides a mid
driver that converts both incoming and outgoing
data from one code set to another. For the Asian
OpenVMS variants, the conversion logic is extended
to support 16-bit character entities. Currently, TFF
supports the conversion between the DOOSAN
code and the DEC Hangul code on the OpenVMS/
Hangu l system and the MITAC TELEX code and the
DEC Hanyu code on the OpenVMS/ Hanyu system.

In addition, code set conversion is necessary
between heterogeneous systems because of the
prol iferation of encoding schemes used by differ
ent vendors. For instance, Chinese I'Cs in Taiwan
use the BIG 5 code. To facil itate the communication

73

Product Internationalization

between the Open VMS system and PC desktop com
puters, the OpenYMS/Hanyu system supports the
conversion between the BI<; 5 code and the DEC
Hanyu code.

Asian Application Programming Support

To help software developers write Asian applica
tions on Asian OpenVMS variants, Digital provides
a set of common Asian multibyte character process
ing RTL routines to supplement the standard
OpenVMS RTLs. In particu lar, our Asian local ization
effort to develop OpenVMS layered prod ucts u ti
l izes these RTLs. Functions provided by the Asian
language RTL (approximatdy 240 routines) are clas
sified into the fol lowing categories of routines:

• Character conversion

• String

• Read/write

• Pointer

• Comparison

• Search

• Count

• Character type

• Date/time

• Code set conversion

The majority of the routine i nterfaces are com
mon to a l l Asian countries. Currently, one l ibrary
image supports the Hanzi, Hanyu, and Hangul lan
guage variants. Language-specific code is h idden
u nder this generic multibyte interface and
switched at run time by a system logical name
defined during system start-up.

The OpenVMS/Japanese system has a set of rou
tines for han d l i ng kana-to-kanji conversion, both
high level and low level. The high- level routines,
such as JLB$GET_lNPUT, J LB$GET_COMMAND, and
JLB$GET_SCREEN (Japanese versions of LIB$GET_
INPUT, LIB$GET_COMMAND, and LIB$GET_SCREl'N),
hide the kana-to-kanji input method details from
the appl ication. These routines use the off- the-spot
preediting that usual ly takes place at the last l ine of
the screen; however, the flexibi l ity of the preed it
user interface is l im ited . A set of low-level routines
performs primitive functions such as opening the
conversion dictionary, finding the next candidate

74

kanji string, and getting the contents of the i nter
nal buffer. The kana-to-kanji input method is pro
gram med by cal l ing a sequence of these rout ines.
This implementation gives the application the abil
ity to directly control the screen management and
a l lows flexibility in the design of the preedit user
interface; however, the application must deal with
every detail of the input method, which is a d isad
vantage. In addition, the l ibrary JML!Fl helps the
appl ication customize the keyboard mapping for
kana-to-k.anji conversion. 12

The screen management (SMG) IHL on the
OpenYiVIS system provides a su ite of routines for
designing, composing, and keeping track of com
plex images on a character cell video terminal in a
device-independent manner. The standard SMG ver
sion supports only the ASCII and DEC Specia l
Graphics character sets and cannot correctly han
d le multi byte Asian characters. For example, opera
tions such as screen update optimization, boundary
processing (cl ipping on borders), and cursor move
ments operate on part of a m ult ibyte Asian charac
ter and cause screen corruption because of the
" one-character-is-equal-to-one-byte" assumption.

The Asian OpenYMS variants provide an
extended version of S1YIG (about 20 percent of the
original routines have been extended) to support
m u ltibyte character sets and DEC MCS, in addition
to ASC I I and DEC Special Graphics. To maintain
downward compatibi l ity, most routine entries
remain identical , with an optional character set
argument added at the end of the argument I ist
to indicate desired character set operations.
Alternatively, users can define a logical name
SMG$DEfAU LT _CHARACTER_SET without expl icitly
passing the character set argument in the routine
cal l . Existing ASCII appl ications run unmodified
with the As ian SMG. New Asian appl icat ions that
use mult ibyte features rel ink with the new l ibrary.

Asian Commands and Utilities

The Open VMS user interface determines the way an
end user interacts with the system. The interface
i ncludes such components as the DCL com mand
l ine i nterpreter, system help and messages, and a l l
the system ut i ! i t ies provided by the Open VMS sys
tem. Selected user interface components of the
OpenYMS system have been localized to support
Asian characters on the Asian OpenVMS variants. A
description of some of these local ized components
fol lows.

Vol. 5 No. 3 Summer 1993 Digital Tecbnicaljournal

Supporting the Chinese, japanese, ana Korean Languages in the Open VMS Operating System

DCL Command Line Interpreter The algorithms

in the standard DCL that assume characters to be
equal to 1 byte and interpret these characters as
ASCII/DEC MCS are enhanced for the fol lowing DCL
primitives in the Asian code set modes:

• Command parsing. Parsing of command input

in single-byte units causes data corruption,
because parr of some mu lti byte Asian characters
can be mistaken for one of the special DCL ASCII
characters such as 1 , @, or " . Command parsing is
now done in character un its instead of byte
units, and operations such as terminator, delim
iter checks, and quotation mark compression are
skipped on Asian characters, since the DCL spe
cial characters are a l l in ASCII .

• Character uppercasing and lowercasing. Upper
casing and lowercasing are appl ied only to ASCII
characters, because the concept of uppercase/
lowercase does not exist in Asian character sets.
Uppercasing/lowercasing in single-byte units

corrupts Asian character data, because part of
an Asian character can be i nd iscriminately
uppercased/lowercased.

• Symbols and labels. Certain 8 -bit values (those
with no character assigned in the DEC MCS) are
currently disal lowed for DCL symbol names,
symbol values, and labels. This restriction has
been removed in the Asian modes to a l low al l
Asian characters i n DCL symbols and labels. The
enhanced algorithms maintain separate symbol
tables for each of the code set modes, because of
the possibil ity of code col l ision issues across dif
ferent code sets.

The Asian DCL command l ine interpreter is
currently supplied with the OrenVIYIS/Hanzi,
OpenV:VIS/Hangul, OpenVMS/Hanyu, and OpenVMS/
Thai systems in the same binary image, i .e . , a single
image supports multiple code sets. The default
code set mode for DCL for a particular system is
establ ishecJ d uring system start-up by means of a
defined logical name supplied with the start-up
procedure of each Asian Open VMS variant. Switch
ing the code set mode between DEC MCS and the
particular Asian code set of the system is accom
pl ished through a uti l ity, e .g . , HANZIGEN in the
OpenV.VIS/Hanzi system. The Asian DCL is not sup
pl ied with the OpenVMS/japanese system, because
unti l only recently the japanese input method was
not available at the DCL level.

Digital Tee/mica/ joul'lwl llf>l. 5 Nu . .) SIIIIIIIIL'r I'J'J.j

System Help and Messages The OpenVMS/Hanzi,
OpenVJVIS/Hanyu, and OpenVMS/Hangul systems
include a translated Asian language version of the
OpenVMS system help l ibrary (accessed by typing
HELP at the $ prompt) . The Asian version of the sys
tem help l ibrary is placed in a directory that is sepa
rate from the original Eng! ish one but that has the
same file name. The user can switch the language
(English or the particu lar Asian language) of system

help by using the ASIANGEN uti l ity, which redefines
the file specification logical to point to the appro
priate file.

The OpenVMS/Japanese system provides a trans
lated Japanese version of the system messages
(SYSMSG. EX E) , which is placed in a subdirectory of
SYS$MESSAGE. Users can switch the language of the
system messages by using the SET LANGUAGE com
mand, which reloads the message file into memory.

In addition, most of the loca l ized original ut i l i ties

and Asian-specific ut i l i t ies provide bi l ingual help
and messages.

SORT/MERGE Collation ru les in the Asian lan
guages are very different from those of the Latin
languages. t:\

• Asian collation sequences. An Asian character
has different collation sequences based on differ
ent attributes. The SORT/M ERGE command is
extended as fol lows to include new subqual ifiers
for the Asian col lating sequences: /KEY=(POS:m,
CSIZE:n , <collating sequence subqual ifier>). The
Asian OpenVMS SORT/M ERGE util ity supports the
Asian collating sequences shown in Table 7.

• Col lation weights. Unl ike ASCII , the col lation
weights of the Asian collating sequences cannot
be derived by virtue of the code value. Rather,
the string comparison for Asian collation
sequences are driven by col lation weight tables.

For the standard characters, these tables are built
into binary images that arc l inked with the ut i l ity
for fast access.

• Multibyte characters. String comparison in the

original SORT/MERGE operation is clone in byte
units, because a character is assumed to be equal
to I byte. For the Asian SORT/MERGE, a compari
son operation must be al igned by character, i .e . ,
multibyte, un its rather than by byte u ni ts. The
operation must be able to hand le the case in
which the start position of a sort key (specified
by a byte position) in a record is in the midd le of

75

Product Internal ionalization

Table 7 Asian Col lating Sequences Supported by the OpenVMS User Interface

Col lation
Sequence Type

Pronunciat ion

Radical

Stroke Count

I nternal Code

Notes:

' denotes a Ch inese reading.

t denotes a Japanese reading.

• denotes a Kana reading .

OpenVMS/Japanese

Onyomi*
Kunyomit
Kokugo�
Kana8bit

Bushu

Sokaku

J IScode

a m u l t ihyte charactn. Also, to avoid a truncation

problem at the key boundary. the size of the sort

key (mixed ASU f and m u l ti byte charact e rs are

a l l owed) is speci fied as a n u m ber of characters

i nstead of a n u mber of bytes.

• M u l t iple passes. Sorting Asian characters by any

of the individual col lat ing sequences (excq)t

QuWei) may not prod uce a u n i que sort order.

I n genera l , m u l t iple succ<.:ssive passes u s i ng

differen t col lat i ng sequences are needed to do

so. Thus, the Asian O pen Vi\IS SORT/.\1 En<;E u t i l ity

a l lows a sort key specified with m u ll ip lc passes

of d i fferent col l at ing sequences. In add i t i o n , if

the /STABLE q u a l i fier is not spec ified, QuWei

co l la t i o n is always added last to the sort key to
further classify records with identical co l l a tion

values.

• User-defined charact<.:rs. The Asian OpenVMS

SO RT/M ERGE u t i l i t y supports col lation of l i DC:s.

When a 1 JDC is encountt:red, tht· SORI/M EH< ; E

operation ret rieves t h e col lation weight from a

system database maint ained by the Uvl< dZ u t i l i t y

with t b e val ue defined b y a user w h e n t he char

acter was registered.

;\!fAIL Most of the work i nvolved i n local izing the

!VIAl L uti l i ty enha nc<.:s the user i n terface to use

Asian characters. String search enhancemen ts

al low p rocess ing by character u n i t s i nstead of by

byte u nits . St r i ng u ppercasi ng is not appl ied to

Asian characters. The subject fic lcl , the personal

name field, and the folder names can a l l cont a i n

Asian characters. T h e I i s t i n g of mai l folders can

be d isplayed in so rted order i n any of the su p -

7<i

OpenVMS/Hanzi

P inyin

Radical

Stroke

QuWei

OpenVMS/Hanyu

Phonetic_Code

Radical

Stroke

QuWei

ported c o l l ation sequences using the new com

mand qual ifi e r DIR/FOLD/COLLATINC ;_sEQl JENCE=
(<co l lat ing sequences>).

The MAIL u t i l i t y in vokes the Asian text editors

by defa u l t instead of : nvoking the standard o nes.

The OpenVVIS/Japanese system incorpo rates tbe

Japanese input method to a l low users to enter

Japanese characters.

EDT Tbe Asian OpenVN!S EDT ed i tor was local

ized and enhanced fo r Asian text ed i t i ng . Much of

the work involved d riving the term inal d ispl ay

correctly for A s i a n characters. In a d d i t i o n , the ed i

tor has a l a rge number of new editing features.

TPU/EVE Loca l ization of TP! J and EVE deals

mainly with managing the sc reen up date fo r m i xed

ASCll a n d Asian characters, such as c u rsor move

ment and screen boundary hand l i ng. Both the ·rru
ed iting engine and the EVE i nterface were m o d i

fied. Asian-spn:ific TPU bui l t-in proced u res were

added , and existing ones were enha nced . String

search is now al igned at the character boundary

rather that on byte u n i ts .

For the .Japanese TPlJ/EVE, o n e of the most diffi

c u lt tasks is to incorporate the Japanese input

m<.:thod. Th is requires m a naging overlap windows

in a cha racter cel l ter m i n a l between the input

method work ing a rea and the background editing

area .

DECwindmus S) ·ste111 With the increasing empha

�is on i n tcrnati o n a l ization features i n the X l l and

OSF/Mo t i f standards, OpenV MS DEC:wimlows sys

tems p rovide these features and the loca l i zation

Vol. 5 No . .) StiiJIIJH!r IIJ'J3 Digital Technical journal

Supporting the Cbinese,]apanese. and Korean Languages in the OpenVMS Operating 5)1stem

features deman ded by the market. For a description

of t he la test international ization support in the X
Window System standard, refer to t he book by

Schei f lcr and Gettys. 1 I

Asian OpenVMS Localization Issues

The Asia n Open VMS effort has been addressing vari

ous technical and engineering issues. 1 'uc.. J- This sec

t ion discusses the major ones.

Technical Issues

Loca l izat ion of the OpenVMS components to sup

port the Asian languages requ ires reengineering t he

p rogram codes and text translat ion. The need to

reengineer source code arises for two main reasons.

l . OpenVMS components make fu ndamental

progra m mi ng assu mpt ions and practices based

on t he ASCI I and DEC MCS character sets. For

example,

- OpenVMS com ponents assume the character

set to be ASCI I (plus D EC MCS in some cases),

and b l i n d l y uppercase and lowercase charac

ters, val idate characters against the DEC MC:S,

and define pri ntable characters accord ing ro
the ASC I I and DEC MC:S encodi ngs.

- OpenVMS components assume characters to
be 1 byte and use string manipulat ion algo

rithms based on 1 -byte units.

- OpenVMS components assume the d isplay

width of a character to be of fixed length

(1 byte) and use screen d isplay management

algo rithms based on the assu mption that

1 byte equals one d isplay col u m n .

- OpenVMS components assu me that t h e char

acter count, the byte count, and the d isplay

width are the same. and use string manipu la

tion a lgorithms and character cel l term inal

screen d isplay ma nagement based on this

assu mption.

2. Some functio nal ity that is requ i red to support.

Asian languages is missing in the standard

Open VMS environment, For example,

- Keyboard input of Asian characters requ ires

more compl i cated input method processing

than is ava i l able in the stand ard OpenVMS

environment.

- Co l l at ion ru les of Asian languages are radi

ca l ly d ifferen t from Engl ish col lat ion ru les,

on which the stand ard OpenVMS environ

ment is based.

Digital Technical .Journal H1/. 5 No. 3 Sl//)/ll/!'r I'J'J.i

- The standard Open V MS environment does not

support the appli cation-transparent process

i ng of l i iX:s.

- The writing d irection of Asian la nguages can

be vert ical , i . e . , from top to bottom. The stan

dard OpenVMS environment assumes hori

zonta l , left -to-right languages.

Engineering Issues

H istorical ly, t he Asian loca l i zat ion of the OpenVJVIS

system has been organized as an engineering effort

that is separate from ma instream development. As

a resu lt , a number of engineering constraints and

overhead costs exist.

• Single la nguage support. The design goa l t()r the

Asian OpenV\1S variants, as driven by the local

market requi rements, has been targeted a t sup

port ing a single la nguage on one system, i .e . , one

language variant per system. As a result , no spe

cial design considerations are given to su pport

ing multiple l a nguages on one system .

• Fu l l u pward compat ib i l i t y. The top design

requ irement is to keep fu l l downward compati

bi l ity with original ASCII/DEC MCS OpenV\1S

systems. A l l ASC II/DEC MCS appl ications with

ex isting data must be able to ru n uncha nged on

the Asian OpenVMS varian ts. In fact, an Asian

OpenVMS system can, at any t ime, be reset to

operate in the origina l DEC MCS mode, if desired .

Therefore, most local ized components must be

able to switch between the standard and Asian

code paths. System mechanisms fo r determ in ing

the current language varia nt and operating

m ode are requ ired.

• Opti m al performan ce. Another design goa l is to

minimize any pe rform ance impact on standard

Engl ish components. As a resu l t , Asian codes are

designed a round standard code paths. For exam

ple, branches fo r Asian code are p laced at the

end of a condi t ional statement, and Asian code

branches out from the main l i ne code using spe

cial hooks.

• Limited or no kernel cha nges. Since Asian code

cha nges are not merged int o the ma instream,

kernel cha nges in Asian code wou l d be very diffi

cult to maintain with new OpenVMS releases. In

addit ion, any kernel cha nges in the standard

OpenVMS release wi l l l i kely hn:ak the Asian

code. This puts a constraint on support ing Asian

languages in OpenVJ\IIS kernel components.

77

Product Internationalization

• Com monal i ty. Because the Asian languages
share a lot of commonal ity, techniques such
as common source are used for most Asia n
local ized components to maximize engineering
return by sharing common Asian local ization
code.

Conclusions

Local language processing has become a mandatory
functionality for computer systems sold in Asian
markets. From the Open VMS operating system per
spective, the basic local Asian l anguage processing
requirements are being addressed by its Asian
language variants in a single- language-for-a-sing le
loca le manner. With globa l trade and the technol
ogy trend of distributed compu ting systems, the
challenge for the future is to be able to provide
OpenVMS services simultaneously to mu ltiple
cl ients operating in d ifferent languages and code
sets. Such a requ irement leads to the concept of a
multi l ingual operating system, which a l lows soft
ware appl ications to run irrespective of the lan
guage and/or code set they support. With the
avai lability of the ISO 10646 Universal Character Set
(UCS) standard , the set of tools for bui lding such a
multi l ingual operating system has been enhanced. tH

From an engineering perspective, the current
Asian local ization approach of Open VMS has been
adopted historical ly because of a number of factors
and constraints, such as the organization of engi
neering resources and the initial need to bring the
capability rapid ly to the market. The reengineering
techniques are geared toward the character set
encoding schemes cu rrently supported . The
arrangement of performing loca l ization remotely
and independently from the original mainstream
development has meant costly reengineering and
maintenance overheads in the long term. With t he
industrial trend of sh ipping global software sim u l
taneously satisfying mu ltiple different local market
requirements, an international product engineer
ing approach must be taken to minimize the cost
of worldwide system engineering to del iver a
global product. In particu lar, the original product
must be international ized from the ground up, so
that no separate reengineering is needed du ring
local ization to support a loca l market. In addition,
to achieve simultaneous worldwide del ivery, con
current engineering of loca lization needs to be
performed closely in parallel with the product
development.

78

References

I . T. Greenwood, " International Cu ltural Differ
ences i n Software," Digital Teclmical.Jounwl,

vol . 5, no. 3 (Su mmer lS>93, this issue): 8 - 20.

2 . Code of the .Japanese Graphic Character Set

for lnfonnation lnterchange,]IS C 6226 -1978

(Tokyo: Japanese..: Standards Association,
1978)

3. Code of the .Japanese Graphic Character Set
for b�(ormation Interchange, .J IS X 0208-1983

(Tokyo: Japanese Standards Association,
1983).

4 . Code of the .Japanese Grapbic Cbaracter Set
for lnj(mnation Interchange, .TIS X 0208-1990

(Tokyo: Japanese Standards Association,
1990).

5. Code of the Supplementary .fapa!lese
Graphic Character Setfor lnfonnation In fer

change,)IS X 0212-1990 (Tokyo: Japanese Stan
dards Association, 1990).

6. Code for Information Interchange,]IS X 020 1-

1976 (Tokyo: Japanese Standards Association,
1976).

7. Code of Chinese Graphic Character Set for
Information Interchange, GB 2312-1980 (Bei
j ing: Technical Standards Publ ishing, 1981) .

8. Standard Interchange Code for General�y
used Chinese Characters, CNS 1 1643-1986

(lhipei: National Bureau of Standards, 1986)

9. Chi11ese Standard Interchange Code, CNS
11643 -1992 (Taipei: National Bureau of Stan
dards, 1992)

10. Code /(Jr Inforrnation Interchange (1-Imz_r.:ul
and Hanja), KS C 5601-1987 (Seoul : Korean
Industrial Standards Association, 1989).

1 1 . Information Processing-/SO 7-bit and 8-bit
Coded Character Sets-Code Extension Tech
niques, 3d eel . , ISO 2022 (Geneva: Interna
tional Organization for Standardization/
International E lectrotechnieal Commission,
1986).

12. T. Honma, H. Baba, and K. Ta kizawa,
"Japanese Input Method Independent of
Applications," Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 97- 107.

Vol. 5 No. 3 Summer 19'.!3 Digital TecfJIIical journal

Supporting the Chinese, japanese, and Korean Languages in the Open VMS Operating System

13. R. Haentjens, "The Ordering of Universal
Character Strings," Digital Technical journal,

vol 5, no. 3 (Summer 1993, this issue): 43-52 .

14. R. Scheifler and). Gettys, X Window System,

X 11, Release 5, 3d ed . (Burlington, MA: D igital
Press, Order No. EY-.J802E-DP-EEB, 1992).

15. Introduction to Asian Language Software

Localization (Maynard, MA: D igital Equip
ment Corporation, Order No. AD-PGOAA-TE,

December 1990).

16. Technical Guide to Asian Language Software

Localization (Maynard, MA: D igital Equip-

Digital Tech7lical Jnur11a.l 11>1. 5 No. 3 Summer 19?3

ment Corporation, Order No. AD-PGOBA-TE,
December 1990).

17 Addendum to Technical G uide to Asian Lan
guage Software Local ization (Maynard, MA :
Digital Equipment Corporation, Order No.
AD-PGOCA-TE, December 1990).

18. Information Technology- Universal Multi

ple-Octet Coded Character Set (UCS)-Part 1:
Architecture and Basic Multilingual Plane,

ISO/lEC 10646-1 (Geneva: International Orga
nization for Standardization/International
Electrotechnical Commission, 1993).

79

Hirotaka Yoshioka
Jim Melton

Character Internationalization
in Databases: A Case Study

(haracter internationali :mtirm jJuses dijficult problems for database management

systems because they must address user (stored) data, source code, and metadata.

The revised (1CJI.J2) standard for database language SQL is one of the first standards

to address internationaHration in a significant Wt�y. DEC Rdb is one of the few

Digital products that has a complete internationalization (Asian) implementation

that is also iWIA compliant. The product is still evolving from a noninternational

ized product to a fully internationalized one; this evolu tion has taken four years

and provides an excellent example of the issues that must be resolved and the

approaches to resolving them. Rdb can serve as a case study for the software engi

neering community on how to build internationalized products.

Internat iona l ization is the process of producing

specifications anc.l p roducts that operate wel l i n

many languages and cultu res. 1 International ization

has several d ifferent aspects such as character set

issues, date and t ime representation, and cu rrency

representation. Most of these affect many areas of

information technology where the solutions are

reasonably simi l ar: for example , solutions to cur

rency representation are equal ly appl icable to

database systems and to programming l anguages.

Database systems, however, are affected in several

unique ways, a l l of which deal with character sets.

In this paper, we focus on the issues of character set

in ternational ization in database management sys
tems (DB.\IS) and do not address the other aspects of

date and time, currency, or locales.

To better understand the problems and solutions

associated with character internationalization of
database systems, we present an overview of the
solutions found in the SQL standard and report
a case study of implementing those solutions in a

commercial product. We first discuss the character

internationa l ization features supported in the

recently publ ished rev ision of the standard for

Database Language SQL (ISO/TEC 9075 : 1992 and

ANSI X:1. 135 -l992) 2 We then describe in some detail

the application of those features i n DEC Rdb,

Digi ta l 's re lational database prod uct. The interna

tional ization of DEC Rdb serves as a case study, or a

model , for the internationa l ization of Digi ta l 's soft

ware products in general .

80

Internationalization in the
SQL Standard

Like most computer languages, SQL came into being

with the minimal set of characters required by the

language; vendors were free to support as many, or

as fl:w, additional characters as they perce ived their

markets demanded. There was I i tt le, if any, consid

eration given to portabi l ity beyond the Eng l ish

language customer base. In 1989, after work was

completed on ISO 9075 : 1989 and A!'\151 X3.135 -1989
(SQL-89), significant changes were proposed for the

next revision of the SQL database l anguage to

address the requ irement for additional character set

support. (Unfortunately, this put SQL in the van

guard, and I itt le support existed in the rest of the

standards com munity for this effort.)

Character Set Support

SQL must address a more complex set of requ ire

ments to sup port character sets than other pro
gramming languages due to the inherent nature
of database systems. Whereas other program

ming languages have to cover the character set used

to encode the source program as wel l as the char
acter set for data processed by the program,

database systems also have to address the character

set of the metadata used to describe the user data.

In other words, character set information must

be known within three places i n a database

environment.

Vol. 5 No . .l Summe-r 199.! Digital Tecbnicaljounwl

Character Internationalization in Databases: A Case Study

1 . The user data that is stored in the database or
that is passed to the database system from the
application programs.

In SQL, data is stored in tables, which are two
dimensional representations of data. Each record
of data is stored in a row of a table, and each field
in a row corresponds to a column of a table. Al l
the data in a given column of a table has the same
data type and, for character data, the same char
acter set.

2. The metadata stored in the database that is used
to describe the user data and its structure.

In SQL databases, metadata is also stored in tabu
lar form (so that it can be retrieved using the
same language that retrieves user data). The
metadata contains information about the struc
ture of the user d ata. For example, it specifies
the names of the users' tables and columns.

3. The data management source code.

Data management statements (for querying and
updating the database) have to be represented as
character strings in some character set. There

· are three aspects of these statements that can be
independently considered. The key words of the
language (like SELECT or UPDATE) can be repre
sented in one character set-one that contains
only the alphabetic characters and a few special
(e .g . , punctuation) characters; the character
string l i terals that are used for comparison with
database data or that represent data to be put
into the database; and the ident ifiers that repre
sent the names of database tables, colu mns, and
so forth.

Consider the SQL statement

S E L E C T E M P_ I D F R O M E M P L O Y E E S
W H E R E D E P A R T M E N T = ' P u r c h a s i n g '

In that statement, the words SELECT, FROM, and
WHERE; the equals sign; and the two apostrophes
are syntax elements of the SQL language itself.
EMP _ID, EMPLOYEES, and DEPARTMENT are names of
database objects. (EMPLOYEES is a table; the other
two are columns of that table .) Final ly, Purchasing
is the contents of a character string l iteral used to
compare against data stored in the DEPARTM ENT
column.

That seems straightforward enough, but what if
the database had been designed and stored in Japan
so that the names of the table and its columns were

Digital Tech"llical]ounml Vol. 5 Nu . .i Summer 1993

in Japanese kanji characters? Furthermore, what if
the name of some specific department was actual ly
expressed in Hebrew (because of a business rela
tionship)? That means that our database would have
to be able to handle data in Hebrew characters,
metadata in Japanese characters, and source code
using Latin characters'

One might reasonably ask whether this level of
functional ity is rea l ly required by the marketplace.
The original impetus for the character internation
alization of the SQL standard was provided by pro
posals arising from the E u ropean and Japanese
standards participants. However, considerable
(and enthusiastic) encouragement came from the
X/Open Company, Ltd . and from the Nippon
Telephone and Telegraph/Mult ivendor Integration
Architecture (NTI/M lA) project, where this degree
of mixing was a firm requ irement. '

The situation is even more complex than t his
example indicates. In general, application pro
grams must be able to access databases even though
the data is in a different character encoding than
the appl ication code ' Consider a database contain
ing ASCI I data and an appl ication program written
in extended binary coded decimal interchange
code (EBCDIC) for an IBM system, and then extend
that image to a database containing data encoded
using the Japanese extended UNIX code (EUC)
encoding and an appl ication program written in
ISO 2022 form. The program must st i l l be able to
access the data, yet the character representations
(of the same characters) are entirely different.
Although the problem is relatively straightforward
to resolve for local databases (that is, databases
residing on the same computer as the application),
i t is extremely difficult for the most general case of
heterogeneous distributed database environments.

Addressing Three Issues

To support international ization aspects, three dis
tinct issues have to be addressed: data representa
tion, data comparison , and multiple character set
support.

Data Representation How is the data (including
metadata and source code) actual ly represented?
The answer to this question must address the actual
repertoire of characters used . (A character reper
toire is a col lection of characters used or avai lable
for some particular purpose .) It must also address
the form-of-usc.: of the charactc.:r strings. that is, the
ways that characters are st rung together into char
acter strings; alternatives include fixed number of

8 1

Product Internationalization

bits per character, l ike 8-bit characters, or variable
number of bits per character, l ike ISO 2022 or ASN.l .

Final ly, the question must deal with the character
encoding (for example, ASCI I or EBCDIC). The com
bination of these attributes is cal led a character set
in the SQL standard.

It is also possible for the data to be represented in
different ways within the database and in the appli
cation program. A col umn definit ion that specifies
a character set would look l ike this

N A M E C H A R A C T E R V A R Y I N G (6)
C H A R A C T E R S E T I S K A N J I ,

or

N A M E N A T I O N A L C H A R A C T E R V A R Y I N G (6) ,

(which specifies the character set defined by the
product to the national character set), while a state
ment that inserts data into that column might be

I N S E R T I N T O E M P S C N A M E)
v A L u E s (. . - , _K A N J I I t£�. 1 , • • •) ;

If the name of the colu m n were expressed in
hiragana, then the user could write

I N S E R T I N T O E M P S C H I R A G A N A 2 /j: i ;{_)
v A L u E s (. . - , :::::K A N J I I 1'11'-�- I , • • •) ;

Data Comparison How is data to be compared?
AJ l character data has to be compared using a colla
t ion (the rules for comparing character strings) .
Most computer systems use the binary values of
each character to compare character data 1 byte at
a time. This method , which uses common charac
ter sets I ike ASCI I or EBCDIC, general ly does not pro
vide meaningfu l resu lts even in Engl ish. It provides
far less meaningful results for languages l ike French,
Danish, or Thai.

I nstead, rules have to be developed for language
specific col lations, and these rules have to resolve
the problems of mbdng character sets and col la
tions within SQL expressions.

Applications can choose to force a specific colla
tion to be used for comparisons if the default col
lation is inappropriate:

W H E R E : h o s t v a r = N A M E C O L L A T E J A P A N E S E

Multiple Characte1· Set Support How is the use of
mult iple character sets hand led? The most power
fu l aspect of SQL is its abil ity to combine data from
mul tiple tables i n a single expression. What if the
data in those tables is represented in different char
acter sets? Rules have to be devised to specify the
results for combining such tables with the rela·
tiona! join or union operations.

82

What if the character sets of data in the source
program are different from those in the database?
Rules must exist to provide the abi lity for programs
to query and modify databases with different char
acter sets.

Components of Character
Internationalization

SQL recognizes fou r components of character inter
nationalization: character sets, collations, transla
tions, and conversions. Character sets are described
above; they comprise a character repertoire, a form
of-use, and an encoding of the characters. Colla
tions are also described above; they specify the
ru les for comparing character strings expressed in
a given character repertoire.

Translations provide a way to translate character
strings from one character repertoire to a different
(or potentially the same) repertoire. For example,
one could define a translation to convert the alpha
betic letters in a character string to a l l uppercase
let ters; a different translation might transliterate
japanese hiragana characters to Latin characters.
By comparison, conversions a l low one to convert a
character string in one form-of-use (say, two octets
per character) into another (for example, com
pound text, a form-of-use defined in the X Window
System).

SQL provides ways for users to specify character
sets, col lations, and translations based on standards
and on vendor-provided faci l it ies. The current draft
of the next version of the SQL standard (SQL3) also
al lows users to define their own character sets, col
lations, and translations using syntax provided in
the standard 45 If these facil ities come to exist in
other places, however, they wil l be removed from
the SQL standard (see below). SQL does not provide
any way for users to specify their own conversions;
only vendor-provided conversions can be used.

Interfacing with Application Programs

Appl ication programs are typically written in a
third-generation language (3c;L) such as Fortran,
COBOL, or C, with SQL statements either embedded
in the application code or invoked in SQL-only pro
cedures by means of CALL-type statements 6 As a
resu lt, the interface between the database system
and 3GL programs presents an especial ly difficul t
problem i n SQL's international ization faci li ties.
Figure 1 i l lustrates the procedme to invoke SQL
from C; Figme 2 shows SQL as it is invoked from C;
and Figure 3 shows SQL schema.

vbl. 5 No. :) Sum met· 1993 Digital Teclmical]ournal

Character Internationalization in Databases: A Case Study

rn a i n ()
{

}

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b . h >
i n c l u d e " S Q L 9 2 . h " I * I n t e r f a c e t o S Q L - 9 2 * I

s t a t i c s q l s t a t e c h a r [6 J ;
s t a t i c e m p l o y e e_ n u m b e r c h a r [? J ;
s t a t i c e m p l o y e e_n a m e w c h a r _ t [2 6 J ;
s t a t i c e m p l o y e e_ c o n t a c t c h a r [1 3 J ;

I * A s s u m e s o m e c o d e h e r e t o p r o d u c e a n a p p r o p r i a t e
e m p l o y e e n u m b e r v a l u e * I

L O C A T E C O N T A C T < e m p l o y e e_n u m b e r , e m p l o y e e_n a m e ,
e m p l o y e e_ c o n t a c t , s q l s t a t e l ;

I * A s s u m e m o r e c o d e h e r e t o u s e t h e r e s u l t * I

Figure 1 Invoking SQL from C

M O D U L E i 1 8 n_d e m o N A M E S A R E L a t i n 1
L A N G U A G E C
S C H E M A p e r s o n n e l A U T H O R I Z A T I O N m a n a g e m e n t

P R O C E D U R E l o c a t e c o n t a c t
(: e m p_n u m

: e m p_n a m e
: c o n t a c t _n a m e
S Q L S T A T E)

C H A R A C T E R (6) C H A R A C T E R S E T A s c i i ,
C H A R A C T E R V A R Y I N G (2 5) C H A R A C T E R S E T U n i c o d e ,
C H A R A C T E R V A R Y I N G (6) C H A R A C T E R S E T S h i f t _ j i s ,

S E L E C T n a m e , c o n t a c t _ i n _ j a p a n
I N T O : e m p_n a m e , : c o n t a c t n a m e
F R O M p e r s o n n e l . e m p l o y e e s
W H E R E e m p_ i d = : e m p_n u m ;

Figure 2 SQL Invoked from C

C R E A T E S C H E M A p e r s o n n e l A U T H O R I Z A T I O N m a n a g e m e n t
D E F A U L T C H A R A C T E R S E T U n i c o d e

C R E A T E T A B L E e m p l o y e e s (
e m p_ i d
n a m e
d e p a r t m e n t
s a l a r y
c o n t a c t _ i n _ j a p a n

P R I M A R Y K E Y (e m p_ i d)

C H A R A C T E R (6) C H A R A C T E R S E T A s c i i ,
C H A R A C T E R V A R Y I N G (2 5) ,
C H A R A C T E R (1 0) C H A R A C T E R S E T L a t i n 1 ,
D E C I M A L (8 , 2) ,
C H A R A C T E R V A R Y I N G (6) C H A R A C T E R S E T S h i f t _ j i s ,

Figure 3 SQL Schema

Digital Technical journal Vol. 5 No. 3 Summer 1993 83

Product Internationalization

In these figures, a l l the metadata values (that is,
the identifiers) are expressed in Latin characters;
this resolves the data representation issue. The
reader shou ld compare the character sets of the
data items in the EMPLOYEES table and the con·e
sponding parameters in the SQL procedure. The dif·

ficu lties arise when trying to achieve a correlation
between the parameters of the SQL procedure and
the arguments in the C statement that invokes that
procedure.

The C variable employee_number corresponds
to the SQL parameter :emp_num; the C data type
char is a good match for CHARACTER SET ASCI I . The
C variable employee name corresponds to the SQL
parameter :emp_name; the C data type wchar_t
is chosen by many vendors to match CHARACTER
SET Unicode. However, CHARACTER SET Shift_jis is
more compl icated; there is no way to know exactly
how many bytes the character string wil l occupy
because each character can be 1 or 2 bytes in
length. Therefore, we have al located a C char that
permits up to 13 bytes. Of course, the C run-rime
library wou ld have to include support for ASCI I
data, Unicode data, and Shift J IS data.

Typical ly, 3GL languages have l i ttle or no support
for character sets beyond their defau lts. Conse
quently, when transferring data from an interna·
tional ized SQL database into a noninternational ized
application program, many of the benefits are lost.
Happily, that situation is changing rapid ly. Program
ming language C is aclcling faci l ities for hand l ing
additional character sets, and the ISO standards
group responsible for programming languages
(ISO/IEC JTCl/SC22) is investigating how to adcl
those capabi l ities to other l anguages as wel L

The most difficult issue t o resolve concerns the
differences in specific character sets (especial ly
form-of-use) supported by SQL implemen tations
and 3GL implementations. As with other issues,
purely local situations are easy ro resolve because
a DBMS and a compiler provided by the same vendor
are l ikely ro be compat ible. Distribu ted environ
ments, especial ly mul tivendor ones, are more com
pl icated . SQL has provided one solution: it permits
the user to write SQL code that translates and
converts the data into the form requ ired by the
appl ication program as long as the appropriate con
versions and trans lations are available for use by
SQL. Of course, once the clara has been transferred
into the appl ication program, the question
remains: What faci l ities does it have to manipu late
that data?

84

Remote Database Access Issue

As mentioned, a distributed environment presents
significant difficu lties for database international iza
t ion . A simple remote database access scenario
i l lustrates these problems. If an application pro
gram m ust access some (arbitrary) database via a
remote (e.g. , network) cotmection, then the remote
database access faci l i ty must be able to deal with a l l
the character sets that the appl ication and database
use together; i t may also have to deal with differ
ences in available character sets. (See Figure 4.)

An ISO standard for remote database access
(ISO/IEC 9579-1 and 9579-2) uses the ASN .l notation
and encoding for transporting SQL com mands and
database data across remote con nections. 7 ASN .1
notation, as presently standardized, provides no
way to use various character sets in general.
Recently work has begun to resolve this problem.
The revised standard must a l low a character set to
be specified uniquely by means of a name or identi
fier that both ends of the connection can u nam
biguously interpret in the same way. The individual
characters in ASN.l character strings must be simi
larly identifiable in a unique way.

This problem has not yet been resolved in the
standards community, partly because several
groups have to coordinate their efforts and produce
compatible solutions.

Hope for the Future

In the past, programming languages, database
systems, networks, and other components of
information management environments had to deal
with character sets in very awkward ways or use
vendor-provided defaults. The resu lt has been an
incred ible mess of 7-bi t (ASCII , for example) and
8-bit (Latin-1. for example) code sets, PC code
pages, and even national variants to a l l of these. The
nu mber of code variants has made i t very difficult
for a database user to write an application that can
be executed on any database system using recom·
pilation only. Col lectively, they make too many
assumptions about the character set of all character
data.

APPLICATION DATABASE
PROGRAM SYSTEM

REQU IRES UNICODE SUPPORTS LATINI

Figure 4 Remote Database Access

Vol. 5 No. :) Summer 1993 Digital Techt1icaljour71al

Character Internationalization in Databases: A Case Study

The future outlook for database internat ional iza
tion was improved dramatically by the recent adop
tion of ISO 10646, Universal Multiple-Octet Coded
Character Set (UCS) and an industry cou nterpart,
Unicode 8 The hope is that Unicode will serve as a
" 16-bit ASCI I " for the future and that al l new systems
will be built to use it as the default character set.

Of course, it wil l be years-if not decades
before a l l installed compu ter hardware and soft
ware use Unicode. Consequent ly, provisions have
to be made to support existing character sets (as
SQL-92 has clone) and the eccentricities of existing
hardware and software (l i ke networks and fi le sys
tems). As a resu lt, several different representations
of Unicode have been developed that permit trans
mission of its 16-bit characters across networks that
are intolerant of the high-order bit of bytes (the
eighth bit) and that permit Unicode data to be
stored in file systems that deal poorly with al l the
bit patterns it permits (such as octets with the
value zero).

In the past few years, many alternative character
representations have been considered, proposed,
and implemented. For example, ISO 2022 specifies
how various character sets can be combined in
character strings with escape sequences and gives
i nstructions on �witching between them 9 Similarly,
ASN.l - l ike structures, which provide fully tagged
text, have been used by some vendors and in some
standards, e .g . , Open Document Architecture. u•

None of these representations has gained total
acceptance. Database implementors perceive diffi
culties with a stateful model and with the potential
performance impact of having a varying nu mber of
bits or octets for each character. UCS and Unicode
appear to be l ikely to gain wide acceptance in the
database arena and in other areas.

Future Work for the SQL Standard

One should not conclude that the job is done, that
there is nothing left to work on. Instead, a great deal
of work remains before the task of providing ful l
character set international ization for database sys
tems is completed.

At present, the working draft for SQL3 contains
syntax that wou ld al low users to define their own
character sets, collat ions, and translations using a
nonprocedural language 4·S In general, the SQL stan
dards groups bel ieve that it is i nappropriate for a
database standard to specify language for such
widely needed facil it ies. Consequently, as soon as
the other responsible standards bodies provide

Digital Technical jom·,a/ Vol. - No. 3 Summer 1993

a language for these specifications, it is probable
that this capability wil l be withdrawn from the SQL3
specification. This decision would completely align
the SQL character internat ionalization capabilities
with the rest of the international standards efforts.

After other standards for these tasks are in place,
however, the remote data access (RDA) standard
will have to be evolved to take advantage of them.
RDA must be able to negotiate the use of character
sets for database appl ications and to transport the
i nformation between database clients and servers.
In order for RDA to be able to do this, the ASN.l stan
dard wil l have to support arbitrary named character
sets and characters from those sets.

As a resu lt, relevant standards bodies will need to
provide (1) names for a l l standardized character
sets and (2) the ability for vendors to register their
own character sets in a way that al lows them to
be u niquely referenced where needed . St i l l other
bodies wi l l need to provide language and services
for defining col lations and translations. Final ly,
registries wil l need to be establ ished for vendor
suppl ied collations, translations, and conversions.

Of course, the greatest task wil l be to provide
complete support for a l l these faci l ities throughout
the information processing environment: operat
ing systems, communication l inks, crus, printers,
keyboards, windowing systems, f ile systems, and so
forth. Healthy starts have been made on some of
these (such as the X Window System), but much
work remains to be done.

DEC Rdb: An Internationalization
Case Study

DEC Rdb (Rdb/VMS) is one of the few Digital prod
ucts that has an international ized implementation
that is also compliant with the multivendor inte
gration architecture (MIA) H· 12 Its evolu tion from a
noninternationalized product to a ful ly internation
a lized one has taken four years to achieve. The
design and development of Rclb can serve as a case
study for software engineers on how to build inter
nat ionalized products. In this hal f of our paper, we
present the history of the reengineering process.
Then we describe some difficu lties with the reengi
neering process and our work to overcome them.
Finally, we evaluate the resu lt .

Localization and Reengineering

The local ization process comprises a l l acttv1t1es
required to create a product variant of an applica
tion that is suitable for use by some set of users with

85

Product Internationalization

similar preferences on a particular platform.
Reengineering is the process of developing the set

of source code changes and new components
required to perform local ization . DEC Rdb had to be
reengineered to support several capabilities that

are mandatory in Japan and other Asian countries.
Our experience has shown that the n:cngi

neering process is very expensive and should be

avoided. If the original product was not designed

for internationalization or local ization, however,
reengineering is a necessary (and u navoidable)

evi l . Typical ly, reengineering is required; so we
decided to develop a technology that would avoid
reengineering and to build a truly international ized

product.

Most engineering groups fol low the old assump

tions about product design. These assumptions

include the fol lowing:

I. The character set is implicitly ASCII .

2. Each character i s encoded i n 7 bits.

3. The character count equals the byte count and

equals the d isplay width in col u m ns.

4 . The maximum nu mber of distinct characters

is 128.

5. The collating sequence is ASCII binary order.

6. The messages are in English.

7 The character set of the source code is the same
as it is at run time.

8. The file code (the code on the d isk) is the same

as the process code (the code in memory).

D ifferent user environments requi re d ifferent

product capabil i ties. Japanese kanji characters are
encoded using 2 bytes per character. If a product
assumes that the character set is 7-bit ASCII, that
product must be reengineered before it can be used

in Japan. On the other hand, international ized prod
ucts can operate in d ifferent environments because
they provide the capabil ities to meet global require
ments. These capabilities include the fol lowing:

1. Multiple character sets ensure that the customer's

needs are met.

2 . Each character is encoded using at least 8 bits.

3. The character count does not equal the byte
count or the d isplay width.

4. The maximum n umber of u n ique characters is
unknown.

86

5. The collating sequence meets the customer's

needs.

6. The messages are in the language the customer

uses.

7 The character set of the source code is not nec
essarily the same as i t is at run time.

8. The file code is not necessarily the same as the

process code.

The reengineering process has two significant

d rawbacks: (I) the h igh cost of reengineering and
(2) the time lag between shipping the product to

the customer in the Un ited States and shipping
to the customer i n .Japan. The time lag can be reduced

but cannot be eliminated as long as we reengineer
the original product. If a local product is released

simultaneously with the original , both D igital and
the customers will benefit significantly

In the next section, we fol low the DEC Rdb prod

uct through the reengineering process required to
produce the Japanese Rdb version 3.0.

Reengineering Process

DEC Rdb version 3.0 was a major release and conse

quently was very important to the Japanese market.

The International System Engineering Group was

asked to release the Japanese version by the end of

1988, which was within six months of the date that

i t was first shipped to customers in the United
States.

japanese and Asian Language
Requirements to VAX Rdb/VMS

Japanese and Asian language requirements apply to

DEC Rdb and other products as wel L The require
ments common to Asian languages are 2-byte char
acter hand l ing, local language ed itor support, and
message and help file translation.

Japanese script u ses a 2-byte code; therefore

2-byte character hand l ing is mandatory For exam
ple, character searches must be performed on 2-byte

boundaries and not on 1-byte boundaries. If a string
has the hexadecimal value 'A1A2A3A4 ' , then its sub

strings are 'AlA2' and 'A3A4 ' . 'A2A3 ' m ust not be

matched in the string.

D igital's Asian text editors, e .g . , the Japanese text
processing uti l ity (JTPU) and Hanzi TPU (for China),
must be supported as wel l as the original TPU,
the standard EDT editor, and the language-sensitive
editor.

Vol. 5 No. 3 Summer 1993 Digital Tech11ical journal

Character Internationalization in Databases: A Case Study

Messages, help files, and documentation must all
be translated into local languages.

The country-specific requirements i nclude sup
port for a Japanese input method. Kana- to-kanji
input methods must be supported in command
l ines. In addition, 4-byte character handl ing is
required for Taiwan (Hanyu). Final ly, NTT/MlA SQL
features must be added for Japan.

Since there are not many requirements, one
might conclude that the reengineering task is not
difficu lt . However, reengineering is compl icated ,
expensive, and time consuming; and thus should be
avoided.

Reengineeringjapanese Rdb Version 3.x

A database management system like DEC Rdb is very
complex. The source code is more than 810,000
l ines; the bui ld procedures are compl icated; and a
mere subset of the test systems consu mes more
than one gigabyte of disk space. Consequently, the
reengineering process is compl icated . The process
encompasses more than modifying the source
code. Instead, a number of d istinct steps must be
accomplished :

1. Source code acquisition

2. Build environment acquisition

3. Test system acquisition

4. Creation of the development environment for
the Japanese version

5. Study of the original code

6. Modification of the source code

7. Test of the results, including the new Japanese
functiona l ity and a regression test of the original
functionality

8. Maintenance of the reengineered system

Figure 5 shows the development cost in person
weeks for each of the eight steps. Two engineers
stabilized the development environment-com
pile, l ink/bu ild, and run-for version 3.0 of DEC

Rdb in approximately four months. It is l ikely that
the process required fou r months because it was
our first development work on DEC Rdb. In addi
tion, approximately two months were needed to be
able to run the test system. It was not an easy task.

Each step had to be repeated for each version of
the original . (Project time decreased a l ittle.) Every
version required this reengineering, even if no new
functionality was i ntroduced. The cost of bui lding

Digital Teclmical journal Vol. 5 No. 3 Summer 1993

SOURCE CODE
ACQUISITION

MAINTENANCE OF THE
REENGINEERED
SYSTEM

TEST OF THE
RESULTS

MODIFICATION OF
THE SOURCE CODE

BUILD
ENVIRONMENT
ACQUISITION

CREATION OF THE
DEVELOPMENT
ENVIRONMENT FOR
THE JAPANESE
VERSION

STUDY OF THE
ORIGINAL CODE

Note: Each segment of the chart represents the project time (person-weeks)
required to complete each step in the reengineering process.

Figure 5 Reengineering Process for
japanese Rdb Version 3.x

the environment became cheaper after the first
time. The other steps such as modifying the source
code, testing, and maintenance remained at almost
the same cost.

Reengineering Metric

We modified about 10 percent of the original
source modu les during reengineering. Most of the
modification occurred in the front end, e .g . , SQL
and RDML (relational database manipulation lan
guage). The engine parts, the relational database
management system (RDMS), and KODA (the kernel
of the data access, the lowest layer of the physical
data access) were not modified very much. Table l
gives the complete reengineering metrics.

(modified modules +
. . . new created modules)

Reengmeenng metnc = --------�
(original + modified +
new created modules)

Coengineering Process:
No More Reengineering

To reduce and el iminate reengineering, we have
taken a conservative, evolutionary approach rather
than a revolut ionary one. We used only proven
technologies. The evolution can be d ivided into
three phases:

1. Joint Development with Hong Kong. Our devel
opment goal was to merge Japanese, Chinese
(People's Republic of China and Taiwan), and
Korean versions into one common Asian Rdb
source code.

87

Product Internationalization

Table 1 Reengineering Metrics

Facil ity

SQL

RDML

ROMS

KODA

RMU

Dispatcher

Notes:

Reengineering
Metric

6.3%

1 1 .7 %

3.1 %

0.6%

0.0%

0.0%

Modified
Modules

8

1 1

4

1

0

0

Total Size in
Modu les Kilo Lines

1 28 226.0

94 188.3

1 27 1 54.0

1 57 1 09.8

41 80.5

30 60.9

R M U is the Rdb management utility; it is used to monitor, back up, restore, and display DEC Rdb databases.

The reengineering metric for JCOBOL (a Digital COBOL compiler sold in Japan) is 47/258 = 18.2%; the size is 225.0 kilo lines.

2. Coengineering Phase 1. Our goal was to merge
Asian common Rdb into the original master
sources for version 4 .0. The merger of]-Rdb and
Chinese-Rdb into Rdb would el iminate reengi
neering and create one common execu table
image.

3. Coengineering Phase II. In the final phase, our
goal was to develop the internationalized product
for version 4.2 by adding more internationaliza
tion functionality, SQL-92 support, MIA support
for one common executable, and multiple char
acter set support.

Coengineering is a development process in
which local engineers temporarily relocate to the
Central Engineering Group in the United States to
develop the original product jointly with Central
Engineering. The engineers from a non-Engl ish
speaking country provide the user requirements
and the cultural-dependent technology (e .g . , 2-byte
processing and input methods), and Central
Engineering provides the detailed knowledge of the
product. This process promotes good experiences
for both parties. For example, the local engineers
learn the corporate process, and the corporate
engineers have more dedicated t ime to understand
the requirements and difficulties of local product
needs, what international ization means, and how to
build the internationalized product. Coengineering
minimizes the risks associated with building inter

national ized products.

Asian joint Development

Our goal for the Asian joint development process
was to provide a common Asian source code for
Japan, People's Republic of China (PRC), Taiwan,
and Korea. One common source code would

88

reduce reengineering costs in Asia. To achieve our
goal , we devised several source code conventions.
The purposes of the conventions were

1 . To identify the modu le for each Asian version by
its file name

2. To make it possible to create any one of the Asian
versions (for Japan, the PRC, Taiwan, or Korea) or
the English version from the common source
codes, using condit ional compilation methods

3. To identify the portions of codes that were mod
ified for the Japanese version

4. To facil itate an engineer in Hong Kong who is
developing versions for the PRC, Taiwan, and
Korea

We developed the Japanese Rdb version 3.0 in
Japan. The files were transferred to Hong Kong to
develop versions for the PRC, Taiwan, and Korea.
The modified versions were sent back to Japan to
be merged into one common Asian source file.

Since we had one common Asian source file,
reengineering in Hong Kong was reduced. Reengi
neering in Japan, however, was sti l l necessary. We
used compilation flags to create fou r country ver
sions, that is, we had four sets of executable images.
As a resu lt , we needed to maintain four sets of
development environments (source codes, tests,
and so forth). We wanted to further simplify the
process and therefore entered the coengineering
phases.

Coengineering Phase I

The integration of Asian DEC Rdb into the base DEC
Rdb product took place in two phases. I n the first
phase, we integrated the Asian code modifications
i nto the source modules of the base product.

Vol. 5 No. 3 Summer 1993 Digital Technical journal

Character Internationalization in Databases: A Case Study

Consequently, the specific Asian versions of the
product can be attained by definition and then
translation of a logical name (a sort of environment
variable). No conditional compilation is necessary.
In al l releases of DEC Rdb version 3.x, source
modules of the base product were conditionally
compiled for each Asian version, which created
separate object files and images.

The process steps in this phase were

1 . Merge the source code

a. Create one executable image

b. Remove Japanese/Asian VMS dependency

c. Remove kana-to-kanji input method

2. Transfer the]-Rdb/C-Rdb tests

Source Code Merge (Rdb Version 4. 0) To create
a single set of images, we removed the compilation
flags and introduced a new way of using the Asian
specific source code. We chose to do this by using
a run-time logical name; the behavior of DEC Rdb
changes based on the translation of that logical
name.

We removed the Japanese/Asian VMS dependen
cies by using Rdb code instead of JSYSHR cal ls.
(JSYSHR is the name given to the OpenVMS system
services in Japanese VMS.)

We removed the kana-to-kanji input method: By
cal l ing UB$FIND_IMAGE_SYMBOL (an Open VMS sys
tem service to dynamically l ink l ibrary routines) to
invoke an input method, the image need not be
l inked with]VMS; even an end user can replace an
input method.

Run-time Checking We removed the compilation
flags, but introduced a new logical name, the
ROB$CHARACfER_SET logical, to switch the behavior
of the product. For example, ifRDB$CHARACfER_SET
translates to DEC_KANJI , then the symbol

$ D E F I N E R D B $ C H A R A C T E R_ S E T -

ARDB_JAPAN_ VARIANT is set true. This would indi
cate that all text would be treated as if it were
encoded in DEC_KANJI. The code would behave as if

i t were DEC JRdb. This translation must occur at a l l
levels of the code, i ncluding the user i nterface, DEC
Rdb Executive, and KODA.

Since DEC Rdb checks the value of the logical
name at run time, we do not need the compilation
flags; that is, we can have one set of executable
images.

Figure 6 shows the values that are val id for the
ROB$CHARACfER_SET logical .

The DEC JRdb source contains code fragments
similar to those shown in Figure 7, which were
taken from RDOEDIT.B32 (written in the BLISS pro
gramming language). This code was changed to use
a run- time flag set as a result of translation of the
logical RDB$CHARACTER_SET, as shown in Figure 8.

Remove japanese VMS (]VMS) Dependency The
Japanese version of DEC Rdb version 3.x used
the]VMS run-time l ibrary (JSY routines). The JSY
routines are Japanese-specific character-hand l ing
routines such as "get one kanji character" and
" read one kanji character." The l ibrary is available
only on]VMS; native VMS does not have it, so DEC
Rdb cannot use it. To remove the]V:-.1S dependency,
we modified a l l routines that cal led JSY routines so
that they contain their own code to implement the
same functions.

The JRdb/VMS source contains code fragments
similar to the ones shown in Figure 9. The code was
changed to remove references to the JSY routines as
shown in Figure 10. This example does not use JSY
routines l ike]SY$CH_SIZE or]SY$CH_RCHAR.

Remove Kana-to-k.anji Input Method The depen
dency on]VMS can be eliminated by making the
2-byte text handl ing independent of]SY routines,
but the input method sti l l depends on JSYSHR for

{ D E C K A N J I I D E C H A N Z I D E C H A N G U L D E C H A N Y U }

D E C _K A N J I
D E C_ H A N Z I
D E C_ H A N G U L
D E C H A N Y U

J a p a n e s e
C h i n e s e
K o r e a n
T a i w a n

$ S E T L A N G U A G E J A P A N E S E ! I f y o u u s e J a p a n e s e V M S

Figure 6 RDB$CHARACTER_SET Logical

Dlgittll Tecbnlcal]ourna.l Vol. 5 No. 3 Summer 1993 89

Product Internationalization

T h i s e x a m p l e s w i t c h e s t h e d e f a u l t T P U s h a r e a b l e
i m a g e C T P U S H R) . I f t h e J a p a n e s e v a r i a n t i s s e t ,
t h e n t h e d e f a u l t e d i t o r s h o u l d b e J T P U S H R .

% I F $ A R D B J A P A N V A R I A N T
% T H E N

-

% E L S E

T P U_I M A G E _N A M E = (I F (. T P U N A M E E Q L Q)
T H E N $ D E S C R I P T O R (' T P U S H R ')
E L S E $ D E S C R I P T O R (' J T P U S H R ')) ;

T P U I M A G E N A M E $ D E S C R I P T O R (' T P U S H R ') ;

Figure 7 Compilation Flag in DEC Rdb Version 3

1 T h i s c o d e c o u l d b e t r a n s l a t e d t o t h e f o l l o w i n g
1 w h i c h m i g h t c o n t a i n r e d u n d a n t c o d e b u t s h o u l d w o r k :

I F . A R D B J A P A N V A R I A N T ! I f A R D B_J A P A N_ V A R I A N T f l a g i s t r u e ,

T H E N t h e n R d b / V M S s h o u l d u s e t h e J - R d b / V M S b e h a v i o r .
T P U_ I M A G E _N A M E = (I F C . T P U N A M E E Q L Q)
T H E N $ D E S C R I P T O R (' T P U S H R ')
E L S E $ D E S C R I P T O R (' J T P U S H R '))

E L S E
T P U_ I M A G E N A M E = $ D E S C R I P T O R (' T P U S H R ') ;

Figure 8 Run-time Checking in Version 4

% I F $ A R D B C O M M O N V A R I A N T % T H E N
! +

A R D B : A d v a n c e c h a r a c t e r p o i n t e r .

J S Y $ C H S I Z E c o u n t s t h e s i z e o f t h e c h a r a c t e r .
I f i t i s A S C I I , r e t u r n 1 ,
I f i t i s K a n j i , r e t u r n 2 .
C P i s a c h a r a c t e r p o i n t e r

C P = C H $ P L U S (. C P , J S Y $ C H S I Z E (J S Y $ C H R C H A R (. C P))) ;
1 -
% E L S E
C P = C H $ P L U S (. C P , 1) ;
% F I ! $ A R D B C O M M O N V A R I A N T

Figure 9 Using]SY Routines in DEC Rdb Version 3

kana-to-kanji conversions. To remove this depen
dency, we developed a new method to invoke the
kana-to-kanji conversion rou tine. Figure 11 shows
the new input method.

We created a shareable image for the input
method, using the SYS$LANGUAGE logical to switch
to the Japanese input method or to other Asian
l anguage input methods. Since an input method is
a shareable image, a user can switch input methods
by redefining the logical name to identify the appro
priate image.

Since LIB$FIND_IMAGE_SYMBOL is used to find the
Japanese input at run time, JSYSHR does not need to
be referenced by the SQL$ execu table image.

90 Vol. 5 No. 3 Summer 1993 Digital Technicaljour11al

Character Internationalization in Databases: A Case Study

! * * * * * * * * * * * * * * * * * * r u n t i m e c h e c k i n g

I F $ R D M S $ A R D B C O M M O N T H E N
' +

A R D B : A d v a n c e c h a r a c t e r p o i n t e r .

I f t h e c o d e v a l u e o f C P i s g r e a t e r t h a n 1 2 8 ,
t h e n i t m e a n s t h e f i r s t b y t e o f K a n j i , s o
a d v a n c e 2 , e l s e i t i s A S C I I , a d v a n c e 1 .

P = C H $ P L U S (. C P , (I F C H $ R C H A R (. C P) G E Q 1 2 8
T H E N

2
E L S E

1)) ;
, _
E L S E
C P C H $ P L U S (. C P , 1) ;
F I ! $ R D M S $ A R D B C O M M O N

w h e r e $ R D M S $ A R D B C O M M O N i s a m a c r o .

Figtt1·e 10 Removing]SY Routines in Version 4

S Q L $. E X E
I
+ (d e f a u l t) - > S M G $ R E A D C O M P O S E D L I N E

+ (i f J a p a n e s e I n p u t i s s e l e c t e d)
L I B $ F I N D I M A G E S Y M B O L

I
+ - - - - - - > (s h a r e a b l e f o r J a p a n e s e I n p u t) . E X E

Figure 11 Input Method for Version 4: Kana-to-kanji Conversion (Japanese Input) Shareable Image

Note that the input method is a mechanism to

convert alphabetic characters to kanji characters.

It is necessary to permit input of ideographic char

acters, i .e . , kanji, through the keyboard . Asian local

language groups wou ld be responsible for creating

a similar shareable image for their specific input

methods.

Transfer DEC]-Rdb and DEC C-Rdb Tests To
ensure the functionality of Japanese/Asian DEC
Rdb, we transferred the tests into the original devel

opment environment. We i ntegrated not only the

source modules but also a l l the tests. Consequently,
the Asian 2-byte processing capabil it ies have now

been tested in the United States.

Kit Components andj-Rdb Installation Procedure
The original DEC Rdb version 4.0 has the basic capa-

Digita/ 1echnica/ journal Vol. 5 No . .> Su m111er I'J93

bi l ity to perform 2-byte processing. Japanese and

other Asian language components must be pro

vided for local country variants. The localization kit
for Japan contains Japanese documentation such as
messages and help files, an input method, and the

J-Rdb license management facil ity (LMF). As a result,
we need not reengineer the original product any
more. The instal lation procedure is also simpl ified.

Users worldwide merely instal l DEC Rdb and then
insta l l a localization kit if it is needed .

The localization kits contain only the user inter
faces, so no reengineering is necessary; however,

t ranslation of documentation, message files, help
files, and so on to local languages still remains nec

essary. Nonetheless, the reengineering process i s

el iminated .

I n version 4.0, we achieved the main goal, to inte

grate the Asian source code into the base product

9 1

Product Internationalization

to avoid reengi neering. The Japanese localization
kit was released with a delay of about one month
after the US. version (versus a five-month delay
in version 3.0). The one-month delay between
releases is among the best in the world for such
a complex product.

Coengineering Phase II
In the second phase of i ntegration, we redesigned
the work done in Phase I and developed a mu lti
l ingual version of Rclb/YMS.

In version 4.0, we i ntroduced the logical name
RDB$CHARACTER_SET to integrate Asian function
al ity into DEC Rclb. In Phase II, we created an inter
nationa lized version of DEC Rclb . We retained the
one set of images and introduced new syntax and
semantics. We also provided support for the NIT/
MIA requirements.

The fo l lowing are the highl ights of the release.
The details are given in the Appendix.

• NIT/MIA SQL Requirements

- NATIONAL CHARACTER data type

- N'national' l i teral

- Kanji object names

• Changes/extensions to the original DEC Rdb

- Add a character set attribute

- Mu ltiple character set support

• Dependencies upon other products

- COD/Plus, COD/Repository: Add a character
set attribute

- Programming languages: COBOL, PIC, N

Since we are no longer reengineering the original
product, we now have time to develop the new
functional ity that is required by NIT/.MIA. The new
syntax and semantics of the character-set hand l ing
are conformant with the new SQL-92 standard.
As far as we know, no competitor has this level of
functional ity.

If we had to continue to reengineer the original,
we would not have had enough resources to con
tinue development of important new functional i
ties. Coengineering not only reduces development
cost but a lso improves competi tiveness.

We in troduced the RDB$CHARACTER_SET logical
dur i ng Phase I to switch the character set being
used. Since the granularity of character set support
is on a process basis, however, a user cannot mix
different character sets in a given process. In Phase
II, we implemented the CHARACTER SET clause,

92

defined in SQL-92, to al low multiple character sets
in a table.

Database Character Sets The database character
sets are the character sets specified for the attached
database. Database character set attributes are
default , identifier, and national.

SQL uses the database defaul t character set for
two elements: (1) database co lumns with a charac
ter data type (CHARACTER and CHARACTER VARY
ING) that do not expl icitly specify a character set
and (2) parameters that are not qual ified by a char
acter set. The user can specify the database default
character set by using the DEFAULT CHARACTER SET
clause for CREATE DATABASE.

SQL uses the identifier character set for database
object names such as table names and co lumn
names. The user can specify the identifier character
set for a database by using the IDENTIFIER CHARAC
TER SET clause for CREATE DATABASE.

SQL uses the national character set for the fol low
ing e.lements.

• For all colu m ns and domains with the data type
NATIONAL CHARACTE R or NATIONAL CHARACTER
VARYING and for the NATIONAL CHARACTER data
type in a CAST function

• In SQL module language, all parameters with the
data type NATIONAL CHARACTER or NATIONAL
CHARACTER VARYING

• For a l l character-string l i terals qualified by the
national character set, that is, the l i teral is pre
ceded by the letter N and a single quote (N')

The user can specify the national character set
for a database by using the NATIONAL CHARACTER
SET clause for CREATE DATABASE.

The fol lowing example shows the DEFAULT
C HAHACTER SET, IDENTIFIER CHARACTER SET, and
NATIONAL CHA.RACTE R SET clauses for CREATE
DATABASE.

C R E A T E D A T A B A S E F I L E N A M E E N V I R O N M E N T

D E F A U L T C H A R A C T E R S E T D E C_KA N J I

N A T I O N A L C H A R A C T E R S E T K A N J I

I D E N T I F I E R C H A R A C T E R S E T D E C_K A N J I ;

C R E A T E D O M A I N D E C_K A N J I_D O M C H A R (8) ;

C R E A T E D O M A I N K A N J I_D O M N C H A R (6) ;

DEC_KANJI_DOM is a text data type with
DEC_K.ANJI character set, and KANJI_DOM is a text
data type with KANJ I character set. The database
default character set is DEC_KANJI and the national
character set is KANJI .

Vol. 5 No . .3 Summer 19<)3 Digital Technical journal

Character Internationalization in Databases: A Case Study

As previously stated , the user can choose the
default and identifier character sets of a database.
Consequently, users can have both text columns

that have character sets other than 7-bi t ASCI I and
national character object names (i .e . , kanji names,
Chinese names, and so on).

In Rdb vers ion 3.1 and prior versions, the charac
ter set was ASCII and could not be changed. I n Rdb

version 4.0, users could change character sets

by defining the RDB$CHARACIE R_SET logical. It is
important to note that the logical name is a vo lati le
attribute; that is, the user must remember the char
acter set being used i n the database in his process.
On the other hand , the database character sets
introduced in version 4.2 are persistent attributes,
so the user is less l ikely to become confused about

the character set in use.

Session Character Sets The session character sets
are used during a session or during the execution of

procedures in a modu le. The session character set

has four attribu tes: l iteral, defau lt, identifier, and
national.

SQL uses the l iteral character set for unqual ified
character string l i terals. Users can specify the
l i teral character set only for a session or a module
by using the SET LITERAL CHARACTER SET statement
or the LITERAL CHARACTER SET clause of the SQL

module header, DECLARE MODULE statement, or
DECLARE ALlAS statement.

Session character sets are bound to modules or
an interactive SQL session, and database character

sets are attributes of a database. For example, a user

can change the session character sets for each SQL

session; therefore, the user can attach to a database

that has DEC_MCS names and then at tach to a new

database that has DEC_HAI\JZI names.

Octet Length and Character Length In DEC Rclb
version 4.1 and prior versions, a l l string lengths

were specified in octets. In other words, the
numeric values specified for the character-column
length or the start-off set and substring length
within a substring express ion were considered to
be octet lengths or offsets.

DEC Rc.l b version 4.2 supports character sets of
mixed-octet and fixed-octet form-of-use. For this
reason and to al low an upgrade path to SQL-92

(where lengths and offsets are specified in charac
ters rather than octets), users are allowed to specify
lengths and offsets in terms of characters. To

change the default string-length unit from octet to
characters, users may invoke the fol lowing:

Digital 1echllical]ounwl Vol. 5 No . .) Summer /')').)

S E T C H A R A C T E R L E N G T H ' C H A R A C T E R S ' ;

Multiple Character Sets Examples Users can cre
ate a domain using a character set other than the

database default or national character sets with the

fol lowing sequence:

C R E A T E D O M A I N D E C K O R E A_D O M C H A R (6)
C H A R A C T E R S E T D E C _K O R E A N ;

C R E A T E T A B L E T R E E S
(T R E E_ C O D E T R E E _C O D E_D O M ,

Q U A N T I T Y I N T E G E R ,
J A P A N E S E_N A M E C H A R (3 0) ,
F R E N C H _N A M E C H A R (3 0)

C H A R A C T E R S E T D E C _M C S ,
E N G L I S H_ N A M E C H A R (3 Q)

C H A R A C T E R S E T D E C _M C S ,
K O R E A N _N A M E C H A R (3 0)

C H A R A C T E R S E T D E C _K O R E A N ,
K A N J I _N A M E N C H A R (3 Q)) ;

The table TREES has mult iple character sets. This

example assumes the default character set is
DEC_KANJ I and the national character set is KAN.Jl.
Users can have object names other than ASCII

names specifying the ident ifier character set. The

database engine uses the specific routines to com
pare data, since the engine knows the character set
of the data. With DEC Rdb version 4.2, a l l three

issues of data representation, mu ltiple character

set support, and data comparison have been
resolved.

Conclusions

By replacing reengineering with coengineering, we

reduced the time lag between shipping DEC Rclb to
customers in the United States and in Japan from
five months for version 3.0 in July 1988 to two

weeks for version 4.2 in February 1993. Figure 12

shows the decrease in t ime lag for each version
we developed . We also eliminated expensive

reengineering and maintenance costs. Finally, we

increased competitiveness.
It has taken more than four years to evolve from a

noninternational ized product to an international
ized one. If the product had origi nally been
designed to be internationalized, this process would
have been unnecessary. When DEC Rdb was origi
nally created , however, we did not have an interna

tionalization model, the architecture, or mature

techniques. Reengineering is unavoidable under
these circumstances.

By sharing our experience, we can help other

product engineering groups avoid the reengineer

ing process.

Product Internationalization

25

20

(f) 1 5

:.:::
w
w
:s: 1 0

5

0
V3.0 V3.0B V3. 1A V3. 1 B V4.0 V4.0A V4.2

Figure 12 Time Lag between US. and japanese

Shipment of DEC Rdb

Future Work for DEC Rdb

Coengineering has proved that an evolutionaq'
approach is not only possible, but that it is the most

reasonable approach. Additional work, however,

remains to be done for DEC Rdb.
DEC Rdb must support more character sets l ike

ISO 10646-1 . We think that the support of new char

acter sets would be straightforward in the DEC Rdb
implementation. DEC Rdb has the infrastructure for
supporting it . SQL-92 has the syntax for it, that is,

the character set clause. Furthermore, the DEC Rdb

implementation has the attribute for a character set
in the system tables.

Collations on Han characters should be
extended. The current implementation of a col la
tion on Han characters is based on its character
value, that is, its code value. We believe the user
would also l i ke to have col lations based on dict io

naries, radicals, and pronunciations. u

Summary

There are significant difficul ties in the specification

of character international ization for database sys
tems, but the SQL-92 standard provides a sound
foundation for the internationalization of products.

The appl ication of SQL-92 facil ities to DEC Rdb is

quite successful and can serve as a case study for the
international ization for other software products.

Acknawledgments

The authors grateful ly acknowledge the help and
contributions made by many people during the
development of DEC Rdb's internationalization
facil i t ies and those of the SQL standard. In par-

94

ticu l ar, Don Blair, Yasuhiro Matsuda, Scott ,'vl atsu
moto, Jim Murray, Kaz Ooiso, Lisa Maatta Smith,

and Ian Smith were particu larly helpfu l during the
DEC Rdb work. During the internationa l ization of
SQL, Laurent Barnier, David Birdsa l l , Phil Shaw,
Kohji Sh ibano, and Mani Subramanyam a l l made
significant contributions.

References

1 . G. Winters, "International Distribu ted Sys
tems-Architectural and Practical Issues,"

Digital Technicaljournal, vol. 5, no. 3 (Sum

mer 1993, this issue): 53 - 62.

2 . A merican National Standard for Informa

tion Systems-Database Language SQL, ANSI

X3.135 -1992 (American National Standards
Institute, 1992). Also publ ished as Informa

tion Technology-Database Languages

SQL, ISO/IEC 9075: 1992 (Geneva: International
Organization for Standardization, 1992).

3. W Rannenberg and .J. Bertels, "The X/Open
Internationa l ization Model," Digital Tee/mi

ca/ journal, vol. 5, no. 3 (Summer 1993, this

issue): 32-42.

4 . Database Language SQL (SQL3), Working
Draft, ANSI X3H2-93 -091 (American National
Standards Institute, February 1993).

5. Database Language SQL (SQL3), Working

Draft, ISO/IEC JTC 1/SC21 N6931 (Geneva:
International Organization for Standardiza
tion, July 1992).

6.]. Melton and A. Simon, Understanding the

New SQL: A Complete Guide (San Mateo, CA:

Morgan Kaufmann Publ ishers, 1992).

7. Information Technology-Remote Database

Access-Part 1: Generic Model, Service,

and Protocol, ISO/IEC 9579-1 : 1993, and Infor

mation Technology-Remote Database

Access-Part 2: SQL Specialization, ISO/IEC

9579-2 : 1993 (Geneva: International Organiza
tion for Standardization, 1993).

8.]. Bertels and F. Bishop, "Unicode: A Universal
Character Code," Digital Technical journal,

vol. 5, no. 3 (Su mmer 1993, this issue): 21-31 .

9. Information Processing-/SO 7-bit and 8-bit

Coded Character Sets-Code Extension Tech

niques, ISO 2022: 1986 (Geneva: International
Organization for Standard ization, 1986).

Vol. 5 No. 3 Summer 1993 Digital Technical journal

Character Internationalization in Databases: A Case Study

10. Information Processing, Open Document

Architecture, ISO/IEC 8613: 1989 (Geneva:
International Organization for Standardiza

tion, 1989).

12. Multivendor Integration Architecture, Ver

sion 1 .2 (Tokyo: Nippon Telegraph and Tele

phone Corporation, Order No. TR550001 ,
September 1992).

1 1 . DEC Rdb, SQL Reference Manual (Maynard,

MA: Digital Equipment Corporat ion, Order
No. AA-PWQPA-TE, January 1993)

13. R . Haentjens, "The Ordering of Universal

Character Strings," Digital Technical journal,

vol. 5, no. 3 (Summer 1993, this issue): 43-52 .

Appendix: Syntax of Rdb Version 4.2

Format of CHARACTER SET Clause

< c h a r a c t e r d a t a t y p e > : : =
< c h a r a c t e r s t r i n g t y p e >

[C H A R A C T E R S E T < c h a r a c t e r s e t s p e c i f i c a t i o n > J
I < n a t i o n a l c h a r a c t e r s t r i n g t y p e >

< c h a r a c t e r s t r i n g t y p e > : : =
C H A R A C T E R [V A R Y I N G J [(< l e n g t h >)]

I C H A R [V A R Y I N G J [(< l e n g t h >) J
I V A R C H A R (< l e n g t h >)

< n a t i o n a l c h a r a c t e r s t r i n g t y p e > : : =
N A T I O N A L C H A R A C T E R [V A R Y I N G J [(< l e n g t h >) J

I N A T I O N A L C H A R [V A R Y I N G J [(< l e n g t h >)]
I N C H A R [V A R Y I N G J (< l e n g t h >)

< c h a r a c t e r s e t s p e c i f i c a t i o n >
< c h a r a c t e r s e t n a m e >

< c h a r a c t e r s e t n a m e > < n a m e >

Character Set Names

D E C _M C S
K A N J I
H A N Z I
K O R E A N
H A N Y U
D E C K A N J I
D E C H A N Z I
D E C K O R E A N
D E C _S I C G C C
D E C _H A N Y U
K A T A K A N A
I S O L A T I N A R A B I C
I S O L A T I N H E B R E W
I S O L A T I N C Y R I L L I C
I S O L A T I N G R E E K
D E V A N A G A R I

Digital Techllical jour11al Vol. 5 No. 3 Summer 1993

Continued on next page.

95

Product Internationalization

Example of CHARACFER SET

C R E A T E D A T A B A S E F I L E N A M E E N V I R O N M E N T
D E F A U L T C H A R A C T E R S E T D E C_K A N J I
N A T I O N A L C H A R A C T E R S E T K A N J I
I D E N T I F I E R C H A R A C T E R S E T D E C _K A N J I ;

C R E A T E D O M A I N N A M E S G E N E R A L C H A R (2 0 > ;

C R E A T E D O M A I N N A M E S _P R C C H A R (2 0)
C H A R A C T E R S E T I S H A N Z I ;

C R E A T E D O M A I N N A M E S _M C S C H A R (2 0)
C H A R A C T E R S E T I S M C S ;

C R E A T E D O M A I N N A M E S _K O R E A N C H A R (2 0)
C H A R A C T E R S E T I S H A N G U L ;

C R E A T E D O M A I N N A M E S J A P A N N C H A R (2 0 > ;

Format of Literals

< c h a r a c t e r L i t e r a l > -
< c h a r a c t e r s t r i n g L i t e r a l >

I < n a t i o n a l c h a r a c t e r s t r i n g L i t e r a l >

< c h a r a c t e r s t r i n g L i t e r a l > : : =
[< i n t r o d u c e r > < c h a r a c t e r s e t s p e c i f i c a t i o n > J
< q u o t e > [< c h a r a c t e r r e p r e s e n t a t i o n > . . .] < q u o t e >

< c h a r a c t e r r e p r e s e n t a t i o n >
< n o n q u o t e c h a r a c t e r >

I < q u o t e s y m b o l >

< n o n q u o t e c h a r a c t e r > : : = ! ! S e e t h e S y n t a x R u l e s .

< q u o t e s y m b o l > : : = < q u o t e > < q u o t e >

< n a t i o n a l c h a r a c t e r s t r i n g L i t e r a l >
N < q u o t e > [< c h a r a c t e r r e p r e s e n t a t i o n > . . .] < q u o t e >

Example of National Object Name
C R E A T E T A B L E tf�§J
<tOUH}f;;- C H A R < 6 > ,
tf�JiH\;i', N A T I 0 N A L C H A R A C T E R (1 0) ,
�-'} D E C I M A L < 1 0) ,
�-!{ 'l'f;;- D E C I M A L (5) ,
f1.PJT N C H A R < 3 0) ,
P R I M A R Y K E Y tf�JHff-jj·) ;

S E L E C T :(it �I! 'I'%
F R O M tf�j'l
W H E R E fE-fg!-IJj:{} = 1 0 0 A N D

96

�!:j- > 3 0 0 0 0 0 A N D
te�.f.l �iJ L I K E N ' .Z:fJ % ' ;

Vol. 5 No. 3 Summer 1993 Digital Technical journal

Takah ide Honma
Hiroyosh i Baba

Kuniaki Tak izawa

Japanese Input Method
Independent of Applications

The japanese input method is a complex procedure involving preediting opera
tions. An application that accepts japanese from an input device must have three
systems for the input method: a keybinding system, a manipulator for preediting,
and a kana-to-kanji conversion system. Various keybinding systems and manipula
tors accelerate input operations. Our implementation separates an application
from the japanese input method in three layer·s. A n application can use a front-end
input processor to perform all operations including 1/0. An application can use the
henkan (conversion) module and implement l/0 operation itself A n applicalion
can execute all operations except keybinding, which is handled b-y an input method
library

In this paper, we first present an overview of the
tech.nical environment of the Japanese input method
implementation. Based on this overview, we briefly
describe the critical engineering issues for conver
sion of Digita l 's products for the japanese user. Our
most critical engineering issue was the reduction of
similar (but sl ightly d ifferent) work to local ize
products. Another issue was to satisfy customers'
requests for the abil ity to use the many input styles
fami l iar to them. We describe our approach to the
development of a japanese input method that over
comes these issues by separating the input method
from an application in three lay<:rs.

Overview oftheJapanese
Input Method

In this section, we describe jap:mese input and
string manipu lation from the perspective of both
the user and the appl ication. Based on these
descriptions, we present a brief overview of reengi-

neering a product for .Japanese users and a summary
of the industry's complex techniques developed for

japanese input methods.

japanese Input

The japanese writing system uses hundreds of
ideograms cal led k.anji. In addition, Japanese uses a
phonetic system of k.ana characters (hiragana and
katakana) and has accepted romaji, which is the
use of Latin letters to spell Japanese words. Figure 1
sum marizes the japanese character systems.

japanese input requires users to operate in a
"preedi ting" mode to convert kana or romaji into

a kana-kanji string. 1 ·2

The computer keyboard used for japanese input
has mult iple character assignments. Almost a l l keys
on the japanese keyboard are assigned both a Latin
alphabet character and a japanese kana character.
The .Japanese user must first choose between kana

key input or alphabet input. A user in an engineering

JAPANESE CHARACTERS PHONOGRAM t KANA (ORIGINAL JAPANESE CHARACTERS)

L HIRAGANA
L KATAKANA

ROMAJI (USING LATIN ALPHABET TO
EXPRESS A PHONEME)

IDEOGRAM

L KANJI

Figure 1 }ajJanese Character Systems

Digital Techuical jourual Vol. 5 1\"o . .) Summer 1993 97

Product Internationalization

area general ly uses romaji (alphabet) key input . In

the office environment, however, a user prefers

kana key input because it requires ha lf as many

keystrokes as romaji input.

Preediting Operation

The user inputs the phonetic expression in either

kana or romaji that represents the statement the
user wants to input. Then the user presses the con

version key to convert the phonetic expression to

a kana-kanji mL-xed string. At this time, the user

checks the accuracy of the conversion result .

Sometimes the user needs to select the correct

word from a system-generated l ist of several

homonyms. Moreover, a user may also need to

determine the separation positions in the phonetic

expression to ensure a meaningful grammatical

construction.

Japanese has no word separator equivalent to the

space character in Engl ish. To obtain the correct or

expected separation of grammatical elements, the
user must sometimes move the separation position.

After the user constructs a corrected statement, he

or she finishes preediting and fixes the statement.

The user repeats these complex steps to construct

Japanese documents. Figure 2 shows the preedit ing

steps for the Japanese user.

Various techniques have been developed to accel

erate Japanese input operations. They include

UNDO, COPY, zip code conversion, and categorized

expert dictionary.

START
SET UP I N PUT METHOD

L,-.,-• INPUT PHONETIC EXPRESSION FOR A STATEMENT

(CHANGE PHONOGRAM SYSTEM)
CONVERT KANA TO KANJI t:= MOVE THE SEPARATION POSITION

SELECT A WORD FROM MANY HOMONYMS

FIX A STATEMENT

END OF DOCUMENT

Figure 2 Preeditingfapanese Input

japanese Application Capabilities

The Japanese appl ication has two special capabil i
ties for japanese processing. First, the appl ication

must be capable of hand l ing multibyte characters.

This subject i tself is interesting as it involves

wchar_t and Unicode character sets; however, this
paper focuses on the second capabi l ity, the imple

mentation of the input method. An appl ication that

accepts Japanese from an input device must have,

at least, three additional systems for the input

method. These are the so-cal led keybinding system,

a manipulator for preediting, and the kana-to-kanji

conversion system.

Keybinding System This system analyzes the key

input from a user and determines which of the

key's fu nctions the user wants to do. It defines

the user interface ancl the way a user operates with
keystrokes. It also defines the preediting conver

sion key. We imagine there are as many keybind ing

systems as there are word processors.

PreeditMcmipulator System This system not only

echoes the input characters on the screen but also

controls the video attribute that expresses the

preedi ti ng area. This capabi l i ty al lows the user to

distingu ish preedi ting strings from background
fixed strings. The user must be able to recognize

the preediting string for more processing (for

example, to convert the input to another expres

sion such as kana to kanji). In addition, the user

can set this system to convert inp u t to another

expression dynamically (for example, automatic

conversion of romaji to kana) .

Kana- to-kanji Conversion System This system

ana lyzes the input string, gets the word from a dic

tional)', and constructs the correct statement gram
matical ly. Many personal compu ter (PC) vendors
have invested in systems that use this input method .

In Japan, some vendors have introduced artificial

intelligence technology, but this system essential ly
has only statistical ru les. 1··1

Figure 3 summarizes .Japanese processing as han

cl led by appl ications.

JAPANESE PROCESSING ----,-- VARIABLE MULTI BYTE CHARACTER HANDLING
L_ JAPANESE I NPUT METHOD

98

� KEYBINDING SYSTEM
PREEDIT MAN I PULATOR SYSTEM
KANA-TO-KANJ I CONVERSION SYSTEM

Figure 3 japanese Processing by Applications

Vol. 5 No. 3 Su.111mer !')').) Digilal Technical journal

Metbod of japanese Conversion

As mentioned above, to convert a product for use
in Japanese, we must implement both a Japanese
string manipulator and an i nput method. To retain
the " look-and-feel" of the original D igital product,
the interface is designed so the Japanese user does
not need to expl icitly enter the preedi ting session
with the special-purpose key (Enter Preedit) but is
automat ical ly en tered . With most applications on
other systems, a user must expl icitly enter the
preed iting session by using the special keystroke.
This implementation has the advantage that it com
pletely separates the input method from the appl i
cation, but it requ ires the user to remember to
perform an extra step.

To e l iminate the confl ict between the original
product's key function and the additional Japanese
input function, each product has to have a s l ightly
different keybincling system for Japanese. As a
resu lt, a user must learn more than one Japanese
input operation when using m u ltiple products.

User Environments

res are widely used in many offices and are popular
devices for Japanese input . Natur a l ly a user wants
to operate with a famil iar PC keystroke for Japanese
input even in i ntegrated systems (in some servers).
When PCs, which use front-end processors, are
integrated into environments with VMS and U NIX
systems, a user often prefers the PC's interface. The
more integrated a user's environment is, the more
requirements a user has.

In addition, a distribution kit for the X Window
System in a UNIX environment has some sample
implementations of the Japanese input method.
This kit gives a user more choices for input at no
cost.

The market for the Japanese input method sepa
rates vendors into two main groups. One is the PC
front-end processor manufacturer who imple
ments more advanced techniques but at a high
price. The other is the UNIX system vendor who
suppl ies input implementations free (without guar
antee) and thus reduces the maintenance cost.

In the next section, we present our approach to
the development of an appl ication-independent
Japanese input method. The goals of our design
were (1) to include the PC keybinding system in
integrated environments so users could select their
preferred input method, (2) to supply a tool that
would easi ly convert products for the Japanese
user, and (3) to provide a way to access the

Digital Tech11i£'a/ journal V!;/. 5 No. 3 Stmnner 1993

japanese Input Method Independent of Applications

interfaces of several Japanese engines and thus
capture the free software capabil ities.

Application-independent Approach

As described in the prev ious section, the Japanese
input method includes complex techniques. Many
PC software vendors (but not manufacturers)
decided against developing their own methods and
incorporated a popu lar input method for their
applications. This decision, of course, reduces
their development cost. Our approach also seeks to
reduce development cost. We separated the input
method from the appl ication to the greatest extent
possible, as long as the separation did not adversely
affect the application.

The PC system is designed as a single-task system,
but Digital 's operating systems (OpenVMS, ULTRIX,
and DEC OSF/1 AXP) are designed as mu lt itask ing
systems. Therefore we cou ld not adopt many of the
PC techniques that were implemented in the driver
level. For example , access to d ictionary and gram
matical ana lysis of the input string are too expen
sive in the driver level of a mult itasking system
because they use system resources that are com
mon to all tasks on the system.

Our approach d ivides the input method into
three layers. Each layer is dependent on any lower
layer. Consequently, any appl ication using the high
est layer also uses the functiona l i ties of the other
two layers.

Strategy of Tbree Layers

The criteria of our l ayering strategy were (1) to
reduce the cost of reengineering products for the
Japanese user, (2) to unify the input method user
interface, and (3) to protect the user's operational
investment in a keybinding system.

These criteria lecl us to set the keybinding system
into the lowest layer. We named our system the
input method l ibrary (IMLIB) and released it on
VMS/Japanese version 5.5 and ULTRJX/Japanese ver
sion 4 .3. We also ported it to the Alpha AXP system,
and this facil ity is avai lable on any Japanese plat
form. Any appl ication using our method needs to
use IMLIB.

In essence, this keybinding system a l lows a user
to change the input method of operation to any
style by changing the IMLIB defin ition files. I f an
appl ication supports IMLIB, a user can change the
appl ication's input operation by changing IMLIB
once. As a resu lt, an application's key customiza
tion function can move into IMLIB .

9 9

Product Internationalization

At this point, we considered the simplest method
of separating the input method from appl ications.

The intermediate process, also cal led the front-end
method, processes all the input and then passes it
to an appl icat ion. Many front-end implementations
use the pseudo-terminal driver (pty in UNIX or FT in
Open VMS) . The intermediate process gets a l l l/0 to
and from an application, processes it , and finally
passes i t to an application or a device. This imple
mentation cannot recognize the application input
requests, but works only by a user's operation. To
change this operation, we set the hook inside the
terminal driver to get a l l application-request infor
mation. Our front -end process recognizes appl ica
tion requests and works ·without confl ict.

One advantage of this front -end implementation
is a complete independence of appl ications. This
can also be a d isadvantage since an application can
not control the input method closely. for example,
this implementation can a l ter the user interface of
an editor system.

We continued to study another layer for separa
tion. The preecliting operation, that is, a l l the input
string manipulations except 1/0 to devices, was a
candidate. Al l applications pass the input from
input devices into the .Japanese input manipulator
and then pass the outpu t from this manipulator
onto output devices. By using this system, we
can unify the input operation except for device
dependent operations and reduce the cost to imple
ment this kind of functional ity.

Our development process started at the lowest
layer (IMLIB) . proceeded to the highest layer (front
end) , and finished at the middle layer (preedi ting
manipu lator). In the fo l lowing sections, we describe
the functiona l i t ies in ead1 layer from the lowest to
the highest layer.

Implementation of IMLIB

IMLIB is a u ti l i ty that supplies the keybinding defini
tion hmction and other i nformation for customiz
ing the Japanese input operation. This capabil ity
enables us to supply user-friendly keybinding sys
tems. A user can change the input sequences and
the look-and-feel of the user interface by modifying
databases. We introduced two databases, K EYBIND
for keybinding and PROf'ILE for look-and-feel and an
application's usage. We also supplied the KEYBIND
compiler for improved performance and the elimi
nation of the grammatical error at run t ime.

As mentioned i n the introduction, there are
many implementat ions of Japanese input styles on

1 00

PCs or some word processors, and some text edi
tors on various operating systems. If a user needs to
usc a different editor, he or she needs to learn
another operation. Our method unifies the input
operation . We studied several types of input styles
and recognized that we cou ld build the general
model for this input operation. The IMLIB manual
descri bes this model in detaiJ . ".C' In this paper, we
discuss it briefly.

KEYBIND Database

In the Japanese input operation , entering the key
input causes several conversion actions and state
transitions. Figure 4 shows the mult iple transitions
incurred during input . We needed to define the
conversion actions and some state transitions as a
single key input action. We implemented this func
tion through the KEYBIND database and language.
Figure 5 is an example of the KEYBIND database. A
user bui lds an input style by changing the KEYBIND
database with the KEYBIND language.

IMLIB al lows the u ser to change the keybinding
and to choose a d ifferent input sequence with a
different state transition vector. For the user's con
venience, IMLIB provides some K EYBIND databases
of the major Japanese input styles in defau lt .

When an application cal ls the ImSetKeybind
function, it loads a KEY13IND binary file into mem
ory. Each t ime the application gets the key input,
it queries the key's function from IMLIB. IMLIB
searches the KEYBIND file for the key's definition
and returns that i nformation, ca l led an action, to
the application. Each action is a set of orders that
has a differen t procedure for Japanese conversion.
For example, the action CONVERT means to convert
an input string to a kanji string. At that t ime, IMLIB
a lso maintains Japanese input states and , if neces
sary, changes the state.

PROFILE Database

The Japanese input operation bas many parameters
to determine its look-and-feel, such as the video

L---
1
-
N

-
IT

-
IA
_

L

..,...

S
_

T

_

A

_

T
_
E

_
��------... 1 KANJI CONVERTED I

I
I N PUTTING STATE I· ,. KANA CONVERTED

Figure 4 State Transition

vbl. 5 No. 3 Summer 19'13 Digital Tecbuicaljow·nal

japanese Input Method Independent of Applications

J V M S � � of - J£)i 7 7 1 !v ('/ 7. T b. T / / v - r) v 1 . 0
(J V M S c o n v e r s i o n k e y d e f i n i t i o n f i l e (s y s t e m t e m p l a t e) v e r 1 . 0)

g o l d
k a k u t e i

C T R L_G ;
C T R L_N ;

k a n j i _h e n k a n
h i r a g a n a_h e n k a n
k a t a k a n a _h e n k a n
z e n k a k u_h e n k a n
h a n k a k u_h e n k a n
k i g o u_h e n k a n
o o m o j i

N U L L , g o l d + C T R L_K ;
C T R L_ L ;

G o l d k e y ; u s e d a s a P R E F I X k e y
F i n i s h w i t h o u t a n y c o n v e r s i o n
C o n v e r t t o K a n j i I n e x t c a n d i d a t e
(C o n v e r t c l a u s e) t o H i r a g a n a
(C o n v e r t c l a u s e) t o K a t a k a n a
C o n v e r t t o f u l l w i d t h c h a r a c t e r s
C o n v e r t t o h a l f w i d t h c h a r a c t e r s
S ym b o l i c c o d e c o n v e r s i o n

k o mo j i

C T R L_K ;
C T R L_F ;
g o l d + C T R L_ F ;
G S ;
V O l D ;
V O I D ;
C T R L_ P ;
g o l d + C T R L_ P ;
U S ;
g o l d + U S ;

C o n v e r t t o u p p e r c h a r a c t e r s
C o n v e r t t o L o w e r c h a r a c t e r s
M o v e t o n e x t c l a u s e
M o v e t o p r e v i o u s c l a u s e
S h r i n k t h e c l a u s e
E x t e n d t h e c l a u s e

j i _b u n s e t s u
z e n_b u n s e t s u
t a n s y u k u
s i n t y o u
z e n_k o u h o g o l d + (N U L L , C T R L_L) ; ! P r e v i o u s c l a u s e c a n d i d a t e
k a i j o = C T R L_N ;

s a k u j o
h i d a r i
m i g i
s pa c e_f i r s t

s p a c e_ i n p u t

D E L ;
L E F T ;
R I G H T ;
" � " ;

" � " ;

N O N E ;

C a n c e l t h e c o n v e r s i o n
a n d g o i n t o i n p u t s t a t e

D e l e t e p r e v i o u s c h a r a c t e r
M o v e t h e c u r s o r L e f t
M o v e t h e c u r s o r r i g h t
F i n i s h b y s p a c e

(s p a c e a t i n i t i a l s t a t e)
F i n i s h by s p a c e

(s p a c e a t o t h e r s t a t e s)
S T A T E " i n i t i a l " =

s p a c e_f i r s t
k a n j i _h e n k a n
h i r a g a n a_h e n k a n
k a t a k a n a_h e n k a n
z e n k a k u_h e n k a n
h a n k a k u_h e n k a n
k i g o u_h e n k a n
o o mo j i
k o m o j i
T Y P I N G_K E Y S
E N D ;

S T A R T_S E L E C T E D , C O N V E R T , G O T O " k k_c o n v e r t i n g " ;
S T A R T_S E L E C T E D , H I R A G A N A , G O T O " c o n v e r t i n g " ;
S T A R T_S E L E C T E D , K A T A K A N A , G O T O " c o n v e r t i n g " ;
S T A R T_S E L E C T E D , Z E N KA K U , G O T O " c o n v e r t i n g " ;
S T A R T_S E L E C T E D , H A N K A K U , G O T O " c o n v e r t i n g " ;
S T A R T_S E L E C T E D , S Y M B O L , G O T O " c o n v e r t i n g " ;
S T A R T_S E L E C T E D , U P P E R , G O T O " c o n v e r t i n g " ;
S T A R T_S E L E C T E D , LO W E R , G O T O " c o n v e r t i n g " ;
S T A R T , E C H O , G O T O " i n p u t t i n g " ;

Figure 5 Portion of KEYBIND Database

attribute for the preediting string, preediting
exception handl ing, and appl ication-specific pro
cessing. The PROFILE database stores t hese addi
tional parameters the same way as the resource file
does in the X Window System.

The PROFILE database is a text file. It contains sev
eral records that represent each environment. This
record format has the style of I NDEX : value. The
appl ication predefines the I NDEX for its purpose;
however, IMLIB defines some INDEXes related to
Japanese input operation because it requires some
common environment definitions. The range or
value correspondi ng to the INDEX is placed in the
right-hand side of the record. Figure 6 shows a
record from a PROFILE database.

Digital Technical journal Vol. 5 No. 3 Summer I'J').)

KEYBIND Compiler
The KEYBIND compiler analyzes the KEYBIND text
file and creates the KEYBIND binary file. IMLIB ser
vices reads the PROFILE database and the KEYBIND
binary fi le and maintains them in memory. As a
response to an appl ication's query, IMLIB services
sends i t the actions in KEYBIND and the data in
PROFILE and at this time maintains the KEYBIND
states. Figure 7 shows the relationship among the
IMLIB components.

IMLIB is avai lable on the Open VMS VAX, Open VMS
AXP, ULTRIX, and DEC OSF/ 1 AXP operating systems.
The major applications arc DECwindows/Motif,
DECwrite, the front-end input process. and screen
management (S\IG).

1 0 1

Product Internationalization

KEYBIND
COMPILER

KEYBIND
TEXT
FILE

Figure 7

D E C - J A P A N E S E . K E Y . k e y b i n d : i m_ k e y_ j v m s _ l e v e l 2
D E C - J A P A N E S E . K E Y . k e y b i n d_ 1 : i m_ k e y_ j v m s
D E C - J A P A N E S E . D I S P . p r e E d i t R o w : c u r r e n t
D E C - J A P A N E S E . D I S P . p r e E d i t C o l u m n : c u r r e n t
D E C - J A P A N E S E . D I S P . i n p u t R e n d i t i o n : b o l d
D E C - J A P A N E S E . D I S P . k a n a R e n d i t i o n : b o l d
D E C - J A P A N E S E . D I S P . c u r r e n t C l a u s e R e n d i t i o n : r e v e r s e
D E C - J A P A N E S E . D I S P . l e a d i n g C l a u s e R e n d i t i o n : n o n e
D E C - J A P A N E S E . D I S P . t r a i l i n g C l a u s e R e n d i t i o n : n o n e
D E C - J A P A N E S E . E C H O . a s c i i : h a n k a k u
D E C - J A P A N E S E . E C H O . k a n a : h i r a g a n a
D E C - J A P A N E S E . E C H O . a u t o R o m a n K a n a : o f f
D E C - J A P A N E S E . O U T R A N G E . c l a u s e S i z e : n o n e
D E C - J A P A N E S E . O U T R A N G E . c l a u s e N u m b e r : r o t a t e
D E C - J A P A N E S E . O U T R A N G E . c u r s o r P o s i t i o n : d o n e

Figure 6 PROFILE Database Record

P R E EDITING

APPLICATION STRING

KEYBI N D
BINARY
F I LE

QUERY

ACTIONS
(KEY B I N D)

KEYWORDS
(PROFI LE)

r--..L.----1.---,
IMLIB
SERVICES

PROFILE
DATABASE
FILE

Relationship among !MLIB

Components

APPLICATION

Figure 8 Henkan Module Function

In addition, HM can access the resources of iMLJB.
This feature helps the u nification of the Japanese
input user interface and reduces the number of sim·
ilar product conversions. HM has another significant
capabil ity. We defined the common (minimum)
appl ication programming interface to potentially
accept a l l Japanese conversion engines and imple
mented "PL GGS'' in HM. Therefore HM can use one
or more engines for kana-to-kanji conversion.

Implementation of the Henkan Module

The second layer is part of the Japanese input
manipulator and is cal led the henkan module or
HM. (Henkan means conversion in Japanese .) It
does not hand le 1/0 operation but accepts key
input from the appl ication and converts it to a
string in preedi ting.

HM Mechanism Overview

HM is a tool that any appl ication can use. An
application passes key input to HM by a normal pro
cedure call . After HM processes it , HM cal ls applica·
tion routines with the processed resu lt . Because
HM hand les large string buffers, it dynamica l ly a l lo
cates/deal locates memory. To ensure that memory
is retained, we used a cal lback technique. (These
techniques are described later in the Ca l lback
Routines section.)

Figure 8 summarizes the function of HM. An
application passes the key input to H M stroke by
stroke. HM performs al l Japanese preediting opera
tions; the application has no d irect manipulation of
the input. Then the appl ication gets the preediting
string from HM. Because HM does no 1/0, it is inde
pendent of any specific device. As a resu lt , a l l appli
cations, i ncluding windowing systems, can use HM.

1 02

HM operates by key input as fol lows:

1 . HM gets a keycode from an appl ication with pro
cedure arguments.

2. HM gets the actions assigned to the key from IMUB.

Vol. 5 No . .) Summer 1993 Digital Technical journal

3. If the key is not assigned to the Japanese input
operation, HM tel ls the application to process i t
separately.

4. If the key is assigned to the Japanese input oper
ation, HM processes it according to the actions.

5. HM modifies the information to be d isplayed
according to the action and ca l ls a registered cal l
back routine to update the screen.

HM passes the information that should be d is
played on the screen in an argument of the callback
routines. The cal lback routines are prepared by the
appl ication and registered i nto HM context at the
in itial ization of HM. This cal l back method makes
the application interface and data flow more easi ly.

Components

Figure 9 shows the composition of HM. The appl ica
tion interfaces include both the C and the VMS bind
ing i nterfaces for the OpenVMS operating system.

The Japanese input manipu lator performs a l l
Japanese input operation by using lMUB, the
romaji-to-kana converter, and the kana-to-kanji

converter. After i t processes the input key, it cal ls
back the application routines. There are several
types of romaji- to-kana converters. We imple
mented a submodule rornaji- to-kana converter
driven by a conversion table; a user can change this
table to another.

The kana-to-kanji converter module is a general
ized Japanese conversion l ibrary. Many Japanese
conversion engines exist, and each one is used d if
ferently. The kana-to-kanji converter loads the
interface routine that absorbs these d ifferences
dynamical ly at the in it ia l ization of the HM context.
It then processes the conversion request with any
engine.

Services

HM provides 17 l ibrary entries. In th is section, we
describe three basic routines: HMinitia l ize,
HMConvert, and HMEndConversion.

SEVERAL APPLICATION INTER FACES

JAPANESE INPUT MANIPULATOR

IMLIB I ROMAJI-TO·KANA I KANA-TO-KANJI
CONVERTER CONVERTER

Figure 9 HM Component Structure

Digital Teclmicaljournal Vul. 5 No. 3 Summer I'J'J3

japanese Input Method Independent of Applications

• HMinitial ize. This routine creates a context for
HM. It accepts three cal lback entries, a user
defined data pointer that would be passed to the
callbacks, and an item l ist for init ial information
as its arguments.

• HMConvert. This routine sends a key to HM. The
key is represented as a 32-bit data (longword)
that is generated by a function HMEncodeKey
from an escape sequence that the keyboard
sends or by a function HMKeysymToKeycode
from a keysym of the X Window System. IMLIB
interprets the keycode, and HMConvert per
forms a conversion in accordance with the infor
mation . (A summary of what is executed was
given in the Mechanism Overview section.)

• HMEndConversion. This routine aborts the con
version and resets an internal status. I t is used
when the application has to stop the input for a
particular reason, for example, if an appl ication
issues the cancel request.

Callback Routines

HM requires three cal l back routines : start_conver
sion, format_output, and end_ conversion. They are
used as fol lows.

• start_conversion. This routine is cal led when
the conversion string input is started . The
application memorizes where the cursor is
positioned.

• format_output. This rout ine is cal led whenever
the information to be d isplayed bas been
changed . The application updates the screen.

• end_conversion. This rout ine is cal led when the
input string is determined . As a resu lt , the appl i
cation takes the string passed in the argument
of the l ast call of format_output into its input
buffer.

The user-defined data pointer, one of the argu
ments for HMinitial ize, is always passed to these
callbacks. S ince HM is not concerned with its
contents, the user can put any kind of information
into it.

HM is available on the OpenVMS VAX, OpenVMS

AXP, U LTRIX, and DEC OSF/ 1 AXP operating systems.
This portabil ity is due to the module's indepen
dence from physical 1/0. The major cl ient applica
t ions working on these operating systems are
DECwindows/Motif, Japanese SMG, and the front
end input process.

103

Product Internationalization

Implementation of the Front-end
Input Processor

The front-end input process (FIP) for a dumb termi
nal supports fu l l operations for the Japanese string
manipulation. FIP is implemented on the fol lowing
operating systems: OpenVMS/Japanese/VAX version
5.5-2 or later versions and OpenVMS/Japanese/AXP
version 1 .0 or later versions.

Full Operation Support

The original product can use FIP if the product's
mechanism, particularly its 110 operation and
preediting function, does not conflict with the FIP
implementation. Some appl ications confl ict with
the design of FIP due to the l imitations of FIP and i ts
environment. For example, FIP does not detect the
read request that includes the NOECHO item code,
so the appl ication that issues such a read request
to the terminal driver (Tidriver) cannot use FIP as
a Japanese front-end input process. Also FIP does
not step into a process for the termination of a read
request simply because a read buffer that is defined
by an application has overflowed . FIP continues to
communicate with the Tidriver and a conversion
engine to get the Japanese string unless the term i
nate key is explicitly input. To overcome these con
fl icts, we implemented a pseudo-driver named
F!driver to intercept 110 requests from the appl ica
tion before they are processed by the Tidriver.

SEND START REQUEST

MAILBOX

PIP Mechanism Overview

FIP processes a l l Japanese input operations using
HM. We supplied the D igital Command Language
(DCL) command, INPUT START/STOP for activating/
deactivating FIP. Once a user activates FIP from
DCL, i t is available unti l the user logs out or the
system is deactivated.

Figure 10 shows FIP and i ts environment for
the manipulation of Japanese input. An appl ica

tion issues 1/0 requests to the Tidriver to get
user inputs, but FIP fetches the requests from
the Tidriver through the Fldriver. Then FIP starts
to communicate with the drivers and the Japanese
string conversion engine to pass the resultant
string as wel l as preedits to a screen.

The sequence of the front-end input process
fol lows.

1 . An application creates a front-end input
process.

2. A front-end input process exchanges packets
with an application through its mailbox.

3. An application issues a queued 110 ($QIO)
read request to the Tid river.

4. The Fldriver intercepts the request and passes
the information to FIP as a packet.

5. FIP issues a $QIO read request to the Tidriver
to get input strings for conversion.

MAILBOX

THE
I N PUT
STR I N G

S E N D START CONFI RMATION

F I P

T H E
RESULT
STRING

$QIO AST
$QIO READ/WRITE REQUEST

WRITE BACK THE RESULT

INTERCEPT OF READ $QIO F IDRIVER

Figure 10 PIP Environment for Manipulation of japanese Input

1 04 Vol. 5 No. 3 Summe-r 1993 Digital Technical journal

6. A user inputs a key from a terminal . FIP
receives the input and decides whether or not
to cal l a routine of the conversion engine. If
an input key is recognized as one of the con
version keys, FIP cal ls the routine and passes
the input strings. If not, FlP issues a $QIO
write request to the IT driver to echo an input
character.

7. A conversion engine receives a string and
converts i t to the Japanese string.

8. A conversion engine returns the resul t to FIP.

9. FIP issues a $QIO write request to the Tid river
to display the resultant string from the engine
and arranges the current editing l ine.

10. Steps 5 to 9 are repeated.

1 1 . Once a user inputs the Terminate key o f a n
appl ication's request, F I P recognizes i t a s a ter
minator and returns the entire resultant string
to the Fldriver as a write packet.

12. The Fldriver sends the resu lt string and 1/0
status to an application.

13. An application accepts the converted string.
After executing its internal process, i t issues
another $QIO read request to the Tidriver.
(Return to step 3.)

Fidriver The Fldriver is a pseudo-driver that inter
cepts $QJO read requests from an appl ication to
the Tidriver. Functioning as a bridge between ter
minal read requests and FIP, the FTdriver gets a read
request, passes its information to FIP, and maintains
it . When FIP returns the completion message with
its processed Japanese string, the Fldriver validates
it and completes a user's read request as if the
Tidriver had returned it. Thus the user/application
can get the Japanese string without modification
for Japanese input method.

The F!driver has other notification functions for
exception handl ing such as logout, cancel , or abort.

Front-end Input Process Operations All the oper
ations in the front-end input process are driven by
the mailbox event , the Fldriver event, and the key

event. Figure 1 1 shows the functional structure
of FIP.

The fol lowing operations in the front-end input
process correspond to these three events.

• Mailbox Event. The mailbox event provides

communication with an application. FIP issues

Digital Tecbtlicaljournal Vol. 5 No. 3 Summer 199:3

japanese Input Method Independent of Applications

FIP EVENT MANAGEMENT

KEY EVENT

ACTION CONTROL

TERMINAL I HENKAN
ACTION MODULE

FIDRIVER
EVENT

MAI LBOX
EVENT

Figure lJ FIP Functional Structure

a read request to its own mailbox. The mailbox
event notifies FIP of the arrival of a message from
an application. When an application sends a
start request to the FIP mai lbox, the mailbox
event is set so FIP starts to i n itial ize its environ
ment. Also FIP terminates itsel f at the time a stop
request message is del ivered to its mailbox.

• Fldriver Event. The F!driver event provides com
munication with the Fldriver. The F.ldriver inter
cepts a request from an appl ication to the
Tidriver and creates a packet for FIP. FIP issues a
read request to the Fidriver, and this event is set
when a packet is del ivered. A request is catego
rized in three types: read request, cancel
request, and disconnect request.

• Key Event. The key event provides commu
nication with the Tidriver. FIP issues a $QJO
read request to the Tidriver byte by byte. All
the input from a keyboard is recognized as a
key event in FIP. Once a key event is set in
FIP, FIP examines the key sequence in a read
buffer.

If the i nput is in the range of a terminator mask,
FIP terminates a read operation from the Tfclriver
and writes back the resu ltant string and 110 status
block to the Fldriver as a write packet. (A termina
tor mask is defined in the $QIO read request from
an appl ication.)

If the input key is a conversion key, FIP cal l s a
conversion engine and gets the resultant converted
string. Then FIP issues a write request to the
Tidriver to d ispl ay the updated string.

If the input key is a printable character, FIP
updates the contents of its internal buffers defined
in the context and issues a write request to the
Tidriver to echo the character.

If the i nput key is for l ine editing, for example, to
delete a l ine or a word or to refresh a l ine, FIP emu

lates the l ine-editing function of the Tid river so its
editing function is executed.

1 05

Product Internationalization

FIP stores a l l user input and read-request i nfor
mation from an appl ication i n its internal buffers
and database. The buffers contain the codes of user
input and corresponding video attributes to display.
The database contains item codes in a read request,
channel numbers to connect other devices, and
so on.

FIP creates a new database when the updated
read request from an application is del ivered, in
other words, when the Fldriver event is set. Also,
FIP adds the ASCII code and an attribute of the
updated user input into buffers when a user inputs,
that is, when the key event is set.

Client/Server Conversion

The use of a cl ient/server conversion has two
advantages: (I) It reduces the required resources
for language conversion by d istributing some com
ponents to other systems, and (2) It presents an
environment that shares a common dictionary.

A l l procedures for the Japanese conversion
require large system resources such as CPU power.
A user can place the conversion information server
(Ciserver) and a d ictionary on a remote node and
cal l some functions of the Clserver client l ibrary to
get the resultant string. In this way, a local system
saves i ts resources while the remote server pro
cesses the conversions.

In addition, many users can access a common
dictionary on the specific remote node. It is possi
ble for any local user to access a dictionary on a
remote node if the Ciserver on the node is active.

Clserver

The object name is " IM$CISERVER" . The Clserver
init ial izes itself by finding the name of a transport
protocol in a logical table. It then creates corre
sponding shareable images, maps its required rou
tines, and waits for a connect request from a client.
The Clserver communicates with its cl ient via a
mailbox at the transport level. The server sets the
asynchronous system trap to the mai lbox and reads
a message in it such as a connect request, a d iscon
nect request, a connect abortion, or a client's image
termination. The Clserver can identify the connec
tion to a cl ient and specify a conversion stream in
the connection.

Clserver Client Library The client l ibrary pre
sents program ming interfaces. These are cal lable
routines that execute various string manipulations

1 06

and operations for the Japanese conversion. The
Clserver cl ient l ibrary is located between an appli
cation and the Clserver body.

Input Method Control Program (IMCP) IMCP is
a command l ine interface to customize the Clserver
environment. A user sets proxy to a Japanese sys
tem d ictionary at a remote node on the network,
and IMCP administrates a proxy database. A user
can confirm the status of the server at a command
l ine and can shut down the server from the I.MCP
interface.

Other Servers HM has a conversion engine d is
patcher that can dynamical ly select from several
Japanese conversion engines. HM now serves the
CIS (Ciserver, Digital Japan), the Wnn (Omron
Company), the Canna (NEC), and the JSY (Digital
Japan) engines. Therefore, an appl ication that uses
HM as the Japanese conversion interface can select
its preferred engine.

Extension in the Future

In this section, we describe the possibi l i t ies for
international ization of FIP, HM, IMLIB, the Clserver,
and the Fldriver. Although our approach does not
provide a multi l ingual input method, i t does pro
vide an architecture that can be used for any
language.

FIP has a mu!t ibyte VO operation that can be
appl ied to other 2-byte languages. In addition, a l l
t h e read/wri te communications among FIP, the
Fldriver, and the Tidriver proved able to handle
one-byte languages such as Engl ish. Also, IMLIB can
expand its keybinding system for conversion of
other languages, and HM can add the interfaces for
conversion engines of other languages if such
engines are prepared.

Summary

The Japanese input method is a complex procedure
involving preediting operations. Various keybind
ing systems and manipulators accelerate input
operations. Our approach for the Japanese input
method allows an application three choices: (1) An
application can use a front-end input processor to
perform all operations including 1/0 . (2) An appli
cation can use the henkan module and implement
1/0 operation itself. (3) An application can execute
al l operations except keybinding, which is handled
by an input method library.

Vol. 5 No. 3 Summe-r 1993 Digital Technical journal

Acknowledgments
We want to express our appreciation to Katsushi
Takeuchi of the XTPU development team for his ini
tial designing and prototyping of IMLIB and some
implementation of f!P, and Junji Morimitsu on the
same team for h is initial implementation of IMLIB
and its compi ler. AJso, we wish to thank Makoto
lnada on the DECwindows team for his implementa
tion of HM; J-litosbi lzumida, Tsutomu Saito, and
Jun Yoshida from the JVMS driver team for their
contribution toward creating the Fldriver; and
Naoki Okuclera for his implementation to the
entire Clserver environment. As a fina l remark, we
acknowledge Eiichi Aoki, a n engineering manager
of ISEJapan, and Hirotaka Yoshioka in the !SA group
for their encouragement in writing this paper.

References

1 . Guides to the X Window System Program

mer's Supplement for Release 5 (Sebastopol,
CA: O'Reilly & Associates, Inc. , 1991) .

Digital Technical journal l'IJ/. 5 No. 3 Summer I'J93

japanese Input Method Independent of Applications

2. Standard X, Version 11, Release 5 (Cam
bridge, MA: MIT X Consortium, 1988).

3. K. Yoshimura, T. Hitaka, and S. Yoshida, "Mor
phological Analysis of Non-marked-off
Japanese Sentences by the Least BUNSETSU 's
Number Method," Transactions of Informa

tion Processing Society of japan, vol . 24
(1983).

4. K . Shirai, Y. Hayashi, Y. H irata, ancl]. Kubota,
" Database Formulation and Learning Proce
dure for Kakari-Uke Dependency Analysis,"
Transactions of lnfomzation Processing

Society of japan, vol. 26 (1985).

5. IMLIB/Open VMS Library Reference Manual

(in Japanese) (Tokyo : Digital Equipment Cor
poration Japan, Order No. AA-PU8TA-TE, 1993).

6. User's Manual for Defining User Keys in

JMLIB (in Japanese) (Tokyo: Digital Equipment
Corporation Japan , Order No. AA-PUSUA-TE,
1993).

1 07

I Further Rea dings

The Digital Tecbnical]ournal
publishes papers that explore
the teclmological foundations

of Digital �· nu�jorpmducts. J::ach

Journaljucuses on at least one
product area and presents a
compilatioll of refereed papers
written by the engineers u •ho
developed tbe products. The con
tent j(Jr the Journal is selected

by the jou rnal Advisory Board
Digital engineers who would

like to contribute a paper to the
Journal should contact the editor
at RDVAX:.RI.A I\.E.

1bpics covered in previous issues of rbe

Digital Technical journal are as fol lows:

Multimedia/ Application Control
Vol. 5, No. 2, -�Pring JCJ93, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems

Vol. 4, No. 4, Special Issue 1992, EY-)886£-DP

NV AX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY:J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-l521 E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H8R9E-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3. Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY+I876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter I99I, EY-F'588E-DP

l OR

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program

Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-C l 97E-DP

Compound Document Architecture
Vol. 2, No. I, Winter I990, EY-C196E-DP

Distributed Systems
Vol. I, No. 9,}une 1989, EY-C179E-DP

Storage Technology
Vol. 1, No. 8, February 1989, EY-Cl66E-DP

CVAX-based Systems
Vol. I, No. 7, August 1988, EY-6742£-DP

Software Productivity Tools
Vol. I, No. 6, February 1988, EY-8259£-DP

VAXcluster Systems
Vol. I, No. 5, September 1987, EY-8258£-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-6711 E -DP

Networking Products
Vol. 1, No. 3, September I986, EY-6715E-DP

MicroVAX ll System
Vol. 1, No. 2, March 1986, EY-3474E-DP

VAX 8600 Processor
Vol. l, No. I, August 1985, EY-3435£-DP

Subscriptions and Back Issues

Subscriptions to the Digital Technical journal are
available on a prepaid basis. The subscription rate

is $40.00 (non-u.s. $60.00) for fou r issues and $75.00
(non-u.s. $ 115.00) for eight issues. Orders should be

sent to Cathy Phil l ips, D igital Equipment Corpora

tion, 30 Porter Road LJ02/D 10, Little£On , Massa

chusetts 01460, U.S.A., Telephone: (508) 486 -2538,
FAX: (508) 486-2444. Inquiries can be sent electron
ical ly £O DTJ@CRL.DEC.COM. Subscriptions mus£ be
paid in U.S. dollars, and checks shou ld be made

payable to Digital Equipment Corporation.

Vol. 5 No . .3 Summer 19'J.) Digital Technical journal

Single copies and past issues of the Digital Technical
journal are avai lable for $ 16.00 each by cal l ing

DECdirect at 1-800-DIGITAL (1 -800-344-4825).
Recent back issues of the .Journal are available on

the Internet at gatekeeper.dec.com in the directory
/pub/DEC/DECinfo/DTJ.

Recommended Reading on
Internationalization Topics

B. Comrie, editor, The Wor"ld's Major Languages
(New York: Oxford University Press, 1987).

F. Coulmas, The Writing Systems of the World
(Oxford : Basil Blackwel l , 1989).

J. DeFrancis, The Chinese Language Fact and
Fantasy, Second Paperback Edit ion (Honolu lu :
University of Hawaii Press, 1989).

] . De Francis, Visible Speech: The Diverse Oneness
of Writing Systems (Honolulu: University of Hawaii

Press, 1989).

Digital Guide to Developing International

Soft-ware (Burlington, MA: Digital Press, Order

No. EY-F577E-DP, 1991) .

S . Mart in, Internationalization Explored
(UniForum, 1992).

MultiLingual Computing is a publ ication

of Worldwide Publ ishing Group, Clark Fork,

Idaho, U.S.A. and is available on the Internet :
Mult i l inguai@Applelink.Apple.com

A. Nakanishi, Writing Systems of the World, third

printing (Rutland, VT. and Tokyo: Charles E. Tutt le

Company, 1988).

D. Taylor, Global Software: Developing Applica
tions for the International Market (New York,
Berl in , Heidelburg, London, Paris, Tokyo, Hong

Kong, Barcelona, Budapest: Springer-Verlag, 1992).

The Unicode Standard, Version 1. 0, Volume 1

(Reading, MA: Addison-Wesley Publ ishing
Company, 1991) .

The Unicode Standard, Version l.O, Volume 2
(Reading, MA: Addison-Wesley Publ ishing

Company, 1992).

Digital Technical jounwl V<Ji. 5 No. 3 Summer 1993

Technical Papers by Digital Authors

R. Abugov, "From Trenclcharts to Contro l Charts:

Setup Tests for Making the Leap," IHFUSF:"Ml
International Semiconductor Manujltcturing
Science Symposium (June 1992).

R. Al-Jaar, "Performance Evaluation of Real-Time

Decision-Making Architectures for Computer

Integrated Manufacturing," Robotics and Computer
integrated Manufacturing (January 1992).

P Anick and S. Artemieff, "A High-Level Morpholog

ical Description Language Exploiting Morphological

Paradigms," Proceedings of the 15th International
Conference on Computational Linguistics (August

1992).

P. Anick and R. Flynn, ·· versioning a Ful l - text

Information Retrieval System," Fifteenth Annual
International ACM 5/GIR Conference on Research
and Development in Information Retrieval
(June 1992).

B. Archambeault , "A New Standard Radiator for

Shielding Effectiveness !\1easurcments," JF/:1::
International Symposium on Electromagnetic
CompatihUity (August 1992).

A. Berti and V Bol khovsky, "A Manufacturable

Process for the Formation of Self AI igned Coba lt

S i l icide in a Sub Micrometer CMOS Technology,"

Proceedings of the Ninth International VLS!
Multilevel Interconnection Conference (VMIC)
(June 1992).

G. Bock and D. Marca, "GROUPWARE: Software for

Computer-Supported Cooperat ive Work," IEEE
Computer Society Press Tutorial (January 1992).

C. Brench, "A Method to Improve E:\1 1 Shield ing
Predictions," IEEE Internal ional ::,:ymposium on
Electromagnetic Compatibility (August 1992).

D. Byrne, "Accurate Simu lation of Mu l tifn:qucncy
Semiconductor Laser Dynamics { lnder Gigabits

Per-Second Modulation," IF.H]ournal of
Lightwave Technology (August 1992).

R. Col l ica, "The Effect of the Nu mher of Defect

Mechanisms on Fau lt Clustering and its Detection

Using Yield Model Parameters;· IEEF Transactions

on Semiconductor Manujctcturing (August 1992).

109

Further Readings

D. Davies and). Pazaris. ''Requirements for Optical

Interconnects in Future Computer Systems,'' SPIE

International Symposium on Optical Applied

Science and Engineering (July 1<)92).

D. Dossa, "Above-Barrier Quasi-Bound Electronic

States in Asymmetric Quantum Wel ls,'' Physics

Review (March 1991) .

D. Dossa, "Observation of Above-Barrier Quasi

Bound States in Asymmetric Single Quantum Wells

by Piezomodulated Reflectivity," Applied Physics

Letters (November 1991) .

B. Doyle, C. Conran, and B. Fishbein, "Thermal

Instabil ity in P-channel Transistors with Reoxi

dized Nitrided Oxide Gate Dielectrics," IEEE

Fiftieth Device Research Conference (June 1992).

B. Doyle and K. Mistry, "Hot Carrier Stress Damage

in the Gate 'Off' State in n- Channel Transistors,"

IEEE Transactions on Electron Devices (July 1992).

R. Dunlop, "Design for Electronic Assembly,''
Design for Manufacturability (vol. 6 of the SME

Tool and Manufacturing Engineers Handbook
series) (January 1992).

M. Good, "Participatory Design of a Portable

Torque-Feedback Device;· CHI '92 Conference
Proceedinp,s (AC:\1 Conference on Human Factors

Computing Systems) (May 1992).

D. Krakauer and K. Mistry, "ESD Protection in a
3.3V Sub-Micron Sil icided CMOS Technology,'' IEEE

Electrical Over Stress/Electrostatic Discharge

Symposium Proceedings (July 1992).

P Martino, "Analysis of Complex Geometric
Tolerances by Linear Programming," ASk!£
Computer in Engineering (August 1992).

) . Oparowski and P Terranova, "Material

and Design Considerations of Flexible Signal

Connectors for the VAX 9000 MCU,'' ASM

International 7th Electronic Materials
and Processing Congress (August 1992).

A. Phil ipossian and D. Jackson, '· Kinetics of Oxide

Growth during Reoxidation of Lightly 7'l"itricled
Oxides," journal of the Electrochemical Society
(September 1992).

1 10

K. Ramakrishnan, " Effectiveness of Congestion

Avoidance: A Measurement Study,'' IEEE Infocom

'92 (May 1992).

K. Ramakrisbnan, P Biswas, and R. Karedla. ·'Anal

ysis of File I/O Traces in Commercial Computing

Environments," AC!H Sigmetrics (June 1992)

Y Raz, "The Principle of Commitment Ordering,
or Guaranteeing Serializabi l ity in a Heterogeneous

Environment of M ultiple Autonomous Resource

Managers Using Atomic Commitment," Proceed
ings of the 18th International Conference on Vezv

Large Databases (August 1992).

A. Rewari, "AI for Customer Service and Support,''

IEEE Expert (June 1992).

). Rose, "Fatal Electromigration Voids in Narrow

Aluminum-Copper Interconnect," Applied Phsyics

Letters (November 1992).

\V Samaras, "Futurebus+ Electrical Behavior for

High Performance," Bl!SCON '92 West Conference
Proceedings (Februaqr 1992).

M. Sayani, "DC-DC Converter Using All Surface

Mount Components and Insu lated-Metal

Substrate," IEEE Seventh Annual Applied Power

Electronics Conference (February 1992).

H. Smith and W Harris, "SIMS Quantification of

AsCs+ at CoSi2/Si Interfaces,'' Proceedings of the
Eighth International Conference on Secondary Jon
Mass Spectrometry (SIMS Vffl) (September 1991) .

M . Stick, "Matrices and Vectors,'' Six Sigma
Research Institute (April 1992).

R. Ulichney, "The Construction and Evaluation of

Hal ftone Patterns with Manipulated Power Spectra,"
Raster Imaging and Digital Typography (RIDT)
(October 1991) .

G. Wal lace, "The .JPEG St i l l Picture Compression

Standard," Communications of the ACJJ (April

1991).

G. Wal lace, "Overview of the JPEG (ISO/CCITT)
Sti l l I mage Compression Standard ," SPJE Image
Processing Algorithms and Techniques
(February 1990).

Vol. 5 No. 3 Summer 1993 Digital Technical jourrwl

I Recent Digital US. Patents

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original
published patent.

D337,761 M . Hetfield and S. K. Morgan E lectronic Device Module

D338,001 M.]. Falkner, M. R. Wiesenhahn, Positioning Device
and M. D. Good

D338,653

5, 185,877

5,220,661

5,224,263

5,225,790

5,226,092

5,226, 170

5,227,041

5,227,582

5,227,604

5,227,778

5,228,066

5,229, 575

5,229,901

5,229,914

5,229,926

5,230,044

5,231 , 246

5,232,570

5,233,616

5,233,684

5,235,21 1

5,235,642

5,235,644

5,235,693

M. Hetfield and S. K . Morgan

W Bruckert

A. H. Mason, W-M . Hu,
C. Kahn, ancl j. C. R . Wray

W Hamburgen

P. Esl ing ,J. M . Rinaldis, and
R. W Noguchi

K. Chen

P. Ru binfelcl

B. Brogden , L. Brown, and
S. Husain

]. Copeland and D. Robinson

G. M. Freedman

G. Vacon

C.]. Devane

L. Colella, R. Pacheco, and
D. Wal ler

M . L. Mailal)'

D. A. Bailey

D. Donaldson and D. Wissel!

N . Quaynor and X. Cao

D. Alessand rini ,] . M. Benson,
and W Rett

C. Byun, B. Haines, E. Johns,
Q. Ng, G. C. Rauch, R. M .
Raymond, and D. Ravipati

M. Cal lander

R. U l ichney

W Hamburgen

M . Abacl i , A. Birrel l ,
B . W Lampson , and
E. Wobber

B. W Lampson, C. Kaufman,
W Hawe, M. F Kempf,]. Tarclo,
and A. Gupta

M. Gagliardo, J J Lynch,
and P. M. Goodwin

Power Supply Module

Protocol for Transfer of DMA Data

System and Method for Reducing Timing Channels
Digital Data Processing Systems

Gentle Package Extraction Tool and Method

Tunable Wideband Active Filter

Method and Apparatus for Learning in a Neutral Network

Interface between Processor and Special Instruction
Processor in Digital Data Processing System

Dry Contact Electroplating Apparatus

Video Amplifier Assembly Mount

Atmospheric Pressure Gaseous-Flux-Assisted Laser
Reflow Soldering

Service Name to Network Address Translation in
Communications Network

System and Method for Measuring Computer System
Time Intervals

Thermode Structure Having an E longated, Thermal ly
Stable Blade

Side-by-side Read/Write Heads with Rotal)' Positioner

Cooling Device that Creates Longitudinal Vortices

Power Supply Interlock for Distributed Power Systems

Arbitration Apparatus for Shared Bus

Apparatus for Securing Shie lding or the Like

Nitrogen-Containing Material s for Wear Protection and
Friction Reduction

Write-back Cache with ECC Protection

Method and Apparatus for Mapping a Digital Color Image
from a First Color Space to a Second Color Space

Semiconductor Package Having Wraparound Metal lization

Access Control Subsystem and Method for
Distributed Computer System using Locally Cached
Authentication Credentials

Probabilistic Cryptographic Processing Method

Method and Apparatus for Red ucing Buffer Storage in
a Read-Modify-Write Operation

Digital Technical jounwl 1�1/. 5 No. 3 Summer !')').) 1 1 1

Recent Digital US. Patents

5,23';,697

5,237,662

5,239,260

5,239,493

5,239,630

5,239,634

5,239,637

5,240,549

5,240,740

5,241 ,564

5,241 ,621

5,241,652

1 1 2

S. C . Steely and). H . Zurawski

T. L. Carruthers, K. Green,
and S. Jenness

D. llingleb and D. C. Widder

S. K. Sherman

R. F Lary and X. Cao

B. Buch and C. MacGregor

D. W Thiel, W Goleman,
and S. H . Davis

). E. Fitch and W Hamburgen

K. A. Frey and M . L. Mallary

). L . Yang

R . Smart

W Barabash and W Yerazunis

Set Prediction Cache Memory System using Bits of the Main
Memory Address

System and Method with a Procedure Oriented
Input/Output Mechanism

Semiconductor Probe and Al ignment System (SPAS)

Method and Apparatus for Interpreting and Organizing Timing
Specification Information

Shared Bus Arbitration Apparatus Having a Deaf Node

Memory Control ler for Engineering/Dequeui ng Process

Digital Data Management System for Maintaining Consistency
of Data in a Shadow Set

Fixture and Method for Attaching Components

Method of Making a Thin Film Head with Minimized
Secondary Pulses

Low Noise, H igh Performance Data Bus System and Method

Management Issue Recognition and Resolution
Knowledge Processor

System for Performing Rule Partitioning in a RETE Network

Vol. 5 No. 3 Summer (993 Digital Techuical jom.,ral

ISSN 0898-901X

Printed in U.S.A. EY-P986E-DP/93 10 02 17.0 Copyright © Digital Equipment Corporation. All Rights Reserved.

e
p
.... . n
0 0....
(I)

; ��CU'U � b��'J�1W
� � Vl
!')
0....
(I)
Pl" :::: -n

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	International Cultural Differences in Software
	Unicode: A Universal Character Code
	The X/Open Internationalization Model
	The Ordering of Universal Character Strings
	International Distributed Systems - Architectural and Practical Issues
	Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System
	Character Internationalization in Databases: A Case Study
	Japanese Input Method Independent of Applications
	Further Readings
	Recent Digital U.S. Patents
	Back cover

