
August 1978

The TRAX Support Environment User's Guide is a combination
tutorial/reference manual directed to programmers with a wide
range of technical background.

TRAX
Support Environment

User's Guide

AA-D331 A-TC

OPERATING SYSTEM AND VERSION: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, August 1978

The information in tltis document. is . subject to change without notice ~d should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-l0
DECtape
DIBOL
EDUSYSTEM
FUPCHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-I0

CONTENTS

Page

PREFACE

CHAPTER 1 INTRODUCTION TO TRAX SUPPORT ENVIRONMENT 1-1

1.1 WHAT ISTRAX 1-1
1.2 THE SUPPORT ENVIRONMENT 1-1
1.3 INTERACTIVE COMMAND PROCESSING 1-2
1.3.1 Prompts 1-2
1.3.2 Error Messages 1-3
1.4 BATCH FILE PROCESSING 1-3
1.5 INDIRECT COMMAND FILE PROCESSING 1-4
1.6 PROGRAMMING LANGUAGES 1-5
1.6.1 BASIC-PLUS-2 Language 1-5
1.6.2 COBOL 1-5
1.7 FILE STORAGE 1-5

CHAPTER 2 USING THE TRAX TERMINAL 2-1

2.1 THE KEYBOARD 2-1
2.2 A SAMPLE INTERACTIVE SESSION 2-1
2.3 ACCESSING THE SYSTEM 2-6
2.3.1 User Identification Code 2-6
2.3.2 The User Name 2-6
2.3.3 Password 2-6
2.3.4 Logging In = = the LOGIN Command 2-6
2.3.5 Tenninating a Session = = the LOGOUT Command 2-7
2.4 REQUESTING COMMAND INFORMATION = = THE

HELP COMMAND 2-8

CHAPTER 3 MANAGING FILES AND VOLUMES 3-1

3.1 FUNDAMENTAL CONCEPTS 3-1
3.2 FILE SPECIFICATION CONVENTIONS 3-1
3.2.1 Default File Specification Elements 3-3
3.2.2 Wildcards 3-3
3.2.3 Standard File Types 3-4

iii

CONTENTS (CONT.)

Page

3.3 FILE OWNERSHIP AND SECURITY 3-4
3.3.1 The User File Directory 3-4
3.3.2 File Security 3-5
3.4 FILE MANAGEMENT 3-7
3.4.1 Creating Files 3-7
3.4.1.1 The RMSDEF Utility 3-7
3.4.1.2 The EDIT Command 3-8
3.4.1.3 The CREA TE Command 3-8
3.4.2 Copying Files 3-10
3.4.3 Appending Records 3-10
3.4.4 Merging Records 3-11
3.4.5 Renaming Files 3-11
3.4.6 Sorting Files 3-12
3.4.7 Displaying File Contents 3-12
3.4.8 Printing Files 3-13
3.4.9 Removing Files from a Directory 3-13

CHAPTER 4 MANAGING SYSTEM DEVICES AND VOLUMES 4-1

4.1 ACCESSING DEVICES 4-1
4.l.l Displaying Device Names and Status 4-2
4.l.2 Allocating and Deallocating a Device 4-4
4.l.3 Mounting a Volume for File Access 4-4
4.l.4 Dismounting a Volume 4-4
4.2 PREPARING DEVICES 4-5
4.2.1 Displaying and Changing Device Characteristics 4-5
4.2.2 Initializing a Volume for File Access 4-5
4.2.3 Creating a User File Directory (UFD) 4-5
4.3 ASSIGNING DEVICES 4-5
4.3.1 Making and Changing Device Assignments 4-6
4.3.2 Displaying Device Assignments 4-6
4.3.3 Making and Changing Device Assignments 4-7

CHAPTERS PROGRAM DEVELOPMENT 5-1

5.l INTRODUCTION 5-1
5.2 CREATING SOURCE FILES 5-1
5.3 COMPILING SOURCE FILES 5-2
5.3.1 Using COBOL 5-2
5.3.l.1 Compiling Source Files 5-2
5.3.1.2 Linking COBOL Object Files 5-3
5.3.2 Using BASIC-PLUS-2 5-4
5.3.2.1 Creating BASIC-PLUS-2 Source Files 5-4
5.3.2.2 Invoking BASIC-PLUS-2 5-4

iv

CONTENTS (CONT.)

Page

5.3.2.3 Compiling and Linking a BASIC-PLUS-2 Source Program 5-5
5.4 TASK EXECUTION AND CONTROL 5-6
5.4.1 Running a Task: the RUN Command 5-6
5.4.2 Displaying Task Status: SHOW TASKS 5-7
5.4.3 Aborting Either a Task or Command: the ABORT Command 5-7

CHAPTER 6 BATCH PROCESSING 6-1

6.1 FUNDAMENT AL CONCEPTS 6-1
6.2 BATCH COMMAND FORMAT 6-1
6.3 THE BATCH PROCESS COMMAND SET 6-2
6.4 THE BATCH LOG FILE 6-2
6.5 BEGINNING AND ENDING A BATCH JOB 6-3
6.6 BATCH DATA BLOCKS 6-3
6.7 ERROR STATUS AND SEQUENCE CONTROL 6-4
6.7.1 Status Levels 6-5
6.7.2 Conditional Processing 6-5
6.7.3 The $ON Command 6-5
6.7.4 The $Set [NO] ON Command 6-6
6.7.5 The $IF Command 6-6
6.7.6 The $GOTO Command 6-7
6.8 SUBMITTING A BATCH JOB 6-7

CHAPTER 7 INDIRECT COMMAND FILES 7-1

7.1 CREATING AN INDIRECT COMMAND FILE 7-1
7.2 INVOKING INDIRECT COMMAND FILES 7-1

CHAPTER 8 FORMAT CONVENTIONS 8-1

8.1 COMMAND DESCRIPTIONS 8-1
8.2 GENERAL FORMAT NOTATIONS 8-1
8.3 ISSUING COMMANDS 8-2
8.3.1 Command Structure 8-2
8.3.2 Command Names 8-3
8.3.3 Parameters 8-3
8.3.3.1 Optional Parameters 8-4
8.3.3.2 Parameter Lists 8-4
8.3.4 Qualifiers 8-4
8.3.4.1 Command Qualifiers 8-5
8.3.4.2 Parameter Qualifiers 8-5
8.3.5 Underline Convention 8-5
8.4 TERMINAL KEYBOARD FUNCTIONS 8-5
8.5 CORRECTING INPUT ERRORS 8-8

v

CONTENTS (CONT.)

Page

8.5.1 Deleting Individual Characters 8-8
8.5.2 Deleting a Line 8-8
8.6 ABBREVIATIONS 8-9

CHAPTER 9 COMMAND DESCRIPTIONS

9.1 ABORT 9-1
9.2 ALLOCATE 9-3
9.3 APPEND 9-4
9.4 ASSIGN 9-5
9.5 BASIC 9-6
9.6 COBOL 9-7
9.7 COpy 9-8
9.8 CREATE 9-10
9.9 CREATE/DIRECTORY 9-15
9.10 $DATA 9-16
9.11 DEALLOCATE 9-17
9.12 DEASSIGN 9-18
9.13 DELETE 9-18
9.13.1 DELETE File 9-19
9.13.2 DELETE Queued Job 9-19
9.14 DIRECTORY 9-20
9.15 DISMOUNT 9-24
9.16 EDIT 9-24
9.17 $EOD 9-25
9.18 $EOJ 9-26
9.19 $GOTO 9-26
9.20 HELP 9-27
9.21 $IF 9-28
9.22 INITIALIZE 9-29
9.23 $JOB 9-32
9.24 LIBRARIAN 9-33
9.24.1 LIBRARIAN CREATE 9-33
9.24.2 LIBRARY DELETE 9-35
9.24.3 LIBRARIAN EXTRACT 9-36
9.24.4 LIBRARIAN INSERT 9-37
9.24.5 LIB RARIAN LIST 9-38
9.24.6 LIBRARIAN REPLACE 9-39
9.24.7 LIBRARIAN SQUEEZE 9-40
9.25 LINK 9-41
9.26 LOGIN 9-48
9.27 LOGOUT 9-49
9.28 MACRO 9-50

vi

CONTENTS (CONT.)

Page

9.29 MERGE 9-52
9.30 MESSAGE 9-54
9.31 MOUNT 9-55
9.32 $ON 9-57
9.33 PRINT 9-58
9.34 PURGE 9-61
9.35 RENAME 9-63
9.36 RUN 9-64
9.37 SET 9-65
9.37.1 SET DEFAULT 9-65
9.37.2 SET DEVICE 9-67
9.37.3 $SET [NO] ON 9-68
9.37.4 SET PROTECTION 9-69
9.37.5 SET QUEUE 9-70
9.37.6 SET TERMINAL 9-73
9.38 SHOW 9-74
9.38.1 SHOW ASSIGNMENTS 9-75
9.38.2 SHOW TIME 9-76
9.38.3 SHOW DEFAULT 9-76
9.38.4 SHOW DEVICES 9-77
9.38.5 SHOW QUEUE 9-78
9.38.6 SHOW TASKS 9-82
9.38.7 SHOW TERMINAL 9-85
9.39 SORT 9-86
9.40 SUBMIT 9-92
9.41 TYPE 9-93
9.42 UNLOCK 9-94

APPENDIX A THE RMSDEF INTERACTIVE UTILITY

A.l PURPOSE A-I
A.2 EFFECf A-I
A.3 UTILITY CALL AND TERMINATION A-3
A.4 PROCESS A-4
A.4.1 Command File A-4
A.4.2 File Specification A-5
A.4.3 Data Structure A-5
A.4.4 Key Defmition A-7
A.4.5 File Structure A-IO
A.4.6 Data Allocation A-12
A.4.7 Protection A-I2
A.4.8 File Creation A-I3

vii

CONTENTS (CONT.)

Page

A.4.8.1 Success A-14
A.4.8.2 Error A-14

APPENDIX B TRAX SUPPORT ENVIRONMENT MESSAGES B-1

B.l ABORT B-1
B.2 ALLOCATE B-2
B.3 APPEND B-2
B.4 ARCHIVE B-5
B.5 COpy B-22
B.6 CREATE B-25
B.7 DCL B-28
B.8 DISMOUNT B-33
B.9 INITIALIZE B-34
B.lO LIBRARIAN B-36
B.ll LINK B-39
B.12 LOGIN B-41
B.13 MERGE B-41
B.14 MOUNT B-45
B.15 RENAME B-47
B.16 SET B-47
B.17 SORT B-48

APPENDIXC TRAX I/O ERROR CODES C-l

APPENDIXD RMS COMPLETION STATUS CODES D-l

0.1 SUCCESSFUL COMPLETION STATUS CODES D-l
0.3 FATAL ERROR CRASH ROUTINE D-15
0.4 FATAL USER CALL ERRORS D-15
0.5 RMS-il INCONSISTENT INTERNAL CONDITIONS ERRORS D-15

viii

CONTENTS (CONT.)

Page

FIGURE 2-1 LA36/VT52 Keyboard Layout 2-2
2-2 Sample Terminal Session 2-3
A-I Interactive DEFINE Processing A-2

TABLE 3-1 Standard Physical Device Names 3-2
3-2 Standard File Types 3-4
8-1 Keyboard Functions 8-6
8-2 Control Key Functions 8-7
9-1 Valid Key Parameter Combinations 9-13
B-1 General Error and I/O Error Message Codes B-17
D-l Successful Completion Status Codes D-2
D-2 Error Completion Status Codes D-2

ix

PREFACE

This manual has two main divisions. Part I is primarily tutorial. You are assumed to have
some experience with programming and interactive terminal operation, but little or no prior
experience with the TRAX Support Environment. Part I consists of seven chapters:

• Chapter I explains the purpose and design philosophy of TRAX and the TRAX
Support Environment, including the Digital Command Language (DCL).

• Chapter 2 introduces interactive terminal operation in the TRAX Support
Environment, using a simple annotated terminal session.

• Chapter 3 introduces file creation and management, including the format of the file
specification used to identify files.

• Chapter 4 describes basic device handling in the TRAX Support Environment.

• Chapter 5 describes the process of developing programs into executable tasks.

• Chapter 6 explains the fundamentals of batch processing.

• Chapter 7 explains the use of indirect command files.

Part II consists of reference information. It covers in detail many subjects covered only
generally in Part I.

• Chapter 8 explains command syntax.

• Chapter 9 describes the set of TRAX commands available to the general user.
Commands are presented in alphabetical order.

The TRAX Support Environment described herein provides a traditional command language
environment. It is designed to assist you in developing transaction step tasks and tasks that
augment the transaction processing system such as reports. Through it, facilities, such as
source language compilers and assemblers the DEC EDITOR, and the Linker.

This manual does not describe these other software facilities in detail, however. Rather, it
explains in general what they are, what they do, and how to invoke or access them. To use
them effectively, you will need to consult other manuals in the TRAX documentation set.
These manuals include:

x

l. For language and compiler interface information:

TRAX BASIC-PLUS-2 Language Reference Manual (Order No. AA-D366A-TC)
TRAX BASIC-PLUS-2 Language User's Guide (Order No. AA-D377 A-TC)
TRAX COBOL Language Reference Manual (Order No. AA-D338A-TC)
TRAX COBOL Language User's Guide (Order No. AA-D339A-TC)
TRAX MACRO Language Reference Manual (Order No. AA-D340A-TC)
TRAX RMS MACRO Programmer's Guide (Order No. AA-D344A-TC)

2. For file creation and manipulation:

DEC EDITOR Reference Manual (Order No. AA-D347 A-TC)
TRAX SORT Reference Manual (Order No. AA-D346A-TC)

3. For linking:

TRAX Linker Reference Manual (Order No. AA-D342A-TC)
TRAX System Manager's Guide (Order No. AA-D332A-TC)

xi

xii

PART ONE

USING THE TRAX SUPPORT ENVIRONMENT

- A TUTORIAL -

1.1 WHATIS TRAX?

CHAPTER!

INTRODUCTION TO TRAX
SUPPORT ENVIRONMENT

One can regard TRAX as two distinct but complementary operating environments: the Trans
action Processing Environment and the Support Environment.

The transaction processing environment is oriented to the operation of an established transaction
processing application by an individual at an application terminal. Such an individual knows the
interactions of the application, but is usually not a programmer.

The Support Environment is intended for program development, for control and monitoring of
transaction processing, and for subsidiary applications that do not use transaction processing
functions, such as the running of routine inventory reports or customer billing. It is a traditional
command-language facility by which you can develop and" run stand alone support programs, either
interactively or through batch processing.

1.2 THE SUPPORT ENVIRONMENT
As a Support Environment user, you will work by entering commands at a terminal and control
only the terminal at which you log in. You will-issue commands using a version of DIGITAL Com
mand Language (DeL) designed specially for TRAX.

The Support Environment is used for the following types of processing:

• Controlling and supervising of transaction processing, batch processing, and spooling
• Running of support programs related to transaction applications
• Editing of source program and data files
• Compiling, linking, and debugging of programs
• Defining and implementing transaction processors
• File backup and recovery

Programs running in the Support Environment are called support programs, and a TRAX terminal
logged into the Support Environment is called a support terminal. Such programs and terminals
cannot modify files to which a running transaction processor has write access. Support programs
run under control of a support terminal or a batch processor.

The basic uhit of executable code is called a task. Each DCL command that you enter and each
program that you run is ~ task:.

To qualify as a task, a program 'must be compiled and linked with all necessary support routines.
Linking a program forms an executable task image and stores it as a permanent file on disk. When
you command the system ~o rut:t a task, the system retrieves the executable task image from the
file that you specify. -

1-1

Introduction To TRAX Support Environment

The system schedules the running of tasks according to the priority of the task and the availability
of system resources. The resources include computer memory and devices needed to perform
input/output. An efficient scheduling technique allows many tasks to be processed simultaneously
on a demand basis.

Every Support Environment user has a unique identification, and each terminal has a unique
device name. These identifiers key the system as to the origin of each command, each task, and
each data input, and also direct output to the proper destination.

The Support Environment offers two general methods of command processing:

• Interactive command processing
• Batch command processing

In either method, you direct the system by means of commands. In interactive processing, you
type commands one at a time in response to a prompt from the system. In batch processing, you
create a file containing commands for each operation you want performed, together with all data
that you expect the system to request while processing the commands. Batch jobs are processed
on virtual tenninals created by the system; this frees your terminal for other activity.

You can reference indirect command files during interactive sessions or batch processing jobs. An
indirect command file is a file consisting of one or more interactive commands to be executed as a
unit. If you have a sequence of commands that you use fairly often or a long, complex command,
you can create a file containing this command information. Later you can invoke this indirect
command file by a simple command.

The DeL command language provides the following general capabilities:

1. Beginning and ending an interactive session or batch job
2. Creating, editing, and managing files
3. Allocating and controlling devices
4. Developing and running programs
5. Monitoring and controlling program execution

1.3 INTERACTIVE COMMAND PROCESSING
All communication between user and system occurs during a terminal session. The user initiates a
terminal session by logging in and terminates a session by logging out.

Interactive command processing is conversational in nature. It consists of a two-way communica
tion between you and the system. You initiate each action with a command, entering commands
one at a time. After entering a command, you wait for the system to perform the requested
action. When the system completes processing of your command or determines that it cannot
comply, it infonns you accordingly with prompts or error messages.

1.3.1 Prompts
Various prompts inform you as to when the system expects input and what type of input it
expects. The prompt character (» indicates that a DeL command is expected.

1-2

Introduction To TRAX Support Environment

If you do not supply all the information necessary to execute a command, the system will prompt
for required items. The COpy command, for example, requires the name of an input file (the
file to be copied) and an output ftIe (the copy). If you do not specify these files, TRAX will
prompt for them.

>COPY
FROM? NEWFILE.DAT
TO? NEWFILE2.DAT

Some commands invoke system functions that have prompting modes of their own. EDIT is one
such command.

The following example shows three different types of prompts:

>EDIT
FIL.E'? MYPROG+CBL

*
As noted previously, the> symbol is the DCL prompt; this means that whatever is entered next
will be treated as a DCL command. In this example you respond to the prompt by typing an
EDIT command to invoke the DEC EDITOR.

EDIT is one of many DCL commands that can prompt for command parameters. The editor
program needs a file, and the system prompts for a file specification by typing FILE?

After you specify the file to be edited, the system locates the ftIe and makes it available to the
editor. At this point, the editor is ready to process editing commands and signifies this by display
ing its own prompt-an asterisk.

1.3.2 Error Messages
An error message can occur for various reasons, and the contents of the message usually gives an
indication of the problem. For example:

>EDIT ABCXYZ
ED! -- FILENAME OR FILETYPE NOT SPECIFIED

The message occurs because required information was omitted. (The EDIT command requires
that you specify both the file name and file type components of the file you want to edit.) On
the next line, the system prints the DCL prompt character (» allowing you to enter the command
correctly.

1.4 BATCH FILE PROCESSING
Batch processing allows you to execute a terminal session off-line. The batch processor creates a
virtual tenninal for the batch job. A virtual terminal is an entity with the logical attributes of an
interactive terminal. By creating a virtual terminal as a processing medium for your batch job,
the system frees your interactive terminal for other use.

1-3

Introduction To TRAX Support Environment

Instead of entering commands one at a time and entering data interactively, you create a rtIe con
taining all information that you would enter during an interactive session. This infonnation
includes commands and any data that you expect the tasks to require during execution. This
fIle, or series of fIles, is submitted to the batch processor and is called a batch job.

For the most part, command lines in a batch file are the same as command lines entered interact
tively, but there are differences:

1. Command lines in a batch flie must be identifIed as such by a dollar sign ($) as the first
character of the command line. Lines that do not begin with a dollar sign are treated as
data for the preceding command.

2. Every batch command fIle begins with a $JOB command and ends with an $EOJ command.
These are logically parallel to the LOGIN and LOGOUT commands that begin and end an
interactive session.

3. The batch command set includes commands that can specify alternative actions, respon
sive to processing conditions. This allows monitoring of job execution. Batch commands
can be labeled to facilitate skipping of commands.

Each batch job produces a log file that records its activity. When listed, it provides a hard copy
record of the job similar to information that appears on the terminal during an interactive session.

See Chapter 6 for a detailed description of batch processing.

1.5 INDIRECT COMMAND FILE PROCESSING
An indirect command file is a file containing a fixed sequence of commands. Unlike a batch file,
it cannot contain data, and commands must be in interactive format (no dollar sign prefIx, no
labels, and no conditionals). It does not constitute a terminal session, only an adjunct to the
terminal session that calls it.

Certain specific command sequences occur fairly often. Also, some individual commands can be
rather long and complicated. You can create indirect command files containing such command
sequences.

To execute an indirect command file, type an at sign (@) followed by the file specification of the
indirect flie. The system then retrieves the indirect command fIle and executes the commands
contained therein as though they had been entered directly through the tenninal keyboard or
included in the batch stream.

One key difference between batch and indirect file processing is in the way data is supplied to
tasks. Tasks initiated by batch jobs obtain input from data blocks in the batch stream, while
tasks initiated by commands in an indirect file expect interactive input, entered at the issuing
terminal.

1-4

Introduction To TRAX Support Environment

Moreover, an indirect command fIle is executed immediately, on the same terminal. A batch flle
requires the system to create a virtual terminal. Its time of execution is uncertain, because it
competes with other batcli jobs for processing by a batch processor.

See Chapter 7 for a detailed description of indirect command file use.

1.6 PROGRAMMING LANGUAGES
Two programming languages-BASIC-PLUS-2 AND COBOL-are supportable in the Support
Environment. Each compiler is called by a DCL command that you can use in both interactive
and batch mode, or can include in indirect files. Chapter 5 explains how these languages are used
in the Support Environment and how source programs are processed into executable tasks, using
the TRAX Linker. For detailed information on a programming language, refer to the language
reference manual and user's guide for the particular language.

1.6.1 BASIC-PLUS-2 Language
The BASIC language is easy to learn and is widely used in educational, business, and scientific
applications. The BASIC compiler available to the Support Environment is called BASIC-PLUS-2
and includes many advanced features. In this manual the term BASIC generally refers to the
programming language. The term BASIC-PLUS-2 is used only when necessary to emphasize
attributes of the BASIC-PLUS-2 compiler.

1.6.2 COBOL
COBOL (Common Business Oriented Language) is a pseudo-English language designed primarily
for business applications. The TRAX Support Environment uses the PDP-II COBOL compiler.
This compiler uses a terminal-oriented line format.

TRAX COBOL conforms to the American National Standard Programming Language COBOL,
ANSIX3.23-1974, levell, and offers many higher level features. Several utility programs are
provided.

1.7 FILE STORAGE
The Support Environment provides a set of commands for storing and maintaining information.
All information is stored in logical units called files.

A file is defined as an ordered collection of information. The maximum size of a file is one disk
volume. A file can be empty and occupy no disk storage space. If a file contains information,
its minimum size is one disk block (512 bytes).

As a Support Environment user, you will encounter may types of files: source program files, data
files, compiled object files, command files, task images, and batch files, to name only a few of the
most common types. The system provides a standard set of mnemonic file type identifiers that
you can use by default, and also allows you to define file types.

Each fIle is identified by a unique fIle specification. The fue specification contains several details:
the storage device, the directory on which the file existence is recorded, the file name, the file
type, and the version number.

1-5

Introduction To TRAX Support Environment

Any rue can be protected against unauthorized access by means of a rue security facility.

Every user has at least one User File Directory (UFD). This is a special rue that lists all the fIles
belonging to the user. Chapter 3 describes rue management techniques in detail, and Chapter 4
describes the techniques of handling the devices and volumes on which fIles are maintained.

1-6

CHAPTER 2

USING THE TRAX TERMINAL

This chapter introduces terminal operation in the TRAX Support Environment. It describes the
terminal keyboard and illustrates, by means of a sample session at an LA36 terminal, how to
issue various DCL commands.

2.1 THE KEYBOARD
The interactive user enters information into the system from a terminal. Various types of
terminals can be connected to the system. All have a keyboard that is similar to the keyboard
of a typewriter. Number and letter keys are in traditional typewriter format, but punctuation
and special characters may be in different positions from one type of terminal to another. Also,
terminals have special function keys that typewriters do not have; these vary from one terminal
to another and in some cases may have different names. These functions are described in
Chapter 8.

Figure 2-1 shows the keyboard layout for the LA36 and VT52 terminals. These terminals are
supported at TRAX installations. The LA36 isa DECwriter terminal that uses a hard-copy
(that is, character printing) display, and the VT52 uses a video display.

2.2 A SAMPLE INTERACTIVE SESSION
You communicate with the system by typing commands. Each command defines an action for
the system to perform.

This section demonstrates the use of DCL commands in an interactive terminal session. Figure
2-2 shows the actual commands and system response.

NOTE
In this example, as in some other examples later in
the manual, all system output is printed in red, while
all input by the terminal operator is shown in black.
The numbers in the left margin are for reference, and
do not appear in the actual listing.

Every interactive session begins with a LOG IN command (1) to access the system. After you
type the command name LOGIN, the system responds by displaying USERID?; you respond
by typing your User Name, which in this case is SAMPLE. Then the system requests you to enter
your password, a string known only to you and the system. Notice that the password string is
not displayed as you type it.

You complete the LOGIN sequence, and the system responds with an acknowledging message.
When the system displays the prompt (», it is ready to receive command input.

The first word of every command line (that is, the first work you type after the prompt (»
appears) is a command name. As you will see later in this session, some commands require only

2-1

Using The TRAX Terminal

~[JJLIJmrn~[;][I]rnrn[IJQrn~~B
~@]~LIJ[§J[!]0~[!]@]0ITJ[I]~B

\ CTRL I § 0 ~ @] [£J ~ ~ 0 [KJ [[] D CJ OJ I RETURN I

\ SHIFT I [I] 0 @] 0 ~ ~ ~ ~ ~ rn ISHIFTIIREPEATI

Figure 2-1 LA36/VT52 Keyboard Layout

2-2

(1) > LOGIN
USERID"r SAMPLE
PASSWORD:

TRAX VERSION 1.0A SYSTEM

GOOD AFTEF~NODN

18-JUL-78 14:37 LOGGED ON TERMINAL T14:

(2) > DIRECTORY

DIRECTORY D80:[40,40J
1. B·_·JUL --78 14: 38

(").LST;l 1 ~
A~()DL;1 1 +

.. ~.()BJ;l 2 •
A. TSI,; 1 27.
A.CBL;2 1 +

TOTAL OF 32+/32. BLOCKS

>DIRECTORY TEST2

(3) DIR -- NO SUCH FILE(S)

(4) :> EDIT TEST2. B2S
*1

1 Bu-,JUL ····'1B
18··-JUL-·'1B
:l8-·JUL.·- '18

C 1 B·_·JUL '-78
1 8 _ .. J U L. ._. '? B

IN 1:;-
... J + FILES

14:14
14: :1.4
14:14
14:14
14:1~5

100 PRINT 'THIS IS A SIMPLE BASIC PROGRAM.'
(5) 32'167 END

*EXIT
2 LINES OUTPUT

(6) :> TYPE TEST2. B2S
100 PRINT 'THIS IS A SIMPLE BASIC PROGRAMt'
:3276'7 END

(7) :> BA-SIC

Basic Pll.J£; 2 V01-·53

Basic2

Figure 2-2 Sample Terminal Session

Using The TRAX Terminal

2-3

Using The TRAX Terminal

OL.D TEST2

Basic2

COMPILE TESl2

Basic2

BUILD TEST2

:Basic:.~

(8) EXIT

(9) >LINK/B(~SIC TEST2

(10) >HUN TEST2
THIS IS A SIMPLE BASIC PROGRAM.

(11) >nIRECTOF~Y TEST2 ~ *

DIRECTORY DBO:[40,40]
:I. 8··-JUI '70 :l.4! -4 I'

TEST2 ~ B2~) ~ 1 1 . :I. B····,JUL. ····78
TE~3T2 + OBj, :I. 'j J B····,JUI...····?B ." ... +

TEST2 . CMD; :I. 1 " :I. B····JUL.····7B
TEST2 + ODI ... ; 1 :I. .:. 1 D····JUt. ····78
TEST2 . T5K ;; :I. :I. 9 " C J n .. ··, JUl..·_·/B

TOTAl.. OF 24./32. Bl..OCKS IN 5. FILES

(12) >COPY
FROM? TEST2" T~:;":
TO? [4(h41]

(13) >COpy L350 ~ 230 J (~r1()F~T • *
TO? [40v40]

(15) >TYPE f.,MORT. B2S

2-4

TYP -- NO SCCH FIL.E(S)
S YO: [40,40::1 I"IMDF:T (. B2S

J4 ~ 43 (.

:I. 4 ~ 4~'='; ;;

:1.4 . 4::.:j ,.

14 . 4~5
:1.4 " .il\~) "

Using The TRAX Terminal

(16):> TYPE INTI~ST. B2S
1 0 :i. n }':, 1 • .1 t .. ' in t ere s t..' .j

20 let j=J/100
30 input 'amount' a
40 input 'number of ~ears/;n
~.5 0
60
".70
100

input 'pssments per sear'; m
let n=n*m \ i=~/ffi \ b=1ti
If.~t \ ::::a*:i./ (:/.····l/b' ... n)
F' r:i. nt. ,. amount f':'e r F .. aSmf.·~nt:::: I ; i nt (T'* 1. 0""2+ <·5) /10'"'2

110
1000

print 'total interest =';int«r*n-a)*10~:2t.5)/10~:2

£-:·ncl

(17) :> RUN INTRST
:i. n t f? T' f:~ ~::. t
'f 1 ()
BITtDunt

? 5000
number of sears? 5
pssments per ~ear? 12
amount per pasment= 106.24
total interest = 1374.11

(18) >DIRECTORY [)I(~*]

DIRECTORY DBO:[l,lJ
1. <;'····,JUI...···· I'D :1.:1.: 43

nL.DCnBI...JBy01...P~l

f')ML IB ,. OLB; :I.
C(]BF~TS • Cl"lD , 1 .I.
SYSLIB~()L.B'2

JUN2092~7.; ~ CDf-)!~ :J.

(19) DCL.>ABOF:T D IJ=~ECT()I~~Y
F~M~:)LIB ~ OLD ~

:2:1.~? ~

17.
1 ~

:I.B3v

07····JUN···· 70 08::J.:I.
r 19-MAY-78 10:21

:?4····JUN····)'B 09: 26
19····M(.~Y····7B 10:20
::.~O····JUN···· /8 0(1: 2~.:;

T(:l~:)I-< n DII:;~T4 II TEI1:MINt~TED

ABORTED VIA DIRECTIVE DR MeR
AND WITH PENDING 10 REQUESTS

.:.

(21) >LOGOUT
TI~iYX:

lB····,JUL····?B 16!OO TT4; L.OGGED OFF
>.

2-5

Using The TRAX Terminal

a command name to fully define their action, while other commands require parameters or qual
ifiers to be meaningful.

The DIRECTORY command is meaningful as a single-word command, although you can alter
its function by using parameters to specify files and qualifiers to request different types of
information about the files.

When you enter a DIRECTORY command with no parameter (2), you obtain a listing of all the
files in your directory. For the present, think of a directory as a set of files belonging to a
particular user. Notice the first of the DIRECTORY output; it indicates that your files are on
the disk DBO=, and that your directory is designated [40,40].

You can also enter a DIRECTORY command specifying particular files. If you specify files
that are not in the directory, you receive an error message (3). Every file specification has several
components, as will be explained in Chapter 3; this particular file specification requests a list of
all files in your directory with file name TEST2.

The asterisk is a wildcard in the file type component and indicates that all files named TEMP2
should be listed, regardless of file type.

In response, the system informs you that no such files exist at present. Thus you can use this
file name without compromising other files.

Next you create a simple BASIC source program, using the DEC EDITOR. You invoke the DEC
EDITOR by entering an EDIT command. The Editor cannot operate until you have indicated
exactly which file you want to edit. If you do not specify a file when you type EDIT, the system
prompts for a file specification by displaying the word, FILE? Many DCL commands have
similar prompts.

After you have typed the EDIT command (4), specifying TEST2. B2S as the file, an asterisk
appears. This is the editor's prompt symbol, indicating that you are expected to enter an editor
command. That is, you have entered editor command mode. The command I is an abbreviation
for INPUT and alerts the file to include whatever you type next in the file.

After entering the BASIC source code (5), you signal the editor that you have completed the
input information by typing CTRL/Z. You do this by holding down the CTRL key while
typing Z. The * prompt reappears, and, because you are finished with the editor, you type EXIT.
This ends editor command mode, and completes the creation of your file.

The TYPE command lists the file, allowing you to check its content (6).

To build the BASIC source file into an executable task, you enter the BASIC-PLUS-2 compiler
facility by entering the BASIC command (7).

Under BASIC control, you use the commands of that facility to identify the source file, compile
it into object code, and prepare the file for linking a command file. Then an EXIT command
returns your terminal to DCL control (8).

2-6

Using The TRAX Terminal

NOTE
This manual describes the features of DEC EDITOR and
the programming languages to the extent necessary to ex
plain their access relationships with DCL. Before attemp
ting to use any editing or programming language, you
should study the appropriate reference manual or user's
guide.

A program must be linked with the system before it can be executed; that is, before it constitutes
a task. After linking this simple program (9), you can run it (10).

The string /BASIC appended to the command name LINK is a qualifier.

This particular qualifier informs the Linker program that the command file TEST2.CMD was
produced by the BASIC-PLUS-2 facility and requires special processing. Either a command name
or parameter can be qualified. Qualifiers always begin with a slash character (/) and are system
keywords appended directly to the command name or parameter.

Now that the BASIC program has been processed, the command

DIRECTORY TEST2.*

shows all the files that were generated during the process (11). EDIT generated the file TEST2.
B2S, and the file types .OBJ, .CMD, and .ODL were generated under BASIC control. The LINK
command generated the task file, TEST2.TSK, and also the map file TEST2. MAP.

You can copy a file into another directory, with the same group number such as [40,41] (12).
You can also copy files from other directories into your own (13), giving them new names if you
wish (14).

After renaming the copies, you can access the files by the name AMORT only if you also specify
the other directory (15).

You use a TYPE command to check the contents of the source file and find that the file
apparently contains a complete program (16). Then you test it by running the task file (17).

You can list directories other than your own. For example, you can enter the command

DIRECTORY [* ,*]

This requests a listing of all directories in the system (18). You might do this if, for example, you
know that someone created a new version of a file on a certain date but are not sure which
directory or directories contain it. Once you find the file, there is no need to continue the
directory listing, which can be lengthy.

To abort a command that is producing output, you must type CTRL/C (typing C while pressing
CTRL) (9). This alerts the terminal for command input. Then you type the ABORT command,
specifying the command name DIRECTORY as a parameter, and the directory output stops. A
message acknowledges the premature termination (20).

2-7

Using The TRAX Terminal

When you type CTRLjC, the tenninal immediately stops whatever it is doing and issues the
special command prompt, DCL>. This is equivalent to the regular command prompt (»,
except that it also reminds you that you have interrupted terminal output. The output continues
after you type carriage return unless you enter a complete ABORT command whose parameter
is the command or task that initiated the output.

The terminal session is then completed with a LOGOUT command (21).

This illustrative session is only an introduction, intended to acquaint you with the TRAX
Support Environment and the command language that you will use to control it. See Chapter 8
for the details of command syntax, and Chapter 9 for a complete description of the DCL
command set.

2.3 ACCESSING THE SYSTEM
As you have seen in the sample session, you must begin a session by logging in and identifying
yourself to the system. The system manager or operation supervisor at your TRAX installation
assigns you a User Identification Code, a User Name, and a password. If you attempt to log
in but the system does not recognize your identification, you will be denied access.

2.3.1 User Identification Code
The User Identification Code (VIC) consists of two octal numbers, separated by commas and
delimited by a set of brackets. This same code identifies the directory associated with the user.
For example, the VIC in the sample session was [40,40], and directories [40,41] and [350,230]
were also accessed.

The installation system manager assigns UICs. The first number is a group number, and the
second is a member number. Group numbers 1 through 10 are reserved for privileged users.
Privileged users have additional capabilities, such as the ability to control other terminals.

The VIC is associated with all of your files and running tasks. It has the same fonnat as a
directory specification, and its value is the default directory in file specifications.

2.3.2 The User Name
The User Name consists of an alphanumeric string, 1 to 12 characters long, that identifies you
to the system. Each Vser Name has an associated VIC. The purpose of the User Name is to
provide an identification value that is easier to remember than a UIC.

2.3.3 Password
You are assigned a password of your choice as an additional security measure. The password
prevents unauthorized access to your files and should be kept secret. The password consists
of an alphanumeric string one to six characters long.

2.3.4 Logging In = = the LOGIN Command
After receiving the first Support Environment prompt, you initiate an interactive session by
entering a LOGIN command.

>LOGIN

2-8

Using The TRAX Terminal

The system responds by prompting for user identification:

USERI!I'?

To this you must enter either your User Name or UIC. If you enter your User Name, the system
checks its user records to determine the UIC for that User Name. For example, if your User
Name is MYNAME, you type:

USEF~ID'~ MYNAME

Then the system prompts for the password associated with the UIC and User Name. For example:

PASSWORD:

You then type your chosen password followed by a carriage return. The purpose of the password
is to confinn the user's identity, and it should be kept secret. Thus the password is not echoed at
the tenninal; that is to say, the characters of the password are not displayed.

If the system recognizes your identification and the password matches the UIC, the system
displays an acknowledgement message. This may be followed by a system login message that
describes system conditions and anything else that the system manager believes you should know.
For example:

TRAX VERSION 1.0A SYSTEM

GOOD AFTEr~NOON
20-JUL-78 13:59 LOGGED ON TERMINAL 1T4:

However, if either identification value is incorrect, the following error message appears:

LOG -- INVALID ACCOUNT
>.

If you make a mistake during LOGIN, the LOGIN command does not reprompt for either the
User Name or the password; you must reinitiate the LOGIN command when the prompt (»
appears again.

After you have completed login, you can proceed with the session.

2.3.5 Tenninating a Session = = the LOGOUT Command
To tenninate the session, issue the LOGOUT command, as follows:

>LOGOUT

2-9

Using The TRAX Terminal

There are no parameters. The system aborts all uncompleted tasks and dismounts and
deallocates any private devices allocated to your terminal. When the system responds with an
acknowledging message, the session is over.

TRAX
20-JUL-78 13:57 TT4: LOGGED OFr

2.4 REQUESTING COMMAND INFORMATION = = THE HELP COMMAND
At times you may want to use a command but you do not know its command name, format, or
keywords.

The HELP command provides this information.

If you enter a HELP command with no parameters, you will get a complete list of command
names.

>HEL.P
THE FOLLOWING COMMANDS ARE AVAILABLE

ABORT ALLOCATE APPEND
ASSIGN BASIC COBOL
CREATE DEALLOCATE DEASSIGN
DIRECTORY DISMOUNT EDIT
LIBRARIAN L.INK LOGIN
MACRO MERGE MESSAGE
PRINT PURGE RENAME
SET SHOW SORT
STOP TYPE UNI...OCI'(

ARCHIVE
COPY·
DELETE
INITIALIZE
l.OGOUT
MOUNT
F:UN
STAF(r

--FOR MORE INFORMATION TYPE 'HELP' FOLLOWED BY THE COMMAND

To obtain information about a particular command, include the command name as a parameter.
of the HELP command. For example:

>HEI...P SHOW
SH()~J FUNCT I ON

ASSIGNMENTS[:GLOBALJ
LOCAL

DEVICES
DEFAULT
MEMOt':Y
DAYTIME
TASI\S
TEHMINI~L

PAF(T I T IONS
QUEUE

**
**
** **
**

Notice that some of the keywords are displayed with two asterisks (**). These asterisks are not
part of the keyword; rather, they indicate that further information is available regarding the

2-10

Using The TRAX Terminal

keyword. To obtain information about a keyword, enter the HELP command with two
parameters: the command name and the keyword. For example:

)HELP SHOW TERMINAL
SHOW TEHMINlH .. OPTION

TYF'E:[NOJSCDPF
I...O"JEF~CASE
UPPERCASE
[NO]PRIV II ... Ef-IEft
(NO]REMOTE
[NO]SI ... AVE
[NO]ESCAPE_SEQUENCE
[NOJHOLIJ-BCHEEN
SPEED: DEVICEN~,ME

2-11

Using The TRAX Terminal

2-12

3.1 FUNDAMENTAL CONCEYfS

CHAPTER 3

MANAGING FILES
AND VOLUMES

All information stored in the Support Environment is maintained in logical units called files. A
file is a named collection of information organized in a coherent manner. Whenever you wish to
store any kind of information-a source program, a body of data, a body of prose text, or whatever,
you must have a file in which to store it.

You can create a file at any time with a CREATE command. You can use the flexible EDIT
command to create a file and they specify or alter its contents. You can also create files implicitly
when using certain of the system facilities; for example, the process of transforming a source
language program file into an executable task invariably creates several files along the way.

Once information has been stored in a file, all attempts to access, augment, or manipulate the in
fonnation must be done in terms of that file. In other words; you must supply a file specification
equivalent to the one used to identify the new file.

You, like every other user, have at least one directory, formally called a User File Directory (UFD).
A UFD is a special file that serves as an index for all files stored under its auspices. It contains
information for each file regarding file identification and the extent to which the file may be
accessed.

The magnetic media on which files are stored are called volumes; for example, disks and magnetic
tapes. A volume must be mounted (that is, physically positioned, on a device and connected
logically to the file system) before you can access any file contained thereon.

3.2 FILE SPECIFICATION CONVENTIONS
A file specification provides all information necessary to identify a file.

dev: [ufd] name.type; ver

The file specification identifiers are as follows:

dey: Specifies the device on which the volume containing the file is mounted. It consists of
either a physical device name or a logical device name assigned to a physical device. Either
type of device name contains two alphabetic ASCII characters followed by a one or two
digit octal unit number. In a physical device name, the two alphabetic characters constitute
a standard device mnemonic known to the system.

A logical device name is defin~d by an ASSIGN command to be equivalent to a particular
physical device name. Table 3-1 lists the standard physical device names for the various
devices.

3-1

Managing Files and Volumes

[uta] Specifies the user file directory (UFD) under which the file is stored. The directory
specificatign is of the form [g,m] , where g is the group number and m is the member
number. Both g and m are octal numbers in the range I to 377. The brackets are required;
they identify the infonnation as a directory specification.

name Specifies the name of the file as an alphanumeric string I to 9 characters long .

.type Specifies the file type and may serve to identify some aspect of the file's contents. It con
sists of a period followed by an alphanumeric string I to 3 characters long. A period that is
not followed by an alphanumeric character constitutes a syntax error. In many cases, files
created by system utilities or language processors are given standard file types. See also
the section entitled "Standard File Types" later in this chapter.

;ver Specifics the version number of the file, an octal integer to differentiate among files stored
in a directory with the same file name and file type. When you create a file, the system
assigns the file a version number of 1. If you edit a file, the system keeps the original file
for backup and stores the edited file with a version number one higher than that of the
original file. If you want to access the latest version of a file but do not know its exact
version number, specify 0 or omit the version number entirely. Similarly, you can access
the earliest version of a file by specifying a version number of -I.

Table 3-1 Standard Physical Device Names

Device Type Device Name

Disk
(RP04/5/6) DBnn:
(RK07) DMnn:
(RM02j3) DRnn:

Line printer LPnn:

Magnetic tape unit MMnn:

System default device SYO:

Logical user terminal TID:

Terminal TTnn:

Virtual temlinal VTnn:

3-2

Managing Files and Volumes

3.2.1 Default File Specification Elements
The file name field is required in every file specification.

Other file specification elements are defaultable. If you do not specify these elements, the system
uses the following defaults:

dev: Set up at login time; the default is the device on which the system volume is mounted.
That is, the current device associated with the logical device name SYO:. To change this use
the SET DEFAULTS command; to display the device, use the SHOW DEFAULTS
command.

[ufd] Set up at login time; this default is equivalent to your UIC. To change this use the SET
DEFAULT command; to display it, use the SHOW DEFAULT command .

. type Standard file types are used as defaults in some commands, while other commands
require explicit file type. The command descriptions in Part II show the default file type,
if any, applied to file specifications in each individual command. The leftmost character of
the file type is always a period, which is part of the file type. Thus, if a file name is
followed by a period no default file type is supplied; if the period is not followed by one to
three alphanumeric characters, it constitutes a syntax error.

;ver For input files, the default is the most recent version number; for output files, it is the next
higher version number or I if no previous version exists.

3.2.2 Wildcards
A wildcard is a special file specification element to allow you to specify a set of files with common
elements. By specifying a wildcard (denoted by an asterisk) in a file specification, you can
specify more than one file. You may place the asterisk in any file specification field except the
device name field. The wildcard causes the system to ignore the contents of the specific field
and to select all the files that satisfy the remaining fields.

In general, you can use wildcards in any file specification context that allows multiple files.

For example:

deletes the three specified files. Since the files have the same file name and version number,
but different file types, the following command deletes the same files:

>DELETE PROG.*;2

Note that if other files exist having the same file name and version number, these will also
be deleted. In the case of an output file specification, the system is instructed to replace the
field with the corresponding field in the input file specification. As with input file
specifications, the device field must not be wild.

3-3

Managing Files and Volumes

3.2.3 Standard File Types
Although you may assign your own arbitrary file types, system operations are simplified by
making use of standard' file types. The mnemonics listed in Table 3-2 are used by Digital
software to reflect actual file contents.

The file type to which the system defaults depends on the command to which the file specifica
tion is directed, and on whether it is referring to an input or output file.

Table 3-2 Standard File Types

File Contents Default
Description File Type

Task image file .TSK
Memory allocation file . MAP
Symbol defmition file .STB
Object module file .OBJ
Object module library file .OLB
Overlay description file .ODL
Indirect command file .CMD
Cobol source text file .CBL
BASIC-PLUS-2 source file .B2S
Line printer listing file .LST
Data file .DAT
System control file .SYS

3.3 FILE OWNERSHIP AND SECURITY
When you create a file, the system stores it with your VIC in the file header to indicate your owner
ship of the file. The file is stored with a set of protection codes to indicate who may access the
file and for what purpose.

The system also updates a User File Directory (UFD) by adding an entry to reflect the existence
of the new file. This entry includes the filename, file type, and version. The directory listing
also indicates the file size in blocks and the creation date, and, optionally, the protection code
for the file.

3.3.1 The User File Directory
A User File Directory (UFD) is a file that you can create explicitly using a CREATE/DIREC
TORY command. The UFD specification is of the form:

[g,m]

The brackets are required; g is the group number and m is the member number. Both g and m
are octal integers in the range 1 to 377. You should consult your system manager to learn the
values of g and m that you are allowed to use.

3-4

Managing Files and Volumes

Notice that the UFD specification has the same format as a UIC. Every UIC known to the
system nonnally has a UPD with the same g and m values. This UFD is the default directory;
in other words, if you de 'lot include an explicit UFD in a fue specification, the system will use
the directory associated with your UIC. Thus, if you always default the UFD in your file
specifications, all your files will be reflected on the same directory and will be recorded on the
system default device. You can list the files stored under a UFD by giving the DIRECTORY
command. For example, the following command lists all files stored under the current default
directory:

>IIIF~ECTORY

Besides the information on the directory listing, the directory contains pointers to the header of
each file. The file header contains information identifying the owner of the file and the
location of the file segments. The following lists all files with the file type CBL:

>DIRECTORY *.CBL~*

See Part II for detailed description of the CREATE/DIRECTORY and DIRECTORY commands.

3.3.2 File Security
TRAX provides data privacy and system security by a facility that restricts access to volumes
and to files contained thereon. The system recognizes four categories of users:

1. System users are those with a system UIC. A system UIC has a group number of
through 10 octal.

2. Owner refers to the owner of the file or volume.
3. Group refers to all UIC's with the same group number as in the UIC of the owner.
4. World refers to all users of the system, regardless of UIC.

Any of these categories may be truncated to a single letter in the specification; SYSTEM
can be written SYS or S, for example.

SYSTEM, OWNER, and GROUP are subsets of WORLD. Any access permission granted at the
WORLD level is implicitly given at the GROUP, OWNER, and SYSTEM level. Similarly,
OWNER is a subset of GROUP. SYSTEM, however, is a subset of WORLD only, not GROUP
or OWNER.

Four types of access are defined: Read, Write, Extend, and Delete. These are specified by the
codes R W, E, and D, respectively.

You can specify file protection codes in any command that includes a/PROTECTION
qualifier or PROTECTION function. There are four such commands: INITIALIZE, MOUNT,
CREATE, and SET PROTECTION. You specify the value of PROTECTION as follows:

(category-code: access-code [, ...])

3-5

Managing Files and Volumes

For example:

>5ET PROTECTION A.CBL (SYS:RWE,OWNER:RWED,GROUP:R,WORlD:R)

The following rules apply:

1. The parentheses are required.
2. Each user category-code follows a colon. Each category-code may be abbreviated to

one or more letters. The colon is immediately followed by the access code.
3. The access-code consists of any or all of the following letters R, W, E, and D, sig

nifying Read, Write, Extend, and Delete access. The letters are given contiguously in
this order: RWED.

4. Each category named is given the specific types of access named in its access-code and
is denied all types of access not named.

5. Any category not mentioned keeps the access privileges previously assigned to it.
6. Each category-code: access-code string must be followed by a comma or the right

parenthesis.

You can specify protection codes for a volume when you initialize it, using the INITIALIZE
command. This establishes the primary protection default values for each category mentioned.
In the absence of an explicit protection specification, the following default applies:

(SYSTEM:RWED, OWNER:RWED, GROUP:RWED, WORLD:R)

The volume protection specified by the INITIALIZE command can be overridden by a
MOUNT command.

Current volume protection codes constitute the default for all files stored on that volume.
You can override this default for any individual file, using the CREATE or the SET
PROTECTION command.

You can specify file protection when you use the CREATE command to create a file. If you
create a file by some other means (such as the EDIT command or as a product of a compil
ation of L!NK procedure), you can modify the protection codes by using the SET PRO
TECTION command. If you do not specify a protection code for a newly created file, the
system applies the file's default code (set at volume initialization).

For example:

:> ~;) E T P I:~ c) TEe TID NNE W F I I... ~ eM n (s Y S T EM: R ,OW N E F;~ : F~ WE [I !' G f~ 0 U F' : F;~ ~.J)

modifies the protection rights to the file NEWFIL.CMD as follows:

3-6

Access rights of Read to the system category
All access rights to the owner category
Access rights of Read and Write to the group category
Access rights to the world category remain unchanged

Consider the following example:

>S~::'J' PF~()'J'E:Cr I ON
F' I L.E::·r NEWF' I L.. • CHI:!

Managing Files and Volumes

PROTECTION? (SYSTEM:RW,OWNER:RWD,GROUP:R,WORLD:RWED)

In this case WORLD access rights are total. The other three categories are all subsets of WORLD
and therefore have all access rights despite the limited rights specified for the individual
categories.

You can learn the current protection code on any or all of your files by issuing a DIRECTORY
command using the /FULL qualifiers. For example:

>DIRECTORY/FULL A.*

DIRECTORY DBO:[40,40J
6-JUL.· .. ·7B 16: 49

A. CI:H .. ; :I.
[40,40]

A.ODL;3
[40,40]

(226~)3,4)

£:RWE,RWED,R,RJ
(2363~3 v"7)

CRWED,RWED,RWED,RJ
(2~566:~, ~3)

[RWED,RWED,RWED,R]
(23676,7)

[RWED,RWED,RWED,RJ

1./:1.+ 21-JUN-78 :1.3:28

1. t /~.:; + :?l····,..IUN····i·O It): lB

A. OB .. H 3
[40,40J

A.rSK;3
[40,40]

2./5. 2:1.-JUN-78 :1.6:18

27./27. C 21-JUN-78 16:19
21-JUN-78 16:19(2.)

TOTAL OF 31./38. BLOCKS IN 4. FILES

3.4 FILE MANAGEMENT
This section describes the TRAX facilities for creating, manipulating, and listing files.

3.4.1 Creating Files
The Support Environment provides the following methods for creating individual files.

• The RMSDEF utility
• The EDIT command
• The CREATE command

3.4.1.1 The RMSDEF Utility - The RMSDEF utility allows you to define and build command
files or define the structure of a data file through an interactive, conversational process. You
invoke this utility by entering the following command

>f::UN $RMSDEF

The system responds by asking you a series of questions, prompting for file structure infonna
tion, and indicating defaults where applicable. If a default is indicated, you can select the
default by pressing carriage return. If no default is indicated, you must enter a valid value in
response to the question. The following is a typical file definition using RMSDEF.

3-7

Managing Files and Volumes

>RUN $RMSDEF
DO YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?
ENTER YOUR FILE SPECIFICATION:RDFIL.DAT
FILE ORGANIZATION (SEQ):
RECORD FORMAT (VAR):
MAXIMUM RECORD SIZE (0):512
WILL YOU ALLOW RECORDS TO CROSS BLOCK BOUNDARIES (YES)?
DO YOU WANT CARRIAGE RETURN CONTROL (YES)?
DO YOU WANT PLACEMENT CONTROL (NO)?
ALLOCATION (0 -- IT IS SUGGESTED YOU ENTER A VALUE) :500
DEFAULT EXTENSION QUANTITY (0 - IT IS SUGGESTED YOU ENTER A VALUE):10
DO YOU WANT A CONTIGUOUS FILE (NO)?
SPECIFY PROTECTION BY CLASS
OWNER:(RWED ALLOWED)
GROUP:(RWED ALLOWED)
SYSTEM:CRWED ALLOWED)
WORLD:CR ALLOWED)

YOUR FILE HAS BEEN CREATED!! !

ENTER YOUR FILE SPECIFICATION:~Z

After you have provided all the information needed to create a file, the RMSDEF utility
informs you that the file is ready to receive input.

NOTE
This utility does not include a facility to let you specify
record contents, only the file structure. You write records
into the file by means of an application program or the
MERGE command.

The utility continues to prompt for file structure infonnation until you terminate it by typing
CTRL/Z (- Z). See Appendix A for a detailed description of the RMSDEF utility.

3.4.1.2 The EDIT Command - Issuing the EDIT command invokes the DEC EDITOR. This
editor allows you to create a sequential file and specify its contents.

The EDIT command is especially useful for constructing source program files and text files.

The EDIT command is described in Part II of this manual. Also refer to the DEC EDITOR
Reference Manual (Order Number AA-S789A-TC) for a complete description of the DEC
EDITOR (also known as the EDT Text Editor).

3.4.1.3 The CREATE Command - The CREATE command is a DCL facility provided for
users who prefer to specify file structure in a single command rather than in response to a
series of prompts. Batch users in particular will usually find the CREATE command easier
to use than the RMSDEF facility. The form of the CREATE command is:

> CREATE [jqualifier[s]] file-specification

3-8

Managing Files and Volumes

This creates an entry in the appropriate UFD for the ftIe you have specified.

You can create files with any of three types of ftIe organization: relative, sequential, and
indexed.

1. SEQUENTIAL files are organized so that records are accessed sequentially. Records
are retrieved from a file in the same order in which they were originally written.

2. RELATIVE files are organized so that records of the file may be accessed randomly
based on their position relative to the beginning of the file.

3. INDEXED files are organized so that each record has associated with it at least one key
field. When records are written to such a file, index tables are constructed. Records
are accessed by specifying the part of the record that contains the key.

You specify each by the qualifiers jSEQUENTIAL, /RELA TIVE, and /INDEXED respec
tively. Sequential organization is the default.

The qualifier jFORMAT specifies the record type of the file. Three types are available:

1. Fixed length records. All records are equal and non-varying in size.
2. Variable length records. At file creation time you specify the size of the largest record

that may be written to the file.
3. Variable length records with a fixed control field. This record fonnat is supported

only for MACRO programmers.

If the created file has indexed or relative organization then you can specify the protection
access rights for that file by using the qualifier jPROTECTION. A sequentially organized
file takes the default protection set at volume initialization.

For example:

)CREATE/RELATIVf/FORMAT:FIXED:120/PROTECTION!(GROUP:RWE,WORLD:RE)
FILE'!) FILE. DAT

creates the file FILE.OAT with relative organization and the specified protection code.

If the ftIe organization is sequential, you may type input to the new ftIe line by line following
the command string. When a line is tenninated, it is sent to the file exactly as fonnatted at the
tenninal. You then close the ftIe by typing CTRLjZ.

If the file organization is not sequential, then only a fue skeleton is produced. You fill the
file either explicitly using a program, or by using the MERGE command.

For indexed files, the command qualifier, jINDEXEDj and KEY are required. When you create
an indexed file, you must always specify at least the primary key position and length.

3-9

Managing Files and Volumes

3.4.2 Copying Files
The COpy command creates a sequential file copy of either a concatenated series of sequential
files or copies all records from an indexed or relative file.

Copying a disk file to another disk file without specifying file organization C/SEQUENTIAL,
/RELATIVE, or jINDEXED) on the input file always produces an exact copy. If, however,
the file organization of the input file is specified, the output file is always sequential.

When copying any file to magtape, the output file must always be sequential. Thus, you must
always specify the file organization of the input file when copying to magtape. If you copy a
contiguous disk file to magtape, and later recopy the magtape copy to disk, the new disk copy
will be sequential and noncontiguous.

Multiple file specifications and wildcards are permitted on sequential input files. On indexed
or relative input files only one file specification is allowed and wildcards are not permitted.

Since only sequential or identical file copies are created, no file qualifiers on the output file
specification are allowed.

Optional qualifiers /REPLACE and /CONTIGUOUS enable you to specify that any previous
copy of the output file is deleted before creating a new copy, or that the output file is to be
contiguous.

When you copy indexed or relative files, the file structure is not optimized; that is, an exact
copy of the file is made.

For example:

>COpy ABC.IND/INDEXED/KEY:NUMBER:3
TO'? XYZ + ~:)EC~

will copy all records from the indexed file ABC.COR to the sequential file XYZ.SEQ in the
order specified by the second alternate key.

3.4.3 Appending Records
The APPEND command appends records to an existing sequential file. The records may
originate from a collection of sequential files or they may be all the records from within an
indexed or relative file.

Qualifiers specify the organization of the input file. If you give no qualifier, sequential
organization is assumed.

If you specify (or assume) sequential organization, multiple input file specifications and wild
cards are permitted. Since you can append records to only one sequential file, no file qualifiers
are necessary (or allowed) on the output file. The same restriction applies to wildcards.

3-10

Managing Files and Volumes

If the originating fIle is indexed, specify the qualifier fKEY:NUMBER:n and fINOEXED. The
default key is the primary key. This will determine the key of access, which in turn determines
the order in which the records are accessed.

If the originating fIle is indexed or relative, only one fIle specification is permitted and wild
cards are not allowed.

For example:

)APPEND PAVROLL.DAT/INDEXED/KEV:NUMBER:2 MASTER.DAT

will append all records from the indexed file PAYROLL.OAT to the sequential file MASTER. OAT
in the order determined by the first alternate key.

3.4.4 Merging Records
The MERGE command merges records from an input file into an existing output file.

The input file can be either indexed, relative, or sequential (sequential is the default). If the file
is indexed, you specify the order of record extraction by using the qualifier /KEY:NUMBER:n.
The default key is the primary key. 00 not specify wildcards in the input file. The output file
must have relative or indexed organization, and must exist before you issue the MERGE command.

The MERGE command can be used to optimize the internal organization of an indexed file. This is
useful because an accumulation of updates and deletions to indexed files can cause a fragmented
and inefficient index structure in the file.

You must specify the organization of the output file; it is either indexed or relative, but not
sequential.

By specifying the optional fLOG, a log of all error messages will be created during the merge
sequence. The error messages detail all records that for any reason could not be merged into the
output file. They will appear on the terminal or be put into a specified file.

F or exam pIe:

)MERGE PAYROLL1.SEQ PAYROLL2.DAT/INDEXED

merges all records from the sequential file PAYROLLl.SEQ to the indexed file PAYROLL2.DAT.

3.4.5 Renaming Files
By issuing the RENAME command, you are able to rename existing files. The specifications of
both the original fIle and the new file must contain both filename and file type. In addition, the
device name must be the same in both specifications. Files can be renamed across UFD's,
privilege permitting.

3-11

Managing Files and Volumes

For example:

>RENAME OLD.TMP NEW.TMP

renames the file OLD.TMP to NEW.TMP

3.4.6 Sorting Files
The SORT command invokes the SORT command program, allowing you to read an input file,
sort its contents, and write out the sorted data to an output file. Control (or key) fields determine
the sorting sequence.

The SORT command also enables you to extract key information, sort that information and store it
on a permanent file. This file can then be used to access your original file in the order of the key
information on the sorted file.

There are two sorting techniques available:

• Record Sorting produces a re-ordered file by sorting entire records on a specified key .

• Tag Sorting produces a re-ordered file by sorting only the key records to build a sequence
of record pointers.

Specifying the qualifier jPROCESS and the required keyword will invoke one of these sorting
techniques.

Alternatively you may specify the qualifier jSPECIFICATION to control and direct the sort.
This qualifier has the same effect as jPROCESS but is not limited to sorting files of uniform format.

The other qualifiers to the SORT command define file specifications or other parameters associated
with the input and output files.

For full details of the use of the SORT command, read the TRAX SORT Reference Manual. The
SORT command is described in Part II of this manual.

3.4.7 Displaying File Contents
The TYPE command displays the contents of all specified files at the terminal. Both the filename
and file type are mandatory .

For example:

>TYPE MYPROG.CBL,YOURPROG.CBL

This displays the contents of two COBOL source program files.

3-12

CAUTION
Displaying binary files, such as object task images, can place your terminal
in unpredictable modes of operation. If this should occur, see your
system manager.

Managing Files and Volumes

3.4.8 Printing Files
The PRINT command causes one or more specified files to be spooled to a line printer. Spooling is
the technique of queuing printer output in the form of jobs; the time ajob is actually printed
depends on several variables, including a priority value. If you do not specify the file type, .LST is
assumed.

The PRINT command has numerous options for controlling the printing of files. See the descrip
tion of the PRINT command in Part II for further information.

For example:

)PRINT MYPROG1,MYPROG2,MYPROG3.TMP

prints the files MYPROG I.LST, MYPROG2.LST, and MYPROG3.TMP on the line printer.

3.4.9 Removing Files from a Directory
The DELETE and PURGE commands enable removal of unwanted files from the directory, thereby
releasing system resources.

DELETE is oriented to deletion of particular versions of a ftIe, or all versions of a file. In a
DELETE command, each file specification must include a file name, a ftIe type and a file version
number.

The following command deletes version 3 of the file TESTI.TMP.

>DELETE TEST1.TMP;3

By specifying version number as a wildcard, you can delete all versions of a rtIe, as in the following
example.

)DELETE TEST2.TMP;* ITEMS.DAT;2

All versions of TEST2.TMP are deleted, and version 2 of the ftIe ITEMS.DAT is also deleted.

The PURGE command also deletes specified files from the directory, but saves one or more of
the most recent versions. The following command purges all but the latest version of TEST.TSK.

>PURGE TEST.TSK

If you want to save more than one recent version, use the IKEEP:n qualifier. For example:

>PURGE/KEEP:3 TEST.TSK

3-13

Managing Files and Volumes

Assuming, as an example, that the highest numbered version of TEST.TSK is 7, the /KEEP:3
qualifier causes version 7, 6, and 5 to be retained in the directory while deleting all versions of
TEST.TSK numbered 4 or less. Notice that you will not necessarily have three versions of
TEST.TSK after the purge. If version 6 has been previously deleted, only versions 7 and 5 will
remain. Version numbers are always octal integers.

Although the DELETE command syntax requires a version component in each file specification,
PURGE file specifications must not include file version numbers.

You can direct DELETE and PURGE commands only to files for which you have delete access
rights.

If you specify file names, or versions thereof, that do not exist in the directory, the following error
message appears.

DEL -- NO SUCH FILE(S)

This message is followed by a list of files that you specified for deletion but are not present in the
directory. For example:

>DELETE TEST.TSK;23,TEST.TSK;4,TEST~TSK;1,TRYOUT+TMP;*
DEL -- NO SUCH FILE(S)
SYO:[40,40JTEST~TSK;23

DEL -- NO SUCH FILE(S)
SYO:[40,40JTEST.TSK;1
DEL -- NO SUCH FILE(S)
SYO:l40,40JTRYOUT.TMP;*

The error messages indicate that of the files specified in the DELETE command, only TEST.TSK; 4
was present and was deleted. The system lists each file specification for which no file or files could
be found, along with an error message for each instance.

3-14

CHAPTER 4

MANAGING SYSTEM DEVICES
AND VOLUMES

This chapter describes the commands and procedures for preparing, assigning, and accessing
devices. This chapter describes commands only to the extent needed for you to understand over
all procedures. See Part II for detailed command descriptions.

A device is any equipment connected to the system for input and output of information. The
most commonly used devices include user terminals, line printers, disk storage units, and magnetic
tape units of various types.

At system generation time, all devices in the system are established with certain characteristics,
such as line width, speed of data transfer, and accessibility. However, these initial device
characteristics are not always suitable for the task at hand, and you may need to make temporary
changes to devices in the system. Also, you may need to initialize volumes.

Devices can be either volume-oriented or nonvolume-oriented. Disk or magnetic tape devices are
volume-oriented; they store information on interchangeable volumes that can be physically
attached or detached from a device. Terminals and line printers are nonvolume-oriented devices;
their purpose is to communicate, not store, information.

The volume-oriented devices are file-structured. Volumes must be initialized and mounted before
they can be accessed. The nonvolume-oriented devices require no initialization or mounting.

4.1 ACCESSING DEVICES
Access to any given device can be shared by all users, or allocated to one user as a private device.
Shared devices are potentially accessible by everyone and are either public or non public. Public
devices are not allocatable. Nonpublic devices are available for allocation; when allocated, they
become private devices.

As a nonprivileged user (that is, one with an octal group number higher than lOin your OIC),
your file accessing privileges and restrictions are as follows:

1. You can access public devices but not reserve them for your exclusive use.
2. You can access a non public device that is not allocated as a private device by another user.
3. You cannot access a private device allocated to another user.
4. You can allocate a nonpublic device for your private use, if it is available.
5. You can mount volumes only on your private devices.
6. You can learn the status of all devices in the system by entering the SHOW DEVICE

command.

4-1

Managing System Devices and Volumes

4.1.1 Displaying Device Names and Status
The SHOW DEVICES command displays device names, their status, and the system device
assignments. The display is made on the entering terminal. The device names appear in the left
column while the right column contains information about each device. For example:

>SHOW
DBO:
DB1:
DB2:
DB3:
DF;:O:
DF~l :
MMOt
~·lM:I. .~

'-PO:
TlO:
TTl:
TT2:
TT3:
TT4:
TT~5 :
TT6:
TTl:
TTiO:
NLO:
VTO:
l . ..-tT 1. :
VT2:
TIO!
COO:
CI ... O ~
SPOt
LBO:
SYO:

DEVICES
PUBLIC MOUNTED LOADED
l.DADED
LOADED
PUBl.IC MOUNTED LOADED
LOADED
MDUNTED L.OADED
l.OADED
LOADED
DBO:
[:1.,:1.]
LOADED
LOADED
LO?)DED

SPOOLED LOADED
_ .. LOGGED ON

[40,40J - LOGGED ON
[l,lJ - LOGGED ON
LOADED

LOf~DED

LOADED
LOADED

[350,227J - LOGGED ON
[1,1] - LOGGED ON LOADED

LOADED
LDADED
LOt~DED

TTO:
LPO:
DBO:
lIBO:
DBO:

LOADED

In the previous list, all device names from DBO to the TIn names are physical device names.
The DBn names indicate disks, MMn indicates magtape drives, LPn indicates line printers, and TTn
names indicate physical terminals.

The device names in the left column can be either a physical device name or a logical name. A
logical name uses the same syntax as a physical device name. A device name consists of two alpha
betic characters and a one or two digit octal number followed by a colon (:).

Beginning with TID:, the list at the bottom of the SHOW DEVICES example shows the standard
pseudodevice names used by some system tasks. Their typical usage is listed.

4-2

Managing System Devices and Volumes

TIO: for terminal input
COO: for console output
CLO: for system listing
SPO: for spooling
LBO: for library input device and queue file
SYO: for system input/output device

VTO is a special device name, indicating a virtual terminal. A virtual terminal is a nonphysical
terminal generated by the system at the commencement of each batch job; it provides a terminal
environment for processing of the batch job without occupying a physical terminal.

Notice in out example that SPO, LBO, and SYO are pseudo devices which, in this case, are associated
with the same disk unit, DBO.

The following notes describe the device status information that can appear in the right column.
More than one message can appear on the same line.

MOUNTED
Indicates that a volume is logically connected to the file system.

PUBLIC
Indicates that the device is a shared device that you can access, but not allocate for private
use.

MARKED FOR DISMOUNT
Indicates that the system will dismount the volume when the system completes current
file accesses on the volume (no new file accesses may be initiated).

OFFLINE
Indicates that the device was included in the system at system generation time, but for some
reason has been removed from the system configuration.

[uic] LOGGED ON
Indicates that the user identified by [uic] is logged onto the system at this terminal.

LOADED
Indicates that the access software for the device is loaded, and the device is available for
access.

UNLOADED
Indicates that the access software for the device is loadable, but, is not currently loaded.

SPOOLED
Indicates the device in the left column is a spooled device. When you output files to a
spooled device, the system temporarily stores the files on the device specified in the right
column. The system transfers the files to the spooled device according to the rules discussed
in the Queue Management and Spooling section of the TRAX Manager's and Operations
Manual.

4-3

Managing System Devices and Volumes

Except for spooled devices, a device name in the second column is the physical device for the
corresponding logical name in the first column.

A terminal name in the second column followed by the text "- PRIVATE" indicates that the
device named in the first column is allocated to the user logged onto the terminal in the second
column.

4.1.2 Allocating and Deallocating a Device
Use the ALLOCATE command to establish a specified device as your private device and prohibit
other general users access to the device.

You must allocate a device before mounting a volume. This prevents another user from either
accessing the volume or allocating its device before you can issue the MOUNT command.

You cannot allocate a public device or a device already allocated. A device already allocated is
called a private device.

For efficient resource management, deallocate devices when they are no longer needed. The
system manager or the device's owner can deallocate a private device using the DEALLOCATE
command. The system automatically deallocates and dismounts your private devices when you
LOGOUT.

4.1.3 Mounting a Volume for File Access
The MOUNT command logically connects a volume to a device. The volume must have been
previously initialized (see the description of the INITIALIZE command). After you mount the
volume, tasks access the volume by specifying the associated device name.

On receipt of a MOUNT command the system verifies that the device is on-line. Also, it checks
the volume label that you specify against the volume label on the volume. If the volume labels
do not match, the MOUNT command fails.

Each task verifies that a volume is mounted before attempting a file access. This ensures that
you access only public devices or your own private devices.

F or efficient resource management, you should dismount volumes and deallocate your private
devices when you no longer need them. You can mount volumes only on your private devices.

4.4.4 Dismounting a Volume
Use the DISMOUNT command to logically disconnect a volume from the file system. When you
issue a DISMOUNT, the system immediately inhibits additional file access by marking the volume
for dismount. (As explained in the description of the MOUNT command. the system verifies
that file access is permitted before each access.) The system then suspends dismounting the volume
if any files are being accessed at the time you issue the dismount command. The system issues a
message to your terminal when the dismount operation is complete.

4-4

Managing System Devices and Volumes

*** DBO: -- DISMOUNT COMPLETE

You can dismount only volumes mounted on your private devices. The system dismounts your
private volumes and deallocates your private devices when you LOGOUT.

4.2 PREPARING DEVICES
You can alter many device features or characteristics. This section describes the commands
required to either initialize, select, display, or change device characteristics.

4.2.1 Displaying and Changing Device Characteristics
The following commands display or change device characteristics:

• SET DEVICES
• SHOW DEVICES
• SET TERMINAL
• SHOW TERMINAL

All devices, such as line printers, terminals, disks, and magnetic tapes, have variable characteristics.
These characteristics are given a default value at system startup. You can specify the SHOW
DEVICE and SHOW TERMINAL commands to display current device characteristics. The SHOW
TERMINAL command displays the terminals' characteristics, while the SHOW DEVICES
command displays device characteristics that are applicable to all the devices (including terminals).

You can specify the corresponding SET commands, SET TERMINAL and SET DEVICE, to change
characteristics of your private devices.

4.2.2 Initializing a Volume for File Access
The INITIALIZE command produces a file-structured volume on a disk or magnetic tape device.

The system creates a Master File Directory on disk and creates a volume label on magnetic tape.
You can re-initialize a volume that was used previously, but the system destroys all existing files
on the volume.

After the volume is initialized, you must mount the volume. The volume is then ready for you
to access.

4.2.3 Creating a User File Directory (UFD)
The CREATE/DIRECTORY disk creates a User File Directory on the specified device. You are
restricted to your private file structured devices.

4.3 ASSIGNING DEVICES
A device name can be either a logical name or a physical device name. The system assigns a device
a physical device name during the system generation proced ure. A logical name uses the same
format as a physical device name and is initially unassigned. Since some tasks use logical device
names to access devices, logical names must be assigned to physical devices before such tasks can
run. At system start up, the system assigns the system logical names such as SYO: and LBO:. If
your installation uses logical names, it is either the responsibility of the programmers to make local

4-5

Managing System Devices and Volumes

assignments or the responsibility of the system manager to make global assignments of logical
names to physical devices before running tasks which depend on such assignments. Using logical
names is especially useful if you are not certain which devices are available when you need them.
For instance, you can choose a logical name that everyone can use for a certain data pack. Then
regardless of where the data pack resides, everyone can access it by using the same logical name.

4.3.1 Making and Changing Device Assignments
Use the ASSIGN command to link a logical name to another logical name or physical device name.
Assignments are made at three levels: local, login, and global. When two or three assignment
levels specify the same device names, the system resolves the conflicting assignments based upon an
established priority. The priority list appears as follows:

1. Local
Tasks recognize local assignments before login and global assignments. Local assignments
apply to tasks executed from the terminal where you made the assignments. You make
local assignments with the ASSIGN/LOCAL command. As a privileged user, you can also
make local assignments for other terminals by using the /TERMINAL qualifier.

When you specify the SET DEFAULT command, the system reassigns the login logical
name, SYO:, to the local device name you specify. The system accesses the login logical
name as the system device, which contains your files.

2. Login
Tasks recognize login assignments before global assignments. Login assignments apply to
tasks executed from the same terminal. The system assigns the login logical name, SYO:,
when you issue the LOGIN command. The system assigns the login logical name, SYO:, to
the default system logical name, SYO:.

The system assigns the system logical name to a physical device name at system startup.
You can request a display of this information by specifying the SHOW DEVICE command.

3. Global
Tasks recognize global assignments if there are no local and login assignments. Global
assignments apply to all tasks running in the system. You make global assignments with the
privileged ASSIGN/GLOBAL command.

Privileged users can assign and deassign any local, login, or global assignment, while nonprivileged
users are restricted to the local assignments that they make. Use the DEASSIGN command to
remove a local, login, or global logical name assignment.

4.3.2 Displaying Device Assignments
The SHOW ASSIGNMENTS command displays the device assignments. When you specify the
command, the system displays your local and login assignments. Assuming that you are logged in
at tenninal4, the following example shows an assignment list before and after a local assignment:

4-6

Managing System Devices and Volumes

>SHOW ASSIGNMENTS
SYO: SYO: LOGIN TI - TT4:
>ASSIGN DB2: DOS:
>SHOW ASSIGNMENTS
DOS: DB2: LOCAL TI - TT4:
SYO: SYO: LOGIN TI - T14:

The first SHOW command lists the login assignment. After the ASSIGN command equates logical
device name 005: to physical device name DB2:, this local assignment is shown in the second
SHOW command.

4.3.3 Making and Changing Device Assignments
The ASSIGN command equates logical names to physical device names and other logical names
assigned previously. You are responsible for local assignments and deassignments. The system
makes login and global assignments at system setup time.

The DEASSIGN command disassociates a logical name. There is no automatic deassignment for
login assignments when you log off the system. Local assignments can be deassigned explicitly by
command or automatically when you log off the systenl.

4-7

Managing System Devices and Volumes

4-8

5.1 INTRODUCTION

CHAPTERS

PROGRAM DEVELOPMENT

Depending on the nature of your job and the specific requirements of the installation, you may
develop and run your programs in batch or interactive mode. In particular, you might create, edit
and test programs interactively and then, after preliminary testing is complete, build procedures
and do live runs in batch streams.

You can compile (or assemble), link and execute programs in batch mode using most of the same
commands as used interactively; the only difference is that you must add a dollar sign prefix to
each command line. For example, a COpy command must be written $COPY if it is to be executed
in batch mode. Batch commands are stored in a batch command file before submission to the
batch processor using the SUBMIT command. Refer to Chapter 6 for a description of batch
processing.

In either interactive or batch mode you may use an indirect command file that contains commands
to compile (or assemble), link and run one or more source programs. An indirect command file
is a sequential fIle containing command sequences. To execute the file, in batch or interactive
mode, issue an @ sign, followed by the file specification. For example:

>@COMFIL

The @ sign is used only for invoking indirect command files, and is valid only as the first character
in an interactive command line. In a batch command line, the @ sign must be preceded by the $
sign, as with any batch command line.

Generally, you must complete four stages to transform a source program into an executable task
and run it. These are:

1. Create one or more source files
2. Translate (compile or assemble) the source ftIe to form an object file
3. Link the object file to form an executable task
4. Run the executable task

The following four sections describe each of the above.

5.2 CREATING SOURCE FILES
In general there are three methods you can adopt to create source files:

I. Invoke the DEC EDITOR facility by issuing the EDIT command. This enables you to create
and edit source files. DEC EDITOR is an interactive editing program that uses editor
commands to create and modify source programs and other files containing ASCII

5-1

Program Development

character data. Use of the DEC EDITOR is recommended for creating or modifying any
type of ASCII file.

2. If you intend to write the source program in BASIC, you can invoke the BASIC-PLUS-2
facility by issuing the BASIC command. This facility provides limited editing functions
oriented to the particular needs of BASIC programmers.

3. You can also use the CREATE command, in principle. However, CREATE is designed
primarily for creating skeleton fIles. It includes no editing functions, and is intended
primarily for batch processing.

4. You may also set up skeleton files, using the COPY command.

In general, you should use the EDITOR to create BASIC and COBOL source fIles. DEC EDITOR
is an interactive editing program for creating and modifying source programs and other files con
taining ASCII character data. You can, if you wish, keep skeleton COBOL files containing the
division and section headers common to all COBOL programs. Then you can COpy such a fIle,
and use the EDITOR to add the operative information.

5.3 COMPILING SOURCE FILES
TRAX can compile source files written in BASIC or COBOL. The specified source fue is compiled
or assembled, thus creating an object file. Optional command qualifIers detail the output required.
For example, you may request a listing file to be produced.

The /SWITCH qualifier available with COBOL tailors translation of the source file to your partic
ular requirements. The relevant language user's guide contains full details concerning the use of
the switches controlled by this qualifier.

5.3.1 Using COBOL
Before running a COBOL program you must create a source file, submit it to the compiler and
link the object file. This section details how to compile COBOL programs. Linking and execution
is described later in this chapter. For futher details concerning programming in COBOL on TRAX
systems consult:

TRAX COBOL Language Reference Manual
TRAX COBOL User's Guide

5.3.1.1 Compiling Source Files - After creating the source file (using either the EDIT command
or other suitable facility as described in Section 5.2) issue the COBOL command to compile the
specified COBOL source file. More than one source file can be compiled in one execution of the
COBOL command.

Command qualifIers detail the output you require. For example, /OBJECT [:object-file-spec]
produces an object fue named according to object-file-spec. Conversely, jNOOBJECT specifIes
that an object fue will not be produced. jOBJECT is the default.

jLIST [:list-fue-spec] produces a listing fue named according to list-fIle-spec. jNOLIST specifies
that a listing file is not to be produced. This is the listing facility default qualifier.

5-2

· Program Development

The COBOL compiler provides switches that enable you to tailor compilation to your particular
requirements. The command qualifier /SWITCHES in conjunction with a particular keyword
specify the required switch. The compiler operates according to defaults if you do not specify
/SWITCHES. For detailed information on these switches see the TRAX COBOL User's Guide.

For example:

>COBOL/OBJECTtPROG1.0BJ PROG2.CBL

compiles file PROG2.CBL to create the object fIle PROG 1.0Bl. No listing fde is generated.

S.3.1.2 Linking COBOL Object Files - After you have compiled or assembled the source program
and obtained an object fde, you must perform one additional step to form the object program into
an executable task. This step is called linking.

TRAX is designed to allow routines to access library routines and other user-written routines. All
object modules must be processed by the TRAX linker; thus, object fdes, whether or not they access
library or other routines, are not in executable condition as produced by the compiler or assembler.

In the TRAX Support Environment, the task is the fundamental executable unit. A task consists
of one or more routines, each routine having been derived from an object fde.

As a simple example, assume that you have just compiled a COBOL source program stored in the
fde COBPROG.CBL. Thus your directory contains an object fde with the fIle specification
COBPROG.OBJ. This object fue consists of relocatable code; in this conditon, it is called unlinked
object module.

The Linker is a system program that takes object modules and system library modules as input, and
merges this information to forma task image fue. All object modules require references to a system
library to determine fmal storage locations of instructions and data and to establish the required
interfaces with the system hardware and software facilities. The Linker resolves these references.

To link the object module COBPROG.OBJ, you could enter the following command:

>LINK COBPROG.OBJ,[l,lJCOBLIB/LIBRARY,Cl,lJRMSLIB/LIBRARY

This is the simplest instance of the LINK command for a COBOL program using RMS I/O. The
name of the task image ftle defaults to COBPROG.TSK, taking the fue name and adding the type
.TSK that is standard for task image fues.

In this example, the COBOL source program is assumed to contain no CALL statements. In
COBOL, the CALL statement is used to reference other user-written routines. If the program did
contain a reference to a routine stored in the fue EXTMOD.OBJ, that fue would also have to be
included in the input file sequence:

5-3

Program Development

>LINK COBPROG.OBJ,EXTMOD.OBJ,[l,l]COBLIB/LIBRARY,[l,lJRMSLIBILIBRARY

The files COB LIB and RMSLIB are required input ftle speciftcations when linking a COBOL pro
gram. These are library modules needed to support the COBOL linking. Notice the file qualifier
appended to each file specification, indicating to the Linker that they are library modules.

The LINK command has many more optional features to meet various processing demands. In
general, command qualifiers further define the action of the Linker and the conditions of the link
operation.

Input flie qualifters tell the Linker that some kind of specialized processing is required on the
associated input ftle. For example, /LIBRARY (abbreviated to /LIB in the example above)
indicated that the input file contains library modules to be searched before the system library.

The Linker provides an overlay capability as a means of reducing the memory and virtual address
space requirements of a task. A task can be divided into overlay segments that reside on disk until
they are needed.

The Linker has many optional features and techniques, of which detailed description is beyond
the scope of this manual. Part II of this manual describes the LINK command in some detail,
defining all the qualifters. However, you should consult the TRAX Linker Reference Manual for
an in-depth description of the Linker.

5.3.2 Using BASIC-PLUS-2
This section provides a general overview of BASIC-PLUS-2 usage; for detailed information regard
ing the BASIC-PLUS-2 language see the TRAX BASIC-PLUS-2 Language Reference Manual.

The technique of creating executable task images from BASIC source programs is substantially
different from that used for COBOL. Before running a BASIC-PLUS-2 program, you must create
a ftle that contains a source program in BASIC-PLUS-2Ianguage. Then you must invoke the
BASIC facility to compile the program and prepare it for linking. The BASIC command does not
itself compile the program and create the necessary input for the Linker (as COBOL and MACRO
does). Rather, it places your terminal under control of the BASIC-PLUS-2 compiler and allows
you to direct the compilation. using the command language of BASIC-PLUS-2.

5.3.2.1 Creating BASIC-PLUS-2 Source Files - As mentioned previously, you need not be under
BASIC-PLUS-2 control to prepare BASIC source code. However, you may feel it advantageous
to have the use of the BASIC-PLUS-2 control language and error detection facilities while prepar
ing BASIC-PLUS-2 source code.

5.3.2.2 Invoking BASIC-PLUS-2 - The following command invokes the BASIC-PLUS-2 compiler:

>BASIC

There are no qualifters or parameters.

5-4

Program Development

The system then responds with an identification line followed by the prompt:

Bssic2

This prompt appears whenever the terminal is under BASIC-PLUS-2 control. It follows the
invocation of BASIC, and also follows the completion of every BASIC-PLUS-2 control language
command. Wherever this prompt occurs, the terminal is expecting BASIC-PLUS-2 input - either
BASIC source code or a BASIC control command. It will not accept DCL commands.

5.3.2.3 Compiling and Linking a BASIC-PLUS-2 Source Program - Assume that you have a
BASIC source program fue MYPROG.B2S in your directory. Before running this program, you
must do the following:

I. Issue a BASIC command. After an identification line, the BASIC2 prompt appears,
indicating that BASIC-PLUS-2 input is expected.

2. Identify and compile the fue you intend to process. For example:

OLD MYPROG

Ba!::.:i.c2

COMPIL.E

Basic2

The COMPILE command translates the source ftIe MYPROG into an object module with
default file type .OBJ.

3. Issue a BUILD command. This creates an indirect command fue (default filetype .CMD)
and an overlay description file (default filetype .ODL). The program is now ready for
linking.

4. Issue an EXIT command. The DCL command prompt now appears on the terminal.
S. Issue a LINK command to complete the building of the task. The LINK command

(described in more detail in the next section) must include the /BASIC qualifier, and must
specify the name of the program specified in the BUILD.

>LINK/BASIC MYPROG

When the > prompt appears the TRAX linking process is completed. LINK generates an
executable task with default filetype .TSK.

The entire display appears as follows:

>BASIC

V01-·53

5-5

Program Development

Basic2

OLD MYPI~OG

Hasic2

COMPILE

Bas:i.c2

BUILD

B(~sic2

EXIT
>LINK/BASIC MYPROG

When this prompt appears, the linked task file MYPROG.TSK is in your directory and
available for use as the parameter of a RUN command.

5.4 TASK EXECUTION AND CONTROL
After you have performed the necessary compilations and linked the object and library modules
into an executable task image, you are ready to execute the task, using the RUN command.

You can obtain information about installed tasks by means of the SHOW TASKS command.

Once a task or command has been started, you can stop it and force an orderly termination, using
the ABORT command.

5.4.1 Running a Task: the RUN Command
The RUN command directs the system to locate a specified task image file, install it, run it, and
remove it from the system following completion. For example:

>RUN/TASK:TEST MYFILE.TSK

MYFILE.TSK is the fue specification of the task image file; it calls for the latest version of the
fue. /TASK:TEST specifies that the task will have the name TEST while it is in the system.

In this example:

>RUN TFILE

the task image fue is TFILE.TSK; in a RUN command, the fuetype default is .TSK. The command
gives no explicit task name; thus the system assigns the terminal device name TTnn as the default
task name, with nn the unit number of the terminal issuing the RUN command.

5-6

Program Development

5.4.2 Displaying Task Status: SHOW TASKS
The SHOW TASKS command displays information about tasks on your terminal. You can request
information on one task only, on all active tasks only, or on all installed tasks. Moreover, you
can request a simple list of task names, or detailed infonnation about each task.

5.4.3 Aborting Either a Task or Command: the ABORT Command
The ABORT command tenninates the execution of either a RUNning task or the command
specified by "task-name". Aborting a task causes the system to force an orderly tennination of
the specified task. To effect the termination, the system:

• Perfonns I/O rundown. I/O for all non-fue-structured devices are cancelled, I/O for
ftle-structured devices is allowed to complete and then the ftles are deaccessed. All
allocated devices are deallocated.

• Display the abort message.

Upon completion of the ABORT, the task-name is displayed on the originating tenninal.

To abort a task started with a RUN command, enter the ABORT command with the command
qualifier /T ASK. For example:

>ABOF~T/TASK TSK1

The task TSK I is aborted, and a message appears on the tenninal when the abort operation is
complete.

If the /TASK qualifier is not present in the ABORT command, the system assumes that you are
attempting to abort a command. The following two ABORT commands are equivalent:

>ABORT/COMMAND TYPE
>ABORT TYPE

Prior to aborting any command that produces terminal output (such as TYPE, DIRECTORY, or
SHOW) you must type CTRL/C to suspend tenninal output. The terminal cannot relay input
to the system while producing output.

You can use the ABORT/COMMAND fonnat instead of ABORT/TASK to abort a running task.
For example:

ABORT RUN

This aborts the RUN command that started the running task, and therefore aborts the task itself.

To abort an indirect command ftle task, enter the following:

>ABORT/TASK ATt

AT. is the task name applied by the system to all indirect command tasks.

5-7

Program Development

5-8

CHAPTER 6

BATCH PROCESSING

The TRAX Support Environment allows execution of commands in either interactive or batch
mode, as described previously. In earlier chapters, this manual has described DCL mostly in terms
of interactive use. This chapter describes the application of DCL to batch processing.

6.1 FUNDAMENTAL CONCEPTS
A batch file consists of commands and data. Every command line in a batch file must have a
dollar sign ($) as its leftmost character and can have a label. Labels allow you to skip commands
in the event of a status error. Lines in the fue that are not commands are considered data blocks
to be used as input to the preceding command.

Every batch file must begin with a $JOB command and end with an $EOJ command. A batch job
is structurally similar to an interactive terminal session; the $JOB command is analogous to an
interactive LOGIN, the $EOJ corresponds to the LOGOUT, and the data blocks provide the infor
mation to the program that you would enter in response to prompts from a running program.

You invoke a batch job by means of a SUBMIT command that specifies an existing batch file in
its parameter field. A SUBMIT command can name one or several batch files, and can be given
either as an interactive command or as a batch command. That is to say, you can invoke a batch
job from another batch job.

Batch jobs are controlled by the Queue Manager. Each batch job is placed in a batch queue, main
tained by the Queue Manager to await processing by the batch processor. The batch processor
passes individual commands to a command interpreter.

An interactive session is always associated with a physical terminal. Similarly, when you submit a
batch job the batch processor creates a virtual terminal. All interaction between the batch jobs and
the system facilities is identified with the virtual terminal, thereby freeing the physical terminal
(from which the job was submitted) for other use.

6.2 BATCH COMMAND FORMAT
The general format of a batch command is

$ [label:] command-string

Every batch command begins with a dollar sign character. Any batch command line can have a
label consisting of I to 6 alphanumeric characters followed by a colon. The label allows the
command to be the target of a GOTO command that appears earlier in the batch file. Space and
tab characters between the colon and the command-string are ignored. The command-string

6-1

Batch Processing

consists of any DeL command executable by the batch processor. Note that the dollar sign pre
cedes the label.

Batch commands that do not fit onto one line can be continued. A hyphen appears as the right
most character on the line to be continued. Continuation lines do not start with dollar signs and
must not be labeled.

6.3 THE BATCH PROCESS COMMAND SET
Most batch commands are identical to interactive commands, except that the batch command must
have a dollar sign prefix and can be labeled. The following interactive commands are not applicable
to batch processing:

ABORT
ALLOCATE
[lEALLOCI~ TE
LOGIN
LOGOUT

The following batch commands are not used interactively, or in an indirect command file:

$[lATA
$EOD
$EOJ
$60TO
$IF
$JOB
$ON
$SET [NO]ON

As mentioned previously, the batch commands $JOB and $EOJ correspond to the LOGIN and
LOGOUT commands used to begin and end an interactive session.

The differences between the interactive and batch command sets are due to intrinsic differences
between interactive and batch processing.

6.4 THE BATCH LOG FILE
The activities of each batch job are recorded in a log file associated with the job. (NOTE: In this
context, "job" means the file or files included in the SUBMIT command that initiated the action.)
This provides a hard-copy record of the job similar to the information that appears on a terminal
during an interactive session. The log file is printed automatically when the entire batch job is
complete unless you specifically ask that it not be printed. You can suppress the log file listing
by including the /NOPRINT qualifier in the SUBMIT command that you issue to submit the job.
If you specify /NOPRINT, the log file will be placed on your account with a file name correspond
ing to the job name and a file type of . LOG .

6-2

Batch Processing

6.S BEGINNING AND ENDING A BATCH JOB
The $JOB command marks the beginning of a batch job file. It has the following format:

$JOB [/TIME:xx] job-name [uic]

The optional qualifier/TIME :xx gives the maximum number of minutes (in wall clock time, not
CPU time) that the job is allowed to complete its run, beginning from the time the SUBMIT is
issued. Job-name is the name by which the job will be identified in the batch log.

The uic parameter specifies a User Identification Code of the form

[g,m]

The uic is optional. This parameter allows privileged users to log in under another UIC during
the batch job.

The $EOJ command marks the end of the batch job file, and has the following format:

$EOJ

There are no qualifiers and no parameters.

6.6 BATCH DATA BLOCKS
Often you must supply data to programs run under batch control. When you run programs
interactively, you enter data in response to prompts from the running task. In batch processing
you must supply data in the form of a data block.

In the following example, NEWMEM is an application program that requests information on new
members of an organization. It requires the name, address, phone number and dues prepay
ments for each new member, and uses the information to create new records in a central
membership file. You can supply this information to the program by means of a data block.
When the end of the data block is reached, NEWMEM terminates, and the running of another
application program called MEMLIST supplies a listing of the updated file. The following
sequence runs NEWMEM, supplies the necessary data for these new members, and then runs
MEMLIST.

$RUN NEWMEM
HENRY, SAMUEL
13 OAKLAND AV, SUDBURY
285-9009
20,00
CURRY, JANET
140 LINDENWOOD DR, SUDBURY
287-8123
15.00

6-3

Batch Processing

TOWNE, DAVID
NO PERM ABODE·
581-3345
0.00
$RUN MEMLIST

Notice that the data does not include dollar sign characters at the beginning of any line.
Data entered in the form shown above must not include dollar signs as the first nonblank
character of the line, because the system would interpret a dollar sign as the beginning of a
batch command.

To enter program input that contains dollar sign characters as the first nonblank character
on the line, you must precede the input data with the following command:

$ItATA/[lOl.LARS

This alerts the system that the lines· of data to follow may possibly begin with dollar signs.
All information that follows this command is treated as data until the following command is
encountered:

$EOD

This command has no qualifiers or parameters; it simply marks the end of the data block.
You can include this command at the end of any· batch data block, but it is only required
when you must terminate data that includes dollar sign characters. ($EOD is also used to
terminate data following a $CREATE/DOLLARS command.)

Normally, all data blocks are included in the log file for the batch job. If you wish to
suppress this copying, you must include a $DATA command that includes the /NOCOPY
qualifier:

$ItATA/NOCOPY

The log file does not receive the data that follows.

In general, you need only include the $DA T A command when you wish to use the
/DOLLARS qualifer, the /NOCOPY qualifier, or both. $EOD is required only when a prior
$CREATE/DOLLARS or $DATA/DOLLARS command is present.

6.7 ERROR STATUS AND SEQUENCE CONTROL
Commands and tasks return a status on exit, indicating whether an error occurred. In batch
processing you can specify alternative action to be taken in the event of an error.

6-4

Batch Processing

6.7.1 Status Levels
Any of four exit status levels can occur:

SUCCESS
WARNING
ERROR
SEVERE_ERROR

If exit with status is not implemented in the task or command, no status level is returned to the
batch processor and execution continues as if the status had been SUCCESS.

SUCCESS indicates that results should be as expected.

WARNING indicates that the task has succeeded, but with possible irregularities, and that results
may not be as expected.

ERROR is stronger than WARNING; results are unlikely to be as expected.

SEVERE_ERROR indicates one or more fatal errors and that the command or task may have
been terminated prior to completion.

6.7.2 Conditional Processing
Four batch commands are designed to control the processing sequence in a batch procedure. They
specify alternative action to be taken by the batch processor should an error occur in a command
or task.

6.7.3 The SON Command
The SON command specifies action to be taken in the event that any subsequent command
returns an exit status with a severity as great or greater than that specified in the command. Its
format is:

SON status-level THEN action

The status-level must be one of the following:

WARNING
ERROR
SEVERE_ERROR

Then the action must be one of the following:

CONTINUE
STOP
GOTO label

6-5

Batch Processing

The arguments of the $ON command are stored in local memory, and referenced whenever a
command or task that returns a status level is executed. $ON is a global command. These argu
ments remain in force until superseded by another $ON command, until end-of-job, or until the
$ON command actually takes effect. Any individual $ON command can be executed only once.

If no $ON command is in effect, and execution produces an exit status of ERROR or SEVERE
ERROR, the processing of the batch job stops. That is to say, the initial (or default) setting is
$ON ERROR THEN STOP. The STOP action causes the batch processor to skip all remaining
commands in the batch file. If an $ON command is found, on attempted execution, to be faulty,
the batch processor reverts to the default setting.

Example:

$ON ERROR THEN STOP
$COBOL MYPROG
flINt< MYPROG
$RUN MYPROG

If the assembly is completed with a status of success or warning, the job continues with the linking.
If the linking produces no status worse than a warning, the task is run. If however, a status level of
ERROR or SEVERE-ERROR is produced by the $MACRO, $LINK, or $RUN command, the batch
job is stopped.

6.7.4 The $SET [NO] ON Command
The $SET NOON command suspends the influence of the $ON command currently in effect. Its
fonnat is:

$SET NOON

The $SET ON command reinstates the $ON command that was previously negated by a $SET
NOON command. Its fonnat is:

$SET ON

6.7.5 The $IF Command
The $IF command is similar to the $ON command, except that it operates locally, pertaining only
to the last preceding command (excluding other sequence-control commands). Also, it tests only
for status-level actually specified; the THEN action is executed only if the status-level returned by
the preceding command matches exactly the status-level specified in the $IF command. Its format
is:

$IF status-level THEN action

Status-level must be one of the following:

6-6

Batch Processing

SUCCESS
WARNING
ERROR
SEVERE-ERROR

The action parameter is the same as for the SON command.

6.7.6 The SGOTO Command
The $GOTO command instructs the batch processor to unconditionally skip all commands up to a
specified label. Execution continues at the command bearing that label. Only forward branching
is allowed. The fonnat is:

$GOTO label

The $GOTO command must appear with a label. The label must appear, followed by a colon, in
front of a later command, or the job is tenninated. For example:

$ON WARNING THEN GO TO ELSE
$LINK MYF'ROG
$RUN MYF'ROG
$60TO ENII
$ELSE: ON WARNING THEN GOTO END
$LINK OLIIPROG
$RUN OLDPROG
$ENII: EOJ

In this example, MYPROG is linked and run unless the link includes warning errors or worse, in
which case OLDPROG is linked and run. If linking OLDPROG results in an error status, the setting
of ON causes the command processor to look ahead for the label END.

Note that GOTO can be used both as a standalone command and as part of an $IF or SON
command. Both types of usage are depicted in the preceding example.

If no warning status occurs during the linking of MYPROG, MYPROG is run. On completion, the
batch processor skips ahead to the terminating EOJ command.

6.8 SUBMITTING A BATCH JOB
You can submit a batch job during an interactive session or from another batch job with the follow
ing command;

[$] SUBMIT [fqualifiers] batch-ftIe-spec [, ...]

The batch-ftIe-spec is promptable. Each batch-ftle-spec must refer to a fIle that consists of batch
commands, the first command being a $JOB.command. If no ftIe type is given, the default is .CMD.

6-7

Batch Processing

The SUBMIT command places the batch file or files into a batch queue to await processing.

Qualifiers allow you to specify:

6-8

• The batch queue into which the job is to be placed (/QUEUE)
• Whether the job can be restarted from the beginning following an interrupt (/[NO]

RESTART)
• The queue priority for the job (/PRIORITY)
• Printing or non-printing of the log file for the job (/[NO] PRINT)
• A date and time at which the job will become eligible to be dispatched from the batch

queue to the batch processor ({AFTER)
• The name of the batch job ({JOB)
• Whether to submit original copies of files from a private volume, or to make a temporary

copy ([NO] ORIGINAL)

CHAPTER 7

INDIRECT COMMAND FILES

In using the Support Environment, you may find that you use certain interactive command
sequences (or long single commands) fairly often. Rather than type such commands each time
you want to execute them, you can store them in an indirect command file.

An indirect command file is a sequential file that contains one or more interactive commands. The
commands in an indirect command file are invoked as a unit, and are executed as single commands,
one after another, until you reach the end of the file. Unlike batch files, they execute immediately
at your terminal, and can accept interactive input.

7.1 CREATING AN INDIRECf COMMAND FILE
You can create an indirect command file most easily by calling the DEC EDITOR, using the EDIT
command. (See the TRAX Text Editor Reference Manual for information on the use of the DEC
EDITOR.) The standard .CMD file type is recommended. Then enter commands as text in the
same format as you would enter them on interactive session. For example:

COpy [350,230JTRANSACT.DAT TRANSBACK.DAT
PURGE TRANSBACK.DAT
PRINT TRANSBACK.DAT

You can, if you wish, create an indirect file for generalized use, omitting the command parameters.
When you invoke the file, the individual commands will prompt for its parameters. For example:

COPY
PURGE
PRINT

This indirect command sequence will prompt for parameters at your terminal on each command,
so that you can use it for any file. This technique is especially useful for creating sequences that
include lengthy commands with fixed qualifiers, but variable parameters.

7.2 INVOKING INDIRECT COMMAND FILES
To execute indirect command files, enter a command consisting of an at sign, @, followed by file
specification of the file containing the commands.

7-1

Indirect Command Files

If the file type is omitted, the default file type .CMD is assumed. Thus the following two com
mands are equivalent:

@INDSEQ

@INDSEQ.CMD

You can invoke an indirect command file in either interactive mode or batch mode, but the
indirect command file must contain only interactive commands. To invoke the file INDSEQ from
a batch file, the command is:

$@INDSEQ

lliustrative Applications

7-2

1. Suppose you have an indirect command file IND.CMD that contains the following
information:

COPY
PURGE
TYPE

You invoke this file by entering the following interactive command.

>@IND.CMD

The three commands prompt for parameters and execute as follows:

>@IND.CMD
>COPY
FROM? [350,230JAMORT.B2S
TO? REVAMPT.B2S
>PURGE
F I LE'P REVAMPT. *
>TYPE
FILE? REVAMPT.B2S
10
20
30
40
50
60
70
100
:1.10
:1.000
>@ <EOF>

input 'interest' J
1. E-?t.. J::::,j/l00
input 'amount' a
input 'number of ~ears';n
input 'P8sments per ~ear/; m
let n=n*m \ i=J/m \ b=lti
let r=a*i/(1-1/b~n)
print.' ,::JITIDunt F'E.' r F-'asmE.'nt::;;"'; i nt (r* 1 O'~2+ • 5) /10""2
F' r :i. r It'" t () t. ali n t e r E-~ ~:; t. :::: / , i n t ((r * r I - 3) * 1 0 .~ 2 + • 5) 11 0"" 2

end

Indirect Command Files

Note that you enter only the @ command and the responses to the prompts for file speci
fication. After the last command is executed, the system indicates this by displaying the
following:

@ < EOF >

2. The following sequence deletes all copies of temporary files (with file type .TMP) and
purges all but the most recent copy of all other files prior to logout.

DELETE *.TMP;*
PURGE *.*
LOGOUT

This kind of directory cleanup is often a lengthy procedure. By using an indirect command
file, you can invoke the procedure and allow it to run without attending the terminal. The
terminal listing is as follows:

>@LOGF.CMD
>DELETE *.TMP;*
>PURGE *.*
>LOGOUT
15:23:28 TASK "AT.Tl! " TERMINATED
HAVE A GOOD AFTERNOON

ABORTED VIA DIRECTIVE OR MCR
03-JUN-78 15:23 TTl!: LOGGED OFF
>

You need not leave the terminal power up once you have invoked the indirect command unless
you need the listing.

7-3

Indirect Command Files

7-4

PART TWO

SUPPORT ENVIRONMENT COMMANDS

- REFERENCE -

CHAPTERS

FORMAT CONVENTIONS

8.1 COMMAND DESCRIYfIONS
Command descriptions in Chapter 9 include the following information, as required:

I. The name of the command.
2. A brief statement of the command's purpose or action.
3. The general fonnat of the command, showing all elements of the command. See Section

8.2 for detailed information on command fonnat.
4. The possible prompts that the command can issue to request additional information, such

as ftIe specifications or tasknames omitted from the command.
5. Descriptions of the command parameters, such as file specifications.
6. Descriptions of the qualifiers for the command. Qualifiers are key words whose first char

acter is a slash (/). Generally, there are two categories of qualifiers: command qualifiers
and parameter qualifiers.

Command qualifiers are those which appear immediately after the command name, before
any parameters that the command may contain. They influence the overall command
action. Many commands allow or require multiple qualifiers.

Parameter qualifiers influence only the parameter whose specification they immediately
follow.

7. Whatever additional notes may be needed to describe the syntax and action of the command.

8.2 GENERAL FORMAT NOTATIONS
In describing general command fonnats, notation conventions are as follows:

I. Command names are shown in upper-case letters. Batch command names also have a lead
ing dollar sign ($).

2. Parameters are shown in lower-case letters, and specify the type of infonnation that you
must provide. Parameters used in the descriptions are as follows:

Parameter

ftIe-spec
in-fIle-spec
out-fIle-spec
task-name
function

Information Required

File specification, as described in Chapter 3.
The parameters in-fIle-spec and out-ftIe-spec are used only when needed
to indicate the order of the parameters (as in a COpy command).
The name of an executing task.
A secondary keyword required in some commands to further define
the action of the command.

8-1

Format Conventions

device-name

logical-name
ufd
user-id

A device designation; this can be either physical device name or a
logical device name.
A device designation; this must be a logical device name.
A User File Directory.
A User Identification Code or User Name.

The above list is not complete. Descriptions of some specialized parameters are included
in the description of the command in which they appear or are self-explanatory.

3. Qualifiers are depicted in two forms:

• A slash followed by a string of upper-case letters, indicating the actual characteris
tics of the qualifiers .

• A slash followed by the lower-case word "qualifier", indicating that any of several
qualifiers are valid.

4. Colons, periods, commas, semicolons, dollar signs, and slashes are part of the elements in
which they appear, and are required where shown.

5. Square brackets [] indicate that the material enclosed within is optional.
6. Ellipses ... indicate that the immediately preceding parameter is repeatable; i.e., multiple

values are allowed for the parameter. Separate multiple values by commas.

8.3 ISSUING COMMANDS
You communicate with the system by issuing commands. A command consists of a command
name which describes the action the system is to take (COPY or LOGIN, for example), often
accompanied by one or more parameters. Parameters either describe the items on which the
command is to act or further define the function of the command.

Both command names and parameters can have qualifiers. Qualifiers are appended as a suffix to
modify or further define the command name or parameter.

Commands can be entered at an interactive terminal only when the system is prompting >. Some
commands (EDIT and BASIC, for example) invoke a program that accepts its own set of commands,
valid only while that program is running. In tum, system commands are not valid while that pro
gram is running; you must first return control to the system. The descriptions of EDIT and BASIC
in Part II describe how to terminate the invoked program's execution.

8.3.1 Command Structure
A command consists of a command name followed by a set of parameters. (A batch command
also contains a dollar sign and an optional label.) The command name specifies the type of action
for the system to perform, and the parameters indicate those entities on which the command will
perform the action.

A command name or parameter can include a set of qualifiers that modify or complete its mean
ing. Qualifiers are appended directly to the command name or parameter with no embedded
spaces.

8-2

Fomzat Conventions

The general format of a command is as follows:

[$ [label:]] command-name [/qualifier ...] parameter [/qualifier ...] ...

You can either supply the command name followed by the parameters on one line or enter the
parameters in response to prompts. In both batch and interactive mode, when two or more
parameters are on one line, they must be separated by at least one space or tab.

A command may require more than one line A hyphen (-) as the last character on the line contin
ues the command onto the next line. Following the carriage return, the system prompts:

Del>

An exclamation mark (!) line indicates the start of a comment. The comment text appears after
the exclamation mark, and the rest of the line is treated as commentary.

8.3.2 Command Names
Every command begins with a command name that describes the action the command is to per
form. You need not enter the complete command name to have it function correctly, only
enough of its leading characters to uniquely identify it. No command name requires more than
four characters for unique identification, and in some cases one character suffices.

For example, DEASSIGN and DEALLOCATE can be abbreviated to DEAS and DEAL respective
ly, but further abbreviation would make the command ambiguous. However, TYPE can be
abbreviated to T, because no other command begins with that letter.

NOTE
To ensure compatibility with further versions of TRAX (which may include
new commands), you should use at least four characters to identify commands
in batch and indirect command files.

8.3 ~3 Parameters
A parameter either describes a value that a command uses when executing, or it further defines
the action of the command. At least one space or tab must separate the frrst parameter from the
command name; parameters are then separated from each other by one or more spaces (and/or
tabs).

If you do not enter all the parameters that the system requires to execute the command, the
system prompts until all required parameters are entered.

As an example, the COpy command is used to make new copies of files. It requires the name of
the file to be copied and the name of the new file to be created. If only the command name,
COpy, is entered, the system prompts for the name of the existing file by typing FROM? It then
prompts for the name of the file to be created by prompting TO?

8-3

Format Conventions

The COPY command can be entered in any of the following ways.

>COpy OLDFILE.DAT NEWFILE.DAT

>COPY OLDFILE.DAT
TO? NEWFILE.DAT

>COpy
FROM? OLDFILE.DAT
TO? NEWFILE.DAT

8.3.3.1 Optional Parametel'S - TRAX DCL never prompts for optional parameters. You must
supply optional parameters on the same line with required parameters. This means that you must
respond to each parameter prompt appearing on your terminal. For example:

>SHOW
FUNCTION? QUEUE ALL

PRINT QUEUES
PRINT
LPQO
TEST
BAPO

BATCH QUEUES
BATCH
TRXKIT
SURVEY
CHRIS

8.3.3.2 Parameter Lists - Some commands allow a parameter to be replaced by a list of para
meters. For example, in a DELETE command, a single file specification can be replaced by a
list of file specifications. When a parameter is a list of items, the items are separated by commas.
Extra spaces are ignored.

Example:

>DELETE ABC.CBL;*, AB.OBJ;l

8.3.4 Qualifiel'S
A qualifier consists of a character string, recognizable by the system, with a slash (/) as its first
character. Its purpose is to modify or further specify the meaning of a command name or a
parameter.

Qualifiers are directly appended to the qualified element, so that an element and all of its
qualifiers form a string with no embedded spaces. Any qualifier may be abbreviated if it contains
enough characters to distinguish it from any other possible qualifiers for that command. Any
qualifier can be uniquely abbreviated to four leading characters.

8-4

Format Conventions

8.3.4.1 Command Qualifiers - Command qualifiers modify the action of a command. For
example, consider the following COBOL command string:

>COBOL/NOOBJECT COBSRC.CBL;l

Normally (Le., that is, by default) the COBOL command produces an object file. In the example
string, the /NOOBJECT qualifier overrides the default action, and no object file is produced.

Some commands have no qualifiers, while others have many possible qualifiers. Multiple qual
ifiers are permitted. For example:

>COBOL/NOOBJECT/LIST:COBLST.TMP COBSRC.CBL;l

Some command qualifiers include variables; the /LIST qualifer, for example, can specify a file to
receive a listing. There is no prompting for qualifiers or for qualifier variables.

8.3.4.2 Parameter Qualifiers - In some commands, parameters such as file specifications can have
qualifiers. Parameter qualifiers further specify parameters that require special treatment. In the
following APPEND command, the /RELATIVE qualifier informs the system that the input file
DAT.TMP;1 has relative file organization.

)APPEND DATA.TMP;l/RELATIVE UPDATE.DAT

8.3.5 Underline Convention
To improve readability, some DCL words include an underline character joining two or more
English words. For example:

CREATE/VOLUME-LABEL SEVERE-ERROR

When such DCL words are abbreviated the underline is treated the same as an alphabetic
character. Thus the following are all valid abbreviations for the qualifier VOLUME-LABEL:

VOLUME L
VOLUME
VOLU

The following abbreviations are not valid:

VOLUME _ LBL (interior characters omitted)
VOLUME-LAB (hyphen vot valid)

8.4 TERMINAL KEYBOARD FUNCfIONS
You type the input text one line at a time, terminating each line with a carriage return (RETURN).
The system either prints the terminal input on the terminal printer or displays it on the screen
of a display unit.

8-5

FonnatConventions

Function keys can be used to format a line (Space Bar, TAB), to edit a line (DELETE), or to
access the uppermost of two characters that appear on a key (SHIFT, SHIFT LOCK). Typing a
carriage return (RETURN) causes the system to process the current line.

Table 8-1 describes the function keys, as they appear on the LA36 and VT52 support terminals,
and the effects of their use.

The CTRL key produces a variety of functions when pressed simultaneously with anyone of
several letter keys.

The combination of CTRL and another character key is called a control character. In this manual
a control character is written as "CTRL/x" where x represents a variable character key.

The effect of a control character sometimes depends on the activity that the terminal is
currently supporting.

Table 8-2 lists all the control characters supported under TRAX and their associated functions.

Key

CTRL

DELETE

ESC

LINE FEED

RETURN

SHIFT

SHIFT LOCK or
CAPS LOCK

SPACEBAR

TAB

8-6

Table 8-1 Keyboard Functions

Description

Used in combination with several I-key letter keys to produce a variety of
functions.

Deletes the last character typed at the terminal, and further continuous
characters if the key is pressed repeatedly.

TerminafesaIine of input without moving the carriage or cursor.

Physically moves the paper or rolls the screen image upward, without
influencing the system in any way.

Terminates the current input line and enters the line into the system; the
carriage or cursor advances to the first character position of the next line.

Prints or displays the uppermost of two characters appearing on a key
typed while SHFFT is held down.

Alternately locks and unlocks SHIFT' mode on alphabetic characters.
This key does not affect nonalphabetic characters.

Advances carriage or cursor one space at a time.

Causes the carriage or cursor to move to the next tab stop on the line. A
line conventionally contains tab stops every eight character positions.

Key

CTRL/C

CTRL/I or TAB

CTRL/K

CTRL/L

CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/Z

Format Conventions

Table 8-2 Control Key Functions

Description

CTRL/C typed either as the first character in the line or when the terminal
is producing output causes the system to prompt for command input.

If the last character entered at the terminal was CTRL/S, CTRL/C also
performs the function of CTRL/Q.

Advances the carriage or cursor to the next horizontal tab stop on the
line. The system establishes tab stops at every eight characters in the line.

Causes a vertical tab by performing four line feeds.

Performs eight line feeds.

Alternately suppresses and resumes the display of output at the terminal.
The system discards characters directed to a terminal that has disabled the
display of its output.

CTRL/Q typed after a CTRL/S resumes output suspended by the previous
CTRL/S.

Typing CTRL/R before typing a line terminator causes the system to
retype the current line on a new line, omitting any depleted characters. If
the curren t line is empty, CTRL/R performs a carriage return and line feed

Typing CTRL/S while the terminal is receiving output suspends additional
output until you type CTRL/Q or CTRL/C. The suspended output is
merely delayed, not lost (see the description of CTRL/Q). The combined
functions of CTRL/Q and CTRL/S are convenient when using a display
terminal that transmits faster than you desire.

Typing CTRL/U before typing a line terminator causes the previously
typed characters to be deleted back to the beginning of the line. The
system responds with a carriage return and line-feed so that the line can be
re-typed. CTRL/U is echoed as CU.

Is a break character indicating end-of-file. Use it when the system is
expecting input as a signal to indicate that you are finished typing in data.
Most system utilities will bring all processing to an orderly termination and
exit in response to this function.

8-7

Format Conventions

8.5 CORRECTING INPUT ERRORS
Before terminating a l~ne, you can correct typing errors by using the DELETE key or change the
line completely by using CTRLjU. However, once a command has been terminated (and thus
input to the system) it cannot be corrected; the system will perform, or attempt to perform, the
operation you specified. File information can be corrected by editing.

8.5.1 Deleting Individual Characters
The DELETE key deletes the most recent character on the current line for each pressing of the
key. DELETE has no effect when the current line is empty.

On a hard-copy terminal, each deleted character is echoed. The string of deleted characters is
enclosed between an initial and a final backslash (\). These backslashes are generated by the
system for visual reference, and are not included in the data. The final backslash is printed when
a new text character is typed in place of DELETE. Backslashes and deleted characters are
omitted in the case when CTRLjR is used to make a copy of the line as typed so far.

On a video terminal, such as a VT52, each deleted character is removed from the screen, and the
cursor returns to where it was before the character was typed.

For example, to change ACCDE to ABCDE, the user presses DELETE four times to override the
CCDE. On a hard-copy tenninal the string now appears as

ACCDE\EDCC

The user then enters the correct sequence BCDE. On the hard-copy terminal, the string now
appears as

ACCDE\EDCC\BCDE

On a display unit the screen will show the string

ABCDE

In both cases ABCDE is the string accepted and sent to the computer when the line is terminated.

8.5.2 Deleting a Line
CTRLjU deletes all characters on the line, prints AU, and performs a carriage return. The user can
then enter the text correctly.

For example, if you type ACCDEFGHI, but meant to type B for the tirst C, pressing the DELETE
key eight times would be tedious and the result confusing on a hard-copy terminal. It would be
easier to press CTRLjU and start again. The latter method would appear as follows:

8-8

ACCDEFGHI AU
ABCDEFGHI

Format Conventions

After using the DELETE key to correct a line and before terminating the line, you can ensure
that the final result is what you want by typing CTRL/R before pressing carriage return. This
displays the connected line contents before it becomes computer input.

Further corrections can be made at this point if necessary.

8.6 ABBREVIATIONS
When you type a system keyword (such as a command. or qualifier, or fixed parameter value),
you need only type enough leading letters to uniquely identify it. However, the characters that
you do include must match those of the corresponding characters in the full name. The system
does not attempt to resolve invalid names by dropping characters from the right-hand end. If,
for example, you are typing a COBOL command:

COBOL

COB

CO

CBL

is a complete comlnand name.

is a valid abbreviation of COBOL.

is ambiguous, because COpy begins with the same letters.

is invalid, because no command begins with the letters CBL.

Any keyword can be abbreviated to the first four letters and be recognizable. Some keywords
can be abbreviated to a single letter. Nevertheless, when creating batch procedures or indirect
command files for long-term use, you should consider limiting abbreviations to four characters;
this will ensure compatibility with future enhancements.

8-9

f'ormat Conventions

8-10

CHAPTER 9

COMMAND DESCRIPTIONS

This chapter describes the set of TRAX commands available to the general user. Commands are
presented in alphabetical order.

9.1 ABORT
The ABORT command terminates the execution of a command or a running task that you have
originated. Aborting a task causes the system to force an orderly termination of the specified
task. To effect the termination, the system:

• Performs I/O rundown. I/O for all non file-structured devices is cancelled. I/O for file
structured devices is allowed to complete and then the files are deaccessed. All attached
devices are detached.

• Displays the abort message.

Upon completion of the ABORT, the task name is displayed on the originating terminal.

Format:

ABORT[jqualifier] task-name

Command Qualifiers:

/COMMAND
/TASK
/DUMP

Prompts:

>ABORT
COMMAND NAME?

or

>ABORT/TASK
TASK NAME?

Command Parameter:

task name

Default:

/COMMAND

The name of either the task or command to be aborted.
If a command name, it may be abbreviated. See the
Command Qualifiers for further information.

9-1

Command Descriptions

Command Qualifiers:

/COMMAND

/TASK

/DUMP

Notes:

Abort a DCL command; such as DIRECTORY or RUN.
The task-name given to an interactive command is
XXXTnn where XXX is the first three characters of
the command and nn is the number of the originating
terminal. If the command is a batch command (orig
inating from a virtual terminal), a V appears in the
task-name instead of aT.

Abort a user task.

ABORT/TASK "name" is used to abort a task whose
name appears in the active task list for the issuing
terminal or for the system as a whole.

The indirect command file task is aborted by specifying

ABORT/TASK AT.

on the originating terminal.

See the SHOW TASKS command to display active task
names.

Requests a post-mortem dump of the aborted task or
command.

If the command or task that you want to abort is producing output (as in the case of a DIREC
TORY command, you must type CTRL/C. This causes the system to prompt DCL>. Then
you enter the complete ABORT command, including the command or task-name. If you type
ABORT and then press carriage return, the system will not prompt until it has completed its
current output commitment. If you are issuing the ABORT command to suppress unwanted
terminal output, you must enter the complete command in response to the DeL> prompt.

9-2

Command Descriptions

Examples:

This example aborts the currently active user task called TEST.

)RUN/TASK:TEST ENDLES.TSK

DCL)ABORT/TASK TEST
11:38:35 TASK -TEST - TERMINATED

ABORTED VIA DIRECTIVE OR HCR

This example aborts the indirect file processor task from the issuing terminal (TT4:).

)@LOGF

DCL>ABORT/TASK AT.
>DELETE *

9.2 ALLOCATE

TASK ·AT.T4 - TERMINATED
ABORTED VIA DIRECTIVE OR HCR
AND WITH PENDING 10 REQUESTS

The ALLOCATE command establishes a specified device as a private device and denies other
general users access to the device.

You must allocate a device before mounting it. For efficient resource management, devices should
be deallocated when they are no longer needed. (Refer to the DEALLOCATE command for its
use.) Only the system manager or the device owner can deallocate a device. The system auto
matically DEALLOCATEs your private devices when you log off (LOGOUT) the system.

Public devices or other users' private devices cannot be allocated.

FQrmat:

ALLOCATE device-name

Prompt:

DEVICE? device-name

Command Parameter:

device-name The device name of the device to be allocated. A list
of device types is provided in Chapter 3, Table 3-1.

9-3

Command Descriptions

Command Qualifier: None.

Examples:

This example allocates the DB2: disk. Other users are not permitted to use DB2: until you
or the system manager deallocates it.

>ALLOCATE IIB2:

9.3 APPEND
The APPEND command copies one or multiple sequential files, or the records of one relative or
indexed file, to the end of an existing sequential file.

Format:

APPEND input-file-spec [/file-q ualifier] output-file-spec

File Qualifiers:

/SEQUENTIAL
/RELATIVE
jINDEXED
jKEY:NUMBER:n

Prompts:

Default:

jSEQUENTIAL

FROM? input-file-spec[/file=qualifier]
TO'? output-file-spec

Command Parameters:

input-file-spec, ...

output-file-spec

File Qualifiers:

/SEQUENTIAL

94

The file specification of the input file or files. If multiple
file specifications are given, the entire set of specifica
tions must be enclosed in parentheses.

The file specification of a sequential file to which the
records of the input files will be appended.

All file specifications must include a file name and a file
type.

Specifies that the input file or files has seq uential
organization. This is the default.

Command Descriptions

/RELATIVE

/INDEXED

Specifies that the input file has relative organization.

Specifies that the input file is organized as an indexed
file.

/KEY:NUMBER:n Optionally specifies the record access key for an indexed
file. If n=l, it calls for access on the primary key defined
for the input file. If n=2, it specifies access on the first
alternate key; n=3 specifies the second alternate key,

Notes:

and so on, up to the number of keys defined for the
input file.

1. The output file must have sequential organization.

2. Wildcards are allowed on input files with sequential organization only. The order of
appending multiple files specified by wildcard is their order of appearance in the direc
tory and can be seen in advance by issuing a DIRECTORY command using the same
wildcard specification.

3. If the input ftIe is organized indexed or relative, the APPEND command must include
the appropriate qualifier.

Example:

This example appends the contents of FILE 1. DATto the end of FI LE 2. DAT.

>TYPE FILE1.DAT
THIS IS FILE 1.
>TYPE FILE2.DAT
THIS IS FILE 2.
>APPEND FILE1.DAT
TO? FILE2.DAT
>TYPE FILE2.DAT
THIS IS FILE 2.
THIS IS FILE 1.

9.4 ASSIGN
The ASSIGN command defines logical device names.

Format:

ASSIGN[/LOCAL] device-name logical-device-name.

Prompts:

DEVICE? device-name
LOGICAL? logical-device-name

9-5

Command Descriptions

Command Parameters:.

device-name The physical device name of the device or a previously
assigned logical name.

logical-device-name The logical name to be assigned.

Command Qualifier:

/LOCAL Optional, default

Notes:
I. The logical-device-name consists of a two-character ASCII string followed by a 1- or

2- digit octal number and a mandatory colon.

2. The assignment continues in effect until you either use a DEASSIGN command specifying
the logical name or logout. No automatic deassignment occurs when you dismount the
the physical device.

Example:

When the COPY command is executed, the value of the logical device name, TA5: is
replaced by the actual physical device name MM 1:.

>f~lSSIGN MM1: TA~5:

>COpy TAS:*.* *~*

9.5 BASIC
The BASIC command invokes the BASIC-PLUS-2 compiler and places the terminal in BASIC
PLUS-2 control mode.

Format:

BASIC

Notes:

9-6

I. The BASIC command has no qualifiers or parameters. After you enter the BASIC
command, the following information appears:

BASIC 2

This indicates that you are in BASIC-PLUS-2 mode and must enter only commands
appropriate to that mode when handling files.

2. To exit BASIC-PLUS-2 and return to TRAX, enter the following command in response
to a BASIC 2 prompt.

EXIT

Command Descriptions

3. See BASIC-PLUS-2 documentation for information about the BASIC-PLUS-2 program
ming language and control commands.

9.6 COBOL
The COBOL command compiles one or more COBOL source program files.

Format:

COBOL [jqualifiers] file-spec [, ...]

Command Qualifiers:

/LIST[: file-spec]
/NOLIST
/OBJECT[: file-spec]
/NOOBJECT
/SWITCHES : (values)

Prompt:

FILE? file-spec [, ...]

Command Parameter:

file-spec, . . .

Command Qualifiers:

/OBJECT[:object-file-spec]
/NOOBJECT

/LIST[:list-file-spec]
/NOLIST

/SWITCHES: (/values)

Default:

/NOLIST

/OBJECT

Specifies a COBOL source program to be compiled.
If a ftle-spec does not include a file type .. CBL. is
assumed.

Specifies that an object file be produced and named as
indicated by object-file-spec. /OBJECT is the default
qualifier. The default file name is the name of the first
source fue. The default file type is .OBJ. /NOOBJECT
specifies that no object file is to be produced.

/LIST specifies that the listing be produced and named
according to list-file-spec. The default file name is the
name of the source file. The default extension is . LST.

/NOLIST specifies that no listing file be produced. This
is the listing default qualifier.

Passes optional switches directly to the compiler in
keyword form. The switch values are:

9-7

Command Descriptions

ERR:n
ACC:n
MAP
LaD
CVF
USW:n ... :m

CREF
SYM:n
NORUN
RUN
HELP
TST

Each switch value must be preceded by a slash. For
details regarding these switches, see the TRAX COBOL
Language User's Guide.

Example:

This command compiles the source file COBPRG. CBL. The object file name defaults to
COBPRG. OBJ, and the file OUT. LST contains the listing.

>COBOL/LIST:OUT.LST COBPRG.CBL

9.7 COpy
The COpy command performs any of these functions, depending on the qualifiers used.

I. Copies a single file such that the output file has the same organization as the input file.
2. Creates a sequential file consisting of a concatenated set of sequential files.
3. Copies a set of files to a corresponding set of files. This is called parallel copying.
4. Creates a sequential file copy consisting of the records from a single sequential, indexed,

or relative organized file.

Format:

1. For single or parallel file copying:

COpy [/qualifiers] input-file-spec [ffile-qualifier] output-file-spec

Command Qualifiers:

/CONTIGUOUS
/BLOCKSIZE:n
/OWN

File Qualifiers:

9-8

/SEQUENTIAL
/RELATIVE
/INDEXED [fKEY:number:n]

2. For concatenating sequential files into one file:

COpy [fqualifiers] (input-file-spec [jSEQUENTIAL] [, ...])
output-file-spec

Command Qualifiers:

ICONTIGUOUS
IBLOCKSIZE:n
IOWN

Prompts:

Command Descriptions

FROM? input-file-spec [jfile-qualified] [. ...]
TO? output-ftle-spec

Command Parameters:

input-flle-spec

output-ftle-spec

Command Qualifiers:

ICONTIGUOUS

IBLOCKSIZE :n

IOWN

File Qualifiers:

ISEQUENTIAL

IRELATIVE

IINDEXED

IKEY:NUMBER:n

The file specification of the input file. Each file
specification must include a file name and a file type.

The file specification of the output file.

Specifies a contiguous output file. If the ICONTIGU
OUS qualifier is omitted, the output file is not neces
sarily contiguous.

Specifies a blocksize to be used when copying files to
and from magnetic tape.

Specifies that the owner of the output file will be the
UFD under which it resides.

Specifies that the input file has sequential organization.

Specifies that the input file has relative organization.

Specifies that the input file has indexed organization.

Optionally specifies the record access key for an in
dexed file. If n= I, it calls for access on the primary
key defined for the input file. If n=2, it specifies access
on the first alternate key; n=3 specifies the second al
ternate key, and so on, up to the number of keys de
fmed for the input file.

9-9

Command Descriptions

Notes:
1. If copying disk-to-disk to obtain a sequential output file from an /INDEXED or /REL

ATIVE input file, you must indicate the organization of the input file by means of a file
qualifier. If you omit the /RELATIVE or /INDEXED qualifier, the output file organi
zation is the same as the input file. When copying files to magtape, you must specify the
organization of the input file.

2. Wildcards are allowed for sequential input files when producing a single, sequential out
put file. When wildcards appear in the input-file-spec but not in the output-file-spec, the
input files are concatenated in the output file. Order of copying depends solely on the
order of their appearance in the directory.

3. Wildcards are allowed in the output-file-spec when the directories of the input-file-spec
and the output-file-spec are different. Both the file name and file type components of
the output file must be represented as wildcards. In this case, each input file is copied
into a separate output file with identical file name and file type.

Example:

1. Copy the file RANDOM.DAT from the directory [350, 230] into the current default
directory. The copy of the file is unchanged.

2. Copy all files with the file type .CBL from the current directory to the directory [40,41].

This operation requires write permission in directory [40,41].

9.8 CREATE
The CREATE command creates an empty file. If the file has sequential organization, you may
enter text into it as follows:

1. In interactive mode, you enter the formatted command and then type RETURN. On
succeeding lines, type the data that you want to place in the file. Type CTRL/Z to in
dicate the end of the data.

2. In batch mode, the text to be placed in the fue follows the command. Any batch com
mand terminates the data fue unless the CREATE command includes the qualifier
/DOLLARS, in which case only the batch command $EOD can terminate the data.

Files specified as organized /RELATIVE or /INDEXED cannot accept data at the time of
creation.

Format:

CREATE [fqualifiers] file-spec

9-10

Command Qualifiers:

/ALLOCATION:n
/BUCKETSIZE :m
/CONTIGUOUS
/DOLLARS
/FORMAT:record-type

FIXED:n
VARIABLE [:n]
CONTROLLED [:n]

/pROCTECTION: code
/RELATIVE
/SEQUENTIAL
/INDEXED/KEY:value

Prompt:

FILE? file-spec

Command Parameter:

ftIe-spec

Command Qualifiers:

/ALLOCATION:n

/BUCKETSIZE:m

/CONTIGUOUS

/DOLLARS

/FORMAT:record type

Command Descriptions

Default:

n-O
m-l

VARIABLE=O

[RWED, RWED, RWED, R]

/SEQUENTIAL

The file specification for the new ftIe must include a file
name and a file type.

Specifies n blocks of initial allocation for the ftIe.

Allowed only with indexed and relative fIles; specifies a
unit of allocation of m blocks for each bucket. In
TRAX, rn may be a maximum of 16.

Specifies contiguous space allocation for the file.

Specifies that the data to be entered into the created ftIe
contains dollar signs in record position 1. The data
entered must be terminated with a SEOD command.

Specifies the record type of the ftIe.

The following record types are available:

FIXED:n Specifies fixed length records n
bytes long; n is required.

9-11

Command Descriptions

/pROTECTION: code

/RELATIVE

/SEQUENTIAL

/INDEXED

/KEY:value

9-12

VARIABLE [:n] Specifies variable length records.
The n parameter defines the
maximum length of the record; it
is required if /RELA TIVE is
specified but is otherwise op
tional.

CONTROLLED [:n] Specifies variable length records
with a fixed control field. The n
variable defines the maximum
length of the record, including
the fixed control field; it is re
quired if /RELATIVE is spec
ified but is otherwise optional.
In all instances, the size of the
fixed control field defaults to 2
bytes.

Protects the file specified in the code parameter. See
Section 3.3.2 for a detailed description of the pro
tection code.

Specifies relative organization for the file.

Specifies sequential organization. This is the default.

Specifies indexed organization. A /KEY qualifier is also
required if /INDEXED is used.

Specifies the access information for an indexed file.
The value parameter may contain the following:

NUMBER:n

POSITION:n

SIZE:n

Specifies the level of the key
field. Ifn=l, it indicates a pri
mary key, n=2 indicates the first
alternate, and so forth.

Specifies the starting character of
the key field.

Specifies length of the key field.

(NUMBER, POSITION, and SIZE are required for each
key value.)

UPDATE

NOUPDATE

DUPLICATE

NODUPLICATE

Command Descriptions

Specifies that the key field is
subject to change during the up
date process.

Converse of UPDATE, required
on primary keys.

Specifies that the record may
include duplicate keys. This is
implicit if UPDATE is spec
ified.

Converse of DUPLICATE.
Illegal with UPDATE.

Table 9-1 shows the legal combinations of UPDATE and DUPLICATE with primary- and al
ternate keys.

Table 9-1 Valid Key Parameter Combinations

UPDATE UPDATE NOUPDATE NOUPDATE
KEY TYPE DUPLICATE NODUPLICATE DUPLICATE NODUPLICATE

Primary Error Error Not supported Default
Alternate Default Error Allowed Allowed

Notes:
1. The file-spec must contain a file name and a file type. If an existing version number is

not specified, the highest existing version number plus one is used.

2. If sequential organization is specified or defaulted, you can include text in the file as
follows:

Interactive Batch File

>CREATE $CREATE!DOLLARS file-spec

FILE?

contents of file

CTRL!Z

file-spec

contents of file, possibly in
cluding dollar signs.

$EOD

3. If indexed or relative organization is specified, no data is accepted to fill the file.

4. If !INDEXED is specified, a primary- key is also required. If any other organization is
specified, /KEY is not permitted.

9-13

Command Descriptions

s. The qualifiers / ALLOCATE, /CONTIGUOUS, and /PROTECTION are only applicable
when creating an.empty HIe and not when filling the file with data.

6. The code option /PROTECTION specifies up to four categories of protection: SYSTEM,
OWNER, GROUP, and WORLD. Up to four types of access can be specified for each
category: READ (R), WRITE (W), EXTEND (E), and DELETE (D). The order of the
access type codes R, W, E, and D is fixed. For example:

IPROTECTION:<SY:RWED,OWNER:RWED,GROUP:RE)

See Section 3.3.2 for a detailed explanation.

Examples:

This example creates the file ABC.TXT. and accepts lines from the terminal until you type CTRL/Z.

>CREATE
FILE? ABC. TXT
THIS IS THE CONTENT OF THE NEWLY-CREATED FILE. ,...z

This example creates file ACCOUNT .NDX as an indexed file with one key of reference which
appears in the first byte of each record and is 10 bytes long.

>CREATE/INDEXED/KEY:<NUMBER:1,SIZE:10,POSITION:1)
FILE? ACCOUNT.NDX

In this example of batch usage, the $CREATE command creates a file that contains batch com
mands. The file created, COMMAND.CMD, begins with a $COBOL command and ends with a
$RUN command. Since the records to be placed in COMMANDS.CMD contain dollar signs in
record position 1, the /DOLLARS qualifier is necessary on $CREATE to identify all information
up to the $EOD command as data.

9-14

$JOB
$CREATE/DOLLARS COMMANDS.CMD
$COBOL A.CBL
$LINK A.OBJ,[l,lJCOBLIB/LIB,[l,lJRMSLIB/LIB
$RUN A
$EO[I
$COPY MYFILE.CBL NEWFILE.CBL
$EOJ

Command Descriptions

9.9 CREATE/DIRECTORY
The CREATE/DIRECTORY command creates a User File Directory (UFD) on the specified
disk and enters its name into the Master File Directory (MFD) on the disk. The volume must
be initialized and mounted before the CREATE/DIRECTORY command. You can create a
UFD only on your private allocated device.

Fonnat:

CREATE/DIRECTORY [/qualifier] [device-name] ufd

Command Qualifiers:

/ALLOCATION:n
/PROTECTION: code
/VOLUM~ABEL:volume-id

Prompt:

Default:

n=32
[RWED, RWED, RWED, R]

DEVICE AND/OR DIRECTORY? device-name ufd

Command Parameters:

device-name

ufd

Command Qualifiers:

jALLOCATION:n

The device name of the disk device on which the direc
tory is to be created. A list of device names is provided
in Section 3.2.1. Magnetic tape volumes do not contain
directories.

When no device name is specified, the User File Directory
is created on the current default system disk.

The User File Directory to be created. This parameter is
required.

The ufd is in the following format:

[ggg, mmm]

The group number, ggg, and the member number, mmm,
are octal values from 0 to 377. The brackets are re
quired, with no space between the device name and the
left bracket.

Initially allocates "n" directory entries (rounded up
to the next multiple of 32). The value n is a decimal
number.

9-15

Command Descriptions

/PROTECTION: code

/VOLUME. LABEL:volume-id

Example:

Establishes the access rights for the directory file. The
contents of the protection code field are described in
Section 3.2.2.

The volume-id is a name associated with each volume to
verify the correct volume is used. When the incorrect
volume-id is specified, the command is ignored. The
volume-id consists of an alphanumeric string, 1 to 12
characters long.

This example creates the User File Directory [200, 34] on DBI:.

>CREATE/DIRECTORY DB1:C200,34l

9.10 $DATA
The $DA T A command indicates the beginning of a batch data block. A data block is necessary
whenever you must supply data to a task running under batch control.

In a batch file, any line that does not begin with a dollar sign is treated as data. Thus in many
cases you can omit the $DATA command.

The $DATA command is required only when you need to use one of its qualifiers, as described
below.

Fonnat:

$DATA [/qualifier]

Command Qualifiers:

/DOLLARS
/NOCOPY

Prompt: None.

Command Parameters: None.

Command Qualifiers:

/DOLLARS

9-16

Alerts the system that lines of data may begin with
dollar signs. Without this qualifier, lines that begin with
dollar signs are treated as commands and thus tenninate
the data block. When this qualifier is present, all infor
mation is treated as data until an $EOD command is
encountered.

/NOCOPY

Note:

Command Descriptions

Specifies that the data block to follow not be included in
the log rue for the batch job.

In general, you need preface a data block with a SDA TA command only if you need to use the
/DOLLARS qualifier, the /NOCOPY qualifier, or both.

Example:

The batch job includes a $RUN command that requires input data. The data includes some lines
that begin with dollar signs. The data block is not included in the Log File .

• JOB
$RUN PROCESS
$DATA/NOCOPY/DOLLARS
INCOME
$76.05
$346.55
$5.80
SPENT
$84.00
$4.89
$EOD
$EOJ

9.11 DEALLOCATE
The DEALLOCATE command releases a private device, permitting other users to access the de
vice. You can deallocate only your private devices. The system automatically deallocates pri
vate devices when its owner logs off the system.

Fonnat:

DEALLOCATE device-name

Prompt:

DEVICE? device-name

Command Parameter:

device-name

Command Qualifier: None.

The device name of the device to be deallocated. A
list of device names is provided in Section 3.2.1.

9-17

Command Descriptions

Example:

This example deallocates the disk DB2:. The system and other private users are now permitted
to allocate DB2:.

>ItEALLOCATE I1B2:

9.12 DEASSIGN
The DEASSIGN command deletes the specified logical device name from the system logical name
table. Nonprivileged users can deassign logical names only at the local level.

Format:

>DEASSIGN [/qualifier] [logical name]

Command Qualifier: Default:

/LOCAL /LOCAL

Prompt:

LOGICAL NAME? logical-name

Command Parameter:

logical-name Specifies a logical device name to be removed from its
current device assignment.

Command Qualifier:

/LOCAL Causes local deassignment. This is the default.

Example:

This command deletes the logical device name US I: from the system at the local level.

>[lEASSIGN
LOGICAL NAME? US1:

9.13 DELETE
The DELETE command has two functions:

• Deletes one or more specified files from the Directory .
• Deletes a specified job from a specified queue.

9-18

Command Descriptions

Each form of the command has its own particular format and rules, as described in the ensuing
subsections. See also the description of the PURGE command.

9.13.1 DELETE File
This form of the DELETE command deletes the specified file(s) from the Directory and releases
the occupied space. Before deleting any rue, you must have delete access to the file. See the
DIRECTORY /FULL command to display file access rights.

Format:

DELETE file-spec [, ... 1

Prompt:

FILE? file-spec [, ...]

Command Parameter:

file-spec The file specification of the file to be deleted. Each
file specification must include a file name, file type, and
version number.

Command Qualifier: None.

Notes:
1. Wildcards are allowed in the directory, file name, file type, or file version components of

the file specification.
2. You may delete only those files for which you have delete (D) access rights.

Example:

This example deletes all versions of TEST. TSK;*

)DELETE TEXT.TSKf*

9.13.2 DELETE Queued Job
This form of the DELETE command deletes a job entry and its associated file entries from a
specified queue. The files themselves are not deleted.

Format:

DELETE/QUEUE q ueue-id

Prompt:

QUEUE NAME? queue-id

9-19

Command Descriptions

Command Parameter:

queue-id

Command Qualifier:

/QUEUE

Parameter Qualifier:

/JOB: [uic] jobname

Note:

Specifies a queued job in one of two forms:

queue name/JOB: [uic] jobname

or

ENTRY: (m, n)

If you select the first, you must include the qualifier:
/JOB: [uic] jobname. If [uic] is not specified, your
own UIC is the default. Jobname specifies a job cur
rently in the queue.

The following form specifies an internal job entry
identifier:

ENTRY: (m, n)

The value (m, n) specifies an internal identifier assigned
by the system when the job is originated. You can learn
this identifier by using the SHOW QUEUE command to
obtain a FULL listing. The system queue identifier
ENTRY must not be abbreviated.

Specifies that a job entry will be deleted from a queue;
this qualifier is required to identify the DELETE/
QUEUE function.

Specifies the job to be deleted when the queue-name
parameter is selected.

If the job is being processed when the DELETE/QUEUE command is entered, the job is
aborted and then deleted from the queue.

9.14 DIRECTORY
The DIRECTORY command displays the directory information of specified files or the contents
of your current default directory.

9-20

Command Descriptions

Fonnat:

>DIRECfORY [/qualifiers] [fJ.le-spec [, ...]]

Command Qualifiers:

/FULL
/BRIEF
/SUMMARY
/FREE
/pRINT
/OUTPUT: file-spec
/ATTRIBUTES

Command Parameter:

file-spec

Command Qualifiers:

/BRIEF

/FULL

/SUMMARY

/FREE

/ATTRIBUTES

/OUTPUT: fIle-spec

/PRINT

Notes:

Default:

/BRIEF

Specifies the directory entries to be listed. If omitted,
all directory entries are listed.

The entry display contains only the fue specification,
block count, and creation date. This is the default.
See Example 1.

A complete directory entry listing is displayed. See
Example 2.

Only the total number of blocks allocated to all fues
in the directory is displayed.

The free space available either on the system device or
the specified device is displayed.

Gives a description of the specified files that includes
the full RMS attributes. See Example 3.

Forces the display to be placed in a fue according to
the fue-specification.

Causes the display to appear on the line printer.

1. If no files are specified, a directory list of your current default UFD on your default
device is given.

2. One or more fIle-specs may be given.

9-21

Command Descriptions

3. If no file type is specified, a wildcard for ftletype is assumed. If no ftle version is given,
the highest v<;rsion number is assumed.

Example:

The following examples of DIRECTORY commands show the type of information you can ex
pect in response to different qualifiers. The same file specification is used in each case.

1. This is a /BRIEF (default) directory listing.

DIRECTORY DBO:[40,40J
18-JUL-78 18:25

A.LSTjl 1. 18-JUL-78 14:14
A.ODL;l 1. 18-JUL-78 14:14
A.OBJ;l 2. 18-JUL-78 14:14
A.TSf(j1 27. C 18-JUL-78 14:14
A.CBLj2 1 • 18-JUL-78 14:15

TOTAL OF 32./32. BLOCKS IN 5. FILES

2. This is a /FULL directory listing.

>DIRECTORY/FULL A.*

DIRECTORY DBO:[40,40J
18-JUL-78 18:26

A.LSTj1 (14271,6) 1./1. 18-JUL-78 14:14
[40,40J [RWED,RWED,RWED,RJ

A.ODLj1 (15040,23) 1./1. 18-JUL-78 14: 14
[40,40J [RWED,RWED,RWED,RJ

A.OBJj1 (15233,56) 2./2. 18-JUL-78 14: 14
[40,40J [RWED,RWED,RWED,RJ

A.TSf(;l (15432,7) 27./27. C 18-JUL-78 14:14
[40,40J [RWED,RWED,RWED,RJ

A.CBLj2 (17211,10) 1./1. 18-JUL-78 14:15
[40,40J [RWED,RWED,RWED,RJ

TOTAL OF 32./32. BLOCKS IN 5. FILES

9-22

3. This is an jATTRIBUTES directory listing.

)DIRECTORY/ATTRIBUTES A.*

SYO:C40,40JA.LSTj1
CREATED: 18-JUL-1978
FILE PROTECTION:
RECORD FORMAT:
RECORD ATTRIBUTES:
FILE ATTRIBUTES:

ALLOCATION= 1

SYO:C40,40JA.ODLj1
CREATED: 18-JUL-1978
FILE PROTECTION:
RECORD FORMAT:
RECORD ATTRIBUTES:
FILE ATTRIBUTES:

ALLOCATION= 1

SYO:C40,40JA.OBJj1
CREATED: 18-JUL-1978
FILE PROTECTION:
RECORD FORMAT:
RECORD ATTRIBUTES:
FILE ATTRIBUTES:

ALLOCATION= 2

FILE ORGANIZATION:
14:14

CRWED,RWED,RWED,Rl
VARIABLE
CARRIAGE RETURN

EXTEND QUANTITY=O

FILE ORGANIZATION:
14:14

CRWED,RWED,RWED,Rl
VARIABLE
CARRIAGE RETURN

EXTEND QUANTITY=O

FILE ORGANIZATION:
14:14

CRWED,RWED,RWED,Rl
VARIABLE

EXTEND QUANTITY=O

SYO:C40,40lA.TSK;1 FILE ORGANIZATION:
CREATED: 18-JUL-1978 14:14
FILE PROTECTION: CRWED,RWED,RWED,Rl
RECORD FORMAT: FIXED=512
RECORD ATTRIBUTES:
FILE ATTRIBUTES:

ALLOCATION= 27 EXTEND QUANTITY=O
CONTIGUOUS

SYO:C40,40JA.CBLj2
CREATED: 18-JUL-1978
FILE PROTECTION:
RECORD FORMAT:
RECORD ATTRIBUTES:
FILE ATTRIBUTES:

ALLOCATION= 1

:::.

FILE ORGANIZATION:
14:15

CRWED,RWED,RWED,Rl
VARIABLE
CARRIAGE RETURN

EXTEND QUANTITY=O

Command Descriptions

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

9-23

Command Descriptions

9.15 DISMOUNT
The DISMOUNT command logically disconnects the specified volume from the system.

Format:

DISMOUNT device-name [volume-label]

Prompts:

DEVICE? device-name
VOLUME LABEL? [volume-label]

Command Parameters:

device-name

volume-label

Command Qualifiers: None.

Notes:

The specification of the device containing the volume to
be dismounted.

An optional parameter, and if present, dismount oper
ation is executed only if the label matches the volume
label. This parameter is required for magnetic tape
volumes.

1. As with the MOUNT command, DISMOUNT may take a logical device name in place of a
physical device name.

2. Volume label is mandatory for magnetic tape volumes and optional for all other volumes.
When volume-label is specified, the system verifies that the correct volume is used. The
command is rejected when an incorrect volume label is specified. Volume label may be
up to 6 alphanumeric characters for magnetic tape volumes, and up to 12 alphanumeric
characters for other volumes.

Example:

This example dismounts the disk DBO and verifies that its volume label is VOLNAME.

>DISMOUNT DBO: VOLNAME

9.16 EDIT
The EDIT command invokes the editor to edit or create the specified file.

Format:

ED IT file-spec

9-24

Prompt:

FILE? rtle-spec

Command Parameters:

file-spec

Command Qualifiers: None

Notes:

Commtlnd Descriptions

The specification of the rtle to be edited. The file spec
ification must include a file name and a file type.

1. If you do not provide a version number, the highest exisiting version is used. If a file does
not exist as specified, a new file is created with version number 1.

2. Details of the use of the editor may be found in the DEC EDITOR Reference Manual.

Example:

The following sequence initiates an edit session on the file EASY.CBL.

>EDIT
FILE? EASY.CBL
.*

*The asterisk is a prompt for an editor command. When you want to terminate the edit session,
enter the editor command EXIT. The DCL prompt (» will appear on the terminal.

9.17 SEOD
The $EOD (End of Data) command terminates a data stream initiated by a $DATA command, or
the input to a fue created by a $CREATE/DOLLARS command. The command may only be
given in batch mode. A data stream that is not initiated by a $DATA command does not re
quire an $EOD command for termination. See the section of Chapter 6 entitiled, "Batch Data
Blocks."

Format:

$EOD

Note: The command has no parameters or qualifiers.

9-25

Command Descriptions

Example:

This example uses $EOD to tenninate a data block. The /DOLLARS qualifier instructs the system
to accept the following lines of text as input to the file rather than batch commands to be
processed.

$CREATE/DOLLARS TRAN.DAT
tUPDATE DATA FOR 27FEB
A601-450
$35.42
$102.99
T79-132
$824.09
$EOIt

9.18 $EO)
The $EOJ (End of Job) command tenninates a batch job, dismounting and deallocating any
allocated devices.

Fonnat:

$EOJ

Notes:

1. The command has no parameters or qualifiers.

2. The $EOJ command is the last command in a batch job command stream. An $EOJ
command is implied at the end of a batch command file if one is not included ex
plicitly.

Example:

The $EOJ command ends the batch job and is analogous to a LOGOUT command ending an
in teractive terminal session.

$JOB
$MOUNT DBO: MAR27A
$RUN TEST
$DISMOUNT DBO:
$EOJ

9.19 $GOTO
The $GOTO command is used only in batch mode. $GOTO suppresses execution of all commands
up to the first command that is prefixed by a specified label.

9-26

Format:

$GOTO label

Prompts: None.

Command Parameter:

LABEL

Command Qualifier: None.

Notes:

Command Descriptions

Is an alphanumeric string that must also appear, to
gether with a colon, at the beginning of a later com
mand.

1. $GOTO can be used by itself or as an action in an ON or IF command.

2. When control is transferred, the system scans the file forward, ignoring commands until
it finds a command with a label that matches the $GOTO parameter. If no matching
label is found, no further processing takes place within the batch command file.

3. $GOTO cannot transfer control to an earlier labeled command.

Example:

In this example, the linking and running of MY PROG is halted if an error occurs at any point,
and the task OLDPROG is run instead. OLDPROG is not run if no error occurs. See the
description of the $ON command for further clarification.

$JOB SYSTEM
SON ERROR THEN GOTO L10
$LINK/BASIC HYPROG
SRUN HYPROG
$GOTO L20
$L10: RUN OLDPROG
$L20: RUN TEST
$EOJ

9.20 HELP
The HELP command displays information about the commands and their associated qualifiers.
When no parameters are specified, the system displays a complete list of commands on the re
questing terminal. When a qualifier or other keyword is displayed with two asterisks (**) in the
HELP output, further information is available on the keyword.

Format:

HELP [command-name [keyword]]

9-27

Command Descriptions

Prompt: None.

Command Parameters:

command-name

keyword

Command Qualifier: None.

Examples:

The command and its qualifiers (if any) are displayed.
When a qualifier is displayed with two asterisks (**)
after it, there is further information available on the
qualifier.

Displays the keywords available for the qualifier as
applied to the command.

The following examples show the use of HELP with and without a second parameter.

>HELf' UNLOCK
UNLOCK FILESPECr,FILESPEC(S)J

>HELf' SHOW QUEUE

9.21 $IF

SHOW QUEUE aUEUENAME
ENTRY:(N,N)
ALL

OPTIONCS)
JOB:rrUICJJJOBNAME
USER:rG,MJ
NUMBER
ALL
BATCH
PRINT
PRIORITY:N
FORMS:N
FULL
BRIEF

The $IF command specifies alternative action if a specified status condition occurs on a command.
It is used only in batch jobs.

Format:

$IF status-level THEN action

Prompts: None.

9-28

Command Descriptions

Command Parameters:

status-level

action

Command Qualifiers: None.

Notes:

One of the following:

SUCCESS
WARNING
ERROR
SEVERE ERROR

One of the following:

GOTO label
CONTINUE
STOP

1. The status-level resulting from the execution of the command preceding the $IF
command is checked. If that status-level is equal to the status-level given in the $IF
command, the THEN clause is executed. Otherwise the THEN clause is not executed,
and the batch job continues with the next command in the file.

2. The label of the $GOTO phrase must be the label of a command appearing after the $IF
command.

Example:

The following $IF command causes the batch job to tenninate immediately if the preceding
command results in a status of ERROR. Otherwise, the job proceeds sequentially .

• IF ERROR THEN STOP

See Section 6.7.5 for this example.

9.22 INITIAUZE
The INITIALIZE command produces a fIle-structured volume on disk or magnetic tape. The
command destroys all existing files on the volume. The system creates a Master File Directory
(MFD) on the disk or creates a volume label and dummy ftIe on the magnetic tape.

Fonnat:

INITIALIZE device-name volume label

9-29

Command Descriptions

Command Qualifiers:

/DENSITY:n
/ENTENSION:n
/HEADERS:n
/IND EX: location
/MAXIMUM:p
/OWNER: [ggg, mmm]
/PROTECTION :code
/[NO] VERIFIED
/VOLUME PROTECTION:code
/WINDOW:a

Prompts:

DEVICE? device-name
VO LUME LABEL? volume-label

Command Parameters:

device-name

volume-label

Command Qualifiers:

/DENSITY:n

/EXTENSION:n

/HEADERS:n

9-30

Default:

n=800
n=5

10cation=MIDDLE
varies with disk type
[I, I]
[RWED, RWED, RWED, R]
/VERIFIED
[RWED, RWED, RWED, R]
a=7

The device name of the device to be initialized.
Device-name can be a physical device name or an
assigned logical device name.

The volume-label is a name associated with each
volume. The volume-label may be up to 6 alpha
numeric characters for magnetic tape volumes and up
to 12 alphanumeric characters for all other volumes.

The volume-label is requested by other commands,
such as the MOUNT command, to ensure the proper
volume is used.

Specifies the recording density in bits per inch (bpi) of
the magnetic tape to be initialized. Acceptable values
for n are either 800 bpi or 1600 bpi. When not spec
ified, 800 bpi is used.

Specifies the default number of blocks a disk file shall
be extended, when it exhausts its current space allot
ment. The value of n is decimal.

Specifies the initial number of allocated file headers in
the index fue. The value of n is decimal.

/INDEX: location

/MAXIMUM:p

/OWNER: [ggg, mmm]

/PROTECTION:code

/VERIFIED
/NOVERIFIED

Command Descriptions

Positions the index file, on the volume, at the spec
ified location. Possible location values are:

BEGINNING Place the index file at the begin
ning of the volume.

MIDDLE Place the index file at the middle
of the volume.

END Place the index file at the end of
the volume.

BLOCK:n Place the index file at the "n"
block of the volume.

Specifies the maximum number of files that the disk
volume can contain.

Specifies the UIC of the owner of the volume. The
group number, ggg, and the member number, mmm, are
OCTAL values from 0 to 377. The square brackets,
[], are required syntax.

Specifies the default protection code that will be
applied to files when they are created on the volume.
See Section 3.3.2 for description of protection code.

Includes bad block processing in the volume initial
ization. When specifying VERIFIED, the system reads
the bad block file created by the support environment
utility, BAD.

When specifying NOVERIFIED, the system accepts
block specifications from the terminal. The program
prompts for bad blocks with the display:

INI>BAD:

Bad blocks may be entered in two formats:

nnnnn A single block. nnnnn specifies
an octal disk block number.

nnnnn, mmmm A contiguous series of mmmm
blocks beginning at nnnnn.

A null line (carriage return) terminates bad block
input.

9-31

Command Descriptions

/VOLUME PROTECTION:code

/WINDOW: a

Notes:

Specifies task access rights to the volume. The code
fonnat is the same as for the /PROTECTION=code
qualifier.

Specifies the decimal number of mapping pointers to
be allocated for file windows.

1. The /DENSITY qualifier applies only to magnetic tape volumes.

2. The /EXTENSION, /HEADERS, /INDEX, /MAXIMUM, /OWNER, /[NO] VERIFIED,
and /WINDOW qualifiers apply to disk volumes only.

3. The /VOLUME PROTECTION qualifier applies to all types of volumes.

4. You can only initialize volumes mounted on your private device; that is, those devices
for which you have issued an ALLOCATE command.

Examples:

This example initializes the disk, DBO: , with the volume-id of VOLLABEL.

>INITIALIZE DBO: VOLLABEL

This example initializes DCLVOL2 on DB I: with the index file located at the end of the volume.
The owner VIC is [40, 40].

>INITIALIZE/INDEX:END/OWNER:[40,40l DB1: DCLVOL2

9.23 $JOB
The SlOB command is used only in batch mode and marks the beginning of a batch job. It is the
batch mode equivalent of an interactive LOGIN command.

Fonnat:

$JOB [fqualifier] jobname [uic]

Command Qualifier:

/TIME=xx

Prompts: None.

Command Parameters:

job-name

9-32

Default:

No time limit

Specifies the name by which the batch job will be
identified in the batch log.

uic

Command Qualifier:

/TIME=xx

9.24 LmRARIAN

Command Descriptions

Specifies the User Identification Code. This is a
privileged parameter that enables the batch job to log
in under a different account than the one from which
the job was submitted.

Specifies the maximum number of minutes in wall
clock time that the batch job is allowed to run. This
parameter is optional; if omitted, the system assumes
no time limit.

The Librarian command allows you to create, delete, and maintain object module libraries and
MACRO-II source libraries.

Format:

>LIBRARIAN operation

Prompt:

OPERATION? operation

Command Parameter:

Operation Specifies the librarian operation to be performed. It
consists of one of the following keywords, followed by
a set of associate parameters and qualifiers appropriate
for that keyword.

CREATE
DELETE
EXTRACT
INSERT

LIST
REPLACE
SQUEEZE

The keyword is considered an extension of the com
mand name.

The following subsections describe each of these operations.

9.24.1 LIBRARIAN CREATE
The LIBRARIAN CREATE command creates, and optionally populates, a library file.

Format:

LIBRARIAN CREATE [/qualifiers] lib-spec [input-file-spec] ...

9-33

Command Descriptions

Command Qualifiers:

/SIZE:n
/EPT:n
/MNT:n
/TYPE: OBJECT

MACRO
/SELECT_SYMBOLS
/SQUEEZE
/NOENTRY POINTS

Prompts:

LIBRAR Y? lib-spec
MODULES? [input-file-spec], ...

Command Parameters:

lib-spec

input-file-spec

Command Qualifiers:

/SIZE:n

/EPT:n

/MNT:n

/TYPE : library-type

9-34

Default:

n=100
See Qualifier description
n=256
/TYPE=OBJECT

Specifies the name of the library file to be created. If
no file type is given, the default is .OLB for object
module libraries and .MLB for MACRO module
libraries.

Optionally specifies one or more files that will con
stitute input to the new library file. If the parameter
is not present, an empty library file is created. Files
specified in this parameter are called library modules.

Specifies the size of the library file in 512 byte blocks.
Default is 100.

Specified the number of entry points to allocate in
the entry point table (EPT). The default value is 512
for object libraries but the number of entry points for
MACRO libraries is always O.

Specifies the number of entries to allocate in the
module name table. It must not exceed 4096 and is
rounded up to the nearest multiple of 64. The de
fault value is 256.

Defines the type of libraries to be created as either
OBJECT or MACRO. The default is OBJECT.

/SELECT SYMBOLS

/SQUEEZE

/NOENTRY POINTS

Note:

Command Descriptions

Specifies that the LINK command will use the
created library to define required global symbols at
task build time (for object files only).

Specifies that the MACRO file should be reduced by
erasing all trailing blanks and tabs, blank lines, and
comments from the source text (for MACRO library
files only).

Specifies that the modules specified in input-file-spec
are inserted into the library in lib-spec, but the entry
points in the modules are not entered in the entry
point table (EPT).

If the qualifiers /SELECT and /SQUEEZE are used with CREATE, the input-file-spec parameter
must appear.

Example:

This example creates an object library file MYLIB.OLB with 100 blocks default size and 512
entry point and 256 module name entries containing the two object modules, OBJ 1.0BJ and
OBJ2.0BJ.

>LIBRARIAN
OPERATION? CREATE/TYPE:OBJECT
LIBRARY? MYLIB.OLB
MODULES? OBJ1.0BJ,OBJ2.0BJ

9.24.2 LIBRARY DELETE
The LIBRARY DELETE command performs two types of deletions .

• Deletes modules and all their associated entry points from the specified library file .
• Deletes specified entries in the entry point table (EPT).

Format:

LIBRARIAN DELETE [/qualifiers] lib-spec entry-name, ...

Command Qualifiers:

/MODULES
/GLOBAL.SYMBOLS

Prompts:

LIBRARY? lib-spec
ENTRIES? entry-name, ...

Default:

/MODULES

9-35

Command Descriptions

Command Parameters:

lib-spec

entry-name

Command Qualifiers:

jMODULES

jGLOBAL.SYMBOLS

Note:

Specifies the library file that contains the modules or
entries to be deleted. If a file type is not expected, the
default is .OLB.

Specifies the module name(s) or entry name(s}.

Deletes the specified modules and is the default
qualifier.

Deletes the specified EPT entries.

Up to 15 modules may be deleted in one DELETE operation. A deleted module is marked as
deleted but remains physically in the file until a SQUEEZE operation is performed.

Example:

This example deletes the object module NAMEA from the object library MYLIB.OLB.

>LIBRARIAN
OPERATION? DELETE/MODULES
LIBRARY? MYLIB.OLB
ENTRIES? NAMEA

9.24.3 LffiRARIAN EXTRACT
The LIBRARIAN EXTRACT command enables the extraction of defined modules from a spec
ified library and concatenates them in a specified file.

Format:

LIBRARIAN EXTRACT jOUTPUT :file-spec lib-spec modules-spec, ...

Prompts:

OPERATION? EXTRACT jOUTPUT: file-spec
LIBRARY? lib-spec
MODULES? module-spec

Command Parameters:

file-spec

9-36

Specifies the file that is to receive the extracted
modules. If a file type is omitted, the default ftIe
type is .MAC-if the library is a MACRO library -and
OBJ if the library is an object library.

lib-spec

module-spec

Command Qualifiers: None.

Example:

Command Descriptions

Specifies the library that contained the modules to be
extracted.

Defines the module(s) to be extracted.

This example extracts modules MODULEl.OBJ, MODULE2.0BJ from the library file
MYLIB.OLB and concatenates them in file OBJ3.0BJ.

>LIBRARIAN
OPERATION? EXTRACT/OUTPUT:OBJ3.0BJ
LIBRARY? MYLIB.OLB
MODULES? MODULE1, MODULE2

9.24.4 LmRARIAN INSERT
The LIBRARIAN INSERT command inserts modules into a specified library file. Any number
of input files are allowed.

Fonnat:

LIBRARIAN INSERT [qualifier(s)] lib-spec input-file-spec, ...

Command Qualifiers:

jSELECT. SYMBOLS
jSQUEEZE
jNOENTRYPOINTS

Prompts:

LIBRARY? lib-spec
FILE? input-fIle-spec, ...

Command Parameters:

lib-spec

input-ftle-spec

Command Qualifiers:

jSELECT. SYMBOLS

Specifies the library file into which modules are to be
inserted.

Specifies the object modules to be inserted.

Specifies that the LINK command will use the created
library to define required global symbols at link time
(for object files only).

9-37

Command Descriptions

/SQUEEZE

/NOENTRYPOINTS

Example:

Specifies that a MACRO file should be reduced by
easing all trailing blanks and tabs, blank lines and com
ments from the source text (for MACRO files only).

Specifies that the modules specified in input-file-spec
are inserted into the library in lib-spec, but the entry
points in the modules are not entered in the entry
point table (EPT).

This example inserts the MACRO file ONE.MAC into the MACRO library MACLIB.MLB,
stripping off all unnecessary characters.

)LIBRARIAN
OPERATION? INSERT/SQUEEZE
LIBRARY? MACLIB.MLB
FILE? ONE.MAC

9.24.5 LIBRARIAN LIST
The LIST operation causes a library file directory to be printed or to be sent to an output file.
The former is the default.

Format:

LIBRARIAN LIST [/qualifiers] lib-spec

Command Qualifiers:

/ENTRIES
/FULL
/0 UTPUT: list-file-spec

Prompt:

LIBRARY? lib-spec

Command Parameter:

lib-spec

Command Qualifiers:

/ENTRIES

9-38

Default:

/ENTRIES

Specifies the library file to be listed.

Causes a directory of all modules to be listed together
with entry points for each. This list is the default.

/FULL

/0 UTPUT :list-file-spec

Example:

Command Descriptions

Causes a directory of all modules to be listed giving
full module descriptions; size, date of insertion and
version.

Causes the output to be sent to the specified file. The
default file type is .LST.

This example lists at the user's terminal a directory of all modules and their full descriptions from
the library MYLIB.OLB.

)LIBRARIAN LIST/FULL MYLIB.OLB

9.24.6 LffiRARIAN REPLACE
The LIBRARIAN REPLACE command replaces a module in the library with a new module of
the same name. That is, a new module that has the same name as a module already contained
in the library, replaces the existing module. The old module is deleted.

Format:

LIBRARIAN REPLACE [/qualifiers] library-spec module-spec

Command Qualifiers:

/SELECT. SYMBOL
/SQUEEZE
/NOENTRYPOINTS

Prompts:

LIBRARY? lib-spec
FILE? module-spec

Command Parameters:

library-spec

mod ule-spec-list

Command Qualifiers:

Specifies the library file containing the module to be
replaced.

Specifies one or more files containing the new modules.

Specifies that the LINK command will use the created
library to define required global symbols at link time
(for object files only).

9-39

Command Descriptions

/SQUEEZE

/NOENTRYPOINTS

Example:

Specifies that the size of a MACRO file should be
reduced by erasing all trailing blanks and tabs, blank
lines, and comments from the source text (for MACRO
files only).

Specifies that the modules specified in module-spec
list are inserted into the library in lib-spec, but the
entry points in the modules are not entered in the
entry point table (EPT).

This example replaces the module in MACLIB.MLB with the same name as NEWMOD.MAC.

)LIBRARIAN
OPERATION? REPLACE
LIBRARY? MACLIB.MLB
FILE? NEWMOD.MAC

9.24.7 LffiRARIAN SQUEEZE
The LIBRARIAN SQUEEZE command creates a new library file consisting of all modules from
the old file that have not been logically removed by LIBRARY DELETE and LIBRARY RE
PLACE operations, omitting all modules that have been deleted or replaced (but are still phys
ically present). This creates a compressed version of the library file. The old library file is not
automatically deleted after creation of the new file.

Format:

>LIBRARIAN SQUEEZE [/qualifiers] lib-spec [new-lib-spec]

Command Qualifiers:

/SIZE:n
/EPT:n

/MNT:n

Prompts:

LIBRARY? lib-spec
NEW LIBRARY? new-lib-spec

Defaults:

/SIZE: 100
EPT:512 for object libraries,
o for macro libraries
MNT:256

NEW LIBRARY is prompted only if LIBRARY is prompted.

Command Parameters:

lib-spec Specifies the library file to be compressed.

9-40

new-lib-spec

Command Qualifiers:

/SIZE:n

/EPT:n

/MNT:n

Example:

Command Descriptions

Specifies the compressed library file. If omitted, a new
version of lib-spec.

Specifies the size in 256 word blocks of the compressed
file. Default is 100.

Specifies the number of entry points to allocate in the
entry point table (must not exceed 4096). The de
fault is 512 for object libraries. n is rounded up to
the nearest multiple of 64.

Specifies the number of entries to allocate in the
module name table. It must not exceed 4096 and is
rounded up to the nearest multiple of 64. The de
fault value is 256.

This example compresses the library LIB I.OLB to 150 blocks with (by default) 512 EPT entries
and 256 MNT entries. The compressed file is renamed LIB2.MLB.

>LIBRARIAN
OPERATION? SQUEEZE/SIZE:150
LIBRARY? LIB1.0LB
NEW LIBRARY? LIB2.MLB

9.25 LINK
The LINK command invokes the TRAX linker to convert object modules into executable task
images. It produces output as directed by command qualifiers. For further information, see the
TRAX Linker Reference Manual.

Fonnat:

LINK [/q ualifiers] [file-spec [/file-q ualifiers], ...]

Command Qualifiers:

/BASIC
/CHECKPOINT:SYSTEM

:TASK
/NOCHECKPOINT
/CROSS.REFERENCE
/DEBUG [:debug-file-spec]
/[NO] DUMP

Default:

/CHECKPOINT:S

/NODUMP

9-41

Command Descriptions

/ [NO] FULL.SEARCH
/MAP: map-file-spec [/FULL]

/NARROW
/SHORT
/WIDE

/NOMAP
/OPTIONS[: file-spec]
/OVERLA Y[overlay-file-spec]
/[NO] RECEIVE
/SEQUENTIAL
/SYMBOLS [symbol-file-spec]
/[NO] SYMBOLS
/TASK: task-file-spec
/NOTASK

File Qualifiers:

/[NO] CONCATENATED
/DEF AU LT. LIBRARY: file-spec
/LIBRARY [:module-list]
/[NO] MAP
/SELECT.SYMBOLS

Prompt:

FILE? file-spec [jfile-qualifiers], ...

Command Parameter:

file-spec

Command Qualifiers:

/BASIC

9-42

/NOMAP

/RECEIVE

/NOSYMBOLS
TASK =default -file-spec

Default:

/CONCATENATED

See qualifier description.
See qualifier description.

Specifies an input file containing object modules.
It must not be present if the command qualifier
/OVERLAY is specified.

If the file name is given with no file type, the default
file type of .OBJ is used for an object file and .OLB
for a library. File specifications for symbol table
files must include a file type .STB and specifications
for an overlay description file must include file type
.ODL.

Identifies the input file as a command file produced
by issuing the BUILD command to the BASIC-PLUS-
2 compiler. The Linker decodes the command file and
the task image file according to information supplied
in the command file.

/CHECKPOINT [:keyword]
/NOCHECKPOINT

/CROSS.REFERENCE

/DEBUG[:debug-ftle-spec]

/DUMP
/NODUMP

/FULL.SEARCH
/NOFULLSEARCH

Command Descriptions

The /BASIC qualifier is valid only if the input file was
generated this way.

Identifies the Linker task as checkpointable when
/CHECKPOINT is specified. The optional keyword
is SYSTEM or TASK; this specifies where the check
point space is allocated. TASK requests checkpoint
space within the task image file, and SYSTEM requests
system checkpoint space. The qualifier /CHECK
POINT: SYSTEM is the default.

You should avoid specifying /NOCHECKPOINT, as
this option seriously degrades overall system perform
ance. See Note for explanation.

Requests that a symbol cross-reference listing be
appended to the memory allocation (MAP) file; thus
the /MAP qualifiers must also be present for this
qualifier to be effective.

If /CROSS.REFERENCE is not specified, no cross
reference listing is produced.

Specifies incorporation of a debugging aid in the
task image file. If debug-file-spec is omitted, the
system standard debugging aid is used . You can
incorporate a different debugging aid by specifying a
debug-file-spec. The user generated debugging aid
must be in object module format.

See the TRAX Linker Reference Manual for further
information including a debugging aid.

/DUMP requests a post-mortem dump if your task is
terminated abnormally.

/NODUMP is the default.

Specifies a full search of all co-tree overlay segments
for a matching definition or reference, when proces
sing modules from the default object module listing.

NOFULL.SEARCH is the default.

/MAP[: map-file-spec [/map-ftle-qualifier]]
/NOMAP Instructs the linker to produce a memory allocation

file (with file type .MAP) when linking the task image
file.

9-43

Command Descriptions

jOPTIONS[: file-spec]

9-44

If you specify /MAP without a map-file-spec, the
memory allocation file is spooled directly to the line
printer. It remains on your file directory taking the
task file name and the file type .MAP until it is deleted
after printing.

If you include the map-file-spec, you may omit the
file type field and the linker will use the file type
.MAP.

jNOMAP is the default if /MAP is not specified.

The following file qualifiers may be applied to the
map-file-spec.

jFULL The Linker will include all modules in
the memory allocation file, even those
which explicitly or by default have the
NOMAP input file qualifier.

jNARROW The Linker produces a map listing 72
characters wide, suitable for printing on
an output terminal.

jSHORT

jWIDE

Tells the Linker to include only the
segment headings in the memory alloca
tion file.

Prod uces a map 132 characters wide,
suitable for printing on a line printer.
When jMAP is specified, this is the
default file qualifier.

Provides or prompts for Linker option input. See
the TRAX Linker Reference Manual for detailed
information on Linker options.

If no file-spec argument is present, the "Linker prompts
for Linker option input lines as follows:

OPTIONS?

This prompt continues after each line of option input
that you enter, until you type a line that ends with
a slash (/), as follows:

OPTIONS? j<CR>

IOVERLAY[:overlay-fIle-spec]

I[NO] RECEIVE

ISEQUENTIAL

/SYMBOLS [symbol-file-spec]
INOSYMBOLS

ITASK [:task-fue-spec]
INOTASK

Command Descriptions

OPTIONS? : OPTION-input I<cr>

When the fIle-spec is included, the linker treats that
file as a series of option input lines. Interactive
prompting for options does not occur. The default
file type for the input file is .CMD.

Specifies an Overlay Description Language (ODL)
fIle that will govern the creation of the task image
file.

Only an overlay description file is allowed with this
qualifier. See the TRAX Linker Reference Manual
for information on overlay descriptions.

Enables the resultant task to receive direct messages
via the executive SEND directive.

IRECEIVE is the default. To disable the feature, the
INO RECEIVE qualifier is required.

Causes the task image to be constructed from the
object files in the order stated in the Link command
string. If ISEQUENTIAL is not present in the com
mand string, the Linker records the object program
files alphabetically, not sequentially.

See the TRAX Linker Reference Manual for further
description of task image storage allocation in detail.

/SYMBOLS specifies creation of a symbol table
definition file by the Linker. If symbol-fue-spec is
present, the file type is optional; if the type is absent,
it defaults to .STB.

If symbol-file-spec is absent, the first input file name
becomes the file name, with .STB the default file type.

/NOSYMBOLS is the default qualifier.

Specifies the name of the task image file. If task-file
spec is present, the file type is optional; if file type
is absent, it defaults to . TSK. If file-spec is absent,
the first input file name becomes the file name of the
task image file, with . TSK the default file type.

9-45

Command Descriptions

File Qualifiers:

/[NO] CONCATENATED

/DEFAULT LIBRARY: file-spec

/LIBRARY: [(] module[, ...)]

9-46

/TASK is the default. If /NOTASK is used, the linker
processes the input for unresolved symbol references
but does not produce a task image file.

/CONCATENATED specifies processing of all modules
in the input file to form the task image, and is the
default.

/NOCONCATENATED causes the Linker to process
only the first object module, regardless of the number
present.

The /LIBRARY qualifier overrides this qualifier.

Specifies the default library file to be used for
resolving undefined global symbol references. This
overrides the default system library LBO= [1,1]
SYSLIB.OLB.

If the specified library is empty, the default library
reverts to the system library.

Identifies the associated file (that is, the input file
specification modified by this qualifier) as an object
module library file. /LIBRARY is required for any
input library file, and its use is prohibited for any
other type of file.

If no modules are specified, the Linker searches the
library file to resolve undefined global symbol
references. The Linker extracts any and all modules
that resolve undefined references and includes them
in the task image file.

If you specify module names, the file is defined as a
library file (file type .OLB) of relocatable object
modules, and the modules named are copied for
inclusion in the task image.

The module names are defined at assembly time.
You may specify up to eight modules, and only those
specified are included in the task image.

/[NO] MAP

jSELECf SYMBOLS

Note:

Command Descriptions

To direct the Linker to search a library file for both
global symbol references and selected modules needed
in the task image, you must include both forms of
the qualifier, using separate file specifications.

Specifies inclusion of this file in the memory
allocation map.

If jNOMAP is specified, no details of modules con
tained in the file will appear in the memory allocation
map or cross-reference listing. /NOMAP, when
qualifying an input file, is overridden by the command
qualifier FULL SEARCH.

For a system library file, resident libraries, and com
mon areas, jNOMAP is the default qualifier. For user
supplied object module input files, jMAP is the
default qualifier.

Instructs the Linker to search the file only for those
global symbols for which an undefined reference
exists. The Linker uses only the required symbol
definitions.

This qualifier is useful when an input file is the symbol
table (file type .STB) output of another LINK com
mand, because it reduces the size of the symbol table
search and improves system performance.

If jSELECT SYMBOLS is absent, all global symbols
from the input file are included in the task image
file; that is the default condition.

If the jLIBRARY or jCONCATENATED qualifier is
in effect, /SELECT SYMBOLS is active for each
module of the input file.

Checkpointing is recommended as good programming practice. If a task (called Task A) is
running and then a task of higher priority (called Task B) enters the system. Task A can be
interrupted if it has been defined as checkpointable. The current state of Task A is recorded in
the selected checkpoint area. When its required system resources become available again, it is
reinstalled and resumed in the state that existed at the time of the interrupt.

Examples:

The file specification INTEREST .CMD contains a BASIC-PLUS-2 program. The file type .CMD
is added to the file name by default.

9-47

Command Descriptions

>LINK/BASIC INTEREST

After execution of this LINK command, an executable task image called INTEREST .TSK is
ready.

The following command directs the task OVERLAY.TSK to be created and the map file OVER
LAY.MAP to be generated and spooled. The optional input specifies that DBO: will be assigned
to LUN 8. The task will be built from the overlay descriptor file OVERLAY .ODL and will
include the standard debugging aid.

>lINK/DEBUG/OVERLAY:OVERLAY/OPTIONS/MAP
OPTIONS?ASG=DBO:S
OPT! DNS'? /

9.26 LOGIN
The LOGIN command initiates a user session at a tenninal. A valid user-id must be given to ensure
that an authorized user is accessing the system. The system records infonnation on COO: the
operator's console, about who is logging onto the system and when the login occurred. When
a user created LOGIN.CMD file exists, the system then executes the file from the User File
Directory.

The system grants access to the tenninal until a LOGOUT command is issued.

Format:

LOGIN user-id password

Prompts:

USERID? user-id
PASSWORD? password

Command Parameters:

user-id

9-48

The user-id is either a UIC or the user name associated
with the UIC. Valid forms of user-id are:

name
[ggg,mmn]
ggg,mmm
ggg/mmm

The user-id, ggg/mmm, suppresses the login text
message after the flfSt time a user logs into the
system during any given day.

The group riumber, ggg, and the member number,
mmm, are octal values from 0 to 377.

Command Descriptions

password A 1- to 6- character alphanumeric string. Associated
with each user-id is a secret password. The correct
password must be specified to gain access to the
system. The password is not displayed when typed in
response to the PASSWORD? prompt.

Command Qualifier: None.

Examples:

The user, Jones (with the password, Sam), requests access to the system. The system responds
with an acknowledging message; the content of the message is determined by the system manager.

)LOGIN SAMPLE SESHUN

TRAX VERSION 1.0A SYSTEM

GOOD MORNING
19-JUL-78 08:55 LOGGED ON TERMINAL TT4:

This login is equivalent to the first example but uses the prompts so that the password does not
show on the terminal.

>LOGIN
USERIII1 SAMPLE
PASSWORII:

TRAX VERSION 1.0A SYSTEM

GOOD MORNING
19-JUL-78 08:57 LOGGED ON TERMINAL TT4:

9.27 LOGOUT
The LOGOUT Command terminates user access to the system. The system aborts tasks and
releases resources. The terminal then becomes available to other users.

Format:

LOGOUT

Prompt: None.

Command Parameter: None.

Command Qualifier: None.

9-49

Command Descriptions

Note:
When a nonprivileged user issues the LOGOUT command, the system aborts active tasks initiated
by the user, dismounts die user's private volumes, and deallocates the user's private devices. The
system then issues an acknowledging message whose content is determined by the system manager.

Example:

>LOGOUT
TRAX

19-JUL-78 08:55 TT4: LOGGED OFF

9.28 MACRO
The MACRO command assembles one or more MACRO source files into a single relocatable binary
object module.

Format:

MACRO [/qualifiers] file-spec [file-qualifiers] + ...

Command Qualifiers:

/LIST [: list-file-spec]
/NOLIST
/OBJECT [: object-file-spec]
/NOOBJECT
/[NO] CROS~REFERENCE
/SWITCHES (: switch-list)

File Qualifiers

/PASS:n
/LIBRARY

Prompts:

Default:

/NOLIST

/OBJECT
/NOCROSS_REFERENCE

FILE? file-spec Ufile-qualifiers] + ...

Command Parameter:

file-spec

9-50

Specifies a file that contains MACRO source code.
Multiple input file-specifications must be concatenated
with a plus (+) sign. Specifications must include a file
name. If the file type is omitted. MAC is assumed, un
less /LIBRARY is used, .MLB is assumed. No wild
cards are allowed.

Command Qualifiers:

/NOLIST

/LIST [: list-fIle-spec]

/NOOBJECT

/OBJECT [: object-fIle-spec]

/[NO] CROSS,.REFERENCE

/SWITCHES (: switch-list)

Command Descriptions

Specifies that an assembly listing is not to be gen
erated. This is the default.

Specifies that an assembly listing will be generated. If
list-file-spec is given, then that file is not spooled;
otherwise the listing is printed. The default file name
is the name of the source file in the list, and the default
file type is .LST.

Specifies that an object module is not generated.

Specifies that an object module is to be generated.
This is the default. The default name given to the
object module file is taken from the last source file
name in the list and is given the ftletype .DBJ. This
default name may be overridden by supplying the
optional object -file-spec.

/Specifies whether a cross reference listing is to be
appended to the listing file. This implies use of the
LIST qualifier. The default is /NOCROS~REF -
ERENCE.

Enables you to pass to MACRO the standard listing
options you wish to use.

Swit ch -list has the form:

switchl:argl . .. switch:argn

If switch is /LI or /NL, the arguments are:

SEQ
MD
TOC

LOC
MC
SYM

BIX
ME
TTM

BEX
MEB

SRC
CND

COM
LD

If switch is lEN or IDS, the arguments are:

ABS
LC

AMA
LSB

CDR
PNC

FPT
REG

GBL

They are defined in the TRAX MACRO Reference
Manual.

9-51

Command Descriptions

File Qualifiers:

The file qualifier may be one or both of these.

jPASS:n

jLIBRARY

Note:

Specifies that the file is only to be assembled during
the pass specified (n may be either I or 2).

Specifies that the file is a macro library flie. jLI
BRAR Y is not allowed on the last source file in the
list. The default file type is MLB.

Library flies must appear in a fixed order with respect to the source.

Example:

This command assembles the input files B, C, and D.MAC (using the necessary macros defined
in A.MLB), creating the object module OBJMOD.OBJ and a listing file D.LST which will be
spooled.

>MACRO/LIST/OBJECT:OBJMOD
FILE? A/LIBRARY+B+C+D

9.29 MERGE
The MERGE command merges records currently in one file with the records of another existing
file; the receiving file must have relative or indexed organization.

Format:

MERGE [fLOG [: log-file-spec] input-file-spec [jqualifier]]
output-file-spec [/qualifier]

Command Qualifiers:

JLOG [log-file-spec]

Input-file Qualifier:

jSEQUENTIAL
jRELATIVE
jINDEXED [jKEY:NUMBER:n]

Outpu t-file Qualifier:

jINDEXED
jRELATIVE

Prompts:

FILE? Input-file [jqualifier]
INTO? output-file/ qualifier

9-52

Default:

See qualifier description.

jSEQUENTIAL

One is required.

Command Parameters:

Input-ftIe-spec

Output -ftIe-spec

Command Qualifier:

/LOG [:log-file-spec]

Input-File Qualifier:

/SEQUENTIAL

/RELATIVE

/INDEXED

/KEY: NUMBER:n

Output-File Qualifier:

An output-ftIe qualifier is required.

/INDEXED

/RELATIVE

Note:

Command Descriptions

Specifies the ftIe containing the records to be merged.

Specifies the fIle that receives the new records.

The qualifier is optional; if specified, a log of all error
messages is created during the merge sequence. An ex
ample is a listing of all records taken from the input-
file that could not be merged, due to a duplicated key
being detected when duplicate keys are not supported.
If the file specification is omitted, the ftIe name defaults
to TID: and the log is printed in the OUTPUT stream.

Specifies a sequential ftIe. This is the default.

Specifies a relative ftIe.

Specifies an indexed ftIe. If specified, the /KEY qual
ifier is also required.

The order of the record extraction may be specified by
the use of the KEY qualifier. This is meaningful only
when the /INDEXED qualifier is used.

Specifies an indexed structured file.

Specifies a relative structure file.

Wildcards are not permitted in either ftIe specification parameter.

Example:

This example merges all records from the sequential file PROLLI.SEQ to the indexed ftIe
PROLL2.NDX.

>MERGE
FILE? PROLL1.SEQ
INTO? PROLL2.NDX/INDEXED

9-53

Command Descriptions

9.30 MESSAGE
The message command displays a message at a specified terminal. Two bells are sounded at the
receiving terminal. The message is preceded by the date and the originating terminal number.

Format:

MESSAGE [/qualifier] [message]

Com mand Qualifiers:

/TERMINAL:TTn

Prompt:

TERMINAL? TTn
MESSAGE? message

Command Parameter:

message

Command Qualifiers:

/TERMINAL:TTn:

Examples:

The message is any combination of alphanumeric and
control characters. Up to 68 ASCII characters can be
specified. The string is terminated by the carriage re
turn.

Sends the message to terminal TTn. The terminal must
be logged into the system for the message to be dis
played. The system ignores the command when the
terminal is not logged into the system. The /TERMIN
AL qualifier is required~ although the terminal spec
ification is promptable, that is~ the TTn: yalue.

I. >MESSAGE/TERMINAL:TT4: LOAD DISK1 ON DB3:

On the receiving terminal the message appears as:

19-JUL-78 09:04
LOAD DISK1 ON DB3:

2. >MESSAGE/TERMINAL
TERMINAL1 TT4
MESSAGE1 TIME TO GO HOME

9-54

FROM TT3: TO TT4:

At tenninal 4, the message appears as:

19-JUL-78 09:05
TIME TO GO HOME

9.31 MOUNT

Command Descriptions

FROM TT3: TO TT4:

Use the MOUNT command to logically connect a volume to the file system. The system also en
sures the device is on-line. The system writes infonnation on the volume pennitting subsequent
I/O access. Before each file access to the volume, I/O access is verified.

You are allowed to mount volumes on those devices currently allocated to you; that is, your
private devices.

For efficient resource management, volumes should be dismounted when they are no longer
needed. (Refer to the DISMOUNT command for its use.)

Fonnat:

MOUNT [/qualifiers] device-name volume-label

Command Qualifiers:

/EXTENSION: blocks
jPROTECTION :code
jOVERRID E: option(s)
JOWNER: [ggg, mmm]
jUNLOCKED
jSHOW
/WINDOW:m
jDENSITY:bpi

Prompts:

DEVICE? device-name
VOLUME LABEL? volume-label

Command Parameters:

device-name

volume-label

Default:

Pack default
See Command Qualifier.

See Command Qualifier.

m=O
bpi=800

The device name of the device to mounted. A list of
legal physical device names is presented in Section 3.2.1.
A logical device name that was previously assigned to a
physical device name is pennitted.

The volume-label is a name associated with each volume.
The volume-label is mandatory for magnetic tape and
disk volumes unless the /OVERRIDE qualifier is
specified. When the volume-label is specified, the
system verifies the correct volume-label used.

9-55

Command Descriptions

Command Qualifiers:

/EXTENSION:n

/PROTECTION :code

/OVERRIDE:option(s)

fOWNER: [ggg, mmm]

/UNLOCKED

/SHOW

9-56

The command is ignored when an incorrect volume-label
is specified. The volume-label may be up to 6 alpha
numeric characters for magnetic tape volumes and up to
12 alphanumeric character for disk.

Specifies the number of blocks a disk file shall be ex
tended if it exhausts its current space allotment. The n
value is decimal.

This qualifier overrides the EXTENSION:n specified in
the INITIALIZE command. If not specified, the INI
TIALIZE/EXT condition is the default.

Change the file protection access.

When either /PROTECTION is not specified or specific
classes within the code are not specified, the default
values are taken from the volume. See the INITIAL
IZE command for the volume default values. Also see
Section 3.3.2 for a detailed description of how to form
the code parameter.

The /OVERRIDE qualifier permits several MOUNT op
tions to be ignored. The options are separated by
comma and enclosed in parentheses if more than one is
used.

The options and their functions are:

IDENTIFICATION Do not verify the volume ident-
ification. Note that when IDENTIFICATION is spec
ified, no other /OVERRIDE option can be given.

LABEL Do not verify the magnetic tape volume label.

EXPIRATION DATE Override the expiration date on
the magnetic tape volume.

Change the User File Directory (UFD) of the owner of
the volume.

The group number, ggg, and the member number, mmm,
are octal values from 0 to 377. The square brackets [1
are required syntax.

Permits read/write access to files on the volume. When
the qualifier is not specified, no write access is permitted.

Displays the volume information at the issuing terminal.

Command Descriptions

/WINOOW:m

/OENSITY: bpi

Examples:

Overrides the number of mapping pointers allocated
for disk file windows set up at the volume initiali
zation. The range of m is from 0 to 9. This applies
only to disk volumes.

Set the magnetic tape density to either 1600 or 800
bits per inch (bpi).

This example mounts the disk, OBO:, and verifies that the volume label is VOLNAME.

>MOUNT DBO: VOL NAME

This example mounts disk, OB2: and verifies the volume label is SYSOOI. Specifies default file
protection for this volume as [RW, RWED, RWED, R). Permits the system read and write access
and permits the group read, write, extend, and delete access. The owner and world access are un
changed.

>MOUNT/PROTECTION:<SYSTEM:RW,GROUP:RWED)
DEVICE1 IIB2:
VOLUME ID1 SYSOOl

9.32 $ON
The SON command specifies an action to be taken if a subsequent batch command returns an
error status equal to or greater than a specified level.

Format:

SON status-level THEN action

Prompt: None.

Command Parameters:

Status-level is one of the following:

WARNING
ERROR
SEVERE ERROR

Action is one of the following:

CONTINUE

GOTO label (Label is an alphanumeric string and must appear, to
gether with a colon, in front of a subsequent command.)

STOP

9-57

Command Descriptions

Command Qualifiers: None.

Notes:
1. SON ERROR STOP is assumed by default at the beginning of a batch job.

2. The THEN action is taken if a subsequent command returns a status level equal to or
greater than the status level specified in the SON command.

3. An SON command remains in force until superseded by another SON command, until an
ON condition is met, or until end-of-job, whichever occurs first.

4. A SON command can be suspended by a $SET NOON command and can be later rein
stated by a $SET ON command.

Example:

The SON and $MACRO commands are executed. If the assembly is completed with nothing worse
than a warning, the job proceeds to $LINK. If the linking is completed with nothing worse than
a warning, the job proceeds to $RUN. If any of these commands produces a status-level of
ERROR or SEVERE-='pRROR, the job is stopped; in this case, all remaining commands in the file
are skipped.

$JOB
$ON ERROR STOP
$MACRO MYPROG
$LINK MYPROG
$RUN MYPI~OG
$EOJ

9.33 PRINT
The PRINT command causes one or more files to be printed on the line printer. It defines a
printing job to be placed in the print queue.

Format:

9-58

PRINT [/qu ali fie rs] file-spec [/qualifiers], ...

Command Qualifiers:

/[NO] DELETE
/COPIES:n
/QUEUE:queue-name
/UPPERCASE
/LOWERCASE
/[NO] ORIGINAL
/[NO] WIDE
/PAGES:n

Default:

/NODELETE
/COPIES:I
/QUEUE:PRINT
/UPPERCASE

/NOORIGINAL
/NOWIDE
Pages unlimited

/ JOB: jobname

/PRIORITY:n
/FORMS:n
/LENGTH:n
/[NO] RESTART
/[NO] FLACiJAGE
/AFTER: (dd-mmm-yy hh:mm)

File Qualifiers:

/[NO] DELETE
/COPIES:n
/[NO] ORIGINAL

Prompt:

FILE? file-spec [/qualifier] , ...

Command Parameter:

file-spec

Command Qualifiers:

/[NO] DELETE

/COPIES:n

/UPPERCASE

/LOWERCASE

/QUEUE:queue-name

/[NO] WIDE

Command Descriptions

JOB: First six characters of
first filespec
/PRI:50
/FORMS:O
No implied form feeds

/NOFLAG_PAGE
Present time

Specifies a file to be printed. If no file type is in
cluded in the file specification, the default file type
is .LST.

Instructs the system to delete all files after printing.
The default is /NODELETE.

Specifies the number of file copies to be printed. The
value of n is an integer from 1 to 32 (decimal), with a
default of 1.

Specifies that an uppercase-only printer is sufficient
for printing the job.

Specifies that a printer capable of printing both upper
and lower case characters is needed for this job.

Specifies the name of the queue in which the job is
to be placed. If this qualifier is omitted, the job is
placed in the queue named PRINT.

Specifies whether a wide printer is required. A wide
printer has at least 132 characters per line.

9-59

Command Descriptions

/PAGES:n

/JOB:jobname

/PRIORITY:n

/FORMS:n

/LENGTH:n

/[NO] ORIGINAL

/[NO] RESTART

9-60

Specifies the maximum number of pages that the job
may produce. Default is unlimited.

Specifies the name of the job to be placed in the
queue. If omitted, the system will assign ajob name
based on the first six characters of the first file name.

Specifies the queue priority level of the printjoh. The
argument n must be an integer in the range I to 250,
and 250 is the highest priority.

Specifies the forms attribute of a print job. The
FORM option complements the LENGTH option in
defining the basic vertical boundaries and margins of
an individual form.

The FORMS option indicates, directly or indirectly,
the size of the form. Usually, this is the number of
print lines between perforations. The default forms
attribute is n=O, which indicates that form-feed
processing will be handled by the printer. Values of
n from I to 255 indicate that the software will handle
form-feed processing. Values of n from I to 66 denote
the actual number of lines by default, although they
can be redefined by the installation. Values of n
greater than 66 require installation definition.

Specifies the number of lines that can be printed on a
form page. If, while processing the print job, form
feed characters are not found in the file within n lines
of the last form feed, a form feed is generated. Thus,
if the FORMS option indicates a form size of 66 lines,
and LENGTH specifies that no more than 60 lines may
be printed per form page, the combination of options
implies a bottom margin of six lines. By default, the
system generates no form feeds; this is equivalent to
specifying /LENGTH: O.

Indicates whether or not to make temporary copies
of files that exist on private volumes. /ORIGINAL
requests that no copy be made.

Specifies whether a job can be restarted from the
beginning following an interrupt, such as running out
of paper.

I[NO] FLAG.PAGE

IAFTER: (dd-mmm-yy hh:mm)

File Qualifiers:

I[NO] DELETE

ICOPIES:n

I[NO] ORIGINAL

Notes:

Command Descriptions

INOFLAG PAGE suppresses the flag page before each
ftIe in the job. INOFLAQj> AGE is the default.

Specifies the date and the time after which the job
will become eligible for dispatching to some print
processor.

Specifies whether or not the file is to be deleted after
printing.

Specifies the number of list copies to be produced for
the file.

Indicates whether or not to use a temporary copy of
the file. IORIGINAL directs that no copy be made.

1. If I[NO] DELETE, ICOPIES:n, or I[NO] ORIGINAL is specified as both a command
qualifier and a fue qualifier, the file qualifier overrides the command qualifier for that
file. Any of these qualifiers given at command level sets a default qualifier that applies
to all files unless overridden by a file qualifier.

2. The IQUEUE qualifier is optional. If it is omitted, the job is added to the default print
queue, named PRINT.

Example:

The following command prints two copies each of every fue in the directory having the fue name
RESULT. It also prints four copies of the file PRIME.DAT. The job is to be queued on the
queue NIGHT.

>PRINT/COPIES:2/QUE:NIGHT
FILE? RESULT.*,PRIME.DAT/COPIES:4

9.34 PURGE
The PURGE command removes older versions of one or more specified files, retaining one or
more latest versions. See also the description of the DELETE command earlier in this chapter.

Fonnat:

PURGE [/qualifier] file-spec [, ...]

9-61

Command Descriptions

Command Qualifier:

/KEEP:n

Prompt:

FILE? file-spec [, ... J

Command Parameter:

file-spec

Command Qualifier:

/KEEP:n

Notes:

Default:

/KEEP:l

The file specification of the file whose early versions
are to be deleted from the Directory. Each file spec
ification must include a file name and a file type, but
not a version number.

Specifies that the n latest versions of the file shall be
retained. The system locates the highest version
number associated with the file specifications and de
letes all versions of the file with a version number
lower than the highest version number minus n. The
default value of I is assigned when n is either not spec
fied or O.

For example, assume you specify n as 3 and the system
determines that the latest version number of the file is
7. This requests that versions of the file version num
bers of 4 or less be deleted. The system keeps version
7 and also keeps versions 6 and 5, if they have not
been removed by an earlier PURGE or DELETE oper
ation.

1. If the /KEEP qualifier is not specified, it is equivalent to specifying /KEEP: 1.

2. Wildcards are allowed in the directory, file name, and file type components of the file
specification.

3. You may purge only those files for which you have delete access rights.

Examples:

This example purges all versions of TEST.TMP except the highest numbered (latest) version.

)oPURGE TEST.TMP

9-62

Com11Ulnd Descriptions

This example purges all but the latest two versions of SRTRT.B2S.

>PURGE/KEEP:2 SRTRT.B2S

9.35 RENAME
The RENAME command renames an existing file.

Fonnat:

RENAME old-file-spec new-file-spec

Prompts:

OLD? old-file-spec
NEW? new-file-spec

Command Parameters:

old -file-spec

new-file-spec

Command Qualifiers: None.

Notes:

Specifies an existing file. The file specification must
include a file name and a file type.

Specifies the new name for the existing file. The ftIe
specification must include a file name and a file type.

1. Both specifications must have the same device (since ftIes may not be renamed across
devices).

2. Wildcards are allowed in the ftle type and file· version fields of each file specification.
Wildcards appearing in one file specification must appear in the corresponding fields of
the other file specification.

3. If a version number is omitted from new-file-spec, the version number of the old-file-spec
is used by default.

4. You can RENAME a file into another UFO, protection conditions pennitting. As a
general rule, if you are authorized to create a file in a UFD, you are also authorized to
rename files stored under that UFD. Also, you can use RENAME to change the UFO of
a file.

9-63

Command Descriptions

Examples:

This example renames the fourth version of the OLD.TMP to NEW.TMP.

>RENAME
OLII? OLII.TMF';4
NEW? NEW.TMF';l

9.36 RUN
The RUN command permits the system to install a task, run it, and-upon completion-remove
the task from the system. Use the ABORT command to terminate an active task.

Format:

RUN[IT ASK: task-name] file-spec

Command Qualifier:

IT ASK:task-name

Prompt:

FILE? file-spec

Command Parameters:

file-spec

Command Qualifiers:

IT ASK:task-name

Examples:

Default:

See Qualifier description.

Specifies a file specification referring to a linked
program, or task. When the file name is preceded by
the dollar sign ($), the system searches the System
File Directory for the file. When the file name is not
preceded by either the dollar sign ($) symbol or a
UFD, the system searches the default User File
Directory for the file. The default file type is .TSK.

Specifies the task name to assign when installing the
task. The name may be up to 6 characters. The
default name is TTnn where nn is the unit number
of the requesting terminal.

This example immediately loads and executes the latest version of the file TSK 1. TSK from the
user's current default device and directory. The system removes the task when either the task
runs to completion or the user aborts the task.

>RUN TSKl

9-64

Command Descriptions

This example installs and executes the task file DEMO.TSK from the default UFD and names
the task, TEST. The system names tasks initiated through the RUN command, by default, to be
TTnn where nn is the user's terminal number.

>RUN/TASK:TEST DEHO.TSK

9.37 SET
The SET command enables you to alter dynamically certain characteristics of your terminal,
files, devices, queued job, and operating environment.

Fonnat:

>SET function

Prompt:

FUNCTION? function

Command Parameters:

function

Command Qualifiers: None.

Notes:

Specifies one of the following:

DEFAULT
DEVICE
[NO]ON
PROTECTION
QUEUE
TERMINAL

The use of each of these options is described in ensu
ing sections.

I. The function parameter further defines the SET command. Each SET function has its
own command syntax, as described in the following subsections.

2. The SHOW command complements the SET command. It enables you to ascertain the
current characteristics before you modify them.

9.37.1 SET DEFAULT
The SET DEFAULT command establishes the user default system device or the User File Direc
tory, or both, at the issuing tenninals. These defaults are used when referencing files within
command lines, overriding previous defaults.

9-65

Command Descriptions

Format:

>SET DEFAULT [device-name] [ufd]

Prompts:

FUNCTION? DEFAULT
DEFAULT DEVICE NAME AND/OR DIRECTORY? [device-name] [ufd]

Command Parameters:

device-name

ufd

Specifies the device name of the device you wish to
use as the default device in subsequent commands.

Specifies the new default User File Directory in the
format:

[ggg,mmm]

The group number, ggg, and the member number,
mmm, are octal values from 0 to 377. The brackets
and comma are required. If the device-name parameter
is present, the UFD must immediately follow the colon
that marks the end of the device-name parameter.

Command Qualifiers: None.

Notes:
1. Changing the default device and UFD does not change your UIC; your UIC is determined

when you log in.
2. If you change the default UFD, you will be accessing files under different protection

access codes. Under normal default protection values, you will have read access to all files
regardless of group number, and full access to files stored under the group number in
your UIC. See the following example for further clarification, and also see the description
of the SET PROTECTION command.

Example:

The following directory listing indicates that several files with file name DEMO are stored in the
UFD [40,40]. This UFD is the current default, determined from the UIC established at log in
time.

9-66

)DIRECTORY DEMO.*

DIRECTORY DBO:[40,40J
19-JUL-78 10:26

DEMO.B2S;1 1.
DEMO.OBJ;1 2.
DEMO.CMD;l 1.
DEMO.ODL;l 1.
DEMO.TSK;l 1S.
DEMO.MAP;l 12.

1S-JUL-78
lS-JUL-78
lS-JUL-78
lS-JUL-78

C lS-JUL-78
lS-JUL-78

TOTAL OF 32./32. BLOCKS IN 6. FILES

Command Descriptions

16:53
16:53
16:53
16:53
16:53
16:53

When you change the default UFD to include a different group number, you can read, but can
not write, files in that UFD. (The UIC is still [40,40] .)

)SET DEFAULT DBO:[350,230l
)COPY [40,40lDEMO.* *.*
COP -- OPEN FAILURE ON OUTPUT FILE
DBO:C350,230lDEMO.B2S -- HANDLER ERROR CODE -16.

However, when you set the default UFD to a value with the same group number as your DIC,
you can write files in that directory under normal protection conditions. The final DIRECTORY
listing shows that the copy operation was successful.

>SET DEFAULT D80:[40,41l
>COPY [40,40JDEMO.* *.*
>DIRECTORY DEMO.*

DIRECTORY DBO:[40,41J
19-JUL-78 10:33

DEMO.B2S;2 1.
DEMO.OBJ;2 2.
DEMO.CM[I;2 1.
DEMO.ODL;2 1.
DEMO.TSK;2 15.
DEMO.MAP;2 12.

19-JUL-78
19-JUL-78
19-JUL-78
19-JUL-7B

C 19-JUL-7B
19-JUL-7B

TOTAL OF 32./32. BLOCKS IN 6. FILES

9.37.2 SET DEVICE

10:33
10:33
10:33
10:33
10:33
10:33

The SET DEVICE command dynamically alters the attributes of a specified device.

Format:

SET DEVICE:device-name option

9-67

Command Descriptions

Prompts:

FUNCTION? DEVICE
DEVICE? device-name
ATTRIBUTE? option

Command Parameters:

device-name

option

Examples:

Specifies the device whose characteristics are to be
changed.

Specifies one of the following:

WIDTH:n Applies to terminals and print
ers, specifying the character
width of the output medium.
The value of n can be octal or
decimal. Octal values are ex
pressed as an integer followed
by a space, and decimal values
are expressed as an integer
immediately followed by a
decimal point. For example 72
is octal and 72. is decimal.

[NO] WRITECHECK Specifying WRITECHECK
requests verification of write
operations by means of an auto
matic read after write. NO
WRITECHECK is the default.

1. This sets the line buffer size of the LPO: to 132 characters.

>SET DEVICE:LPO: WIDTH:132

2. In this example, each record written on the device DBO: will be read back and verified.

>SET DEVICE:DBO: WRITECHECK

9.37.3 SSET[NO] ON
The $SET NOON and $SET ON commands are used only in batch jobs. The $SET NOON com
mand suspends the influence of an SON command until a $SET ON command reinstates it.

Fonnat:

$SET [NO]ON

9-68

Command Descriptions

Notes:
1. The command has no parameters or qualifiers.
2. SSET NOON is meaningful only if a SON command exists earlier in the file.
3. SSET ON is meaningful only if a SSET NOON command has been executed.

9.37.4 SET PROTECTION
The SET PROTECfION command alters the protection access rights for a specified set of files.

Format:

SET PROTECTION [(] file-spec [, ...)] code

Prompts:

FUNCTION? protection
FILE? [(] file-spec[, ...)]
PROTECTION? code

Command Parameters:

file-spec

code

Command Qualifiers: None.

Notes:

Specifies the file specifications of one or more files
whose access protection rights are to be altered. If
more than one file-spec is given, the set of file-specs
must be enclosed within parentheses and separated by
commas. The files must already exist. Each file-spec
must include a file name and a file type. If a file ver
sion number is omitted, the highest version is used.

Specifies the new access protection rights of the files.
See Section 3.3.2 for information on file protection
codes.

1. The code parameter must be formed as for the /PROTECTION qualifier of the CREATE
command.

2. Only one code parameter is permitted in any SET PROTECTION command. All files
specified have their own protection set according to the code parameters.

Example:

This alters the system access rights of the file A.TEMP to Read and Write and group access rights
to Read, Write, Extend, and Delete.

)SET PROTECTION A.TMP (SYSTEM:RW,GROUP:RWED)

9-69

Command Descriptions

This changes the protection of A. TMP and B. TMP as described in the previous example.

>SET PROTECTION
FILE? (A.TMP,B.TMP)
PROTECTION1 (SY:RW,GR:RWED)

9.37.5 SET QUEUE
The SET QUEUE command modifies one or more attributes of a job in a print or batch queue
(that is, attributes assigned to a job by the PRINT or SUBMIT command). You are allowed to
modify only those jobs that you have placed in the queue.

The command is also used to hold a job in a queue and to release it subsequently for normal
processing.

Format:

SET QUEUE queue-id option [, ...]

Prompts:

FUNCTION; QUEUE
QUEUE NAME OR ENTRY? queue-id

OPTIONS? option(s)

Command Parameters:

queue-id

9-70

Identifies the queue to be affected. Two forms are
allowed:

queue-name

ENTRY: (n,n)

Specifies a print queue or batch
queue. The command SHOW
QUEUE ALL displays the names
of queues recognized by the
system.

Specifies the job entry number, as
internal identification assigned by
the system when you originated
the job. If you specify this, you
need not specify queue-name or
job-name elsewhere in the state
ment. The SHOW QUEUE com
mand with the FULL option
displays job entry identifiers.
Both components of the entry
number are octal. The word

option

Command Descriptions

ENTR Y cannot be appreviated.
It is a standard system queue
name, not a DCL keyword.

Specifies one or more of the following:

JOB:job-nal11e

UPPERCASE

LOWERCASE

[NO]WIDE

PAGES:n

PRIORITY:n

FORMS:n

Specifies the name of the job that
you wish to modify. If omitted,
the job name is assigned by the
system, based on your user
identification. When ENTRY is
specified, the JOB option is not
permitted.

Specifies that the print job re
quires only a printer with an
uppercase character set.

Specifies that the print job re
quires a printer with upper - and
lower/case characters.

WIDE specifies that a wide line
printer (132 characters) is re
quir~d. NOWIDE negates an
outstanding WIDE specification.

Specifies that the print job should
be aborted if it exceeds n pages.

Specifies the queue priority level
of the job.

Specifies the forms attribute of
a print job. The FORM option
complements the LENGTH
option in defining the basic ver
tical boundaries and margins of
an individual form.

The FORMS option indicates,
directly or indirectly, the size
of the form. Usually, this is the
number of print lines between
perforations. The default forms
attribute is n=O, which indicates
that form-feed processing will

9-71

Command Descriptions

9-72

be handled by the printer. Values
of n from I to 255 indicate that
the software will handle from-feed
processing. Values of n from I
to 66 denote the actual number
of lines by default, although they
can be redefined by the installa
tion. Values of n greater than 66
require installation definition.

LENGTH:n Specifies the number of lines that
can be printed on a form page.
If, while processing the print job,
form-feed characters are not
found in the file within n lines of
the last form feed, a form feed
is generated. Thus, if the FORMS
option indicates a form size of 66
lines, and LENGTH specifies that
no more than 60 lines may be
printed per form page, the com
bination of options implies a
bottom margin of six lines. De
fault produces no implied or
generated form feeds, and is
equivalent to specifying
LENGTH:O.

[NO] RESTART Specifies whether the job can
restart from the beginning if
stopped.

[NO] FLAG. PAGE Enables or disables the printing
of flag pages before files in the
print job.

AFTER: (DD-MM- Specifies the date and time after
YY HH: MM) which the job may be processed.

HOLD Unconditionally holds the job
in the queue, delaying normal
processing until a RELEASE is
given even though other condi
tions could indicate that it should
be processed.

RELEASE

Command Qualifier: None.

Examples:

Command Descriptions

This places the job in the waiting
job list. The job is processed
when it reaches the top of the
waiting job list.

This queued batch job TEST on directory [40,41] is given a modified priority of 120. BATCH is
the queue-name.

>SET QUEUE BATCH JOB:[40,41JTEST,PRIORITV:120

The queued entry (112, 223) is changed to accommodate forms of type 1, as defined by the in
stallation.

>SET QUEUE ENTRV:(112,223) FORMS:l

9.37.6 SET TERMINAL
The SET TERMINAL command establishes or changes the attributes of your tenninal.

Format:

>SET TERMINAL [terminal-name] option

Prompt:

FUNCTION? TERMINAL
ATTRIBUTE? option

Command Parameters:

tenninal-name

option

Optional; if entered, it must be TI: (your terminal).

One of the following:

TYPE:value Specify the type of terminal.
If the terminal is a video dis
play, specify SCOPE; if a printed
display, specify NOSCOPE.

9-73

Command Descriptions

Command Qualifiers: None.

Example:

LOWERCASE

UPPERCASE

[NO] SLAVE

Recognize lowercase and upper
case characters on input.

Recognize uppercase characters.
Lowercase characters are con
verted to uppercase on input.

SLAVE establishes the terminal
as a device that cannot enter un
solicited input. Only information
requested from a task is recog
nized. NOSLAVE removes this
restriction.

[NO]HOLD SCREEN Enable/disable hold screen mode
at the specified terminal. In hold
screen mode the terminal dis
plays a full screen of data each
time the scroll key is pressed.

SPEED:(n, m)

[NO] ESCAPE
SEQUENCE

Establishes the receive baud rate
(n) and the transmit baud rate
(m) of the terminal. See your
system manager for the possible
baud rates on your terminal.

Enable/disable the recognition of
escape sequences from the spec
ified terminal.

This example sets the terminal to a printed output type terminal.

>SET
FUNCTION? TERMINAL
ATTRIBUTE? TYPE:NOSCOPE

9.38 SHOW
The SHOW command complements other commands, such as SET, by displaying at your terminal
all information pertaining to your task, terminal, and devices that you may establish or alter.

9-74

Command Descriptions

Format:

SHOW function

Prolnpts:

FUNCTION? function

Command Parameters:

Function specifies one of the following:

ASSIGNMENTS [:option]
DAYTIME
DEFAULT
DEVICES
QUEUE
TASKS
TERMINAL

The use of each of these options is described in ensuing sections.

Command Qualifiers: None.

9.38.1 SHOW ASSIGNMENTS
The SHOW ASSIGNMENTS command displays local assignments currently in force at your
terminal.

Format:

SHOW ASSIGNMENTS [:LOCAL]

Prompts:

FUNCTION? ASSIGNMENTS

Command Parameters: None.

Command Qualifiers: None.

Notes:
1. The string: LOCAL may be omitted without altering the effect of the command.

2. SHOW ASSIGNMENTS complements the ASSIGN command, displaying logical name
assignm en ts.

9-75

Command Descriptions

Example:

The following example shows the device DBI: to have a local assignment of MYO = at tennina14.
The default log in assignment is also shown.

>SHOW ASSIGNMENTS
MYO: DB1: LOCAL TI - TT4:
SYO: SYO: LOGIN TI - TT4:
•• >

9.38.2 SHOW TIME
The SHOW TIME displays the time of day and the date.

Fonnat:

SHOW TIME

Prompt:

FUNCTION? TIME

Command Parameters: None.

Command Qualifiers: None.

Example:

>SHOW TIME
13:17:05 19-JUL-78

9.38.3 SHOWDEFAULT
The SHOW DEFAULTS command displays your current default device name and directory.

Fonnat:

SHOW DEFAULT

Prompt:

FUNCTION? DEFAULT

Command Parameters: None.

Command Qualifiers: . Non'e.

9-76

Command Descriptions

Example:

In this example, the response indicates that DBO = is the current default device, and [350, 230] is
the current directory.

>SHOW DEFAULT
I'SO: [350,230J

9.38.4 SHOW DEVICES
The SHOW DEVICES command displays the symbolic names and status of the devices. The dis
play is made on the entering terminal.

Format:

SHOW DEVICES [option]

Command Qualifier:

None

Prompt:

FUNCTION? DEVICES

Command Parameter:

option

[NO] PUBLIC

TYPE device-name:

[NO] WRITECHECK

WIDTH: device-name

Command Qualifier: None

Default:

The option can be any of the following words. The
system displays all the options when no option is spec
ified.

Display only those devices allocated as either PUBLIC or
NOPUBLIC.

Display only the devices specified by the device name,
such as DB:.

Display only those devices in either the WRITECHECK
or NOWRITECHECK mode.

Display the buffer size of the specified device.

9-77

Command Descriptions

Examples:

This example displays the buffer size of LPO: as 132 decimal characters.

>SHOW DEVICE WIDTH:LPO:
BUF=LF'O:00132.

This example describes the status of every device on the system.

>SHDI.o.1 DEVICES
DBO: PUBLIC MOUNTED LOADED
ItBl: LOADED
DB2: L.OADED
DB3: PUBL.IC MOUNTED LOADED
ltF~() : LOADED
DR1: MOUNTED LOADED
MMO! LOADED
i"lM:I. .; I ... (JADED
LPO: D80: SPOOLED LOADED
TlO!
TTl:

[l,lJ - LOGGED ON LOADED

TT2:
TT:~ :
TT4:
TT~.) :
TT6:

LDADED
LOADED
', .. OADED
[40,40J - LOGGED ON
[l,lJ - LOGGED ON
L.OADED

LOADED
LOADED

TT"7: [350,227J - LOGGED ON
TT10: [l,lJ - LOGGED ON LOADED
NLO:
VTO: LOADED
\.)T 1. : LOADED
~}r2: LOADED
TIO:
cno: TTO:
CLO~: LPO:
SPOt [tHO:
LBO: 1IBO:
SYO: DBO:

9.38.5 SHOW QUEUE

LOADED

The SHOW QUEUE command complements the SET QUEUE command. It enables you to dis
play current information about your print and batch queues entries.

Format:

SHOW QUEUE [queue-id] [option [form-option]]

9-78

Prompts:

FUNCTION? QUEUE

Command Parameters:

queue-id

option

Command Descriptions

Identifies the queue or queues to be displayed. Three
forms are allowed:

queue-name

ENTRY: (m, n)

ALL

Specifies the name of the queue,
as defined in the SUBMIT and
PRINT command.

Specifies the job entry number,
an internal identifier assigned to
each queue entry when the job
is originated. If you specify this,
you need not specify queue
name or job name elsewhere in
the command. The word
ENTR Y cannot be abbreviated;
it is a standard system queue
name, not a DCL keyword.

Indicates that all existing queues
of a given type are to be dis
played. ALL may be followed
with the option PRINT or
BATCH, indicating that only
print or batch queues should be
displayed. The word ALL
cannot be abbreviated; it is a
standard system queue name, not
a DCL keyword.

Further defines the SHOW QUEUE command. Possible
options are:

JOB: [uic] jobname Requests information about a
particular job originated by a
specified user.

USER: [uic] Requests information on all
queue entries for a specified user.

9-79

Command Descriptions

fonn-option

Command Qualifiers: None.

Examples:

NUMBER

ALL

PRIORITY:n

FORMS:n

BATCH

PRINT

Requests the number of entries
in the specified queue or queues.

Requests display of all entries in
the specified queue or queues.

Shows all job entries at the spec
ified priority level.

Shows all job entries with the
specified forms type.

If used in conjunction with the
queue-name ALL, only BATCH
queues are listed.

If used in conjunction with the
queue-name ALL, only PRINT
queues are listed.

Specifies the form of the information to be listed.

BRIEF

FULL

Specifies a limited listing, con
sisting only of the names of the
entries. In many cases, this only
confirms the presence of the
entries specified by the com
mand.

Specifies a complete report on all
queues and entries specified or
implied by the command.

There are many combinations of parameters for this command. The following sequence of ex
amples illustrates the type of output you can expect for the various forms of SHOW QUEUE:

9-80

Command Descriptions

>SHOW QUEUE ALL
PRINT QUEUES

PRINT
LPQO
TEST
BAF'O

BATCH QUEUES
BATCH
TRXI<IT STOPPED
SURVEY
CHRIS

>SHOW QUEUE BATCH ALL BRIEF
BATCH QUEUES

BATCH
>SHOW QUEUE BATCH ALL FULL

BATCH QUEUES
BATCH

ASSIGNED PROCESSORS
BAPO

HELD JOBS
1 Cl,llSAMPLE ENTRV:(12220,20663) TI:TT37: PRI:50 REST:V

PRINT:V
FILES

DBO:Cl,lJSAMPLEFDF.BLD~2 ENTRY:C12300,120664) DEL:N
2 C350,227JTRAXAP ENTRV:(2140,20011) TI:TT7: PRI:50 REST:V

PRINT:V
FILES

DBO:C350,227JTRAXAPG.CMD92 ENTRV:(2160,120012) DEL:N
3 C40,40JBTST ENTRV:(4640,10604) TI:TT4: PRI:50 REST:V

PRINT:V
FILES

DBO:C40,40JBTST.CMD91 ENTRY: (4660,110605) DEL:N
4 Cl,lJCONT ENTRV:(6040,7461) TI:TT1: PRI:50 REST:V

PRINT:N
FILES

DBO:Cl,lJCONT.CMD92 ENTRV:(6060,107462) DEL:N
5 Cl,lJCONT ENTRV:(5020,7455) TI:TT1: PRI:50 REST:V

f'RINT:N
FILES

DBO:[1,lJCONT.CMD91 ENTRV:(5540,107456) DEL:N
6 C300,307JBTCHOl ENTRV:(4500,7167) TI:TT31: PRI:50 REST:V

f'RINT:V
FILES

DBO:[300,307JBTCH01.BISil ENTRV:(4520,107170) DEL:N
7 C200,200JDIALOG ENTRV:(5560,6457) TI:TT1: f'RI:50 REST:Y

f'RINT:N
FILES

DBO:C200,200JDIALOG.CMD93 ENTRV:(5600,106460) DEL:N
8 [200,200JDIALOG ENTRV:(3100,4261) TI:TT37: PRI:50 REST:V

PRINT:N
FILES

DBO:C200,200JDIALOG.CMDi2 ENTRV:(3120,104262) DEL:N

9-81

Command Descriptions

:::.

9 [1,1]TEST
PRINT:N
FILES'

ENTRY:(2060,1002) Tl:TT37: PRl:50 RESr:y

DBO:[1,1JTEST.CMD;1 ENTRV:(2100,101003) DEL:N
DBO:[l,1JTEST.CMD;1 ENTRV:(2120,101004) DEL:N

10 [1,1]TEST ENTRY: (2000,465) Tl:TT1: PRl:50 REST:Y
PRINT:N
FILES

DBO:[l,1JTEST.CMD;1 ENTRV:(2020,100466) DEL:N
DBO:[1,1JTEST.CMD;1 ENTRV:(2040,100467) DEL:N

9.38.6 SHOW TASKS
The SHOW TASKS command displays information about installed tasks. The information dis
played is dependent upon the option selected.

Format:

SHOW TASKS status [display] [task-name]

Prompts:

FUNCTION? TASKS
ACTIVE OR INSTALLED? status

Command Parameters:

status

display

9-82

Specify either ACTIVE OR INSTALLED. When IN
STALLED is specified, both active and dormant tasks
are displayed.

Either FULL, ALL, or BRIEF can be specified. BRIEF
displays, on your terminal, a list of the task-names.
FULL displays, on your terminal, active task-names
and their status.

When not specifying "display", BRIEF is used.

The FULL display contains the following information
for each task:

• Task name
• Task control block physical address (octal)
• Partition name;
• Partition control block physical address (octal)
• Partition base and limit physical addresses

(octal)
• Task's running priority and default priority;
• Task status flags;
• TI terminal physical device name;

Command Descriptions

• I/O count (decimal);
• Task local event flags, and
• Task registers and Processor Status Word (mem

ory resident tasks only).

Flags prefixed by a minus (-) sign indicate the com
plementary status. That is, -CHK indicates that the task
is not checkpointable.

When a task is not in memory (the OUT flag is dis
played), the contents of the PC, PS, and the registers
are not displayed.

STATUS

. ABO
ACP

AST
BFX
CAF

CAL

CHK
CKD
CKP
CKR
DST
EXE
FXD
HLT
MCR
MSG

NRP

NSD

PMD

OUT
PRY
RDN
REM
ROV

DESCRIPTION

Task is being aborted .
Task is an ancillary control
processor.
Task is processing an AST.
Task is being fixed in memory.
Checkpoint space allocation
failure occurred.
Checkpoint space is allocated in
task image.
Task is checkpointable.
Task checkpointable is disabled.
Task is checkpointed.
Task checkpoint request pending.
Task ASTs are disabled.
Task is in execution.
Task is fixed in memory.
Task is being terminated.
Task was activated by MCR.
Task was aborted and waiting for
TKTN message.
Task is mapped to nonresident
partition.
Task cannot receive data (no send
data allowed).
Suppress task post mortem dump
abort.
Task is out of memory.
Task is privileged.
Task I/O is being run down.
Task is to be removed on exit.
Task has resident overlays.

9-83

Command Descriptions

task-name

Command Qualifiers: None.

Examples:

SLY
SPN
SPNA

STP

STPA
TIO

WFR
WFRA

Task is slave.
Task is being suspended.
Task was suspended prior to
AST.
Task stopped for terminal in
put.
Task stopped prior to AST.
Task is waiting for terminal in
put.
Task is in a "wait-for" state.
Task was in a "wait-for" state
before AST.

When the task-name is specified, only that task infor
mation is displayed. When the task-name is omitted,
all tasks are displayed.

This example lists the tasks active at your terminal.

)SHOW TASKS ACTIVE BRIEF
SHOT4

This example lists all tasks currently active in the system.

)SHOW TASKS ACTIVE ALL
••• LDR
SHOT4
Fl1ACF'
DB3ACF'
GMG •••
LF'F'O
BAPO
EDIT7
EOIT14
EItIT34
TT6
TKXT6
TTS
EDIT27
EDIT10
:::.

Command Descriptions

9.38.7 SHOW TERMINAL
Complenlents the SET TERMINAL command; displays a list of tenninals for which the specified
attribute is an established feature, or displays an attribute of a specified tenninal.

Fornlat:

SHOW TERMINAL option

Prompts:

FUNCTION? TERMINAL
ATTRIBUTES? option

Command Parameter:

option Specifies one of the following items:

TYPE:term

LOWERCASE

UPPERCASE

[NO] PRIVILEGED

[NO] SLAVE

[NO] REMOTE

[NO] HOLD~
SCREEN

[NO] ESCAPE..:...
SEQUENCE

Specify the type of tenninal,
where "term" can be SCOPE or
NOSCOPE.

Display those terminals that
recognize lowercase and upper
case characters.

Display those terminals that
recognize uppercase characters
only.

Display the terminals in privilege
mode.

Display the terminals in slave
mode.

Display those tenninals in REMOTE
mode.

Display the terminals in hold
screen mode. When in hold
screen mode, the tenninal dis
plays a full screen of data each
time the scroll key is pressed. This
is useful when displaying a file on
a scope terminal.

Display those terminals in the
escape sequence mode.

9-85

Command Descriptions

SPEED:Tnn

Command Qualifier: None.

Display the specified tenninals'
receive and transmit baud rates
in the "transmit: receive" for
mat. The tenns "transmit" and
"receive" are in reference to the
tenninal's ability to transmit and
receive.

When Tnn is not specified, the
speed of the issuing terminal
(TI) is shown.

This example displays the transmit and receive rates of tenninal 4.

>SHOW TERMINAL SPEED:TT4
SPEED=TT4:300:300

This example lists each tenninal with a printer rather than a CRT display medium.

>SHOW TERMINAL TYPE:NOSCOPE
NOCRT=TTO:
NOCRT::::TT 4:
NOCRT::::TT6 :
NOCRT::::VTO:
NOCRT::::VTl :
NOCRT=VT2:

9.39 SORT
The SORT command invokes the SORT utility of TRAX. This utility sorts the contents of an in
put file into a sequence indicated by the SORT command, and writes the sorted contents into an
output file.

Two types of SORT are allowed, a record sort or a tag sort.

A record sort produces a reordered file by examining the specified control keys and directly
copying entire records to the output file as required.

A tag sort produces a reordered file by extracting the control keys into the proper order. Then the
record pointer associated with each key is used to reaccess the input file randomly to produce the
sorted output file. The tag sort is possible only when the input file resides on a disk.

See the TRAX SORT Reference Manual for further details.

9-86

Commtl1ld Descriptions

Format:

SORT [/qualifiers] input-file-spec Ufile qualifiers]

Command Qualifiers

/ALLOCATION:n
/BLOCKSIZE:n
/BUCKETSIZE:n
/[NO] CONTIGUOUS
/DEVICE :device .. name
/FILES:n
/FORMAT:type:n
/KEYS:(abm.n)
/PROCESS:process-type
/RELATIVE
/SEQUENTIAL
/SIZE:n
/SPECIFICA TIO N: file-spec
/0 UTPUT: file-spec

Inpu t File Qualifier

/FORMAT:type
/INDEXED:n

Prompt:

Default

See qualifier
/BLOCKSIZE: 512
/BUCKETSIZE: 1
/NOCONTIGUOUS
See qualifier
/FILES:5
See qualifier
See qualifier
PROCESS: RECORD

/SEQUENTIAL
See qualifier
See qualifier
See qualifier

Required

FILE? input-file-spec [jfile-qualifiers]

Command Parameters:

input-file-spec

Command Qualifiers:

/ALLOCATION:n

/BLOCKSIZE:n

Specifies the file whose contents are to be sorted. If
no file type is given, .DAT is the default file type.

Specifies the initial disk space allocation for the output
file. Legal values range from 0 to 65535 (bytes). Out
put file allocation defaults to the input file size.

Specifies the blocksize in bytes for any magnetic tape
files that may be involved in the sort. This qualifier
is valid for magnetic tapes only. The default is a 512
byte block.

9-87

Command Descriptions

/BUCKETSIZE:n

/[NO] CONTIGUOUS

/D EVICE: device-name

/FILES

/FORMAT :type: n

9-88

Specifies the number of 512 byte blocks per bucket in
a disk output file. If this qualifier is used, the block size
is 512 bytes, regardless of any /BLOCKSIZE specific
cation. If the input and output files have the same
organization, the output file defaults to the same
bucketsize as for the input file. Otherwise the default
bucket size is 1.

Specifies whether the disk output file allocation must
be contiguous or not. In a contiguous file, each suc
cessive block is physically located between its logical
predecessor and its logical successor with no filler or
extraneous material separating the blocks. /NOCON
TIGUOUS is the default.

Specifies the device to be associated with the inter
mediate scratch files of the sort. This qualifier over
rides device specifications for scratch files resulting from
task build options.

See also the description of the /FILES qualifier that
follows, and refer to the TRAX SORT Reference
Manual for detailed infonnation about scratch files
and their use.

Specifies the maximum number of intennediate scratch
files. Default is 5. See the TRAX SORT Reference
Manual for detailed infonnation on scratch files.

Specifies the record fonnat and maximum record size
of a file. If /FORMAT appears in the command prior
to the input file specification, as a command qualifier, it
qualifies the output file specification only.

The /FORMAT qualifier must always be present in the
command as an input file qualifier. If /FORMAT is
omitted as an output file qualifier, the /FORMAT for
the input file applies also to the output file.

The type argument can be any of the following:

FIXED
STREAM
VARIABLE
UNKNOWN

!KEYS: (abm.n, ...)

Command Descriptions

The record size n is the exact record size in bytes for
FIXED records, and the maximum record size in bytes
for other record fonnats. Record size may be omitted
for output files.

The output record fonnat defaults to that of the input
rue.

Specifies the key fields to control the record sequence
of the output file. Up to 10 key fields, separated by
commas, are allowed. The entire list of key descriptions
must be enclosed in parentheses.

Each field description sequence abm.n breaks down as
follows:

1. Specifies how the data shall be treated. Legal values
of and their interpretations are:

B two's complement binary
C alphanumeric (this is the default)
D One of the following:

a. if the characters are alphabetic, numeric with
the sign superimposed over the units digit, or
certain slashes (/), use the value of the digits
group. Here are two examples and their values:

A2CD5 = (+) 12345 A/47J = (-) 11471

b. if the characters represent a standard FOR
TRAN IV number, such as 12, -35, 42.98 or
-0.76E+3, convert the number to binary for
storage or evaluation

F 1- or 4-word floating point binary
I same as D, but with the sign leading and separate,

so that the first byte of the field is a + or -
J same as I but with the sign trailing and separate
K same as D but with the sign leading and over

punched (54321, for instance, if positive, would
come out as 5432A. The negative 54321 would be
5432J.)

P packed decimal format
Z ASCII zone

2. Defines the general sort order. The default is N
(ascending order).

N ascending order
o opposite or descending order

9-89

Command Descriptions

/OUTPUT : file-spec

/PROCESS : process-type

/RELATIVE

/SIZE:n

9-90

m is a decimal number giving the first byte of the key
field. Number from the first byte of the record
which is byte 1. This item must be present.

n is a decimal number giving the length of the key
field in bytes. This item must be present.

The default abm.n value is

a= C
b=N
m = first position of the field
n = length of field

Specifies the file that will receive the sorted records.
Default is the input file.

Specifies which sorting process shall be used. This
qualifier is illegal when the jSPECIFICATION qualifier
is present. The process-type argument has two possible
values:

RECORD
TAG

RECORD specifies a record sort. It produces a re
ordered file by directly transferring the entire record
contents on examination of the record keys. This is
is the default.

TAG specifies a tag sort. It produces a reordered file
in two stages. First, the key fields from the various
records are sorted and given record pointers. Then
the sorted file is created by using the sorted record
pointers to access the input file records and create the
full sorted file.

Specifies the organization of the output file. jSE
QUENTIAL is the default.

Specifies the size of the retrieval window. The value
n corresponds to the pack default set up by the
jWINDOW qualifier on the INITIALIZE or MOUNT
command.

/SPECIFICATION: file-spec

Input File Qualifiers:

/FORMAT:type:n

jINDEXED:n

Notes:

Command Descriptions

Specifies a file containing a set of controls for the
sorting process. The /SPECIFICATION qualifier takes
the place of /KEY and /PROCESS qualifiers, and offers
greater flexibility in sorting files of non-uniform format.

The specification file includes the following controls:

Record selection
Alternative collating sequence
Forced keys
Variable input format
Variable output fonnat
Process selection

The detailed description of the specification file is
beyond the scope of this manual. See the TRAX
SORT Reference Manual for further information.

Specifies the record format and maximum record size
for the input file. This file qualifier is required.

The type argument can be any of the following:

FIXED
VARIABLE
UNKNOWN

The n argument gives the exact record size in bytes for
FIXED files, on the maximum record size for other
record formats.

Specifies indexed sequential file organization for the in
put file, and gives the number of access keys, n, de
fined for that file.

1. Either a /KEYS or /SPECIFICATION is required in the SORT command.

2. The qualifiers /KEYS or jPROCESS must not be used if /SPECIFICATION is used.

Example:

The file DAT A.DAT consists of variable length records, with no record longer than 80 bytes. A
RECORD sort is performed, because jPROCESS=RECORD is the default. The sort key begins
in record position I and is 4 bytes long. An alphanumeric ascending sort is performed. The
output is placed in the next higher version of DAT A.DA T.

>SORT/KEYS:(1.4) DATA/FORMAT:VARIABLE:aO

9-91

Command Descriptions

9.40 SUBMIT
The SUBMIT command accumulates one or more specified batch command files into a job and
places the job in a specified batch queue.

Format:

SUBMIT [/qualifiers] ftle-spec [, ...]

Command Qualifiers:

/QUEUE:queue-name
/PRIORITY:n
/[NO] RESTART
/[NO] ORIGINAL
/[NO] PRINT
/lOB: jobname

/AFTER: (dd-mmm-yy hh:mm)

Prompt:

FILE? file-spec [, ...]

Command Parameter:

file-spec

Command Qualifiers:

/QUEUE : queue-name

/[NO] RESTART

/[NO] PRINT

9-92

Defaults:

/QUEUE:BATCH
n:50
/RESTART
/NOORIGINAL
/PRINT
First six characters of first
file-spec
Current time

Specifies the file containing batch commands. If no file
type is included, .CMD is the default.

Specifies the batch queue into which the job is to be
placed. The default queue-name is BATCH

jPRIORITY:n

Specifies the queue priority of the job.

Indicates whether or not the job can be restarted from
the beginning in the event that it is internlpted for some
reason.

Specifies whether or not to print the log file for the job.

I[NO] ORIGINAL

IJOB: job-name

IAFTER: (dd-mmm-yy hh:mm)

Examples:

Command Descriptions

Specifies whether or not the system should make
temporary copies of files to be submitted from a private
volume. jORIGINAL indicates no temporary copies
are to be made; i.e., the original copy will be sub
mitted to the batch or print queue. This allows private
volumes to be dismounted.

Specifies a name for the batch jcb.

Specifies a date and time after which the job shall be
made eligible for submission to a batch processor.

This command places a batch job, name BATCHI and containing the file BATCHI.CMD into
the queue named BATCH'

>SUBMIT
FILE? BATCH1

The job TEST shall be placed in the queue BAT and become eligible for processing after 5:30 p.m.
on January 30, 1978. The files FIRST.CTL and SECOND.CTL contain the batch commands of
which TEST will consist.

>SUBMIT/QUEUE:BATCH/AFTER:<30-JAN-78 17:30)

DCL>/JOB:TEST -

DCL>FIRST.CTL, SECOND.CTL

9.41 TYPE
The TYPE command prints or displays the contents of one or more specified files on the issuing
tenninal.

Fonnat:

TYPE file-spec [, ...]

Prompts:

FILE? file-spec [, ...]

9-93

Command Descriptions

Command Parameter:

file-spec

Command Qualifiers: None.

Note:

Specifies a file to be printed or displayed on the terminal
or in the batch log file.

Each file-spec must include a file name and a file type. Wildcards are permitted in the file name,
file type, and file version components of the file specification.

Example:

The following command displays the contents of the file A.CBL on the terminal from which the
TYPE command is issued.

>TYPE A.CBL
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
REMARKS. THIS JUST PRINTS A BRIEF MESSAGE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ii-70.
OBJECT-COMPUTER. PDP-ii-70.
DATA DIVISION.
WORKING-STORAGE SECTION.
Oi END-MESSAGE PIC X(40) VALUE IS -THE TASK IS COMPLETED.-,
PROCEDURE DIVISION.
MESSAGE-PRINT.

DISPLAY END-MESSAGE.
STOP RUN.

9.42 UNLOCK
The UNLOCK command releases a locked file for access.

Format:

UN LOCK file-spec [, ...]

Prompt:

FILE? file-spec [, . . .]

9-94

Command Descriptions

Command Parameter:

file-spec Specifies a file to be released from a locked condition for
access. You must specify both a file name and a file
type.

Command Qualifier: None.

Notes:
1. Locked files occur as the result of being stored by the system under abnormal conditions.

If they are open during an ABORT operation, for instance, they are stored without being
normally closed. Locked files may not contain the information you expect, due to the
abnormal closing.

2. Locked files are indicated in the directory listing by an L between the block count and the
storage date.

Example:

The following sequence demonstrates the use of an UNLOCK command to gain access to a locked
file.

>COBOL A.CBL

I'CL>ABORT COBOL

14:56:25 TASK ·COBT4 • TERMINATED
ABORTED VIA DIRECTIVE OR MCR

>DIRECTORY A.*

DIRECTORY DBO:C350,230]
19-JUL-78 14:56

A.TST;l O.
A.LST;l 1.
A.ODL;l 1.
A.OBJ;l 2.
A.TSK;l 27.
A.CBL;3 1.
A.TMP;2 O.

02-JUN-78
02-JUN-78
18-JUL-78
18-JUL-78

C 18-JUL-78
18-JUL-78

L 19-JUL-78

TOTAL OF 32./32. BLOCKS IN 7. FILES

>UNLOCK A.TMP
>DIRECTORY A.TMP

13:56
13:56
14:01
14:01
14:01
14:03
14:56

9-95

Command Descriptions

DIRECTORY DBO:C350,230l
19-JUL-78 14:59

O. 19-JUL-78 14:56

TOTAL OF 0./0. BLOCKS IN 1. FILE

9-96

APPENDIX A

THE RMSDEF INTERACTIVE
UTILITY

A.I PURPOSE
The interactive RMSDEF utility creates RMS files, allowing you to control all attributes of the

files.

A.2 EFFECT
You specify file attributes by responding to requests for data and questions from the utility. The
method of questioning is outlined in Figure A-I. The figure shows the general flow of processing.
You may also get help from the utility by typing a question mark (?) in response to any question

or request for data.

NOTE
The flowchart in Figure A-I contains circles with
section numbers in them. These section numbers
flag the different areas of the utility's processing.
Each numbered section of text expands and explains
the associated portion of the flowchart.

RMSDEF also has the capability of building an indirect command fue while you operate it. This
command fue may be used thereafter to create fue(s) and may be modified to create other similar
fues. See Sections A.3 and A.4.I.

RMSDEF, however, does not write records into the fue. The creation of the data contents of the
fue must occur after the RMSDEF utility has created the file. You can employ either an
application program or the MERGE command to write records into the file.

The following list indicates the information that RMSDEF will always request as well as the
requests that may be made depending on specifications already typed.

1. Command File?
a. If yes, fue specification

b. If yes, create only command file or create both RMS and command file?
2. File Specification
3. Data Structure

a. Minimum

(I) File organization
(2) Record format

A-I

The RMSDEF Interactive Utility

Figure A-l Interactive DEFINE Processing

A-2

(3) Maximum record size
(4) CARRIAGE RETURN control?

b. Possible
(I) Size of fixed control area for VFC records
(2) Maxitnum number of records in a relative file
(3) Block-spanning records in a sequential file?

The RMSDEF Interactive Utility

(4) FORTRAN character control if no CARRIAGE RETURN control?
4. Key Definition (indexed files only)

a. Minimum
(I) Position of key
(2) Size of key
(3) Data type
(4) Name of key

(5) Duplicate keys?
(6) Null key value?

b. Possible
(I) Change keys if duplicatable?
(2) Null key character if null key value

5. File Structure
a. Minimum

(I) Areas? (indexed files only)
(2) Placement control?
(3) Initial allocation quantity
(4) Default extension quantity
(5) Contiguous?

b. Possible
(1) Location if placement control
(2) Exactly if placement control?
(3) Type of alignment, if placement control, and areas

6. Data Allocation (indexed files only)

a. Minimum
(1) Number of bytes in data buckets filled
(2) Number of bytes in index buckets filled

b. Possible
(1) Area containing index level 0 for each key if areas
(2) Area containing index levels 2+ for each key if areas
(3) Area containing index level 1 if areas

7. Protection

A.3 UTILITY CALL AND TERMINATION
Call the RMSDEF utility with the following command:

RUN $RMSDEF

A-3

The RMSDEF Interactive Utility

The utility prints:
DO YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?

See Section A.4 for the complete dialog sequence.

You may terminate RMSDEF at any time by typing a CTRL/Z. Control is passed back to DCL.

A.4 PROCESS

A.4.1 Command File

A-4

1. The tenninal prints:
DO YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?
Type one of the following:
Y If you want to enter a filespec for an indirect command file and have

RMSDEF write entries into the file as you move through the utility.
Go to step 2.

N or ~ If you do not want to build a command file. Go to Section A.4.2, File
Specification.

filespec If you have already built a command file with RMSDEF and want
RMSDEF to read it now and create the specified ftIe. Go to Section
A.4.8, File Creation.

ID If you want the utility to identify itself with a version number. RMSDEF
prints the following message:

THIS IS THE RMS RMSDEF UTILITY, VERSION n
where n is the revision level of the utility itself.

2. The tenninal prints:
ENTER A FILE SPECIFICATION FOR THE INDIRECT FILE YOU WANT:
Type a filespec.

3. The tenninal prints:
DO YOU WANT TO CREATE THE FILE YOU WILL BE DESCRIBING(NO)?
Type one of the following:
Y If you want RMSDEF to create the file specified as well as the command

ftIe.
N or ~ If you do not want to create the RMS file, only the command file that may

be used to create the file at a later date.
4. The command file created by RMSDEF takes the following form. The utility follows each

comment with the appropriate sequence of your entries, each on a separate line. Where
the user enters only ~ to accept the default value, RMSDEF places CR/LF on a
separate line in the command file.

The RMSDEF Interactive Utility

:THE FIRST QUESTION ASKS FOR THE FILE SPECIFIC' ATION
:THE NEXT QUESTIONS DEAL WITH FILE ORGANIZATION & RECORD ATTRIBUTES
:THE FOLLOWING QUESTIONS DEAL WITH KEYS (for Indexed files only)
:THE NEXT QUESTIONS DEAL WITH ALLOCATION AND PLACEMENT ATTRIBUTES
:THE NEXT QUESTIONS ASK ABOUT FILL SIZES FOR KEYS
:THE FOLLOWING QUESTIONS DEAL WITH FILE PROTECTION

A.4.2 File Specification

The terminal prints:

ENTER YOUR FILE SPECIFICATION:
Type one of the following:

tilespec If you want to create (or simulate creation, see Section A.4.1 , Command

File, step 3) an RMS tile. Go to Section A.4.3, Data Structure.
@'filespec If you have built a command file (see Section A.4.1, Command File) and

want RMSDEF to use it to create the file specified. Go to Section
A.4.8, File Creation.

A.4.3 Data Structure

1. The terminal prints:

FILE ORGANIZATION (SEQ):
Type one of the following:

SEQ or GD for sequential organization

REL for relative organization

IDX for indexed organization

NOTE
If you indicated a magnetic tape device in the

filespec, RMSDEF does not request a file organi

zation. Since a magtape file requires sequential
organization, the utility prints:

SINCE YOU SPECIFIED A NON-DISK DEVICE,
YOUR FILE ORGANIZATION MUST BE
SEQUENTIAL

2. The terminal prints:

RECORD FORMAT (VAR):

Type one of the following:

V AR or GD If the records in the file will have differing, or variable, lengths.

FIX If the records in the file will have the same, or a fixed, length.

A-5

The RMSDEF Interactive Utility

A-6

VFC

STM

UDF

If each record in the fue will have a control area with a fixed length and
a data area of no standard length; that is, variable with fixed control.
If the records in the file will have no specific fonnat but are delimited
only by record terminator characters. This stream format is permitted
for sequential disk files only.
If there are no records (or you don't want RMS to recognize records)
in the file; this format is used only for block I/O fues, such as RMS
backup files.

RMSDEF will reject a format that is illegal with the file organization already specified; for
instance, STM for indexed files.

3. If you specified VFC in step 2, the terminal prints the following message; otherwise, go to
step 4.
SIZE OF FIXED CONTROL AREA(2):
Type the decimal number of bytes in the fixed control area of each record in the file. The
minimum size is one byte; the maximum size is 255 bytes; the default is two bytes.

4. The terminal prints:
MAXIMUM RECORD SIZE: or MAXIMUM RECORD SIZE (0):
Type a decimal number indicating the maximum number of bytes in any record in the
fue. RMS checks this value whenever a record access operation is requested for this file:
if the record specified exceeds the maximum size, RMS returns an error. A size of zero
disables the RMS check, but a nonzero value is required for all relative files and all files
with fixed-length records.

5. If you specified REL in step 1, the terminal prints the following message; otherwise, go to
step 6.
MAXIMUM NUMBER OF RECORDS (0):

Type a decimal number indicating the maximum number of records that this relative fue
will contain. RMS checks this value whenever a record access operation is requested
for this fue: if the relative record number specified exceeds the maximum record number,
RMS returns an error. ~ sets the number to zero, which disables the RMS check.
The zero allows the file to contain as many records as is physically possible (the technical
maximum is 2.14748 X 10-9).

6. If you specified SEQ in step I, the terminal prints the following message; otherwise, go to
step 7.
WILL YOU ALLOW RECORDS TO CROSS BLOCK BOUNDARIES (YES)?
Type one of the following:

Yor ~
N

If you want records to cross block boundaries.
If you do not want records to span blocks. If you specified FIX in
step 2 and a maximum record size greater than 512 in step 4, the
terminal prints:

SINCE YOU SPECIFIED FIXED SIZE RECORDS, YOU MUST HAVE A MAXIMUM
RECORD SIZE LESS THAN 512. (THE SIZE OF 1 BLOCK) OR YOU MUST ALLOW

The Ml;SDEF Interactive Utility

RECORDS TO CROSS BLOCK BOUNDARIES. HERE'S YOUR CHANCE TO CHANGE
1 OF THESE.

RMSDEF repeats steps 4 and 6. Change either your MRS or the
answer to crossing block boundaries.

7. The terminal prints:
DO YOU WANT CARRIAGE RETURN CONTROL (YES)?
Type one of the following:
Y or C!!D If you want each record to be preceded by a line feed character and

followed by a carriage return character when it is written to a carriage
control device (printer, terminal, and so on). See the note below and go
to appropriate section.

N If you do not want carriage return control and/or you do want
FORTRAN character control. Go to step 8.

8. The terminal prints:
DO YOU WANT FORTRAN CHARACTER CONTROL (NO)?
Type one of the following:
Y If you want the first byte of each record to be allocated for a FORTRAN

forms control character.
N or C!!D If you do not want FORTRAN character control.

A.4.4 Key Definition

NOTE
If you indicated a magtape device in the file
specification, at this point RMSDEF requests:

MAGTAPE BLOCK SIZE (512):

Type a decimal number between 18 and 8192
representing the number of bytes in each tape
block. The number should be a multiple of four;
if it is not, RMS will round it up to the next
multiple of four before writing it as an attribute.
A C!!D sets the size to the default of 512 bytes.

The utility then bypasses all other processing and
immediately requests protection information (see
Section A.4.7).

As indicated by Figure A-I, this section applies only to indexed files.

1. The terminal prints:
IT'S TIME TO DEFINE THE PRIMARY KEY
POSITION OF KEY:
Type a decimal number indicating the position of the first byte of the key within each
record. For instance, if the key starts with the first byte of the record, its position is O.
The second byte has position I and so on.

A position number must be specified for each segment of a segmented key; the numbers
are separated by commas and enclosed in parentheses.

A-7

The RMSDEF Interactive Utility

A-8

2. The terminal prints:
SIZE OF KEY
Type the decimal number of bytes in the key; that is, its length. Minimum length is 1
byte; maximum is 255 bytes; there is no default.

A length must be specified for each segment of a segmented key; the numbers are
separated by commas and enclosed in parentheses. A length must be typed for each
position number specified in step 1, but the sum of all lengths cannot exceed 255.

3. The terminal prints:
DATA TYPE(STRING):
Type one of the following:
STR or C!!!) If your key value will be a string of alphanumeric characters.
IN2 If your key value is a IS-bit signed integer.
IN4 If your key value is a 3 I-bit signed integer.
BN2 If your key value is a 16-bit unsigned binary number.
BN4 If your key value is a 32-bit unsigned binary number.
PKD If your key value is a packed decimal number.
Yor C!!!)

4. The terminal prints:
ENTER A NAME FOR YOUR KEY, IF YOU SO DESIRE(NONE):
Type one of the following:
C!!!) If you do not want to specify a name for the key.
name If you want to name the key being defined; up to 32 ASCII characters

are allowed.
5. The terminal prints:

WILL YOU ALLOW DUPLICATE KEYS(dflt)?
Type one of the following:
Y If the file may contain more than one record with the same value for

this key. Keys must be specified as duplicatable before they can be
specified as changeable.

N If each record in the file must have a unique value for this key. RMS
returns an error if duplication is attempted; that is, a write or update
operation will fail for a record that has a value in this key field exactly
like a record already in the file.

Defaults and the values of dflt are:
Primary key - NO
Alternate keys - YES

NOTE
Steps 5, 6, and 7 apply only to alternate keys.

6. If you specified YES in step 5, the terminal prints the following message; otherwise, go to
step 7.
WILL YOU ALLOW KEYS TO CHANGE(YES)?
Type one of the following:

The RMSDEF Interactive Utility

Yor~

N

If this alternate key may be changed during an update operation; that
is. the record may be read with one value for the key and rewritten
with another value for the same key.
If this alternate key must not change after the record is originally
created.

7. The tenninal prints:
DO YOU WISH TO DEFINE A NULL KEY V ALUE(NO)?
Type one of the following:
Y If you want the file to contain some records that cannot be accessed via

this key. When RMS writes a record into an indexed file, it nonnally
updates all indexes of the file to reflect the values found in the
corresponding key fields of the record. However. if a null key value is
defined for an alternate key, RMS examines the contents of the key
field in the record. If this field consists solely of the null key char
acter specified. RMS will not make an entry in the associated alternate
index for that particular record. Go to step 7.

N or ~ If you do not want to specify a null value for this key. Go to step 8.
8. The terminal prints:

O.K., ENTER YOUR NULL KEY VALUE CHARACTER:
Type one of the following:
c The single character itself, if it is not #, ?, or @.

#43 For the reserved character #.
#77 For the reserved character?
#100 For the reserved character@.
#n Any octal byte value (000-377) specified by n.

9. The tennina! prints:
DO YOU WANT TO DEFINE MORE KEYS(NO)?
Type one of the following:
Y If you want to define more keys for the file. You may define up to 254

alternate keys; however:

Nor~

o The MERGE command will not read higher than the ninth alternate
key; that is, the NUMBER: n option of the MERGE command must
be less than or equal to nine.

o Your application language may not support that many keys. See
the appropriate user's guide.

RMSDEF prints:

ALTERNATE KEY n

where n starts with 1 and is incremented each time you answer Y.

RMSDEF then requests this information for each alternate key
indicated; the alternate keys are defined in order, beginning with the
first alternate after the primary key has been defined.
If all keys for this file have been defined.

A-9

The RMSDEF Interactive Utility

A.4.S File Structure

1. If you specified IDX for file organization, the terminal prints the following message;
otherwise, go to step 2.
DO YOU WANT TO DEFINE AREAS(NO)?
Type one of the following:
Y If you want parts of this file to be logically different, with different

attributes. The questions 2-10 will be asked for each area.
N or ~ If you want this file located in one area. RMSDEF asks you to go to

step 2.
2. The terminal prints:

DO YOU WANT PLACEMENT CONTROL (NO)?
Type one of the following:
Y If you want to specify an exact location on disk for this area. Go to

step 3.
N or ~ If you do not want to specifically locate this area. Go to step 6.

3. If at least one area has already been defined; that is, you answered YES in step I at
least once, the terminal prints the following message. Otherwise, go to step 4.
WHAT TYPE OF ALIGNMENT DO YOU WANT (LBN)?
Type one of the following:
LBN or ~ If the location you will specify in step 4 is a Logical Block Number (LBN)

on the disk volume.
VBN If the location you will specify in step 4 is a Virtual Block Number (VBN)

already established within the file itself; that is, in a previously defined
area.

4. The terminal prints:
LOCATION:
Type the decimal number location of the first block for this file area.

S. The terminal prints:
EXACTLY (NO)?
Type one of the following:
N or ~ If you will accept the closest approximation of the LBN or VBN

location specified in step 4, if the exact location is not available.
Y If this area must start in the exact LBN location specified in step 4.

If this location is not available, RMSDEF will print an error message
when it tries to create the fue and give you another chance to reconsider
this question. Exact VBN locations are already taken. by definition.

6. The terminal prints:
ALLOCATION (0 - IT IS SUGGESTED YOU ENTER A VALUE):
Type a decimal number indicating the initial size of the area in blocks. A ~ sets
the value to zero: the area will be created, but it will have to be expanded before any
records can be written into it. Since automatic file extension is a time-consuming pro
cedure, the file should be fully allocated when it is created.

7. If you specified REL or IDX for file organization, the terminal prints the following
message; otherwise, go to step 8.
BUCKET SIZE(I):

A-IO

The RMSDEF Interactive Utility

Type a decimal number indicating the number of blocks in a bucket for this area. The
minimum is the number of blocks that will contain one record (according to the size
specified in Section A.4.3. step 4); the maximllIn is 32 blocks; the default is one. This
number detennines the number of blocks read into memory during each tile access opera
tion and therefore affects speed of processing and the amount of memory a program
accessing this file requires.

8. The terminal prints:
DEFAULT EXTENSION QUANTITY (0 - IT IS SUGGESTED YOU ENTER A VALUE):
Type a decimal number indicating the number of blocks that should be added to the area
each time RMS must extend it. The Default Extension Quantity (DEQ) should be a
multiple of the bucket size. RMS requests this number of blocks from the operating
system.

A carriage return sets the value to zero: RMS will add only the minimum amount of
space required each time it expands the area. A definite but reasonable extension quantity
speeds up processing.

9. The terminal prints:
DO YOU WANT A CONTIGUOUS AREA (NO)?
or
DO YOU WANT A CONTIGUOUS FILE (NO)?
Type one of the following:
Y ~ If you want the disk space for this area allocated in contiguous,

that is, physically adjoining, blocks. If RMS cannot find that much
contiguous space, it will not create the file, even if sufficient non
contiguous blocks are available.
A contiguous file or area may be extended although the disk space
added will probably not be contiguous with the original allocation.

N or ~ If you do not require contiguous block allocation.
10. If you answered YES in step I (you have an indexed file), the terminal prints the following

messages: otherwise, go to the next appropriate section.
JUST FINISHED WITH AREA NUMBER n
DO YOU WANT TO DEFINE MORE AREAS (NO)?
Type one of the following:
Y If you want to specify attributes for another area of your file. Areas

are numbered sequentially, starting with zero. The areas will be
associated with the index and data portions of the file in the next
section of the utility. Go to step 2.

:\" or ~ If you have defined enough areas for this fue. Go to step 11.
11. If you defined one or more areas with a Default Extension Quantity (DEQ) of zero, the

terminal prints the following message; otherwise, go to the next section.
DEFAULT EXTEND QUANTITY FOR YOUR FILE (0):
Type a decimal number indicating the number of blocks that should be added to the file
each time RMS must extend it. The DEQ should be a multiple of the bucket size. A
~ sets the value to zero: RMS will add only the minimum amount of space required

each time it expands the file. A definite but reasonable extension quantity speeds up
processing.

A-II

The RMSDEF Interactive Utility

A.4.6 Data Allocation
As indicated by Figure A-I, this section applies only to indexed files. RMSDEF begins this
portion of dialogue with the message:

IT IS TIME FOR AREA NUMBERS AND FILL FACTORS FOR KEYS.

The questions are asked for each key defined (see Section A.4.4, Key Definition).

1. The tenninal prints:
AREA NUMBER FOR DATA BUCKETS FOR THIS KEY (0):
Type an integer (O-n) indicating the area already defined (see Section A.4.4, Key Defini
tion) which should con tain the data portion (Level 0) of this key.

2. The tenninal prints:
THE BUCKET SIZE IS nnn
HOW MANY BYTES DO YOU WANT FILLED IN THE DATA BUCKET (D)?

Type a decimal number of bytes in each of this key's data buckets that should be used
during the original population of the file. This number is honored by the MERGE
command and may be honored by MACRO programs.
A ~ sets the number to zero, indicating that buckets will be completely filled and
that no free space will be available for records added during update operations.

3. The tenninal prints:
AREA NUMBER FOR INDEX BUCKETS FOR THIS KEY (0):
Type an integer (O-n) indicating the area already defined (see Section A.4.4, Key Defini
tion) which should contain the upper portions (Levels 2+) of the index for this key.

4. The terminal prints:
THE BUCKET SIZE IS nnn
HOW MANY BYTES DO YOU WANT FILLED IN THE INDEX BUCKET (D)?

Type a decimal number of bytes in each of this key's index buckets that should be used
during the original population of the file.
A ~ sets the number to zero, indicating that buckets will be completely filled and
that no free space will be available for records added during update operations.

5. The tenninal prints:
AREA NUMBER FOR THE LOWEST INDEX LEVEL FOR THIS KEY (0):

Type an integer (O-n) indicating the area already defined (Section AAA, Key Detinition)
which should contain the lowest index level portion of this key.
If the area you specified for the upper portions of the index (Levels 2+) and the area you
specified here for Level I have different bucket sizes, RMSDEF prints the following
message and returns to step 3:
THE AREA ASSOCIATED WITH THE LOWEST LEVEL INDEX BUCKET HAS A
DIFFERENT BUCKET SIZE THAN THE AREA ASSOCIATED WITH THE HIGHER
INDEX BUCKET. TRY BOTH AGAIN.

A.4.7 Protection

I. The tenninal prints:
SPECIFY PROTECTION BY CLASS:
OWNER: (RWED ALLOWED)

A-12

The RMSDEF Interactive Utility

Type one of the following:
(§) If you want this file completely available to access (Read, Write,

Edit, Delete) by the account current when the file is created.
NONE If you do not want the file owner to have any access to this file

after it is created.
R. W, E. and/or D To specify a level of protection between none and all. One or more

of the letters representing Read, Write, Edit, and Delete may be
specified, in that order and without separation.

2. The terminal prints:
GROUP: (RWED ALLOWED)
Type one of the following:
(§) If you want this file completely available to access (Read, Write,

Edit, Delete) by all accounts with the same group number as the
owner's account.

NONE If you do not want the group members to have any access to this file
after it is created.

R, W, E, and/or D If you want to specify a level of protection between none and all.

3. The terminal prints:

One or more of the letters representing Read, Write, Edit, and
Delete may be specified, in that order and without separation.

SYSTEM: (RWED ALLOWED)
Type one of the following:
(§) If you want this file completely available to access (Read, Write,

Edit, Delete) by system privileged accounts.
NONE If you do not want privileged accounts to have any access to this

file after it is created.
R, W, E, and/or D If you want to specify a level of protection between none and all.

4. The terminal prints:

One or more of the letters representing Read, Write, Edit, and
Delete may be specified, in that order and without separation.

WORLD: (R ALLOWED)
Type one of the following:
(§) If you want this file to have Read access only for all accounts,

including those outside the owner, group, and privileged accounts.
NONE If you do not want other accounts to have any access to this file

after it is created.
R, W, E, and/or D If you want to specify a level of protection other than Read. One

or more of the letters representing Read, Write, Edit, and Delete
may be specified in that order and without separation.

A.4.8 File Creation
The RMSDEF utility attempts to create the file.

A-13

The RMSDEF Interactive Utility

A.4.8.1 Success - If RMS does not return an error, the utility prints:

YOUR FILE HAS BEEN CREATED!! - fdespec

If you chose to create a command file (see Section A.4.1 , Command File), RMSDEF also prints:

YOUR FILE HAS BEEN PROCESSED AND A COMMAND FILE GENERATED!! - fdespec
DO YOU WANT TO CLOSE THE INDIRECT FILE (NO)?

Type one of the following:

Y If you are finished specifying files for the command file. The utility returns to
the question about command file generation (see Section A.4.I, Command File).

N or(~) If you want to specify another RMS file and you want the command file to include
your input. RMSDEF continues to use the command fde originally specified and
to obey your answer to the DO YOU WANT TO CREATE THE FILE YOU WILL
BE DESCRIBING? question (see Section A.4.I, step 3). The utility returns to the
request for a file specification (see Section A.4.2, File Specification).

You may start the process to create another file or type CTRL/Z (-Z) to terminate the utility.

A.4.8.2 Error - RMSDEF allows three types of recoverable creation errors, shown next. All
other errors result in a description of the error and a message that the file as specified cannot be
defined. The utility returns to the file specification request to let you try again (see
Section A.4.2).

I. The terminal prints an error description, followed by:
THIS FILE CANNOT BE CREATED DUE TO AN ERROR IN THE FILE SPECIFICA
TION. DO YOU WISH TO REENTER THE ENTIRE FILE SPECIFICATION (YES)?
Type one of the following:
Y or ~ If you know how to correct the error and/or want to enter another

fdespec. The utility requests the fuespec and attempts to create the
fde using it.

N If you don't know how to correct the error and/or want to start
again. RMSDEF returns to the file specification request.

2. The terminal prints:

A-14

THE FILE WASN'T CREATED SINCE YOU SPECIFIED A BLOCK WHICH IS IN USE.
WILL YOU NOW ACCEPT AN APPROXIMATION OF THAT LOCATION (YES)?
You requested an exact placement of a file or area (Section A.4.5, File Structure,
step 5).
Type one of the following:
Y or ~ If you now want the best approximation of the location you

specified for your file or one or more areas in your file. RMSDEF
will try to create the fue again.

The RMSDEF Interactive Utility

N If you want the exact location or nothing. RMSDEF returns to the
fue specification request since it cannot create the rue as specified.

3. The terminal prints:
A FILE WITH THE FILE SPECIFICATION YOU ENTERED ALREADY EXISTS.
DO YOU WANT TO SUPERSEDE THE FILE (NO)?
Type one of the following:
Y If you want to delete the rue that already exists and create the rue

you have specified through the utility. RMSDEF deletes the existing
fue and attempts to create the specified one.

N or G!D If you do not want to supersede the existing rue with the one you
have just specified. RMSDEF returns to the rue specification request.

A-IS

The RMSDEF Interactive Utility

A-16

APPENDIXB

TRAX SUPPORT ENVIRONMENT MESSAGES

This appendix describes the system messages created by the TRAX Support Environment commands.
All commands that can be issued from the TRAX Support Environment with the exception of the
BASIC, COBOL, and MACRO programming languages and the TRAX Editor error messages are
listed. These error messages are described in their respective user reference manuals.

B.I ABORT
These are the error messages created by the ABORT command.

ABO - TASK MARKED FOR ABORT

An attempt has been made to abort a task which is already marked for abort.

ABO - TASK NOT ACTIVE

The specified task is not currently active.

Messages from Task Tennination Notification Routine (TKTN):

TKTN displays information about task aborts, whether caused by an explicit ABORT command
or some other force. The display has the fonnat:

TASK "<taskname>" TERMINATED
<abort cause>

Following the displayed cause for the abort is a list of the task's registers at the time of the abort.
The possible causes of the abort are described below.

Abort Cause Messages:

ABORTED BY DIRECTIVE OR MCR

Either TRAX or an Executive directive issued by another task caused the task to be aborted.

ABORTED VIA MeR

TRAX aborted the task and requested a post-mortem dump.

B-1

TRAX Support Environment Messages

CHECKPOINT FAILURE. READ ERROR.

The task could not be read back into memory from disk after being checkpointed.

LOAD FAILURE. READ ERROR

The task could not be loaded from disk because of a hardware error.

PARITY ERROR

A parity error occurred while the task was executing. The task was fixed in memory so
that the memory could not be reused by another task.

TASK EXIT WITH OUTSTANDING 10

The task exited with one or more outstanding I/O requests. Tasks should terminate all
I/O operations before exiting. The system does, however, clean up all outstanding I/O.

B.2 ALLOCATE
These are the error messages created by the ALLOCATE command.

ALL - DEVICE ATTACHED

The specified device cannot be allocated because it is attached to a running task.

ALL - PSEUDO DEVICE ERROR

The specified device is a pseudo device. Pseudo devices cannot be allocated.

ALL - PUBLIC DEVICE

The command attempted to allocated a public device. Public devices cannot be allocated.

ALL - USER LOGGED ON TERMINAL

The command attempted to allocate a terminal that has been logged-in by another user.
Logged-in terminals cannot be allocated.

B.3 APPEND
These are the error messages created by the APPEND command.

B-2

TRAX Support Environment Messages

NOTE
A fatal error in the cnv utility is marked by a preceeding question
mark "?". If the message has a question mark in brackets [?] the
error may be either fatal or diagnostic. If the error message has no
preceeding question mark the error is diagnostic. The error messages
prefixed with "DSC" refer to volume archiving. The others refer to
file archiving.

?cnv - DEVICE OFF LINE - device

Description

The indicated device exists on the system but the attempt to access it has been prohibited
for one of the following reasons.

1. The device is not ready.
2. No volume is mounted on the device.
3. The device is currently reserved by another job.
4. The device requires privileges for ownership and the user does not have privilege.
S. The device has been disabled.

Suggested User Action

Detennine the nature of the problem and take corrective action.

cnv - DEVICE/FILE IS FULL - device/fIlename

Description

The utility cannot create an output file on the indicated device because of insufficient space
or the indicated file cannot be extended due to insufficient space.

Suggested User Action

Reenter the command using another device for output fIles or copy the indicated fIle to another
device and retry the command. Optionally, delete unneeded files on the indicated device and
reenter the original command line.

?cnv - FILE NOT AVAILABLE - fIlename

Description

The indicated ftIe is being accessed for exclusive use by another job.

Suggested User Action

Periodically retry the command until the fIle has been released.

B-3

TRAX Support Environment Messages

?cnv-ILLEGAL DEVICE - device

Description

The indicated device does not exist.

Suggested User Action

Reenter the command line with a corrected device specification.

?cnv-NO SUCH KEY FOR FILE - value

Description

The specified key of reference value represents a non-existent key in an indexed file.

Suggested User Action

Reenter the command with a correct key of reference value.

?cnv-NOT A DIRECTORY DEVICE - device

Description

The user has issued a directory-oriented command for a device (such as a printer) that does
not have directories (accounts).

Suggested User Action

Reenter the command line without specifying an account.

APP - CANNOT FIND DIRECTORY FILE

Description: UFD specified does not exist on this volume.

Suggested User Response: Reenter the command line, specifying the correct UFD or the
correct volume.

APP - CANNOT FIND FILE(S)

Description: The file(s) specified in the command were not found in the designated directory.

Suggested User Response: Check the file specifier and reenter the command line.

APP - I/O ERROR ON INPUT FILE

or

B-4

TRAX Support Environment Messages

APP - I/O ERROR ON OUTPUT FILE

Description: One of the following conditions may exist:

• The device is not on-line.
• The device is not mounted.
• The hardware has failed.
• The volume is full (output only).
• Input file is corrupted.

Suggested User Response: Determine which condition caused the message and correct that
condition. Reenter the command line.

APP - NOT A DIRECTORY DEVICE

Description: A directory-oriented command was issued to a device that does not have
directories (such as a printer).

Suggested User Response: Reenter the command line without specifying a UFD.

APP - OPEN FAILURE ON INPUT FILE

or

APP - OPEN FAILURE ON OUTPUT FILE

Description: The specified file could not be opened. One of the following conditions may
exist:

• The file is protected against access.
• A problem on the physical device (e.g., device cycled down).
• The volume is not mounted.
• The specified file directory does not exist.
• The named file does not exist in the specified directory.

Suggested User Response: Determine which condition caused the message and correct that
condition. Reenter the command line.

B.4 ARCHNE
These are the error messages that are created by the archive command.

B-S

TRAX Support Environment Messages

NOTE
A question mark "?" preceeding the bck or rst utility error
messages indicates a fatal error. A question mark in brackets
[?] indicates that the error may be fatal or diagnostic. If
no question mark preceeds the error message the error is
diagnostic. The error messages prefixed with "DSC" refer
to volume archiving. The others refer to file archiving.

DSC - 7 DUP DEV NAME

The same device was entered more than once in the command.

Re~nter the command string with the devices specified only once.

DSC - 9 DEV device: NOT IN SYSTEM

The specified device is not present in the configuration of the operating system being used.

Check the device identifier that was entered in the command string, and retry the command.

DSC - 10 DEV device: NOT files-II

The specified input device is not formatted as a files-II device.

Check the input device to ensure it is the one desired, and re~nter the command.

DSC - 14 OUTPUT TAPE ON device: IS NOT AT BOT

The specified continuation tape is not at load point.

Remount or reset the tape at load point and re~nter the command.

DSC - 18 TAPE device: NOT ANSI FORMAT

The tape is not in correct format for a DSC operation.

Check the tape and change if necessary.

DSC - 21 TAPE device: A CONTINUATION TAPE

The tape has been mounted out of sequence.

Re~nter the command, specify input tapes in proper order.

B-6

TRAX Support Environment Messages

DSC - 23 FAILED TO FIND HOME BLOCK devi,ce:

A read error occurred when trying to copy from the input disk. Either the disk is bad, the
home block is bad, or the disk is not in fIles-II format.

Check the disk in question, change disk drives if possible, and re-enter the command.

DSC - 26 I/O ERROR B ON device:

The I/O error indicated by the message that follows explains why the fIle header on the input
device could not be read. The specifIed file is lost.

Retry the operation after correcting the cause of the error on the input device.

DSC - 27 I/O ERROR B ON device:

The I/O error indicated by the message that follows explains why the file header on the output
device could not be read. The specified fIle is lost.

Retry the operation after correcting the cause of the error on the output device.

DSC - 28 CODE A

The file header for the storage bit map fIle cannot be read.

The disk is unusable and therefore cannot be copied.

DSC - 29 I/O ERROR C ON device:

The following message explains the error that occurred while reading the specified file.

Retry the operation.

DSC - 30 I/O ERROR D ON device:

A read error, as indicated by the diagnostic message which follows, occurred when reading
the name or boot block of the disk.

Retry the operation on a new drive.

DSC - 31 RELATIVE VOLUME X OF SET NOT MOUNTED

The specified tape is not on the system.

Mount the tape and re-enter the command.

B-7

TRAX Support Environment Messages

DSC - 36 I/O ERROR E ON device: file id

The message that follows explains the I/O error that occurred while reading the specified
file header.

Retry the operation.

DSC - 37 INPUT DEVICE device: file id file number NOT PRESENT

The specified file does not have a file header in the index file; the file is not copied.

This is a warning only. If desired, the operation may be retried on a different disk drive.

DSC - 38 INPUT DEVICE device: file id file number IS DELETED

The specified file was found to be partially deleted on the input disk and was not copied.

This is a warning only. No action is required.

DSC - 39 INPUT DEVICE device: file id UNSUPPORTED STRUCTURE LEVEL

The specified input disk is not a level one (ODSl) disk and cannot be used.

Retry the operation with a level one disk.

DSC - 40 INPUT DEVICE device: file id file number FILE NUMBER CHECK

An incorrect file header was read from disk causing the specified file to be lost.

Retry the operation.

DSC - 41 INPUT DEVICE device: file id file number FILE HEADER CHECKSUM ERROR

Incorrect file header contents cause the specified file to be lost.

Retry the operation.

DSC - 42 INPUT DEVICE device: file id SEQUENCE NUMBER CHECK

The sequence number is incorrect.

Retry the operation and/or replace the disk.

DSC - 43 INPUT DEVICE device: file id file number SEGMENT NUMBER CHECK

The linkage connecting file segments has been broken; the specified file is lost.

Retry the operation.

B-8

TRAX Support Environment Messages

DSC - 44 DIRECTIVE ERROR

An internal error has occurred, usually the result of a system overload.

Retry the operation.

DSC - 45 I/O ERROR F ON device:

The message that follows indicates that the specified input device may cause a subsequent
error.

This message is a warning only. No action is required unless another error message is dis
played. If another error message is displayed, correct the cause of the error and re-enter the
command.

DSC - 46 I/O ERROR F ON device:

The message that follows indicates that the specified output device may cause a subsequent
error.

This message is a warning only. No action is required unless another error message is dis
played. If another error message is displayed, correct the cause of the error and re-enter the
command.

DSC - 47 I/O ERROR I ON device: file id file number virtual block number

An I/O error occurred which is explained by the message that follows which resulted in bad
data being read from the specified virtual block number.

This is a warning message only. The block specified should be examined to determine the
extent of the error.

DSC - 48 I/O ERROR I ON device: file id file number virtual block number

An I/O error occurred which is explained by the message that follows which resulted in bad
data being read from the specified virtual block number.

This is a warning message only. The block specified should be examined to determine the
extent of the error.

DSC - 49 VERIFICATION ERROR ON device: file id virtual block number

This is a warning signifying that the input and output devices did not match.

B-9

TRAX Support Environment Messages

DSC - 50 BAD DATA BLOCK ON device: file id file number virtual block number

A parity error occurred when copying the blocks contents from disk. The block specified on
the output disk contains erroneous data.

When the copy operation is completed, the data contained in the specified block should be
examined and corrected.

DSC - 55 INPUT FILE ON device: WILL BE RESYNCHRONIZED

The tape position was lost while reading the input tape. The file specified in the message,
as well as some subsequent files, may be lost. Additional error messages will probably occur.

Retry the operation from the beginning.

DSC - 57 OUTPUT FILE HEADER FULL ON device:

Too many blocks on the output disk have caused inconsistencies in file header data. The
specified file is lost.

Retry the operation with a different output disk.

DSC - 58 OUTPUT FILE HEADER ON device: NOT MAPPED - file id flie number

Space for the specified file header was not allocated. The file is lost.

Retry the operation; a new disk may be required.

DSC - 59 I/O ERROR G ON device:

The message that follows explains the I/O error that occurred while writing the specified file.

Retry the operation.

DSC - 60 FAILED TO READ FILE EXTENSION HEADER ON device: file id file number

When copying from the input disk, an extension header was searched for, but not found. The
remainder of the specified file was lost. A problem may exist with the input disk, or a
preceding I/O error occurrence may have caused an inconsistency.

Retry the operation.

DSC - 61 FAILED TO ALLOCATE HOME BLOCK device:

B-IO

The home block cannot be created on the specified disk device because it has too many bad
blocks.

Replace the device and re-enter the command.

TRAX Support Environment Messages

DSC - 62 INDEX FILE ALLOCATION FAILURE device:

Too many bad blocks exist to allow the allocation for specified file.

Replace the disk and re-enter the command.

DSC - 63 OUTPUT DISK device: IS NOT BOOTABLE

Logical block number 0 of the specified disk or tape is bad.

This is a warning only. No action is required.

DSC - 64 INVALID BAD BLOCK DATA device:

The bad block data on the output disk are invalid.

Run the BAD utility on the disk; manually enter bad block data; or re-enter the command,
specifying another disk.

DSC - 65 BAD BLOCK FILE FULL device:

Too many bad blocks exist on the output disk.

Replace the disk and retry the command.

DSC - 66 NO BAD BLOCK DATA FOUND device:

No bad block data exists for the specified output disk.

If bad block data is not desired, ignore the message. Otherwise, run the BAD program on
the disk; manually enter bad block data; or re-enter the command using a new disk. The
functions of the BAD utility are described in the TRAX Support Environment System
Operations Guide.

DSC - 67 OUTPUT DEVICE device: IS A DIAGNOSTIC PACK DO NOT USE IT!

The specified output disk is a diagnostic device, and cannot be used.

Mount new output disk and re-enter the command.

DSC - 68 CODE B ON device: file id file number VBN: expected x found y

The tape position was lost when reading the virtual block number specified. Some data may
be lost.

Detennine the extent of the error. If necessary, try the tape on another drive, or create
another tape.

B-ll

TRAX Support Environment Messages

DSC - 69 CODE C ON device: fue id fue number VBN

The position of the tape was lost while reading the data fue specified. Data beyond the VBN
mentioned are lost.

Re-create the tape, or retry the operation on a different tape drive.

DSC - 70 CODE D ON device: file id file number expected x found y

The tape position was lost while reading the tape mentioned in the message. All of ''y'' and
some of "x" are lost.

Retry the entire operation.

DSC - 71 FAILED TO MAP OUTPUT FILE ON device: file id fue number

An inconsistency occurred when writing the specified file to the output disk. The file header
did not specify the correct number of virtual blocks required to write the fue and the fue is
lost.

Retry the operation.

DSC - 72 OUTPUT DISK device: IS TOO SMALL - nn BLOCKS NEEDED

The output disk is not large enough to accommodate the data to be transferred.

Retry the operation specifying a larger output disk.

DSC - 73 I/O ERROR C ON device:

The following message explains the error that occurred while reading the specified file.

Retry the operation.

DSC -74 I/O ERROR H ON device:

The message that follows explains the I/O error that occurred while writing the specified file.

Retry the operation.

DSC - 75 I/O ERROR J ON device:

An I/O error (which follows) occurred when reading the tape labels on the specified device.

Retry the operation on a different tape drive.

B-12

TRAX Support Environment Messages

DSC - 76 INPUT TAPE ON device: MUST BE AT BOT

The specified tape must be at beginning of tape or its load point. This message is also dis
played during a /VE operation merely to indicate that the current volume is rewinding to
enable the verify pass.

If /VE was not specified, check the tape and remount at load point.

DSC - 77 WRONG INPUT TAPE ON device: EXPECTING file id FOUND file id

The input tapes were specified out of sequence.

Check the tapes, re-enter in proper order after receiving mount instructions.

DSC - 78 CODE E ON device: AFTER file id file number

This is the result of a read error from tape. When trying to read an attribute block, some
other block was accessed. The file following the file specified in the error message is lost.

Retry the operation.

DSC -79 I/O ERROR K ON device:

The message that follows explains the I/O error that occurred while reading the specified file.

Retry the operation.

DSC - 80 I/O ERROR L ON device:

The message that follows explains the I/O error that occurred while reading the file header.

Retry the operation.

DSC - 81 INPUT TAPE device: RESYNCHRONIZED AT file id file number

The tape position has been recovered. Some data preceding the file specified were lost.

This is usually received in conjunction with one or more error messages, all indicating that the
input tape was either read incorrectly or recorded badly. The tape should be re-created and
the operation re-initiated.

DSC - 82 TAPE FILE filelabel NOT FOUND ON device:

The input tape specified does not contain the file identified as "filelabel".

Check the filelabel and the tape, re-enter when the correct tape and filelabel are specified.

B-13

TRAX Support Environment Messages

DSC - 83 EXPECfED EXTENSION HEADER NOT PRESENT ON device: file id, fue number

A tape read error occurred causing the specified file to be lost.

If the error message was preceded by one or more I/O warning messages, the operation should
be retried. If not, the input tape is bad and should be re-generated.

DSC - 84 CODE F ON device: AFTER file id file number

This is the result of a read error from tape. When trying to read a file header some other
block type was accessed. The file following the file specified in the error message is lost.

Retry the operation.

DSC - 85 I/O ERROR M ON device:

The following message explains why the specified file could not be read.

Retry the operation.

DSC - 86 INDEX FILE DATA NOT PRESENT device:

When reading the input tape specified, a file other than the index file was accessed due to a
tape error or an I/O error.

Re-create the tape, or retry the same tape on a different tape drive.

DSC - 87 I/O ERROR N ON device:

The message that follows explains the I/O error that occurred while restoring the index and
storage map files from the specified input tape.

Retry the operation using a different input tape drive.

DSC - 88 VOLUME SUMMARY DATA NOT PRESENT device:

Either the input tape is not a DSC tape, or incomplete data are contained.

Check the tape and re-enter the command.

DSC - 89 I/O ERROR 0 device: file id, file number

The message that follows explains the I/O error that occurred while writing the specified file
header.

Retry the operation.

B-14

TRAX Support Environment Messages

NOTE
The DSC errors identified as I/O errors are accompanied by
one or more of the following error messages to explain the
type of i/o error that occurred.

BAD BLOCK NUMBER

The block does not exist on the disk; an internal DSC error has occured; or the block is bad.

Retry the operation with a new disk and/or disk drive.

BAD BLOCK ON DEVICE

A device malfunctions has occurred, or a tape was used with bad data on it resulting in a
block containing incorrect infonnation.

Retry the operation.

BLOCK CHECK

A parity error occurred indicating that bad data may have been transferred.

Retry the operation.

DATA OVERRUN

The physical tape used is larger than was expected; the tape got out of position, or is in the
wrong fonnat.

Make sure the tape is the right one and retry the operation.

DEVICE NOT READY

The device is not ready or not up to speed, or a blank tape has been used as an input tape.

Retry the operation after checking that the device is online and correctly mounted.

DEVICE OFFLINE

The device is not in the system.

Check the device, the device specification in the command string, and re-enter the command.

DEVICE WRITE LOCKED

The disk drive is write locked.

Write enable the disk drive and re-enter the command.

B-15

TRAX Support Environment Messages

END OF FILE DETECTED

The tape position was lost.

Retry the operation.

END OF TAPE DETECTED

The tape position was lost.

Retry the operation.

END OF VOLUME DETECTED

The tape position was lost.

Retry the operation.

FATAL HARDWARE ERROR

A hardware malfunctions has occurred.

Retry; if error repeats call DIGITAL Field Service.

INSUFFICIENT POOL SPACE

The operating system is overloaded.

Retry the operation.

PARITY ERROR ON DEVICE

A device malfunctions or tape incompatibility has occurred.

Retry the operation.

PRIVILEGE VIOLATION

A device has been mounted as FILES-II.

TRAX users: DISMOUNT the disk and retry the operation.

UNKNOWN SYSTEM ERROR

B-I6

An undefinable I/O error has occurred.

Retry the operation.

TRAX Support Environment Messages

The following error messages appear only in the stand-alone version of DSC used as part of the
SYSGEN procedure.

Table B-1 General Error and I/O Error Message Codes

General Error Message Codes

Symbol Meaning

Code A Failed to read storage map header
Code B Input data out of phase
Code C Non-data block encountered
Code D Input ftle out of phase
Code E File attributes out of phase
Code F File header out of phase

I/O Error Message Codes

Symbol Meaning

A Reading index file bit map
B Reading index fIle header
C Reading storage bit map
D Reading boot or home block
E Reading ftle header
F Input (or output device)
G Writing index ftle bit map
H Writing storage bit map header
I Reading input device
J In input tape labels
K Reading ftle attributes
L Reading ftle header
M Reading index file data
N Reading summary data
0 Writing file header

utI - DEVICE/FILE IS FULL - device/ftlename

Description

The utility cannot create an output fIle on the indicated device because of insufficient space
or the indicated file cannot be extended due to insufficient space.

Suggested User Action

Reenter the command using another device for output flIes or copy the indicated file to
another device and retry the command. Optionally, delete unneeded files on the indicated
device and reenter the original command line.

B-17

TR4X Support Environment Messages

?utl - ERROR WITH WILDCARDS

Description

The wild card processor has returned an error to the utility during resolution of wild cards in
a file specification.

Suggested User Action

Reenter the command line. If the same condition recurs, use successive invocations of the
utility and non-wild carded file specifications to achieve the original desired result.

?utl - FILE NOT AVAILABLE - filename

Description

The indicated file is being accessed for exclusive use by another job.

Suggested User Action

Periodically retry the command until the file has been released.

?utl - FILE POSITION LOST - filename

Description

The utility has lost its position within a container file on magnetic tape while rewinding or
backspacing. The error may have been caused by hardware failure.

Suggested User Action

Detennine from the output account or summary listing file the extent of the processing that
was completed prior to the occurrence of the error. Reenter the command line eliminating fIle
specifications of files successfully processed. Use a new tape volume and/or a different tape
drive. The file is input to RESORE, the utility cannot restore the data records within the in
dicated blocks of the original file.

?utl - I/O ERROR ENCOUNTERED ON OUTPUT FILE - filename

Description

One of the following conditions exists:

1. The device is not on line.
2. The device is not mounted.
3. The hardware has failed.
4. The volume is full.

B-18

TRAX Support Environment Messages

Suggested User Action

Rectify the condition and reenter the command line.

utI - INPUT FILE IS NOT BACKUP FILE - filename

Description

The utility requires that the input rue be a backup rue. The user has specified a rue that is
not in backup format. For example, a rue not in backup format is specified as input to
ARCHIVE/RESTORE.

Suggested User Action

Reenter the command line with the correct file specification.

utI - NO SUCH FILE

Description

No files in the UFD correspond to the wild cards of a rUe specification.

Suggested User Action

Obtain a listing of the files in the desired UFD. Reenter the command with the desired rtle
specification.

?utl - PRNILEGE VIOLATION - filename

Description

The user does not have the privileges necessary to access the indicated file.

Suggested User Action

Have the owner of the file change its privilege specification.

utI - READ ERROR, INTEGRITY CHECK TABLE AND REWRITE DATA MAY HAVE BEEN
LOST

Description

The utility has encountered an error while attempting to read intemaldata maintained in a
backup rtle or container rtle.

B-19

TRAX Support Environment Messages

Suggested User Action

Retry the command. If the same error occurs, check summary listing file created at the time
the backup or container file was created. Determine from this file which file or flIes cannot be
completely restored.

utl- READ ERROR ON FILE ATTRIBUTES - filename

Description

The volume is corrupted or the user does not have the necessary privileges to access tha
indicated file.

utI - READ ERROR ON FILE PROLOGUE - filename

Description

The utility is unable to read the prologue (internal RMS-ll information within a file) of the
specified file. The file is bypassed and processing continues.

Suggested User Action

Reenter the command specifying the subject file only. If the same error occurs, the indicated
file cannot be properly accessed on the device. Use the RESTORE utility to retrieve a new
copy of the file.

uti - READ ERROR OR INCONSISTENT DATA. MAY HAVE LOST FILES.

Description

The utility has encountered an error while reading a backup or container file.

Suggested User Action

Retry the command. If the same error occurs, check summary listing file created at the time
the backup or container fue was created. Determine from this file which file or files may
have been lost.

?utl- REWIND OR SPACE ERROR ON FILE - filename

B-20

Description

The utility has encountered an error while rewinding or backspacing on magnetic tape.

Suggested User Action

Retry the command. If the condition occurs again, mount the volume on another drive and
retry the command.

TRAX Support Environment Messages

?utl - SELECT ERROR - dev

Description

One of the following conditions exists:

1. The device is not on-line.
2. The device is not mounted.
3. The hardware has failed.

Suggested User Action

Rectify the condition and reenter the command line.

utl- UNABLE TO RESTORE SPECIAL ATTRIBUTES - fIlename

Description

The utility was unable to restore the file with one or more of its original date attributes
(e.g., creation date, revision date) or its original protection specification.

Suggested User Action

Use the DISPLAY utility to determine which attributes of the file were not restored.

?utl- WRITE ERROR ON ATTRIBUTES OF FILE - filename

Description

The volume is corrupted or the user does not have the necessary privileges to write the file.

Suggested User Action

Verify access to fue.

?utl - WRITE ERROR ON CREATE OF OUTPUT FILE - filename

Description

One of the following conditions exists:

1. The device is not on line.
2. The device is not mounted.
3. The hardware has failed.
4. The volume is full.

B-21

TRAX Support Environment Messages

Suggested User Action

Rectify the coddition and reenter the command line.

?utl - WRITE ERROR ON INTEGRITY CHECK TABLE ON OUTPUT FILE - filename

Description

The utility is unable to write internal data integrity checking tables in the output backup file.

Suggested User Action

If the output medium is magnetic tape~ use a different tape volume and retry the command.
If the output medium is disk, rename the output fIle so that the utility will not attempt to use
the space and retry the command.

B.S COpy
These are the error messages created by the COpy command.

B-22

COP - ALLOCATION FAILURE - NO'CONTIGUOUS SPACE

Description: Contiguous space available on the output volume is insufficient for the file
being copied.

Suggested User Response: Delete all files that are no longer required on the output volume,
and reenter the command line.

COP - ALLOCATION FAILURE ON OUTPUT FILE

or

COP -ALLOCATION FAILURE - NO SPACE AVAILABLE

Description: Space available on the output volume is insufficient for the file being copied.

Suggested User Response: Delete all files that are no longer required on the output volume,
and reenter the command line. Also~ use the archive command.

COP - BAD USE OF WILD CARDS IN DESTINATION FILE NAME

Description: A wildcard * was specified for an output fIlename where use of a wildcard is
explicitly disallowed.

TRAX Support Environment Messages

Suggested User Response: Reenter the command line with the proper output fIle ex
plicitly specified.

COP - CANNOT FIND DIRECTORY FILE

Description: UFD specified does not exist on this volume.

Suggested User Response: Reenter the command line, specifying the correct UFO or the
correct volume.

COP - CANNOT FIND FILES(S)

Description: The files(s) specified in the command were not found in the designated
directory.

Suggested User Response: Check the ftIe specifier and reenter the command line.

COP - CLOSE FAILURE ON INPUT FILE

or

COP - CLOSE FAILURE ON OUTPUT FILE

Description: The input or output ftIe could not be properly closed. The fIle is locked to
indicate possible corruption.

Suggested User Response: Reenter the command line. If the error recurs, run a validity
check of the file structure using the verify utility (VFY) on the volume in question to
determine if it is corrupted. The functions of the Verify utility are described in the TRAX
System Manager's Guide.

COP - DIRECTORY WRITE PROTECTED

Description: COP could not remove an entry from a directory because the device was
write-protected, or because of privilege violation.

Suggested User Response: Enable the unit for write operations or have the owner of the
directory change its protection.

COP - FAILED TO ENTER NEW FILE NAME

Description: You have specified a fIle that already exists in the directory fIle, or do not
have the necessary privileges to make entries in the specified directory fue.

B-23

TRAX Support Environment Messages

B-24

Suggested User Response: Reenter the command line, ensuring that the filename and UFD
are specified correctly, or request COP under the correct UIC and reenter the command line.

COP - FAILED TO WRITE ATTRIBUTES

Description: Volume is corrupted or you do not have the necessary privileges to write the
file attributes.

Suggested User Response: Ensure that COP is running under the correct UIC. If the UIC is
correct, then run the validity check of the file structure verification utility (VFY) against
the volume in question to detennine where and to what extent the volume is corrupted.
The functions of the Verify utility are described in the TRAX System Manager's Guide.

COP - ILLEGAL "*,, COPY TO SAME DEVICE AND DIRECTORY

Description: You attempted to copy all versions of a file into the same directory that is
being scanned for input files. This results in an infmite number of copies of the same file
and is not allowed.

Suggested User Response: Reenter the command line, renaming the files or copying them
into a different directory.

COP - I/O ERROR ON INPUT FILE

or

COP - I/O ERROR ON OUTPUT FILE

Description: One of the following conditions may exist:

• The device is not on-line.
• The device is not mounted.
• The hardware has failed.
• The volume is full (output only).
• Input file is corrupted.

Suggested User Response: Detennine which condition caused the message and correct that
condition. Reenter the command line.

COP - NO SUCH FILE(S)

Description: The file(s) specified in the command were not found in the designated
directory.

Suggested User Response: Check the file specifier and reenter the command line.

TRAX Support Environment Messages

COP - OPEN FAILURE ON INPUT FILE

or

COP - OPEN FAILURE ON OUTPUT FILE

Description: The specified rue could not be opened. One of the following conditions
may exist:

• The rtIe is protected against access.
• A problem on the physical device (e.g., device cycled down).
• The volume is not mounted.
• The specified rue directory does not exist.
• The named rue does not exist in the specified directory.

Suggested User Response: Determine which condition caused the message and correct
that condition. Reenter the command line.

B.6 CREATE
These are the error messages created by the CREATE command.

NOTE
A question mark [?] preceeding the dfn utility message
indicates a fatal error. A question mark in brackets [?]
indicates that the error may be fatal or diagnostic. If no
question mark preceeds the error message it is a diagnostic.

?dfn - DEVICE OFF LINE - device

Description

The indicated device exists on the system but the attempt to access it has been prohibited for
one of the following reasons.

1. The device is not ready.
2. No volume is mounted on the device.
3. The device is currently reserved by another job.
4. The device requires privileges for ownership and the user does not have privilege.
5. The device has been disabled.

Suggested User Action

Detennine the nature of the problem and take corrective action.

B-25

TRAX Support Environment Messages

?dfn - DEVICE WRITE PROTECTED - device

Description

The utility cannot access the indicated device for write operations.

Suggested User Action

Check the hardware condition of the indicated device. Write enable the unit.

?dfn - DEVICE/FILE IS FULL - device/filename

Description

The utility cannot create an output file on the indicated device because of insufficient space
or the indicated fIle cannot be extended due to insufficient space.

Suggested User Action

Reenter the command using another device for output files or copy the indicated fIle to
another device and retry the command. Optionally, delete unneeded files on the indicated
device and reenter the original command line.

?dfn - DIRECTORY NOT FOUND - filename

Description

The directory does not exist on the specified device.

Suggested User Action

Reenter the command with the correct directory specification.

?dfn - FILE ALREADY EXISTS - fIlename

B-26

Description

The utility has attempted to create an output file that already exists in the output account.

Suggested User Action

Reenter the command line using a new or corrected filename or delete the existing file and re
enter the original command line.

TRAX Support Environment Messages

?dfn - ILLEGAL DEVICE - device

Description

The indicated device does not exist.

Suggested User Action

Reenter the command line with a corrected device specification.

?dfn - ILLOGICAL DEVICE ~ device

Description

The indicated device is not permitted in the context of the command line. For example, the
user cannot CREATE an indexed file on magnetic tape.

Suggested User Action

Reenter the command line with an appropriate device specification.

?dfn - PRIVILEGE VIOLATION - fllename

Description

The user does not have the privileges necessary to create the indicated file.

Suggested User Action

Have the owner of the file change its privilege specification.

?dfn - WRITE ERROR ON CREATE OF OUTPUT FILE -filename

Description

One of the following conditions exists: '

1. The device is not on line.
2. The device is not mounted.
3. The hardware has failed.
4. The volume is full.

Suggested User Action

Rectify the condition and reenterthe command line.

B-27

TRAX Support Environment Messages

The following messages pertain to the "CREATE/DIRECTORY" Command.

UFD - DIRECTORY ALREADY EXISTS

The requested UFD already existed on the volume.

UFD - FAILED TO CREATE DIRECTORY

No space existed on the volume, or an I/O error occurred.

UFD - NOT FILES-II DEVICE

The device on which the UFD was to be created was not a Files-II device, and therefore
could not support UFD's.

UFD - WRITE ATTRIBUTES FAILURE

An error was encountered while writing the attributes of either the MFD or the newly
created UFD.

UFD - WRONG VOLUME

The volume label and the label specified in the command did not match.

UFD - VOLUME NOT MOUNTED

The volume on which a UFD is to be created must be mounted before accessing the
files-II structure.

B.7 DeL
The error messages described in this section are command independent. The system prefixes the
error message with a unique 3 letter code derived from the command name. For example:

MES - YOU DO NOT HAVE THE PRNILEGE TO ISSUE THIS COMMAND

the 3 letter code "MES" is derived from the MESSAGE command. In this section the command
names are substituted with "XXX" to signify that the operating task mnemonic is inserted in this
position.

xxx - ILLEGAL FUNCTION

Description: the command line contains an illegal command name.

Use the help command to get a list of valid commands.

B-28

TRAX Support Environment Messages

xxx - SYNTAX ERROR

Description: The command line has a syntax error.

Suggested User Response: Consult Chapter 9 for the correct syntax. Reenter the command
line.

XXX - FUNCTION NOT UNIQUE

Description: You did not enter enough characters to uniquely identify the command.

Suggested User Response: Consult Chapter 9 for the correct spelling of the command.
Reenter the command line.

XXX - ILLEGAL QUALIFIER

Description: The command line contains an illegal qualifier for the command.

Suggested User Response: Consult Chapter 9 for the correct task qualifiers. Reenter the
command line.

XXX - QUALIFIER NOT UNIQUE

Description: You did not enter enough characters to uniquely identify the qualifier in the
current context.

Suggested User Response: Consult Chapter 9 for the correct format. Reenter the
command line.

XXX - REQUIRED PARAMETER NOT SPECIFIED

Description: a required parameter has been omitted from the command line.

Suggested User Response: Consult Chapter 9 for the correct format. Reenter the command
line.

xxx - INVALID PROTECTION CODE SPECIFIED

Description: a protection code other than R, W, E or D was specified or the protection
codes where not specified in the order RWED.

Suggested User Response: check the command line. Reenter the command line correctly.

XXX - FILE SPECIFICATION EITHER INVALID OR NOT SPECIFIED

Description: the command line contains an invalid file specification or has been omitted.

Suggested User Response: check the command line. Reenter the command line correctly.

B-29

TRAX Support Environment Messages

xxx - PRIMARY KEY NOT SPECIFIED

Description: The number parameter of the key qualifier is missing. It should be 1.

Suggested User Response: Check the command line. Reenter the command line correctly.

xxx - CONTRADICTORY QUALIFIER IN KEY SPECIFICATION

Description: a contradictory pair of qualifiers was specified in the key specification. For
example:

UPDATE/NOUPDATE - OR - DUPLICATE/NODUPLICATE

Suggested User Response: Consult Chapter 9 for the correct format. Reenter the command
line.

xxx - INV ALID KEY QUALIFIER VALUE

Description: A negative number or 0 was specified as the key qualifier value.

Suggested User Response: Consult Chapter 9. Reenter the command line.

xxx - REQUIRED VALUE NOT SPECIFIED FOR POSITION SIZE OR NUMBER

Description: The numeric value for either the number, position or size qualifiers have
not been specified.

Suggested User Response: Reenter the command line.

xxx - TASK ACTIVE

Description: You attempted to executive a command twice simultaneously on the same
terminal.

Suggested User Response: Wait till the first invocation is completed. Reenter the command
line.

xxx - WILD CARDS NOT PERMITTED

B-3 0

Description: Filename, type, or the version number of the file must be expressed explicitly,
the wildcard default "*,, cannot be used.

Suggested User Response: Reenter the command line.

TRAX Support Environment Messages

xxx - ZERO V ALUE NOT V ALID FOR KEY SIZE OR NUMBER

Description: the key, size or number qualifiers must be a positive number.

Suggested User Response: Consult the command description in Chapter 9. Reenter the
command line.

xxx - CONTRADICTORY QUALIFIER

Description: The command line contains a pair of qualifiers that are contradictory.
For example:

UPDATE/NOUPDATE

XXX - INV ALID FILE SPECIFICATION QUALIFIER

Description: the command line contains an invalid rue specification qualifier.

Suggested User Response: check the command line. Consult the command description in
Chapter 9. Reenter the command line.

xxx - COMMAND LINE INCOMPLETE

Description: a necessary parameter was omitted from the command line.

Suggested User Response: Consult the command description in Chapter 9. Reenter the
command line.

xxx - LIBRARY INY ALID ON LAST INPUT FILE

Description: the library must be specified before all other input rues.

Suggested User Response: Consult the command description in Chapter 9.

xxx - INVALID COMMAND FUNCTION

Description: the command option is invalid. For example:

SET TABLE

Suggested User Response: Consult the command description in Chapter 9. Reenter the
command line.

B-31

TRAX Support Environment Messages

xxx - QUEUE MARKED FOR DELETE

Description: the command line tried to access a queue that is marked for deletion.

Suggested User Response: try another queue.

xxx - PROCESSOR MARKED FOR REMOVAL

Description: the command line tried to access a processor marked for removal.

Suggested User Response: try another processor.

xxx - QUEUE DIRECTORY FULL

Description: The maximum number of queues of a given kind have already been created.

Suggested User Response: check queue directory, delete non-essential queues as required.

xxx - PROCESSOR DIRECTORY FULL

Description: The maximum number of processors of a given kind have already been created.

Suggested User Response: check processor directory, delete non-essential processors as
required.

xxx - REDUNDANT OPERATION

Description: Self-explanatory. For example, stopping a queue which is already stopped.

Suggested User Response: check command line. Reenter the command line.

xxx - DEVICE DOES NOT EXIST

Desciption: the device specified in the command line does not exist. Perhaps the unit
number has been omitted.

Suggested User Response: check the device address with a show device command. Reenter
the command line.

xxx - COMMAND PROCESSING TASK NOT IN SYSTEM

B-32

Description: The queue manager has not been initiated and therefore no queue management
commands can be processed.

Suggested User Response: Start the queue manager.

TRAX Support Environment Messages

xxx - CONFLICTING QUALIFIER

Description: A qualifier has been specified when some other attribute of the command
makes it meaningless.

Suggested User Response:

xxx - RESERVED QUEUE NAME

Description: You have attempted to create a queue whose name is reserved by the system.

Suggested User Response: Choose a different queue name.

xxx - ENTRY is not ajob entry

Description: You have tried to access a queue entry which is not associated with a batch
or print job.

Suggested User Response: Invoke the show queue command to ascertain the correct job
entry number.

B.8 DISMOUNT
These are the error messages created by the DISMOUNT command.

DMO - ALREADY MARKED FOR DISMOUNT

The device-unit had been requested to be dismounted and was in the process of waiting
for all accesses to the volume to complete.

DMO - CHECKPOINT FILE STILL ACTIVE

The command attempted to dismount a volume that contained an active checkpoint file.
The volume cannot be dismounted until the checkpoint file has been discontinued. In
order to dismount your system disk please run the shutdown utility.

DMO - HOME BLOCK CHECKSUM ERROR

The checksum in the home block and the calculated checksum did not agree. This message
is usually caused by an I/O error.

DMO - HOME BLOCK I/O ERROR

An error was detected in updating the volume fIle sequence number in the volume home
block.

B-33

TRAX Support Environment Messages

DMO - NO VOLUME LIST

The command specified a magnetic tape drive for which a mounted volume list does not
exist.

DMO - NOT MOUNTABLE DEVICE

The specified device was not a mountable device and therefore could not be dismounted.

DMO - NOT MOUNTED

The specified device was not mounted.

DMO - WRONG VOLUME

The volume label and the label specified in the command did not match.

B.9 INITIALIZE
These are the error messages created by the INITIALIZE command.

B-34

INI - BAD BLOCK FILE CORRUPT - DATA IGNORED

Although automatic bad block recognition was selected, the bad block data on the disk
was not in the correct fonnat, and was therefore ignored.

INI - BAD BLOCK FILE FULL

The disk had more than 102 bad regions on it.

INI - BAD BLOCK HEADER I/O ERROR

An error was detected in writing out the bad-block fIle header.

INI - BLOCK(S) EXCEED VOLUME LIMIT

The specifIed block (or blocks) exceeded the physical size of the volume.

INI - BOOT BLOCK WRITE ERROR

An error was detected in writing out the volume boot block.

INI - CHECKING DDnn

Not an error message. An automatic bad-block specification was proceeding, using the
bad-block file provided by the Bad Block Locator utility program or, on an RK07, the
factory-written fIle from the last track of the disk.

TRAX Support Environment Messages

INI - CHECKPOINT FILE HEADER I/O ERROR

An error was detected in writing out the checkpoint rIle header.

INI - DATA ERROR

The command specified a bad-block number or contiguous region that was too large.

INI - DISK IS ALIGNMENT CARTRIDGE

THE LAST TRACK ON AN RK07 identified the volume as an alignment cartridge, which
cannot be initialized as a Files-II volume. An alignment cartridge is specifically formatted
for aligning disk read/write heads.

INI - DUPLICATE BLOCK(S) FOUND

A block that had been defined as bad was being dermed as bad a second time.

INI - FAILED TO READ BAD BLOCK FILE

The command was unable to read the bad block information from the last track of an
RK07 disk.

INI - HOME BLOCK ALLOCATE WRITE ERROR

In overwriting a bad-home-block area, a write error occurred.

INI - HOME BLOCK WRITE ERROR

An error was detected in writing out the volume home block.

INI - INDEX FILE BIT MAP I/O ERROR

An error was detected in writing out the index-fue bitmap.

INI - INDEX FILE HEADER I/O ERROR

An error was detected in writing out the index-file header.

INI - MFD FILE HEADER I/O ERROR

An error was detected in writing out the Master File Directory (MFD) rIle header.

INI - MFD WRITE ERROR

An error was detected in writing out a block in the Master File Directory (MFD).

B-35

TRAX Support Environment Messages

INI - NO BAD BLOCK DATA FOUND

Although automatic bad-block specification was selected, no bad-block file was found on
the volume.

INI - NOT FILES-II DEVICE

The system does not support fIles-lIon the specified device.

INI - NULL FILE HEADER I/O ERROR

An error was detected in writing out null-fIle headers to the index fIle.

INI - STORAGE BITMAP FILE HEADER I/O ERROR

An error was detected in writing out the storage allocation fIle header.

INI - VOLUME MOUNTED

An attempt was made to initialize a mounted volume. Mounted volumes can not be
initialized.

INI - VOLUME NOT READY

The command specified a volume that was not ready (not up to speed).

INI - VOLUME WRITE LOCKED

The command specified a volume that was write-locked and therefore could not be
initialized as a Files-II device.

INI - WARNING BLOCK 0 IS BAD

Block 0 of the specified volume, the boot block, was bad. A bootable image can therefore
not be placed on this volume.

B.10 LIBRARIAN
These are the error messages created by the LIBRARIAN command.

LBR - BAD LIBRARY HEADER

Description: Either the fIle is not a library fIle or the ftIe is corrupted.

B-36

TRAX Support Environment MesSIlges

Suggested User Response:

• If the fue is not a library fue, reenter the command line with a proper library file
specified .

• If the fue is a proper library fue, the user should run the fue structure verification
utility (VFY) against the volume to detennine if it is corrupted. The functions of the
Verify utility are described in the TRAX System Manager's Guide .

• If the volume is corrupted, it must be reconstructed before it can be used.

LBR - DUPLICATE ENTRY POINT NAME "name" IN filename

Description: An attempt has been made to insert a module into a library ftle when both
contain an identically-named entry point.

Suggested User Response: Determine if the specified input file is the correct file. If not,
reenter the command line, specifying the correct input fIle. If the input file is the correct
file, the user may delete the duplicate entry point from the library and rerun.

LBR - DUPLICATE MODULE NAME "name" IN filename

Description: An attempt has been made to insert (without replacement) a module into a
library that already contains a module with the specified name.

Suggested User Response: Determine if the specified input file is the correct ftle. If the
input fIle is correct, decide whether to delete the duplicate module from the library file
and insert the new one, or replace the duplicate module by rerunning LBR with the /RP
switch appended to the input file specifier.

LBR - EPT OR MNT EXCEEDED IN filename

Description: The EPT or MNT table limit has been reached during the execution of an
Insert or Replace command.

Suggested User Response: Copy the library, increasing the table space via the COMPRESS
command. Reenter the command line.

LBR - EPT OR MNT SPACE EXCEEDED IN COMPRESS

Description: An EPT or MNT table size was specified for the output library file that is
not large enough to contain the EPT or MNT entries used in the input library file.

Suggested User Response: Reenter the command line with a larger EPT or MNT table size
specified.

B-37

TRAX Support Environment Messages

B-38

LBR - ERROR IN LIBRARY TABLES, FILE fuename

Description: The library fue is corrupted or is not a library file.

Suggested User Response: If the file is corrupted, no recovery is possible; the file must be
reconstructed. If the file is not a library file, reenter the command line with the correct
library file specified.

LBR - FATAL COMPRESS ERROR

Description: The input library file is corrupted or is not a library file.

Suggested User Response: No recovery is possible. The fue in question must be
reconstructed.

LBR - INVALID EPT AND/OR MNT SPECIFICATION

Description: An EPT or MNT value greater than 4096(I 0) was entered in a CREATE or
SQUEEZE function.

Suggested User Response: Reenter the command line with the correct value specified.

LBR - INVALID FORMAT, INPUT FILE filename

Description: The format of the specified input file is not the standard format for a macro
source or object fue, or the input file is corrupted.

Suggested User Response: Reenter the command line with the correct input file specified.

LBR - NO ENTRY POINT NAMED "name"

Description: The entry point to be deleted is not in the specified library file.

Suggested User Response: Determine if the entry point is misspelled or if the wrong library
file is specified. Reenter the command line with the entry point correctly specified.

LBR - NO MODULE NAMED "module"

Description: The module to be deleted is not in the specified library file.

Suggested User Response: Determine if the module name is misspelled or if the wrong
library file is specified. Reenter the command line with the module name correctly
specified.

TRAX Support Environment Messages

LBR - OPEN FAILURE ON FILE fIlename

Description: The fIle system, while attempting to open a file, has detected an error. One
of the following conditions may exist:

• The user directory area is protected against an open.
• A problem exists on the physical device (e.g., device cycled down).
• The volume is not mounted.
• The specified fIle directory does not exist.
• The file does not exist as specified.
• Insufficient contiguous space to allocate the library fIle (compress and create only).
• Insufficient dynamic memory in Executive.

Suggested User Response: Determine which of the above conditions caused the message
and correct that condition. Reenter that command line.

LBR - OUTPUT ERROR ON fIlename

Description: A write error has occurred on the output ftle. One of the following conditions
may exist:

• The volume is full.
• The device is write-protected.
• The hardware has failed.

Suggested User Response: If the volume is full, delete all unnecessary files and rerun LBR.
If the device is write-protected, write-enable the device, and reenter the command line. If
the hardware has failed, swap devices and reenter the command line or wait until the device
is repaired and rerun LBR.

B.II LINK
The functions of the LINK command are described in the TRAX Linker Reference Manual. The
TRAX Linker produces diagnostic and fatal error messages. Error messages are printed in the
following fonns:

TKB - *DIAG*-error-message

or

TKB - *FATAL*-error-message

Some errors are correctable when command input is from a terminal. In such a case, a
diagnostic error message can be printed, the error corrected, and the task building sequence
continued. If the same error is detected in an indirect file by the TRAX Linker, a correction
cannot be made, and the task linkage operation is aborted.

B-39

TRAX Support Environment Messages

B-40

Some diagnostic error messages merely advise the user of an unusual condition. If the
user considers the condition normal to his task, he can run the task image.

The following section tabulates the error messages produced by the Task Builder. Most
of the messages are self-explanatory. In some cases, the line in which the error occurred
is printed.

A Software Performance Report (SPR) should be submitted to DIGITAL in cases where
the explanation accompanying a message refers to a system error.

ALLOCATION FAILURE ON FILE file-name

The TRAX Linker could not acquire sufficient disk space to store the task image fue,
or did not have write-access to the UFD or volume that was to contain the fue.

LOOKUP FAILURE ON FILE filename
invalid -line

The invalid-line printed contains a filename that cannot be located in the directory.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The TRAX Linker cannot find the system Library (SYO: [1,1] SYSLIB.OLB) file to
resolve undefined symbols.

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file can be found for the shared region.

MODULE module-name NOT IN LIBRARY

The TRAX Linker could not fmd the module named on the LB switch in the library.

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program has attempted to allocate more than 32K. A map fue is
produced, but no task image file is produced.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds the partition boundary.
If a task image file was produced, it should be deleted.

TRAX Support Environment Messages

TASK IMAGE FILE filename IS NON-CONTIGUOUS

Insufficient contiguous disk space was available to contain the task image. A non
contiguous file was created. After deleting unnecessary ftIes, the ICO switch in PIP
should be used to create a contiguous copy.

B.12 LOGIN
The following are the error messages created by the LOGIN command.

LOG - ACCOUNT FILE OPEN FAILURE

The account file was open for another user; or the disk containing the account ftIe
was not mounted. Retry command.

LOG - INVALID ACCOUNT

The name or UIC specified in the command is not stored in the account ftIe; or the pass
word specified does not match the name or UIC given.

LOG - LOGINS ARE DISABLED

The system was in the process of shutting down; or the command SET NOLOGIN has
been issued. A user cannot log onto a tenninal at these times.

LOG - MESSAGE FILE ERROR nnn.

The system could not open the ftIe [1,2] LOGIN.TXT for a reason indicated by the FCS
code nnn. See Section x.xx for a definition of the FCS code.

LOG - OTHER USER LOGGED ON

The issuing tenninal was currently logged by another user. Only one user at a time can
be logged onto a terminal.

LOG - TERMINAL ALLOCATED TO OTHER USER

The issuing tenninal has been allocated to another user. A user cannot log onto a
tenninal allocated to someone else.

The system was unable to allocate a system ftIe from the specified block because of
intennediate bad blocks or end of volume.

B.13 MERGE
These are the error messages created by the MERGE command.

B-41

TRAX Support Environment Messages

NOTE
Pi question mark "?" preceeding the cnv error
message indicates a fatal error. A question mark
in brackets [?] indicates that the error may be
fatal or diagnostic. If no question mark pre
ceeds the error message it indicates a diag
nostic error.

?cnv - DEVICE OFF LINE - device

Description

The indicated device exists on the system but the attempt to access it has been prohibited for
one of the following reasons.

1. The device is not ready.
2. No volume is mounted on the device.
3. The device is currently reserved by another job.
4. The device requires privileges for ownership and the user does not have privilege.
S. The device has been disabled.

Suggested User Action

Detennine the nature of the problem and take corrective action.

?cnv - DEVICE WRITE PROTECTED - device

Description

The utility cannot access the indicated device for write operations.

Suggested User Action

Check the hardware condition of the indicated device. Write enable the unit.

cnv - DEVICE/FILE IS FULL - device/filename

B-42

Description

The utility cannot create an output file on the indicated device because of insufficient space or
the indicated file cannot be extended due to insufficient space.

Suggested User Action

Reenter the command using another device for output files or copy the indicated file to
another device and retry the command. Optionally, delete unneeded files on the indicated
device and reenter the original command line.

TRAX Support Environment Messages

?cnv - DIRECTORY NOT FOUND - fllename

Description

The directory does not exist on the specified device.

Suggested User Action

Reenter the command with the correct directory specification.

cnv - DUP RCD=string

Description

The utility could not write a record into an indexed ftle because duplicate key values for
one or more keys in the record were not pennitted. Writing the record would cause duplica
tion. The displayed string represents the first 72 characters of the record that could not be
written.

Suggested User Action

None.

cnv - number DUPLICATE RECORDS NOT WRITTEN

Description

The utility could not write the indicated number of records into an indexed ftle because
duplicate key values for one or more keys were not pennitted.

Suggested User Action

None.

?cnv - FILE NOT AVAILABLE - ftlename

Description

The indicated file is being accessed for exclusive use by another job.

Suggested User Action

Periodically retry the command until the file has been released.

[?] cnv - FILE NOT FOUND - filename

Description

The indicated ftIe was not found in the designated UPD and device.

B-43

TRAX Support Environment Messages

Suggested User Action

Verify the fue specification and reenter the command line.

?cnv - FILE READ ERROR

Description

The utility has encountered a hardware read error on an input or output device.

Suggested User Action

If not at TRAX Support Environment prompt level, use CTRL/Z to tenninateaccess to
utility. Check input and output devices for hardware problems.

?cnv - ILLEGAL DEVICE -'device

Description

The indicated device does not exist.

Suggested User Action

Reenter the command line with a corrected device specification.

?cnv - INPUT AND OUTPUT RECORD FORMATS DO NOT CORRESPOND

Description

The user is attempting to write records from one fue to another. However, the input file
records are variable and the output file records are fixed.

?cnv - INPUT AND OUTPUT RECORD SIZES DO NOT CORRESPOND

B-44

Description

The user is attempting to write records from one fue to another. However, one of the
following conditions exists:

1. Both files have fixed fonnat records but the fixed size differs.
2. Both files have variable fonnat records but the maximum size of the input file is

greater than the maximum size of the output file.

Suggested User Action

Redefine the output file and retry the command.

TRAX Support Environment Messages

?cnv - MAXIMUM RECORD EXCEED - filename

Description

No more records can be written into the indicated relative fue because of the fue's maximum
number of records attribute.

Suggested User Action

Create a new relative file through a MACRO-II program. Specify an appropriate MRN
(maximum record number) attribute. Rerun the utility.

?cnv - NO SUCH KEY FOR FILE - value

Description

The specified key of reference value represents a non-existent key in an indexed fue.

Suggested User Action

Reenter the command with a correct key of reference value.

?cnv - PRIVILEGE VIOLATION - fuename

Description

The user does not have the privileges necessary to access the indicated file.

Suggested User Action

Have the owner of the fIle change its privilege specification.

?cnv - RECORD TOO BIG - fIlename

Description

A record from the indicated input fIle exceeds the maximum record size attribute of the
output file.

Suggested User Action

Use the DEFINE utility to create a new fIle with an appropriate maximum record size.

B.14 MOUNT
These are the error messages created by the MOUNT command.

B-45

TRAX Support Environment Messages

MOU - ACP NOT IN SYSTEM

The task specified as ACP or default ACP was not installed in the system.

MOU - ALREADY MOUNTED

The specified device-unit was already moun ted.

MOU -DEVICEATTACHED [-dev:]

The device-unit specified in the command was attached by a task and could not be mounted.
For attempts to mount one or more magnetic tapes, the message includes a specific
device-unit.

MOU - DEVICE OFFLINE [-dev:]

The device specified in the command, although generated into the system, was not physically
present in the host configuration. If the offline device is a magnetic tape drive, the message
includes the device-unit.

MOU - FILE HEADER READ ERROR

Mount could not read either the index file header or the storage allocation file.

MOU - HOME BLOCK READ ERROR

An I/O error was detected in trying to read the home block. This message usually indicates
that the volume is not ready. Wait until it is ready and reissue the command.

MOU - MOUNT ERROR FROM ACP xxx.

The ACP detected an error while trying to mount the volume set.

MOU - NOT MOUNTABLE DEVICE

The specified device was not supported as a Files-II device (including ANSI magnetic tape)
or a network device.

MOU - OTHER VOLUME MOUNTED [-dev:]

B-46

An attempt was made to mount a volume on a device that already had a mounted volume.
The message specifies the device-unit if it is a tape drive.

TRAX Support Environment Messages

MOU - STORAGE BIT MAP FILE READ ERROR

An I/O error was encountered while reading the storage allocation fIle.

MOU - WRONG VOLUME

The volume label and the label specified in the command did not match.

MOU - VOLUME STRUCTURE NOT SUPPORTED

TRAX did not support the files-II structure level of the volume being mounted.

B.1S RENAME
These error messages are created by the RENAME command.

REN - CANNOT FIND DIRECTORY FILE

Description: UFD specified does not exist on this volume.

Suggested User Response: Reenter the command line, specifying the correct UFD or the
correct volume.

REN - CANNOT RENAME FROM ONE DEVICE TO ANOTHER

Description: You attempted to rename a file across devices.

Suggested User Response: Reenter the command line, renaming the ftIe on the input
volume; then, enter another command to transfer the file to the intended volume.

REN - DIRECTORY WRITE PROTECTED

Description: REN could not remove an entry from a directory because the device was
write-protected, or because of privilege violation.

Suggested User Response: Enable the unit for write operations or have the owner of the
directory change its protection.

B.16 SET
These are the error messages created by the SET command.

B-47

TRAX Support Environment Messages

SET - DEVICE NOT VARIABLE SPEED MULTIPLEXER

An attempt was made to set the baud rate for a tenninal that was not attached to a DZ 11
multiplexer.

SET - DEVICE NOT TERMINAL

An attempt was made to set tenninal characteristics for a nontenninal device.

SET - INVALID SPEED

The multiplexer line specified does not support the requested speed; or the command
specified unequal receive and transmit speeds for a DZ 11. The DZ 11 does not support split
speeds.

SET - LINE NOT DZII

The command attempted to set to remote a line that was not attached to a DZ 11
multiplexer.

B.17 SORT
The functions of the SORT command are described in the TRAX Sort Reference Manual. The
error messages generated by the SORT command are displayed in two fonnats:

The first fonnat is:

SORT ERROR - CODE nn

The following is a list of the SORT error codes and a brief explanation of their meaning:

SORT ERROR - CODE 00

Description: No errors.

SORT ERROR - CODE 01

Description: Device input error.

SORT ERROR - CODE 02

Description: Device output error.

SORT ERROR - CODE 03

Description: OPEN(lN) failure.

B-48

TRAX Support Environment Messages

SORT ERROR - CODE 04

Description: OPEN(OUT) failure.

SORT ERROR - CODE 05

Description: Size of current record is greater than maximum size.

SORT ERROR - CODE 06

Description: Not enough work area.

SORT ERROR - CODE 07

Description: RETRN was called after it had exited with a negative error code (end of sort).

SORT ERROR - CODE 10

Description: SORT routine called out of order. (The order of the calls should be RSORT,
RELES, MERGE, RETRN, ENDS).

SORT ERROR - CODE II

Description: Sort already in progress. (To do a second sort, ENDS must be called to clean
up the first sort.)

SORT ERROR - CODE 12

Description: Key size is not positive, Sorts detected a zero or negative key size in its calling
parameter.

SORT ERROR - CODE 13

Description: Record size is not positive.

SORT ERROR ~ CODE 14

Description: Key address is not even. (The keys must start at an even address because SORT
uses word moves).

SORT ERROR - CODE 15

Description: Record address is not even.

SORT ERROR - CODE 16

Description: Scratch records will be too large (the size of the keys plus the size of the
largest record must be less than 37776 octal).

B-49

TRAX Support Environment Messages

SORT ERROR - CODE 17

Description: Too few scratch fIles are given (a minimum of 3 scratch fIles must be
specifIed) .

SORT ERROR - CODE 20

Description: Too many scratch files are given (a maximum of 10 scratch fIles may be
specifIed) .

SORT ERROR - CODE 21

Description: End-of-string record was detected where none was expected.

SORT ERROR - CODE 22

Description: Unexpected end-of-file.

SORT ERROR - CODE 23

Description: SORT found a record larger than expected.

SORT ERROR - CODE 24

Description: Record length is not standard for SORTT, SORT A, SORTI.

The second fonnat is:

SRT - control-phase:?message [-RMS-status-code]

B-50

where:

con trol-phase is the SORT phase in control at the time the error occurred. These
values are:

C - command decoder
M-merge
P - presort

message is a one-line brief explanation of what happened.

RMS-status-code is a decimal status code returned by RMS for additional information
on file errors only. If RMS is not impacted by the SORT error, this
status code does not appear. Status codes likely to be seen are listed
with their meanings in Section 4.7.

TRAX Support Environment Messages

SRT - C:?SORT COMMAND ERROR

a. Too many input flIes (more than two, including speciflcation ftIe) or output flIes
(more than one)

b. General syntax error
c. Too many switches
d. Erroneous switches on the speciflcation ftIe
e. An undefmed switch

SRT - C:?IMPROPER SWITCH: IFI

a. Less than three or greater than eight scratch ftIes.
b. Invalid tenninator

NOTE
Valid terminators are period, comma, slash,
equal sign and <CR>, "INVALID TERMINA
TOR" means that some other character was used
as a terminator or that SORT expected to flnd a
tenninator where none existed.

SRT - C:?IMPROPER SWITCH: IKE

a. Invalid letter or value
b. Start location or size is 0
c. No period (.) between start location and size
d. Illegal size for data mode
e. Invalid tenninator (See NOTE above)

SRT - C:?TOO MANY KEYS

Buffer space overflowed

NOTE
SORT reserves a buffer area for storage of a
table based on the input speciflcations in order
to control the processing of each record. This
space should· be ample for all situations to make
this error unlikely.

SRT - C:?NO KEYS SPECIFIED

There are no key switches in the command string and no speciflcation fIle has been
declared.

B-Sl

TRAX Support Environment Messages

SRT - C:?KEY AFTER LAST BYTE OF RECORD

The end of an input record key field goes past the stated record size (switch or
specification).

SRT - C:?NO /FO SWITCH

You omitted the /PORMAT switch on the input ftle.

SRT - C:?IMPROPER SWITCH: /FO

You have not specified a valid fonnat type.

SRT - C:?IMPROPER SWITCH: /PR

You specified an invalid sort process.

SRT - C:?INVALID CHARACTER [RMS-Status-Code]

a. Column 6 is not H, I, 0, F and record is not ALTSEQ.
b. Process is not SORTR, SORTT, SORTA, SORTI, or blank.
c. Collating sequence is not blank, E, or X.
d. Data type is not B, C, D, F, I, J, K, P, Z.
e. Key type is not D, F, N, o.
f. Logical entry is not A, 0, blank, or *.

SRT - C:?ILLEGAL FIELD [RMS-Status-Code]

a. A numeric field in specification contains other than decimal digits or blanks.
b. No key size is given in Header specification.
c. No output size is given in Header Specification if type of SORT is SORTR or SORTT.
d. ALTSEQ is misspelled.
e. ALTSEQ entries do not represent 7-bit octal values.
f. Last location is less than first location in record field identification.
g. Size is invalid for data mode.
h. Sizes of Factors I and 2 in Record Specification do not match.
i. Compare relation is undefmed.
j. Forced field is other than type C or more than one position.

SRT - C:?ILLEGAL CONSTANT [RMS-Status-Code]

a. Constant given in Factor 2 is greater than 20 characters.
b. Mode of constant does not agree with mode of Factor.
c. Invalid characters appear in constant (e.g., non-digits if the constant is numeric).
d. Sign is omitted from binary or packed constant.

B-S2

TRAX Support Environment Messages

SRT - C:?NO HEADER [RMS-Status-Code]

a. First record of specification file is not an H specification.

SRT - C:?INCORRECT SEQUENCE [RMS-Status-Code]

a. Numeric record sequence is lower than sequence previously encountered.
b. No valid data specification appears when keys are to be stripped from output.
c. Record specification after "include-all" ("include-all" should be last).
d. Key specifications appear after data specifications.

SRT - C:?NO ALTSEQ [RMS-Status-Code]

a. Specification for alternate collation entered in Header column 26 but no ALTSEQ
Specifications follow.

SRT - C:?TOO MANY SPECIFICATIONS [RMS-Status-Code]

a. Number of specifications for a particular type of record have overflowed the buffer
space.

NOTE
SORT reserves a buffer space for storage of a
table based on the input specifications and
used to control the processing of each record
type. This space should be ample for all situa
tions to make the error unlikely other than in
very exceptional circumstances.

B-53

APPENDIXC

TRAX 1/0 ERROR CODES

The following I/O error codes are return to TRAX Tasks:

Mnem. Dec. Octal

.BAD -1 377 Bad parameters

.IFC -2 376 Invalid function code

.DNR -3 37'S Device not ready

.VER -4 374 Parity error on device

.ONP -5 373 Hardware option not present
~SPC -6 372 Illegal user buffer
.DNA -7 371 Device not attached
.DAA -8 370 Device already attached
.DUN -9 367 Device not attachable
.EOF -10 366 End-Qf-ftle detected
.EOV -11 365 End-of volume detected
.WLK -12 364 Write attempted to looked unit
.DAO -13 363 Data overrun
.SRE -14 362 Send/ receive failure
.ABO -15 361 Request terminated
.PRI -16 360 Privilege violation
.RSU -17 357 Shareable resource in use
.OVR -18 356 Illegal overlay request
.BYT -19 355 Odd byte count (or virtual address)
.BLK -20 354 Logical block number too large
.MOD -21 353 Invalid UDC module number
. CON -22 352 . UDC connect error
.NOD -23 351 System dynamic memory exhausted
.DFU -24 350 Device full
.IFU -25 347 Index file full
.NSF -26 346 No such file
.LCK -27 345 Locked from read/write access
.HFU -28 344 File header full
.WAC -29 343 Accessed for write
.CKS -30 342 File header checksum failure
.WAT -31 341 Attribute control list format error
.RER -32 340 File processor device read error
.WER -33 337 File processor device write error
.ALN -34 336 File already accessed on LUN

C-l

TRAX I/O E"or Codes

.SNC -35 335 File ID, ftIe number check

.SQC -36 334 File ID, sequence number check

.NLN -37 333 No ftIe accessed on LUN

.CLO -38 332 File was not properly closed

.NBF -39 331 No buffer space available for ftIe

.RBG -40 330 Illegal record size

.NBK -41 327 File exceeds space allocated, no blocks

.ILL -42 326 lliegal operation on ftIe descriptor block

.BTP -43 335 Bad record type

.RAC -44 324 Illegal record access bits set

. RAT -45 323 Illegal record attributes bits set

.RCN -46 322 Illegal record number-too large
-47 (not used)

.2DV -48 320 Rename-2 different devices

.FEX -49 317 Rename - a new fue name
already in use

.BDR -50 316 Bad directory ftle

.RNM -51 315 Cannot rename old ftIe system

.BDI -52 314 Bad directory syntax

. FOP -53 313 File already open

.BDV -55 311 Bad device name

.BBE -56 310 Bad block on device

.DUP -57 307 Enter-duplicate entry in directory

.STK -58 306 Not enough stack space (FCS or FCP)

.FHE -59 305 Fatal hardware error on device

.NFI -60 304 File ID was not specified

.ISQ -61 303 Illegal sequential operation

.EOT -62 302 End-of tape detected

.BVR -63 301 Bad version number

.BHD -64 300 Bad ftIe header

.OFL -65 277 Device offline

.BCC -66 276 Block check or CRC error
-67 (not used)

.NNN -68 274 No such node

.NFW -69 273 Path lost to partner

.BLB -70 272 Bad logical buffer

.TMM -71 271 Too many outstanding messages

.NDR -72 270 No dynamic space available

.CNR -73 267 Connection rejected

.TMO -74 266 Time out on request

.EXP -75 265 File expiration date not reached

.BTF -76 264 Bad tape format

.NNC -77 263 Not ANSI "0" format byte count

.NNL -78 262 Not a network LUN

.NLK -79 261 Task not linked to specified ICS/
ICR interrupts

C-2

T RAX I/O E"or Codes

.NST -80 260 Specified task not installed

.FLN -81 257 Device offline when offline request
was issued

.IES -82 256 Invalid escape sequence

.PES -83 255 Partial escape sequence

.ALC -84 254 Allocation failure

.ULK -85 253 Unlock error

C-3

APPENDIXD

RMS COMPLETION STATUS CODES

This appendix describes completion status codes that can be returned by RMS-ll to your
program.

Ail RMS-ll file and record operations return a completion status code into the status field (STS)
of the control block (i.e., F AB or RAB) associated with the operation. A symbolic name is defined
for each such code. The symbolic names for successful completion status codes take the following
form:

SU$xxx

where

xxx is a mnemonic value describing the successful operation.

Symbolic names for error completion status codes take the form:

ER$xxx

where

xxx is a mnemonic value representing the reason the operation failed.

For certain error conditions, RMS-ll uses the status value (STV) field to communicate additional
information to your program. The tables in this appendix list all instances in which a particular
symbolic value in the STS field indicates the presence of further information in the STY field.
A limited number of severe error conditions cause RMS-ll to invoke a fatal error crash routine.
Section 0.1 of this appendix describes these conditions and the crash routine itself.

The sections that follow describe, respectively, successful completion status codes, error completion
status codes, and the RMS-il fatal error crash routine.

0.1 SUCCESSFUL COMPLETION STATUS CODES
Table 0-1 describes successful completion status codes returned by RMS-Il routines.

0-1

RMS Completion Status Codes

Table D-l Successful Completion Status Codes

Symbolic Decimal
Name Value Description.

SU$SUC 1 Operation successful.

SU$DUP 2 A record written into an indexed file as a result of a
$PUT or $UPDATE operation contains at least one
key value that was already present in another record.

SU$IDX 3 During a $PUT or $UPDATE operation on an indexed
file, the record was successfully written. The record
can be subsequently retrieved but RMS-l1 was not
able to optimize the structure of the index at the
time the record was inserted. Several indirections
will occur, therefore, on retrieval. In some instances,
RMS-il may also return an error code (e.g., ER$RLK)
in the STY field of the control block.

SU$RRV 4 During a $PUT or $UPDATE operation on an indexed
rUe, the record was successfully written. However,
RMS-Il was unable to update one or more Record
Retrieval Vectors (RRVs) and the records associated
with the RRVs cannot be retrieved using alternate
indexes or RF A addressing mode.

D.2 ERROR COMPLETION STATUS CODES
Table D-2 describes error completion status codes returned by RMS-II routines.

Table D-2 Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STY Description

ER$ABO 177760 -16 ER$STK or Operation aborted: out of
ER$MAP stack save area or in core

data structures corrupted.

ER$ACC 177740 -32 Kernel Error code Kernel file system could not
access the file.

ER$ACT 177720 -48 File activity precludes action
(e.g., attempting to close a
rUe with outstanding asyn-
chronous record operation).

D-2

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$AID 177700 -64 XAB address Bad area identification number
(AID) field in allocation XAB
(i.e., out of sequence).

ER$ALN 177660 -80 XAB address Illegal value in alignment boundary
type (ALN) field allocation XAB.

ER$ALQ 177640 -96 (XAB address) Value in allocation quantity
(ALQ) field in F AB (or alloca-
tion XAB) exceeds maximum
or, during an explicit $EXTEND
operation, equals zero.

ER$ANI 177620 -112 Records in a file on ANSI labeled
magnetic tape are variable length
but not in ANSI D format.

ER$AOP 177600 -128 XAB address Illegal value in allocation options
(AOP) field in allocation XAB.

ER$AST 177560 -144 Invalid operation at AST level:
attempting to issue a synchronous
operation from an asynchrono us
record operation completion
routine.

ER$ATR 177540 -160 Kernel Error code Read error on file header
attributes.

ER$ATW 177520 -176 Kernel Error code Write error on file header
attributes.

ER$BKS 177500 -192 Bucket size (BKS) field in F AB
contains value exceeding
maximum.

ER$BKZ 177460 -208 XAB address Bucket size (BKZ) field in
allocation XAB contains value
exceeding maximum.

ER$BLN 177440 -224 Block length (BLN) field in a
F AB or RAB is incorrect.

D-3

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$BOF 177430 -232 Beginning of file detected on
$SPACE operation to magnetic
tape file.

ER$BPA 177420 -240 Private buffer pool address not
a double word boundary.

ER$BPS 177400 -256 Private buffer pool size not a
multiple of 4.

ER$BUG 177360 -272 Internal error detected in RMS-
II (refer to Section DA of this
Appendix); no recovery possible;
contact a Software Specialist.

ER$CCR 177340 -288 Can't connect RAB (i.e., only
one record access stream per-
mitted for sequential files).

ER$CHG 177320 -304 $UPDATE attempting to change
a key field that does not have
the change attribute.

ER$CHK 177300 -320 Index file bucket check-byte
mismatch. The bucket has been
corrupted. No recovery possible
for the bucket.

ER$COD 177240 -352 XAB address Invalid COD field in XAB or
XAB type is illegal for the
organization or operation.

ER$CRE 177220 -368 Kernel Error code Kernel file system could not
create file.

ER$CUR 177200 -384 No current record: operation
not immediately preceded by a
successful $GET or $FIND.

ER$DAC 177160 -400 Kernel Error code Kernel file system deaccess
error during $CLOSE

D-4

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$DAN 177140 -416 XAB address Invalid area number in DAN field
of key definition XAB.

ER$DEL 177120 -432 Record accessed by RF A access
mode has been deleted.

ER$DEV 177100 -448 1. Syntax error in device name.
2. No such device.
3. Inappropriate device for oper-

ation (e.g., attempting to create
an indexed file on magnetic
tape).

ER$DIR 177060 -464 Syntax error in directory name.

ER$DME 177040 -480 Dynamic memory exhausted:
insufficient space in central space
pool or private buffer pool.

ER$DNF 177020 496 Directory not found.

ER$DNR 177000 -512 Device not ready.

ER$DPE 176770 -520 Kernel Error code Device positioning error.

ER$DUP 176740 -544 Duplicate key detected, duplicates
allowed attribute not set for one
or more key fields.

ER$ENT 176720 -560 Kernel Error code Kernel file system enter function
failed.

ER$ENV 176700 -576 Environment error: operation or
file organization not specified in
ORG$ macro.

ER$EOF 176660 -592 End of file.

ER$ESS 176640 -608 Expanded string area in NAM block
too short.

ER$EXP 176630 -616 File expiration date not reached.

D-5

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$EXT 176620 -624 Kernel Error code File extend failure.

ER$FAB 176600 -640 Not a valid F AB: BID field does
not contain FB$BID. Refer to
Section A.3 of this Appendix.

ER$FAC 176560 -656 1. Record operation attempted
was not declared in F AC field
of FAB at open time.

2. Invalid contents in F AC field.
3. FB$PUT not present in FAC

for $CREA TE operation.

ER$FEX 176540 -672 File already exists (attempted
$CREATE operation).

ER$FID 177530 -680 Invalid file id.

ER$FLG 176520 -688 XAB address Invalid combination of values in
FLG field of key definition XAB
(e.g., no duplicates and keys can
change).

ER$FLK 176500 -704 File locked by another user - - you
cannot access the file because your
sharing specification cannot be met

ER$FND 176460 -720 Kernel Error code Kernel file system Find function
failed.

ER$FNF 176440 -736 File not found.

ER$FNM 176420 -752 Syntax error in file name.

ER$FOP 176400 -768 Invalid file options.

ER$FUL 176360 -784 Device full: can't create or extend
file.

ER$IAN 176340 -800 XAB address Invalid area number in IAN field
of key definition XAB.

D-6

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STY Description

ER$IDX 176320 -816 Index not initialized (this code can
only occur in the STY field when
STS contains ER$RNF).

ER$IFI 176300 -832 Invalid IFI field in FAB.

ER$IMX 176260 -848 XAB address Maximum number (254) of key
defmition or allocation XABs
exceeded or multiple summary,
protection, or date XABs present
during operation.

ER$INI 176240 -864 $INIT or $INITIF macro call
never issued.

ER$IOP 176220 -880 Illegal operation; examples include:
1. Attempting a $TRUNCATE

operation to a non-sequential
file.

2. Attempting an $ERASE or
$EXTEND operation to a
magnetic tape file.

3. Issuing a block mode operation
(e.g., $READ or $WRITE) to
a stream not connected for
block operations.

4. Issuing a record operation (e.g.,
$GET, $PUT) to a stream
connected for block mode
operations.

ER$IRC 176200 -896 Illegal record encountered in
sequential file: invalid count field.

ER$ISI 176160 -912 Invalid internal stream identifier
(lSI) field in RAB (field may have
been altered by user) or $CONNECT
never issued for stream.

ER$KBF 176140 -928 Key buffer address (KBF) field
equals O.

D-7

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$KEY 176120 -944 Record identifier (i.e., the 4-byte
location addressed by KBF) for
random operation to relative file
is 0 or negative.

ER$KRF 176100 -960 Invalid key of reference (KRF) in
RAB: 1) As input to random
$GET or $FIND operation, or 2)
As input to $CONNECT or
$REWIND (in this case, ER$KRF
is returned for the first record
operation following the $CONNECT
or $REWIND.

ER$KSZ 176060 -976 Key size equals zero or too large
(indexed file) or not equal to 4
(relative file).

ER$LAN 176040 -992 XAB address Invalid area number in LAN field
of key definition XAB.

ER$LBL 176020 -1008 Magnetic tape is not ANSI labeled.

ER$LBY 176000 -1024 Logical channel busy.

ER$LCH 175760 -1040 Invalid value in logical channel
number (LCH) field of F AB.

ER$LEX 175750 -1048 XAB address Attempt to extend an area
containing an UNUSED extent.

ER$LOC 175740 -1056 XAB address Invalid value in LOC field of
allocation XAB.

ER$MAP 175720 -1072 In core data structures (e.g., I/O
buffers) corrupted. This code can
only occur in the STY field when
STS contains ER$ABO. Refer also
to Section D.4 of this Appendix.

ER$MKD 175700 -1088 Kernel Error code Kernel file system could not mark
file for deletion.

D-8

RMS Completion Status Codes .

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$MRN 175660 -1104 1. Maximum record number field
contains a negative value during
$CREATE of relative file.

2. Record identifier (pointed to
by KBF) for random operation
to relative file exceeds maximum
record number specified when
file created.

ER$MRS 175640 -1120 Maximum record size (MRS) field
contains 0 during $CREATE
operation and:
1. Record Format is fixed, or
2. File organization is relative.

ER$NAM 175620 -1136 Odd address in Name Block
address (NAM) field in F AB on
$OPEN, $CREATE, or $ERASE.

ER$NEF 175600 -1152 Not at end-of-file: attempting a
$PUT operation to a sequential
file when stream is not positioned
to EOP.

ER$NID 175560 -1168 Can't allocate internal index
descriptor: insufficient room in
space pool while attempting to
open an indexed file.

ER$NPK 175540 -1184 No primary key definition XAB
present during $CREATE of
indexed file.

ER$ORD 175500 -1216 XAB address XABs in chain not in correct order:
1. Allocation or key definition

XABs not in ascending (or
densely ascending) order.

2. XAB of another type intervenes
in key definition or allocation
XAB sub-chain.

D-9

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$ORG 175460 -1232 Invalid value in file organization
(ORG) field of F AB.

ER$PLG 175440 -1248 Error in file's prologue: file is
corrupted and must be
reconstructed.

ER$POS 175420 -1264 XAB address Key position (POS) field in key
defmition XAB contains a value
exceeding maximum record size.

ER$PRM 175400 -1280 XAB address File header contains bad date and
time information (retrieved by
RMS-ll because a date and time
XAB is present during a $OPEN
or $DISPLAY operation); file may
be corrupted.

ER$PRV 175360 -1296 Privilege violation: access to the
file denied by the operating system.

ER$RAB 175340 -1312 Not a valid RAB: BID field does
not contain RB$BID. Refer to
Section D.4 of this Appendix.

ER$RAC 175320 -1328 1. Illegal values in record access
mode (RAC) field of RAB.

2. Illogical value in RAC field
(e.g., RB$KEY with a sequen-
tial file).

ER$RAT 175300 -1344 1. Illegal values in record
attributes (RAT) field of FAB
during $CREATE.

2. Illogical combination of
attributes (e.g., FB$CR and
FB$FTN) in RAC field during
$CREATE.

D-lO

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$RBF 175260 -1360 Record Address (RBF) field in
RAB contains an odd address
(block mode access only).

ER$RER 175240 -1376 Kernel Error code File read error.

ER$REX 175220 -1392 Record already exists: during a
$PUT operation in random mode
to a relative file, an existing record
found in the target record position.

ER$RFA 175200 -1408 Invalid RF A in RF A field of RAB
during RFA access.

ER$RFM 175160 -1424 I. Invalid record format in RFM
field of F AB during $CREA TE.

2. Specified record format is
illegal for file organization.

ER$RLK 175140 -1440 Target bucket locked by another
task or another stream in the same
program.

ER$RMV 175120 -1456 Kernel Error code Kernel file system Remove
function failed.

ER$RNF 175100 -1472 (ER$IDX) Record identified by KBF /KSZ
fields of RAB for random $GET or
$FIND operation does not exist
in relative or indexed file (for
indexed files only, STY may
contain ER$IDX). Record may
never have been written or may
have been deleted.

ER$RNL 175060 -1488 $FREE operation issued but no
bucket was locked by stream.

ER$ROP 175040 -1504 Record options (ROP) field
contains illegal values or illogical
combination of values.

D-II

RMS Completion Status Codes'

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$RPL 175020 -1520 Kernel Error code Error while reading prologue.

ER$RRV 175000 -1536 Invalid RRV record encountered
in indexed file; file may be
corrupted.

ER$RSA 174760 -1552 Record stream active, i.e., in
asynchronous environment,
attempting to issue a record
operation to a stream that has a
req uest outstanding.

ER$RSZ 174740 -1568 Record size specified in RSZ of
RAB during $PUT or $UPDATE
is invalid:
1. RSZ equals zero.
2. RSZ exceeds maximum record

size (MRS) specified when file
created.

3. RSZ not equal to size of
Current Record for $UPDATE
operation to a sequential file
on disk.

4. RSZ does not equal MRS
(for fixed format records).

ER$RTB 174720 -1584 Actual record size Record too big for user's buffer:
RMS-l1 could not move entire
record retrieved by $GET operation
to user work area (UBF/USZ). Note
that this error does not destroy the
current context of the stream.
Rather, the stream's context is
updated as if the operation had
been completely successful.

ER$SEQ 174700 -1600 During $PUT operation, key of
record to be written is not equal
to or greater than key of previous
record (and RAC field contains
RB$SEQ).

D-12

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$SHR 174660 -1616 Illogical value in SHR field of '
FAB (e.g., FB$,WRI specified for
seq uen tial file).

ER$SIZ 174640 -1632 XAB address Invalid SIZ field in key definition
XAB during $CREATE (e.g.,
specified size exceeds maximum
re cord size).

ER$STK 174620 -1648 During asynchronous record
operation, RMS-Il has found that
the stack is too big to be saved
(this code can only occur in the
STV field when STS contains
ER$ABO).

ER$SYS 174600 -1664 Directive or QIO System directive error.
status code

ER$TRE 174560 -1680 Index tree error: indexed file is
corrupted.

ER$TYP 174540 -1696 Syntax error in file type (e.g., more
than 3 characters specified).

ER$UBF 174520 -1712 Invalid address in UBF field of RAB:
1. UBF contains 0, or
2. UBP not word aligned (for block

mode access only).

ER$USZ 174500 -1728 Invalid USZ field in RAB (i.e., USZ
contains 0).

ER$VER 174460 -1744 Syntax error in file version number.

ER$VOL 174440 -1760 XAB address Invalid VOL field in allocation
XAB (i.e., VOL does not contain 0).

ER$WER 174420 -1776 Kernel Error code File write error.

ER$WLK 174410 -1784 Device is write locked.

D-13

RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$WPL 174400 -1792 Kernel Error code Error while writing prologue.

ER$XAB 174360 -1808 (XAB address) XAB field in F AB (or NXT field
in XAB) contains an odd address.

D-14

RMS Completion Status Codes

0.3 FATAL ERROR CRASH ROUTINE
RMS-l1 issues a BPT instruction whenever it encounters inconsistent internal F AB or RAB).
This action is taken only when RMS-l1 cannot continue processing, since to do so might cause
damage to user fues or the user's task image. As an example, when the problem is caused by an
invalid F AB or RAB, RMS-l1 cannot return an error status code in STS since it has recogn
nizable user control block to work with.

The BPT instruction generated as a result of fatal errors is in the RORMSA module of RMS-l1.
The following is the state of the general registers at the time this instruction is issued:

RO = RMS-ll error code
Rl = Entry SP value
R2 = Entry return PC
R3 = Address of system impure area

General registers Rl and R2 are always valid if the crash routine is invoked by a fatal user call
error. When the crash routine in invoked by inconsistent internal conditions, the contents of
general registers Rl is R2 may be meaningless if RMS-l1 was executing an asynchronous
RAB operation.

The following subsections summarize, respectively, the fatal user call errors and the RMS-l1
inconsistent internal conditions that can cause invocation of the fatal error crash routine.

0.4 FATAL USER CALL ERRORS
When the fatal error crash routine is invoked because of a user call error, general register RO
contains one of the following error codes:

• ER$FAB
• ER$RAB

These error codes indicate that the user called RMS-l1 using a control block that was not a valid
FAB (for ftle operations such as $OPEN, $CREATE, etc) or RAB (for record operations such as
$CONNECT, $GET, $PUT, etc.). This condition can occur for anyone of the following reasons:

1. ;The address of the F AB or RAB is O.
2. The address of the F AB or RAB is odd.
3. ;The control block's BID field does not contain the proper block identifier code (i.e.,

FB$BID for FABs and RB$BID for RABs).

0.5 RMS-ll INCONSISTENT INTERNAL CONDITIONS ERRORS
When the crash routine is invoked because of RMS-ll inconsistent internal conditions, general
register RO contains one of the following error codes:

• ER$BUG
• ER$MAP

D-15

RMS Completion Status Codes

These error codes indicate internal problems with RMS-Il and are considered fatal. They can
be caused by improper coding by the user (e.g., destroying some internal RMS-II data base),
but are also used to detect RMS-II bugs. When one of the above error codes is encountered,
the user should provide, if possible, the following information to DEC with an SPR:

I. The contents of the general registers.
2. The frrst ten words, at a mininum, or all words upon the system stack.
3. The operation the program was performing (e.g., $OPEN, $GET, $PUT).
4. The organization of the file being processed.
5. A load map of the task.
6. If running on TRAX, a post-mortem dump.

D-16

INDEX

Abbreviation of Keywords, 8-5, 8-9
ABORT Command, 2-5, 5-6, 5-7, 9-1
Aborting an Indirect Command File

Task, 5-7
ABORT/TASK Command, 5-7
Accessing Devices, 4-1
Accessing other Directories, 2-3
Accessing the System, 2-6
Access Levels, File, 3-5
ACTIVE, with Show TASKS, 9-82
ALL, with Show TASKS, 9-82
Allocated devices, 4-1
ALLOCATE Command, 4-4, 9-3
Altering Device Features, 4-5
APPEND Command, 3-10, 9-4
Appending Records to Files, 3-10
ASSIGN Command, 4-6, 9-5
Assigning Devices, 4-5
Assignment Priority, 4-6
At Sign (@), 1-4, 5-1, 7-1
AT. Task, 5-7
Automatic Deallocation at LOGOUT,

4-4

BASIC Command, 9-6
BASIC-PLUS-2 Language, 1-5
BASIC-PLUS-2 Mode, 9-6
BASIC-PLUS-2 Source Files, 5-4
BASIC-PLUS-2 Usage, 5-4
BASIC Source Program, 2-3
BASIC2 Prompt, 5-4
Batch Command Processing, 1-1,

6-1 through 6-8
Batch Data Blocks, 6-3
Batch Files, 1-1, 6-1
Batch Log File, 6-2
Batch Processing Command Set, 6-2
Beginning and Ending a Batch Job

File, 6-3
BRIEF, with SHOW TASKS, 9-82

Calling RMSDEF, A-3
Categories of Users, 3-5
Changing Device Assignments, 4-6
Character Deletion, 8-8
COBOL Command, 5-2, 9-7
COBOL Compilation, 5-2
COBOL Language, 1-5
COBOL Linking, 5-3
COBOL, Use of, 5-2
Command Descriptions, 8-1
Command Format Help, 2-8, 9-27

Index-l

Command Name, Purpose of, 8-3
Command Qualifiers, 8-5
Command Structure, 8-2
Comment line, 8-2
Compiling COBOL Source Programs,

5-2
Concatenation of Files, 3-10
Conditional Processing, 6-5
Continuation of Command, 6-1
CONTINUE Action, 6-5
Control Key Functions, 8-5
COpy Command, 3-10, 9-8
correcting Input Errors, 8-8
CREATE Command, 3-5, 3-7, 3-8,

9-10
CREATE/DIRECTORY Command, 4-5,

9-15
Creating Files, 3-7
Creating Indirect Command Files,

7-1
Creating RMS-ll Files, A-I
Creating Source Files, 5-1
CTRL Key Functions, 8-7
CTRL/C Function, 2-1, 5-7
CTRL/R Function, 8-8
CTRL/U Function, 8-8
CTRL/Z Function, 2-3, 3-7, 3-8,

A-3

Data Allocation, A-12
Data Blocks, Batch, 6-3
$DATA Command, 6-3, 9-16
Data Structure, A-5
DCL> Prompt, 2-1, 8-2
DEALLOCATE Command, 4-4, 9-17
Deallocating a Device, 4-4
DEASSIGN Command, 4-7, 9-18
DEC EDITOR, 2-1, 2-3, 3-8, 5-1
Default File Specifications, 3-3
DELETE Command, 3-13, 9-18
DELETE File Command, 9-19
DELETE Key, 8-5, 8-8
DELETE Queued Job Command, 9-19
Deleting Files, 3-13
Deleting Individual Characters,

8-8
Deleting Lines, 8-8
Device Identifier, 3-1
Device Name Assignments, 4-5
Device Names, 3-3
Device Status, 4-2
Device Verification, 4-4
DIGITAL Command Language, 1-1
Directory, 1-5

INDEX (Cont.)

DIRECTORY Command, 2-1, 9-20
DIRECTORY/FULL Command, 3-5, 9-21
Disconnecting a Volume, 4-4
DISMOUNT Command, 4-4, 9-24
Displaying Device Assignments,

4-6
Displaying Device Features, 4-5
Displaying Device Names, 4-2
Displaying Device Status, 4-2
Displaying File Contents, 3-12
Dollar Sign, 1-3, 6-1, 6-3

EDIT Command, 3-7, 3-8, 7-1, 9-24
Editor Prompt, 1-3, 2-3
ENTRY Queue, 9-19, 9-77, 9-78
Environment, Support, 1-1
Environment, Transaction

Processing, 1-1
$EOD Command, 6-3, 9-25
$EOJ Command, 1-3, 6-1, 6-3, 9-26
Error Logging During Merge, 3-11
Error Messages, 1-3
Error Status, 6-4
Error, Status Level, 6-5, 6-6
ESC Key, 8-5
Exact Copies of Files, 3-10

File Access Levels, 3-5
File Attribute Specification, A-I
File, Batch, 1-3
File Creation, 3-7, 5-1, A-I
File Creation Errors, A-14
File Creation, RMSDEF, A-13
File, Definition of, 1-5, 3-1
File, Log, 1-3, 6-2
File Management, 3-7
File Name, 2-1, 3-2
File Name Identifier, 3-2
File Ownership, 3-4
File Protection, 1-5, 3-4, 3-5,

A-12
File Security, 1-5, 3-4, 3-5, A-12
File Specification, 1-5, 2-1, A-5
File Specification Conventions,

3-1
File Storage, 1-5
File Structure, A-lO
File-Structured Volume, 4-5
File Type, 2-3, 3-4
File Type Identifier, 3-4
File Types, Standard, 3-4
File Version, 3-4
Format, Batch Command, 6-1
Format Conventions, Outline of,

8-1 through 8-9
Function Keys, Keyboard, 8-6

Global Assignments, 4-5
$GOTO Command, 6-2, 6-7, 9-26
GROUP, Definition of, 3-5
Group Number, 2-6, 3-5

HELP Command, 2-8, 9-27

Identification of User, 2-1, 2-3
$IF Command, 6-6, 9-28
Indexed Files, 3-8
Indirect Command Files, 1-1, 1-4,

5-1, 7-1 through 7-3
Indirect Command File Task, 5-7,

7-1 through 7-3
INITIALIZE Command, 3-5, 4-4, 4-5,

9-29
Interactive Command processing,

1-1, 1-2
Interactive Session, Sample, 2-1

through 2-8
Invoking a Batch Job, 6-1, 9-92
Invoking BASIC-PLUS-2, 5-4, 9-6
Invoking Indirect Command Files,

5-1, 7-1
Issuing Commands, 8-2
I/O Rundown on ABORT, 5-7

$JOB Command, 1-3, 6-1, 9-32
Job Name, Batch, 6-3

Keyboard, Terminal, 2-1, 2-2
Key Definition, A-10

Label, Command, 6-1, 6-7
Language, BASIC-PLUS-2, 1-5
Language, COBOL, 1-5
LA36 Terminal, 2-1, 2-2
LIBRARIAN Command, 9-33
LIBRARIAN CREATE Command, 9-33
LIBRARIAN DELETE Command, 9-35
LIBRARIAN EXTRACT Command, 9-36
LIBRARIAN INSERT Command, 9-37
LIBRARIAN LIST Command, 9-38
LIBRARIAN REPLACE Command, 9-39
LIBRARIAN SQUEEZE Command, 9-40
Libraries, COBOL, 5-3
Line Deletion, 8-8
LINE FEED Key, 8-5
LINK/BASIC Command, 2-4, 9-41

Index-2

INDEX (Cont.)

LINK Command, 5-3, 5-5, 9-41
Linker, TRAX, 1-5, 5-3, 5-5
Linking, 2-4
Linking COBOL Object Files, 5-3
Local Assignments, 4-5
Log File, 1-3
Log File, Batch, 6-2, 6-3
Logging Out, 2-1, 9-49
Logical Device Name, 4-2
Logical Name, 4-2, 4-5
LOGIN Assignments, 4-6
LOGIN Command, 1-3, 2-1, 2-6, 9-48
LOGIN SEQUENCE, 2-3, 2-6
LOGOUT Command, 1-3, 2-1, 2-5,

2-8, 9-49

MACRO Command, 9-50
Making Device Assignments, 4-6
Managing Files and Volumes, 3-1
Managing System Devices and

Volumes, 4-1
Member Number, 2-6
MERGE Command, 3-11, 9-52, A-I
MERGE Logging, 3-11
Merging Records to Files, 3-11
MESSAGE Command, 9-54
Message, System Login, 2-6
MOUNT Command, 3-5, 4-4, 9-55
Mounting a Volume, 4-4
Multiple File Copying, 3-10, 9-8

Nonprivileged User, 4-1
Nonpublic Devices, 4-1
Notation, Format, 8-1

Object Files, 5-1 through 5-4
$ON Command, 6-5, 9-57
Optimizing Files, 3-11
Optional Parameters, 8-4
Options, SET QUEUE, 9-70
Options, SET TERMINAL, 9-73
Options, SHOW QUEUE, 9-78
Options, SHOW TERMINAL, 9-85
OWNER, Definition of, 3-5

Parameter Lists, 8-4
Parameter, Purpose of, 8-3
Parameter Qualifiers, 8-5
Parameter Representation, 8-1
Parameters, Optional, 8-4
Password, 2-1, 2-6
PASSWORD: Prompt, 2-6

Index-3

Physical Device Name, 4-1, 4-5
Preparing Devices, 4-5
PRINT Command, 3-13, 9-58
Printing Files, 3-13
Private Devices, 4-1
Privileged Users, 2-6
Processing, Indirect Command

File, 1-4, 7-1 through 7-3
Processing, RMSDEF, A-4
Program Development, 5-1 through

5-7
Programming Language, 1-5
Programs, Support, 1-1
Prompt, Editor, 2-1
Prompting for Parameters, 1-3,

8-3
Prompts, DCL, 1-2
Protection, File, 3-5
Pseudodevice Name, 4-1
Public Device, 4-1
PURGE Command, 3-13, 9-61
Purging Files, 3-13, 9-61

Qualifiers, Command, 8-5
Qualifiers, Parameter, 8-5
Qualifiers, Purpose of, 8-5
Qualifier, Sub-Index of,

/AFTER, with PRINT, 9-58
/AFTER, with SUBMIT, 6-7, 9-92
/ALLOCATION, with CREATE, 9-10,

9-15
/ALLOCATION, with SORT, 9-86
/ATTRIBUTES, with DIRECTORY,

9-20
/BASIC, with LINK, 9-41
/BLOCKSIZE, with COPY, 9-8
/BLOCKSIZE, with SORT, 9-86
/BRIEF, with DIRECTORY, 9-20
/BUCKETSIZE, with CREATE, 9-10
/BUCKETSIZE, with SORT, 9-86
/CHECKPOINT, with LINK, 9-41
/COMMAND, with ABORT, 9-1
/CONCATENATED, with LINK, 9-41
/CONTIGUOUS, with COPY, 9-8
/CONTIGUOUS,with CREATE, 9-10
/CONTIGUOUS, with SORT, 9-86
/COPIES, with PRINT, 9-58
/CROSS-REFERENCE, with LINK,

9-41
/CROSS-REFERENCE, with MACRO,

9-50
/DEBUG, with LINK, 9-41
/DEFAULT-LIBRARY, with LINK,

9-41
/DELETE, with PRINT, 9-58
/DENSITY, with INITIALIZE,

9-29
/DENSITY, with MOUNT, 9-55

INDEX (Cont.)

Qualifier, Sub-Index of (cont.)
/DEVICE, with SORT, 9-86
/DIRECTORY, with CREATE, 9-10
/DOLLARS, with $CREATE, 6-4,

9-10
/DOLLARS, with $DATA, 6-4, 9-16
/DUMP, with ABORT, 9-1
/DUMP, with LINK, 9-41
/ENTRIES, with LIBRARIAN LIST,

9-38
/EPT, with LIBRARIAN CREATE,

9-33
/EPT, with LIBRARIAN SQUEEZE,

9-40
/EXTENSION, with INITIALIZE,

9-29
/EXTENSION, with MOUNT, 9-55
/FILES, with SORT, 9-86
/FLAGPAGE, with PRINT, 9-58
/FORMAT, with CREATE, 9-10
/FORMAT, with SORT, 9-86
/FORMS, with PRINT, 9-58
/FREE, with DIRECTORY, 9-20
/FULL, with DIRECTORY, 9-20
/FULL, with LIBRARIAN LIST,

9-38
/FULL-SEARCH, with LINK, 9-41
/GLOBAL-SYMBOLS, with LIBRARIAN

DELETE, 9-35
/HEADERS, with INITIALIZE, 9-29
/INDEX, with INITIALIZE, 9-29
/INDEXED/KEY, with APPEND, 9-4
/INDEXED/KEY, with COPY, 9-8
/INDEXED/KEY, with CREATE, 9-10
/INDEXED/KEY, with MERGE, 9-52
/INDEXED/KEY, with SORT, 9-86
/JOB, with PRINT, 9-58
/JOB, with SUBMIT, 6-7, 9-92
/KEEP, with PURGE, 3-13, 9-61
/KEY, with /INDEXED files, 3-7,

3-10~ 9-4, 9-8, 9-10, 9-52,
9-86

/LENGTH, with PRINT, 9-58
/LIBRARY file qualifier, 5-3
/LIBRARY, with LINK, 9-41
/LIBRARY, with MACRO, 9-50
/LIST, with COBOL, 9-7
/LIST, with MACRO, 9-50
/LOCAL, with ASSIGN, 9-5
/LOCAL, with DEASSIGN, 9-18
/LOG, with MERGE, 9-52
/LOWERCASE, with PRINT, 9-58
/MAP, with LINK, 9-41
/MAXIMUM, with INITIALIZE, 9-29
/MNT, with LIBRARIAN CREATE,

9-33
/MNT, with LIBRARIAN SQUEEZE,

9-40
/MODULE, with LIBRARIAN DELETE,

9-35

Qualifier, Sub-Index of (cont.)
/NOCHECKPOINT, with LINK, 9-41
/NOCONCATENATED, with LINK, 9-41
/NOCONTIGUOUS, with SORT, 9-86
/NOCOPY, with $DATA, 9-16
/NOCROSS-REFERENCE, with MACRO,

9-50
/NODELETE, with PRINT, 9-58
/NODUMP, with LINK, 9-41
/NOENTRYPOINTS, with LIBRARIAN

CREATE, 9-33
/NOENTRYPOINTS, with LIBRARIAN

INSERT, 9-37
/NOENTRYPOINTS, with LIBRARIAN

REPLACE, 9-39
/NOFLAGPAGE, with PRINT, 9-58
/NOFULL-SEARCH, with LINK, 9-41
/NOLIST, with COBOL, 9-7
/NOLIST, with MACRO, 9-50
/NOMAP, with LINK, 9-41
/NOOBJECT, with COBOL, 5-2, 9-7
/NOOBJECT, with MACRO, 9-50
/NOORIGINAL, with PRINT, 9-58
/NOORIGINAL, with SUBMIT, 6-7,

9-92
/NOPRINT, with SUBMIT, 6-7, 9-92
/NORECEIVE, with LINK, 9-41
/NORESTART, with PRINT, 9-58
/NORESTART, with SUBMIT, 6-7,

9-92
/NOSYMBOLS, with LINK, 9-41
/NOTASK, with LINK, 9-41
/NOVERIFIED, with INITIALIZE,

9-29
/NOWIDE, with PRINT, 9-58
/OBJECT, with COBOL, 5-2, 9-7
/OBJECT, with MACRO, 9-50
/OPTIONS, with LINK, 9-41
/ORIGINAL, with PRINT, 9-58
/ORIGINAL, with SUBMIT, 6-7,

9-92
/OUTPUT, with DIRECTORY, 9-20
/OUTPUT, with LIBRARIAN LIST,

9-38
/OUTPUT, with SORT, 9-86
/OVERLAY, with LINK, 9-41
/OVERRIDE, with MOUNT, 9-55
/OWN, with COPY, 9-8
/OWNER, with INITIALIZE, 9-29
/OWNER, with MOUNT, 9-55
/PAGES, with PRINT, 9-58
/PASS, with MACRO, 9-50
/PRINT, with DIRECTORY, 9-20
/PRINT, with SUBMIT, 6-7, 9-92
/PRIORITY, with PRINT, 9-58
/PRIORITY, with SUBMIT, 9-92
/PROCESS, with SORT, 9-86
/PROTECTION, with CREATE, 9-10,

9-15
/PROTECTION, with INITIALIZE, 9-29

Index-4

INDEX (Cont.)

Qualifier, Sub-Index of (cont.)
/PROTECTION, with MOUNT, 9-55
/QUEUE, with DELETE, 9-18
/QUEUE, with PRINT, 9-58
/QUEUE, with SUBMIT, 6-7, 9-92
/RECEIVE, with LINK, 9-41
/RELATIVE, with APPEND, 9-4
/RELATIVE, with COPY, 9-8
/RELATIVE, with CREATE, 9-10
/RELATIVE, with MERGE, 9-52
/RELATIVE, with SORT, 9-86
/RESTART, with PRINT, 9-58
/RESTART, with SUBMIT, 6-7, 9-92
/SELECT-SYMBOLS, with LIBRARIAN

CREATE, 9 -33
/SELECT-SYMBOLS, with LIBRARIAN

INSERT, 9 -37
/SELECT-SYMBOLS, with LIBRARIAN

REPLACE, 9-39
/SELECT-SYMBOLS, with LINK, 9-41
/SEQUENTIAL, with APPEND, 9-4
/SEQUENTIAL, with COPY, 9-8
/SEQUENTIAL, with CREATE, 9-10
/SEQUENTIAL, with LINK, 9-41
/SEQUENTIAL, with MERGE, 9-52
/SEQUENTIAL, with SORT, 9-86
/SHOW, with MOUNT, 9-55
/SIZE, with LIBRARIAN CREATE,

9-33
/SIZE, with LIBRARIAN SQUEEZE,

9-40
/SIZE, with SORT, 9-86
/SPECIFICATION, with SORT, 9-86
/SQUEEZE, with LIBRARIAN CREATE,

9-33
/SQUEEZE, with LIBRARIAN INSERT,

9-37
/SQUEEZE, with LIBRARIAN

REPLACE, 9-39
/SUMMARY, with DIRECTORY, 9-20
/SWITCHES, with COBOL, 5-3, 9-7
/SWITCHES, with MACRO, 9-50
/SYMBOLS, with LINK, 9-41
/TASK, with ABORT, 5-7, 9-1
/TASK, with LINK, 9-41
/TASK, with RUN, 6-7, 9-64
/TERMINAL, with MESSAGE, 9-54
/TIME, with $JOB, 9-32
/TYPE, with LIBRARIAN CREATE,

9-33
/UNLOCKED, with MOUNT, 9-55
/UPPERCASE, with PRINT, 9-58
/VERIFIED, with INITIALIZE,

9-29
/VOLUME-LABEL, with CREATE, 9-10
/VOLUME-PROTECTION, with

INITIALIZE, 9-29
/WIDE, with PRINT, 9-58
/WINDOW, with INITIALIZE, 9-29
/WINDOW, with MOUNT, 9-55

Record Format, 3-8, A-5
Record Sort, 3-12
RELATIVE Files, 3-8
Removal of Files, 3-13
RENAME Command, 3-11, 9-63
Renaming Across UFO's, 3-11
Renaming Existing Files, 3-11
Representation of Parameters, 8-1
Representation of Qualifiers, 8-1
Requesting Command Information,

2-8
RETURN Key, 8-6
RMSDEF, Calling, A-3
RMSDEF Termination, A-3
RMSDEF Utility, 3-7, A-I through

A-IS
RUN Command, 5-6, 9-64
Running A Task, 5-6

Sequence Control, 6-5
Sequential Files, 3-8
SET Command, 9-65
SET DEFAULT Command, 9-65
SET DEVICE Command, 4-5, 9-67
$SET NOON Command, 6-6, 9-68
$SET ON, 6-6, 9-68
SET PROTECTION Command, 3-5, 9-69
SET QUEUE Command, 9-70
SET TERMINAL Command, 4-5, 9-73
SEVERE-ERROR Status Level, 6-5

through 6-7
Shared Devices, 4-1
SHIFT Key, 8-6
SHIFT LOCK Key, 8-6
SHOW ASSIGNMENTS Command, 4-7, 9-75
SHOW Command, 9-74
SHOW DEFAULT Command, 9-76
SHOW DEVICES Command, 4-1, 4-5,

9-77
SHOW QUEUE Command, 9-78
SHOW TASKS Command, 5-6, 5-7, 9-82
SHOW TERMINAL Command, 4-5, 9-85
SHOW TIME Command, 9-76
SORT Command, 3-12, 9-86
Source File Compilation, 5-2
SPACE BAR Key, 8-6
Spooled Devices, 4-2
Spooling of Print Output, 3-13
Standard Device Names, 3-3
Standard File Types, 3-1
Starting a Batch Job, 6-1, 9-92
Status of Devices, 4-1
STOP Action, 6-6
SUBMIT Command, 9-92
Submitting a Batch Job, 6-1, 6-7,

9-92
SUCCESS Status Level, 6-5
Support Programs, 1-1

Index-5

INDEX (Cont •)

System Login Message, 2-6
SYSTEM User, Definition of, 3-5

TAB Key, 8-6
Tag Sort, 3-12
Task, Executable,' 5-1 through 5-7
Task Execution and Control, 5-6
Task Linking, 1-1
Terminal Keyboard Functions, 8-6,

8-7
Terminals, 2-1
Terminal Support, 1-1
Terminating RMSDEF, A-3
Time Limit, Batch Job, 6-3
TYPE Command, 2-1, 3-12, 9-93

UFD, 3-3
UIC Identifier, 1-5, 2-3, 2-6,

3-1, 3-4
UIC/UFD Relationship, 3-3

Underline Convention, 8-5
UNLOCK Command, 9-94
User File Directory, 1-5, 3-1, 3-4
User Identification Code, 1-5,

2-3, 2-6, 3-1, 3-4
User Name, 2-6
Utility, RMSDEF, 3-7, A-l through

A-15

Version Identifier, 3-2
Virtual Terminals, 1-1, 1-3, 4-2,

6-1
Volume, Definition of, 3-1
Volume Label Checking, 4-4
VT52 Terminal, 2-1

WARNING Status Level, 6-5, 6-6
Wildcards, 2-3 through 2-7
WORLD, Definition of, 3-5

Index-6

READER'S COMMENTS

TRAX Support
Environment
User's Guide
AA·D331A·TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this fonn at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you fmd this manual understandable, usable, and well·organized? Please make suggestions for improvement.

Did you fmd errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify) __________________________ _

Name Date_C __ _

Organization __ _

Street ___ ____

City _____________________________ _ State ________ Zip Code _______ _

or
Country

-- Fold Here ---

--- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~DmDDmD
Software Documentation
146 Main Street ML 5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

