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INTRODUCTION 

The documents in this collection have been gathered 'together 
and reprinted in order to provide information pertaining to 
BLISS-IO not found in the BLISS-IO Reference Manual (DECUS 10-
118, PDM 001-326-002-01). These documents serve three primary 
purposes. They provide a general description of the language and 
explain some of the basic, rather unique features of BLISS-IO. 
They provide the background for a number of critical design 
choices in the language. Finally, they include examples and 
descriptions of some of the support software written for BLISS-IO 
as an aid to using the language. 

The material presented in this document is for information 
purposes only. Digital Equipment Corporation makes no 
commitment to support any of the software as described herein. 

Our thanks go to Professor William A. Wulf, profe,ssoI~ 
D. Russell, and Professor A. N. Habermann; also C. GE~schke, 
J. Apperson, D. Wile and others at Carnegie-Mellon University 
through whose efforts the BLISS language was specified and 
implemented. 
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ABSTRACTS 

Wulf, W. A.~. al., "BLISS - A Language for Systems Programming" 

This paper discusses the design considerations in 
constructing a language especially suited for use in 
writing production software systems, e.g., compilers, 
loaders, and operating systems. BLISS, a language 
implemented at Carnegie-Mellon University for use in 
implementing software for the PDP-lO, is described to 
illustrate the result of these considerations. Some 
comments are made on early experiences using BLISS for 
implementing various types of systems. 

Geschke, C. et. al., "BLISS Examples" 

This section contains a set of examples which illustrate 
the use of Bliss. Each example is intended to be fairly 
complete and self contained, and to illustrate one or 
more features of the language. 

Wulf, W. A., "Programming Without the GOTO" 

It has been proposed by Dijkstra and others that the 
use of the GOTO statement is a major contributing factor 
in programs-wnIch are difficult to understand and debug. 
This suggestion has met with considerable skepticism 
in some circles since GOTO is a control primitive from 
which a programmer may synthesize other, more complex, 
control structures which may not be available in a given 
language. This paper analyzes the nature of control 
structures which cannot be easily synthesized from simple 
conditional and loop constructs. This analysis is then 
used as the basis for the control structures of a-
particular language, BLISS, which does not have a GOTO 
statement. The results of two years of experience-prQgramming 
in BLISS, and hence without GOTO's , are summarized. 

Wulf, .W 0 A., "Why the DOT?" 

An explanation of the pointer and contents concepts in 
BLISS justifying the semantic meaning o~ the dotope7'ator. 
The current meaning is compared to poss1ble alternat1ve 
interpretations. 



Wile, D. A. and C. M. Geschke, "Efficient Data Accessing in 
the Progranuning Language BLISS" 

The specification of data structure in higher-level 
languages is isolated from the related specifications of 
data allocation and data type. Structure specification 
is claimed to be the definition of the accessing (addressing) 
function for items having the structure. Conventional 
techniques for data structure isolation in higher-level 
languages are examined and are found to suffer from 
a lack of clarity and efficiency. 

The means by which data structure accessors may be defined 
in BLISS, the specification of their association with 
named allocated storage, and their automatic invocation 
by reference to the named storage only, are discussed. 
An example is presented which illustrates their efficient 
implementation and their utility for separating the 
activities of data structure programming and algorithmic 
progranuning. 

Wulf, W. A., "HELP .DOC" 

DDT may be used to debug programs written in BLISSj 
however, the use of DDT alone requires a fairly detailed 

J 

knowledge of the run-time stack and other run-time ) 
characteristics of BLISS programs and is not especially . 
convenient. In particular, DDT cannot exploit any special 
information about the structure of the object program. 
A module called "HELP" has been written to augment the 
facilities of DDT. This module may be loaded (along with 
DDT) with any BLISS program -- although recompilation of 
HELP is necessary if the user is not using the standard 
BLISS system registers. HELP is wri~ten ~n BL~SS and 
therefore the facilities described below may be called 
directly from the user's source program even though 
they are primarily intended for use from DDT. 

Wulf, W. A., "HELP.BLI" 

This is the BLISS-IO source listing for the debugging aid 
described in HELP.DOC. 

Newcomer, J. M., "TIMER. DOC" 

This is the reference document and user manual for a package 
written in BLISS-IO which gathers a number of timing 
statistics for programs written in BLISS-IO. ~ 
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BLISS 
A LANGUAGE FOR SYSTEMS PROGRAMMING 

W. A. Wulf, D. B. Russell, A. N. Habermann 
Carnegie-Mellon University* 

Pittsburgh, Pa. 

ABSTRACT 

This paper discusses the design considerations in constructing 
a language especially suited for use in writing production soft
ware systems, e.g., compilers, loaders, operating systems, etc. 
Bliss, a language implemented at Carnegie-Mellon University for 
use in implementing software for the PDP-lO, is described to 
illustrate the result of these considerations. Some comments 
are made on early experiences using Bliss for implementing 
various types of systems. 

INTRODUCTION 

In the fall of 1969 Carnegie-Mellon University 
acquired a PDP-10 from Digital Equipment Corporation 
to support a research project on computer networks. 
This research will involve the production of a sub
stantial number of large systems programs of the 
type which have usually been written in assembly 
language. At an early stage of this design effort 
it was decided not to use assembly language, but 
rather some higher level language. This decision 
immediately leads to another question: which lan
guage'l In turn this leads to a consideration of the 
characteristics, if any, which are unique to, or at 
least exaggerated in, the production and maintenance 
of systems programs. The product of these delibera
tions was a new language which we call Bliss. 

We refer to Bliss as an "implementation lan
guage", IL, although we admit that the term is some
what ambiguous since, presumably all computer lan
guages are used to implement something. To us the 
phrase connotes a general-purpose, higher-level lan
guage in which the primary emphasis has been placed 
upon a specific application, namely the writing of 
large, production software systems for a specific 
machine. Special purpose languages, such as compil
er-compilers, do not fall into this catagorization, 
nor do we necessarily assume that these languages 
need be machine-independent. We stress the word 
'implementation' in our definition and have not used 
words such as 'design' and 'documentation'. We do 
not necessarily expect that an implementation lan
guage will be an appropriate vehicle for expressing 
the design of a large system nor for the exclusive 
documentation of that system. Concepts such as 
machine-independence, expressing the design and 
implementation in the same notation, self-documenta
tion, and others, are clearly desirable goals and 
are criteria by which we evaluated various languages. 
However, they are not implicit in our definition of 
the term "implementation language". There are a few 
extant examples of languages which fit our defini
tion: EPL (a PL/I derivative used on MULTICS l ), 
B5500 Extended Allol (Burroughs Corporation2), 
PL/3603 , and BCPL . 

*This work was supported by the Advanced Research 
Project8 Agency of the Office of the Sacretary of 
Defense (F-44620-67-C-0058) and is monitored by the 
Air Force Office of Scientific Research. 

The various arguments for and against the use 
of higher level languages to write systems software 
have been discussed at length. We do not intend to 
reproduce them here in detail except to note that 
the skeptics argue prbnarily on two grounds: effi
ciency, and an assertion that the systems programmer 
must not allow anything to get between himself and 
the machine. The advocates argue on the grounds of 
production speed (and cost), maintain~bility, re
design and modification, understandability and cor
rectness. The report of the NATO Conference on 
Software Engineering held in Garmish (October, 1968)5 
contains several discussions on these points, and 
the reader is urged to read that report. 

It is our opinion that program efficiency, 
except possibly for a very small number of very 
small code segments, is determined by overall pro
gram design and not by locally tricky, "bit-picking" 
coding practices. 

Many, if not all, systems have experienced sub
stantial performance improvements from redesign or 
restructuring resulting from understanding or in
sight after the system has been running for some 
time. This redesign is frequently done by someone 
other than the programfs original author. This 
argues for good documentation - but also for under
standability of the code itself. Understandability 
is a function of many things, not all of which are 
inherent in the language in which a program is writ
ten - a programmer's individual style for example. 
Nevertheless, the length of a program text and the 
structure imposed upon that text are important fac
tors and argue strongly for the use of a higher lev
el language. 

Presuming the decision to use an implementation 
language, which one should one choose? An argument 
might be made for choosing one of the-existing lan
guages, say Fortran, PLII, or APL, and possibly ex
tending it in some way rather than adding to the 
tower of Babel by defining yet another new one. We 
have chosen to do the latter and some justification 
is required. The only valid rationale for creating 
a new language is that the existing ones are inap
propriate to the task. What then are the special 
characteristics of systems programs which existing 
languages are inappropriate to express? (Later we 
shall discuss how these manifest themselves in 
Bliss.) The two special characteristics most 
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frequently mentioned are efficiency and access to 
all hardware features of the machine. We add sev
.eral things to these; the resulting list forms the 
design objectives of Bliss. 

Requirements of Systems Programs 
- space/time economy 
- access to all relevant hardware features 
- object code should not depend upon elab-

orate run-tUne support 

Characteristics of Systems Programming Practice 
- control over the representation of data 

structures 
- flexible range of control structures (no

tably including recursion, co-routines, 
and asynchronous processes) 

- modularization of a system into separately 
compilable sub-modules 

- parameterization, especially conditional 
compilation 

Overall Good Language Design 
- encourage program structuring for under

standabili ty 
- encourage program structuring for debugging 
- economy of concepts (involution), general-

ity, flexibility, ••• 
- utility as a design tool 
- machine independence 

Not all of the goals mentioned above are com
patible in practice, nor is the order in the above 
list accidental. Those found early in the list we 
consider to be absolute requirements while those 
occurring later in the list may be thought of as 
criteria by which alternative designs are judged 
once the more demanding requirements are satisfied. 

For example, efficiency, access to machine fea
tures and machine independence are conflicting 
goals. In fact the design of Bliss is not machine 
independent, although the underlying philosophy and 
much of the specific design are. The machine for 
which the language was being designed, the PDP-lO, 
was ever present in the minds of the designers. The 
code to be generated for each proposed construct, or 
form of a construct, was considered before that con
struct was included in, or excluded from, the lan
guage. Thus the characteristics of the target 
machine pervade the language in both overt and sub
tle ways. This is not to say that Bliss could not 
be Unplemented for another machine, it could. It 
does say that Bliss is particularly well suited to 
implementation on the PDP-10 and that it could 
probably not be as efficiently implemented on 
another machine. We think of Bliss as a member (the 
only one at present) of a class of languages similar 
in philosophy and mirroring a similar concern for 
the important aspects of systems programming, but 
each suited to its own host machine. 

As another example of the incompatibility of 
these goals, consider the requirement for minimal 
run-time support and the use of the implementation 
language as a design tool. In some sense a design 
tool should be at a higher level than the object 
being designed - that is, the tool should relieve 
the designer from concern whichever details the 
designer deems appropriate only for later considera
tion. Any language relieves its user fram concern 
over certain details, even assembly language frees 
the coder from the need to make specific address 

assignments. Assembly language is not a good design 
tool precisely because the class of such facilities 
is finite and narrow, a higher level language is 
better because the class is larger and broader. 
There is a point, however, beyond which broadening 
the class of details which are handled automatically 
introduces substantial costs in run-time efficiency 
and requisite run-time support. The design of Bliss 
walks a very fine line between generality, effici
ency, and minimal run-tUne support. At the time of 
this writing Bliss programs require run-time support 
to the extent of one subroutine consisting of ten 
instructions. 

DESCRIPTION OF BLISS 

Bliss may be characterized as an Algol-PL/I 
derivative in the sense that it has a similar expres
sion format and operator hierarchy, a block struc
ture with lexically and dynamically local variables, 
similar conditional and looping constructs, and 
(potentially) recursive procedures. As may be seen 
from the two simple examples shown below the general 
format of Bliss code is quite Algol-like; however, 
the similarity stops shortly beyond this glib com
parison. 

function factorial (n) = 
if .n ~ 1 then 0 else .n*factorial (.n-l); 

function QQsearch (K) 
begin register R,Q,A,E; 
E ~ R ~ .K/.n; Q ~ .K mod .n; A ~ .const; 
do if .ST[.R] ~ .K 

then return .R 
else ~R + .A; A ~ .A + .Q) 

until .R ~ .E 
end; 

The first of these examples is the familiar recur
sive definition of factorial. The second example is 
the "quadratic quotient" hash search described by 
J. Bell in the February, 1970 CACM. 

We will now describe the major features of Bliss 
in terms of its major aspects: (1) the underlying 
storage, (2) control, (3) data structures, and final
ly mention some other miscellaneous features. 

1. Storage 

A Bliss program operates with and on a number 
of storage "segments". A storage segment consists 
of a fixed and finite number of "words", each of 
which is composed of a fixed and finite number of 
"bits" (36 for the PDP-lO). Any contiguous set of 
bits within a word is called a "field". Any field 
may be "named", the value of a name is called a 
"pointer" to that field. In particular, an entire 
word is a field and may be named. 

In practice a segment generally contains either 
program or data, and if the latter, it is generally 
integer numbers, floating point numbers, characters, 
or pointers to other data. To a Bliss program, how
ever, a field merely contains a pattern of bits. 
Various operations may be applied to fields and bit 
patterns such as fetching a bit pattern (value) from 
a field, storing a bit pattern into a field, integer 
arithmetic, comparison, boolean operations, and so 
on. The interpretation placed upon a particular bit 
pattern and consequent transformation performed by 
an operator is an intrinsic property of that operator 
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and not of its operands. That is to say, there is 
no 'type' differentation as in Algol. 

Segments are introduced into a Bliss program by 
declarations, for example: 

global g; 
~ x,y [5J, z; 
local p [100]; 
~ter rl, r2 [3J; 
function f(a,b) = .at.b; 

Each of these declarations introduces one or more 
segments and binds the identifiers mentioned (e.g., 
g, x, y, etc.) to the name of the first word of the 
associated segment. (The function declaration also 
initializes the segment named If I to the appropriate 
machine code.) 

The segments introduced by these declarations 
contain one or more words, where the size may be 
specified (as in "local p[lOOJ"), defaulted to one 
as in "global g;"):-O;-defaulted to whatever length 
is necessary for initialization (as in the function 
declaration). Explicit size declaration (as in 
"local p[lOOJ") are restricted to expressions whose 
value can be determined at compile time so that run
time storage management is not required. The iden
tifiers introduced by a declaration are lexically 
local to the block in which the declaration is made 
(that is, they obey the usual Algol scope rules) 
with one exception - namely, "global" identifiers 
are made available to other, separately compiled 
modules. Segments created by ~, global, and 
function declarations are created only once and are 
preserved for the duration of the execution of a 
program. Segments created by local and register 
declarations are created at the time of block entry 
and are preserved only for the duration of the exe
cution of that block. Register segments differ from 
12£!! segments only in that they are allocated from 
the machine's array of 16 general purpose (fast) 
registers. Re-entry of a block before it is exited 
(by recursive function calls, for example) behaves 
as in Algol, that is, l2£!l and register segments 
are dynamically local to each incarnation of the 
block. 

It is important to notice from the discussion 
above that identifiers are bound to names by these 
declarations, and that the value of a name is a 
pointer. Thus the value of an instance of an iden
tifier, say x, is ~ the value of the field named 
by x, but rather is a pointer to x. This interpre
tation requires a "contents of" operator for which 
the symbol "." has been chosen. (Which explains the 
occurrence of this character in the earlier examples. 
This will be discussed in much greater detail under 
the subject of data structures.) There are two ad
ditional declarations whose effect is to bind iden
tifiers to names, but which do not create segments; 
examples are: 

external 
bind 

s; 
y2 = y+2, pa = p+.a; 

An external declaration binds one or more iden
tifiers to the names represented by the same name 
declared global in another, separately compiled 
module. The bind declaration binds one or more 
identifiers to the value of an expression at block 
entry time. This will be discussed in greater 
detail in the section on data structures. 

2. Control 

Bliss is an "expression language", that is, 
every executable construct, including those which 
manifest control, is an expression and computes a 
value. There are no statements in the sense of 
Algol or PL/r. Expressions may be concatenated with 
a ";" to form compound expressions, where the value 
of a compound expression is that of its last compo
nent expression. Thus ";" may be thought of as a 
dyadic operator whose value is simply that of its 
righthand operand. The grouping symbols "begin" and 
"end" or "(" and ")" may be used to embrace such a 
compound expression and convert it into a simple 
expression. A block is merely a special case of 
either of these constructions which happens to con
tain declarations, thus the value of a block is 
defined to be the value of its constituent compound 
expression. 

The assigrnnent operator, ""''', is a dyadic oper
ator whose left operand is interpreted as a pointer 
and whose right operand is an uninterpreted bit pat
tern. The right operand is stored into the field 
named by the left operand, the value of the expres
s ion is that of its right operand. Recalling the 
interpretation of identifiers and the "." operator, 
the expression 

x+-.x+l 

causes the value of the field named by x to be in
cremented by one. The value of the entire assign
ment expression is that of the incremented value. 
The compound expression 

(y ... x; z ..... y+l) 

causes a pointer to x to be stored into y, then 
computes the value of the field named by x (accessed 
indirectly through y) plus one and stores this value 
in z; this value is also that of the compound expres
sion. 

There is the usual complement of arithmetic, 
logical, and relational operators. Logical opera
tors operate on all bits of a word; relational oper
ators yield a value 1 if the relation is satisfied 
and a value of 0 otherwise. 

We will describe six forms of control expres
sions: conditional, looping, case-select, function 
call, co-routine call, and escape. For this discus
sion it will be convenient to use the symbol E, pos
sibly subscripted, to represent an arbitrary expres
sion. 

The conditional expression is of the form 

and is defined to have 
that the righenost bit 
value of E3 otherwise. 
then Ej" is cons idered 
then EZ else 0". 

the value ~ just in the case 
of"El is a t and has the 

The abbreviated form "if El 
to be identical to "if El 

There are four basic forms of looping expres
sions: 



Each form of looping expression implies repeated 
execution (possibly zero times) of the expression 
denoted E until a specific condition is satisfied. 
In the first form the expression (while ••• do) E is 
repeated so long as the rightmost bit of El remains 
1. The second form is similar to the first except 
that E is evaluated before El thus guaranteeing at 
least one execution of E. TIle last two forms are 
similar to the familiar "step ••• until" construct of 
Algol, except (1) the control variable is local to 
E, (2) El,Ez' and E3 are computed only once (before 
entry to the loop), and (3) the direction of the 
step is explicitly indicated (increment or decre
ment). Except for the possibility of an escape ex
pression within E (see below) the value of a loop 
expression is uniformly taken to be -1. 

We shall treat somewhat simplified versions of 
the ~ and select expressions here, these forms 
are: 

The value of a case expression is E , that is, the 
expression e is evaluated and this ~alue is used to 
select one of the expressions E. (0 ~ i ~ n) whose 
value, in turn, becomes tbe val~e of the entire case 
expression. The select expression is somewhat sim
ilar to the case ~sion with the distinction 
that the value of e is not restricted to the range 
o $ e $ n. Execution of the select proceeds as fol
lows: (1) the value of e is computed, (2) the value 
of the expressions ~. (0 ~ i ~ n) are evaluated, 
(3) for each i such tfiat e = ~. the expression 
E2 . 1 is evaluated. Thus, in tfie event that more 
tfik~ one value of i exists such that e = Ez.) each 
of these expressions is evaluated; in this ~ase the 
final value of the ~ expression is undefined. 

A function call expression has the form 

This expression causes activation of the segment 
named by E as a subprogram with an initialization of 
the formal parameters named in the declaration of the 
function to the values of the actual parameters 
El, •.• ,E. Only call-by-value parameters are allowe~ 
however,ncall-by-reference is available since names, 
pointer values, may be passed. The value of a 
function call is that resulting from execution of 
the body of the function. Thus, for example, the 
value of the following block is 3628800. 

begin 
function factorial(n) 

if .n ~ 1 then 1 else .n*factorial(.n-l); 
factorial(lO) 
end 

Note that a function call need not explicitly name a 
function by its associated identifier; all that is 
required is that E evaluate to the name of a segment. 
Thus expressions such as the following are valid and 
useful. 

(case.x of set Pl;P2;P3 tes)(.z) 

Also note that the occurrence of a parameter list 
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enclosed in brackets triggers a function call. An 
identifier by itself merely denotes a pointer to the 
named segment; thus in the example above PI, P2, and 
P3 are the names of functions and thus the value of 
the case statement is the name of one of these 
functions (not the result of executing it). Function 
calls with no parameters are written "E( )". 

The body of any function may be activated as a 
co-routine and/or asynchronous process. An arbitrary 
number of distinct incarnation of a single body are 
allowed. In order to permit any of several realiza
tions of co-routine mechanisms~nly two primitive 
operations are provided. 

1 2 n 
create E(E ,E , ••• ,E ) at Ez length E3 then E4 
exch j ( ES ' E6 ) 

The effect of the create expression is to create an 
independent context (that is, a stacki for the 
function named by E with parameters E , ••• ,En• The 
stack is set up beginning at the word named by ~ 
and is of size E3 words (to provide overflow protec
tion). The activation record for the newly created 
co-routine is set to the head of the function named 
by E. The value of the ~ expression is a "pro
cess name" for the new co-routine. Control then 
passes on to the expression following the 'create' -
in particular the expression E4 is not executed at 
this time and the body of E is not activated. When 
two or more such contexts have been established, 
control may be passed from the currently executing 
one to any other by executing an exchange jump, 
exchj, expression. An expression "exchj (E

S
' ~)" 

will cause control to pass to the co-routine named 
by ES (the value of an earlier create expression). 
The value E6 becomes the value of the exchj opera
tion which last cause control to pass out of the 
co-routine named by ES" 

The familiar "goto ••• labe1" form of control has 
not been included in Bliss. There are two reasons 
for this: (1) unrestricted goto's require consider
able run-time support due to the possibility of 
jumping out of functions and/or blocks, and (2) the 
authors feel strongly that the general goto, because 
of the implied violation of program structure, is a 
major contributor to making programs difficult to 
understand, modify and debug. There are "good" and 
"bad" ways to use a goto and there are restrictions 
which could be imposed which eliminate the need for 
run-time support. Consideration of the nature of 
"good" ways and the restrictions necessary to elim
inate run-time overhead led us to eliminate the goto 
altogether, and to the inclusion of conditional, 
looping, and case-select expressions. These alone, 
however, are not sufficiently general, or convenient, 
and consequently the 'escape' expressions were intro
duced. There are six forms of escape expressions: 

EXITBLOCK E 
EXITCOMPOUND E 
EXITLOOP E 

EXITCOND 
EXIT 
RETURN 

E 
E 
E 

Each form of escape expression causes control to 
exit from a specified control environment (a block, 
a loop, or a conditional expression, for example) 
and defines a value (E) for that control expression 
(EXIT exits from any form of control expression, 
RETURN exits from a function). 

Consider a linked list of two word cells, the 
first of which contains a link (pointer) to the next 
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cell (the last cell has link=O) and -the second of 
which contains data. The following expression has a 
value which is the pointer to the first negative data 
item, or a value of -1 if no such item is found. The 
address of the head of the list is contained in a 
field called 'head'. 

(register t; t ~ head; while (t ~ .t) ~ 0 do if 
.(.t+l) Iss 0 then break .t); 

Note that the initialization of t, i.e., 't ~ head', 
sets the value of It' to a pointer to 'head', not 
the contents of 'head'. 

3. Data Structures 

One of the outstanding characteristics of sys
tems programs is their concern with the wide variety 
of data structures and schemes for representing 
these structures. Observation of what systems pro
grammers do reveals that a very large fraction (near
ly 50% in our experience) of their design effort is 
spent in designing representations for efficiently 
encoding the information they will process. It is 
frequently the case that the most difficult task in 
making a modification to an existing program is that 
of representing the additional new information re
quired (e.g., the infamous "find another bit" prob
lem). Consequently the issue of representation was 
one of the central design considerations in Bliss. 

Two principles were followed in the design of 
the data structure facility of Bliss: 

- the user must be able to specify the accessing 
algorithm for elements of a structure, 

- the representational specification and the 
specification of algorithms which operate on 
the represented information must be separated 
in such a way that either can be modified 
without affecting the other. 

The first principle follows simply from the 
fact that non-algorithmic specifications are inade
quate to express certain important representational 
schemes. By a non-algorithmic specification we mean 
one which statically specifies the layout of a 
structure in terms of primitive structures (words, 
fields, etc.), other defined structures, and (pos
sibly) pointers. By an algorithmic specification we 
mean one which, given a set of parameters (indices) 
computes a pointer to the appropriate structure ele
ment. Algorithmic specifications have the advantage 
of generality, but some disadvantage of verbosity 
for simple structures. This latter type of specifi
cation will be amply illustrated below. 

In order to achieve a language in terms of 
which it is possible to write large systems that may 
be easily modified, it is imperative that the speci
fications of the representation of a data structure 
be separated from the specification of algorithms 
which manipulate data in that structure. This prin
ciple is severely violated in assembly languages 
where, typically, the code to access an element of a 
structure, for example, simply a contiguous field of 
bits within a word, is coded "in line" at the point 
where the element is needed. A comparatively triv
ial change which alters the size or position of the 
field and may require locating and modifying all 
references to the field. This simple problem could 
be solved by following good coding practice and, 
perhaps, by the use of macros; not all changes are 
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of such a trivial nature, however. 

The concept of a "pointer" to a field (of bits 
within a word) was mentioned earlier. Actually in 
Bliss a pointer is a five-tuple consisting of: 
(1) a word address, (2) a field position (3) a 
field size, (4) an (index) register name: and (5) an 
"indirect address" bit. These five quantities are 
encoded in a single word and as such are a manipu
latable item in the language (a prerequisite of 
algorithmic representational specification). For 
simplicity we shall discuss only the first three of 
these quantities; the reader is referred to the 
Bliss reference manual6 for more detail. The "word 
address", wa, field of a pOinter designates the 
physical machine address of the word; the 'posi
tion', p, and 'size', s, designate a field within a 
word in terms of the number of bits to the right of 
and within the field. 

~ I I - I I ( 
1 r ~i:k:~ r word word word word 

"wa-l" "wa" "wa+l" "wa+2" 

The notation used in Bliss to specify a pointer 
(taking only the simple wa,p,s case) is "wa<p,s>". 

Assume that the declaration 

2!£ x[lOO] 

has been made. The identifier x is bound by this 
declaration to a pointer to the 36 bit field which 
is the first word of this 100 word segment. That 
is, the word address of the pointer "x" is that of 
the location allocated to the segment and the posi
tion and size fields have values of zero and thirty
six respectively. If we denote the address of the 
segment by et , then an occurrence of "x" in a Bliss 
program is i~entical to an occurrence of "et <0,36>". 
If EO - Ez are expressions, then the syntac~ic form 

is by definition a pointer whose word address is the 
value of EO (modulo 218) and whose position and size 
sgecificat10ns are the values of El and ~ (modulo 
2 ) respectively. Thus IX<3,4>" is a pointer to a 
four bit field three bits from the right end of a 
word named X. The word address, position, and size 
information are encoded within a py~nter in such a 
way that adding small integers «2 ) to a pointer 
increments the word address only. Thus "X+I" is a 
pointer to the word following X. 

The definition of a class of structures, that 
is, of an accessing algorithm to be associated with 
certain specific data structures, is made by a dec
laration of the form: 

structure <name>[<formal parameter list>] = E 

Particular names may then be associated with an 
accessing algorithm by another declaration 

~ <name>: <name Ii s t> 



Consider the following example: 

begin 
structure ary2[i,j] = (.ary2+(.i-l)*lO+(.j-l»; 
~ x[lOO],y[lOO],z[lOO]; 
~ ary2: x,y,z; 

x[.a,.b] .... y[.b,.a]; 

end---' 
In this example we introduce a very simple structure, 
ary2, for two dimensional (lOxlO) arrays, declare 
three segments with names 'x', 'y', and 'z' bound to 
them, and associate the structure class ary2 with 
these names. '!be syntactic forms "x[El,S,]" and 
"y[E3 ,E4 ]" are valid within this block ana denote 
evaluat10n of the accessing algorithm defined by the 
structure declaration (with an appropriate substitu
tion of actual for formal parameters). Within the 
expression defining a structure class, the name of 
the structure class, ary2 in this case, denotes the 
name of the "zeroth" formal parameter - and is re
placed by the name preceding the "[" at the call 
site. Thus, ".ary2" denotes the value of the name 
of the particular segment being referenced. In the 
example 'x[.a,.b]' is equivalent to: 

(x+(. a-1) "1(10+(. b -1» 

The value of this expression is a pointer to the 
designated element of the segment. 

In the following example the structure facility 
and bind declaration have been used to efficiently 
encode a matrix product 

10 
(z . _ = Ex_ kYk -). 

1, J k=l 1 J 

In the inner block the names 'xr' and 'yc' are 
bound to pointers to the base of a specified row of 
x and column of y respectively. These identifiers 
are then associated with structure classes which 
allow one-dimensional access. 

begin 
structure ary2[i,j] = (.ary2+(.i-l)*10+(.j-l», 

row[i] = (.row+.i-l), 
col[j] = (.col+(.j-l)*lO); 
x[lOO],y[lOO],z[lOO]; 
ary2: x,y,z; 

incr i fram 1 to 10 do 

end 

begin bind x;;x [. i -:-r] ,zr=z [. i, 1];!!!!E. row: xr, zr; 
incr j from 1 to 10 do 

begin-- - -
register t; bind yc=y[l,.j];~ c01:yc; 
t +- 0; 
incr k from 1 ~ do t +- .t+.xr[.k]*.yc[.k]; 
z[.j] +---:t; 

end; 
end; 

Suppose now that one wishes to alter the repre
sentation of the structure 'ary2', and access to the 
array is to be made through an Ilife vector (or, 
"dope" vector) to define the relative base of each 
row. The major change required is to replace the 

current structure declaration for "ary2" by 

~ i1[lO]; map row: i1; 
structure ary2[i,j] = (.ary2+.il[.i-1J+.j-l); 

With this repre~entation, the use of a special ac
cessing algorithm (structure) for accessing columns 
becomes 

structure col[jJ = (.col + .il[.j-lJ); 

As can be seen, these fairly simple changes to the 
program completely changes its representation of the 
data. No changes to the processing algorithm are 
required. 

4. Miscellaneous Features 

Finally, we shall now describe two features of 
the language which are important to the goal of 
parameterization of programs. The first is simply 
that constant expressions are evaluated at compile 
time. This is a common feature of compilers and not 
particularly exciting by itself. Note, however, 
that since the value '1' is interpreted as true, and 
'0' as false, expressions such as 

if 1 and 1 or 0 then else . _. ; 

are constant in that only the then part will be 
executed. The compiler notes this and does not 
emit the code for testing the condition or evalua~
ing the else part. Similarly, only the third ex
pression~the following ~ expression will be 
evaluated at execution time, and consequently the 
compiler only generates code for that expression. 

The second feature is a fairly elementary 
string replacement macro capability. A macro name 
and its associated text are introduced by a declara
tion of the form: 

ntapes = 3$, 
ndrums = 5$, 
loop(i,n) = ~ i ~ 1 ~ n do $~ 

This particular declaration defines three macro 
names ('ntapes', 'ndrums', and 'loop') and defines 
a text string which is to. replace the macro name 
(and its parameters, if any) where it (they) is 
(are) mentioned in the scope of the declaration. 
The end of a text string is delimited by '$', and 
may mention formal parameter names - these are re
placed by actual parameter strings used at the call 
site. 

One may combine these two features to para
meterize a system. Consider the following skeletal 
code: 

begin 
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~ ntapes = 3$, 
ndrums = 5$, 
descsize 2$, 
cloop(i,n) = if n ill 0 ~ !.!!£!. i 

from 1 to n do $; 
~ devicedesc [ntapes*ndrums*descsize]; 
structure devary [i,j] = (.devary + (.i-l)*dese

size + .j); 
~ devary: devicedesc; 

) 



o 

The declarations above define a table of device 
descriptions for magnetic tapes and drums. The num
ber of entries for tapes and drums, and the number 
of words per description entry are controlled by the 
macro definitions 'ntapes', 'ndrums', and 'descsize'. 
Suppose the number and size of fields within the 
device description for tapes and drums are differ
ent. The following structure and bind declarations 
allow one to access these fields conveniently: 

structure tapeary [i,j] = 
case (.j-l) of 

set 
~apeary + (.i-l)*descsize)<0,36>; 
(.tapeary + (.i-l)*descsize)<18,18>; 
(.tapeary + (.i-l)*descsize)<18,18>; 
~; 

structure drumary [i,j] = 
case (.j-l) of 

set 
(:drumary + (.i-l)*descsize)<0,36>; 
(.drumary + (.i-l)*descsize+l)<18,18>; 
(.drumary + (. i-l)'1(descsize+l)<17, 1>; 
(.drumary + (.i-l)*descsize+l)<16,1>; 
(.drumary + (.i-I)*descsize+l)<0,16>; 
~; 

~ tapedesc = devicedesc [0,0], 
drumdesc = devicedesc [ntapes,O]; 

~ tapeary: tapedesc, drumary: drumdesc; 

These declarations make it feasible for the 
programmer to refer to 'tapedesc [.i,2]', for 
example, as the second field of the description of 
the ith tape without regard to the size or location 
of that field. The following code uses the constant 
expression evaluation feature to selectively include 
only relevant code. 

global function initialize 
begin 

cloop(i,ntapes) 
beg%n 

code to initialize tape description goes 
here% 

end
cloop(i,ndrums) 
be~in 

code to initialize drum descriptions goes 
here % 

end-
~ oth~r initialization code goes here ~ 

end-
ifIrt~peS ill o then 

begin 
global function tapehandler 
be~in 

code for body of tape device handler % 
end-

globai function tapeopen = 

be~in 
o code for special file-open actions on 

magnetic tape cf, 
end-

% oth~r specialized tape functions declared 
here ~ 

Since the body of an "if E then E.," expression is 
not compiled in the case t~at the ~l is a constant, 
and false, the global functions 'tapehandler', etc., 
are not compiled unless 'ntapes' is greater than 
zero. One can imagine more complex expressions, 
such as 'if (ndrums m 0) 2!. (ndisks m 0) then', 

controlling the inclusion of, for example, file
directory handling code. 

EVALUATION AND CONCLUSIONS 

As of this writing the Bliss compiler is in its 
final stages of completion, and consequently experi
ence using the language is somewhat limited. To 
date only one major project has been undertaken in 
Bliss, namely the compiler itself. The language 
has evolved as a consequence of this experience, and 
we expect it will evolve further as it is used. 

In spite of the relative lack of experience in 
using the language, it would be very nice to have 
some objective measures of the language - measures 
of such things as efficiency, appropriateness (to 
the systems programming problem), readability, con
sistency, etc. Such measures are, of course, very 
difficult to define objectively. However, we have 
attempted to supply some data from which the user 
may draw his own conclusions. One of these data 
points indicates the quality of code produced by the 
Bliss compiler - and is therefore an indirect mea
sure of the suitability of the language for one 
system's programming problem. The second bit of 
data is an annoted table comparing features of some 
implementation languages. 

The measure chosen for code quality of the 
Bliss compiler is simply that of code size. Three 
sections of the compiler were chosen as a basis for 
comparison in an attempt to factor out those things 
which (1) are intrinsic to the structure of the 
language, (2) are a function of the current optimiza
tion strategies of the compiler (which can always be 
improved), and (3) are a function of a particular 
programmer's "style". The sections are named 10, 
LEXAN, and SYNTAX and are respectively the i/O 
interface, lexical analyzer (symbol table routines, 
etc.), and syntax analyzer. Of these, 10 was orig
inally written in "clever" assembly code and later 
translated into Bliss, while LEXAN and SYNTAX were 
originally written in Bliss and then translated by 
hand into assembly code. The translation of LEXAN 
was done in such a way as to mirror the functional 
structure of the original Bliss code at the sub
routine level but internally was coded for maximal 
efficiency. SYNTAX, on the other hand, was trans
lated with the aid of a number of general purpose 
macros and mirrors exactly the structure of the 
original Bliss text. The results are as follows: 

approximate elative size of 
size om iled version 

10 50 40% larger 
LEXAN 1300 740 larger 
SYNTAX 2300 20~ smaller 

From this small sample one can draw some tentative 
conc Ius ions: 

1. 10 is something like a worst case. It is 
small (which tends to exaggerate the over
head for recursion, etc.) and it was orig
inally written in assembly code. The pen
ality in such a case appears to be on the 
order of 50%. 

2. Since the hand coding of LEXAN obeys the 
subroutine calling conventions of compiled 
Bliss programs, but is otherwise coded 



fairly tightly - the penality for the current 
optimization techniques appears to be on the 
order of lOc1,. 

3. The compiler does considerably better than 
macro extension of assembly code. 

Table I and its associated notes compare certain 
features of implementation languages as described by 
the most recent documentation available to these 
authors, and speaks for itself. Neither the list of 
features nor the list of languages is exhaustive; 
both reflect the prejudcies of the authors. Numbers 
in the lower right corner of entries refer to the 
notes following the table. 

The comparisons of code size and language fea
tures given above hopefully provide some insight 
into the use of Bliss as an implementation tool; 
unfortunately, they do not give absolute measures of 
its utility. In particular there seems to be no way 
at present to measure the benefits of maintainability 
and modifyability - and these are, in the opinion of 
the authors, its major advantage. 

NOTES ON TABLE r 

1. Of course ~ language is explicitly designed to 
produce large, slow programs. The entries in 
this row reflect the extent to which efficiency 
was a prime goal and the extent to which con
cessions were made. 

2. Bliss and Espol have limited macro facilities 
when compared to most macro assemblers, namely, 
simple string replacement (with parameters). 
PL/r has extensive macro facilities, but these 
are not described as part of EPL. 

3. All of the languages listed either have the 
ability to embed assembly code or to call machine 
language subroutines. The entry relater! princi
pally to the former facility. 

4. The entries are coded as follows: 

M machine data types 
C conceptual data types 

op type interpretation is derived from 
operator 

V type interpretation is derived from 
variables 

D type interpretation is derived from data 

5. Ina' denotes 'not applicable'. 

6. Fortran, Espol and EPL provide no control over 
the representation of data structures. Macro, 
BCPL, SAL, and PL/36 0 provide such control; how
ever the access to elements of structures must 
be programmed "in-line". 

7. Macro, SAL, and PL/360 permit recursions in the 
sense that the programmer may choose to explic
itly code a recursive calling sequence. 

8. The following code are used to denote various 
parameter passing options. 

V call-by-value 
N call-by-name 
R call-by-reference 

9. The following codes are used to denote various 
control statement forms: 

10 Fortran if-statement 
II Algol-like "if-then-else" 
D Do-statement 
F Algol-like for-statement 
C case statement 
SF Simple-for (corresponds to Algol step-

until case) 
W while-statement 
G goto 
SO BCPL "switchon", similar to Bliss 

"select" 
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C: 
TABLE I 

COMPARISON OF IMPLEMENTATION LANGUAGES 

GOAL B5500 EPL 
FEATURE BLISS ~CRO-1O FORTRAN ESPOL (PL/I) BCPL SAL ~L/360 

space/time 
/r 

goal goal goal goal no / no / gOal/ gOal/ 
economy / / A / 
machine 

/ no / no 
/ yes / no / yes / yes / no / no / independence 

Macro / yes j yes j no 
/ 

yes j no 
I 

no no / no / / 

access to 

A yes / yes 
/ 

no yes 
hardware ~ l 

no 
/ 

no / yes / yes 
/ 

run time suppo, no / no 
/ 

yes some yes some / no no 
/ required / I I j 

M,op M,op C,V ~(D1V) ~Iii~ M,op C yP C,¥ 
data types ~ / / !freal'r)/ Rf!~ae/ / rea , ~-j rea , 

~ .. J I>nteger r ....... ~ .. ~ 0{ 

automatic con-
version of data~ na 

/ na / yes yes yes na na / no 
/ types I / I / 

user user hier- user user 
data s truc tures / definer iefined / .arrays I arrays 

~rchicaJ 
vectors 

definecij defined/ / j 
control of repre- yes yes / no no no yes yes yes 
sentation of / / l / I / I I 

yes / yes h no yes yes yes 
I 

no j yes i recursion / I / / 
co-routines / yes / yes / no no no no 

/ 
no 

/ 
no 

/ J / I 
V,R na 

/ 
R V,N,R V,R V,R 

/ V,R I V,R 
/ parameters A / / i J 

conditional/ see 
~l,F,C,cy 

I1'SF,W, 
II' SF ,w '7 

I!, SF ,w, 
h text / 

na / IO,D,G / I1,D,Gj C,SO,G / C,G / looping. etc. 
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SECTION VI 

BLISS EXAMPLES 

This section contains a set of examples which illustrate the llse 

of Bliss. Each exatnple is intended to be fairly complete and self con

tained, and to illustrate one or more features of the language. 

The authors would like to invite others to contribute further ex

amples for inclusion in this section. New examples will be included 

if they clearly illustrate features and/or uses" of the language which 

are not already adequately illustrated. 



EXAMPLE 1: A TT-CALL I/O PACKAGE 

Contributors: C. Geschke and W. Wu1f 

The fo1lovTing set of declarations defines a set of teletype input/ 

output r.outines using the PDP-10 monitor TT-ca1l mechanism. The set of 

functions is not complete, but adequate to illustrate the approach. 

The declarations below provide the following functions: 

INC Input one character - wait for EOL before returning 

OUTC Output one character 

OUTSA Output ASCIZ-type string beginning at specified address 

OUTS Output ASCIZ-type string specified as the parameter 

OUTM Output multiple copies of a specified character 

CR Output carriage return 

LF 

NULL 

CRLF 

TAB 

OUTN 

OUTD 

OUTO 

OUTDR 

OUTOR 

Output line fe~d 

Output null character 

Output carriage return and line-feed followed by 2 nulls 

Output tab 

Output number in specified base and minimum number of digits 

Output decimal number with at least one digit 

Output octal number with at least one digit 

Output decimal number with at least specified number of digits 

Same as OUTDR except octal 

) 



C: 

MODULE TTIOCSTACK).BEGIN 

MACHOP TTCALL-151J 

MACRO INC= (REGISTER QJ TTCALL(4~Q)J .Q)$~ 
OUTCCZ)a (REGISTER Q; Q~CZ)J TTCALLCl.Q»$, 
OUTSACZ)= TTCALL(3,Z)$, 
OUTSeZ): OUTSAePLIT ASCIZ Z)$, 
OUTMCC~N)= DEeR I FROM (N)-1 TO 0 DO OUTCCC)$, 
CR= OUTCCllS)$, LF~ OUTCC'12)$~ NULL= QUTCeO)$1 
CRLF= OUTS ( '1 M1 J1 01 0' ) $" 
TAB= OUTce, 11) $; 

FDUTINE OUTNCNUM"BASE"REQD)= 
BEGIN O~ N.B,RD,TJ 

ROUT If'JE XN'= 
BEGI~ LOCAL RJ 

IF .N EQL 0 THEN RETURN OUTMCuO"".RD-.T); 
R" • N MO D • B J N". N/ • B; T~. T + 1 J XN ( ) J 
OUTCC.R+"O") 

END; 

IF .NUM LSS 0 THEN OUTee"-tt)l 
B-.BASE; R~.REQD; T"O; ~~ABS(.NUM)J XN() 

ENDl 

MACRO OUTD<Z)= OUT~(Z"lOll)S, 
OUTO(Z)= OUTNCZ,,8,1)$, 
OUTDRCZ"N)= OUTNCZIIO"N)$" 
OUTOR(Z,~)= OUTNCZ,8~N)$J 

1 THE PROGRAM BELOw PRINTS A TABLE OF INTEGERS" THEIR SQUARES" AND 
, THEIR CUBES: . 

OWN N"C; 

CRLF; OUTse 'INPUT AN INTEGER PLEASE ••• ')J 
N" 0; WHILE (C" I(\1C) 6TR "0" IWD • C LSS "9" 00 N". N* 1 0+( • C-tlO"); 

CRLFJ OUTSC'A TABLE OF THE SQUARES AND CUBES OF 1-'); OUTDC.N); 

CRLFJ INCR I FROM 1 TO 3 DO <TABJ OUTSC' Xt'); OUTDC.I»; 

CRL F J 1(\1 CR I FRO M 1 TO 3 00 ( TABJ 0 UTM ( .. - It" 5 ) ) J 

INCR I FROM 1 TO .N IX) 

BEGIN 0 Wl'J XJ 
x ... I; CRLFJ 
DECR J FROM 2 TO 0 DO (TAB; OUTDe.X)J X".X*. I) 

END 

END ELUDOM 



Although the example is quite simple, there are several things about 

it which should be noted: 

1. The use of a MACHOP declaration and embedded assembly code. 

2. The use of macros to add a level of "syntactic sugar" and 

general cleanliness to the code. 

3. The use of the escape character "?" in the CRLF macro to 

obtain control characters (e.g.) carriage-return) in strings. 

'4. Parenthesization of macro parameters, as in OUTM, to insure 

proper hierarchy relations in the expansion. 

5. The use of "DECR·,TO··ZERO" in oum because it produces better 

code than "INeR··TO-EXPRESSION". 

6. The use of m-1n variab les and the parameterless procedure XN 

in OUTN in order to avoid passing redundant parameters through 

the recursive levels of XN. 

7. The fact that the local variable fiR" is local to each recursive 

level of XN and hence its value is preserved at each level. 

J 
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EXAMPLE 2: QUEUE MANAGEMENT MODEL 

Contributors: C. Geschke and W. Wu1f 

This module contains routines to insert and delete items on doub1y

linked queues. In addition it contains space management routines i.mple

menting the "Buddy System" (cf: Knuth: Vol. 1). 

Buddy System 

This is not intended to be a detailed description of the buddy system 

model of space management. We will simply give a brief description of 

this implementation of the scheme. The vector of allocatable space is 

called MEM. Space is allocated and deallocated from M~1 by the routines 

GET and RELEASE, respectively. The basic unit of allocatable space is an 

item. Items are of size 2**ITlllSIZE where 0 < ITEMSIZE ~ LOG2MEMSIZE. 

The first two words of an item are formatted: 

ITEMSIZE RLINK 

<NOT-USED> LLINK 

Available items of size N are elements of a doubly linked list whose 

header is the two word cell SPACE[N]. The routin.es LINK and DELINK are 

called to enter and remove items from lists. The routine COLLAPSE is 

used to compactify two adjacent available items of size 2**N into an item 

of size 2**(N+l). The COLLAPSE routine iterates this process until no 

more compactification can take place. 
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Queue Model 

In this model a queue is defined to be a doubly-linked list suspended 

from a header whose first three words are fonnatted as follows: 

HEADERSIZE RLINK 

<NOT-USED> LLINK 

REMOVE ENTER 

The fields REMOVE and ENTER contain the addresses of the routines to 

be invoked when removing and entering items on the queue. To enter item X 

on queue Q, one simply makes the call ENQ(X,Q). ENQ then invokes the 

enter routine i.n Q's header which returns the address of the item in Q 

after which X is to be inserted. In a similar manner one removes the 

"next" item from queue Q b~.'· the call DEQ(Q). DEQ then invokes the remove 

routine in Q's header to return the address of the "next" item. The ad

vantage of this scheme is that the queueing discipline is queue specific, 

and the same primitives (ENQ and DEQ) may be used independent of the 

discipline used for that queue. Examples of the enter and remove routines 

for LIFO, FIFO, and PRIORITY type queues appear at the end of this example 

module. 
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MODULE QMSCSTACK). 

, BUDDY SYSTEM , .... ~~--- .... -.. -~-
BEGIN 

BIND MEMSIZE-lt12J 

GLOBAL ~ECTOR MEMCMEMSIZE]J 

BIND LOG2MEMSIZE=35-FIRSTONECMEMSIZE)J 

STRUCTURE ITEMC I.J.P.S"]= 
CASE. I OF 

SET 
(.ITEM)c.P ... S>J" 
C'.ITEM+.J)<.P •• S>J 
C".ITEM+.J)c.P •• S>J 
(.C •• ITEM+l)+.J)<.P •• S> 

TESJ 

STRUCTURE VECTOR2CIl= 
C2*IlC.VECTOR2+2*.I)<O .. 36>J 

MACRO BASE=-O .. 0 .. 0 .. 18S. 
RLINK=- 1 .. 0 .. 0 .. 18S .. 
LLINK:al .. 1 .. 0 .. 18S .. 
ITEMSIZE-l .. 0 .. 18 .. 18S .. 
NXTRLINK-a.O.O.18S .. 
NXTLLINK=2.1 .. 0.18S. 
PRVRLINK-3 .. 0.0.18S .. 
PRVLLINK-3.1.0.18SJ 

GLOBAL VECTOR2 SPACECLOG2MEMSIZE+1]J 

BIND VECTOR SIZE • 

MACRO 

PLIT(ltO .. ltl .. 1t2.1t3 .. 1t4 .. 1t5.1t6 .. 1t7 .. 1t8 .. 1t9 .. 1tlO. 
Itl1.1tI2)J 

PART~ ER C B 1 .. B2 .. S ) • (C ( (B 1 ) - MEM < 0 .. 0» XO R « B2 ) - HEM< 0 .. 0> ) ) 
EQL .SIZECS])S .. 

REPEAT- WHILE 1 DOS. 
BASEADDRCB .. S). MEMCCCB)-MEM<O .. O» AND NOT .SIZECS]]<O .. O>S .. 
ERRMSGCS). ERRORCPLIT ASCIZ S)SJ 
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, SPACE-MANAGEMENT-ROUTINES 
I~-~~---~~----~--------------

GLOBAL ROUTINE GETC~)D 

IRETU&~S THE ADDRESS OF AN ITEM OF SIZE 2**N 

BEGIN REGISTER ITEM RJ 
IF .~ LEQ 0 OR .N GTR LOG2MEMSIZE 

THEN ERRMSG(" IN\JALI D SPACE REQ') J 
IF NOT EMPTY(SPACEC.~]<O#O» 

THEN RCBASEJ-DELINKC.SPACEC.N]) 
ELSE 

BEGI~ 
RCBASE]-GETC .N+l)J 
COLLAPSEC.RCBASE1+.SIZEC.N1#.N) 

ENDl 
RCITEMSIZE1-.NJ 
.RCBASEJ 

ENDJ 

FDUTINE COLLAPSECA#N)= 

ICALLED BY RELEASE AND GET TO ATTEMPT TO COMPACTIFY SPACE 
IIFADJACE~T ITEMS ARE FREE 

BEGI~ MAP ITEM AJ REGISTER ITEM LJ 
REPEAT 

END; 

BEGIN 
LCBASEJ-SPACEC.N]<O#O>J 
WHILE .LCRLINKl NEQ SPACEC.N]<O#O> DO 

IF PARTNERC.L[RLINK1#.ACBASE],.N) 
THEN 

BEGIN 
ACBASE1-BASEADDRCDELINKC.LCRLINKJ),.N)J 
N" .N+ 1 J 
EXITCOMPOUND[ 21 

END 
ELSE LCEASEJ-.LCRLINKl; 

RETURN CACITEMSIZE1-.NJ LINKC.ACBASEJ,.LCBASE1» 
ENDJ 

GLOBAL ROUTINE RELEASECA)= 

ICALLED TO RELEASE ITEM A 

BEGIN 
MAP ITEM AJ 
COLLAPSEC.ACBASE1,.ACITEMSIZE1) 

ENDI 
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I SIMPLE-LIST-ROUTINES 
I~-~~-----~-~-----------
FOUTINE DELINKCA)s 

!REMOVES ITEM A FROM THE LIST TO WHICH IT IS APPENDED 

BEGIN MAP ITEM AI 
. A[PRVRLINKJ~.A[RLINKlJ A[NXTLLI~Kl~.A[LLINKJI 
A[RLINK]~A[LLINKl-.A[BASE] 

ENDI 

FOUTINE LINKCA,TOO)= 

! INSERTS ITEM A INTO A LIST IMMEDIATELY AFTER THE ITEM TOO 

BEGIN 
MAP ITEM AITOOI 
ACLLINKJ~.TOO[BASEJ; ACRLINKJ-.TOOCRLINKJI 
TOO[NXTLLINK]·TOO[RLINKl~.A[BASE] 

ENDI 

FDUTINE RELINKCA,TOO). 

, REMOVES ITEM FROM ITS PRESENT LIST AND INSERTS IT AFTER TOO 

LINKCDELINKC.A),.TOO)J 

FOUTINE EMPTYCL)· 

IPREDICATE INDICATING EMPTY LIST 

BEGIN MAP ITEM LJ 
.LCSASE] EQL .L[RLINK] 

END; 
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I QUEUE-HANDLING-ROUTINES 
r~----~---~~----~~-~----~--~ 

MACRO 

MACRO 

QHDR=rITEM$J 

ENTER= 1" 2" 0" 18 $" 
REMOVE=1"2,, 18" 18$; 

GLOBAL ROUTINE ENQ(A"Q)= 

, ENTERS ITEM A ON QUEUE Q ACCORDING TO THE INSERTION DISCIPLINE 
! EVOKED BY Q'S ENTER ROUTINE 

BEGIN 
MAP QHDR Q; 
RELINKC.A"C.QCENTER1)(.QCBASE1".A» 

END; 

CLOBAL ROUTINE DEQ( Q)::a 

! REMOVES AN ITEM FROM QUEUE Q ACCORDING TO THE REMOVAL DISCIPLINE 
I EVOKED BY Q'S REMOVE ROUTINE 

BEGI~ 
MAP QHDR Q; 
DELINKCC.QCREMOVEJ)C.Q[BASE]» 

END; 

MISC SERVICE ROUTINES 
I--~-----~--~~--~--~--~~-

I roUTINE ERRORCA). 
BEGIN MACHOP TTCALL=I051J 

TTCALLC3".A) 
EfoIDJ 

FOUTINE INITIALIZE= 

'INITIALIZES THE SPACE MANAGEMENT DATA 

BEGIN REGISTER ITEM x; 
XCBASE1~MEM<O"O>; 
XCRLINKl~X[LLINKJ~SPACECLOG2MEMSIZEJ<O,O>J 
XC ITEMSIZE1~LO G2MEMSIZE; 
DECR I FROM LOG2MEMSIZE-l TO 0 DO 

SPACEC.I]~(SPACEC.Il+l)<O,36>~SPACEC.IJ<O,O>J 
SPACE[LOG2MEMSIZEJ~(SPACE[LOG2MEMSIZE]+1)<O.36>-MEM<O,0> 

END; 
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I EXAMPLES 0 F vARIOUS QUEUE MO DELS 

,-~-~--~~---~---~-~--~-~---~-------

I LI FO QUEUE , .. __ .. _----_ ... 
mUTINE LIFOREMOVECQ)= 

BEGIN 
MAP QHDR Q; 
IF EMPTYC.QCBASE]) THEN 

ERRMSGC'INVALID DEQ REQUEST'); 
.QCRLINK] 

END; 

FDUTINE LIFOENTERCQ,A)= 
BEGIN 

MAP QHDR Q; 
• QCBASEl 

ENDJ 

I FIFO QUEUE 
r---- .. -- ........ • 

FDUTINE FI FOREMOVEC Q). 

BEGIN 
MAP QHDR QJ 
IF EMPTYC.QCBASEl) THEN 

ERRMSGC'INVALID DEQ REQUEST')J 
.QCRLINKJ 

ENDJ 

FDUTINE FIFOENTERCQ,A)= 
BEGIN 

MAP QHDR QJ, , 
.QCLLINKJ 

ENDJ 
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, PRIORITY QUEUE 

MACRO 

RJUTINE PRIREMOVECQ)a 
BEGIN 

MAP QHDR QJ 
IF EMPTYC.QCBASEJ) THEN 

ERRMSG('INVALID DEQ REQUEST')J 
.QCRLINKJ 

ENDJ 

RJUTI~E PRIENTERCQIA). 
BEGIN 

MAP QHDR QJ MAP ITEM Ai REGISTER ITEM LJ 
IF EMPTYC.QCBASEl) THEN RETURN .QrBASElJ 
LCBASEl-.QCLLINKJJ 
UNTIL .LCPRIORITY] GEQ .ACPRIORITYl DO 

LCBASE1-.LCLLINKlJ 
.LCBASE] 

ENDJ 

END ELUDOM 
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Cormnents on the Use of Bliss in the Implementation 

(1) The structure ITEM is particularly interesting amI perhaps at 

first a bit obscure. 

To illustrate, consider a variable X structured by item: 

Assuming that the right half of X contains a: 

X: 

and that: 

/~-

\,---

Then: 

.X[BASE] - a .X[NXTRLINK] = 0 

.X[RLINK] - ~ • X [NXTLI, INK ] = a 

.X[LLINK] - Y .X[PRVRL1NK] = a 

.X[PRVLLINK] = 11 

The structure ITEM uses the "constant case" expression to distinguish 

between the pointer, the pointee, and the pointee's predecessor and successor. 

(2) The structure VECTOR2 has a size expression [2*1] which is used 

in the allocating declaration: 
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GLOBAL VECTOR2 SPACE[LOG2MEMSIZE+l]; 

(3) Since the addresses of the 'remove' and 'enter' routines are 

stored in the queue header, the expression 

(.Q[REMOVE]) (.Q[BASE]) 

is a call of the routine whose address is .Q[REMOVE] and passes it to 

the base address of the queue or its parameter. 

(4) The macro 'REPEAT = WHILE 1 DO' defines an infinite loop -

its only exit is defined by the RETURN expression in its body. 

(5) Notice the 'BIND VECTOR SIZE = PLIT(ltO,1't1,lt2, ••• ' in the 

space allocator. The value of SIZE is a pointer to this sequence of 

values, and in particular the value of '.SIZE[.N]' is 2N. 
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EXAMPLE 3: DISCRIMINATION NET 

Contributor: D. Wile 

A discrimination net is a mechanism used to associate "information" 

with "names". The net is actually a tree, each node of which consists 

of a name and the information associated with that name, as well as a 

set of pointers to other nodes. To look up a name in the net we start 

at the root node and see if the name in the node matches our target name. 

If it does, we return the associated infonnation. 

Otherwise, we use a "discrimination function" which detennines 

which sub node to examine next (usually as a function of the target name 

and the name of the current node). If there is no corresponding subnode, 

a new node must be created. 

For example, a binary net (two sUbnodes/node) with a discrimination 

c function which chooses the left branch if the target name is alphabetically 

smaller than the name in the node, is illustrated below: 

Name: j, 9, 1, a, b, r, p, n, s, k 

Inf: 4, 7, 9 , 8, 5, 20, 3, 9 , 7, 12 

c 
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In the implementati.on which follows, there arc three globally defined ) 

routines: 

1. DSCINIT (String address) -- returns a pointer to the in

formation field of the node associated with the string. 

This must be called first to initialize the net. (TIle 

infonnation field will be zeroed when ·the node is new.) 

2. DSCLKP (String address) -- the "lookup" routine. Value 

returned as above. 

3. DSCPNAME (Infonnation field address) -- returns a polnter 

to the print name associa ted \,li th the particular informa-

tion field. 

The implementation is designed to allow the user to crea~e a module some

what "tailored" to his needs. The module is created by passing: 

1. the estimated number of entries to be inserted into the table; 

2. the average number of words each name will occupy; 

3. the number of words in the "information field"; 

4. the number of subnodes of each node (e.g., binary example 

above, 2); 

5. a string which executes an error routine 

in that order, to a macro IJDSCRIMINET". Two macros must be defined 

previous to the DSCRIMINET expansion: 

) 

) 



c 

c 

c 

1. DSClMINATE (Target, string address, current node string 

address) must have a value of ~l if the strings match. 

Otherwise, its value must be between 0 and 1 less than 

the number of subnodes. 

2. DSCCOPY (To address, From address) copies the string from 

the "from address" to the "to address", returning the 

number of words occupied by the copy. 
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MJDULE NETC STACK=GLOBALC STABK .. 1400». 
BEGIN 
MACRO 

DSCRIMINETCMAXNUMENT .. AVNAMESIZE .. INFSIZE .. NOSUBNODES~ERHOH). 

BEGIN 
IN.B.I ALL VECTOR ACCESSES ARE INDIRECT THROUGH THE BASEl 
STRUCTURE VECTORC I J.C I.VECTOR+. I )<0~36>J 

I NET SPACE ALLOCATION.. STRUCTURE DEFINITION AND 
INITIALIZATION DEFINITIONS I 

BIND TABLELEN-MAXNUMENT*CCNOSUBNODES+l)/2+INFSIZE+AVNAMESIZE)J 
OWN BASENODECTABLELENJJ 
BIND MAXADD=BASENODE+TABLELENJ 

BIND SUBNODE=O .. INF=l .. PNAME.2~ 
INFO FFSET=(NOSUaVODES+ 1 )/2~ 
PNAMEO FFSET= IN FO FFSET+ INFS I ZEJ 

STRUCTURE NODECSUBFIELD .. INDEXJ=CASE .SUBFIELD.OF 
SET .NODEC.INDEXtC-l)]<IF .INDEX THEN 18 .. 18>J 

.NODEC INFOFFSETJ; 

.NO DEt PNAMEO FFSETJ TES; 

GLOBAL ROUTINE DSCPNAMECINFPOS). 
C.INFPOS+INFSIZE)<O .. 36>; 

OWN NO DE NEXTCELLJ 

ROUTINE INITNODE(CELL~STRING). 
BEGIN 

DECR I FROM PNAMEOF,'SET-l TO 0 DO CELL[. I J .. OJ 
IF MAXADD LEQ (NEXTCELL".NEXTCELL+PNAMEOFFSET+ 

(MAP NODE CELL; DSCCOPYCCELLtPNAMEl ... STRING») 

THEN ERROR ELSE .CELL 
mD; 

GLOBAL ROUTINE DSCINITCSTRING). 
BEGIN 

LOCAL NODE RETVALJ 
NEXTCELL"BASENODE; 
RETVAL .. INITNODECBASENODE ... STRING)J 
RETVAL [ INFJ 

END; 

ROUTINE NE~CELL(STRING)·INITNODEC.NEXTCELL ... STRING)J 

I THE LOOKUP ROUTINE ITSELF I 
GLOBAL ROUTINE DSCLKPCSTRING). 

BEGIN 
LOCAL DISCIND .. NODE CURRENT,NEXTJ 
NEXT" BASENO DEJ 
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c 

c 

00 
BEGIN 

CUBRENT" • NEXT J 
IF CDISCIND-DSCIMINATEC.STRING.CURRENTCPNAME]» LSS 0 

THEN RETUR~ CURRENTCINF]J 
NEXT". CURRENTCSUBNODE •• DISCIND] 

END 

-UNTIL .NEXT EQL OJ 

NEXT .. CURRENTCSUBNODE •• DISCIND]"NE~CE~L(.STRING); 
NEXTC INF] 

END; 
ENDJ $J 

ROUTI~E DSCIMINATECL.R)= 
BEGIN 

STRUCTURE ~ECTORCI1.('.VECTOR+.I)<O~36>J 
INCR I mOM 0 

00 BEGIN 
BIND LEFT=.LC.Il. RIGHT=.RC.Il; 
IF LEFT NEQ RIGHT THEN EXITLOOP CLEFT LSS RIGHT); 
IF CLEFT AND 1376) EQL 0 THEN EXITLOOP -1 

END 
ENDJ 

ROUTINE DSCCOPYC INTO. FRO ). 
BEGIN 

STRUCTURE VECTORCIl=('.VECTOR+.I)<O.36>; 
INCH I FROM 0 00 

IF (CINTOC.Il".F.RQC.IJ) AND 1376) EQL 0 
THEN EXITLOOP .1+1 

ENDJ 

EXTERNAL ERBORJ 
DSCRIMINETC500.3~1.2.ERROR(PLIT 'LOOKUP TABLE OVERFLO~'» 

BEGIN 
BIND NAMES=PLIT( 

PLIT ASCIZ 'FIRSTNAME'. 
PLIT ASCIZ 'SECOND'. 
PLIT ASCIZ 'SS'. -
PLIT ASCIZ 'A LONGISH NAME'. 
PLIT ASCIZ 'L'. 
PLIT ASCIZ '77788()34')J 

EXTERNAL DSCLKP. DSCINITJ 
DSCI~IT(PLIT 'ZEROTH NAME') .. -3J 
INCR I FROM 0 TO .NAMESC-1J-l DO DSCLKPC.NAMESC.Il)".IJ 
INCH I FROM 0 TO .NAMESC-ll-l BY 2 DO DSCLKPC.NAMESC.IJ)".I+lt35J 

;-- ENDJ 
~ END ELUOOMJ J 
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No_tes on the Implementation 

The Bliss module above implements the example described at the be-

ginning of this section. The test program portion of the module simply 

initializes the table, inserts the six strings in the plit into the 

table (associating as information, the index in the plit), and runs 

through the evenly indexed items in the plit, turning on the sign bit in 

the information word. 

Of interest: 

1. The vector structure (which de'faults as the structure 

for all unmapped variables and expressions) is' redefined 

"indirectly"; this is fairly dangerous in any program, 

and represents an after-the-fact programming decision. 

2. The physical str'.r.ture of the tab~e is kept independent , . 

of the logical structure as used by the lookup routine; 

no reference is made from the lookup routine to the struc-

ture other than through the structured nodes. 

3. The binds, structures, own declarations and even the 

initialization function - requiring knowledge of the 

physical structure are kept grouped and separate. Note, 

for example, that INITNODE uses both a vector mapping on 

contiguous fields of CELL and the NODE structure. 

4. The physical structure of the tree is kept isolated from 

the user Qf the routines to the extent that only knowledge 
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c that the mechanism is associative is of importance --

the particular lookup algorithm and storage management 

are independent of the functional use of the module. 

5 •. Bliss progrannning "tricks": 

a. Use of the constant ~ expression for sub

fields of structures (NODE in this case); 

b. Default use of 0 for the omitted else in the 

structure case defining the ,SUBNODE field; 

c. CELL remapped in the INITNODE routine to take 

advantage of knowledge of the physical layout 

of the NODE's storage. 

d. "Dynamic" binds of LEFT and RIGHT inside the 

(~_ loop in the test version discriminatio'l function; 

e. The bind to a plit (of NAMES) in the test por-

tion, to prevent duplicate storage allocation 

for the twice-used plit; 

f. Stores into routine cells in the test program loops; 

g. Use of the plit length word preceding the plit 

(NAMES[-l]). 

c 
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ABSTRACT 

It has been proposed, by Dijkstra and others, that the use of the 

goto statement is a major contributing factor in programs which are 

difficult to understand and debug. This suggestion bas met with con

siderable skepticism in some circles since goto is a control primitive 

from which a programmer may synthesize other, more complex, control 

structures which may not be available in a given language. This. paper 

analyzes the nature of control structures which cannot be easily syn

thesized from simple conditional and loop· constructs. This analysis 

is then used as the basis for the control structures of a particular 

language, Bliss, which does not have a ~to statement. The results of 

two years of experience programming in Bliss, and hence without goto's, 

are summarized. 
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INTRODUCTION 

In 1968 E. W. Dijkstra suggested, in a letter to the editor of the 

Communications of the ACM [lJ, that use of the goto construct of Algol 

was undesirable, and in fact was bad progranuning pra.ctice. The rati.onale 

behind thi.s suggestion was simply that it is possible to use the got~ 

in ways which obscure the logical structure of a program, thus making it 

difficult to understand, debug, and, ultimately, to prove its correctness. 

Of course, not all uses of the goto are obscure, but the conjecture is 

that these situations are adequately handled by existing conditional (e.g., 

the if-then-else) and looping (for-do) constructs. 

This paper presents an analysis which lead to the design of the 

control features of Bliss [5], an implementation language designed at 

Carnegie-Mellon University. This analysis reveals that the Algol condi

tional and looping constructs are, while adequate, not convenient when 

the goto is eliminated. The control features of Bliss are described and 

some comments are made concerning our experiences using a goto-less, 

Algol-like language. 

Before proceeding it is worth noting an additional benefit of removi.ng 

the goto - a benefit which the author did not fully appreciate until the 

Bliss compiler was designed - that of code optimization. It is clear that 

the presence of soto in a block-structured language with dynamic storage 

allocation forces a certain amount of run-time support (and overhead) 

associated with the possibility of jumping out of blocks and procedure 

bodies. Eliminating the goto obViously removes this overhead. Far more 

important, however, is the fact that the scope of a control environment 



is statically defined in a program without goto's. The Fortran-H compiler 

[2], for example, does considerable analysis and achieves a less perfect 

picture of the overall control structure of a program than that implicit 

in the text of a Bliss program. Since analysis of control flo,~ is pre-

requisite to any form of global optimization, this benefit of ellininating 

the gota must not be underestimated. 

It is not surprising that a language can be devised which does not 

use the goto construct since: (1) several of the formal systems of 
~ 

computa.bility theory, e.g., recursive function~ and the A-calculus,. do 

not contai.n the concept; (2) LISP does not use it; and (3) Van Wijgaarden 

[3J, in attempting to define the semantics of Algol, eliminated labels 

and goto's by systematic substitution of procedure bodies and calls. 

Thus, the question:is not whether it is possible to remove the goto, 

only whether it is desirable. In particular there is considerable suspi- ) 
cion among programmers that the advantages described by Dijkstra are out-

weighed by inconvenience, and possibly by inefficiency (duplicate code, etc.). 

The goto may be view'ed as a control primitive with which a programmer 

synthesizes more complex control.structures. In this context Dijkstra's 

arguments can be phrased in tenns of this primitive having "unwanted 

generality". The principle concern of this paper is to investigate alter-

native primitives which are equally convenient for the things which pro-

grammers actually do. 

) 
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ANALYSIS 

c 
In order to detennine the nature of the control primitives to sub·-

stitute for the B..~o, we shall first consider the nature of progl-a.ms 

which use the aot'? and which cannot be easily built from simple condi-

tional and looping constructs. To do this we will use a flmv chart rep-

rcsentation of programs. Flow charts a.re convenient for this because of 

the explicit way in which control is manifest in them. We assume two 

basic blocks from which our flo,", charts are to be built - process blocks 

and n-\vay conditionals. 

I 

<> 
I -] 

c ~ 
process box n-way conditional 

These boxes are connected by directed line segments in the usual way_ We 

shall further be interested in two special "goto-1ess" constructions built 

from these. components - simple loop and n-'vay "cB-8e" cons true ts. 

simple loop· case 
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We consider thesettvo fonus "goto-less" since they contain a single entry 

point and a single exit point and hence could have reasonable corresponding 

* syntactic constructs in some higher-level language (and indeed d~). Now, 

consider three transformations: 

1. any linear sequence of process boxes may be transformed 

into (or replaced by) a single process box 

2. any simple loop may be replaced by a process box 

3. any n-way case construct may be replaced by a process box 

-J~[' ,~ .... 
-- -J-_A 
Lr· 

* The simple loop considered here clearly does not correspond to all possible 
varients of initialization, test before or after the loop body, etc. These 
varients would not change the arguments to follow in any essential way and 
hence have been omitted. 

) 
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Any graph which may be derived from a given graph by a sequence of 

these transfonnations we shall call a "reduced" form of the original 

graph. A graph which has a reduced form consisting of a single process 

box we shall call a simple "goto-less" graph. The sequence of trans.· 

formations .is said to define a set of nested "control environments". 

Not all graphs are of this type; these are of special interest to 

us since they typify the class of control structures which cannot be 

realized by suuple conditional and looping constructs. In looking at such 
41 

graphs we are principally interested in their ~'minimal irreducible fonn"; 

that is, a reduced form to which no more transformations of the type 

described can be applied. Examination of these graphs will both reveal 

techniques for deriving simple goto-less graphs from them, and also pro-

vide insight leading to the control primitives to be described later. 

Before proceeding it is perhaps instructive to remark briefly on 

Dijkstra's objections to the goto in terms of this characterization of 

programs. By definition, a goto-less program (flow chart) is susceptible 

to a sequence of simple transformations which reduces it to a single pro-

cess box. This sequence can serve as guide to understanding and/or 

proving the correctness of the program. Imagine a sequence of graphs, 

derived from the original, in which each is like its predecessor except: 

(1) the correctness of the replaced construct has been verified, and 

(2) the new process box contains a more macroscopic description of what 

the replaced portion does (rather than the details of hmv it is done). 

This sequence forms both a proof of the validity of the entire original 

program as well as documentation of what it does (at many levels of detai.l). 
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This is not to say that programs that use goto cannot be understood or 

proved correct [6], only that programs with this structure permit a 

specific methodical approach to understanding and proof. 

Now, returning to an analysis of programs which use goto, consider 

two cases .- those with loops and those without. Programs without loops 

have, at most, a lattice-like structure. For example, consider the follow

ing irreducible form (in this example, and the remainder of the paper, we 

shall use circles to represent sub-graphs whose fine-structure we choose 

to ignore): 

Brief consideration of such graphs reveals that it is ahvsys possible 

to construct a new graph using only the goto-1ess primitives which are 

similar to the original graph except for a finite number of "node splittings" 
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(i.e., creation of duplicates of existing nodes in separate control paths). 

This follows from the observation that, since there are no loops, there 

are at most a finite number of paths through the graph and each node occurs 

on only finitely many of them. Hence at most a fi.nite number of repli.ca

tions of ~ach node will guarantee that each node "\Vill occur on only one path. 

For example, the graph above becomes: 

And this graph can now' be transformed by collo.psing <2,5 '>, <3,5,6>, and 

<4,6'> into: 



This is one of the primitive forms and may itself be collapsed - and hence 

is a goto-1ess program. 

Node splitting is something which we would like to avoid since it 

involves duplicating code. Nevertheless) node splitting is one technique 

by which ~n existing program utilizing the got£ may be converted into one 

which does not. A second technique) which also might have been used above, 

will be discussed in conjunction with loops below. 

The second major case to be considered is that of irreducible graphs 

inv'61ving a loop. Of these we can note that s,uch loops must involve more 
,'( 

than one entry or exit point. Otherwise the loop would be reducible. 

Floyd and Knuth [4J have proven (using flow charts as specifications 

for regular expressions) that node splitting is not an adequate technique 

for deriving goto-less graphs from irreducible ones in the presence of 

multiple entry/exit loops. 

That node splitting is inadequate becomes clear by simply observing 

that the number of paths leading from the "second" exit point is unbounded. 

Therefore no finite number of replications of this node is sufficient, and 

we must search for another technique. Consider the following irreducible 

program: 

* We reiterate our earlier footnote - we have only considered one form of 
simple loop - introducing varients on the initialization or relation of 
the test to the loop body would not affect these arguments in any essential 
way. 
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Notice that there are two exi t paths from the CD -(1) loop - that leading 

from CD to 0 to @ and that leading from C~ to ® directly. Thi.s 

is a simple example of a program where node splitting will not work. 
f 

However, one can introduce a ne,\.] variable, call it a, and obtain the 

following graph: 



In this graph the node C0 is like node CD except that the exit 

condition of the loop has been aug~mented "'ith flor 0' = 0" and node CD 
is like node G) except that the exit to node @ has been replaced by 

the operation "0' (- 0". Node ® is the null operation.. Conceptually 

what we have done is to introduce a variable which behaves as a "program 

counter" and which, when the loop tenninates, specifies whether or not 

it is necessary to execute (3) . 

That the technique illustrated above is completely gen.eral may be 

seen easily. Consider any graph with nodes laJ?eled @ , 0 ' ... , 0 . 
Now construct a new graph as follows: 

1. if CD is a process box construct @ by adding to 0 
nO' 4- k" where ® is the successor of CD . 

2. if CD is a decision box, then replace it by a process 

. box of the fonn "0' 4- Elf, where E is an expression which 

dynamically evaluates to the appropriate successor label. 

3. consider all exit points as labeled by (£) 
4. construct the following graph 
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Y3S _ ~ <" ( ___ a-/ 

exit 

no 

no 

)f 

<:f='!>--rG----->
"rno 

• • • 

r--~y-e-s---...:~8_+ 

-0--~ 

• • • 

As with node splitting, this technique is odious because of the 

implied inefficiency. But also, it is a technique which may be applied 

to convert any existing programs with sotos into ones 'without them. And, 

in particular, the techniques may be applied locally to irreducible sub-

graphs. 
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The Bliss Cnntrol Structure 
~ -#-_~------

The previous section points out the nature of programs which may be 

constructed '''ith only conditional and looping constructs - and those \vhlch 

cannot be constructed without duplicating some nodes or adding dummy 

variables '. etc. The present section addresses itself to the question of 

whether the class of constructs in a practical language (which will not 

contain an explicit goto) should be extended beyond simple conditional 

and looping facilities. And, if the decision is to extend the class, then 

what should the extensions be? The answer to ~he first of these questi.ons 

depends in part on a judgment as to the frequency with which nlultiple exits 

from loops, etc., are used, and in part on the answer to the second question. 

Whether to add constructs or not depends upon whether it can be done in 

such a way as to preserve the structural advantages which prompted us to 

consider a goto-1ess language in the first place. Hence we must answer ) 
the question of a specific language proposal. Part of this section will 

be devoted to a description of the facilities in Bliss to give some back-

ground for discussing this question. 

Note that we are principally interested in programs which are initially 

written in such a goto-1ess notation rather than in translating existi.ng 

programs into the notation. Consequently, we are willing to accept some 

restrictions on what can be written - so long as the "connnon" things are 

expressed conveniently. Even the goto is not completely general in most 

languages - one may not jump into the scope of a DO statement nor out of 

a subroutine in FORTRAN, and jumping into the middle of a block from out-

side it is prohibit~~ in Algol. Neither of these restrictions is a serious 

one in practice. 

) 
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The three "problem areas" discussed in the firs t section lV-c.re: 

(1) lattice-like decision structures, (2) multiple entry points to a loop, 

and (3) mUltiple exits from a loop. Without any hard evidence at. our 

disposal \-le are left with only our intui tinn and experience to ,~cight the 

importance of these constructs. In p:.:.rticu1ar, the author believes that 

(1) and (3) are both quite important, and only one subcase of (2) is 

important - naluely, that case involving selection of one of several initi·· 

alization sequences. One might make a different evaluation aud arrive at 

a different set of facilities than those to be. described below. 

l1'1e first aspect of the Bliss control structure is simply the fact 

that it is a block-structured "expression language". That is, every 

executable construct, including those which manifest control, is an expres

sion and computes a value. There are no stateTIcnts in the sense of Algol 

or PL!I. Expressions may be concatenated with semicolons to form. expres

sion sequences. The value of an expression sequence is that of its last 

(rightmost) component expression and is evaluated in strictly left-to-right 

order. Thus n;" may be thought of as a dyadic, left associative operator 

whose value is simply that of its righthand operand. A pair of symbols 

begj.n and ~nd, or left and right parentheses, may be used to embrace such 

an expression sequence and convert it into a simple expression. A block 

is merely a special case of this construction which happens to contain 

declarations, thus the value of a block is defined to be the value of its 

constituent expression sequence. 

The fact that Bliss is an expression language is relevant to the Bot~ 

issue in the followt~g way: the most general method described in the first 
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section for translating programs into goto-Iess form was that involving 

a dummy variable which explicitly indicates the successor. The value of 

an expression (a block, for example) fonns a natural implicit node of 

expressin~ this idea. This will be illustrated after some of the explicit 

control expressions have been discussed. 

There are six explicit control expressions in Blis s: conditional, 

loop, case-select, function, co-routine, and escape. We have avoided 

consideration of subroutines in the previous material and so shall omit 

functions and co-routines from this discussion. 

The conditional expression 

if El then ~ else E3 

is defined to have the value of the expression E2 just in the case that 

El evaluates to the Bliss representation of ~ C:tnd has the value of 

E3 otherwise. The abbreviated fonn "if El then E2" is considered to be 

identical to "if El then E2 else 0". 

The conditional expression provides two-way branching, the ~ and 

select expression provide more general n-way branching: 

case eO,e1, ••• ,ek of set EO; El ; ••• ; En tes 

select eO,el, ••• ,ek of set EO:El ; Ez:E3; ... ; E2n:E2n+l tesn 

The ~ expression is executed as follows: (1) all of the expres-

sions eO, ••• ,e
k 

are evaluated, (2) the value of each e. (0 
1. 

~ i ~ k) is, 

in turn from left to right, used as an index to choose one of the E. IS 
J 

(0 ~ j s: n) to be e~.ecuted. Obviously, each of the e. IS is constrained 
1. 

J 

J 

.~ 

J 
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to lie in the range 0 S e. S n if one of the E's in to be executed. In 

~ 

the current implementation if e. = -1 none of the E'g will be executed and 
~ 

execution is undefined for all other values of e .• The value of the entire 
~ 

case expression is E • The special case \<7here k:.--::l is of special intel'cs t --- e
k 

and has appeared in several other languages) ALGOL-VI and EULER 

for examplee 

The select expression is similar to the ~ expression except that 

the e. I s are not used as indices. Rather, the CiS are used in eonjunction 
1 

with the Ezj I s to choose among the E1j+l' s. Execution proceeds as follo\-1s: 

(1) all of the ei's are evaluated, (2) EO is evaluated, (3) if the value 

of EO is identical to the value ,of one (or more) of the e's then E1 is 

executed, (4) Ez is evaluated, (5) if the value of ~ is identical to the 

va1u~ of one (or more) of the e's then ~ is executed, etc. The value of 

the entire select expression is simpl); that of the last Sj+l to be executed -

or -1 if none of them is executed. 

The utility of the fact that Bliss is an expression language may be 

illustrated using the ~ expression in an earlier example, namely the 

flow chart: 
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This graph may be thought of Us actually of the fonn 

where @ is formed from CD ,0, and Q) as follows: 
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Which means that one might write in (pseudo) Bliss: 

tes of -- --

CD 
This provides a neat, conceptually simple, and efficient alternative 

to node splitting. 

Returning now to the discussion of Bliss control forms, the loop 

expressions imply repeated execution (possibly,zero times) of an expression 

until a specific condition fs satisfied. There are several fonus, some of 

which are: 

while El do E 

do E while El 

incr <id> from El ~ ~ £I. E3 do E 

In the first form the expression E is repeated so long as El satisfies the 

Bliss definition of~. The second form is similar except that E is 

evaluated before El thus guaranteeing at least one execution of E. The 

last form is similar to the familiar "step ••• ~til" construct of Algol, 

except (1) the control variable, <id>, is locBl to E, and (2) El ,E2 and E3 
are computed only once (before the first evaluation of the loop body, E). 

Except for the possibility of an escape expression within E (see below) 

the value of a loop expression is uniformly taken to be -1. The particular 

choice of -1 as the value of a loop expression is not important except that: 

(1) it is uniform, and (2) there are some small advantages to this choice 

in connection with the definition of the ~ expression and zero origin 

data structures. 

3-19 

. , 



The control mechanisms described above are either similar to, or 

only slight generalizations of, the conditional and loop constructs of 

many other languages. Of themselves they do not solve the problems 

discussed in the first section. Another mechanism is needed - that mech-

anism is called the escape expression. An escape expression provides a 

highly structured form of forward branch. The branch is constrained to 

terminate coincidentally with the terminus of some control environment 

in which the escape expression is nested. The general fonn of an escape 

expression is 

<escapetype> <levels> <expression> 

where <escapetype> is one of the (reserved) words listed below and <levels> 

is either an integer enc1os~d in square brackets, e.g., "[3J", or else is 

empty (which implies [lJ). 

exitblock 

exitcompound 

exitloop 

exitconditiona1 

exitcase 

exitselect 

exit 

return 

An escape expression causes control to immediately exit from a specified 

control environment (a block, a compound, or a loop, for example) skipping 

any subsequent expressions in that environment. The <levels> construct 

pennits exit from several nested loops, for example, with a single exitloop 

expression. The <expression> value in an escape expression defines the 

value of the environment from which control passes. 
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The use of the escape expression is i.llu.strated by a typical problem 

involvi.ng mUltiple exits points from a loop. Suppose a vector, X, is to 

be searched for a value, x. If an element of X is equal to x, then the 

variable, k, is to be set to the index of this element. If no element 

of X is eq\lal to x, then the value of x is to be i.nserted after the last 

element of X and k set to this index. Supposing there are N elements 

currently in X. The following Bliss program~';' will perfonn this task. 

if (k ~ incr i from 1 to N £y 1 do if X[i.] - x then exitloop. i) < 0 

then X[k +- N ~- N+l] +- x; 

We can now return to the original questions raised in this section. 

We know that the mechanisms are "adequate", but are they sufficiently 

convenient and do they preserve the desirable properties of goto-less-ness. 

The answer to the first of these questions lies pri.ncipally in the experi-

ence of those who have used the language. These experiences are sunnnarized 

in the next section and essentially answered in the affirmative. Some 

confidence that this is the case may be gained by simply viewing the escape 

mechanism as a specific device for handling multiple exit point loops, and 

viewing the decision to make Bliss an expression language as a specific 

tool for implementing the dummy variable technique. In fact, of course, 

both ideas are more general than this. 

The second question, whether the Bliss structures retain the desirable 

properti.es of simpler goto-less notations, requires a little more consider-

ation. First, it is only the escape mechanism which violates the goto-Iess 

criteria. Returning to the flow chart notations, we now thip]( of our flow 

chart primitives as: 

* (~- Actually the given program is not Bliss, but the differences are not 
'----- essential to the discussion of ·control. 
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where the dotted lines represent a potentially iniinite set of flow' lines 

one of which may be followed if the escape mechanism is invoked. Dotted 

flow lines are constrair.led to connect directly to the tenninus of a 

control environment in which the initial point of the line is totally 

nested. 

The previous set of transformations is still applicable if the dotted, 

lIescape", flow lines are ignored and we are guaranteed that the escape 
) 

lines will be totally enclosed at some stage in the reduction process. 

In this sense the desirable properties of goto-less graphs are retained. 

The simple technique for understanding a flow chart and proving its cor-

rectness is no longer possible, however, because control is no longer 

constrained to exit through a single path. Nevertheless, a similar tech-

nique is easily constructed. It simply must operate in more global contexts. 

One can clearly apply the former style of reasoning to subgraphs from 

,which no dotted lines emanate. After this has been done on all possible 

subgraphs attention must shift to as small a subgraph as possible which 

wholly contains its escape lines, and understanding be gained and verifica-

tion done on this sub graph as a whole, and reduced as a whole. This may 



c 
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or may not lead to the simpler foun of graph, but in either case the 

process can be iterated. 

Some Experiences 

Bliss has been i.n acti.ve use for nearly two years and we have there

fore gained considerable experience in progralmning without the goto_ - both 

in writing new programs and in translating previously existing ones. This 

experience includes several compilers, parts of an operating system, i/o 

support routines, as well as numerous applications programs. As one might 

expect, writing new programs presents no difficulty. Just as one adapt.s 

to the lack of recursion in Fortran or the inability to jump into the 

middle of an Algol block, one also adapts to the Bliss control structure. 

But it is not that one merely survives in this mode; quite the contrary. 

One' develops a mode of thinking whihc is roughly the .inverse of thereduc

fion transfonnation sequence discussed in the first section. That is" one 

thinks, and writes ,from the more macroscopic to the most detailed levels. 

We have not conducteci'contro1led e~periments, but I alP. convinced that 

programmer productivity has significantly improved due to this enforced 

style of programming. 

In some sense our experiences in translating existing progrruus are 

even more interesting than those in writing new ones. These latter experi

enc~s fall in two sharply defined categories - the times when it was easy 

and, the times when it was hard. Most of the time it was easy, becau.se most 

of the time progranmers apparently use goto's in non-essential ways; that 

is, ways which mirror one or more of the constructs already in Bliss.' On 
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the other hand, when the translation was difficult the real problem was 

understanding what the original programmer had intended the control 

structure to be. Once that was done, in every case (to my knowledge) 

there was a natural mode of expression in Bliss. There were surprisingly 

few cases where node splitting, or any of the other devices mentioned, 

were necessary. If we assume that the programs we have translated are 

representative, and I do not know that they are, then we must conclude 

that programmers do not use the generality of the goto. 

-We have found two aspects to the Bliss st~ucture which are inconveni-

ent and should be changed. One is a trivial syntactic change and is easily 

accomplished; the other is more fundamental. The "<levels>" construct in 

escape expressions embodies an important semantic notion, but the syntax 

should be changed. As a program is modified the number of levels through 

which" an escape should execute may be changed - by the introduction of an 

additional block level, for example. One would like to indicate the target 

of the escape symbolically. Which is to say labels should be reintroduced 

as names of entire control enviromnents. The other construct I should like 

to have is, intuitively, one which allows exit through several levelsJof 

subroutine call - either to a specific place or until a specified condition 

is met. 

Whether or not a language includes the goto construct is immaterial. 

There are certain types of control flow which occur in real programs and 

if constructs are not explicitly provided for these then the goto must be 

provided so that the programmer may synthesize them for·h~self. The 

danger in penni ttin~" -the goto is that the programmer will synthesize them 

J; 
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in weird ·and obscure ways. The advantages in eliminating the goto are 

that these same control structures will appear in regular and well-defined 

ways and consequently both the human reader and the compiler will do a 

better job of interpreting them. 
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WHY THE DOT? 

The interpretation of the occurrence of identifiers in Bliss is 

different from that in most programming languages - and this difference 

has given rise to questions and suggestions from almost everyone who is 

first introduced to the language. ~he purpose of this memo is to, or 

at least attempt to, explain the reason for the chosen interpretation. 

The chosen interpretation is quite fundamental to the intent and structure 

of the language and was decided upon only after extensive, heated debate 

and is not merely a whim of the designersi to change it would do substan-

tial violence to the language and could only be accomplished through 

the introduction of a large number of ad hoc rules if the other inten-

tions of the language were to be preserved. 

First let me review the interpretation, although I'm assuming some 

acquaintence with the language. An identifier is introduced into a Bliss 

program by a declaration; for example 

own Xi 

There are scope rules as in Algol '60, but let's ignore them and assume 

that x is not re-declared at an inner block level. Now, anywhere in the 

scope of this declaration, independent of the context in which it occurs, 

an occurrence of the identifier is interpreted to mean a reference* to 

the memory cell allocated by the declaration. Thus the value of the 

expression "x+l" is one larger than the address of x rather than the value 

contained in the memory cell x. Thus, one may think of the occurrence 

*A reference, or pointer, in Bliss is a fairly complex object, but for 
this d~scussion it is adequate to think of it merely as the address of a 
memory cell. The remainder of the discussion presumes this simple 
interpretation. 
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of an indentifier, x, as the occurrence of a literal (the address of x) 

where the value of the literal is bound at load (or possibly execution) 

time. 

Clearly one wants to obtain the value stored in a memory cell as 

well as its address. For this purpose the unary dot, ".", operator is 

introduced. The value of the dot operator applied to an expression, 

", is that of the memory cell whose address is E. Thus, ".x" is the 

value contained in the memory cell x, ".(x+l)" is the value of the memory 

cell whose address is one greater than that of x, " .. x" is the value 

of the memory cell whose address is stored in the memory cell whose 

address is x (i.e., indirect addressing), etc. 

Closely associated with the interpretation of identifiers and the 

dot operator is that of the store operator " .. ", which is also different 

from that usually given in the description of conventional languages 

(though not different from its implementation). The store operator is a 

dyadic, infix operator whose operands may be arbitrary expressions, 

The value of lefthand operand EI is interpreted as a pointer (address) 

which names a cell into which the value of the righthand operand, ~ , 
2 

is to be stored.* 

Before turning to the issue of "why" the interpretation is as it is, 

I'd like to make three comments. First, the only people who have ob-

jected to the interpretation are those who first encounter it; to my 

*The value of the store operator is ~ , but that's not relevant to this 
discussion. 2 
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knowledge no one who is using the language objects. That only proves 

that it's possible to learn to live with it. Second, while the inter

pretation may be unique among higher level languages, it is precisely 

the interpretation adopted in assembly languages. Third, the interpre

tation is entirely consistent, the interpretation of an identifier is 

exactly the same independent of the context in which it occurs. (May-

be we could coin a phrase: "context-free semantics".) 

Now, let me finally turn to w~y the interpretation is as it is. One 

of the fundamental design objectives of Bliss was to permit the user to 

define arbitrary representations of data structures by permitting him 

to define the accessing algorithm (expression) for elements of the 

structure. This implies not only that the user must be able to mani

pulate pointers as flexibly as values, but also that the value of an 

arbitrary expression must be able to stand as a name. This implies, 

for example, that the assignment operator must permit arbitrary expres

sions tl and e2 in the context ~l"E2. 

An alternative to the Bliss interpretation of identifiers and dot 

operator is to assume that identifiers always represent the value of a 

variable and introduce another operator, say «, which means "the address 

of". One would still need the dot for several levels of indirection, 

but simple expressions such as (in current Bliss) 

x~.x+l 

would be written 

o(.x .. x+l 

Since, presumably, thre are fewer instances of addresses than values, 

there should. be considerably fewer ~IS to write with this scheme than 

dots in current Bliss programs. Carrying this reasoning further, why 

4-3 



not presume ~'s on the left of assignments (or, almost, equivalently 

dots on the right)? Then one could write 

x .. x+l 

which is more familiar. Under this scheme one could, of course, write 

~'s or (extra) dots to override the standard interpretation. Thus 

.x..-l 

would store indirectly through x, and 

would store the address of y in x. Or would it? Let's examine some 

of the difficulties that arise from such an interpretation. None of 

these difficulties is insurmountable; however, they lead to a large col

lection of ad hoc interpretat on rules. 

Above I suggested that x~y would store the address of y into x. 

One may think of~as either an operator, or merely as a compile time 

notation which overrides the suggested "value of" interpretation. If 

one chooses the first of these interpretations, then ~y ought to mean 

the address of the value of y (i.e., ~(.y»- which is not unique 

(there may be many locations whose current value is the same as that 

of y). Moreover, the expression o<E,(where E- is an arbi trary expression) 

seems to have no useful interpretation unless ,one is willing to store EI 

create a reference to this location, and support the garbage-collection 

that that implies. The "compile-time override" interpretation of 0( has 

its own set of problems; it makes '«Y' do something reasonable, but ~f 

is nonsense and an arbitrary rule would have to be introduced to pro

hibit it. (What does 0«(1+2)' mean?,) On the other hand,Of.Eis exactly what 
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you want in an expression such as 

x.-O'y [i] 

in which you wish to store the address of a structure element into x, 

so you must allow this case, too. It gets worse, as you'll see 

below. 

Suppose, for the moment, that you've contrived some interpretation 

rules which handled the problems mentioned above, and that you move on 

to the implied ~'s (or dots). You are now faced with the problem of 

deciding what's on the left and what's on the right of an assignment 

operator. There's no problem with x .. y, but what about 

(x+i) .. 5 

Given the initial assumption that accessing is specified by an arbitrary 

algorithm, this is hardly an implausible thing to write. But what does 

it mean? It must be one of (in Bliss) 

(a) (x+i) ... 5 

(b) (x+.i) ... 5 

(c) ( • x+i) .-5 

(d) (.x+. i) ... 5 

Relying on accumulated experience with respect to the usual way of 

storing vectors one might like for the interpretation to be (b), but 

I can find no rational reason for adopting this one; (a) or (d) seems 

more plausible, and (a) the most plausible. O.K., suppose you try to 

be consistent, and so you adopt (a) and then you write 

(x+.i) .. 5 

to explicitly indicate that, even though i appears on the left of an 

assignment, you want its value, not its address. You're now in trouble 

with another design objective of Bliss; namely, that the same accessing 
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function be usable everywhere. If you write 

y..- (x+. i) 

which means (in Bliss) 

y ... (. x+ .. i) 

you do not get what was intended at all. 

Again, you can gin-up a rule to cover this case. However, suppose 

that an accessing algorithm is specified by a function, f, and the body 

of f contains the expression "return x". Should this expression re

turn the value or the address of x? In the expression 

fO ... f()+l 

both are needed. Of course f could return both, but then consider 

gO .. g()+l 

where the body of the routine g contains 

return f () 

Must g now return (1) the address of the address of x, (2) the address 

of the value of x, (3) the value of the address of x, and (4) the value 

of the value. WOW! 

Having examined the consequences of some of the alternative pro

posals, let's now consider the reasons behind them. There are two: you 

are forced to write a lot of dots, and it deviates from the "standard", 

or "conventional". The first of these arguments has merit, and in fact 

was the rationale for choosing an inconspicuous, easily written and typed 

graphic for the "contents of" operator. In practice, however, users 

of the language have found little difficulty in either reading or writing 

the dot. The second argume~t is simply absurd. There is no standard 

since there are no other languages which deal with the same issues, 

except possibly assembly language, and Bliss uses the same convention as 
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assembly languages. 

As for the virtues of the convention, it is simple and completely 

c= consistent, it permits accessing algorithms to be written and used 

c= 

c= 

in all contexts, and it covers all the cases. The distinction between 

name and value is a fundamental one, and in my opinion it is far more 

important to treat it explicitly and consistently than to provide 

minor convenience to the uninitiated. 
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ABSTRACT 
I 

The specification of data structure in higher ... level languages is isolat ... 
ed from the related specifications of data allocation and data type. Structure 
specification is claimed to be the definition of the accessing (addressing) 
function for items having the structure. Conventional techniques for data 
structure isolation in higher-level languages are examined and are found to 

) 

suffer from a lack of clarity and efficiency. ~~) 
The means by which data structure accessors may be defined in Bliss, _ 

the specification of their association with named, allocated storage, and their 
automatic invocation by reference to the named storage only, are discussed. An 
example is presented which illustrates their efficient implementation and their 
utility for separating the activities of data structure programming and algorith-
mic programming. 

INTRODUCTION 

Since the management and representation of data are of prime interest 
in programming, we wish to present the view of data structures that has been 
adopted in the implementation language Bliss. Bliss [1] is. a higher-level 
language designed for writing large software systems for the PDP-10 [2] and 
is curren~ly being implemented at carnegie-Mellon University. Our paper is 
divided into two parts. First we discuss the issues which arise in defining 
and implementing data structures in higher-level languages. Then we present 
the facilities in Bliss which are designed to handle ·.the representation of 
data. 
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HIGHER-LEVEL LANGUAGE DATA STRUCTURE SPECIFICATION 

C THREE ASPECTS OF DATA SPECI1.11,;ATION 

c 

c 

We begin by considering three aspects of data structures which are not 
separable in most higher-level languages, but which can be separated in Bliss 

, to allow greater flexibiiity in data specification: 
1. Type specification - the name of a piece of data specifies its 

internal fonna,t and the class of operators for which it is a 
valid operand. 

2. Ailocation - the presence of' a named data item requires that 
we be able to associate this name with its value; presumably, 
that value will require space in the underlying logical machine. 
The format (and perhaps the size) of the allocated space depends 
on ~he data type specified for the name. The scope rules of a 
language define the domain of valid access to a value via its 
name. The logical machine manages the allocation of 'space for 
storing the value and is free to overlay non-contemporaneous 
allocations. 

3. Structure - the ability to structure regions of storage allows 
us to generate in a simple way a large collection of names and 
to retain the logical clarity of a generic name. ' Indeed we 
want the ability to compute a name (e.g., array subscript compu
tation) and to sequence through a collection'of names. 

Taking Algol [3] as an example, the text 

procedure P(A,B); real array B[I:IOO]; 

provides a structure for B and types the elements of the structure (named: 
B[l], B[2], ••• , B[lOO]). Furthennore, in addition to structuring and typing, 

begin ~ array B[I:IOO]; ••• 

also allocates space. We emphasize: two different Algol implementations may. 
physically structure the same logical structure differently (e.g., dope vector 
vs. by column or row). 

IM'PLEMENTING A FOREIGN DATA STRUCTURE 

We consider in some detail how we build a data structur'e in a higher
level language whose inherent data structures may be quite different from those 
to be implemented. In particular consider a partial ~plementation of Lisp [4] 
in Algol. Atoms will be stored in an array with negative indices for non-null 
atoms and the zero index will indicate NIL. Cells will be stored in a two 
dimensional integer array with positive indices. 

Now we examine two ways of implementing the Lisp accessi~ functions 
CAR and CDR. 
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(1) integer array ATOMSPACE [-1000:0J; 
integer array CELLSPACE [1:10000,1:2J; 
integer procedure CAR(I); integer I; 

CAR := CELLSPACE[I,l]; 
integer procedure CDR(I); integer I; 

CDR := CELLSPACE[I,2J; 

(2) integer array ATOMSPACE [-1000:0J; 
integer array CAR [1:10000], CDR[1:10000]; 

Note that'in both implementations the Algol array bounds checking will handle 
the error resulting from attempting to access the CAR or CDR of an atom. 

Several things are to be noted 'about these two implementations. Both 
(1) and (2) implement the same logical structure. The accessing structure is 
logically independent of the allocation since the declarations could appear in 
any Algol block at any level. The foreign types atom and pointer had to be in
corporated into the stru'cture of the implementing language. Implementation (1) 
has an advantage over (2) in that it can be modified more easily. We can ch~nte 
the body of the accessing functions CAR and CDR without changing the program's 
reference to them. On the other hand (2) is clearly more efficient than (1) 
since it employs the built-in accessing mechanisms of the Algol machine whereas 
(1) reQl-1ires execution of the expensive procedure calling mechanisms of Algol 
procedures. Of course, neither implementation is as efficient as a direct 
machine language implementation of Lisp. Hence we can isolate a major difficulty 
that arises from specifying a data structure in a higher level language. In 
general we paY,a high price in lost efficiency by implementing a data structure 
in a higher-level language unless,of course, that language is designed to make 
~uch implementations efficient. For example, if pointer or address were an 
Algol type, we could probably improve the ~bove implementation to a point where 
the cost would .be tole,.rable. 

ISOLATING DATA ACCESS 

We examine the motivation for isolating access to data. Consider the 
following Algol statement: 

X := (Y[I] mod 2 t (WORDLENGTH - 14) + (2t(WORDLENGTH - 22»; • 

The code extracts bits 14 through 22 of Y[I] and stores it in~o X (where 
"WORDLENGTH" is the number of bits in a machine word and bits are numbered 
from the left). It seems evident that we would not want to write this rather 
cumbersome piece of code for each access of this subfie1d Y[I]. A major con
sideration in having structured identifiers in a language is to ~prove the 
clarity and readability of the program. It is also true that most programs 
are subject to fairly substantial modification as they are being built. Quite 
obviously the decision to change the format of the variable Y[I] so that the 
subfield of interest was no longer bits 14 through 22 but 7 through 15 would 
mean a laborious change of all the code that accessed that information. 

At present most higher-level languages allow at best two ways of isolat
ing accesses to data items whose structures are·not built into the language- .. 
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macros and procedures. We 'can define one procedure as an accessor for a whole 
class of data items by passing info~ation via parameters. Alternatively we 
can define a procedure as an accessor for a particular data item by allocating 
space for the data as an ~ variable of the procedure. 

For example, assume that a linear array is being used to represent the 
elements of a symmetric matrix. The symmetry of the array allows the overlay 
of elements off the main diagonal. We aefine the following procedures for 
reading from and writing into arrays of this fonn: 

real procedure LOADSYMMETRIC(A,I,J); real array A[l:lOO]; 
integer I,J; 

LOADSYMMETRIC := if I > J 
then A[I*(I-l)+2+J] 
else A[J*(J-l)+2+I]; 

procedure STORESYMMETRIC(A,I,J,V); real array A[l:lOO]; 
!!!l V; integer I,J; 

if I > J 
-- then A[I*(I-I)+2+J] := V 

else A[J*(J-l)+2+I] := V; 

The intention is for these accessing procedures to serve for several such arrays. 
If we wish to apply this structure to only one symmetric array, then the formal 
parameter A can be omitted (and A declared an own variable within the procedure). 

We can avoid the expense of the function call mechanism by using string 
replacement macros. 

Both these 
(a) 

(b) 

(c) 

(d) 

~ LOADSYMMETRIC(A,I,J) = 
if I > J 
-- then A[I*(I-l)+2+J] 

else A[J*(J-I)+2+I]; 
~ STORESYMMETRIC (A,I,J,V) 

if I > J 
-then A[I*(I-I)+2+J] := V 

else A[J*(J-I)+2+I] := V; 

solutions have drawbacks: 
As mentioned previously, function calls are unattractive 
because of their inefficiency. 
The presence of two accessing functions for one logical 
structure is required because of the left/right distinction 
in assignment statements. 
If a macro or procedure is defined for a whole class of data 
items and we decide to change the logical structure of one 
of the data items, then we must search the entire program 
for calls on the macro or procedure to change its structure. 
Macros have their own problems. Consider: 

1!!!£!2. A(B,C) = if GLOBALBOOLEAN then B[C+3] else B[C-3]; • 

If "GLOBAL BOOLEAN is redeclared in an inner block, subsequent use 
of the macro will have the possibly undesirable effect of testing 
the neW variable. Another unpleasant feature of the macro is the 
handling of actual parameters. Consider the macro call: 

Y := LOADSYMMETRIC (X,F(I),G(J)); 

5-5 



J 

, __________ ~G ____________________ __ 

The expansion of this call produces inefficient and potentially 
side-effect-producing results because of the mUltiple calls on 
the functions F and G. 

Having pointed out some of the issues that arise when considering hbW 
to implement data structures and having considered several of the problems 
associated with implementing data structures in higher-level languages, we 
next discuss how Bliss enables the programmer to specify his data structures 
and still maintain efficiency. 

BLISS DATA STRUCTURE SPECIFICATION 

NOTES ON BLISS 

Bliss is primarily an Algol-like expression language with additional 
control expressions to c'ircumvent problems encountered removing the "go to",' 
and with declarations (for allocation) to facilitate independently compiled 
modules and spec1al machine features (e.g., registers). The only anomaly 
which is relevant to this discussion is that names stand for machine addresses. 

, If we want the contents of a named location, we must use a contents operator 
(the ".,.); e. g • , 

y +- x+l ; 

(x+l)hY; 

adds 1 to the address of x and deposits it in the 
word addressed by y 
deposits the contents of y into the word 1 past the 
address of x. 

The PDP-10 has three types of data:' instructions, addresses, and 36-
bit words upon which machine operations may act. These types are determined 
dynamically by the interpreting hardware, and type checking is of a negative 
nature (e.g., "this is not a valid address"). The necessary inclusion of 
address manipulation facilities in any system implementation language would 
entail dynamic type checking if the logical type "address" were included. 
Visions of inefficiency thus lead to the inclusion of a single data type in 
Bliss: the 36-bit word. All operations are valid on this single data type. 

Data allocation is by words in the machine; although fields within a 
word are addressable, there is no effective way of allocating a part of a 
word. Again,. for efficiency reasons, Bliss allocates storage to programs in 
contiguous words. Allocation is done via explicit allocation declarations; a 
specified form of allocation is made, and the declared name is bound to the 
machine ~ddress of the beginning of the allocated storage. For example, 

~ A [200] 

reserves 200 words of core (static) and binds the name "A" to the address of 
the allocation. The other static allocation declaration is for global sto~
age. The effect of the allocation is the same as for ~, but the name 
becomes available to independently compiled modules which reference the vari
able via an external declaration. 

Local variables are local to the block in which they are declared. 
They are allocated dynamically from the nor~al Algol implementation run-time
stack. The local variable name .is dynamically bound to an address; 
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begin local Q, R [30] . , . •• end 

allocates one word for Q, 30 for R and binds the names Q and R dynamically 
to their respective stack addresses. Recursive entry to a block causes recur
sive local allocation, unlike the ~ form. (This is simply the default form 
of allocation for Algol declarations; e.g. integer A, ••• ) The register 
allocation declaration requires compile time binding of addresses, but causes 
a recursive saving mechanism to be invoked; e.g. 

begin register R1; ••• ~ 

causes the contents of the compile-time bound register named "Rl" tQ. be saved' 
in the stack (and thereafter upon recursive entry to the block) and restored 
upon exit. 

BLISS STRUCTURES 

There are no structures "built-in" to Bliss as the array structure in 
Algol or the cell in Lisp. However, address arithmetic allows the use of any 
of the standard structures. For example, We can store the contents of C[.i, .j] 
into y (where C is ,a 7 x 9 array) by writing: 

y(;-. (C +. i*9+. j) ; 

(where we have presumed zero-origin indexing in ,both arguments and' contiguous 
row storage allocation). 

STRUCTURE DECLARATION--SIMPLE CASE 

Naturally, expressions of the above form are quite cammon and their programming 
would became quite tedious without the structure declaration. Its form is 
easiest illustrated by example of a 7x9 array: 

~ C[63]; 
structure rowof9array[i,j] = .rowof9array+.i*9+.j; 
map rowof9array C; 

The first declaration allocates 7 * 9 = 63 words of care and binds the address 
of the allocation to the name "C". The structure declaration defines an "access
ing template" for those names onto which it is mapped; its format is similar to 
that of a routine (procedure, function)' declaration in which the body may refer
ence the name of the structure as a formal parameter. The map declaration 
associates the structure "rowof9array" with the name "C". Thereafter, whenever 
the name "c" is used followed by a bracketed list of expressions, the effect is 
as if the structure were called as a routine with "c" as the actual correspond
ing to the routine name (which is used as a formal in the body) and the expres
sions as the actua1s corresponding to the formals of the structure. Consider 
the routine declaration below: 

routine rrowof9array (rowof9array" i, j). = .rowof9arraY+.1*9+. j ; 
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The effect of the use of C [3,5] in a program would then be the same as if we 
had (declared and) called rrowof9array(C,3,5). A Bliss routine is analagous 
to a valued procedure in Algol; however, the value of the routine is the value 
of the expression which is the body of the routine. A routine returns a 36-bit 
word, and hence, the returned value of a routine may be stored into. 

rrowof9array(C,3,5)~ 4 

assigns the value 4 to array element C[3,5]. Remembering that C (without the 
dot) is an address, it should be clear that the above effect is the desired 
one. 

Note that the Bliss contents operator removes the left/right-side dis
tinction between structure accessing 'for storing and accessing for retrieval 
(drawback (b) above). Also, macro side-effects are not introduced (drawback 
(d», for the structure is effectively equivalent to a routine, i.e., actual 
parameters are evaluated only once and identifiers in the structure body remain 
in the context of the structure declaration site. 

Howev~r, we have introduced some additional drawbacks (soon to be 
removed): . 

(e) 

(f) 

Although we have allowed the flexibility of choosing the accessing 
method, We must now write a different structure definition for 
each length row We have; e.g., rowof12array, or rowof7array. 
To allocate storage for the array C, the ~ above simply allo
cates the number in brackets of contiguous words--we must in 
same sense know how the structure works. Hence, in· the above 
we'had to know to allocate 7*9=63 words. 

STRUCTURES AND MAPPING DECLARATIONS 

Both (e) and (f) are solved in Algol by the array declaration: 

"integer array C[1:7,1:9];". 

Via the above, an Algol compiler knows to substitute 9 for the row length in 
the accessing expression and to allocate 7*9 words of core for the array. 

Bliss extends the structure mechanism to facilitate this by the use 
of "incarnation formals". Use of the incarnation formals to a structure is 
indicated by'not "dotting" the formal to a structure; e.g., in 

structure array2[i,j] = .array2+.i*j+.j; 

the firs'i:. occurrence of j in the body refers to the incarnation formal. It 
is bound to the corresponding "incarnation actual" when the variable is 
mapped: e.g., map array2 C[7,9]; (in this case, 9.). 

Hence, the structure and routine correspondence: 

structure array2[i,j] = .array2+.l*j+.j; 
routine rarray2(incformali,incformalj,array2,i,j) = 

.array2+.i*.incformalj+.j; 

applies, with the accessing expression for .C[3,5] (in this case) having the 
effect of the routine call rarray2(7,9,C,3,5). 
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The structure writer knows best the allocation size required for vari
ables onto which his structure will be mapped; hence, the "size expression" 
and "mapping declarations" were introduced into Bliss. The size expression 
is specified along with the structure declaration (preceding it, enclosed in 
brackets) as a function of the incarnation formals for the structure and of 
compile-time constants. All allocating declarations allow the mapping of a 
structure along with its declaration; 

e.g., structure array2[i,j] 
~ array2 e[7,9]; 

[i*j] .array2+.i*j+.j; 

The structure declaration defines a size expression, II [i*j] ", and -accessing 
template, ".array2+.i*j+.j". The ~ declaration: 

1. Maps "array2" onto "e"; 
2. Binds incarnation actual 7 to the incarnation formal i, and 9 to j; 
3. Evaluates the size expression associated with the mapped structure 

with the incarnation actuals substituted; i.e. 7 * 9; 
4. Allocates the number of words returned as the value of the size 

expression; i.e. 63; 
5. Binds the name "e" to the address returned by the own allocation 

mechanism. 

AN EXAMPLE 

The utility of the Bliss data structure mechanism is illustrated by 
considering a solution to the following problem: 

We wish to solve systems of linear equations with normalized upper
t!iangular coefficient matrices; i.e., 

(1) 
n 

x + l: 
i j=i+1 

for i = 1,2, ••• ,n 

We m~st read the _coefficient matrix and then solve the system for several 
sets of constraints. We also know We will be using a paged machine and that ' 
the coefficient matrices may be large. 

Noting: 
(a) 

(b) 

x = b n n 
n-1 

x + l: 
i j=i+1 

def 
= b ' i 

for i= 1 , ••• , n -1 -

(b) is a problem with the same specifications as (1) in one less variable. 
Thus, a solution technique is to iteratively subtract the product of the last 
found ~ with the column vector (c k c Lk ••• ck _] k) from, the (modified) 
constan~ vector (b~' b2 ' ••• bk_~'}. Tnis then D~comes b for the next step; 
i.e., new b' = (b1 - ok' c 1k D2 - bk ' c 2k ••• bk- 1' - bk ' ck- 1,k)· 

be: 
The algorithm portion (ex1uding r/o and declarations) in Algol might 

for k := n step -1 until 2 do 
for i := k-1 step -1 !!!llli 1 do 

B[i] := B[i] - C[i,k] -* B[k]; 

~, The solution is left in the original constant vector, B. 
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A Bliss implementation (with data structures and storage allocation 
specified) which mirrors the Algol program above is: 

begin 
structure vector[i] = .vector+.i - 1; 
structure array2[ i ,j] = [i*j] .array2+(. i-1) *j+(.j -1 ),; 

~ vector B[n], 
array2 e[n,n]; 

INPUT 

c:i'ecr k from n to 2 do 
decr i from .k-l to 1 do 
--B[ •. i-r-;:-.B[.i]-= .e[:i, .k]* .B[.k]; 

OUTPUT & LOOP 

" end" --' 
Now, note that the above solution: 
(a) wastes space for the known zero and unity elements of the co

efficient matrix; 
(b) thrashes considerably (if n is large) in a paged machine, for 

the coefficient matrix is accessed by columns in decreasing index 
order, but is stored by row in increasing index order. 

It can be seen that replacing the array2 structure with: ' 

structure upperdiag[i,j] = [i*(i-1)/2].upperdiag + (.j-1)*(.j-2)/2 + .i-1; 

and changing the mapping of "e" from "array2" to "upperdiag", modifies the 
program in such a way that it wastes no space for the known constant elements 
of "e" and eliminates thrashing by accessing elements in the same column of 
the coefficient matrix contiguously. The logical storage map of figure 1 may 
help to see this: 

Figure 1. 

The above change preserved the "algorithm portion" of the program--it 
continues to appear much the same as the Algol algorithm--however, the increase 
in overall efficiency is significant (presuming, for the moment, that the 
structure mechanism is efficient). The simplicity with which the change was 
accomplished indicates that "drawback (c)" has been removed. 
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SUBSTRUCTURES 
r 
~ Continuing to postpone the efficiency drawback, note that we would like 

to use a substructure on the, columns of the coefficient matrix. We know that 
within the inner loop, each of the elements is taken from the same column, and 
thus the same multiplication «.j-l~(.J-2)/2) is repeated for each element in 
the column. We can indicate this substructure in Bliss via the bind declara
tion. This declaration is dynamic in the sense that the expression bound to is 
evaluated at execution time, upon entry of the block in which the bind occurs. 
For example; in 

bind x=.y; 

wherever x occurs in the block in which it is declared, the value of the 
contents of y ~ill be considered its address. 

The ~ declaration allows its symbol to be mapped in a,manner similar 
to the allocating declarations. Hence, we may write: 

bind array2 X [7,9] = .y+3; 

This indicates to the compiler that the name "X" stands for the address which 
is the contents of y plus 3. If "X" is used 'as a structure access in the block 
in which the bind occurs, this address is to be considered the base of a 2-
dimensional array with at most 7 rows and 9 columns (the semantics of the 
"array2" structure defined above). 

Binding the name "COLUMNK" 1:0 the base of the kth column of "e" in the 
outer loop in the above program, we produce the more efficient and slightly 
more intuitive program: 

begi% 
structure declarations for Band C % 

end· -' 

structure vector[i]= .vector+.i-l; 
structure upperdiag[i,j]=[i*(i-l)/2] I 

global vector B[n], 
upperdiag C[n,n]; 

.upperdiag+(.j-2)*(.j-l)/2+.i-l; 

% Here we would begin the outer loop .to read the 
coefficient matrix, "C". 

Here we would begin the inner loop to read .. the 
constant vector, "B". f, 

deer k !!2m n 12 2 do 
begin 

end 

bind vector COLUMNK=C[',.k]; 
~ i from .k-l to 1 do 
--B[. iJt- .B[. i]::COLUMNK[. i]* .B[ .k]; 

% Here we would output or save the solutions which have 
been left in liB". Then We would continue the inner 
and outer loops. f, 
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EFFICIENCY 

Clearly, the efficiency of structure accessing mechanisms highly affects ,~ 
their utility in a language which is designed for efficient implementation, A 
brief note about the compiler is necessary. The compiler first breaks program 
text into "lexemes"--atomic symbols for operators, reserved words, and identi
fiers. The lexeme for an identifier is unique within its scope; hence, 

begin .2!!!. b; begin ~ b; ••• end; ~; 

causes the creation of two different lexemes for "b". 
A structure access may best be understood as a lexeme-stream macro 

substitution mechanism,* where the st'ructure body defines the lexeme-stream 
(with dots preceding formals removed). At a structure access, the actual 
parameters are evaluated (code is produced for their evaluation) and the incar
nation actuals are retrieved. The compiler input is then taken from the struc
ture lexeme-stream with'actuals substituted. 

Thus, under the array2 structure above, 

C[2,1] ~ .C[3,5] + 8 

will compile as if we had written 

(C+2*9+1) ~ • (C+3*9+5) + 8 

which, because of compiler optllnization will compile as if We had written 

(C+19) <E- • (C+32) + 8 

which will generate three machine instructions! The code compiled for our 
example is included as an appendix. 

CONCLUSION 

Bliss factors the separate issues of allocating storage, binding names 
to addresses and structuring the storage referenced by a name. Although all 
allocating declarations also bind names to the referenced store, names may be 
bound to addresses dynamically via the bind declaration which presumes the 
storage has been allocated for the contents of the named storage. A name may 
be structured using the map declaration independent of it·s allocation and 
binding. Because relationships often do exist between these three aspects of 
data structuring--allocating, binding and mapping--communication is allowed 
via "incarnation actuals", "size expressions" and "incarnation formals". 

Use of the mapping, allocating declarations. in Bliss permits the ease 
of use of other higher-level language declarations; the factoring of the 
issues of allocation, binding and structuring helps to separate the activities 
of data structure programming and algorithmic programming, while maintaining or, 
in fact, improving program efficiency .. 

*Structures are sometimes more efficiently accessed as routines. The current 
(unsatisfactory) solution is to camp'ile tI:tose structures with declarations 
(other than their formal parameters) as routines. 
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APPENDIX , 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0020 

BEGm 

, 0021 
0022 
0023 
0024 
0025 

-0026 
0027 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0040 
0041 
0042 

* 

'-

% ~sr BIND AN UPPER BOUND FOR MATRIX DIMENSICN % 

BIND N=150; 

% STROCTURE DEClARATIONS FOR B AND C % 

STRUCI'URE VECroR [I] = . VECroR+. I-I; 
STRUCTURE UPPERDIAG[I,J] = [I* (I-l)/2] 

.UPPERDIAG+(.J-1)*(.J-2)/2+/I-1; 

GI:DBAL THISN, , 
VECroR B [N] , 
UPPERDIAG C [N ,N] ; 

% HERE WE IDUI.D BEGIN THE OtJrER IOOP 'IO READ "THISN" (THE 
SIZE OF '!HIS ARRAY) AND THE COEFFICIENT MATRIX, "C". 

HERE WE hUJID BEGIN THE INNER IOOP 'IO READ 'lHE COO'STANT 
VECroR, "B". % 

DOCR K FRG1 • THISN 'IO 2 00 
BEGIN 

BIND VECroR COI1JmK=C [1, • K] ;-
DECR I FroM ·K-1 'IO 1 00 

B[.I]+.B[.I]-.COLUmK[.I] *.B[.K]; 
END; 

% HERE WE mtJI.D OUl'Pur OR SAVE THE sowrIrns WHICli HAVE 
BEEN lEFT IN "B". THEN WE mtJI.D CCNI'INUE THE INNER AND 
0tJJER IOOPS. % 

END; 
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LINE OFFSEl' IABEL OPCOOE- REGISTER,ADDRESS (INDEX REG) 

0000 mvE 13,THISN 
0030 0001 !AS3: CAIGE 13,2 

. 0002 JRST $S,IA60 
0031 0003 ADD $S,[000001,,000001] 
0032 0004 M)VE 04,13 

0005 SUBI 04,2 
0006 M)VE 05,13 
0007 SUB! 05,1 
0010 IMUL 04,5 
0011 ASH 04,-1 
0012 HRRZI 06,C-l(4) 
0013 IDVEM 06,l($F) iI..OCAL 
0014 M)VE 14,13 
0015 SUB! 14,1 

0033 0016 L630: CAIGE 14,1 
0017 JRST $S,L503 

0034 0020 MJVE 07,14 
002-1 ADD 07,1($F) iI..OCAL 

C 0022 IDVE 10,B-l(13) 
0023 IMUL 10,-1(07) 
0024 SUB 10,B-1(14) 
0025 mVNM 10,B-l(14) 
0026 SQJA 14,L630 ttt 
0027 LS03: SUB $S, [OOOOOl"OOOOOlJ 

0035 0030 SQJA 13,IA53 ttt 
0031 rA60: SEI'Z $V,O 

MX>ULE lENGTH =26+1 
CXM?IIAT!CN CCMlIEl'E 

* 
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INTRODUCTION 
.-._.----.. -

B~lSS DEBUGGING SUPPORT ••• :===: •••• = •••• c~.=.= •• 
••••• V E A S ION TWO 

WM', A. WUI.; 
AP~!I. 23, 19'1 
MOOI~lEO 2 SEP '1 

• ••• * 

MG MANUGIAN 

DDT MAY BE USED TO DEBUG PROGRAMS WRIT'£N IN 8~tSS. HOWEVER, 
THE USE Of DDT A~ONE REQUIRES 'A rAIRI.Y OETAILEO KNOWLEDGE O~ THE 
RUN-rIME REPRESENTATION or BLISS PROGRAMS (STRUCTURE or 
THE STACK, ETC,> AND IS NOT ESPECIAI.I.Y CONV~NI[NT, IN 
PARTICULAR, DDT CANNOT EX'I.OiT ANY SPECIAl. INPORMATtON ABOUT 
THE STRUCTURE OF THE OBJECT PROGRAM', THE SERIOUS BI.ISS PROGRAMMER 
IS WELL ADVISED TO LEARN T~~ BLISS RUN~TIME STRUCTURE •• 
NEVERTHELESS, THERE ARE STII.L A NUMBER or OEBUGG!NQ AIOS 
WHICH DOT DOES NOT PROVlot~ iN OROER TO IMPROVE T~£ SITUATION, 
A MODULE CALLED "H£LP" HAS BEEN WRITTEN TO AUGMENT THE 'ACII.ITIE5 
OF ~OT, THIS MODUI.£ MAY BE I.OADEO (ALONG WIT~ DDT) WIT~ ANY 
BLISS PROGRAM •• A~T~OUGH ~~COMPI~ATION or HE~~ 15 NECESSARY 
If' THE USE: R IS NOT US I N G T ~ E: S' AN o. ROB ~ 1 S S S Y 5 T E M REG 1ST £ R S '. 
"HELP" IS WRITTEN IN aLISS AND T~ERE'ORE T~E r.Cl~ITIESRIB~O BELO 
B~LOW MAY BE CALLtO OIREeT~Y 'ROM THE USERS SOURCE PROGRAM EVEN 
THOUGH THEY ARE PRIMARILV INTENDEO rOR USE PROM OOT, 

~ow TO use: HEI.P .-- --- ----
1, THE ROUTINECS) TO BE ~OAOEC WITH HELP MUST CONTAIN THE 
TIMER SWITCH IN THE MODULE HEAO AND BE COMPiLED WITH T~E IT SWITtH~ 
WITHOUT IT THE TIMER SWITC~ IS INGNORED DURING COMPII.ATION ANO, 
THEREFORE, MAY BE A PERMANENt" ~ART 0' A MOCULE H£AO WITH NO HARM~ 

2. THE HELP MOOU~E MUST NOT BE COMPl~EO WITH IT. 

3. THE MOOULtl TO 8£ OEBUGG£O MUST Bt ~OADEO WITH OOT ANO ~E~P 
SUCH THAT DOT IS ~OAOED JUST ASOVE JOSDAT iN THE ~ow SEGMENT. POR E~AMPLEi 

.OEB F'OO,H£L.P 
WORKS JUST F"INE. 

•. NOTE THAT THE rIRI' ;OUR WOROS 0' EVERV ROUTINE AR~ CEBUGG!NQ 
OVERHEAD ANO THAT 'CTUA~ COOE 'OR fHE RouTINE ITS£~' STARTS AT T~£ 
~IrTH WORD. TO TRACE A eA~L TO A PARTICU~AR ROUTINE, A BREAK'OINT MUS' 
BE INSERTED AFTER WOAO 4 DTHtRWlS£ TMt NECCESS~RY ~OUSEKE£PIN~ OONE 
BY THE ~lRST rOUR WORes 0' T~I ROUTINE W!L~ Not HAVE BEEN COMP~£'£O 
AND THE STACK WILL NOT BE SEt U, 'OR 'ROPEA TAActNG~ 
L. IKE W I SET H E (L AS T • S I X ) T H W 0 fit 0 TO tHE U. A I , • 0 N E ) T H W 0 ,. 0 0' e: A C H ~ 0 U T ! N E 
ARE DEBUGGING OVERKEAO ANa BRE.~PONTS INSEAtEO IN TMlS'AREA 
WIL~ GIVE UNPREDICTABLE RESULT.. NOTE T~At THEAE ARE NO RESTRICTION! 

1 __ 6~! ---



IN PLACING BREAKPOINTS IN .C'U,~ eOCE OUTSIDE or T~E OEBUCCINQ 
,ROLOG ANO EPILOG. 

5, THE:ROUTINE BPN IN ~£~~ MUST BE MOOlrIED rOR EACH NEW ~~ 
VERSION or DOT SINCE IT LOOKS AT THE ODT OBJECT OOOE TO OETERMIN£ 
THE NUMBER O~ THE LAST BREAKPotNT~ IT IS CURRENT~V CO~PATIB~E W!T~ ~ . 

~DDT (VERSION 32, EOIT 23). 
'HE ONLY SET OF DEBUGGING ROUTINES 
WHICH REQUIRE BPN IS THE X'R[.~X) SET, THE OTHERS rUNCTION 
iNDEPENTLY O~ BPN. 

. TO MODIFy BPN APPROPRtAT~~Y. DO THe rO~LOWINGI 

A. DETERMINE THE VALUE or T~E SYMBO~S 

800M3 
81ADR 

IN UOOT BY ~OAOING ODT.REL rROM SVS AND TYPING 
THEIR VALUESi 

.~OA ~S SYSIDot 
LOAOING 

LOAOER NK CORE 

EXIT 

.00 

BCOM3.NNNN B1AOR"MMMM 

B. INSERT T~t TWO VA~U£S JUST TYPEC INTO THE 
APPROPRIATE BINDS IN BPN IN THE SOUROE or ~E~P~BLI~ 

c. RECOMPILE ~ELP~B~1 

OF COURSE, YOU MlY ALSO PATC~ THE STANOARD VERSION or ~E~P 
WITH DDT AfTER LOAOING DOT, ~ELP. AND T~E MOOU~E(S) TO Bt OEBUGG£O~ 
CONSULT AN EXPANDEO(/M) ~lST%NG or ME~P TO CETtRMIN£ W~lCH ~OCAT!ONS 
IN CORE TO MOOIFy. 

,ACILITI£S .-._--._.-
THE rEATUR£S CU~RENTLY !MP~EMENT£C A~LQW CIS~LAV 0' THE 

USER'S STACK, TRACING OF C'~LS ON SP£CI~lC ROU'tN£S, 
DISPLAY Or VARIAB~ES AND REGiONS, AND AN EXTENSION 0' THE 
ALT-MOOE-X (SX) rEATUR£ 0' COT~ THESE ~EA'U~ES ARE PROVIDED 
IY A SET O~ G~OBA~ ROUTINES iN THE H[~P MOOULEi TMtS£ ROUTINES 
ARE OEseR I BED IN DETA I L BELOW',· . 

THERE ARE THREE WAYS iN WHICM ONE or THE RouTINES IN HELP MAY 
1£ ENTERED: A DIRECT CAL~ 'AOM THE USERS ~AOGR'M, 'ROM A OOT 
CONO 1 T I ONAL. BREAK-PO I NT, O~ IY EXECUT I NC A "PUIHJ" WI TM THE 
DOT ALT-MOOE-X rEATUAE. 'HE AE'CE~ IS PRESUMED TO BE "MILIAR 
WITH THESE FEATURES OF DOT~ . 
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c 
CONSID~R AN EXAMP~E: "XSTAK" IS ONE 0' THE ROUTINES 

PROVIDED •• ITS ErrECT IS TO ~RINT A OISP~AY 0' T~[ 
USERS STACK, SHOWING THE ROUTINES CA~~~O, WHERE THEY WERE 
CALLED ~ROM~ THEIR ACTUA~ ~ARAMETERS, ANO T~EIR ~OeAL VARIABLES. 
THE FORMAT O~ THIS DISPLAY Wi~L BE OESCRIBED BE~OWI NOW, 

~ SUPPOSE YOU HAVE A ROUTINE NAMEO "THUD" AND VOU SET A OOT 
\BREAKPOINT BY TYPING: 

T~UD+2i8 

AT SOME ~ATER TIME, WHEN YOUR PROGRAM IS RUNNING A CAL~ W!L~ 
_ BE MADE ON THUD, THE eREAK~oiN' WIL~ OCCUR. ANO DOT WILL 

TYPE: 

SNB»THUO+2 

AT THIS POINT YOU MAY DISPLAY THE CURRENT STACK BY USING 
"XSTAK" AND ENTERING IT VI. TM£ iX rEATURE •• !E~ TYPE. 

PUSHJ SR[G,XSTAKSX 

(BE SURE TO USE THE PROPER VALUE 'OR "SREG" •• NORMALLY 
IT'S 0.) AFTER THE OISP~AY IS rINlSHEO YOUIL~ BE BACK 
IN DDT AND MAY PROCEED VIA AN $P, OR DO W~ATEVER E~SE 
SUITS YOUR FANCY, 

AN A~TERNATIVE TO THE ~XAMPLE ABOVE IS TO USE THE 
CONDITIONAL BREAKPOINT F[ATURE or OOT, rOR ~XAMP~~, SU~POSt 
yoU SET BREAKPOINT #1 AT T~UO BY TYPING 

THUD+2$lB 

AND SET THE CONDITIONAL BREAKPOINT INSTRUCTioN AT 518.1 
TO THE SAME OLD PUSHJ: 

$19+11 XXXX PUSHJ SREG,XS1AK 

NOW, AS SOON AS THE CAL~ ON tHUD IS MADE THE S;ACK WI~~ 
AUTOMATICALLY GET TH~ STACK OISPLAY w. T~EN T~E BREAKPOINT Wl~~ 
OCCUR. THIS MODE Or USING M£~P IS MORE USErUL W!T~ SOME 
Or THE OTHER'HELP ~OUTINES TO BE DESCRIBEO BE~OW. 

ALL Or THE GLOBA~ ROUTINES IN MELP HAVE NAMES 0' THE 
rORM: 

X~Zi~ 
OR x~z~~c 
OR X~lllB 
OR XZliiP 

THAT IS, THEY A~L START Wl'M T~t LETTER "X" 'OL~OW£O 
BY A FOUR CHARACTER NEMONIO. 'OLLOWEO BY A BLANK. A "C", 
• "en, OR A "P". ROUT 1 NES WITH, A CO'MMON 
"tiil tf AL~ PERrORM THE SAM! ;UNCTION, T~[ SU"lX CETtAMINtS 
WHAT HAPPENS AFTER THE ruNCTiON IS COMPL['£~ IN PA~TICULAR 
THE FO~LOWING TABLE SUMMER!!!S THE M£ANINC 0' 'Ht VARIOUS 
SUFF"IX I..E:TTERS: 



SUF'F"IX ... -.-
BLANK 

c 

B 

p 

MEAN I NG" 
~ ... ~-~ ....... ~ .. ~~ .. ~~~ .•.......•..• -~.~ -I' C.~~£C ~ROM A USER PROGRAM, SIMP~Y 
RETURN ANC PROCEED AS USUA~~ 
-I' tAL~£c BY SX. RETUAN TO OOT 
~Q P£AMIT USER TO 00 HIS T~ING • 
• Zp CAL~EO rROM CONC~ BREAKPOINT, TREAT 
is A "a" sur,%x ,seE BELOW)~ 

-'OR CONOITIONA~ 9REAK~OINT ON~Y. 
"TrR COMP~£TING rUNC;lON CAUSE 

OOT TO O[C~EAS£ ITS PROCEEC 
tOUNt ~NO POSSIB~Y BREAK~ 

rCA CONOITIONAL BREAKPOINT ON~Y, 
ArTER COMP~ETING rUNCTION rORct 
A BREAK. 

'OA CONOITIONAL BREAKPOINT ON~Y, 
A'TER COM'~£TINr rUNCTloN rORB£ 
PROGRAM TO PROCEEO (~tl<£ AN S~). 

THE GL08A~ ROUTINES PROVIOEO IN THIS RE~[ASE • ANO THEIR 
'UNCTIONS, ARE SUMMERl~EO iN T~E 'O~LOWING TABLEI 

ROUTINE: . --_ .... -
XSTAK 
XSTAKC 
)(STAKB 
XSTAKP 

,'.' 

'UNCT10N . . ... -.. --.... -... ~ ..... -.•........•..•.•• -...... . 
OlSP~AY T~E USERS STACK IN THE rORMI 

A (ta a.13) 110 •• 0 212,,13'6 
1i0.,13 211'12J2.,X.1 

e ell 0·252 

C ell 0·4.) 111,,1 

ETC', 

THE NAMES IN T~E ~£rT CO~UMN ARt T~OS[ 0' T~£ 
VA~10US ROUTINES CA~~to~ ON THE SAME ~lNE IN THE 
~OCATION '~OM WHICH THE ROUTINE WAS CA~~£D, 
EG. "( .. ~.2')". AND T~E AeTuA~ PARAMETERS 
OIIPLAYEO IN ~.~'.WORD OcTAL 'ORMAT~ ON THE 
LINES BELOW tHE CA~~ ARE 'HE VA~UES 0' THE 
~OCAL VA~I'BLE' 0' THE ROUTINE'! NOTE THAT 
THE ACTUA~S ANO LOCALS ARE iNC CATEO BY 
POSITION. NO' NAME; ALSO. BE eAAE'U~ • SOME 
LOCA~S ARE AuTOM.TICA~~Y ~ENER.TEC BY THE 
COMP H .. ER •• SO' THE 'oS I T ION MA'I NOT EXACTL. Y 
CORRESPOND WJT~ ITS DEC~AA'tlON ~OSlTION~ 
THE LOCAL 'OSI'IONS co CORRESPOND WITH 
THost SHOWN iN TH£ "1M" LtS'lNQ GENERATED 
BY THE COM~lL£~. THE INITiAL AOUTINE EXECUTEO 
HAl A NU~~ CALLER~ . 
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XCAL.L 
XCAL.LC 
XCALLB C XCAl..LP 

c: 

C 

XAREA 
XAREAC 
XAREAB 
)CAREAS 
XAREAP 

XALTX 

THES~ RouTINES 01S~L.AY, -IN A FORMAT ~lKE THAT 
ABOVE THE MOST RECENT ROUTINE CAL.~. ONE US£rUL. . 
APPLICATION or THESE ROUTINES ts T~AT 
or TRACING T~E EXECUTION Or ONE 
PARTICULAR RoutIN£~ BY PL.ACING A CONDITIONAL. 
BREAKPOINT AT THE HEAO Or THE ROUTINE TO BE 
TRACED ANO A "PUSHJ SREG,XCAL.L.P" IN THE 
APPROPRIATE CONO.SP L.OCATION A TRAOE or THE 
ROUTINE Wl'H ITS ACTUALS WiLL. BE OBTAINED. 

THESE ROUTtN£S DISPL.AY A NUMBER (CURR£NTL.Y 8) 
Or CONTIGUOUS AREAS Or MEMORY iN HAL.r WORD 
OCTAL ~ORMAT·. 
THE AREAS TO BE DISPL.AYED ARE OEFINED 
BY NINE TABL.ES CAL.L.ED XAR£l0. XAREA1 ••••• 
XAREAS. EAOH or THeSE TABL.ES IS EIGHT WORDS 
LONG· T~E FORMAT Or EACH WORO IN THESE 
TABLES lSI 

.-·--····-···~·····-·········-·····I 

, 
• 

. , 
t • 

I BASE : 
I 

. ----~·~·-···~·····--·-··.·~-···-··I 
Ir ONE O~ THESE ROUTINES IS ENTERED rROM . 
CONDITIONA~ BREAKPOINT #N, THEN T~EY Wl~L. 
PRINT THE REGIONS OESCRIBED BY THE TAB~E 
"XAREAN"". 

Ir, FOR EXAMP~E, YOU WANT TO OISP~AY 
A rIVE-WORO REGION WHOSE BASE ACDRESS IS 
"C~O~" EVE~Y TIME THE ROUTiNE "THUO" IS 
CALLED you MiG~T TYPEI 

T~UO.2S1B 
S1S.il XXXX PUSHJ SREG,XAREAP 
XAREA11 XXXX 5.,GLOP 

THEN SIT SACK AND WATCH, 
THIS ROU'lN£ IS A GENERA~liATION 0' 
THE "SX~ 'EA'U~E or DOT IN T~E SENSE THAT 
IT PROVIOES AN INT£RrACE BETWEEN OOT ANO ANY 
ROUTINE WRITTEN IN B~lSS~ IT WORRIES ABOUT 
A~L. THE MESSY OETAl~S or SAVING REGISTERS. 
ETC., NECESSARY TO GET rROM OCT INTO A 
BL.ISS RouTINE ANO BACK AGAiN WiTHOUT OESTROYING 
THINGS ALONG T~E WAY~ T~£ ADDRESS or T~E 
B~ISS RouTINE '0 BE CALL.EO 15 SPEctrlEC BY 
THE CONTENTS 0' ONE or T~£ WOROS. XA~TX~. 
XAL.TX1,,~~,X'~'X8~ Ir XAL'X IS CALLEO 'ROM 
CONDITION'~ BREAKPOINT #N (Nil l' elRteT 
OR EXPLIC1T "SX" CA~L.) THEN THE 
CONT£NTS 0' XALTXN Wl~L BE USEe TO SPECIFY 
THE ROUTINE to.B£ CAL~EO~ 

THE ROUTINE CA~~£O INDIRECTLY T~ROUGH 
XA~TX IS EXP£C'EO TO RETURN A VAL.UE 0' 1,1. OR 2 
• THESE VALUES ARE INTERPA£TED LIKE THE 
C.e,AND P IU"txs AESPECTIV£LY~ 
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CONCL.US I ON . ........... 
THE rACl~lTIES DESCRIBED ABOVE ARE A ~R£LIM!NARY SET 

,WHICH WIL.~ BE EXPANDEO IN 'ME 'UTURE~ I HOPE. NAY EXPECT, 
'~SERS OF HE~P TO SUGG~ST 'OOtT!ON'~ AND/OR REV!S£O 

'EATURES. 
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c He:LPE~ 
••••• V £ R S ION TWO ••••• 

T~I5 MODU~E CONTAINS SEVERAL ROUTINES W~ICH MAY BE ~OADEC WITH 
A NORMA~ BLISS ~ODU~E TO PROVIDE DEBUGGING SUPPORT -. IT 
PRESUMES T~AT 'COT' IS ALSO LOAOED' 

Bl\D BUFrLENGT~:15J 
OW~ ~UFrtBUF'L£NGT~J' 
OW~i !'BUFF' J POINTER !NTO THE OUTPUT BUrr 

MA~RO EBU~r= (BUrF.BUrrLp-NQT~)$. 
B9UFF. BUFF<36,1)S. 
SAVRECS. REQIST£R 1.1-15100 PUS~(SREG,0.I) WHtLE(I~.I·1) ~TR ~J$, 
R£SREGS~ 1 •• 15,00 POPCSREG,#20,Y)WHILECI·.1.1)LSS 0J$, 
SU8RETC~.V). IP .(L)(Z.18)LSS<OOTEND AN~#177717) THEN 

(Ll., (I.).CV) ,S, 
ENTER- SAVREGSJ$, 
L!AVE(L~,VV': RESREQS' SUBRETfLL,VV)J .VREG S. 

C MA~HOP PUSH_.261. POP=#262, 

c~ 

elMO AREAS~.S, NUMAREAS-SJ 

ST~UOTURE SATtl,JJ • tl.j~(,SAT+.l'AREAS~ •• J)(0,36)J 
~I.~BAL XAREA0IXAREA1IXA~EA2IXAR~A31 

XAREA41XAREA51X AREA6,XAREA11 
x.REAatAR£AS~jl 

BI~O SAT XA~EAS. XAAEA0J 

X.~TX0'XA~TX1.XALTX2,XA~TX3, 
XA~TX4,XA~Tx"XALTX6,XA~TX7, 
XAL.TXSJ 

F'ORWARO ~tXF'J 

G~eBA~ ROuTINE TIMERa 
(rXXr(#1.~,.JOBR~L<0~1a»1 ~IXr(*400~1~,.JOB~RL.(~,18»J)J 

lr!X UP THE STACK THE WAY. ~EI.P· EXPECTS IT TO 8E. 
I I • E·,' ,t N SUR E T M • T T H £: ,.. REG I s PRO PER L Y PUS H E ~ON TOT ~ E 
tSTACK AT THE BEGINING AND pOPPEO o~, AT T~E ENO or EVERY 
!~~UTINE AS IT W.S IN THE GOOO O~D CAYS • 

• OUTINE ~IX"'CSTART,rlNIS~). 
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BEGIN 

BIND r-FREG(0,0), SISREr.<0.~>J 

MACRO MACHWORO<OP,AC,AD): OP,21.AC'23.ADS, 

PUSHSr=MACHWORO(#261,S.F)$, 
~USHS12.MAOHWOqO(*261,0 •• 12)S, 
POPSF.MACHWO~D(*262.!,r)S, 
~RR~FS·MAC~WORO(#550,r,S)$. 
JR$THP~2~MAC~WORD(#254,0,.I.2)S, 
JRST~PL4·MlCHWORO(#2'4.0,.t.4)S, 
JRSTHP~'·MACHWORD(#254.~,.t·~)S, 
JRSTHP~6.MACHWORD(*254,~,.I·5)SI 

MACHOP CA~~I=#047, JRST=#254, 

REGISTER R' 

BIND SETUWP.#J6, 

~ .. 0J 
CA~L! CR,SETUWP), 
JRST (4,0)' 

!TURN O~r ~IGH SEG WRITE PROTECT 

!~A~T ON SETUWP £RAOR 

INCR 1 FROM ,START 10 IrINIS~ • 11 DO 
Ir .('1)<18,18> EQL #551'9.#12.5 AND '('1.1), EQL. PUSl-lS12 

T~£N IF .('1.4)(21,9) ~Q~ *265 ~JS~~ 
THEN 

BEGIN ~ 
('I)<~,3'>~JRSTHP~4' 
UNTIL. ~C'I)<18,1!) EQ~ ,561t9.#12,5 CO 1~~t.1J 
lr '('1.1) £QL PUSI-IS12 

T~EN ('I~1)(~,36).JRST~P~61 
END 

ELSE 
BEGIN 

('1)<Z;36>~JRST~PL2' 
('1·2)<~,36)·PUS~S'J 
('1·3)(Z,36>·~~R!~S' 
UNTl~ ~('t)<18,18) E~~ "61,9.'12.5 00 1~.1.1J 
lr '('!.1) EQL PUS~S12 

T~£N 
B£r;IN 

('1·1)(~,J6)~JRSTHPL'J 
('1.4)(0,36)~PO~Srl 

ENO 
ENe 

.oUTiN! '50T6(X)1 
t, .X [QL. 0 THEN ,0 ELS[, 
l' .X ~£Q *12 T~£N .X+*11 ELSE 
ir .X ~[Q * •• T~EN ,X.*26 ELSE 
I' .X [QL *.5 THEN *16 ElsE t, .X EQI.· •• ' 'THEN '~4 ELSE #05' 
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·OUT!N£ B5~T6(X). 
~EGIN RE~lST£R RJ 
~~.X AND #37'77777777. R~0J 
~ECR I rROM 5 TO 0 DC 

• R 
£NOJ 

(R~.R'(-6)J R<30~6)~r5ZT6(~X MOO '50). X~.X DIV #50), 

ROUTINE' BPN. 
I THIS ROUTINE MUST BE C~ANGEC roR EAC~ VERSION Or DDT w
, OR, BETTER YEi, DDT S~OU~O BE e~'N~EOTO MAKE THE MOS' 
! RECENT BREAK POINT NUMBER AVAILABLE. 
AE~IN BIND BCO~3.*1536, B1AORa.3621, 
(C_800M3-i) A~O .77777?)-(B1AOR-3»/J 
t"NDJ 

ROuTINE SDDTSTex). 
BEGIN REGISTER R,N' OWN ~N.~~J l~~~N~0J 
~-.JOBSYM.1J N·~l' 
W~!LE (R •• R+*2e~0~02) LSS 0 00 

l~ ("R-.X) LEQ 0 TH~N 
Ir C.'R.-tN) GEQ 0 THEN N~.RJ 

.N·1 
~NIjJ 

~O!)TrNE OuMF»a 
BEGIN MAC~OP CALLI8#47' ~EGrSTER RJ 
R-aUrrJ CA~LJ(R,*3)J R~BUrrLENGTHJ 
00 8Urr~.R~.0 ~Ht~E tR-.R.1) GEQ 0, 
~BUrr .. B8UF'F' 

(~ ENO. 

~OUTtNE tNIT~E~P. (BUFr-~J DUMPC)). 

~OuTtNe: puTeX)=-
IF" .X NEQ 0 THEN 

BEGIN 
lr .~Bur' EQL e THEN iNrT~ELP() ELSE 
tr .~Burr GEQ [Burr T~EN OUM~()' 
REPLACEICP8UF'F',.X) 
E:NO. 

~OUTrNE F»UTS(X). 
WHiLE .X NEQ Z 00 (PUTC,Xc2e,?», X-.Xt?), 

~OUTtN£ CR~" CPUT(#15)J PUT(#12)1 OUMP()~' 

~OUTtN~ TABI PUTC'~1)' 

~OUTtN[ PRINT6(X)-
eEGIN L.OCAL ~J I 

OECR I F'ROM 5 TO e 00 
(L·.X(3~,6>. X-,X'6' iP .~ NEQ 0 T~EN ~UT(.L.'40»)J 

!:NOJ 

~OUTtNE PRINT50(X). PRINT6(~'IT6C.X»)J 

.OUTINE: f'MOceX). 
BEGIN ~OCA~ TI T-0' 
OECR 1 rROM 11 TO 1 00 
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I~ .~(3*.I,J> NE~ ~ T~EN EXIT~nOp (T~.I)J 
"1ECR I F"ROM t T TO eJ DO PUT ("~" •• X<3*. 1.3» J 
ENr:1J 

~O)TINE PDISPCX,">= 
IF .X(~.1a) LSS CDDTEND AND #717171) T~EN PMOCC.X(2,18» ELSr 
QEGIN ~OCAL LJ 
L~SDDTST(.X(~,18»' PRINT50(~@L)J 
t~ .T AND (L~~~(~~.1)+.X(0'18») GTR ~ THEN 

(PUTe"."), PMOC{'.L»J 
fNDJ 

~OtJTINF' SPN(N)= INCR I FROM 1 TO .\, DO PUTC" ")J 

R 0 I .! TIN ~ p 2 C :: (P U T ( " , " ) J PUT ( It , " ) ) J 

~O~TtNE SP3: SPN(3). 

~ 0 ij TIN E P W D ( X ) = (P ~ 0 c ( • X (18 • 1.8) ); p 2 C ( ) J POlS P ( • X (~ , 18> , 1 ) ) , 

~ 0 J TIN e: P W D 2 ( X ) :: IF'. X G E ~ ~ THE N P W D ( • X) E L S E (P U T t ,t -" ) J P Moe ( - • x ) ) J 

ROUT!NE PWO(X)= (P~OC(.X(18,18»; P2C()J PMOCC.X(0,18»))J 

~ 0 1.1 TIN E P R G ( 8 AS E , F' , T ) :: 
TNr.:R I FROM IF" TO .T DO 

BEGIN 
P M 0 C ( • I ) I PUT S ( ": ") J P W 0 2 ( ~ ( • 8 A S E • • 1 - 1 ) ) J S t) N ( 4 ) J 
IF' NOT .t T~EN (CRLF'f)J TARC)J 
END, 

~OUT!NE PRC(F,CALLED): 
gEGIN LOCAL NP,LP,CALLER. 
~ALLER·.(.~-1)<~,18>~lJ 
~P~ Ir .('(.'-1)(21;9) ~EQ #274 T~EN 0 ELSE 

IF" .(~(.f-l)-2)(27.9> NEO #261 THEN ~ ELSE 
• ((Il(i)( .F-1) )(~,18>; 

lP" • r""l-. NP J 
POI S P ( • CAL LED , e ) J TAR C ) I PUT S ( " ( .. " ) J 1 r • CAL L E ~ \\ E Q .1 
'HEN pDISP(tCA~LER'l)J PUTe")")J 
TAe() J PRGC .LP,l, .Np) J 
.CALLER(0,18>·,NP,18 
F:NOJ 

~O!JTtNE PSTK= 
AEGIN LOCAL r,CALLED.VAL.LL.NL. 
VAL~.VREGJ F'-"~~REGJ NL~@.F'REG •• F'-2J LL-.r.1J 
eALLED~.(~(.F'·1)-1)(0,18>J CR~r('; 
UNTIL .CALLEO(e,18> ~QL #177777 DO 

BEGIN LL-.F.1, CRLrC)J 
CAl.LED"P~C( .F, .CALLEO(0,lS») J CRLF'(), TASe) J pRG( .LL,l, .NL) J 
NL .. ~r-~,r-.CAL~EO(18.18)-21 
F" .. ~,F'J 
END • 

J 

• VAL _~ 
~NiH 

~OuTtNE PF'RC=(LOCAL F'J CRLF'()J F" .. Cif~F'REGJ PRC(.F',.(Qb(.F"1)Sif1)<~.18»)J 

ROUTINE PAREA: 
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c 
~EGIN ~OCAL J,~,N,BN' 8N~BPN()JCRL~()1 
INCR I FROM 0 TO AREASr.1 DO 

~NDJ 

BEGIN BIND AREA:;XARrAS(.BN,.lJ(0.18), 
CR~F()J J~.XAREAS~.B~,.IJ(18.18>;N-0J 
IF AREA NEG 0 THEN 
DO ( C R L F' ( ) J POI S P ( A R E·A ( .N ~ , 1 ) ; P U 'f ( " I" ) ; TAB ( ) J ~ w D 2 ( ~ ARE A C • N J ) ) 

WH1LE (N-.N+1J J-,J~l) GTR 0. 
END) 

~L~BAL ROUTINE XSTAK(X):(E~TER' PSTK(») LEAVE(X+l,1», 
GL1BAL ROUTINE XST~KC(X):CENTER, PSTK(); LEAVE(X.l,~»J 
GL,SAL ROUTINE XSTAKB(X):(ENTER, PSTKC), LEAVE(X+l.1)J 
GL~8AL ROUTINE XSTAKP(X)=(ENTER. PSTKC)J LEAVE<X+l.2»; 

CL'BAL ROUTINE XCALL(X):CENTER' PFRce). LEAvEeX+l,1»J 
GL'BAL ROUTINE XCALLCeX):(ENTERJ P'RC()' LEAVECX+l.0»J 
GL~84L ROUTINE XCALLB(X):(ENTERJ PFRC()J LEAVE(X.l,l»J 
GL~BAL ROUTINE XCALLP(X):(ENTERJ PF'RC()' LEAVEeX+l,2)J 

GLCBAL ROUTINE XAREA(X):(ENTERJ PAREA()' LEAVECX+l,l»J 
GL~84L ROUTINE XAREAC(X)=(ENiER; PAR[A(), LEAVE(X+1.~»; 
GL~8.L ~OUTINE XAREAB(X)s(ENTER, PAR[A()J LE4VE(X+l,l»J 
~LJBAL ROUTINE XAREAP(X):(ENTER. PAREAC)J ~EAVE(X+1,2); 

r-- ~L('}8AL ROUTINE XALiX(X):qLOCAL L; ENTER; L~(~XALTX0(9PN()J)()J 
l,__ LEAVEeX+1 •• L»' 

( ,,--. 

ELuonM 
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001flJ~ 
0eJ202l 
00300 

C 0flJ400 
00500 
00600 
007flJ0 
038041 
0219"'0 
01flJ00 
01100 
211200 
flJ13f'J.0 
01400 
flJ1500 
01600 
01700 
01800 
01900 
0200e! 
1Zl210Z 
02200 
02300 
02400 
212500 
02600 
2127"'" 
02800 
~2900 C 0300~ 
031210 
03200 
03300 
03400 
03500 
0360121 

c 

- - - - • 8 LIS S TIM E R MOO U ~ E.. • • • 

THE8~ISS TIMER MOOU~E CONS!S'S or • SET or ROUTtN~S 
WHICH ENABLE THE ust~TO GATHER TIMING STATISTICS ON B~I!S 
PRO G RAM S' 0 URI N,G E X E: CUT ION I. THE T! MIN G S Y S T E M CON SIS T S 0 r 
THE BLISS MODULE "TIME~" AND THE MACAO-1m MOCULE "TIHINT"~ 

IN OROER ~OR 'HE 'IMING ROUTINES '0 rUNCTION, THE TtM!R 
RQUTINES AND THE SYSTEM TO BE MONITOREO MUST BE ~o.oto Wl'~ 
DDT (THE 10 SWITCH TO TME ~OAOE~. ~D SWITCH TO cc~, O~ THE 
DEBUG COMMAND AL~ ACCOMP~ISH THtS'~ ASSUMING THE USER 
WISHES to MOOl'Y ANb RECOMPI~E HIS MAIN ~ROGRAM (A WAY '0 
AVOID THIS IS DISCUSSEO BE~OW), HE MUS' ACO. 

EXTERNAL TIMSE',TIMENOJ 

TO HIS DECLARATIONS, AND THE CA~~S IN THIS MANNER. 

< BEGINNING Or MAIN PROGRAM> 

TIM SET ( ) J' 

< MAIN BOOY or MAIN PROGRAM) 

T I ME ND ( ) I' 

< END O~ MAIN PROGRAM) 

THE <BEGINNiNG) MAY INC~UDE STAC~ INITIA~liATI0N lr NOT 
DONE IMPLICIT~Y BY THE STACK DEC~ARATION IN THE MCOU~E H£AO, 
PLUS ANY PROCESSING THE USER WISHES TO CO BErORE TIMING 
BEGINS. A~L CODE EX£CUTEO BETWEEN 'tMS£T() ANO TIMENO() 
WILL BE MONITOREC: T~E<ENO) MAV CONTAIN ANY O'~ER 
PROCESSING. IN ~ARTiCU~AR, THE <ENO) MAY CONTAIN CA~~S ON 
THE OUTPUT ROUTINES otSCUSSEC BE~OW~ 
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00100 
0el200 
00300 
0~4~0 
00500 
210600 
007~0 
0080e 
0~9k'10 
012100 
1ZJ11~0 
211200 
01300 
1211400 
01500 
016210 
1211700 
01800 
01900 
022100 
02100 
02200 
0230~ 
02400 
02500 
02600 , 
02700 
212801£1 
212900 
03000 
03100 
03200 
03300 
03400 
035210 
03600 
037210 
(213800 
(21390Q1 
04000 
(214100, 
04200 
04300 
04400 
04500 
~4600 
04700 
0 4 812121 
049210 
05fZleJ0 
05100 
05200 
1lJ5300 
215400 
05500 
05600 
057210 
05800 
05900 
06fZl00 

• ~ ... - T I MIN G o U T'P U T • • • • • • • • 

THE COLLECTED 5T.TI5TIC5 ARE SQRTEO BY THE REPORTING 
ROUTINES AND OUTPUT iN THE 'O~LOW!NG rORMATI 

LOST TIME *** •• * •••••• x 
METERED TIME *** ••••••••• ~ 

TOTAL TI~E ******0. = 10"~ 

OVERHEAD RATIO **.*~ 

DEPTH OF CALLS ****** 

STACK LErr ******. 

TOTAL RTNS ***** •• * 

TOTAL CALLS **** ••••• 

NAME ---CA~LS •• - ~·.ROUTINE.·. ·CUMU~ATIVE. RTN AVe CUM AV~ 

J 

A~AAAA ******** ***% ******** ***X ******* ***X *.** •• ** •• * •••• * 

"LOST TIME" IS THE ~ERCENTAGE OF TOTA~ EXECUTION TIME 
THAT WAS SPENT ACCUMULATING ST.TISTtcs. THIS IS PROV!DED 
FOR INFORMATION ON~Y, 1T COES NOT INDICATE THAT T~E ACTU'~ 
FIGURES HAVE AN ERROR INTRODUCEO BY T~E rACT THE ROUT!N£S 
HAVE BEEN TIMED. 

"I~ETERED TIME" IS THE ACTUAl. TIME SPENT IN EXECUTING TI-otE 
USER'S CODE. 

"TOTAL TIME" IS THE SUM OF THE TWO ABOVE TIMES AND !S 
THE TOTAL EXECUTION TIME or THE p~OGRAM BEING MEASUREO, rROM 
THE RETURN ~ROM Tl~SETC) TO THE CA~L ON TIMENOC). 

"OVERHEAD RATIO" IS THE PERCENTAGE ev WHICH EXECUTION 
TIME INCREASED AS A A£SU~T or THE SYSTEM BtING TtMEC~ THIS 
IS THE COST OF MAK!NG 'HE MEASUREM£NTS~ 

"DEPTH OF CAL~S" IS THE MAXIMUM DEPTH TO WHICH CA~LS 
WERE DYNAMICALLY N£STED~ 

"STACK LEFT" IS THE MINIMUM NUMBER or WOROS 
<APPROXIMATELY) ~ErT AT THE TOP or T~E STACK AT T~E OEEPEST 
CALL. TO COMPUTE THE MAXIMUM OEP~H Or T~E STACK, SUBTRACT 
THIS VALUE FROM YOUR SfACI( SliE'. 

"TOTAl. CALLS" IS TME TOTA~ NUMBER OF ROUTINE ENTAl~S 
PERFORMED. 

THE REMAINING 'iGURES COME OUT TABULATEO IN COLUMNS. AS 
FOLL..OWS: 

THE "NAME" CO~UMN eONTAINS T~E NAME 0' THE B~ISS ROUTINE 
OR FUNCTION. 

) 



061100 
06200 
06300 

C/ ~640it 
0651(!0 
06612'0 
0670,0 
~680;t 
0690121 
070~0 
07100 
07200 
073~0 
0740~~ 

07 5010 
07600 
07712J0 
07800 
07900 
"8k1~0 
0810~ 
08200 
08300 
08400 
08500 
08600 
087210 
08800 

C 08900 
09f'HH:'1 
09100 
092012l 
09300 
0 9 400 
09500 
09600 
09700 
098210 
09900 
10000 
10100 
1~212J0 
12300 
10400 
10500 
10600 
10700 
10800 
1~900 
11000 
11100 
1120~ 
113"0 
11400 

C, 11500 
1:1600 
11700 
11800 
11900 
12000 

THE "CALLS" CO~UMN CONTAINS TWO rlGURESI THE NUMBER or' 
TIMES THE ROUTINE WAS CA~~ED, AND T~E PERCENTAGE or THE 
T~TAL CAL~S WHICH THIS CONSTITUTEO~ 

THE "ROUTINE" COLUMN CONTAINS 
AMOUNT or TIME SPENT IN THE 
SUBROUTINES AND THE PERCENTAGE Or 
WHICH THIS CONSTtTUTEC~ 

TWO rIGUR£SI THE TOTAL 
ROUT!NE, EXC~USIVE or ITS 

THE TOTA~ METERED TIME 

THE ~CUMULATIVE" COLUMN CONTAINS TWO rIGURESa THE TOTAL 
A~OUNT Or TIME SPENT iN THE ROUTINE, I~C~UOING A~~ ITS 
SUBROUTINES (WHIC~ MAY INCLUDE ITSE~P), AND THE PERCENTAGE 
OF TOTAL METERED TIME WHICH THIS CONSTITUTED. 

THE ttRTt\ AVG" TIME IS THE ROUTINE TIME DIVIDEO BV T~E 
NUMBER OF CALLS' THE "CUM AVG" TIME is THE CUMU~ATIVE T!ME 
DIVIDED BY THE NUMBER Or CA~LS. 

ALL T I ~1 E 5 G 1 V E N ARe: IN" TIC K S" , W HER e: A TIC K I S 1 ra 
MICROSECONDS. 

THE OUTPUT MAY BE SORTED IN .NY Or THE AVAl~A8~E rlGUR~S 
STORED BY THE TIMESORT() ROUTINE, HOWEVER, SEVERA~ SORTS AAE 
PRE-SPEClrIED AND tNC~UDE OUTPUTTING or THE SORTED DAT1~ 
THESE ARE: 

TIMST1 SORTED BY NAMES, ASCENDING. 

TIMST2 SORTED BY TOTAL CALLS, DESCENDING. 

TIMST3 SORTED BY ROUTINE TIMES, DESCENDING, 

TIHST4 SORTED BY CUMULATIVE TIMES, DESCENDING. 

TIMST5 SORTED BY AVERAGE ROUTINE TIME, OESCENDING~ 

TIMST6 SORTEO BY AVERAGE CU~U~ATIVE TIMES, 
OESCEND I NG'. 

TIMST7 SORTEO BY ADDRESSES, ASCENDING, 

ALTHOUGH TIMST7 caES NOT APPEAR 08VIOUS~Y USErU~, 
CONSIDER THE PROB~EM or ~INDING OUT WHIC~ MEMORY AREAS ARE 
MOST HIGHLV ACCESSED IN • SYSTEM RUNNING O~ A PAGED MACHtNE~ 

THESE ROUTINES MAY BE CA~~EO FROM THE USER'S MAtN 
PROGRAM BY DECLARING T~EM "EXTERNAL". OR FROM ~OT (5£E 
BELOW). 

THE COLUMN ON WHICM THE OUTPUT IS SORTED IS INOICATEO BY 
AN ASTERISK ABOVE THE CO~UMN. NOTE THAT THE NUMBER Or T~E 
SORT (1-6) CORRESPONDS TO THE CO~UMN POSITION or THE OATA 
SORTED. 

IN ADDITION TO THESE REPORTING ROUTINES, A ROUTINE 
"TIMALLC)" IS AV.ILAB~E WHICH CA~LS ~~~ THE TIMING REPO~'S 
(TIMST1-TIMST7) AS WE~~ AS T~E LOCA~l~.TION REPORTS 
(TIMST8-TIMST9 (SEE BE~OWJ)~ 

8-3 



00100 

0121200 
0~30lZl 
02!40~ 

"HJ500 
0~6"1C 
0et700' 
00800 
009210 
01e1eJJ 
rllll~0 
01200_ 
01300 
014k'J0 
01500 
01600 
01700 
01800 
01900 
020"~ 
212100 
0220~ 
0230el 

• ~ I N [ P R I NT·· [ R • • • - • 

OUTPUT MAY BE OtRtCTEO TO THE LINE PRINTER BV CALLING 
THE ROUTINE "TIMLPT()"~ AL~ 'URT~ER OUTPUT Wl~L BE DIRECTED 
TO THE LINE PRINTER (LPT) UNTIL REDIRECTED TO THE TTY BY A 
CALL TO "TI~TTY()". T!MLPTC) SHOULD NOT BE CALLED UNT!L 
A~TER TIMEND() IS CALLED. THESE TWO ROUTINES MAY ALSO BE 
CALL.ED F'ROM DDT. 

ALL ~/O IN THE USERiS PROGRAM SHOULD BE CORRECTLY 
TERMINATED, SINCE A "CALL CSIXBIT IRESET/J" UUO IS EXECUTeD 
PRIOR TO EACH PRINTING. NOTt THIS ALSO RESETS JOBrr TO 
.JOBSA<18,18> AND SETS THE WRITE-PROTECT BIT IN THE HI~~ 
SEGMENT. Ir ANY O~ THESE HAVE AN AOVERS£ EFFECT ON T~E 
PROGRAM OR DATA eASE, THEN PRINTE~ OUTPUT ~AY NOT 8E USED~ 

l~ SPOOLING IS IN OPERATION, EACH SET Or STATISTICS IS A 
SEPARATE ~lSTING~ 

THE CHANNEL USED rOR LPT OUTPUT IS SPECIFIEO BY A MACRO 
IN THE BEGINNING Or THE PROGRAM, IT MAY BE CHANGED By T~E 
USER (SEE: STANOA~O MOOlrICATlONS)~ 
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0e!10~ 
002el0 
0~300 

C 004rzJ0 
/ 2105210 

210600 
0070J~ 
12.10812.10-. 
009210 
12.I1~00 
01100 
211200 
013fe 
01400 
1211500 
2116"'0 
211700 
1211800 
019~0 
02000 
212100 
0220~ 
12J230~ 
~2400 
2125210 
212600 
0272113 
12128210 
029~0 C 03r2J~H1 
03100 
032210 
1213300 
1213400 
213500 
2136210 
213700 
213812.10 
03902 
04"""0 

- - - S TAN CAR 0 MOD I r ~ CAT rON S • • • 

THE TIMER MODULE CURRENTLY CONTAINS ITS OWN DATA A~EAS 
AS "OWN" STRUCTURES. THE SI~ES COMPILED INTO IT AT T~E 
MOMENT MAY NOT BE SUltAB~E FOR A~L SYSTEMS, THEY MAY BE TOO 
SMALL (OR EVEN '00 ~ARGEI)~ Ir A~ ERROR OCCURS W~ILE 
RUNNING BECAUSE '~ESE AREAS ARE TOO SMALL. A MESSAGE WI~L Be: 
OUTPUT INDICATING WHtC~ TA8~E OVERFLOWED, THE TWO PARAME'EAS 
ARE MACROS IN T~E rIRST FEW LINES O~· SOURCE PROGRAMJ 
"MAXRTN" IS THE NUMBER or ROUTINES WHICH CAN BE TIMED (E~G~. 
IT CUR R E'N T L Y 1 SSE T TO" 2 21 21" ) '. IF' M 0 R e: T HAN "M A X R TN" 
ROUTINES ARE IN THE SYSTEM TO BE TIMED, A MESSAGE WI~L BE 
PRINTED INDICATING HOW MANV ARE REQUIRED. THE V.~UE or 
"MAXRTN" MUST BE C~4NG£O. AND THE TIMER MODU~E RECOMPt~EO~ 
THE OTHER ?ARAME"E~, "MAXDEEP", INDICATES THE OEPT~ TO WHICH 
ROUTINES MAY BE DVNAMICALLY NESTED~ A STACK IS USED TO KEEP 
TRACK OF NESTING, AND "MAXOEEP" DECLARES THE: SIt£ OF" T~!S 
STACK. 

IF DECLARED REGISTERS OR RESERVED REGISTERS ARE USED ey 
THE SySTEM BEING TIMED, THEN THE MOCU\.E HEAC Or THE TtM~R 
MODULE MUST BE ALTERED AND THE MOOULE RECOMPI\.EO. 

IF THE SYSTEM BEiNG TESTED IS SEING ~OADEO WITH A ~IGH 
SEGMENT ADDRESS OT~ER THAN #4~000~. THE MACRO "HISEGAO" MUST 
BE CHANGED TO RErl.[CT THIS~ 

IF THE LOCA~liATION MEASURES ARE DESIRED rOR BLOCKS OF" 
MEMORY OTHER THAN 1024 WORDS IN SIlE (NO \.ESS THAN T~I5. 
HOWEVER), THE MACRO "COREe~OCK" MUST BE CHANGED TO REF'LEeT 
THIS. THE VALUE OF" COREBl.OCK IS N FOR A BLOCK OF" SI~E 2**N 
(E.G., 1~24= 2**10, so COREa\.OCK'10)~ 

THE CH.NNEL NU~BER US EO rOR L~T OUTPUT IS #16. THIS !s 
TO PREVENT CONFLICTS WITH THE DDT PATCH ~lLE 1/0 WHtCH US~S 
CHANNEL NUMBER #1'~ IF IT IS DEStRED TO CHANGE THIS 
ASSIGNMENT, CHANGE T~E MACRO "~PTCHNL" IN THE BEGINNIN~ Or 
THE MODULE AND RECOMPILE~ 
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0~10~ 
00.21210 
0:?,30~ 

~21400 
1?J05~0 
1?J0600 
210700 
00800, 
009~0 
010eleJ 

- NON S TAN D • R D MOO I rIC A T ION S - • 

IF THE DEFAU~T VALUES O~ r~EG. SREG, AND VREG ARE NOT 
USED, THEN THE MOOULE HEAD OF THE TIMER MODU~E MUST BE 
CHANGED TO REFLECT THIS, AND THE TIMEP MODU~E RECOM?ILEO: 
IN ADDITION, THE DECLARATIONS IN tHE MAC RO-10 MODULE 
"TIMINT" M'JST BE CHANGED TO RE~LECT THE NEW VAI,.UES, AND THIS 
MODULE REASSEMB~EO~ 

8-6 

) 

) 

) 



~0100 
00200 
00300 

(- 004~0 
'--- r2J~5~'" 

210600 
00700 
0080ia, 
00900 
1i'J1000 
~11~H21 
01200 
rlJ130~ 
~14210 

"1500 
01600 
01700 
01800 
1i'J1900 
02012)0 
021eJ0 
02200 
~23"0 
024 12HZ! 
0250" 
02600 
027"0 
02812J0 

/- 02921121 
\",-- 0312J00 

03100 
0320" 
03312J0 
034"0 
213500 
03600 
03700 
2138210 
039Ql0 
21400" 
04100 
04200 
2143012J 
04400 
flJ 45QlI2J 
214600 
0470" 
04800 
0490" 
05000 
0510" 
215200 
05300 
05400 

,- 055021 
"-/ 12!5600 

0571210 
215800 

- • - • ~ - - • RES T RIC T ION S • • • • • - • ~ 

THE PROGRAM MAY N~T BE RESTARTED ArTER TIMSET() Is 
CALLED. :T~IS WI~~ 8E rIXEO WHENEVER THE ~OADER BUG W~IeH 
ACCIDENTLY OVERLAYS "OWN" DATA (INSTEAD or LEAVING !T 
~EROED) IS FIXED~ 

ANY ROUTINE WITH A NAME SIX (OR MORE) CHARACTERS IN 
LENGTH WHOSE FIRST THREE CHARACTERS ARE "TI~" WILL NOT BE 
TIMED EXPLICITLY. THIS TEST IS USED TO DIrrERENTtA'E 
ROUTINES' OF THE TIMiNGPACKAG£ rROM THOSE Or THE USE~: 
SHOULD THE USER HAVE ANY ROUTINES Or T~IS NATURE. THE TIME 
SPENT IN THEM WIL~ BE OHARGEe TO THEIR CA~~ERI 

I~ DOT IS USED TO START THE TtMING orr (SEE BELOW), 
BREAKPOINTS MUST NOT BE ?~ACEO AT ANY ROUTINE ENTRY paiN'S 
B E ~ 0 RET I M SET ( ) t seA L.~ ED'. I F" 0 N E I S P ~ ACE C INS U C H A 
POSITION, THE ROUTINE WI~~ NOT BE TIMED EXP~ICXT~Y, BUT 
RATHER AS DESCRIBEO ABOVE errOR "TIMXXX" ROUTtNE:S)'. 
ESPECIALLY ONE SHOU~D NOT ~~ACE A BREAKPOINT AT THE PO~J 
WHICH LEAVES THE ROUTtNE~ THE SlOE EPF"ECTS T~IS COU~D ~AVE 
ARE TOO HORRIFYING TO CONTEMP~ATEI 

THE HIGH SEGMENT USED MUST 8E PRIVATE. SINCE T~E 
TIMINITC) ROUTINE (C.~LED BY TIMSETC) EXERCISES WRI'E 
PRIVILEGES IN THE HIGH SEGMENT. 

THE ROUTINES MUST NOT CONTAIN SPuRious PO?J INSTRUCTIONS 
(WHICH CAN BE GENERATEO BY USE or THE MACHO? PEATURE !N 
B~ISS). ONE, ANO ON~Y ONE, PO?J IS PERMITTED IN A ROUTINE~' 

IF A M~CRO-10 SUB~AOGRAM IS USED. IT MUST ADHERE TO T~E 
BLISS ~INKAGE OISCIPLINES I' IT IS TO BE EX~~ICIT~Y TIMEO~ 
IN PARTICU~AR, It MAY CONTAIN ONLY ONE "PUSH SREG,rRE~" 
INSTRUCTION WIT~ A LABE~. EITHER lNTERNA~. OR EXTERNAL~ 
(NOTE THAT SUCH INSTRUOTIONS WIT~OUT LABE~S ATTATCHEO AAE 
VALID), IT MUST A~IO CONTAIN ONE ANO ONLY ONE ~O'J 
INSTRUCTION (SEE ABOVE ~ESTRICTION)~ VIO~ATI0N or THIS RULE 
WILL RESULT IN ABSOLUT£~Y UNPREOICTA8~E BUT CERTAINLy 
INCORRECT BEHAVIOR OF THE PROGRAM BEING TIMED~ 

THE ~OCATION Or T~E HIGH SEGMENT MUST NOT BE CHANGED AT 
RUN TIME WITH A COAt OR REMA? UUO I~ ANY ROUTINES B£lNG 
TIMED ARE IN t~t H!GH SEQMENT~ 'HE CHANGE wtL~ NO' BE 
DETECTED BY THE 'lMING PACKAGE AND CON'USION ANO C.TASTROP~£ 
WILL ENSUE, THE SI!E Or EITHER THE ~CW OR HIGH SEGMENT M.Y 
BE CHANGED, AS ~ONG AS THIS DOES NOT AESU~T IN CHANGING T~E 
ORIGIN OF THE HIG~ SEGMENT~ 

IF" OUT~UT IS TO BE DIRECTED TO tHE ~IN£ PRINTER, .~L I}O 
IN THE USER'S ~ROG~AM MUST BE COR~£CTLV TERMINATEO. SINCE A 
"CALL CSIXBIT IRESET]~" UUO IS EXECUT£O PRIOR TO EAeH 
PR I NT I NG. NOTE: T~ IS AL.SQRESEr.S JOBF" TO " JOBS A<18, 18) ANO 
SETS THE WRITE-pROTEe' BIT IN THE HIGH SEGMENT. Ir ANY or 
THESE HAVE AN ADVERSE [FPEeT ON TMt PROGRAM OR CAT. eASr. 
THEN PRINTER OUTPUT MAY NOT BE USEO: 
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((J21~0 
002210 
003~0 
00400 
005021 
00600 
0070121 
0"800-, 
0090~ 
010i2J~ 
01100 
01200 
013"~ 
01400 
0150j(j 
016130 
01700 
1211800 
01900 
{212000 
1212100 
02200 
02300 
1212400 
12125~0 
02600 
02700 
02800 
1212900 
,,3000 
{2I3100 
032~0 
033~0 
03400 
03500 
{213600 
03700 
03800 
03900 
0412100 
04100 
12142~0 
e4300 
0 4 400 
0451210 
0 4 600 
0 4 700 
048~0 
04900 
05000 
1215100 
05200 
05300 
05400 
121552'0 
05600 
057100 
2158"0 
05900 
1216000 

- - ... .. ... - .. .. USE r R 0 H 0' 0 T • '" • ... " till "" '" 

THE TIMING PACKAGE MAY BE C.~~ED rROM DDT (RATHER THAN 
HAVING TO RE-ASSEMBLE THE MAIN PROGRAM MOOU~E) BV PLACING A 
BREAKPOINT IN THE MAiN PROGRAM. T~IS 8R~AKPOINT MUST BE S~T 
SOMEPLACE A~TER THE STACK HAS BEEN INITIALI~ED, BUT 8E~ORE 
THE FIRST C4LL ON A ROUTINE TO BE tIMEO~ THE CAL~ TO TIMS~T 
FROM DDT MUST BE MADE rROM THE CONTEXT Or THE MAIN PROGRA~~ 
A BREAKPOINT MUST ALSO 8E P~ACED SOMEWHERE IN THE MA!N 
PROGRAM WHERE TIMING IS TO CEASE~ A GOOD PLAC~, rOR 
EXAMPLE, 'IS THE "UUO 12" AT THE END or THE CODE. 

WHEN THE FIRST BREAKPOINT 15 REACHED, TVPE "PUS~J 
TIMSET$X~. THIS WILL CALL T~E TIMSETC) ~OUTINE. W~~N 
CONTROL RETURNS, TYPE "$P" TO PROCEEO~ WHEN THE SECOND 

,BREAKPOINT IS REACHED, TYPE "PUSHJ TIMEND$X" TO TERMINATE 
TIMING. THIS WILL MARGINA~LY INFLUENCE THE TIMINGS O~ THE 
MAIN PROGRAM, SINCE THE TIME SPENT IN ~OT A~TER THE RE'UAN 
~ROM TIMSET AND BErORE THE CA~L Or TIM£ND ARE CHARGED TO T~E 
MAIN PROGRAM. 

A~TER CONTROL RETURNS FROM THE SECOND ~USHJ, TYPE "PUS~J 
TIMST#$X" (WHERE # IS ONE OF THE NUMBERS 1-9) TO OBTAIN 
OUTPUT OF THE STATISTICS, A~TERNATIVELY, ONE MIGHT TY~E 
" PUS H J TIM A L. L S X " TOO B T A I N 0 U T PUT 0 F ALL T ~ e: S TAT 1ST 1 C S ", 

TO DIRECT OUTPUT TO THE LINE PRINTER, TVPE "PUS~J 
TIMLPT$X". ALL OUTPUT WILL BE DIRECTED TO THE LINE PRINTER 
UNTIL REDIRECTED TO THE TTY BY "PUS~J TIMTTY$X"A THESE 
CALLS SHOULD NOT BE GIVEN UNTIL TIMEND() HAS BEEN CAL~ED~ 

TO AID IN SETTING UP A PROGRAM TO BE TIM~O, A "PATCH 
FILE" M~Y BE USED: THIS CONTAINS A~~ THE DDT COMMANOS 
NECESSARY TO SET UP tlMING~ GENERALLY T~ESE CONSIST ONLY or 
SETTING UP BREAKPOINTS AND EXECUTING THE INITtA~I~ATION 
COMMANDS, BUT MORE COMP~EX OPERATIONS MAY BE NECESSARY. T~E 
PROTOCOL BELOW S~OWS HOW TO SET UP AND USE A PATCH rILE. 

.MAKE PAT1.DDT 
*@I\ DRIV.F+4S8 OR1V:r.5$B $G PUSHJ TIMSET$X SP\$$ 
*EX$$ 
EXIT 
fC 

.GET DSK TIMING 
JOB SETUP 
fC 

.DDT 

!Ii" • PAT 1 • $ Y 0 R 1 V'. r .4$ 8 0 R I V", F' ... 5 $ B $ G 
51B»ORIV.r+4 PUSHJ TIMSETSX 

SP 

NOTE THAT ArTER TYPING $"~PAT1~SY THE COMMANDS IN THE 
FILE ARE TVPED OUT AS !r "THEY HAD BEEN TYPED rROM THE TTY~ 
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06100 
~ 62~ra' 
tzj6300 

C 11J6400 
, 11J6500 

c 

11J660~ 
~67~~ 
0680', 

THE SV ("YANK") COMMANO IS MORE rULLV OOCUMENTtD IN THE C-MU 
DOT MODIF'lCATIONS wRiT£Ur.... IT IS RECOMMENOED THAT THE' L.A!T 
COMMAND ' I N THE F'IL..E BE: SP, AND THAT T~E CALI.S TO "T 1 ME:NO" 
AND THE REPORTING AOUTtNES BE PERrORMEO ,ROM THE TTV~ T~E 
MAIN REASON FOR T~IS IS THAT Ir OOT IS RE-ENTERED AT ANY 
POINT BErORE THE DESiRED BREAKPOINT oceURS, T~E REMAINOER or 
THE rILE WILL BE A£AO WIT~ UNDESIRABLE SlOE ErrECTS. 
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00100 
0'~200 
~~3e~1 
0;?;40~ 

0Z50U 
00600 
00700 
008V!1<J 
00ge0 
0·1000 
01::"00 
0120121 
01302 
01400 
0::'5~0 
0160'3 
01702 
~1800 
01900 
02000 
02100 
022~0 
02300 
212400 
02500 
~260el 
02700 
028Ql0 
02900 
f2l3~00 
e3100 
~3200 
e3300 
t?J34~1c1 
035~0 
0360~ 
03700 
213800 
03900 
0 4 2100 
04100 
04200 
04300 
0 4 400 
04500 
~4600 
047~0 
214800 
,,4900 
05000 
rl!5100 
05200 
05300 
215400 
05500 
05600 
057i£'0 
05800 
059210 
0,600eJ 

- MET H 0 0 0 r 1 M P L E 'M E N TAT ION • • ~ 

THE TIM~R IS REAO BY USE Or A CALL AC,CSIX8IT /RUNTIM/J 
UUO, MODlrIEDACCOROtNG TO THE MEMO CIRCULATED OESCRI8lNG 
THE HIGH-RESOLUTION TIMER IMPLEMENTATION AT C-MU. IN ORO~R 
TO OPERATE CORRECT~Y ON SYSTEMS w~ICH 00 NOT HAVE T~E 
H,ARDWARE AND SOrTWARE MOOIF'lCATIONS POR THIS, THE "TtMINT" 
PROGRAM WILL HAV~' TO BE CHANGED TO THEtR S~ECI~ICATIONS~ AS 
A WARNING. THE "JlrrY TIMER" OF THE STANDARD DEC SO~TWARE 
HAS TOO ~04RSE A RESO~UTION (1/60 OR 1i5~ or A SECOND) TO 
MAKE TIMING SHORT ROUTINES POSSIBLE, AND A~SO su~rERS FROM 
THE FACT THAT INTERRUPts rROM DEVICES GET C~ARGED TO T~E 
RUNNING JOB, REGARD~ESS or WHETHER THAT JOB GENERATED T~E 
REQUEST OR NOT. 

A L. L. TIM I N G F' I G U RES G I V E N ARE IN" T 1 C K S" • W HIe H ARE i " 
MICROSECONOS EAC~. HENCE THE 35-8IT INTEGER WHICH 
REPRESENTS TIME CAN COUNT 34,359,138,368 TICKS, OR 343,591 
SECONDS. MORE THAN ADEQUATE rOR ANV TIMINGS DONE. 

THE TIMINIT() ROUTINE IS CALLEC fROM TIMSET() AND 
PERFORMS THE F'O~~OWING ACTIONS. 1) IT TURNS orr T~E 
WRITE-PROTECT BtT IN THE ~iIGH SEGMENT, 2) IT INITI~Llzrs 
CERTAIN COUNTERS AND CREATES AN ENTRY IN THE TIME VECTOR rOR 
THE MAIN PROGRAMI 3) SCANS THE DOT SYMBOL TAB~E SEARCHING 
FOR ROUTINE NAMES (A NAME WHICH SATIsrtEs CERTAIN CRITERIA, 
BEST DISCOVERED BY EXAMINING THE CODE), 4) CREATING AN ENTRY 
IN THE TIME VECTOR rOR EACH ROUTINE rOUND' 5) REP~ACIN~ T~E 
"PUSH SREG,~REG" INstRUCTION AT THE 8EGINNING OF EAOH 
ROUTINE BY A "PUS~J SREG.TIMENT" INSTRUCTION AND EVERY "POPJ 
SREG," INSTRUcflON AT THE ENe BY A "JRST TIMEX'" 
INSTRUCTION: AND rINA~LY 6) IT qESTORES THE HIGH~SEGMENT 
WRITE-PROTECT BIT TO I'S PREVIOUS STATUS. 

THE TIMING UPON ROUTINE ENTRY IS C'~CU~ATEO AS ro~~owSi 

GRAB TIMER (OONE IN TIMENT) 
COMPUTE ~OST TtME 
ADO TIME INCREMENT TO A~L ACTIVE ROUTINESI TOTAL 

TIME 
ACO TIME INCREMENT TO CURRENT AOUTINE TIM£ 
PUSH THE NEW~V.ENTERED ROUTINE TIME VECTOR ONTO T~E 

TIME STACK 
AOO 1 TO T~E NUMBER or CA~~S 
GRAB TIMER (AGAIN CONE IN TIMENT) 

THE TIMING UPON ROUTiNE EXIT IS CA~CUL.TEO AS ro~~ows, 

GRAB TIMER (OONE IN TIMEXT) 
COMPUTE ~OST TIME 
ADO TIME INCREMENT TO ALL ACTIVE ROUTINESI TOTAL 

TIME 
ADO TIME INCREMENT ,TO CURRENT ROUTINE'S ROUTINE TIME 
POF» THE T 1 ME VECTOR. or THE: CURRENT ROUT I NE 
GRAB TIM£~ (OONE IN TIMEXT) 

~OST TIME IS T~E TIME BETWEEN T~E "GRAB TIMER" BEGINNING 
A TIMING ROUTINE AND T~AT AT ITS ENO~ 
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06100 
062Z0 
,,63121121 C 06400 
1216500 

THE TIME VECTOR is THE TABLE CON1.!NING T~E NAMES OF A~~ 
ROUTINES IN THE SYST£M, AND A~EAS TO .CCUMU~ATE STATISTleS 
FOR THEM. IT IS CURR£NT~Y 6 WOROS ~ER ENTRY TIMES T~E 
NUMBER Or ENTRIES CMAXATN) IN Sl~t~ 
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00200 
~0300 

00400 
005~0 
006~~ 
0070~ 
~Z800 
0~900 
01000 
01100 
012~0 
01300 
01400 
01500 
01600 
01700 
01800 
01900 
020~0 
02100 
02200 
02300 
e2400 
~2500 
026~0 
02700 
02800 
02900 
03000 
031~0 

- - - ~ 0 C A ~ 1 ~ A T ION MEA SUR E S • • • 

LOCALIZATION MEASURES PROVIDE IN~ORMATI0N ABOUT T~E 
DYNAMIC BEHAVIOR Or A PROGRAM WIT~ REGARDS TO ITS EXECUTION 
WITHIN CERTAIN REGIONS Or MEMORY AND ITS DATA ACCESSES. T~E 
TIMER PACKAGE CANNOT OBTAIN STATISTiCS ABOUT ITS BEHAVIOR 
WITH REGARD TO OATA ACCESSES, BUT IT CAN MONITOR THE 
INSTRUCTION LOCA~l~ATtON~ THESE MEASUR[S ARE USErUL rOR 
DETERMING THE PROFER GROUPING Or ROUT!NESOR MODU~ES rOR 
PAGING o~ OVERLAYING~ 

THE LOCALI~ATION STATISTICS OBTAIr'ED ARE SOMEW~AT 
APPROXIMATE, SINCE THE ROUTINE IS AWARE ON~Y or THE 8~OCK Or 
MEMORY WHICH CONTAINS THE RouTINE ENTRy POINT. I~ T~E 
ROUTINE CROSSES A B~OCK BOUNDARY. T~IS SH~ULD COUNT AS A 
BLOCK CROSSING, BUT DOES NOT~ IT WOU~D BE HOPED THAT A 
BLISS VERSION FOR A PAGED POP.1~ WOULD HAVE A rACILITy TO 
FORCE ROUTINES TO THE NEXT PAGE 80UNDARY, RATHER THAN SP~tT 
THEM, 

THE LOCALI~ATI0N MONITOR RECORDS 1) THE NUMBER Or TIMES 
A BLOCK WAS ENTERED (A ROUTINE WITHIN THE B~OCK WAS CALLEO) 
FROM A DIFFERENT 8~OCK ANO 2) THE NUMBER or TIMES A ROUTINE 
WITHIN THE BLOCK CA~LEO A ROUTINE IN A DIF~ERENT B~OCK, FROM 
THE REMAINDER OF THE i!MING INFORMATION, T~E TOTA~ NUMBER or 
C~L~S WHICH WERE MACE TO ROUTINES wtTHI~ THE MEMORY 8~OCK 
AND THE TIHE SPENT IN THESE ROUTINES IS OBTAINED. A SUPPO~T 
ROUTINE PRINTS OUT A MEMORY MAP ~IST!NG T~E ROUTINES WITHtN 
EACH BLOCK. MORE SOP~ISTICATEO ANALVSIS IS POSSI8~E BY 
EITHER PROGRAM OR HUMAN. 
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0~100 
002-00 
0Q!3~~ 

"el40~ 
~050~ 
0~600 
007¥'J0 
"08"~ 
00902 
01000 
01100 
,,1200 
(Zl13kl0 
01400 
~15ilJ~ 
01600 
01700 
01800 
01.9210 
02000 
02100 
02200 
02300 
0241210 
02500 
02600 
02 7 ~"?J 
02800 
0291210 
03000 
,,3100 
032021 
0330~ 
03400 
03500 
03600 
03700 
03800 
03900 
04000 
041"121 
042I?JfZJ 
04300 
04400 

- - - L 0 C A ~ i ~ A T tON 0 U T PUT • • • • • 

THE LOCALI~ATION OUTPUT CONSlSTS or TWO ROUTINES, TIMSTS 
AND TIMST9, WHICH ~A~ BE C.~LED FROM T~E USER'S MAIN PROGRAM 
OR VIA DOT IN TH~ SAME MANNER THAT THE OTHER REPORTING 
ROUTINES ARE CA~LEO (SEE "USE FROM DOT" ABOVE). 

TIMST8() OUTPUT: 

BLOCK IN OUT CAL.LS TIME 
** .... •••••••••••• 

"BLOCK~ IS T~E MEMORY AOC~ESS or THE MEMORY 8~OCK. lr 
NO TRANS;ERS IN OR OUT WERE MADE. T~EN THIS IS THE ONLy 
INFORMATION ON T~E L.IN£. 

"IN" IS THE NUMBER or CALL.S MADE TO ROUTINES IN T~E 
BLOCK FROM ROUTINES oufSIDE THE BL.OCK~ 

"OUT" IS T~E: NUMBER OF" CA~~S MADE: TO ROUTINES ourSIOE 
THE BLOCK rROM ROUTINES ~ITHIN THE SLOCK. 

" CAL. L S '. 1ST 1-1 E TOT A ~ N U M B E R 0 F" C AI. L SMA 0 e: T 0 A L: L 
ROUTINES WITHIN THE B~OCK, rROM A~~ OTH~R ROUTtN£S 
("CALLS"-"IN" GIV~S SOME MEASURE or THE INTRA-BLOCK 
ACTIVITY), 

"TIME" IS THE TOTAL. TIME S~ENT EXECUTING AL.~ ROUTINES 
WITHIN THE BLOCK~ THIS IS T~E SUM OF A~~ "AOUTINE" TtM[S 
FOR THE ROUTINES WITHIN THE B~OCK~ 

TIMST9() OUTPUT: 

BLOCK RTNS 
•• **.. •••••• •••••• •••••• •••••• •••••• • ••••• 

•••••• •••••• ETC~ 

"BLOCK~ IS T~E MEMORY ADDRESS OF" T~E MEMORV 8~OCK~ 

"RTNS" IS THE NAMES O~ ALL ROu'tN~S CONTAINED IN ,~., 
BLOCK. 
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0el~0 - - - - I N T ERN A ~ DOC U M [ N TAT ION •• ~ • 
1210200 
00300 DATA GAtHERING ROUTINESI 
lZlel40eJ 
0050~ 

~H:!6"0 
2107,00 
121080~ 
0i,900 
01000 
01100 
01200 
0130_;J 
1211400 
01500 
12116~Ql 

01700 
01800 
019210 
02000 
",,21021 
212200 
02300 
~2400 
02500 
02600 
02700 
02800 
212900 
030~0 
03100 
03200 
03300 
03400 
03500 
23600 
03700 
03800 
1213900 
2142100 
04100 
04200 
0 4 300 
04400 
214500 
04600 
04700 
048"0 
214900 
0501210 
21510121 
1215200 
e5300 
05400 
121551210 
0560" 
057e~ 
e5800 
1?j5900 
21612100 

TIMENT: ALL ROUTINES LINK TO iHIS ROUTINE U~ON ROUTINE 
ENTkY. TH~ CLOCK IS READ ~ND ITS VALUE 15 PASSED TO 
TIMEIN()~ ON RETURN TO TIMENT THE C~OCK IS READ 
AGAIN TO PREVENT THE TIME SPENT IN THE TIMING 
ROUTINES rROM BEING COUNTED IN THE ROUTIN~ TIMES~ 
THIS VALUE IS STORED IN T~E C~08AL VARIABlE 
" TIM F R E ,. '. TIM E N TIS CON T A I NED I N TIM I N TIM A CAN D 
USES 14 WORDS. 

TIMEXT: ALL ROUTINES ~INK TO THIS ROUTtNE U~ON ROUTINE EXIT~ 
THE CLOCK IS READ AND ITS VA~UE IS PASSED TO 
TIMEOUTC), ON RETURN TO TIMEXT THE C~OCK IS ~EAD 
AGAIN TO PREVENT THE TIME SPENj IN THE TIMING 
ROUTINES FROM BEING COUNTED IN THE ROUTINE TIMES~ 
THIS VA~UE IS STORED IN THE G~OBA~ VARIABLE 
" TIM PRE" '. TIM EXT 1 S CON T A. I N £ C I N TIM I ~J T I t-1 A CAN D 
USES 11 WORDS, 

TIMEIN: THIS ROUTINE IS CA~LEO rROM TIMENT AND IS PASSED THE 
ROUTINE ADDRESS (~~US ONE) ANO T~E CURRENT T!M~~ 
THE INCREMENT Or TIME SINCE T~E ~AST READING Or THE 
CLOCK IS COMPUTED AND TIMACC() IS CA~~ED TO ADD tT 
TO A~L THE CUMU~ATIVE TIMES Or A~L OUTSTANDING 
ROUTINES~ T~E INCREMENT IS ALSO ADOEO TO T~E 
ROUTINE TIME Or THE CA~LING ROUTINE. A TIME VECTOR 
POINTER TO THE TIME VECTOR Or THE CA~~EO ROUTINE Is 
PUSHED ONTO THE TIME STACK AND THE NUMBER Or CALLS 
IS INCREMENTEO. ASSORTED STATISTICS ABOUT STACK 
DEPTH, NESTING DEPTH, AND BOUNOARY CROSSINGS ARE 
OBTAINED~ USES 11 WORCS~ CALLS TIMACC, TtMTRX, 
TIMERR, TIMI,.OC·, 

TIMEOUT: TH!S ROUTINE IS CA~~EO rROM TIMEXT ANO ts 
PASSED THE CURRENT TIME~ THE INCREMENT 0' TIME 
SINCE THE L.AST READING O~ THE CLOCK IS COMPUTED AND 
TIHACC() IS CALLED TO ADO IT TO THE CUMULATIVE TI~£S 
or A~L OUTSTANDING ROUTINES~ T~E INCREMENT IS A~SO 
ADOEO TO T~E ROUTINE TIME or tHE CURRENT ROUTIN~~ 
THE TIME VEC'OR POINTER or tHE CUR~~NT ROUTtN~ IS 
POPPED ~AOM T~E TIME STACK~ USES 23 WORDS. CA~LS 
TIMACC. 

TIMACC: THIS ROUT!NE IS CALLED PROM TIMEIN AND TIMEOUT AND 
IS PASSED THE 'IME INCREMENT TO 8E ADDEO. TH!S 
INCREMENT IS AOOED TO THE CUMU~ATIVE TIME or A~L 
ROUTINES POINTED TO BY POINTERS IN T~E TtME STACK, 
TAKING CARE NOT TO ADD T~E VAI,.UE TWICE TO ROUTINES 
CAL~ED R£CURSI~ELY~ USES 26 WORDS. 

TIMlOC: THIS ROUTINE IS CAL.~EO TO LOCATE T~E TIME VECTOR OF 
THE ROUTINE BEIN~ CAlL.EC~ If RETURNS AS ITS VAL.UE 
THE INDEX or T~lS RouTtNE IN THE TIMEVECTOR 
S T R U C T U R E. USE S BIN A R V SEA R C H T £ C C N 1 QUE '. USE S 2 5 
WORDS. 

TIMTRX: THIS ROUTINE IS CA~LED rROM TIMEIN TO RECO~D 
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c. 

c· 

c 

06100 
06200 
063'H~ 
06400 
2!650~ 
066~0 
067.00 
06800 
06900 
12!70~0 
07100 
07200 
0730.0 
1C'J7400 
17500 
1C'J76~0 
077010 
078eJ0 
07900 
080~0 
12)8100 
08200 
rlJ8300 
0840121 
085210 
086~0 
rlJ8700 
08800 
1C'J8900 
09000 
0910~ 
092~0 
t2193110 
09400 
09500 
09600 
219700 
0982'0 
09900 
1021210 
1011210 
1121200 
103210 
112141210 
12150121 
11216210 
121700 
1121800 
109210 
1121210 
111210 
11200 
113k'10 
114210 
1150" 
1161210 
1170" 
1180" 
11900 
1212100 

BOUNDARY CROSS!NGS~ T.KtS TWO PARAMETERS, T~E 
AOORESS or THE CALLED ROUTINE AND THE ADDRESS or THt 

'CALLING ROUTiNE. l~ THEY ARE iN otFrERENT B~OCK5, A 
TRANSITION ouT or THE CALLERS B~OCK AND ONE INTO T~E 
CALLED BLOCK ARE RECORDEO~ USES 11 WORes, 

INITIALI~ATION ROUTINESI 

TIMSET: CALLS T!MINiT~)~ ON RETURN tT READS THE CLOCK AND 
STORES THE VALUE IN THE GLOBAL VARIABLE "TIMPR["~ 
THIS ROUTINE IS CONTAINED IN TIMINT,~AC AND USES a 
WORDS. 

TIMINIT: THIS ROUTINE IS C.LLEO BY TIMSET() A~D 
INITIALIZES T~E SYSTEM BEING TIMED. IT OBTAINS 
WRITE PRivt~EGES IN THE HIGH SEGMENT, PRE~ARATORY TO 
P~ACING TRAPS IN. T~E ROUTINES. IT THEN C~EAT~S A 
DUMMY ENTRY rOR TME MAIN ~ROGRAM (rROM WHICH tT 
ASSUMES IT WAS CAL~ED) SO THE MAIN PROGRAM ~OOKS 
LIKE A CA~LING ROUTINE~ SEVERAL COUNTERS AND 
SWITCHES 'At INITIALIiEO~ T~E DOT SYMBO~ TABL£ ts 
SCANNED, AND EACH SYMBOL qE~ERRING TO A LOCATION IN 
THE ADDRESS SPACE 15 EXAMINED. IF THE SYMBOL ANO 
THE WORD IT POtNTS TO SATISrY CERTAIN CRITERIA. T~E 
SYMBOL IS CONSIOEA£O A ROUTINE NAME~ TIMrIX fs 
CALLED TO PLAC£ ROUTINE ENTRY/EXIT TRAPS, AND AN 
ENTRY iN THE TIH£VECTOR stRUCTURE IS CR£ATEO~ 
rlNAL~Y, 'HE OLD VALUE or THE HIGH·S~GMENT 
WRITE-PROTEct BIT IS RESET~ USES 1,9 WOROS~ CALLs 
TIMFIX, TIMMAK. TtMSRC, T%M50X~ 

TIMFIX: THIS ROUTINE IS CA~LEO rROM TIMINIT TO SET TIMING 
TRAPS IN TME ROUTINE~ IT IS PASSED THR~E 
PARAMETERS. TM[ AODRESS 0' THE ROUTINE. T~£ NAME O~ 
T~E ENTRv-tAAP ROUTINE, AND THE NAME or T~E 
EXIT-TRAP AOUTfNE~ THE rlRST INSTRUCTION IN T~£ 
ROUTINE II REPLACEO BV A "~USHJ (ENTRY ROUTINES" 
INSTRUCTION, T~E POPJ TERMINATING THE ~OUTINE IS 
REPLACED BY A "JRST <EXIT ~OUTtNt)" INSTRUCTI0N~ 
USES 29 wo~os·. 

TIMMAK: THIS ROUTINE IS CA~L£O TO CREATE A NEW ENTRY IN T~[ 
TIMEVECTOR !T~UCTURE. IT IS ~ASSEO THE ADDRESS 0' 
THE ROUTINE ANO ITS SIXBIT NAME. 'I' AOOING TH!S 
ROUTINE WOULO CAUSE THE TIMEVECTOR STRUCTURE TO BE 
EXCEEDED. 'N EAROA r~.G IS SET 4NO NO ENTRV IS 
CREATED. US£S 33 WOROS~ 

TIMSRC: THIS ROUTINE 15 CA~LED ev TIMINIT TO OBTAIN T~E NAME 
O~ THE MAIN PAOGAAM~ IT S[AAOHES THE OOT SYMBOL 
TABLE ~OA EXACT EQUA~ITV OF I'S P.RAMETER~ USES 25 
WORDS. 

TIM50X: TAKES A RAOIX5J SY~BQ~ (£~G~ A OOT SYMBO~) AND 
RETURNS .5 ITS VALUE THE SI~BIT NAME. A!G~T 
JUSTlrIEO~ uSES 25 WOROS~ 

TIM506: TAKES A RAOIX" CHARACTER ANO CONVERTS 'IT TO A 
SlXBIT CM.~.eTEA~ USES t' WO"~S~ 
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12100 
12200 
12300 
12400 
12500 
12600 
12700 
12813-0 
12900 
1301210 
13100 
132e!vj 
13300 
134~" 
135(Z10 
136"" 
13700 
138~0 
13900 
1 4 12100 
1 4100 
14200 
1 4 312110 
1 4 4210 
14500 
14600 
14700 
148"~ 
14900 
15000 
151"~ 
15200 
153~0 
15400 
15500 
156kHZ! 
15700 
15800 
15900 
16000 
16100 
1620" 
1630" 
16400 
1650" 
166"~ 
167"0 
16800 
169210 
1 712100 
171'00 
17 2010 
1 7300 
1 7 400 
17500 
17600 
17700 
17800 
17900 
18000 

TERMINATION ROUT!N~Si 

TIMEND: READS THE C~OCK AND CAL~S TIMEOUT() TO ~INISH T~E 
TIMING or 'H£ MAIN ROUTIN£~ THEN CA~~S TIMTOT() To 
~INISH COM~UTATION or CERTAIN VA~UES~ USES 1 
~ORDS. THIS ROUTINE IS CONTAINEO IN THE MOOULE 
TIM I NT. MAC " 

TIMTQT: CALLED BY TiM£ND TO COMPUTE AVERAGE TIMES rOR ~AO~ 
ROUTINE. A~SO COMPUTES TOTAL EX~CUTION TIME AND 
TOTAL NUMBeR 0' CALLS, USES 57 WORDS. 

REPORTING ~OUTIN£SI 

TIMLPT: SETS THE LPT SWITCH TO DIRECT OUTPUT TO T~E LINE 
PRINTER. 

TIMTTY: RESETS THE LPT SWITCH TO DIREC' OUTPUT TO THE TTY~ 

TIMWLPT: CA~LEC BY TIMPUT iO WRITE A CHARACTER ON THE 
LPT. TWO PARA~ETERS ARE PASSEDI A rUNCTION CODE AND 
A CHARACTER, T~E ~UNCTION COD£S ARE. ~I OPEN THE L~T 
AND WRITE 'HE CHARACTER GIVEN~ 11 WRITE T~E 
CHARACTER GtVEN~ 21 CLOSE THE ~PT (CHARACT~R 
I G N Q RED) " USE 5 61lJ W 0 R 0 S " 

TIMPUT: ~RITES T~£ SINGLE CHARACTER PASSEO TO Ii ON THE ~~T 
OR THE TTY, AS D!RECTED BV THE ~PT SWITCH, US~S 14 
WORDS. 

TIMSPUT: WRITES THE STRING PASSEC TO IT (is 
5-CHARACTER GROUPS) ON THE LPT OR TTY, VIA TIM~UT~ 
USES 37 WORDS', 

TIMCRLr: WRITES A CARRIAGE.R£TURN/~lN£.~E£O ~AIR ON 
THE OUTPUT OEV!CE~ USES 10 WORes. 

TIMTA8: WRITES A TAB ON THE OUTPUT DEVICE. USES 7 WOAOS~ 

TIMPR6: WRITES T~E LErt.JUSTl~IEO SIXBIT C~AA'CT[R STRING 
GIVEN ON T~E OUTPUT OEVtCE~ USES 21 WO~CS. CA~~S 
TIMPUT. 

TIMOE2: THIS ROUTINE 15 CAL~EC TO 00 NUMERIC OUTPUT. IT Is 
PASSED 3 ~'RAMtTERS, THE NUM8EA TO OUTPUT, THE wtOTH 
TO OUTPUT IT. ANO T~E BASE TO CONVERT IT BY (2<
BASE <= 10)~ CAL~S TIMDE2 AND T1MPUT~ USES 31 
WORDS. 

TIMDEC: THIS ROUTINE IS CAL.~EC TO 00 DECIMAL. OUTPUT, IT Is 
PASS EO TWO ,aARAM£TERS, T~E VA~UE ANO T~E W! 0 Tlr. 
CAL.LS TIMO[2 AND T %.M PUT " USES 40 WOACS, 

TIMOCT: THIS ROUTINE: IS CAL.L.EC TO CO OCTAL. OUTPUT', IT IS 
PASSED TWO PARAMETERS. THE VAL,UE AND TH£ W I OT~~, 
CALLS TIMC£2 ANO TIMPUT. USES 412 "'OROS. 

8-16 
-- -' - - - -

:,) 



1t<1~0 
1820~ 

C 
183~0 
1840~ 
185rcH' 
1861210 
18700 
1881210, 
18900 
19000 
1 9100 
1920~ 
19300 
19400 
19500 
196130 
1970~ 
19 800 
19900 
20000 
2010eJ 
213200 
20300 
213400 
20500 
2061210 
207~0 
20800 
20900 
21000 
21100 
21200 
2131321 
214""" 
2150~ 
216021 
2170" 
21800 
21900 
222100 
22100 
22200 
22300 
224130 
22500 
22600 
227~HZI 
22800 
229"'12l 
230021 
2310~ 
23200 
23321121 
234~r2I 
23500 
23600 
2372)0 
238"''' 
239021 
24000 

TIMRE2: PUTS OUT T~E STATISTtCA~ INrORMATtON ABOUT TOT4L 
PER FOR MAN C £ • N 0 I N D I V IOU A L R 0 UTI N E PER F' 0 R MA N C ~ ',' 
USES TIMPUT. TIHSPUT, ilMDEC. TIMPR6, TtHCR~', 
TIM TAB _ TIM W L PT. USE S 2 8 4 W 0 R 0 S '. 

T!MST1: SORTS DATA BY NAME AND CALLS TIMRE2. USES TIMESORT 
AND TIMR~2~ USES 12 WORDS~ 

TIMST2: SORTS DATA BV CALLS AND CALLS fIMRE2. USES TIMESOAT 
AND TIMR~2~ USES 12 WORDS~ 

TIMST3: SORTS DATA BY ROUTINE Tl~E ANO CALLS TIMRE2~ US~S 
TIM ~ S 0 R TAN 0 TIM REt. USE S 12 W 0 R 0 S '. 

TIMST4: SORTS DATA By CUMU~ATIVC TIME· ANO CA~~S TIMRE2~ 
USES TIM£SORT AND TIMRE2. USES 12 WORDS. 

TIMST5: SORTS DATA BY AVERAGE ROUTINE TIME ANO CA~~S TIMRE2~ 
USES TIM~SORt AND TIMRE2~ USES 12 WORDS. 

TIMST6: SORTS DATA By AVERAGE CUMULATIVE TIME AND CAL~S 
TIMRE2, USES 'IHESORT AND TIMRE2. USES 12 WOAOS~ 

TIMST7: SOR1S DATA BV ADDRESS AND CA~~S TIMRE2. uses 
TIMESORT AND T1MRE2. USES 12 WOROS~ 

TIMST8: CALLS TIMSON. SPEClrVING TIMTRP AS THE PROCESSING 
ROUTINE. USES 8 WOROS~ 

TIMST9: CALLS TIMSON. SPECIrVING TIMPRT AS THE PRoctsslNG 
ROUTINE, USES a WORDS. 

TIMALL: CALLoS TIMST1 T~RU TIMST9'. USES 1~ WOADS. 

TIMSON: CALLS TIMESORT TO SORT OAT. BY ADDRESSES. SEQUENCeS 
THRU THE ADDRESS SPACE IN B~OCKS or 
2**CORE8~OCK, CA~LtNG THE REQUESTED ROUTINES 
(PASSED BV I'S CA~~ER)~ USES TtMSPUT, TIMCRLr, 
TIHWLPT. USES 68 WORDS. 

TIMTRP: ~OR EACH COR~ BLOCK rOR WHICH THER£ IS A TRANSITION 
IN OR ouT, P~!NT THE NUMBER 0' EACH KIND, THE TOTAL 
TIME SPENT IN 'HE B~OCK, AND 'HE TOTA~ NUMBtR or 
CALLS TO ROU'INES IN THE BLOCK. CA~~S TIMSPU'. 
TIMDEC, TIMOCT. TIMCR~r. USES 19 WORDS. 

TIMPRT: rOR EACH B~OCK, PRINTS OUT THE NAM~S Or THE ROUTINES 
IN TH~' 8~OCK~ USES TIMOCT, TIMTAB, TIMPR6, 
TIMCR~rf USES 50 WOROS. 

MISCELLANEOUS ROUT!NESi 

TIMESQRTa SORTS THE TtMEVECTQR OATA BY CREATING A 
SORTED INOEX VECTOR INTO THE TIMEVECTOR. THE SO~T 
rIELD IS S~£Clrl£O BY THE P.RAMETERS. THE 5 
~ARAMETERS AEQUl~£b ARE. il NUMBER 0' ENTRIES TO !E 
SORTED; 2) wAlCH WORD Or THE TIMEVECTOR TO SORT ON. 
3,4) T~E POSITION (3) AND SI~E (~) rtE~c 
SPECIrICAT10NS or THE BYTE Or THE ~ORO TO ,SORT ON, 
5) THE otREC'ION TO SORT~ T~E A~GOqITHM IS A 
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241"0 
24200 
24300 
244~(~ 

24500 
24600 
2470~ 
24800', 
24900 
25000 
25100 
252j(jJ 
2530@ 
254r2lJ 
255Qh1 
25600 
25700 
2582121 
259~0 

GE~ERALI~ATION or r~OYD~S TRE[SO~T 3 (A~GORITHM 24'. 
CAe M DEC I 196.). I T C 0 ~J" A INS F' a R ITS e: x c ~ U s 1 ve: usE' 
THE ROUTINES TIMSlrT(58 WORDS) , TIMCMP (3~ WORDS). 
TIMX~R (11 WORDS), TIHEXCH (19 WORDS). T%MESOR1 
ITSELF IS 53 WORDS ~ONG. 

Tlr'1~lF'l: 

1IMCMP: SEE TIMESORT~ 

TIMXFR: SEE TIMESO~T~ 

I'IMEXCH: 

TIMERR: A GENERAL ERROR·eATCHe:R~ ANY ERROR 
TIMERR, PASSING IT AN ERROR CODE. 
IN A SELECT EXPRESSION TO CHOOSE 
ACTION. USES 48 WORDS. 
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DE:TECTED CAL.LS 
TI-IE: eOCE IS USE:D 
THE APPROPRt4'e: 
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