
(

r---

I \ DECUS
\ I PROGRAM LIBRARY-.---.

DECUSNO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

ATTENTION

10-118 PART II

A COLLECTION OF READINGS ON THE
SUBJECT OF BU"SS-l,0

Submitted by: M. G. Manugian

D igita I Equipment Corporation
Maynard, Massachusetts

December 1, 1971

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

~ The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibi lity is assumed by these parties in connection therewith.

"l {.l'
;ll

J

,)

c

A Collection of Readings on the Subject of

BLISS - 10

c

Printed December 1971
Digital Equipment Corporation

146 Main Street
Maynard, Massachusetts 01754

J

J

c

c/

c

INTRODUCTION

The documents in this collection have been gathered 'together
and reprinted in order to provide information pertaining to
BLISS-IO not found in the BLISS-IO Reference Manual (DECUS 10-
118, PDM 001-326-002-01). These documents serve three primary
purposes. They provide a general description of the language and
explain some of the basic, rather unique features of BLISS-IO.
They provide the background for a number of critical design
choices in the language. Finally, they include examples and
descriptions of some of the support software written for BLISS-IO
as an aid to using the language.

The material presented in this document is for information
purposes only. Digital Equipment Corporation makes no
commitment to support any of the software as described herein.

Our thanks go to Professor William A. Wulf, profe,ssoI~
D. Russell, and Professor A. N. Habermann; also C. GE~schke,
J. Apperson, D. Wile and others at Carnegie-Mellon University
through whose efforts the BLISS language was specified and
implemented.

c
ACKNOWLEDGMENTS

Wulf, W. A. et. al., "BLISS - A Language for Systems Programming",
~, December 1971, CopyrightGD 1971, Association for Computing
Machinery, Inc. (Reprinting pr1vileges were granted by permission
of the Association for Computing Machinery.)

Wile, D. S. and C. M. Geschke, "Efficient Data Accessing in the
Programming Language BLISS", SIGPLAN Symposium .Q!! Data Structures
Proceedings, February 1971.

J

)

J

c

c

/ i

~.

ABSTRACTS

Wulf, W. A.~. al., "BLISS - A Language for Systems Programming"

This paper discusses the design considerations in
constructing a language especially suited for use in
writing production software systems, e.g., compilers,
loaders, and operating systems. BLISS, a language
implemented at Carnegie-Mellon University for use in
implementing software for the PDP-lO, is described to
illustrate the result of these considerations. Some
comments are made on early experiences using BLISS for
implementing various types of systems.

Geschke, C. et. al., "BLISS Examples"

This section contains a set of examples which illustrate
the use of Bliss. Each example is intended to be fairly
complete and self contained, and to illustrate one or
more features of the language.

Wulf, W. A., "Programming Without the GOTO"

It has been proposed by Dijkstra and others that the
use of the GOTO statement is a major contributing factor
in programs-wnIch are difficult to understand and debug.
This suggestion has met with considerable skepticism
in some circles since GOTO is a control primitive from
which a programmer may synthesize other, more complex,
control structures which may not be available in a given
language. This paper analyzes the nature of control
structures which cannot be easily synthesized from simple
conditional and loop constructs. This analysis is then
used as the basis for the control structures of a-
particular language, BLISS, which does not have a GOTO
statement. The results of two years of experience-prQgramming
in BLISS, and hence without GOTO's , are summarized.

Wulf, .W 0 A., "Why the DOT?"

An explanation of the pointer and contents concepts in
BLISS justifying the semantic meaning o~ the dotope7'ator.
The current meaning is compared to poss1ble alternat1ve
interpretations.

Wile, D. A. and C. M. Geschke, "Efficient Data Accessing in
the Progranuning Language BLISS"

The specification of data structure in higher-level
languages is isolated from the related specifications of
data allocation and data type. Structure specification
is claimed to be the definition of the accessing (addressing)
function for items having the structure. Conventional
techniques for data structure isolation in higher-level
languages are examined and are found to suffer from
a lack of clarity and efficiency.

The means by which data structure accessors may be defined
in BLISS, the specification of their association with
named allocated storage, and their automatic invocation
by reference to the named storage only, are discussed.
An example is presented which illustrates their efficient
implementation and their utility for separating the
activities of data structure programming and algorithmic
progranuning.

Wulf, W. A., "HELP .DOC"

DDT may be used to debug programs written in BLISSj
however, the use of DDT alone requires a fairly detailed

J

knowledge of the run-time stack and other run-time)
characteristics of BLISS programs and is not especially .
convenient. In particular, DDT cannot exploit any special
information about the structure of the object program.
A module called "HELP" has been written to augment the
facilities of DDT. This module may be loaded (along with
DDT) with any BLISS program -- although recompilation of
HELP is necessary if the user is not using the standard
BLISS system registers. HELP is wri~ten ~n BL~SS and
therefore the facilities described below may be called
directly from the user's source program even though
they are primarily intended for use from DDT.

Wulf, W. A., "HELP.BLI"

This is the BLISS-IO source listing for the debugging aid
described in HELP.DOC.

Newcomer, J. M., "TIMER. DOC"

This is the reference document and user manual for a package
written in BLISS-IO which gathers a number of timing
statistics for programs written in BLISS-IO. ~

CONTENTS

c

1. BLISS - A Language for Systems Programming

2. BLISS Examples

3. Programming Without the GOTO

4. Why the DOT?

5. Efficient Data Accessing in the Programming Language BLISS

6. HELP.DOC

7. HELP.BLI

8. TIMER. DOC

c.

J

c:

BLISS - A Language for Systems Programming

c/ William A. Wulf

J

J

J

c

BLISS
A LANGUAGE FOR SYSTEMS PROGRAMMING

W. A. Wulf, D. B. Russell, A. N. Habermann
Carnegie-Mellon University*

Pittsburgh, Pa.

ABSTRACT

This paper discusses the design considerations in constructing
a language especially suited for use in writing production soft
ware systems, e.g., compilers, loaders, operating systems, etc.
Bliss, a language implemented at Carnegie-Mellon University for
use in implementing software for the PDP-lO, is described to
illustrate the result of these considerations. Some comments
are made on early experiences using Bliss for implementing
various types of systems.

INTRODUCTION

In the fall of 1969 Carnegie-Mellon University
acquired a PDP-10 from Digital Equipment Corporation
to support a research project on computer networks.
This research will involve the production of a sub
stantial number of large systems programs of the
type which have usually been written in assembly
language. At an early stage of this design effort
it was decided not to use assembly language, but
rather some higher level language. This decision
immediately leads to another question: which lan
guage'l In turn this leads to a consideration of the
characteristics, if any, which are unique to, or at
least exaggerated in, the production and maintenance
of systems programs. The product of these delibera
tions was a new language which we call Bliss.

We refer to Bliss as an "implementation lan
guage", IL, although we admit that the term is some
what ambiguous since, presumably all computer lan
guages are used to implement something. To us the
phrase connotes a general-purpose, higher-level lan
guage in which the primary emphasis has been placed
upon a specific application, namely the writing of
large, production software systems for a specific
machine. Special purpose languages, such as compil
er-compilers, do not fall into this catagorization,
nor do we necessarily assume that these languages
need be machine-independent. We stress the word
'implementation' in our definition and have not used
words such as 'design' and 'documentation'. We do
not necessarily expect that an implementation lan
guage will be an appropriate vehicle for expressing
the design of a large system nor for the exclusive
documentation of that system. Concepts such as
machine-independence, expressing the design and
implementation in the same notation, self-documenta
tion, and others, are clearly desirable goals and
are criteria by which we evaluated various languages.
However, they are not implicit in our definition of
the term "implementation language". There are a few
extant examples of languages which fit our defini
tion: EPL (a PL/I derivative used on MULTICS l),
B5500 Extended Allol (Burroughs Corporation2),
PL/3603 , and BCPL .

*This work was supported by the Advanced Research
Project8 Agency of the Office of the Sacretary of
Defense (F-44620-67-C-0058) and is monitored by the
Air Force Office of Scientific Research.

The various arguments for and against the use
of higher level languages to write systems software
have been discussed at length. We do not intend to
reproduce them here in detail except to note that
the skeptics argue prbnarily on two grounds: effi
ciency, and an assertion that the systems programmer
must not allow anything to get between himself and
the machine. The advocates argue on the grounds of
production speed (and cost), maintain~bility, re
design and modification, understandability and cor
rectness. The report of the NATO Conference on
Software Engineering held in Garmish (October, 1968)5
contains several discussions on these points, and
the reader is urged to read that report.

It is our opinion that program efficiency,
except possibly for a very small number of very
small code segments, is determined by overall pro
gram design and not by locally tricky, "bit-picking"
coding practices.

Many, if not all, systems have experienced sub
stantial performance improvements from redesign or
restructuring resulting from understanding or in
sight after the system has been running for some
time. This redesign is frequently done by someone
other than the programfs original author. This
argues for good documentation - but also for under
standability of the code itself. Understandability
is a function of many things, not all of which are
inherent in the language in which a program is writ
ten - a programmer's individual style for example.
Nevertheless, the length of a program text and the
structure imposed upon that text are important fac
tors and argue strongly for the use of a higher lev
el language.

Presuming the decision to use an implementation
language, which one should one choose? An argument
might be made for choosing one of the-existing lan
guages, say Fortran, PLII, or APL, and possibly ex
tending it in some way rather than adding to the
tower of Babel by defining yet another new one. We
have chosen to do the latter and some justification
is required. The only valid rationale for creating
a new language is that the existing ones are inap
propriate to the task. What then are the special
characteristics of systems programs which existing
languages are inappropriate to express? (Later we
shall discuss how these manifest themselves in
Bliss.) The two special characteristics most

1-1

frequently mentioned are efficiency and access to
all hardware features of the machine. We add sev
.eral things to these; the resulting list forms the
design objectives of Bliss.

Requirements of Systems Programs
- space/time economy
- access to all relevant hardware features
- object code should not depend upon elab-

orate run-tUne support

Characteristics of Systems Programming Practice
- control over the representation of data

structures
- flexible range of control structures (no

tably including recursion, co-routines,
and asynchronous processes)

- modularization of a system into separately
compilable sub-modules

- parameterization, especially conditional
compilation

Overall Good Language Design
- encourage program structuring for under

standabili ty
- encourage program structuring for debugging
- economy of concepts (involution), general-

ity, flexibility, •••
- utility as a design tool
- machine independence

Not all of the goals mentioned above are com
patible in practice, nor is the order in the above
list accidental. Those found early in the list we
consider to be absolute requirements while those
occurring later in the list may be thought of as
criteria by which alternative designs are judged
once the more demanding requirements are satisfied.

For example, efficiency, access to machine fea
tures and machine independence are conflicting
goals. In fact the design of Bliss is not machine
independent, although the underlying philosophy and
much of the specific design are. The machine for
which the language was being designed, the PDP-lO,
was ever present in the minds of the designers. The
code to be generated for each proposed construct, or
form of a construct, was considered before that con
struct was included in, or excluded from, the lan
guage. Thus the characteristics of the target
machine pervade the language in both overt and sub
tle ways. This is not to say that Bliss could not
be Unplemented for another machine, it could. It
does say that Bliss is particularly well suited to
implementation on the PDP-10 and that it could
probably not be as efficiently implemented on
another machine. We think of Bliss as a member (the
only one at present) of a class of languages similar
in philosophy and mirroring a similar concern for
the important aspects of systems programming, but
each suited to its own host machine.

As another example of the incompatibility of
these goals, consider the requirement for minimal
run-time support and the use of the implementation
language as a design tool. In some sense a design
tool should be at a higher level than the object
being designed - that is, the tool should relieve
the designer from concern whichever details the
designer deems appropriate only for later considera
tion. Any language relieves its user fram concern
over certain details, even assembly language frees
the coder from the need to make specific address

assignments. Assembly language is not a good design
tool precisely because the class of such facilities
is finite and narrow, a higher level language is
better because the class is larger and broader.
There is a point, however, beyond which broadening
the class of details which are handled automatically
introduces substantial costs in run-time efficiency
and requisite run-time support. The design of Bliss
walks a very fine line between generality, effici
ency, and minimal run-tUne support. At the time of
this writing Bliss programs require run-time support
to the extent of one subroutine consisting of ten
instructions.

DESCRIPTION OF BLISS

Bliss may be characterized as an Algol-PL/I
derivative in the sense that it has a similar expres
sion format and operator hierarchy, a block struc
ture with lexically and dynamically local variables,
similar conditional and looping constructs, and
(potentially) recursive procedures. As may be seen
from the two simple examples shown below the general
format of Bliss code is quite Algol-like; however,
the similarity stops shortly beyond this glib com
parison.

function factorial (n) =
if .n ~ 1 then 0 else .n*factorial (.n-l);

function QQsearch (K)
begin register R,Q,A,E;
E ~ R ~ .K/.n; Q ~ .K mod .n; A ~ .const;
do if .ST[.R] ~ .K

then return .R
else ~R + .A; A ~ .A + .Q)

until .R ~ .E
end;

The first of these examples is the familiar recur
sive definition of factorial. The second example is
the "quadratic quotient" hash search described by
J. Bell in the February, 1970 CACM.

We will now describe the major features of Bliss
in terms of its major aspects: (1) the underlying
storage, (2) control, (3) data structures, and final
ly mention some other miscellaneous features.

1. Storage

A Bliss program operates with and on a number
of storage "segments". A storage segment consists
of a fixed and finite number of "words", each of
which is composed of a fixed and finite number of
"bits" (36 for the PDP-lO). Any contiguous set of
bits within a word is called a "field". Any field
may be "named", the value of a name is called a
"pointer" to that field. In particular, an entire
word is a field and may be named.

In practice a segment generally contains either
program or data, and if the latter, it is generally
integer numbers, floating point numbers, characters,
or pointers to other data. To a Bliss program, how
ever, a field merely contains a pattern of bits.
Various operations may be applied to fields and bit
patterns such as fetching a bit pattern (value) from
a field, storing a bit pattern into a field, integer
arithmetic, comparison, boolean operations, and so
on. The interpretation placed upon a particular bit
pattern and consequent transformation performed by
an operator is an intrinsic property of that operator

1-2

o

and not of its operands. That is to say, there is
no 'type' differentation as in Algol.

Segments are introduced into a Bliss program by
declarations, for example:

global g;
~ x,y [5J, z;
local p [100];
~ter rl, r2 [3J;
function f(a,b) = .at.b;

Each of these declarations introduces one or more
segments and binds the identifiers mentioned (e.g.,
g, x, y, etc.) to the name of the first word of the
associated segment. (The function declaration also
initializes the segment named If I to the appropriate
machine code.)

The segments introduced by these declarations
contain one or more words, where the size may be
specified (as in "local p[lOOJ"), defaulted to one
as in "global g;"):-O;-defaulted to whatever length
is necessary for initialization (as in the function
declaration). Explicit size declaration (as in
"local p[lOOJ") are restricted to expressions whose
value can be determined at compile time so that run
time storage management is not required. The iden
tifiers introduced by a declaration are lexically
local to the block in which the declaration is made
(that is, they obey the usual Algol scope rules)
with one exception - namely, "global" identifiers
are made available to other, separately compiled
modules. Segments created by ~, global, and
function declarations are created only once and are
preserved for the duration of the execution of a
program. Segments created by local and register
declarations are created at the time of block entry
and are preserved only for the duration of the exe
cution of that block. Register segments differ from
12£!! segments only in that they are allocated from
the machine's array of 16 general purpose (fast)
registers. Re-entry of a block before it is exited
(by recursive function calls, for example) behaves
as in Algol, that is, l2£!l and register segments
are dynamically local to each incarnation of the
block.

It is important to notice from the discussion
above that identifiers are bound to names by these
declarations, and that the value of a name is a
pointer. Thus the value of an instance of an iden
tifier, say x, is ~ the value of the field named
by x, but rather is a pointer to x. This interpre
tation requires a "contents of" operator for which
the symbol "." has been chosen. (Which explains the
occurrence of this character in the earlier examples.
This will be discussed in much greater detail under
the subject of data structures.) There are two ad
ditional declarations whose effect is to bind iden
tifiers to names, but which do not create segments;
examples are:

external
bind

s;
y2 = y+2, pa = p+.a;

An external declaration binds one or more iden
tifiers to the names represented by the same name
declared global in another, separately compiled
module. The bind declaration binds one or more
identifiers to the value of an expression at block
entry time. This will be discussed in greater
detail in the section on data structures.

2. Control

Bliss is an "expression language", that is,
every executable construct, including those which
manifest control, is an expression and computes a
value. There are no statements in the sense of
Algol or PL/r. Expressions may be concatenated with
a ";" to form compound expressions, where the value
of a compound expression is that of its last compo
nent expression. Thus ";" may be thought of as a
dyadic operator whose value is simply that of its
righthand operand. The grouping symbols "begin" and
"end" or "(" and ")" may be used to embrace such a
compound expression and convert it into a simple
expression. A block is merely a special case of
either of these constructions which happens to con
tain declarations, thus the value of a block is
defined to be the value of its constituent compound
expression.

The assigrnnent operator, ""''', is a dyadic oper
ator whose left operand is interpreted as a pointer
and whose right operand is an uninterpreted bit pat
tern. The right operand is stored into the field
named by the left operand, the value of the expres
s ion is that of its right operand. Recalling the
interpretation of identifiers and the "." operator,
the expression

x+-.x+l

causes the value of the field named by x to be in
cremented by one. The value of the entire assign
ment expression is that of the incremented value.
The compound expression

(y ... x; z y+l)

causes a pointer to x to be stored into y, then
computes the value of the field named by x (accessed
indirectly through y) plus one and stores this value
in z; this value is also that of the compound expres
sion.

There is the usual complement of arithmetic,
logical, and relational operators. Logical opera
tors operate on all bits of a word; relational oper
ators yield a value 1 if the relation is satisfied
and a value of 0 otherwise.

We will describe six forms of control expres
sions: conditional, looping, case-select, function
call, co-routine call, and escape. For this discus
sion it will be convenient to use the symbol E, pos
sibly subscripted, to represent an arbitrary expres
sion.

The conditional expression is of the form

and is defined to have
that the righenost bit
value of E3 otherwise.
then Ej" is cons idered
then EZ else 0".

the value ~ just in the case
of"El is a t and has the

The abbreviated form "if El
to be identical to "if El

There are four basic forms of looping expres
sions:

Each form of looping expression implies repeated
execution (possibly zero times) of the expression
denoted E until a specific condition is satisfied.
In the first form the expression (while ••• do) E is
repeated so long as the rightmost bit of El remains
1. The second form is similar to the first except
that E is evaluated before El thus guaranteeing at
least one execution of E. TIle last two forms are
similar to the familiar "step ••• until" construct of
Algol, except (1) the control variable is local to
E, (2) El,Ez' and E3 are computed only once (before
entry to the loop), and (3) the direction of the
step is explicitly indicated (increment or decre
ment). Except for the possibility of an escape ex
pression within E (see below) the value of a loop
expression is uniformly taken to be -1.

We shall treat somewhat simplified versions of
the ~ and select expressions here, these forms
are:

The value of a case expression is E , that is, the
expression e is evaluated and this ~alue is used to
select one of the expressions E. (0 ~ i ~ n) whose
value, in turn, becomes tbe val~e of the entire case
expression. The select expression is somewhat sim
ilar to the case ~sion with the distinction
that the value of e is not restricted to the range
o $ e $ n. Execution of the select proceeds as fol
lows: (1) the value of e is computed, (2) the value
of the expressions ~. (0 ~ i ~ n) are evaluated,
(3) for each i such tfiat e = ~. the expression
E2 . 1 is evaluated. Thus, in tfie event that more
tfik~ one value of i exists such that e = Ez.) each
of these expressions is evaluated; in this ~ase the
final value of the ~ expression is undefined.

A function call expression has the form

This expression causes activation of the segment
named by E as a subprogram with an initialization of
the formal parameters named in the declaration of the
function to the values of the actual parameters
El, •.• ,E. Only call-by-value parameters are allowe~
however,ncall-by-reference is available since names,
pointer values, may be passed. The value of a
function call is that resulting from execution of
the body of the function. Thus, for example, the
value of the following block is 3628800.

begin
function factorial(n)

if .n ~ 1 then 1 else .n*factorial(.n-l);
factorial(lO)
end

Note that a function call need not explicitly name a
function by its associated identifier; all that is
required is that E evaluate to the name of a segment.
Thus expressions such as the following are valid and
useful.

(case.x of set Pl;P2;P3 tes)(.z)

Also note that the occurrence of a parameter list

1-4

enclosed in brackets triggers a function call. An
identifier by itself merely denotes a pointer to the
named segment; thus in the example above PI, P2, and
P3 are the names of functions and thus the value of
the case statement is the name of one of these
functions (not the result of executing it). Function
calls with no parameters are written "E()".

The body of any function may be activated as a
co-routine and/or asynchronous process. An arbitrary
number of distinct incarnation of a single body are
allowed. In order to permit any of several realiza
tions of co-routine mechanisms~nly two primitive
operations are provided.

1 2 n
create E(E ,E , ••• ,E) at Ez length E3 then E4
exch j (ES ' E6)

The effect of the create expression is to create an
independent context (that is, a stacki for the
function named by E with parameters E , ••• ,En• The
stack is set up beginning at the word named by ~
and is of size E3 words (to provide overflow protec
tion). The activation record for the newly created
co-routine is set to the head of the function named
by E. The value of the ~ expression is a "pro
cess name" for the new co-routine. Control then
passes on to the expression following the 'create' -
in particular the expression E4 is not executed at
this time and the body of E is not activated. When
two or more such contexts have been established,
control may be passed from the currently executing
one to any other by executing an exchange jump,
exchj, expression. An expression "exchj (E

S
' ~)"

will cause control to pass to the co-routine named
by ES (the value of an earlier create expression).
The value E6 becomes the value of the exchj opera
tion which last cause control to pass out of the
co-routine named by ES"

The familiar "goto ••• labe1" form of control has
not been included in Bliss. There are two reasons
for this: (1) unrestricted goto's require consider
able run-time support due to the possibility of
jumping out of functions and/or blocks, and (2) the
authors feel strongly that the general goto, because
of the implied violation of program structure, is a
major contributor to making programs difficult to
understand, modify and debug. There are "good" and
"bad" ways to use a goto and there are restrictions
which could be imposed which eliminate the need for
run-time support. Consideration of the nature of
"good" ways and the restrictions necessary to elim
inate run-time overhead led us to eliminate the goto
altogether, and to the inclusion of conditional,
looping, and case-select expressions. These alone,
however, are not sufficiently general, or convenient,
and consequently the 'escape' expressions were intro
duced. There are six forms of escape expressions:

EXITBLOCK E
EXITCOMPOUND E
EXITLOOP E

EXITCOND
EXIT
RETURN

E
E
E

Each form of escape expression causes control to
exit from a specified control environment (a block,
a loop, or a conditional expression, for example)
and defines a value (E) for that control expression
(EXIT exits from any form of control expression,
RETURN exits from a function).

Consider a linked list of two word cells, the
first of which contains a link (pointer) to the next

)

c'

cell (the last cell has link=O) and -the second of
which contains data. The following expression has a
value which is the pointer to the first negative data
item, or a value of -1 if no such item is found. The
address of the head of the list is contained in a
field called 'head'.

(register t; t ~ head; while (t ~ .t) ~ 0 do if
.(.t+l) Iss 0 then break .t);

Note that the initialization of t, i.e., 't ~ head',
sets the value of It' to a pointer to 'head', not
the contents of 'head'.

3. Data Structures

One of the outstanding characteristics of sys
tems programs is their concern with the wide variety
of data structures and schemes for representing
these structures. Observation of what systems pro
grammers do reveals that a very large fraction (near
ly 50% in our experience) of their design effort is
spent in designing representations for efficiently
encoding the information they will process. It is
frequently the case that the most difficult task in
making a modification to an existing program is that
of representing the additional new information re
quired (e.g., the infamous "find another bit" prob
lem). Consequently the issue of representation was
one of the central design considerations in Bliss.

Two principles were followed in the design of
the data structure facility of Bliss:

- the user must be able to specify the accessing
algorithm for elements of a structure,

- the representational specification and the
specification of algorithms which operate on
the represented information must be separated
in such a way that either can be modified
without affecting the other.

The first principle follows simply from the
fact that non-algorithmic specifications are inade
quate to express certain important representational
schemes. By a non-algorithmic specification we mean
one which statically specifies the layout of a
structure in terms of primitive structures (words,
fields, etc.), other defined structures, and (pos
sibly) pointers. By an algorithmic specification we
mean one which, given a set of parameters (indices)
computes a pointer to the appropriate structure ele
ment. Algorithmic specifications have the advantage
of generality, but some disadvantage of verbosity
for simple structures. This latter type of specifi
cation will be amply illustrated below.

In order to achieve a language in terms of
which it is possible to write large systems that may
be easily modified, it is imperative that the speci
fications of the representation of a data structure
be separated from the specification of algorithms
which manipulate data in that structure. This prin
ciple is severely violated in assembly languages
where, typically, the code to access an element of a
structure, for example, simply a contiguous field of
bits within a word, is coded "in line" at the point
where the element is needed. A comparatively triv
ial change which alters the size or position of the
field and may require locating and modifying all
references to the field. This simple problem could
be solved by following good coding practice and,
perhaps, by the use of macros; not all changes are

1-5

of such a trivial nature, however.

The concept of a "pointer" to a field (of bits
within a word) was mentioned earlier. Actually in
Bliss a pointer is a five-tuple consisting of:
(1) a word address, (2) a field position (3) a
field size, (4) an (index) register name: and (5) an
"indirect address" bit. These five quantities are
encoded in a single word and as such are a manipu
latable item in the language (a prerequisite of
algorithmic representational specification). For
simplicity we shall discuss only the first three of
these quantities; the reader is referred to the
Bliss reference manual6 for more detail. The "word
address", wa, field of a pOinter designates the
physical machine address of the word; the 'posi
tion', p, and 'size', s, designate a field within a
word in terms of the number of bits to the right of
and within the field.

~ I I - I I (
1 r ~i:k:~ r word word word word

"wa-l" "wa" "wa+l" "wa+2"

The notation used in Bliss to specify a pointer
(taking only the simple wa,p,s case) is "wa<p,s>".

Assume that the declaration

2!£ x[lOO]

has been made. The identifier x is bound by this
declaration to a pointer to the 36 bit field which
is the first word of this 100 word segment. That
is, the word address of the pointer "x" is that of
the location allocated to the segment and the posi
tion and size fields have values of zero and thirty
six respectively. If we denote the address of the
segment by et , then an occurrence of "x" in a Bliss
program is i~entical to an occurrence of "et <0,36>".
If EO - Ez are expressions, then the syntac~ic form

is by definition a pointer whose word address is the
value of EO (modulo 218) and whose position and size
sgecificat10ns are the values of El and ~ (modulo
2) respectively. Thus IX<3,4>" is a pointer to a
four bit field three bits from the right end of a
word named X. The word address, position, and size
information are encoded within a py~nter in such a
way that adding small integers «2) to a pointer
increments the word address only. Thus "X+I" is a
pointer to the word following X.

The definition of a class of structures, that
is, of an accessing algorithm to be associated with
certain specific data structures, is made by a dec
laration of the form:

structure <name>[<formal parameter list>] = E

Particular names may then be associated with an
accessing algorithm by another declaration

~ <name>: <name Ii s t>

Consider the following example:

begin
structure ary2[i,j] = (.ary2+(.i-l)*lO+(.j-l»;
~ x[lOO],y[lOO],z[lOO];
~ ary2: x,y,z;

x[.a,.b] y[.b,.a];

end---'
In this example we introduce a very simple structure,
ary2, for two dimensional (lOxlO) arrays, declare
three segments with names 'x', 'y', and 'z' bound to
them, and associate the structure class ary2 with
these names. '!be syntactic forms "x[El,S,]" and
"y[E3 ,E4]" are valid within this block ana denote
evaluat10n of the accessing algorithm defined by the
structure declaration (with an appropriate substitu
tion of actual for formal parameters). Within the
expression defining a structure class, the name of
the structure class, ary2 in this case, denotes the
name of the "zeroth" formal parameter - and is re
placed by the name preceding the "[" at the call
site. Thus, ".ary2" denotes the value of the name
of the particular segment being referenced. In the
example 'x[.a,.b]' is equivalent to:

(x+(. a-1) "1(10+(. b -1»

The value of this expression is a pointer to the
designated element of the segment.

In the following example the structure facility
and bind declaration have been used to efficiently
encode a matrix product

10
(z . _ = Ex_ kYk -).

1, J k=l 1 J

In the inner block the names 'xr' and 'yc' are
bound to pointers to the base of a specified row of
x and column of y respectively. These identifiers
are then associated with structure classes which
allow one-dimensional access.

begin
structure ary2[i,j] = (.ary2+(.i-l)*10+(.j-l»,

row[i] = (.row+.i-l),
col[j] = (.col+(.j-l)*lO);
x[lOO],y[lOO],z[lOO];
ary2: x,y,z;

incr i fram 1 to 10 do

end

begin bind x;;x [. i -:-r] ,zr=z [. i, 1];!!!!E. row: xr, zr;
incr j from 1 to 10 do

begin-- - -
register t; bind yc=y[l,.j];~ c01:yc;
t +- 0;
incr k from 1 ~ do t +- .t+.xr[.k]*.yc[.k];
z[.j] +---:t;

end;
end;

Suppose now that one wishes to alter the repre
sentation of the structure 'ary2', and access to the
array is to be made through an Ilife vector (or,
"dope" vector) to define the relative base of each
row. The major change required is to replace the

current structure declaration for "ary2" by

~ i1[lO]; map row: i1;
structure ary2[i,j] = (.ary2+.il[.i-1J+.j-l);

With this repre~entation, the use of a special ac
cessing algorithm (structure) for accessing columns
becomes

structure col[jJ = (.col + .il[.j-lJ);

As can be seen, these fairly simple changes to the
program completely changes its representation of the
data. No changes to the processing algorithm are
required.

4. Miscellaneous Features

Finally, we shall now describe two features of
the language which are important to the goal of
parameterization of programs. The first is simply
that constant expressions are evaluated at compile
time. This is a common feature of compilers and not
particularly exciting by itself. Note, however,
that since the value '1' is interpreted as true, and
'0' as false, expressions such as

if 1 and 1 or 0 then else . _. ;

are constant in that only the then part will be
executed. The compiler notes this and does not
emit the code for testing the condition or evalua~
ing the else part. Similarly, only the third ex
pression~the following ~ expression will be
evaluated at execution time, and consequently the
compiler only generates code for that expression.

The second feature is a fairly elementary
string replacement macro capability. A macro name
and its associated text are introduced by a declara
tion of the form:

ntapes = 3$,
ndrums = 5$,
loop(i,n) = ~ i ~ 1 ~ n do $~

This particular declaration defines three macro
names ('ntapes', 'ndrums', and 'loop') and defines
a text string which is to. replace the macro name
(and its parameters, if any) where it (they) is
(are) mentioned in the scope of the declaration.
The end of a text string is delimited by '$', and
may mention formal parameter names - these are re
placed by actual parameter strings used at the call
site.

One may combine these two features to para
meterize a system. Consider the following skeletal
code:

begin

1-6

~ ntapes = 3$,
ndrums = 5$,
descsize 2$,
cloop(i,n) = if n ill 0 ~ !.!!£!. i

from 1 to n do $;
~ devicedesc [ntapes*ndrums*descsize];
structure devary [i,j] = (.devary + (.i-l)*dese

size + .j);
~ devary: devicedesc;

)

o

The declarations above define a table of device
descriptions for magnetic tapes and drums. The num
ber of entries for tapes and drums, and the number
of words per description entry are controlled by the
macro definitions 'ntapes', 'ndrums', and 'descsize'.
Suppose the number and size of fields within the
device description for tapes and drums are differ
ent. The following structure and bind declarations
allow one to access these fields conveniently:

structure tapeary [i,j] =
case (.j-l) of

set
~apeary + (.i-l)*descsize)<0,36>;
(.tapeary + (.i-l)*descsize)<18,18>;
(.tapeary + (.i-l)*descsize)<18,18>;
~;

structure drumary [i,j] =
case (.j-l) of

set
(:drumary + (.i-l)*descsize)<0,36>;
(.drumary + (.i-l)*descsize+l)<18,18>;
(.drumary + (. i-l)'1(descsize+l)<17, 1>;
(.drumary + (.i-l)*descsize+l)<16,1>;
(.drumary + (.i-I)*descsize+l)<0,16>;
~;

~ tapedesc = devicedesc [0,0],
drumdesc = devicedesc [ntapes,O];

~ tapeary: tapedesc, drumary: drumdesc;

These declarations make it feasible for the
programmer to refer to 'tapedesc [.i,2]', for
example, as the second field of the description of
the ith tape without regard to the size or location
of that field. The following code uses the constant
expression evaluation feature to selectively include
only relevant code.

global function initialize
begin

cloop(i,ntapes)
beg%n

code to initialize tape description goes
here%

end
cloop(i,ndrums)
be~in

code to initialize drum descriptions goes
here %

end-
~ oth~r initialization code goes here ~

end-
ifIrt~peS ill o then

begin
global function tapehandler
be~in

code for body of tape device handler %
end-

globai function tapeopen =

be~in
o code for special file-open actions on

magnetic tape cf,
end-

% oth~r specialized tape functions declared
here ~

Since the body of an "if E then E.," expression is
not compiled in the case t~at the ~l is a constant,
and false, the global functions 'tapehandler', etc.,
are not compiled unless 'ntapes' is greater than
zero. One can imagine more complex expressions,
such as 'if (ndrums m 0) 2!. (ndisks m 0) then',

controlling the inclusion of, for example, file
directory handling code.

EVALUATION AND CONCLUSIONS

As of this writing the Bliss compiler is in its
final stages of completion, and consequently experi
ence using the language is somewhat limited. To
date only one major project has been undertaken in
Bliss, namely the compiler itself. The language
has evolved as a consequence of this experience, and
we expect it will evolve further as it is used.

In spite of the relative lack of experience in
using the language, it would be very nice to have
some objective measures of the language - measures
of such things as efficiency, appropriateness (to
the systems programming problem), readability, con
sistency, etc. Such measures are, of course, very
difficult to define objectively. However, we have
attempted to supply some data from which the user
may draw his own conclusions. One of these data
points indicates the quality of code produced by the
Bliss compiler - and is therefore an indirect mea
sure of the suitability of the language for one
system's programming problem. The second bit of
data is an annoted table comparing features of some
implementation languages.

The measure chosen for code quality of the
Bliss compiler is simply that of code size. Three
sections of the compiler were chosen as a basis for
comparison in an attempt to factor out those things
which (1) are intrinsic to the structure of the
language, (2) are a function of the current optimiza
tion strategies of the compiler (which can always be
improved), and (3) are a function of a particular
programmer's "style". The sections are named 10,
LEXAN, and SYNTAX and are respectively the i/O
interface, lexical analyzer (symbol table routines,
etc.), and syntax analyzer. Of these, 10 was orig
inally written in "clever" assembly code and later
translated into Bliss, while LEXAN and SYNTAX were
originally written in Bliss and then translated by
hand into assembly code. The translation of LEXAN
was done in such a way as to mirror the functional
structure of the original Bliss code at the sub
routine level but internally was coded for maximal
efficiency. SYNTAX, on the other hand, was trans
lated with the aid of a number of general purpose
macros and mirrors exactly the structure of the
original Bliss text. The results are as follows:

approximate elative size of
size om iled version

10 50 40% larger
LEXAN 1300 740 larger
SYNTAX 2300 20~ smaller

From this small sample one can draw some tentative
conc Ius ions:

1. 10 is something like a worst case. It is
small (which tends to exaggerate the over
head for recursion, etc.) and it was orig
inally written in assembly code. The pen
ality in such a case appears to be on the
order of 50%.

2. Since the hand coding of LEXAN obeys the
subroutine calling conventions of compiled
Bliss programs, but is otherwise coded

fairly tightly - the penality for the current
optimization techniques appears to be on the
order of lOc1,.

3. The compiler does considerably better than
macro extension of assembly code.

Table I and its associated notes compare certain
features of implementation languages as described by
the most recent documentation available to these
authors, and speaks for itself. Neither the list of
features nor the list of languages is exhaustive;
both reflect the prejudcies of the authors. Numbers
in the lower right corner of entries refer to the
notes following the table.

The comparisons of code size and language fea
tures given above hopefully provide some insight
into the use of Bliss as an implementation tool;
unfortunately, they do not give absolute measures of
its utility. In particular there seems to be no way
at present to measure the benefits of maintainability
and modifyability - and these are, in the opinion of
the authors, its major advantage.

NOTES ON TABLE r

1. Of course ~ language is explicitly designed to
produce large, slow programs. The entries in
this row reflect the extent to which efficiency
was a prime goal and the extent to which con
cessions were made.

2. Bliss and Espol have limited macro facilities
when compared to most macro assemblers, namely,
simple string replacement (with parameters).
PL/r has extensive macro facilities, but these
are not described as part of EPL.

3. All of the languages listed either have the
ability to embed assembly code or to call machine
language subroutines. The entry relater! princi
pally to the former facility.

4. The entries are coded as follows:

M machine data types
C conceptual data types

op type interpretation is derived from
operator

V type interpretation is derived from
variables

D type interpretation is derived from data

5. Ina' denotes 'not applicable'.

6. Fortran, Espol and EPL provide no control over
the representation of data structures. Macro,
BCPL, SAL, and PL/36 0 provide such control; how
ever the access to elements of structures must
be programmed "in-line".

7. Macro, SAL, and PL/360 permit recursions in the
sense that the programmer may choose to explic
itly code a recursive calling sequence.

8. The following code are used to denote various
parameter passing options.

V call-by-value
N call-by-name
R call-by-reference

9. The following codes are used to denote various
control statement forms:

10 Fortran if-statement
II Algol-like "if-then-else"
D Do-statement
F Algol-like for-statement
C case statement
SF Simple-for (corresponds to Algol step-

until case)
W while-statement
G goto
SO BCPL "switchon", similar to Bliss

"select"

ACKNOWLEDGMENTS

We would like to express our deep gratitude to
Messrs. Geschke, Wile, and Apperson (graduate stu
dents at CMU) each of whom has made valuable con
tributions to both the design and implementation of
the language.

REFERENCES

1. EPL Reference Manual, Project MAC, April 1966.

2. "Burroughs B5500 Extended Algol Reference
Manual", Burroughs Corporation, Detroit, Mich.

3. Wirth, N., "PL/360, A Programming Language for
the 360 Computers", JACM, 15, 1, Jan. 1968, p.
37.

4. Richards, M., "BCPL: A tool for compiler
writing and system prograrrnning", SJCC, 1969,
p. 557.

5. Naur, P. and B. Randell (Ed.), "Software
Engineering", Scientific Affairs Division,
NATO, Brussels, Belgium. (Held in January 1969
in Garmish.)

6. "Bliss Reference Manual", Computer Science
Deparbnent Report, Carnegie-Mellon University,
Pittsburgh, Pa., Jan. 15, 1970.

1-8

7. "PDP-lO Reference Handbook", Digital Equipment
Corporation, Maynard, Mass., 1970.

8. Lang, Charles A., "SAL - Systems Assembly Lan
guage", SJCC, 1969, p. 543.

J

J

C:
TABLE I

COMPARISON OF IMPLEMENTATION LANGUAGES

GOAL B5500 EPL
FEATURE BLISS ~CRO-1O FORTRAN ESPOL (PL/I) BCPL SAL ~L/360

space/time
/r

goal goal goal goal no / no / gOal/ gOal/
economy / / A /
machine

/ no / no
/ yes / no / yes / yes / no / no / independence

Macro / yes j yes j no
/

yes j no
I

no no / no / /

access to

A yes / yes
/

no yes
hardware ~ l

no
/

no / yes / yes
/

run time suppo, no / no
/

yes some yes some / no no
/ required / I I j

M,op M,op C,V ~(D1V) ~Iii~ M,op C yP C,¥
data types ~ / / !freal'r)/ Rf!~ae/ / rea , ~-j rea ,

~ .. J I>nteger r ~ .. ~ 0{

automatic con-
version of data~ na

/ na / yes yes yes na na / no
/ types I / I /

user user hier- user user
data s truc tures / definer iefined / .arrays I arrays

~rchicaJ
vectors

definecij defined/ / j
control of repre- yes yes / no no no yes yes yes
sentation of / / l / I / I I

yes / yes h no yes yes yes
I

no j yes i recursion / I / /
co-routines / yes / yes / no no no no

/
no

/
no

/ J / I
V,R na

/
R V,N,R V,R V,R

/ V,R I V,R
/ parameters A / / i J

conditional/ see
~l,F,C,cy

I1'SF,W,
II' SF ,w '7

I!, SF ,w,
h text /

na / IO,D,G / I1,D,Gj C,SO,G / C,G / looping. etc.

References [6] [7] [2] [1] [4] [8] [3]

J

)

J

o

o

C 1
)

BLISS Examples

c. M. Geschke et. ale

+ ,

)

)

o

SECTION VI

BLISS EXAMPLES

This section contains a set of examples which illustrate the llse

of Bliss. Each exatnple is intended to be fairly complete and self con

tained, and to illustrate one or more features of the language.

The authors would like to invite others to contribute further ex

amples for inclusion in this section. New examples will be included

if they clearly illustrate features and/or uses" of the language which

are not already adequately illustrated.

EXAMPLE 1: A TT-CALL I/O PACKAGE

Contributors: C. Geschke and W. Wu1f

The fo1lovTing set of declarations defines a set of teletype input/

output r.outines using the PDP-10 monitor TT-ca1l mechanism. The set of

functions is not complete, but adequate to illustrate the approach.

The declarations below provide the following functions:

INC Input one character - wait for EOL before returning

OUTC Output one character

OUTSA Output ASCIZ-type string beginning at specified address

OUTS Output ASCIZ-type string specified as the parameter

OUTM Output multiple copies of a specified character

CR Output carriage return

LF

NULL

CRLF

TAB

OUTN

OUTD

OUTO

OUTDR

OUTOR

Output line fe~d

Output null character

Output carriage return and line-feed followed by 2 nulls

Output tab

Output number in specified base and minimum number of digits

Output decimal number with at least one digit

Output octal number with at least one digit

Output decimal number with at least specified number of digits

Same as OUTDR except octal

)

C:

MODULE TTIOCSTACK).BEGIN

MACHOP TTCALL-151J

MACRO INC= (REGISTER QJ TTCALL(4~Q)J .Q)$~
OUTCCZ)a (REGISTER Q; Q~CZ)J TTCALLCl.Q»$,
OUTSACZ)= TTCALL(3,Z)$,
OUTSeZ): OUTSAePLIT ASCIZ Z)$,
OUTMCC~N)= DEeR I FROM (N)-1 TO 0 DO OUTCCC)$,
CR= OUTCCllS)$, LF~ OUTCC'12)$~ NULL= QUTCeO)$1
CRLF= OUTS ('1 M1 J1 01 0') $"
TAB= OUTce, 11) $;

FDUTINE OUTNCNUM"BASE"REQD)=
BEGIN O~ N.B,RD,TJ

ROUT If'JE XN'=
BEGI~ LOCAL RJ

IF .N EQL 0 THEN RETURN OUTMCuO"".RD-.T);
R" • N MO D • B J N". N/ • B; T~. T + 1 J XN () J
OUTCC.R+"O")

END;

IF .NUM LSS 0 THEN OUTee"-tt)l
B-.BASE; R~.REQD; T"O; ~~ABS(.NUM)J XN()

ENDl

MACRO OUTD<Z)= OUT~(Z"lOll)S,
OUTO(Z)= OUTNCZ,,8,1)$,
OUTDRCZ"N)= OUTNCZIIO"N)$"
OUTOR(Z,~)= OUTNCZ,8~N)$J

1 THE PROGRAM BELOw PRINTS A TABLE OF INTEGERS" THEIR SQUARES" AND
, THEIR CUBES: .

OWN N"C;

CRLF; OUTse 'INPUT AN INTEGER PLEASE ••• ')J
N" 0; WHILE (C" I(\1C) 6TR "0" IWD • C LSS "9" 00 N". N* 1 0+(• C-tlO");

CRLFJ OUTSC'A TABLE OF THE SQUARES AND CUBES OF 1-'); OUTDC.N);

CRLFJ INCR I FROM 1 TO 3 DO <TABJ OUTSC' Xt'); OUTDC.I»;

CRL F J 1(\1 CR I FRO M 1 TO 3 00 (TABJ 0 UTM (.. - It" 5)) J

INCR I FROM 1 TO .N IX)

BEGIN 0 Wl'J XJ
x ... I; CRLFJ
DECR J FROM 2 TO 0 DO (TAB; OUTDe.X)J X".X*. I)

END

END ELUDOM

Although the example is quite simple, there are several things about

it which should be noted:

1. The use of a MACHOP declaration and embedded assembly code.

2. The use of macros to add a level of "syntactic sugar" and

general cleanliness to the code.

3. The use of the escape character "?" in the CRLF macro to

obtain control characters (e.g.) carriage-return) in strings.

'4. Parenthesization of macro parameters, as in OUTM, to insure

proper hierarchy relations in the expansion.

5. The use of "DECR·,TO··ZERO" in oum because it produces better

code than "INeR··TO-EXPRESSION".

6. The use of m-1n variab les and the parameterless procedure XN

in OUTN in order to avoid passing redundant parameters through

the recursive levels of XN.

7. The fact that the local variable fiR" is local to each recursive

level of XN and hence its value is preserved at each level.

J

o

EXAMPLE 2: QUEUE MANAGEMENT MODEL

Contributors: C. Geschke and W. Wu1f

This module contains routines to insert and delete items on doub1y

linked queues. In addition it contains space management routines i.mple

menting the "Buddy System" (cf: Knuth: Vol. 1).

Buddy System

This is not intended to be a detailed description of the buddy system

model of space management. We will simply give a brief description of

this implementation of the scheme. The vector of allocatable space is

called MEM. Space is allocated and deallocated from M~1 by the routines

GET and RELEASE, respectively. The basic unit of allocatable space is an

item. Items are of size 2**ITlllSIZE where 0 < ITEMSIZE ~ LOG2MEMSIZE.

The first two words of an item are formatted:

ITEMSIZE RLINK

<NOT-USED> LLINK

Available items of size N are elements of a doubly linked list whose

header is the two word cell SPACE[N]. The routin.es LINK and DELINK are

called to enter and remove items from lists. The routine COLLAPSE is

used to compactify two adjacent available items of size 2**N into an item

of size 2**(N+l). The COLLAPSE routine iterates this process until no

more compactification can take place.

2-5

Queue Model

In this model a queue is defined to be a doubly-linked list suspended

from a header whose first three words are fonnatted as follows:

HEADERSIZE RLINK

<NOT-USED> LLINK

REMOVE ENTER

The fields REMOVE and ENTER contain the addresses of the routines to

be invoked when removing and entering items on the queue. To enter item X

on queue Q, one simply makes the call ENQ(X,Q). ENQ then invokes the

enter routine i.n Q's header which returns the address of the item in Q

after which X is to be inserted. In a similar manner one removes the

"next" item from queue Q b~.'· the call DEQ(Q). DEQ then invokes the remove

routine in Q's header to return the address of the "next" item. The ad

vantage of this scheme is that the queueing discipline is queue specific,

and the same primitives (ENQ and DEQ) may be used independent of the

discipline used for that queue. Examples of the enter and remove routines

for LIFO, FIFO, and PRIORITY type queues appear at the end of this example

module.

2-6

)

)

o

o

MODULE QMSCSTACK).

, BUDDY SYSTEM , ~~--- -.. -~-
BEGIN

BIND MEMSIZE-lt12J

GLOBAL ~ECTOR MEMCMEMSIZE]J

BIND LOG2MEMSIZE=35-FIRSTONECMEMSIZE)J

STRUCTURE ITEMC I.J.P.S"]=
CASE. I OF

SET
(.ITEM)c.P ... S>J"
C'.ITEM+.J)<.P •• S>J
C".ITEM+.J)c.P •• S>J
(.C •• ITEM+l)+.J)<.P •• S>

TESJ

STRUCTURE VECTOR2CIl=
C2*IlC.VECTOR2+2*.I)<O .. 36>J

MACRO BASE=-O .. 0 .. 0 .. 18S.
RLINK=- 1 .. 0 .. 0 .. 18S ..
LLINK:al .. 1 .. 0 .. 18S ..
ITEMSIZE-l .. 0 .. 18 .. 18S ..
NXTRLINK-a.O.O.18S ..
NXTLLINK=2.1 .. 0.18S.
PRVRLINK-3 .. 0.0.18S ..
PRVLLINK-3.1.0.18SJ

GLOBAL VECTOR2 SPACECLOG2MEMSIZE+1]J

BIND VECTOR SIZE •

MACRO

PLIT(ltO .. ltl .. 1t2.1t3 .. 1t4 .. 1t5.1t6 .. 1t7 .. 1t8 .. 1t9 .. 1tlO.
Itl1.1tI2)J

PART~ ER C B 1 .. B2 .. S) • (C ((B 1) - MEM < 0 .. 0» XO R « B2) - HEM< 0 .. 0>))
EQL .SIZECS])S ..

REPEAT- WHILE 1 DOS.
BASEADDRCB .. S). MEMCCCB)-MEM<O .. O» AND NOT .SIZECS]]<O .. O>S ..
ERRMSGCS). ERRORCPLIT ASCIZ S)SJ

2-7

, SPACE-MANAGEMENT-ROUTINES
I~-~~---~~----~--------------

GLOBAL ROUTINE GETC~)D

IRETU&~S THE ADDRESS OF AN ITEM OF SIZE 2**N

BEGIN REGISTER ITEM RJ
IF .~ LEQ 0 OR .N GTR LOG2MEMSIZE

THEN ERRMSG(" IN\JALI D SPACE REQ') J
IF NOT EMPTY(SPACEC.~]<O#O»

THEN RCBASEJ-DELINKC.SPACEC.N])
ELSE

BEGI~
RCBASE]-GETC .N+l)J
COLLAPSEC.RCBASE1+.SIZEC.N1#.N)

ENDl
RCITEMSIZE1-.NJ
.RCBASEJ

ENDJ

FDUTINE COLLAPSECA#N)=

ICALLED BY RELEASE AND GET TO ATTEMPT TO COMPACTIFY SPACE
IIFADJACE~T ITEMS ARE FREE

BEGI~ MAP ITEM AJ REGISTER ITEM LJ
REPEAT

END;

BEGIN
LCBASEJ-SPACEC.N]<O#O>J
WHILE .LCRLINKl NEQ SPACEC.N]<O#O> DO

IF PARTNERC.L[RLINK1#.ACBASE],.N)
THEN

BEGIN
ACBASE1-BASEADDRCDELINKC.LCRLINKJ),.N)J
N" .N+ 1 J
EXITCOMPOUND[21

END
ELSE LCEASEJ-.LCRLINKl;

RETURN CACITEMSIZE1-.NJ LINKC.ACBASEJ,.LCBASE1»
ENDJ

GLOBAL ROUTINE RELEASECA)=

ICALLED TO RELEASE ITEM A

BEGIN
MAP ITEM AJ
COLLAPSEC.ACBASE1,.ACITEMSIZE1)

ENDI

2-8

.J

.)

o

o

o

I SIMPLE-LIST-ROUTINES
I~-~~-----~-~-----------
FOUTINE DELINKCA)s

!REMOVES ITEM A FROM THE LIST TO WHICH IT IS APPENDED

BEGIN MAP ITEM AI
. A[PRVRLINKJ~.A[RLINKlJ A[NXTLLI~Kl~.A[LLINKJI
A[RLINK]~A[LLINKl-.A[BASE]

ENDI

FOUTINE LINKCA,TOO)=

! INSERTS ITEM A INTO A LIST IMMEDIATELY AFTER THE ITEM TOO

BEGIN
MAP ITEM AITOOI
ACLLINKJ~.TOO[BASEJ; ACRLINKJ-.TOOCRLINKJI
TOO[NXTLLINK]·TOO[RLINKl~.A[BASE]

ENDI

FDUTINE RELINKCA,TOO).

, REMOVES ITEM FROM ITS PRESENT LIST AND INSERTS IT AFTER TOO

LINKCDELINKC.A),.TOO)J

FOUTINE EMPTYCL)·

IPREDICATE INDICATING EMPTY LIST

BEGIN MAP ITEM LJ
.LCSASE] EQL .L[RLINK]

END;

2-9

I QUEUE-HANDLING-ROUTINES
r~----~---~~----~~-~----~--~

MACRO

MACRO

QHDR=rITEM$J

ENTER= 1" 2" 0" 18 $"
REMOVE=1"2,, 18" 18$;

GLOBAL ROUTINE ENQ(A"Q)=

, ENTERS ITEM A ON QUEUE Q ACCORDING TO THE INSERTION DISCIPLINE
! EVOKED BY Q'S ENTER ROUTINE

BEGIN
MAP QHDR Q;
RELINKC.A"C.QCENTER1)(.QCBASE1".A»

END;

CLOBAL ROUTINE DEQ(Q)::a

! REMOVES AN ITEM FROM QUEUE Q ACCORDING TO THE REMOVAL DISCIPLINE
I EVOKED BY Q'S REMOVE ROUTINE

BEGI~
MAP QHDR Q;
DELINKCC.QCREMOVEJ)C.Q[BASE]»

END;

MISC SERVICE ROUTINES
I--~-----~--~~--~--~--~~-

I roUTINE ERRORCA).
BEGIN MACHOP TTCALL=I051J

TTCALLC3".A)
EfoIDJ

FOUTINE INITIALIZE=

'INITIALIZES THE SPACE MANAGEMENT DATA

BEGIN REGISTER ITEM x;
XCBASE1~MEM<O"O>;
XCRLINKl~X[LLINKJ~SPACECLOG2MEMSIZEJ<O,O>J
XC ITEMSIZE1~LO G2MEMSIZE;
DECR I FROM LOG2MEMSIZE-l TO 0 DO

SPACEC.I]~(SPACEC.Il+l)<O,36>~SPACEC.IJ<O,O>J
SPACE[LOG2MEMSIZEJ~(SPACE[LOG2MEMSIZE]+1)<O.36>-MEM<O,0>

END;

2-10

)

)

)

c

c

I EXAMPLES 0 F vARIOUS QUEUE MO DELS

,-~-~--~~---~---~-~--~-~---~-------

I LI FO QUEUE , .. __ .. _----_ ...
mUTINE LIFOREMOVECQ)=

BEGIN
MAP QHDR Q;
IF EMPTYC.QCBASE]) THEN

ERRMSGC'INVALID DEQ REQUEST');
.QCRLINK]

END;

FDUTINE LIFOENTERCQ,A)=
BEGIN

MAP QHDR Q;
• QCBASEl

ENDJ

I FIFO QUEUE
r---- .. -- •

FDUTINE FI FOREMOVEC Q).

BEGIN
MAP QHDR QJ
IF EMPTYC.QCBASEl) THEN

ERRMSGC'INVALID DEQ REQUEST')J
.QCRLINKJ

ENDJ

FDUTINE FIFOENTERCQ,A)=
BEGIN

MAP QHDR QJ, ,
.QCLLINKJ

ENDJ

2-11

, PRIORITY QUEUE

MACRO

RJUTINE PRIREMOVECQ)a
BEGIN

MAP QHDR QJ
IF EMPTYC.QCBASEJ) THEN

ERRMSG('INVALID DEQ REQUEST')J
.QCRLINKJ

ENDJ

RJUTI~E PRIENTERCQIA).
BEGIN

MAP QHDR QJ MAP ITEM Ai REGISTER ITEM LJ
IF EMPTYC.QCBASEl) THEN RETURN .QrBASElJ
LCBASEl-.QCLLINKJJ
UNTIL .LCPRIORITY] GEQ .ACPRIORITYl DO

LCBASE1-.LCLLINKlJ
.LCBASE]

ENDJ

END ELUDOM

2-12

)

Cormnents on the Use of Bliss in the Implementation

(1) The structure ITEM is particularly interesting amI perhaps at

first a bit obscure.

To illustrate, consider a variable X structured by item:

Assuming that the right half of X contains a:

X:

and that:

/~-

\,---

Then:

.X[BASE] - a .X[NXTRLINK] = 0

.X[RLINK] - ~ • X [NXTLI, INK] = a

.X[LLINK] - Y .X[PRVRL1NK] = a

.X[PRVLLINK] = 11

The structure ITEM uses the "constant case" expression to distinguish

between the pointer, the pointee, and the pointee's predecessor and successor.

(2) The structure VECTOR2 has a size expression [2*1] which is used

in the allocating declaration:

2-13

GLOBAL VECTOR2 SPACE[LOG2MEMSIZE+l];

(3) Since the addresses of the 'remove' and 'enter' routines are

stored in the queue header, the expression

(.Q[REMOVE]) (.Q[BASE])

is a call of the routine whose address is .Q[REMOVE] and passes it to

the base address of the queue or its parameter.

(4) The macro 'REPEAT = WHILE 1 DO' defines an infinite loop -

its only exit is defined by the RETURN expression in its body.

(5) Notice the 'BIND VECTOR SIZE = PLIT(ltO,1't1,lt2, ••• ' in the

space allocator. The value of SIZE is a pointer to this sequence of

values, and in particular the value of '.SIZE[.N]' is 2N.

2-14

)

)

EXAMPLE 3: DISCRIMINATION NET

Contributor: D. Wile

A discrimination net is a mechanism used to associate "information"

with "names". The net is actually a tree, each node of which consists

of a name and the information associated with that name, as well as a

set of pointers to other nodes. To look up a name in the net we start

at the root node and see if the name in the node matches our target name.

If it does, we return the associated infonnation.

Otherwise, we use a "discrimination function" which detennines

which sub node to examine next (usually as a function of the target name

and the name of the current node). If there is no corresponding subnode,

a new node must be created.

For example, a binary net (two sUbnodes/node) with a discrimination

c function which chooses the left branch if the target name is alphabetically

smaller than the name in the node, is illustrated below:

Name: j, 9, 1, a, b, r, p, n, s, k

Inf: 4, 7, 9 , 8, 5, 20, 3, 9 , 7, 12

c
2-15

In the implementati.on which follows, there arc three globally defined)

routines:

1. DSCINIT (String address) -- returns a pointer to the in

formation field of the node associated with the string.

This must be called first to initialize the net. (TIle

infonnation field will be zeroed when ·the node is new.)

2. DSCLKP (String address) -- the "lookup" routine. Value

returned as above.

3. DSCPNAME (Infonnation field address) -- returns a polnter

to the print name associa ted \,li th the particular informa-

tion field.

The implementation is designed to allow the user to crea~e a module some

what "tailored" to his needs. The module is created by passing:

1. the estimated number of entries to be inserted into the table;

2. the average number of words each name will occupy;

3. the number of words in the "information field";

4. the number of subnodes of each node (e.g., binary example

above, 2);

5. a string which executes an error routine

in that order, to a macro IJDSCRIMINET". Two macros must be defined

previous to the DSCRIMINET expansion:

)

)

c

c

c

1. DSClMINATE (Target, string address, current node string

address) must have a value of ~l if the strings match.

Otherwise, its value must be between 0 and 1 less than

the number of subnodes.

2. DSCCOPY (To address, From address) copies the string from

the "from address" to the "to address", returning the

number of words occupied by the copy.

2-17

MJDULE NETC STACK=GLOBALC STABK .. 1400».
BEGIN
MACRO

DSCRIMINETCMAXNUMENT .. AVNAMESIZE .. INFSIZE .. NOSUBNODES~ERHOH).

BEGIN
IN.B.I ALL VECTOR ACCESSES ARE INDIRECT THROUGH THE BASEl
STRUCTURE VECTORC I J.C I.VECTOR+. I)<0~36>J

I NET SPACE ALLOCATION.. STRUCTURE DEFINITION AND
INITIALIZATION DEFINITIONS I

BIND TABLELEN-MAXNUMENT*CCNOSUBNODES+l)/2+INFSIZE+AVNAMESIZE)J
OWN BASENODECTABLELENJJ
BIND MAXADD=BASENODE+TABLELENJ

BIND SUBNODE=O .. INF=l .. PNAME.2~
INFO FFSET=(NOSUaVODES+ 1)/2~
PNAMEO FFSET= IN FO FFSET+ INFS I ZEJ

STRUCTURE NODECSUBFIELD .. INDEXJ=CASE .SUBFIELD.OF
SET .NODEC.INDEXtC-l)]<IF .INDEX THEN 18 .. 18>J

.NODEC INFOFFSETJ;

.NO DEt PNAMEO FFSETJ TES;

GLOBAL ROUTINE DSCPNAMECINFPOS).
C.INFPOS+INFSIZE)<O .. 36>;

OWN NO DE NEXTCELLJ

ROUTINE INITNODE(CELL~STRING).
BEGIN

DECR I FROM PNAMEOF,'SET-l TO 0 DO CELL[. I J .. OJ
IF MAXADD LEQ (NEXTCELL".NEXTCELL+PNAMEOFFSET+

(MAP NODE CELL; DSCCOPYCCELLtPNAMEl ... STRING»)

THEN ERROR ELSE .CELL
mD;

GLOBAL ROUTINE DSCINITCSTRING).
BEGIN

LOCAL NODE RETVALJ
NEXTCELL"BASENODE;
RETVAL .. INITNODECBASENODE ... STRING)J
RETVAL [INFJ

END;

ROUTINE NE~CELL(STRING)·INITNODEC.NEXTCELL ... STRING)J

I THE LOOKUP ROUTINE ITSELF I
GLOBAL ROUTINE DSCLKPCSTRING).

BEGIN
LOCAL DISCIND .. NODE CURRENT,NEXTJ
NEXT" BASENO DEJ

2-18

)

)

)

c

c

00
BEGIN

CUBRENT" • NEXT J
IF CDISCIND-DSCIMINATEC.STRING.CURRENTCPNAME]» LSS 0

THEN RETUR~ CURRENTCINF]J
NEXT". CURRENTCSUBNODE •• DISCIND]

END

-UNTIL .NEXT EQL OJ

NEXT .. CURRENTCSUBNODE •• DISCIND]"NE~CE~L(.STRING);
NEXTC INF]

END;
ENDJ $J

ROUTI~E DSCIMINATECL.R)=
BEGIN

STRUCTURE ~ECTORCI1.('.VECTOR+.I)<O~36>J
INCR I mOM 0

00 BEGIN
BIND LEFT=.LC.Il. RIGHT=.RC.Il;
IF LEFT NEQ RIGHT THEN EXITLOOP CLEFT LSS RIGHT);
IF CLEFT AND 1376) EQL 0 THEN EXITLOOP -1

END
ENDJ

ROUTINE DSCCOPYC INTO. FRO).
BEGIN

STRUCTURE VECTORCIl=('.VECTOR+.I)<O.36>;
INCH I FROM 0 00

IF (CINTOC.Il".F.RQC.IJ) AND 1376) EQL 0
THEN EXITLOOP .1+1

ENDJ

EXTERNAL ERBORJ
DSCRIMINETC500.3~1.2.ERROR(PLIT 'LOOKUP TABLE OVERFLO~'»

BEGIN
BIND NAMES=PLIT(

PLIT ASCIZ 'FIRSTNAME'.
PLIT ASCIZ 'SECOND'.
PLIT ASCIZ 'SS'. -
PLIT ASCIZ 'A LONGISH NAME'.
PLIT ASCIZ 'L'.
PLIT ASCIZ '77788()34')J

EXTERNAL DSCLKP. DSCINITJ
DSCI~IT(PLIT 'ZEROTH NAME') .. -3J
INCR I FROM 0 TO .NAMESC-1J-l DO DSCLKPC.NAMESC.Il)".IJ
INCH I FROM 0 TO .NAMESC-ll-l BY 2 DO DSCLKPC.NAMESC.IJ)".I+lt35J

;-- ENDJ
~ END ELUOOMJ J

2-19

No_tes on the Implementation

The Bliss module above implements the example described at the be-

ginning of this section. The test program portion of the module simply

initializes the table, inserts the six strings in the plit into the

table (associating as information, the index in the plit), and runs

through the evenly indexed items in the plit, turning on the sign bit in

the information word.

Of interest:

1. The vector structure (which de'faults as the structure

for all unmapped variables and expressions) is' redefined

"indirectly"; this is fairly dangerous in any program,

and represents an after-the-fact programming decision.

2. The physical str'.r.ture of the tab~e is kept independent , .

of the logical structure as used by the lookup routine;

no reference is made from the lookup routine to the struc-

ture other than through the structured nodes.

3. The binds, structures, own declarations and even the

initialization function - requiring knowledge of the

physical structure are kept grouped and separate. Note,

for example, that INITNODE uses both a vector mapping on

contiguous fields of CELL and the NODE structure.

4. The physical structure of the tree is kept isolated from

the user Qf the routines to the extent that only knowledge

2-20

J

)

c that the mechanism is associative is of importance --

the particular lookup algorithm and storage management

are independent of the functional use of the module.

5 •. Bliss progrannning "tricks":

a. Use of the constant ~ expression for sub

fields of structures (NODE in this case);

b. Default use of 0 for the omitted else in the

structure case defining the ,SUBNODE field;

c. CELL remapped in the INITNODE routine to take

advantage of knowledge of the physical layout

of the NODE's storage.

d. "Dynamic" binds of LEFT and RIGHT inside the

(~_ loop in the test version discriminatio'l function;

e. The bind to a plit (of NAMES) in the test por-

tion, to prevent duplicate storage allocation

for the twice-used plit;

f. Stores into routine cells in the test program loops;

g. Use of the plit length word preceding the plit

(NAMES[-l]).

c
2-21

)

Programming Without the GOTO

William A. Wulf

c

)

c

c

'1(

c

PROGRANHING HITHOUT THE GOTO

William A. l-lulf"l"
Deparbment of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa., U.S.A. •

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defe.nse (F44620-70-C-OI07) and
is monitored by the Air Force Office of Scientific Research.
Thi.s document has been approved for public release and sale; its
distribution is unlimited.

3-1

.. ,

ABSTRACT

It has been proposed, by Dijkstra and others, that the use of the

goto statement is a major contributing factor in programs which are

difficult to understand and debug. This suggestion bas met with con

siderable skepticism in some circles since goto is a control primitive

from which a programmer may synthesize other, more complex, control

structures which may not be available in a given language. This. paper

analyzes the nature of control structures which cannot be easily syn

thesized from simple conditional and loop· constructs. This analysis

is then used as the basis for the control structures of a particular

language, Bliss, which does not have a ~to statement. The results of

two years of experience programming in Bliss, and hence without goto's,

are summarized.

3-2

)

)

c

c

L

INTRODUCTION

In 1968 E. W. Dijkstra suggested, in a letter to the editor of the

Communications of the ACM [lJ, that use of the goto construct of Algol

was undesirable, and in fact was bad progranuning pra.ctice. The rati.onale

behind thi.s suggestion was simply that it is possible to use the got~

in ways which obscure the logical structure of a program, thus making it

difficult to understand, debug, and, ultimately, to prove its correctness.

Of course, not all uses of the goto are obscure, but the conjecture is

that these situations are adequately handled by existing conditional (e.g.,

the if-then-else) and looping (for-do) constructs.

This paper presents an analysis which lead to the design of the

control features of Bliss [5], an implementation language designed at

Carnegie-Mellon University. This analysis reveals that the Algol condi

tional and looping constructs are, while adequate, not convenient when

the goto is eliminated. The control features of Bliss are described and

some comments are made concerning our experiences using a goto-less,

Algol-like language.

Before proceeding it is worth noting an additional benefit of removi.ng

the goto - a benefit which the author did not fully appreciate until the

Bliss compiler was designed - that of code optimization. It is clear that

the presence of soto in a block-structured language with dynamic storage

allocation forces a certain amount of run-time support (and overhead)

associated with the possibility of jumping out of blocks and procedure

bodies. Eliminating the goto obViously removes this overhead. Far more

important, however, is the fact that the scope of a control environment

is statically defined in a program without goto's. The Fortran-H compiler

[2], for example, does considerable analysis and achieves a less perfect

picture of the overall control structure of a program than that implicit

in the text of a Bliss program. Since analysis of control flo,~ is pre-

requisite to any form of global optimization, this benefit of ellininating

the gota must not be underestimated.

It is not surprising that a language can be devised which does not

use the goto construct since: (1) several of the formal systems of
~

computa.bility theory, e.g., recursive function~ and the A-calculus,. do

not contai.n the concept; (2) LISP does not use it; and (3) Van Wijgaarden

[3J, in attempting to define the semantics of Algol, eliminated labels

and goto's by systematic substitution of procedure bodies and calls.

Thus, the question:is not whether it is possible to remove the goto,

only whether it is desirable. In particular there is considerable suspi-)
cion among programmers that the advantages described by Dijkstra are out-

weighed by inconvenience, and possibly by inefficiency (duplicate code, etc.).

The goto may be view'ed as a control primitive with which a programmer

synthesizes more complex control.structures. In this context Dijkstra's

arguments can be phrased in tenns of this primitive having "unwanted

generality". The principle concern of this paper is to investigate alter-

native primitives which are equally convenient for the things which pro-

grammers actually do.

)

3-4

ANALYSIS

c
In order to detennine the nature of the control primitives to sub·-

stitute for the B..~o, we shall first consider the nature of progl-a.ms

which use the aot'? and which cannot be easily built from simple condi-

tional and looping constructs. To do this we will use a flmv chart rep-

rcsentation of programs. Flow charts a.re convenient for this because of

the explicit way in which control is manifest in them. We assume two

basic blocks from which our flo,", charts are to be built - process blocks

and n-\vay conditionals.

I

<>
I -]

c ~
process box n-way conditional

These boxes are connected by directed line segments in the usual way_ We

shall further be interested in two special "goto-1ess" constructions built

from these. components - simple loop and n-'vay "cB-8e" cons true ts.

simple loop· case

3-5

We consider thesettvo fonus "goto-less" since they contain a single entry

point and a single exit point and hence could have reasonable corresponding

* syntactic constructs in some higher-level language (and indeed d~). Now,

consider three transformations:

1. any linear sequence of process boxes may be transformed

into (or replaced by) a single process box

2. any simple loop may be replaced by a process box

3. any n-way case construct may be replaced by a process box

-J~[' ,~
-- -J-_A
Lr·

* The simple loop considered here clearly does not correspond to all possible
varients of initialization, test before or after the loop body, etc. These
varients would not change the arguments to follow in any essential way and
hence have been omitted.

)

J

Any graph which may be derived from a given graph by a sequence of

these transfonnations we shall call a "reduced" form of the original

graph. A graph which has a reduced form consisting of a single process

box we shall call a simple "goto-less" graph. The sequence of trans.·

formations .is said to define a set of nested "control environments".

Not all graphs are of this type; these are of special interest to

us since they typify the class of control structures which cannot be

realized by suuple conditional and looping constructs. In looking at such
41

graphs we are principally interested in their ~'minimal irreducible fonn";

that is, a reduced form to which no more transformations of the type

described can be applied. Examination of these graphs will both reveal

techniques for deriving simple goto-less graphs from them, and also pro-

vide insight leading to the control primitives to be described later.

Before proceeding it is perhaps instructive to remark briefly on

Dijkstra's objections to the goto in terms of this characterization of

programs. By definition, a goto-less program (flow chart) is susceptible

to a sequence of simple transformations which reduces it to a single pro-

cess box. This sequence can serve as guide to understanding and/or

proving the correctness of the program. Imagine a sequence of graphs,

derived from the original, in which each is like its predecessor except:

(1) the correctness of the replaced construct has been verified, and

(2) the new process box contains a more macroscopic description of what

the replaced portion does (rather than the details of hmv it is done).

This sequence forms both a proof of the validity of the entire original

program as well as documentation of what it does (at many levels of detai.l).

3-7

This is not to say that programs that use goto cannot be understood or

proved correct [6], only that programs with this structure permit a

specific methodical approach to understanding and proof.

Now, returning to an analysis of programs which use goto, consider

two cases .- those with loops and those without. Programs without loops

have, at most, a lattice-like structure. For example, consider the follow

ing irreducible form (in this example, and the remainder of the paper, we

shall use circles to represent sub-graphs whose fine-structure we choose

to ignore):

Brief consideration of such graphs reveals that it is ahvsys possible

to construct a new graph using only the goto-1ess primitives which are

similar to the original graph except for a finite number of "node splittings"

3-8

)

)

c

(i.e., creation of duplicates of existing nodes in separate control paths).

This follows from the observation that, since there are no loops, there

are at most a finite number of paths through the graph and each node occurs

on only finitely many of them. Hence at most a fi.nite number of repli.ca

tions of ~ach node will guarantee that each node "\Vill occur on only one path.

For example, the graph above becomes:

And this graph can now' be transformed by collo.psing <2,5 '>, <3,5,6>, and

<4,6'> into:

This is one of the primitive forms and may itself be collapsed - and hence

is a goto-1ess program.

Node splitting is something which we would like to avoid since it

involves duplicating code. Nevertheless) node splitting is one technique

by which ~n existing program utilizing the got£ may be converted into one

which does not. A second technique) which also might have been used above,

will be discussed in conjunction with loops below.

The second major case to be considered is that of irreducible graphs

inv'61ving a loop. Of these we can note that s,uch loops must involve more
,'(

than one entry or exit point. Otherwise the loop would be reducible.

Floyd and Knuth [4J have proven (using flow charts as specifications

for regular expressions) that node splitting is not an adequate technique

for deriving goto-less graphs from irreducible ones in the presence of

multiple entry/exit loops.

That node splitting is inadequate becomes clear by simply observing

that the number of paths leading from the "second" exit point is unbounded.

Therefore no finite number of replications of this node is sufficient, and

we must search for another technique. Consider the following irreducible

program:

* We reiterate our earlier footnote - we have only considered one form of
simple loop - introducing varients on the initialization or relation of
the test to the loop body would not affect these arguments in any essential
way.

3-10

)

)

c~

c

Notice that there are two exi t paths from the CD -(1) loop - that leading

from CD to 0 to @ and that leading from C~ to ® directly. Thi.s

is a simple example of a program where node splitting will not work.
f

However, one can introduce a ne,\.] variable, call it a, and obtain the

following graph:

In this graph the node C0 is like node CD except that the exit

condition of the loop has been aug~mented "'ith flor 0' = 0" and node CD
is like node G) except that the exit to node @ has been replaced by

the operation "0' (- 0". Node ® is the null operation.. Conceptually

what we have done is to introduce a variable which behaves as a "program

counter" and which, when the loop tenninates, specifies whether or not

it is necessary to execute (3) .

That the technique illustrated above is completely gen.eral may be

seen easily. Consider any graph with nodes laJ?eled @ , 0 ' ... , 0 .
Now construct a new graph as follows:

1. if CD is a process box construct @ by adding to 0
nO' 4- k" where ® is the successor of CD .

2. if CD is a decision box, then replace it by a process

. box of the fonn "0' 4- Elf, where E is an expression which

dynamically evaluates to the appropriate successor label.

3. consider all exit points as labeled by (£)
4. construct the following graph

3-12

)

)

)

c

c

~----
Y3S _ ~ <" (___ a-/

exit

no

no

)f

<:f='!>--rG----->
"rno

• • •

r--~y-e-s---...:~8_+

-0--~

• • •

As with node splitting, this technique is odious because of the

implied inefficiency. But also, it is a technique which may be applied

to convert any existing programs with sotos into ones 'without them. And,

in particular, the techniques may be applied locally to irreducible sub-

graphs.

3-13

The Bliss Cnntrol Structure
~ -#-_~------

The previous section points out the nature of programs which may be

constructed '''ith only conditional and looping constructs - and those \vhlch

cannot be constructed without duplicating some nodes or adding dummy

variables '. etc. The present section addresses itself to the question of

whether the class of constructs in a practical language (which will not

contain an explicit goto) should be extended beyond simple conditional

and looping facilities. And, if the decision is to extend the class, then

what should the extensions be? The answer to ~he first of these questi.ons

depends in part on a judgment as to the frequency with which nlultiple exits

from loops, etc., are used, and in part on the answer to the second question.

Whether to add constructs or not depends upon whether it can be done in

such a way as to preserve the structural advantages which prompted us to

consider a goto-1ess language in the first place. Hence we must answer)
the question of a specific language proposal. Part of this section will

be devoted to a description of the facilities in Bliss to give some back-

ground for discussing this question.

Note that we are principally interested in programs which are initially

written in such a goto-1ess notation rather than in translating existi.ng

programs into the notation. Consequently, we are willing to accept some

restrictions on what can be written - so long as the "connnon" things are

expressed conveniently. Even the goto is not completely general in most

languages - one may not jump into the scope of a DO statement nor out of

a subroutine in FORTRAN, and jumping into the middle of a block from out-

side it is prohibit~~ in Algol. Neither of these restrictions is a serious

one in practice.

)

3-14

c

(~

The three "problem areas" discussed in the firs t section lV-c.re:

(1) lattice-like decision structures, (2) multiple entry points to a loop,

and (3) mUltiple exits from a loop. Without any hard evidence at. our

disposal \-le are left with only our intui tinn and experience to ,~cight the

importance of these constructs. In p:.:.rticu1ar, the author believes that

(1) and (3) are both quite important, and only one subcase of (2) is

important - naluely, that case involving selection of one of several initi··

alization sequences. One might make a different evaluation aud arrive at

a different set of facilities than those to be. described below.

l1'1e first aspect of the Bliss control structure is simply the fact

that it is a block-structured "expression language". That is, every

executable construct, including those which manifest control, is an expres

sion and computes a value. There are no stateTIcnts in the sense of Algol

or PL!I. Expressions may be concatenated with semicolons to form. expres

sion sequences. The value of an expression sequence is that of its last

(rightmost) component expression and is evaluated in strictly left-to-right

order. Thus n;" may be thought of as a dyadic, left associative operator

whose value is simply that of its righthand operand. A pair of symbols

begj.n and ~nd, or left and right parentheses, may be used to embrace such

an expression sequence and convert it into a simple expression. A block

is merely a special case of this construction which happens to contain

declarations, thus the value of a block is defined to be the value of its

constituent expression sequence.

The fact that Bliss is an expression language is relevant to the Bot~

issue in the followt~g way: the most general method described in the first

3-15

section for translating programs into goto-Iess form was that involving

a dummy variable which explicitly indicates the successor. The value of

an expression (a block, for example) fonns a natural implicit node of

expressin~ this idea. This will be illustrated after some of the explicit

control expressions have been discussed.

There are six explicit control expressions in Blis s: conditional,

loop, case-select, function, co-routine, and escape. We have avoided

consideration of subroutines in the previous material and so shall omit

functions and co-routines from this discussion.

The conditional expression

if El then ~ else E3

is defined to have the value of the expression E2 just in the case that

El evaluates to the Bliss representation of ~ C:tnd has the value of

E3 otherwise. The abbreviated fonn "if El then E2" is considered to be

identical to "if El then E2 else 0".

The conditional expression provides two-way branching, the ~ and

select expression provide more general n-way branching:

case eO,e1, ••• ,ek of set EO; El ; ••• ; En tes

select eO,el, ••• ,ek of set EO:El ; Ez:E3; ... ; E2n:E2n+l tesn

The ~ expression is executed as follows: (1) all of the expres-

sions eO, ••• ,e
k

are evaluated, (2) the value of each e. (0
1.

~ i ~ k) is,

in turn from left to right, used as an index to choose one of the E. IS
J

(0 ~ j s: n) to be e~.ecuted. Obviously, each of the e. IS is constrained
1.

J

J

.~

J

c
to lie in the range 0 S e. S n if one of the E's in to be executed. In

~

the current implementation if e. = -1 none of the E'g will be executed and
~

execution is undefined for all other values of e .• The value of the entire
~

case expression is E • The special case \<7here k:.--::l is of special intel'cs t --- e
k

and has appeared in several other languages) ALGOL-VI and EULER

for examplee

The select expression is similar to the ~ expression except that

the e. I s are not used as indices. Rather, the CiS are used in eonjunction
1

with the Ezj I s to choose among the E1j+l' s. Execution proceeds as follo\-1s:

(1) all of the ei's are evaluated, (2) EO is evaluated, (3) if the value

of EO is identical to the value ,of one (or more) of the e's then E1 is

executed, (4) Ez is evaluated, (5) if the value of ~ is identical to the

va1u~ of one (or more) of the e's then ~ is executed, etc. The value of

the entire select expression is simpl); that of the last Sj+l to be executed -

or -1 if none of them is executed.

The utility of the fact that Bliss is an expression language may be

illustrated using the ~ expression in an earlier example, namely the

flow chart:

3-17

This graph may be thought of Us actually of the fonn

where @ is formed from CD ,0, and Q) as follows:

3-18

c

Which means that one might write in (pseudo) Bliss:

tes of -- --

CD
This provides a neat, conceptually simple, and efficient alternative

to node splitting.

Returning now to the discussion of Bliss control forms, the loop

expressions imply repeated execution (possibly,zero times) of an expression

until a specific condition fs satisfied. There are several fonus, some of

which are:

while El do E

do E while El

incr <id> from El ~ ~ £I. E3 do E

In the first form the expression E is repeated so long as El satisfies the

Bliss definition of~. The second form is similar except that E is

evaluated before El thus guaranteeing at least one execution of E. The

last form is similar to the familiar "step ••• ~til" construct of Algol,

except (1) the control variable, <id>, is locBl to E, and (2) El ,E2 and E3
are computed only once (before the first evaluation of the loop body, E).

Except for the possibility of an escape expression within E (see below)

the value of a loop expression is uniformly taken to be -1. The particular

choice of -1 as the value of a loop expression is not important except that:

(1) it is uniform, and (2) there are some small advantages to this choice

in connection with the definition of the ~ expression and zero origin

data structures.

3-19

. ,

The control mechanisms described above are either similar to, or

only slight generalizations of, the conditional and loop constructs of

many other languages. Of themselves they do not solve the problems

discussed in the first section. Another mechanism is needed - that mech-

anism is called the escape expression. An escape expression provides a

highly structured form of forward branch. The branch is constrained to

terminate coincidentally with the terminus of some control environment

in which the escape expression is nested. The general fonn of an escape

expression is

<escapetype> <levels> <expression>

where <escapetype> is one of the (reserved) words listed below and <levels>

is either an integer enc1os~d in square brackets, e.g., "[3J", or else is

empty (which implies [lJ).

exitblock

exitcompound

exitloop

exitconditiona1

exitcase

exitselect

exit

return

An escape expression causes control to immediately exit from a specified

control environment (a block, a compound, or a loop, for example) skipping

any subsequent expressions in that environment. The <levels> construct

pennits exit from several nested loops, for example, with a single exitloop

expression. The <expression> value in an escape expression defines the

value of the environment from which control passes.

3-20

J

1
.>

I .
• f

c

The use of the escape expression is i.llu.strated by a typical problem

involvi.ng mUltiple exits points from a loop. Suppose a vector, X, is to

be searched for a value, x. If an element of X is equal to x, then the

variable, k, is to be set to the index of this element. If no element

of X is eq\lal to x, then the value of x is to be i.nserted after the last

element of X and k set to this index. Supposing there are N elements

currently in X. The following Bliss program~';' will perfonn this task.

if (k ~ incr i from 1 to N £y 1 do if X[i.] - x then exitloop. i) < 0

then X[k +- N ~- N+l] +- x;

We can now return to the original questions raised in this section.

We know that the mechanisms are "adequate", but are they sufficiently

convenient and do they preserve the desirable properties of goto-less-ness.

The answer to the first of these questions lies pri.ncipally in the experi-

ence of those who have used the language. These experiences are sunnnarized

in the next section and essentially answered in the affirmative. Some

confidence that this is the case may be gained by simply viewing the escape

mechanism as a specific device for handling multiple exit point loops, and

viewing the decision to make Bliss an expression language as a specific

tool for implementing the dummy variable technique. In fact, of course,

both ideas are more general than this.

The second question, whether the Bliss structures retain the desirable

properti.es of simpler goto-less notations, requires a little more consider-

ation. First, it is only the escape mechanism which violates the goto-Iess

criteria. Returning to the flow chart notations, we now thip](of our flow

chart primitives as:

* (~- Actually the given program is not Bliss, but the differences are not
'----- essential to the discussion of ·control.

3-21

where the dotted lines represent a potentially iniinite set of flow' lines

one of which may be followed if the escape mechanism is invoked. Dotted

flow lines are constrair.led to connect directly to the tenninus of a

control environment in which the initial point of the line is totally

nested.

The previous set of transformations is still applicable if the dotted,

lIescape", flow lines are ignored and we are guaranteed that the escape
)

lines will be totally enclosed at some stage in the reduction process.

In this sense the desirable properties of goto-less graphs are retained.

The simple technique for understanding a flow chart and proving its cor-

rectness is no longer possible, however, because control is no longer

constrained to exit through a single path. Nevertheless, a similar tech-

nique is easily constructed. It simply must operate in more global contexts.

One can clearly apply the former style of reasoning to subgraphs from

,which no dotted lines emanate. After this has been done on all possible

subgraphs attention must shift to as small a subgraph as possible which

wholly contains its escape lines, and understanding be gained and verifica-

tion done on this sub graph as a whole, and reduced as a whole. This may

c

c

or may not lead to the simpler foun of graph, but in either case the

process can be iterated.

Some Experiences

Bliss has been i.n acti.ve use for nearly two years and we have there

fore gained considerable experience in progralmning without the goto_ - both

in writing new programs and in translating previously existing ones. This

experience includes several compilers, parts of an operating system, i/o

support routines, as well as numerous applications programs. As one might

expect, writing new programs presents no difficulty. Just as one adapt.s

to the lack of recursion in Fortran or the inability to jump into the

middle of an Algol block, one also adapts to the Bliss control structure.

But it is not that one merely survives in this mode; quite the contrary.

One' develops a mode of thinking whihc is roughly the .inverse of thereduc

fion transfonnation sequence discussed in the first section. That is" one

thinks, and writes ,from the more macroscopic to the most detailed levels.

We have not conducteci'contro1led e~periments, but I alP. convinced that

programmer productivity has significantly improved due to this enforced

style of programming.

In some sense our experiences in translating existing progrruus are

even more interesting than those in writing new ones. These latter experi

enc~s fall in two sharply defined categories - the times when it was easy

and, the times when it was hard. Most of the time it was easy, becau.se most

of the time progranmers apparently use goto's in non-essential ways; that

is, ways which mirror one or more of the constructs already in Bliss.' On

3-23

the other hand, when the translation was difficult the real problem was

understanding what the original programmer had intended the control

structure to be. Once that was done, in every case (to my knowledge)

there was a natural mode of expression in Bliss. There were surprisingly

few cases where node splitting, or any of the other devices mentioned,

were necessary. If we assume that the programs we have translated are

representative, and I do not know that they are, then we must conclude

that programmers do not use the generality of the goto.

-We have found two aspects to the Bliss st~ucture which are inconveni-

ent and should be changed. One is a trivial syntactic change and is easily

accomplished; the other is more fundamental. The "<levels>" construct in

escape expressions embodies an important semantic notion, but the syntax

should be changed. As a program is modified the number of levels through

which" an escape should execute may be changed - by the introduction of an

additional block level, for example. One would like to indicate the target

of the escape symbolically. Which is to say labels should be reintroduced

as names of entire control enviromnents. The other construct I should like

to have is, intuitively, one which allows exit through several levelsJof

subroutine call - either to a specific place or until a specified condition

is met.

Whether or not a language includes the goto construct is immaterial.

There are certain types of control flow which occur in real programs and

if constructs are not explicitly provided for these then the goto must be

provided so that the programmer may synthesize them for·h~self. The

danger in penni ttin~" -the goto is that the programmer will synthesize them

J;

3-24

\ ... :

c

in weird ·and obscure ways. The advantages in eliminating the goto are

that these same control structures will appear in regular and well-defined

ways and consequently both the human reader and the compiler will do a

better job of interpreting them.

References

't
[1.] Dijkstr~, E. W., "Goto Statement Considered Harmful", Letter to the

Editor, Connnunications of the ACH, 11, 3 (March 1968).

[2] Lowery and Medlock, "Object Code Optimization", Communi.cations of
the ACM, 12, 1 (January 1969).

[3] Van Wijngaarden, A., "Recursive Definition of Syntax and Semantics",
in Formal Language Description Languages for Computer p~Q.~ammin£,
(T. B. Steel, ed.), North-Hollan Publishing Co., Amsterdam, 1966.

[4] Knuth, Floyd, "Notes on Avoiding 'GOTO' Statements", Technical
Report No. CS 148, Computer Science Department, Stanford University,
January 1970.

[5] Wulf, et. aI, "Bliss Reference Manual", C9ffiputer Science Department
Report, Carnegie-Mellon University.

[6] King, J., "A Program Verifier", Ph.D. Dissertation, Carnegie-Mellon
University, 1969.

3-26

J

J

t

1

!
~
j.
!

f

1-

j:
i:

I
l:
i

1

j

i
J

c

Why the DOT?

William A. Wulf

J

J

WHY THE DOT?

The interpretation of the occurrence of identifiers in Bliss is

different from that in most programming languages - and this difference

has given rise to questions and suggestions from almost everyone who is

first introduced to the language. ~he purpose of this memo is to, or

at least attempt to, explain the reason for the chosen interpretation.

The chosen interpretation is quite fundamental to the intent and structure

of the language and was decided upon only after extensive, heated debate

and is not merely a whim of the designersi to change it would do substan-

tial violence to the language and could only be accomplished through

the introduction of a large number of ad hoc rules if the other inten-

tions of the language were to be preserved.

First let me review the interpretation, although I'm assuming some

acquaintence with the language. An identifier is introduced into a Bliss

program by a declaration; for example

own Xi

There are scope rules as in Algol '60, but let's ignore them and assume

that x is not re-declared at an inner block level. Now, anywhere in the

scope of this declaration, independent of the context in which it occurs,

an occurrence of the identifier is interpreted to mean a reference* to

the memory cell allocated by the declaration. Thus the value of the

expression "x+l" is one larger than the address of x rather than the value

contained in the memory cell x. Thus, one may think of the occurrence

*A reference, or pointer, in Bliss is a fairly complex object, but for
this d~scussion it is adequate to think of it merely as the address of a
memory cell. The remainder of the discussion presumes this simple
interpretation.

4-1

of an indentifier, x, as the occurrence of a literal (the address of x)

where the value of the literal is bound at load (or possibly execution)

time.

Clearly one wants to obtain the value stored in a memory cell as

well as its address. For this purpose the unary dot, ".", operator is

introduced. The value of the dot operator applied to an expression,

", is that of the memory cell whose address is E. Thus, ".x" is the

value contained in the memory cell x, ".(x+l)" is the value of the memory

cell whose address is one greater than that of x, " .. x" is the value

of the memory cell whose address is stored in the memory cell whose

address is x (i.e., indirect addressing), etc.

Closely associated with the interpretation of identifiers and the

dot operator is that of the store operator " .. ", which is also different

from that usually given in the description of conventional languages

(though not different from its implementation). The store operator is a

dyadic, infix operator whose operands may be arbitrary expressions,

The value of lefthand operand EI is interpreted as a pointer (address)

which names a cell into which the value of the righthand operand, ~ ,
2

is to be stored.*

Before turning to the issue of "why" the interpretation is as it is,

I'd like to make three comments. First, the only people who have ob-

jected to the interpretation are those who first encounter it; to my

*The value of the store operator is ~ , but that's not relevant to this
discussion. 2

4-2

)

c

c

c

knowledge no one who is using the language objects. That only proves

that it's possible to learn to live with it. Second, while the inter

pretation may be unique among higher level languages, it is precisely

the interpretation adopted in assembly languages. Third, the interpre

tation is entirely consistent, the interpretation of an identifier is

exactly the same independent of the context in which it occurs. (May-

be we could coin a phrase: "context-free semantics".)

Now, let me finally turn to w~y the interpretation is as it is. One

of the fundamental design objectives of Bliss was to permit the user to

define arbitrary representations of data structures by permitting him

to define the accessing algorithm (expression) for elements of the

structure. This implies not only that the user must be able to mani

pulate pointers as flexibly as values, but also that the value of an

arbitrary expression must be able to stand as a name. This implies,

for example, that the assignment operator must permit arbitrary expres

sions tl and e2 in the context ~l"E2.

An alternative to the Bliss interpretation of identifiers and dot

operator is to assume that identifiers always represent the value of a

variable and introduce another operator, say «, which means "the address

of". One would still need the dot for several levels of indirection,

but simple expressions such as (in current Bliss)

x~.x+l

would be written

o(.x .. x+l

Since, presumably, thre are fewer instances of addresses than values,

there should. be considerably fewer ~IS to write with this scheme than

dots in current Bliss programs. Carrying this reasoning further, why

4-3

not presume ~'s on the left of assignments (or, almost, equivalently

dots on the right)? Then one could write

x .. x+l

which is more familiar. Under this scheme one could, of course, write

~'s or (extra) dots to override the standard interpretation. Thus

.x..-l

would store indirectly through x, and

would store the address of y in x. Or would it? Let's examine some

of the difficulties that arise from such an interpretation. None of

these difficulties is insurmountable; however, they lead to a large col

lection of ad hoc interpretat on rules.

Above I suggested that x~y would store the address of y into x.

One may think of~as either an operator, or merely as a compile time

notation which overrides the suggested "value of" interpretation. If

one chooses the first of these interpretations, then ~y ought to mean

the address of the value of y (i.e., ~(.y»- which is not unique

(there may be many locations whose current value is the same as that

of y). Moreover, the expression o<E,(where E- is an arbi trary expression)

seems to have no useful interpretation unless ,one is willing to store EI

create a reference to this location, and support the garbage-collection

that that implies. The "compile-time override" interpretation of 0(has

its own set of problems; it makes '«Y' do something reasonable, but ~f

is nonsense and an arbitrary rule would have to be introduced to pro

hibit it. (What does 0«(1+2)' mean?,) On the other hand,Of.Eis exactly what

4-4

J

J

J

c
you want in an expression such as

x.-O'y [i]

in which you wish to store the address of a structure element into x,

so you must allow this case, too. It gets worse, as you'll see

below.

Suppose, for the moment, that you've contrived some interpretation

rules which handled the problems mentioned above, and that you move on

to the implied ~'s (or dots). You are now faced with the problem of

deciding what's on the left and what's on the right of an assignment

operator. There's no problem with x .. y, but what about

(x+i) .. 5

Given the initial assumption that accessing is specified by an arbitrary

algorithm, this is hardly an implausible thing to write. But what does

it mean? It must be one of (in Bliss)

(a) (x+i) ... 5

(b) (x+.i) ... 5

(c) (• x+i) .-5

(d) (.x+. i) ... 5

Relying on accumulated experience with respect to the usual way of

storing vectors one might like for the interpretation to be (b), but

I can find no rational reason for adopting this one; (a) or (d) seems

more plausible, and (a) the most plausible. O.K., suppose you try to

be consistent, and so you adopt (a) and then you write

(x+.i) .. 5

to explicitly indicate that, even though i appears on the left of an

assignment, you want its value, not its address. You're now in trouble

with another design objective of Bliss; namely, that the same accessing

4-5

function be usable everywhere. If you write

y..- (x+. i)

which means (in Bliss)

y ... (. x+ .. i)

you do not get what was intended at all.

Again, you can gin-up a rule to cover this case. However, suppose

that an accessing algorithm is specified by a function, f, and the body

of f contains the expression "return x". Should this expression re

turn the value or the address of x? In the expression

fO ... f()+l

both are needed. Of course f could return both, but then consider

gO .. g()+l

where the body of the routine g contains

return f ()

Must g now return (1) the address of the address of x, (2) the address

of the value of x, (3) the value of the address of x, and (4) the value

of the value. WOW!

Having examined the consequences of some of the alternative pro

posals, let's now consider the reasons behind them. There are two: you

are forced to write a lot of dots, and it deviates from the "standard",

or "conventional". The first of these arguments has merit, and in fact

was the rationale for choosing an inconspicuous, easily written and typed

graphic for the "contents of" operator. In practice, however, users

of the language have found little difficulty in either reading or writing

the dot. The second argume~t is simply absurd. There is no standard

since there are no other languages which deal with the same issues,

except possibly assembly language, and Bliss uses the same convention as

4-6

)

)

)

assembly languages.

As for the virtues of the convention, it is simple and completely

c= consistent, it permits accessing algorithms to be written and used

c=

c=

in all contexts, and it covers all the cases. The distinction between

name and value is a fundamental one, and in my opinion it is far more

important to treat it explicitly and consistently than to provide

minor convenience to the uninitiated.

)

)

)

Efficient Data Accessing in the Programming Language BLISS

David S. wile and C. M. Geschke

)

)

c,

EFFICIENT DATA ACCESSING IN THE PROGRAMMING
LANGUAGE BLISS

Abstract
Introduction

David S. Wile and C. M. Geschke

Department of Computer Science

Carnegie-Mellon University

Higher-Level Language Data Structure Specification
Three Aspects of Data Specification
Implementing a Foreign Data Structure
Isolating Data Access

Bliss Data Structure Specification
Notes on Bliss
Bliss Structures
Structure Declaration--Simple Case
Structures and Mapping Declarations
An Example
Substructures
Efficiency

Conclusion
Acknowledgments
References
APPENDIX

307
307
308
308
308
309
311
311
312
312
313
314
316

1317
317
318
318

319

ABSTRACT
I

The specification of data structure in higher ... level languages is isolat ...
ed from the related specifications of data allocation and data type. Structure
specification is claimed to be the definition of the accessing (addressing)
function for items having the structure. Conventional techniques for data
structure isolation in higher-level languages are examined and are found to

)

suffer from a lack of clarity and efficiency. ~~)
The means by which data structure accessors may be defined in Bliss, _

the specification of their association with named, allocated storage, and their
automatic invocation by reference to the named storage only, are discussed. An
example is presented which illustrates their efficient implementation and their
utility for separating the activities of data structure programming and algorith-
mic programming.

INTRODUCTION

Since the management and representation of data are of prime interest
in programming, we wish to present the view of data structures that has been
adopted in the implementation language Bliss. Bliss [1] is. a higher-level
language designed for writing large software systems for the PDP-10 [2] and
is curren~ly being implemented at carnegie-Mellon University. Our paper is
divided into two parts. First we discuss the issues which arise in defining
and implementing data structures in higher-level languages. Then we present
the facilities in Bliss which are designed to handle ·.the representation of
data.

5-2

HIGHER-LEVEL LANGUAGE DATA STRUCTURE SPECIFICATION

C THREE ASPECTS OF DATA SPECI1.11,;ATION

c

c

We begin by considering three aspects of data structures which are not
separable in most higher-level languages, but which can be separated in Bliss

, to allow greater flexibiiity in data specification:
1. Type specification - the name of a piece of data specifies its

internal fonna,t and the class of operators for which it is a
valid operand.

2. Ailocation - the presence of' a named data item requires that
we be able to associate this name with its value; presumably,
that value will require space in the underlying logical machine.
The format (and perhaps the size) of the allocated space depends
on ~he data type specified for the name. The scope rules of a
language define the domain of valid access to a value via its
name. The logical machine manages the allocation of 'space for
storing the value and is free to overlay non-contemporaneous
allocations.

3. Structure - the ability to structure regions of storage allows
us to generate in a simple way a large collection of names and
to retain the logical clarity of a generic name. ' Indeed we
want the ability to compute a name (e.g., array subscript compu
tation) and to sequence through a collection'of names.

Taking Algol [3] as an example, the text

procedure P(A,B); real array B[I:IOO];

provides a structure for B and types the elements of the structure (named:
B[l], B[2], ••• , B[lOO]). Furthennore, in addition to structuring and typing,

begin ~ array B[I:IOO]; •••

also allocates space. We emphasize: two different Algol implementations may.
physically structure the same logical structure differently (e.g., dope vector
vs. by column or row).

IM'PLEMENTING A FOREIGN DATA STRUCTURE

We consider in some detail how we build a data structur'e in a higher
level language whose inherent data structures may be quite different from those
to be implemented. In particular consider a partial ~plementation of Lisp [4]
in Algol. Atoms will be stored in an array with negative indices for non-null
atoms and the zero index will indicate NIL. Cells will be stored in a two
dimensional integer array with positive indices.

Now we examine two ways of implementing the Lisp accessi~ functions
CAR and CDR.

5-3

(1) integer array ATOMSPACE [-1000:0J;
integer array CELLSPACE [1:10000,1:2J;
integer procedure CAR(I); integer I;

CAR := CELLSPACE[I,l];
integer procedure CDR(I); integer I;

CDR := CELLSPACE[I,2J;

(2) integer array ATOMSPACE [-1000:0J;
integer array CAR [1:10000], CDR[1:10000];

Note that'in both implementations the Algol array bounds checking will handle
the error resulting from attempting to access the CAR or CDR of an atom.

Several things are to be noted 'about these two implementations. Both
(1) and (2) implement the same logical structure. The accessing structure is
logically independent of the allocation since the declarations could appear in
any Algol block at any level. The foreign types atom and pointer had to be in
corporated into the stru'cture of the implementing language. Implementation (1)
has an advantage over (2) in that it can be modified more easily. We can ch~nte
the body of the accessing functions CAR and CDR without changing the program's
reference to them. On the other hand (2) is clearly more efficient than (1)
since it employs the built-in accessing mechanisms of the Algol machine whereas
(1) reQl-1ires execution of the expensive procedure calling mechanisms of Algol
procedures. Of course, neither implementation is as efficient as a direct
machine language implementation of Lisp. Hence we can isolate a major difficulty
that arises from specifying a data structure in a higher level language. In
general we paY,a high price in lost efficiency by implementing a data structure
in a higher-level language unless,of course, that language is designed to make
~uch implementations efficient. For example, if pointer or address were an
Algol type, we could probably improve the ~bove implementation to a point where
the cost would .be tole,.rable.

ISOLATING DATA ACCESS

We examine the motivation for isolating access to data. Consider the
following Algol statement:

X := (Y[I] mod 2 t (WORDLENGTH - 14) + (2t(WORDLENGTH - 22»; •

The code extracts bits 14 through 22 of Y[I] and stores it in~o X (where
"WORDLENGTH" is the number of bits in a machine word and bits are numbered
from the left). It seems evident that we would not want to write this rather
cumbersome piece of code for each access of this subfie1d Y[I]. A major con
sideration in having structured identifiers in a language is to ~prove the
clarity and readability of the program. It is also true that most programs
are subject to fairly substantial modification as they are being built. Quite
obviously the decision to change the format of the variable Y[I] so that the
subfield of interest was no longer bits 14 through 22 but 7 through 15 would
mean a laborious change of all the code that accessed that information.

At present most higher-level languages allow at best two ways of isolat
ing accesses to data items whose structures are·not built into the language- ..

5-4

)

)

)

c

c

c

macros and procedures. We 'can define one procedure as an accessor for a whole
class of data items by passing info~ation via parameters. Alternatively we
can define a procedure as an accessor for a particular data item by allocating
space for the data as an ~ variable of the procedure.

For example, assume that a linear array is being used to represent the
elements of a symmetric matrix. The symmetry of the array allows the overlay
of elements off the main diagonal. We aefine the following procedures for
reading from and writing into arrays of this fonn:

real procedure LOADSYMMETRIC(A,I,J); real array A[l:lOO];
integer I,J;

LOADSYMMETRIC := if I > J
then A[I*(I-l)+2+J]
else A[J*(J-l)+2+I];

procedure STORESYMMETRIC(A,I,J,V); real array A[l:lOO];
!!!l V; integer I,J;

if I > J
-- then A[I*(I-I)+2+J] := V

else A[J*(J-l)+2+I] := V;

The intention is for these accessing procedures to serve for several such arrays.
If we wish to apply this structure to only one symmetric array, then the formal
parameter A can be omitted (and A declared an own variable within the procedure).

We can avoid the expense of the function call mechanism by using string
replacement macros.

Both these
(a)

(b)

(c)

(d)

~ LOADSYMMETRIC(A,I,J) =
if I > J
-- then A[I*(I-l)+2+J]

else A[J*(J-I)+2+I];
~ STORESYMMETRIC (A,I,J,V)

if I > J
-then A[I*(I-I)+2+J] := V

else A[J*(J-I)+2+I] := V;

solutions have drawbacks:
As mentioned previously, function calls are unattractive
because of their inefficiency.
The presence of two accessing functions for one logical
structure is required because of the left/right distinction
in assignment statements.
If a macro or procedure is defined for a whole class of data
items and we decide to change the logical structure of one
of the data items, then we must search the entire program
for calls on the macro or procedure to change its structure.
Macros have their own problems. Consider:

1!!!£!2. A(B,C) = if GLOBALBOOLEAN then B[C+3] else B[C-3]; •

If "GLOBAL BOOLEAN is redeclared in an inner block, subsequent use
of the macro will have the possibly undesirable effect of testing
the neW variable. Another unpleasant feature of the macro is the
handling of actual parameters. Consider the macro call:

Y := LOADSYMMETRIC (X,F(I),G(J));

5-5

J

, __________ ~G ____________________ __

The expansion of this call produces inefficient and potentially
side-effect-producing results because of the mUltiple calls on
the functions F and G.

Having pointed out some of the issues that arise when considering hbW
to implement data structures and having considered several of the problems
associated with implementing data structures in higher-level languages, we
next discuss how Bliss enables the programmer to specify his data structures
and still maintain efficiency.

BLISS DATA STRUCTURE SPECIFICATION

NOTES ON BLISS

Bliss is primarily an Algol-like expression language with additional
control expressions to c'ircumvent problems encountered removing the "go to",'
and with declarations (for allocation) to facilitate independently compiled
modules and spec1al machine features (e.g., registers). The only anomaly
which is relevant to this discussion is that names stand for machine addresses.

, If we want the contents of a named location, we must use a contents operator
(the ".,.); e. g • ,

y +- x+l ;

(x+l)hY;

adds 1 to the address of x and deposits it in the
word addressed by y
deposits the contents of y into the word 1 past the
address of x.

The PDP-10 has three types of data:' instructions, addresses, and 36-
bit words upon which machine operations may act. These types are determined
dynamically by the interpreting hardware, and type checking is of a negative
nature (e.g., "this is not a valid address"). The necessary inclusion of
address manipulation facilities in any system implementation language would
entail dynamic type checking if the logical type "address" were included.
Visions of inefficiency thus lead to the inclusion of a single data type in
Bliss: the 36-bit word. All operations are valid on this single data type.

Data allocation is by words in the machine; although fields within a
word are addressable, there is no effective way of allocating a part of a
word. Again,. for efficiency reasons, Bliss allocates storage to programs in
contiguous words. Allocation is done via explicit allocation declarations; a
specified form of allocation is made, and the declared name is bound to the
machine ~ddress of the beginning of the allocated storage. For example,

~ A [200]

reserves 200 words of core (static) and binds the name "A" to the address of
the allocation. The other static allocation declaration is for global sto~
age. The effect of the allocation is the same as for ~, but the name
becomes available to independently compiled modules which reference the vari
able via an external declaration.

Local variables are local to the block in which they are declared.
They are allocated dynamically from the nor~al Algol implementation run-time
stack. The local variable name .is dynamically bound to an address;

5-6

)

)

c

c

c~

begin local Q, R [30] . , . •• end

allocates one word for Q, 30 for R and binds the names Q and R dynamically
to their respective stack addresses. Recursive entry to a block causes recur
sive local allocation, unlike the ~ form. (This is simply the default form
of allocation for Algol declarations; e.g. integer A, •••) The register
allocation declaration requires compile time binding of addresses, but causes
a recursive saving mechanism to be invoked; e.g.

begin register R1; ••• ~

causes the contents of the compile-time bound register named "Rl" tQ. be saved'
in the stack (and thereafter upon recursive entry to the block) and restored
upon exit.

BLISS STRUCTURES

There are no structures "built-in" to Bliss as the array structure in
Algol or the cell in Lisp. However, address arithmetic allows the use of any
of the standard structures. For example, We can store the contents of C[.i, .j]
into y (where C is ,a 7 x 9 array) by writing:

y(;-. (C +. i*9+. j) ;

(where we have presumed zero-origin indexing in ,both arguments and' contiguous
row storage allocation).

STRUCTURE DECLARATION--SIMPLE CASE

Naturally, expressions of the above form are quite cammon and their programming
would became quite tedious without the structure declaration. Its form is
easiest illustrated by example of a 7x9 array:

~ C[63];
structure rowof9array[i,j] = .rowof9array+.i*9+.j;
map rowof9array C;

The first declaration allocates 7 * 9 = 63 words of care and binds the address
of the allocation to the name "C". The structure declaration defines an "access
ing template" for those names onto which it is mapped; its format is similar to
that of a routine (procedure, function)' declaration in which the body may refer
ence the name of the structure as a formal parameter. The map declaration
associates the structure "rowof9array" with the name "C". Thereafter, whenever
the name "c" is used followed by a bracketed list of expressions, the effect is
as if the structure were called as a routine with "c" as the actual correspond
ing to the routine name (which is used as a formal in the body) and the expres
sions as the actua1s corresponding to the formals of the structure. Consider
the routine declaration below:

routine rrowof9array (rowof9array" i, j). = .rowof9arraY+.1*9+. j ;

5-7

The effect of the use of C [3,5] in a program would then be the same as if we
had (declared and) called rrowof9array(C,3,5). A Bliss routine is analagous
to a valued procedure in Algol; however, the value of the routine is the value
of the expression which is the body of the routine. A routine returns a 36-bit
word, and hence, the returned value of a routine may be stored into.

rrowof9array(C,3,5)~ 4

assigns the value 4 to array element C[3,5]. Remembering that C (without the
dot) is an address, it should be clear that the above effect is the desired
one.

Note that the Bliss contents operator removes the left/right-side dis
tinction between structure accessing 'for storing and accessing for retrieval
(drawback (b) above). Also, macro side-effects are not introduced (drawback
(d», for the structure is effectively equivalent to a routine, i.e., actual
parameters are evaluated only once and identifiers in the structure body remain
in the context of the structure declaration site.

Howev~r, we have introduced some additional drawbacks (soon to be
removed): .

(e)

(f)

Although we have allowed the flexibility of choosing the accessing
method, We must now write a different structure definition for
each length row We have; e.g., rowof12array, or rowof7array.
To allocate storage for the array C, the ~ above simply allo
cates the number in brackets of contiguous words--we must in
same sense know how the structure works. Hence, in· the above
we'had to know to allocate 7*9=63 words.

STRUCTURES AND MAPPING DECLARATIONS

Both (e) and (f) are solved in Algol by the array declaration:

"integer array C[1:7,1:9];".

Via the above, an Algol compiler knows to substitute 9 for the row length in
the accessing expression and to allocate 7*9 words of core for the array.

Bliss extends the structure mechanism to facilitate this by the use
of "incarnation formals". Use of the incarnation formals to a structure is
indicated by'not "dotting" the formal to a structure; e.g., in

structure array2[i,j] = .array2+.i*j+.j;

the firs'i:. occurrence of j in the body refers to the incarnation formal. It
is bound to the corresponding "incarnation actual" when the variable is
mapped: e.g., map array2 C[7,9]; (in this case, 9.).

Hence, the structure and routine correspondence:

structure array2[i,j] = .array2+.l*j+.j;
routine rarray2(incformali,incformalj,array2,i,j) =

.array2+.i*.incformalj+.j;

applies, with the accessing expression for .C[3,5] (in this case) having the
effect of the routine call rarray2(7,9,C,3,5).

5-8

J

J.

The structure writer knows best the allocation size required for vari
ables onto which his structure will be mapped; hence, the "size expression"
and "mapping declarations" were introduced into Bliss. The size expression
is specified along with the structure declaration (preceding it, enclosed in
brackets) as a function of the incarnation formals for the structure and of
compile-time constants. All allocating declarations allow the mapping of a
structure along with its declaration;

e.g., structure array2[i,j]
~ array2 e[7,9];

[i*j] .array2+.i*j+.j;

The structure declaration defines a size expression, II [i*j] ", and -accessing
template, ".array2+.i*j+.j". The ~ declaration:

1. Maps "array2" onto "e";
2. Binds incarnation actual 7 to the incarnation formal i, and 9 to j;
3. Evaluates the size expression associated with the mapped structure

with the incarnation actuals substituted; i.e. 7 * 9;
4. Allocates the number of words returned as the value of the size

expression; i.e. 63;
5. Binds the name "e" to the address returned by the own allocation

mechanism.

AN EXAMPLE

The utility of the Bliss data structure mechanism is illustrated by
considering a solution to the following problem:

We wish to solve systems of linear equations with normalized upper
t!iangular coefficient matrices; i.e.,

(1)
n

x + l:
i j=i+1

for i = 1,2, ••• ,n

We m~st read the _coefficient matrix and then solve the system for several
sets of constraints. We also know We will be using a paged machine and that '
the coefficient matrices may be large.

Noting:
(a)

(b)

x = b n n
n-1

x + l:
i j=i+1

def
= b ' i

for i= 1 , ••• , n -1 -

(b) is a problem with the same specifications as (1) in one less variable.
Thus, a solution technique is to iteratively subtract the product of the last
found ~ with the column vector (c k c Lk ••• ck _] k) from, the (modified)
constan~ vector (b~' b2 ' ••• bk_~'}. Tnis then D~comes b for the next step;
i.e., new b' = (b1 - ok' c 1k D2 - bk ' c 2k ••• bk- 1' - bk ' ck- 1,k)·

be:
The algorithm portion (ex1uding r/o and declarations) in Algol might

for k := n step -1 until 2 do
for i := k-1 step -1 !!!llli 1 do

B[i] := B[i] - C[i,k] -* B[k];

~, The solution is left in the original constant vector, B.

5-9

A Bliss implementation (with data structures and storage allocation
specified) which mirrors the Algol program above is:

begin
structure vector[i] = .vector+.i - 1;
structure array2[i ,j] = [i*j] .array2+(. i-1) *j+(.j -1),;

~ vector B[n],
array2 e[n,n];

INPUT

c:i'ecr k from n to 2 do
decr i from .k-l to 1 do
--B[•. i-r-;:-.B[.i]-= .e[:i, .k]* .B[.k];

OUTPUT & LOOP

" end" --'
Now, note that the above solution:
(a) wastes space for the known zero and unity elements of the co

efficient matrix;
(b) thrashes considerably (if n is large) in a paged machine, for

the coefficient matrix is accessed by columns in decreasing index
order, but is stored by row in increasing index order.

It can be seen that replacing the array2 structure with: '

structure upperdiag[i,j] = [i*(i-1)/2].upperdiag + (.j-1)*(.j-2)/2 + .i-1;

and changing the mapping of "e" from "array2" to "upperdiag", modifies the
program in such a way that it wastes no space for the known constant elements
of "e" and eliminates thrashing by accessing elements in the same column of
the coefficient matrix contiguously. The logical storage map of figure 1 may
help to see this:

Figure 1.

The above change preserved the "algorithm portion" of the program--it
continues to appear much the same as the Algol algorithm--however, the increase
in overall efficiency is significant (presuming, for the moment, that the
structure mechanism is efficient). The simplicity with which the change was
accomplished indicates that "drawback (c)" has been removed.

5-10

J

J

SUBSTRUCTURES
r
~ Continuing to postpone the efficiency drawback, note that we would like

to use a substructure on the, columns of the coefficient matrix. We know that
within the inner loop, each of the elements is taken from the same column, and
thus the same multiplication «.j-l~(.J-2)/2) is repeated for each element in
the column. We can indicate this substructure in Bliss via the bind declara
tion. This declaration is dynamic in the sense that the expression bound to is
evaluated at execution time, upon entry of the block in which the bind occurs.
For example; in

bind x=.y;

wherever x occurs in the block in which it is declared, the value of the
contents of y ~ill be considered its address.

The ~ declaration allows its symbol to be mapped in a,manner similar
to the allocating declarations. Hence, we may write:

bind array2 X [7,9] = .y+3;

This indicates to the compiler that the name "X" stands for the address which
is the contents of y plus 3. If "X" is used 'as a structure access in the block
in which the bind occurs, this address is to be considered the base of a 2-
dimensional array with at most 7 rows and 9 columns (the semantics of the
"array2" structure defined above).

Binding the name "COLUMNK" 1:0 the base of the kth column of "e" in the
outer loop in the above program, we produce the more efficient and slightly
more intuitive program:

begi%
structure declarations for Band C %

end· -'

structure vector[i]= .vector+.i-l;
structure upperdiag[i,j]=[i*(i-l)/2] I

global vector B[n],
upperdiag C[n,n];

.upperdiag+(.j-2)*(.j-l)/2+.i-l;

% Here we would begin the outer loop .to read the
coefficient matrix, "C".

Here we would begin the inner loop to read .. the
constant vector, "B". f,

deer k !!2m n 12 2 do
begin

end

bind vector COLUMNK=C[',.k];
~ i from .k-l to 1 do
--B[. iJt- .B[. i]::COLUMNK[. i]* .B[.k];

% Here we would output or save the solutions which have
been left in liB". Then We would continue the inner
and outer loops. f,

5-11

EFFICIENCY

Clearly, the efficiency of structure accessing mechanisms highly affects ,~
their utility in a language which is designed for efficient implementation, A
brief note about the compiler is necessary. The compiler first breaks program
text into "lexemes"--atomic symbols for operators, reserved words, and identi
fiers. The lexeme for an identifier is unique within its scope; hence,

begin .2!!!. b; begin ~ b; ••• end; ~;

causes the creation of two different lexemes for "b".
A structure access may best be understood as a lexeme-stream macro

substitution mechanism,* where the st'ructure body defines the lexeme-stream
(with dots preceding formals removed). At a structure access, the actual
parameters are evaluated (code is produced for their evaluation) and the incar
nation actuals are retrieved. The compiler input is then taken from the struc
ture lexeme-stream with'actuals substituted.

Thus, under the array2 structure above,

C[2,1] ~ .C[3,5] + 8

will compile as if we had written

(C+2*9+1) ~ • (C+3*9+5) + 8

which, because of compiler optllnization will compile as if We had written

(C+19) <E- • (C+32) + 8

which will generate three machine instructions! The code compiled for our
example is included as an appendix.

CONCLUSION

Bliss factors the separate issues of allocating storage, binding names
to addresses and structuring the storage referenced by a name. Although all
allocating declarations also bind names to the referenced store, names may be
bound to addresses dynamically via the bind declaration which presumes the
storage has been allocated for the contents of the named storage. A name may
be structured using the map declaration independent of it·s allocation and
binding. Because relationships often do exist between these three aspects of
data structuring--allocating, binding and mapping--communication is allowed
via "incarnation actuals", "size expressions" and "incarnation formals".

Use of the mapping, allocating declarations. in Bliss permits the ease
of use of other higher-level language declarations; the factoring of the
issues of allocation, binding and structuring helps to separate the activities
of data structure programming and algorithmic programming, while maintaining or,
in fact, improving program efficiency ..

*Structures are sometimes more efficiently accessed as routines. The current
(unsatisfactory) solution is to camp'ile tI:tose structures with declarations
(other than their formal parameters) as routines.

5-12

c

c

ACKN~DGMENTS

1 The concept of the stru~ture declaration i2 Bliss is due to W. A. Wulf ,
who along with A. N. Habermann and D. B. Russ,ll designed B1~ss. We also
with to thank our co-implementors, J. Apperson and R. Brender.

REFERENCES

1. Wulf, W. A., Russell, D., Habermann, A. N., Geschke, C., Apperson, J., and
Wile, D.~ Bliss Reference Manual,Department of Computer Science document~
Carnegie-Mellon University, Pittsburgh, Pa., 1970.

2. Digital Equipment Corporation, PDP-10 Reference Handbook, 1969.

3. Naur, P. (Ed.), "Revised Report on the Algorithmic Language ,ALGOL 60",
CACM 6, No.1, (1963), pp. 1-17.

4. McCarthy, John, et.al., LISP 1.5 Programmer's Manual, M.I.T. Press,
Cambridge, 1962.

'Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa.

2Atlas Laboratory, Chilton, Didcot, Berks, England

3Digital Equipment Corporation, Maynard, Mass ..

5-13

APPENDIX ,

0001
0002
0003
0004
0005
0006
0007
0010
0011
0012
0013
0014
0015
0016
0017
0020

BEGm

, 0021
0022
0023
0024
0025

-0026
0027
0030
0031
0032
0033
0034
0035
0036
0037
0040
0041
0042

*

'-

% ~sr BIND AN UPPER BOUND FOR MATRIX DIMENSICN %

BIND N=150;

% STROCTURE DEClARATIONS FOR B AND C %

STRUCI'URE VECroR [I] = . VECroR+. I-I;
STRUCTURE UPPERDIAG[I,J] = [I* (I-l)/2]

.UPPERDIAG+(.J-1)*(.J-2)/2+/I-1;

GI:DBAL THISN, ,
VECroR B [N] ,
UPPERDIAG C [N ,N] ;

% HERE WE IDUI.D BEGIN THE OtJrER IOOP 'IO READ "THISN" (THE
SIZE OF '!HIS ARRAY) AND THE COEFFICIENT MATRIX, "C".

HERE WE hUJID BEGIN THE INNER IOOP 'IO READ 'lHE COO'STANT
VECroR, "B". %

DOCR K FRG1 • THISN 'IO 2 00
BEGIN

BIND VECroR COI1JmK=C [1, • K] ;-
DECR I FroM ·K-1 'IO 1 00

B[.I]+.B[.I]-.COLUmK[.I] *.B[.K];
END;

% HERE WE mtJI.D OUl'Pur OR SAVE THE sowrIrns WHICli HAVE
BEEN lEFT IN "B". THEN WE mtJI.D CCNI'INUE THE INNER AND
0tJJER IOOPS. %

END;

5-14

'-

J

)

)

c

LINE OFFSEl' IABEL OPCOOE- REGISTER,ADDRESS (INDEX REG)

0000 mvE 13,THISN
0030 0001 !AS3: CAIGE 13,2

. 0002 JRST $S,IA60
0031 0003 ADD $S,[000001,,000001]
0032 0004 M)VE 04,13

0005 SUBI 04,2
0006 M)VE 05,13
0007 SUB! 05,1
0010 IMUL 04,5
0011 ASH 04,-1
0012 HRRZI 06,C-l(4)
0013 IDVEM 06,l($F) iI..OCAL
0014 M)VE 14,13
0015 SUB! 14,1

0033 0016 L630: CAIGE 14,1
0017 JRST $S,L503

0034 0020 MJVE 07,14
002-1 ADD 07,1($F) iI..OCAL

C 0022 IDVE 10,B-l(13)
0023 IMUL 10,-1(07)
0024 SUB 10,B-1(14)
0025 mVNM 10,B-l(14)
0026 SQJA 14,L630 ttt
0027 LS03: SUB $S, [OOOOOl"OOOOOlJ

0035 0030 SQJA 13,IA53 ttt
0031 rA60: SEI'Z $V,O

MX>ULE lENGTH =26+1
CXM?IIAT!CN CCMlIEl'E

*

5-15

)

)

c

HELP.DOC

c William A. Wulf

c

)

)

)

c:

INTRODUCTION
.-._.----.. -

B~lSS DEBUGGING SUPPORT ••• :===: •••• = •••• c~.=.= ••
••••• V E A S ION TWO

WM', A. WUI.;
AP~!I. 23, 19'1
MOOI~lEO 2 SEP '1

• ••• *

MG MANUGIAN

DDT MAY BE USED TO DEBUG PROGRAMS WRIT'£N IN 8~tSS. HOWEVER,
THE USE Of DDT A~ONE REQUIRES 'A rAIRI.Y OETAILEO KNOWLEDGE O~ THE
RUN-rIME REPRESENTATION or BLISS PROGRAMS (STRUCTURE or
THE STACK, ETC,> AND IS NOT ESPECIAI.I.Y CONV~NI[NT, IN
PARTICULAR, DDT CANNOT EX'I.OiT ANY SPECIAl. INPORMATtON ABOUT
THE STRUCTURE OF THE OBJECT PROGRAM', THE SERIOUS BI.ISS PROGRAMMER
IS WELL ADVISED TO LEARN T~~ BLISS RUN~TIME STRUCTURE ••
NEVERTHELESS, THERE ARE STII.L A NUMBER or OEBUGG!NQ AIOS
WHICH DOT DOES NOT PROVlot~ iN OROER TO IMPROVE T~£ SITUATION,
A MODULE CALLED "H£LP" HAS BEEN WRITTEN TO AUGMENT THE 'ACII.ITIE5
OF ~OT, THIS MODUI.£ MAY BE I.OADEO (ALONG WIT~ DDT) WIT~ ANY
BLISS PROGRAM •• A~T~OUGH ~~COMPI~ATION or HE~~ 15 NECESSARY
If' THE USE: R IS NOT US I N G T ~ E: S' AN o. ROB ~ 1 S S S Y 5 T E M REG 1ST £ R S '.
"HELP" IS WRITTEN IN aLISS AND T~ERE'ORE T~E r.Cl~ITIESRIB~O BELO
B~LOW MAY BE CALLtO OIREeT~Y 'ROM THE USERS SOURCE PROGRAM EVEN
THOUGH THEY ARE PRIMARILV INTENDEO rOR USE PROM OOT,

~ow TO use: HEI.P .-- --- ----
1, THE ROUTINECS) TO BE ~OAOEC WITH HELP MUST CONTAIN THE
TIMER SWITCH IN THE MODULE HEAO AND BE COMPiLED WITH T~E IT SWITtH~
WITHOUT IT THE TIMER SWITC~ IS INGNORED DURING COMPII.ATION ANO,
THEREFORE, MAY BE A PERMANENt" ~ART 0' A MOCULE H£AO WITH NO HARM~

2. THE HELP MOOU~E MUST NOT BE COMPl~EO WITH IT.

3. THE MOOULtl TO 8£ OEBUGG£O MUST Bt ~OADEO WITH OOT ANO ~E~P
SUCH THAT DOT IS ~OAOED JUST ASOVE JOSDAT iN THE ~ow SEGMENT. POR E~AMPLEi

.OEB F'OO,H£L.P
WORKS JUST F"INE.

•. NOTE THAT THE rIRI' ;OUR WOROS 0' EVERV ROUTINE AR~ CEBUGG!NQ
OVERHEAD ANO THAT 'CTUA~ COOE 'OR fHE RouTINE ITS£~' STARTS AT T~£
~IrTH WORD. TO TRACE A eA~L TO A PARTICU~AR ROUTINE, A BREAK'OINT MUS'
BE INSERTED AFTER WOAO 4 DTHtRWlS£ TMt NECCESS~RY ~OUSEKE£PIN~ OONE
BY THE ~lRST rOUR WORes 0' T~I ROUTINE W!L~ Not HAVE BEEN COMP~£'£O
AND THE STACK WILL NOT BE SEt U, 'OR 'ROPEA TAActNG~
L. IKE W I SET H E (L AS T • S I X) T H W 0 fit 0 TO tHE U. A I , • 0 N E) T H W 0 ,. 0 0' e: A C H ~ 0 U T ! N E
ARE DEBUGGING OVERKEAO ANa BRE.~PONTS INSEAtEO IN TMlS'AREA
WIL~ GIVE UNPREDICTABLE RESULT.. NOTE T~At THEAE ARE NO RESTRICTION!

1 __ 6~! ---

IN PLACING BREAKPOINTS IN .C'U,~ eOCE OUTSIDE or T~E OEBUCCINQ
,ROLOG ANO EPILOG.

5, THE:ROUTINE BPN IN ~£~~ MUST BE MOOlrIED rOR EACH NEW ~~
VERSION or DOT SINCE IT LOOKS AT THE ODT OBJECT OOOE TO OETERMIN£
THE NUMBER O~ THE LAST BREAKPotNT~ IT IS CURRENT~V CO~PATIB~E W!T~ ~ .

~DDT (VERSION 32, EOIT 23).
'HE ONLY SET OF DEBUGGING ROUTINES
WHICH REQUIRE BPN IS THE X'R[.~X) SET, THE OTHERS rUNCTION
iNDEPENTLY O~ BPN.

. TO MODIFy BPN APPROPRtAT~~Y. DO THe rO~LOWINGI

A. DETERMINE THE VALUE or T~E SYMBO~S

800M3
81ADR

IN UOOT BY ~OAOING ODT.REL rROM SVS AND TYPING
THEIR VALUESi

.~OA ~S SYSIDot
LOAOING

LOAOER NK CORE

EXIT

.00

BCOM3.NNNN B1AOR"MMMM

B. INSERT T~t TWO VA~U£S JUST TYPEC INTO THE
APPROPRIATE BINDS IN BPN IN THE SOUROE or ~E~P~BLI~

c. RECOMPILE ~ELP~B~1

OF COURSE, YOU MlY ALSO PATC~ THE STANOARD VERSION or ~E~P
WITH DDT AfTER LOAOING DOT, ~ELP. AND T~E MOOU~E(S) TO Bt OEBUGG£O~
CONSULT AN EXPANDEO(/M) ~lST%NG or ME~P TO CETtRMIN£ W~lCH ~OCAT!ONS
IN CORE TO MOOIFy.

,ACILITI£S .-._--._.-
THE rEATUR£S CU~RENTLY !MP~EMENT£C A~LQW CIS~LAV 0' THE

USER'S STACK, TRACING OF C'~LS ON SP£CI~lC ROU'tN£S,
DISPLAY Or VARIAB~ES AND REGiONS, AND AN EXTENSION 0' THE
ALT-MOOE-X (SX) rEATUR£ 0' COT~ THESE ~EA'U~ES ARE PROVIDED
IY A SET O~ G~OBA~ ROUTINES iN THE H[~P MOOULEi TMtS£ ROUTINES
ARE OEseR I BED IN DETA I L BELOW',· .

THERE ARE THREE WAYS iN WHICM ONE or THE RouTINES IN HELP MAY
1£ ENTERED: A DIRECT CAL~ 'AOM THE USERS ~AOGR'M, 'ROM A OOT
CONO 1 T I ONAL. BREAK-PO I NT, O~ IY EXECUT I NC A "PUIHJ" WI TM THE
DOT ALT-MOOE-X rEATUAE. 'HE AE'CE~ IS PRESUMED TO BE "MILIAR
WITH THESE FEATURES OF DOT~ .

6-2
.... ' ...

"' .. ",.

,)

)

c
CONSID~R AN EXAMP~E: "XSTAK" IS ONE 0' THE ROUTINES

PROVIDED •• ITS ErrECT IS TO ~RINT A OISP~AY 0' T~[
USERS STACK, SHOWING THE ROUTINES CA~~~O, WHERE THEY WERE
CALLED ~ROM~ THEIR ACTUA~ ~ARAMETERS, ANO T~EIR ~OeAL VARIABLES.
THE FORMAT O~ THIS DISPLAY Wi~L BE OESCRIBED BE~OWI NOW,

~ SUPPOSE YOU HAVE A ROUTINE NAMEO "THUD" AND VOU SET A OOT
\BREAKPOINT BY TYPING:

T~UD+2i8

AT SOME ~ATER TIME, WHEN YOUR PROGRAM IS RUNNING A CAL~ W!L~
_ BE MADE ON THUD, THE eREAK~oiN' WIL~ OCCUR. ANO DOT WILL

TYPE:

SNB»THUO+2

AT THIS POINT YOU MAY DISPLAY THE CURRENT STACK BY USING
"XSTAK" AND ENTERING IT VI. TM£ iX rEATURE •• !E~ TYPE.

PUSHJ SR[G,XSTAKSX

(BE SURE TO USE THE PROPER VALUE 'OR "SREG" •• NORMALLY
IT'S 0.) AFTER THE OISP~AY IS rINlSHEO YOUIL~ BE BACK
IN DDT AND MAY PROCEED VIA AN $P, OR DO W~ATEVER E~SE
SUITS YOUR FANCY,

AN A~TERNATIVE TO THE ~XAMPLE ABOVE IS TO USE THE
CONDITIONAL BREAKPOINT F[ATURE or OOT, rOR ~XAMP~~, SU~POSt
yoU SET BREAKPOINT #1 AT T~UO BY TYPING

THUD+2$lB

AND SET THE CONDITIONAL BREAKPOINT INSTRUCTioN AT 518.1
TO THE SAME OLD PUSHJ:

$19+11 XXXX PUSHJ SREG,XS1AK

NOW, AS SOON AS THE CAL~ ON tHUD IS MADE THE S;ACK WI~~
AUTOMATICALLY GET TH~ STACK OISPLAY w. T~EN T~E BREAKPOINT Wl~~
OCCUR. THIS MODE Or USING M£~P IS MORE USErUL W!T~ SOME
Or THE OTHER'HELP ~OUTINES TO BE DESCRIBEO BE~OW.

ALL Or THE GLOBA~ ROUTINES IN MELP HAVE NAMES 0' THE
rORM:

X~Zi~
OR x~z~~c
OR X~lllB
OR XZliiP

THAT IS, THEY A~L START Wl'M T~t LETTER "X" 'OL~OW£O
BY A FOUR CHARACTER NEMONIO. 'OLLOWEO BY A BLANK. A "C",
• "en, OR A "P". ROUT 1 NES WITH, A CO'MMON
"tiil tf AL~ PERrORM THE SAM! ;UNCTION, T~[SU"lX CETtAMINtS
WHAT HAPPENS AFTER THE ruNCTiON IS COMPL['£~ IN PA~TICULAR
THE FO~LOWING TABLE SUMMER!!!S THE M£ANINC 0' 'Ht VARIOUS
SUFF"IX I..E:TTERS:

SUF'F"IX ... -.-
BLANK

c

B

p

MEAN I NG"
~ ... ~-~ ~ .. ~~ .. ~~~ .•.......•..• -~.~ -I' C.~~£C ~ROM A USER PROGRAM, SIMP~Y
RETURN ANC PROCEED AS USUA~~
-I' tAL~£c BY SX. RETUAN TO OOT
~Q P£AMIT USER TO 00 HIS T~ING •
• Zp CAL~EO rROM CONC~ BREAKPOINT, TREAT
is A "a" sur,%x ,seE BELOW)~

-'OR CONOITIONA~ 9REAK~OINT ON~Y.
"TrR COMP~£TING rUNC;lON CAUSE

OOT TO O[C~EAS£ ITS PROCEEC
tOUNt ~NO POSSIB~Y BREAK~

rCA CONOITIONAL BREAKPOINT ON~Y,
ArTER COMP~ETING rUNCTION rORct
A BREAK.

'OA CONOITIONAL BREAKPOINT ON~Y,
A'TER COM'~£TINr rUNCTloN rORB£
PROGRAM TO PROCEEO (~tl<£ AN S~).

THE GL08A~ ROUTINES PROVIOEO IN THIS RE~[ASE • ANO THEIR
'UNCTIONS, ARE SUMMERl~EO iN T~E 'O~LOWING TABLEI

ROUTINE: . --_ -
XSTAK
XSTAKC
)(STAKB
XSTAKP

,'.'

'UNCT10N -.. --.... -... ~ -.•........•..•.•• -...... .
OlSP~AY T~E USERS STACK IN THE rORMI

A (ta a.13) 110 •• 0 212,,13'6
1i0.,13 211'12J2.,X.1

e ell 0·252

C ell 0·4.) 111,,1

ETC',

THE NAMES IN T~E ~£rT CO~UMN ARt T~OS[0' T~£
VA~10US ROUTINES CA~~to~ ON THE SAME ~lNE IN THE
~OCATION '~OM WHICH THE ROUTINE WAS CA~~£D,
EG. "(.. ~.2')". AND T~E AeTuA~ PARAMETERS
OIIPLAYEO IN ~.~'.WORD OcTAL 'ORMAT~ ON THE
LINES BELOW tHE CA~~ ARE 'HE VA~UES 0' THE
~OCAL VA~I'BLE' 0' THE ROUTINE'! NOTE THAT
THE ACTUA~S ANO LOCALS ARE iNC CATEO BY
POSITION. NO' NAME; ALSO. BE eAAE'U~ • SOME
LOCA~S ARE AuTOM.TICA~~Y ~ENER.TEC BY THE
COMP H .. ER •• SO' THE 'oS I T ION MA'I NOT EXACTL. Y
CORRESPOND WJT~ ITS DEC~AA'tlON ~OSlTION~
THE LOCAL 'OSI'IONS co CORRESPOND WITH
THost SHOWN iN TH£ "1M" LtS'lNQ GENERATED
BY THE COM~lL£~. THE INITiAL AOUTINE EXECUTEO
HAl A NU~~ CALLER~ .

I~ •• 6-~4 .',

."'.

XCAL.L
XCAL.LC
XCALLB C XCAl..LP

c:

C

XAREA
XAREAC
XAREAB
)CAREAS
XAREAP

XALTX

THES~ RouTINES 01S~L.AY, -IN A FORMAT ~lKE THAT
ABOVE THE MOST RECENT ROUTINE CAL.~. ONE US£rUL. .
APPLICATION or THESE ROUTINES ts T~AT
or TRACING T~E EXECUTION Or ONE
PARTICULAR RoutIN£~ BY PL.ACING A CONDITIONAL.
BREAKPOINT AT THE HEAO Or THE ROUTINE TO BE
TRACED ANO A "PUSHJ SREG,XCAL.L.P" IN THE
APPROPRIATE CONO.SP L.OCATION A TRAOE or THE
ROUTINE Wl'H ITS ACTUALS WiLL. BE OBTAINED.

THESE ROUTtN£S DISPL.AY A NUMBER (CURR£NTL.Y 8)
Or CONTIGUOUS AREAS Or MEMORY iN HAL.r WORD
OCTAL ~ORMAT·.
THE AREAS TO BE DISPL.AYED ARE OEFINED
BY NINE TABL.ES CAL.L.ED XAR£l0. XAREA1 •••••
XAREAS. EAOH or THeSE TABL.ES IS EIGHT WORDS
LONG· T~E FORMAT Or EACH WORO IN THESE
TABLES lSI

.-·--····-···~·····-·········-·····I

,
•

. ,
t •

I BASE :
I

. ----~·~·-···~·····--·-··.·~-···-··I
Ir ONE O~ THESE ROUTINES IS ENTERED rROM .
CONDITIONA~ BREAKPOINT #N, THEN T~EY Wl~L.
PRINT THE REGIONS OESCRIBED BY THE TAB~E
"XAREAN"".

Ir, FOR EXAMP~E, YOU WANT TO OISP~AY
A rIVE-WORO REGION WHOSE BASE ACDRESS IS
"C~O~" EVE~Y TIME THE ROUTiNE "THUO" IS
CALLED you MiG~T TYPEI

T~UO.2S1B
S1S.il XXXX PUSHJ SREG,XAREAP
XAREA11 XXXX 5.,GLOP

THEN SIT SACK AND WATCH,
THIS ROU'lN£ IS A GENERA~liATION 0'
THE "SX~ 'EA'U~E or DOT IN T~E SENSE THAT
IT PROVIOES AN INT£RrACE BETWEEN OOT ANO ANY
ROUTINE WRITTEN IN B~lSS~ IT WORRIES ABOUT
A~L. THE MESSY OETAl~S or SAVING REGISTERS.
ETC., NECESSARY TO GET rROM OCT INTO A
BL.ISS RouTINE ANO BACK AGAiN WiTHOUT OESTROYING
THINGS ALONG T~E WAY~ T~£ ADDRESS or T~E
B~ISS RouTINE '0 BE CALL.EO 15 SPEctrlEC BY
THE CONTENTS 0' ONE or T~£ WOROS. XA~TX~.
XAL.TX1,,~~,X'~'X8~ Ir XAL'X IS CALLEO 'ROM
CONDITION'~ BREAKPOINT #N (Nil l' elRteT
OR EXPLIC1T "SX" CA~L.) THEN THE
CONT£NTS 0' XALTXN Wl~L BE USEe TO SPECIFY
THE ROUTINE to.B£ CAL~EO~

THE ROUTINE CA~~£O INDIRECTLY T~ROUGH
XA~TX IS EXP£C'EO TO RETURN A VAL.UE 0' 1,1. OR 2
• THESE VALUES ARE INTERPA£TED LIKE THE
C.e,AND P IU"txs AESPECTIV£LY~

6-5

CONCL.US I ON
THE rACl~lTIES DESCRIBED ABOVE ARE A ~R£LIM!NARY SET

,WHICH WIL.~ BE EXPANDEO IN 'ME 'UTURE~ I HOPE. NAY EXPECT,
'~SERS OF HE~P TO SUGG~ST 'OOtT!ON'~ AND/OR REV!S£O

'EATURES.

, .. ~" ',',

...

J

J

HELP.BLI

William A. Wulf

c

)

)

c He:LPE~
••••• V £ R S ION TWO •••••

T~I5 MODU~E CONTAINS SEVERAL ROUTINES W~ICH MAY BE ~OADEC WITH
A NORMA~ BLISS ~ODU~E TO PROVIDE DEBUGGING SUPPORT -. IT
PRESUMES T~AT 'COT' IS ALSO LOAOED'

Bl\D BUFrLENGT~:15J
OW~ ~UFrtBUF'L£NGT~J'
OW~i !'BUFF' J POINTER !NTO THE OUTPUT BUrr

MA~RO EBU~r= (BUrF.BUrrLp-NQT~)$.
B9UFF. BUFF<36,1)S.
SAVRECS. REQIST£R 1.1-15100 PUS~(SREG,0.I) WHtLE(I~.I·1) ~TR ~J$,
R£SREGS~ 1 •• 15,00 POPCSREG,#20,Y)WHILECI·.1.1)LSS 0J$,
SU8RETC~.V). IP .(L)(Z.18)LSS<OOTEND AN~#177717) THEN

(Ll., (I.).CV) ,S,
ENTER- SAVREGSJ$,
L!AVE(L~,VV': RESREQS' SUBRETfLL,VV)J .VREG S.

C MA~HOP PUSH_.261. POP=#262,

c~

elMO AREAS~.S, NUMAREAS-SJ

ST~UOTURE SATtl,JJ • tl.j~(,SAT+.l'AREAS~ •• J)(0,36)J
~I.~BAL XAREA0IXAREA1IXA~EA2IXAR~A31

XAREA41XAREA51X AREA6,XAREA11
x.REAatAR£AS~jl

BI~O SAT XA~EAS. XAAEA0J

X.~TX0'XA~TX1.XALTX2,XA~TX3,
XA~TX4,XA~Tx"XALTX6,XA~TX7,
XAL.TXSJ

F'ORWARO ~tXF'J

G~eBA~ ROuTINE TIMERa
(rXXr(#1.~,.JOBR~L<0~1a»1 ~IXr(*400~1~,.JOB~RL.(~,18»J)J

lr!X UP THE STACK THE WAY. ~EI.P· EXPECTS IT TO 8E.
I I • E·,' ,t N SUR E T M • T T H £: ,.. REG I s PRO PER L Y PUS H E ~ON TOT ~ E
tSTACK AT THE BEGINING AND pOPPEO o~, AT T~E ENO or EVERY
!~~UTINE AS IT W.S IN THE GOOO O~D CAYS •

• OUTINE ~IX"'CSTART,rlNIS~).
7-1

BEGIN

BIND r-FREG(0,0), SISREr.<0.~>J

MACRO MACHWORO<OP,AC,AD): OP,21.AC'23.ADS,

PUSHSr=MACHWORO(#261,S.F)$,
~USHS12.MAOHWOqO(*261,0 •• 12)S,
POPSF.MACHWO~D(*262.!,r)S,
~RR~FS·MAC~WORO(#550,r,S)$.
JR$THP~2~MAC~WORD(#254,0,.I.2)S,
JRST~PL4·MlCHWORO(#2'4.0,.t.4)S,
JRSTHP~'·MACHWORD(#254.~,.t·~)S,
JRSTHP~6.MACHWORD(*254,~,.I·5)SI

MACHOP CA~~I=#047, JRST=#254,

REGISTER R'

BIND SETUWP.#J6,

~ .. 0J
CA~L! CR,SETUWP),
JRST (4,0)'

!TURN O~r ~IGH SEG WRITE PROTECT

!~A~T ON SETUWP £RAOR

INCR 1 FROM ,START 10 IrINIS~ • 11 DO
Ir .('1)<18,18> EQL #551'9.#12.5 AND '('1.1), EQL. PUSl-lS12

T~£N IF .('1.4)(21,9) ~Q~ *265 ~JS~~
THEN

BEGIN ~
('I)<~,3'>~JRSTHP~4'
UNTIL. ~C'I)<18,1!) EQ~ ,561t9.#12,5 CO 1~~t.1J
lr '('1.1) £QL PUSI-IS12

T~EN ('I~1)(~,36).JRST~P~61
END

ELSE
BEGIN

('1)<Z;36>~JRST~PL2'
('1·2)<~,36)·PUS~S'J
('1·3)(Z,36>·~~R!~S'
UNTl~ ~('t)<18,18) E~~ "61,9.'12.5 00 1~.1.1J
lr '('!.1) EQL PUS~S12

T~£N
B£r;IN

('1·1)(~,J6)~JRSTHPL'J
('1.4)(0,36)~PO~Srl

ENO
ENe

.oUTiN! '50T6(X)1
t, .X [QL. 0 THEN ,0 ELS[,
l' .X ~£Q *12 T~£N .X+*11 ELSE
ir .X ~[Q * •• T~EN ,X.*26 ELSE
I' .X [QL *.5 THEN *16 ElsE t, .X EQI.· •• ' 'THEN '~4 ELSE #05'

7-2

·OUT!N£ B5~T6(X).
~EGIN RE~lST£R RJ
~~.X AND #37'77777777. R~0J
~ECR I rROM 5 TO 0 DC

• R
£NOJ

(R~.R'(-6)J R<30~6)~r5ZT6(~X MOO '50). X~.X DIV #50),

ROUTINE' BPN.
I THIS ROUTINE MUST BE C~ANGEC roR EAC~ VERSION Or DDT w
, OR, BETTER YEi, DDT S~OU~O BE e~'N~EOTO MAKE THE MOS'
! RECENT BREAK POINT NUMBER AVAILABLE.
AE~IN BIND BCO~3.*1536, B1AORa.3621,
(C_800M3-i) A~O .77777?)-(B1AOR-3»/J
t"NDJ

ROuTINE SDDTSTex).
BEGIN REGISTER R,N' OWN ~N.~~J l~~~N~0J
~-.JOBSYM.1J N·~l'
W~!LE (R •• R+*2e~0~02) LSS 0 00

l~ ("R-.X) LEQ 0 TH~N
Ir C.'R.-tN) GEQ 0 THEN N~.RJ

.N·1
~NIjJ

~O!)TrNE OuMF»a
BEGIN MAC~OP CALLI8#47' ~EGrSTER RJ
R-aUrrJ CA~LJ(R,*3)J R~BUrrLENGTHJ
00 8Urr~.R~.0 ~Ht~E tR-.R.1) GEQ 0,
~BUrr .. B8UF'F'

(~ ENO.

~OUTtNE tNIT~E~P. (BUFr-~J DUMPC)).

~OuTtNe: puTeX)=-
IF" .X NEQ 0 THEN

BEGIN
lr .~Bur' EQL e THEN iNrT~ELP() ELSE
tr .~Burr GEQ [Burr T~EN OUM~()'
REPLACEICP8UF'F',.X)
E:NO.

~OUTrNE F»UTS(X).
WHiLE .X NEQ Z 00 (PUTC,Xc2e,?», X-.Xt?),

~OUTtN£ CR~" CPUT(#15)J PUT(#12)1 OUMP()~'

~OUTtN~ TABI PUTC'~1)'

~OUTtN[PRINT6(X)-
eEGIN L.OCAL ~J I

OECR I F'ROM 5 TO e 00
(L·.X(3~,6>. X-,X'6' iP .~ NEQ 0 T~EN ~UT(.L.'40»)J

!:NOJ

~OUTtNE PRINT50(X). PRINT6(~'IT6C.X»)J

.OUTINE: f'MOceX).
BEGIN ~OCA~ TI T-0'
OECR 1 rROM 11 TO 1 00

7-3

I~ .~(3*.I,J> NE~ ~ T~EN EXIT~nOp (T~.I)J
"1ECR I F"ROM t T TO eJ DO PUT ("~" •• X<3*. 1.3» J
ENr:1J

~O)TINE PDISPCX,">=
IF .X(~.1a) LSS CDDTEND AND #717171) T~EN PMOCC.X(2,18» ELSr
QEGIN ~OCAL LJ
L~SDDTST(.X(~,18»' PRINT50(~@L)J
t~ .T AND (L~~~(~~.1)+.X(0'18») GTR ~ THEN

(PUTe"."), PMOC{'.L»J
fNDJ

~OtJTINF' SPN(N)= INCR I FROM 1 TO .\, DO PUTC" ")J

R 0 I .! TIN ~ p 2 C :: (P U T (" , ") J PUT (It , ")) J

~O~TtNE SP3: SPN(3).

~ 0 ij TIN E P W D (X) = (P ~ 0 c (• X (18 • 1.8)); p 2 C () J POlS P (• X (~ , 18> , 1)) ,

~ 0 J TIN e: P W D 2 (X) :: IF'. X G E ~ ~ THE N P W D (• X) E L S E (P U T t ,t -") J P Moe (- • x)) J

ROUT!NE PWO(X)= (P~OC(.X(18,18»; P2C()J PMOCC.X(0,18»))J

~ 0 1.1 TIN E P R G (8 AS E , F' , T) ::
TNr.:R I FROM IF" TO .T DO

BEGIN
P M 0 C (• I) I PUT S (": ") J P W 0 2 (~ (• 8 A S E • • 1 - 1)) J S t) N (4) J
IF' NOT .t T~EN (CRLF'f)J TARC)J
END,

~OUT!NE PRC(F,CALLED):
gEGIN LOCAL NP,LP,CALLER.
~ALLER·.(.~-1)<~,18>~lJ
~P~ Ir .('(.'-1)(21;9) ~EQ #274 T~EN 0 ELSE

IF" .(~(.f-l)-2)(27.9> NEO #261 THEN ~ ELSE
• ((Il(i)(.F-1))(~,18>;

lP" • r""l-. NP J
POI S P (• CAL LED , e) J TAR C) I PUT S (" (.. ") J 1 r • CAL L E ~ \\ E Q .1
'HEN pDISP(tCA~LER'l)J PUTe")")J
TAe() J PRGC .LP,l, .Np) J
.CALLER(0,18>·,NP,18
F:NOJ

~O!JTtNE PSTK=
AEGIN LOCAL r,CALLED.VAL.LL.NL.
VAL~.VREGJ F'-"~~REGJ NL~@.F'REG •• F'-2J LL-.r.1J
eALLED~.(~(.F'·1)-1)(0,18>J CR~r(';
UNTIL .CALLEO(e,18> ~QL #177777 DO

BEGIN LL-.F.1, CRLrC)J
CAl.LED"P~C(.F, .CALLEO(0,lS») J CRLF'(), TASe) J pRG(.LL,l, .NL) J
NL .. ~r-~,r-.CAL~EO(18.18)-21
F" .. ~,F'J
END •

J

• VAL _~
~NiH

~OuTtNE PF'RC=(LOCAL F'J CRLF'()J F" .. Cif~F'REGJ PRC(.F',.(Qb(.F"1)Sif1)<~.18»)J

ROUTINE PAREA:
7-4

c
~EGIN ~OCAL J,~,N,BN' 8N~BPN()JCRL~()1
INCR I FROM 0 TO AREASr.1 DO

~NDJ

BEGIN BIND AREA:;XARrAS(.BN,.lJ(0.18),
CR~F()J J~.XAREAS~.B~,.IJ(18.18>;N-0J
IF AREA NEG 0 THEN
DO (C R L F' () J POI S P (A R E·A (.N ~ , 1) ; P U 'f (" I") ; TAB () J ~ w D 2 (~ ARE A C • N J))

WH1LE (N-.N+1J J-,J~l) GTR 0.
END)

~L~BAL ROUTINE XSTAK(X):(E~TER' PSTK(») LEAVE(X+l,1»,
GL1BAL ROUTINE XST~KC(X):CENTER, PSTK(); LEAVE(X.l,~»J
GL,SAL ROUTINE XSTAKB(X):(ENTER, PSTKC), LEAVE(X+l.1)J
GL~8AL ROUTINE XSTAKP(X)=(ENTER. PSTKC)J LEAVE<X+l.2»;

CL'BAL ROUTINE XCALL(X):CENTER' PFRce). LEAvEeX+l,1»J
GL'BAL ROUTINE XCALLCeX):(ENTERJ P'RC()' LEAVECX+l.0»J
GL~84L ROUTINE XCALLB(X):(ENTERJ PFRC()J LEAVE(X.l,l»J
GL~BAL ROUTINE XCALLP(X):(ENTERJ PF'RC()' LEAVEeX+l,2)J

GLCBAL ROUTINE XAREA(X):(ENTERJ PAREA()' LEAVECX+l,l»J
GL~84L ROUTINE XAREAC(X)=(ENiER; PAR[A(), LEAVE(X+1.~»;
GL~8.L ~OUTINE XAREAB(X)s(ENTER, PAR[A()J LE4VE(X+l,l»J
~LJBAL ROUTINE XAREAP(X):(ENTER. PAREAC)J ~EAVE(X+1,2);

r-- ~L('}8AL ROUTINE XALiX(X):qLOCAL L; ENTER; L~(~XALTX0(9PN()J)()J
l,__ LEAVEeX+1 •• L»'

(,,--.

ELuonM

7-5

c

TIMER. DOC

Joseph M. Newcomer

)

)

001flJ~
0eJ202l
00300

C 0flJ400
00500
00600
007flJ0
038041
0219"'0
01flJ00
01100
211200
flJ13f'J.0
01400
flJ1500
01600
01700
01800
01900
0200e!
1Zl210Z
02200
02300
02400
212500
02600
2127"'"
02800
~2900 C 0300~
031210
03200
03300
03400
03500
0360121

c

- - - - • 8 LIS S TIM E R MOO U ~ E.. • • •

THE8~ISS TIMER MOOU~E CONS!S'S or • SET or ROUTtN~S
WHICH ENABLE THE ust~TO GATHER TIMING STATISTICS ON B~I!S
PRO G RAM S' 0 URI N,G E X E: CUT ION I. THE T! MIN G S Y S T E M CON SIS T S 0 r
THE BLISS MODULE "TIME~" AND THE MACAO-1m MOCULE "TIHINT"~

IN OROER ~OR 'HE 'IMING ROUTINES '0 rUNCTION, THE TtM!R
RQUTINES AND THE SYSTEM TO BE MONITOREO MUST BE ~o.oto Wl'~
DDT (THE 10 SWITCH TO TME ~OAOE~. ~D SWITCH TO cc~, O~ THE
DEBUG COMMAND AL~ ACCOMP~ISH THtS'~ ASSUMING THE USER
WISHES to MOOl'Y ANb RECOMPI~E HIS MAIN ~ROGRAM (A WAY '0
AVOID THIS IS DISCUSSEO BE~OW), HE MUS' ACO.

EXTERNAL TIMSE',TIMENOJ

TO HIS DECLARATIONS, AND THE CA~~S IN THIS MANNER.

< BEGINNING Or MAIN PROGRAM>

TIM SET () J'

< MAIN BOOY or MAIN PROGRAM)

T I ME ND () I'

< END O~ MAIN PROGRAM)

THE <BEGINNiNG) MAY INC~UDE STAC~ INITIA~liATI0N lr NOT
DONE IMPLICIT~Y BY THE STACK DEC~ARATION IN THE MCOU~E H£AO,
PLUS ANY PROCESSING THE USER WISHES TO CO BErORE TIMING
BEGINS. A~L CODE EX£CUTEO BETWEEN 'tMS£T() ANO TIMENO()
WILL BE MONITOREC: T~E<ENO) MAV CONTAIN ANY O'~ER
PROCESSING. IN ~ARTiCU~AR, THE <ENO) MAY CONTAIN CA~~S ON
THE OUTPUT ROUTINES otSCUSSEC BE~OW~

8-1

00100
0el200
00300
0~4~0
00500
210600
007~0
0080e
0~9k'10
012100
1ZJ11~0
211200
01300
1211400
01500
016210
1211700
01800
01900
022100
02100
02200
0230~
02400
02500
02600 ,
02700
212801£1
212900
03000
03100
03200
03300
03400
035210
03600
037210
(213800
(21390Q1
04000
(214100,
04200
04300
04400
04500
~4600
04700
0 4 812121
049210
05fZleJ0
05100
05200
1lJ5300
215400
05500
05600
057210
05800
05900
06fZl00

• ~ ... - T I MIN G o U T'P U T • • • • • • • •

THE COLLECTED 5T.TI5TIC5 ARE SQRTEO BY THE REPORTING
ROUTINES AND OUTPUT iN THE 'O~LOW!NG rORMATI

LOST TIME *** •• * •••••• x
METERED TIME *** ••••••••• ~

TOTAL TI~E ******0. = 10"~

OVERHEAD RATIO **.*~

DEPTH OF CALLS ******

STACK LErr ******.

TOTAL RTNS ***** •• *

TOTAL CALLS **** •••••

NAME ---CA~LS •• - ~·.ROUTINE.·. ·CUMU~ATIVE. RTN AVe CUM AV~

J

A~AAAA ******** ***% ******** ***X ******* ***X *.** •• ** •• * •••• *

"LOST TIME" IS THE ~ERCENTAGE OF TOTA~ EXECUTION TIME
THAT WAS SPENT ACCUMULATING ST.TISTtcs. THIS IS PROV!DED
FOR INFORMATION ON~Y, 1T COES NOT INDICATE THAT T~E ACTU'~
FIGURES HAVE AN ERROR INTRODUCEO BY T~E rACT THE ROUT!N£S
HAVE BEEN TIMED.

"I~ETERED TIME" IS THE ACTUAl. TIME SPENT IN EXECUTING TI-otE
USER'S CODE.

"TOTAL TIME" IS THE SUM OF THE TWO ABOVE TIMES AND !S
THE TOTAL EXECUTION TIME or THE p~OGRAM BEING MEASUREO, rROM
THE RETURN ~ROM Tl~SETC) TO THE CA~L ON TIMENOC).

"OVERHEAD RATIO" IS THE PERCENTAGE ev WHICH EXECUTION
TIME INCREASED AS A A£SU~T or THE SYSTEM BtING TtMEC~ THIS
IS THE COST OF MAK!NG 'HE MEASUREM£NTS~

"DEPTH OF CAL~S" IS THE MAXIMUM DEPTH TO WHICH CA~LS
WERE DYNAMICALLY N£STED~

"STACK LEFT" IS THE MINIMUM NUMBER or WOROS
<APPROXIMATELY) ~ErT AT THE TOP or T~E STACK AT T~E OEEPEST
CALL. TO COMPUTE THE MAXIMUM OEP~H Or T~E STACK, SUBTRACT
THIS VALUE FROM YOUR SfACI(SliE'.

"TOTAl. CALLS" IS TME TOTA~ NUMBER OF ROUTINE ENTAl~S
PERFORMED.

THE REMAINING 'iGURES COME OUT TABULATEO IN COLUMNS. AS
FOLL..OWS:

THE "NAME" CO~UMN eONTAINS T~E NAME 0' THE B~ISS ROUTINE
OR FUNCTION.

)

061100
06200
06300

C/ ~640it
0651(!0
06612'0
0670,0
~680;t
0690121
070~0
07100
07200
073~0
0740~~

07 5010
07600
07712J0
07800
07900
"8k1~0
0810~
08200
08300
08400
08500
08600
087210
08800

C 08900
09f'HH:'1
09100
092012l
09300
0 9 400
09500
09600
09700
098210
09900
10000
10100
1~212J0
12300
10400
10500
10600
10700
10800
1~900
11000
11100
1120~
113"0
11400

C, 11500
1:1600
11700
11800
11900
12000

THE "CALLS" CO~UMN CONTAINS TWO rlGURESI THE NUMBER or'
TIMES THE ROUTINE WAS CA~~ED, AND T~E PERCENTAGE or THE
T~TAL CAL~S WHICH THIS CONSTITUTEO~

THE "ROUTINE" COLUMN CONTAINS
AMOUNT or TIME SPENT IN THE
SUBROUTINES AND THE PERCENTAGE Or
WHICH THIS CONSTtTUTEC~

TWO rIGUR£SI THE TOTAL
ROUT!NE, EXC~USIVE or ITS

THE TOTA~ METERED TIME

THE ~CUMULATIVE" COLUMN CONTAINS TWO rIGURESa THE TOTAL
A~OUNT Or TIME SPENT iN THE ROUTINE, I~C~UOING A~~ ITS
SUBROUTINES (WHIC~ MAY INCLUDE ITSE~P), AND THE PERCENTAGE
OF TOTAL METERED TIME WHICH THIS CONSTITUTED.

THE ttRTt\ AVG" TIME IS THE ROUTINE TIME DIVIDEO BV T~E
NUMBER OF CALLS' THE "CUM AVG" TIME is THE CUMU~ATIVE T!ME
DIVIDED BY THE NUMBER Or CA~LS.

ALL T I ~1 E 5 G 1 V E N ARe: IN" TIC K S" , W HER e: A TIC K I S 1 ra
MICROSECONDS.

THE OUTPUT MAY BE SORTED IN .NY Or THE AVAl~A8~E rlGUR~S
STORED BY THE TIMESORT() ROUTINE, HOWEVER, SEVERA~ SORTS AAE
PRE-SPEClrIED AND tNC~UDE OUTPUTTING or THE SORTED DAT1~
THESE ARE:

TIMST1 SORTED BY NAMES, ASCENDING.

TIMST2 SORTED BY TOTAL CALLS, DESCENDING.

TIMST3 SORTED BY ROUTINE TIMES, DESCENDING,

TIHST4 SORTED BY CUMULATIVE TIMES, DESCENDING.

TIMST5 SORTED BY AVERAGE ROUTINE TIME, OESCENDING~

TIMST6 SORTEO BY AVERAGE CU~U~ATIVE TIMES,
OESCEND I NG'.

TIMST7 SORTEO BY ADDRESSES, ASCENDING,

ALTHOUGH TIMST7 caES NOT APPEAR 08VIOUS~Y USErU~,
CONSIDER THE PROB~EM or ~INDING OUT WHIC~ MEMORY AREAS ARE
MOST HIGHLV ACCESSED IN • SYSTEM RUNNING O~ A PAGED MACHtNE~

THESE ROUTINES MAY BE CA~~EO FROM THE USER'S MAtN
PROGRAM BY DECLARING T~EM "EXTERNAL". OR FROM ~OT (5£E
BELOW).

THE COLUMN ON WHICM THE OUTPUT IS SORTED IS INOICATEO BY
AN ASTERISK ABOVE THE CO~UMN. NOTE THAT THE NUMBER Or T~E
SORT (1-6) CORRESPONDS TO THE CO~UMN POSITION or THE OATA
SORTED.

IN ADDITION TO THESE REPORTING ROUTINES, A ROUTINE
"TIMALLC)" IS AV.ILAB~E WHICH CA~LS ~~~ THE TIMING REPO~'S
(TIMST1-TIMST7) AS WE~~ AS T~E LOCA~l~.TION REPORTS
(TIMST8-TIMST9 (SEE BE~OWJ)~

8-3

00100

0121200
0~30lZl
02!40~

"HJ500
0~6"1C
0et700'
00800
009210
01e1eJJ
rllll~0
01200_
01300
014k'J0
01500
01600
01700
01800
01900
020"~
212100
0220~
0230el

• ~ I N [P R I NT·· [R • • • - •

OUTPUT MAY BE OtRtCTEO TO THE LINE PRINTER BV CALLING
THE ROUTINE "TIMLPT()"~ AL~ 'URT~ER OUTPUT Wl~L BE DIRECTED
TO THE LINE PRINTER (LPT) UNTIL REDIRECTED TO THE TTY BY A
CALL TO "TI~TTY()". T!MLPTC) SHOULD NOT BE CALLED UNT!L
A~TER TIMEND() IS CALLED. THESE TWO ROUTINES MAY ALSO BE
CALL.ED F'ROM DDT.

ALL ~/O IN THE USERiS PROGRAM SHOULD BE CORRECTLY
TERMINATED, SINCE A "CALL CSIXBIT IRESET/J" UUO IS EXECUTeD
PRIOR TO EACH PRINTING. NOTt THIS ALSO RESETS JOBrr TO
.JOBSA<18,18> AND SETS THE WRITE-PROTECT BIT IN THE HI~~
SEGMENT. Ir ANY O~ THESE HAVE AN AOVERS£ EFFECT ON T~E
PROGRAM OR DATA eASE, THEN PRINTE~ OUTPUT ~AY NOT 8E USED~

l~ SPOOLING IS IN OPERATION, EACH SET Or STATISTICS IS A
SEPARATE ~lSTING~

THE CHANNEL USED rOR LPT OUTPUT IS SPECIFIEO BY A MACRO
IN THE BEGINNING Or THE PROGRAM, IT MAY BE CHANGED By T~E
USER (SEE: STANOA~O MOOlrICATlONS)~

8-4

0e!10~
002el0
0~300

C 004rzJ0
/ 2105210

210600
0070J~
12.10812.10-.
009210
12.I1~00
01100
211200
013fe
01400
1211500
2116"'0
211700
1211800
019~0
02000
212100
0220~
12J230~
~2400
2125210
212600
0272113
12128210
029~0 C 03r2J~H1
03100
032210
1213300
1213400
213500
2136210
213700
213812.10
03902
04"""0

- - - S TAN CAR 0 MOD I r ~ CAT rON S • • •

THE TIMER MODULE CURRENTLY CONTAINS ITS OWN DATA A~EAS
AS "OWN" STRUCTURES. THE SI~ES COMPILED INTO IT AT T~E
MOMENT MAY NOT BE SUltAB~E FOR A~L SYSTEMS, THEY MAY BE TOO
SMALL (OR EVEN '00 ~ARGEI)~ Ir A~ ERROR OCCURS W~ILE
RUNNING BECAUSE '~ESE AREAS ARE TOO SMALL. A MESSAGE WI~L Be:
OUTPUT INDICATING WHtC~ TA8~E OVERFLOWED, THE TWO PARAME'EAS
ARE MACROS IN T~E rIRST FEW LINES O~· SOURCE PROGRAMJ
"MAXRTN" IS THE NUMBER or ROUTINES WHICH CAN BE TIMED (E~G~.
IT CUR R E'N T L Y 1 SSE T TO" 2 21 21") '. IF' M 0 R e: T HAN "M A X R TN"
ROUTINES ARE IN THE SYSTEM TO BE TIMED, A MESSAGE WI~L BE
PRINTED INDICATING HOW MANV ARE REQUIRED. THE V.~UE or
"MAXRTN" MUST BE C~4NG£O. AND THE TIMER MODU~E RECOMPt~EO~
THE OTHER ?ARAME"E~, "MAXDEEP", INDICATES THE OEPT~ TO WHICH
ROUTINES MAY BE DVNAMICALLY NESTED~ A STACK IS USED TO KEEP
TRACK OF NESTING, AND "MAXOEEP" DECLARES THE: SIt£ OF" T~!S
STACK.

IF DECLARED REGISTERS OR RESERVED REGISTERS ARE USED ey
THE SySTEM BEING TIMED, THEN THE MOCU\.E HEAC Or THE TtM~R
MODULE MUST BE ALTERED AND THE MOOULE RECOMPI\.EO.

IF THE SYSTEM BEiNG TESTED IS SEING ~OADEO WITH A ~IGH
SEGMENT ADDRESS OT~ER THAN #4~000~. THE MACRO "HISEGAO" MUST
BE CHANGED TO RErl.[CT THIS~

IF THE LOCA~liATION MEASURES ARE DESIRED rOR BLOCKS OF"
MEMORY OTHER THAN 1024 WORDS IN SIlE (NO \.ESS THAN T~I5.
HOWEVER), THE MACRO "COREe~OCK" MUST BE CHANGED TO REF'LEeT
THIS. THE VALUE OF" COREBl.OCK IS N FOR A BLOCK OF" SI~E 2**N
(E.G., 1~24= 2**10, so COREa\.OCK'10)~

THE CH.NNEL NU~BER US EO rOR L~T OUTPUT IS #16. THIS !s
TO PREVENT CONFLICTS WITH THE DDT PATCH ~lLE 1/0 WHtCH US~S
CHANNEL NUMBER #1'~ IF IT IS DEStRED TO CHANGE THIS
ASSIGNMENT, CHANGE T~E MACRO "~PTCHNL" IN THE BEGINNIN~ Or
THE MODULE AND RECOMPILE~

8-5

0~10~
00.21210
0:?,30~

~21400
1?J05~0
1?J0600
210700
00800,
009~0
010eleJ

- NON S TAN D • R D MOO I rIC A T ION S - •

IF THE DEFAU~T VALUES O~ r~EG. SREG, AND VREG ARE NOT
USED, THEN THE MOOULE HEAD OF THE TIMER MODU~E MUST BE
CHANGED TO REFLECT THIS, AND THE TIMEP MODU~E RECOM?ILEO:
IN ADDITION, THE DECLARATIONS IN tHE MAC RO-10 MODULE
"TIMINT" M'JST BE CHANGED TO RE~LECT THE NEW VAI,.UES, AND THIS
MODULE REASSEMB~EO~

8-6

)

)

)

~0100
00200
00300

(- 004~0
'--- r2J~5~'"

210600
00700
0080ia,
00900
1i'J1000
~11~H21
01200
rlJ130~
~14210

"1500
01600
01700
01800
1i'J1900
02012)0
021eJ0
02200
~23"0
024 12HZ!
0250"
02600
027"0
02812J0

/- 02921121
\",-- 0312J00

03100
0320"
03312J0
034"0
213500
03600
03700
2138210
039Ql0
21400"
04100
04200
2143012J
04400
flJ 45QlI2J
214600
0470"
04800
0490"
05000
0510"
215200
05300
05400

,- 055021
"-/ 12!5600

0571210
215800

- • - • ~ - - • RES T RIC T ION S • • • • • - • ~

THE PROGRAM MAY N~T BE RESTARTED ArTER TIMSET() Is
CALLED. :T~IS WI~~ 8E rIXEO WHENEVER THE ~OADER BUG W~IeH
ACCIDENTLY OVERLAYS "OWN" DATA (INSTEAD or LEAVING !T
~EROED) IS FIXED~

ANY ROUTINE WITH A NAME SIX (OR MORE) CHARACTERS IN
LENGTH WHOSE FIRST THREE CHARACTERS ARE "TI~" WILL NOT BE
TIMED EXPLICITLY. THIS TEST IS USED TO DIrrERENTtA'E
ROUTINES' OF THE TIMiNGPACKAG£ rROM THOSE Or THE USE~:
SHOULD THE USER HAVE ANY ROUTINES Or T~IS NATURE. THE TIME
SPENT IN THEM WIL~ BE OHARGEe TO THEIR CA~~ERI

I~ DOT IS USED TO START THE TtMING orr (SEE BELOW),
BREAKPOINTS MUST NOT BE ?~ACEO AT ANY ROUTINE ENTRY paiN'S
B E ~ 0 RET I M SET () t seA L.~ ED'. I F" 0 N E I S P ~ ACE C INS U C H A
POSITION, THE ROUTINE WI~~ NOT BE TIMED EXP~ICXT~Y, BUT
RATHER AS DESCRIBEO ABOVE errOR "TIMXXX" ROUTtNE:S)'.
ESPECIALLY ONE SHOU~D NOT ~~ACE A BREAKPOINT AT THE PO~J
WHICH LEAVES THE ROUTtNE~ THE SlOE EPF"ECTS T~IS COU~D ~AVE
ARE TOO HORRIFYING TO CONTEMP~ATEI

THE HIGH SEGMENT USED MUST 8E PRIVATE. SINCE T~E
TIMINITC) ROUTINE (C.~LED BY TIMSETC) EXERCISES WRI'E
PRIVILEGES IN THE HIGH SEGMENT.

THE ROUTINES MUST NOT CONTAIN SPuRious PO?J INSTRUCTIONS
(WHICH CAN BE GENERATEO BY USE or THE MACHO? PEATURE !N
B~ISS). ONE, ANO ON~Y ONE, PO?J IS PERMITTED IN A ROUTINE~'

IF A M~CRO-10 SUB~AOGRAM IS USED. IT MUST ADHERE TO T~E
BLISS ~INKAGE OISCIPLINES I' IT IS TO BE EX~~ICIT~Y TIMEO~
IN PARTICU~AR, It MAY CONTAIN ONLY ONE "PUSH SREG,rRE~"
INSTRUCTION WIT~ A LABE~. EITHER lNTERNA~. OR EXTERNAL~
(NOTE THAT SUCH INSTRUOTIONS WIT~OUT LABE~S ATTATCHEO AAE
VALID), IT MUST A~IO CONTAIN ONE ANO ONLY ONE ~O'J
INSTRUCTION (SEE ABOVE ~ESTRICTION)~ VIO~ATI0N or THIS RULE
WILL RESULT IN ABSOLUT£~Y UNPREOICTA8~E BUT CERTAINLy
INCORRECT BEHAVIOR OF THE PROGRAM BEING TIMED~

THE ~OCATION Or T~E HIGH SEGMENT MUST NOT BE CHANGED AT
RUN TIME WITH A COAt OR REMA? UUO I~ ANY ROUTINES B£lNG
TIMED ARE IN t~t H!GH SEQMENT~ 'HE CHANGE wtL~ NO' BE
DETECTED BY THE 'lMING PACKAGE AND CON'USION ANO C.TASTROP~£
WILL ENSUE, THE SI!E Or EITHER THE ~CW OR HIGH SEGMENT M.Y
BE CHANGED, AS ~ONG AS THIS DOES NOT AESU~T IN CHANGING T~E
ORIGIN OF THE HIG~ SEGMENT~

IF" OUT~UT IS TO BE DIRECTED TO tHE ~IN£ PRINTER, .~L I}O
IN THE USER'S ~ROG~AM MUST BE COR~£CTLV TERMINATEO. SINCE A
"CALL CSIXBIT IRESET]~" UUO IS EXECUT£O PRIOR TO EAeH
PR I NT I NG. NOTE: T~ IS AL.SQRESEr.S JOBF" TO " JOBS A<18, 18) ANO
SETS THE WRITE-pROTEe' BIT IN THE HIGH SEGMENT. Ir ANY or
THESE HAVE AN ADVERSE [FPEeT ON TMt PROGRAM OR CAT. eASr.
THEN PRINTER OUTPUT MAY NOT BE USEO:

8-7

((J21~0
002210
003~0
00400
005021
00600
0070121
0"800-,
0090~
010i2J~
01100
01200
013"~
01400
0150j(j
016130
01700
1211800
01900
{212000
1212100
02200
02300
1212400
12125~0
02600
02700
02800
1212900
,,3000
{2I3100
032~0
033~0
03400
03500
{213600
03700
03800
03900
0412100
04100
12142~0
e4300
0 4 400
0451210
0 4 600
0 4 700
048~0
04900
05000
1215100
05200
05300
05400
121552'0
05600
057100
2158"0
05900
1216000

- - - USE r R 0 H 0' 0 T • '" • ... " till "" '"

THE TIMING PACKAGE MAY BE C.~~ED rROM DDT (RATHER THAN
HAVING TO RE-ASSEMBLE THE MAIN PROGRAM MOOU~E) BV PLACING A
BREAKPOINT IN THE MAiN PROGRAM. T~IS 8R~AKPOINT MUST BE S~T
SOMEPLACE A~TER THE STACK HAS BEEN INITIALI~ED, BUT 8E~ORE
THE FIRST C4LL ON A ROUTINE TO BE tIMEO~ THE CAL~ TO TIMS~T
FROM DDT MUST BE MADE rROM THE CONTEXT Or THE MAIN PROGRA~~
A BREAKPOINT MUST ALSO 8E P~ACED SOMEWHERE IN THE MA!N
PROGRAM WHERE TIMING IS TO CEASE~ A GOOD PLAC~, rOR
EXAMPLE, 'IS THE "UUO 12" AT THE END or THE CODE.

WHEN THE FIRST BREAKPOINT 15 REACHED, TVPE "PUS~J
TIMSET$X~. THIS WILL CALL T~E TIMSETC) ~OUTINE. W~~N
CONTROL RETURNS, TYPE "$P" TO PROCEEO~ WHEN THE SECOND

,BREAKPOINT IS REACHED, TYPE "PUSHJ TIMEND$X" TO TERMINATE
TIMING. THIS WILL MARGINA~LY INFLUENCE THE TIMINGS O~ THE
MAIN PROGRAM, SINCE THE TIME SPENT IN ~OT A~TER THE RE'UAN
~ROM TIMSET AND BErORE THE CA~L Or TIM£ND ARE CHARGED TO T~E
MAIN PROGRAM.

A~TER CONTROL RETURNS FROM THE SECOND ~USHJ, TYPE "PUS~J
TIMST#$X" (WHERE # IS ONE OF THE NUMBERS 1-9) TO OBTAIN
OUTPUT OF THE STATISTICS, A~TERNATIVELY, ONE MIGHT TY~E
" PUS H J TIM A L. L S X " TOO B T A I N 0 U T PUT 0 F ALL T ~ e: S TAT 1ST 1 C S ",

TO DIRECT OUTPUT TO THE LINE PRINTER, TVPE "PUS~J
TIMLPT$X". ALL OUTPUT WILL BE DIRECTED TO THE LINE PRINTER
UNTIL REDIRECTED TO THE TTY BY "PUS~J TIMTTY$X"A THESE
CALLS SHOULD NOT BE GIVEN UNTIL TIMEND() HAS BEEN CAL~ED~

TO AID IN SETTING UP A PROGRAM TO BE TIM~O, A "PATCH
FILE" M~Y BE USED: THIS CONTAINS A~~ THE DDT COMMANOS
NECESSARY TO SET UP tlMING~ GENERALLY T~ESE CONSIST ONLY or
SETTING UP BREAKPOINTS AND EXECUTING THE INITtA~I~ATION
COMMANDS, BUT MORE COMP~EX OPERATIONS MAY BE NECESSARY. T~E
PROTOCOL BELOW S~OWS HOW TO SET UP AND USE A PATCH rILE.

.MAKE PAT1.DDT
*@I\ DRIV.F+4S8 OR1V:r.5$B $G PUSHJ TIMSET$X SP\$$
*EX$$
EXIT
fC

.GET DSK TIMING
JOB SETUP
fC

.DDT

!Ii" • PAT 1 • $ Y 0 R 1 V'. r .4$ 8 0 R I V", F' ... 5 $ B $ G
51B»ORIV.r+4 PUSHJ TIMSETSX

SP

NOTE THAT ArTER TYPING $"~PAT1~SY THE COMMANDS IN THE
FILE ARE TVPED OUT AS !r "THEY HAD BEEN TYPED rROM THE TTY~

" 8-:- 8

)

06100
~ 62~ra'
tzj6300

C 11J6400
, 11J6500

c

11J660~
~67~~
0680',

THE SV ("YANK") COMMANO IS MORE rULLV OOCUMENTtD IN THE C-MU
DOT MODIF'lCATIONS wRiT£Ur.... IT IS RECOMMENOED THAT THE' L.A!T
COMMAND ' I N THE F'IL..E BE: SP, AND THAT T~E CALI.S TO "T 1 ME:NO"
AND THE REPORTING AOUTtNES BE PERrORMEO ,ROM THE TTV~ T~E
MAIN REASON FOR T~IS IS THAT Ir OOT IS RE-ENTERED AT ANY
POINT BErORE THE DESiRED BREAKPOINT oceURS, T~E REMAINOER or
THE rILE WILL BE A£AO WIT~ UNDESIRABLE SlOE ErrECTS.

8-9

00100
0'~200
~~3e~1
0;?;40~

0Z50U
00600
00700
008V!1<J
00ge0
0·1000
01::"00
0120121
01302
01400
0::'5~0
0160'3
01702
~1800
01900
02000
02100
022~0
02300
212400
02500
~260el
02700
028Ql0
02900
f2l3~00
e3100
~3200
e3300
t?J34~1c1
035~0
0360~
03700
213800
03900
0 4 2100
04100
04200
04300
0 4 400
04500
~4600
047~0
214800
,,4900
05000
rl!5100
05200
05300
215400
05500
05600
057i£'0
05800
059210
0,600eJ

- MET H 0 0 0 r 1 M P L E 'M E N TAT ION • • ~

THE TIM~R IS REAO BY USE Or A CALL AC,CSIX8IT /RUNTIM/J
UUO, MODlrIEDACCOROtNG TO THE MEMO CIRCULATED OESCRI8lNG
THE HIGH-RESOLUTION TIMER IMPLEMENTATION AT C-MU. IN ORO~R
TO OPERATE CORRECT~Y ON SYSTEMS w~ICH 00 NOT HAVE T~E
H,ARDWARE AND SOrTWARE MOOIF'lCATIONS POR THIS, THE "TtMINT"
PROGRAM WILL HAV~' TO BE CHANGED TO THEtR S~ECI~ICATIONS~ AS
A WARNING. THE "JlrrY TIMER" OF THE STANDARD DEC SO~TWARE
HAS TOO ~04RSE A RESO~UTION (1/60 OR 1i5~ or A SECOND) TO
MAKE TIMING SHORT ROUTINES POSSIBLE, AND A~SO su~rERS FROM
THE FACT THAT INTERRUPts rROM DEVICES GET C~ARGED TO T~E
RUNNING JOB, REGARD~ESS or WHETHER THAT JOB GENERATED T~E
REQUEST OR NOT.

A L. L. TIM I N G F' I G U RES G I V E N ARE IN" T 1 C K S" • W HIe H ARE i "
MICROSECONOS EAC~. HENCE THE 35-8IT INTEGER WHICH
REPRESENTS TIME CAN COUNT 34,359,138,368 TICKS, OR 343,591
SECONDS. MORE THAN ADEQUATE rOR ANV TIMINGS DONE.

THE TIMINIT() ROUTINE IS CALLEC fROM TIMSET() AND
PERFORMS THE F'O~~OWING ACTIONS. 1) IT TURNS orr T~E
WRITE-PROTECT BtT IN THE ~iIGH SEGMENT, 2) IT INITI~Llzrs
CERTAIN COUNTERS AND CREATES AN ENTRY IN THE TIME VECTOR rOR
THE MAIN PROGRAMI 3) SCANS THE DOT SYMBOL TAB~E SEARCHING
FOR ROUTINE NAMES (A NAME WHICH SATIsrtEs CERTAIN CRITERIA,
BEST DISCOVERED BY EXAMINING THE CODE), 4) CREATING AN ENTRY
IN THE TIME VECTOR rOR EACH ROUTINE rOUND' 5) REP~ACIN~ T~E
"PUSH SREG,~REG" INstRUCTION AT THE 8EGINNING OF EAOH
ROUTINE BY A "PUS~J SREG.TIMENT" INSTRUCTION AND EVERY "POPJ
SREG," INSTRUcflON AT THE ENe BY A "JRST TIMEX'"
INSTRUCTION: AND rINA~LY 6) IT qESTORES THE HIGH~SEGMENT
WRITE-PROTECT BIT TO I'S PREVIOUS STATUS.

THE TIMING UPON ROUTINE ENTRY IS C'~CU~ATEO AS ro~~owSi

GRAB TIMER (OONE IN TIMENT)
COMPUTE ~OST TtME
ADO TIME INCREMENT TO A~L ACTIVE ROUTINESI TOTAL

TIME
ACO TIME INCREMENT TO CURRENT AOUTINE TIM£
PUSH THE NEW~V.ENTERED ROUTINE TIME VECTOR ONTO T~E

TIME STACK
AOO 1 TO T~E NUMBER or CA~~S
GRAB TIMER (AGAIN CONE IN TIMENT)

THE TIMING UPON ROUTiNE EXIT IS CA~CUL.TEO AS ro~~ows,

GRAB TIMER (OONE IN TIMEXT)
COMPUTE ~OST TIME
ADO TIME INCREMENT TO ALL ACTIVE ROUTINESI TOTAL

TIME
ADO TIME INCREMENT ,TO CURRENT ROUTINE'S ROUTINE TIME
POF» THE T 1 ME VECTOR. or THE: CURRENT ROUT I NE
GRAB TIM£~ (OONE IN TIMEXT)

~OST TIME IS T~E TIME BETWEEN T~E "GRAB TIMER" BEGINNING
A TIMING ROUTINE AND T~AT AT ITS ENO~

: 8-10
i ,

I ,

J

J

J

06100
062Z0
,,63121121 C 06400
1216500

THE TIME VECTOR is THE TABLE CON1.!NING T~E NAMES OF A~~
ROUTINES IN THE SYST£M, AND A~EAS TO .CCUMU~ATE STATISTleS
FOR THEM. IT IS CURR£NT~Y 6 WOROS ~ER ENTRY TIMES T~E
NUMBER Or ENTRIES CMAXATN) IN Sl~t~

i 8-11

........ v

00200
~0300

00400
005~0
006~~
0070~
~Z800
0~900
01000
01100
012~0
01300
01400
01500
01600
01700
01800
01900
020~0
02100
02200
02300
e2400
~2500
026~0
02700
02800
02900
03000
031~0

- - - ~ 0 C A ~ 1 ~ A T ION MEA SUR E S • • •

LOCALIZATION MEASURES PROVIDE IN~ORMATI0N ABOUT T~E
DYNAMIC BEHAVIOR Or A PROGRAM WIT~ REGARDS TO ITS EXECUTION
WITHIN CERTAIN REGIONS Or MEMORY AND ITS DATA ACCESSES. T~E
TIMER PACKAGE CANNOT OBTAIN STATISTiCS ABOUT ITS BEHAVIOR
WITH REGARD TO OATA ACCESSES, BUT IT CAN MONITOR THE
INSTRUCTION LOCA~l~ATtON~ THESE MEASUR[S ARE USErUL rOR
DETERMING THE PROFER GROUPING Or ROUT!NESOR MODU~ES rOR
PAGING o~ OVERLAYING~

THE LOCALI~ATION STATISTICS OBTAIr'ED ARE SOMEW~AT
APPROXIMATE, SINCE THE ROUTINE IS AWARE ON~Y or THE 8~OCK Or
MEMORY WHICH CONTAINS THE RouTINE ENTRy POINT. I~ T~E
ROUTINE CROSSES A B~OCK BOUNDARY. T~IS SH~ULD COUNT AS A
BLOCK CROSSING, BUT DOES NOT~ IT WOU~D BE HOPED THAT A
BLISS VERSION FOR A PAGED POP.1~ WOULD HAVE A rACILITy TO
FORCE ROUTINES TO THE NEXT PAGE 80UNDARY, RATHER THAN SP~tT
THEM,

THE LOCALI~ATI0N MONITOR RECORDS 1) THE NUMBER Or TIMES
A BLOCK WAS ENTERED (A ROUTINE WITHIN THE B~OCK WAS CALLEO)
FROM A DIFFERENT 8~OCK ANO 2) THE NUMBER or TIMES A ROUTINE
WITHIN THE BLOCK CA~LEO A ROUTINE IN A DIF~ERENT B~OCK, FROM
THE REMAINDER OF THE i!MING INFORMATION, T~E TOTA~ NUMBER or
C~L~S WHICH WERE MACE TO ROUTINES wtTHI~ THE MEMORY 8~OCK
AND THE TIHE SPENT IN THESE ROUTINES IS OBTAINED. A SUPPO~T
ROUTINE PRINTS OUT A MEMORY MAP ~IST!NG T~E ROUTINES WITHtN
EACH BLOCK. MORE SOP~ISTICATEO ANALVSIS IS POSSI8~E BY
EITHER PROGRAM OR HUMAN.

8-12

J

J

J

c

0~100
002-00
0Q!3~~

"el40~
~050~
0~600
007¥'J0
"08"~
00902
01000
01100
,,1200
(Zl13kl0
01400
~15ilJ~
01600
01700
01800
01.9210
02000
02100
02200
02300
0241210
02500
02600
02 7 ~"?J
02800
0291210
03000
,,3100
032021
0330~
03400
03500
03600
03700
03800
03900
04000
041"121
042I?JfZJ
04300
04400

- - - L 0 C A ~ i ~ A T tON 0 U T PUT • • • • •

THE LOCALI~ATION OUTPUT CONSlSTS or TWO ROUTINES, TIMSTS
AND TIMST9, WHICH ~A~ BE C.~LED FROM T~E USER'S MAIN PROGRAM
OR VIA DOT IN TH~ SAME MANNER THAT THE OTHER REPORTING
ROUTINES ARE CA~LEO (SEE "USE FROM DOT" ABOVE).

TIMST8() OUTPUT:

BLOCK IN OUT CAL.LS TIME
** ••••••••••••

"BLOCK~ IS T~E MEMORY AOC~ESS or THE MEMORY 8~OCK. lr
NO TRANS;ERS IN OR OUT WERE MADE. T~EN THIS IS THE ONLy
INFORMATION ON T~E L.IN£.

"IN" IS THE NUMBER or CALL.S MADE TO ROUTINES IN T~E
BLOCK FROM ROUTINES oufSIDE THE BL.OCK~

"OUT" IS T~E: NUMBER OF" CA~~S MADE: TO ROUTINES ourSIOE
THE BLOCK rROM ROUTINES ~ITHIN THE SLOCK.

" CAL. L S '. 1ST 1-1 E TOT A ~ N U M B E R 0 F" C AI. L SMA 0 e: T 0 A L: L
ROUTINES WITHIN THE B~OCK, rROM A~~ OTH~R ROUTtN£S
("CALLS"-"IN" GIV~S SOME MEASURE or THE INTRA-BLOCK
ACTIVITY),

"TIME" IS THE TOTAL. TIME S~ENT EXECUTING AL.~ ROUTINES
WITHIN THE BLOCK~ THIS IS T~E SUM OF A~~ "AOUTINE" TtM[S
FOR THE ROUTINES WITHIN THE B~OCK~

TIMST9() OUTPUT:

BLOCK RTNS
•• **.. •••••• •••••• •••••• •••••• •••••• • •••••

•••••• •••••• ETC~

"BLOCK~ IS T~E MEMORY ADDRESS OF" T~E MEMORV 8~OCK~

"RTNS" IS THE NAMES O~ ALL ROu'tN~S CONTAINED IN ,~.,
BLOCK.

, 8-13

0el~0 - - - - I N T ERN A ~ DOC U M [N TAT ION •• ~ •
1210200
00300 DATA GAtHERING ROUTINESI
lZlel40eJ
0050~

~H:!6"0
2107,00
121080~
0i,900
01000
01100
01200
0130_;J
1211400
01500
12116~Ql

01700
01800
019210
02000
",,21021
212200
02300
~2400
02500
02600
02700
02800
212900
030~0
03100
03200
03300
03400
03500
23600
03700
03800
1213900
2142100
04100
04200
0 4 300
04400
214500
04600
04700
048"0
214900
0501210
21510121
1215200
e5300
05400
121551210
0560"
057e~
e5800
1?j5900
21612100

TIMENT: ALL ROUTINES LINK TO iHIS ROUTINE U~ON ROUTINE
ENTkY. TH~ CLOCK IS READ ~ND ITS VALUE 15 PASSED TO
TIMEIN()~ ON RETURN TO TIMENT THE C~OCK IS READ
AGAIN TO PREVENT THE TIME SPENT IN THE TIMING
ROUTINES rROM BEING COUNTED IN THE ROUTIN~ TIMES~
THIS VALUE IS STORED IN T~E C~08AL VARIABlE
" TIM F R E ,. '. TIM E N TIS CON T A I NED I N TIM I N TIM A CAN D
USES 14 WORDS.

TIMEXT: ALL ROUTINES ~INK TO THIS ROUTtNE U~ON ROUTINE EXIT~
THE CLOCK IS READ AND ITS VA~UE IS PASSED TO
TIMEOUTC), ON RETURN TO TIMEXT THE C~OCK IS ~EAD
AGAIN TO PREVENT THE TIME SPENj IN THE TIMING
ROUTINES FROM BEING COUNTED IN THE ROUTINE TIMES~
THIS VA~UE IS STORED IN THE G~OBA~ VARIABLE
" TIM PRE" '. TIM EXT 1 S CON T A. I N £ C I N TIM I ~J T I t-1 A CAN D
USES 11 WORDS,

TIMEIN: THIS ROUTINE IS CA~LEO rROM TIMENT AND IS PASSED THE
ROUTINE ADDRESS (~~US ONE) ANO T~E CURRENT T!M~~
THE INCREMENT Or TIME SINCE T~E ~AST READING Or THE
CLOCK IS COMPUTED AND TIMACC() IS CA~~ED TO ADD tT
TO A~L THE CUMU~ATIVE TIMES Or A~L OUTSTANDING
ROUTINES~ T~E INCREMENT IS ALSO ADOEO TO T~E
ROUTINE TIME Or THE CA~LING ROUTINE. A TIME VECTOR
POINTER TO THE TIME VECTOR Or THE CA~~EO ROUTINE Is
PUSHED ONTO THE TIME STACK AND THE NUMBER Or CALLS
IS INCREMENTEO. ASSORTED STATISTICS ABOUT STACK
DEPTH, NESTING DEPTH, AND BOUNOARY CROSSINGS ARE
OBTAINED~ USES 11 WORCS~ CALLS TIMACC, TtMTRX,
TIMERR, TIMI,.OC·,

TIMEOUT: TH!S ROUTINE IS CA~~EO rROM TIMEXT ANO ts
PASSED THE CURRENT TIME~ THE INCREMENT 0' TIME
SINCE THE L.AST READING O~ THE CLOCK IS COMPUTED AND
TIHACC() IS CALLED TO ADO IT TO THE CUMULATIVE TI~£S
or A~L OUTSTANDING ROUTINES~ T~E INCREMENT IS A~SO
ADOEO TO T~E ROUTINE TIME or tHE CURRENT ROUTIN~~
THE TIME VEC'OR POINTER or tHE CUR~~NT ROUTtN~ IS
POPPED ~AOM T~E TIME STACK~ USES 23 WORDS. CA~LS
TIMACC.

TIMACC: THIS ROUT!NE IS CALLED PROM TIMEIN AND TIMEOUT AND
IS PASSED THE 'IME INCREMENT TO 8E ADDEO. TH!S
INCREMENT IS AOOED TO THE CUMU~ATIVE TIME or A~L
ROUTINES POINTED TO BY POINTERS IN T~E TtME STACK,
TAKING CARE NOT TO ADD T~E VAI,.UE TWICE TO ROUTINES
CAL~ED R£CURSI~ELY~ USES 26 WORDS.

TIMlOC: THIS ROUTINE IS CAL.~EO TO LOCATE T~E TIME VECTOR OF
THE ROUTINE BEIN~ CAlL.EC~ If RETURNS AS ITS VAL.UE
THE INDEX or T~lS RouTtNE IN THE TIMEVECTOR
S T R U C T U R E. USE S BIN A R V SEA R C H T £ C C N 1 QUE '. USE S 2 5
WORDS.

TIMTRX: THIS ROUTINE IS CA~LED rROM TIMEIN TO RECO~D

8-14

)

c.

c·

c

06100
06200
063'H~
06400
2!650~
066~0
067.00
06800
06900
12!70~0
07100
07200
0730.0
1C'J7400
17500
1C'J76~0
077010
078eJ0
07900
080~0
12)8100
08200
rlJ8300
0840121
085210
086~0
rlJ8700
08800
1C'J8900
09000
0910~
092~0
t2193110
09400
09500
09600
219700
0982'0
09900
1021210
1011210
1121200
103210
112141210
12150121
11216210
121700
1121800
109210
1121210
111210
11200
113k'10
114210
1150"
1161210
1170"
1180"
11900
1212100

BOUNDARY CROSS!NGS~ T.KtS TWO PARAMETERS, T~E
AOORESS or THE CALLED ROUTINE AND THE ADDRESS or THt

'CALLING ROUTiNE. l~ THEY ARE iN otFrERENT B~OCK5, A
TRANSITION ouT or THE CALLERS B~OCK AND ONE INTO T~E
CALLED BLOCK ARE RECORDEO~ USES 11 WORes,

INITIALI~ATION ROUTINESI

TIMSET: CALLS T!MINiT~)~ ON RETURN tT READS THE CLOCK AND
STORES THE VALUE IN THE GLOBAL VARIABLE "TIMPR["~
THIS ROUTINE IS CONTAINED IN TIMINT,~AC AND USES a
WORDS.

TIMINIT: THIS ROUTINE IS C.LLEO BY TIMSET() A~D
INITIALIZES T~E SYSTEM BEING TIMED. IT OBTAINS
WRITE PRivt~EGES IN THE HIGH SEGMENT, PRE~ARATORY TO
P~ACING TRAPS IN. T~E ROUTINES. IT THEN C~EAT~S A
DUMMY ENTRY rOR TME MAIN ~ROGRAM (rROM WHICH tT
ASSUMES IT WAS CAL~ED) SO THE MAIN PROGRAM ~OOKS
LIKE A CA~LING ROUTINE~ SEVERAL COUNTERS AND
SWITCHES 'At INITIALIiEO~ T~E DOT SYMBO~ TABL£ ts
SCANNED, AND EACH SYMBOL qE~ERRING TO A LOCATION IN
THE ADDRESS SPACE 15 EXAMINED. IF THE SYMBOL ANO
THE WORD IT POtNTS TO SATISrY CERTAIN CRITERIA. T~E
SYMBOL IS CONSIOEA£O A ROUTINE NAME~ TIMrIX fs
CALLED TO PLAC£ ROUTINE ENTRY/EXIT TRAPS, AND AN
ENTRY iN THE TIH£VECTOR stRUCTURE IS CR£ATEO~
rlNAL~Y, 'HE OLD VALUE or THE HIGH·S~GMENT
WRITE-PROTEct BIT IS RESET~ USES 1,9 WOROS~ CALLs
TIMFIX, TIMMAK. TtMSRC, T%M50X~

TIMFIX: THIS ROUTINE IS CA~LEO rROM TIMINIT TO SET TIMING
TRAPS IN TME ROUTINE~ IT IS PASSED THR~E
PARAMETERS. TM[AODRESS 0' THE ROUTINE. T~£ NAME O~
T~E ENTRv-tAAP ROUTINE, AND THE NAME or T~E
EXIT-TRAP AOUTfNE~ THE rlRST INSTRUCTION IN T~£
ROUTINE II REPLACEO BV A "~USHJ (ENTRY ROUTINES"
INSTRUCTION, T~E POPJ TERMINATING THE ~OUTINE IS
REPLACED BY A "JRST <EXIT ~OUTtNt)" INSTRUCTI0N~
USES 29 wo~os·.

TIMMAK: THIS ROUTINE IS CA~L£O TO CREATE A NEW ENTRY IN T~[
TIMEVECTOR !T~UCTURE. IT IS ~ASSEO THE ADDRESS 0'
THE ROUTINE ANO ITS SIXBIT NAME. 'I' AOOING TH!S
ROUTINE WOULO CAUSE THE TIMEVECTOR STRUCTURE TO BE
EXCEEDED. 'N EAROA r~.G IS SET 4NO NO ENTRV IS
CREATED. US£S 33 WOROS~

TIMSRC: THIS ROUTINE 15 CA~LED ev TIMINIT TO OBTAIN T~E NAME
O~ THE MAIN PAOGAAM~ IT S[AAOHES THE OOT SYMBOL
TABLE ~OA EXACT EQUA~ITV OF I'S P.RAMETER~ USES 25
WORDS.

TIM50X: TAKES A RAOIX5J SY~BQ~ (£~G~ A OOT SYMBO~) AND
RETURNS .5 ITS VALUE THE SI~BIT NAME. A!G~T
JUSTlrIEO~ uSES 25 WOROS~

TIM506: TAKES A RAOIX" CHARACTER ANO CONVERTS 'IT TO A
SlXBIT CM.~.eTEA~ USES t' WO"~S~

1- .8-15 . __ ... 1

12100
12200
12300
12400
12500
12600
12700
12813-0
12900
1301210
13100
132e!vj
13300
134~"
135(Z10
136""
13700
138~0
13900
1 4 12100
1 4100
14200
1 4 312110
1 4 4210
14500
14600
14700
148"~
14900
15000
151"~
15200
153~0
15400
15500
156kHZ!
15700
15800
15900
16000
16100
1620"
1630"
16400
1650"
166"~
167"0
16800
169210
1 712100
171'00
17 2010
1 7300
1 7 400
17500
17600
17700
17800
17900
18000

TERMINATION ROUT!N~Si

TIMEND: READS THE C~OCK AND CAL~S TIMEOUT() TO ~INISH T~E
TIMING or 'H£ MAIN ROUTIN£~ THEN CA~~S TIMTOT() To
~INISH COM~UTATION or CERTAIN VA~UES~ USES 1
~ORDS. THIS ROUTINE IS CONTAINEO IN THE MOOULE
TIM I NT. MAC "

TIMTQT: CALLED BY TiM£ND TO COMPUTE AVERAGE TIMES rOR ~AO~
ROUTINE. A~SO COMPUTES TOTAL EX~CUTION TIME AND
TOTAL NUMBeR 0' CALLS, USES 57 WORDS.

REPORTING ~OUTIN£SI

TIMLPT: SETS THE LPT SWITCH TO DIRECT OUTPUT TO T~E LINE
PRINTER.

TIMTTY: RESETS THE LPT SWITCH TO DIREC' OUTPUT TO THE TTY~

TIMWLPT: CA~LEC BY TIMPUT iO WRITE A CHARACTER ON THE
LPT. TWO PARA~ETERS ARE PASSEDI A rUNCTION CODE AND
A CHARACTER, T~E ~UNCTION COD£S ARE. ~I OPEN THE L~T
AND WRITE 'HE CHARACTER GIVEN~ 11 WRITE T~E
CHARACTER GtVEN~ 21 CLOSE THE ~PT (CHARACT~R
I G N Q RED) " USE 5 61lJ W 0 R 0 S "

TIMPUT: ~RITES T~£ SINGLE CHARACTER PASSEO TO Ii ON THE ~~T
OR THE TTY, AS D!RECTED BV THE ~PT SWITCH, US~S 14
WORDS.

TIMSPUT: WRITES THE STRING PASSEC TO IT (is
5-CHARACTER GROUPS) ON THE LPT OR TTY, VIA TIM~UT~
USES 37 WORDS',

TIMCRLr: WRITES A CARRIAGE.R£TURN/~lN£.~E£O ~AIR ON
THE OUTPUT OEV!CE~ USES 10 WORes.

TIMTA8: WRITES A TAB ON THE OUTPUT DEVICE. USES 7 WOAOS~

TIMPR6: WRITES T~E LErt.JUSTl~IEO SIXBIT C~AA'CT[R STRING
GIVEN ON T~E OUTPUT OEVtCE~ USES 21 WO~CS. CA~~S
TIMPUT.

TIMOE2: THIS ROUTINE 15 CAL~EC TO 00 NUMERIC OUTPUT. IT Is
PASSED 3 ~'RAMtTERS, THE NUM8EA TO OUTPUT, THE wtOTH
TO OUTPUT IT. ANO T~E BASE TO CONVERT IT BY (2<
BASE <= 10)~ CAL~S TIMDE2 AND T1MPUT~ USES 31
WORDS.

TIMDEC: THIS ROUTINE IS CAL.~EC TO 00 DECIMAL. OUTPUT, IT Is
PASS EO TWO ,aARAM£TERS, T~E VA~UE ANO T~E W! 0 Tlr.
CAL.LS TIMO[2 AND T %.M PUT " USES 40 WOACS,

TIMOCT: THIS ROUTINE: IS CAL.L.EC TO CO OCTAL. OUTPUT', IT IS
PASSED TWO PARAMETERS. THE VAL,UE AND TH£ W I OT~~,
CALLS TIMC£2 ANO TIMPUT. USES 412 "'OROS.

8-16
-- -' - - - -

:,)

1t<1~0
1820~

C
183~0
1840~
185rcH'
1861210
18700
1881210,
18900
19000
1 9100
1920~
19300
19400
19500
196130
1970~
19 800
19900
20000
2010eJ
213200
20300
213400
20500
2061210
207~0
20800
20900
21000
21100
21200
2131321
214"""
2150~
216021
2170"
21800
21900
222100
22100
22200
22300
224130
22500
22600
227~HZI
22800
229"'12l
230021
2310~
23200
23321121
234~r2I
23500
23600
2372)0
238"'''
239021
24000

TIMRE2: PUTS OUT T~E STATISTtCA~ INrORMATtON ABOUT TOT4L
PER FOR MAN C £ • N 0 I N D I V IOU A L R 0 UTI N E PER F' 0 R MA N C ~ ','
USES TIMPUT. TIHSPUT, ilMDEC. TIMPR6, TtHCR~',
TIM TAB _ TIM W L PT. USE S 2 8 4 W 0 R 0 S '.

T!MST1: SORTS DATA BY NAME AND CALLS TIMRE2. USES TIMESORT
AND TIMR~2~ USES 12 WORDS~

TIMST2: SORTS DATA BV CALLS AND CALLS fIMRE2. USES TIMESOAT
AND TIMR~2~ USES 12 WORDS~

TIMST3: SORTS DATA BY ROUTINE Tl~E ANO CALLS TIMRE2~ US~S
TIM ~ S 0 R TAN 0 TIM REt. USE S 12 W 0 R 0 S '.

TIMST4: SORTS DATA By CUMU~ATIVC TIME· ANO CA~~S TIMRE2~
USES TIM£SORT AND TIMRE2. USES 12 WORDS.

TIMST5: SORTS DATA BY AVERAGE ROUTINE TIME ANO CA~~S TIMRE2~
USES TIM~SORt AND TIMRE2~ USES 12 WORDS.

TIMST6: SORTS DATA By AVERAGE CUMULATIVE TIME AND CAL~S
TIMRE2, USES 'IHESORT AND TIMRE2. USES 12 WOAOS~

TIMST7: SOR1S DATA BV ADDRESS AND CA~~S TIMRE2. uses
TIMESORT AND T1MRE2. USES 12 WOROS~

TIMST8: CALLS TIMSON. SPEClrVING TIMTRP AS THE PROCESSING
ROUTINE. USES 8 WOROS~

TIMST9: CALLS TIMSON. SPECIrVING TIMPRT AS THE PRoctsslNG
ROUTINE, USES a WORDS.

TIMALL: CALLoS TIMST1 T~RU TIMST9'. USES 1~ WOADS.

TIMSON: CALLS TIMESORT TO SORT OAT. BY ADDRESSES. SEQUENCeS
THRU THE ADDRESS SPACE IN B~OCKS or
2**CORE8~OCK, CA~LtNG THE REQUESTED ROUTINES
(PASSED BV I'S CA~~ER)~ USES TtMSPUT, TIMCRLr,
TIHWLPT. USES 68 WORDS.

TIMTRP: ~OR EACH COR~ BLOCK rOR WHICH THER£ IS A TRANSITION
IN OR ouT, P~!NT THE NUMBER 0' EACH KIND, THE TOTAL
TIME SPENT IN 'HE B~OCK, AND 'HE TOTA~ NUMBtR or
CALLS TO ROU'INES IN THE BLOCK. CA~~S TIMSPU'.
TIMDEC, TIMOCT. TIMCR~r. USES 19 WORDS.

TIMPRT: rOR EACH B~OCK, PRINTS OUT THE NAM~S Or THE ROUTINES
IN TH~' 8~OCK~ USES TIMOCT, TIMTAB, TIMPR6,
TIMCR~rf USES 50 WOROS.

MISCELLANEOUS ROUT!NESi

TIMESQRTa SORTS THE TtMEVECTQR OATA BY CREATING A
SORTED INOEX VECTOR INTO THE TIMEVECTOR. THE SO~T
rIELD IS S~£Clrl£O BY THE P.RAMETERS. THE 5
~ARAMETERS AEQUl~£b ARE. il NUMBER 0' ENTRIES TO !E
SORTED; 2) wAlCH WORD Or THE TIMEVECTOR TO SORT ON.
3,4) T~E POSITION (3) AND SI~E (~) rtE~c
SPECIrICAT10NS or THE BYTE Or THE ~ORO TO ,SORT ON,
5) THE otREC'ION TO SORT~ T~E A~GOqITHM IS A

8-17

241"0
24200
24300
244~(~

24500
24600
2470~
24800',
24900
25000
25100
252j(jJ
2530@
254r2lJ
255Qh1
25600
25700
2582121
259~0

GE~ERALI~ATION or r~OYD~S TRE[SO~T 3 (A~GORITHM 24'.
CAe M DEC I 196.). I T C 0 ~J" A INS F' a R ITS e: x c ~ U s 1 ve: usE'
THE ROUTINES TIMSlrT(58 WORDS) , TIMCMP (3~ WORDS).
TIMX~R (11 WORDS), TIHEXCH (19 WORDS). T%MESOR1
ITSELF IS 53 WORDS ~ONG.

Tlr'1~lF'l:

1IMCMP: SEE TIMESORT~

TIMXFR: SEE TIMESO~T~

I'IMEXCH:

TIMERR: A GENERAL ERROR·eATCHe:R~ ANY ERROR
TIMERR, PASSING IT AN ERROR CODE.
IN A SELECT EXPRESSION TO CHOOSE
ACTION. USES 48 WORDS.

8-18

DE:TECTED CAL.LS
TI-IE: eOCE IS USE:D
THE APPROPRt4'e:

	Introduction
	Acknowledgments
	Abstracts
	Contents
	1. BLISS - A Language for Systems Programming
	2. BLISS Examples
	3. Programming Without the GOTO
	4. Why the DOT?
	5. Efficient Data Accessing in the Programming Language BLISS
	6. HELP.DOC
	7. HELP.BLI
	8. TIMER.DOC

