
First Edition - March 1985

This manual is an introduction and user's
guide to the VAXELN toolkit.

VAXELN User's Guide

Document Order Number: AA-EU38A-TE

Software Version: 2.0

digital equipment corporation
maynard, massachusetts

First Edition, March 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may be used or copied only in accordance with the terms
of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation
or its affiliated companies.

Copyright@ 1985 by Digital Equipment Corporation
All rights reserved. Printed in U.S.A.

The postage-paid READER'S COMMENTS form on the last page of
this document requests your critical evaluation to assist us in
preparing future documentation.

The Digital logo and the following are trademarks of Digital
Equipment Corporation:

DATATRIEVE DECwriter
DEC DIBOL
DECmate LSI-ll
DECnet MASSBUS
DECset M ICRO/PDP-ll
DECsystem-10 MicroVAX
DECSYSTEM-20 MicroVMS
DECtape PDP
DECUS P/OS

ii

Professional
Rainbow
RSTS
RSX
ULTRIX
UNIBUS
VAX
VAXELN
VMS

VT
Work Processor

Preface

Chapter 1 : VAXELN Concepts

What Is VAXELN?, 1-1
High-Level Programming Languages, 1-3
No Operating System "Overhead", 1-3
Concurrent Programming, 1-3
Transparent Network Support, 1-4
File Service, 1-4
Program Development and Debugging

with V AXNMS, 1-5
What Is a VAXELN System?, 1-5

Contents

Structure of a Running VAXELN Application, 1-7
Dynamic Program Loading, 1-8

The VAXELN Kernel, 1-9
Creating a VAXELN Application, 1-10

What you Need, 1-10
The Steps Involved, 1-10
The Sample Application, 1-11

Part 1, 1-11
Part 2, 1-20

Chapter 2: Kernel Objects

Introduction, 2-1
PROCESS Object, 2-3

Operations with PROCESS Values, 2-3
Internal Representation of PROCESS Values, 2-4

AREA Object, 2-4
Operations with AREA Values, 2-5
Internal Representation of AREA Values, 2-5

EVENT Object, 2-5
Operations with EVENT Values, 2-6
Internal Representation of EVENT Values, 2-6

iii

SEMAPHORE Object, 2-7
Operations with SEMAPHORE Values, 2-7
Internal Representation of SEMAPHORE Values, 2-8

MESSAGE Object, 2-8
Operations with MESSAGE Values, 2-8
Internal Representation of MESSAGE Values, 2-9

PORT Object, 2-9
Operations with PORT Values, 2-10
Internal Representation of PORT Values, 2-11

NAME Object, 2-12
Operations with NAME Values, 2-12
Internal Representation of NAME Values, 2-13

DEVICE Object, 2-13
Operations with DEVICE Values, 2-14
Internal Representation of DEVICE Values, 2-14

Kernel Implementation of Objects, 2-14

Chapter 3: Processes and Jobs

Introduction, 3-1
Jobs Viewed as Process Families, 3-2
Process States, 3-3

State Transitions, 3-4
Job and Process Scheduling, 3-5

Initialization Programs and System Startup, 3-9
Program Loader Utility Procedures, 3-10

Job and Process Termination, 3-11
Exit Utility Procedures, 3-13

Kernel Services for Processes and Jobs, 3-13
CREATE-JOB Procedure, 3-13
CREATE-PROCESS Procedure, 3-14
CURRENT-PROCESS Procedure, 3-14
DELETE Procedure, 3-14
DISABLE-SWITCH Procedure, 3-15
ENABLE-SWITCH Procedure, 3-15
EXIT Procedure, 3-15
GET-USER Procedure, 3-16
INITIALIZATION-DONE Procedure, 3-16

iv

RAISE-PROCESS-EXCEPTION Procedure, 3-17
RESUME Procedure, 3-17
SET-JOB-PRIORITY Procedure, 3-17
SET-PROCESS-PRIORITY Procedure, 3-17
SET-USER Procedure, 3-18
SIGNAL Procedure, 3-18
SUSPEND Procedure, 3-18
WAIT-ANY and WAIT-ALL Procedures, 3-18

Memory Management, 3-19
Stack Utility Procedures, 3-22

Memory Allocation Procedures, 3-23
ALLOCATE-MEMORY Procedure, 3-23
FREE-MEMORY Procedure, 3-24
MEMORY-SIZE Procedure, 3-25

Interjob Data Sharing, 3-25
Kernel Services for Interjob Data Sharing, 3-27

CREATE-AREA Procedure, 3-27
DELETE Procedu re, 3-27
SIGNAL Procedure, 3-27
WAIT-ANY and WAIT-ALL Procedures, 3-28

Chapter 4: Synchronization
Introduction, 4-1
The WAIT Procedures, 4-2

Deadlock Prevention, 4-4
Events, 4-4
Semaphores, 4-6
Kernel Services for Synchronization Objects, 4-10

CLEAR-EVENT Procedure, 4-10
CREATE-EVENT Procedure, 4-10
CREATE-SEMAPHORE Procedure, 4-11
DELETE Procedu re, 4-11
SIGNAL Procedu re, 4-11
WAIT-ANY and WAIT-ALL Procedures, 4-11

Time Representation, 4-12
SET-TIME and GET-TIME Procedures, 4-12
Timeout in WAIT Procedures, 4-13

v

Chapter 5: Interjob Communication
Introduction, 5-1
Messages, 5-2
Message Ports, 5-3
Named Message Ports, 5-4
Message Transmission, 5-6

Expedited Messages, 5-8
Datagrams and Circuits, 5-9

Programming with Circuits, 5-11
Port Limits and Flow Control, 5-13

Flow Control with Unconnected Ports, 5-14
Flow Control with Circuits, 5-14

Kernel Services for Message Transmission, 5-14
ACCEPT-CIRCUIT Procedure, 5-14
CONNECT-CIRCUIT Procedure, 5-15
CREATE-MESSAGE Procedure, 5-16
CREA TE-NAM E Proced u re, 5-16
CREATE-PORT Procedure, 5-17
DELETE Procedure, 5-17
DISCONNECT-CIRCUIT Procedure, 5-18
JOB-PORT Procedure, 5-18
RECEIVE Procedure, 5-18
SEND Procedure, 5-18
TRANSLATE-NAME Procedure, 5-19
WAIT-ANY and WAIT-ALL Procedures, 5-19

Chapter 6: I/O Devices and Interrupt Handling
Handling Device Interrupts, 6-1
Interrupt Priority Levels, 6-3
I PL Proced u res, 6-5

DISABLE-INTERRUPT Procedure, 6-5
ENABLE-INTERRUPT Procedure, 6-5

Power-Recovery Handling, 6-6
Kernel Services for Devices, 6-7

CREATE-DEVICE Procedure, 6-7
DELETE Procedure, 6-8

vi

SIGNAL-DEVICE Procedure, 6-8
WAIT-ANY and WAIT-ALL Procedures, 6-8

DMA Device Handling Procedures, 6-9
ALLOCATE-MAP Procedure, 6-9
ALLOCATE-PATH Procedure, 6-9
FREE-MAP Procedure, 6-10
FREE-PATH Procedure, 6-10
LOAD-UNIBUS-MAP Procedure, 6-11
PHYSICAL-ADDRESS Function, 6-11
UNIBUS-MAP Procedure, 6-12
UNIBUS-UNMAP Procedure, 6-12

Device Register Procedures, 6-13
MFPR Function, 6-13
MTPR Procedure, 6-13
READ-REGISTER Function, 6-13
WRITE-REGISTER Procedure, 6-14

Chapter 7: The Network Service

Introduction, 7-1
Network Applications, 7-2
Application Message Services, 7-4

End-Node Routing, 7-5
Network Services Protocol (NSP), 7-5
Logical Links, 7-6
Datagram Size, 7-6

Name Servers, 7-7
Interaction with the Kernels and Network Services, 7-8

Name Creation, 7-8
Name Deletion, 7-8
Name Translation, 7-8

Name Server Election, 7-9
Node Names and Numbers, 7-10

Use of Node Names in VAXNMS, 7-11
Use of Node Numbers in VAXELN, 7-11

Network Management, 7-12
Network Management Listener, 7-12
Loopback Mirror, 7-14

vii

Connections with VAXNMS Nodes, 7-15
Requesting the Connection from VAXELN, 7-15
Accepting the Connection on VAXNMS, 7-16
Transparent and Nontransparent Communication, 7-16
Requesting the Connection on VAXNMS, 7-17
Accepting the Connection on VAXELN, 7-17
Connections Using DECnet Object Numbers, 7-17
User-Level Datagrams, 7-18

Chapter 8: System Security

Introduction, 8-1
Users, 8-3
Authorization Service, 8-4

Including the Authorization Service, 8-8
Authorization Procedures, 8-10

SET-USER Procedure, 8-10
GET-USER Procedure, 8-11

Authorization Example, 8-12
Authorization Service Util ity Proced u res, 8-13

AUTH-ADD-USER Procedure, 8-14
AUTH-MODIFY -USER Procedu re, 8-15
AUTH-REMOVE-USER Procedure, 8-16
AUTH-SHOW-USER Procedure, 8-16

File Service Security, 8-16

Chapter 9: The File Service

Introduction, 9-1
Device Specification, 9-2
Volume Names, 9-3
File Specifications, 9-5
File Access Listener, 9-7
Using File Service Volumes from VMS, 9-7
File Service Operations, 9-8
File Utility Procedures, 9-9

COPY-FILE Procedure, 9-9
CREATE-DIRECTORY Procedure, 9-10
DELETE-FILE Procedure, 9-10

viii

DIRECTORY-CLOSE Procedure, 9-11
DIRECTORY-LIST Procedure, 9-11
DIRECTORY-OPEN Procedure, 9-11
PROTECT-FILE Procedure, 9-12
RENAME-FILE Procedure, 9-12

Disk Utility Procedures, 9-13
DISMOUNT-VOLUME Procedure, 9-13
INIT-VOLUME Procedure, 9-13
MOUNT-VOLUME Procedure, 9-15

Tape Uti I ity Proced u res, 9-16
DISMOUNT-TAPE-VOLUME Procedure, 9-16
INIT-TAPE-VOLUME Procedure, 9-16
MOUNT-TAPE-VOLUME Procedure, 9-17

Interface with Disk and Tape Drivers, 9-17
Data Access Protocol, 9-20

General Principles, 9-27
Action Routines and DAP$SERVER, 9-28
DAP Data Types, 9-30
DAP Constants, 9-30
D,AP Wildcard Functions, 9-31

Chapter 10: Device Drivers

Disk Drivers, 10-1
"LogicaII/O", 10-2
Disk Capacities and Other Specifications, 10-2
General Features of the Disk Drivers, 10-5

Interface to File Service, 10-5 .
Recovery from Power Failure, 10-6

Tape Driver, 10-6
"LogicaII/O", 10-6
Tape Specifications, 10-7
General Features of the Tape Driver, 10-7

Interface to File Service, 10-7
Recovery from Power Failure, 10-8
Error Recovery, 10-8

Printer Drivers, 10-9
General Features of the Printer Driver, 10-9

ix

Characteristics of the Printer Driver, 10-10
Maximum Record Length, 10-10
Lines per Page, 10-10
Form Feed/Line Feed Conversion, 10-11
Page Width, 10-11
Line Wrapping, 10-11
Lowercase to Uppercase Conversion, 10-11
Nonprinting Character Handling, 10-11
Insertion of CR before LF, 10-11

Terminal Drivers, 10-12
Terminal I/O, 10-13
Type-Ahead and Synchronization, 10-13
Line Terminators, 10-14
Point-to-Point DDCMP Communication, 10-14
Setting Terminal Characteristics with the

System Builder, 10-18
Control Characters, 10-20
Escape and Control Sequences, 10-23

VT52-Type Escape Sequences, 10-25
Modem Control, 10-26
Additional Support Routines, 10-29

Parallel 110 Support, 10-29
Real-Time Device Drivers, 10-30

Analog-to-Digital Converter, 10-30
Real-Time Clock, 10-32
Asynchronous Serial Line Controller, 10-34
Parallel Line Interface, 10-37

Chapter 11: Exception Handling

Exceptions in VAXELN, 11-1
VAX Stack Architecture, 11-3

Exception Handler Arguments, 11-6
"Continue" and "Resignal" Operations, 11-8
"Unwind" Operation, 11-9
Multiple Concurrent Exceptions, 11-11

Raising Exceptions, 11-11
Kernel Procedure Failure Exceptions, 11-11

x

Asynchronous Exceptions, 11-12
I Exception Handling Procedures, 11-13

DISABLE-ASYNCH-EXCEPTION Procedure, 11-13
ENABLE-ASYNCH-EXCEPTION Procedure, 11-13
RAISE-EXCEPTION Proced u re, 11-13
RAISE-PROCESS-EXCEPTION Procedure, 11-13
UNWIND Procedure, 11-14

Status Codes, 11-14
Message Files and Utilities, 11-15

Including the Message Text in a VAXELN
Appl ication, 11-16

Accessing the Message Database Du ring the Execution
of a VAXELN Application, 11-16

Message Files Provided with the VAXELN Kit, 11-17

Chapter 12: Program Development

Preparing a VAXELN Program, 12-1
LIBRARY Command, 12-2

Creating a New Library, 12-2
Inserting or Replacing Modules in an

Existing Library, 12-3
Listing a Library's Contents, 12-3
Extracting Modules from a Library, 12-3
Deleting Modules from a Library, 12-4
Compressing a Library, 12-4

LINK Command, 12-4
Format, 12-5
File Specifications, 12-5
VAXELN Libraries, 12-5

RTLSHARE.OLB, 12-6
CRTLSHARE.OLB, 12-7
RTLOBJECT.OLB, 12-7
CRTLOBJECT.OLB, 12-10
RTL.OLB, 12-10
FILE.OLB, 12-10

Selection of Default Double-Precision Type, 12-11

Xl

General Information on Linking, 12-12
Qualifiers,.12-13
Notes, 12-14

Chapter 13: System Development

EBUILD Command, 13-1
Format, 13-1
Qualifiers, 13-1
File Specification, 13-3

System Builder Menus (EDIT Mode), 13-4
Main Menu, 13-4
Program Descriptions, 13-6
Device Descriptions, 13-11
System Characteristics, 13-17
Network Node Characteristics, 13-22
Terminal Descriptions, 13-26
Console Characteristics, 13-28

Chapter 14: Booting and Down-Line Loading

Booting Systems from Disks, 14-1
The COPYSYS Command Procedure, 14-2

Down-Line Loading, 14-3
Preliminary Steps, 14-4

Installing Communication Hardware
on the Target Machine, 14-5

Configuring a Host for Down-Line Loading, 14-5
Adding the Target Machine to the

Host Node Data Base, 14-6
Configuring the Bootstrap Loader, 14-7

Down-Line Loading Procedure, 14-8
Reloading a Machine that has the

Network Service, 14-9
Down-line Loading during Debugging, 14-11
Reloading Production Machines Down-Line, 14-11
Down-line Loading rom Multiple Hosts, 14-12

xii

Chapter 15: Debugging
Introduction, 15-1
Selecting a Debugger Mode with the System Builder, 15-2
Making a Program Debuggable, 15-3
Making the Kernel Debuggable, 15-3
The EDEBUG Command, 15-4

Formats, 15-5
General Concepts for Using the VAXELN Debuggers, 15-6

Process Identifiers, 15-7
The Com mand Session, 15-8
The "Control-C" Session, 15-8
Symbolic Debugging, 15-9
Breakpoints, 15-10

Debugger Syntax Rules, 15-11
Command Files, 15-12
Expressions, 15-12

String Expressions, 15-14
Address Expressions, 15-14

Identifiers, 15-16
Identifiers Defined Using the DEFINE

Command, 15-16
Special Predefined Identifiers, 15-18
Program Locations and Variable Names, 15-19

Variable References, 15-22
Types and Typecasting, 15-22
Computational Constants, 15-24

Boolean Constants, 15-24
Integer Constants, 15-25
Floating-Point Constants, 15-26
String Constants, 15-27
Special Constants, 15-27

Comments, 15-27
Command Summary, 15-28

CALL, 15-28
CANCEL BREAK, 15-30
CANCEL CONTROL, 15-30

xiii

CANCEL EXCEPTION BREAK, 15-30
CREATE JOB, 15-30
CREATE PROCESS, 15-31
CTRue,15-31
CTRUZ, 15-31
DEBUG, 15-32
DEFINE, 15-32
DELETE PROCESS, 15-33
DEPOSIT, 15-34
EVALUATE, 15-36
EXAM INE, 15-37
EXAMINE/INSTRUCTION, 15-41
EXAM INE/PSL, 15-42
EXAMINE/SOURCE, 15-42
EXIT, 15-43
GO, 15-43
HALT, 15-43
HELP, 15-44
IF, 15-45
LEAVE, 15-45
LOAD, 15-45
PREDECESSOR, 15-46
SEARCH, 15-46
SET BREAK, 15-47
SET COMMAND, 15-49
SET CONTROL, 15-49
SET EXCEPTION BREAK, 15-50
SET LOG, 15-50
SET MODE, 15-50
SET PROGRAM, 15-53
SET RETURN BREAK, 15-54
SET SESSION, 15-54
SET STEP, 15-55
SET TIME, 15-55
SHOW BREAK, 15-55
SHOW CALLS, 15-56

XIV

SHOW COMMAND, 15-56
SHOW JOB, 15-57
SHOW MESSAGE, 15-57
SHOW MODE, 15-58
SHOW MODULE, 15-58
SHOW PROCESS, 15-58
SHOW PROGRAM, 15-59
SHOW SESSION, 15-60
SHOW SYMBOL, 15-60
SHOW SYSTEM, 15-62
SHOW TIME, 15-62
SHOW TRANSLATION, 15-63
STEP, 15-63
SUCCESSOR, 15-64
TYPE, 15-65
UNLOAD, 15-66

Appendix A: VAX-11/7S0 Microcode Patch
Procedure, A-1

Appendix B: Kernel Procedures

Internal Call Notation, B-1

Appendix C: Status Values/Exception Names

Appendix 0: VAXELN Performance Evaluation

Process Synchronization and Management, D-1
Synchronization, D-1
Create and Delete, D-2
Interrupt Processing, D-3

Messages, D-3
File Input/Output, D-7

Sequential Files, D-7
Open, D-7
Write, D-8
Read, D-9
Close, D-11

xv

Direct Access Files, 0-11
Open, D-11
Write, D-12
Read, D-13
Close, D-14

Index

List of Figures

Figure 2-1. PORT Value Representation, 2-11
Figure 3-1. Job and Process Priorities, 3-6
Figure 3-2. Combined Priority Representation, 3-8
Figure 3-3. System Region, 3-20
Figure 3-4. PO (Program) Region, 3-20
Figure 3-5. P1 (Control) Region, 3-22
Figure 7-1. A Two-Node VAXELN Network, 7-3
Figure 8-1. Authorization Service Example, 8-5
Figure 8-2. Protection Mask, 8-18
Figure 9-1. DAP Message Transmission ("READ" Request),

9-23
Figure 10-1. A VAXElN Serial DDCMP Link, 10-15
Figu re 11-1. A Procedures' Stack Frame, 11-4
Figure 11-2. Frame Structure after Procedure Call, 11-5
Figure 11-3. Call Frame Block, 11-5
Figure 11-4. Signal Arguments, 11-7
Figure 11-5. Mechanism Arguments, 11-8

List of Tables

Table 6-1.
Table 9-1.
Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 13-1.
Table 14-1.
Table B-1.

Interru pt Priority Levels, 6-4
Storage Device Types, 9-3
Disk Devices, 10-3
Tape Specifications, 10-7
Control Characters, 10-21
Modem Control Signals, 10-27
Device Information, 13-13
Datalink Device Default Addresses, 14-5
Kernel Procedures, B-3

xvi

Table (-1.
Table 0-1.
Table 0-2.
Table 0-3.
Table 0-4.
Table 0-5.
Table 0-6.
Table 0-7.
Table 0-8.
Table 0-9.
Table 0-10.
Table 0-11.

Status Values/Exception Names, C-3
Process Synchronization Times, 0-2
Process Create, Execute, and OeleteTimes, 0-3
Interrupt Processing Times, 0-3
Message Times and Throughput, D-5
Open Times for Sequential Files, 0-8
Write Throughput for Sequential Files, 0-9
Read Throughput for Sequential Files, 0-10
Close Times for Sequential Files, D-ll
Open Times for Oirect Access Files. 0-12
Write Throughput for Oirect Access Files, D-13
Read Throughput for Oirect Access Files, 0-14

xvii

xviii

Preface
The V AXELN User's Guide is an introduction to
V AXELN concepts and a guide for program and system
development using the V AXELN toolkit.

Manual Objectives

This manual contains programming language
independent concepts and features that are common to
V AXELN systems, including system services, program
development tools, and system development tools.

Intended Audience

This manual is designed for programmers and students
who have a working knowledge of Pascal or the C
programming language. A cursory understanding of
the VAX/VMS DCL command language is also
necessary.

Structure of this Document

This manual consists of 15 chapters and 4 appendices,
organized as follows:

• Chapter 1, ~~VAXELN Concepts," answers general
questions about what V AXELN is and how it is
used to design and develop an application. The
chapter also contains a walk-through example of
building, down-line loading, and executing a
simple V AXELN application.

xix

• Chapter 2, ((Kernel Objects," describes the types of
V AXELN kernel objects: PROCESS, AREA,
EVENT, SEMAPHORE, MESSAGE, PORT,
NAME, and DEVICE.

• Chapter 3, ((Processes and Jobs," discusses jobs and
processes and the kernel services that affect the
state of PROCESS objects, as well as memory
management and memory allocation procedures,
inter job data sharing, and the kernel services that
affect the state of AREA objects.

• Chapter 4, ((Synchronization," discusses synchroni
zation in terms of the WAIT procedures, events,
semaphores, and time representation, including
the kernel services that affect the state of EVENT
and SEMAPHORE objects.

• Chapter 5, (tlnterjob Communication," discusses
messages and ports, message transmission, data
grams and circuits, and the kernel services that
affect the state of MESSAGE, PORT, and NAME
objects.

• Chapter 6, ((I/O Devices and Interrupt Handling,"
discusses device interrupts, interrupt priority
levels and procedures to manipulate them,
recovery from power failure, the kernel services
that affect the state of DEVICE objects, direct
memory access UNIBUS and QBUS device
handling procedures, and device register
procedures.

• Chapter 7, (tThe Network Service," describes the
VAXELN Network Service in functional terms,
including network applications, application mes
sage services, name servers, node names and
numbers, network management, and the facilities
for communication with non-V AXELN nodes.

xx

• Chapter 8, ((System Security," discusses the
V AXELN security features and how they can be
used to protect resources and data.

• Chapter 9, ((The File Service," discusses device
specifications, volume names, file specifications,
the File Access Listener, using file service volumes
from VMS, file service operations, file utilities,
disk and tape utilities, the interface with disk and
tape drivers, and the Data Access Protocol.

• Chapter 10, ((Device Drivers," discusses the
features ofVAXELN device drivers, including disk
drivers, a tape driver, printer drivers, terminal
dri vers, and real-time device drivers.

• Chapter 11, ((Exception Handling," discusses
V AXELN exceptions and exception handling
procedures, as well as status codes and the
message processing features that handle the
conversion of status codes into message text.

• Chapter 12, ((Program Development," summarizes
the use of the V AXELN Pascal and V AX C
compilers and the V AXNMS librarian and linker
to prepare programs for inclusion in a V AXELN
system.

• Chapter 13, ((System Development," describes the
VAXELN System Builder, including the EBUILD
command, the System Builder menus, and the
procedures for including images supplied by
DIGITAL (drivers and services).

• Chapter 14, ((Booting and Down-Line Loading,"
describes the procedure for booting the finished
V AXELN system image on a target machine, as
well as the procedure and preparatory steps for
using the Ethernet (instead of portable disks or
other media) to load systems onto target machines.

xxi

• Chapter 15, ~(Debugging," discusses the local and
remote debugging methods provided with the
V AXELN development system, including the
general concepts for using the debuggers, the
debugger syntax rules, and the V AXELN
debugger commands.

• Appendix A, ~(VAX-l1/750 Microcode Patch,"
explains the microcode control store patching
procedure required on system power-up before
running VAXELN on a VAX-l1/750.

• Appendix B, ((Kernel Procedures," summarizes the
internal call notation of the procedures performed
by the V AXELN kernel.

• Appendix C, ((Status Values/Exception Names,"
lists the status values/exception names defined
within VAXELN, including the source(s) and
description of each exception.

• Appendix D, (tV AXELN Performance Evaluation,"
evaluates the process synchronization and
management, message passing, and file I/O
performance for a V AXELN Micro V AX system.

Associated Documents

The following documents are relevant to V AXELN:

• VAXELN Release Notes (AA-Z454C-TEJ

• VAXELN Installation Manual (AA-EU37A-TEJ

• V AXELN Pascal Language Reference Manual
(AA-EU39A-TEJ

• VAXELN C Run-Time Library Reference Manual
(AA-EU40A-TEJ

• V AXELN Application Design Guide
(AA-EU41A-TEJ

xxii

• VAX/VMS DCLDictionary(AA-Z200A-TE)

• VAX/VMS 1/0 User's Reference Manual: Part 1
(AA-Z600A-TE)

• VAX/VMS 1/0 User's Reference Manual: Part 2
(AA-Z601A-TE)

• VAX Architecture Handbook (EB-19580-20)

• VAX Hardware Handbook 1982-1983
(EB-21812-20)

• DECnet DIGITAL Network Architecture General
Description (AA -N149A -TC)

• DECnet-VAX System Manager's Guide
(AA-H803C-TEJ

• DECnet-VAX User's Guide (AA-H802B-TEJ

• MicroVAX I Owner's Manual (EK-KD32A-OM)

• LSI-II Analog System User's Guide
(EK -AXVII-UG)

• DLVI1-JUser'sGuide(EK-DLVIJ-UG)

xxiii

xxiv

Chapter 1

VAXELN Concepts

This chapter answers general questions about what
V AXELN is and how it is used to design and develop an
application. The last section of the chapter shows you
how to actually build and down-line load a simple
V AXELN application.

What Is VAXElN?

VAXELN is a software product for the development of
dedicated, real-time systems for VAX processors. The
development tools run on the V AX/VMS and
Micro VMS operating systems.

For the purposes of this discussion, a dedicated
application is one in which the computers are used to
solve a specific problem or, possibly, a set of related
problems. The term spans a wide range of applications,
from ((workstations" designed for a particular profes
sion to automated industrial machinery and robots.

In the design of V AXELN, a real-time application is
any in which the system's response to external events is
critical. Such applications include the typical scientific
and industrial data processing situations in which the
computer's operation has to be precisely synchronized
with machines and special input/output devices.

Traditionally, the design and development of such
applications has required expert programmers. The
control of external devices usually requires a
programmer intimately familiar with the target
computer. The precise timing and hardware usage

1-1

requirements of these applications usually require
features not provided in high-level languages, meaning
that much of the device-specific code has traditionally
been written in assembly language.

Many such applications are best implemented with sets
of concurrently executing processes, which have not
traditionally been supported by high-level languages.
The execution of concurrent processes, along with other
constraints, usually requires a host operating system as
part of the application, to manage and schedule the
processes.

In other words, a traditional application programmer in
this area had to be an expert in several fields beside his
own profession: the design of real-time systems,
programming in assembly language, programming in
high-level languages, operating systems, and computer
arc hi tecture.

The aim of V AXELN is to change this picture, relying
mostly on your expertise in your own field rather than
on experience with sophisticated programming. It gives
you the following capabilities:

• High-level programming languages

• No operating system ~(overhead"

• Concurrent programming

• Transparent network support

• File Service

• Program development and debugging with
VAXNMS

These capabilities are summarized in the following
subsections.

V AXELN Concepts 1-2

High-Level Programming Languages

You can develop VAXELN systems entirely in a high
level language, including handling of devices,
exceptions, timeouts, and power failure. The
recommended languages are V AXELN Pascal, which is
a superset of ISO-standard Pascal, or the V AX C
programming language.

No Operating System ··Overhead"

V AXELN systems execute directly on the VAX
processor hardware, without the need for a host
operating system. Part of every system is a small kernel
executive that manages the system's resources,
processes, and data. Its general principles are described
later in this chapter.

Concurrent Programming

V AXELN provides multitasking in Pascal or C
programs; that is, writing a program made up of several
concurrently executing parts. Multiprogramming is
also supported; that is, you can construct a system from
several concurrently executing programs.

A full discussion of concurrent programming is beyond
the scope of this book. However, its most basic principle
is that parts of a program (multitasking), or programs
within a system (multiprogramming), are written as if
each part had the potential to execute simultaneously,
or in parallel, with any other part.

Even in cases where the programs or program parts
actually share the same computer (and so do not
actually execute in parallel), concurrent programming
has numerous advantages in system design, including
performance advantages, compared with simpler

1-3 What is V AXELN?

models in which every program runs to completion
before any other can run.

Transparent Network Support

Data communications between V AXELN jobs are
transparent across a network, and facilities are
provided to make it easy to distribute an application's
programs among several network nodes. Changing the
network location of a program typically requires no
changes to the program.

The V AXELN Network Service provides the
communication services using the DIGITAL Network
Architecture DECnet protocols. Since DECnet is
supported by all of DIGITAL's operating systems,
V AXELN applications are capable of communicating
with programs running on processors anywhere in a
DECnet network.

File Service

The VAXELN File Service supports I/O operations
from V AXELN programs to local file storage devices, as
well as remote file access to and from other network
nodes. I/O requests from the user's programs are
interpreted by the File Service and performed by the
appropriate device driver program.

The File Service uses the same ~~on-disk" structure as
V AXNMS and the same internal format as the V AX
Record Management System (RMS). Accordingly,
volumes from one environment are readable and
writable on the other.

Files are sequentially organized, but can be accessed
either sequentially or randomly. Neither RMS indexed
file organization nor indexed access is supported. Also,
RMS relative file organization is not supported.

V AXELN Concepts 1-4

An alternative to VAXELN's sequential file system is
provided by VAX Rdb/ELN, a high-performance
relational database management system that runs on
V AXELN target systems. U sing V AXELN and
Rdb/ELN, you can develop a database that is shared by
multiple nodes in an Ethernet local area network
(LAN).

VAXELN provides a separate tape File Service that
uses the same tape file structure as V AXNMS. This
service provides users with a convenient means of
transporting files to and from V AXNMS systems.

Note that the File Service is not required for 1/0 to
printers or terminals and is only present on V AXELN
systems that have storage media.

Program Development and Debugging with VAXNMS

V AXNMS is used as a host to develop V AXELN
systems through a small set of utility programs. Target
systems can be debugged remotely from the V AXNMS
host system when they are connected to the V AXNMS
system with the Ethernet, or they can be debugged
directly on the target hardware.

Chapter 15, ((Debugging," contains a full discussion of
debugging with the V AXELN debuggers.

What Is a VAXELN System?

A V AXELN system is a set of programs executing on
V AX hardware, along with standard code and data that
manage the programs' execution.

The hardware includes one or more VAX processors,
optional peripheral devices including disks and
terminals, and communication hardware to support the
execution of the programs on various nodes in aLAN.

1-5 What is a V AXELN System?

In addition, a V AXELN hardware configuration may
include special hardware you have designed or
acquired, such as custom device interfaces.

The programs executing in a V AXELN system are of
two kinds:

• User programs. These can include user-written
device drivers or resource services, as well as
typical compu ta tional programs.

• Programs (services and drivers) supplied by
DIGITAL. Examples are the File Service and the
Network Service. Included in this set of programs
are drivers for the standard supported peripheral
devices and a dynamic program loader.

You develop a new V AXELN system by writing
whatever new programs are required in V AXELN
Pascal, VAX C, or other VAX languages. Then, with
simple VAX/VMS commands, you combine the
programs with each other, with any of the standard
programs you want, and with the V AXELN kernel, to
form an executable system. (The commands are
described in Chapter 12, ~~Program Development," and
Chapter 13, ~~System Development.") Any number of
executable programs, called program images, can be
combined with the kernel to form a V AXELN system.

If you are programming for a set of computers linked by
a network, you simply prepare a system for each
connected machine, or node. In VAXELN, the term
application is used to mean the complete complex of
systems in such cases. In defining names, such as for
message ports, local names are defined for the system
in which they are created (that is, the network node),
and universal names are defined for the entire
application (that is, for any of the systems present on
any of the nodes).

V AXELN Concepts 1-6

Once a V AXELN system has been prepared, the system
image is ready to be booted on a target machine. A
V AXELN system can be booted from a disk, from a
TU58 tape cartridge, from a diskette, by using the
Ethernet to down-line load the system onto a target
machine, or from Read Only Memory (ROM).

Chapter 14, ~~Booting and Down-Line Loading,"
contains more information on booting or down-line
loading a V AXELN system image.

Structure of a Running VAXELN Appplication

After booting or down-line loading a VAXELN system
image onto each target machine in your local area
network, you have a completely defined V AXELN
application. The typical structure of such a network
based application consists of:

• A V AX processor running the V AX/VMS or
Micro VMS operating system that serves as the
host development system. This processor is used to
develop and build each VAXELN system and it
contains the VAXELN debugger, which can re
motely access one or more V AXELN target system
nodes at the same time for debugging purposes.

• One or more target machines connected by the
Ethernet to the V AX processor serving as the host
development system and to each of the other target
machines. Each target machine is a node in the
network, and each contains its own running
V AXELN system.

Each V AXELN system is a collection of jobs, each
executing a program. Each job contains a master
process and zero or more subprocesses, all executing in
parallel. (Jobs, processes, and subprocesses are
discussed in detail in Chapter 3, ~~Processes and Jobs.")

1-7 What is a V AXELN System?

The File Service, Network Service, device drivers, and
user programs are all independent jobs in an operating
VAXELN application. If the processes in a system or
network require a complex service, it is provided in an
independent program running in the system or
network.

For example, a file server, providing file storage
hardware and software for the network, is built by
constructing a VAXELN system from the Network
Service, File Service, and disk driver and running the
system on a network node that has the actual disks.
V AXELN programs anywhere in the network can then
use the file server without having to know its network
location.

Dynamic Program Loading

If your V AXELN system contains the dynamic program
loader (supplied to you as a prepared image), you can
load additional program images into your currently
running system. The program loader provides the
following advantages:

• System sizes are smaller, since all of the program
images that may ever be executed need not be
loaded into the system.

• You can decide at run time which program images
need to be included in the system and load only
those images.

• You can use the program loader as a debugging
tool, making it unnecessary to rebuild and reload a
system each time a program is changed.

V AXELN Concepts 1-8

The VAXELN Kernel

The V AXELN kernel is the layer of software that lies
between the raw hardware and your application
software. It is delivered to you as a prepared image,
ready to be built into a system along with your
programs.

The function of the kernel is to provide for the
controlled sharing of system resources and to
synchronize communication among the various
programs in the system. The kernel provides all the
mechanisms necessary for a wide range of applications,
in a simple, straightforward way. For example, it
provides the basic mechanism to communicate between
processes. It also maintains all information about the
system data and about the user programs defined for a
particular system.

The V AXELN kernel provides most of its services
through a set of objects and procedures to manipulate
them. These objects are data structures that the kernel
uses to maintain the context of some ongoing service.
(The VAXELN kernel objects are discussed in detail in
Chapter 2, ~~Kernel Objects.") Since the kernel objects
are critical to the operation of the system, both the
objects and the procedures that manipulate them are
housed wi thin the protective boundary of V AX kernel
mode.

Procedures that create, delete, or otherwise affect the
state of any of the V AXELN kernel objects are referred
to as kernel services. These services are described in
general terms in this manual, in the chapters
containing the topics to which they relate.

The language-specific call formats and detailed
argument descriptions for each kernel procedure are

1-9 The V AXELN Kernel

contained in the VAXELN Pascal Language Reference
Manual and the VAXELN C Run-Time Library
Reference Manual, as appropriate to the programming
language in use. In addition, Appendix B, ((Kernel
Procedures," shows the internal call notation for use in
constructing calls from other languages.

Creating a VAXELN Application

So far, this chapter has described the major concepts
behind VAXELN. To see the power and simplicity of
the VAXELN toolkit for yourself, follow the procedures
described in this section to take a modest Pascal or C
program from the text editing stage to execution on a
target machine.

What You Need

To create this VAXELN application, you need:

• A VAX or MicroVAX host computer with the VMS
operating system, DECnet-VAX, and VAXELN
installed on it

• An account on the host computer, with at least
OPER and NETMBX privileges

• A MicroVAX with a DEQNA (DIGITAL Ethernet
QBUS Network Adapter) for a target computer

• An Ethernet between the host computer and the
target Micro VAX

The Steps Involved

To create this, or any, V AXELN application, you must
perform the following six steps:

1. Edit the program.

2. Compile the program.

VAXELN Concepts 1-10

3. Link the program.

4. Build the system.

5. Configure the host processor for down-line loading.

6. Down-line load and run the program.

The Sample Application

There are two parts to the procedure you are about to
perform.

In Part 1, you down-line load the V AXELN application
from the host computer onto the target computer, and
run the application on the target computer without the
debugger. The application's output is displayed on the
target computer's console terminal.

In Part 2, you down-line load the VAXELN application
again, but this time you control the application from
the host using the debugger. The application's output is
displayed on the host's terminal.

Part 1

For Part 1, the object is to write a program in Pascal or
in C, and use V AXELN to build a V AXELN system
that can be down-line loaded to your target MicroVAX
and executed.

Step 1: Edit the program. From a terminal attached to
your VAXNMS host, use any text editor to create a file
containing the source code shown below. If you are
using Pascal, name the file SAMPLE.PAS and enter
the code shown in the left-hand example. If you are
using C, name the file SAMPLE.C and enter the code
shown in the right-hand example.

1-11 Creating an Application

Pascal

Program sample;

BEGIN
writeln ('Hello! ');

END.

C

sampleO
{

printf("Hello !\n ");
}

Step 2: Compile the program. Still at your host
terminal, enter this command to compile the Pascal
program:

$ EPASCAUDEBUG SAMPLE.PAS

or this command to compile the C program:

$ CC/DEBUG SAMPLE.C + ELN$:VAXELNC/LiB

These commands invoke the appropriate language
compiler to compile your source program and produce a
file called SAMPLE. 0 BJ. Actually, you do not have to
type the filename extensions (for example, the .PAS and 'I

.C), but they are included here for clarity.

The DEBUG qualifier is specified so that debug infor
mation is included in SAMPLE.OBJ. This allows you to
debug your program using the source statements.

Step 3: Link the program. At your host terminal,
invoke the VMS linker by entering this command to
link the Pascal program:

$ LINK/DEBUG SAMPLE.OBJ + ELN$: RTLSHARE/LiB +
RTULIB

or this command to link the C program:

$ LINK/DEBUG SAMPLE.OBJ +
ELN$:CRTLSHARE/LiB + RTLSHARE/LiB + RTL/LiB

VAXELN Concepts 1-12

These are rather lengthy commands; at some point, you
will probably want to create a cOIp.mand procedure for
them so you do not have to type them each time.

The LINK command links the object program
SAMPLE.OBJ with the V AXELN run-time library and
kernel, and produces a file called SAMPLE.EXE.
SAMPLE.EXE is an executable program, but it is not
yet a V AXELN application. First, it must be built into
a V AXELN system.

Step 4: Build the system. At your host terminal, next
invoke the V AXELN System Builder by entering this
command:

$ EBUILD SAMPLE

Your screen looks like this:

Build System

Edit System Characteristics

Ed it Network Node Characteristics

Edit Program Descriptions

Add Program Description

Edit Device Descriptions

Add Device Description

Edit Terminal Descriptions

1-13 Creating an Application

This is the main menu screen of the System Builder.
The System Builder does two things for you:

1. It creates a file called SAMPLE.SYS that is a boot
able system image containing your SAMPLE.EXE
program, other programs such as device drivers
and services, and appropriate subroutines from the
run-time library and the kernel.

2. It creates a file called SAMPLE.DAT that is a data
file containing text descriptions of what you edit on
the System Builder menu screens. The System
Builder uses this information to determine what to
display in the menus next time you invoke the
System Builder to build another version of your
SAMPLE system.

Notice on your screen that the item Build System is
highlighted, and the blinking cursor is located after it.
The highlighting indicates that Build System is the
item currently selected. On all System Builder menus,
the choices that are currently selected are highlighted.

The first step in building a system is to describe it.
Press the ~~down-arrow" cursor movement key (the key
with the t symbol on it) until the item Add Program
Description is highlighted.

The boxes along the bottom of your screen with the
words DO, HELP, QUIT, and EXIT, represent the PF1,
PF2, PF3, and PF4 keys, respectively, on your
keyboard.

Any time you are not sure what to do, you can press the
PF2 key to get help with the System Builder menus.

Now you want to ~~DO" the Add Program Description
item, so press the PF1 key on your keyboard.

V AXELN Concepts 1-14

After you press DO, your screen looks like this:

Program

Debug

Run

Init required

Mode

User stack (initial)

Kernel stack

Job priority

Yes

Yes

Yes

User

1

1

16

No

No
No

Kernel

pages

pages

All of the parameters are set to their defa ul ts; these are
the choices highlighted on the screen. The defaults are
fine for this application. You only need to supply the
name of your program. So type

SAMPLE.EXE

after Program (where the blinking cursor is) and press
DO (the PFI key).

This action returns you to the main System Builder
menu where the Add Program Description item is
highlighted.

N ow you are ready to build the system, so press the ttup_
arrow" cursor movement key (the key with the t
symbol on it) until the item Build System is high
lighted. Press DO (PFl).

1-15 Creating an Application

After a few seconds, the name of the system you just ,
built is displayed at the top of your screen:

System disk: [directory]SAMPLE.SYS; 1

where disk and directory identify where SAMPLE.SYS
is located. This is followed by a message stating the size
of the system image in pages and in kilobytes (Kbytes).
Now that you have built the SAMPLE.SYS system
image, your directory contains the files SAMPLE.DAT
and SAMPLE.SYS.

If you like, enter this command to see what is in
SAMPLE.DAT:

$ TYPE SAMPLE.DAT

SAMPLE.DAT contains only the data

program SAMPLE.EXE

which is the only item you edited on the System Builder
menus.

Step 5: Configure DECnet-VAX. Your network is
probably already configured properly. To check this
quickly, enter this command at your host terminal:

$ RUN SYS$SYSTEM: NCP

This command invokes the Network Control Program
(NCP) which returns the NCP> prompt. Following this
prompt, enter the command:

NCP>SHOW NODE name CHARACTERISTICS

where name is the name of your Micro VAX target
node. For instance, if your target node is named
SHRIMP, you would type:

NCP>SHOW NODE SHRIMP CHARACTERISTICS

After you press Return, you get several lines of infor
mation. If this information includes a service circuit
designation (something like ~~UN A-O") and a hardware

VAXELN Concepts 1-16

address (something like ~~AA-OO-03-01-12-49"), your
network is configured properly; please skip the rest of
this step and continue with Step 6 on page 1-19.

If you do not see a service circuit designation or hard
ware address, or you get an error message, please follow
the configuration instructions below.

The first thing you need to do is determine the target
node's DEQNA hardware address. The best way to do
this is to go to the Micro V AX console terminal, place
the Micro V AX in console mode, and examine a series of
DEQNA device registers.

To place the MicroVAX in console mode, press the Halt
button on the front panel twice-once to latch it in, and
once to release it. The > > > prompt on the
MicroVAX's console terminal indicates that it is in
console mode.

Now examine the first DEQNA device register by
typing this command:

> > >E/P/w 20001920

and pressing Return. The information that comes back
looks like this:

P 20001920 OOOOFFAA

The last two characters, AA, are the first two characters
of the DEQNA's hardware address.

Continue typing the command ~~E +" following the
console mode prompt until you have five more sets of
characters. Be sure to type a space between the ~~E" and
the ~~ +." Press Return to enter each command. The last
two characters of each output string, when joined
consecutively and separated by hyphens, form the
DEQNA's hardware address.

1-17 Creating an Application

For example:

> > >E/PIW 20001920
P 20001920 OOOOFFAA
»>E +
P 20001922 OOOOFFOO
»>E +
P 20001924 0000FF03
»>E +
P 20001926 0000FF01
»>E +
P 20001928 0000FF12
»>E +
P 2000 192A 0000FF49
»>

Here, the hardware address is AA-00-03-01-12-49. (The
last two characters of each output string are not
highlighted on your screen; they are only highlighted
here for illustration.)

Once you have the MicroVAX's DEQNA hardware
address, return to your host terminal, which should
still be showing the NCP> prompt. (If not, enter the
command RUN SYS$SYSTEM:NCP.)

Assuming your host is a VAX 11/730, 11/750, 11/780,
11/785, or 8600, enter these commands next:

NCP>SET NODE name HARDWARE ADDRESS #
NCP>SET NODE name SERVICE CIRCUIT UNA-O

where name is the node name of your Micro V AX target
machine, and # is the Micro V AX's hardware address
you just determined. For example, if SHRIMP's
hardware address is AA-00-03-01-12-49, the correct
commands would be:

NCP>SET NODE SHRIMP HARDWARE ADDRESS -
- AA-00-03-0 1-12-49

V AXELN Concepts 1-18

NCP>SET NODE SHRIMP SERVICE CIRCUIT UNA-O

If your host is a MicroVAX, use the same SET NODE
commands, but substitute QNA-O for U NA-O. These SET
NODE commands identify the target machine to the
host computer.

N ext, issue these commands to enable the host
computer to recognize boot-request messages from the
target machine:

NCP>SET CIRCUIT UNA-O STATE OFF
NCP>SET CIRCUIT UNA-O SERVICE ENABLED
NCP>SET CIRCUIT UNA-O STATE ON

Again, if your host computer is a Micro V AX, use QNA-O
instead ofUNA-O.

These SET NODE and SET CIRCUIT commands are in
effect only until the host system is rebooted. To make
them permanent, use the DEFINE and SET commands
described under ~~Configuring a Host for Down-Line
Loading" and (~Adding the Target Machine to the Host
Node Data Base" in Chapter 14 of this manual.

Step 6: Down-line load and run the program. First,
enter this command following the NCP> prompt to tell
the host computer what file to send to the target
machine:

NCP>SET NODE name LOAD FILE -
- disk: [directory]SAMPLE.SYS

where name is the name of the Micro V AX target node,
and disk and directory identify where SAMPLE.SYS is
located. For instance, if SAMPLE.SYS is in a directory
named MALCOLM, and this directory is located on a
disk named WRKD$, the command for target node
SHRIMP is:

NCP>SET NODE SHRIMP LOAD FILE -
- WRKD$: [MALCOLM]SAMPLE.SYS

1-19 Creating an Application

Next, go to your target Micro VAX and place it in
console mode by pressing the Halt button on the front
panel twice-once to latch it in and once to release it.
The prompt> > > appears on the Micro VAX's console
terminal to indicate console mode.

Now enter this command at the Micro V AX's console
terminal following the console mode prompt:

»>8 XQAO

A minute or two after you press Return, you should see
the messages VAXELN V2.0 and Hello!. The Hello! is the
output of your program. So congratulations! You've just
written, down-line loaded, and executed your first
V AXELN application.

If instead of Hello! you get the error message No
response from load server XQAO, you may have entered
the NCP SET NODE name LOAD FILE command
incorrectly, or the network may not be configured
properly. Try repeating Steps 5 and 6. If the down-line
load still does not work, see Chapter 14, ~(Booting and
Down-Line Loading."

Before continuing with Part 2, enter the EXIT
command after the NCP> prompt at your host terminal
to return to the VMS command interpreter.

Part 2

For Part 2, the object is to use the debugger to initiate
the down-line load, and control the execution of the
program on the target machine from the host terminal
instead. You can also use the debugger to correct errors
in the source code, although you will not need to in this
example.

For this part, first be sure there are no bootable disks
on the target machine. The easiest way to do this is to
remove all diskettes from the diskette drives, and press

V AXELN Concepts 1-20

the fixed disk Ready button on the Micro V AX front
panel once so that it latches in. The green light in the
center of the button turns off, indicating that the fixed
disk is off-line. If your target Micro VAX has an addi
tional fixed disk, place it off-line also by pressing the
associated Ready button.

Step 1: Build a new system. You want to build a new
system that can be down-line loaded to the target
computer, but debugged from the host terminal, so
enter this command to invoke the V AXELN System
Builder:

$ EBUILD SAMPLE

Once again, your screen looks like this:

Build System

Edit System Characteristics

Edit Network Node Characteristics

Edit Program Descriptions

Add Program Description

Edit Device Descriptions

Add Device Description

Edit Terminal Descriptions

1-21 Creating an Application

This time, press the ~~down-arrow" cursor movement
key (the key with the t symbol on it) until the item
Edit Program Descriptions is highlighted, and press the
DO key (PFl). Your screen now looks like this:

SAMPLE.EXE

Press the DO key again to display the next screen.

V AXELN Concepts 1-22

Here is the next System Builder menu screen:

Program

Debug

Run

Init required

Mode

User stack (initial)

Kernel stack

Job priority

SAMPLE.EXE

Yes No
Yes No

Yes No
User Kernel

1 pages

1 pages

16

Notice that the information for Program is filled in for
you with the value you entered last time.

On this screen, turn debugging on _ by pressing the
(~down-arrow" cursor movement key once (the key with
the ~ symbol on it), then the ((left-arrow" cursor move
ment key once (the key with the +- symbol on it). After
you do this, ((Yes" is highlighted on the Debug line
item.

Now press the DO key (PFl). This takes you back to the
previous menu screen.

Now press the BACK key (PF4) to return to the main
menu. On this screen, the item Edit Program
Descriptions is highlighted, because that is what you
were just doing.

1-23 Creating an Application

Now press the C(up-arrow" cursor movement key (i)
twice, so that the item Edit System Characteristics is
highlighted. Press DO to get this screen:

System image SAMPLE

Debug Local Remote Both None

Console Yes No

Instruction emulation String Float Both None

Boot method Disk ROM Downline

Disk/volume names

Guaranteed image list

Page table slots 64

On this screen, press the ((down-arrow" cursor
movement key (t) twice, then the ((right-arrow" cursor
movement key (~) bnce to set the Console option to
((No". The combination of ((Remote" Debug and ((No"
Console causes the program output to be displayed at
the host terminal used for debugging.

Now press DO. This returns you to the main System
Builder menu. Press the ((up-arrow" cursor movement
key (i) once so that Build System is highlighted, and
press DO. After a few seconds, the name of the system
you just built is again displayed at the top of your
screen:

System disk: [directory]SAMPLE.SYS; 2

V AXELN Concepts 1-24

This is followed by a message stating the size of the
system image in pages and in kilobytes (Kbytes).

You have just built a second SAMPLE.SYS system, and
your directory now contains second versions of the files
SAMPLE.DAT (SAMPLE.DAT;2) and SAMPLE.SYS
(SAMPLE .SYS;2).

If you like, see what is in SAMPLE.DAT;2:

$ TYPE SAMPLE.DAT

SAMPLE.DAT now contains the data

characteristic Inoconsole
program SAMPLE.EXE Idebug

which are the items you edited on the System Builder
menus.

Step 2: Down-line load and run the program. Now you
are ready to enter the EDEBUG command at your host
terminal, which invokes the VAXELN debugger and
initiates the down-line loading of your program. Enter
this command at your host terminal:

$ EDEBUG/LOAD = SAMPLE.SYS name

where name is the name of the Micro V AX target node.
For instance, the command for target node SHRIMP is:

$ EDEBUG/LOAD = SAMPLE.SYS SHRIMP

In Part 1, you entered the NCP SET NODE name
LOAD FILE command and bootstrapped the target
MicroVAX from its console terminal. This time, the
EDEBUG command does the NCP command for you,
and causes the target node to reboot.

After a few seconds, the messages

Edebug V2.0
Loading" name".
Connecting to" name".

1-25 Creating an Application

appear on your host terminal, where" name", again, is
the name of the MicroVAX target node.

The target node should reboot at this point. If it does
not reboot, it is probably configured incorrectly, and
additional error messages will appear on your host
terminal.

After the Connecting to "name" message on your host
terminal, you may see the message Retrying connect,
depending on how long it takes the host to down-line
load the target machine. This is only an informational
message.

After a few more seconds, the screen on your host
terminal looks like this if you used the Pascal program:

Job 5, process 1, program SAMPLE needs attention.
Module SAMPLE
3: BEGIN

> > 4: writeln ('Hello!');
5: END.

Edebug V2.0
Loading" name".
Connecting to "name".
Connected to "name", awaiting debug activity.
Loading traceback data from: disk:[directory]SAMPLE.EXE; 1

Edebug 5,1>

VAXELN Concepts 1-26

or like this if you used the C program:

Job 5, process " program SAMPLE needs attention.
Module SAMPLE
,: sampleO

»2: {
3: printf{" Hello!\n ");
4: }

~---

Edebug V2.0
Loading II name".
Connecti ng to II name".
Connected to II name", awaiting debug activity.
Loading traceback data from: disk: [directory]SAMPLE .EXE;'

Edebug 5,' >

You are now in the debugger, as indicated by the
prompt Edebug 5,1 >. The ((5" means job 5, and the ((I"
means process 1. The source code for your program is
displayed in the upper half of the screen. The two angle
brackets (> >) point to the current line of code.

At this point, the debugger is waiting for you to enter a
command, to debug your program.

There are many commands you can use in the
debugger. These commands are explained in Chapter
15, (tDebugging."

To finish this example and see the results of your
program execution on your host terminal, enter the
command GO following the Edebug 5,1 > prompt.

1-27 Creating an Application

Your final screen looks like this:

Job 5, process 1, program SAMPLE running.

EdebugV2.0
Loading" name".
Connecting to "name".
Connected to" name", awaiting debug activity.
Loading traceback data from: disk:[directory]SAMPLE.EXE; 1

Edebug 5,1 >go
Job 5, process 1, program SAMPLE has exited.

Hello!

Note: On your screen, the program output Hello! might
be displayed before the message: Job 5, Process 1,
program SAMPLE has exited.

Once again, congratulations! You have just down-line
loaded and controlled the execution of your program
from your host terminal.

Now, to exit, press CTRL/C (that is, hold the CTRL key
down and press the C key) to get the debugger's
attention, then enter the command EXIT to return to
the VMS command interpreter.

This concludes the example of building, down-line
loading, and executing a VAXELN application. See the
V AXELN Application Design Guide for more examples.

VAXELN Concepts 1-28

Introduction

Chapter 2

Kernel Objects

The V AXELN kernel services are object oriented. An
object is a data structure that the kernel uses to
represent a resource or some ongoing acti vi ty, such as a
process's executions.

To ensure that the kernel can guarantee the integrity
of the objects, the fields in the objects are not directly
accessible to a program. Instead, when a program calls
the kernel to create a new object, the kernel
dynamically allocates a block of memory for the object
and returns an identifying value for it. The program
then uses the identifying value to refer to the object in
further calls to kernel procedures. When the program
no longer needs the object, the identifying value can be
used again in a call to the DELETE procedure.

The types of V AXELN kernel objects are: PROCESS,
AREA, EVENT, SEMAPHORE, MESSAGE, PORT,
NAME, and DEVICE.

To make programming with kernel objects easy, the
V AXELN Pascal language has predeclared system data
types that represent the identifying values of each kind
of object. A program thus declares variables of these
types-for example, a variable of type PROCESS to
hold the identifying value of a process.

For the C programmer, the data type definitions for the
VAXELN kernel objects are contained in the #include
module $vaxelnc in V AXELNC.TLB.

2-1

Objects are always created dynamically; there are no
constants for the various object types. If you want to use
an object throughout a job, you must call the
appropriate CREATE kernel service at the beginning of
the job, saving the returned object value in a variable.
The variable's name can then be used throughout the
program to name the object. For example,

(REA TE-SE MAPHORE(main-1 ock)

creates a SEMAPHORE object at the beginning of the
job, saving the returned value that identifies the
semaphore in the variable main-lock. The semaphore
can then be waited on or signaled, for example,
anywhere in the program by using the variable's name
to reference the object:

WAIT-ANY(main-lock)

SIGNAL(main-lock)

Finally, when the program no longer needs the object, it
can be deleted:

DELETE(main-lock)

Note that, except for PORT values and AREA values
for jobs on the same node, an object's identifying value
is only valid within ajob (even in cases where the object
is known in more than onejob).

This chapter discusses each of the types of V AXELN
kernel objects, listing their associated properties, sum
marizing the operations in which their object values are
used, and describing the internal representation of
those values. In addition, the kernel's implementation
of the objects is summarized at the end of the chapter.

Kernel Objects 2-2

PROCESS Object

A PROCESS object represents the current context of a
thread of execution in a program within a job. A job
refers to a family of cooperating processes that share
memory and other resources; there can be any number
of processes within ajob.

A PROCESS object has the following associated
properties:

• One of 16 levels of process priority

• One of the process states running, ready, waiting,
or suspended

• A user name and a user identification code (DIC)

These properties and the kernel services that affect the
state of PROCESS objects are discussed in Chapter 3,
ttprocesses and Jobs."

Operations with PROCESS Values

PROCESS values are used in the following operations:

• A process is created with the CREATE-PROCESS
procedure, which returns an identifying PROCESS
value.

• A process obtains its own value with the
CURRENT-PROCESS procedure.

• A process's priority is altered by giving the value
to SET-PROCESS_PRIORITY.

• A process's execution is suspended or resumed by
giving the value to SUSPEND or RESUME.

• One process waits for another to terminate by
giving the value to WAIT-ALL or WAIT_ANY.

2-3 PROCESS Object

• One process forces another process into an
exception condition by giving the value to
SIGNAL.

• An immediate exit from a process is forced by
gi'ving the value to EXIT.

• A process is deleted from the application by giving
the value to DELETE.

Internal Representation of PROCESS Values

PROCESS values are represented internally as
longwords (32 bits) that are used by the kernel. They
are valid only within their ownjob.

AREA Object

An AREA object represents a region of memory that
can be shared among jobs on a single node in a
V AXELN network. An AREA object contains a binary
semaphore that can be used by the sharing jobs to
synchronize access to the area's data. Areas with a size
of zero are valid and represent only the semaphore.

An AREA object has the following associated
properties:

• A character-string name of up to 31 characters
that supplies a name for the area

• One of the states signaled or free

• A list of processes waiting for access to the area

• The associated region of memory

These properties and the kernel services that affect the
state of AREA objects are discussed in Chapter 3,
((Processes and Jobs."

Kernel Objects 2-4

Operations with AREA Values

AREA values are used in the following operations:

• An area is created or an existing area mapped with
the CREATE_AREA procedure, which returns an
identifying AREA value and a pointer to the
region of memory.

• To gain exclusive access, a process waits for the
signaling of an area by giving the value to
WAIT-ALL or WAIT-ANY.

• An area is signaled by giving the value to
SIGNAL.

• An area is deleted from the application by giving
the value to DELETE.

Internal Representation of AREA Values

AREA values are represented internally as longwords
(32 bits) that are used by the kernel to identify a
particular area and its properties. An AREA object
occupies one block (128 bytes) of kernel pool.

The area's associated region of memory is allocated
from physically contiguous 512-byte pages of memory
and is mapped into the creating job's PO virtual address
space. The region always occupies an integral number
of memory pages and is aligned on a page boundary.

EVENT Object

An EVENT object records occurrences of events in real
time and stores that information until explicitly
cleared by a program.

2-5 EVENT Object

An EVENT object has the following associated
properties:

• One of the states signaled or cleared

• A list of processes waiting for the event to be
signaled

These properties and the kernel services that affect the
state of EVENT objects are discussed in Chapter 4,
((Synchroniza tion."

Operations with EVENT Values

EVENT values are used in the following operations:

• An event is created with the CREATE_EVENT
procedure, which returns an identifying EVENT
value.

• A process waits for the signaling of an event by
giving the value to WAIT_ALL or WAIT_ANY.

• An event is signaled by giving the value to
SIGNAL.

• An event is cleared by giving the value to
CLEAR_EVENT.

• An event is deleted from the application by giving
the value to DELETE.

Internal Representation of EVENT Values

EVENT values are represented internally as longwords
(32 bits) that are used by the kernel to locate the actual
data and its associated properties, such as its current
signaled/cleared state. An EVENT object occupies one
block (128 bytes) of system pool.

Kernel Objects 2-6

SEMAPHORE Object

A SEMAPHORE object is used to protect a resource
(including other data) from simultaneous access or to
control or ~~meter" the execution of processes that
require some limited resource. The term semaphore,
after the device that allows only one railroad train to
proceed down a section of track, suggests the most
widespread use in programming: guarding a single
resource (the track, in that case) from simultaneous
use.

A SEMAPHORE object has the following associated
properties:

• A count of the number of processes that will be
allowed to obtain the semaphore without waiting
for some other process to signal it

• The maximum allowed value for count, which is
the maximum number of processes that may
simultaneously have the semaphore

• A list of processes waiting for the semaphore to be
signaled

These properties and the kernel services that affect the
state of SEMAPHORE objects are discussed in Chapter
4, ~(Synchronization."

Operations with SEMAPHORE Values

SEMAPHORE values are used in the following
opera tions:

• A semaphore is crea ted with the
CREATE-SEMAPHORE procedure, which returns
an identifying SEMAPHORE value.

2-7 SEMAPHORE Object

• A process waits for the signaling ofa semaphore by
giving the value to WAIT_ALL or WAIT_ANY.
Satisfying the wait decrements the semaphore
count.

• A semaphore is signaled by giving the value to
SIGNAL. This increments the semaphore count.

• A semaphore is deleted from the application by
giving the value to DELETE.

Internal Representation of SEMAPHORE Values

SEMAPHORE values are represented internally as
longwords (32 bits) that are used by the kernel to locate
the actual object and its associated properties, such as
its current count. A SEMAPHORE object occupies one
block (128 bytes) of system pool.

MESSAGE Object

A MESSAGE object is used to send data from a job to a
port, which will usually be in another job.

A MESSAGE object has the following associated
properties:

• The message data

• The message length

These properties and the kernel services that affect the
state of MESSAGE objects are discussed in Chapter 5,
~~Interjob Communication."

Operations with MESSAGE Values

MESSAGE values are used in the following operations:

• A message is created and its data mapped into the
job's PO address space with the
CREATE-MESSAGE procedure, which returns an

Kernel Objects 2-8

identifying MESSAGE value and a pointer to the
data.

• A message is sent to a specified message port by
giving the MESSAGE and PORT values to SEND,
which removes the message data from the sending
job's address space.

• A message is removed from a message port and its
data mapped into the receiving job's PO address
space by giving the PORT value to RECEIVE,
which returns an identifying MESSAGE value and
a pointer to the message data.

• A message is deleted from the application by
giving the value to DELETE.

Internal Representation of MESSAGE Values

MESSAGE values are represented internally as
longwords (32 bits) that are used by the kernel to
identify a particular message and its properties.

The associated message da ta is allocated from
physically contiguous 512-byte pages of memory and is
mapped by the creating or receiving job's PO virtual
address space. Therefore, the data always occupies an
integral number of memory pages and is aligned on a
page boundary. (These characteristics make the
message data ideally sui ted for a V AX D MA -device 110
buffer.) In addition, the fact that PO is used allows the
message data to be shared by all processes in ajob.

PORT Object

A PORT object (or, informally, message port) is a
destination for messages. Each port belongs to a
particular job, but it can be referenced from any job in
the local area network. In contrast to other object

2-9 PORT Object

values, the identifying value of a port is meaningful in
all jobs in all nodes in the network.

Each executing job in a system has a unique message
port, its job port, created when the first process in the
job is started and which it can use to receive messages
from other jobs. Programs can create additional
message ports dynamically with the CREATE_PORT
procedure.

A PORT object has the following associated properties:

• The maximum number of queued messages

• A list of queued messages (which will be removed
from the port by the RECEIVE procedure)

• The state of the port as regards circuit connection:
unconnected, connected, or in one of the special
states arising during establishment of a connection

• If connected, the PORT value identifying the port
to which it is connected

These properties and the kernel services that affect the
state of PORT objects are discussed in Chapter 5,
((Interjob Communication."

Operations with PORT Values

PORT values are used in the following operations:

• A port is created with the CREATE-PORT
procedure, which returns an identifying PORT
value.

• A job obtains its own, unique PORT value for use
in interjob communication with the JOB_PORT
procedure.

• A process waits for the receipt of a message by
giving the PORT value to WAIT -ALL or
WAIT-ANY. When a message arrives at the port,

Kernel Objects 2-10

any process waiting on that port is allowed to
continue if its wait conditions are otherwise
satisfied. The receiver process uses the RECEIVE
procedure to obtain the message. Note that only
processes in the job that creates a port can receive
messages from that port with RECEIVE.

• Ports are connected and disconnected in circuits
with the CONNECT -CIRCUIT and
DISCONNECT-CIRCUIT procedures, respec
tively. In addition, ACCEPT_CIRCUIT allows a
process to wait for a circuit connection request on a
specified port .

• A port is deleted from the application by giving the
value to DELETE.

Internal Representation of PORT Values

PORT values are 128-bit values that uniquely identify
a message port. The representation is shown in Figure
2-1.

31

port table index

network number

Ethernet node

reserved I address

127

o

Figure 2-1. PORT Value Representation

2-11 PORT Object

Each PORT object occupies one block (128 bytes) of
kernel pool and also requires one entry in the kernel's
port address table.

NAME Object

A NAME object is an entry in a name table that
associates character-string names with message ports.
The local name table (maintained by the kernel) is used
only within a node. The universal name table
(maintained with the aid of the Network Service)
establishes port names valid at all nodes in the local
area network.

A NAME object has the following associated properties:

• A character string of up to 31 characters that
names an existing message port

• The PORT value identifying the message port

• One of the properties local or universal

These properties and the kernel services that affect the
state of NAME objects are discussed in Chapter 5,
~~Interjob Communication."

Operations with NAME Values

NAME values are used in the following operations:

• A name is created with the CREATE-NAME
procedure, which returns an identifying NAME
value.

• An associated PORT value is obtained by giving
the name string to TRANSLATE-NAME, which
returns the associated PORT value.

• A name is deleted from the application by giving
the value to DELETE.

Kernel Objects 2-12

Internal Representation of NAME Values

The identifying NAME value is a longword (32 bits).
The NAME object itself occupies one block (128 bytes)
of kernel pool. A universal name also requires 64 bytes
of dynamic memory in the local N etwor k Service and 64
bytes in the Network Service that is the network's
current name server. (See Chapter 7, ((The Network
Service," for more information.)

DEVICE Object

A DEVICE object provides the means for a program's
interrupt service routine to signal the occurrence of a
particular device controller interrupt to a waiting
process. The interrupt service routine is called by the
kernel each time the connected interrupt occurs; it can
signal the DEVICE object to synchronize itself with
processes in the job that created the object.

A DEVICE object has the following associated
properties:

• A set of device characteristics established with the
System Builder

• A communication region

• An interrupt service routine, which is invoked by
the kernel when an appropriate interrupt occurs
and is passed the DEVICE value and
communication region

These properties and the kernel services that affect the
state of DEVICE objects are discussed in Chapter 6,
((I10 Devices and Interrupt Handling."

2-13 DEVICE Object

Operations with DEVICE Values

DEVICE values are used in the following operations:

• A DEVICE object is created with the
CREATE_DEVICE procedure, which returns an
identifying DEVICE value.

• A process waits for the signaling of a DEVICE
object from an interrupt service routine by giving
the value to WAIT_ALL or WAIT_ANY.

• A device is signaled from an interrupt service
routine by giving the value to SIGNAL_DEVICE.

• A DEVICE object is deleted from the application
by giving the value to DELETE.

Internal Representation of DEVICE Values

DEVICE values are represented internally as
longwords (32 bits) that are used by the kernel to locate
the actual object containing its associated properties,
such as the address of its communication region. A
DEVICE object occupies one block (128 bytes) of pool. If
an interrupt service routine is connected, it also
requires one block of pool for its dispatcher.

Kernel Implementation of Objects

Although it is usually not necessary in VAXELN
programming to know the actual details of the kernel's
implementation, a few points are useful in answering
some system configuration questions:

• The kernel allocates all objects from a pool of fixed
length blocks of memory. The number of blocks in
the pool is set with the System Builder. When the
system is booted, the kernel initializes the pool,
maps all the blocks into system space, and links all

Kernel Objects 2-14

the blocks into a list of free blocks. The fixed size of
the blocks makes allocating and deallocating
objects very efficient .

• The identifying value returned by the kernel for a
newly created object is not the virtual address of
the object. Instead, it is a 32-bit value consisting of
two indices. The indices are used to look up the
address of the object in a two-level table
maintained by the kernel for each job. These
values are thus unique for each job in the system .

• The table grows dynamically in size as the job
creates more objects. The table itself is allocated
from pool blocks and starts with one top-level block
and one second-level block. The top-level block can
point to 32 second-level blocks, and each second
level block can point to 32 objects. Therefore, a job
can have up to 1024 objects created at one time.

The preceding description applies to all objects except
ports. Because a PORT value is valid anywhere in the
network, it also includes the Ethernet node address and
additional fields reserved for future use. Thus, a PORT
value is 128 bits long. Also, the indices in a PORT value
are used for a table that describes all the ports in the
system, rather than a per-job table. The size of the port
table is also set with the System Builder, and the table
is allocated by the kernel when the system is booted.

Although the representation of identifying values may
seem complicated, it allows the validation of such a
value to be done in a very small number of VAX
instructions. Furthermore, the representation is not
important from a programming standpoint.

2-15 Implementation of Objects

Kernel Objects 2-16

Introduction

Chapter 3

Processes and Jobs

In V AXELN, a program is executed as a job. Jobs are
created dynamically with the CREATE....JOB procedure
to execute a specific program image that was included
with the System Builder. When you build a system, you
have the option of specifying program images to be
executed automatically when the system is started on
the target hardware; jobs are created automatically for
these images.

The CREATEJOB procedure is also used to execute
program images that are loaded with the dynamic
program loader after the initial system is built (see
~~Program Loader Utility Procedures," later in this
chapter). In addition, the VAXELN debugger can
create jobs with the debugger command CREATE JOB.
(See Chapter 15, ~~Debugging," for more information.)

Processes are the execution agents for VAXELN
programs or for concurrently scheduled parts of
programs. The main thread of execution for a program
is executed by a master process created implicitly by the
kernel when the program is started. In V AXELN
Pascal, the main routine of a job's master process is the
PROGRAM block. In C, the main routine of a job's
master process is the function main.

A subprocess of a job is created by a call to the
CREATE-PROCESS procedure. Each subprocess exe
cutes a special routine that defines the executable code
and data available to one or more dynamically created

3-1

processes. In V AXELN Pascal, this routine is called a
process block. In C, the routine is called a function.

Within a system, there can be any number of jobs
executing the same program. Similarly, within each
job, there can be any number of subprocesses executing
the same process block or function. A job, therefore,
contains one master process executing the main
program and zero or more subprocesses.

The configurations of jobs in a running VAXELN
application can be any combination of the following:

• A single job executing on a single processor
(termed multitasking in the case where there are
subprocesses executing with the main program)

• Multiple jobs executing concurrently on a single
processor (multiprogramming)

• Multiple jobs executing on several single
processors, which are connected by the Ethernet
(distributed processing)

This chapter discusses jobs viewed as process families,
process states, job and process scheduling and termina
tion, and the V AXELN kernel services relating to jobs
and processes. Memory management and memory
allocation procedures are then discussed, followed by
interjob data sharing and the kernel services relating
to interjob data sharing.

Jobs Viewed as Process Families

The processes associated with a running program can
be thought of as a ttprocess family" in the following
senses:

• There is a hierarchy implied in the way they are
created. That is, a CREATE-JOB call creates a job
that runs a specific program; that program then

Processes and Jobs 3-2

can call CREATE_PROCESS to execute any of its
associated process blocks or functions. The
execution of the master process holds the object
values of all the subprocesses; thus, if the master
process exits, the subprocesses are deleted, as are
all memory and objects created by the job. There is
no hierarchy implied by subprocesses, however. If
a subprocess creates another subprocess and then
exits, the new subprocess continues to run.

• All the processes in a job can share externally
declared data. In addition, data can be shared
among jobs on a single node in a V AXELN
network via the use of AREA objects. Otherwise,
two jobs can exchange information only in the form
of messages.

The V AXELN kernel keeps track of the current jobs in
a system. Therefore, if a program calls CREATEJOB
and then exits, the created job continues executing.
With this procedure, one V AXELN program can create
a separate process family, where the main program can
be any program that was originally configured into the
system or loaded with the dynamic program loader. The
new job is entirely independent of all others, with its
own data and code.

Process States

Each process in a V AXELN system is always in one of
the following four process states:

Running. A process in this state has control of the CPU
(is executing). Only one process can be running at any
given time. If control is in an interrupt service routine,
no processes are running.

Ready. A process in this state is not running but is
ready to run as soon as possible. This is the initial state

3-3 Process States

of every process, immediately after its creation. Any
number of processes can be in the Ready state.

Waiting. A process in this state is waiting for some
specified set of conditions to be satisfied. It is waiting as
a result of calling a kernel service such as WAIT_ANY
or RECEIVE that may wait for an event, for a
particular amount of time to elapse, for the receipt of a
message, and so forth.

Suspended. A process in this state is suspended as a
result of some process calling the SUSPEND procedure.
The process is not eligible to execute (that is, cannot
enter the Ready state) until it is resumed explicitly
with the RESUME procedure.

State Transitions

Transitions from one process state to another describe
the behavior of the system according to the following
rules:

• The initial state of every process is Ready.

• Among jobs with a Ready process, the V AXELN
kernel con tin ually selects the process with the
highest priority within the job with the highest
priority and changes its state to Running. The
previously Running process becomes Ready.

• When the currently Running process calls a kernel
service that waits for a set of conditions to be
satusfied, the process enters the Waiting state.

• When the wait conditions are satisfied for a
Waiting process, its state becomes Ready.

• When the currently Running process, any Waiting
process, or any Ready process calls SUSPEND, the
process enters the Suspended state.

Processes and Jobs 3-4

• When RESUME is applied to a Suspended process,
the process reenters its previous state. It becomes
Ready if it was previously Ready. If it was
previously Waiting, it reenters the Waiting state
until the specified conditions are satisfied. (It is
possible that the wait conditions were satisfied
during the suspension; if so, the resumed process
will then change from Waiting to Ready.)

Job and Process Scheduling

V AXELN uses scheduling methods to give the
appearance and effect of simultaneous execution of its
processes. You assign priorities to jobs and processes,
where a high priority means that the job or process
should be given preference over others when it is ready
to execute.

There are 32 levels of job priority, numbered from 0
(highest) to 31. The default priority of a program is
established with the System Builder or with the
LOAD-PROGRAM procedure and can be reset within
the job with the SETJOB-PRIORITYprocedure.

Within a job, processes have 16 levels of priority,
numbered from 0 (highest) to 15. The default priority of
a program's processes is established with the System
Builder or with the LOAD-PROGRAM procedure and
can be reset in a job with the
SET_PROCESS_PRIORITY procedure.

Figure 3-1 illustrates the structure of job and process
sched uling priori ties.

3-5 Scheduling

Job 1
(Priority 0-31)

Job 2
(Priority 0-31)

Process 1
(Priority 0-15)

Process 2
(Priority 0-15)

Process 3
(Priority 0-15)

Process 1
(Priority 0-15)

Process 2
(Priority 0-15)

Process 3
(Priority 0-15)

Figure 3-1. Job and Process Priorities

Job priority determines the I6-priority range in which
that job's processes are scheduled. Jobs are rescheduled
when, within a job not currently executing, a process
enters the Ready state and that process's priority is
higher than the priority of the current job's executing
process.

Processes and Jobs 3-6

Job rescheduling, which is always preemptive, is
illustrated by the following example, where JOBI has a
higher priority than JOB2:

1. JOBI has only one process, the master process; at
some point, it executes WAIT-ANY to wait for a
message to arrive at its job port.

2. JOBI now has no processes in the Ready state, so
JOB2 is given control (assuming that at least one
of its processes is Ready).

3. When a message arrives at JOB1's port, the wait
condition is satisfied, and JOB1's master process
becomes Ready again. Since JOB1's priority is
higher, it is given control of the CPU again,
preempting JOB2.

In the case where two or more jobs have equal priority,
the Ready process with the highest priority in any of
the jobs is given control, preempting all lower priority
processes. In other words, all jobs at a given priority are
scheduled against each other, with current control
always being passed to the job containing the Ready
process with the highest priority.

This scheduling method implies that the job and
process priorities are unified to form one of 512 possible
combined priority values (32 job priorities x 16 process
priorities) and that the processes are scheduled against
each other using this combined value. In fact, jobs are
scheduled first, then processes; the overall priority of a
process, therefore, is always limited by the priority of
its job.

Figure 3-2 illustrates the internal representation of the
combined job and process priority values.

3-7 Scheduling

8

Job
Priority

4 3

Process
Priority

o

Figure 3-2. Combined Priority Representation

Process rescheduling, or switching, within a job can be
enabled and· disabled with the procedures
ENABLE-SWITCH and DISABLE-SWITCH. When
switching is disabled, no other process in the current
job can run. This provides a broad mechanism by which,
for example, a process could control the access to a data
set. (A finer mechanism is the use of semaphores,
discussed in the next chapter.)

Since processes are automatically rescheduled in a
predictable way, you can design a system in which
there are no important or noticeable delays in a
program's operation, even though it spends at least
some of its time sitting idle while another program
executes.

The definition of ((important delay" is a large part of the
definition of ((real-time performance" for your
application. It is clearly impossible to exactly
synchronize a computer or computer program with
external phenomena; instead, to satisfy the practical
definition of real time, the system must contain
processes which, given control of the CPU, can respond
to external events in an acceptable amount of time.
Furthermore, the processes should have high enough
priority to ensure that they are not preempted while
they are reacting to important external events.

Processes and Jobs 3-8

Generally speaking, real-time systems are best
designed by first assuring that the processes in charge
of specific events are properly designed for, and
synchronized with, those events. Only then should
process priorities enter in, as a ((fine-tuning"
mechanism; priorities are not a means of synchroniza
tion. Most of the issues related to synchronizing
processes with each other or with external events are
summarized in Chapter 4, ((Synchronization."

Initialization Programs and System Startup

When a V AXELN system is built, programs described
to the System Builder (see Chapter 13, ((System
Development") can be given the characteristic [nit
required. This characteristic means that the program is
an ~(ini tializing" program that will be started in order of
job priority when the system is started.

If you say that initialization is required, the program is
started and no jobs of a lower priority are started until
it either calls the INITIALIZATION-DONE procedure
or terminates. The INITIALIZATION_DONE proce
dure informs the kernel that the calling program has
completed an initialization sequence, and other
programs can be started.

The INITIALIZATION-DONE procedure makes it
possible to synchronize the start of several programs in
a system. For example, suppose a system has descrip
tions of the following programs:

program 1 Run, Init required, Priority 5
program2 Run
program3 Run, Init required, Priority 6
program4 Norun

When the resulting system is started, the initializing
programs are started, one at a time, in the order of their

3-9 Scheduling

job priorities, followed by the non-initializing I

programs. Here, program1 is started first, followed by
program3 (remember that with job priorities, low
numbers mean high priorities). When program 1 calls
INITIALIZATION-DONE, program3 is started
immediately; if program 1 does not call
INITIALIZATION_DONE, it must run to completion
before program3 (or any other program) is started.

Program2 is not started until both initializing
programs complete or call INITIALIZATION-DONE.
Program4 is not started automatically; it must be
activated by a CREATE....JOB call from one of the other
programs.

Program Loader Utility Procedures

Normally, the programs that are available to run using
the CREATE....JOB procedure are specified with the
System Builder. To allow the system to react to new
situations without being rebooted, however, VAXELN
provides utility procedures that can be used to
dynamically load and unload program images after the
initial system is built. After a program image is
dynamically loaded, CREATE....JOB is used to execute
the program image.

The $LOADER_UTILITY module provides the
following procedures:

• LOAD_PROGRAM, which loads a specified image
file into the currently running system. The file is
opened in the context of the caller, so the file name
must be specified in enough detail to correctly
identify the file. The file can be resident on the
system or on a remote node; there is no need to
have a file system on the node to which the
program is being loaded. Arguments specify the
initial stack size, job and process priority, and

Processes and Jobs 3-10

whether or not the debugger should be given
control when the program starts.

• UNLOAD_PROGRAM, which unloads the
specified program from the system.

One restriction is that any shareable images that the
dynamically loaded program references must be
included in the system at system build time. The
Guaranteed image list item on the Edit System
Characteristics menu allows you to specify the images
that are needed by the dynamically loaded programs.
These specified images are merged with those needed
by other programs and the System Builder resolves any
in terdependencies.

Another item on the same menu, Dynamic program
space, specifies the number of memory pages that can
be used by dynamically loaded programs. It is a quota
and does not cause the pages to be allocated until the
program is actually loaded. (For more information, see
Chapter 13, ((System Development.")

Job and Process Termination

A job persists as long as its master process exists. The
job is terminated when its master process terminates.
The termination of a job also means that all the
subprocesses, data, and objects are deleted.

Once created, a process persists until it terminates,
either when the end of its main routine is encountered,
or as a result of one of the following explicit actions:

• The execution of the EXIT procedure.

• The deletion of the process with the DELETE
procedure.

• The receipt of a QUIT exception (caused by
invoking SIGNAL from this or another process).

3-11 Termination

• The occurrence of other unhandled signals.

When a process is terminated, only some of the
resources that it acquired during its execution are
freed. Any objects that it created and did not delete
remain active, since the kernel cannot detect whether
the object is in use by more than one process in a job.
The only resources that are freed are the process's
private memory resources; that is, the process's P1
virtual address space or stack space (see ((Memory
Management," later in this chapter) and the kernel's
pool space associated with the process's activation.
Only when a job's master process is deleted are the
undeleted objects acquired by the job's processes
deleted.

Caution: For the reasons just described, care should be
taken when using the DELETE procedure on a process.
Processes that terminate in this way are not
terminated in an orderly manner and cannot be
restarted. Deletion of a process is intended as an
emergency method to stop a process; SIGNAL and
EXIT provide a more controlled means of forcing a
process to stop.

Processes are terminated in an orderly manner with
the EXIT procedure or when they return from the
outermost procedure block. (See Chapter 11, <:(Exception
Handling," for a discussion of VAX stack architecture
and call frames.)

The orderly termination of a process causes two special
events to happen:

• If the debugger is active in the process, the user is
notified that the process is going a way.

• A special exit handler feature (see below) is
activated so that any dangling resources can be
cleaned up by the code that allocated the resource.

Processes and Jobs 3-12

Exit Utility Procedures

VAXELN provides two utility procedures that can be
used to establish an exit handler to perform cleanup
operations following the termination of a job with the
EXIT procedure. The $EXIT_UTILITY module
provides the following procedures:

• DECLARE_EXIT_HANDLER, which calls an exit
handler routine defined by the program

• CANCEL_EXIT_HANDLER, which deletes a
specific exit handler routine

Kernel Services for Processes and Jobs

The kernel services affecting the state of PROCESS
objects are summarized below.

CREATE-.JOB Procedure

The CREATE-.JOB procedure creates a new job which
executes a specified program image, returning the new
job port value. This value can be used by the caller to
send messages to the new job. The same value can be
obtained within the new job by the JOB-PORT
procedure. An optional list of string arguments can be
passed to the program.

An optional argument identifies a port that receives
notification of the created job's termination. If this
argument is present, a ~(termination message" is sent to
the port when the new job terminates. The termination
message is the integer completion status of the created
job's master process. If the argument is omitted, no
message is sent.

The job's master process can return an explicit status
with the EXIT procedure; if it specifies no status and

3-13 Kernel Services

completes successfully, the default status returned in
the termination message is 1 (success). Note that an
unhandled exception condition causes the value of the
exception to be returned.

Note that CREATE-JOB runs a program image
already built into the system (with the System
Builder), or it executes program images that are loaded
dynamically with the LOAD-PROGRAM procedure
after the initial system is built.

CREATE-PROCESS Procedure

The CREATE-PROCESS procedure creates a new
subprocess running the specified process block or
function, returning the new PROCESS value that
identifies the process. An optional list of zero to 31
arguments can be passed to the created process.

An optional integer variable receives the final (exit)
status of the created process. The variable must be in
shared space. Such a value can be returned by the
created process with the EXIT procedure. If the
argument is omitted, no such status is returned. Note
that an unhandled exception condition causes the value
of the exception to be returned.

CURRENT-PROCESS Procedure

The CURRENT-PROCESS procedure returns the
PROCESS value identifying the process from which it
is called.

DELETE Procedure

The DELETE procedure removes the PROCESS object
from the system. When a process is deleted, if any other
process is waiting for its termination, that aspect of its
wait condition is satisfied permanently.

Processes and Jobs 3-14

When a master process is deleted, all subprocesses in
the same job are also deleted, along with all data and
kernel objects created by any processes in the job. The
exit status of a deleted process is KER$-NO-STATUS.

DISABLE-SWITCH Procedu re

The DISABLE_SWITCH procedure disables process
switching for the job from which it is called. The calling
process continues executing, regardless of the priorities
of other processes in the job, until switching is
reenabled with ENABLE_SWITCH.

Note: Process switching is reenabled automatically if
the process calls EXIT or deletes itself.

DISABLE-SWITCH is necessary only when a process
must perform some operation with assurance that it
will not be preempted by other processes in the job.

ENABLE-SWITCH Procedure

The ENABLE-SWITCH procedure restores preemptive
process scheduling, or switching, for the calling job.
When process switching is enabled, the control of the
CPU is given to the highest priority process in the job
that is ready to run. Note that the procedures
ENABLE-SWITCH and DISABLE-SWITCH keep a
count of the number of times they are called; switching
is enabled only if the number of calls to
ENABLE_SWITCH is equal to the number of calls to
DISABLE-SWITCH for a given process.

EXIT Proced u re

The EXIT procedure causes an immediate exit from the
calling process. The procedure is similar to deleting the
current process, except it can optionally return an exit
status to the process that created it. Ifprocess switching

3-15 Kernel Services

was disabled by the process, it is reenabled automati
cally, so control goes to the highest priority process in
the job that is ready to run. If the calling process is the
master process, all the objects it owns (including
subprocesses) are deleted; all open files are closed.

GET-USER Procedure

The GET -USER procedure returns the user identity of
either the calling process or the partner process
connected by a circuit to the caller's port. An optional
argumen t specifies a port connected in a circuit; if this
argument is supplied, the port must be currently
connected in a circuit that the caller has accepted with
the ACCEPT_CIRCUIT procedure. Valid information
is not returned if the caller initiated the connection
with CONNECT_CIRCUIT; that is, GET-USER can
only provide information about the object of a
connection, not the subject.

Other optional arguments return the user name string
and the UIC of either the calling process or the partner
process. If the circuit is from a remote user, but there is
no Authorization Service available in the system (that
is, the Authorization required characteristic on the Edit
Network Node Characteristics System Builder menu is
((No"), GET-USER returns zero for the UIC parameter.

INITIALIZATION-DONE Procedure

The INITIALIZATION_DONE procedure informs the
kernel that the calling program has completed an
initialization sequence, and other programs can be
started if specified. If initializing programs do not call
this procedure, they run to completion before any other
program can be started. If they do call this procedure,
they continue running at the next statement, and the
next program in the sequence can be started.

Processes and Jobs 3-16

Note that if a program with the System Builder
characteristic I nit req uired does not call the
INITIALIZATION-DONE procedure, and does not run
to completion, no other program on the system can run
(although programs already started continue to run).

RAISE-PROCESS-EXCEPTION Procedure

RAISE_PROCESS_EXCEPTION raises the asynchro
nous exception KER$-PROCESS-ATTENTION in the
specified process.

RESUME Procedure

The RESUME procedure resumes the execution of a
suspended process. A resumed process is ready to run,
but not necessarily running. If the process was waiting
when it was suspended, the wait is repeated when it is
resumed. Any asynchronous exceptions that occurred
during the suspension are raised when the process
runs, including the exception KER$-QUIT-SIGNAL
tha t results from signaling the process itself.

SET -.lOB-PRIORITY Proced u re

This procedure sets the scheduling priority of the
current job to an integer in the range 0-31. Priority 0 is
the highest. The initial priority for a job can be set by
the System Builder as part of a program description or
by the LOAD_PROGRAM procedure; the default is 16.

SET -PROCESS-PRIORITY Procedure

This procedure sets the scheduling priority of the
specified process to an integer in the range 0-15.
Priority 0 is the highest. The initial priority for the
processes in a job can be set by the System Builder as
part of a program description or by the
LOAD-PROGRAM procedure; the default is 8.

3-17 Kernel Services

SET-USER Procedure

The SET-USER procedure sets the user identity of the
current process. A string of up to 20 characters specifies
the user name to be associated with the process. An
integer supplies the UIC to be associated with the
process.

SIGNAL Procedure

A process can be signaled to quit with the SIGNAL
procedure. The process must establish an exception
handler for the exception KER$-QUIT-SIGNAL. If it
does not handle the exception, it is forced to exit.

SUSPEND Procedure

The SUSPEND procedure suspends the execution of a
process. If the process is currently waiting, as a result of
WAIT_ANY or WAIT-ALL, it is removed immediately
from the Waiting state and then suspended. If the
process is subsequently resumed, the wait is repeated.

WAIT-ANY and WAIT-ALL Procedures

The WAIT procedures are used to make a process wait
for one to four objects. WAIT_ANY allows the invoking
process to continue if any of the wait conditions is
satisfied; WAIT_ALL requires that all the conditions be
satisfied simultaneously. A wait for a PROCESS object
is satisfied when the process terminates.

Waiting causes no modification to a PROCESS object,
and all waiting processes continue if their wait
conditions are otherwise satisfied. Both procedures can
specify a timeout argument, which defines either a time
interval or absolute time after which the waiting
process proceeds regardless of the states of the objects.

Processes and Jobs 3-18

Memory Management

V AXELN uses the V AX memory management
hardware to map jobs in a virtual address space.
Although knowledge of this subject is not essential, this
section may be useful to you if you are already familiar
with VAX memory management terminology.

Each job created by V AXELN executes a program
image, a copy of all the code and initial data necessary
to run the program. You build program images into the
system image with the System Builder or load them
dynamically with the program loader. The shareable
run-time library modules and kernel are not included
as part of a program image, but are images themselves.

When a V AXELN system is booted, the kernel maps
the system image containing all the program images,
shareable run-time library images, and the kernel
image into the System region of the V AX virtual
address space. The System region maps the system
image and kernel data, as shown in Figure 3-3.

When a job is created to run a program image, the
kernel creates a PO page table and maps the program
image into the PO region of the job's virtual address
space. Each job's PO region maps the program image,
heap data, and message data, as shown in Figure" 3-4.

The kernel also makes a copy of any read/write data in
the program image, though no copy is made of read
only code and data. If there are multiple jobs in a
system running the same program, there is only one
copy of the read-only code and data, and as many copies
of the read/write data, message data, and heap data as
there are jobs running the program. Since the run-time
library uses heap data for many of its data structures,
the context of open Pascal and C files is also in PO.

3-19 Memory Management

80000000: Kernel Image

Program 1 Image

Program n Image

Run-Time Images

Kernel Pool and Data

BFFFFFFF:
unused

Figure 3-3. System Region

00000000:

3FFFFFFF:

ReadlWrite Data

Read-only Code/Data

Heap Data

Message Data

unused

Figure 3-4. PO (Program) Region

Processes and Jobs 3-20

All processes in a job share the same PO page table and,
consequently, the same PO region. This means that any
data in the job's PO region is accessible to other
processes; assuming proper synchronization methods
are used by the processes, a pointer to any data item in
the PO region can be passed to any process in the job.
Note that a pointer cannot be passed to a process in
another job, since the pointer refers to a different data
item in that job's PO region.

For each process created for ajob, the kernel allocates a
Pl page table and maps the process's kernel mode and
user mode stacks in the Pl region of the V AX virtual
address space. These stacks are used by Pascal or C
programs for all process-local variables (those declared
inside a block) and procedure call frames. The Pl region
does not map any area of the program image; it is
exclusively for dynamic memory.

User mode processes have two stacks: a fixed kernel
mode stack and a dynamically sized user mode stack.
The VAXELN kernel automatically extends the size of
the user mode stack as the process executes and
demands a larger stack. The user mode stack grows
downward in the Pl address space; its initial size is
specified as a program attribute.

The kernel mode stack in a user mode process is two
pages long. It is used by the VAXELN kernel when exe
cuting kernel procedures and dispatching exceptions.

Kernel mode processes have only a fixed-size kernel
stack that is used by both the process and the VAXELN
kernel procedures. Overflowing the kernel mode stack
causes an exception, named KER$-KERNEL-ST ACK.
When this exception is delivered, the kernel stack
pointer is reset to the top of the original stack and the
previous contents of the stack are lost. The size of the
kernel mode stack is specified as a program attribute.

3-21 Memory Management

In addition to the stacks, the PI address space also
contains a page holding a process context block. This
block is used by the V AXELN kernel, debugger, and
run-time library routines to hold certain context
information. The PI region of the VAX virtual address
space is shown in Figure 3-5.

80000000:
Debug context block

(if needed)
7FFFFEOO:

Kernel Mode Stack
(at I east 2 pages)

User Mode Stack
(if necessary)

Figure 3-5. P1 (Control) Region

Stack Utility Procedures

For most programs, the V AXELN stack management is
exactly what is needed. There are two specific problem
areas, however:

1. The stack usage of a process might vary widely
during the execution of a process. When the
process does not require a large stack, the
previously allocated stack might be perceived as
wasteful, since the kernel makes no attempt to
automatically trim the stack. (Since it knows
nothing about the behavior of the program, this is
expected.) However, a program might want direct
control over the extension and contraction of the
stack.

Processes and Jobs 3-22

2. For kernel mode programs, the stack size specified
to the System Builder is allocated to each process
in the job. Because each process may have widely
different stack usage, this is again a potentially
wasteful burden on the system's memory usage.

VAXELN provides utility procedures that can be used
to explicitly manage the stack size during the execution
of a program. The $STACK_UTILITY module provides
the following procedures:

• ALLOCATE_STACK, which is called to verify the
availability of a particular amount of stack space.
If the stack space is not available, the procedure
allocates the additional space needed. This
procedure is most useful for a kernel mode process
that demands more stack space than was allocated
at sytem build time; it is not useful for a user mode
process, since the kernel will automatically extend
the stack as needed by the process .

• DEALLOCATE_STACK, which is called to trim
the stack by up to the number of bytes specified. If
the stack does not contain the specified space, the
effect is to trim the stack back to the page in which
the procedure is running. Therefore, specifying a
large number causes the stack to be trimmed to the
currently needed size.

Memory Allocation Procedures

The procedures summarized in this section are used for
allocating and freeing memory.

ALLOCATE-MEMORY Procedure

The ALLOCATE-MEMORY procedure allocates
physical memory pages into the virtual address space of
the job that calls it. The allocated memory can be placed

3-23 Memory Allocation Procedures

at a specified virtual address or at a virtual address
selected by the kernel. The procedure returns the
address at which the memory is allocated.

The caller specifies the size of the needed memory in
bytes, but allocation is always done in units of memory
pages (5I2-byte pages). The specified size is rounded up
to page-sized units before the allocation. Allocation
always begins on a page boundary.

When the kernel selects the allocation virtual address,
it will be in the PO or shared region of the job's virtual
memory. The caller is free to specify any virtual
address, so it is possible to allocate memory in the PI or
stack region as well as at a specific memory location in
PO.

Most higher-level languages provide a more controlled
way to allocate and free dynamic memory; for instance,
the Pascal NEW procedure and the C calloc or malloc
functions. ALLOCATE-MEMORY is intended to be
used in the construction of these higher-level routines
or by programs needing direct control of memory
allocation.

The ALLOCATE-MEMORY procedure also allows a
kernel mode caller to specify the exact physical address
at which to start the allocation. This feature is intended
for very specialized applications; for example,
multiported memory or video bit-map memory. The
kernel does not restrict the use of this parameter and
does not check that the value is consistent with the
state of the system. Therefore, it is possible to
accidentally ~~double map" pages of memory that are in
use by some other part of the system.

FREE-MEMORY Procedure

The FREE-MEMORY procedure frees the physical
memory pages that are mapped to particular virtual

Processes and Jobs 3-24

addresses in the caller's address space. The caller
specifies a base virtual address and a size in bytes. The
procedure frees all memory pages in the inclusive range
from the base to the top.

Care should be used when freeing memory that was not
explici tly allocated by the caller, since it is very
difficult to determine the use of the virtual address
range. For instance, deleting the process' stack can
have unpredictable results.

Note that dynamically allocated memory is normally
freed with the language-specific run-time library
procedures provided; that is, the Pascal DISPOSE
procedure and the C free or cfree functions. Any
pointers to the freed memory become invalid.

MEMORY-SIZE Procedure

The MEMORY-SIZE procedure scans the kernel
memory data base and returns the initial main
memory, the current free memory, and the current
largest free memory block size (all in 512-byte pages).
The largest free block size is the size of the largest
physically contiguous block of free memory. This value
is useful if you need to create very large MESSAGE or
AREA objects, as these objects require contiguous
memory for their data buffers.

While the MEMORY-SIZE procedure performs the
memory scan, all other kernel operations are stopped;
therefore, care should be taken to call this procedure
only when necessary.

Interjob Data Sharing

The use of AREA objects provides a mechanism for
inter job data sharing among jobs on a single node in a
V AXELN network.

3-25 Interjob Data Sharing

You can allocate and map a region of memory of a
specified size into a job's virtual address space with the
CREATE-AREA procedure. The area's memory is
mapped into the creating job's PO region at a virtual
address specified by the caller, or if the caller does not
care where the area is mapped, at an address selected
by the kernel.

All the sharing jobs can map none, some, or all of the
area's memory, depending on the size specified;
however, each shares the memory region from its
beginning. Associated with the memory is a binary
semaphore, which can be used by the sharing jobs to
synchronize access to the area's data.

AREA objects can be created, deleted, signaled, and
waited on. When an AREA object is created, it is in a
((signaled" state. Waiting on an area gives the waiter
exclusive access to the area's memory. SIGNAL
completes the exclusive access operation and allows
other waiters to continue. Once an area is created, it
remains available until all sharing jobs terminate or
delete their references to the AREA object.

If a specific virtual address is specified by the caller, all
sharing jobs will map the area's memory at the same
virtual address. This feature makes the area not
position independent; the sharing jobs can place real,
fixed-pointer values in the region and they mean the
same thing in each sharer's address space. The pointers
must point to other addresses within the region if they
are to be used by other jobs.

If a virtual address is not specified by the caller, the
CREATE-AREA procedure will allocate a free PO base
address. Since the area could be in a different place in
each sharer's space, fixed-pointer values cannot be used
in the area. This is the typical case, with the area being
used to hold one data structure.

Processes and Jobs 3-26

Kernel Services for Interjob Data Sharing

The kernel services affecting the state of AREA objects
are summarized below.

CREATE-AREA Procedure

The CREATE-.AREA procedure creates a new area or
maps an existing area of memory into the creating job's
virtual address space, returning the AREA value that
identifies the area. A string of up to 31 characters
specifies the name of the area, which must be unique. A
pointer variable receives a pointer to the beginning of
the allocated memory.

An optional argument specifies the exact job virtual
address, in the PO region, a t which the area is to be
placed. If this address is specified by the creator, all
sharing jobs will map the area's memory at the same
virtual address. If the virtual address is not specified,
the kernel allocates a free address for eachjob.

DELETE Procedure

The DELETE procedure removes a job's reference to the
AREA object and unmaps the data from its address
space. An area can be deleted by any process of a job
that has created or mapped the area. The AREA object
is actually deleted when the last referencer deletes its
reference.

SIGNAL Procedure

When a referencing process is finished with its
exclusive access to an area, the SIGNAL procedure
allows the next waiting process to gain explicit access.
It is an error to signal an area if the area is not «locked"
by any process.

3-27 Kernel Services

If the area is of zero length, the object represents a
named interjob binary semaphore, in which case the
semaphore count is incremented and tested. If the new
count is greater than zero, the first waiting process in
the semaphore's queue whose wait conditions can be
satisfied is continued, and the count is decremented. If
no processes are waiting, or if none of the waiting
processes can continue, the count is not decremented.

WAIT-ANY and WAIT-ALL Procedures

A wait for an AREA object is satisfied when the object
is signaled. Waiting for an area implies that the
waiting process has exclusive access to the area until a
complementary signal is sent. If the area is of zero
length, the object represents a named interjob binary
semaphore, in which case the semaphore count is
decremented if the wait is satisfied by signaling the
semaphore.

Processes and Jobs 3-28

Introduction

Chapter 4
Synchronization

To synchronize any two things is to arrange them in
such a way that they appear to occur simultaneously.
For instance, a motion picture soundtrack is
((synchronized" with the film if, at a normal viewing
distance, the sound seems to correspond to w ha t is
happening on the screen. In real-time programming,
four broad classes of synchronization questions occur:

• How to synchronize processes with each other; that
is, how to make a particular set of processes ready
to execute at the same time.

• How to synchronize a process with some
phenomenon external to the software; for example,
how to synchronize a process with interrupts from
a particular device.

• How to prevent processes from performing some
operations simultaneously (or simply in an
unpredictable way); for example, how to prevent
two processes from using shared data in an
unpredictable way.

• How to sequence or serialize the execution of
processes; that is, how to make a particular set of
processes execute in a continuous, ordered series.

This chapter discusses synchronization in terms of the
WAIT procedures, events, semaphores, and time
representation, including the kernel services relating
to synchronization objects.

4-1

The WAIT Procedures

Basically, dealing with synchronization requires that
you have: first, a method of making a process wait for
something; second, a definition of the things processes
can wait for; and third, a definition of the way processes
are allowed to proceed after they have waited.

The WAIT procedures provide the method for processes
to wait and also provide the definition of what allows
the processes to proceed again. The data types
DEVICE, EVENT, SEMAPHORE, PORT, PROCESS,
and AREA provide the definition of what processes can
wait for. The two WAIT procedures are:

• WAIT -ANY accepts a list of up to four DEVICE,
EVENT, SEMAPHORE, PORT, PROCESS, or
AREA values (including mixtures). The calling
process waits until anyone of these objects allows
it to continue (that is, to return to the Ready state).
An optional result parameter receives the
argument number of the argument that satisfied
the wait. You can also supply a timeout argument,
which defines either a time interval or absolute
time after which the waiting process proceeds
regardless of the states of the objects.

• WAIT-ALL accepts the same arguments as
WAIT -ANY, but it allows the process to proceed
only if all the conditions are satisfied simulta
neously. (Again, the timeout argument can allow
the process to proceed regardless of the states of
the objects.)

As for the conditions:

• Waiting for a port means waiting for a message to
arrive at that port.

Synchronization 4-2

• Waiting for a PROCESS value means waiting for
the identified process to terminate.

• Waiting for a DEVICE value means waiting for
the connected interrupt to be signaled by an
interrupt service procedure.

• Waiting for a synchronization object (EVENT or
SEMAPHORE) or an AREA object means waiting
for the object to be signaled.

Both procedures have the same effect on their
arguments:

• Satisfying a wait on a semaphore causes the
semaphore count to be decremented. At most, one
process continues as the result of a semaphore's
being signaled.

• Waiting for an event, port, or process causes no
modification to the object, and all waiting
processes continue if their wait conditions are
otherwise satisfied.

• Waiting for a device causes the object to be cleared
if the wait is satisfied by an interrupt service
routine signaling the object. That is, only one
process continues as a result of the action of an
interrupt service routine.

• Waiting for an AREA object implies that the
waiting process has exclusive access to the area
until a complementary signal is sent-. When a
referencing job's main process is deleted, a check is
made; if the process being deleted is the owner
process, the area is implicitly signaled. If the
process being deleted is the last referencer, the
area is deleted.

The WAIT procedures return immediately if one of the
argument objects does not exist or is deleted. Both

4-3 WAIT Procedures

procedures also return immediately if the necessary
conditions were satisfied already (before the call). That
is, the elapsed time is only the time required to perform
a procedure call, and any specified timeout value is
irrelevant.

Deadlock Prevention

WAIT-ALL waits for a number of conditions to be
simultaneously satisfied; therefore, there is no potential
deadlock, as occurs in some systems having similar
features. Briefly, deadlock occurs when two or more
processes wait for the same set of resources, ((holding"
them in some way as they become available. Since
WAIT-ALL will not hold some resources while waiting
for others to become available, deadlock is not a
problem if all the conditions (events, semaphores, and
so forth) are known and are listed in a single call.
WAIT -ALL is also a more efficient way to wait for two
or more objects than multiple calls to WAIT-ANY.

Events

An EVENT object represents the occurrence of an event
and stores that information until explicitly cleared by a
program. A process asserts, or ((signals" the occurrence
of the event with the SIGNAL procedure. Other
processes can wait for the signaling of the event with
the WAIT_ANY and WAIT_ALL procedures. If the
event is cleared at that point, the processes will wait
until the event is signaled. When an EVENT object is
signaled, any and all processes waiting for it become
Ready (that is, if their wait conditions are otherwise
satisfied).

The CREATE-EVENT procedure can initialize the
EVENT value to either CLEARED or SIGNALED. EVENT

Synchronization 4-4

values are valid only within the job in which they are
created.

The practical meaning of an EVENT object (that is, the
particular real-time event that it represents) is
determined by the programmer. The conditions under
which the EVENT object is signaled define its
relationship to a real-time, real-world event. Literally,
though, the EVENT object has only the properties
((signaled" and ((cleared." The point is that there is
nothing intrinsic in the EVENT object that determines
which process can signal it or what the signal means to
waiting processes. Rather, you must ensure that signal
ing and awaiting an event occur in a manner consistent
with your application. For example, in Pascal,

VAR
LIGHTS-ON: EVENT;

BEGIN
CREA TE-EVENT(LlG HTS-ON,EVENT$C LEARE D);

SIG NAL(L1G HTS-ON);

creates a new EVENT object, assigns an identifier for it
to LIGHTS-ON, and (after determining that the lights
are on) signals any processes that may be waiting for
that event.

The satisfaction of a wait has no effect on the properties
of an EVENT object. In other words, once an EVENT
object is signaled, it remains signaled until it is cleared
explicitly by the CLEAR-EVENT procedure. Mean
while, any processes that wait for the event will have
that part of their wait conditions satisfied immediately.
(This is in contrast to AREA, SEMAPHORE, and
DEVICE objects, whose properties are changed both by
signaling and by the satisfaction of a wait.)

4-5 Events

The following scenario illustrates the use of events:

• A family of processes executes a series of steps that
controls the operation of a chemical plant. There is
one master process that controls the sequencing of
several other worker subprocesses. Each subpro
cess executes independently until it completes a
particular step, at which time it must synchronize
its execution with the master process.

• The master process is the first to execute, and it
creates two events with initial states of ((cleared"
(that is, not signaled). It then creates each sub
process and gives it a control step to perform.

• The subprocesses race each other to complete their
assigned work, and as each one finishes, it
executes a WAIT procedure, specifying the first of
the two events.

• When the master process decides it is time to
perform the next control step, it signals the first
event, which causes all the waiting subprocesses to
continue.

• As the subprocesses finish the second control step,
they again execute a WAIT procedure, but this
time they specify the second event.

• After the appropriate amount of time, the master
process clears the first event and then signals the
second event. The worker subprocesses again
continue, and so it goes until the work is finished.

Semaphores

A semaphore acts as a gate, controlling access to a
resource. It maintains a count of the currently
available units of the resource, such as, perhaps, the
number of disk drives available, the number of gates

Synchronization 4-6

available at an airport, or, in the case of an actual
railroad semaphore, the ~~number of tracks" (0 or 1)
available to a train going in a particular direction. You
set the initial and maximum counts when you create
the semaphore. The semaphore count interacts with the
WAIT and SIGNAL procedures to control the execution
of processes that wait for it.

Unlike events, semaphores are changed by the action of
the WAIT procedures. Specifically:

• When a semaphore is signaled with SIGNAL, the
count is incremented. Exceeding the maximum
co un t is an error .

• When a process waits for the semaphore with
WAIT-ANY or WAIT-ALL, it keeps waiting until
the count is greater than zero. When the count
exceeds zero (and, in the case of WAIT_ALL, all
other wait conditions are satisfied), the WAIT
procedure returns and the process can proceed.
Furthermore, when the wait is satisfied as a result
of signaling the semaphore, the WAIT procedures
decrement the semaphore count.

Together, these operations on the count mean that at
most one process becomes Ready when a semaphore is
signaled.

A process that wants to use the controlled resource
waits for the semaphore. If the semaphore count is
greater than zero, it is decremented, and the process
becomes Ready. If the count is zero, the process waits
until some other process signals the semaphore. If
several processes wait for the same semaphore, they-are
queued in the order in which their WAIT procedures
were executed.

A process signals a semaphore when it no longer
requires the resource; SIGNAL increments the sema-

4-7 Semaphores

phore count and the first waiting process, if any, is
allowed to proceed. (This is in contrast to events, with
which all processes waiting for the same event can
continue as a result of a single signal.) Thus, the
maximum count of a semaphore represents the
available units of the resource being controlled.

Depending on your choice of the maximum count,
semaphores have two uses which, although related, are
different enough that different techniques and
terminology apply:

• A semaphore with a maximum count of 1 is used to
guard a single item (often, a shared variable) from
access by more than one process. This usage is
more closely related to the railroad metaphor. This
kind is called a binary semaphore. Here, the
semaphore is used like a gate which allows only
one process at a time to ~tget through" to the
resource behind it. Signaling a binary semaphore
opens the gate for one process, which closes the
gate behind itself.

• A semaphore with a maximum count greater than
1 is called a counting semaphore in this manual.
Conceptually, a counting semaphore can be viewed
either as a gate that can allow more than one
process through, or as a meter that keeps a count of
the currently available units of some finite
resource.

In both cases, the initial count simply determines the
action of processes that wait for the semaphore before it
is signaled by anyone.

A SEMAPHORE value is valid (that is, identifies the
same semaphore) everywhere in the job that creates it.
Multiple processes in the job can use the semaphore by

Synchroniza tion 4-8

sharing a variable or by passing the SEMAPHORE
value as a process argument.

For example, in Pascal,

VAR
UNIT-AVAILABLE: SEMAPHORE;

BEGIN
CREATE-SEMAPHORE(UNIT -AVAILABLE, 1 0, 1 0);

creates a semaphore representing currently available
units of a type of disk drive and puts the SEMAPHORE
value in the variable UNIT-AVAILABLE. There are a
total of 10 disk drives; initially, all 10 are available.

Now, other processes needing disk drives wait for the
semaphore UNIT-AVAILABLE with, say, WAIT_ANY.
Because the initial count is 10, the first 10 processes to
wait will continue immediately, and each time one
continues, the count is decremented. The eleventh and
subsequent processes (assuming that the first 10 have
not yet released their drives) will remain in the
Waiting state, because the count is now zero.

When each process is through using its drive, it
((returns" it to the pool of available drives by signaling
UNIT-AVAILABLE. The next process that waits (or the
first one that is already waiting) will continue, because
the count is now above zero again. The semaphore is
metering the disk drives available because, at any time,
its count is the number of drives not in use.

The following scenario describes the use of a binary
semaphore to guard a shared data base:

• A central data base is shared by a family of
transaction processing processes. When the master
process begins execution, it creates a semaphore
with a maximum and initial counts ofl.

4-9 Semaphores

• The master process then creates worker sub
processes, as the need arises, to handle incoming
data base inquiries .

• Each subprocess waits for the semaphore before
accessing the shared data base and signals the
semaphore when it is finished.

Since the maximum value of the binary semaphore is 1,
only one process will be allowed access to the data base
at a time. All others will wait until the current worker
signals the semaphore. When the semaphore is sig
naled, only the next process is ((let through the gate"
until it, too, signals the semaphore.

Another term used to represent a binary semaphore in
V AXELN is mutex, which is an abbreviation for
((mutually exclusive" semaphore. Mutexes are used in
V AXELN Pascal and C as a way to achieve the same
effect as a binary semaphore without calling the kernel
service unless contention occurs.

Kernel Services for Synchronization Objects

The kernel services affecting the state of EVENT
objects and SEMAPHORE objects are summarized
below.

CLEAR-EVENT Procedure

The CLEAR-EVENT procedure sets the state of the
EVENT object to ((cleared."

CREATE-EVENT Proced ure

The CREATE-EVENT procedure creates and
initializes an event with an initial state of ((signaled" or
((cleared," returning the EVENT value that identifies
the event.

Synchronization 4-10

CREATE-SEMAPHORE Procedure

The CREATE-SEMAPHORE procedure creates and
initializes a semaphore with an initial count and a
maximum count supplied by integer expressions,
returning the SEMAPHORE value that identifies the
semaphore. The initial count must not exceed the
maximum count; signaling the semaphore beyond this
count is an error.

DELETE Procedure

The DELETE procedure removes the EVENT or
SEMAPHORE object from the system. When an event
or semaphore is deleted, any waiting processes are
removed from their wait states immediately, with the
completion status KER$_BAD-VALUE.

SIGNAL Procedure

SIGNAL sets the state of an event to ((signaled" and
continues all waiting processes whose wait conditions
can be satisfied.

Signaling a semaphore increments and then tests the
semaphore count. If the new count is greater than zero,
the first waiting process in the semaphore's queue
whose wait conditions can be satisfied is continued, and
the count is decremented. If no processes are waiting, or
if none of the waiting processes can continue, the count
is not decremented. At most, one process continues as a
result of signaling a semaphore.

WAIT-ANY and WAIT-ALL Procedures

A wait for an event is satisfied when the object is
signaled. Waiting for an event causes no modification
to the object, and all waiting processes continue if their
wait conditions are otherwise satisfied.

4-11 Kernel Services

A wait for a semaphore is satisfied when the object is
signaled. Waiting for a semaphore causes the sema
phore count to be decremented if the wait is satisfied by
signaling the semaphore. '

Both procedures can specify a timeout argument, which
defines either a time interval or absolute time after
which the waiting process proceeds regardless of the
states of the objects.

Time Representation

The V AXELN kernel maintains a system time as a 64-
bit binary number. The system time is interpreted as
the number of 100-nanosecond intervals since the base
time, hour 00:00:00.00, November 17,1858. Because it
is maintained by the kernel, using the processor's
interval timer, the system time is in effect for all jobs
running on that processor.

Note that the time representation in V AXELN IS

identical to the representation of time in V AXNMS.

SET-TIME and GET-TIME Procedures

You can set the system time for a processor with the
SET _TIME procedure and can obtain it at any point
with the GET_TIME procedure. SET_TIME sets a new
system time. GET_TIME returns the current system
time.

The system time is not necessarily preserved across
power failures and is not set to any default value by the
kernel or other system software. Therefore, you should
initialize the system time in an initialization job (see
Chapter 13, ((System Development") and in a handler
for the KER$-POWER-SIGNAL exception.

Synchronization 4-12

You can also set and display the system time with the
debugger commands SET TIME and SHOW TIME (see
Chapter 15, ttDebugging").

Timeout in WAIT Procedures

With the WAIT_ANY and WAIT_ALL procedures, you
can specify a timeout argument, meaning that the
calling process stops waiting either at a specific date
and time (an absolute time) or after a specified interval
relative to the current system time. Both time intervals
and absolute time are expressed as signed, 64-bit time
values.

The V AXELN Pascal and C language run-time
libraries provide routines for dealing with time values
conveniently; for example, converting a time value to
an ASCII string for printing.

By convention, negative time values represent time
intervals; nonnegative values are absolute times. The
system time is nonnegative and is therefore an absolute
time.

4-13 Time Representation

Synchronization 4-14

Introduction

Chapter 5

Interjob Communication

In a V AXELN application, every job has a unique and
protected virtual address space. Within a single
processor, the kernel separates each job's virtual
address space using the V AX memory management
hardware, as explained in Chapter 3, ((Processes and
Jobs." Within a network, each job's virtual address
space is separated by virtue of the fact that the jobs may
exist in the memories of different computer systems.

One of the principal reasons for dividing an application
into separate jobs is to aid the migration and
distribution of the jobs within the network. In order for
the jobs to work together on the same application, they
must be able to share data, but the only way of moving
data from the memory of one processor to another in a
networ k is by packaging the data in a message and
directing the network hardware to move the message to
the destination memory.

To make the network movement of data between jobs
the same as in the nonnetwork case, message passing is
the principal means of interjob communication
provided by V AXELN. The kernel provides a number of
facilities to make messages an efficient and trans
parent means of communication. For those cases where
memory sharing between jobs is a necessity and where
the network distribution of the jobs is not an issue, the
kernel supports the use of AREA objects, as explained
in Chapter 3.

5-1

It should be noted that message passing, as a
communication mechanism, provides more than just
the movement of data. Since the act of sending a
message is an asynchronous real-time event, message
passing can also be used to synchronize and coordinate
multiple processes and jobs. In fact, most of the
V AXELN services use message passing to organize
their work, making them ((message-driven."

This chapter discusses interjob communication in terms
of messages and ports, including message transmission,
datagrams and circuits, and the kernel services
relating to message transmission.

Messages

A ((message" as recognized by most network devices is a
block of contiguous bytes of memory. Usually, network
devices, particularly Ethernet devices, also impose a
maximum size on a message. A network message also
typically requires some number of bytes at the
beginning of the message (a ((protocol header") to
identify the rest of the message.

The kernel provides a MESSAGE object to describe a
block of memory that can be moved from one job's
virtual address space to another's. The block of memory
is called the message data and is allocated dynamically
by the kernel. A MESSAGE object and its associated
data are both created by calling the
CREATE-MESSAGE procedure.

Because message passing is a key principle in
V AXELN programming, the kernel was designed to
make message operations very efficient. Message data
is allocated by the kernel from physically contiguous,
page-aligned blocks of memory; this allows the kernel
to store the complete description of a message of any

Interjob Communication 5-2

reasonable length in a single MESSAGE object.
Message data is mapped into a job's PO virtual address
region, so it is potentially accessible to all the processes
in the job.

If a message is sent to a job on the sending job's local
node, the kernel does not copy the message data.
Instead, the kernel unmaps the data from the sending
job's virtual address space and remaps it into the
receiver's space.

If a message is sent to a remote node, the kernel again
unmaps the data and uses an appropriate network
device to send the message to the remote system, where
the reverse operations cause the message to be finally
remapped in the receiver's space.

Message Ports

A PORT object represents a system-maintained
message queue. A port is unique in that its identifying
value is valid anywhere in the application (including on
other network nodes), not just within a particular job.
In other words, PORT values can be passed as
arguments, sent in messages, or obtained from the
RECEIVE procedure with certainty that they identify a
unique destination for messages, somewhere in the
application network. PORT values can be used with
W AIT-ANY and W AIT-ALL to synchronize programs
with the receipt of messages.

A message port can hold a maximum number of
messages, specified when the port is created. Messages
are removed from a port by the RECEIVE procedure, in
first-inlfirst-out order. If more messages than the
maximum are sent, they are lost. (However, see ttPort
Limits and Flow Control," later in this chapter.) Note
that there is no intrinsic overhead associated with the

5-3 Message Ports

message limit itself; that is, a large message limit
requires no more overhead than a small limit. Only the
messages themselves determine the amount of memory
consumed.

PO RT values are assigned dynamically by the kernel to
identify a particular message port. New values are
returned by the CREATE-PORT procedure and are
valid until used with the DELETE procedure to
explicitly delete the port. For example, in Pascal,

VAR
newport: PORT;

BEGIN
CREATE-PORT(newport, LIMIT: = 10);

creates a new message port, limited to 10 messages, and
puts the PORT value in the variable newport. The
identifier newport is then used in subsequent SEND,
RECEIVE, and other message operations that require a
PORT value.

Named Message Ports

To facilitate communication between jobs, the kernel
provides a NAME object, an entry in a name table that
associates character-string-names with message ports.
Names are represented as separate objects to allow a
port to have multiple names, if desired.

Any process in the application that expects to
communicate with others outside its job can
((broadcast" the necessary information about one or
more of its message ports by creating names for them. If
it may need to communicate with any process on any
network node, it creates a universal name; if all
communication occurs within a single node, a local
name suffices.

Interjob Communication 5-4

These names are created with the CREATE_NAME
procedure and can be deleted with DELETE. A NAME
value specifies a 1- to 31-character-string name for an
associated port. The name string is used for obtaining
the actual PORT value of the associated port with the
TRANSLATE-NAME procedure. That is, a program
can ttlook up" a name in the name table and use the
resulting PORT value to communicate with other jobs
or processes.

A common use of such names is by application-wide
services such as a disk. The disk driver makes available
certain names for its message ports (for example,
ttDUAO") so that any job or process can communicate
with it easily. That is, any process can quickly translate
the name into a PORT value for use in sending
messages. Note that in the specific case of a disk,
program I/O is typically done with language-specific
I/O procedures, whose run-time software performs the
necessary name translation and message transmission
for you.

When designing a system and writing the programs for
it, you decide which processes are the communicators
and create names appropriately. You then develop the
programs and test the communication to your satis
faction. If you later decide to reconfigure the
application (for example, by moving all the programs
onto a single network node or, conversely, distributing
programs among several newly added nodes), only the
final program development step, system building, must
be repeated, to describe the -new hardware/software
configuration. No changes to the programs themselves
are necessary, because calls to TRANSLATE_NAME in
the new application will obtain port information based
on the new configuration.

5-5 Named Message Ports

Name strings are also used directly in some cases (for
example, as a parameter to the CONNECT-CIRCUIT
procedure), in which case the translation is done by the
procedure.

N ames can be either local to a node or universal. A local
name is guaranteed to be unique within the local node.
Universal names are guaranteed to be unique through
out the entire application. The translation and other
maintenance of universal names is a function of the
Network Service, as described in Chapter 7, ((The
Network Service."

Message Transmission

To send a message, you declare a pointer to the type of
data you want to send, supply the pointer to
CREATE_MESSAGE, use the pointer to fill in the
message data, and supply the MESSAGE value to the
SEND procedure. For example, in Pascal:

VAR mtext: jVARYING-STRING(80);
command: MESSAGE;
destination: PORT;

BEGIN
CREATE-MESSAGE(command,mtext);
mtext j : = 'START';

SEND(command,destination);
END.

Note that in Pascal, the size of the message is implied
by the pointer, while in other languages (in particular,
the C language) the size is given explicitly to the SEND
procedure.

Interjob Communication 5-6

The SEND procedure removes the message data from
your job's address space and places the MESSAGE
object in the destination port. It also provides the
following information to the receiver:

• The value of the sending process's job port; or
optionally, a different reply port specified by the
sender.

• The value of the destination port.

• The size of the message.

The receiver process waits for a message to arrive on its
port and then uses the RECEIVE procedure to obtain it.
The RECEIVE procedure automatically maps the
message data into the receiver's address space, returns
a MESSAGE value for the receiver's use, and optionally
returns the identification of the reply port and
destina tion port.

To reply to the message's originating job, the receiver
uses the value of the reply port from RECEIVE,
formulates an answer, and sends a reply to the reply
port. (Possibly, the receiver uses the same message data
to form the reply; it need not create a new message.)

Note that the receiver process must know beforehand
the formats of all messages it can receive. That is, the
sender and receiver must have established a message
protocol. Defining a protocol is the basic design task in
interjob communication.

For example, if the receiver is a server of some kind, it
must know a set of predefined commands to which it
will respond; it can return an error message to the
sender (or, more likely, to an operator's terminal) if it
receives a message that does not contain a valid
command.

5-7 Message Transmission

Expedited Messages

A distinct form of message, called an expedited message,
is recognized by the kernel and the Network Service.
An expedited message can be used to bypass the
normal, sequential flow control provided by the system.
For example, a transmitting process may have sent
many messages to a receiving process, but before all the
messages are received by the receiver, the transmitter
may decide that the previous messages should be
ignored, if possible. In this case, the transmitter can
send an expedited message telling the receiver to halt.

Most applications will not need to use expedited data
messages, particularly because they are very restric
tive and there is no guarantee that an expedited
message will actually be received before normal data
messages. However, remote expedited data messages
provide an interface to the DECnet Network Services
Protocol ~tinterrupt message" service, which is used by
existing protocols such as the Data Access Protocol.

The following facilities and restrictions are related to
expedited data messages:

• An expedited data message is sent by specifying a
Boolean value to the EXPEDITE parameter of the
SEND procedure.

• The size of an expedited data message must be 16
bytes or less.

• Only one unreceived expedited message is allowed
in a port when the port's maximum message count
is at its limit. If a second message is sent before the
first is received, it has the same effect as a normal
data message; that is, either an error status is
returned or an exception is raised, or the sending
process waits until the first message has been

Interjob Communication 5-8

received, depending upon the setting of the
FULL_ERROR parameter when the circuit is
connected or accepted.

• An expedited data message is received using the
normal RECEIVE procedure, but returns an
alternate success, KER$-EXPEDITED. Therefore,
if a receiver process needs to know if a message is
an expedited or a normal message, and the protocol
being used does not indicate which it is, the
receiving process can simply compare the status to
KER$_EXPEDITED.

• Any expedited data messages queued to a port are
received by the RECEIVE procedure before any
normal data messages are received.

Datagrams and Circuits

Ports and messages can be used two ways to transmit
data:

• One process can obtain the value of a port
anywhere in the system (including in other jobs) or
in a different system running on a different
Ethernet node. The process can send the port a
message with the SEND procedure. This is called
the datagram method.

• Any two ports (usually in different jobs) can be
bound into pairs called circuits. In this case,
having established the circuit, the sending process
has one port of its own bound to another port,
which usually is in a different job or on a different
network node. In this case, the sender sends the
message to its own port, and it is routed
automatically to the other port in the circuit.
Processes can both send to and receive from a
circuit port.

5-9 Datagrams and Circuits

In the datagram method, as well as in the circuit
method, a process can use the WAIT procedures to wait
for the receipt of a message on the specified port.

The datagram method requires no connection sequence
like circuits, but cannot guarantee that a message is
actually received at the destination. (However, it does
guarantee with high probability that received
messages are correct.) In addition, datagram
transmissions cannot be sent and received in a
guaranteed order; that is, two messages sent to the
same destination port can arrive in a different order.

At the cost of setting up and handling a circuit
connection, circuits offer several advantages over the
basic datagram method:

• Guaranteed delivery and sequence. Messages sent
through circuits are guaranteed with high
probability to be delivered (if the physical
connection is intact) and to be delivered in the
same sequence in which they are sent. The circuit
method guarantees that either the message arrives
at the destination port regardless of its location, or
that the sender is notified that the message could
not be delivered.

• Flow control. Options of the procedures
ACCEPT-CIRCUIT and CONNECT_CIRCUIT
allow you to control the flow of messages through a
circuit. That is, you can prevent a sending process
from sending too many messages to a slower
recei ving process.

• Segmentation. Messages can have any length, and,
if the transmission is across the network, the
network services will divide the message into
segments of the proper length, transmit the

Interjob Communication 5-10

segments in sequence, and reassemble them at the
destination node .

• A user interface via Pascal I/O routines. The
OPEN procedure permits you to ((open" a circuit as
if it were a file and to use the I/O routines such as
READ and WRITE to transmit messages.

There is no performance penalty with circuits for
messages transmitted on the same network node and
very little over the network. For full generality,
programs should assume that the sending and
receiving jobs may be distributed on different nodes in a
network. Circuits are the preferred means of sending
messages in almost every practical case.

Programming with Circuits

Circui ts are established between two ports by the
CONNECT-CIRCUIT and ACCEPT_CIRCUIT proce
dures. A process that wants to establish a circuit calls
CONNECT-CIRCUIT and designates a destination
port in another process. A special connection-request
message is automatically sent to the designated port.
For example, in Pascal:

CONNECT -CIRCUIT(myport,
DESTINATION-NAME: = 'request-server');

Here, myport is a port in the calling process that will
form its half of the circuit. The destination is specified
by the NAME string 'request-server', which is
translated automatically by CONNECT-CIRCUIT to
designate the destination port.

The call to CONNECT-CIRCUIT causes a process to
wait for the connection request to be accepted. The
maximum time that is allowed to lapse before a circuit
connection must be accepted is specified by the Connect

5-11 Datagrams and Circuits

time characteristic on the System Characteristics
System Builder menu.

Elsewhere, an ACCEPT-CIRCUIT call causes a process
to wait for a connection-request message on the
designated port:

VAR
server: NAME;
receiver-port: PORT;

CREATE-PORT(receiver-port, LIMIT: = 10);
CREATE-NAME(server,'request-server',receiver-port)

{ Wait for a connection request. When the wait is
satisfied, a circuit is established between the
requestor and receiver-port. }

ACCEPT -CIRCU IT(receiver -port);

At this point, the acceptor can take a variety of actions
to communicate with the requestor, such as creating a
subprocess to continue the dialog and passing it the
PORT value (receiver-port) identifying its half of the
circuit. The ACCEPT-CIRCUIT procedure can notify
you of error conditions, such as an unreceived message
in receiver-port or another connection request for
which acceptance is still pending.

Circuits are broken when either partner calls the
DISCONNECT-CIRCUIT procedure. The SEND and
RECEIVE procedures both notify their callers if the
designated port was disconnected.

Note: If more than one process in a job is waiting for a
message on a circuit port, confusion is possible. For
example, some process may use WAIT_ANY with the

Interjob Communication 5-12

port, and when it is released from the wait and calls
RECEIVE, there is no message to be received. The
reason may be that the message was a connection
request and was removed from the port by some other
process in the job that called ACCEPT-CIRCUIT.

The RECEIVE procedure has a t(no message" status to
help detect this mistake; however, the correct practice,
strictly speaking, is to avoid having multiple processes
wait for a port that will receive connection requests.
Instead, use one port in the job for this purpose; the
acceptor process can accept the requests on that port
and form the actual circuits with other ports in the job.
A typical example of this is when a process waits for
circuit requests on its job port but establishes new
circuits on other ports, thus leaving the job port free for
more requests.

Port Limits and Flow Control

One of the advantages of using a circuit for a message
exchange is that the kernel and Network Service
provide a function called flow control. The basic idea
behind flow control is that the flow of messages from
the transmitting process to the receiving process is
controlled to ensure that unreceived messages do not
consume excessive memory in the system.

When a process sends a message with SEND, the
message is queued in the specified destination port. If
the transmitting process can produce messages faster
than the receiving process can consume them, and if
there is no limit on the number of messages that can be
queued, the messages might potentially use all the
available memory. For this reason, ports have a limit
on the number of unreceived messages that can be
queued at anyone time; the limit is specified when the
port is created.

5-13 Datagrams and Circuits

Flow Control with Unconnected Ports

If a port contains its limit of messages (that is, it is
((full") and is not connected in a circuit, and a SEND is
attempted to the port, the SEND returns a failure
status (or exception). (If the port is not on the same
node, the message could be lost.)

Flow Control with Circuits

If a port is connected in a circuit and is full, the sender
is, by default, put into the waiting state until the port is
no longer full. The transmission is then successfully
completed. The implicit waiting performed by the
SEND procedure evens the flow of messages between
the transmitting process and receiving process without
having to explicitly program for the condition.

Since some applications may not need this implicit
waiting, an argument to the ACCEPT-CIRCUIT and
CONNECT_CIRCUIT procedures allows the calling
process to specify that it wants a SEND call to return
an error status (or exception) rather than wait.

Kernel Services for Message Transmission

The kernel services affecting the state of MESSAGE,
PORT, and NAME objects are summarized below.

ACCEPT-CIRCUIT Procedure

The ACCEPT_CIRCUIT procedure causes the invoking
process to wait for a circuit connection. When the wait
is satisfied (that is, on successful completion), the
circuit is established between two ports.

The invoker's half of the circuit can be either the port
used to wait for the connection request or, optionally, a
different port. This optional parameter allows a

Interjob Communication 5-14

program, such as a resource service, to create a name
for its ttconnection-request" port, but to use a different
port for the actual connection; in this way, the server
could create a name for the first port to establish
simultaneous circuits with several different processes
or jobs. Note that the only valid message that can be
received at the connection-request port is the kernel's
internel connection request; all other messages are
discarded by the system.

By default, when a process sends a message on a circuit
(with SEND), it waits if the partner port is full, a
method called flow control. When you accept a circuit
connection, you have the option of specifying that you
want an error status (or the corresponding exception)
instead of the implicit wait.

An optional argument supplies a data value that is
received by the process requesting the circui t
connection in its CONNECT_CIRCUIT call. Another
optional argument receives data passed by the
requesting process in its CONNECT-CIRCUIT call.
These data values are called ttconnect data" and ttaccept
data," respectively, and are strings of up to 16 bytes in
length.

CONNECT-CIRCUIT Procedure

The CONNECT-CIRCUIT procedure connects a port to
a specified destination port and causes the invoking
process to wait for the connection request to be
accepted.

If a process calls ACCEPT-CIRC_UIT with the
destination port, the two ports are bound together in a
circuit. The destination port can be specified either via
a name string established by the CREATE_NAME
procedure, or by a PORT value giving the destination
for the connection request.

5-15 Kernel Services

By default, when a process sends a message on a circuit,
the SEND procedure performs an implicit wait if the
partner port is full (that is, if the partner already
contains its limit of unreceived messages); this is the
type of flow control usually used with circuits. With
CONNECT-CIRCUIT, you have the option of disabling
the implicit wait, causing SEND to receive an error
status (or raise an exception) if the partner port is full.

An optional argument supplies data to the process
receiving the connection request. Another optional
argument receives any data supplied by the accepting
process in its ACCEPT-CIRCUIT call.

Note: The maximum time that is allowed to lapse
before a circuit connection must be accepted is specified
by the Connect time characteristic on the System
Characteristics System Builder menu.

CREATE-MESSAGE Procedure

The CREATE_MESSAGE procedure creates a
MESSAGE object and allocates and maps its associated
message data into the job's PO address space for use by
the SEND and RECEIVE procedures, returning the
MESSAGE value that identifies the message and a
pointer to the allocated message data. A program can
use the pointer to the message data to store data that is
to be moved to another job's address space.

CREATE-NAME Procedure

The CREATE-NAME procedure creates a 1- to 31-
character-string name for a specified port as an entry in
a name table, returning the NAME value that identi
fies the name. An optional argument specifies that the
new name is either local (valid only in this system, or
node), universal (valid throughout the application, or
on any node), or both; local is the default. If the

Interjob Communication 5-16

system does not contain the Network Service, all names
are placed in the local name table.

Names created by this procedure are guaranteed to be
unique within the specified name space (local or
universal). If you attempt to create a name that is not
unique, no NAME object is created, and an error status
is returned.

When a universal name is ere a ted in a network
configuration, the Network Service on each node in the
local area network makes the name available to the
system running on that node.

CREATE-PORT Procedure

The CREATE-PORT procedure creates a message port,
returning the PORT value that identifies the port. An
optional integer expression supplies the maximum
number of messages that can be queued to the port at
one time. If the maximum is exceeded, the sender is
notified; the default value is 4.

DELETE Procedure

The DELETE procedure removes the MESSAGE,
PO RT , or NAME object from the system.

When a message is deleted, it is unavailable for sending
or receiving, and any pointers to the message data
become invalid.

When a port is deleted, any connected port (when the
deleted port is in a circuit) is disconnected, any
messages at the port are deleted, and the wait
conditions of any waiting processes are satisfied with
the completion status KER$_BAD_ VALUE.

When a universal name is deleted, the Network Service
on each node ensures that the deletion is reflected in
the list of universal names. The deletion of local names

5-17 Kernel Services

is performed by the kernel on the local node and does
not involve the Network Service.

DISCONNECT-CIRCUIT Procedure

The DISCONNECT-CIRCUIT procedure is used to
break the circuit connection between two ports. If any
process is waiting for either port in the circuit, its wait
condition is satisfied. A request for connection can be
rejected by first calling ACCEPT -CIRCUIT and then
calling DISCONNECT-CIRCUIT.

JOB-PORT Procedure

The procedure JOB-PORT returns a PORT object value
identifying the caller's job port. A unique job port is
created whenever ajob is started.

RECEIVE Procedure

The RECEIVE procedure removes a message from the
designated message port. The procedure maps the
message data into the receiver job's virtual address
space, returns a MESSAGE value identifying the mes
sage, and optionally returns PORT values identifying
the reply port and destination port (normally the same
value supplied by the sender for the receiver's port).

An optional integer argument receives the size in bytes
of the message data (this argument is only optional for
Pascal).

SEND Procedure

The SEND procedure removes the message data from
the sender's address space and queues the MESSAGE
value identifying the message in the message port
supplied by the PORT val ue identifying the
destination. If the message is being sent through a

Interjob Communication 5-18

circuit, this port is the sender's port, and the message
arrives at the receiver's port.

By default, when a process sends a message on a circuit,
the SEND procedure performs an implicit wait if the
partner port is full, a method called flow control. When
you accept a circuit connection, you have the option of
specifying that you want an error status (or the
corresponding exception) instead of the implicit wait.

Optional arguments specify the length in bytes of the
message data to be sent (this argument is only optional
for Pascal), a PORT value identifying a reply port, and
whether to expedite the message. The size of an
expedited message must not exceed 16 bytes.

TRANSLATE-NAME Procedure

The TRANSLATE_NAME procedure returns a value
identifying a named port. The specified name string is
used to search for a NAME object with a matching
string. If the NAME object is found, a value for the
name's associated port is returned.

You can specify that a name is to be looked up in the
local name table, the universal name table, or both; the
local name table is searched first if both are specified. If
the Network Service is not present in the system, any
attempts to translate universal names will return the
status ~~no such name," since, in effect, there is no
universal name table without the Network Service.
(See Chapter 7, ~~The Network Service," for more
information.)

WAIT-ANY and WAIT-ALL Procedures

A wait for a port (including a port in a circuit) is
satisfied when it has a message in it. Waiting for a port
causes no modification to the port, and all waiting
processes continue if their wait conditions are

5-19 Kernel Services

otherwise satisfied. Both procedures can specify a
timeout argument, which defines either a time interval
or absolute time after which the waiting process
proceeds regardless of the states of the objects.

Normally, a process must call a WAIT procedure, then
call RECEIVE. Calling RECEIVE without first calling
aWAIT procedure may return a cCno message" status.

If a process needs to accept a circuit connection and
wait for some other object, it can call aWAIT procedure
specifying the port. When the wait is satisfied, it can
call ACCEPT-CIRCUIT.

Interjob Communication 5-20

Chapter 6

1/0 Devices and Interrupt
Handling

This chapter discusses the handling of device
interrupts, interrupt priority levels and procedures to
manipulate them, recovery from power failure, and the
kernel services relating to devices. The procedures
relating to direct memory access UNIBUS and QBUS
device handling are then summarized, followed by
device register procedures.

Handling Device Interrupts

Interrupt service routines are procedures used to
handle device interrupts and power recovery in
programs that control devices. With the
CREATE-DEVICE procedure, you can connect a device
interrupt to an interrupt service routine. The
CREATE-DEVICE procedure creates 1 to 16 DEVICE
objects that can be used as semaphores which are
signaled by the interrupt service routine and awaited
by a process.

When connected to a device interrupt, an interrupt
service routine is called by the kernel directly on the
occurrence of each interrupt and can take any actions
necessary to service the interrupt. The interrupt
service routine can communicate with a program
through an area of memory called the communication
region established by CREATE_DEVICE. For example,
the interrupt service routine can use this region to give
the program a value it has obtained from a device

6-1

register. Only data placed in the communication region
is available to an interrupt service routine.

All communication regions are potentially accessible to
all interrupt service routines. For example, for
handling multivector devices, you can create two
communication regions (with two CREATE-DEVICE
calls) and then store a pointer to one region in the
other's region. (For an example, see YCDRIVER.PAS,
delivered with the development system.)

To synchronize itself with processes in the job that
created the object, the interrupt service routine can
signal any of its DEVICE objects with the
SIGNAL-DEVICE procedure.

The processes can use the WAIT-ANY and WAIT-ALL
procedures as follows:

• When a process waits for the DEVICE object with
WAIT-ANY or WAIT-ALL, it keeps waiting until
the interrupt service routine signals the object
with SIGNAL-DEVICE .

• When the object is signaled, the waiting process
continues.

If several processes wait for the same device, they are
queued in the order in which their WAIT procedures
were executed. When the DEVICE object is signaled,
the signal allows at most one process to continue, the
first process in the queue.

Viewed as synchronization objects, therefore, DEVICE
objects are similar to binary semaphores. That is, only
one process continues as a result of a
SIGNAL_DEVICE call. The interrupt service routine
can call SIGNAL_DEVICE for any of its 1 to 16
DEVICE objects.

110 Devices and Interrupts 6-2

A DEVICE object is also associated transparently (that
is, by the kernel) with a description of the physical
device. Device descriptions consist of a character-string
name for the device, its bus-request priority, and the
addresses of the device's interrupt vector and
control/status register. They are entered in the system,
once, using the System Builder, and are then used
transparently by programs via the DEVICE object.

For the purpose of writing device drivers for multiple
units on a single controller, the CREATE-DEVICE
procedure also allows you to create up to 16 DEVICE
objects that can be signaled by an interrupt service
routine.

Interrupt Priority Levels

The V AX processor defines 32 levels of interrupt
priority levels (lPLs). IPL 0 is the lowest priority; IPL
31 is the highest. Table 6-1 lists the interrupt priority
levels at which various system events occur.

Setting the processor IPL allows a process to
synchronize itself with an interrupt service routine.
This provides synchronization because when the
processor IPL is set to a certain level, interrupts
assigned to that level and below (and their
corresponding service routines) are disabled. This form
of synchronization, though somewhat difficult to use, is
very efficient.

Raising and lowering the interrupt priority level of the
processor is achieved with the DISABLE_INTERRUPT
and ENABLE-INTERRUPT procedures.

6-3 Interrupt Priority Levels

Table 6-1. Interrupt Priority Levels

IPL (decimal) Events

Hardware

31 Machine check; kernel stack not valid

30 Power failure

25-29 Processor, memory, or bus error

24 Clock (except MicroVAX, which is
IPL 22)

16-23 Device IPLs, with 20-23 correspond
ing to UNIBUS or Q22 bus request
levels 4-7 , respectively

Software

9-15 Unused

8 DEVICE signal

7 Timer process

6 Queue asynchronous exception

5 Kernel debugger

4 Job scheduler

3 Process scheduler

2 Deliver asynchronous exception

1 Unused

o User process level

I/O Devices and Interrupts 6-4

Note: The current interrupt priority level is part of the
processor-wide state of a VAX computer. Disabling
interrupts of a certain priority also disables all other
system activities that occur at or below that priority
level. In essence, if the IPL is raised by a process to
block device interrupts, that process is the only
activity, other than interrupt service routines, that can
execute until the process lowers the IPL by calling
ENABLE-INTERRUPT.

IPL Procedures

The procedures summarized in this section are used to
raise or lower interrupt priority levels.

DISABLE-INTERRUPT Proced ure

DISABLE_INTERRUPT prevents interrupts from a
device, by raising the IPL of the processor to the IPL of
the device. While interrupts are disabled, no kernel
procedures can be called; attempting to do so causes
unpredictable results. It can be used only by programs
running in kernel mode.

If a program has powerfail exceptions enabled and the
power fails while interrupts are disabled, the IPL is set
to zero before the KER$POWER-SIGNAL exception is
raised. This exception is handled like any other
synchronous exception (see Chapter 11, ((Exception
Handling"), but continuing from the exception if it oc
curs with interrupts disabled has unpredictable effects.

ENABLE-INTERRUPT Procedure

ENABLE_INTERRUPT allows interrupts from a
device by lowering the IPL of the processor to minimum
priority (0). It can be used only by programs running in
kernel mode.

6-5 IPL Procedures

Power-Recovery Handling

Devices normally need special attention following a
power failure, and the necessary speed and synchroni
zation requirements cannot be met by the general
power-recovery exception (KER$-POWER-SIGNAL).
Therefore, you can specify, in a CREATE-DEVICE call,
the name of an interrupt service routine that is called
when the processor enters its power-recovery sequence.
Such a routine is called before any other process or
ordinary interrupt service routine is restarted.
Typically, the operations that must be performed on
power recovery are as follows:

1. Reinitialize the device controller to a known state.

2. Assure that no partially completed I/O operations
are started, since the device has been reinitialized.

3. Signal any processes that are waiting for device
interrupts, since none will occur now that the
device has been reini tialized.

All three operations can be performed by a power
recovery routine. Since power recovery occurs at
unpredictable times, the interrupt service routine and
main program must synchronize themselves with the
action of the power-recovery routine to retry any
operations that were in progress.

The V AX architecture defines a power-failure interrupt
at IPL 30 (see Table 6-1). Therefore, a process can set
the processor's IPL to 30 and block the interrupt,
allowing it to synchronize itself with the power
recovery routine. Once a power-failure interrupt has
been posted, the processor has only about 4 milliseconds
before power is shut down, so the interrupt should not
be disabled for more than a few instructions.

I/O Devices and Interrupts 6-6

Kernel Services for Devices

The kernel services affecting the state of DEVICE
objects are summarized below.

CREATE-DEVICE Procedure

The CREATE_DEVICE procedure establishes a
connection between a physical device, a program, and
an interrupt service routine. It creates one or more
DEVICE objects, which are used to synchronize the
program with the device. CREATE-DEVICE can be
called only from a program running in kernel mode.

You specify the actual device and its characteristics to
the System Builder when you create the system.
Among other things, you assign a 1- to 30-character
string as the device's name. This name is specified to
the CREATE_DEVICE procedure to retrieve the
device's characteristics.

If the device has multiple units (such as a disk
controller with two or more drives), CREATE_DEVICE
can create an array of DEVICE objects, and the
interrupt service routine can signal any object to
identify the interrupting unit. Meanwhile, the program
can dedicate a subprocess to each device unit.

An optional argument specifies which vector of a
multiple-interrupt-vector device should be connected to
the interrupt service routine. If it is omitted, the
default is 1 (first vector).

Optional arguments also return pointers to the first
device control register, the first adapter control
register, and the interrupt vector in the system control
block.

6-7 Kernel Services

Other optional arguments return the interrupt priority
level (IPL) of the device and the name of a power
recovery routine that is called before any process or
interrupt service routine is restarted, if the processor
enters a power-recovery sequence.

DELETE Procedure

The DELETE procedure removes the DEVICE object
from the system. When a DEVICE object is deleted, the
memory used for its communication region is deleted,
and any pointers to that memory thus become invalid.
The interrupt service routine is disconnected from the
interrupt vector. Any waiting processes ar~ removed
from their wait states immediately, with the
completion status KER$_BAD-VALUE.

SIGNAL-DEVICE Procedure

The SIGNAL-DEVICE procedure signals a DEVICE
object from an interrupt service routine. It can be called
only from an interrupt service routine or a subroutine
thereof. An optional argument identifies the element in
a DEVICE array to be signaled.

WAIT-ANY and WAIT-ALL Procedures

A wait for a DEVICE object is satisfied when the state
of the object is ~~signaled" (the result of the
SIGNAL-DEVICE procedure, called from an interrupt
service routine). Waiting for a device causes the
DEVICE object to be cleared if the wait is satisfied by
the DEVICE object; that is, only one process continues
as a result of the action of an interrupt service routine.

I/O Devices and Interrupts 6-8

DMA Device Handling Procedures

The procedures summarized in this section are used in
programs that control direct memory access (DMA)
UNIBUS and QBUS devices.

ALLOCATE-MAP Procedure

The ALLOCATE_MAP procedure allocates a
contiguous block of UNIBUS or QBUS map registers
for use by a program to map V AX memory to UNIBUS
or QBUS memory addresses, respectively. It can be
called only from programs running in kernel mode.

The procedure returns a pointer to the first register
allocated and returns the starting map register number
(0-495). Optionally, it returns a pointer to the base
address of the System Page Table (SPT). Arguments
supply the number of registers to allocate and the
DEVICE value that identifies the device for which the
registers are to be used.

ALLOCATE-PATH Procedure

The ALLOCATE_PATH procedure allocates a
UNIBUS adapter buffered datapath for use by a direct
memory access UNIBUS device. It can be called only
from programs running in kernel mode.

The procedure returns a pointer to the allocated
datapath register and the allocated datapath register
number (1-3). An argument supplies the DEVICE
value that identifies the device for which the datapath
is allocated.

A buffered datapath can be used to optimize the use of
memory by a DMA device that does strictly sequential
address transfers. (For additional information on
buffered datapaths, see the V AX Hardware Handbook.)

6-9 DMA Device Procedures

The VAX-11/750 is the only processor supported by
V AXELN that has UNIBUS buffered datapaths.

To use a buffered datapath for a DMA transfer, the
allocated datapath number must be loaded into the
UNIBUS map registers being used for the transfer. The
UNIBUS-MAP and LOAD-UNIBUS-MAP procedures
accept an optional datapath number for loading into the
UNIBUS map registers.

When a UNIBUS buffered datapath is used for a DMA
transfer, the datapath must be ~~purged" when the
transfer has completed. This is accomplished by writing
a value of 1 to the datapath register, identified by the
returned register pointer.

FREE-MAP Procedure

The FREE-MAP procedure frees a set of previously
allocated UNIBUS or QBUS map registers. It can be
called only from a program running in kernel mode.
Any pointers to the freed registers become invalid.
Arguments supply the number of contiguous map
registers to be freed, the number of the first register
(such as the one returned by ALLOCATE_MAP), and
the DEVICE value that identifies the device for which
the registers are freed.

FREE-PATH Procedure

The FREE-PATH procedure frees a previously
allocated UNIBUS adapter buffered datapath. It can be
called only from programs running in kernel mode. The
VAX-11/750 is the only processor supported by
VAXELN that has UNIBUS buffered datapaths.
Arguments supply the datapath register number (such
as the one returned by ALLOCATE_PATH) and the
DEVICE value that identifies the device for which the
datapath is freed.

I/O Devices and Interrupts 6-10

LOAD-UNIBUS-MAP Procedure

The LOAD_UNIBUS_MAP procedure is used in device
driver programs to load UNIBUS or QBUS map
registers for use by a direct memory access UNIBUS or
QBUS device, respectively. This is an alternate
procedure to the more commonly used UNIBUS-MAP
procedure.

The procedure assumes that sufficient map registers
have been allocated by the calling program using the
ALLOCATE-MAP procedure (UNIBUS_MAP allocates
them for the caller). It also assumes that one additional
map register (beyond the number actually necessary to
map the buffer) has been allocated for use as an invalid
ttwild -transfer-stopper."

Arguments supply a pointer to the first UNIBUS or
QBUS map register allocated by ALLOCATE-MAP,
the I/O buffer, and the buffer size. An optional
argument is a pointer to the System Page Table (SPT);
if this argument is not specified, a device
communication region (or any system space buffer)
cannot be mapped.

Another optional argument supplies a UNIBUS
datapath to be used for the transfer. If this argument is
not supplied, datapath 0, the direct datapath, is used.

PHYSICAL-ADDRESS Function

The PHYSICAL-ADDRESS function is used for DMA
devices on the Micro V AX, returning the physical
address of an identified variable. Programs using this
function must include the module
$PHYSICAL-ADDRESS.

6-11 DMA Device Procedures

UNIBUS-MAP Procedure

The UNIBUS_MAP procedure is used in device driver
programs to map memory buffers for direct memory
access by UNIBUS or QBUS devices. That is, the
specified buffer is mapped into the UNIBUS or QBUS
address space, and the procedure returns the IS-bit
UNIBUS address or the 22-bit QBUS address of the
mapped buffer.

Arguments supply the DEVICE value identifying the
device that will use the mapped memory, the I/O buffer,
and the buffer size. An optional argument specifies the
UNIBUS adapter datapath to use; the default is 0,
specifying the unbuffered data path.

Note: The procedure allocates the correct number of
map registers by calling ALLOCATE_MAP. It then
converts the virtual address of each page of the buffer-to
a physical address and stores and validates the physical
page numbers in the allocated map registers. If a
datapath other than 0 is specified, it is stored in the
map registers as well. Although the map registers are
allocated by UNIBUS_MAP before use, a nonzero
data path number is assumed to be unused by any other
device.

UNIBUS-UN MAP Procedure

The UNIBUS-UNMAP procedure is used in device
driver programs to un map memory buffers previously
mapped for direct memory access by a UNIBUS or
QBUS device. The procedure deallocates the correct
number of map registers by calling FREE_MAP.

Arguments supply the DEVICE value identifying the
device that was using the mapped memory, the I/O
buffer and the buffer size, and the IS-bit UNIBUS

I/O Devices and Interrupts 6-12

address or the 22-bit QBUS address of the mapped
buffer.

Device Register Procedures

The procedures summarized in this section are used to
read and write device registers and internal processor
registers.

MFPR Function

The MFPR function returns the current contents of a
V AX processor register. The calling program must be
running in kernel mode.

MTPR Procedure

The MTPR procedure moves a specified value into a
specified VAX internal processor register. It can be
called only from a program running in kernel mode.

Caution: Processor registers are a privileged system
resource. Changing the contents of processor registers
while a system is running may cause an unhandled
exception.

READ-REGISTER Function

The READ_REGISTER function returns the value of a
variable reference. The operation is performed by a
single machine instruction and is not affected by any
compiler optimizations. This is the only safe method for
reading a device register, and it can also be used safely
to read a shared variable.

This function should always be used, instead of a direct
assignment, to read the fields in a device register. This
is required because the VAX architecture does not
permi t certain instructions to be used to read device

6-13 Device Register Procedures

registers (in particular, the variable-length hit-field
instructions). Using READ_REGISTER ensures that
the compiler will generate only the allowed
instructions.

WRITE-REGISTER Procedure

The WRITE_REGISTER procedure loads a specified
value or group of values into a specified target variable
reference. The write operation is performed by a single
machine instruction and is not affected by any compiler
optimizations. This is the only safe method for writing
device registers, and it can also be used to safely write a
shared variable.

This procedure should always be used, instead of a
direct assignment statement, to write the fields in a
device register. This is required because the V AX
architecture does not allow certain instructions (in
particular, the variable-length bit-field instructions) to
be used to write device registers. Calling
WRITE-REGISTER ensures that the compiler
generates only the allowed instructions.

I/O Devices and Interrupts 6-14

Introduction

Chapter 7
The Network Service

The N etwor k Service is a set of services provided by the
V AXELN Ethernet Datalink Driver (XEDRIVER or
XQDRIVER). It routes messages sent between two
network nodes and manages the list of universal names
for the network. The Network Service calls the
Datalink Driver to transmit a message; in turn, the
Datalink Driver calls the Network Service to dispatch a
received message.

When a process obtains a value for a port that is not on
the process's node, the kernel and the Network Service
on the local node cooperate to route the message to the
destination, through the Network Service on the
receiver's node. When the message is received at the
actual destination it has the same format as any
message. The methods for receiving a message and
replying to it are always the same.

When a process attempts to translate a NAME string
that is not defined on the local node (that is, a universal
name), the Network Service and kernel cooperate to
obtain the translation. The Network Service also
provides for communication with other DECnet
network nodes and implements certain functions for
managing nodes in the network.

Multinode V AXELN systems are configured with a
Network Service at each node. However, the methods
by which a program sends and receives messages are
the same in this case as in the case of jobs

7-1

communicating within a single node; data transmission
across network nodes is transparent to the user's
program.

The Network Service is also included implicitly by the
System Builder when you select the remote debugging
option for a system under development (see Chapter 13,
ttSystem Development," and Chapter 15, ttDebugging").

This chapter discusses the Network Service in
functional terms and covers the following topics:

• Network applications and message transmissions
between nodes

• The basic message-sending method and its
relationship to V AXELN kernel procedures

• The management of universal names (the concept
of name servers)

• The identification of nodes in file specifications
(node names and node numbers)

• An overview of network management

• The facilities for communication with non
V AXELN nodes on the same network

Network Applications

A network application is one in which jobs send
messages to jobs on other nodes explicitly with the
SEND procedure, or implicitly through I/O operations
that need services, drivers, and hardware on a different
node.

In VAXELN network applications, you include a
Network Service in the system that runs on each node,
as shown in Figure 7-1.

Network Service 7-2

I Job A H Kernel I I Job B H Kernel I
41:

Network Network
Service Service

• ..
Datalink Datalink
Driver Driver ..

. .
: Target : Target
: VAX 1 : VAX2

Ethernet
..

Figure 7-1. A Two-Node VAXELN Network

When Job A sends a message to Job B, the Network
Service on machine 1 locates the destination in the
network and delivers a formatted message to the
Datalink Driver on its machine, to be transmitted on
the Ethernet.

Part of the formatted message is the 48-bit Ethernet
address of the destination node, machine 2. The
Datalink Driver on that machine recognizes its
Ethernet address in the message and forwards the
message to the Network Service on its machine, which,
in turn, delivers the message to a message port in the
destination job, B.

Note that neither the sending nor the receiving job
communicates directly with the Network Services.
Instead, the kernel on each node determines that, for

7-3 Network Applications

example, an outgoing message is not destined for any of
the message ports on its node and forwards the message
to its Network Service.

Among other things, this means that when jobs on the
same machine send messages to each other, the
Network Service is not involved, and in non-network
applications, it can therefore be omitted, from the
system.

Although the use of circuits is strongly recommended,
especially in network applications, the Network
Service functions the same way when messages are
sent between two unconnected message ports on
different nodes.

Circuits are recommended because, whether or not a
network is used, they guarantee that messages are
delivered if the physical connection is intact (which is
not guaranteed by the Ethernet itself), that messages
are delivered in the correct sequence, and that
messages of any length will be split, or ~tsegmented,"
into messages of the maximum size supported by the
hardware and reassembled into messages of the
original size.

Generally speaking, these guarantees are especially
important in networks. If your application seems to
require communication without circuits, you probably
will have to program some of these guarantees yourself,
at least the guarantee of delivery.

Application Message Services

The V AXELN Network Service provides transparent
message-passing extensions to the V AXELN kernel
procedures, using Phase IV DECnet protocols. (An
overview of the Phase IV DECnet protocols can be
obtained from the DECnet DIGITAL Network

Network Service 7-4

Architecture General Description; that document also
contains a list of the Phase IV procotol specifications
you can order.)

The Network Service provides extensions to the
following datagram and circuit kernel procedures:

• ACCEPT-CIRCUIT

• CONNECT-CIRCUIT

• DISCONNECT-CIRCUIT

• RECEIVE

• SEND

End-Node Routing

The Network Service uses the Phase IV DECnet
Routing Protocol Version 2.0 to route system-level
datagrams between V AXELN nodes and other DECnet
nodes.

Its Routing module provides Ethernet end-node
routing. This means that a V AXELN system can have
only one Ethernet Datalink Controller (for example, a
DEUNA or DEQNA). End-node routing also means
that a V AXELN system can communicate directly over
the Ethernet with any other DECnet node on the same
Ethernet, or, if there is a full routing system on the
Ethernet (for example, a VMS system), it can
communicate through the routing system to any other
nodes on the entire network.

Network Services Protocol (NSP)

The Network Service uses the Phase IV DECnet
Network Services Protocol (NSP) Version 4.0 and
Session Control Protocol Version 1.0 to provide
transparent application-level circuits to remote nodes.

7 -5 Application Message Services

The Network Service's NSP module then uses the
Routing module to deliver messages to remote systems.

Logical Links

In NSP and Session Control terminology, an
application-level circuit is called a logical link. A
logical link connects two remote application-level (or
session-level) ports together. Therefore, calling the
VAXELN CONNECT_CIRCUIT procedure with a
remote destination port causes the VAXELN Network
Service to create an NSP logical link with the
destination. The ACCEPT_CIRCUIT procedure also
allows the caller to accept logical links from remote
destination ports.

Datagram Size

The Network Service also uses NSP datagrams to
deliver application-level datagrams. Since there is a
maximum size both for messages on the Ethernet and
for messages in a general DECnet network, V AXELN
application-level datagrams have a maximum size.

This maximum size is also referred to as the segment
size in NSP terminology. The segment size is a System
Builder characteristic, and you should set it to the same
value in all the V AXELN systems on a particular
network. This characteristic should also correspond to
the EXECUTOR BUFFER SIZE on non-V AXELN
systems.

Because there is a header that must be prefixed to a
remote datagram by the Network Service, the actual
maximum size for a remote datagram is the segment
size minus 32. For example, the default segment size is
576 bytes, so the largest remote datagram that can be
sent is 576-32, or 544 bytes.

Network Service 7-6

Name Servers

When you build a V AXELN system, the System
Builder gives you the option of saying that the target
machine for the system can be the name server for the
V AXELN network.

A name server is a target machine whose system
software includes the Network Service and which is
responsible for managing the network's list of universal
names. Universal names allow ajob to make character
string names for its message ports available to all other
jobs in the network; this way, the other jobs can identify
a message destination by name, without having to
know or maintain the actual PORT object values for
other jobs' message ports.

In effect, the Network Service also provides a ~~name
service," with the following functions:

• Creating universal names (the result of calling the
CREATE_NAME procedure)

• Translating universal names (the result of calling
TRANSLATE-NAME for a universal name)

• Deleting universal names (the DELETE
procedure)

Note: The set of universal names in a VAXELN local
area network is known only to the V AXELN nodes in
that network, not on nodes running other systems such
as V AXNMS, nor to other V AXELN nodes not directly
connected to the local area network's Ethernet.

At a particular time, there is only one node in a
V AXELN network application that acts as a name
server; it is responsible for the management of
uni versal names.

7-7 N arne Servers

Interaction with the Kernels and Network Services

The kernel and Network Service on each node interact
with each other and with the name server as follows:
messages sent between the Network Services and name
server are retried if necessary, until a valid reply is
received. That is, these transmissions are reliable.

Name Creation

When a job creates a universal name, the kernel on its
node sends a message to its node's Network Service.
The Network Service then sends the name and
associated PORT object value to the name server. The
name server enters the universal name in its table and
sends an acknowledgement back to the Network
Service. The Network Service waits for the acknow
ledgement from the name server (a message indicating
the success or failure of the name creation) and
forwards the reply back to its local kernel. This status
is then reflected in the user's program as the
completion status of CREATE-NAME.

Name Deletion

Again, the kernel informs its local Network Service of
the universal name deletion, and the Network Service
informs the name server. The name server removes the
name from the table (unless it was already deleted) and
replies to the Network Service. The caller of DELETE
receives the completion status in the same way as for
creations.

Name Translation

The kernel procedure TRANSLATE_NAME sends a
message to the Network Service if it cannot find a
translation of a name. The Network Service forwards

Network Service 7-8

the translation request to the name server. The name
server translates the name to a PORT object value,
which it returns to the Network Service in its reply.
Again, via the Network Service and kernel, the caller of
TRANSLATE-NAME receives the completion status of
the translation.

Name Server Election

This subsection describes the way universal names are
preserved in the event of the current name server
shutting down.

As mentioned previously, you can designate in the
System Builder that the target machine can be a name
server. This characteristic really means that the node
can ttvolunteer" or ttnominate" itself as a name server,
not that it will necessarily be one.

Generally, you should specify at least two such systems
per VAXELN network. Having several volunteers
helps assure the continuing validity of universal names
if the current name server shuts down for some reason.

The process by which a machine is ttelected" as the
name server is as follows:

• The current name server periodically broadcasts
its Ethernet address to inform the other nodes that
it is the current name server.

• Every node's Network Service retains the list of
universal names that it has created; this is true
whether or not the node's system has the Name
server characteristic.

• Every node listens for the name server's periodic
broadcast. If a time-out interval elapses with no
broadcast heard, the node with the highest
Ethernet address is elected as the current name

7-9 N arne Servers

server, and every node's Network Service sends its
current list of universal names to the new server.

Assuming that a name server is elected, this algorithm
assures that when a VAXELN system is running on a
node, the names for its message ports are available to
the other nodes. On the other hand, the failure of a node
does not prevent other nodes from using universal
names.

Clearly, it is possible for every node that is a name
server volunteer to be down at once, so as far as failure
protection is concerned, the more volunteers, the better.
On the other hand, the election algorithm causes many
messages to be sent, in very large networks, if every
node has the characteristic. Name server is a default
characteristic in the System Builder, and we suggest
that in networks with fewer than 20 nodes, you give
every system this characteristic.

Node Names and Numbers

When V AXELN and non-V AXELN nodes are
connected to the same network, you need to be able to
identify them to each other. This allows V AXELN
systems to operate on files stored on all systems, to
establish circuits to the other system, and so on.

Note, by the way, that node names are not needed to
identify V AXELN nodes to each other. For example, a
V AXELN program on one node can use a file stored on
another node without giving a node name or other
identifier in the file specification; the network locations
of V AXELN jobs are transparent to one another . Node
names or numbers are needed only for communication
between V AXELN and non-V AXELN nodes.

In DECnet networks, nodes are identified both by node
name and by node number. A node name has a

Network Service 7-10

maximum of six characters, and a node number is an
integer. Either is a unique identification of a node. The
V AXNMS command SHOW NETWORK displays both
the name and number of all the nodes known to the
DECnet-VAX software.

VAXELN nodes are given node names and numbers on
the VAXNMS system as usual, with the DECnet-V AX
Network Control Program, or NCP. (For a brief
introduction to NCP, see ~~N etwork Management," later
in this chapter.)

Once NCP has been used to establish the V AXELN
node in the DECnet-VAX database, it will be displayed
by the SHOW NETWORK command any time it is run
ning and contains the Network Service.

Use of Node Names in VAXNMS

You can use a V AXELN node name from a non
V AXELN system to display directories, to perform
other directory- or file-related operations on File
Service volumes, and to perform network management
operations.

For example, the following V AX/VMS command
displays the directory [analog.data] on disk volume
DISK$A on node README, which is presumably a
V AXELN file-server node:

$ DIR README: :DISK$A:[analog.data]

If you have used this feature on V AXNMS before, this
is the familiar syntax for network file and directory
operations; the word preceding the double colon (::) is
the node containing the specified directory or file.

Use of Node Numbers in VAXELN

DECnet-VAX does not have a name service facility
comparable to the V AXELN Network Service's, and so,

7-11 Node Names and Numbers

when working from a V AXELN node, you must specify
a V AXNMS node by number rather than by name.
Suppose, for example, you want to open a file on the
V AXNMS node RV AXAA. The SHOW NETWORK
command on the V AX/VMS system might display
something like:

$ SHOW NETWORK
Node links Cost Hops Next Hop to Node

10 RVAXAA 0 0 0 (Local)
3 ELN1 1 3 1 UNA-O

Here, presumably, ELNI is the node from which you
want to access a file on RV AXAA. T4e file can be
opened as usual, with the OPEN procedure appropriate
to the language, but with the node number of RV AXAA
in the file specification. For instance, in Pascal:

OPEN(pasvar,
FILE-NAME: = '10: :sys$library:digital.dat');

or in C:

#include stdio
FILE *file-ptr;
file-ptr = fopen(" 1 0: :sys$library:d igital.dat"," r");

Network Management

The Network Service provides facilities that aid the
management of a network of nodes running DECnet
software. The facilities are the Network Managment
Listener (NML) and the Loopback Mirror.

Network Managment Listener

The NML provides a subset of DECnet Network
Management Version 4.0. It provides network
monitoring and control for DECnet systems. The NML
functions are invoked with the VMS Network Control

Network Service 7-12

Program (NCP). This program is described fully in the
DECnet-VAX System Manager's Guide. This section
describes the features of NCP that are supported
remotely by V AXELN.

In order to use the NCP to invoke the V AXELN NML,
the V AXELN system's node name and address must
first be defined in the VMS system's network node
database. This operation is usually performed when the
network is installed, but you should always be sure
each node in your network has a unique address and
name. The following VMS commands would
permanently define a V AXELN system for use by
network management:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE FRED ADDRESS 5
NCP> SET NODE FRED ALL

Once the node has been defined, its existence in the
network can be displayed using the NCP SHOW NODE
and SHOW CIRCUIT displays. (Note that the use of the
term circuit in NCP refers to the datalink-level circuits
between nodes, not the application-level circuits
referred to in V AXELN programs.)

NCP> SHOW NODE FRED

Node Volatile Summary as of 8-JUL-1983 12:44:41

Node State Active Delay Circuit Next Node
Links

5 (FRED) reachable UNA-O 5 (FRED)

To use NCP to invoke the V AXELN NML, the NCP
SET EXECUTOR command or the TELL prefix is used.

7-13 Network Management

For example:

NCP> SET EXECUTOR NODE FRED
NCP> SHOW EXECUTOR

Node Volatile Summary as of 8-JUL-1983 10:48:00

Executor node = 5 (FRED)

State = on
Identification = VAXELN V2.0

The following NCP commands and options are
supported by the VAXELN NML (the italic parts of the
commands are optional and, in most cases, mutually
exclusive):

• LOOP NODE node-id WITH block-type COUNT
count LENGTH length

• SHOW EXECUTOR SUMMARY STATUS
CHARACTERISTICS COUNTERS

• SHOW KNOWN CIRCUIT SUMMARY
COUNTERS

• SHOW KNOWN LINE SUMMARY COUNTERS

• SHOW NODE node-id SUMMARY COUNTERS

• ZERO EXECUTOR

• ZERO KNOWN CIRCUIT

• ZERO KNOWN LINE

• ZERO NODE node-id

Loopback Mirror

The Loopback Mirror can test the Network Service on a
V AXELN node, from a non-V AXELN node or from
another V AXELN node. The Mirror passively loops

Network Service 7-14

messages sent to it using the NCP LOOP NODE
command.

The Mirror is a good test of the Network Service and its
ability to communicate with other nodes on the
network. Therefore, use the LOOP NODE command
whenever communication between systems is in doubt.
For example, to test the communication between a
remote V AXELN system and the local VMS system,
the following command could be used:

NCP> LOOP NODE FRED COUNT 100

To test the communication between two V AXELN sys
tems, the following command might be used:

NCP> TELL FRED LOOP NODE BILL COUNT 100

Connections with VAX/VMS Nodes

A complete explanation of VMS network I/O is beyond
the scope of this manual, but the information in this
section provides the V AXELN -specific details to help
you get started. For full information, see the
documentation for V AXNMS and DECnet-VAX, in
particular, the DECnet-V AX User's Guide.

Requesting the Connection from VAXELN

The kernel procedure CONNECT-CIRCUIT can be
used to request a connection with a V AXNMS program
on the same DECnet network by giving the following
kind of string for the DESTINATION-NAME
parameter of CONNECT-CIRCUIT:

'nodenumber:: objectname'

where nodenumber is as explained previously in the
section ((Node Names and Numbers," and objectname
is the name of the ((object" on the V AXNMS system
that will handle the connection.

7-15 Connections with VMS Nodes

In the default DECnet directory on the VMS system,
there has to be a command procedure named
objectname.COM, which should run the desired VMS
program image. The command procedure is executed
when DECnet-VAX gets a request for a connection to
the specified object. The VMS image will then handle
the connection.

Accepting the Connection on VAXNMS

The VMS program image has two general ways of
waiting for and accepting the connection from
VAXELN (the operation comparable to V AXELN's
ACCEPT_CIRCUIT procedure).

If the V AXNMS program was written in a high-level
language, it can use that language's OPEN procedure
or equivalent to open with the name ~SYS$NET.' (In a
VAX MACRO program, the $ASSIGN system service
can be used.) The connection can be broken by a
DISCONNECT_CIRCUIT call in the V AXELN pro
gram or a ~~close" operation in the V AXNMS program.

Transparent and Nontransparent Communication

The method described so far is called transparent com
munication in DECnet-V AX because it allows the
V AXELN and VMS programs to exchange information
with standard I/O statements, ignoring the fact that
they are separated on the network. It offers the basic
mechanism for establishing a single connection,
exchanging messages, and breaking the connection.

The alternative method is called nontransparent com
munication, which allows the VMS program to use
network-specific features to handle the message
exchange. The features available are a superset of those
available in the transparent case, although they
require more knowledge of DECnet, and more

Network Service 7-16

sophisticated programming. (For example, the
VAXELN program can use the ACCEPT_DATA and
CONNECT-DATA parameters of the kernel's circuit
procedures to exchange up to 16 bytes of data with the
remote VMS program as part of the NSP connection
requests and acceptances.)

Nontransparent communication on VMS uses VMS
mailboxes to handle multiple connection requests and
the $QIO function codes IO$_ACPCONTROL and
IO$_ACCESS to establish names and accept con
nections from multiple V AXELN processes. (For full in
formation and examples, see the DECnet-VAX User's
Guide.)

Requesting the Connection on VAXNMS

A VMS program can request a connection with a
V AXELN program by using its language's OPEN
procedure (or the $ASSIGN system service) with a
name of the form:

nodename:: "TASK = portname"

The nodename is the name of the V AXELN network
node and the portname is the character-string name of
the port created by the V AXELN program.

Accepting the Connection on VAXELN

The V AXELN program needs to do nothing special to
accept a connection from a remote VMS program. It
needs only to create a PORT object and a NAME object
for the port, and then call the ACCEPT-CIRCUIT
procedure to await the connection request.

Connections Using DECnet Object Numbers

A V AXELN program can both connect and accept
connections using DECnet object numbers instead of

7 -17 Connections with VMS Nodes

names. This feature is useful only for compatibility
with existing DECnet applications.

To connect to a port (or ~~object") by number, specify a
string with this format for the DESTINATION_NAME
parameter of CONNECT-CIRCUIT:

'nodenu mber: : objectnu mber'

To accept a connection for an object by number, create a
port name of the form:

'NET$OBJ EeT -objectnu mber'

where objectnumber is the object number (in ASCI!).
Once the name is created, connections can be accepted
as usual.

User-Level Datagrams

V AXELN systems cannot exchange user-level data
grams transparently with non-V AXELN (V AXNMS)
nodes. However, if datagrams must be exchanged
between two such systems, they can be sent
nontransparently by having the user program send
messages directly to the Datalink Driver.

The DEUNA and DEQNA drivers for both V AXELN
and V AXNMS allow multiple users of the datalink,
providing multiplexing via the Ethernet protocol type.
The Pascal interface to the V AXELN Datalink Driver
(XEDRIVER or XQDRIVER) is in DATALINK.PAS
and can be used in programs by including the module
$DATALINK from RTLOBJECT.OLB in the compila
tion. (For information on the V AXNMS driver
interface, consult the V AX/VMS I/O User's Reference
Manual.)

Network Service 7-18

Introduction

Chapter 8
System Security

V AXELN includes a number of features that can be
used to provide system security. In this context, the
term security means that system resources and data
are protected from use, examination, or modification by
((unauthorized" people.

Since VAXELN is primarily intended for dedicated
applications where security may be more of a nuisance
than a benefit, VAXELN provides no security by
default. To use the security features they must be
explicitly included and enabled by the application
designer. If, for example, a VAXELN system is to be
included as part of a larger network of systems, it is
recommended that the security features be included.

To understand the V AXELN security features and how
they work to provide protection, it is important to
understand what is and is not being protected from
whom.

Since V AXELN is NOT intended to provide a multi
user time-sharing environment, there is no enforced
protection among programs running on a single system.
That is, although the V AX memory management
ensures that errant programs cannot accidently modify
the memory allocated to other programs, the V AXELN
kernel and run-time services make no attempt to
dictate which programs can run in kernel mode, alter
priorities, stop and start program execution, or in

8-1

general ~~fairly" distribute the resources of the single
node system.

This means that the programs running on a system are
in complete control of the resources of the system.
Therefore, if a V AXELN -based application is to be used
by unexperienced or even malicious users, the applica
tion should ensure that it protects itself and the system.
Also, if protection of system resources is required, users
should not be allowed to run their own programs.

However, as mentioned, many VAXELN systems exist
in a larger network. This implies that programs must
protect the resources of a system from use or abuse by
other users of the network. In particular, programs that
accept requests from other network nodes need to
somehow determine the identity of the requestor. An
example of a program with this requirement is the File
Service, which needs to provide protection for the disk
files that it services.

The most basic security feature of V AXELN, therefore,
provides the capability for a program to determine the
identity of a user issuing a network request. This
feature is provided by an optional service called the
Authorization Service. The Authorization Service
maintains a database of all the users authorized to use
a particular V AXELN system or network of systems.
When an application program accepts a circuit connec
tion to handle a request, it can query the database to
determine the identity of the requestor.

Other VAXELN facilities use the Authorization
Service to protect the resources and da ta that they
control. The Network Service running on a particular
node only accepts incoming circuit connections from
users that are authorized in the Authorization Service's
database. The File Service provides read, write, and
delete protection for files on disk volumes that it

System Security 8-2

controls. The Authorization Service itself uses the
database to protect the database. Likewise, application
programs can use the service to protect their resources
and data.

This chapter describes in detail how the V AXELN
security features work and how they can be used to
protect resources and data.

Users

Associated with each process in an VAXELN system is
a user name string and a user identification code value,
or UIe. These two values are maintained by the kernel
and are inherited by a process from the process or job
that created it. A process can also set its own user name
and UIe to any desired values by calling the
SET_USER kernel procedure.

The UIes are integer values that provide a shorthand
way of identifying a user or group of users. VIes can
then be used by application programs to protect their
resources. For example, the File Service stores a UIe
with each file that is created. The File Service then uses
the stored UIe (called the ~~owner UIe") to determine
whether a requestor should be allowed to access the file.

The V AXELN use of UIes is compatible with the
V AXNMS use. On V AXELN and V AXNMS, UIe
values are 32-bit longwords, partitioned into two 16-bit
words. The least significant word is called the
~(member" number and the most significant word is
called the ~(group" number. UIe values are normally
displayed in octal, as follows: (Tgroup-number,member
number]". For example, [1,4], [11,32], [200,200]. The
partitioning of the value into group/member fields
allows groups of values to be associated with each other
for protection purposes. Also, group numbers less than

8-3 Users

or equal to octal 10 are considered part of the ((system"
groups. The use of UIes is described more fully in the
section (tFile Service Security," later in this chapter.

A process can determine its own user name and UIe by
calling the GET-USER kernel procedure. Since, as
described above, the security features in V AXELN are
really based upon validating network requests, a
process can also determine the user name and UIe of
the process from which it has accepted a circuit
connection. This capability is also provided by calling
GET-USER, though the port object connected in the
circuit is then one of the arguments.

Authorization Service

The Authorization Service is the key component of the
V AXELN security facilities. It maintains a database of
all the remote users that are authorized to use the
resources of a particular V AXELN system or network
of systems. Along with answering the question of ttis a
particular user authorized," the service also maintains
a UIe for each authorized user.

The Authorization Service's primary task, therefore, is
to determine the identity of the requestor of a network
connection request. To do this, the service gets the
requestor's host system user name and node name and
looks them up in the authorization database. It can also
accept a specific user name and password C(access
control string") and look them up in the database.

The following example describes how the service works,
as illustrated in Figure 8-1.

System Security 8-4

DEPOT1 DOCK2

User: Application Application
FRED

Network & Network &
Authorization Authorization

Services Services

I"FRED,DEPOT'" / ~
Figure 8-1. Authorization Service Example

If a user named FRED executing a program on a
V AXELN node named DEPOTl issues a request for a
service on another node named DOCK2, the Network
Service on node DEPOTl sends FRED and DEPOTl in
the connection request message to the Network Service
on node DOCK2. The Network Service then sends a
request to its Authorization Service to verify that user
FRED on node DEPOTl is authorized to use the
services provided by node DOCK2. The Authorization
Service replies to the Network Service with a ((Yes" or
((No" indication, and if ((Yes," it returns the UIC the
user is to be identified with.

This type of authorization is termed ((proxy" access
control. It means that since FRED is authorized to use
the resources of node DEPOTl, his DEPOTl name is
sent, by network proxy, to determine if he can use the
resources of node DOCK2.

The other type of authorization provided by the
Authorization Service is called destination

8-5 Authorization Service

authorization. It is used when a connection (or file
open) specifies a specific user name and password with
the connection request. This specification is called an
((access control" string. This feature provides a means of
assuming a new identity on the remote system.

Both of these types of VAXELN authorization are
provided compatibly by V AXNMS. Other DIGITAL
operating systems currently only support the destina
tion authorization provided with access control strings.

The CONNECT-CIRCUIT procedure allows a remote
destination to be specified as a string using the
DESTINATION_NAME optional parameter. Like
other DECnet systems, the node specification for
CONNECT-CIRCUIT can include a user name and
password, which can be optionally enclosed in quotes
and separated from each other by a single space.

To specify the remote destination by object name, the
string can have the following forms:

'nodenumber: :objectname'

'nodenu mber" username password":: objectname'

'nodenu mber" username":: objectname'

'nodenumber" [ggg,mmm] password": :objectname'

For example,

CONNECT-CIRCUIT(p, DESTINATION-NAME: =
'3"FRED SWIZZLE": :TESTOR');

would connect to object TESTOR on node number 3 using
a user name of FRED and a password of SWIZZLE.

To specify the remote destination by object number, the
string can have the following forms:

'nodenu mber: : objectnu mber'

'nodenumber"username password": :objectnumber'

System Security 8-6

'nodenumber"username": :objectnumber'

'nodenumber" [ggg,mmm]
password ": : objectnu mber'

For example,

CONNECT-CIRCUIT(p, DESTINATION-NAME: =
'4" [1 0,150] QUAKE ":: 129');

would connect to object number 129 on node 4 using a
user name of [10,150] and a password of QUAKE. This
format is typically used only to connect to RSTS/E
systems.

For connection to a port in a V AXELN system, the
string can also have the following forms:

'nodename: :objectname'

'nod ename II username password ":: objectname'

'nodename"username": :objectname'

'nod ename II [ggg,m mm] password ": : objectname'

'nodename: :objectnumber'

'nodename"username password ": :objectnumber'

'nodename"username": :objectnumber'

'nodename"[ggg,mmm] password II : :objectnumber'

For example,

CONNECT-CIRCUIT(p, DESTINATION-NAME: =
'NODEA"FRED ABC": :TEST');

would connect to object TEST on node name NODEA
using a user name of FRED and a password of ABC.

Since OPEN uses CONNECT-CIRCUIT to access
remote files on other DECnet nodes, its FILE_NAME
parameter can also include a user name and password if
a node number is specified.

8-7 Authorization Service

For example,

OPEN(f, FILE-NAME: =
'3" FRED SWIZZLE":: FILE99.DAT');

would open FILE99.DAT on node number 3 using a user
name of FRED and a password of SWIZZLE.

Including the Authorization Service

The Authorization Service is supplied as a program
image that can be included in a V AXELN system using
the System Builder. These steps should be followed:

1. Set the Authorization required entry on the Edit
Network Node Characteristics menu to ((Yes" or
((N 0." When this characteristic is set to (tYes," the
Network Service will not allow inbound circuit
connections unless it can authorize the user via an
Authorization Service. When set to ((No," the
Network Service will not authorize inbound
connections via the Au thoriza tion Service.

This feature should be set to ((Yes" if security is
being used.

2. Set the Authorization service entry on the Edit
Network Node Characteristics menu to either
ttLocal," ((Network," or (CN one." When set to
(CLocal," the service is included in the system
image where it only handles authorization for the
local (target) system. When set to ((Network," the
service is included, but it handles authorization
for any node in the local area network that does
not have its own service. When set to CtNone" (the
default), no service is included in the system
image.

System Security 8-8

There can be only one node with a ~~Network"
Authorization Service running at one time on a
particular local area network. The ~tNetwork"
characteristic is implemented using the V AXELN
universal name feature, so there must be at least
one names server node in the network for a
~tNetwork" Authorization Service to properly
function.

3. Set the A uthorization file entry on the Edit
Network Node Characteristics menu to specify the
authorization data file. The data file must exist on
either the same node as the Authorization Service
or one that the service is authorized to access (for
example, one with its own local service). The
default file is tTO,O]AUTHORIZE.DAT" on the
local default disk.

When the Authorization Service starts running, it
opens and reads the specified data file. If the data file is
not found, it creates a new one. The file should only be
modified by using the maintenance procedures
described in the section ttAuthorization Service
Maintenance," later in this chapter.

Typically, the authorization data file is on a disk
directly attached to the node running the Authorization
Service. In such a case, when the file is first created by
the service, it can only be modified by users running
programs on the same node. That is, since the data file
is empty, no remote users are authorized to access the
node.

Once other users are authorized, if they have UIes in
the system group, they can remotely maintain the
authorization data file.

8-9 Authorization Service

Authorization Procedures

T~e procedures summarized in this section are used to
set or return the user identity of processes.

SET_USER Procedure

The SET-USER procedure sets the user identity of the
current process. A string of 1-20 characters specifies the
user name to be associated with the process. An integer
supplies the UIC to be associated with the process.

The primary use of a process' user name and UIC is to
enable its remote requests to be properly authorized on
a remote system.

When a port is used in a call to CONNECT-CIRCUIT
with a remote destination, only the calling process' user
name is sent to the destination system. The user name
is then authorized on the destination system. The UIC
available to the destination partner process via
GET_USER is then the UIC authorized by the
destination Authorization Service. That is, the UIC set
by SET-USER is only valid for use on the local system;
it is up to the remote destination to determine the
proper UIC at the destination.

If the CONNECT_CIRCUIT procedure is called with a
remote destination name parameter that includes a
user name and password, such as

DESTINATION-NAME: ='NODEA"FRED ABC"::TEST'

the specified user name and password is sent to the
remote system rather than the user name set via
SET-USER. The user name and password is then
authorized on the remote system. The UIC available to
the destination partner via GET-USER is then the UIC
authorized by the destination system.

System Security 8-10

GET-USER Procedure

The GET_USER procedure returns the user identity of
ei ther the calling process or the partner process
connected via a circuit to the caller's port. An optional
argument specifies a port connected in a circuit. Other
optional arguments return the user name string and
the UIC.

If the circuit parameter is specified, the port must be
currently connected in a circuit that the caller has
accepted with the ACCEPT-CIRCUIT procedure. Valid
information is not returned if the caller initiated the
connection with CONNECT_CIRCUIT; that is,
GET-USER can only be used to provide information
about the object of a connection, not the subject.

If the circuit is from a remote user, but there is no
Authorization Service available in the system (the
Authorization req uired characteristic is ((N 0"),
GET-USER returns zero for the UIC parameter.

Although the Network Service ensures that an inbound
connection request is from an authorized user, it is up
to the application program that accepts the request to
use the user's identity to protect its resources. The
GET-USER procedure should be used for this purpose.

For example, the following segment of a Pascal
program accepts an inbound connection request and
checks that it is from a user in a ((system" group (less
than or equal to octal 10):

VAR
np, p: port;
username: varying-string(20);
u ic: integer;

8-11 Authorization Procedures

ACCEPT-CIRCUIT(np, CONNECT: = p);
KER$GET-USER(CIRCUIT : = p, USERNAME : =

username, UIC : = uic);
IF (uic div %Xl0000) > %010
THEN

DISCONNECT -CIRCUIT(p)
ELSE

Authorization Example

The following example illustrates the two types of
authorization and the use of SET-USER and
GET-USER.

Suppose there are two nodes: DEPOTl and DOCK2.
The Authorization Service database for node DOCK2
includes two entries:

User: FRED Host node: DEPOT1 UIC: [1,2]
User: SAM Host node: UIC: [1,3] Password: NOODLE

The first entry is a proxy authorization because it
includes a host node name; the second entry is a
destination authorization because it includes a
password instead of a node name.

If program ttA" on node DEPOTl executes the
following:

KER$SET -USER(username : = 'FRED');
CONNECT -CIRCU IT(destination-name

: = 'DOCK2: :TESTOR');

And program ttB" on node DOCK2 executes:

CREATE-NAM E(p, 'TESTOR');
ACCEPT -CIRCUIT(p);'
KER$GET-USER(circuit: = p,

username: = partner-user, uic : = partner-uic);

System Security 8-12

Then, program ((B" will get a user name value of FRED
returned in variable PARTNER-USER and a DIC value of
[1,2] (%X00010002) returned in variable PARTNER-UIC.
The Authorization Service has used the proxy entry to
authorize the remote user.

If instead, program ((A" on node DEPOT! executes the
following:

CONNECT -CI RCU IT{destination-name
: = 'DOCK2"SAM NOODLE": :TESTOR');

And program ((B" on node DOCK2 executes:

CREA TE-NAME{p, 'TESTOR');
ACCEPT-CIRCUIT{p);
KER$GET -USER{circuit : = p,

username: = partner-user, uic : = partner-uic);

Then, program (tB" will get a user name value of SAM
returned in variable PARTNER-USER and a DIC value of
[1,3] (%X00010003) returned in variable PARTNER-UIC.
The Authorization Service has used the destination
entry to authorize the remote user.

Authorization Service Utility Procedures

The Authorization Service provides the capability to
maintain the authorization database. Since the
Authorization Service can run as a server in a local
area network, it performs the maintenance functions
using messages and its own maintenance request
protocol. To simplify the development of maintenance
programs, VAXELN includes a set of utility procedures
that handle the protocol, eliminating the need for user
programs to explicitly code the protocol.

These procedures all assume that the calling pr'ogram
has connected a circuit to the Authorization Service's
ADTH$MAINTENANCE port.

8-13 Authorization Service Utilities

For example, in Pascal:

VAR
c: PORT;
user: auth$username;
uic: integer;
node: auth$nodename;

CREATE-PORT(c);
CONNECT-CIRCUIT(c, DESTINATION-NAME

: = 'AUTH$MAINTENANCE');
user: = 'FRED';
node: = 'DEPOT1'
uic: = %X00010002;
ELN$AUTH-ADD-USER(CIRCUIT: = c,

USERNAME: = user,
NODENAME : = node, UIC: = uic);

To use the following maintenance utility procedures
include the $AUTHORIZE-UTILITY module in the
compilation. In the following procedures, the host node
name parameter can be specified as either an
alphanumeric string for V AXELN nodes (for example,
DEPOT1) or a numeric node address for non-V AXELN
nodes (for example, 5 or 3.5).

AUTH-ADD-USER Procedure

The AUTH-ADD-USER procedure adds a new user
record to the authorization database. This procedure
requires that the caller is authorized with a system
group UIe (that is, a UIe of less than or equal to
%X0008FFFF or [10,177777]).

Arguments uniquely specify the user name and node
name of the new user. If a node name is specified, the
database record represents a proxy authorization; if a
node name is not specified, the record represents a

System Security 8-14

destination authorization. If a destination authoriza
tion record is added, a password is stored with the
record. Passwords are always stored in a ~~hashed" form
so they cannot be read once stored.

Additional arguments specify the port connected to the
Authorization Service's AUTH$MAINTENANCE port,
the VIC that is associated with the user, and an
arbitrary string of user-specified data that is stored
with the user record for use by applications.

The reserved name $ANY can be specified for either or
both the user name and node name. If $ANY is
specified for a user name, it means that any user from
the specified node that does not match one of the
explicit user names is authorized with the specified
VIC. If $ANY is specified for a node name, it means
that any user with the specified name from any node
that does not match one of the explicit node names is
authorized with the specified UIC. If $ANY is specified
for both, it means that all users that don't match an
explicit user name / node name combination are autho
rized with the specified VICs.

AUTH-MODIFY -USER Procedure

The AUTH-MODIFY -USER procedure modifies an
existing user record in the authorization database. This
procedure requires that the caller is authorized with a
system group UIC (that is, a VIC of less than or equal to
%X0008FFFF or [10,177777]).

Arguments uniquely specify the user name and node
name of the record to be modified, as well as the port
connected in a circuit to the Authorization Service's
AUTH$MAINTENANCE port. Other arguments
optionally specify values to replace the current values
in the record. Particular fields can be modified without
changing other fields in the record.

8-15 Authorization Service Utilities

Since the hashing algorithm for the password includes
the user name, if the user name is modified, the
password must be reset as well.

AUTH-REMOVE-USER Procedure

The AUTH-REMOVE-USER procedure removes an
existing user record from the authorizaton database.
This procedure requires that the caller is authorized
with a system group UIC (that is, a UIC of less than or
equal to %X0008FFFF or [10,177777]).

Arguments uniquely specify the user name and node
name of the user to be removed, as well as the port
connected in a circuit to the Authorization Service's
AUTH$MAINTENANCE port.

AUTH-SHOW-USER Procedure

The AUTH-SHOW-USER procedure returns the
authorization database information for the specified
user or users. Arguments uniquely specify the user
name and node name of the user records to be accessed,
as well as the port connected in a circuit to the
Authorization Service's AUTH$MAINTENANCE port.
This procedure calls a user-specified routine with the
val ues of a specified user record or all the records in the
authorization data file. The routine is invoked only if
the specified user entry is found in the authorization
database.

Fi Ie Service Secu rity

The File Service uses the V AXELN features described
in this chapter to protect the disk volumes and files that
it manages. Since the File Service uses the Files-II on
disk structure, it uses the standard Files-II protection
facilities.

System Security 8-16

These facilities are compatible with VMS and are
described below:

• When a new file is created, one of its attributes is
the primary UIe of the user requesting the
creation. This UIe is called the ttowner UIC" of the
file. If the File Service is unable to determine the
UIC of the user creating a new file (for example,
there is no Authorization Service), the file owner
UIC is set to the UIC of the disk volume owner .

• A new file also gets as one of its attributes a
protection ttmask" which describes how the File
Service is to protect the file from the following
categories of users:

System - users with UICs with a group
number less than or equal to tt8";

Owner- users with UIes that match the
owner UIe;

Group - users with UIes with a group
number that matches the owner
UIC's group number;

World - users with UICs in none of the above
ca tagories.

The protection mask is a I6-bit word that is
composed of four fields. Each of the four fields
corresponds to one of the four categories of user
described above. Each of the four fields consists of
I-bit indicators that specify the access allowed to
the category: read, write, execute, and delete.

The protection mask is shown in Figure 8-2.

8-17 File Service Security

15 11 7 3 0

ID~EWRID EWRID EWRID EWR

World Group Owner System

8-2. Protection Mask

If a bit is set in a category's field, then users in that
category are denied the corresponding access. For
example, if bit 1 is set, then system users are
denied write access.

The Pascal programmer can specify the protection
mask fields defined by the $FILE-UTILITY
module. The C programmer typically specifies
unsigned octal values. (For compatibility with
U nix, the C creat and chmod functions do not use
the same format for the protection mask.)

• The owner and protection for a new file can be
. specified as parameters to the Pascal OPEN

procedure and the C creat function. The protection
for an existing file can be changed using the Pascal
PROTECT-FILE procedure and the C chmod and
chown functions. If a new file is created and no
protection mask is specified, the File Service sets
the protection to the disk volume's defa ul t file
protection.

• The owner UIC and protection mask for a new disk
vol ume can be specified as a parameter to the
INIT-VOLUME procedure.

System Security 8-18

• The default protection mask for files on a new disk
volume can be specified as a parameter to the
INIT-VOLUME procedure.

• If the File Service is unable to determine the DIC
of a user requesting access to a file (for example,
there is no Authorization Service), it allows
unprotected access by the user. (See the description
of the Authorization required Network Node
Characteristic earlier in this chapter for a means
of preventing this unprotected access.)

8-19 File Service Security

System Securi ty 8-20

Introduction

Chapter 9
The File Service

The File Service is a set of services provided by the disk
and tape drivers in a system to enable using disk or
tape files, respectively, for program 110. It is not used
for I/O with terminals or printers.

The File Service consists of a disk File Service and a
separate tape File Service:

• The disk File Service provides Files-11 On-disk
Structure Level 2 file services. It is compatible
with the V AXNMS Version 4.0 file system and
RMS-32. .

• The tape File Service is based upon Version 3 of
the ANSI standard for magnetic tapes. It provides
users with a convenient means of transporting files
to and from VAXNMS systems, since it is compati
ble with the V AXNMS Version 4.0 file system.

For disk and tape devices supported by DIGITAL, the
File Service is already linked with the V AXELN
drivers. If you are writing your own disk or tape drivers
that will use the File Service, the appropriate shareable
image must be linked, as explained in the section
~(Interface with Disk and Tape Drivers," later in this
chapter.

When several V AXELN systems are running on nodes
in a local area network, only one needs to have disk (or
magnetic tape) hardware. An appropriate hardware
configuration, running a system containing the File

9-1

Service, thus can act as a file server for other jobs on the
same node or on other nodes, handling all file storage
and retrieval for the local area network.

In the case of disks, for example, programs can identify
files, regardless of their network locations, by using file
specifications that give the File Service volume name
for the storage device; node specifications are needed
only when you use a file stored on a non-V AXELN
system. Systems that support file access from remote
nodes also include a separate job, the File Access
Listener, to handle connection requests between nodes.

This chapter discusses device specifications; volume
names, file specifications, the File Access Listener, the
use of file service volumes from VMS, file service
operations, file utilities, disk and tape utilities, the
interface with disk and tape drivers, and the Data
Access Protocol.

Device Specifications

The devices used by a V AXELN application must be
described to the System Builder on its Device
Description menus, as explained in Chapter 13,
(tSystem Development."

Each device name identifies a specific unit on a specific
controller. Typically, the controller is specified by a
letter and the unit by a number. For example, the
device specification tDQA l' identifies controller A, unit
1, for an RB02 or RB80 disk attached to the Integrated
Disk Controllerofa VAX-11/730.

Table 9-1 lists the storage device types used in
V AXELN programming.

File Service 9-2

Table 9-1. Storage Device Types

Device Type Meaning

DQ VAX-11/730 Integrated Disk
Controller (RB02 cartridge disks and
RB80 fixed disks)

D D TU 58 cartridge drive in VAX console

DU UDA50 UNIBUS interface to Storage
Interconnect (SI) disks, RQDX
(Micro V AX) interface to RX50
diskettes and RD51 or RD52
Winchester disk, or RC25 fixed and
removable disks

MU TK50 streaming cartridge tape drive

Note that the device types shown in Table 9-1 are
simply conventional names for these devices; you can
use any names you like as long as they are used
consistently in the System Builder and in user
programs.

Volume Names

After you enter the device specifications for the drives
the File Service uses, you can supply volume names
(volume labels) for disks or tapes that are to be
mounted by the service when the system is started.
Volume names are specified on the System Builder's
Edit System Characteristics menu (see Chapter 13,
ttSystem Development").

9-3 Volume Names

The volume name is paired with a device specification;
for example:

"DUA 1 TEST1", "DUAO TEST2"

Here, TEST1 is established as the volume to be mounted
on drive DUA 1 and TEST2 as the volume for DUAO. The
first volume specified in the list (here, TEST1) identifies
the default volume for the File Service. That is, any file
specification that lacks a volume name or device name
refers to this volume.

The controller name (here, DUA) is also supplied as an
argument to the driver; Chapter 13 explains how the
controller device is described to the System Builder and
how the appropriate driver is built into the system.

The specified volumes are mounted automatically if the
V AXELN system is built with the File Service. If no
volume name is supplied for a specified device, the File
Service will attempt to mount whichever volume is
placed in the drive. If the volume name specified is not
the same as the one with which the volume was
initialized, the File Service will mount it anyway and
print an informational message on the target machine's
console terminal.

If no argument is supplied for a drive, it is not initially
mounted by the File Service, but can be mounted
dynamically with the MOUNT-VOLUME procedure or
with the MOUNT-TAPE_VOLUME procedure, as
appropriate. If the drive is a disk, it can also be used
directly (for non-file ((logical 110") by opening it as a
file, with the OPEN procedure. (Logical 110 is explained
in Chapter 10, ((Device Drivers.")

Note: If you attempt to mount a V AXNMS disk volume
that was improperly dismounted (for example, if the
VAXNMS system crashed), the File Service prints a
warning message on the target machine's console. The

File Service 9-4

volume should be remounted on V AXIVMS, which
rebuilds it, then it can be mounted on the V AXELN
system. You can successfully mount a V AXELN or
V AXNMS tape volume that was improperly
dismounted and can read all of its files. If the tape
structure was corrupted (for example, by a crash of the
V AXELN system when a file was being written),
additional files cannot be written to it.

File Specifications

When used in programs (for example, in the Pascal
OPEN procedure), file specifications with volume labels
of the form

DISK$name or TAPE$name

are referred by the File Service to a particular mounted
disk or tape, respectively, on the target machine
configuration. If you supplied volume names with the
System Builder's Edit System Characteristics menu,
name must match a volume name you defined with the
System Builder. If you did not use this menu, or if a
different volume was in the drive, name must match
the actual volume name.

The first time a volume is mounted (whether by the File
Service or with the MOUNT_VOLUME or
MOUNT_TAPE_VOLUME procedure), its DISK$ or
T APE$ name is established as a universal name by the
File Service and uniquely identifies the volume from
any local area network node.

If some other process in the application mounts a
volume with the same volume name, its DISK$ or
T APE$ name is established as a local name for that
process's node. The use of local names allows, for
example, a VAXELN system to initialize, mount, and

9-5 File Specifications

write duplicate copies of a volume, all with the same
volume name.

Note: If the volume (for example, the disk in drive
DUAO) is mounted, you can also refer to it with an
explicit device name. For example, in Pascal:

OPEN(f,FILE-NAME : = 'DUAO: [TEST]TEST.DAT')

The corresponding example in Cis:

#include stdio
FILE *file-ptr
file-ptr = fopen(" DUAO: [TEST]TEST.DAT"," r");

Device names such as DUAO are local to their network
node. For example, suppose the entries on the Edit
System Characteristics menu are:

"DQA 1 TEST1", "DQAO TEST2"

The volume specifications DISK$TEST1 and DISK$TEST2
in programs now refer to disks mounted on drives
DQA 1 and DQAO, respectively. Furthermore,
DISK$TEST1 (DQA 1) is the default disk volume; if no
volume or device is specified in a file specification, the
File Service refers to the specified directory, file name,
and so forth on TEST 1.

For example, the following Pascal procedure call
creates a file on DISK$TEST2:

OPEN(myfile,
FILE-NAME: = 'DISK$TEST2: [data]analog.dat');

The corresponding example in Cis:

#include stdio
FILE *file-ptr
file-ptr = fopen("DISK$TEST2: [data]analog.dat"," r")

Here, the file analog.dat in directory data is created
and is represented by the program variable myfile.

File Service 9-6

File Access Listener

The File Access Listener is built into VAXELN systems
that support file access from remote nodes. Its inclusion
is controlled by an entry on the System Builder's
Network N ode Characteristics menu, described in
Chapter 13, ((System Development."

The function of the File Access Listener is to handle
connection requests (such as file openings) that involve
different network nodes, including incoming requests
from V AXNMS nodes. Accordingly, the inclusion of the
File Access Listener in a V AXELN system also
presumes that the Network Service is present.

Note that the inclusion of the File Access Listener does
not necessarily mean that the File Service must be
present. For instance, a system that included a line
printer plus its device driver and also included the File
Access Listener could be used as a print server by the
network community. The File Access Listener would
accept I/O connection requests directed at the printer
and establish the connection with the printer driver's
meS$age port(s).

Using File Service Volumes from VMS

The File Service uses the same on-disk and tape file
structure as V AXNMS, and most VMS file-handling
operations are supported, such as COPY,
DIFFERENCES, DIRECTORY, EDIT, and so forth.

For example, assume that node MILDEW is a VAX
with two disks, DQAO and DQA1, and that it is running
a VAXELN system with the File Service, Network
Service, and File Access Listener.

9-7 U sing Volumes from VMS

You can perform COpy with the V AXNMS command

$ COpy MILDEW:: [directory]file.txt *.*
which refers by default to [directory]file.txt on DQA1,
or the command

$ COpy MILDEW:: DISK$TEST2: [directory]file.txt *. *
which refers to DQAO. You can also use the device
specification directly, as in:

$ COpy MILDEW:: DQAO: [directory]file.txt * *

File Service Operations

The File Service performs the following disk file and
record I/O operations:

• Creating a new file or opening an existing file (for
example, using the Pascal OPEN procedure or the
C open function)

• Retrieving information from the file (for example,
using the Pascal READLN procedure or the C gets
function)

• Adding information to the file (for example, :using
the Pascal WRITELN procedure or the C puts
function)

• Closing a file (for example, using the Pascal
CLOSE procedure or the C close function)

When you are familiar with Pascal or CliO, all you
need to know about the File Service is how to initialize,
mount, and dismount volumes, and how to create
directories.

The call formats and detailed argument descriptions for
all file I/O routines, as well as for the file utility, disk
utility, and tape utility procedures summarized in the
following sections, are contained in the V AXELN

File Service 9-8

Pascal Language Reference Manual and the V AXELN
C Run-Time Library Reference Manual, as appropriate
to the programming langage in use.

File Utility Procedures

The file utility procedures provided by the File Service
are summarized in this section. To use these
procedures, the $FILE-UTILITY module appropriate to
the language you are using must be included in the
compilation of your program. (For more information,
see Chapter 12, ((Program Development.")

Note: The V AXELN File Service supports all of the file
utility procedures for disk and tape volumes. However,
the CREATE_DIRECTORY, DELETE_FILE,
RENAME_FILE, and PROTECT-FILE procedures are
invalid for tapes. An error message is returned if an
attempt is made to apply them to tape volumes.

COPY-FILE Procedure

The COPY_FILE procedure makes an exact duplicate
of a specified file. A string of 1-255 characters gives the
file specification of the source file to copy. A second
string of 1-255 characters gives the file specification of
the destination file to be copied to.

Optional parameters return the resultant filename
strings of both files, the mode (block or record), and the
number of blocks or records copied. If an error exists in
one of the files, an optional Boolean expression will be
returned, indicating which file contains the error.

Note: The COPY_FILE procedure provides the only
means of creating an ISAM or RELATIVE organization
file in V AXELN, by copying an existing file of the
organization.

9-9 File Utili ty Procedures

CREATE-DIRECTORY Procedure

The CREATE-DIRECTORY procedure creates a
directory on the specified file service disk volume. This
procedure is invalid for tape volumes.

A string of 1-255 characters gives the file specification
for the directory or subfile directory to be created. A file
owner user identification code (DIC) can also be
specified. An optional parameter returns the resultant
filename string of the directory file actually created.
For example, in Pascal,

CREATE-DIRECTORY{'DISK$TEST: [DATA]');

creates the directory DATA.DIR in the master file
directory of the volume.

Note that the directory must be created on a V AXELN
disk volume; the procedure cannot create a directory on
a remote non-V AXELN system's volume. Also, the
proced ure creates only the last directory in the specifi
cation; any intermediate directories must already exist.

DELETE-FILE Procedure

The DELETE-FILE procedure deletes a file from a
mounted disk volume. This procedure is invalid for tape
volumes.

A string of 1-255 characters gives the file specification,
or a semicolon or period, to indicate the most recent
version. For example, ~test.dat; 23' designates version
23 is to be deleted; ~test.dat;' and (test.dat.' designate
the most recent version of the file. An optional
parameter stores the resultant filename string of the
deleted file.

File Service 9-10

DIRECTORY-CLOSE Procedure

The DIRECTORY_CLOSE procedure closes an existing
directory on a mounted disk volume. A variable
supplies a pointer to the directory file variable.

DIRECTORY-LIST Procedure

The DIRECTORY_LIST procedure obtains the next
filename from a mounted disk directory. A variable
supplies a pointer to the directory file. If more than one
directory is traversed by DIRECTORY_LIST, the
directory name will change. An optional variable
supplies a pointer to the file attributes record.

DIRECTORY-OPEN Procedure

The DIRECTORY_OPEN procedure opens an existing
directory on a mounted disk volume in preparation for a
DIRECTORY-LIST operation, returning the volume
name and directory name if the procedure is successful.
A variable supplies a pointer to the directory file
variable.

A string of 1-255 characters gives the file specification
of an existing directory to search for. The general form
of the character string is:

disk: [directory]filename.type; version

The filename, type, and version can use the ~~wildcard"
characters, % and *, as in V AXNMS file specifications.
The % character matches any single character in the
corresponding position; the * character matches any
character or string in the indicated positions, including
null strings.

For example, the string

DISK$TEST: [testdata]* A% %c. *; *

9-11 File Utility Procedures

matches any specification with a file name of at least
four characters, the last being tc' and the fourth-from
last being tA', and any file type or ver~ion. Wildcards
are not allowed in volume names or, for VAXELN
disks, in directory specifications.

If the directory is on a non-V AXELN (for example,
VAXIVMS-serviced) disk, the asterisk (*), percent (%),
and ellipsis C ..) can be used in the directory
specification. The ellipsis following a directory name
matches all subdirectories contained in and including
the named directory.

In addition, an optional string of 1-64 characters
receives the resultant node specification or server
process port name, and an optional variable supplies a
pointer to the file attributes record.

PROTECT-FILE Procedure

The PROTECT-FILE procedure changes the protection
of a disk file. This procedure is invalid for tape volumes.
A string of 1-255 characters gives the file specification.
The procedure sets the file ownership VIC and/or
protection code for the specified file. An optional
parameter returns the resultant filename string of the
file.

RENAME-FILE Procedure

The RENAME_FILE procedure renames a disk file.
This procedure is invalid for tape volumes.

A string of 1-255 characters gives the current file
specification; no wildcard characters are permitted. (To
rename several related files, use DIRECTORY-LIST to
find them and RENAME-FILE to rename each one.) A
second string of 1-255 characters gives the new file

File Service 9-12

specification. Optional parameters return the resultant
filename strings of both files.

The new volume name must be the same as the old one;
that is, if the old specification includes a volume name,
the new one must supply the same name or no name.
Any parts of the current specification that are not
supplied in this argument are obtained from the old
filename.

Disk Utility Procedures

The disk utility procedures provided by the disk File
Service are summarized below. To use these
procedures, the $DISK_UTILITY module appropriate
for the language you are using must be included in the
compilation of your program (see Chapter 12, ~~Program
Development") .

DISMOUNT-VOLUME Procedure

The DISMOUNT-VOLUME procedure dismounts a file
service disk volume on the specified device. The
procedure must be called on the same node that has the
File Service. A dismounted disk can be opened and used
for non-file logical block I/O.

A string of 1-30 characters names the device; for
example, tDQA l' for drive 1 on disk controller DQA.
Note that the user must have RWED privileges to
dismount a volume.

INIT-VOLUME Procedure

The IN IT_ VOLUME procedure initializes a disk for use
as a Files-II file-structured volume. Disks must be
initialized once before they are used. You can initialize
any volume on any node running a V AXELN system,
but only if the volume is not mounted or already open.

9-13 Disk Utility Procedures

The procedure must be called on the same node that has
the File Service.

A string of 1-30 characters gives the device
specification of the disk drive; for example, ~DQA l' for
drive 1 on disk controller DQA. The node must be
specified explicitly for a drive on another node. A string
of 1-12 characters gives the volume label for the disk.

An optional argument supplies the default extension
quantity in blocks for all files on the disk volume. The
extension quantity is applied when the size of a file is
increased beyond its initial allocation by writing more
records to the file.

Optional arguments supply a user name to be recorded
on the volume and an integer identifying the UIC of the
volume owner. The volume, file, and record protection
for the volume are also specified by optional arguments.
(See Chapter 8, ~~System Security," for more informa
tion on protection.)

Other optional arguments designate:

• The number of directories that can be cached by
the File Service by default

• The maximum number of files that can exist on a
disk

• The number of entries that are preallocated for
user directories

• The number of file headers allocated initially for
the index file (the file for the volume's file
structure)

• The number of mapping pointers to be allocated for
file windows (used to describe the logical segments
of the file for access)

• The cluster size (the minimum allocation unit for
the volume)

File Service 9-14

• The position of the index file (beginning, middle, or
end)

• Whether data checking on read or write operations
is enabled or disabled

• Whether the volume is shareable

• Whether the volume is a group volume

• Whether the volume is a system volume

• Whether the volume has information about where
bad blocks are located

A required argument supplies a list of bad blocks.
These are areas on the volume that are known to be
faulty and are marked by the procedure so that no data
will be written on them. The bad block list specifies a
range of either logical or physical block numbers. A
null list can be specified.

MOUNT-VOLUME Procedure

The MOUNT-VOLUME procedure mounts a disk for
use as a file-structured volume. The procedure requires
the device and its driver (and the File Service) to be
present in the same system from which it is called. The
procedure does not return until the disk is mounted.

A string of 1-30 characters names the disk drive on
which the volume is to be mounted; for example, ~DQA l'
for drive 1 on disk controller DQA.

An optional argument of 1-12 characters supplies the
volume label. If it is omitted, the procedure mounts
whichever volume is loaded in the indicated drive.

9-15 Disk Utility Procedures

Tape Utility Procedures

The tape utility procedures provided by the tape File
Service are summarized below. To use these
procedures, the $TAPE_UTILITY module appropriate
for the language you are using must be included in the
compilation of your program (see Chapter 12, ~~Program
Development") .

DISMOUNT-TAPE-VOLUME Procedure

The DISMOUNT-TAPE-VOLUME procedure dis
mounts a file service magnetic tape volume on the
specified device. The procedure must be called on the
same node that has the File Service. A string of 1-30
characters names the device; for example, ~MUAO' for
drive 0 on tape controller MUA. An optional argument
designates whether the tape will be unloaded by the
device.

INIT-TAPE-VOLUME Procedure

The INIT-TAPE-VOLUME procedure initializes a file
service magnetic tape as a tape volume that conforms to
ANSI standard X3.27-1978. Tapes must be initialized
before they are used. The procedure requires the device
and its driver (and the tape File Service) to be present
in the same system from which it is called. The
procedure does not return until the tape is initialized.

A string of 1-30 characters gives the device
specification of the tape drive; for example, tMUAO' for
drive 0 on tape controller MUA. The node must be
specified explicitly for a drive on another node. A string
of 1-6 characters gives the volume label for the tape.
An optional argument designates the density of data
recorded on the tape.

File Service 9-16

MOUNT-TAPE-VOLUME Procedure

The MOUNT-TAPE-VOLUME procedure mounts a
file service magnetic tape as a tape volume that
conforms to American National Standards Institute
(ANSI) standard X3.27-1978. The procedure requires
the device and its driver (and the tape File Service) to
be present in the same system from which it is called.
The procedure does not return until the tape is
mounted.

A string of 1-30 characters names the tape drive on
which the volume is to be mounted; for example,
(MUAO' for drive 0 on tape controller M UA. An optional
argument of 1-6 characters supplies the volume label.
If it is omitted, the procedure mounts whichever
volume is loaded in the indicated drive.

Optional arguments designate the block size of new
files and whether the tape volume can be written to.

Interface with Disk and Tape Drivers

This information is provided in case you are writing
new disk or tape drivers that will use the File Service or
in case you want to study the drivers supplied with the
development toolkit. Otherwise, this information is not
needed for normal use of V AXELN.

The File Service consists of two separate shareable
images: FILE.EXE, which is the disk File Service
shareable image, and TAPE.EXE, which is the tape
File Service shareable image. The appropriate
shareable image is linked to each disk and tape driver
installed in a VAXELN system and is activated by
calling routines from the respective driver.

9-17 Interface with Device Drivers

The following file service initialization routines are
available:

• The function ELN$FILE_INITIALIZE defines the
actions ((open," ((close," ((get," and (~put" for the
specific disk device being driven .

• The function ELN$TAPE_INITIALIZE defines the
actions (~open," ((close," ~(get," ((put," (~reposition,"
((tapemark," ((erase," and ((return" for the specific
tape device being driven.

Normally, one of these functions is called by the
driver's master process as part of its initialization
sequence. (See, for example, ELN$:DUDRIVER.PAS
and ELN$:MUDRIVER.P AS.) The arguments are
functions (action routines) that define the operations
for the device. The function returns a ((file context"
variable that is used by the File Service.

Since most controllers support multiple units, typical
drivers are multitasking programs that create a process
to handle each drive. Therefore, after defining the
action routines with ELN$FILE-INITIALIZE or
ELN$TAPE_INITIALIZE, as appropriate, the driver
creates a process for each attached drive.

The dri ve process is usually passed some kind of
argument identifying the drive, such as a unit number.
The initializing process then waits for a ((start-up"
event to be signaled, meaning that one drive is
initialized and the initializing process can proceed with
creating other drive processes. (Depending on the
driver, the event value can be passed explicitly to the
process or obtained in the drive process with an up-level
reference.)

When all the drive processes have been started, the
initializing process calls INITIALIZATION_DONE and

File Service 9-18

proceeds with its other work. (For example, in the case
of DUD RIVER, the initializing process exits.)

Each drive process calls one of the following file service
routines:

• The procedure ELN$FILE-SERVICE (for disk
device drivers)

• The procedure ELN$TAPE_SERVICE (for tape
device drivers)

In either case, the procedure's arguments are the start
up event value (startup-event), the file context
(file-context), a string (drive-name) naming the drive
(typical drivers take the controller name as a program
argument and concatenate a digit to it to form the drive
name), and a ~~drive context" pointer, where the drive
context (drive-context) is a structure defining the state
of an individual drive and is usually initialized by the
drive process. Forming these arguments and calling the
procedure are the only actions required of the drive
processes.

From this point on, the File Service is in effective
control of the drive and performs all 110 operations on it
(including handling protocol messages). The File
Service signals the start-up event after performing its
own initialization, allowing the master process to
proceed with the creation of the other driver processes.

The source module ELN$:DAP.PAS contains the Pascal
language declara tions of the two disk rou tines
described above and the declarations of the function
types you can use to declare action routines for
ELN$FILE-INITIALIZE. The two tape routines
described above and the Pascal language declarations
of the function types for the action rou tines of
ELN$TAPE-INITIALIZE are in ELN$:TAPE.PAS.
The action routines' types are prefixed with DISK$ or

9-19 Interface with Device Drivers

TAPE$, as appropriate. DISK$PUT_ACTION, for
example, is the function type used to declare ((put"
actions for disk devices.

The precompiled version of DAP.PAS is the module
$DAP and the precompiled version of TAPE.PAS is
$TAPE. If you are writing a disk or tape driver for use
with the File Service, be sure to include the appropriate
module in its compilation.

The corresponding definitions for disk drivers written
in C are contained in the module $DAP in
ELN$:V AXELNC.TLB. This module is included in the
compilation of your driver source module via a
command of the form

#include $DAP

After including the appropriate Pascal or C module in
your compilation, link the compiled driver with
ELN$:RTLSHARE.OLB, which contains the shareable
image of the File Service.

Note: A user-written driver should be capable of
ha ving any of its functions called in the context of any
process, and its database should, therefore, either be
statically allocated or be allocated on the heap.

Data Access Protocol

The Data Access Protocol (DAP) is a method for
exchanging data between processes in your system and
record-oriented device driver programs or services. It is
used by the Pascal and C run-time libraries to exchange
I/O requests and results between the user's program
and device drivers.

This section explains the use of the development
system's DAP facilities for writing file- or record
oriented device drivers (or for studying the ones we

File Service 9-20

supplied). Unless you are writing file- or record
oriented device drivers (including disk or tape drivers
that will not use the File Service), you need not be
concerned with this subject in normal use of the
development system. A typical case for using the DAP
would be to add support for a new type of disk
controller.

Writing drivers with the DAP is usually simple because
you have only to write definitions of a set of prespecified
functions called action routines. Typically, you write
definitions of ((open," ((close," ((get data," and (~put data"
that are appropriate for the device in question. The
definition of each action routine in your program is
accomplished with predeclared constants, data types,
and functions, which are discussed in this section.

For practical information on the use of the DAP in
driver writing, we suggest you study the driver and
definition sources supplied with your development
system.

Figure 9-1 illustrates the message flow involved in a
typical 110 operation.

9-21 Data Access Protocol

File Service 9-22

User Program: ..
GET(f);

,..
Call

Pascal Run-
Time Library

~ ~
DAP
message

r •• • • • • • • •••• • • • • •• • •• • •• • ••• • • • • •• • •••• • • • ••• • ..

.
r • Network Service Datalink Driver 1====================1 Datalink Driver Network Service

Ethernet

Case 1 ~ ... Device Driver:
DAP$SERVER

Case 2 ~ ... File Service/Disk Driver:
.... File Service/Disk Driver:

Case 4 :,. DAP$SERVER ... • Case 3
DAP$SERVER

........
File Access Listener ~------------~

Case 5 ~ Device Driver:
DAP$SERVER

VAXELNNodeA VAXELN Node 8

Figure 9-1. DAP Message Transmission {"Read" Request}

9-23 Data Access Protocol

In the example illustrated by Figure 9-1, a user
program makes a ttread" request (the Pascal GET
procedure). When the run-time library is called, it
generates a DAP message formulating the read
request. There are then five cases that describe the
destination and processing of the message, depending
on the way the file was originally opened:

Case 1 Here, the program has opened a local
terminal (for instance) for logical I/O, as in:

OPEN(f,FILE-NAME : = 'TTAO:')

The message is sent directly to the terminal
dri ver (by translating the local name ~TT AO'),
which has called the function DAP$SERVER
to define the actions for servicing D AP
requests directed at its device. (Action
routines are discussed later in this section.)

Case 2 Here, the program has opened a file on a
mounted disk volume, as in:

OPEN(f, FILE-NAME: =
'DISK$VDATA: [mydir]file.dat')

In this case, ~DISK$VDATA' is a universal
name established by the File Service, naming
the port that receives DAP requests for the
disk volume of the given name. The DAP
request is thus received and processed by the
File Service and the associated disk driver for
that volume.

Case 3 Here, the OPEN call is as in Case 2, but the
volume name does not have a local
translation. The Network Service receives
the message and encloses it in an NSP
message for transmission (via the datalink
drivers) over the Ethernet to the node (here,
B) that has the named message port. The

9-25 Data Access Protocol

DAP message reemerges from node B's
Network Service with the NSP envelope
removed. The named port is defined in the job
running node B's disk driver, and the read
request is handled there.

Case 4 Here, the OPEN call used an explicit node
name to access a file on a mounted disk
(DUAl), as in:

OPEN(f, FILE-NAME: =
'8:: DUA 1: [mydir]file.dat')

After transmission to node B, the message is
intercepted by that node's File Access
Listener and sent on to the File Service on
that node. (In most respects, this case also
applies if node B is a V AXNMS node,
although the node is then specified by
number instead of by name; similarly, it
could occur if node A is a V AXNMS node at
which a comparable OPEN call was made
from a V AXNMS program.)

Case 5 Here, the OPEN call specified a node
explicitly, to open a remote terminal, as in:

OPEN(f,FILE-NAME: = '8: :TTAO: ')

This is simply the network version of Case 1;
the terminal TTAO on node B was opened for
logical I/O.

In all cases, the device driver manipulates the device
registers to perform the input or output. The device
driver (or File Service) uses the function
DAP$SERVER to handle the message. Note that
Figure 9-1 shows the flow of the read-request message;
the requested record, in each case, flows back to the
requesting program on the same path.

File Service 9-26

When the driver uses the Data Access Protocol, it must
be on the same network node as the device it controls,
but the driver (and thus, the device) can be used by
programs located anywhere in the local area network.

The DAP is supported by a set of precompiled modules
(for Pascal only), plus a set of declarations, including
types, constants, and function types (action routines).
The Pascal declarations are used in programs by
including the module $DAP from RTLOBJECT.OLB in
the compilation. The corresponding definitions for C
are contained in the module $DAP in
ELN$:V AXELNC.TLB.

General Principles

In data communication, a protocol is a definition of a set
of messages and, usually, the means of exchanging the
messages.

Consistent with this idea, the Data Access Protocol
defines two things:

• A set of messages. Each message has a predefined
format and meaning, and definitions are provided
in the DAP for messages of every kind likely to be
relevant to talking to record-oriented devices:
specifying a file and the kind of access requested,
sending control information C(commands" to read,
write, and so on), defining the characteristics of
files and devices, and so forth.

• A method of starting a message exchange (the
concept of action routines).

The DAP assumes that a communication path already
exists for the messages, which, in V AXELN
programming, is a circuit. (See Chapter 5, ((Inter job
Communication.")

9-27 Data Access Protocol

The low-level operations of locating the communicating
processes and formatting, interpreting, and trans
mitting messages are done for you by run-time library
routines. When writing a device driver, you can regard
these routines as ((black boxes," since you do not have to
call any of them explicitly except DAP$SERVER.

In writing device drivers, the use of the DAP requires
three steps:

1. Define a set of action routines appropriate to the
device.

2. Establish circuits with any user processes that
want to do something with the device.

3. Call the library function DAP$SERVER and
supply it the circuit (that is, the communication
path between the device and the user process) and
the set of action routines you have defined in the
driver.

The management of messages and other low-level
operations is then done implicitly by DAP$SERVER.
Almost all other code in DAP device drivers is
concerned with servicing device interrupts.

Action Routines and DAP$SERVER

Essentially, an action routine defines your choice of
DAP information that should be transmitted to perform
a particular operation, such as reading a data record.
The information is represented by a set of predeclared
data types and constants.

DAP$SERVER is a predeclared function. The following
Pascal declaration is included with module $DAP. (See
also the source file DAP.P AS.)

File Service 9-28

FUNCTION dap$server(VAR circuit-port: port;
FUNCTION open-action OF TYPE
dap$open-action;
[OPTIONAL] FUNCTION rename-action OF TYPE
dap$rename-action;
[OPTIONAL] FUNCTION dir-open OF TYPE
dap$dir-open;
[OPTIONAL] FUNCTION dir-list OF TYPE
dap$dir-list;
[OPTIONAL] FUNCTION erase-action OF TYPE
dap$erase-action;
[OPTIONAL] FUNCTION get-action OF TYPE
dap$get-action;
[OPTIONAL] FUNCTION put-action OF TYPE
dap$put-action;
[OPTIONAL] FUNCTION find-action OF TYPE
dap$find-action;
[OPTIONAL] FUNCTION update-action OF TYPE
dap$update-action;
[OPTIONAL] FUNCTION rewind-action OF TYPE
dap$rewind-action;
[OPTIONAL] FUNCTION truncate-action OF TYPE
dap$truncate-action;
[OPTIONAL] FUNCTION flush-action OF TYPE
dap$flush-action;
[OPTIONAL] FUNCTION extend-action OF TYPE
dap$extend-action;
[OPTIONAL] FUNCTION display-action OF TYPE
dap$display-action;
[OPTIONAL] FUNCTION close-action OF TYPE
d ap$cI ose-action;
dap-buffer-size: integer: = 0;
context: integer: = 0
): integer;

SEPARATE;

9-29 Data Access Protocol

The action routines, in turn, are represented by
function types; for example:

FUNCTION dap$put-action(
record-access: dap$b-rac;
record-number: INTEGER;
record-options: dap$l-rop;
buffer: f STRING(32767);
buffer-length: INTEGER;
context: integer;
var record-file-address: dap$r-rfa;
next-record: BOOLEAN)
: dap$l-status;

FUNCTION-TYPE;

For the definitions of all DAP function types (that is,
the action routines' parameters) and DAP$SERVER's
parameters, see the file DAP.P AS.

Note: The preceding discussion applies to Pascal
programs only. The equivalent interface is available to
C programmers via the $DAP include module
contained in ELN$:V AXELNC.TLB.

DAP Data Types

For each kind of action routine, there is a set of data
types representing the routine's parameters. In
addition, the result type dap$l-status (as in the above
example) represents the success/failure status of each
action routine call. For the actual definitions of the
types of action-routine parameters and the result type
dap$l-status, see the source file DAP .PAS, supplied
with your development system.

DAP Constants

A large set of named constants are declared for use in
DAP device drivers. For example, the named constant

File Service 9-30

dap$k-seq-acc can be used as an open-file argument to
indicate sequential access. For the list of names and
their definitions, see the source file DAP .PAS, supplied
with your development system. This same file defines
the named constants representing action routine
completion status, error status, control functions, and
so forth.

Many of the status constants are defined in DAP.PAS
with reference to other, lower-level named constants.
The definitions of these constants are in the file
DAPSTATUS.P AS.

DAP Wildcard Functions

The DAP$SERVER, upon receIvIng a retrieval,
rename, or delete access function, checks the file
specification parameter for any wildcard characters. If
there are any, it recursively invokes itself to perform
the function.

9-31 Data Access Protocol

File Service 9-32

Chapter 10

Device Drivers

The V AXELN development system includes disk
drivers, a tape driver, printer drivers, terminal drivers,
and real-time device drivers. This chapter discusses the
features of these drivers.

Disk Drivers

Included with your development system are device
drivers for the following mass storage devices:

• A variety of disk devices which use the UNIBUS
via a UDA50 UNIBUS disk adapter (DUDRIVER)
or the RQDX disk interface on the MicroVAX;
examples include the RA80, RA81, and RA60 disk
drives on VAX systems and the RX50, RD51, and
RD52 disk drives on MicroV AX systems. In
addition, the RC25 controller is available for both
the V AX QBUS and the V AX UNIBUS.

• RB02 and RB80 disks attached to the Integrated
Disk Controller of the V AX-11/730 (DQDRIVER).

• TU58 (VAX-11/730 and 750) console tape
cartridges, which, operationally, resemble disk
devices (DDDRIVER).

The corresponding driver must be part of the system
running on the same machine that has the actual disk
interface and drives. If you are using the supported disk
types and the drivers as supplied, you can regard the
drivers (and the File Service) as self-contained
programs that perform I/O for you. All you need to
know in such a case is how to include the drivers in

10-1

systems. (See the instructions in Chapter 13, ttSystem
Development.")

" Logical I/O"

When a disk is not mounted, you can access it directly
using Pascal or C I/O procedures. You can ((open" a disk
for non-file I/O (called ((logical I/O") by giving its device
name (for example, (DQA1:'-the colon is required) to
the Pascal OPEN procedure (or the corresponding open
functions in C) instead of a file name. Operations
performed on the opened file variable then apply to the
disk volume itself, as if it were a single, large file with
the first record (record number 1) starting at block 0 on
the disk.

In other words, logical I/O means simply that your
program maintains and uses its own information about
the logical structure of records in the file. It is up to
your program to interpret the structure of individual
records read from the disk, to record the placement of
records relative to one another, and to do the other
things normally done by the File Service.

Note: When you open a disk for logical I/O, no other job
can access the disk.

You can write disk drivers of your own that are
compatible with this method (and with the File
Service). For information on writing disk drivers that
are compatible with the File Service, and for general
information on the Data Access Protocol used by the
Pascal and C I/O procedures, see Chapter 9, ((The File
Service."

Disk Capacities and Other Specifications

Table 10-1 gives the basic specifications of the disk
device types for which drivers are supplied.

Device Drivers 10-2

Table 10-1. Disk Devices

Model Device Code Type Bytes/Disk Disks/Drive Drives/Controller Driver I mage

RB02 DQ Cartridge 10,485,760 1 4 1
DQDRIVER.EXE

RB80 DQ Fixed disk 124,214,270 1 11 DQDRIVER.EXE

TU58 DD Tape cartridge2 262,144 2 2 DDDRIVER.EXE

RX50 DU Diskette 409,600 2 4 3 DUDRIVER.EXE

RD514 DU Fixed disk 10,485,760 1 23 DUDRIVER.EXE

RD524 DU Fixed disk 29,360,128 1 23 DUDRIVER.EXE

RA605 DJ Cartridge 214,958,080 1 46 DUDRIVER.EXE

RA805 DU Fixed disk 126,877,696 1 46 DUDRIVER.EXE

RA815 DU Fixed disk 478,150,656 1 46 DUDRIVER.EXE

RC255 DA Fixeddiskl 27,262,976 2 17 DUDRIVER.EXE
Cartridge

IThe RB02 and RB80 use the same controller, the Integrated Disk Controller (RB730) on a VAX-111730. A total of four drives can be attached to the
controller, and at most one of them can be an RB80. RB02 disks are identical to RL02 disks, and cartridges can be interchanged between these two
drive types.

2The TU58 cartridge is the console medium on VAX-111730 and VAX-111750 processors. It is treated as ifit were a random-access disk with one
cylinder, four tracks per cylinder, 128 512-byte blocks per track. It is controlled by processor registers.

3The RQDX controller interfaces up to four disk drives to the MicroVAX (Q22) bus; up to two of these drives can be Winchester (RD51 or RD52)
disks.

4RD51 and RD52 devices support controller-initiated bad block replacement; that is, the hardware automatically handles bad blocks.

5RA60, RA80, RA81, and RC25 devices support host-initiated bad block replacement; that is, the driver will automatically revector bad blocks as
they occur on the disks.

6The UDA50 disk adapter interfaces RA60, RA80, and RA81 disks to the V AX UNIBUS.

7The RC25 controller is available for both the VAX QBUS and the VAX UNIBUS.

10-3 Disk Drivers

General Features of the Disk Drivers

All the supported disks and drivers include the disk
File Service, which supports the Files-II on-disk
structure. This is the same on -disk file structure as
used in VAXNMS. This feature allows disk volumes to
be moved to a V AXNMS system and used with VMS
software. It also allows disks mounted on V AXELN
systems to be used by most VMS file-handling
coinmands when the V AXELN system or systems are
part of a network with VMS systems.

Interface to File Service

All drivers use the File Service to perform actions on
the disk. The actions performed are:

• Open: Prepare a device and its driver for program
110. Performed when a disk volume is mounted or
when the first user program accessing the disk for
logical 110 calls the Pascal OPEN procedure or the
corresponding C open functions.

• Get: Read data from disk. Performed when
information is retrieved from a disk volume using
the Pascal input procedures or the corresponding C
input functions.

• Put: Write data on disk. Performed when
information is added to a disk volume using the
Pascal output procedures or the corresponding C
output functions.

• Close: Terminate input/output exchange with a
user program. Performed when a disk volume is
dismounted or when the last user program
accessing the disk for logical I/O calls the Pascal
CLOSE procedure or the corresponding C close
functions.

10-5 Disk Drivers

Recovery from Power Failure

When disks are online and mounted, they are brought
back online and remounted automatically following a
power failure. The disk controller is reinitialized by the
device driver. The file service operations that were in
progress when the power failed are retried, and the
disks are ready for use again without manual
intervention.

Note that spinning down an RC25 controller and
subsequently spinning it back up is equivalent to a
power-failure recovery. The actions described above
apply in this case.

Tape Driver

Included with your development system is a device
driver for the TK50 magnetic streaming cartridge tape
drive (MUDRIVER), which is applicable for all other
byte-structured magnetic tape mass storage control
protocol (TMSCP) tape drives as well. The driver must
be part of the system running on the same machine that
has the actual magnetic tape interface and drive.

If you are using the supported tape type and the driver
as supplied, you can regard the driver (and the File
Service) as a self-contained program that performs tape
I/O for you. All you need to know in such a case is how
to include the driver in systems. (See the instructions in
Chapter 13, «System Development.")

"LogicaII/O"

There is no logical I/O to a tape in the sense that there
is to a disk, since all tape file operations are done in the
context of the ANSI file structure, which the user
cannot directly read or write.

Device Drivers 10-6

Tape Specifications

Table 10-2 gives the basic specifications of the TK50
tape drive.

Model

TK50

Table 10-2. Tape Specifications

Device Type Driver Image
Code

MU Streaming
Cartridge

MUDRIVER.EXE

General Features of the Tape Driver

The supported tape and driver includes the tape File
Service, which supports the ANSI tape file structure.
This is the same tape file structure as used in
VAXNMS. This feature allows tape volumes to be
moved to a V AXNMS system and used with VMS
software. It also allows tapes mounted on VAXELN
systems to be used by most VMS file-handling
commands when the V AXELN system or systems are
part of a network with VMS systems.

Interface to File Service

The tape driver provides the File Service the following
actions, which the File Service uses to perform
requested file operations:

• Open: Prepare a device and its driver for program
110. Performed w hen a program first accesses a
particular device or when a tape volume is
mounted.

• Close: Terminate input/output exchange with a
user program. Performed when a program is

10-7 Tape Driver

finished accessing a particular device or when the
tape volume is dismounted.

• Get: Asynchronously read the next block from the
tape and return a context to the read operation.

• Put: Asynchronously write the next block to the
tape and return a context to the write operation.

• Reposition: Asynchronously reposition the tape
and return a context to the reposition operation.
Performed when a new file is accessed.

• Tapemark: Asynchronously write a tape mark to
the tape and return a context to the tapemark
opera tion. Performed when a file is closed or the
tape is closed.

• Erase: Asynchronously erase all data from the tape
and return a context to the erase operation.
Performed when all data on the tape must be
physically removed.

• Return: Provide the status of the completed action
of the context given.

Recovery from Power Failure

In case of a power failure, if tapes are online and
mounted, they are automatically brought back online,
remounted, rewound to the beginning, and repositioned
to the last known position. The tape controller is
reinitialized by the device driver. The File Service
operations that were in progress when the power failed
are ·retried, and the tapes are ready for use again
without manual intervention.

Error Recovery

TMSCP devices do their own error detection and recov
ery. The only data errors reported are unrecoverable
errors, which the driver forwards to the File Service.

Device Drivers 10-8

Printer Drivers

The program images LCDRIVER.EXE and
LPVDRIVER.EXE, supplied with your development
system, are device driver programs for line printers.
They support LPll-type line printers attached to the
printer/parallel port of the DMF-32 board or to an
LPVll printer interface, respectively.

The parallel port on a DMF-32 can be used either for a
line printer or for parallel 110, but not both
simultaneously (see ((Parallel 110 Support," later in this
chapter).

The line printer driver must be included in any
application that uses a line printer for output. (Note
that several systems in a network can use the printer
on one node.) For instructions on including it, see
Chapter 13, ((System Development."

You can open the line printer for output by specifying
its device name instead of a file specification to the
language specific procedures that open files. Operations
on the opened file then apply to the printer.

General Features of the Printer Driver

The driver generally has one program parameter, a
device controller name you supply with the System
Builder. It appends ~O' to the controller name to form
the local name of the printer unit itself. If you load the
driver with an explicit program description, you can
give the program a second argument, which it will
append (0' to and establish as a universal name.

For example, if the name specified to the System
Builder for the printer controller is ~LP A', the name you
use in place of a file specification when opening the file
on the same node is (LP AO:'. If you also supplied a

10-9 Printer Drivers

universal-name argument, such as tpRINTER', you can
acces.s the printer with the universal name tPRINTERO'
from any node.

Alternatively, you can supply an explicit node
specification in the file specification if the printer is not
on the local node. However, the use of universal names
is more transparent.

If you are printing a file that was opened or created
with FORTRAN carriage control, the driver interprets
the first character of every line as a carriage control
character.

LCDRIVER also initializes the DMF -32 parallel
interface for line printer operation; this means that the
same DMF-32 cannot be used for parallel 110.

Characteristics of the Printer Driver

The following characteristics are defined in the printer
driver source files (LCDRIVER.PAS and
LPVDRIVER.PAS) by Pascal named constants. For
different behavior, you can change the characteristics,
recompile the source files, and relink the drivers.

Maximum Record Length

This is the maximum length of single records written to
the line printer. The standard value is 512 bytes
(characters) .

Lines per Page

This is the number of consecutive lines written per
page, before a page eject. The standard value is 66 lines.
A user-generated page eject resets the count.

Device Drivers 10-10

Form-Feed / Line-Feed Conversion

A Boolean value specifies whether the American
Standard Code for Information Interchange (ASCII)
character FF (form feed) is converted to an equivalent
sequence ofLFs (line feeds) in the output. The default is
FALSE. TRUE would be used for printers that lack a
mechanical form-feed feature.

Page Width

This is the maximum number of characters per printed
line. The standard value is 132 characters.

Line Wrapping

A Boolean value specifies whether lines longer than the
specified page width wrap automatically. The default is
FALSE.

Lowercase to Uppercase Conversion

A Boolean value specifies whether lowercase characters
are converted to uppercase on output. The default is
FALSE. You can change the value to TRUE to have all
letters printed in uppercase.

Nonprinting Character Handling

A Boolean value specifies whether nonprinting
characters are allowed in the output. The default is
TRUE.

Insertion of CR before LF

A Boolean value specifies whether the ASCII character
CR (carriage return) is inserted before every occurrence
ofLF (line feed) in the output. (Some printers assume a
CR when an LF is output.) The default is FALSE.

10-11 Printer Drivers

Terminal Drivers

Device drivers are supplied with your development
system for performing program I/O wi th the console
terminal or with terminals attached to asynchronous
line interfaces (the DMF-32, DRV11, DZQ11, and
DZV11 interfaces).

For most applications, you can regard these device
drivers as self-contained programs once they are
included in your system. If you would like to study the
programming methods used, see the source file
YCDRIVER.P AS. The remainder of this section discus
ses the drivers' operational characteristics as seen by a
programmer or terminal user, such as the meanings of
control characters, escape sequences, and so forth.

The DMF-32 device interfaces up to eight asynchronous
serial communication lines to a VAX target machine,
for communication with terminals or other V AXELN
systems. The DZQ11 and DZV11 devices interface up to
four asynchronous lines to a Micro VAX target
machine. The DRV11 device interfaces up to eight
asynchronous lines to a Micro VAX target machine.
(These are in addition to the target machine's console
terminal.) Other features of the DMF-32 are supported
by separate device drivers; for example, see ((Parallel
I/O Support" and ((Printer Drivers," elsewhere in this
chapter.

All data transmissions involving terminals are full
duplex transmissions with the same speed (baud rate)
for sending and receiving. In addition, the DMF-32,
DRV11, DZQ11, and DZV11 can be used to commu
nicate between remote V AXELN and V AXNMS
systems, as discussed under ((Point-to-Point DDCMP
Communication," later in this section.

Device Drivers 10-12

Terminal 1/0

Input and output to a terminal is accomplished by
sending appropriate messages to message ports created
by the Console Driver or other terminal driver.

The Console Driver handles transmissions between the
program and the console terminal; the asynchronous
line drivers handle transmissions between the program
and one or more terminals attached to asynchronous
serial interfaces. For instructions on describing
individual terminals in your systems, see Chapter 13,
((System Development."

The run-time code for V AXELN procedures (such as
the Pascal READ and WRITE procedures) formulates
and transmits the necessary messages implicitly when
these procedures are called with reference to a
terminal.

Type-Ahead and Synchronization

Input characters typed before an actual ((read" request
are buffered in a ((type-ahead" buffer. The type-ahead
feature allows you, for example, to answer a prompt
without waiting for it to appear and usually prevents
the loss of characters typed by a fast typist. Input
characters remain in the type-ahead buffer until the
dri vers receive a read request from a program in the
application, and they are not echoed until then.

If the type-ahead buffer fills up before the drivers get a
read request, the drivers sound the bell on the terminal.

The drivers synchronize their output automatically
with the terminal by means of the XON and XOFF
control characters. This means that, for most
applications, the terminal's AUTO XONIXOFF setting
should be enabled in its set-up mode.

10-13 Terminal Drivers

Line Terminators

Lines of input are terminated by typing a line
terminator, which is a RETURN, CTRL/Z, or any other
character with an ASCII code less than 32 (decimal),
except those that have special interpretations as
control characters (see ~~Control Characters," later in
this section). When escape recognition is enabled, an
entire valid escape sequence is treated as a line
terminator, is not echoed, and is returned to the
inputting program; this is the only case in which a line
terminator also constitutes program input.

Point-to-Point DDCMP Communication

The DMF-32, DHV11, and DZV11 can also be used for
error-free, though not transparent (as Ethernet is)
communication between remote V AXELN and
V AXNMS systems. The user can establish a virtual
circuit between jobs on remote machines over a serial
line. This is accomplished by allowing each line to act
as a full-duplex asynchronous point-to-point DDCMP
communication link.

The DIGITAL Data Communications Message Protocol
(DDCMP) is a data link control procedure that ensures
a reliable data communication path between communi
cation devices connected by data links. This DDCMP
option is specified with the System Builder, on a
terminal line by terminal line basis.

An example of a VAXELN serial DDCMP link is
illustrated in Figure 10-1.

Device Drivers 10-14

Target
VAX 1

I Job A H Kernel I ...
+

DHVDRIVER

DHV11

Target
VAX 2

I Job B H Kernel I ...

YCDRIVER

DMF-32

Figure 10-1. A VAXELN Serial DDCMP Link

A job starts the DDCMP protocol on a line by
connecting a circuit to the driver handling the line; the
job stops it by disconnecting from the circuit. In Figure
10-1, messages sent by Job A are received by Job B, and
vice versa. For example, if Job A were to use line TTA2
on a DRVll, part of the Pascal program would be:

VAR
data-port: PORT;

msg: MESSAGE;
str : "STRING(512);

10-15 Terminal Drivers

CREATE-PORT(data-port);
CONNECT -CIRCUIT(data-port,

DESTINATION-NAME: = 'TTA2');
CREA TE-MESSAGE(msg, str);

SEND(msg, data-port);
WAIT -ANY{data-port);
RECEIVE(msg, str, data-port);

On the other end, Job B's program for using line TTXl
on a DMF -32 would look like:

VAR
data-port: PORT;

msg : MESSAGE;
str : "STRING(512);

CREA TE-PORT(data-port);
CONNECT -CIRCUIT(data-port,

DESTINATION-NAME: = 'TTX1');
CREATE-MESSAGE(msg, str);

SEND(msg, data-port);
WAIT -ANY(data-port);
RECEIVE(msg, str, data-port);

The messages can be of any data type and any size up to
a maximum of 1024 bytes, but cannot be zero bytes
long. The maximum length is set as a program constant

Device Drivers 10-16

within the the $DDCMP module (see ~tAdditional
Support Routines," later in this section.) The
CONNECT-CIRCUIT procedure starts the DDCMP
protocol running; the DISCONNECT-CIRCUIT proce
dure stops it. If the driver determines that the line is
down, due to excessive errors or retransmissions, it will
disconnect the circuit. Note tha t, because this is a full
duplex communication line, both jobs can be sending
messages simultaneously.

The following limitations apply to DDCMP
communication:

• Messages that are received are guaranteed to be
received in the proper order and error-free.
However, due to the nature of the DDCMP
protocol, flow control is not as complete nor as
transparent as for normal circuits. For example, if
a job sends enough messages to fill the destination
port before the receiving job can call the RECEIVE
proced ure to receive them, additional messages are
refused by the driver.

• If the receiver does not receive the messages
within a timeout period of approximately 20
seconds (accounting for retransmissions and
acknowledgements), the sending driver will stop
the protocol and disconnect the circuit. To guard
against this, the two jobs should synchronize their
transmissions so as not to exceed each other's port.
The transmission lines are full-duplex and
messages can be overlapped for higher throughput,
but prolonged uncontrolled sending of messages
should be avoided.

• Only one virtual circuit is allowed per line.

10-17 Tenninal Drivers

Setting Terminal Characteristics with the System Builder

When a terminal driver is included in the system, the
characteristics of the terminal on each line can be
specified with the System Builder. You can also specify
the characteristics of the console terminal on a separate
menu. The characteristics you can specify, and their
default settings, are as follows:

• Terminal type specifies, for terminals other than
the console, the kind of asynchronous line interface
in use. This setting is ignored on a DDCMP line.

• Speed specifies, for terminals other than the
console, the baud rate for transmission and
reception on the indicated line. Values are from a
specific set in the range 50-38,400. If the rate is
not specified, 1200 baud is the default for the
console and hardcopy terminals (the console is
assumed by default to be a hardcopy terminal), and
9600 baud is the default for other terminals. Be
sure that the terminal is set to the same speed via
its set-up mode.

• The Parity option enables (Yes) or disables (No)
parity checking for the line. Parity checking is
disabled by default. Parity type specifies, for
terminals other than the console, the option Odd or
Even, describing the kind of parity checking used
by the connected terminal. If neither option is
specified, Even is the default. Be sure that, in its
set-up mode, the terminal's parity type and
enablement are set properly.

• The type of terminal in use is specified by Display
type. Hardcopy specifies that the terminal is a
hardcopy device, such as an LA120 printing
terminal, and is the default for the console
terminal; otherwise, the default is Scope, meaning

Device Drivers 10-18

a video terminal. Scope causes the DELETE key to
backspace and rub out the deleted character;
Hardcopy makes it rewrite the deleted characters
enclosed in backslashes (\deleted characters\). This
setting is ignored on a DDCMP line.

• Escape recognition specifies that, on input, the
terminal dri ver checks the forma t of escape
sequences to see whether they conform to
American National Standards Institute (ANSI)
format. For the correct formats, see ((Escape
Sequences," later in this section. In general, a
terminal with escape recognition in effect should
have its escape-sequence format set to ANSI (via
its set-up mode). This setting is ignored on a
DDCMPline.

• Echo controls whether the terminal displays
(echoes) input lines it receives. If you do not specify
this characteristic, the default is Yes. No means
the terminal displays only the characters written
to it by software. This setting is ignored on a
DDCMPline.

• Pass all specifies that the driver passes all
characters (including tabs, form feeds, and control
characters except CTRLIX) directly, without
interpretation or translation. With Pass all in
effect, only fixed-length records can be read. No is
the default option, meaning that special
interpretations apply to certain characters (see, for
example, (tControl Characters," later in this
section). This setting is ignored on a nnCMP line.

• Eight-bit specifies (Yes) that the high-order bit of
an input character is not masked to zero by the
terminal driver. If you select No, the high-order
bits of all input characters are masked to zero.
Note that the Eight-bit characteristic determines

10-19 Terminal Drivers

. the interpretation by software of input characters;
the ~~bits per character" setting in a terminal's set
up mode governs the number of bits output by the
terminal. This setting is ignored on a DDCMP line .

• Modem indicates, for terminals other than the
console, that the line is connected to a modem or
cable that supplies the standard (EIA) modem
control signals. The default is No; in this case, any
modem control signals are ignored. Modems can be
used only on the DMF-32 and DHV11. With the
DMF -32, only the first two of its eight lines can be
used for modems. (See also ~~Modem Control," later
in this section.)

• DDCMP indicates whether the line is a regular
terminal line or a DDCMP line. The default is No;
in this case, a regular terminal line.

Control Characters

Unless the Pass all characteristic is in effect or DDCMP
is specified, control characters identify special actions
to be performed by the driver rather than actual
characters to be sent to the program. All control
characters have ASCII codes in the range 0-31 or equal
to 127 (DELETE). The full set is shown in Table 10-3.

The characters designated CTRL/x, where x is a letter,
are generated by holding down the CTRL key on the
keyboard while pressing key x.

In some cases, when Echo is in effect, the character
CTRL/x is echoed as a caret followed by the character x,
for example, AU for CTRLIU.

Device Drivers 10-20

Terminal Key or Name

(tBell"

BACKSPACE

TAB,CTRLII

LINE FEED,CTRL/J

CTRLIK

CTRLlL

NO SCROLL! , CTRLlQ

CTRLIR

NO SCROLL! , CTRL/S

CTRLIU

CTRLlX

CTRL/Z
DELETE

ESC

ENTER3, RETURN

Code

7
8
9

10
11
12
17
18
19
21
24
26

127

27

13

Table 10-3. Control Characters

Meaning

Sound bell or buzzer on terminal.

Back up cursor one character (note: does not delete the previous character from input).

Advance to next (horizontal) tab stop (tab placement is controlled by the terminal).

Advance to next line (without carriage return).

Advance to next (vertical) tab stop (tab placement is controlled by the terminal).

Advance to next page or display (form feed) and terminate current input line.

Resume transmitting output from program.

Redisplay current input line.

Suspend transmitting output from program.

Erase current input line.

Erase type-ahead buffer and current input line. 2

Designate end-of-file to program; terminate current input line.

Delete previous character or (if escape recognition is in effect) partial escape sequence
from input.

Begin escape sequence if Escape recognition is in effect; otherwise, echo as $, perform
carriage return and line feed, and terminate current input line.

Perform carriage return and line feed; terminate current input line.

IThe key NO SCROLL, on VT100-type terminals, alternates between CTRL/S (for the first and other odd-numbered keystrokes) and CTRLlQ.

2The function of the CTRLlX key is the same whether or not Pass all is in effect.

3The key ENTER, on the keypad of VT100 and similar terminals, is normally the same as RETURN.

10-21 Terminal Drivers

Escape and Control Sequences

When escape recognition is in effect, and it is a regular
terminal line, you can read escape sequences from a
terminal with syntax checking performed by the
terminal driver. In all cases, whether or not escape
recognition is in effect, you can write out escape
sequences to perform actions specific to the terminal.
(For example, the VT100 and VT200 series terminals
allow you to control the movement of the cursor with
escape sequences.)

The syntax of escape sequences is checked only on input
and only when escape recognition is in effect. Only
ANSI-format escape sequences, such as used with the
VT100 and VT200 series, are recognized on input. (For
the set of escape sequences used with a particular
terminal, see its hardware documentation, such as the
VT100 User Guide.) ,

When escape recognition is in effect, any sequence of
input characters beginning with the ESC character
(ASCII code 27) is checked by the terminal driver to
determine whether it is syntactically valid. An invalid
sequence, including the ESC character itself, is
effectively removed from the input. Pressing the
DELETE key in the middle of an escape sequence
deletes the entire sequence from the input.

The valid syntax is determined by an ANSI standard as
follows (note that there is no actual space between the
syntax elements):

ESC character-sequence final-character

character-sequence. This is a sequence of zero or more
characters, each of which has an ASCII code in the
range 32-47. This range consists of the space character
and 15 punctuation marks.

10-23 Terminal Drivers

final-character. The final character is a single character
which has an ASCII code in the range 48-127, which
includes uppercase and lowercase letters, digits, and an
assortment of punctuation marks. The following
alternate forms are permitted:

ESC; character-sequence final-character

ESC? character-sequence final-character

ESC 0 character-sequence final-character

where, with ESC 0, the final character can have an
ASCII code in the range 64-127. The character
sequence is the same in all cases. (The eight-bit
character SS3 [8F 16] can be used to introduce an escape
sequence, in lieu of ESC 0.)

Also valid are ANSI control sequences, in which the
character sequence and final character are preceded by
a left bracket ([) and a sequence of parameter specifiers
(note that there is no actual space between the syntax
elements):

ESC [param-sequence char-sequence final-char

The eight-bit character CSI [9B I6] can be used to
introduce an escape sequence, in lieu of ESC [.

param-sequence. A ttparameter" sequence consists of
zero or more parameter specifiers, each of which has an
ASCII code in the range 48-63. For instance, for some
control sequences on VT100 and VT200 series
terminals, this is a sequence of digit characters
separated by semicolons.

char-sequence. This is a sequence of zero or more
characters, each of which has an ASCII code in the
range 32-47.

final-char. The final character is a single character
which has an ASCII code in the range 64-127.

Device Drivers 10-24

For example, the following control sequence erases
from the current cursor position to the end of the line on
a VT100 terminal:

ESC[OK

where 0 is a parameter and K is the final character.

The following sequence turns on the ~~bold" and
~(reverse video" character attributes on a VT100
terminal:

ESC[1;7m

where 1 and 7 are parameters, separated by a
semicolon, and m is the final character.

VTS2-Type Escape Sequences

The VT52 terminal uses escape sequences that do not
comply fully with the ANSI format. VT100 and VT200
terminals allow you to designate, in the terminal's set
up mode, that it will use VT52 escape sequences instead
of the larger ANSI set supported on that terminal type.

We recommend that you use ANSI escape sequences
whenever possible. However, most VT52 escape
sequences are actually compatible with the ANSI
syntax and can be recognized if the terminal is set up in
VT52 mode.

For example, the following valid sequence erases from
the cursor to the end of the screen on a VT52:

ESCJ

where, in ANSI terms, J is the final-character and there
is no character-sequence.

In contrast, the following control sequence, for
positioning the cursor to line 2, column 2, is invalid:

ESC!!

10-25 Terminal Drivers

Here, the sequence is invalid in ANSI syntax because
the final-character 0) does not have an ASCII code in
the range 48-127.

Modem Control

Modems allow you to connect telephone or other remote
lines to the terminal interface, for access to the target
computer from remote terminals. The DMF-32 and
DRVl1 terminal drivers support modem control (for
example, of DEC DF03, DEC DF100, Bell 103a, Bell
113, and equivalent modems) in full-duplex,
autoanswer mode. Of the eight asynchronous lines on a
DMF-32, only the first two can be connected to modems.

The modem itself is controlled by a set of signals it
exchanges with the target computer. All transmission
and interpretation of these signals is done for you by
the driver; they are discussed here to help you decide
whether the modem you have is usable.

The signals are shown in Table 10-4, and all must be
supported by the modem in question.

When modem control is enabled for a terminal line, the
line is monitored continually (by the interface
hardware) for the RING signal. If the CARRIER and
DSR signals are then detected by the driver, the ring is
answered whether or not a read request is pending for"
the line. If the line's CARRIER signal is lost, the driver
waits two seconds for it to reappear and, if it does not,
returns an error to any current or future read request if
the CARRIER signal does not come back.

Device Drivers 10-26

Signal Name

TxD (transmitted data)

RxD (received data)

RTS (request to send)

CTS (clear to send)

DSR (data set ready)

CARRIER

DTR (data terminal ready)

RING

Source

Computer

Modem

Computer

Modem

Modem

Table 10-4. Modem Control Signals

Meaning

Identifies data originated by the computer and transmitted through the modem
to one or more remote terminals.

Identifies data generated by the modem, in response to signals received from a
remote terminal, and sent to the computer.
Ifpresent, RTS tells the modem to enter transmission mode; if absent, the
modem leaves transmission mode after data transmission is complete.

Ifpresent, CTS tells the computer that the modem is ready to transmit data; if
absent, it tells the computer that the modem is not ready.

If present, DSR tells the computer that the modem is ready to operate. That is,
the modem is connected to the line properly and is ready to exchange more
signals. If absent, it tells the computer that the modem is not ready.

Modem Ifpresent, CARRIER tells the computer that the signal received on the data
channel line is within the limits specified for the modem. If absent, it tells the
computer that the received signal is not within these limits.

Computer If present, DTR tells the modem that the computer is ready to operate, prepares
the modem for connection to the telephone line, and maintains this connection
after it is made. DTR can be present whenever the computer is ready to
transmit or receive data; ifit is absent, the modem disconnects itself from the
line.

Modem If present, tells the computer that a calling signal is being received by the
modem; for example, a remote telephone user has dialed the computer's
telephone number.

10-27 Terminal Drivers

Additional Support Routines

The modules $TERMINAL and $DDCMP in library
RTLOBJECT.OLB contain several support routines
that are useful if you are writing Pascal terminal
drivers or serial DnCMP line drivers. You can use
these declarations by including the modules in
compilations of your Pascal terminal drivers or serial
DDCMP line drivers. For details, see the module's
source file, TERMIN AL.P AS, and any of the terminal
driver source files, such as DZVDRIVER.P AS.

Parallel 1/0 Support

The Pascal source file DRIIC.PAS, supplied with your
development system, contains declarations of the DMF-
32 device registers suitable for using the device's
parallel port for digital input and output.

The parallel port on a DMF-32 can be used either as a
line printer port or to send and receive up to 16 bits of
data on 16 parallel lines. The type and variable
declarations in DRIIC.PAS can be used as delivered in
programs you write to perform parallel I/O.

DRIIC.PAS is intended as a ((template" that you can
modify to make the program you need. In some cases,
you can simply add a PROGRAM block that uses the
declarations the module provides. In addition to the
register declarations, the module provides templates
for the following:

• An interrupt service routine and communication
region.

• An initialization procedure that creates DEVICE
objects representing the devices ((request A" and
((request B" lines, as well as initializing the

10-29 Parallel I/O Support

parallel port for digital I/O (instead of for a line
printer).

• Input and output procedures to read and write a
16-bit word of data from the device.

Real-Time Device Drivers

The V AXELN development system includes device
drivers for the following real-time devices:

• The ADVIIC or AXVIIC analog-to-digital
converter.

• The KWVll C programmable, real-time clock.

• The DLV Jl asynchronous serial line controller.

• The DRVI1-J parallel line interface device.

The design of these drivers prohibits accessing a given
device from more than one job. However, gaining access
from different processes within the same job is possible,
provided the caller ensures there is no simultaneous
access to the same device.

Analog-to-Digital Converter

The Pascal module $AXV _UTILITY, supplied with
your development system, defines the procedures
provided to interface with the ADVIIC analog-to
digital converter and the AXVIIC. The AXVIIC
provides all of the functionality of the ADVI1C and two
digital-to-analog outputs as well.

By means of a hardware jumper, an ADVIIC device
can be configured to have 8 or 16 input channels. In the
former case, analog voltage is measured across two
input channels; in the latter case, voltage is measured
with respect to ground. The device has a built-in
multiplexer which permits the sampling and

Device Drivers 10-30

conversion of one channel at a time to a 12-bit binary
integer. You can also write a value to the device to be
used as a gain in the conversion. (The L81-11 Analog
System User's Guide contains more information on the
hardware.)

An analog-to-digital conversion can be initiated by
program control (setting a bit in the control/status
register), by an external signal, or by overflow from the
KWVI1C clock option (see the next subsection, ~~Real
Time Clock").

You can only access an AXVIIC from one job, which
must be running in kernel mode. This job can be an
~~AXVIIC server" if desired, which allows other jobs to
communicate with the device. More than one process in
the same job is permitted to access the device; however,
the caller must ensure that no simultaneous accesses to
the same device occur.

The procedures provided in the $AXV -UTILITY
module can be linked as delivered with your calling
programs to perform analog-to-digital conversion. This
mod ule also defines sta tus codes returned by the
procedures and types needed by the routines. The
driver can serve as a model for drivers for other real
time devices. Because the KWVIIC clock can be used
in conjunction with an AXVI1C device, some types
used in $AXV _UTILITY are defined in the module
$KWV_UTILITY.

The $AXV _UTILITY module provides the following
procedures:

• AXV_INITIALIZE, which causes an ADVI1C or
AXVIIC device to be readied for input and/or
output and causes all needed data structures to be
created. This procedure must be called at least
once for each device; it may be called more than
once for the same device to change the value of a

10-31 Real-Time Device Drivers

parameter (for example, to enable the device to
gather a larger number of values) .

• AXV -READ, which causes analog data to be
sampled from the specified channels, converted to
binary form by the device, and stored in a data
array. One read for each specified channel is
performed. The process is repeated until all data
has been collected. This procedure may be called
for either an ADVIIC or AXVIIC device.

• AXV _WRITE, which causes a binary number to be
converted to an analog voltage on one of the
digital-to-analog output channels. This procedure
may be called only for an AXVIIC device.

The procedures described above return optional status
values. In the interest of good real-time response, the
proced ures provide limited error checking; they only
report err0rs detected by the device. No input param
eters are verified and kernel service calls made in the
course of execution will raise exceptions upon failure.

Call formats and detailed argument descriptions for the
AXVIIC support routines are provided in the
VAXELN Pascal Language Reference Manual and the
VAXELN C Run-Time Library Reference Manual, as
appropriate to the programming language in use.

Real-Time Clock

The Pascal module $KWV-UTILITY, supplied with
your development system, defines the procedures
provided to interface with the KWVI1C real-time
clock. The KWVI1C is a programmable, real-time clock
that may be used to initiate action after a specified time
interval (via an interrupt or an external signal) or to
time an event. In the first mode, it may be used in
conjunction with an ADVIIC or AXVIIC device to
initiate the collection of data.

Device Drivers 10-32

The device's clock counter has a resolution of 16 bits. It
can be driven from any of five internal crystal
controlled frequencies, from a line frequency input, or
from Schmitt Trigger # 1, which is fired by an external
input. Another Schmitt Trigger, #2, may be used to
start the counter. (A Schmitt Trigger is a logic device
that responds to voltage levels rather than voltage
transitions. The LS1-11 Analog System User's Guide
contains more information on the hardware.)

The driver interface provided for the KWVIIC is of the
same style as that provided for the ADVIIC, described
previously. In fact, the major motivation for providing
the KWVIIC driver is to allow you to use all of the
functionality of the ADVIIC.

The design of this driver precludes accessing a given
KWV 11 C device from more than one job, and that job
must be running in kernel mode. More than one process
in the same job is permitted to access the device;
however, the caller must ensure that no simultaneous
accesses to the same device occur.

The procedures provided in the $KWV _UTILITY
module can be linked as delivered with your calling
programs to interface with the KWVIIC clock. This
module also defines status codes returned by the
procedures and types needed by the routines. The
$KWV _UTILITY module provides the following
procedures:

• KWV_INITIALIZE, which causes a KWVIIC
device to be readied for input and causes all needed
data structures to be created. This procedure must
be called at least once for each KWVIIC; it may be
called more than once for the same device to
change the value of a parameter (for example, to
enable the device to gather a larger number of
values).

10-33 Real-Time Device Drivers

• KWV -READ, which causes time values to be read
from the device and stored in a data array; these
values represent timings of external events. This
procedure may also be used to gather the elapsed
time that began with a call to KWV -WRITE .

• KWV_WRITE, which causes the device to be set up
such that, when the given number of ticks has
occurred, the clock overflow signal is generated.
Overflow signals may be repeatedly generated,
depending on how the device was initialized. This
proced ure can also be used to start the clock if the
intent is to subsequently stop and read it using
KWV_READ.

The procedures described above return optional status
values. In the interest of good real-time response, the
procedures provide limited error checking; they only
report errors detected by the device. No input
parameters are verified and kernel service calls made
in the course of execution will raise exceptions upon
failure.

Call formats and detailed argument descriptions for the
KWVIIC support routines are provided in the
V AXELN Pascal Language Reference Manual and the
VAXELN C Run-Time Library Reference Manual, as
appropriate to the programming language in use.

Asynchronous Serial Line Controller

The Pascal module $DLV -UTILITY, supplied with
your development system, defines the procedures
provided to interface with the DLVJl (formerly
DLVII-J) asynchronous serial line controller. The
DL V Jl is a QBUS interface that contains four
asynchronous serial line channels. The channels can be
independently configured for EIA RS-422, RS-423, or
RS-232C signal compatibility. Provisions are also made

Device Drivers 10-34

for configuring the channels for 20 rnA current loop
operation.
Four independent serial line interfaces exist with
consecutive bus device address and vector assignments
that can be user-configured via wire-wrap jumpers on
the module. Each serial line can also be independently
configured for baud rates of 150, 300, 600, 1200, 2400,
4800, 9600, 19200, or 38400 bits per second, number of
data bits (7 or 8), number of stop bits (1 or 2), and parity
(none, even, or odd). All of these configuration
parameters are also set via wire-wrap jumpers on the
conroller module. (The DLVll-J User's Guide contains
more information on the hardware.)
The $DL V_UTILITY procedures are intended to
provide the most efficient method of controlling the
DLV J1. The procedures are intended for real-time
applications that collect data and control real-time
devices using asynchronous serial lines. This is in
contrast to the support provided for the DZV11, DZQl1,
and DRV11, which is intended to provide a more
functional interface for reading and writing via
standard Pascal and C 110 routines to terminals
connected via the serial lines.
The procedures provided in the $DL V_UTILITY
module can be linked with your calling program, which
must be running in kernel mode. This module also
defines status codes returned by the procedures and
types needed by the routines. The driver source,
contained in DLVUTIL.PAS and DLVBODY.PAS can
also serve as a model for other drivers for real-time
devices. The $DL V _UTILITY module also exports
definitions of the D LV 11' s device registers if it is
desirable to directly read and write the registers. (See
D L VUTIL.P AS for the Pascal definitions or extract the
$DLV_UTILITY module from the VAXELNC.TLB
library for the C definitions.)

10-35 Real-Time Device Drivers

The $DL V_UTILITY module provides the following
procedures:

• DLV_INITIALIZE, which readies a DLV device
line for input and output and creates all needed
data structures. This procedure must be called
once for each DLV serial line used. Since each line
is initialized and handled separately from other
lines, each line should have its own device
description specified in the target system's System
Builder menus.

• DLV _READ_BLOCK, which causes characters to
be read from the serial line until the specified
number of characters is read. This procedure
should be called to read from the serial line if the
string-mode argument was FALSE in the call to
DL V _INITIALIZE.

• DLV-READ-STRING, which causes characters to
be read from the serial line until a carriage return
character is encountered. This procedure should be
called to read from the serial line if the
string-mode argument was TRUE in the call to
DL V -INITIALIZE.

• DLV -WRITE-STRING, which causes the specified
character string to be written to the serial line.
The characters are not interpreted by this
procedure; therefore, any variable-length string
can be written.

Call formats and detailed argument descriptions for the
DL V Jl support routines are provided in the V AXELN
Pascal Language Reference Manual and the V AXELN
C Run-Time Library Reference Manual, as appropriate
to the programming language in use.

Device Drivers 10-36

Parallel Line Interface

The Pascal module $DRV_UTILITY, supplied with
your development system, defines the procedures
provided to interface with the DRVI1-J parallel line
interface device. The DRVII-J is a QBUS interface
that provides communication between a MicroVAX and
up to four user devices in 16-bit word lengths via four
I/O ports.
Four control lines are associated with each of the four
ports to ensure orderly information transfers. Word
transfers are executed by programmed I/O bus
operations via either polling or interrupt-driven
routines. Write data is output by the DRVII-J to the
I/O bus through 3-state data latches, and read data is
input through unlatched bus dri verso

The $DRV -UTILITY procedures are intended to
provide the most efficient method of controlling the
DRVII-J. The procedures are intended for real-time
applications that collect data and control real-time
devices using parallel lines. This is in contrast to the
support provided for other, non-real-time devices,
which are intended to provide a more functional
interface for reading and writing via standard Pascal
and C I/O routines to terminals connected via the serial
lines.
The procedures provided in the $DRV -UTILITY
module can be linked with your calling program, which
must be running in kernel mode. This module also
defines status codes returned by the procedures and
types needed by the rou tines. The dri ver source,
contained in DRVUTIL.PAS and DRVBODY.PAS can
also serve as a model for other drivers for real-time
devices. The $DRV -UTILITY module also exports
definitions of the DRVl1's device registers if it is

10-37 Real-Time Device Drivers

desirable to directly read and write the registers. (See
the DRVUTIL.PAS for the Pascal definitions or extract
the $DRV -UTILITY module from the V AXELNC.TLB
library for the C definitions.)

The procedures perform all I/O using a dynamically
allocated buffer array. The array is a two-dimensional
array: the first array index specifies the parallel port
number (0 .. 3) and the second array index specifies a
data word. The procedures internally utilize a separate
DEVICE object per parallel port. Therefore, a user
program can have interrupt driven I/O in progress on
each port simultaneously. For example, an application
program may have a process writing data to ports 0 and
1, and another process reading data from ports 2 and 3.
Due to the way the DRV11-J functions, though, only
one port may have concurrent I/O if polling is used
instead of interrupts.

The procedures assume that the user device connected
to the DRV11-J asserts the USER REPLY lines when
the user device is to inform the DRV11-J that either
data is available (for reading by the application
program) or that data has been accepted (written by the
application program).

The $DRV _UTILITY module provides the following
procedures:

• DRV -INITIALIZE, which readies a DRV device
controller for input and output and creates all
needed data structures. This procedure must be
called once for each DRV controller used.

• DRV _READ, which causes data words to be read
from the specified parallel port. The resulting data
is stored in the buffer pointed to by the buffer
parameter returned by DRV _INITIALIZE.

Device Drivers 10-38

• DRV-WRITE, which causes data words to be
written to the specified parallel port. Before calling
this procedure, the data words should be stored in
the buffer pointed to by the buffer parameter
returned by DRV _INITIALIZE.

Call formats and detailed argument descriptions for the
DRVII-J support routines are provided in the
V AXELN Pascal Language Reference Manual and the
VAXELN C Run-Time Library Reference Manual, as
appropriate to the programming language in use.

1 0-39 Real-Time Device Drivers

Device Drivers 10-40

Chapter 11

Exception Handling

This chapter discusses V AXELN exceptions and
exception handling procedures, including a brief
overview of the VAX stack architecture. Status codes
are explained and message processing features that
handle the conversion of status codes into message text
are discussed.

Exceptions in VAXELN

The term exception is commonly used to describe
programming events that occur during the execution of
a particular program. Exceptions can be:

• Synchronous. In this case, the exception would
occur at the same particular place in the program
given a set of circumstances; for example, dividing
by zero.

• Asynchronous. In this case, the exception is
triggered by some event outside the control of the
program; for example, power failure.

Some exceptions are generated by hardware events and
some are solely the result of a software event. V AXELN
programs can experience these types of exceptions:

• Hardware-detected arithmetic problems; for
instance, «divide by zero" or integer overflow.

• Hardware-detected access problems; for instance,
nonexistent memory.

• Hardware-detected events; for instance, power
failure.

11-1

• Software-detected events; for instance, a signal of a
process.

• Software-detected conditions; for instance, a
Pascal range violation.

• Software-detected conditions in the run-time
library; for instance, a problem with opening a file.

• Software-detected conditions in the VAXELN
kernel when a program has requested a kernel
service that must return an error status but the
program did not specify a status parameter.

In the event of an exception there are only two options:
ignore it or handle it. An exception might or might not
be important for a program to be aware of. In addition,
an exception might or might not be expected. It is up to
the programmer to decide if a particular problem or
exception condition is important or ((fatal" to the
program execution.

The mechanism for notifying a running program of an
exception is that the V AXELN kernel exception
processing software temporarily stops the normal
execu tion of the program and calls a specially defined
exception handler routine defined by the program.
Exception handlers are procedures that are established
during the execution of a program to handle one or
more of the potential exception conditions that can
occur. For example, a programmer might know that an
integer overflow could occur during a particular section
of code and establish a special handler for that region.

All of the V AX programming languages allow the
programmer to dynamically establish exception or
condition handlers. For reasons of transportability, the
V AXELN exception mechanism is almost identical to
the exception mechanism used on V AXNMS.

Exception Handling 11-2

VAX Stack Architecture

Before explaining the exception handler mechanism, a
brief description of the VAX stack architecture is
important.

Whenever a program is executing on a VAX, the
hardware registers SP and FP describe an active stack
environment. The system software always sets up the
initial stack environment for a process. Usually the
memory for the stack is in the high virtual addresses of
the process' memory, the PI region. (See Chapter 3,
((Processes and Jobs," for a discussion of V AX memory
management and the definition of the PI region.)

Stacks are good structures to record items in a defined
order and then play the items back in the reverse order.
They are helpful in performing recursive operations,
but in many cases they are best used as a ((trail of
breadcrumbs" to record the implicit state of a program.
The call history of the procedures activated up to a
point in the program is a typical application of this
stack feature.

The VAX architecture uses the stack environment in
the processing of many V AX instructions. The simple
cases are instructions like PUSHAL, which pushes an
address on the stack. The action of pushing is a two-step
process: subtract a constant from the SP register, then
use the new SP value as the address at which to place
the data. Popping the stack is the reverse: use the value
of SP to address the data, then add a constant to the
stack.

The ~~constant" is dependent upon the operation. In the
case of PUSHAL, a longword is placed on the stack. In
other contexts, different-sized objects are pushed or
popped from the stack. Note that VAX stacks grow
downward in address as they expand and there is no

11-3 Exceptions in VAXELN

implication on the alignment of SP on a particular
memory length boundary, although some instuctions
(like CALL) implicitly align the stack. Most high-level
languages manage the stack environment for the
programmer; it is not necessary to mani pula te the SP
value explicitly.

At any given point in time, the value in the FP register
contains the address of the active stack call frame, a
small data structure defined by the V AX hardware that
contains information about the current procedure
invocation and the state of the procedure which called
it. At the same time, the value of the SP register is
equal to or ((less than" (below) the FP value. The
memory between the SP and FP values is referred to as
the local storage of the procedure actixation. Both
together are referred to as the procedure's stack frame,
as illustrated in Figure 11-1. Languages like Pascal, C,
and FORTRAN use this space to store procedure
temporaries or variables.

Procedure
Local
Storage

: SP

Active Call : FP
Frame

Figure 11-1. A Procedure's Stack Frame

The V AX CALLS, CALLG and RET instructions affect
the values of SP and FP to dynamically create and
destroy the frame structure. For instance, with the
stack in the state pictured in Figure 11-1, if a procedure
call is performed, the stack would look like Figure 11-2.

Exception Handling 11-4

Stack
Frame

Stack
Frame

Procedure : SP
Local
Storage

Active Call : FP

Frame

Procedure
Local
Storage

Previous Call
Frame

Figure 11-2. Frame Structure after Procedure Call

Internally, the call frame block looks like Figure 11-3.

Handler Procedure

Register Mask I Previous PSW

Previous AP

Previous FP

Return PC

Saved Reg isters

Figure 11-3. Call Frame Block

: FP

: FP + 4

: FP + 8

: FP + 12

: FP + 16

: FP + 20

11-5 Exceptions in VAXELN

Return PC contains the address of the first instruction
after the CALL instruction that called this currently
active procedure. Previous FP contains the address of
the previously active frame. The Handler Procedure
location is either zero or the address of an established
condition handler procedure. (For a more detailed
description of the frame contents, see the VAX
Architecture Handbook.)

By examining the current frame at the FP address, the
history of the call sequence can be extracted by
following the Previous FP values until the top of the
stack is reached. This trail of frames is the key to
understanding what happens when an exception
occurs.

Exception Handler Arguments

When an exception occurs, the V AXELN kernel
exception logic builds an argument list that describes
the exception. It then searches the current list of stack
frames to find a frame that contains a non-zero
condition handler address. When one is found, the
handler procedure is called.

If no handler is found, the kernel takes some default
action. That is, if the debugger is present in the system,
a special debugger handler is called. It acts as the
condition handler, giving the programmer a chance to
look at the state of the program. If no handler is found
and the debugger is not present, the process is deleted
by the kernel.

The argument list for an exception handler routine
contains two values. The first argument value is the
address of another data block containing information
about the exception that occured. This block is the
signal argument block. The signal arguments are
illustrated in Figure 11-4.

Exception Handling 11-6

Number of longwords following : Signal arguments

Name of the exception : Signal arguments + 4

Additional exception-dependent
information

PC of the exception

PSL at the exception point

Figure 11-4. Signal Arguments

Each different exception has a distinct argument list
that provides information about the exception.
Sometimes, as in the case of ((divide by zero," no
additional information is needed or present. Such
exceptions have the same names as the corresponding
status values, as described in Appendix C, ((Status
Values/Exception Names."

The second argument value is the address of a data
block that contains information needed to recover from
the exception. This block is called the mechanism
argument block. The mechanism arguments are
illustrated in Figure 11-5.

Note that the frame depth value is the number of
frames searched while looking for the exception
handler address.

11-7 Exceptions in VAXELN

4 : Mechanism arguments
1--------------------------\

FP where the handler was found : Mechanism arguments + 4

Frame depth : Mechanism arguments + 8

RO at exception : Mechanism arguments + 12

R 1 at exception : Mechanism arguments + 16

Figure 11-5. Mechanism Arguments

"Continue" and "Resignal" Operations

When the exception handler routine is called, it has the
responsibility of looking at the exception name value
and deciding what to do. The routine then returns a
Boolean value to the kernel exception handler logic. If
the Boolean value is TRUE (low bit of RO = 1), the
kernel resumes execution of the program at the point of
the exception; the condition is ~~handled." If the Boolean
value is FALSE (low bit of RO = 0), the kernel con
tinues to search the stack frame list for another handler
to call; the condition is ~~not handled." These two actions
are referred to as continuing and resignaling.

Many high-level languages provide an explicit method
for exiting a routine (such as an up-level GOTO in
Pascal and the longjmp function in C); this is then the
way to exit an exception handler. In this case, the
language run-time library does an implict continue on
behalf of the program.

Exception Handling 11-8

As explained previously, if no handler is found that
handles the exception, the kernel deletes the process
with the exception name as the status. Each potential
exception has an individual status code defined for it
(see ((Status Codes," later in this chapter). The excep
tion name value can be used to associate a descriptive
text message with the status code, as explained in
((Message Files and Utilities," later in this chapter.

A particular exception handler may handle one or more
individual exception conditions. Some programs have
handlers that ((catch all" exceptions and display a
message if something unexpected occurs. Since the
stack frame is searched backward in the call history, a
handler established in the program's main routine
would be the last to be called in the event of an
exception and could act as the ((catch all" handler.

In addition to the typical continue or resignal options,
the program can also modify the exception state
information and continue under different conditions.
For instance, if an integer overflow occurs on a
particular statement, the handler can modify the
variables involved and continue. As another example,
changing the value of the saved PC in the signal
argument list has the effect of continuing the program
at a different place. Remember, though, that the
program continues with the stack state as it was at the
exception. This means that the new PC must be in the
routine that experienced the exception.

"Unwind" Operation

As mentioned previously, some languages provide an
explicit method for exiting the condition handler. This
has the effect of continuing at a different location and
possibly in a different stack environment. This
operation is called unwinding. There is a VAXELN

11-9 Exceptions in VAXELN

kernel procedure to perform this operation because the
stack discipline and modification is complex. Normally, I

the unwind is done for you as a result of exiting an
exception handler.

If you use the UNWIND procedure directly, it provides
several options. There are two parameters. One is a
new continue PC, which specifies an alternative
continuation point. If a PC is not specified, some
frame's return PC is used. The other argument specifies
which frame is to be the active one after the unwind. It
can be specified as either a ~~depth" from the exception
frame or a particular FP value. (Note that a depth of
zero is treated as a special case in VAXELN, unwinding
to the caller of the establisher; this is in contrast to
VMS, where a depth of zero means ~~unwind zero pre
signal frames. ")

The UNWIND procedure has the effect of returning
back through some number of subroutines without
actually executing any code in the subroutines that are
skipped.

Unwind allows a program to handle the exception by
skipping back to a particular call point in the stack
history; for instance, the caller of the routine that got
the exception. As the unwind operation takes place, if a
frame has a handler established, the handler is called
with a special ~~unwind" exception condition.

This exception is to notify the handler that the active
frame is being skipped and that any necessary cleanup
should be performed. The un wind handler is assumed to
complete, specifying ~~continue." It can, however,
perform its own unwind operation, overriding the
unwind operation in progress.

One final feature can be used when an unwind is
performed. Most procedures, if they return a simple
value, return that value in RO and Ri. Most VAX

Exception Handling 11-10

languages adhere to this standard. It is possible,
therefore, to change the value of the saved RO and Rl in
the mechanism argument block and then unwind. The
effect is to set the value of a function and return. Care is
required to understand the semantics of function values
in a partic'ular language.

Multiple Concurrent Exceptions

When an exception signal is in progress, other excep
tions can still occur. These exceptions also cause the
stack to be searched for an active handler, but a special
action takes place. Any frames that were already tested
for having an exception handler are not tested again.

That is, when the exception occurs, the frames from the
exception frame through the original condition handler
are tested, then the frames between the handler's frame
and the frame that activated the handler are skipped.
The search resumes with the frame preceding the one
that established the handler. This prevents handlers
from being recursively entered; once active, a handler
cannot be reactivated.

Raising Exceptions

VAXELN provides the RAISE_EXCEPTION kernel
procedure, which can be used to generate exceptions.
The result is much like an exception caused by a
hard ware condition.

Kernel Procedure Failure Exceptions

Each VAXELN kernel procedure accepts an optional
status variable. The final status of the operation is
placed in the variable as one of the last things done by
the kernel procedure. If the program does not specify a
status variable and the status is some sort of failure, an
exception is generated with the status as the exception

11-11 Exceptions in VAXELN

name. This feature provides a means of handling
unexpected failures for the programmer who expects
kernel procedures to succeed.

Asynchronous Exceptions

Asynchronous exceptions do not occur as a result of
some program action, but as a result of an external
event that cannot be predicted. The result of an
asynchronous exception is identical to that of any other
exception, with one notable difference. While one of
these exceptions is signaled, other asynchronous
exceptions are prevented from occurring until a
((continue" is specified. Note, however, that other
synchronous exceptions can still occur.

In addition, VAXELN provides two kernel procedures
for controlling the occurrence of these exceptions.
Normally the exceptions are enabled, but calling
DISABLE_ASYNCH_EXCEPTION prevents the
delivery of the exceptions to the calling process un til
ENABLE-ASYNCH-EXCEPTION is called. These
procedures mimic the action of having an asynchronous
exception signal in progress.

There are several types of asynchronous exceptions
generated by V AXELN:

• KER$-POWElLSIGNAL. If a job is specified
during system build as desiring power recovery
signals, the kernel will generate an exception
when the power recovery takes place.

• KER$-QUIT-SIGNAL. Signal of a process object
causes the target process to receive this exception.

• KER$-PROCESS-ATTENTION. This exception is
caused by a process calling the kernel procedure
RAISE-PROCESS-EXCEPTION.

Exception Handling 11-12

Exception Handling Procedures

The kernel procedures relating to exception handling
are summarized below.

DISABLE-ASYNCH-EXCEPTION Procedure

DISABLE-ASYNCH_EXCEPTION prevents the
delivery of asynchronous exceptions to the calling
process.

ENABLE-ASYNCH-EXCEPTION Procedure

ENABLE_ASYNCH_EXCEPTION allows the delivery
of asynchronous exceptions to the calling process.
Asynchronous exceptions are enabled by default and
must be reenabled only after being explicitly disabled.
They also are disabled while an asynchronous
exception is being handled.

RAISE-EXCEPTION Procedure

RAISE-EXCEPTION causes a particular software
exception in the calling process. A list of zero or more
additional exception arguments can be specified, which
will be made available to the exception handler in the
array of additional arguments.

Note: Some exception names, such as SS$_ACCVIO,
are used to identify specific system or hardware events
(in this case, a virtual memory access violation); take
care not to raise one of these exceptions.

RAISE-PROCESS-EXCEPTION Procedure

RAISE_PROCESS_EXCEPTION raises the asynchro
nous exception KER$-PROCESS-ATTENTION in the
specified process.

11-13 Exception Handling Procedures

UNWIND Procedure

The UNWIND procedure unwinds the call stack to a
new location. Arguments supply the target frame
pointer (FP) and the new program counter (PC) at the
newFP.

Status Codes

All status codes returned by VAXELN routines follow
the usual VAX convention in which odd-numbered
integers signify success and even values mean failure of
some kind (not necessarily fatal). Specifically:

• Bits 0-2 define the severity: 0 means warning, 1
means success, 2 means error, 3 means
~(informational," and 4 means ~(severe" or «fatal"
error.

• Bits 3-31 of the integer form a ~(status ID."

Typically, an «informational" status is similar to
success but is qualified in some way. For example, a
command interpreter might use it to inform a user that
although a «delete" command was understood and pro
cessed successfully, no objects were deleted. Similarly,
~(warning" and, sometimes, «error" severity imply that
operation of a system is still possible, whereas ~~fatal"
implies that it is not.

Note: For the exit status of a process, you can return
any integer you like, although we suggest following the
above convention.

The creator of a job has the option of receiving a special
~(termination" message when the created job completes.
This message simply contains an integer making up the
completion (exit) status of the created job's master
process. If the master process specifies no status of its

Exception Handling 11-14

own and completes successfully, the default status code
is 1 (success).

Caution: The successful completion of a process may be
represented by more than one exit status (for example,
status code 1 or 3). Therefore, to check for success in
your programs, we suggest that you always check for
the specific status value KER$-SUCCESS, rather than
for a status code of 1. A process will always return
KER$-SUCCESS upon successful completion, even if
the status code returned is not 1.

Message Files and Utilities

The V AXNMS system contains message processing
features to help programs handle the conversion of
status codes into meaningful message text. The feature
is supported by two components on VMS:

• A message-processing utility program called
MESSAGE

• A message system service, $GETMSG

The MESSAGE utility acts much like a compiler. It
transforms a source file containing the definitions of
status codes and text into various forms, including
object files. These object files can then be referenced
from program images.

The VMS system service, $GETMSG, given the status
code, extracts the text information from a database
created from the MESSAGE utility object files.

V AXELN provides a run-time library routine that
duplicates the action of the $GETMSG system service.
By using this routine, a VAXELN application can also
access the message text information.

11-15 Message Files and Utilities

Including the Message Text in a VAXELN Application

Use the VMS MESSAGE utility to create a message
object file, and simply include that message object file
when you link your program. For instance:

$ MESSAGE IOBJ msgdef ! create the message file
$!
$! Link the program
$!
$ LlNK/NOSYSSHR app + msgdef +
ELN$: RTLSHARE/LIB + RTULIB

The VMS MESSAGE utility is fully documented in the
V AXNMS documentation.

Accessing the Message Database During the Execution
of a VAXELN Application

Two message processing routines are provided by the
VAXELN run-time libraries. One is an exact duplicate
of the VMS $GETMSG routine. It is called
SYS$GETMSG,just as is the VMS system service. The
parameters for SYS$GETMSG are identical to the
description outlined in the system service
documentation for V AXNMS.

The other routine, GET-STATUS-TEXT, is provided
for easier use with higher-level languages. This
procedure returns the text associated with a status code
that you provide as input to the routine. A format
control parameter can be provided so that the returned
string contains only a part of the information available.

The VAXELN Pascal definitions for this routine are
provided in the $GET-MESSAGE_TEXT module of
RTLOBJECT.OLB. The functionally equivalent
definitions for C programs are included in the #include

Exception Handling 11-16

module named $GET_MESSAGE_TEXT contained in
ELN$:V AXELNC.TLB.

Message Files Provided with the VAXELN Kit

The V AXELN run-time library RTL.OLB contains the
following message object modules that can be linked
with your program to provide V AXELN -specific
messages for use with the GET-STATUS_TEXT
procedure:

• ELN$MSGDEF_TEXT. Contains messages
generated by the VAXELN Pascal compiler and
other utilities (such as the File Service).

• KER$MSGDEF_TEXT. Contains messages
generated by the V AXELN kernel.

• PAS$MSGDEF_TEXT. Contains messages
generated by the V AXELN Pascal run-time
routines.

• C$MSGDEF-TEXT. Contains messages generated
by the V AXELN C run-time routines.

The corresponding source files (for the V AXNMS
MESSAGE utility) also are provided: ELNMSG.MSG,
KERNELMSG.MSG, PASCALMSG.MSG, and
CMSG.MSG, respectively. These sources show the text
ofa message and its corresponding ID (name).

Included in RTL.OLB are ELN$MSGDEF,
KER$MSGDEF, PAS$MSGDEF, and C$MSGDEF;
these modules define the message names as linker
global values for use from non-V AXELN Pascal
programs.

The image ELNMSG.EXE is placed by the V AXELN
installa tion procedure in the V AXNMS directory
SYS$MESSAGE. It is provided for use when you are
executing V AXELN programs under VMS.

11-17 Message Files and Utilities

Note that the Pascal messages are not included here
since they are provided by the VMS environment, and
the kernel messages do not occur since programs cannot
call kernel procedures when executing under VMS.

In addition, the image ELNCMSG.EXE is placed by the
V AXELN installation procedure in the V AXELN
directory ELN$. It provides the message text for the
V AXELN C run-time routines.

You can use these images with the VMS command SET
MESSAGE to find out the V AXELN message corres
ponding to the hexadecimal value (a ((reason mask" or
((reason value") that is reported in some contexts for
exceptions (for instance, the local debugger). For
example:

$ SET MESSAGE SYS$MESSAGE:ELNMSG
$ EXIT %xHHHHHHHH

or

$ SET MESSAGE ELN$:ELNCMSG
$ EXIT %xHHHHHHHH

where the Hs are the hexadecimal digits of interest.

During a debug session, you can use the V AXELN
debugger command SHOW MESSAGE to display the
text associated with a value's exit status (see Chapter
15, ((Debugging"). For example, the command

Edebug 4,5> SHOW MESSAGE %x7C3C

displays the text associated with the status %x7C3C,
that is:

KER$-BAD-VALUE, Bad parameter value

Exception Handling 11-18

Chapter 12

Program Development

This chapter summarizes the use of the V AXELN
Pascal and VAX C compilers and the V AXNMS
librarian and linker to prepare programs for inclusion
in a V AXELN system. Program images are prepared
with the VAXNMS commands EPASCAL, CC,
LIBRARY, and LINK. The program images are then
combined into a system by the System Builder, as
explained in Chapter 13, ((System Development."

Preparing a VAXElN Program

Programs written in V AXELN Pascal are compiled
with a command of the form

$ EPASCAL myfile

which produces the object module myfile.obj from the
VAXELN Pascal source file myfile.pas. Assuming that
myfile.pas specifies the complete program, the
following LINK command prepares its image:

$ LINK myfile + ELN$: RTLSHARE/UB + RTULIB

Programs written in V AX C are compiled with a
command of the form

$ CC myfile + ELN$:VAXELNC/LIB

which produces an object module from the C source file.
C programs are then linked with the command:

$ LINK myfile + ELN$:CRTLSHARE/UB + RTULIB

Note that programs written in either language are
linked with RTULIB.

12-1

In both Pascal and C, if myfile specifies only part of the
program, you can create a library and insert the object
module in it for input to a later compilation or use in
linking:

$ LIBRARY/CREATE objectlib myfile

The formats of the EP ASCAL command and the CC
command, and the corresponding command arguments,
are discussed in detail in the V AXELN Pascal
Language Reference Manual or the VAXELN C Run
Time Library Reference Manual, as appropriate to the
programming language in use.

The formats of the LIBRARY and LINK commands are
discussed in the remainder of this chapter.

LIBRARY Command

The V AXNMS librarian maintains libraries of
modules, including object modules. It is used to
maintain libraries of object modules for use as
V AXELN Pascal compiler input or linker input and to
maintain libraries of text modules for use in C program
compila tions.

For information about the run-time object libraries
supplied with the system, see the description of the
LINK command, later in this chapter.

The following examples illustrate use of the librarian
for common operations in V AXELN development. For
more information about the LIBRARY command, see
the V AXNMS documentation or on-line HELP for your
V AXNMS system.

Creating a New Library

$ LIBRARY/CREATE library-spec object-file-spec-list

Program Development 12-2

Here, a new object library is created; if you specify a list
of object files, their modules are inserted in the new
library.

Inserting or Replacing Modules in an Existing Library

$ LIBRARY library-spec object-file-spec-list

The library-spec is a VAXIVMS file specification that
designates an object-module library. Such libraries
have the default file type OLB and are the default
library type for the librarian. Here, a list of object file
specifications, separated by commas, designates the
modules to be added. If any modules of the same names
are already in the library, they are replaced with the
new ones.

Listing a Library's Contents

$ LIBRARY/LIST = listing-file-spec library-spec

Here, a listing of the library's contents (module names)
is written to the specified listing file; if the listing file
specification is omitted, the listing is written to
SYS$OUTPUT (usually, your terminal).

Extracting Modules from a Library

$ LIBRARY/EXTRACT = (module-list)
-IOUTPUT = (file-spec-list) library-spec

Here, the listed modules (whose names are separated
by commas in the module-list) are extracted from the
library; new files are created to receive them, with the
defa ul t file type 0 BJ and the same names as the
modules'. (The qualifier OUTPUT = (file-spec-list) is used
to name the output files explicitly).

12-3 LIBRARY Command

Deleting Modules from a Library

$ LIBRARY IDELETE = (module-list) library-spec

Here, the listed modules are deleted from the library.

Compressing a Library

$ LIBRARY ICOMPRESS library-spec

Here, the specified library is compressed; unused space
resulting from module deletions is recovered. By
default, a new library (OLB) file is created with the
same specification you supplied, but a version number
one higher; you can use the qualifier OUTPUT = file
spec to specify the output file explicitly.

LINK Command

The V AX/VMS linker produces program images by
combining object modules. The program images are
then ready for inclusion in V AXELN systems (see
Chapter 13, ((System Builder").

For example, the command:

$ LINK myfile,myfile2,
-ELN$: RTLSHARE/LIBRARY ,-
-RTULIBRARY

produces the image file myfile.exe, ready for inclusion
in a V AXELN system, from the object files myfile.obj
and myfile2.obj, with references from the object
modules resolved to the object module library RTL.OLB
and the shareable image library RTLSHARE.OLB. The
command format, libraries, and qualifiers are discussed
below.

Program Development 12-4

Format

$ LINK file-specification-list

The LINK command itself, and individual file
specifications, accept a large set of qualifiers, each of
which is a word preceded by a slash (I). For a discussion
of qualifiers that are commonly useful with VAXELN,
see ~(Qualifiers," later in this section.

File Specifications

Each file specification specifies either an object module
created by the compiler, an object library, or a
shareable image library. The file specifications are
separated by commas or plus signs. In either case, all
specified input files are used to create a single program
image.

The first file specification must not be a library unless
the INCLUDE qualifier is used to specify which of its
modules to use (see ~~Qualifiers," later in this section).

Object module files have the default type OBJ. Object
and shareable image libraries have the default file type
OLB and must be written with the LIBRARY or
INCLUDE file qualifier.

VAXELN Libraries

The following run-time libraries are supplied for
linking with VAXELN Pascal and C object modules.
All are placed in the directory ELN$ by the installation
procedure (see the V AXELN Installation Manual). You
can obtain a list of any library's contents with the
LIBRARY command described previously.

12-5 LINK Command

RTlSHARE.OlB

This is a shareable image library containing the
following shareable images:

DAP.EXE. This is the shareable image for the Data
Access Protocol (DAP) routines used by device drivers.

DDCMP.EXE. This is the shareable image for the
DIGITAL Data Communications Message Protocol
(DDCMP) routines used by device drivers.

DISK. EXE. This is the shareable image for the disk
utility procedures.

DMATH.EXE. This is the shareable image for the Pascal
math routines using D-floating instructions.

DPASCAlIO.EXE. This is the shareable image for the
run-time support for all Pascal 110 routines using
D-floating instructions, with the exception of the DAP
interface.

FllE.EXE. This is the shareable image for the disk File
Service.

FllEUTIl.EXE. This is the shareable image for the file
utility procedures.

GMATH.EXE. This is the shareable image for the Pascal
math routines using G-floating instructions.

GPASCAlIO.EXE. This is the shareable image for the
run-time support for all Pascal 110 routines using
G-floating instructions, with the exception of the DAP
interface.

NETWORK.EXE. This is the shareable image for the
Network Service.

PASCAlMSC.EXE. This is the shareable image for the
miscellaneous Pascal run-time library routines.

Program Development 12-6

PRGLOADER.EXE. This is the shareable image for the
dynamic program loader utility procedures.

TAPE.EXE. This is the shareable image for the tape File
Service.

TERMINAL.EXE. This is the shareable image for
routines used in writing terminal drivers.

CRTLSHARE.OLB

This is a shareable image library containing the
following shareable images:

CMSC.EXE. This is the shareable image for
miscellaneous (floating-point independent) C run-time
library routines.

DCIO.EXE. This is the shareable image for the C run
time library I/O routines using D-floating instructions.

DCMATH. EXE. This is the shareable image for the C
run-time library math routines using D-floating
instructions.

GCIO.EXE. This is the shareable image for the C run
time library I/O routines using G-floating instructions.

GCMATH.EXE. This is the shareable image for the C
run-time library math routines using G-floating
instructions.

RTLOBJECT.OLB

This is an object library containing object-module
versions of everything in RTLSHARE.OLB. A number
of the RTLOBJECT modules are available for inclusion
in the compilation of your Pascal programs. In several
cases, the corresponding source files are also supplied
for your use and inspection. Inclusion of modules from
this library is required to use several of the V AXELN
features and procedures that are not predeclared.

12-7 LINK Command

$AUTHORIZE-UTILITY. This contains the definitions of
the AUTH-ADD-USER, AUTH-MODIFY_USER,
AUTH_REMOVE-USER, and AUTH_SHOW-USER
routines.

$AXV-UTILITY. This contains the definitions of the
AXV device driver utility routines AXV _INITIALIZE,
AXV -READ, and AXV _ WRITE.

$CMSG. This contains the Pascal-compatible status
values returned by the C run-time code.

$DAP. This contains definitions used in writing device
drivers using the Data Access Protocol.

$DATALINK. This contains definitions used in writing
datalink drivers.

$DDCMP. This contains various routines useful for
writing serial DDCMP line drivers (and used in the
drivers supplied with your development system).

$DISK-UTILITY. This contains the definitions of the
routines DISMOUNT_VOLUME, INIT_ VOLUME, and
MOUNT_VOLUME.

$DLV-UTILITY. This contains the definitions of the DLV
device driver utility routines DLV _INITIALIZE,
DLV -READ_BLOCK, DLV -READ_STRING, and
DLV-WRITE-STRING.

$DRV-UTILITY. This contains the definitions of the DRV
device driver utility routines DRV -INITIALIZE,
DRV -READ, and DRV -WRITE.

$ELNMSG. This contains the definitions of V AXELN
specific messages.

$EXIT -UTILITY. This contains the definitions of the exit
utility routines DECLARE-EXIT-HANDLER and
CANCEL_EXIT_HAND LER.

Program Development 12-8

$FILE-UTILITY. This contains the definitions of the file
utility routines CREATE_DIRECTORY, COPY_FILE,
DELETE_FILE, DIRECTORY-OPEN, DIREC
TORY-CLOSE, DIRECTORY_LIST, PROTECT_FILE,
and RENAME_FILE.

$GET-MESSAGE-TEXT. This contains the definitions of
types and routines used to process messages.

$KERNEL. This contains the definitions of kernel
procedures that are not predeclared in VAXELN.

$KERNELMSG. This contains the definitions of kernel
procedure status values.

$KWV-UTILITY. This contains the definitions of the
KWV device driver utility routines KWV _INITIALIZE,
KWV _READ, and KWV -WRITE.

$LOADER-UTILITY. This contains the definitions of the
progam loader routines ELN$LOAD_PROGRAM and
ELN$UNLOAD-PROGRAM.

$MUTEX. This contains the definitions of the MUTEX
data type and related procedures CREATE_MUTEX,
INITIALIZE_AREA-MUTEX, DELETE_MUTEX,
LOCK_MUTEX, and UNLOCK-MUTEX.

$PASCALMSG. This contains the status values returned
by the Pascal I/O run-time code.

$PHYSICAL-ADDRESS. This contains the definition of
the PHYSICAL_ADDRESS function.

$STACK-UTILITY. This contains the definitions of the
stack utility routines ALLOCATE_ST ACK and
DEALLOCATE-STACK.

$TAPE-UTILITY. This contains the definitions of the
MOUNT-TAPE-VOLUME, INIT_TAPE-VOLUME,
and D ISMO UNT _ T APE_ VO L UME routines.

12-9 LINK Command

$TERMINAl. This contains various routines useful for
writing Pascal terminal drivers (and used in the drivers
supplied with your development system).

$UNIBUS. This contains the definitions of routines
useful in writing drivers for UNIBUS or QBUS DMA
devices: UNIBUS-MAP, LOAD-UNIBUS_MAP, and
UNIBUS-UNMAP.

$VAX-DEFINITIONS. This contains the definitions of the
V AX$PSL and V AX$V A routines.

CRTlOBJECT.OlB

This is an object library containing object-module
versions of everything in CRTLSHARE.OLB.

RTl.OlB

This is an object library that contains modules for run
time routines that have local read/write data and a
module defining entry points for the kernel procedures.
This library is normally included in every LINK
operation. It must follow RTLOBJECT.OLB in the
LINK command ifRTLOBJECT.OLB is used.

FllE.OlB

This is the object-module library containing the File
Service modules and support routines. It is needed only
w hen you are writing a driver that uses the File Service
and you want to link the driver with local copies of
these modules instead of shareable images (for
debugging purposes, perhaps). The LINK command
must list this library first, as shown here:

$ LINK/MAP/DEBUG driver-object,
-ElN$: FllE/LiBRARY,-
-RTlOBJECT/LiBRARY,-
-RTULIBRARY

Program Development 12-10

Selection of Default Double-Precision Type

When the V AXELN toolkit is installed on your system,
libraries are configured so that the V AX D-floating
format is used by run-time routines for double-precision
operations. (Note that some mathematical run-time
routines generate temporary double-precision values
even when your program has not declared any
DOUBLE data.)

Two command procedures are placed in ELN$ to allow
you to specify the double-precision format for the
machine for which you are developing a V AXELN
system:

• GFLOATRTL.COM makes G-floating the default
representation for the run-time routines. Type
@ELN$:GFLOATRTL to make G-floating the
default.

• DFLOATRTL.COM restores D-floating as the
default representation.

Note also that D_floating is the VAXELN PASCAL and
VAX C compilers' default double-precision floating
point representation. To explicitly generate G_floating
instructions instead, use the compiler's G-FLOATING
command qualifier.

For example, to prepare a program for a Micro V AX
computer that has the F - and G-floating formats,
compile with the G-FLOATING qualifier and use
GFLOATRTL.COM to specify the run-time representa
tion; you can then omit the emulation software
(described in Chapter 13, ~~System Builder") for
floating-point instructions.

12-11 LINK Command

General Information on linking

The organization of run-time support into object and
shareable image libraries allows you the flexibility to
specify an image's run-time support several ways:

• All program images can share a single copy of
those routines that are shareable. Here, their
object modules are linked with RTLSHARE or
CRTLSHARE and RTL.

• All program images in the final system can use
their own local copies of all run-time routines. For
this purpose, each program's object modules are
linked with RTLOBJECT.OLB or
CRTLOBJECT.OLB and RTL.OLB. (RTLOBJECT
or CRTLOBJECT should be listed first, because it
refers to symbols defined in RTL.)

• A system can be built with both types of images;
tha t is, some program images will keep local copies
and some will share the same copies.

In most cases, it is preferable to link with RTLSHARE
or CRTLSHARE instead of with RTLOBJECT or
CRTLOBJECT. When a program image has references
to a shareable image, the System Builder ensures that
the necessary shareable images are built into the
system.

Because RTLSHARE.OLB and RTL.OLB are included
in virtually every linker operation, you will probably
find it convenient to define the following logical names:

$ DEF LNK$lIBRARY ELN$:RTLSHARE.OLB

$ DEF LNK$lIBRARY _1 ELN$: RTL.OLB

LNK$LIBRARY and LNK$LIBRARY _1 are default
libraries for the linker, so when these definitions are in

Program Development 12-12

effect, you need only specify the object module or
modules for your program, for example:

$ LIN K myobject

Qualifiers

Qualifiers are appended either to the LINK command
itself or to individual file specifications. Each qualifier
is preceded by a slash (I). The file qualifier LIBRARY or
INCLUDE must be appended to any file specification
for a library.

DEBUG. DEBUG causes the linker to copy the debugger
symbol table information, if any, from object modules to
the image. It must be specified for any program whose
object modules were compiled with debugging
information included. (See Chapter 15 for more
information about debugging.)

LIBRARY. LIBRARY means that the associated file is
either a shareable image library or object library and, if
the linker needs to resolve references from the
V AXELN object module(s) you supplied, it will be
searched for modules containing the necessary defini
tions. (Note that, in this discussion, the ~~modules"
referred to are either actual object modules from an
object library or shareable images from a shareable
image library.)

INCLUDE = (module-list). The use of INCLUDE implies
that the qualified file is a library even if the LIBRARY
qualifier is not used. The module (or image) names in
the list are separated by commas, and at least one must
be present. Used by itself, INCLUDE means that the
listed modules, and only those modules, are included in
the linker operation and searched for unresolved
symbols, such as routine names; this is a useful
optimization when you know exactly which modules
are needed by the program. If you specify LIBRARY

12-13 LINK Command

along with INCLUDE, the library's other modules are
searched for any references that remain unresolved
after examining the explicitly included ones.

SHAREABLE. The command qualifier SHAREABLE can
be used to create a shareable image (for inclusion in
your own shareable image library) instead of an
executable program image. Shareable image files, like
program image files, have the default type EXE, but
they are not executable; they are used only to link to
object modules. All shareable images, when specified
directly in the LINK argument list, must be in
shareable image libraries.

To operate on shareable image libraries, you use the
LIBRARY command's SHARE qualifier and the
shareable image files, instead of object files, as
librarian input. As with the images in
RTLSHARE.OLB or CRTLSHARE.OLB, the System
Builder will ensure that if a program refers to one of
your shareable images, that image will be included in
the finished system.

Notes

The command qualifier NOSYSSHR is recommended,
to prevent the linker from searching the VMS default
shareable image library for unresolved references;
strictly speaking, there should be no such reference in a
correct V AXELN program image.

Shareable images cannot be used as V AXELN Pascal
compiler input. This makes no difference in the case of
the RTLSHARE library, since its modules are for
predeclared routines. It does mean, however, that you
cannot create shareable images of your own routines
and use them as input for a separate Pascal
compilation.

Program Development 12-14

For more information on linker qualifiers and
capabilities, including shareable images and image
libraries, see the VAXNMS documentation or on-line
HELP for your V AXNMS system.

12-15 LINK Command

Program Development 12-16

Chapter 13

System Development

After you have developed the programs needed by a
V AXELN system, you create the system with the
System Builder, described here.

This chapter also describes the procedures for including
images supplied by DIGITAL (drivers and services),
and for booting the finished system image on a target
machine; that is, a VAX computer with no operating
system present.

If you select debugging options for its programs, the
system can also be debugged interactively, from the
target machine's console terminal or over the Ethernet
(see Chapter 15, t(Debugging").

EBUllD Command

The EBUILD command invokes the System Builder to
combine one or more program images into a boatable
system image.

Format

$ EBUILD qualifier-list data-file-specification

Note that optional items in this chapter are shown in
italics.

Qualifiers

The following qualifiers can be applied to the EBUILD
command; each is preceded by a slash (I).

13-1

BRIEF, NOBRIEF. These qualifiers, along with MAP, I

control the contents of the system map. A brief map
lists all the images included in the system, all devices
and terminals specified, and all the system
characteristics. For a description of a full map, see the
description of the FULL qualifier, below. (NOBRIEF is
the same as FULL.)

EDIT, NOEDIT. EDIT causes the System Builder to enter
an interactive screen-editing mode, compatible with
VT100- and VT200-series terminals. In EDIT mode, all
characteristics and programs of the system can be
altered interactively. NOEDIT causes the System
Builder to build a system image immediately, from the
current contents of the specified data file. EDIT is the
default.

FULL, NOFULL. These qualifiers, along with MAP,
control the contents of the system map. A full map lists
all the images in the system, including their program
descriptions, all devices with their device descriptions,
all terminal descriptions, and all the system
characteristics.

KERNEL = file-specification. KERNEL specifies the
name of an alternate kernel image as input. This
feature is used only for special applications in which
the kernel is being debugged. The default kernel image
included in the system is ELN$:KERNEL.EXE. Note
that a kernel image is always included implicitly and
does not need a program description.

LOG, NOLOG. These qualifiers specify whether or not
the System Builder displays the size of the finished
system image. The default is LOG.

MAP = file specification, NOMAP. These qualifiers
enable or inhibit the production of a system map
listing. NOMAP is the default. The file specification is

System Development 13-2

optional, and the specified file receives the listing. By
default, the listing has the same name as the data file
specification and type MAP. The contents of the map
are controlled by the BRIEF and FULL qualifiers,
which are mutually exclusive. BRIEF is the default.

Note: If you describe the same program more than once
in a system, the map shows the program name for
duplicate descriptions suffixed with a semicolon and a
number; this name is the one used in CREATEJOB
procedure calls or the debugger's CREATE JOB
command to distinguish one program's description from
another.

SYSTEM = file-specification. SYSTEM specifies a file to
which the system image is written. By default, the
System Builder creates a system image with the same
name as the data file and file type SYS.

File Specification

The data file is used by the System Builder to store
information entered or changed in EDIT mode. If the
file does not exist and EDIT is in effect, the System
Builder creates the specified file. If the file does exist
and you edit it in EDIT mode, the System Builder
crea tes a new version of the file incorporating your
edits. A new file, or a new version of an existing file, is
not made if you are not in EDIT mode, do not change
existing information, or leave the editing session with
the command QUIT.

If you do not specify a file type, EBUILD uses the
default file type D AT.

If you select Build System in EDIT mode, or if you use
NOEDIT, the System Builder creates a new system
image file (default type SYS) from the data file you
supplied or from the data file of the editing session.

13-3 EBUILD Command

System Builder Menus (EDIT Mode)

When you use EDIT mode, EBUILD displays a series of
menus on the screens of VT100- and VT200-series
terminals. With this interface, you can tell the utility
what programs, devices, system characteristics, net
work node characteristics, terminal characteristics,
and console characteristics you want.

We suggest that to guide your reading, you invoke
EBUILD now, with the name of a nonexistent file, for
example:

$ EBUILD sample

Note: To ensure that V AXNMS has the correct
characteristics for your terminal, type the following
command before using EBUILD:

$ SET TERMINAUINQUIRE

Main Menu

The main menu is displayed when you invoke the
EBUILD command unless you use the NOEDIT
qualifier. The menu items allow you to build a system
from the current data-file information, edit the
characteristics of the entire system and the network
node, add or edit descriptions of programs, devices, and
terminals, and edit console characteristics.

The menu header shows the name of the system (the
data or system file name) that you're working on.

The legends DO, HELP, QUIT, and EXIT correspond to
the terminal keys PFl, PF2, PF3, and PF4, respective
ly. (In any menu, these legends define current actions of
those keys, if any.)

System Development 13-4

The Main menu looks like this:

Build System

Ed it System Characteristics

Ed it Network Node Characteristics

Edit Program Descriptions

Add Program Description

Ed it Device Descriptions

Add Device Description

Edit Terminal Descriptions

The arrow keys (t, i, +-,~) are used on all menus to
select menu entries or, in some cases, options within
entries. (Some menu entries are filled in just by typing
words.) The currently selected entry is highlighted on
the screen. (With VT100 terminals, the highlighting is
not seen unless the terminal has the Advanced Video
Option.)

The diamond symbol appears at the top, bottom, or edge
of a menu to show that there is additional text off the
screen; you can ((scroll" with the arrow keys to show the
information. You can also use the CTRL/E and CTRL/H
keys to move around in an argument list; CTRL/E
moves to the end of the list and CTRL/H (or Back Space)
moves to the beginning. CTRL/R refreshes the screen at
any time; for example, to remove broadcast notices from

13-5 System Builder Menus

the display. CTRL/U deletes text from the cursor back
to the beginning of the current line.

DO activates the currently selected entry (for example,
incorporating edits you have made with the Edit
Program Descriptions entry). QUIT aborts the System
Builder without altering the input file (it requires
confirmation with DO). EXIT ends the System Builder
session but incorporates your changes. If you activate
Build System, the System Builder creates the new
system image file (type SYS) and exits. If DO is pressed
and an integer menu entry is not in its allowable range,
you are given a chance to change it to a valid value.

HELP supplies brief descriptions of the menu entries or
the general System Builder interface, depending on
your current context.

Program Descriptions

If you are running EBUILD, select the entry Add
Program Description on the main menu and press DO
(PFl), to guide your reading.

Each image in the system (except the kernel and the
shareable run-time library images) has a program
description, which you can add or edit by selecting the
main menu entries. (As a shortcut, when there are no
program descriptions yet in the system, Edit Program
Descriptions displays an empty menu; DO will then
switch you to Add Program Description, so you don't
have to return to the main menu first.)

Some program descriptions are added for you
automatically by the System Builder. For example, if
you select the File access listener entry on the Edit
Network Node Characteristics menu, the File Access
Listener's image and program description are added

System Development 13-6

au toma tic ally . So are most device drivers, as described
later in ttDevice Descriptions."

The Program Description menu looks like this:

Program

Debug

Run

Init required

Mode

User stack (initial)

Kernel stack

Job priority

Yes

Yes

Yes

User

1

1

16

No
No

No
Kernel

pages

pages

The default settings for program descriptions are
highlighted on the screen. The defaults have been
chosen as good starting points for most values, and it is
advisable to use them before changing them.

The first entry on the menu is the name of the program
image you are describing. For example, if the image file
is named MYDRIVER.EXE, MYDRIVER is the name
you supply. You can describe the same image any
number of times if you want the system to associate
different characteristics with different jobs running
that program. For example, you might want to include
more than one description of a program and be able to
debug one of them but not the others.

13-7 System Builder Menus

To include several descriptions, you use the same image
name in each, and the actual image is loaded only once.
The different descriptions, however, apply to the
different jobs created to run the images.

To distinguish one description from others, the System
Builder's map file shows the program name for
duplicate descriptions suffixed with ~~;n" where n is an
integer and 1 means the first duplicate description.
This name, with the suffix, is used as the program
name argument in the CREATEJOB procedure and in
the debugger's CREATE JOB command.

Program descriptions, in addition to the image name,
consist of the following information. If you press the DO
key, the description entered in the system file is what
you have specified or what is supplied (and displayed)
by default; if you press BACK, you are returned to the
previous menu, and your edits are not incorporated.

Debug. If you select Yes, any job that runs this program
gives control to the debugger instead of executing
immediately. (See Chapter 15 for more details about
debugging.) The default is No.

Run. Yes means that a job running the program image
is started automatically when the system itself is
started. Yes is the default.

Init required. If you say that initialization is required,
it means that the program is run automatically and
will run to completion before any other program starts
unless it calls the INITIALIZATION_DONE procedure.
If several programs have this property, they are started
in order of job priority. (The System Builder assures,
however, that debuggers and device drivers are started
in the necessary order.) The default is No.

Mode. The processor mode in which a program runs is
either User or Kernel. Kernel mode is required for

System Development 13-8

device drivers (programs calling CREATE-DEVICE),
programs using the ALLOCATE_MAP, MFPR, MTPR,
and FREE-MAP routines. User mode, the default, is
recommended unless a program definitely requires
kernel mode.

User stack (initial). The user stack is used for user-mode
calls to your own procedures and most predeclared
procedures. It is extended automatically as needed
during the execution of ajob. Any stack size you specify
is thus the initial size; the default is 1 page. The
specified size must be in the range 1-32,767 pages.

Kernel stack. The kernel stack is used by all programs
for kernel procedure calls, and by kernel-mode
programs for all execution. The kernel stack is not
automatically extended. If the program attempts to use
too much kernel stack, the process receives an
exception. Most kernel mode programs require a larger
kernel stack than the default 1 page. The specified size
must be in the range 1-32,767 pages.

Job priority. Note that 0 is the highest priority, and 31
is the lowest. For your own programs, you might want
to run for awhile with the default priority (16), until
you get an idea about the system's overall performance.

Process priority. This is the initial priority of the
master process and any subprocesses it creates. Here, 0
is the highest priority, the lowest priority is 15, and the
default is 8. In nearly every case, you should use the
default value initially.

Job port message limit. This is the maximum number
of messages that can reside in the job port (that is,
before being removed by the RECEIVE procedure) at
one time. The specified number must be in the range
0-16,384; the maximum value is also the default.

13-9 System Builder Menus

Powerfailure exception. If you select Yes, the program
receives an exception (KER$_POWER-SIGNAL) when
the processor restarts after a power failure. Programs
should get this exception only if they have established
an exception handler for it; such a handler allows you to
take general, system-wide action when power has
failed, resetting the system time perhaps. Device
drivers generally need to handle power recovery in a
special way, with interrupt service routines; this use of
interrupt service routines is not affected by this
program description choice. The default is No.

Argument(s). Program arguments are strings and, if
they have embedded spaces, must be enclosed in quota
tion marks (","); note: not apostrophes (','). Multiple
arguments are separated by commas. Naturally, the
requirement for and meaning of program arguments
depends on the program. Device driver programs
generally take arguments to supply names for the
devices they are to control. The most frequent use of
program arguments in your programs will probably be
to supply file specifications to a Pascal program, to go
along with program parameters declared as files.

The argument display scrolls to the left if you enter
more arguments than will fit on the screen; you can
scroll back and forth with the left- and right-arrow keys
(~, ~). You can also use the CTRL/E and CTRLIH keys
to move around in the argument list; CTRLIE moves to
the end of the list and CTRL/H (or Back Space) moves to
the beginning. CTRL/R refreshes the screen at any time
(for example, to remove broadcast notices from the
display), and CTRL/U deletes text from the cursor back
to the beginning of the current line.

System Development 13-10

Device Descriptions

Device descriptions consist of a device name, register
address, vector address, and interrupt (bus-request)
priority, and in most cases, cause the associated device
driver to be built into the system automatically. Each
description specifies a single device that is part of the
target machine's hardware configuration.

The Device Description menu looks like this:

Name

Register address

Vector address

I nterru pt priority

Autoload driver

%0000000

%0000

5

Yes No

No device description is necessary for the target
machine's console terminal or Ethernet adapter; these
descriptions are provided for you when you select the
corresponding entries on the Edit System Characteris
tics menu. (See Chapter 14, ~~Booting and Down-Line
Loading," for the default Ethernet adapter addresses
assumed by the down-line bootstrap loader.)

13-11 System Builder Menus

The control/status register addresses, interrupt vector
addresses, and priorities for bus devices are specified
exactly as described in a device's hardware manual. For
devices supported by DIGITAL-supplied drivers, see
Table 13-1. (The device names suggested in Table 13-1
are the conventional names for the first device
controller of the specified type and cause the appropri
ate driver to be loaded, as explained below.)

In cases where more than one device controller is
permitted on the same backplane (such as the DZV11
multiplexer in MicroVAX systems), the addresses
shown in Table 13-1 are for the first such controller. For
further information about additional controllers, see
the hardware manual for the device or, for MicroVAX
devices, the MicroVAX I Owner's Manual.

Devices with multiple interrupt vectors require only
one device description; the other vectors are obtained
with arguments of the procedure CREATE-DEVICE.

Name. The name describes a device controller. It is used
in programs as an argument to the CREATE_DEVICE
procedure and, usually, as a program argument to the
corresponding driver program. For example, if a
terminal controller is named TTA, its driver program is
gi ven the argument tTT A'. The driver program uses
this name as a CREATE_DEVICE argument. For
terminals, individual lines are described by terminal
descriptions and named with the controller name and a
line number (for example, TTA1); see the discussion of
terminal descriptions later in this chapter.

System Development 13-12

Table 13-1. Device Information

Device Register Vector Priority Name Remarks
Address Address

VAX-111730 %0775606 %0250 5 DQA RB02 disk cartridges are the
integrated controller same as RL02 cartridges.
(RB02/RB80 disk)

'---

TU 58 console %0360 4 DDA Leave the register address blank, since this
tape (VAX-111730 device is controlled by internal processor
or VAX-111750) registers.

UDA50 adapter %0772150 %0154 5 DUA Typical devices are the RA80, RA81, and
(V AX-111730 RA60 disks.
or VAX-111750)

DMF -32 devices %0760340 %0320 5 LCA, The same addresses must be specified for
(VAX-111730 TXA every device on the same DMF-32. LC is the
or VAX-111750 conventional name for the printer controller,
line printer, and TX is for terminals.
terminals, DR11C
parallel 110)

DZVll %0760100 %0300 4 TTA Modems are not supported by DZVDRIVER.
(MicroVAX (Note that the DZVl1 is shipped with a
multiplexer) register address of%0760010, which must be

changed to %0760100 for a MicroVax.}
DHV11 %0760440 %0300 4 TTA Modems are supported on all eight lines.
(MicroVAX
multiplexer)

LPV11 %0777514 %0200 4 LPA
(MicroVAX
line printer
controller)

RQDX %0772150 %0154 4 DUA The RQDX1 controller supports both RX50
(MicroVAX diskettes and RD511RD52 Winchester disks.
disk controller)

13-13 System Builder Menus

Table 13-1. Device Informatio

Device Register Vector Priority Name
Address Address

RC25 %0772150 %0154 4 DUA
(VAX-111725)

TK50 %0774500 %0260 5 MUA
cartridge tape
system

TU81 %0774500 %0260 5 MUA
reel tape
system

AXV11-C %0170400 %0400 4 AXV
analog input'
output board

KWV11-C %0170420 %0440 4 KWV
programmable
real-time clock

DLVJ1 %0176500 %0300 4 DLV
asynchronous
serial interface

DRV11-J %0764160 %0340 4 DRV
high-density
parallel
interface

System Development 13-14

Note that the device name must be used consistently in
various contexts: here, in CREATE_DEVICE calls, in
o PEN calls, and so on; however, the actual choice of a
device name is entirely up to you. In the V AXELN
documentation, the conventional names for devices are
used, such as (DQA1' for a disk controlled by the
V AX-11/730 Integrated Disk Controller. Any name for
this or any other device is perfectly all right, as long as
it is used consistently. (See also the discussion below
about the effect the device name has on automatic
device driver loading.)

Register address. This entry gives the physical, 18-bit
address of the device's first device control register (18-
bit values are used for QBUS devices as well). A driver
program can then obtain the address with an output
argument of CREATE-DEVICE. Valid values range
from %0000000 (the default) to %0777777 and can be
specified in decimal, octal (%0), or hexadecimal (%x).
For the correct value, see the device's hardware manual
or Table 13-1.

Vector address. This is the address of the device's first
interrupt vector. A driver program can then obtain the
address (and the others, for multiple-vector devices)
with an output argument of CREATE-DEVICE. Valid
values range from %0000 (the default) to %0776. For
UNIBUS and Q22 bus devices, this is the vector that
the device asserts on the bus when its interrupt request
is acknowledged. It is actually used by the VAX
processor as an index into the second page of the
System Control Block (SCB). The SCB vector is not
actually filled in until CREATE-DEVICE is called. For
the correct value, see the device's hardware manual or
Table 13-l.

Interrupt priority. This value is the device's bus-request
priority, from 4 to 7; the default is 5. These values

13-15 System Builder Menus

correspond to the VAX interrupt priority levels 14 (hex)
to 17 (hex), respectively. The resulting interrupt prior
ity level can then be obtained with an output argument
of CREATE_DEVICE. For the correct value, see the
device's hardware manual or Table 13-1.

Autoload driver. If you select Yes (the default), the
appropriate device driver image is included in the
system automatically:

1. The current list of program descriptions is
searched for a program that has the Kernel and
I nit req uired characteristics and that has at least
one program argument matching the device name.
This method may be preferable while you are
developing a new device driver, so you can give it
the Debug characteristic.

2. Otherwise, if one exists, a driver is obtained from
ELN$:ccDRIVER.EXE, where cc is the first two
characters in the device name. The name specified
by the device description is passed to the driver as
a program argument. In this case, a program
description is also provided for you: Automatically
loaded drivers are given high job priorities (such as
four), a kernel stack of four pages, the Kernel and
Init required characteristics, and other appropriate
program characteristics. (Use the MAP command
qualifier to examine the results.) This is the
easiest way to include drivers, including ones you
wri te yourself.

Notes: The selection and loading of terminal drivers
other than the Console Driver is con trolled by the
Terminal type entry on the Terminal Description
menus; it is, however, necessary to supply a device
description for the terminal controller itself, such as the
DMF -32 asynchronous controller. You then use the
controller's device name with an appended digit as a

System Development 13-16

Terminal name on the Terminal Description menus, to
designate the characteristics of the particular terminal
a ttached to that line.

When autoloading any terminal driver, at least one
terminal name must be specified on the Terminal
Description menu for each terminal controller.

You may want to load a line printer driver with an
explicit program description; doing so allows you to
specify, as a second program argument, a universal
name, so that the printer can be accessed from remote
nodes.

System Characteristics

System characteristics are overall properties of the
system. The System Characteristics menu looks like
this:

System image

Debug

Console

Instruction emulation

Boot method

Disk/volume names

Guaranteed image list

SAMPLE

Local

Yes

String

Disk

Page table slots 64

Remote Both None

No

Float Both None

ROM Downline

13-17 System Builder Menus

System image. This is the name of the (output) system
image file. The default name you see on the
characteristic menu is either the name of your data file
(which will be suffixed with type SYS to form the
output file specification) or the name you supplied in
the SYSTEM qualifier on the EBUILD command.

Debug. Here (as opposed to program descriptions), the
options specify which debuggers are built into the
system, if any. Local debugging means that the
debugger image EDEBUGLCL is included; Remote
designates the remote debugger (EDEBUGREM), for
use with the EDEBUG utility; this is the default. If you
select Both, both are included. In this case,
EDEBUGREM will be the primary means of debug
ging; EDEBUGLCL will get control only in the event of
a system error. (For more informa tion on the
debuggers, see Chapter 15).

Note: You may want to include a debugger during the
development of a system, even if no program has the
Debug option; the debugger will get control in the event
of exceptions that are not handled by any program.

Console. Selecting Yes (the default) means that a
Console Driver and the device description for the
console terminal are included automatically, to allow
communication with the console terminal on the target
machine. The driver and device description are
included implicitly if the Debug option is Local or Both.
The name for the system's console terminal (for use in
the OPEN procedure, for example) is ~CONSOLE:'. If
you select No with the debugging option Remote, the
remote VAXNMS terminal behaves as the console
terminal.

System Development 13-18

Instruction emulation. This entry selects emulation
software for instructions present in the ~~full" VAX
architecture but not included in the MicroVAX
architecture. Select None unless you are building a
system for a Micro V AX I target machine. Selecting
Float includes emulation software for the extended
precision floating-point instructions. Selecting String
(the default) includes emulation for the other
instructions in the subset. Selecting Both includes
emulation for both groups.

Note that you can choose the double-precision format in
V AXELN Pascal and C programs by using the compiler
qualifier [NO]G_FLOATING, and you can choose the
default double-precision format of the run-time library
with the command procedures DFLOATRTL.COM and
GFLOATRTL.COM. This way, you can ensure that
only the microcoded floating-point instructions are
generated and can omit the floating-point emulation
software, which is decidedly slower.

Boot method. This selects the method by which the
finished system will be booted on the target machine.
Systems can be loaded and booted from Disk, from read
only memory (ROM), or Downline (the default). If you
say a system with the Network Service will be booted
from disk or ROM, but have not specified a node
address, a warning message is issued. This
characteristic specifies the type of image header used in
the system:

Disk No header

ROM Mi'cro V AX RO M header

Downline V AXNMS image header

13-19 System Builder Menus

Disk/volu me names. These supply device specifications
and volume names for disks present on the target
machine, in the following format:

"d evice-specificationovolu me-name"

where 0 is a space.

For example:

"DQA 1 TEST1"

Programs then can refer to a volume by prefixing the
gi ven name with DISK$. For example, in Pascal:

OPEN(file 1 ,FILE-NAME: =
'DISK$TEST1: [rt.src]rxdriver.pas')

Multiple quoted arguments are separated by commas;
the first such specification identifies the default disk
volume. The File Service will automatically mount the
indicated volumes when the system is bootstrapped.
The volume name is optional; if it is omitted, the File
Service will attempt to mount whichever disk is present
in the indicated drive.

Guaranteed image list. This is a list of shareable
images, separated by commas, that are referenced by
programs loaded by the dynamic program loader.
Shareable images that are referenced by programs in
the system are automatically included.

Page table slots. This is the maximum number of page
tables that the system can use at one time. Each job
requires two process page tables (one for mapping the
PO region and one for the PI region). Each additional
subprocess in the job requires one more, for mapping its
PI region. The default value, 64, thus accommodates a
system with 32 simultaneous jobs, if they do no
multitasking, and so forth. The minimum number of
slots is 2; the maximum is 32,767.

System Development 13-20

Ports. This is the maximum number of message ports
the system can use at one time. The minimum number
of ports is 2; the maximum is 32,767. The default is 256.

Pool size. This specifies the approximate number of
system objects that can be in simultaneous use. One
~~block" (the units of the menu) is needed for each
system object in use, processes require a total of three,
and a few additional blocks are needed for each job.
Essentially, you can use one block per system object
pI us 3 times the number of jobs and processes in
simultaneous use. Pool blocks themselves are 128 bytes
in size. The number specified must be in the range
16-32,764; the default is 384 blocks.

Virtual size. This is the maximum size, in 512-byte
pages, of each PO and PI region in the system. The
value is used by the kernel to allocate process page
tables for each job and process. By default, then, each
job can use 0.5 million bytes of virtual memory for its
PO region and an equal amount for each process's PI
region. The size must be in the range 128-32,640 pages;
the default is 1,024 pages.

Interrupt stack. This is the maximum number of pages
required for the system interrupt stack. It must not be
lower than the default, 2 pages. The size must be in the
range 2-8,192 pages.

I/O region size. This specifies the maximum number of
pages required by all interrupt service communication
regions. The value is used by the kernel to allocate
system page table entries during the start-up of the
system. The value must be in the range 0-32,767; the
default is 128 pages.

13-21 System Builder Menus

Dynamic program space. This is the number of memory
pages that can be allocated for dynamically loading
programs into the running system. Note that the pages
are not actually allocated until needed. The value must
be in the range 0-32,767; the default is ° pages.

Time interval. This is the interval, in microseconds,
between interval timer interrupts. The specified value
is the minimum time that can be used for time
dependent operations. Each interrupt increments the
system time and starts time-dependent scheduling in
the system. The value must be in the range
1-120,000,000 microseconds (2 minutes). Note that, on
some processors (including the Micro V AX), the default
of 10,000 microseconds cannot be altered.

Connect time. This is the time, in seconds, that is
allowed to elapse before a circuit connection must be
accepted. The value must be in the range 1-3,599
seconds (59 minutes, 59 seconds); the default is 45
seconds.

Memory limit. This specifies the maximum amount of
physical memory, in pages, that is available for use by
the system. The default limit of ° means the system
should use all the memory available on the target
configura tion. A limit only needs to be specified in
special applications; for example, for a system that
contains a multi-ported memory. The minimum is 0 (or
no limit); the maximum is 65,535 pages.

Network Node Characteristics

The items on this menu define the network node
characteristics for the Network Service and the
Authorizatio~ Service.

System Development 13-22

The Network Node Characteristics menu looks like this:

Network service Yes No

Name server Yes No

File access listener Yes No

Network device UNA QNA Other

Node name

Node add ress 0

Authorization requ ired Yes No

Authorization service Local Network None

Network service. Selecting Yes (the default) includes
the Network Service automatically. (For general
information on setting up a network, see Chapter 7,
~~The Network Service.")

Name server. Selecting Yes (the default) means that
the N etwor k Service running on this machine can
~(volunteer" to be the name service in network
applications. In such applications, at least one system
(and usually more) should have this characteristic, to
ensure the integrity of universal names in case one or
more processors shut down. The Network service entry
must also be selected.

13-23 System Builder Menus

File access listener. Selecting Yes (the default) includes
the File Access Listener automatically. Briefly, the File
Access Listener allows access to files on this node from
a remote node, using a device name or a null volume
name. An informational message is issued by EBUILD
if you include the File Access Listener without also
selecting Network service.

Network device. This selects the type of interface that
connects a V AXELN machine to the Ethernet, in
network applications. UNA is the Digital UNIBUS-to
Ethernet adapter (DEUNA). QNA specifies the QBUS
to-Ethernet adapter (DEQNA) and is the default. The
necessary device driver program (for example,
XEDRIVER) and device description are included
automatically if you also specify Network service.

Node name. This is the node name by which a
V AXELN node is identified in a network. It has a
maximum of six characters and must be unique in the
network. You do not have to specify the node name if
the system will be loaded down line from your
development system. (For more information about
adding node names to a network and down-line loading,
see Chapter 14, ~~Booting and Down-Line Loading.")

Node address. This is the address for a V AXELN node
in a network. You do not have to specify it if the system
will be loaded down line. The address has one of three
forms:

nnn DECnet node number

aaa.nnn DECnet area and node number

nn-nn-nn-nn-nn-nn 48-bit Ethernet address

where a and n are digits. The default address is O. (For
more information about node addresses and node
numbers, see Chapter 14.)

System Development 13-24

Authorization required. Selecting Yes means that the
Network Service will not allow inbound circuit
connections unless it can authorize the user via
communication with the Authorization Service. When
set to No (the default), the Network Service will not
authorize inbound connections via the Authorization
Service.

Authorization service. This specifies whether an
Au thoriza tion Server should be included in the system
and if so, whether the service should serve only the
local node (Local) or the entire local area network
(Network). Some nodes can have local services of their
own, but there should be only one network
Authorization Server. The default is None. (For general
information on system security, see Chapter 8, ~~The
Authorization Service.")

Authorization file. This specifies the name of the data
file that the Authorization Service should use. The data
file must exist either on the same node as the
Authorization Service, or on a node that the service is
authorized to access (for example, one with its own local
service). The default file is AUTHORIZE.DAT.

Default UIC. This specifies the default user
identification code (DIC) for users not explicitly
authorized. The default is [1,1].

Node triggerable. This specifies whether down-line
load triggers are enabled. Selecting Yes (the default)
means that the system will allow itself to be remotely
triggered; this should be the setting during
development, so that developers can remotely load the
system.

Network segment size. This is the size, in bytes, of the
largest segment that will be sent over the network.
Note that this maximum applies to any intermediate

13-25 System Builder Menus

routing nodes between the source and destination of a
message. The segment size includes a 32-byte header
prefixed to remote datagrams by the Network Service;
consequently, the largest message data buffer that can
be sent to a remote node as a datagram has a byte size
of the segment size minus 32. The number must be in
the range 192-1,470; the default is 576 bytes.

Terminal Descriptions

Each terminal description supplies information about a
terminal connected to an asynchronous serial controller
line. Be sure to include a device description for the
asynchronous controller (for example, the DMF -32 or
DZV11). The console terminal is described on a
separate menu, Edit Console Characteristics.

The Terminal Description menu looks like this:

Terminal

Terminal type DMF

Speed 9600

Parity Yes

Parity type Odd

Display type Scope

Escape recognition Yes

Echo Yes

System Development 13-26

DZ DH

No
Even

Hardcopy

No

No

Terminal. The terminal is designated by the controller
device name suffixed with a unit number; for example,
TT AO is the first line on controller TTA.

Terminal type. This specifies the type of controller used
for terminals. D MF means the asynchronous lines on a
DMF-32 controller. DZ (the default) designates the
DZVll interface and DH, the DHVll interface, for the
MicroVAX. Note that this designation is used only to
select and load the terminal driver for the controller
type; it is the terminal name (for instance, TT AI) that
designates a terminal in programs.

Speed. This is the baud rate that applies to the
individual line and specifies the speed for both input
and output. Possible values are:

50 134 600 2000
75 150 1200 2400

110 300 1800 3600

The default baud rate is 9600.

4800
7200
9600

19200
38400

Parity. Selecting Yes enables parity checking on this
line. The default is No.

Pa rity type. The choices Odd and Even specify the
parity type, or ((sense," if parity checking is enabled.
The default is Even.

Display type. Scope means that the attached terminal
is a cathode ray tube (CRT) terminal, such as a VT100
or VT200. Hardcopy means that the attached terminal
is a hard-copy terminal; that is, a terminal that prints
on paper rather than displaying on a screen. The
default is Scope. This setting is ignored on a DnCMP
specified line.

13-27 System Builder Menus

Escape recognition. Yes (the default) means that, on
input, the terminal driver program checks the format of
escape sequences to see whether they conform to ANSI
format. This setting is ignored on a DDCMP specified
line.

Echo. Yes (the default) means that input characters are
echoed on the terminal. This setting is ignored on a
DDCMP specified line.

Pass all. Yes means that all control characters are
passed to the user's program as ordinary input, instead
of being interpreted by the driver program. The default
is No. This setting is ignored on a DDCMP specified
line.

Eight-bit. Yes means that the attached terminal uses
eight-bit ASCII characters. The default is No. This
setting is ignored on a DDCMP specified line.

Modem. Yes means that a modem is attached to this
line. Modems are supported only on the DRV11 and
DMF-32 controllers. The default is No.

DDCMP. This - specifies whether the terminal line
should use the DIGITAL Data Communications
Message Protocol (DDCMP) for asynchronous DECnet
communication with another system. Yes means that
the line behaves as a point-to-point full-duplex DDCMP
link. No (the default) means that it is a regular
terminal line .

Console Characteristics

The items on this menu have the same meanings as for
terminal descriptions, but the settings apply only to the
console terminal on the target machine.

System Development 13-28

The Console Characteristics menu looks like this:

Display type

Escape recognition

Echo

Pass all

Scope Hardcopy

Yes No

Yes No

Yes No

Display type. Scope means that the attached terminal
is a CRT terminal; Hardcopy means that it is a hard
copy terminal. The default is Hardcopy.

Escape recognition. Yes (the default) means that, on
input, the terminal driver program checks the format of
escape sequences to see whether they conform to ANSI
format.

Echo. Yes (the default) means that input characters are
echoed on the terminal.

Pass all. Yes means that all control characters are
passed to the user's program as ordinary input, instead
of being interpreted by the driver program. The default
is No.

13-29 System Builder Menus

System Development 13-30

Chapter 14

Booting and Dovvn-Line Loading

The system image prepared by the System Builder (file
type SYS) is ready to be booted on a target machine.

One such file (ICP .SYS) is created by the V AXELN
installation procedure (described in the VAXELN
Installation Manual) and should be booted once to
ensure that the VAXELN installation was successful.
This or any other system image can be written onto a
Files-II disk or other medium, carried to the target
machine, and booted, following the instructions in the
first part of this chapter.

If your host and target machines are connected by the
Ethernet, you can use the information in the second
part of this chapter for down-line loading and booting.

Booting Systems from Disks

This section shows the procedure for booting ICP .SYS,
which adapts to booting any system of your own. It
involves copying the system image to a Files-II volume
with the copying procedure that follows, transferring
the finished volume to the target machine, and booting
from it.

Note: System images using the following procedure
must be built with the EBUILD system characteristic
Boot method set to Disk. (See Chapter 13, ~~System
Development," for more information on the System
Builder and the EBUILD command.)

14-1

The COPYSVS Command Procedure

The copying procedure is the command procedure
COPYSYS.COM, placed by the V AXELN installation
procedure in ELN$. COPYSYS initializes, loads, and
makes bootable a Files-II disk or TU58 cartridge. Use
it as follows to prepare a bootable copy of ICP.SYS on a
TU 58 cartridge in the console TU 58 drive of your
VAX-1I/750 host development system:

$ @ELN$:copysys

System image file: ELN$:icp

Output disk: csa1

Initialize the disk? (YIN) [N]: y

$

If you receive the error message ~~No such device" after
entering the information specified above, the console
device is not connected. In this case, have your system
manager connect it with the command:

$ MCR SYSGEN CONNECT CONSOLE

You have now created a TU58 cartridge containing a
V AXELN system image (ICP.SYS). You must answer
~~Y" to the initialization question the first time you use
the cartridge for this purpose; if you reuse it for another
VAXELN system, you can say ~~N" (the default is ~~N").

You can also enter the entire command on one line:

$ @ELN$:copysys ELN$:icp csa1

Here, the default ~~no initialization" is chosen.

The TU58 cartridge containing ICP.SYS can be
transferred to an 11/750 target machine and booted
with the following console boot command:

»>8000

Booting Systems 14-2

The system responds by displaying the following:

%%

VAXELN V2.00

SUCCESSFUL COMPLETION OF ICP

For an 11/730, the console boot command takes the
name of the device to boot; for example:

»>80Q1

Here, presumably, DQ1 contains an RL02 cartridge
that you have prepared with COPYSYS.COM.

For a TU58 cartridge in the external 11/730 drive, the
console command is:

»>8000

The command for booting from an RX50 diskette
(DUAl) in the first floppy disk drive on a MicroVAX is:

»>80UA1

Note that the execution of ICP.SYS takes
approximately 5 minutes to complete.

Down-Line Loading

This section gives the procedure and preparatory steps
for using the Ethernet, instead of portable disks or
other media, to load systems onto target machines.

During the debugging cycle, you can load machines
with the network, as mentioned here and in Chapter
15, ((Debugging."

14-3 Down-Line Loading

Down-line loading of a V AXELN system uses a down
line load bootstrap loader, residing on the target
machine, and the DECnet network facilities on the host
development system. These two software components
use the network communication hardware to copy a
V AXELN system image file from the host development
system to the main memory of the target machine.
Once the V AXELN system is in the target memory, it
gets control of the processor and begins execution.

The VAXELN system need not contain the Network
Service to be loaded down-line. The Network Service
must, however, be included to allow network
communication between the V AXELN system and
other systems on the same network. (For more
information, see Chapter 7, ((The Network Service").

Preliminary Steps

There are a number of preliminary steps necessary to
set up your host and target machines before down -line
loading:

1. Install communication hardware on the host and
target machines.

2. Install and configure DECnet-VAX software on
the host system.

3. Test communication between the host and target
machines.

4. Add the target machine's description to the host
system's network node data base.

5. Configure or install the down -line load bootstrap
loader on the target machine.

Before continuing with the set-up procedures, we
recommend that you become familiar with the Network
Control Program (NCP). This utility is the principal

Booting Systems 14-4

tool used to control the network software and hardware
and is described fully in the DECnet-V AX System
Manager's Guide.

The following sections describe in more detail some of
these requirements.

Installing Communication Hardware on the Target
Machine

The communication hardware should be installed at
the default 1/0 bus address on the target processor.
Table 14-1 lists the address assumed by the down-line
load bootstrap loader for each particular hardware
device.

Table 14-1. Datalink Device Default Addresses

Device Add ress (Octal)

DEUNA 774510

DEQNA 774440

Configuring a Host for Down-Line Loading

The following commands must be issued to configure
your VAXNMS host for down-line loading, to enable
the host's recognition of boot-request messages from the
target system:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE LINE UNA-O SERVICE ENABLED
NCP> DEFINE CIRCUIT UNA-O SERVICE ENABLED
NCP> SET LINE UNA-O STATE OFF
NCP> SET LINE UNA-O ALL
NCP> SET CIRCUIT UNA-O STATE OFF
NCP> SET CIRCUIT UNA-O ALL

14-5 Down-Line Loading

Adding the Target Machine to the Host Node Data
Base

The target V AXELN machine needs to be described in
the host system's network node data base. To enter the
machine in the data base, use the NCP utility to store
the target machine's node address, node name,
Ethernet hardware address, and host load device name.
This information is typically stored in the permanent
data base using the DEFINE command. For example
(for a node named ((FRED"):

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE NODE FRED ADDRESS 5 SERVICE
-CIRCUIT UNA-O
NCP> DEFINE NODE FRED HARDWARE -
-ADDRESS AA-OO-03-00-00-E1

The node address and name may have already been
specified when your network was installed, but always
be sure each node in your network has a unique address
and name. The service circuit is the name of the host
system's hardware device controller, connecting the
host system to the target machine.

The hardware address is required for down-line loading
via the Ethernet and is the Ethernet address contained
in read-only memory on the target machine's Ethernet
hardware controller. This address is normally printed
on the controller board, but if it is not, contact your field
service representative, who can provide the address by
running the controller's diagnostic package.

Once the target machine has been added to the host
system's permanent data base, the information should
be copied to the current ((volatile" data base using the
SET command. For example:

NCP> SET NODE FRED ALL

Booting Systems 14-6

After the DEFINE and SET ALL commands have been
used, the target machine's description will remain
permanently in both data bases, including across
rebootstraps of the host system.

Note that the DEFINE command requires a system
user identification code (DIC) or SYSPRV privilege,
and the SET command requires OPER privilege.

Note: The commands described above are valid for a
VMS system. The commands to configure a Micro VMS
system are the same, except that the service line and
the service circuit are QNA-O instead ofDNA-O.

Configu ring the Bootstrap Loader

The down-line load bootstrap loader must be either
configured or installed on the target machine.
VAX-11/730 and VAX-11/750-family processors use
the console storage medium (TU58) to store the
bootstrap loaders. On the Micro V AX processors, the
down-line loader is contained in the boot ROM.

To install the down-line load bootstrap loader on a
TU58 console tape, use the V AXELN NEWBOOT com
mand procedure. This procedure copies the bootstrap
image file and, for VAX-11/730s, a bootstrap command
procedure, to the console medium. This command
procedure prompts for the bootstrap load device
(XE == DEUNA), the device containing the console
medium on which the loader is to be installed, and the
processor type of the target machine. For example:

$ SET DEFAULT ELN$
$@NEWBOOT
Bootstrap device [XE]:
Console media device [(SA 1]:
Processor type [730]:
Set default bootstrap? (YIN) [Y]:

14-7 Down-Line Loading

The command procedure copies the loader file(s) to the
console medium, and the loader installation is
complete.

Note that writing to the console storage device requires
that the storage device's driver be loaded, an operation
that requires CMKRNL privilege. We recommend that
you use the NEWBOOT procedure from the fully
privileged system manager account.

Since the MicroVAX down-line loader is contained in
its boot ROM, there is, strictly speaking, no
configuration necessary. However, it may be useful to
set the MicroVAX I CPU's configuration DIP switches
to skip disk booting, enabling unattended down-line
loading of the target machine. (See the system
configuration section of the Micro VAX I Owner's
Manual for details.)

Down-Line Loading Procedure

To load a target machine down-line, the V AXELN
system image file must be available to the network
software on the host development system, and the
down-line load bootstrap loader must be running on the
target machine.

When you build the system with the System Builder, be
sure to specify Downline as the Boot method entry of the
Edit System Characteristics menu.

The V AXELN system image file is made known to the
network software by storing its file name in the host
system's network node data base using NCP. For
example:

NCP> SET NODE FRED LOAD FILE -
-DISK$WORK: [ROBOT]TEST. SYS

Booting Systems 14-8

The same operation can be performed by EDEBUG as
follows:

$ EDEBUG/lOAD = DISK$WORK: [ROBOnTEST.SYS -
-FRED

The down-line load bootstrap loader can be started
using the console boot command C~B") on the target
machine. For example, to start the DEUNA loader on
an 11/730 enter:

»> BXEO

For an 11/750 enter:

»> BCSAO

For a Micro V AX enter:

»> BXQAO

When the loader starts, it sends a load request message
to the host system. In response to the load request, the
networ k software on the host system crea tes a
Maintenance Operation Monitor (MOM) process which
reads the specified V AXE LN system image file and
sends it to the target bootstrap loader.

When a machine is loaded down line (in contrast to
being bootstrapped from a disk or read-only memory) it
is not necessary to set the node name or node address
with the System Builder; as part of the load procedure,
the target machine receives its proper node name and
address. This also means that if you have a system that
needs to be run on multiple processors in a network, the
same system image can be used for each machine.

Reloading a Machine that has the Network Service

Once a V AXELN system is initialized and is running
the Network Service, it is usually not necessary to
enter a new boot command on the target machine's

14-9 Down -Line Loading

console. Instead, the remote bootstrap ((trigger"
function can be used.

To use this feature, you must set the default bootstrap
loader to the down-line load bootstrap loader by setting
the default bootstrap selection switches to the correct
read-only loader. On the 11/730, this setting is
performed by the NEWBOOT command procedure. On
an 11/750, set the Default Boot Device switch to ((A"; on
the Micro V AX, set the CPU configuration DIP switch
number 1 to ((on".

To trigger a target machine, use the NCP TRIGGER
command. For example:

NCP> TRIGGER NODE FRED

The trigger function sends a ((boot-request" message to
the target machine, which causes the V AXELN
datalink device driver to halt execution of VAXELN
and begin execution of the default bootstrap, the down
line load bootstrap loader.

Note: If desired, the DEUNA controller on an 11/750
target machine can be configured to process the boot
request message and cause the machine to halt by
causing a power-failure sequence.

Therefore, to assure that the 11/750 restarts, you must
put the Auto Restart switch in the Boot position. Note
that this implies that a machine that requires
unattended triggering cannot also restart using'
memory with battery backup (that is, it will always
rebootstrap when the power is restored).

If you encounter problems loading your target machine,
the network event-logging facility on the host system
can often be used to locate the problem. To enable event
logging on your host system, use the NCP SET
LOGGING commands.

Booting Systems 14-10

For example, to enable network event logging to your
host's console terminal:

NCP> SET LOGGING MONITOR KNOWN EVENTS
NCP> SET LOGGING MONITOR STATE ON

The resulting messages on the console display the
maintenance messages and network state changes
observed by the MOM network process. Any problems
opening the V AXELN system image file or
communicating with the target machine are displayed.

Down-Line Loading during Debugging

During the V AXELN programming and development
cycle, the target machine is likely to be loaded down
line and remotely debugged many times. To facilitate
this operation, the VAXELN debugger can load
machines down-line.

The V AXELN debugger LOAD qualifier stores the
specified V AXELN system image file name in the
network node data base and triggers the target
machine's down-line load bootstrap loader. For
example, the system TEST .SYS is loaded as follows
during an EDEBUG session:

$ EDEBUG/LOAD = TEST FRED

See Chapter 15 for a complete description of the
debugger.

Reloading Production Machines Down-Line

Once a V AXELN application has been debugged and is
installed in production use, you can continue to use the
down-line load facilities to load the target machines.
The host's node data base needs to contain a description
of each V AXELN machine and system in the network.
The description should contain all the information

14-11 Down-Line Loading

described in the previous sections, including the file
name of the production V AXELN ~ystem image file.

The default bootstrap loader on the target machines
should be set to the down-line load bootstrap loader, as
described previously. Whenever a target machine is
rebootstrapped (for example, after a power failure or a
hardware or software crash), it will be reloaded by the
host system.

Down-Line Loading from Multiple Hosts

When down-line loading target systems from multiple
host systems, it is important that only one host system
has down-line load parameters set for the target
system. If two or more hosts are capable of responding
to a target system's request for down-line loading, the
first to respond actually performs the load, independent
of which host initiated the load via an NCP TRIGGER
command or an EDEBUGILOAD command.

The load parameters are LOAD FILE, SERVICE
CIRCUIT, and HARDWARE ADDRESS. If the last two
parameters are set, the host will attempt to load the
target, even though it may not have the LOAD FILE
name needed to complete the load.

For example, if SERVICE CIRCUIT and HARDWARE
ADDRESS are set, but LOAD FILE is not set (the
typical case), the VMS MOM program will still attempt
to load the target system Ctload volunteer"). This blocks
other hosts from loading, but later in the process it will
discover that it does not have the LOAD FILE name.

U nfortuna tely, this configuration error is difficult to
diagnose. If you encounter tt%SYSTEM-F-TIMEOUT,
Device timeout" errors logged by DECnet-VAX event
logging, this may be the problem. If so, check all the
node databases on the hosts and ensure that only one

Booting Systems 14-12

database has the load parameters specified for the
target.

For example, if you had been loading target system
~~ABC" from host ~~XYZ" and now decide to load it from
host ~~XXX", execute the following NCP commands.

On node ~~XYZ":

NCP> CLEAR NODE ABC SERVICE CIRCUIT -
- HARDWARE ADDRESS

On node ~~XXX":

NCP> SET NODE ABC SERVICE CIRCUIT UNA-O
- HARDWARE ADDRESS AA-OO-03-0 1-28-0D

14-13 Down-Line Loading

Booting Systems 14-14

Introduction

Chapter 15

Debugging

V AXELN provides two methods of debugging a target
system. The method is selected from the Edit System
Characteristics menu of the System Builder.

The first method is remote debugging. With this
method, a remote debugger nucleus is placed in your
system by the V AXELN System Builder. When the
host development system and the target machine
running your system are connected by the Ethernet,
you can use the V AXNMS command EDEBUG to
access the target system and debug processes which are
running on it.

Remote debugging with EDEBUG also provides these
features:

• The ability to access one or more V AXELN target
system nodes a t the same time for debugging
purposes.

• The ability to make use of the debug symbol table
information provided by V AXNMS compilers so
that variable names, labels, and source-line
information can be used during your debug
session.

• The ability to allow your VAXNMS terminal to
behave as the console device on the target system.

The second method is local debugging. With this
method, the entire VAXELN debugger utility is built

15-1

into your system image. This method provides a
completely self-contained debugger; therefore, a
network connection to a V AXNMS host is not required.
Debugging commands are entered at the system's
hardware console terminal.

In this mode, the special remote debugging features
listed above are not available. However, the local
debugger does provide the special ability to debug the
V AXELN kernel in addition to processes on the
running system.

This chapter explains how to select a debugger mode
with the System Builder, how to make a program
((debuggable," how to make the V AXELN kernel
debuggable, the format of the EDEBUG command,
general concepts for using the debuggers, and debugger
syntax rules. The remainder of the chapter is a
summary of the debugger commands used in debugging
V AXELN systems.

Selecting a Debugger Mode with the System
Builder

The V AXELN System Builder provides several
alternatives for specifying how you want to debug your
target system. The following options are provided on
the Edit System Characteristics menu:

• N one. The target system has no debugging
capability. You would use this option when your
system is fully debugged.

• Local. Local debugging is allowed. The debugger
is completely contained in the system image.

• Remote. Remote debugging is allowed. The
EDEBUG utility is used to remotely access the
target system over the Ethernet.

Debugging 15-2

• Both. Both remote debugging and local kernel
level debugging are allowed. You would use this
option when you want to use the features of the
EDEBUG command, but still debug the V AXELN
kernel from the system hardware console.

From the same Edit System Characteristics menu, you
select whether or not you want a console terminal
capability in the system. If you omit the console device
from the system, V AXELN's remote debugger will
automatically make y'our VMS terminal the system's
console device when you establish a connection to the
node with the EDEBUG command.

Making a Program Oebuggable

On the Edit Program Descriptions and Add Program
Description menus of the System Builder, for each
program in your system, you can specify that the
debugger is to get control when a job that runs the
program is started. Each process that is created inside
the job is also stopped before it begins execution.

If a debugger is included in the system, it will also gain
control of a process if an unhandled condition occurs or
if you explicitly ask for control by halting the process
with the HALT command. (Chapter 11, ~~Exception
Handling," contains more information on VAXELN's
exception handling mechanism.)

Making the Kernel Oebuggable

In some rare instances you may need to set breakpoints
and examine locations within the V AXELN kernel
image. The kernel can only be debugged by the local
debugger from the V AX hardware console terminal.

15-3 Making the Kernel Debuggable

There are three ways to gain the a tten tion of the kernel
debugger:

• Type the following:
SET SESSION IKERNEL

This instructs the local debugger to attach the
session associated with the kernel.

• After placing the V AX in hardware console mode
(see the appropriate hardware manual for the
correct procedure), type the following on the VAX
hardware console:

»>0/1145
»>C

This activates the kernel debugger session if the
system is not executing above interrupt priority
level 5 (hex). If the system is executing at or above
that interrupt priority level, there is no way to
gain control at the console.

• Type the following on the VAX hardware console
to boot the system:

> > > 8/4 <device>

This activates the kernel debugger during the
system initialization sequence.

You leave the kernel debugging session with the GO
command.

The EDEBUG Command

The V AXNMS command EDEBUG debugs the
V AXELN system on the given node, where the
V AXNMS system (the ((host") is connected to the
target machine by the Ethernet. It can also load new
systems from the host to the target machine, can start
them with or without the debugger in control, and can

Debugging 15-4

reconnect to nodes that were loaded previously.
(Chapter 14, ttBooting and Down-Line Loading,"
contains information on configuring and managing the
Ethernet connection.)

The EDEBUG command DEBUG allows the same
operations from EDEBUG itself; this allows you to
debug systems on several nodes during the same
interaction with EDEBUG on your development
system. (See the description of the DEBUG command,
later in this chapter.)

Formats

The EDEBUG command has the following formats:

$ EOEBUG nodename

This version of the command is used when the node is
already running a system. For example, the machine
may have been bootstrapped with a new system, or you
may be reconnecting to it.

$ EOEBUG/LOAO = system nodename

Here, system is the file specification for a system image
(type SYS file). It must include the remote debugger.
The system is loaded across the Ethernet (replacing any
system already there) and started.

$ EOEBUG/NOOEBUG/LOAO = system nodename

Here, the system is loaded across the Ethernet and
started. After loading, the debugger exits.

After you have exited the EDEBUG command, the
target system on that node is left in a suspended state.
All processes that are not controlled by the debugger
continue to run normally. Processes that are awaiting
debugger commands, however, remain suspended until
you reconnect to the node and return control to the
debugger.

15-5 The EDEBUG Command

EDEBUG uses the logical names DBG$INPUT and
DBG$OUTPUT for 110, which are usually assigned to
SYS$INPUT and SYS$OUTPUT, respectively. This
allows EDEBUG commands to be entered with
V AXNMS command procedures.

General Concepts for Using the VAXELN
Oebuggers

The V AXELN debugger facility allows you to perform
the common debugging operations of examining or
depositing memory, evaluating expressions, setting
breakpoints, and controlling the execution of your
program and the system. The debuggers also provide a
means of performing system-wide operations, such as
displaying all the jobs currently running on the system.
V AXELN applications can be made up of multiple jobs
and processes executing on several nodes in a network.
Therefore, when you are debugging, you may need to
control more than one process and more than one target
system at the same time. The V AXELN debuggers
have special features to handle this requirement.

For each process that you wish to debug, the debugger
establishes a command session. Commands that you
enter are directed to the process associated with the
command session. You can change the command
session with the command SET SESSION.

A command session is in one of the following states:

Running. The session's process is not waiting for a
debug command.

Awaiting Commands. The session is suspended,
waiting for debug commands.

If anything happens to change the state of a Running
session (for example, a breakpoint is encountered), you

Debugging 15-6

are immediately notified, even if that session is not the
current command session. All sessions waiting for
debug commands are ((frozen" while you work with the
command session.

Process Identifiers

Sessions uniquely identify a particular process on a
particular V AXELN node. The debugger assigns
identifiers to each process in a running system. These
process identifiers also identify the debugger's session
for that process. This means that you can use a process
identifier to specify a process that does not have an
acti ve debug command session.

There are three parts to a process identifier:

• Job. The process' job is identified either by name
or by a unique identification number (lD) assigned
by the debugger. The name is usually the name of
the job's program. The ID is necessary if you have
more than one instance of a particular program
running on the system. In that case, you use the job
ID to identify the instance.

• Process. The process in the identified job IS

specified by an identification number.

• Node. The node which the process is running.

These three parts are specified as:

j ob,process node

If process is omitted, the job's master process is
assumed. If node is omitted, the current session's node
is assumed. For example:

4,3
console,3
console,3 node10

15-7 General Concepts

In some instances the job may contain non
alphanumeric characters, which are not allowed by the
syntax of the debugger. To avoid this problem, enclose
the job name in single quotes to isolate it. For example:

'myjob;2',3

The Command Session

The command session to which you are entering
commands is shown to you in the command prompt
string. For example,

Edebug 4,5>

means that commands which you type are directed to
process 5 in job 4. If you are debugging more than one
node, the node name is also included in the prompt.

The command session is set when the debugger begins
to debug the first process that requests attention. After
that, the command session remains constant until you
explicitly change it with a SET SESSION command or
until the command session's process exits. When the
command session exits, the session is set to its job's
master process or, if the existing process is the master
process, the debugger ~~picks" a session that is awaiting
command input.

The debugger will not prompt for commands while the
command session's process is in a Running state.

The "Control-C" Session

A special session is provided for use when there are no
debugging sessions or when the active session is
running. This session allows you to enter commands
that are not directed at any particular process; for
instance, SHOW SYSTEM, which displays the current
jobs in the system.

Debugging 15-8

This session is activated by typing:

CTRUe
EDEBUG CONTROL-C >

The special prompt string is to remind you that the
special session is active. You can enter commands until
you enter a null command line. At that point, you
return to the state that was active when CTRL/C was
typed.

The ~~Control-C" session has some restrictions on which
commands it can execute. For example, you cannot
EXAMINE or DEPOSIT memory because there is no
process context associated with it. You can, however,
EVALUATE expressions, perform system-wide com
mands, and enter HALT commands.

Note that entering CTRL/C at your terminal will abort
the command currently executing and return to a
session prompt.

Symbolic Debugging

When you are remotely debugging a system using the
EDEBUG command, you can refer to program
locations, variables, or constants by name; you can also
view source lines. The information used by EDEBUG to
allow this is provided by the V AX compilers and linker
as part of the .OBJ and .EXE files. Typically, you
request this by using a DEBUG qualifier at compile
and link time (see Chapter 12, ((Program Develop
ment," for more information).

The debugger symbol table contains the following
information for each module that contributed to the
program image:

• Information that relates addresses to the line
numbers in a module

15-9 General Concepts

• Information that relates addresses to the source
line that produced the code at those addresses

• Symbolic information (names and types) about the
module's variables

The symbol table contains the information about
variables only if you requested it when you compiled
and linked the module.

Note: The complete debugger symbol tables are quite
large; that is, they make the program image much
larger than would otherwise be the case. Generally
speaking, you will want to recompile programs after
they are debugged, without requesting a symbol table.
The source-line and traceback information is
comparatively small and can be left in the image; both
kinds are included in compilations by default. In no
case is the symbol table loaded into the system on the
target machine.

The symbol table is associated with all the processes in
the job running the program. The association is either
implicit (when a job starts under debugger control) or
explicit (by use of the debugger's SET PROGRAM
command). For more information about the relation
between the symbol table and references in the
debugger, see ~~Identifiers," later in this chapter.

Breakpoints

Many debug operations cannot be done unless the
program is stopped. At the beginning of any session, the
associated program is stopped and does not execute
until you type the GO command. The STEP command
allows you to execute the program one step at a time.

The notion of a breakpoint is that of a ~~stop sign" that
you can plant at a particular location in the program;
subsequently, the program will stop whenever it

Debugging 15-10

reaches the breakpoint. Breakpoints are set with the
SET BREAK command, described later in this chapter.
For example, if you set a breakpoint at the beginning of
a session and then type GO, the program executes until
it reaches the breakpoint, where it stops; you are then
able to examine variables and perform other operations
in the current context. You can continue execution from
the breakpoint with the GO command.

The SET BREAK command also allows you to specify a
command that is executed when the program stops at
the breakpoint. (See the SET BREAK command
description, later in this chapter.)

Debugger Syntax Rules

The V AXELN debugger command language is
designed to be simple to use for programmers who are
familiar with several programming languages; the
command language is ~~generic" to most programming
languages. This contrasts with the VAXNMS debug
ger, DEBUG-32, which provides a fully functional
command language that is dynamically tailored to the
language in use at the point where the program is
stopped.

The V AXELN debugger command syntax and
semantics are modeled after the DEBUG-32 command
language and, wherever possible, a command does
exactly the same thing in both debuggers.

All commands are expressed in the same general
format, as follows:

VERB qualifiers parameters

In this chapter, optional items are shown in italics. All
keywords used as verbs or qualifiers can be abbreviated
to their shortest unique form.

15-11 Debugger Syntax Rules

An example of the simplest command is

Edebug 4,5> EXIT

which terminates the debugger. This command has no
qualifiers or parameters.

An example of a more elaborate command is

Edebug 4,5> EXAMINE IHEX my-variable

which examines the variable my-variable and displays
the value in hexadecimal form.

If the command does not conform to the general format,
or if the verb is not recognized as a known verb name,
the debugger treats the command as an expression. For
example, the command

Edebug 4,5> 123 + 456

is perfectly correct and displays the value 579. This fea
ture provides a way to examine the value of a variable
by simply typing its name. For example, the command

Edebug 4,5> x

examines the variable x.

Command Files

The command

@file-specification

causes EDEBUG to fetch commands from the specified
file. The file inclusion can be nested to a depth ofS.

Expressions

Many of the parameters used in debug commands are
arithmetic expressions which provide values for the
individual commands. Expressions are algebraic
sequences consisting of constants, parentheses, opera
tors, and variable references.

Debugging 15-12

The expression syntax is a useful combination or hybrid
and is not identical to any language in particular. The
semantic rules for interpretation are straightforward,
following the normal rules for algebraic expressions.

The valid operators are:

arithmetic: +

*
/
DIV
MOD
@

where + and - can be either monadic (prefix) or dyadic
(infix) operators.

Boolean: =
<>
<
<=
>
>=
AND
OR
NOT

add ress-related: ADDRESS(variable)
@

The monadic @ operator is used to take the value of a
location represented by an address expression. In
addition, the ADDRESS function can be used to take
the address of an addressable variable. Note that some
variables, such as those assigned to registers, are not
addressable.

15-13 Debugger Syntax Rules

The dyadic @ operator specifies an arithmetic left-shift
if the count is positive, or a right-shift if the count is
negative. For example,

ref@2

shifts the contents of ref two bits to the left.

The operators == and : == are used interchangeably to
express assignments.

String Expressions

The + operator can be used to concatenate string
values to form longer string values. For example:

'header' + str1

Address Expressions

Address expressions are distinct in that they produce
an address value for a location instead of the value at
the location. To get an idea of the difference, consider
this Pascal assignment statement, in which A, B, and C
are variables:

A: = B + C;

Here, B, C, and B + C produce values, for assignment to
A. A, in effect, is an address expression that designates
the address to receive the value. If A were on the right
hand side of the assignment operator, it too would
represent a value, not an address.

In the debuggers, you need to be able to express the left
hand side as an expression, meaning that it represents
a target address for some operation. For example,

EXAMINE 1234

means ~~examine the integer at address 1234."

EXAMINE myvar

Debugging 15-14

means ~~examine the variable myvar."

EXAMINE myvar + 2

means ~~examine the integer at address-of-myvar-plus-
2."

Address expressions consist of variable references,
integer constants, and the dyadic operators -, +, *,
DIV, /, and @. Parentheses are allowed.

The monadic operators in address expressions are +
and -, with the usual arithmetic meanings, and @,
which means (~contents of." For example,

EXAMINE PC

displays the contents of the program counter (an
address), but

EXAMINE/INSTRUCTION @PC

displays the instruction at the current PC address.
Since the PC always contains addresses, not instruc
tions, the command

EXAMINE/INSTRUCTION PC

is an error . Similarly,

SET BREAK PC

is an error. The correct command is:

SET BREAK @PC

The ((address versus contents" distinction also applies
to symbolic references to pointer variables. For
example,

EXAMINE ptr

where ptr is a pointer variable, means ~~examine the
contents (an address) of ptr." In contrast,

EXAMINE @ptr

15-15 Debugger Syntax Rules

means cCexamine the memory pointed to by ptr."

Note: In addition to @, the forms ptr", *ptr, and ptr~
are equivalent.

Symbols defined using the DEFINE command are
treated specially when they appear in address expres
sions. These symbol references yield values much like a
constant does, which is logical since these internal
variables are similar to registers (which always express
a value).

Identifiers

During your debug session, you may want to refer to
items by their text name or identifier. There are three
kinds of identifiers:

• Identifiers defined using the DEFINE command

• Special predefined identifiers

• Program locations and variable names available to
EDEBUG which are defined by a program's debug
symbol table entries

In general, identifiers are ASCII names consisting of up
to 31 alphabetic or numeric characters and the special
characters dollar sign ($) and underline C-). Identifiers
do not begin with numbers, and no distinction is made
between upper and lower case.

Identifiers Defined Using the DEFINE Command

Both the local and remote debuggers allow you to define
identifiers for use in expressions and commands with
the DEFINE command. These identifiers represent
variables or constants. For example,

Edebug 4,5> DEFINE an-integer:: INTEGER = 10

Debugging 15-16

defines a debugger variable named an-integer with an
INTEGER data type and which is given a value of 10.
After this command is executed, the identifier
an-integer will yield the value 10 whenever it is used
by itself or in an expression.

You can change the value of a defined identifier by
using the DEPOSIT command. For example,

Edebug 4,5> DEPOSIT an-integer = 20

changes the value of an-integer to 20.

The DEFINE command allows the following data types:

INTEGER simple integer

BOOLEAN simple TRUE or FALSE

BYTE-DATA(n) n bytes of unspecified data

REAL or FLOAT single-precision floating
point

DOUBLE or GRAND double-precision floating
point

HUGE double double-precision
floating-point

STRING(n) character string with fixed
size of n characters

CHAR STRING(l)

V ARYING-STRING(n) character string with
varying size of up to n
characters

RELOCATION relocation constant

For the data types BYTE-DATA(n), STRING(n), and
VARYING_STRING(n), n can be given as an
expression. For example:

Edebug 4,5> DEFINE my-string:: STRING(X + 3)

15-17 Debugger Syntax Rules

Note that if n is not given, it is assumed to be 1.

RELOCATION is a special type similar to INTEGER,
but whose values represent program locations. It can be
used any time, but is usually used when symbolic
debugging is not available. A display of a program
location (as with SHOW SESSION) shows the location
relative to the RELOCATION data item whose value is
closest to the location, if the distance does not exceed
2048 bytes.

For example, the following command defines a
RELOCATION constant named Mbase:

DEFINE Mbase:: RELOCATION = 2000

When the address to be displayed is within 2048 bytes
of Mbase, it is displayed as ((Mbase + byte-offset." For
instance, if the address is 2020, the debugger displays it
as ((Mbase+20."

When using EDEBUG you may encounter debugger
defined variables wth the same name as a variable in
the program you are debugging. To distinguish the two,
the defined variable can be preceded with the percent
character (%) to tell the debugger to use its internal
identifier and not the program variable. For example,

my-integer and % my-integer

refer to the same defined identifier.

The complete syntax of the DEFINE command is
described in the ((Command Summary" section, later in
this chapter.

Special Predefined Identifiers

The debugger has several identifiers that are
predefined. These identifiers allow you to access fixed
hardware entities.

Debugging 15-18

For example, the following general purpose registers
are predefined:

RO, R 1, R2, ... , R 11, AP, FP, SP, PC

In addition, the following identifiers are predefined:

PSL processor status longword
$ the constant 80000000 (hex)
NIL the constant 0

As with identifiers defined with the DEFINE
command, these predefined identifiers can be prefixed
with the percent character (%) if you encounter a
conflict with a program's symbol name.

When debugging a program that runs in Kernel mode
or within the kernel debug session, the machine
processor registers are named Pn, where n is a decimal
integer. For example, PI is the Executive mode stack
pointer.

Program Locations and Variable Names

When you are remotely debugging using the EDEBUG
command, your program image can provide the
debugger with a symbol table, so that you can refer to
locations and variables by the names you used within
the program.

The debugger provides a generic syntax for expressing
program locations and variables. All names consist of
two parts:

path-name variable-reference

The variable-reference part is your program's name for
a variable or location; path-name provides a way to
qualify variable-reference to a particular module or
routine in the program.

15-19 Debugger Syntax Rules

In most cases, path-name is not needed, because the
debugger makes some assumptions about the path
name. The default path name is referred to as the
reference scope or view scope. This scope is established
automatically by the debugger, based on where your
session is stopped.

For example, if your program is stopped in a module
called driver inside a routine named initialize, the view
scope is set to duplicate the compiler's view of the
variable reference scope for the routine initialize.
Wha tever you can refer to inside the routine can be
referred to without a path name.

It is necessary, however, to specify a path name when
you want to refer to a name that is not visible inside the
routine where the session is stopped; for instance,
another module.

The general form of path-name is

module-name \ routine-name \ ...

where module-name is the module in which the
variable is defined, and the optional list of routine
names can be used to further qualify the path name if
the variable is internal to some routine.

For example, the path name for routine initialize in
module driver, referred to previously, is:

driver\ initialize \

In some cases, it is enough to specify only the module
name, and in other cases, it is necessary to specify the
entire sequence of routine names that identify the area
of the program you are interested in. The following is
an example of a fully expressed path name for the
variable file-type:

file-io\ open-routine \ file-type

Debugging 15-20

Path names can be used to identify locations within a
program. For example,

declare\ %LlNE 10

refers to line 10 in module declare. The module name
and backslash can be omitted if the debugger is
currently stopped at a point in module declare.

Note: In highly optimized programs, the compiler may
have eliminated all the code at a particular location,
even though the source module has explicit statements
there.

You can also refer to a program location by a label, as
follows:

outmodule\ %LABEL errormessage

Again, the module name and backslash are unneces
sary if the label is defined in the current view scope.

The debugger assumes that the view scope is associated
with where your session is stopped. Since this may not
always be a convenient place, the debugger provides a
means to change the view scope. The scope can be
moved back and forth along the call history stack by
using the commands PREDECESSOR and
SUCCESSOR. PREDECESSOR moves backward in
history and SUCCESSOR moves forward. That is,
PREDECESSOR moves the view scope back to the
caller of the routine where your session is stopped and
SUCCESSOR moves the view scope forward again.

When the actual stopping point differs from the view
scope, the debugger displays both the view scope and
the place where your session is stopped. When your
program stops in a location that is not part of the
known program, the debugger automatically searches
back on the call history stack until it finds the last
active place in the program.

15-21 Debugger Syntax Rules

Variable References

The debugger provides a generic syntax for specifying
variable names that is useful to all programmers.
Depending on the source language, it mayor may not
be identical to the way you referred to the name in your
program. Simple names are:

I

my-variable
his-variable

Structure members must always be fully specified, as
in:

rec1.item2
rec1.item3.value1

Array elements can be expressed in two notations:

array1 (1,2,3)
array1 [1,2,3]

Pointer qualified references can be made in any of these
forms:

ptr -variable"
ptr -variable-.
*ptr -variable

Types and Typecasting

Each expression, value, or variable reference in a
debugger command line has an intrinsic data type,
which affects the item's memory size, display format,
and expression semantics. In addition to their usage in
the DEFINE command (explained previously under
((Identifiers"), types are explicitly used in several other
places within the command language.

Debugging 15-22

In the EXAMINE and DEPOSIT commands, types are
used as qualifiers to specify a type to use in the display
or deposit of a value. For example,

Edebug 4,5> EXAMINE/REAL counter

causes counter to be examined and displayed as a
floating-point value regardless of its true type. Here,
the item's intrinsic memory size is also being specified;
therefore, the debugger examines 4 bytes regardless of
the actual size of counter. (For more information, see
the descriptions of the EXAMINE and DEPOSIT
commands, later in this chapter.)

Type names can be specified as part of a variable
reference to ~~cast" the reference's intrinsic type to
another. This is useful inside expressions to force
particular semantic interpretations. For example:

Edebug 4,5> EVALUATE gas-v> = counter:: REAL

This command asks to evaluate the Boolean expression
that compares the variable gas-v with counter.
However, to make sense, it is necessary to interpret
cou nter as a real number rather than its implied
integer type. This syntax is referred to as typecasting. It
is always specified as double colons (::) followed by a
type specifier.

The following shows the relationship of typecasting to
types as EXAMINE command qualifiers:

Edebug 4,5> EXAMINE/REAL counter

has the same effect as

Edebug 4,5> EXAMINE counter:: REAL

The debugger does not attempt to understand all data
types available in all programming languages. Rather,
it understands and operates on several basic
computational types. When interpreting a program's

15-23 Debugger Syntax Rules

symbol table information, the debugger translates the
language-specific data type into one of its generic data
types. You can determine the debugger's interpretation
of a variable by using the SHOW SYMBOL command.

The types used by EDEBUG as defined variable types,
qualifiers for EXAMINE or DEPOSIT, and typecasting
include: INTEGER, BOOLEAN, BYTE_DATA(n),
REAL or FLOAT, DOUBLE or GRAND, HUGE,
STRING(n), CHAR, V ARYING_STRING(n), and
RELOCATION. These types are defined under
((Identifiers," earlier in this section.

Some of these type names (STRING, for example) do not
have an associated static size. In these cases, it may be
necessary to specify a size value. For example:

STRING(10)

or

BYTE-DA T A(100)

Note that the size value can be given as an expression,
which is interpreted when the type specifier is used. For
example:

Edebug 4,5> EXAMINE d-block :: STRING(50 DIV ctr)

Ifno size value is given, it is assumed to be 1.

Computational Constants

This subsection defines the syntax rules for the
computational constants supported by the VAXELN
debugger.

Boolean Constants

Boolean constants are the reserved identifiers TRUE
and FALSE, denoting the numeric value 1 and 0,
respectively.

Debugging 15-24

Integer Constants

Integer constants are strings of characters beginning
with one of the digits 0 to 9. Numbers are interpreted in
the current radix. For instance, 1234 or IFEF4 are
examples of integer-valued constants. The radix in use
for a particular debug session is dictated by the place in
the program where the session is stopped and any
explicit setting of the radix done with the SET MODE
command.

A radix can be specified explicitly by prefixing the
numeral string with a % construct. The explicit radix
specifiers are:

%X or %HEX for hexadecimal

%D or %DEC for decimal

%0 or %OCT for octal

%B or %BIN for binary

For example:

%0177440

The numeral string after the % construct can be
enclosed in quotes to allow ttw hi te space" inside the
string. For example:

%X'ff ff ff ff'

When the default radix is hexadecimal, the debugger
will interpret any unrecognized identifier as a
hexadecimal number. This feature helps avoid the need
to specify %X. For example, the following are all valid
hexadecimal constants:

FEOO
OFEOO
%XfeOO

15-25 Debugger Syntax Rules

Note that integer constants must always be in the
range - 231 to 231 - 1, or in the range 0 to 232 - 1.

Floating-Point Constants

Floating-point constants are given in FORTRAN
format if the default radix is decimal. For example:

1.24
1.2e10
1.234e -10
-12.4

If the default radix is not decimal, the floating-point
constants must be given using the % construct. For
example:

%F'1.24'
%F'1.2e10'
% F'1.234e - 10'
%F' - 12.4'

In this case, the numerals within the quotes are always
interpreted as decimal numbers.

Floating-point constants are always converted to the
VAX double-precision format. Depending on the
machine model you are using, the range of floating
point numbers can vary. Normally, the debugger uses
the V AX DOUBLE floating-point format, providing for
approximately 16 digits in the range .29E - 38 to
1.7E38.

On some VAX machine models, another double
precision floating-point data type is available; this type
is referred to as GRAND. It has a smaller precision, but
a larger exponent range, providing for approximately
15 digits in the range .56E - 308 to .9E308.

You can change the default floating constant type with
the SET MODE command.

Debugging 15-26

String Constants

String and character constants are sequences of
characters enclosed in apostrophes; a pair of
consecutive apostrophes (") inside a string constant
represents a single apostrophe character. String
constants in the debugger can have up to 132
characters. Note that a string constant must not span
multiple lines.

Special Constants

In address expressions, a period character (.) is
shorthand for the address of the source for the last
EXAMINE operation or of the target of the last
DEPOSIT operation.

Several things that can be examined in some way are
not actually addressable, in which case the debugger
will issue an error message saying that the period
character is meaningless. For example, variables that
are not stored on byte boundaries are not addressable.

The backslash character (\) represents the value of the
most recent expression.

RELOCATION is a special type whose values represent
program locations, as explained under ((Identifiers,"
earlier in this section.

Comments

In command lines, anything after the exclamation
point character (!) is ignored and can be used for
comments.

15-27 Debugger Syntax Rules

Command Summary

Strictly speaking, the debugger command set is the
same whether you are debugging remotely (with
EDEBUG, at the host) or locally (with the local debug
ger and console terminal). Only EDEBUG, however,
can do symbolic debugging and source-line displays
(that is, only EDEBUG can access the debugger symbol
table and program source text).

The debuggers will inform you if a particular command
is not possible in your current mode (for example,
EXAMINE/SOURCE in local debugging).

The remainder of this section contains descriptions of
the commands used in debugging V AXELN systems. In
the command descriptions, optional parts of the com
mand are noted in italics.

CALL

Call the specified routine in the context of the current
program and return to command mode when the rou
tine completes.

CALL target (argument-list)

The target of a call can be:

path name identifier

integer

or

(add ress-expression)

The address expression must be parenthesized and is
used when the name to be specified is not a simple
identifier.

Debugging 15-28

The arguments to the routine, if any, are separated by
commas, and the list must be parenthesized. There can
be up to 16 arguments. After their evaluation, each
argument must fit in a longword (32 bits).

Note: If the routine does anything to affect the state of
the running program, the debugger may lose control of
the session. In addition, the debugger will not field
breakpoints or exceptions while the routine is exe
cuting.

The CALL command is useful when the debugger is
unable to perform some particular or complex function
for your debugging. A typical example might be in
debugging a command interpreter, where the CALL
command could be used to call a routine you have in
your application that dumps the symbol table.

The value returned in RO by the called routine is
automatically displayed after the routine executes.

For example:

Edebug 4,5> CALL (dump-symbol) (@RO)
Symbol table entry at: 43450 Name: test1

Type: integer Value: 2
16 (00000010)

Other examples to show the special features of the
CALL command syntax:

Edebug 4,5> CALL %x200
16 (00000010)

Edebug 4,5> CALL external-call (1,O,false)
Parameters in HEX are 00000001 00000000 00
1 (00000001)

Edebug 4,5> CALL (rtn-ptr + 0) (1,O,false)
2 (00000002)

15-29 Command Summary

CANCEL BREAK

Cancel the breakpoint at the given address, or cancel
all breakpoints. The KERNEL qualifier causes the
command to cancel breakpoints set by the SET BREAK
!KERNEL command.

CANCEL BREAK address-expression

CANCEL BREAK fAll

CANCEL BREAK fKERNEl address-expression

See the SET BREAK command description for
examples of CANCEL BREAK.

CANCEL CONTROL

This command causes processes that start in this
session's job to begin independently of the debugger.

CANCEL CONTROL

CANCEL EXCEPTION BREAK

This command reestablishes the default exception
handler search for the associated session. It reverses
the action of the SET EXCEPTION BREAK command.

CANCEL EXCEPTION BREAK

CREATE JOB

Create a job in the target system, running the
designated program. program-name is specified as a
string expression (that is, it is the name that appears on
the System Builder's map listing, enclosed in apostro
phes).

CREATE JOB program-name (argument-list)

The arguments to the program, if any, are separated by
commas, and the list must be parenthesized. There can

Debugging 15-30

be up to 16 arguments, all of which are strings. The
arguments can be constants, DEFINE values, or
variables of string types.

For example:

Edebug 4,5> CREATE JOB tstjob ('1','2','3')

CREATE PROCESS

Call the specified routine in the context of the current
program and start the procedure as a process. The
response to the command is either nothing (implying
success) or else the error message for the failure status
is displayed.

CREATE PROCESS target (argument-list)

The target can be:

pathname identifier

integer

or

(add ress-expression)

The address expression must be parenthesized.

The arguments to the routine, if any, are separated by
commas, and the list must be parenthesized. There can
be up to 16 arguments. After their evaluation, each
argument must fit in a longword (32 bits).

CTRUC

Typing CTRL/C aborts the operation in progress and,
except when debugging the kernel, gains the attention
of the debugger's command interpreter.

CTRUZ

Typing CTRL/Z is equivalent to EXIT.

15-31 Command Summary

DEBUG

Debug, connect to, or load and debug a system on
another node.

DEBUG nodename

Here, the system on the indicated node is triggered to
boot the system specified in the network database.

DEB UG/LOAD = system nodename

Here, system is set into the network database for
nodename and the node is triggered to boot.

DEFINE

Create or redefine a session variable with a specified
type and an initial value supplied by expression. If
type is omitted, INTEGER is the default. If expression
is omitted, 0 is the default initial value. You can
redefine session variables at any point.

DEFINE identifier:: type: = expression

DEFINE identifier:: type = expression

Variables defined this way are available in all sessions.
If a program is associated with a session, a reference to
one of these identifiers is resolved to the session
variable only after looking in the current reference
scope. If the name is prefixed with %, however, it refers
unambiguously to the session variable.

The permanent symbols (Rn, Pn, PSL, SP, AP, FP, and
PC) cannot be redefined. When used in expressions,
these symbols always yield values, like register names,
and are never addressable.

Debugging 15-32

Examples of using DEFINE variables:

Edebug 4,5> DEFINE iii
Edebug 4,5> iii
iii: 0 (OOOOOOOO)
Edebug 4,5> DEPOSIT iii = 2
Edebug 4,5> iii
iii: 2 (00000002)

Edebug 4,5> DEFINE ptr1 :: "'integer: = nil

Edebug 4,5> DEFINE s1 :: string(10} = "

Edebug 4,5> DEFINE bd1 :: byte-data(30} = s1

Edebug 4,5> DEFINE rtn-ptr :: relocation
Edebug 4,5> deposit rtn-ptr = add ress(externaLcall}
Edebug 4,5> EXAMINE/INSTRUCTION rtn-ptr + 2
RTN-PTR + 2: MOVAB - 40(FP},SP

Edebug 4,5> DEFINE relo :: relocation = %x200
Edebug 4,5> EXAMINE/BYTE:40 relo
180003000000001000000004000030391 RELO + 0000190

00000000 00000000 00000000 000000141 RELO + 0010 1

00000000 00000061 1 RELO + 0020 1 a

DELETE PROCESS

Delete a process associated with a session, where the
process is specified by job name, job ID, and process ID.
If process-specifier is not supplied, the process
associated with the current session is deleted. The
optional nodename is used to identify a process on a
different node, if you are debugging several at once.

DELETE PROCESS process-specifier nodename

15-33 Command Summary

You can only use DELETE PROCESS to delete
processes associated with sessions that are stopped. If
necessary, use the HALT command to stop the session.

DEPOSIT

Deposit the value of an expression in a location
described by a variable reference or address expression.

DEPOSIT Iqualifier address-expression: = expression

The address expression can be given in parentheses if it
is complex. The = symbol can be used identically with
:= symbol.

One of the following qualifiers can be used to specify
the target's representation. If a qualifier is not given,
the target is assumed to be an integer or, if the target is
a simple variable reference by itself, the type of that
variable or any typecast given.

Specifying that the target is a string:

IASCII:size

specifies that the target is a string of length size. The
size specifier can be given as:

:integer
= integer
: (expression)
= (expression)

If IASCII is used without a length, it is assumed to be 1.

Specifying that the target is an arbitrary sequence of
bytes:

IBYTE:size

specifies that the target is a sequence of size bytes.

Debugging 15-34

The size specifier can be given as:

:integer
= integer
: (expression)
= (expression)

If /BYTE is used without a size, it is assumed to be 1.

Specifying that the target is an integer:

/BYTE /WORD /LONGWORD /QUADWORD

Specifying that the target is a floating value:

/REAL /FLOA T
/DOUBLE /GRAND /D-FLOAT /G-FLOAT
/HUGE IH-FLOA T

Some implicit conversion is performed for you at
deposit time and if the conversion cannot be done, an
error is given. The rules for the conversion are:

1. If the target is an integer or boolean, then the
source must be integer or boolean.

2. If the target is floating, then the source must be
integer or floating. The integer value is converted
to floating.

3. If the target is string, then the source must be
string or byte data. The source is padded with
blanks or truncated to fit the target.

4. If the target is byte data, then the source must be
string or byte data. The source is padded with zeros
or truncated to fit the target.

Examples:

Edebug 4,5> DEPOSIT 123 + 456 = 10
Edebug 4,5> DEPOSIT my-variable = 15
Edebug 4,5> DEPOSIT/ASCII: 10 %x200 = 'abcdef'
Edebug 4,5> DEPOSIT data-block-item.packet[i] : = i

15-35 Command Summary

EVALUATE

Evaluate the given expression. The qualifiers
BINARY, OCTAL, DECIMAL, and HEX can be used to
specify the display radix if the expression result is an
integer. The ADDRESS qualifier displays the effective
address of a specified address expression. This address
would be the one examined if the same address expres
sion were specified with an EXAMINE command.

EVALUATE expression

EVALUATE/BINARY expression

EVALUATE/HEX expression

EVALUATE/DECIMAL expression

EVALUATE/OCTAL expression

EVALUATE/ADDRESS addresss-expression

The following examples exemplify the fact that the
EVALUATE keyword is not always necessary:

Edebug4,5> (%x1f <> 31)or(%B'11111' <> %037)
FALSE

Edebug 4,5> b 1 < > (b2 and false)
TRUE

Other examples of EV AL U ATE expressions:

Edebug 4,5> EVALUATE 100 + 200
300 (00000 12C)

Edebug 4,5> EVALUATE /BINARY 100 + 200
100101100 (0000012C)

Edebug 4,5> EVALUATE/HEX 100 + 200
0000012C

Debugging 15-36

Edebug 4,5> EVALUATE/DECIMAL 100 + 200
300 (0000012C)

Edebug 4,5> EVALUATE/OCTAL 100 + 200
454 (0000012C)

Edebug 4,5> EVALUATE/ADDRES~ var-10
7FFFD2D4

Edebug 4,5> EVALUATE/BINARY/ADDRESS var-l0
1111111111111111101001011010100 (7FFFD2D4)

Edebug 4,5> EVALUATE/HEX/ADDRESS var-l0
7FFFD2D4

Examples using \ (last value):

Edebug 4,5> counter + 50 * 100
100600

Edebug 4,5> 2 + \
100602
Edebug 4,5> 2 + \
100604

EXAMINE

Examine the value in a location in the target system's
memory. The location is specified by an address
expression, or, if the debugger symbol table is present,
a variable reference.

EXAMINE commands have the general form:

EXAMINE qualifier-list address-expression

ASCII, BYTE, WORD, QUAD, LONG, and the floating
point qualifiers can be used to specify the amount of
storage examined, overriding the size associated with
the item's type and, in the case of ASCII and the
floating-point qualifiers, determining the format of the

15-37 Command Summary

display. If there is no associated type, INTEGER
(longword) is the default.

With BYTE and ASCII, the integer expression size can
be specified to override the basic size of the data item (if
the expression is not just an integer constant, it must be
enclosed in parentheses). The size specifier can be given
as:

: integer
= integer
: (expression)
= (expression)

Examining a location with BYTE:size specified causes
the debugger to display the data in a ~(dump" format
consisting of a hexadecimal display on the left and an
ASCII display on the right.

The qualifiers BINARY, OCTAL, DECIMAL, and HEX
can be used to specify the radix in which the result is
displayed if the result is an integer. If the address
expression is a variable reference, the variable's type
determines the default display.

If no expression is given after the verb, the action is to
examine the next value after the one most recently
examined. If the address expression is the symbol ", the
action is to examine the value before the one most
recently examined.

Examples of EXAMINE commands:

Edebug 4,5> EXAMINE/ASCII sl
Sl:a

Edebug 4,5> EXAMINE/ASCII: 10 sl
Sl:abc

Edebug 4,5> EXAMINE/BY sl
S 1: 97 (00000061)

Debugging 15-38

Edebug 4,5> EXAMINE/BY: 1 s1
61 I S1 I a

Edebug 4,5> EXAMINE/BY:3 sl
636261 I S11 abc

Edebug 4,5> EXAMINE/BY: 10 s1
2020 2020202020636261 I S 1 I abc

Edebug 4,5> EXAMINE/BY:20 s1
00064C50 00002020 20202020 20636261 I S 1 I abc .. PL..

00064COO I S1 + 0010 I·L.·

Edebug 4,5> EXAMINEIWORD s1
51: 25185 (00006261)

Edebug 4,5> EXAMINE/QUAD s1
20202020 20636261 I S 1 I abc

Edebug 4,5> EXAMINE/LONG s1
51: 543384161 (20636261)

Edebug 4,5> EXAMINE/DOUBLE rO
RO: 1.00000000000000000E + 00005

Edebug 4,5> EXAMINE/G-FLOAT rO
RO: 8.41178011028559882E + 00041

Edebug 4,5> EXAMINE/HUGE rO
RO: 1.06499995818682317E + 00675

Edebug 4,5> EXAMINE/OCTAL i1
11: 1 (00000001)

Edebug 4,5> EXAMINE/BINARY i1
11: 1 (00000001)

15-39 Command Summary

Edebug 4,5> EXAMINE/HEX i1
11: 00000001

Edebug 4,5> EXAMINE/BY:3/0CTAL i1
00000001 1 11 I ...

Edebug 4,5> EXAMINE/BY:4/BINARY i1

1 1 11 I····
Edebug 4,5> EXAMINE data-block-item
NEXT-DATA-BLOCK: 7FFFD3AC
PACKET(1): 33 (00000021)
PACKET(2): 2 (00000002)
PACKET(3): 0 (00000000)
PACKET(4): 0 (00000000)
BIT-ITEM: True

Edebug 4,5> EXAMINE arr-item-10
ARR-ITEM-10(1): 33 (00000021)
ARR-ITEM-10(2): 2 (00000002)
ARR-ITEM-10(3): 0 (00000000)
ARR-ITEM-10(4): 0 (00000000)
ARR-ITEM-10(5): 0 (00000000)
ARR-ITEM-10(6): 0 (00000000)
ARR-ITEM-10(7): 0 (00000000)
ARR-ITE M-1 0(8): 0 (00000000)
ARR-ITEM-10(9): 0 (00000000)
ARR-ITEM-1 0(1 0): 805306368 (30000000)

Examples of EXAMINE next,. (dot) and" (previous):

Edebug 4,5> EXAMINE r1
R 1 : 300 (0000012C)
Edebug 4,5> EXAMINE.
R 1 : 304 (00000130)

Edebug 4,5> EXAMINE %x4000
4000: 300 (0000012C)

Debugging 15-40

Edebug 4,5> EXAMINE. + %x10
4010: 34 (00000130)

Edebug 4,5> EXAMINE rO
RO: 10 (OOOOOOOA)
Edebug 4,5> EXAMINE.
RO: 10 (OOOOOOOA)
Edebug 4,5> EXAMINE
R 1: 20 (00000014)
Edebug 4,5> EXAMINE ..
RO: 10 (OOOOOOOA)

EXAMINE/INSTRUCTION

Examine machine-instruction sequence beginning at
the first address specified. If the second address is
supplied, the sequence of instructions in that range is
displayed; if omitted, one instruction is displayed. If
neither address is specified, the instruction at the
location after the last-examined location is displayed.

EXAMINE/INSTRUCTION address: address

Examples of EXAMINEIINSTRUCTION:

Edebug 4,5> EXAMINE/INSTRUCTION %x4000
4000: MOVAB - 10(fp), - 14(fp)
Edebug 4,5> SET BREAK.

Edebug 4,5> EXAMINE/INSTR %Iabel first-label:
More? > % label first-label + 40
% Line 345 + 0000: PUSHL #OB

%Line 345 + 0002: PUSHL #00
% Line 345 + 0004: PUSHAB $CODE + OOAE
%Line 345 + 0008: PUSHL #OB
%Line 345 + OOOA: PUSHAB PAS$OUTPUT\$DATA + 0010
%Line 345 + 0010: CALLS #05,@0000166C
%Line 345 + 0017: PUSHAB PAS$OUTPUT\$DATA + 0010
%Line 345 + 001D: CALLS #01,@00001664

15-41 Command Summary

Edebug 4,5> EXAMINE/i
%Line 349 + 0005: MOVC3 #1B,$CODE + 0093, -16E8(FP)

EXAMINE/PSL

Examine the value at the location specified by the
address expression and expand the value into an ASCII
display of a processor status longword (PSL).

EXAM INE/PSL address-expression

For example:

EXAMINE/PSL @SP

The following is another example of EXAMINEIPSL,
with the corresponding ASCII display:

Edebug 4,5> EXAMINE/PSL PSL
CM TP FPD IS Current Mode Previous Mode IPL DV FU IV T N Z V C

o 0 0 0 3 3010100000

EXAMINE/SOURCE

Examine source-line sequence beginning at the first
address specified. If the second address is supplied, the
sequence of lines in that range is displayed. If the
second address is omitted, one line is displayed. If
neither address expression is specified, the next source
line is displayed.

EXAMINE/SOURCE address: address

This command is available only in EDEBUG.

Examples of EXAMINE/SOURCE:

Edebug 4,5> EXAMINE/SOURCE %Iabel first-label
Module TSTEDEBUG
345: writeln('first label');

Debugging 15-42

Edebug 4,5> EXAMINE/SOURCE %Iabel first-label:
More?> %Iabel first-label + 40
Module TSTEDEBUG
345: writeln(,first label');
346:
347: call-successor-Iabel:
348:
349: p-vs 1 : = 'this is the main body value';

Edebug 4,5> EXAMINE/SOURCE
Module TSTEDEBUG
350: successor;

EXIT

Exit the debugging session.

EXIT

When you are debugging a system remotely, the EXIT
command disconnects EDEBUG from the system but
sets up a means for you to reconnect later, with any
processes under debugger control in the same states as
when you disconnected. Breakpoints, for example, are
preserved.

CTRL/Z is also interpreted as EXIT.

GO

Proceed with the execution of the session. If an address
is specified, execution continues at that address, with
no guarantees about the integrity of the program state.

GO address-expression

HALT

Stop the current or specified process by raIsIng an
asynchronous exception. If the process is currently
under the debugger's control or does not handle the

15-43 Command Summary

exception, it enters the debugger command state;
otherwise, it may abort. The optional nodename is used
to identify a process on a different node, if you are
debugging several at once.

HALT process-specifier nodename

The debugger performs the HALT operation with a
V AXELN kernel service that signals the target
process. Once the signal takes effect, the de bugger
gains control and the process enters the debug
command wait state.

Note: There are several states in which a process
cannot be halted:

• The process is not runnable because of the
scheduling state of the system; the process must
execute to halt.

• The process is waiting for an ACCEPT-CIRCUIT
or CONNECT-CIRCUIT to complete.

• The process is in an implicit wait state during a
SEND to a circuit that is full.

• The process is a kernel mode process running at an
elevated Interrupt Priority Level (lPL).

In each of these cases, the debugger gains control when
the process leaves the blocking state.

HELP

Display the command and syntax summary.

HELP

In EDEBUG, the HELP items are the same as in the
VMS HELP command.

Debugging 15-44

IF

Conditionally execute a one-line command based ou. the
value of a Boolean expression. (Commands created with
SET COMMAND can be used.)

IF boolean-expression THEN one-line-command

Examples of the IF command:

Edebug 4,5> IF a = (123 + rO) THEN DEPOSIT C : = 25

Edebug 4,5> IF a = (123 + rO) THEN dump-symbols

See the LEAVE command description for other
examples of the IF command.

LEAVE

Leave the execution of a substituted command. LEAVE
is useful as the one-line command of IF.

LEAVE

Examples of the IF command using LEAVE:

Edebug 4,5> IF a = (123 + rO) THEN LEAVE

Edebug 4,5> IF a = (123 + rO) LEAVE

LOAD

Install a new program image into the target system.
The new program image can then be executed using the
CREATE JOB command. This command is a simplified
interface to the program load facilities and is not
available in the local debugger.

LOAD Idebug Ikerne/[= nJ Ijob-priority = n
program-name file-name node

Note: The program image file is opened in the context
of the target system and not the context of the

15-45 Command Summary

EDEBUG debugger. Be careful to specify an appropri
ate file name for that context.

PREDECESSOR

Move the current session's reference scope a given
number of call frames ~~back" in the calling order. If the
expression is omitted, 1 is the default. For example,
PREDECESSOR 1 allows you to use variable names or
other names declared in the routine that called the
current routine. The context in which the session is
currently stopped is not affected.

PREDECESSOR expression

SEARCH

Search the current program source for the specified
string or identifier. The command argument target is
either a string or an identifier. The debugger displays
the source line or lines containing occurrences of the
se.arch target.

If the ALL qualifier is used, all occurrences in the range
are displayed. NEXT is the default and displays the
first occurrence in the specified range.

SEARCH INEXT range target

SEARCH I ALL range target

If either range or target is specified, the other must be.
If they are omitted, the search applies to the module
most recently searched, if any, beginning at the first
line after the one most recently displayed and
continuing to the end of that module. Otherwise, the
range is specified any of the following ways:

Debugging

module Search the named module begin
ning at its first line and continuing
to its end.

15-46

module\line Begin the search at the specified
line number in the named module.

module\line:line Search the specified range of line
numbers in the specified module.

I ine Begin the search at the given line
number in the current module.

line:line Search the specified range in the
current module.

Examples of the SEARCH command:

Edebug 4,5> SEARCH tstedebug\ 1 : 100 'a'
Module TSTEDEBUG
5: procedure macsub; separate;

Edebug 4,5> SEARCH 1 : 100 var
Module TSTEDEBUG
6: function foraddf(var ii,jj : integer);

Edebug 4,5> SEARCH
Module TSTEDEBUG
7: procedure foradds(var ii,jj : integer);

Edebug 4,5> SEARCH fAll
Module TSTEDEBUG
20: var in-out-str : string(< k»)
1 00: var param-string : string(< k »)

SET BREAK

Set a breakpoint at the specified address. Optionally
specify a single command to be executed when the
break occurs. Commands defined by SET COMMAND
are allowed here.

The JOB and ALL qualifiers both specify that the
breakpoint is valid for the entire job; otherwise, the
breakpoint affects only the current session's process.

The KERNEL qualifier (not available from EDEBUG)
sets a breakpoint in the kernel's breakpoint data base;

15-47 Command Summary

•

it can be used only with kernel mode programs, and no
command can be specified. The breakpoint is set in the
process memory and in the kernel's copy of the program
running in that process.

KERNEL can be used to set breakpoints in interrupt
service routines. Because the breakpoint is set in the
kernel's copy of the program, you can set breakpoints in
interrupt service routines merely by referring to their
program address space; the command takes care of the
rest. Note that the breakpoint occurs when your
program is in the kernel, not necessarily in the context
of the program (see the SET SESSION command).

SET BREAK IJOB address-expression DO
(one-line-command)

SET BREAK IALL address-expression DO
(one-line-command)

SET BREAK IKERNEL address-expression

Note: When a debugger symbol table is present,
EDEBUG takes note if you set a breakpoint at a VAX
procedure entry point and places the breakpoint at that
procedure'S first instruction. For example,

SET BREAK writeroutine

automatically sets the breakpoint at the address of
writeroutine + 2, the first instruction. If there is no
symbol table, you must do this yourself.

Examples of using the SET BREAK and CANCEL
BREAK commands:

Edebug 4,5> SET BREAK 500 + 512
Edebug 4,5> SET BREAK sym-tbl\ %Iine 125
Edebug 4,5> SET BREAK sym-tbl\ % label not-found
Edebug 4,5> SET BREAK sym-tbl\srch-rtn\srch-struct
Edebug 4,5> SET BREAK %Iine 25

Debugging 15-48

Edebug 4,5> EXAMINE/INSTRUCTION %x4000
4000: MOVAB - 10(fp), - 14(fp)
Edebug 4,5> SET BREAK.

Edebug 4,5> CANCEL BREAK symbol-not-found
Edebug 4,5> CANCEL BREAK %Iine 25

SETCOMMAND

Create a command for use during a session. The
optional text one-line-command is substituted for
every subsequent occurrence of identifier in a command
context. If the one-line command is omitted, you are
prompted for a sequence of debugger commands, which
you terminate by typing an empty line. Then, the entire
sequence is performed when the command identifier
appears in a command context.

SET COMMAND identifier DO (one-line-command)

You can redefine commands at any point. For example:

Edebug 4,5> SET COMMAND rOplus10 do(rO + 10)
Edebug 4,5> SET COMMAND r1plus10
Command> r1 + 10
Command>
Edebug 4,5> rOplus10
100 (00000064)

Edebug 4,5> SHOW COMMAND r1plus10
R1PLUS10 - r1 + 10

Edebug 4,5> SET COMMAND rOplus 10 doO ! erase
rOplus10 command

SET CONTROL

This command reverses the action of the CANCEL
CONTROL command.

SET CONTROL

15-49 Command Summary

SET EXCEPTION BREAK

This command causes the associated session in the
debugger to stop when any exception occurs. The
debugger then gains control before the kernel searches
for a programmed exception handler. This differs from
the default action, which is to give the debugger control
only after no programmed exception handlers have
been found. When the session stops at an exception
break, a GO command will continue the search for an
exception handler.

SET EXCEPTION BREAK

This state can be cancelled with the CANCEL
EXCEPTION BREAK command.

SET LOG

Enable or disable logging of this session in the specified
file.

SET LOG file-specification

If the file specification is omitted, logging is canceled. If
you specify a new file during a session, the old one is
closed and the new one recei ves further logging
information.

This command is available only in EDEBUG.

SET MODE

This command is used to change several debugger
command modes. Any number of the modes can be
changed in a single SET MODE command. The
complementary SHOW MODE command can be used to
see exactly what the state of the settable debugger
modes is.

Debugging 15-50

Default display radix:

SET MODE DECIMAL

SET MODE HEXIDECIMAL

SET MODE OCTAL

Default Floating-Point Constant Precision

Either of the following commands sets the default
floating-point precision to the VAX DOUBLE floating
data type. This data type has a precision of about 16
decimal digits in the range: .29E -38 to 1.7E38.

SET MODE D-FLOA T

SET MODE DOUBLE

Either of the following commands sets the default
floating-point precision to the VAX GRAND floating
data type. This data type has a precision of about 15
decimal digits in the range: .56E -308 to .9E308.

SET MODE G-FLOA T

SET MODE GRAND

Note that the GRAND data type is not present on some
V AX models. For this reason, the default floating-point
mode is DOUBLE.

Substituted Command Verification

The command verify mode controls whether or not
substituted commands and commands from command
files are displayed as they are executed.

SET MODE VERIFY

SET MODE NOVERIFY

15-51 Command Summary

Step Actions

The step modes control how far the debugger steps for a
single step command and what happens when a step is
done at the site of a subroutine call. The SET MODE
command can be used to firmly set the modes, and each
of these modes can also be specified temporarily as a
qualifier to the STEP command. These modes can also
be changed by the SET STEP command.

Either of the following commands set the step unit to a
program source line. This mode is only valid if a
program's symbol table is available. Normally, the
debugger sets the step unit to LINE if the session is
stopped in a section of the program written in a higher
level language; otherwise, the unit is set to
INSTRUCTION.

SET MODE LINE

SET MODE SOURCE

To set the step unit to instructions use:

SET MODE INSTRUCTION

When a STEP command is given and a subroutine call
is encountered, you have the option to step ((into" or
((over" the subroutine. In both cases, the subroutine is
executed. ((Over" simply means that you do not get a
chance to look at the inner workings of the subroutine.
The default is ((over."

SET MODE INTO

specifies that you want to step ((into" a subroutine.

SET MODE OVER

specifies that you want to step ((over" subroutines.

Debugging 15-52

Prompting

Because the debuggers use the same terminal as the
console I/O, it is sometimes necessary to get the
debugger prompts out of the way. The following
command tells the debugger to not prompt until a
CTRL/C is typed, freeing the terminal for use by
another program.

SET MODE NOPROMPT

Examples

Examples of SET MODE and SHOW MODE:

Edebug 4,5> SET MODE OCTAL
Edebug 4,5> 1234
1234 (0000029C)

Edebug 4,5> SET MODE HEX
Edebug 4,5> 1234
00001234

Edebug 4,5> SHOW MODE
Radix is decimal.
Floating conversion mode is double.
Step over routine calls by line.
Automatic commands are not verified.

SET PROGRAM

Inform the debugger that this session's job is running a
copy of the specified program image. This causes the
debugger to copy the image's symbol-table information
into its memory and forget the current program, if any.
The debugging mode is changed automatically based on
the module in which the session is stopped; the radix is
set appropriately for the source language.

SET PROGRAM image-file-specification

15-53 Command Summary

SET PROGRAM is done automatically when a session
starts with a debuggable program and EDEBUG is in
use. An error message is displayed if the indicated file
does not exist. If no file is specified, the current symbol
table information is discarded.

This command affects all sessions associated with the
current job. The SET PROGRAM command is seldom
necessary, except when the debugger failed to access
the program's image fie because it has been moved or
because the file's protection prevents access. If the
image file is not specified, the program information for
the current session is not retained.

SET RETURN BREAK

Stop the session when the current routine returns. This
command enables a temporary breakpoint that is
encountered when the current routine is about to
return.

SET RETURN BREAK

This state cannot be cancelled with the CANCEL
BREAK command.

SET SESSION

Change the session to another known debugging
session. The state of the abandoned session remains the
same. The optional nodename is used to identify a
process on a different node, if you are debugging several
at once.

The GO qualifier, in effect, gives the GO command to
the current session and then changes the session. The
KERNEL qualifier starts the kernel debugger.

SET SESSION /GO process-specifier nodename

SET SESSION /KERNEL

Debugging 15-54

SET STEP

Change the defa ul t action of steps with respect to
procedures and functions. INTO and OVER determine
whether STEP steps ((into" or ((over" a routine.
SOURCE, LINE, and INSTRUCTION determine the
size of the step. (SOURCE and LINE have the same
meaning.)

The default behavior of the STEP command, unless
modified by SET STEP, is to step ((over" one line.

SET STEP INTO LINE

SET STEP OVER LINE

SET STEP INTO INSTRUCTION

SET STEP OVER INSTRUCTION

SET STEP INTO SOURCE

SET STEP OVER SOURCE

See the SET MODE command description for more
information on step actions.

SETTIME

Set the system time on the specified node. The time
string must be in the standard format for absolute
times Cdd-mmm-yyyyohh:mm:ss.cc').

SET TIME time-string node-name

SHOW BREAK

Display information about all breakpoints.

SHOW BREAK

15-55 Command Summary

For example:

Edebug 4,5> SHOW BREAK
Module name Routine or Psect name Line Rei PC AbsPC

TSTEDEBUG TSTEDEBUG 345 000002F1 OOOOOFBF

TSTEDEBUG TSTEDEBUG 353 0000032700000FF5

TSTEDEBUG TSTEDEBUG 356 0000034B 00001019

TSTEDEBUG TSTEDEBUG 359 0000036FOOO0103D

SHOW CALLS

Display the call history for the current variable
reference scope.

SHOW CAllS

For example:
I"

Edebug 4,5> SHOW CAllS
Module name Routine or Psect name

TSTEDEBUG TSTEDEBUG

TSTEDEBUG TSTEDEBUG

SHOW COMMAND

Line Rei PC Abs PC

502 0000020200000EDO

217 00000002 OOOOOCDO

00000000800024F5

Display one or all commands defined by SET
COMMAND.

SHOW COMMAND identifier

SHOW COMMAND fAll

See the SET COMMAND command description for an
example of SHOW COMMAND.

Debugging 15-56

SHOW JOB

Display brief information about all processes in a job.
The optional nodename is used to identify a different
node, if you are debugging several at once. The job can
be specified by name or number; if no job is specified,
the processes in the current job are displayed.

SHOW JOB string nodename

SHOW JOB identifier nodename

SHOW JOB integer nodename

Examples of SHOW JOB:

Edebug 4,5> SH JOB 6
Job 6, program TESTLOAD, priority 16 is waiting.
Shared read/write size: 1024.
Process 1, priority 8, in debug command wait.

Stack size: 5632. CPU time: 000:00:00.02
Accumulated CPU time for this job: 000:00:00.02

Edebug 4,5> SH JOB testload
Job 6, program TESTLOAD, priority 16 is waiting.
Shared read/write size: 1024.
Process 1, priority 8, in debug command wait.

Stack size: 5632. CPU time: 000:00:00.02
Accumulated CPU time for this job: 000:00:00.02

SHOW MESSAGE

Display the text associated with the expression value's
exit status.

SHOW MESSAGE expression

For example:

Edebug 4,5> SHOW MESSAGE %x7c3c
Bad parameter value

15-57 Command Summary

SHOW MODE

Display current operating modes of the debugger
(stepping defaults, radix, and floating-point conversion
type).

SHOW MODE

See the SET MODE command description for an
example of SHOW MODE.

SHOW MODULE

Display information about the program associated with
the current session.

SHOW MODULE

For example:

Edebug 4,5> SHOW MODULES
Program- SEA$: [DEBUG.TEST]TSTEDEBUG.EXE;62

Module name Symbols Language Source
TSTEDEBUG Yes Pascal Yes
FORADDF Yes FORTRAN No
FORADDS Yes FORTRAN No
PAS5UBS Yes Pascal Yes
MAINO No Macro No
PLiSUB Yes PUI Yes
BINARY Some Bliss Yes
PAS$INPUT No Macro No
PAS$OUTPUT No Macro No

SHOW PROCESS

Display the system state of a job or a particular process
in ajob. The ALL qualifier displays alljobs. If neither is
specified, the state of the process associated with the
current debugging session is displayed. The optional

Debugging 15-58

nodename is used to identify a different node, if you are
debugging several at once.

SHOW PROCESS process-specifier nodename

SHOW PROCESS fALL nodename

For example:

Edebug 4,5> SH PROCESS
Job 6, program TESTlOAD, priority 16 is waiting.
Shared read/write size: 1024.
Process 1, priority 8, in debug command wait.

Stack size: 5632. CPU time: 000:00:00.02

Edebug 4,5> SH PROCESS 2,4
Job 2, program XQDRIVER, priority 1 is waiting.
Shared read/write size: 30720.
Process 4, priority 8, is waiting.

Stack size: 2048. CPU time: 000:00:00.07

SHOW PROGRAM

Display the system's information about an installed
program.

SHOW PROGRAM name

SHOW PROGRAM fAll

For example:

Edebug 4,5> SH PROGRAM testload
Program: TESTlOAD Debug User mode

Default job priority: 16 Default process priority: 8
Kernel stack size: 8 User stack size: 2
F i I en a me: "SEA$: [D E 8 U G. TEST]TESTlOAD. EXE; 75"

15-59 Command Summary

SHOW SESSION

Display the debug state of one or ALL debugging
sessions. If neither is specified, the state of the current
session is displayed. The optional nodename is used to
identify a different node, if you are debugging several
at once.

SHOW SESSION process-specifier nodename

SHOW SESSION fALL nodename

For example:

Edebug 4,5> SHOW SESSION 5,1
Job 5, process 1, program TSTEDEBUG needs attention.
Module TSTEDEBUG
216:

> >217: BEGIN
218: gbldef-i: = 4;
219: gbldef-j : = 12345;

SHOW SYMBOL

This command provides a way to see what EDEBUG
knows about a particular name in the current variable
reference scope. It displays the debugger's symbol-table
information for the specified symbol. If a path name is
supplied without an identifier, all the symbols defined
at the end of that path are shown. If an identifier is
given without a path name, the name from the current
scope is shown.

The DEFINE qualifier displays the information about a
debugger-defined symbol. If no identifier is supplied
wi th the qualifier, all of the defined session variables
are shown.

SHOW SYMBOL pathname identifier

SHOW SYM BOL fDEFINE identifier

Debugging 15-60

Examples:

Edebug 4,5> SHOW SYMBOLS
Outer Scope:
1 GBLDEF-I

Type: Integer
Size: 1 Longword
Located at add ress 00000204

1 GBLDEF-J
Type: Integer
Size: 1 Longword
Located at address 00000200

Routine: TSTEDEBUG
1 APTR

Type: Pointer to anytype
Size: 1 Longword
Located at - 0000 175C(FP)

1 ARR-ITEM-10
Type: Array of Integer
Size: Not determined at compile time
Located at - 0000 15D8(FP)

Edebug 4,5> SHOW SYMBOLS gbldef-i
Outer Scope:
1 GBLDEF-I

Type: Integer
Size: 1 Longword
Located at add ress 00000204

15-61 Command Summary

Edebug 4,5> SHOW SYMBOLS IDEFINE
$: Relocation
NIL: Relocation
III: Integer
PTR 1: pointer to Integer
S 1: String(10)
RELO: Relocation

SHOW SYSTEM

Display the memory, CPU time, and jobs of the system.
The optional nodename is used to identify a different
node, if you are debugging several at once.

SHOW SYSTEM nodename

For example:

Edebug 4,5> SH SYSTEM
Available: Pages: 1335, Page table slots: 47, Pool blocks: 216
Time since SET TIME: Idle: 000:00:23.10 Total: 000:00:23.73
Time used by past jobs: 000:00:00.03

Job 2, program XQDRIVER, priority 1 is waiting.
Job 3, program EDEBUGREM, priority 3 is running.
Job 4, program DU DRIVER, priority 4 is waiting.
Job 5, program FALSERVER, priority 16 is waiting.
Job 6, program TESTLOAD, priority 16 is waiting.

SHOWTIME

Display the time on the current system or a specified
node.

SHOW TIME nodename

Debugging 15-62

SHOW TRANSLATION

Display the translation (PORT object value) associated
with the given name on the given node. Ifno node name
is specified, the default is the node associated with the
current session. A quoted string can be used in lieu of
an identifier to allow characters that are not valid in
identifiers.

SHOW TRANSLATION identifier nodename

SHOW TRANSLATION string nodename

For example:

Edebug 4,5> SHOW TRANSLATION console
Node: AA-00-04-00-EO-20, Network: 0, Object: 131316

000020EO 000400AA 00000000 000200F41 00000000 I

Edebug 4,5> SHOW TRANSLATION 'console'
Node: AA-00-04-00-EO-20, Network: 0, Object: 131316

000020EO 000400AA 00000000 000200F41 00000000 I

Edebug 4,5> SHOW TRANSLATION console sea4
Node: AA-00-04-00-EO-20, Network: 0, Object: 131316

000020EO 000400AA 00000000 000200F41 00000000 1

STEP

Execute the next instruction or line. This command
executes the single unit and returns control to the user.
If the next instruction or line calls a procedure or
function, STEP/INTO will stop in the routine;
STEP/OVER will stop after the routine's return. The
default, unless modified by the SET STEP command, is
to step over one line.

If an associated program has line number information,
STEP/LINE (or STEP/SOURCE, since SOURCE and
LINE have the same meaning) steps over all the

15-63 Command Summary

instructions associated with the current line. If there is
no associated program or if the session is not at a point
where there is a line number, then only one instruction
is stepped over.

See the SET MODE command description for more
information on step actions.

In any case, the INSTRUCTION qualifier can be used
explicitly to step over one instruction.

STEP

STEP /INTO /INSTRUCTION

STEP lOVER /INSTRUCTION

STEP IINTO ILINE

STEP lOVER ILINE

STEP /INTO ISOURCE

STEP lOVER ISOURCE

All forms of STEP accept an optional expression; for
example, STEP 10, which repeats the STEP command 10
times.

SUCCESSOR

Move the current session's variable reference scope a
given number of call frames ~~forward" in the calling
order (following use of the PREDECESSOR command).
If the expression is omitted, 1 is the default. For
example, SUCCESSOR 1 allows you to use variable
names or other names declared in the next routine
called from the current routine. The context in which
the session is currently stopped is not affected.

SUCCESSOR expression

Debugging 15-64

TYPE

Display the source program lines in a specified range.
The range is given by providing a module name, a
backslash, and one or two line number values.

If the module name and backslash are not given, the
module where the session's variable reference scope is
set or the last module used in a TYPE or SEARCH
command is assumed. If no line numbers are given, the
line after the last TYPE or SEARCH command is
displayed.

TYPE module-name \ expression: expression

Examples of the TYPE command:

Edebug 4,5> TYPE 1
Module TSTEDEBUG
1: module tstedebug;

Edebug 4,5> TYPE 1 : 5
Module TSTEDEBUG
1: module tstedebug;
2:
3: VAR gbldef-i,gbldef-j : integer;
4:
5: procedure macsub; separate;

Edebug 4,5> TYPE passubs\ 1 : 6
Module PASSUBS
1: MODULE passubs;
2: procedure passubs(i,j : integer; k : integer);
3:
4: begin
5: k: = i + j;
6: end;

15-65 Command Summary

UNLOAD

Remove a previously loaded program image from the
system. This command is not available in the local
debugger.

UNLOAD program-name node

Debugging 15-66

Appendix A
VAX-11/7S0 Microcode Patch

System Revision Level 5 of the VAX-ll/750 and
VAX-ll/751 computers allows for the patching of the
machine's microcode control store. Without the patch,
the 11/750 will run, but not at the latest revision level.

The microcode control store patches must be loaded on
system power-up. To do this in V AXELN, you must
include a special program in each system you load on to
the computer. The program must be compiled on site to
take advantage of the latest patch set.

Note: If your development system is not a VAX-l1/750,
you may have to copy the current patch file into the
system's SYS$SYSTEM directory. Once built into a
V AXELN system, the program will continue running
and reload the microcode in the event of a power
failure.

If in doubt about the revision level of your machine,
check with your local DIGITAL Field Service
representative.

Procedure

Perform the following procedures in this order; they
must be performed on a V AX-ll/750 running
VAXNMS:

1. Set the default directory to ELN$:

$ SET DEFAULT ELN$

A-I

2. Define the command to convert the patch file to an
object file:
$ SET COMMAND DATATOBJ

3. Create the patch object file:

$ DATATOBJ SYS$SYSTEM:PCS750.BIN
PCS750.0BJ

4. Link the resultant object file with the 11/750
microcode patch utility:

$ LINK P750UCODE + PCS750.0BJ + RTLSHARE/LlB
+ RTULIB

5. Include P750UCODE.EXE with a System Builder
program description, with the following
characteristics:

Init required Yes
Mode Kernel

Job priority 1
Powerfailure exception Yes

VAX-111750 Microcode Patch A-2

Appendix B

Kernel Procedures
The procedures in Table B-1 are performed by the
V AXELN kernel.

Internal Call Notation

The following form is shown for constructing calls from
languages other than V AXELN Pascal. Each argument
has the form:

name.access_type + data_type.passin9_mechanism + parameter_form

The components are defined below.

name:
KER$ procedure name

access-type:
w written by the procedure
r read by the procedure

data-type:
Ie longword containing a completion code
I signed longword
lu unsigned longword (including EVENT or

other object values except PORT)
q signed quadword (64 bits; time values)
ou unsigned octaword (128 bits; PORT values)
a virtual address (pointer values)
t character-coded text string
vt varying character-coded text string
zem entry mask of unbound

B-1

passing-mechanism:
r by reference
v by immediate value
d by descri ptor

parameter-form: (usually null, indicating a scalar data
item of the given type)

s address of a string descriptor
a array reference.

Arguments in square brackets ([]) are optional; omitted
arguments must be specified with commas or zeros, as
applicable to the programming language in use (the
argument list cannot be shortened). Arguments that
can be repeated are followed by an ellipsis C ..).

Kernel Procedures B-2

Call Format

KER$ACCEPT _CIRCUIT(
[status. w le.r],
source_port.rou.r,
[connecLport.rou.r] ,
[full_error.rlu.v],
[accepLdata.rvt.r],
[connecLdata. wvt.r]
)

KER$ALLOCATE_MAP(
[status.wlc.r],
register.wa.r,
number.wl.r,
count.rl.v,
device_object.rlu.v,
[spLaddress. wa.r]
)

KER$ALLOCATE_MEMORY(
[status.wlc.r],
mempointer.wa.r,
size.rl.v,
[virtual_address.ra.v],
[physical_address.ra. v]
)

KER$ALLOCATE-PATH(
[status. w lc.r],
register.wa.r,
number.wl.r,
dev_value.rlu.v
)

Table 8-1. Kernel Procedures

Meaning

Establish circuit between source_port and originator of connection request;
if full_error is disabled (FALSE, default), SEND will wait implicitly when
the partner port is full (otherwise, an error status is returned by SEND);
varying strings supply optional data to the originator (accept_data) or receive
data (connect_data). The optional status receives the completion status, and
the optional connect_port specifies a different port on which to make the
actual connection.

Allocate count UNIBUS or QBUS map registers, returning first register
number, for DEVICE value device_object, and return pointer to first in register.
The optional status receives the completion status, and the optional spt_address
receives a pointer to the system page table base.

Allocate size bytes of memory, optionally beginning at virtual_address or
physical_address, and return in mempointer. The optional status receives the
completionsta tus.

Allocate UNIBUS buffered datapath for DEVICE dev_value, returning register
number, and pointer to datapath register in register.

B-3 Kernel Procedures

Call Format

KER$CLEAR-EVENT(
[status. wlc.r],
event.rlu.v
)

KER$CONNECT_CIRCUIT(
[status. wlc.r],
source_port.rou.r,
[destina tion_port.rou.r],
[destination-name.rt.ds],
[full_error.rlu.v],
[connecLdata.rvt.r],
[accepLdata. wvt.r]
)

KER$CREATE-AREA(
[status. wlc.r],
area-variable. wIu.r,
data_pointer. wa.r,
areB-size.rlu.v,
area-name.rt.ds,
[virtual_address.ra. v]
)

Kernel Procedures

Table 8-1. Continued'·-

Meaning

Set state of event to EVENT$CLEARED. The optional status receives the
completion status.

Request circui t connection between source_port and destination_name or
destination_port; if full_error is disabled (FALSE, default), SEND will wait
implicitly when the partner port is full (otherwise, an error status is returned
by SEND); varying strings supply optional data to the destination
(connect_data) or receive data when the destination accepts (accept_data).
(The destination must be specified either by NAME or PORT value.) The
optional status receives the completion status.

Create a new area (of size area_size) or map an existing area of memory with a
unique area_name and return the AREA value in area_variable. The variable
data_pointer receives a pointer to the beginning of the allocated memory. The
optional status receives the completion status, and the optional virtual_address
specifies the exact PO base address.

B-4

Call Format

KER$CREATEJlEVICE(
[status. wlc.r],
device-Ilame.rt.ds,
[relative_vector.rl.v],
[service-I"ou tine.rzem.r],
[region_size.rlu.v],
[region_pointer. wa.r],
[register _poin ter. wa.r],
[adapter_pointer. wa.r],
[vector _{-loin ter. wa.r],
[interrupLpriority.wlu.r],
device_variable.wlu.ra,
device_count.rlu.v,
[pwr-isr.rzem.r]
)

KER$CREATE-EVENT(
[status. wlc.r],
event. wlu.r,
ini tial_sta te.r 1. v
)

KER$CREATE....JOB(
[status. wlc.r],
job_port. wou.r,
program-Ilame.rt.ds,
[exiLport.rou.r],
[argumen t.rt.ds ...]
)

Table 8-1. Continued

Meaning

Connect to device_name interrupt and return the DEVICE value in
device_variable. The relative_vector is an integer from 1 (default) to 128.
Interrupt service routines can be supplied for interrupt handling
(service_routine) and power recovery handling (pwr _isr). The variable
region_pointer receives a pointer to the communication region; its size is
supplied by region_size. The variables register _pointer and adapter_pointer
receive pointers to the first device control register and first adapter control
register, respectively; vector _pointer receives a pointer to the interrupt vector.
The variable interrupt_priority receives the interrupt priority level of the device.
The device_variable can be a single DEVICE variable or an array of up to 16
elements; the number of elements is specified in device_count. The optional
status receives the completion status.

Create an event with initial_state EVENT$SIGNALED or EVENT$CLEARED,
and return EVENT value in event. The optional status receives the completion
status.

Create ajob running program_name, with optional argument(s) supplied to the
program. The variable job_port receives the PORT value of the new job's
job port. The value exit_port supplies the PORT value of the port that receives
notification of the job's termination. The optional status receives the completion
status.

B-5 Kernel Procedures

Call Format

KER$CREATE-MESSAGE(
[status.wlc.r],
message_variable. wlu.r,
data-pointer. wa.r,
message_size.rlu.v
)

KER$CREATE~AME(

[status.wlc.r],
name_variable. wlu.r,
string.rt.ds,
port.rou.r,
scope.rl.v
)

KER$CREATE.JlORT(
[status. wlc.r],
porL variable. wou.r,
[message_limi t.rI. v]
)

KER$CREATE.JlROCESS(
[status. wlc.r],
process-variable. wlu.r,
rou tine.rzem.r,
[exiLvariable.wlc.r],
[argument.rlu.v ...]
)

Kernel Procedures

Table 8-1. Continued

Meaning

Create a message with a buffer of size message_size, return a pointer to the
buffer in data_pointer, and return the MESSAGE value in message_variable.
The optional status receives the completion status.

Make string the name of port, with scope NAME$LOCAL,
NAME$UNIVERSAL, or NAME$BOTH, and return the NAME value in
name_variable. The optional status receives the completion status.

Create a message port able to hold up to message_limit (default 4)
messages, and return the PORT value in port_variable. The optional status
receivesthe completion status.

Create a subprocess running routine, with optional argument(s) supplied to the
subprocess, and return the PROCESS value in process_variable. The optional
status receives the completion status, and the optional exit_variable receives the
final (exit) status of the subprocess.

B-6

Call Format

KER$CREATE_SEMAPHORE(
[status. wlc.r],
semaphore_variable . wI u.r,
ini tial_coun t.r 1. v,
maximum-coun t.rI. v
)

KER$CURRENT -PROCESS(
[status.wlc.r],
process-variable.wlu.r
)

KER$DELETE(
[status.wlc.r],
system-value.rlu. v
)

Table 8-1. Continued

Meaning

Create a semaphore with the specified initial_count and maximum_count,
and return the SEMAPHORE value in semaphore_variable. The optional status
receives the completion status.

Return the value of the current process in process_variable. The optional status
receives the completion status.

Delete the AREA, DEVICE, EVENT, MESSAGE, NAME, PORT, PROCESS,
or SEMAPHORE value supplied by system_value from the system. The optional
status receives the completion status.
Note: PORT values are octawords passed by reference (porLvalue.rou.r).

KER$DISABLE-ASYNCH-EXCEPTION(
[status.wlc.r]

Disable delivery of asynchronous exceptions to the calling process. The
optional status receives the completion status.

)

KER$DISABLE_SWITCH(
[status. w lc.r]
)

KER$DISCONNECT _CIRCUIT(
[status. w lc.r],
port.rou.r
)

Disable process swi tching for the job from which it is called. The optional status
receives the completion status.

Break circuit, where port is the one in the current job. The optional status
receives the completion status.

KER$ENABLE-ASYNCH-EXCEPTION(
[status. w lc.r]

Allow delivery of asynchronous exceptions to the calling process. The
optional status receives the completion status.

)

B-7 Kernel Procedures

Call Format

KER$ENABLE_SWITCH(
[status. w lc.r]
)

KER$ENTER-KERNEL_CONTEXT(
[status.wlc.r]
routine.rzem.r,
argumenLblock.rlu.ra
)

KER$EXIT(
[status. wlc.r],
[exiLstatus.rlc.v]
)

KER$FREE-MAP(
[sta tus. w lc.r],
count.rlu.v,
number.rlu.v,
device_object.r I u. v
)

KER$FREE-MEMORY(
[status. w lc.r],
size.rlu.v,
virtual_address.ra. v
)

KER$FREE-PATH(
[status. wlc.r],
number.rlu.v,
device.rlu.v
)

Kernel Procedures

Table 8-1. Continued

Meaning

Resume process switching for the calling job. The optional status receives the
completion status.

Call routine in kernel mode, with argument_block supplying the address of the
VAX argument list to be passed to the routine; the argument list is a block of
longwords in standard VAX format: a longword containing the argument count,
followed by the argument longwords themselves. The optional status receives
the completion status of routine.

End current process, with optional exit_status delivered to creator. The optional
status receives the completion status.

Free count UNIBUS or QBUS map registers, starting with register number,
previously allocated by KER$ALLOCATE_MAP for DEVICE value
device_object. The optional status receives the completion status.

Free size bytes of memory at virtual_address, previously allocated by
KER$ALLOCATE_MEMORY. The optional status receives the completion
status.

Free UNIBUS datapath number, previously allocated for DEVICE device
by ALLOCATEJ> ATH. The optional status receives the completion status.

B-8

Call Format

KE R$ GET_TIME (
[status.wIc.r],
time.wq.r
)

KER$GET_USER(
[status. wIc.r],
[circuit.rou.r],
[username. wvt.r],
[uic.wIu.r]
)

KER$INITIALIZATION-DONE(
[status.wIc.r]
)

KER$JOB-PORT(
[status.wlc.r],
porL variable. wou.r
)

KER$MEMORY _SIZE (
[status. wlc.r],
memory_size.wlu.r,
free_size. w I u.r,
IargesLsize. wlu.r
)

KER$RAISE-DEBUG-EXCEPTION(
[status. wlc.r],
job-id.rlu.v,
procesud.rlu.v
)

Table 8-1. Continued

Meaning

Return current system time in time. The optional status receives the completion
status.

Return username and/or uic of either the calling process or the partner process
connected by a circuit to the caller's port; the PORT value of the partner
process's port is supplied in circuit. The optional status receives the completion
status.

Inform kernel that current process has completed initialization sequence. The
optional st-atus receives the completion status.

Return PORT value of caller's job port in port_variable. The optional status
receives the completion status.

Scan the kernel memory database and return the size of the initial main
memory in memory_size, the size of the current free memory in free_size, and the
size of the largest physically con tiguous block of free memory in largest_size.
The optional status receives the completion status.

Raise the asynchronous exception KER$-DEBUG_SIGNAL in the specified
context. The optional status receives the completion status.

B-9 Kernel Procedures

Call Format

KER$RAISE-EXCEPTION(
[status. wlc.r],
name.rl.v,
[argument.rl.v ...]
)

KER$RAISE-PROCESS-EXCEPTION(
[status. wlc.r],
process.rlu.v
)

KER$RECEIVE(
[status. w lc.r],
message_variable. wlu.r,
pointer_variable.wa.r,
message_size. wlu.r,
source_port.rou.r,
[destination_port. wou.r],
[reply_port. wou.r]
)

KER$RESUME(
[status. wlc.r),
process.rlu.v
)

KER$SEND(
[status.wlc.r),
message.rlu.v,
size.rlu.v,
destination_port.rou.r,
[reply _port.rou.r],
expedite.rlu.v
)

Kernel Procedures

Table 8-1. Continued

Meaning

Raise exception name in the calling process, with additional arguments, if any,
given by argurnent(s). The optional status receives the completion status.

Raise the asynchronous exception KER$-PROCESS-ATTENTION in the
specified process. The optional status receives the completion status.

Receive message from source_port, return its MESSAGE value in
message_variable and a pointer to its data part in pointer _variable. The variable
message_size receives the data area's size in bytes, and the optional status
receives the completion status. The variables destination_port and reply_port
optionally receive the destination port specified by the sender and a port for
replies, respectively.

Resumes a previously suspended process. The optional status receives the
completion status.

Send message to destination_port, specifying the data area's size in bytes
(if specified as -1, the size of the message as created is used), and optionally
specifying a reply_port, and whether (TRUE or FALSE) to expedite the message.
The optional status receives the completion status.

B-IO

Call Format

KER$SET...JOB-PRIORITY(
[status.wlc.r],
priority.rlu.v
)

KER$SET-PROCESS-PRIORITY(
[status.wlc.r],
process.rlu.v,
priority.rlu.v
)

KER$SET-PROTECTION(
[status. wlc.r],
size.rlu.v,
base_address.ra. v,
code.rl.v
)

KER$SET _ TIME (
[status.wlc.r],
absolute_time.rq.r
)

KER$SET_USER(
[status. wlc.r],
username.rvt.r,
uic.rlu.v
)

KER$SIGNAL(
[status. wlc.r],
value.rlu.v
)

Table 8-1. Continued

Meaning

Set priority of current job to priority (0-31, 0 highest). The optional status
receives the completion status.

Set priority of process to priority (0-15, 0 highest). The optional status receives
the completion status.

Set protection of size bytes of memory at virtual base_address to code
(0 for read-only access, 1 for read/write access, 2 for no access). The optional
status receives the completion status.

Set current time to absolute_time (a nonnegative LARGE-INTEGER).
The optional status receives the completion status.

Set the user identity of the current process, specifying the username and uic.
The optional status receives the completion status.

Signal value of type AREA, EVENT, SEMAPHORE, or PROCESS. The optional
status receives the completion status.

B-11 Kernel Procedures

Call Format

KER$SIGNAL_DEVICE(
[status. wlc.r],
dev-Ilumber .rl.v
)

KER$SUSPEND(
[status.wlc.r],
process.r I u. v
)

KER$TRANSLATE-N AME(
[status. wlc.r],
porL variable. wou.r,
string.rt.ds,
scope.rl.v
)

KER$UNWIND(
[status. w lc.r],
newJp.ra.v,
[new_pc.ra.v]
)

KER$W AIT -ALL(
[status. wlc.r],
[wai Lresul t. w l.r],
[time_val ue .rq.r],
[objecLlist.rl u. v .. .]
)

Kernel Procedures

Table 8-1. Continued

Meaning

Signal DEVICE object from interrupt service routine; dev_number supplies
an integer in the range 0-15 identifying the device or element in a device
array to be signaled. The optional status receives the completion status.

Suspend the execution of of process. The optional status receives the completion
status.

Translate string, searching in scope NAME$LOCAL, NAME$UNIVERSAL, or
NAME$BOTH, and return the associated PORT value in port_variable. The
optional status receives the completion status.

Unwind call stack to new location. The target frame pointer is supplied by
new_fp and the new program counter is optionally supplied by new_pc. The
optional status receives the completion status.

Make calling process wait for all AREA, DEVICE, EVENT, PORT, PROCESS,
or SEMAPHORE objects in object_list to satisfy the wait. Zero to four object
values can be specified; the optional wait_result receives a nonzero value if the
objects satisfied the wait or 0 if the procedure timed out. The optional time_value
specifies a time interval or absolute time defining the timeout; the timeout is
irrelevant, and the wait result is nonzero, if the necessary conditions were
satisfied before the call. The optional status receives the completion status.
Note: PORT values are octawords passed by reference (porLvalue.rou.r).

B-12

Call Format

KER$W AIT -ANY(
[status. w lc.r],
[waiLresult.wl.r],
[time_value.rq.r],
[objecLlist.rlu.v ...]
)

Table 8-1. Continued

Meaning

Make calling process wait for any object in object_list to satisfy the wait. If one
or more object value is specified, the optional wait_result receives the argument
number of the object that satisfied the wait or 0 if the procedure timed out.
The optional time_value specifies a time interval or absolute time defining the
timeout; the timeout is irrelevant, and the wait result is nonzero, if the
necessary conditions were satisfied before the call. The optional status receives
the completion status.
Note: PORT values are octawords passed by reference (porLvalue.rou.r).

B-13 Kernel Procedures

Kernel Procedures B-14

Appendix C

Status Values/Exception Names

All kernel procedures have an optional status
parameter that returns the procedure's completion
status. If you do not request the completion status (that
is, if you omit the status parameter from a kernel
procedure call), an exception is raised if the completion
is unsuccessful. The exceptions have the same names as
the corresponding status values (for example,
KER$_NO_SUCH_PROGRAM can be either a status
value or exception name depending on whether you
request the status).

The idea is that you can decide not to check the status
after every call and can, instead, take an exception in
the event of an error. The exception can then be
handled by exception handlers, as explained in Chapter
11, ~~Exception Handling."

Note: To be used in exception handlers, the SS$
exception names must be declared in your program
with the EXTERNAL and VALUE attributes.

Table C-l lists the status values/exception names that
are raised in V AXELN.

C-l

Status ValueslException Names C-2

Name

KER$--BAD_LENGTH

KER$-BAD-MESSAGE_SIZE

KER$-BAD_STACK

KER$--BAD_STATE

KER$_BAD_TYPE

KER$_BAD_ VALUE

KER$_CONNECT-PENDING

Table C-1. Status Values/Exception Names

Source of Exception

Kernel procedures

CREATE....JOB,
CREATE-NAME,
GET_USER

SEND

ALLOCATE procedures,
FREE procedures,
CREATE_DEVICE

RAISE-EXCEPTION,
GOTO, hardware

Circui t procedures,
DELETE, RESUME,
SET_USER

Kernel proced ures

Kernel procedures

ACCEPT_CIRCUIT,
SEND, RECEIVE

Descri pti 0 n

The procedure call specified an incorrect number of
arguments.

A string argument was too long.

The message data is too large to be sent to the destination
port.

A procedure that requires that the caller be
executing in kernel mode was called from user
mode.

The stack size was insufficient during a
RAISE-EXCEPTION call or hardware exception, or the
destination stack frame of a non local GOTO could not be
found.

An object specified in a kernel procedure is in an
invalid state for the attempted operation: a port specified to
CONNECT_CIRCUIT or ACCEPT_CIRCUIT contains
unreceived messages or has an incomplete
CONNECT_CIRCUIT or ACCEPT_CIRCUIT pending; a
port specified to DISCONNECT_CIRCUIT was not
connected; a device specified to DELETE has an interrupt
pending; or a process specified to RESUME is not suspended.
An argument to the procedure has the wrong data type.

An argument to the procedure is out of range or otherwise
invalid.

A CONNECT_CIRCUIT is pending, and the port
cannot be used for another purpose until the connection has
completed.

C-3 Sta tus Values/Exception Names

Name

KER$_CONNECT_TIMEOUT

KER$_COUNT_OVERFLOW

KER$_COUNT _UNDERFLOW

KER$-DEVICE_CONNECTED

KER$_DISCONNECT

KER$-DUPLICATE

KER$-EXPEDITED

KER$-KERNEL_STACK

KER$-MACHINE_CHECK

KER$-NO-ACCESS

KER$-NO_DESTINATION

KER$-NOJNITIALIZATION

KER$-NO-MAP _REGISTER

Status Values/Exception Names

Table (-1. Continued

Source of Exception

CONNECT _CIRCUIT

DISABLE_SWITCH,
SEND, SIGNAL

ENABLE_SWITCH

CREATE-DEVICE

RECEIVE, SEND
CREATE_NAME

RECEIVE

Software exception

Hardware exception
1{ernelprocedures

CONNECT_CIRCUIT

Description

A CONNECT_CIRCUIT request was not accepted by the
destination in the timeout limit. (The connect circuit
timeout can be set with the System Builder.)

The SIGNAL procedure was called for a semaphore already
at its maximum value, or the SEND procedure was called for
a port containing its limit of unrecei ved messages.

The ENABLE_SWITCH procedure was called more times
than the DISABLE_SWITCH procedure was called.

The device named in a CREATE_DEVICE procedure call is
already connected to a DEVICE data item.

The circui t was disconnected by the partner process.

The CREATE_NAME procedure was called with a name
string that duplicates an existing name.

The procedure completed successfully, and the received
message is an expedited message.

The kernel stack is insufficient in size or the kernel stack
pointer is invalid.

The processor detected a hardware failure.

An argument specified in a kernel procedure call is not
accessible by the calling program; for example, an output
argument is a variable with the READONLY attribute.

Neither a destination PORT value nor a destination NAME
value was specified in a CONNECT_CIRCUIT procedure
call.

INITIALIZATION_DONE Nojob initialization was specified when the program was
added to the system by the System Builder.

ALLOCATE_MAP No free UNIBUS or QBUS map registers are currently
available. There are 496 map registers per UNIBUS or
QBUS.

C-4

Name

KER$..NO..MEMORY

KER$..NO..MESSAGE
KER$_NO_OBJECT

KER$..NOJlATH-REGISTER

KER$--NOJlOOL

KER$..NO_STATUS

KER$..NO_SUCHJ>EVICE

KER$..NO_SUCH..NAME

Table C-1. Continued

Sou rce of Exception

ALLOCATE..MEMORY,
CREATE-AREA,
CREATE.....JOB,
CREATE_MESSAGE,
CREATEJlROCESS

RECEIVE

All CREATE procedures,
RECEIVE

CREATE.....JOB,
CREATEJlROCESS

ALLOCATEJ> ATH

All CREATE procedures

C REATE JlORT

CREATEJlROCESS

CREATEJ)EVICE

CONNECT_CIRCUIT,
TRANSLATE_NAME

Description

No free pages of physical memory are currently
available.

No unreceived messages are currently in the port.

No job object table entries are currently available.
There are a maximum of 1024 entries per job; that is, only
1024 data itmes of the system types can exist at once in a job.

No free process page table is currently available.
The number of process page tables can be set with the
System Builder.

No free UNIBUS adapter datapath register is currently
available. There are three buffered datapaths per
VAX-11/750 UNIBUS adapter.

No system dynamic memory is currently available. The size
of the system dynamic memory pool can be set with the
System Builder.

No system port table entries are currently available. The
size of the system port table can be set with the System
Builder.

The process was deleted and so no exit status value is
available to return.

The device name specified in a CREATE..DEVICE call
cannot be found in the list of devices created with the System
Builder.

The translation for a name cannot be found.

C-5 Status Values/Exception Names

Table C-1. Continued

Name Source of Exception

KER$.-NO_SUCH..PORT Circuit procedures
SEND, RECEIVE,
SET_USER

KER$_NO_SUCH..PROGRAM CREATE...JOB

KER$-NO_SYSTEM-PAGE CREATE_DEVICE

KER$.-NO_ VIRTUAL ALLOCATE-MEMORY,
CREATE-AREA,
RECEIVE

KER$.J>OWER_SIGNAL Asynchronous hardware
exception

KER$.J>ROCESS..A TTENTION Asynchronous software
exception

KER$_QUIT_SIGNAL Asynchronous software
exception

KER$_SUCCESS Kernel procedures

Status Values/Exception Names

Description

No port with the specified value can be found in
the system or network, or the port is not owned by
the current job as required by the procedure.

No program with the specified name can be found in the
program list created with the System Builder.

No free system page table entries are currently available to
map the IJO region.

No free virtual address space is currently
available for the process. The size of process virtual address
space can be set with the System Builder.

System power recovery is in progress.

The procedure KER$RAISE.J>ROCESS-EXCEPTION was
called.

Another process in the job has signaled the current
process with SIGNAL.

The procedure completed successfully.

C-6

Name

SS$-ACCVIO

SS$-BREAK

SS$_CMODUSER

SS$_COMPAT

SS$..DECOVF

SS$.JNTOVF

SS$.JNTDIV

SS$-FLTDIV

SS$-FLTDIV -F

SS$-FLTOVF

SS$-FLTOVF -F

SS$-FLTUND

SS$-FLTUND_F

SS$_OPCCUS

SS$_OPCDEC

SS$-RADRMOD

SS$-ROPRAND

SS$_SUBRNG

SS$_TBIT

Table C-1. Continued

So u rce of Exception

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Run-time operation

Description

Access violation

Breakpoint fault

Change mode to user trap

Compatibility mode fault

Ari thmetic trap, decimal overflow

Arithmetic trap, integer overflow

Arithmetic trap, integer divide by zero

Arithmetic trap, floating/decimal divide by zero

Arithmetic fault, floating divide by zero

Ari thmetic trap, floating overflow

Arithmetic fault, floating overflow

Arithmetic trap, floating underflow

Arithmetic fault, floating underflow

Opcode reserved to customer fault

Opcode reserved to DIGITAL fault

Reserved addressing fault

Reserved operand fault

Arithmetic trap, subscript out of range

T-bit pending trap

C-7 Status Values/Exception Names

Name

ELN$--ADA WI

ELN$--AMBENUMSTR

ELN$--ARGUMENT

ELN$--ARRA YBOUND

ELN$--ASSERT

ELN$_CASELAB

ELN$_CHARASGN

ELN$_CHR

ELN$-EOFNOTDEF

ELN$-EOLN

ELN$JINDFIRST

ELN$_GENERIC

ELN$-INTCONVERT

ELN$-INVDBLSTR

Status Values/Exception Names

Table C-1. Continued

Source of Exception

Run-time range checking

CONVERT function

Run-time range checking

Run-time range checking

Run-time assertion check

Run-time range checking

Run-time range checking

Run-time range checking

Run-time range checking

Run-time range checking

Run-time range checking

Run-time range checking

Run-time range checking

CONVERT function

Description

The delta argument of ADD_ WORDJNTERLOCKED was
out of range.

The enumerated type is ambiguous in a conversion ofa
string to an en umera ted type.

A nonexistent argument was referred to with the
ARGUMENT function.

In an operation requiring array type equivalence, the
bounds of two arrays were different.

The value of an ASSERT expression was FALSE.

In a CASE statement, there was no case constant for the
curren t value of the case selector.

A string with more than one character, or an empty string,
was assigned to a CHAR variable.

The argument of a CHR function was not in the range 0-255.

The EOF function was called with a file for which EOF is
currently undefined.

The EOLN function was called with a file for which EOF is
currently TRUE.

In a FIND_FIRST -BIT function call, the start index
argument was out of range.

A statement was executed in which more than one range
violation was detected by the compiler.

In the CONVERT function, an integer was out of the range
for conversion to BOOLEAN or an enumerated type.

A double-precision number is specified incorrectly in a
con version of a string to DOUBLE.

C-8

Name

ELN$-1NVENUMSTR

ELN$-1NVENUMV AL

ELN$-1NVREALSTR

ELN$-1NVTIMSTR

ELN$-1NVTIMV AL

ELN$-NEGSIZE

ELN$--NEGSTRLEN

ELN$--NOTENUMSTR

ELN$-PAOC

ELN$-PAOCASGN

ELN$-PRED

ELN$-PROBESIZE

ELN$-RECEIVE

ELN$_SETASGN

Table C-1. Continued

Source of Exception

CONVERT function

CONVERT function

CONVERT function

TIME_VALUE function

TIME_STRING function

Run-time range checking
Run-time conversion

CONVERT function

Run-time range checking

Run-time range checking

Run-time range checking

PROBE-READ function,
PROBE_WRITE function

Run-time range checking

Descri ption

An invalid enumerated value is specified in a conversion ofa
string to an enumerated type.

An invalid enumerated value is specified in a conversion of
an enumerated type to a string.

A single-precision number is specified incorrectly in a
conversion of a string to REAL.

In the TIME_VALUE function, the argument was not a
valid time string.

In the TIME_STRING function, the argument was not a
valid time value.

The size of flexible-type data was negative.
The length ofa string was negative.

In a conversion of a string to an enumerated type, the string
does not name a value of the type.

In a PACKED ARRAY[l .. n] OF CHAR (used as a string), n
was greater than 32,767.

A string wi th the wrong number of characters was assigned
to a packed array of CHAR.

An argument of the PRED function had too small an ordinal
value.

The size of the variable being probed is > 65,535 bytes.

The size of the data in a received message (RECEIVE
procedure) does not match the size of the type associated
with the procedure's data pointer argument.

Run-time range checking In an assignment, a source set had members outside the
range of the target set.

C-9 Status Values/Exception Names

Name

ELN$_SETCONSTR

ELN$_STRLEN

ELN$_SUBRASGN

ELN$_SUBSCR

ELN$_SUBSTR

ELN$_SUCC

ELN$_TRANSLATE

ELN$_TYPECAST

ELN$_TYPEEXTENT

ELN$-ZEROSIZE

Status ValueslException Names

Table (-1. Continued

Source of Exception Description

Run-time range checking In a set constructor, the left-hand expression in a member
designator (expresl .. expres2), or a single expression, was not
in the range 0-32,766; or, the right-hand expression in a
member designator was greater than 32,766.

Run-time range checking The length of a string was greater than 32,767.

Run-time range checking In an assignment, the source expression's result was outside
the range of the target subrange type.

Run-time range checking An array subscript was out of range.

Run-time range checking An argument of the SUBSTR function was out of range.

Run-time range checking An argument of the SUCC function had too large an ordinal
value.

Run-time range checking In the TRANSLATE_STRING function, there was no
translation character for a character in the source string.

Run-time range checking In a typecast variable, the target type was larger than the
variable's actual type.

Run-time range checking In an operation requiring type equivalence, the extents of
two types were different.

Run-time range checking The target of the ZERO function exceeded 65,535 bytes.

C-IO

Table C-1. Continued

Name Source of Exception Description

C$-E2BIG VAXELNCRTL Argument list too long See Note below
C$-EACCES VAXELNCRTL Permission denied

C$-EAGAIN VAXELNCRTL No more processes
C$-EBADF VAXELNCRTL Bad file number
C$-EBUSY VAXELNCRTL Mount device busy
C$--ECHILD VAXELNCRTL No children
C$-EDOM VAXELNCRTL Math argument error
C$-EEXIST VAXELNCRTL File exists
C$-EFAULT VAXELNCRTL Bad address
C$-EFBIG VAXELNCRTL Fi Ie too large
C$--EINVAL VAXELNCRTL Invalid argument
C$-.EINTR VAXELNCRTL Interrupted system call
C$--EIO VAXELNCRTL I/O error
C$--EISDIR VAXELNCRTL Is a directory
C$--EMFILE VAXELNCRTL Too many open files
C$--EMLINK VAXELNCRTL Too many links
C$-.ENFILE VAXELNCRTL File table overflow
C$-.ENOSPC VAXELNCRTL No space left on device
C$-.ENODEV VAXELNCRTL No such device
C$-.ENOTBLK VAXELNCRTL Block device required
C$-.ENOMEM VAXELNCRTL Not enough core
C$-.ENOTDIR VAXELNCRTL Not a directory
C$--ENOTTY VAXELNCRTL Not a typewriter
C$--ENOEXEC VAXELNCRTL Exec format error
C$-ENOENT VAXELNCRTL No such file or directory

C-l1 Status Values/Exception Names

Table C-1. Continued

Name Source of Exception Oescri ption

C$-ENXIO VAXELNCRTL No such device or address

C$-EPERM VAXELNCRTL Not owner

C$-EPIPE VAXELNCRTL Broken pipe

C$-ERANGE VAXELNCRTL Resul t too large

C$-EROFS VAXELNCRTL Read-only file system

C$-ESPIPE VAXELNCRTL Illegal seek

C$-ESRCH VAXELNCRTL No such process

C$--ETXTBSY VAXELNCRTL Text file busy

C$--EXDEV VAXELNCRTL Cross-device link

Note: All of the C RTL status codes on this page and the previous page are generated by the VAXELN C run-time library
as the result of run-time range checking or explicit signalling by C user code. The names and descriptions are
derived from the corresponding UNIX* error codes. These status values are usually confined inside the execution
stream ofa C program, but may be received by a user's condition handler if that handler is declared after the C
ttlast-chance" condition handler is established. It is established before the user's umain" function is invoked.

*UNIX is a trademark of AT&T Bell Laboratories

Status Values/Exception Names C-12

Appendix D

VAXELN Performance Evaluation

This appendix lists the performance numbers for a
V AXELN Micro V AX I system, measuring three
common programming tasks:

• Process synchronization and management

• Message passing

• File input/output speed

These tasks are measured on an unloaded Micro V AX I
system, with an RD52 disk drive and 1 megabyte of
memory.

Process Synchronization and Management

Process synchronization and management is divided
into four categories:

• The extra time it takes to synchronize processes

• The time it takes to create and begin execution of a
subprocess

• The time it takes to delete and return execution
from a subprocess back to its parent

• The time it takes to respond and return from an
interrupt

Each category is considered in turn.

Synchronization

Process synchronization is handled with either a
MUTEX variable using the LOCK-MUTEX and
UNLOCK_MUTEX procedures, or a SEMAPHORE

D-l

variable using the SIGNAL and WAIT-ANY or
WAIT-ALL procedures. The extra overhead that it
takes to synchronize processes depends on the type of
variable used and whether there is any actual
contention involved (that is, a context switch is
needed).

Table D-1 summarizes the times needed to manipulate
a mutex or semaphore with and without contention.
The times shown are in microseconds (llS).

Table 0-1. Process Synchronization Times

Without With Contention
Contention (e.g., context switch)

Mutex 19 llS 1115 ~s
Lock and Unlock

Semaphore
Wait and Signal

Create and Delete

64111S 1100 ~s

Table D-2 summarizes the amount of time it takes to
create a subprocess and begin its execution (that is, the
amount of time it takes from a CREATE-PROCESS
call to executing the first instruction of the new
subprocess) .

This table also summarizes the amount of time it takes
to exit from a subprocess and return control to its
parent (that is, the amount of time it takes from a
subprocess calling EXIT to executing the first
instruction of a process that did aWAIT_ANY or
WAIT-ALL on that subprocess).

The times shown in Table D-2 are in microseconds.

Performance Evaluation D-2

Table 0-2. Process Create, Execute, and Delete Times

Time

Create and begin execution of subprocess 2445 lJS

Return and delete subprocess 2853 lJS

Interrupt Processing

With device drivers, it is important to know how long it
takes the system to respond to an interrupt (that is, to
begin executing the first instruction of an interrupt
service routine after an interrupt), and how long it
takes to resume the execution of a process waiting on a
device (that is, by an interrupt service routine using
SIGNAL_DEVICE~ Table D-3 summarizes these times
in microseconds.

Table 0-3. Interrupt Processing Times

Time

Begin executing interrupt service routine 66 lJS

Resume process that waited on a device 586 lJS

Messages

Table D-4 summarizes the amount of time it takes to
create, deliver, and delete messages via circuits. Times
are shown in microseconds and throughput is expressed
in kilobits per second (Kbit/sec).

D-3 Performance Evaluation

Two configurations are tested:

• A single machine running two jobs that
communicate via a circuit

• Two machines running the same two jobs, but
communicating via a circuit over an Ethernet

In Table D-4, the single-machine delivery times are the
actual times needed to create, send, and receive
messages on a single machine with the appropriate
number of context switches. The two-machine delivery
times are the actual times needed to send a message
between two machines over an Ethernet. With two
machines, the creation and deletion of messages occurs
simultaneously.

Performance Evaluation D-4

Table 0-4. Message Times and Throughput

Size of Create Delete Deliver on One Machine: Deliver on Two Machines:
Message Time Time Time Throughput Time Throughput
(Bytes) (Kbitlsec) (Kbitlsec)

0 370 llS 352 llS 2631 11S N/A 11553 llS N/A

512 599 llS 549 llS 3284 llS 1250 14239 llS 288

2048 778 llS 579 llS 3750 llS 4370 41396 llS 396

8192 877 llS 732 llS 4229 llS 15500 157314 llS 417

D-5 Performance Evaluation

File Input/Output

The major operations for file I/O are: open, close, read,
and write. The time required for each of these
operations is dependent upon the file's access mode;
that is, sequential versus direct access.

This section presents the times and throughput of each
operation for sequential files first, followed by the times
and throughput of each operation for direct access files.
All of the times are taken from a Micro V AX I with an
RD52 disk drive set to a cluster-size of 3 blocks.

Sequential Files

The times and throughput of the open, write, read, and
close operations for sequential files are summarized in
the following subsections.

Open

Opening a sequential file can take from 0.3 seconds to
0.5 seconds, depending on its file-history and file size
specifications.

The types of opens tested are:

• Opening a new file without any other specification,
other than the filename

• Opening a new file, but specifying the filesize

• Opening an old file that is already the correct
filesize for append and using REWRITE

• Opening an old file for read-only

Table D-5 summarizes the times required to open a file
under the preceding schemes. The times shown are in
milliseconds (ms).

D-7 Performance Evaluation

Table 0-5. Open Times for Sequential Files

Open a new file

Open a new file, specifying the filesize

Open an old file, with append

Open an old file, read-only

Write

Time

480ms

500ms

290ms

290ms

The throughput that is achieved when writing to a
sequential file is dependent upon how it was opened
and the size of the records written. The following
program fragment is part of the V AXELN Pascal
program used to time the file system:

program write-sequential-file;

type rec = byte-data(1536);
var largefile : file of rec;

i, num : integer;

begin

num : = ... {number of records to write}

open(largefile, file-name: = 'Iargefile.dat');
rewrite(largefile) ;
for i : = 1 to num do put(largefile);
close(largefile);

open(largefile, file-name: = 'Iargefile.dat',
filesize : = nurn * 3, contiguous: = true);

Performance Evaluation D-8

rewrite(largefile);
for i : = 1 to num do put(largefile);
close(largefile) ;

open(largefile, file-name: = 'Iargefile.dat',
history: = HISTORY$OLD, append: = true);

rew rite(1 a rg efi I e);
for i : = 1 to nu m do put(largefile);
close(largefile);

end;

This program uses a record size of 1536 bytes and was
run for files larger than 500 disk blocks. Analogous
programs were also run using different record sizes.

Table D-6 summarizes the write throughput for various
record sizes and openings. Throughput is expressed in
kilobytes per second (Kbyte/sec).

Table 0-6. Write Throughput for Sequential Files

Size of New New Old
Record with Filesize with Append
(Bytes) (Kbyte/sec) (Kbyte/sec) (Kbyte/sec)

1536 53.0 58.1 59.8
512
128

32

Read

38.0
25.6

8.6

40.4
26.6

8.6

43.2
26.9

8.7

The throughput that is achieved in reading a
sequential file is dependent upon the record size. The
following program fragment is part of the V AXELN
Pascal program used to time the file system:

D-9 Performance Evaluation

program read-sequential-file;

type rec = byte-data(1536);
var largefile : file of rec;

i, num : integer;

begin

num : = ... { number of records to read}

open{largefile, file-name: = 'Iargefile.dat',
history: = HISTORY$OLD);

reset{largefile);
for i : = 1 to num do get(largefile);
cI ose(l a rg efi I e) ;

end;

This program uses a record size of 1536 bytes and was
run for files larger than 500 disk blocks. Analogous
programs were also run using different record sizes.

Table D-7 summarizes the read throughput for various
record sizes. The throughput is expressed in kilobytes
per second.

Table 0-7. Read Throughput for Sequential Files

Size of Record
(Bytes)

1536
512
128
32

Performance Evaluation D-IO

Throughput
(Kbyte/sec)

59.0
47.5
25.7

7.9

Close

The amount of time it takes to close a sequential file is
dependent upon how the file is opened. Table D-8
summarizes the time it takes to close a file, using a
record size of 1536 bytes. The times shown are in
milliseconds.

Table 0-8. Close Times for Sequential Files

Close a new file

Close a new file (opened with filesize)

Close an old file (opened with append)

Close an old file (opened read-only)

Direct Access Files

Time

395ms

361 ms

361 ms

lOOms

The times and throughput of the open, write, read, and
close operations for direct access files are summarized
in the following subsections.

Open

The types of opens for direct access files tested are:

• Opening a new file with the number of disk blocks
specified

• Opening an old file for read-only

Table D-9 summarizes the open times for both schemes.
The times shown are in milliseconds.

D-ll Performance Evaluation

Table 0-9. Open Times for Direct Access Files

Open a new file, specifying the file size

Open an old file, read-only

Write

Time

500ms

290ms

The throughput for writing direct access files is
dependent upon the record size chosen. The following
program fragment is part of the V AXELN Pascal
program used to time the file system:

program write-direct-file;

type rec = byte-data(1536);
var largefile : file of rec;

i, num : integer;

begin

nu m : = ... { nu mber of records to write}

open(largefile, file-name: = 'Iargefile.dat',
filesize: = num * 3, contiguous: = true,
access-method: = access$direct);

for i : = 1 to num do
begin locate(largefile, i); put(largefile) end;

close(largefile);

end;

This program uses a record size of 1536 bytes and was
run for files larger than 500 disk blocks. Analogous
programs were also run using different record sizes.

Performance Evaluation D-12

Table D-10 summarizes the write throughput for direct
access files. The throughput is expressed in kilobytes
per second.

Table 0-10. Write Throughput for Direct Access Files

Size of Record Throughput
(Bytes) (Kbyte/sec)

1536 36.0

Read

512
128

32

25.9
11.8

3.3

The throughput for reading direct access files is
dependent upon the record size chosen. The following
program fragment is part of the V AXELN Pascal
program used to time the file system:

program read-direct-file;

type rec = byte-data(1536);
var largefile : file of rec;

i, num : integer;

begin

num : = ... {number of records to read}

open(largefile, file-name: = 'Iargefile.dat',
history: = HISTORY$OLD,
access-method: = ACCESS$DIRECT);

for i : = 1 to num do begin find(largefile, i); end;
close(largefile);

D-13 Performance Evaluation

end;

This program uses a record size of 1536 bytes and was
run for files larger than 500 disk blocks. Analogous
programs were also run using different record sizes.

Table D-11 summarizes the read throughput for direct
access files. The throughput is expressed in kilobytes
per second.

Table 0-11. Read Throughput for Direct Access Files

Size of Record Throughput
(Bytes) (Kby,te/sec)

1536 58.6
512 25.4
128 11.9
32 3.5

Close

The amount of time it takes to close a direct access file
is 100 milliseconds, regardless of how the file is opened.

Performance Evaluation D-14

A

ACCEPT-CIRCUIT procedure,
2-11, 5-10, 5-11 to 5-13, 5-14 to
5-15,7-6,7-17

Access control strings, 8-5 to
8-7

Action routines. See DAP
action routines

ALLOCATE_MAP procedure,
6-9

ALLOCATE_MEMORY
procedure, 3-23 to 3-24

ALLOCATE_PATH procedure,
6-9 to 6-10

ALLOCATE_STACK procedure,
3-23

Analog-to-digital converter,
10-30 to 10-32

ANSI control sequences, 10-24
to 10-25

AREA object, 2-4 to 2-5, 3-26

AREA values
internal representation of,

2-5
operations with, 2-5

Asynchronous exceptions,
11-1,11-12

Asynchronous serial line
controller, 10-34 to 10-36

Index

Authorization procedures,
8-10 to 8-12

Authorization Service, 8-2 to
8-3, 8-4 to 8-9

Authorization Service utility
procedures, 8-13 to 8-16

AUTH-ADD_USER procedure,
8-14to 8-15

AUTH_MODIFY -USER
procedure, 8-15 to 8-16

AUTH-REMOVE-USER
procedure, 8-16

AUTH-SHOW-USER procedure,
8-16

AXV device driver utility
procedures, 10-31 to 10-32

AXV-INITIALIZE procedure,
10-31 to 10-32

AXV-READ procedure, 10-32

AXV_WRITE procedure, 10-32

B

Binary semaphore. See Mutex
and Semaphores

Booting, 1-7, 14-1 to 14-3

Bootstrap loader, 14-7 to 14-12

c
Call frame, 11-4to 11-6

Index-l

CANCELEXIT _HANDLER
procedure, 3-13

CC command, 12-1

Ci rcu its, 5-9 to 5-14, 7-4, 7-6

CLEAR-EVENT procedure, 2-6,
4-5,4-10

Communication region, 2-13,
2-14,6-1 to 6-2

Compiling, 12-1

Concurrent programming, 1-3
to 1-4

Condition handler. See
Exception handler

CONNECT-CIRCUIT procedure,
2-11,5-5,5-10,5-11 to 5-13,
5-15to 5-16,7-6,7-15,7-18,
8-6, 10-17

Console driver. See Terminal
drivers

Control characters, 10-20 to
10-21

COPY-FILE procedure, 9-9

COPYSYS command procedure,
14-2 to 14-3

CREATE_AREA procedure, 2-5,
3-26,3-27

CREATE_DEVICE procedure,
2-14,6-1,6-3,6-6,6-7 to 6-8

CREATE_DIRECTORY
procedure, 9-10

CREATE_EVENT procedure, 2-6,
4-4,4-10

CREATE.JOB procedure, 3-1,
3-2,3-3,3-10,3-13 to 3-14

CREATE-MESSAGE procedure,
2-8,5-2,5-6,5-16

CREATE_NAME procedure,
2-12,5-5, 5-16to 5-17, 7-8

CREATE_PORT procedure, 2-10,
5-4,5-17

CREATE_PROCESS procedure,
2-3,3-1, 3-3, 3-14

CREATE_SEMAPHORE
procedure, 2-7,4-11

CURRENT-PROCESS procedure,
2-3,3-14

o
D_floating format, 12-11

DAP (Data Access Protocol),
9-20 to 9-31

action routines, 9-18, 9-19 to
9-20,9-21, 9-28 to 9-30

constants, 9-30 to 9-31
data types, 9-30
general principles, 9-27 to

9-28
message transmission

example, 9-23 to 9-27
wildcard functions, 9-31

DAP$SERVER function, 9-25,
9-26,9-28 to 9-30, 9-31

Data Access Protocol. See DAP

Datagrams, 5-9 to 5-10
NSP,7-6
user-level, 7-18

Datalink Controller, 7-5

Datalink Driver, 7-1, 7-3, 7-18

Index-2

DDCMP communication, 10-14
to 10-17

Deadlock prevention in WAIT
proced u res, 4-4

DEALLOCATE-ST ACK
procedure, 3-23

DEBUG qualifier on LINK
command,12-13

Debugger commands, 15-28 to
15-66

Debugger syntax rules, 15-11
to 15-27

address expressions, 15-14 to
15-16

Boolean constants, 15-24
command files, 15-12
comments, 15-27
computational constants,

15-24 to 15-2
expressions, 15-12 to 15-16
floating-point constants,

15-26
identifiers, 15-16 to 15-21
integer constants, 15-25 to

15-26
path names, 15-19 to 15-20
special constants, 15-27
string constants, 15-27
string expressions, 15-14
variable references, 15-19,

15-22
typecasting, 15-22 to 15-24

Debugging, 1-5
breakpoints, 15-10 to 15-11
command session, 15-6 to

15-7, 15-8
CTRUC session, 15-8 to 15-9
local debugging, 15-1 to

15-2, 15-3 to 15-4

process identifiers, 15-7 to
15-8

reference scope, 15-20
remote debugging, 15-1
symbolic debugging, 15-9 to

15-10
view scope, 15-20 to 15-21

DECLARE_EXIT _HANDLER
procedure, 3-13

DECnet networks, 1-4, 1-10,
5-8, 7-1, 7-10 to 7 -11, 7-1 5 to
7-18

DECnet protocols, 7-4 to 7-5

DELETE procedure, 2-1, 2-4,
2-5,2-6, 2-8, 2-9, 2-11, 2-12,
2-14,3-11,3-12, 3-14to 3-15,
3-27,4-11,5-4,5-5,5-17 to
5-18,6-8, 7-8

DELETE-FILE procedure, 9-10

DEQNA, 1-10. See also Datalink
Controller

DEQNA driver, 7-18

Destination authorization, 8-5
to 8-6, 8-12 to 8-13

DEUNA, 14-10. See also
Datalink Controller

DEUNA driver, 7-18

Device drivers. See also specific
device drivers

Index-3

interface with File Service,
9-17 to 9-20

for mass storage devices,
10-1

parallel 1/0 support, 10-29 to
10-30

Device information, 13-13 to
13-14

Device interrupts, 6-1 to 6-3,
9-28

DEVICE object, 2-13 to 2-14, 6-1
to 6-3

Device register procedures,
6-13 to 6-14

DEVICE values
internal representation of,

2-14
operations with, 2-14

Digital 110. See Parallel 110

Direct memory access devices.
See DMA devices

DIRECTORY-CLOSE procedure,
9-11

DIRECTORY-LIST procedure,
9-11

DIRECTORY_OPEN procedure,
9-11 to 9-12

DISABLE-ASYNCH_EXCEPTION
procedure, 11-12,11-13

DISABLE-INTERRUPT
procedure, 6-3, 6-5

DISABLE-SWITCH procedure,
3-8,3-15

DISCONNECT-CIRCUIT
procedure, 2-11,5-12,5-18,
7-16, 10-17

Disk devices, 10-3

Disk drivers, 10-1 to 10-6
disk specifications, 10-2 to

10-3
general features, 10-5

interface to File Service, 10-5
power-failure recovery, 10-6

Disk File Service. See File
Service

Disk utility procedures, 9-13 to
9-15

DISMOUNT _TAPE_VOLUME
procedure, 9-16

DISMOUNT_VOLUME
procedure, 9-13

Distributed processing, 3-2

DLV device driver utility
procedures, 10-36

DLV_INITIALIZE procedure,
10-36

DLV-READ-BLOCK procedure,
10-36

DLV_READ_STRING procedure,
10-36

DLV_WRITE_STRING procedure,
10-36

DMA (direct memory access)
devices, 6-9

DMA device handling
proced u res, 6-9 to 6-13

Down-line loading, 1-7, 14-3 to
14-12

during debugging, 14-11
from multiple hosts, 14-12 to

14-13
preliminary steps, 14-4

Drive context pointer, 9-19

DRV device driver utility
procedures, 10-38 to 10-39

Index-4

DRV_INITIALIZE procedure,
10-38

DRV_READ procedure, 10-38

DRV_WRITE procedure, 10-39

Dynamic program loader, 1-8,
3-1, 3-10 to 3-11

E
EBUILD command, 13-1 to 13-3

format, 13-1
file specification, 13-3
qualifiers, 13-1 to 13-3

EDEBUG command, 14-9, 15-1,
15-4 to 15-6

formats, 15-5

ELN$FILE_INITIALIZE function,
9-18,9-19

ELN$FILE_SERVICE procedure,
9-19

ELN$TAPE_INITIALIZE function,
9-18,9-19

ELN$TAPE-SERVICE procedure,
9-19

ENABLE-ASYNCH-EXCEPTION
procedure, 11-12, 11-13

ENABLE_INTERRUPT
procedure, 6-3,6-5

ENABLE-SWITCH procedure,
3-8,3-15

EPASCAL command, 12-1

Escape sequences, 10-23 to
10-24

VT52-type, 10-25 to 10-26

Ethernet, 1-5, 1-7, 1-10,3-2,
7-3,15-1,15-4

end-node routing, 7-5

Event logging, 14-10to 14-11,
14-12

EVENT object, 2-5 to 2-6, 4-4,
4-5

EVENT values
internal representation of,

2-6
operations with, 2-6

Events, 4-4 to 4-6

Exception handler, 11-2, 11-6
to 11-11

arguments, 11-6to 11-8
continue operation, 11-8 to

11-9
resignal operation, 11-8 to

11-9
unwind operation, 11-9 to

11-11

Exception handling
procedures, 11-13 to 11-14

Exceptions, 11-1 to 11-12
multiple concurrent, 11-11
raising, 11-11 to 11-12

Exit handler, 3-12, 3-13

EXIT procedure, 2-4, 3-11, 3-12,
3-15 to 3-16

Exit utility procedures, 3-13

Expedited messages, 5-8 to 5-9

F
F-floating format, 12-11

File Access Listener, 9-7

Index-5

File context variable, 9-18, 9-19

File I/O, 1-4,9-1,9-8

File server, 9-2

File Service, 1-4 to 1-5
device specifications, 9-2 to

9-3,9-6
disk volumes, 9-1 to 9-2, 9-3

to 9-5
file specifications, 9-5 to 9-6
initialization routines, 9-18
interface with device drivers,

9-17 to 9-20
operations, 9-8
security, 8-16 to 8-19
tape volumes, 9-1,9-3 to 9-5
volume names, 9-3 to 9-5

File utility procedures, 9-9 to
9-13

Flow control, 5-13 to 5-14

FREE_MAP procedure, 6-10

FREE_MEMORY procedure,
3-24 to 3-25

FREE_PATH procedure, 6-10

G
$GETMSG, 11-15, 11-16

G_floating format, 12-11

GET-STATUS_TEXT procedure,
11-16, 11-17

GET-TIME procedure, 4-12

GET-USER procedure, 3-16,8-4,
8-11 to 8-12

H

Host development system, 1-1,
1-5, 1-7, 1-10

INCLUDE qualifier on LINK
command, 12-13

INIT-TAPE_VOLUME
procedure, 9-16

INIT_VOLUME procedure, 8-18,
8-1 g, 9-13 to 9-1 5

Initialization programs, 3-9 to
3-10

INITIALIZATION_DONE
procedure, 3-9 to 3-10, 3-16to
3-17,9-18

Interjob data sharing. See
Sharing data

Internal representation. See
individual kernel object values

Interrupt priority level. See IPL

Interrupt service routine, 2-13,
6-1 to 6-2

IPL (interrupt priority level),
6-3 to 6-5

IPL procedures, 6-5

J
Job port, 2-10

JOB-PORT procedure, 2-10,
5-18

Job priority, 3-5 to 3-9

Index-6

Job scheduling, 3-5 to 3-11

Jobs, 1-7 to 1-8
configurations, 3-2
creation, 3-1
heirarchy, 3-2 to 3-3
sharing data, 5-1
termination, 3-11 to 3-13

K
KER$_POWER_SIGNAL
exception, 11-12

KER$_PROCESS-A TTENTION
exception, 11-12

KER$_QUIT _SIGNAL exception,
11-12

KER$_SUCCESS, 11-15

Kernel, 1-3, 1-9 to 1-10
debugging, 15-2, 15-3 to

15-4

Kernel mode stack, 3-21 to
3-22

Kernel objects, 1-9,2-1 to 2-2.
See also individual objects

implementation of, 2-14to
2-15

Kernel procedures, 1-9. See
also individual procedures

Kernel services, 1-9,2-1
for devices, 6-7 to 6-8
for interjob data sharing,

3-27 to 3-28
for message transmission,

5-14 to 5-20
for processes and jobs, 3-13

to 3-18

for synchronization objects,
4-10 to 4-12

KWV device driver utility
procedures, 10-33 to 10-34

KWV_INITIALIZE procedure,
10-33to 10-34

KWV_READ procedure, 10-34

KWV_WRITE procedure, 10-34

L

LAN (local area network), 1-5,
1-7

LIBRARY command, 12-2 to
12-4

LIBRARY qualifier on LINK
command, 12-13

Libraries. See also VAXELN
libraries

compressing, 12-4
creating, 12-2 to 12-3
deleting modules from, 12-4
extracting modules from,

12-3
inserting modules in, 12-3
listing contents of, 12-3
replacing modules in, 12-3

LINK command, 12-1, 12-4to
12-15

file specifications, 12-5
format, 12-5
qualifiers, 12-13to 12-14

LOAD_PROGRAM procedure,
3-5,3-10t03-11

LOAD_UNIBUS_MAP
procedure, 6-11

Local area network. See LAN

Index-7

Local debugging, 15-1 to 15-2,
15-3 to 15-4

Local names, 1-6, 2-12, 5-4, 5-6,
9-5 to 9-6

Logical 1/0, 9-4, 10-2, 10-6

Loopback Mirror, 7-14to 7-15

M
Maintenance Operation
Monitor process. See MOM

Master process, 3-1

Mechanism argument block,
11-7 to 11-8

Memory allocation
for kernel objects, 2-1, 2-14
procedures, 3-23 to 3-25

Memory management, 3-19 to
3-23

MEMORY_SIZE procedure, 3-25

Message files, 11-17 to 11-18

MESSAGE object, 2-8 to 2-9, 5-2
to 5-3

Message passing, 5-1 to 5-2,
5-6 to 5-9

ci rcu its, 5-9 to 5-14
datagrams, 5-9 to 5-10

Message port. See PORT object

Message protocol. 5-7

Message transmission. See
Message passi ng

MESSAGE utility. See VMS
MESSAGE utility

MESSAGE values, 5-6 to 5-7
internal representation of,

2-9
operations with, 2-8 to 2-9

Messages, 5-2 to 5-3

MFPR function, 6-13

MicroVAX
as host computer, 1-10
as target computer, 1-10
down-line loader, 14-7 to

14-8

MicroVMS as host operating
system, 1-1, 1-7

Modems, 10-26
modem control sig nals,

10-27

MOM (Maintenance Operation
Monitor) process, 14-9, 14-12

MOUNT _TAPE_VOLUME
procedure, 9-4, 9-17

MOUNT-VOLUME procedure,
9-4,9-15

MTPR procedure, 6-13

Multiprogramming, 1-3,3-2

Multitasking, 1-3, 3-2, 9-18

Mutex,4-10

N
NAME object, 2-12 to 2-13, 5-4
to 5-6

Name servers, 7-7 to 7-10

Index-8

NAME values, 5-5
internal representation of,

2-13
operations with, 2-12

Named message port. See
Name object

NCP (Network Control
Program), 7-11, 7-12 to 7-15,
14-4, 14-5

NCP commands, 14-6, 14-8,
14-1 0 to 14-11, 14-1 3

Network applications, 7-2 to
7-4

Network Control Program. See
NCP

Network management, 7-12 to
7-15

Network Management
Listener. See NML

'Network Service, 1-4,7-1 to
7-15

Network Services Protocol. See
NSP

NEWBOOT command
procedure, 14-7to 14-8, 14-10

NM L (Network Management
Listener), 7-12 to 7-14

Node names and numbers,
7-10 to 7-12

NOSYSSHR qualifier on LINK
command, 12-14

NSP (Network Services
Protocol), 7-5 to 7-6

datagrams,7-6
logical link, 7-6

o
Object libraries, 12-7to 12-10,
12-12

Object modules, 12-1 to 12-5,
1 2 -12 to 1 2 -13

Objects. See Kernel objects

p

PO address space, 2-5, 2-8,2-9,
3-19 to 3-21,3-26,5-3

P1 address space, 3-12, 3-21 to
3-22, 11-3

Parallel 1/0, 10-29 to 10-30

Parallel line interface, 10-37 to
10-40

PHYSICALADDRESS function,
6-11

PORT object, 2-9 to 2-12, 5-3 to
5-4

PORT values, 5-3 to 5-4, 5-5
internal representation of,

2 -11 to 2 -12, 2 -15
operations with, 2-10 to 2-11

Power failure recovery, 6-6

Print server, 9-7

Printer drivers, 10-9 to 10-11
characteristics, 10-10 to

10-11
general features, 10-9 to

10-10

Process families, 3-2 to 3-3

PROCESS object, 2-3 to 2-4

Process priority, 3-5 to 3-9

Index-9

Process scheduling, 3-5 to 3-11

Process states, 3-3 to 3-5

Process switching, 3-8

PROCESS values
internal representation of,

2-4
operations with, 2-3 to 2-4

Processes
creation, 3-1 to 3-2
synchronization, 4-1
termination, 3-11 to 3-13

Program image, 1-6,3-19,
12-12

Program loader utility
procedures, 3-10 to 3-11

PROTECT_FILE procedure, 9-12

Protection mask, 8-17 to 8-19

Proxy authorization, 8-5, 8-12
to 8-13

Q
QBUS devices. See DMA
devices

Qualifiers
on EBUILD command, 13-1 to

13-3
on LINK command, 12-13 to

12-14

QUIT exception, 3-11

R
RAISE-EXCEPTION procedure,
11-11,11-13

RAISE-PROCESS_EXCEPTION
procedure, 3-17, 11-12, 11-13

READ-REGISTER function, 6-13
to 6-14

Real-time clock, 10-32 to 10-34

Real-time device drivers, 10-30
to 10-40

RECEIVE procedure, 2-9, 2-11,
5-3,5-7,5-9,5-12,5-13,5-18

Reference scope. See
Debugging

Remote debugging, 15-1

RENAME_FILE procedure, 9-12
to 9-13

RESUME procedure, 2-3, 3-4,
3-5,3-17

Run-time libraries. See VAXELN
libraries

s
SEMAPHORE object, 2-2

SEMAPHORE values, 4-8 to 4-9
internal representation of,

2-8
operations with, 2-7 to 2-8

Semaphores, 3-26,4-6 to 4-10,
6-2

SEND procedure, 2-9, 5-6,5-8,
5-12,5-13,5-14, 5-18to 5-19,
7-2

SET -.JOB-PRIORITY procedure,
3-5,3-17

SET -PROCESS-PRIORITY
procedure, 2-3, 3-5, 3-17

Index-IO

SET_TIME procedure, 4-12

SET_USER procedure, 3-18, 8-3,
8-10

SHAREABLE qualifier on LINK
command, 12-14

Shareable image libraries, 12-6
to 1 2 -7, 1 2 -1 2

Sharing data
among jobs, 3-3, 3-25 to

3-26, 5-1
among processes, 3-3

Signal argument block, 11-6 to
11-7

SIGNAL procedure, 2-4,2-5,
2-6, 2-8, 3-11, 3-12, 3-18, 3-27
to 3-28, 4-7, 4-11

SIGNALDEVICE procedure,
2-14,6-2,6-8

Stack frame, 11-4 to 11-6

Stack utility procedures, 3-22
to 3-23

Status Codes, 11-14 to 11-15

Subprocess, 3-1 to 3-2

SUSPEND procedure, 2-3, 3-4,
3-18

Symbolic debugging, 15-9 to
15-10

Synchronous exceptions, 11-1

SYS$GETMSG, 11-16

System Builder, 13-1
selecting a debugger mode

with, 15-2 to 15-3

setting terminal
characteristics with, 10-18
to 10-20

System Builder menus, 13-4 to
13-25

console characteristics, 13-28
to 13-29

device descriptions, 13-11 to
13-17

main menu, 13-4 to 13-6
network node

characteristics, 13-22 to
13-26

program descriptions, 13-6
to 13-10

system characteristics, 13-17
to 13-22

terminal descriptions, 13-26
to 13-28

System data types. See VAXELN
Pascal

System image, 1-7,14-1

T
Tape devices, 10-7

Tape driver, 10-6 to 10-8
error recovery, 10-8
general features, 10-7
interface to File Service, 10-7

to 10-8
power-failure recovery, 10-8
tape specifications, 10-7

Tape File Service. See File
Service

Tape utility procedures, 9-16 to
9-17

Index-11

Target machine, 13-1
installing communication

hardware on, 14-5
adding to host node

database, 14-6 to 14-7
down-line loading

procedure, 14-8 to 14-12
triggering, 14-10

Target system, 1-5, 1-7, 1-10.
See also Target machine

Terminal drivers, 10-12 to
10-29

ANSI control sequences,
10-24 to 10-25

control characters, 10-20 to
10-21

ODCMP communication,
1 0-14 to 1 0-17

escape sequences, 10-23 to
10-24, 10-25 to 10-26

line terminators, 10-14
modem control, 10-26 to

10-27
synchronization, 10-13
terminal characteristics,

10-18 to 10-20
terminal 1/0, 10-13
type-ahead buffer, 10-13

Terminal 1/0. See Terminal
drivers

Ti me representation, 4-12 to
4-13

Timeout in WAIT procedures,
4-3

TRANSLATE_NAME procedure,
2-12, 5-5 to 5-6, 5-19,7-9

u
UIC (user identification code),
8-3 to 8-4,8-17 to 8-19

UNIBUS devices. See DMA
devices

UNIBUS_MAP procedure, 6-12

UNIBUS_UNMAP procedure,
6-12 to 6-13

Universal names, 1-6,2-12,
2-13,5-4,5-6,7-7,7-9,9-5

UNLOAD-PROGRAM
procedure, 3-11

UNWIND procedure, 11-10,
11-14

User identification code. See
UIC

User mode stack, 3-21 to 3-22

User name, 8-3 to 8-4

v
VAX processor

as host computer, 1-1, 1-7,
1-10

as target computer, 1-3, 1-7

VAXC
as VAXELN programming

language, 1-3, 1-6
compiling programs, 12-1
data type definitions, 2-1

VAX memory management
hardware. See Memory
management

VAX Rdb/ELN, 1-5

Index-12

VAX stack architecture, 11-3 to
11-11

VAXELN application, 1-1 to
1-2, 1-6

creating, 1-10 to 1-28
structure, 1-7 to 1-8

VAXELN debuggers. See also
Debugging

creating jobs, 3-1
general concepts, 15-6 to

15-11

VAXELN libraries, 12-5to 12-13
object libraries, 12-7 to 12-10
shareable image libraries,

12-6to 12-7

VAXELN systems, 1-5 to 1-8
multinode,7-1

VAXELN kernel. See Kernel

VAXELN Pascal, 1-3, 1-6
compiler, 12-2
compiling programs, 12-1
system data types, 2-1

VAXNMS
as host operating system,

1 -1, 1 -5, 1 -7, 1 -1 0, 14-5
commands, 1-6, 12-1, 15-1
librarian, 12-1, 12-2
linker, 12-1, 12-4
network 1/0, 7-15to 7-18

View scope. See Debugging

Virtual address space, 3-19to
3-22, 5-1. See also PO address
space and P1 address space

VMS file-handling operations,
9-7 to 9-8

VMS MESSAGE utility, 11-15 to
11-16,11-17

w
WAIT_ALL and WAIT_ANY
procedures, 2-3, 2-5, 2-6, 2-8,
2-11,2-14,3-18,3-28,4-2 to
4-4,4-7,4-11 to 4-12, 4-13,5-3,
5-19 to 5-20,6-2,6-8

WRITE-REGISTER procedure,
6-14

x
XEDRIVER. See Datalink Driver

XQDRIVER. See Datalink Driver

Index-13

VAXELN User's Guide
AA-EU38A-TE

READER'S COMMENTS

Your comments and suggestions will help us in our continuous effort to improve the

quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, completeness.

organization, etc.)

What features are most useful? ____________________ _

Does the publication satisfy your needs?

What errors have you found? _____________________ _

Additional comments _________________________ _

Name

Title

Company Dept.

Address

City State Zip

(staple here)

-------Do Not Tear - Fold Here and Tape ------------------------------------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POST AGE WILL BE PAID BY ADDRESSEE

Attention Publications Manager
Digital Equipment Corporation
2265 116 Avenue Northeast
Bellevue.
Washington. 98004

No Postage
Necessary

if Mailed in the

United States

-------[)o Not Tear· Fold Here and Tape -------------------------------------

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	15-52
	15-53
	15-54
	15-55
	15-56
	15-57
	15-58
	15-59
	15-60
	15-61
	15-62
	15-63
	15-64
	15-65
	15-66
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	replyA
	replyB

