RSX-11M-PLUS and Micro/RSX

Executive Reference Manual
Order No. AA-JS17A-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS dlilgli|t/all]
DIBOL RSX

ZK3077

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager

P.O. Box CS2008 100 Herzberg Road c/o Digital’s local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

in New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster,
Massachusetts 01473. ‘

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TeX, the typesetting system developed by Donald E. Knuth at Stanford University. X is a trademark of the
American Mathematical Society.

Contents

Preface xi

Summary of Technical Changes xvii

Chapter 1 Using System Directives

1.1
1.2
1.3
1.4

1.5

1.6

Introduction 1-1
Directive Processing 1-2
Error Returns. 1-3
Using the Directive Macros 1-4
14.1 Macro Name Conventions 1-4
LALT $Form 1-5
1412 $CForm 1-6
1413 $SForm 1-6
1.4.2 DIR$ Macro i 1-7
1.43 Optional Error-Routine Address 1-7
1.4.4 Symbolic Offsets, 1-8
145 Examplesof Macro Calls 1-8
Subroutines for FORTRAN and Other High-Level Languages 1-9
1.5.1 Supported High-Level Languages 1-10
1.5.2 Subroutine Usage L. 110
1.5.2.1 Optional Arguments 1-11
1.522 Task Names 1-11
1.5.2.3 Integer Arguments for FORTRAN 1-12
1.5.24 GETADR Subroutine 1-12
1.525 ARGCHARoutine 1-13
1.5.3 The Subroutine Calls. 1-13
154 Error Conditions 1-18
1.5.5 AST Service Routines 1-19
Task States 1-20
1.6.1 Task State Transitions 1-21

iii

1.6.2 Removing an Installed Task, 1-23
1.7 Directive Restrictions for Nonprivileged Tasks 1-23

Chapter 2 Significant Events, System Traps, and Stop-Bit

Synchronization
2.1 Significant Events 2-1
22 EBvent Flags oo e 2-2
221 Creating, Deleting, and Displaying Group Global Event Flags 2-4
23 System Traps. . .. oo i e 2-5
2.3.1 Synchronous System Traps (SSTs), 2-5
232 SST Service Routines ittt 2-6
233 Asynchronous System Traps (ASTs) 2-7
234 AST Service Routines i i 2-8
2.4 Stop-Bit Synchronization i 2-13

Chapter 3 Memory Management Directives

3.1 Addressing Capabilities of a Task i 3-1
3.11 Address Mapping 3-2
3.1.2 Address Space 3-2
3.1.3 Supervisor-Mode Addressing.o 3-2
3.14 Mapping Structure of I- and D-Space Tasks 3-3
3.2 Virtual Address WINdOWS oo it it e 3-3
33 REGIONS . . .ttt 3-5
3.3.1 Shared RegIONSot i it e 3-5
3.3.2 Attaching to Regions 3-6
3.3.3 Region Protection e 3-8
3.4 Directive SUMMAIY oot e e e 3-8
3.4.1 Create Region Directive (CRRG$) 3-8
3.4.2 Attach Region Directive (ATRGS) 3-9
3.43 Detach Region Directive (DTRGS$) 3-9
344 Create Address Window Directive (CRAWS) 39
3.45 Eliminate Address Window Directive (ELAWS) 3-9
3.4.6 Map Address Window Directive (MAP$) 3-9
3.4.7 Unmap Address Window Directive (UMAPS$) 3-9
3.4.8 Send by Reference Directive (SREF$) 3-9
3.4.9 Receive by Reference Directive (RREF$) 3-9
3.4.10 Receive by Reference or Stop Directive (RRST$) 3-9
3.4.11 Get Mapping Context Directive (GMCX$) 3-10
3.4.12 Get Region Parameters Directive (GREG$) 3-10

iv

3.5

3.6
3.7

User Data Structures 3-10
3.5.1 Region Definition BIOCK oottt 3-10

3.5.1.1 Using Macros to Generatean RDB 3-12

3.5.1.2 Using FORTRAN to Generate an RDB 3-14
35.2 Window Definition Block, 3-15

3.5.2.1 Using Macros to Generatea WDB 3-16

3.5.2.2 Using FORTRAN to Generatea WDB 3-18
3.5.3 Assigned Values or Settings 3-19
Privileged Tasks 3-19
Fast Mapping 3-19
3.7.1 Using Fast Mapping 3-20
3.7.2 MACRO-11 Calling Sequenceu.uu.... 3-21
3.7.3 High-Level Language Interface 3-22
3.7.4 Status Returns 3-23

Chapter 4 Parent/Offspring Tasking

4.1
4.2

43
4.4

Overview of Parent/Offspring Tasking Support 4-1
Directive Summary 4-1
421 Parent/Offspring Tasking Directives 4-1
422 Task Communication Directives 4-2
Connecting and Passing Status 4-3
Spawning System Tasks 4-4
4.4.1 Spawning a Command Line Interpreter 4-5
4.4.2 Spawning a Utility 4-5

4.4.2.1 Passing Command Lines to Utilities 4-5

Chapter & Directive Descriptions

5.1

5.2
5.3

Directive Categories e 5-1
5.1.1 Task Execution Control Directives 5-2
5.1.2 Task Status Control Directives 5-2
5.1.3 Informational Directives, L..5-2
5.14 Event-Associated Directives 5-3
5.1.5 Trap-Associated Directives 5-4
5.1.6 I/O- and Intertask Communications-Related Directives 5-4
5.1.7 Memory Management Directives 5-5
5.1.8 Parent/Offspring Tasking Directives 5-5
5.1.9 System Directives e 5-6
5.1.10 CLI Support Directives 5-7
Directive Conventions 5-7
System Directive Descriptions 5-8

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41

ADOrt Task . . . o o e e e e e e e e e e e 5-10

Assign Channel 5-12
Alter Priority 5-15
Assign LUN e 5-17
AST Service Exit ($S Form Recommended) 5-19
Attach Region 5-22
Connect to Interrupt Vector 5-24
Clear Event Flag i e 5-35
Create Logical Name i 5-36
Cancel Mark Time Requests i 5-40
COMNECE .+ o v v vt e e e e e e et e e e e e e e e 5-42
Checkpoint Common Region 5-45
Create Address Window e 5-47
Create Group Global Event Flags 5-51
Create Region i e 5-53
Create Virtual Terminal e 5-56
Cancel Scheduled Initiation Requests 5-62
Declare Significant Event ($S Form Recommended) 5-64
Delete Logical Name 0 e 5-65
Disable (or Inhibit) AST Recognition ($S Form Recommended) 5-68
Disable Checkpointing ($S Form Recommended) 5-70
Detach Region e 5-72
Eliminate Address Window e 5-74
Eliminate Group Global Event Flags 5-76
Eliminate Virtual Terminal 5-78
Emit Status oo e 5-80
Enable AST Recognition ($S Form Recommended). 5-82
Enable Checkpointing ($S Form Recommended) 5-84
Exit If . . e 5-85
Task Exit ($S Form Recommended) 5-87
Exit with Statuso e e 5-89
Extend Task o oo i i e e 5-91
Test for Specified System Feature. 5-93
File Specification Scanner 5-97
Get Command for Command Interpreter 5-100
Get Command Interpreter Information 5-105
Get Default DirectOry v it i e e e 5-108
General Information e 5-111
5.41.1 GLGAS - Get Assigned Device Name 5-111
5.41.2 GLUIC - Get System UIC Information 5-112
5.41.3 GLDEF - Set Task Default UIC 5-114
5.41.4 GLSPR - Set Task Privilege 5-114

vi

5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75

5.415 GLREN - Rename TasK oo v i it i, 5-115

5.41.6 GLFMK - Get Feature Mask Words 5-116
5.41.7 GLQMC - Queue MCR Command Line 5-117
5.41.8 GLUAB - Get User AccountBlock 5-118
5.41.9 GLDEV - Get Device Information 5-119
5.41.10 GLAPR - Get System APRs 0. 5-121
5.41.11 GLTSK - Find and Return Task Information 5-122
5.41.12 GLUPD - Update UICs and Default Directory 5-124
Get LUN Information 5-126
Get MCR Command Line. 5-129
Get Mapping Context 5-131
Get Partition Parameters 5-134
Get Region Parameters 5-136
Get Sense Switches ($S Form Recommended) 5-138
Get Time Parameters.t 5-140
Get Task Parameterst 5-142
Map Address Window 5-145
Mark Time 5-148
Map Supervisor D-Space 5-152
Move to/from User/Supervisor [/D-Space 5-155
Parse FCS 5-157
Parse RMS e 5-163
Queue I/O Request 5-168
Queue [/O Request and Wait 5-172
Receive Dataor Stop. 5-174
Receive Data 5-176
Receive Data or Exit 5-178
Read AllEvent Flags 5-181
Read Event Flag 5-183
Read Extended Event Flags 5-184
Recursive Translation of Logical Name 5-186
Remove Affinity ($§S Form Recommended) 5-190
Request and Pass Offspring Information 5-191
Request Task e e e 5-195
Receive By Reference 5-198
Receive By Reference or Stop 5-201
Resume Task e 5-204
Run Task e 5-206
Specify Command Arrival AST 5-211
Supervisor Call ($S Form Recommended) 5-213
Set Command Line Interpreter 5-215
Send Data e 5-217

vil

5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86
5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94
5.95
5.96
5.97
5.98
5.99
5.100
5.101
5.102
5.103
5.104
5.105
5.106
5.107
5.108
5.109
5.110
5.111

Set Default Directoryo e 5-219

Send, Request, and Connect, 5-222
Send Data Request and Pass Offspring Control Block 5-225
SetEvent Flag e 5-228
Specify Floating Point Processor Exception AST 5-229
Send Message e e e e e e 5-231
Send Next Commandty 5-234
Specify Parity Error AST 5-236
Suspend ($S Form Recommended), 5-238
Specify Power Recovery AST 5-239
SPAWIL . . o v ittt e e e e 5-241
Specify Receive Data AST i 5-253
Specify Requested Exit AST i 5-255
Send By Reference e 5-259
Specify Receive-By-Reference AST, 5-263
Set Affinity e e 5-265
Set System Time i i e 5-268
Stop for Logical OR of Event Flags. 5-271
Stop ($S Form Recommended) 5-274
Stop for Single Event Flag 5-275
Specify SST Vector Table for Debugging Aid 5-277
Specify SST Vector Table for Task 5-279
Switch State e e 5-281
Test for Specified Task Feature, 5-283
Translate Logical Name String 5-286
Unlock Group Global Event Flags ($S Form Recommended) 5-290
Unmap Address Window e 5-292
Unstop Task e 5-294
Variable Receive Data e e 5-296
Variable Receive Dataor Stop e 5-298
Variable Receive Data or Exit 5-300
Variable Send Data e e 5-302
Variable Send, Request, and Connect 5-304
Wait for Significant Event ($S Form Recommended). 5-307
Wait for Logical ORof Event Flags, 5-309
Wait for Single Event Flag 5-311

viii

Appendix A Summary of Directives

Appendix B Standard Error Codes

Appendix C Directive Identification Codes

Index

Figures
1-1 Directive Parameter Block (DPB) Pointer on the Stack 1-4
1-2 Directive Parameter Block (DPB) on the Stack 1-5
3-1 Virtual Address Windows 3-4
3-2 Region Definition Block 3-6
3-3 Mapping Windows to Regions 3-7
3-4 Region Definition Block 3-11
3-5 Window Definition Block 3-16

Tables
1-1 FORTRAN Subroutines and Corresponding Macro Calls 1-13
5-1 System Feature Symbols 5-93
5-2 Task Feature Symbols 5-283

ix

Preface

Manual Objectives

The RSX-11M-PLUS and Micro/RSX Executive Reference Manual describes the system directives
that allow experienced programmers who are familiar with MACRO-11 or with high-level
languages such as FORTRAN to use the Executive services to control the execution and
interaction of tasks.

Intended Audience

This manual is intended for software developers who are experienced users of MACRO-11 or
high-level languages for user-task generation. Information contained in this manual is intended
for reference only; no attempt is made to describe the procedures involved in developing user
tasks beyond the detailed reference information normally required for directive use. However,
Chapters 1 through 4 do contain information that will promote a better understanding of how
directives can be used effectively in the multitasking environment. Convenient quick-reference
material is included in appendixes for use by the more advanced programmer.

Structure of This Document

A Summary of Technical Changes provides experienced users of the RSX-11M-PLUS and
Micro/RSX operating systems with a quick summary of changes to the system software since
the previous release of this manual.

Chapter 1 defines system directives and describes their use in both MACRO-11 and high-level
language programs.

Chapter 2 defines significant events, event flags, system traps, and stop-bit synchronization, and
describes their relationship to system directives.

Chapter 3 introduces the concept of extended logical address space within the framework of
memory management directives.

Chapter 4 introduces the concept of parent/offspring tasking, including associated directives,
generated data structures, and task communications.

xi

Chapter 5 begins with a short summary of all the directives, arranged according to their
functional categories. The summary is followed by detailed descriptions of each directive. The
directives are arranged alphabetically according to macro call.

Appendix A contains summaries of the directives, arranged alphabetically according to macro
call. These abbreviated descriptions include only the directive name, FORTRAN call, macro
call, and parameters.

Appendix B lists the standard error codes returned by the Executive.

Appendix C lists Directive Identification Codes for all directives, using the same octal values
that they have in the Directive Parameter Block. A description of how the values are obtained
is included.

Appendix D lists all of the directives and the system generation option required (if applicable)
to obtain that directive support.

Associated Documents

Manuals that are prerequisite sources of information for readers of this manual are the Micro/RSX
User’s Guide or the RSX-11M-PLUS and Micro/RSX Task Builder Manual, and the PDP-11
MACRO-11 Language Reference Manual or any other reference manual or user’s guide for the
appropriate high-level language.

Conventions Used in This Document

The following conventions are used in this manual:

Convention Meaning

> A right angle bracket is the default prompt for the Monitor
Console Routine (MCR), which is one of the command interfaces
used on RSX-11M-PLUS systems. All systems include MCR.

$ A dollar sign followed by a space is the default prompt of
the DIGITAL Command Language (DCL), which is one of the
command interfaces used on RSX-11M-PLUS and Micro/RSX
systems. Many systems include DCL.

MCR> This is the explicit prompt of the Monitor Console Routine
(MCR).

DCL> This is the explicit prompt of the DIGITAL Command Language
(DCL).

XXX > Three characters followed by a right angle bracket indicate the

explicit prompt for a task, utility, or program on the system.

UPPERCASE Uppercase letters in a command line indicate letters that must be
entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications.

xii

Convention

Meaning

command abbreviations

lowercase

/keyword,
/qualifier,
or

/switch

parameter

[option]

(-]

{}

:argument

Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase letters. The following
example shows the minimum abbreviation allowed for the DCL
command DIRECTORY:

$ DIR

Any command in lowercase must be substituted for. Usually
the lowercase word identifies the kind of substitution expected,
such as a filespec, which indicates that you should fill in a file
specification. For example:

filename.filetype;version

This command indicates the values that comprise a file spec-
ification; values are substituted for each of these variables as
appropriate.

A command element preceded by a slash (/) is an MCR
keyword; a DCL qualifier; or a task, utility, or program switch.

Keywords, qualifiers, and switches alter the action of the
command they follow.

Required command fields are generally called parameters. The
most common parameters are file specifications.

Square brackets indicate optional entries in a command line or
a file specification. If the brackets include syntactical elements,
such as periods (.) or slashes (/), those elements are required
for the field. If the field appears in lowercase, you are to
substitute a valid command element if you include the field.
Note that when an option is entered, the brackets are not
included in the command line.

Square brackets around a comma and an ellipsis mark indicate
that you can use a series of optional elements separated
by commas. For example, (argument]..]) means that you
can specify a series of optional arguments by enclosing the
arguments in parentheses and by separating them with commas.

Braces indicate a choice of required options. You are to choose
from one of the options listed.

Some parameters and qualifiers can be altered by the inclusion
of arguments preceded by a colon. An argument can be either
numerical (COPIES:3) or alphabetical (NAME:QIX). In DCL, the
equal sign (=) can be substituted for the colon to introduce
arguments. COPIES=3 and COPIES:3 are the same.

xiii

Convention

Meaning

@)

[gfn]
[directory]

filespec

Parentheses are used to enclose more than one argument in a
command line. For example:

SET PROT = (S:RWED,O:RWED)

Commas are used as separators for command line parameters
and to indicate positional entries on a command line. Positional
entries are those elements that must be in a certain place in the
command line. Although you might omit elements that come
before the desired element, the commas that separate them must
still be included.

The convention [g,m] signifies a User Identification Code (UIC).
The g is a group number and the m is a member number. The
UIC identifies a user and is used mainly for controlling access
to files and privileged system functions.

This may also signify a User File Directory (UFD), commonly
called a directory. A directory is the location of files.

Other notations for directories are: [ggg,mmm)], [gggmmm], [ufd],
[name], and [directory].

The convention [directory] signifies a directory. Most directories
have 1- to 9-character names, but some are in the same [g,m]
form as the UIC.

Where a UIC, UFD, or directory is required, only one set of
brackets is shown (for example, [g,m]). Where the UIC, UFD,
or directory is optional, two sets of brackets are shown (for

example, {[g,m]]).

A full file specification includes device, directory, file name, file
type, and version number, as shown in the following example:

DL2: [46,63] INDIRECT.TXT;3

Full file specifications are rarely needed. If you do not provide
a version number, the highest numbered version is used. If
you do not provide a directory, the default directory is used.
Some system functions default to particular file types. Many
commands accept a wildcard character (*) in place of the file
name, file type, or version number. Some commands accept a
filespec with a DECnet node name.

A period in a file specification separates the file name and file
type. When the file type is not specified, the period may be
omitted from the file specification.

A semicolon in a file specification separates the file type from
the file version. If the version is not specified, the semicolon
may be omitted from the file specification.

xiv

Convention Meaning
© The at sign invokes an indirect command file. The at sign
immediately precedes the file specification for the indirect
command file, as follows:
Q@filename[.filetype;version]
A horizontal ellipsis indicates the following:
® Additional, optional arguments in a statement have been
omitted.
* The preceding item or items can be repeated one or more
times.
* Additional parameters, values, or other information can be
entered.
A vertical ellipsis shows where elements of command input or
statements in an example or figure have been omitted because
they are irrelevant to the point being discussed.
KEYNAME This typeface denotes one of the keys on the terminal keyboard;

”

“print” and “type

black ink
red ink
blue ink

XXX

for example, the RETURN key.

The term “print” refers to any output sent to a terminal by
the system. The term “type” refers to any user input from a
terminal.

In examples, what the system prints or displays is printed in
black.

In interactive examples, what the user types is printed in red.
System responses appear in black.

Text in blue ink indicates that the information pertains to
RSX-11M-PLUS multiprocessor systems only.

A symbol with a 1- to 3-character abbreviation, such as [or
, indicates that you press a key on the terminal. For example,
[RET] indicates the RETURN key, indicates the LINE FEED key,
and [DEL] indicates the DELETE key.

The symbol means that you are to press the key marked
CTRL while pressing another key. Thus, [CTRL/Z] indicates that
you are to press the CTRL key and the Z key together in this
fashion. is echoed on some terminals as "Z. However,
not all control characters echo.

xv

Summary of Technical Changes

The following section describes a feature that is new to the Executive. This new feature is
documented in this revision of the RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

General Information (GINS) Directive

The General Information (GINS$) directive provides general information for user tasks. It instructs
the system to perform the function found in the Directive Parameter Block (DPB). The functions
either set parameters or get information. Each function includes a macro call, buffer format,
macro expansion, and Directive Status Word (DSW) return codes.

xvii

Chapter 1
Using System Directives

This chapter describes the use of system directives and the ways in which they are processed.
The discussion of the system directives assumes that all possible features are present in your
system. See the appropriate system generation manual for a list of optional features.

1.1 Introduction

The process that occurs when a task requests the Executive to perform an indicated operation
is called a system directive. You use the directives to control the execution and interaction of
tasks. If you are a MACRO-11 programmer, you usually issue directives in the form of macros
defined in the system macro library. If you are a FORTRAN or other high-level language
programmer, you issue system directives in the form of calls to subroutines contained in the
system object module library.

System directives enable tasks to perform the following functions:
® Obtain task and system information

® Measure time intervals

® Perform I/O functions

* Spawn other tasks

* Communicate and synchronize with other tasks

* Manipulate a task’s logical and virtual address space

® Suspend and resume execution

e Exit

Directives are implemented by the EMT 377 instruction. EMT 0 through EMT 376 (or 375 for
unmapped tasks and mapped privileged tasks) are considered to be non-RSX EMT synchronous
system traps. These traps cause the Executive to abort the task unless the task has specified
that it wants to receive control when such traps occur.

Using System Directives 1-1

If you are a MACRO-11 programmer, use the system directive macros supplied in the system
macro library for directive calls instead of coding individual calls. That way, you need only
reassemble the program to incorporate any changes in the directive specifications.

Sections 1.2, 1.3, and 1.6 are intended for all users. Section 1.4 specifically describes the use of
macros, while Section 1.5 describes the use of high-level language subroutine calls.

1.2 Directive Processing
Processing a system directive involves the following four steps:

1. The user task issues a directive with arguments that are used only by the Executive. The
“directive code and parameters that the task supplies to the system are known as the Directive
Parameter Block (DPB). The DPB can be either on the user task’s stack or in a user task’s
data section.

2. The Executive receives an EMT 377 generated by the directive macro (or a DIR$ macro) or
high-level language subroutine.

3. The Executive processes the directive.
4. The Executive returns directive status information to the task’s Directive Status Word (DSW).
Note that the Executive preserves all task registers when a task issues a directive.

The user task issues an EMT 377 (generated by the directive) together with the address of a
DPB (or a DPB itself) on the top of the issuing task’s stack. When the stack contains a DPB
address, the Executive removes the address after processing the directive, and the DPB itself
remains unchanged. When the stack contains the actual DPB, the Executive removes the DPB
from the stack after processing the directive.

The first word of each DPB contains a Directive Identification Code (DIC) byte and a DPB size
byte. The DIC indicates which directive is to be performed and the size byte indicates the DPB
length in words. The DIC is in the low-order byte of the word and the size is in the high-order
byte.

The DIC is always an odd-numbered value. This allows the Executive to determine whether
the word on the top of the stack (before EMT 377 was issued) was the address of the DPB
(even-numbered value) or the first word of the DPB (odd-numbered value).

The Executive normally returns control to the instruction following the EMT. Exceptions to this
are directives that result in an exit from the task that issued them and an asynchronous system
trap (AST) exit.

The Executive also clears or sets the Carry bit in the Processor Status Word (PSW) to indicate
acceptance or rejection, respectively, of the directive. The DSW, addressed symbolically as
$DSW, ! is set to indicate a more specific cause for acceptance or rejection of the directive.
The DSW usually has a value of +1 for acceptance and a range of negative values for rejection
(exceptions are success return codes for the directives CLEF$, SETF$, and GPRT$, among
others). The RSX-11M-PLUS and Micro/RSX operating systems associate DSW values with
symbols, using mnemonics that report either successful completion or the cause of an error (see
Section 1.3). (The Instrument Society of America (ISA) FORTRAN calls CALL WAIT and CALL

1 The Task Builder resolves the address of $DSW. Users addressing the DSW with a physical address are not guaranteed compatibility with
IAS, and may experience incompatibilities with future releases of the RSX-11M-PLUS and Micro/RSX operating systems.

1-2 Using System Directives

START are exceptions because ISA requires positive numeric error codes. The specific return
values are listed with the description of each directive.)

In the case of successful Exit directives, the Executive does not return control to the task. If an
Exit directive fails, however, control is returned to the task with an error status in the DSW.

On Exit, the Executive frees task resources as follows:

* Detaches all attached devices

* Flushes the AST queue and despecifies all specified ASTs

* Flushes the receive and receive-by-reference queues

* Flushes the clock queue for outstanding Mark Time requests for the task
® Closes all open files (files open for write access are locked)

* Detaches all attached regions, except in the case of a fixed task (where no detaching occurs)
* Runs down the task’s I/O

* Deaccesses the group global event flags for the task’s group

* Disconnects from interrupts

* Flushes all outstanding CLI command buffers for the task

* Breaks the connection with any offspring tasks

® Marks for deallocation all virtual terminal units that the task has created
¢ Frees the task’s memory if the task was not fixed

If the Executive rejects a directive, it usually does not clear or set any specified event flag. Thus,
the task may wait indefinitely if it indiscriminately executes a Wait-for directive corresponding
to a previously issued Mark Time directive that the Executive has rejected. You should always
ensure that a directive has completed successfully.

1.3 Error Returns

As stated above, the RSX-11M-PLUS and Micro/RSX operating systems associate the error
codes with mnemonics that report the cause of the error. In the text of this manual, the
mnemonics are used exclusively. The macro DRERR$, which is expanded in Appendix B,
provides a correspondence between each mnemonic and its numeric value.

Appendix B also gives the meaning of each error code. In addition, each directive description
in Chapter 5 contains specific, directive-related interpretations of the error codes.

Using System Directives 1-3

1.4 Using the Directive Macros

If you are programming in MACRO-11, you must decide how to create the DPB before you
issue a directive. The DPB may either be created on the stack at run time (see Section 1.4.1.3,
which describes the $S form) or created in a data section at assembly time (see Sections 1.4.1.1
and 1.4.1.2, which describe the $ form and $C form, respectively). If parameters vary and the
code must be reentrant, the DPB must be created on the stack.

Figures 1-1 and 1-2 illustrate the alternative directives and also show the relationship between
the stack pointer and the DPB.

Figure 1-1: Directive Parameter Block (DPB) Pointer on the Stack

MOV #ADDR,-(SP) DPB
EMT 377
DPB
ITEMS INCREASING
MEMORY
SP———» | ADDRESSOF DPB | ——» SIZE DIC ADDRESSES
STACK
GROWTH

ZK-305-81

1.4.1 Macro Name Conventions

When you are programming in MACRO-11, you use system directives by including directive
macro calls in your programs. The macros for the directives are contained in the System Macro
Library (LB:[1,1]JRSXMAC.SML). The .MCALL assembler directive makes these macros available
to a program. The .MCALL arguments are the names of all the macros used in the program.
For example:

; CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
; AND ISSUING THEM.

.MCALL MRKT$S,WTSE$S

1-4 Using System Directives

Figure 1-2: Directive Parameter Block (DPB) on the Stack

MOV XX,-(SP)
PUSH REQUIRED
DPB ITEMS ON THE

STACK IN
REVERSE ORDER
MOV (PC)+,-(SP)
.BYTE DIC,SIZE [}
EMT 377
DPB
ITEMS
INCREASING
SP—— | SIZE DIC MEMORY
ADDRESSES
STACK
GROWTH
ZK-306-81
Additional .MCALLs or code
MRKT$S #1,#1,#2, ,ERR ;MARK TIME FOR 1 SECOND

WTSE$S #1 ;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of up to four letters, followed by a dollar sign ($) and, optionally, a C or
an S. The optional letter or its absence specifies which of three possible macro expansions you
want to use. The following sections explain these expansion forms.

1.4.1.1 § Form

The $ form is useful for a directive operation that is to be issued several times from different
locations in a non-reentrant program segment. The $ form is most useful when the directive is
issued several times with varying parameters (one or more but not all parameters change) or
in a reentrant program section when a directive is issued several times even though the DPB
is not modified. This form produces only the directive’s DPB and must be issued from a data
section of the program. The code for actually executing a directive in the $ form is produced
by a special macro, DIR$ (discussed in Section 1.4.2).

Because execution of the directive is separate from the creation of the directive’s DPB:
1. A $ form of a given directive needs to be issued only once (to produce its DPB).

2. A DIRS$ macro associated with a given directive can be issued several times without incurring
the cost of generating a DPB each time it is issued.

Using System Directives 1-5

3. It is easy to access and change the directive’s parameters by labeling the start of the DPB
and using the offsets defined by the directive.

When a program issues the $ form of a macro call, the parameters required for DPB construction
must be valid expressions for MACRO-11 data storage instructions (such as .BYTE, .WORD,
and .RAD50). You can alter individual parameters in the DPB. You might do this if you want
to use the directive many times with varying parameters.

1.4.1.2 $C Form

Use the $C form when a directive is to be issued only once. The $C form eliminates the need
to push the DPB (created at assembly time) onto the stack at run time. Other parts of the
program, however, cannot access the DPB because the DPB address is unknown. (Note, in
the $C form macro expansion of Section 1.4.5, that the new value of the assembler’s location
counter redefines the DPB address $$$ each time an additional $C directive is issued.)

The $C form generates a DPB in a separate program section! called $DPB$$. The DPB is first
followed by a return to the user-specified program section, then by an instruction to push the
DPB address onto the stack, and finally by an EMT 377. To ensure that the program reenters
the correct program section, you must specify the program section name in the argument list
immediately following the DPB parameters. If the argument is not specified, the program
reenters the blank (unnamed) program section.

This form also accepts an optional final argument that specifies the address of a routine to be
called (by a JSR instruction) if an error occurs during the execution of the directive (see Section
1.4.2).

When a program issues the $C form of a macro call, the parameters required for DPB construction
must be valid expressions for MACRO-11 data storage instructions (such as .BYTE, .WORD, and
.RAD50). (This is not true for the program-section argument and the error-routine argument,
which are not a part of the DPB.)

1.4.1.3 $S Form

Program segments that need to be reentrant should use the $S form. Only the $S form produces
the DPB at run time. The other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack, followed by an EMT
377. In this case, the parameters must be valid source operands for MOV-type instructions. For
a 2-word Radix-50 name parameter, the argument must be the address of a 2-word block of
memory containing the name. Note that you should not use the stack pointer (or any reference
to the stack pointer) to address directive parameters when the $S form is used.? (In the example
in Section 1.4.1, the error-routine argument ERR is a target address for a JSR instruction; see
Section 1.4.3.)

Note that in the $S form of the macro, the macro arguments are processed from right to left.
Therefore, when using code of the following form, the result may be obscure:

MACROS$S, , (R4)+, (R4) +

1 Refer to the PDP-11 MACRO-11 Language Reference Manual for a description of program sections.

"2 Subroutine or macro calls can use the stack for temporary storage, thereby destroying the positional relationship between SP and the
parameters.

1-6 Using System Directives

1.4.2 DIRS Macro

The DIR$ macro allows you to execute a directive with a DPB predefined by the $ form of a
directive macro. This macro pushes the DPB address onto the stack and issues an EMT 377
instruction.

The DIR$ macro generates an Executive trap using a predefined DPB:

Format (Macro Call)
DIR$ [adr][,err]

Parameters

adr

The address of the DPB (optional). If specified, the address must be a valid source address
for a MOV instruction. If this address is not specified, the DPB or its address must be on
the stack.

err

The address of the error return (optional; see Section 1.4.3). If this error return is not
specified, an error simply sets the Carry bit in the Processor Status Word.

Note

DIRS$ is not a $ form macro and does not behave as one. There are no variations
in the spelling of this macro. The DIR$ macro is not an Executive directive, and
DIR$C and DIR$S are not valid macro calls.

1.4.3 Optional Error-Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept an optional final argument.
The argument must be a valid assembler destination operand that specifies the address of a user
error routine. For example, the DIR$ macro

DIR$ #DPB, ERROR
generates the following code:

MOV #DPB, - (SP)
EMT 377

BCC .46

JSR PC,ERROR

Since the $ form of a directive macro does not generate any executable code, it does not accept
an error-address argument.

Using System Directives 1-7

1.4.4 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets describing the format of
the DPB. The symbols are unique to each directive, and each is assigned an index value
corresponding to the offset of a given DPB element.

Because the offsets are defined symbolically, you can refer to or modify DPB elements without
knowing the offset values. Symbolic offsets also eliminate the need to rewrite programs
if a future release of the RSX-11M-PLUS or Micro/RSX operating system changes a DPB
specification.

All $ and $C forms of macros that generate DPBs longer than one word generate local offsets. All
informational directives (see Section 5.1.3), including the $S form, also generate local symbolic
offsets for the parameter block returned.

If the program uses either the $ or $C form and has defined the symbol $$$GLB (for example,
$$$GLB=0), the macro generates the symbolic offsets as global symbols and does not generate
the DPB itself. The purpose of this facility is to enable the use of a DPB defined in a different
module. The symbol $$$GLB has no effect on the expansion of $S macros.

When using symbolic offsets, you should use the $ form of directives.

1.4.5 Examples of Macro Calls
The examples below show the expansions of the different macro call forms.
e The $ form generates only a DPB, in the current program section.
MRKT$ 1,5,2,MTRAP

generates the following code:

.BYTE 23..,5 ; "MARK-TIME" DIC AND DPB SIZE
.WORD 1 ; EVENT FLAG NUMBER

.WORD 5 ; TIME INTERVAL MAGNITUDE
.WORD 2 ; TIME INTERVAL UNIT (SECONDS)
.WORD MTRAP ; AST ENTRY POINT

¢ The $C form generates a DPB in program section DPB. and, in the specified section, the
code to issue the directive.

MRKT$C 1,5,2,MTRAP,PROG1,ERR
generates the following code:

.PSECT DPB.

$3$8=. ; DEFINE TEMPORARY SYMBOL
.BYTE 23..5 ; "MARK-TIME" DIC AND DPB SIZE
_WORD 1 ; EVENT FLAG NUMBER

.WORD 5 ; TIME INTERVAL MAGNITUDE
.WORD 2 ; TIME INTERVAL UNIT (SECONDS)
.WORD MTRAP ; AST ENTRY POINT ADDRESS
.PSECT PROG1 ; RETURN TO THE ORIGINAL PSECT
MOV #$$$, - (sP) . PUSH DPB ADDRESS ONTO STACK
EMT 377 ; TRAP TO THE EXECUTIVE

1-8 Using System Directives

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

The $S form generates code to push the DPB onto the stack and to issue the directive.
MRKT$S #1,#5,#2,R2,ERR

generates the following code:

MoV R2,-(SP) . PUSH AST ENTRY POINT,

Mav #2,-(SP) ; TIME INTERVAL UNIT (SECONDS),
MoV #5,-(SP) ; TIME INTERVAL MAGNITUDE,

MOV #1,-(SP) ; EVENT FLAG NUMBER,

MoV (PC)+,-(SP) ; AND "MARK-TIME" DIC AND DPB SIZE
.BYTE 23.,5 ; ONTO THE STACK

EMT 377 ; TRAF TO THE EXECUTIVE

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

The DIR$ macro issues a directive that has a predefined DPB.
DIR$ R1, (R3) ; DPB ALREADY DEFINED; ADDRESS IN R1.

generates the following code:

Mov R1,-(SP) ; PUSH DPB ADDRESS ONTO STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+4 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC, (R3) ; ELSE, CALL ERROR SERVICE ROUTINE

1.5 Subroutines for FORTRAN and Other High-Level Languages

The RSX-11M-PLUS and Micro/RSX operating systems provide an extensive set of subroutines
to perform system directive operations for FORTRAN and other high-level languages, such as

BASIC-PLUS-2 and COBOL-81.

The directive descriptions in Chapter 5 describe the high-level language subroutine calls as well

Caution

Some Executive routines could interfere with the operation of your high-level
language programs, causing unexpected results.

as the macro calls.

The high-level language subroutines fall into three basic groups, as follows:

Subroutines based on the Instrument Society of America (ISA) Standard ISA 62.1. These
subroutines are CALL WAIT and CALL START, which are documented with the descriptions

of the Mark Time and Run directives, respectively.

Subroutines designed to use and control specific process control interface devices supplied

by DIGITAL and supported by the RSX-11M-PLUS and Micro/RSX operating systems.

Using System Directives 1-9

¢ Subroutines for performing RSX-11M-PLUS and Micro/RSX system directive operations.
In general, one subroutine is available for each directive. (Exceptions are the Mark Time
and Run directives. The description of Mark Time includes both CALL MARK and CALL
WAIT. The description of Run includes both CALL RUN and CALL START.)

All the subroutines described in this manual can be called by FORTRAN programs compiled
by either the FORTRAN IV or FORTRAN-77 compiler, and by PDP-11 BASIC-PLUS-2/RSX,
PDP-11 Pascal/RSX, PDP-11 DIBOL-83/RSX, and PDP-11 COBOL-81/RSX programs. See
Section 1.5.1 for more information.

These subroutines can also be called from programs written in the MACRO-11 assembly
language by using PDP-11 FORTRAN calling sequence conventions. These conventions are
described in the VAX FORTRAN User’s Guide and in the PDP-11 FORTRAN-77 User’s Guide.

Although the subroutines are supported for all the high-level languages listed above, FORTRAN
is used in the examples in this chapter and in the descriptions of the directives in Chapter 5.
FORTRAN is also the only high-level language discussed in detail in this section.

1.5.1 Supported High-Level Languages

The subroutines support several PDP-11 high-level languages. However, some of the supported
languages have restrictions. This section lists the supported languages and describes any
restrictions that may apply.

Language Restrictions

FORTRAN IV Complete support. No restrictions.
FORTRAN-77 Complete support. No restrictions.
PDP-11 BASIC-PLUS-2/RSX Complete support. No restrictions.
PDP-11 Pascal/RSX Complete support. No restrictions.
PDP-11 DIBOL-83/RSX Complete support. No restrictions.
PDP-11 COBOL-81/RSX Does not allow external arguments.

Any language using the R5 calling convention can call the routines. Using the R5 calling
convention means that calls are made by means of a JSR PC,xxx instruction with R5 pointing
to an argument list. The first word of the list is the number of arguments in the list. The
remaining words are successive arguments in the list.

If the language does not support EXTERNAL GLOBAL parameters, AST routines cannot be
used. If the language does not support null arguments, special care must be taken with omitted
parameters. See Section 1.5.2.5.

1.5.2 Subroutine Usage

You call the high-level language subroutines by including the appropriate CALL statement in
the program. When the program is linked to form a task, the Task Builder first checks to see
whether each specified subroutine is user-defined. If a subroutine is not user-defined, the Task
Builder automatically searches for it in the system object module library. If the subroutine is
located, it is included in the linked task.

1-10 Using System Directives

1.5.2.1 Optional Arguments

Many of the subroutines described in this manual have optional arguments. In the subroutine
descriptions associated with the directives, optional arguments are designated as such by being
enclosed in square brackets ([]). An argument of this kind can be omitted if the comma that
immediately follows it is retained. If the argument (or string of optional arguments) comes last,
it can simply be omitted and no comma need end the argument list. For example, the format
of a call to SUB could be the following:

CALL SUB (AA, [BB], [cC],DD[, (EE][,FFII])

In this case, you may omit the arguments BB, CC, EE, and FF in one of the following ways:
e CALL SUB (AA,,DD,)

e CALL SUB (AA,, DD)

In other cases, a subroutine will use a default value for an unspecified optional argument. Such
default values are noted in each subroutine description in Chapter 5.

1.5.2.2 Task Names

In the subroutines, task names may be up to six characters long. Characters permitted in a task
name are the letters A to Z, the numerals 0 to 9, and the special characters dollar sign ($) and
period (.). Task names are stored as Radix-50 code, which permits up to three characters from
the set above to be encoded in one PDP-11 word.

The subroutine calls require that a task name be defined as a 2-word variable or array that
contains the task name as Radix-50 code. As an example, for FORTRAN this variable may be
any of the following:

e REAL
e INTEGER*4
* An INTEGER#*2 array of two elements

The variable may be defined at program compilation time by a DATA statement, which gives
the real variable an initial value (a Radix-50 constant).

For example, if a task name CCMF1 is to be used in a system directive call, the task name
could be defined and used as follows:

DATA CCMF1/5RCCMF1/

CALL REQUES (CCMF1)

A program may define task names during execution by using the IRAD50 subroutine or the
RADS50 function as described in the VAX FORTRAN User’s Guide or in the PDP-11 FORTRAN-77
User’s Guide.

Using System Directives 1-11

1.5.2.3 Integer Arguments for FORTRAN

All of the subroutines described in this manual assume that integer arguments are INTEGER*2-
type arguments. Both the FORTRAN IV and FORTRAN-77 systems normally treat an integer
variable as one PDP-11 storage word, provided that its value is within the range -32,768 to
+32,767. However, if you specify the /14 option switch when compiling a program, ensure that
all integer array arguments used in these subroutines are explicitly specified as type INTEGER*2.

1.5.2.4 GETADR Subroutine

Some subroutine calls include an argument described as an integer array. The integer array
contains some values that are the addresses of other variables or arrays. The FORTRAN
language does not provide a means of assigning such an address as a value, so you must use
the GETADR subroutine described below.

format for Calling Sequence:
CALL GETADR (ipm,[argl][arg2],...[argn])

ipm
An array of dimension n.

argl,...argn
Arguments whose addresses are to be inserted in ipm. Arguments are inserted in the order
specified. If a null argument is specified, the corresponding entry in ipm is left unchanged.
When the argument is an array name, the address of the first array element is inserted into
ipm.

Example

DIMENSION IBUF(80),I0SB(2),IPARAM(6)

CALL GETADR (IPARAM(1),IBUF(1))
IPARAM(2)=80
CALL QIO (IREAD,LUN,IEFLAG,,I0SB,IPARAM,IDSW)

In this example, CALL GETADR enables you to specify a buffer address in the CALL QIO
directive.

1-12 Using System Directives

1.5.2.5 ARGCHA Routine

Some high-level languages do not accept null parameters. To compensate for this, there is
an alternate copy of the $ARGCK routine in the system library. The alternate routine is part
of the ARGCHA module (SYSLIB/LB:ARGCHA). The routine treats any subroutine parameters
specified as -1 as null arguments.

The entry point in the ARGCHA module is deleted from the entry-point table for the system
library routines. To use the module, it must be explicitly extracted when the task that wants to
use it is built.

Caution
Specified parameter variables that are returned by the Executive (for example,
directive status) must be reinitialized if there is any possibility that their returned
value may have been set to -1. For example, the standard technique for
recovering from low pool (IE.UPN=-1) —executing a Wait for Significant Event
directive and then reissuing the original directive—will not work if the Directive
Status Word is not reinitialized.

The alternate routine in the ARGCHA module cannot be used for AST addresses. For calls
omitting the AST parameter, use the “N” variant of the call, such as CALL SPAWNN for the
Spawn directive. Every call with an AST parameter has an “N” variant that suppresses the
parameter. For more information, see Section 1.5.5.

1.5.3 The Subroutine Calls

Table 1-1 is a list of the FORTRAN subroutine calls (and corresponding macro calls) associated
with the system directives. See Chapter 5 for detailed descriptions.

For some directives, notably Mark Time (CALL MARK), both the standard FORTRAN IV
subroutine call and the ISA standard call are provided. Other directives, however, are not
available to FORTRAN tasks (for example, Specify Floating Point Exception AST [SFPA$] and
Specify SST Vector Table for Task [SVTKS$]).

Table 1-1: FORTRAN Subroutines and Corresponding Macro Calls

FORTRAN
Directive Subroutine Macro Call
Abort Task CALL ABORT ABRT$
Assign Channel CALL ACHN ACHNS$
Alter Priority CALL ALTPRI ALTP$
Assign LUN CALL ASNLUN ALUNS$
Attach Region CALL ATRG ATRG$
Create Logical Name CALL CRELOG CLOGS$

CALL CRELON CLONS$
Cancel Scheduled CALL CANALL CSRQ$

Initiation Requests

Using System Directives 1-13

Table 1-1 (Cont.): FORTRAN Subroutines and Corresponding Macro Calls

FORTRAN
Directive Subroutine Macro Call
Cancel Mark CALL CANMT CMKT$
Time Requests
Checkpoint Common Region CALL CPCR CPCR$
Clear Event Flag CALL CLREF CLEF$
Connect CALL CNCT CNCT$
CALL CNCTN
Create Address Window CALL CRAW CRAWS$
Create Group Global CALL CRGF CRGF$
Event Flags
Create Region CALL CRRG CRRGS$
Create Virtual Terminal CALL CRVT CRVT$
Declare Significant Event CALL DECLAR DECL$S
Delete Logical Name CALL DELLOG DLOG$
CALL DELLON DLON$
Disable AST Recognition CALL DSASTR DSAR$S
Disable Checkpointing CALL DISCKP DSCP$S
Detach Region CALL DTRG DTRG$
Eliminate Address Window CALL ELAW ELAWS
Eliminate Group Global CALL ELGF ELGF$
Event Flags
Eliminate Virtual Terminal CALL ELVT ELVTS$
Emit Status CALL EMST EMST$
Enable AST Recognition CALL ENASTR ENAR$S
Enable Checkpointing CALL ENACKP ENCP$S
Exit If CALL EXITIF EXIF$
Exit with Status CALL EXST EXST$
Extend Task CALL EXTTSK EXTKS$
Test for Specified CALL FEAT FEAT$
System Feature
File Specification CALL FSS FSS$

Scanner

1-14 Using System Directives

Table 1-1 (Cont.): FORTRAN Subroutines and Corresponding Macro Calls

FORTRAN
Directive Subroutine Macro Call
Get Command for CALL GTCMCI GCCI$
Command Interpreter
Get Command CALL GETCII GCII$
Interpreter Information
Get Default Directory CALL GETDDS GDIR$
Get LUN Information CALL GETLUN GLUNS$
Get Mapping Context CALL GMCX GMCX$
Get MCR Command Line CALL GETMCR GMCR$
Get Partition Parameters CALL GETPAR GPRT$
Get Region Parameters CALL GETREG GREGS$
Get Sense Switches CALL READSW GSSW$S
CALL SSWTCH
Get Task Parameters CALL GETTSK GTSK$
Get Time Parameters CALL GETTIM GTIM$
Inhibit AST Recognition CALL INASTR IHAR$S
Map Address Window CALL MAP MAP$
Mark Time CALL MARK MRKT$
CALL WAIT (ISA Standard
call)
Parse FCS CALL PRSFCS PFCS$
Parse RMS CALL PRSRMS PRMS$
Queue I/O Request CALL QIO QIO$
Queue I/O Request and Wait CALL WTQIO QIOWS
Read All Event Flags CALL READEEF (only a RDXF$
single, local, common, RDAF$
or group global event flag
can be read by a FORTRAN
task)
Read Single Event Flag CALL READEF RDEF$
Recursive Translation CALL RCTLON RLONS$
of Logical Name CALL RCTLOG RLOG$
Receive By Reference CALL RREF RREF$
Receive by Reference or Stop CALL RRST RRST$

Using System Directives

1-15

Table 1-1 (Cont.): FORTRAN Subroutines and Corresponding Macro Calls

FORTRAN
Directive Subroutine Macro Call
Receive Data CALL RECEIV RCVD$
Receive Data or Exit CALL RECOEX RCVX$
Receive Data or Stop CALL RCST RCST$
Remove Affinity CALL RMAF RMAF$S
(RSX-11M-PLUS multiprocessor
systems only)
Request and Pass Offspring CALL RPOI RPOI$
Information
Request CALL REQUES RQST$
Resume CALL RESUME RSUMS$
Run CALL RUN RUNS$
CALL START (ISA Standard
call)
Send By Reference CALL SREF SREF$
Send Data CALL SEND SDAT$
Send Data Request and Pass OCB CALL SDRP SDRP$
Send Message CALL SMSG SMSG$
Send Next Command CALL SNXC SNXC$
Send, Request, and Connect CALL SDRC SDRC$
CALL SDRCN
Set Affinity CALL STAF STAF$
(RSX-11M-PLUS multiprocessor
systems only)
Set Command Line Interpreter CALL SCLI SCLI$
Set Event Flag CALL SETEF SETF$
Set System Time CALL SETTIM STIM$
Set Default Directory CALL SETDDS SDIR$
Spawn CALL SPAWN SPWN$
CALL SPAWNN
Specify Power Recovery AST EXTERNAL SUBNAM SPRA$

CALL PWRUP (SUBNAM)
(to establish an AST)
CALL PWRUP
(to remove an AST)

1-16 Using System Directives

Table 1-1 (Cont.): FORTRAN Subroutines and Corresponding Macro Calls

FORTRAN
Directive Subroutine Macro Call
Specify Requested Exit AST CALL SREA SREA$
CALL SREX SREX$
Stop CALL STOP STOP$S
Stop for Logical OR of CALL STLOR STLO$
Event Flags CALL STLORS
Stop for Single Event Flag CALL STOPFR STSE$
Suspend CALL SUSPND SPND$S
Task Exit CALL EXIT EXIT$S
Test for Specified CALL TFEA TFEA$
System Feature
Translate Logical Name CALL TRALON TLONS$
CALL TRALOG TLOG$
Unlock Group Global Event CALL ULGF ULGF$S
Flags
Unmap Address Window CALL UNMAP UMAP$
Unstop CALL USTP USTP$
Variable Receive Data CALL VRCD VRCD$
Variable Receive Data or Exit CALL VRCX VRCX$
Variable Receive Data or Stop CALL VRCS VRCS$
Variable Send Data CALL VSDA VSDA$
Variable Send, Request, CALL VSRC VSRC$
and Connect CALL VSRCN
Wait for Single Event Flag CALL WAITFR WTSE$
Wait for Logical OR of CALL WFLOR WTLO$
Event Flags CALL WFLORS
Wait for Significant Event CALL WFSNE WSIG$S
Note

The following directives are not available as FORTRAN subroutines:

Using System Directives

1-17

Directive Macro Call

AST Service Exit ASTX$S
Connect to Interrupt Vector CINT$
General Information GIN$
Map Supervisor D-space MSDS$
(RSX-11M-PLUS systems only)

Move to/from Supervisor MVTS$

or User I- or D-space
(RSX-11M-PLUS systems only)

Specify Command Arrival AST SCAA$
Specify Floating Point SFPA$
Exception AST

Specify Parity Error AST SPEA$
Specify Receive By Reference AST SRRA$
Specify Receive Data AST SRDA$
Specify SST Vector Table for SVDB$
Debugging Aid

Specify SST Vector Table SVTK$
for Tasks

Supervisor Call SCAL$S
(RSX-11M-PLUS systems only)

Switch State SWST$

1.5.4 Error Conditions

Each subroutine call includes an optional argument that specifies the integer to receive the
Directive Status Word (idsw). When you specify this argument, the subroutine returns a value
that indicates whether the directive operation succeeded or failed. If the directive failed, the
value indicates the reason for the failure. The possible values are the same as those returned
to the Directive Status Word (DSW) in MACRO-11 programs (see Appendix B), except for the
two ISA calls, CALL WAIT and CALL START. The ISA calls have positive numeric error codes.

In addition, two types of errors caused by incorrect use of the high-level language subroutines
result in a task terminating by means of a breakpoint instruction (BPT). The instruction causes
the task to abort with a message such as:

Task "tsknam" terminated
Executive interface parameter error

1-18 Using System Directives

(register dump)

RO contains the value that identifies the cause of the error. The value can be one of the
following;:

100000 Indicates that at least one necessary argument was missing from a call to a system

directive routine.

000001 Indicates that an event flag number in a call to the STLOR (Stop for Logical OR of

Event Flags) routine or to the WTFLOR (Wait for Logical OR of Event Flags) routine
was not in the range of 1 through 96 or that not all of the event flags specified in
the call were in the same group of 16 event flags.

1.5.5 AST Service Routines

The following routines, which are callable by high-level languages, provide support for ASTs
in FORTRAN programs:

CALL CNCT
CALL CRVT
CALL PWRUP
CALL SDRC
CALL SPAWN
CALL SREA
CALL SREX

Use great caution when coding an AST routine in FORTRAN. The following types of FORTRAN
operations may not be performed at AST state (although this list is specific to FORTRAN,
other high-level languages will have similar or additional restrictions; consult your language
documentation for the level of support and any additional restrictions.):

~ FORTRAN I/O of any kind (including ENCODE and DECODE statements and internal file

1/0):

FORTRAN I/O is not reentrant. Therefore, the information in the impure data area may be
destroyed.

Floating-point operations:

The floating-point processor’s context is not saved while in AST state. Since the scientific
subroutines use floating-point operations, they may not be called at AST state.

Traceback information in the generated code:

Use of traceback corrupts the error recovery in the FORTRAN run-time library. Any
FORTRAN modules that will be called at AST state must be compiled without traceback.
See the VAX FORTRAN User’s Guide or the PDP-11 FORTRAN-77 User’s Guide for more
information.

Using System Directives 1-19

e Virtual array operations:

Use of virtual arrays at AST state remaps the current array such that any operations at
non-AST state will be executed incorrectly.

* Subprograms may not be shared between AST processing and normal task processing.
e EXIT or STOP statements with files open:

FORTRAN flushes the task’s buffers, which could be in an intermediate state. Therefore,
data might be lost if any output files are open when the EXIT or STOP statement is executed.

You can EXIT or STOP at AST state if no output files are open.

Since the message put out by STOP uses a different mechanism from the normal FORTRAN
I/O routines, the act of putting out this message does not corrupt impure data in the
run-time system. Therefore, you can issue a STOP statement at AST state unless there are
output files open.

Note also the following:
* Any execution-time error at AST state will corrupt the program.

e Use extreme care if the FORTRAN task is overlaid. Both the interface routine and the actual
code of the FORTRAN AST routine must be located in the root segment. Any routines that
are called at AST state must also be in the root segment.

If you do not want to use ASTs in your program, you can use alternative versions of some of
the calls listed at the beginning of this section. The alternative calls use a module in the system
library routines called SPNUL that suppresses AST handling. The alternative calls are:

CALL CNCTN
CALL CRVT
CALL SDRCN
CALL SPAWNN
CALL VSRCN

If you do not want to use ASTs with any of the routines listed at the beginning of this section,
using the SPUNL routine is helpful because it saves space. To use the routine, include the
following in the command line to the Task Builder:

LB: [1,1]SYSLIB/LB:SPNUL

1.6 Task States

Many system directives cause a task to change from one state to another. There are two basic
task states in RSX-11M-PLUS and Micro/RSX systems: dormant and active. The active state
has three substates: ready-to-run, blocked, and stopped.

The Executive recognizes the existence of a task only after it has been successfully installed
and has an entry in the System Task Directory (STD). (Task installation is the process whereby
a task is made known to the system; see the RSX-11IM-PLUS MCR Operations Manual, the
RSX-11M-PLUS Command Language Manual, or the Micro/RSX User’s Guide.) Once a task has
been installed, it is either dormant or active. These states are defined as follows:

1-20 Using System Directives

Dormant Immediately following the processing of an MCR or DCL INSTALL command, a task
is known to the system but dormant. A dormant task has an entry in the STD, but
no request has been made to activate it.

Active A task is active from the time it is requested until the time it exits. Requesting a
task means issuing the RQST$, RUN$, SPWN$, SDRC$, VSRC$, RPOI$, or SDRP$
macro, or an MCR or DCL RUN command. An active task is eligible for scheduling;
a dormant task is not.

The three substates of an active task are as follows:

Ready-to-run

Blocked

Stopped

A ready-to-run task competes with other tasks for CPU time on
the basis of priority. The highest priority ready-to-run task obtains
CPU time and thus becomes the current task.

A blocked task is unable to compete for CPU time for synchro-
nization reasons or because a needed resource is not available.
Task priority effectively remains unchanged, allowing the task to
compete for memory space.

A stopped task is unable to compete for CPU time because of
pending I/O completion, event flag or flags that are not set, or
because the task stopped itself. When stopped, a task’s priority
effectively drops to zero and the task can be checkpointed by any
other task, regardless of that task’s priority. If an AST occurs for
the stopped task, its normal task priority is restored only for the
duration of the AST routine execution; once the AST is completed,
task priority returns to zero.

1.6.1 Task State Transitions

Dormant to Active—The following commands or directives cause the Executive to activate a

dormant task:

* A RUNS$ directive

e A RQST$ directive
* A SPWN$ directive
* An SDRCS$ directive
* A VSRCS$ directive
* An RPOI$ directive
¢ An SDRP$ directive

e An MCR or DCL RUN command

Ready-to-Run to Blocked—The following events cause an active, ready-to-run task to become

blocked:
e A SPND$ directive

®* An unsatisfied Wait-for condition

* Checkpointing of a task out of memory by the Executive

Using System Directives 1-21

Ready-to-Run to Stopped—The following events cause an active, ready-to-run task to become
stopped:

e A STOP$S directive is executed, or an RCST$, SDRP$, GCCI$, or VRCS$ directive is issued
when no data packet is available

e An unsatisfied Stop-for condition

e An unsatisfied Wait-for condition while the task has outstanding buffered 1/0 !

Blocked to Ready-to-Run—The following events return a blocked task to the ready-to-run state:
e A RSUMS$ directive issued by another task

e An MCR RESUME command or a DCL CONTINUE command

e A Wait-for condition is satisfied

¢ The Executive reads a checkpointed task into memory

Stopped to Ready-to-Run—The following events return a stopped task to the ready-to-run state,
depending upon how the task became stopped:

e A task stopped by the STOP$, RCST$, or VRCS$ directive becomes unstopped by USTP$
directive execution, or with an MCR UNSTOP or DCL START command.

* A Wait-for condition is satisfied for a task with outstanding buffered 1/0.

e A task stopped for one or more event flags becomes unstopped when the specified event
flag or flags become set.

Active to Dormant—The following events cause an active task to become dormant:

e An EXIT$S, EXIF$, RCVX$, or VRCX$ directive, or an RREF$ or GCCI$ directive that
specifies the exit option

* An ABRTS$ directive
e An MCR or DCL ABORT command
e A synchronous system trap (SST) for which a task has not specified a service routine

Blocked to Stopped—The following event causes a task that is blocked due to an unsatisfied
Wait-for condition to become stopped:

e The task initiates buffered I/O at AST state and then exits from AST state.

Stopped to Blocked—The following event causes a task that is stopped due to an unsatisfied
Wait-for condition and outstanding buffered I/O to return to a blocked state:

e Completion of all outstanding buffered 1/O

1 Only in systems that support the checkpointing of tasks during buffered 1/0. An 1/O request can be buffered only when the task is
checkpointable and when the region that /O is being done to or from is checkpointable.

1-22 Using System Directives

1.6.2 Removing an Installed Task

You remove an installed task from the system by issuing the MCR or DCL command
REMOVE from a privileged terminal. Refer to the RSX-11IM-PLUS MCR Operations Manual, the
RSX-11M-PLUS Command Language Manual, or the Micro/RSX User’s Guide.

1.7 Directive Restrictions for Nonprivileged Tasks

Nonprivileged tasks cannot issue certain Executive directives, except as noted in the following

list:

Directive Macro Call Comments

Abort Task ABRT$ A nonprivileged task can abort only those tasks with
the same TI: as the task issuing the directive.

Alter Priority ALTP$ A nonprivileged task can alter its own priority only to
those values less than or equal to the task’s installed
priority.

Cancel Scheduled CSRQ$ A nonprivileged task cannot issue this directive except

Initiation Requests for tasks with the same TI: as the issuing task.

Connect to Interrupt CINT$ A nonprivileged task cannot issue this directive.

Vector

Set Command Line SCLI$ A nonprivileged task cannot issue this directive under

Interpreter any circumstances.

Using System Directives 1-23

Chapter 2

Significant Events, System Traps, and Stop-Bit
Synchronization

This chapter introduces the concept of significant events and describes the ways in which your
code can make use of event flags, synchronous and asynchronous system traps, and stop-bit
synchronization.

2.1 Significant Events

A significant event is a change in system status that causes the Executive to reevaluate the
eligibility of all active tasks to run. (For some significant events, specifically those in which
the current task becomes ineligible to run, only those tasks of lower priority are examined.)
A significant event is usually caused (either directly or indirectly) by a system directive issued
from within a task. Significant events include the following:

An 1/O completion

A task exit

The execution of a Send Data directive

The execution of a Send Data Request and Pass OCB directive
The execution of a Send, Request, and Connect directive

The execution of a Send By Reference, Receive By Reference, or Receive By Reference or
Stop directive

The execution of an Alter Priority directive

The removal of an entry from the clock queue (for instance, resulting from the execution of
a Mark Time directive or the issuance of a rescheduling request)

The execution of a Declare Significant Event directive

The execution of the round-robin scheduling algorithm at the end of a round-robin
scheduling interval

The execution of an Exit, an Exit with Status, or an Emit Status directive

Significant Events, System Traps, and Stop-Bit Synchronization 2-1

2.2 Event Flags

Event flags are a means by which tasks recognize specific events. (Tasks also use asynchronous
system traps (ASTs) to recognize specific events. See Section 2.3.3.) In requesting a system
operation (such as an I/O transfer), a task may associate an event flag with the completion of
the operation. When the event occurs, the Executive sets the specified flag. Several examples
later in this section describe how tasks can use event flags to coordinate task execution.

Ninety-six event flags are available to enable tasks to distinguish one event from another. Each
event flag has a corresponding unique event flag number (EFN). Numbers 1 through 32 form
a group of flags that are unique to each task and are set or cleared as a result of that task’s
operation. Numbers 33 through 64 form a second group of flags that are common to all tasks;
hence their name “common flags.” Common flags may be set or cleared as a result of any task’s
operation. The last eight flags in each group, local flags (25-32) and common flags (57-64), are
reserved for use by the system. Numbers 65 through 96 form the third group of flags, known
as “group global event flags.” You can use group global event flags in any application where
common event flags are used except that, instead of applying to all tasks, group global event
flags apply only to tasks running under UICs containing the group number specified when the
flags were created. Four directives (Create Group Global Event Flags, Eliminate Group Global
Event Flags, Unlock Group Global Event Flags, and Read Extended Event Flags) provide the
Executive support needed for implementing group global event flags.

Tasks can use the common or group global event flags for intertask communication, or use their
own local event flags internally. They can set, clear, and test event flags by using the Set Event
Flag, Clear Event Flag, and Read All Event Flags directives. (The Read All Event Flags directive
will not return the group global event flags. When these flags are in use, read all event flags
using the Read Extended Event Flags directive.) Be careful to coordinate the use of group global
event flags between multiple applications.

Examples 1 and 2 illustrate the use of common event flags (33-64) to synchronize task execution.
Examples 3 and 4 illustrate the use of local flags (1-32).

Example 1

Task B clears common event flag 35 and then blocks itself by issuing a Wait-for directive
that specifies common event flag 35.

Subsequently, another task, Task A, specifies event flag 35 in a Set Event Flag directive to
inform Task B that it may proceed. Task A then issues a Declare Significant Event directive
to ensure that the Executive will schedule Task B.

Example 2

In order to synchronize the transmission of data between Tasks A and B, Task A specifies
Task B and common event flag 42 in a Send Data directive.

Task B has specified flag 42 in a Wait-for directive. When Task A’s Send Data directive has
caused the Executive to set flag 42 and to cause a significant event, Task B proceeds and
issues a Receive Data directive because its Wait-for condition has been satisfied.

2-2 Significant Events, System Traps, and Stop-Bit Synchronization

Example 3

A task contains a Queue I/0 Request directive and an associated Wait-for directive; both
directives specify the same local event flag. When the task queues its I/O request, the
Executive clears the local flag. If the requested 1/0 is incomplete when the task issues the
Wait-for directive, the Executive blocks the task.

When the requested 1/0O has been completed, the Executive sets the local flag and causes
a significant event. The task then resumes its execution at the instruction that follows the
Wait-for directive. Using the local event flag in this manner ensures that the task does not
manipulate incoming data until the transfer is complete.

Example 4

A task specifies the same local event flag in a Mark Time and an associated Wait-for
directive. When the Mark Time directive is issued, the Executive first clears the local flag
and subsequently sets it when the indicated time interval has elapsed.

If the task issues the Wait-for directive before the local flag has been set, the Executive
blocks the task. The task resumes when the flag is set at the end of the proper time interval.
If the flag has been set first, the directive is a no-op and the task is not blocked.

Specifying an event flag does not mean that a Wait-for directive must be issued. Event-flag
testing can be performed at any time. The purpose of a Wait-for directive is to stop task
execution until an indicated event occurs. Hence, it is not necessary to issue a Wait-for directive
immediately following a Queue 1/0O Request directive or a Mark Time directive.

If a task issues a Wait-for directive that specifies an event flag that is already set, the blocking
condition is immediately satisfied and the Executive returns control to the task.

Tasks can issue Stop-for directives as well as Wait-for directives. When this is done, an event-
flag condition that is not satisfied results in the task’s being stopped (instead of being blocked)
until the event flag or flags are set. A task that is blocked still competes for memory resources
at its running priority. A task that is stopped competes for memory resources at priority 0.

The simplest way to test a single event flag is to issue the Clear Event Flag or Set Event Flag
directive. Both of these directives can cause the following return codes:

IS.CLR - Flag was previously clear

IS.SET - Flag was previously set

For example, if a set common event flag indicates the completion of an operation, a task can
issue the Clear Event Flag directive both to read the event flag and, simultaneously, to reset
it for the next operation. If the event flag was previously clear (the current operation was
incomplete), the flag remains clear.

Significant Events, System Traps, and Stop-Bit Synchronization 2-3

2.2.1 Creating, Deleting, and Displaying Group Global Event Flags

The DCL SET GROUPFLAGS command creates and deletes group global event flags. Privileged
users can create and delete group global event flags for any group. Nonprivileged users can
create and delete global event flags only for the group of which they are members.

The SET GROUPFLAGS command line has the following formats:

SET GROUPFLAGS|/qualifier]
Flag? g
SET GROUPFLAGS:g[/qualifier]
The qualifiers for the SET GROUPFLAGS command are /CREATE and /DELETE.

The /CREATE qualifier indicates that you want to create a set of group global event flags. This
is the default qualifier; it does not need to be specified. Nonprivileged users can create and
delete group global event flags for their own login group. Privileged users can create and delete
group global event flags for any group.

The /DELETE qualifier indicates that you want to delete a set of group global event flags.
For both qualifiers, g is the group number with which the flags are associated.

The DCL SHOW GROUPFLAGS command displays the group global event flags currently in
the system. The command line has the following format:

SHOW GROUPFLAGS

In the display, the first column is the group number with which the flags are associated. The
second column is the access count, which is the number of tasks using the event flags.

The group global event flags are represented in the display by two octal words. The first word
represents event flags 65 through 80 (from right to left) and the second word represents event
flags 81 through 96 (from right to left).

The final column in the display is reserved for the delete flag DEL, which means the group
global event flags are marked for deletion and are not available.

Example

$ SHOW GROUPFLAGS

7 0 000000 000000
200 1 000000 000000
$ SET GROUPFLAGS:303

$ SHOW GROUPFLAGS

7 0 000000 000000
200 1 000000 000000
303 1 000010 000000

In this example, the first SHOW GROUPFLAGS command displays the group global event flags
currently being used in the system. The display shows that one task is using the event flags
for group 200.

The SET GROUPFLAGS command creates group global event flags for group 303. The second
SHOW GROUPFLAGS command displays the event flags from before and the newly created
flags for group 303. The display also shows that event flag 68 (000010) has been set for group
303.

2-4 Significant Events, System Traps, and Stop-Bit Synchronization

2.3 System Traps

2.3.

System traps (also called software interrupts) are a means of transferring control to tasks to
allow them to monitor and react to events. The Executive initiates system traps when certain
events occur. The trap transfers control to the task associated with the event and gives the task
the opportunity to service the event by entering a user-written routine.

There are two kinds of system traps:

* Synchronous system traps (SSTs)—SSTs detect events directly associated with the execution
of program instructions. They are synchronous because they always recur at the same point
in the program when trap-causing instructions occur. For example, an illegal instruction
causes an SST.

* Asynchronous system traps (ASTs)—ASTs detect events that occur asynchronously to the
task’s execution. That is, the task has no direct control over the precise time that the
event—and therefore the trap—may occur. For example, the completion of an I/O transfer
may cause an AST to occur.

A task that uses the system-trap facility issues system directives that establish entry points for
user-written service routines. Entry points for SSTs are specified in a single table. AST entry
points are set by individual directives for each kind of AST. When a trap condition occurs, the
task automatically enters the appropriate routine (if its entry point has been specified).

1 Synchronous System Traps (SSTs)

SSTs can detect the execution of:

* Illegal instructions

¢ Instructions with invalid addresses

¢ Trap instructions (TRAP, EMT, IOT, BPT)

® FIS floating-point exceptions (PDP-11/40 processors only)

You can set up an SST vector table that contains one entry per SST type. Each entry is the
address of an SST routine that services a particular type of SST (a routine that services illegal
instructions, for example). When an SST occurs, the Executive transfers control to the routine
for that type of SST. If a corresponding routine is not specified in the table, the task is aborted.
The SST routine enables you to process the failure and then return to the interrupted code.
Note that if a debugging aid and a user’s task both have an SST vector enabled for a given
condition, the debugging-aid vector is referenced first to determine the service-routine address.

SST routines must always be reentrant if there is a possibility that an SST can occur within the
SST routine itself. Although the Executive initiates SSTs, the execution of the related service
routines is indistinguishable from the task’s normal execution. Therefore, an AST or another
SST can interrupt an SST routine.

Significant Events, System Traps, and Stop-Bit Synchronization 2-5

2.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the task’s processor status (PS), program
counter (PC), and trap-specific parameters onto the task’s stack. After removing the trap-specific
parameters, the service routine returns control to the task by issuing an RTI or RTT instruction.
Note that the task’s general-purpose registers R0-R5 and SP are not saved. If the SST routine
makes use of them, it must save and restore them itself.

To the Executive, SST-routine execution is indistinguishable from normal task execution, so all
directive services are available to an SST routine. An SST routine can remove the interrupted
PS and PC from the stack and transfer control anywhere in the task; the routine does not
have to return control to the point of interruption. Note that any operations performed by the
routine (such as the modification of registers or the DSW, or the setting or clearing of event
flags) remain in effect when the routine eventually returns control to the task.

A trap vector table within the task contains all the service-routine entry points. You can specify
the SST vector table by means of the Specify SST Vector Table for Task directive or the Specify
SST Vector for Debugging Aid directive. The trap vector table has the following format:

Associated

Word Offset Vector Trap

0 S.COAD 4 Odd or nonexistent memory error (on some PDP-11
processors—for example, the PDP 11/45—an illegal instruc-
tion traps here rather than through word 04)

1 S.CSGF 250 Memory protect violation

2 S.CBPT 14 T-bit trap or execution of a BPT instruction

3 S.CIOT 20 Execution of an IOT instruction

4 S.CILI 10 Execution of a reserved instruction

5 S.CEMT 30 Execution of a non-RSX EMT instruction

6 S.CTRP 34 Execution of a TRAP instruction

7 S.CFLT 244 Synchronous floating-point exception (PDP-11/40 processors

only)

A zero appearing in the table means that no entry point is specified.

On Micro/RSX systems, an odd address in the table causes another SST to occur when an SST
tries to use that particular address as an entry point. If an SST occurs and an associated entry
point is not specified in the table, the Executive aborts the task.

On RSX-11M-PLUS systems, an even vector entry causes the SST routine to be executed in
the same mode (either user or supervisor) that the processor was in when the SST vector was
specified. An odd vector entry causes the SST routine to be executed in the other mode. For
example, if the processor was in supervisor mode and the vector entry was odd, the SST routine
is executed in user mode.

2-6 Significant Events, System Traps, and Stop-Bit Synchronization

Depending on the reason for the SST, the task’s stack may also contain additional information,
as follows:

* Memory protect violation (complete stack)
SP+10 PS
SP+06 PC
SP+04 Memory protect status register (SR0)!
SP+02 Virtual PC of the faulting instruction (SR2)! 2
SP+00 Instruction backup register (SR1)!

1 For details of SR0, SR1, and SR2, see the section on the memory management unit in the appropriate PDP-11 processor handbook.
20n systems with a processor based on the DCJ11 microprocessor chip, the value of SR2 may be random.

* TRAP instruction or EMT other than 377 (and 376 in the case of unmapped tasks and
mapped privileged tasks) (complete stack)

SP+04 PS
SP+02 PC
SP+00 Instruction operand (low-order byte) multiplied by 2, non-sign-extended

All items except the PS and PC must be removed from the stack before the SST service routine
exits.

2.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain event has occurred—for
example, the completion of an I/O operation. As soon as the task has serviced the event, it
can return to the interrupted code.

Some directives can specify both an event flag and an AST; with these directives, ASTs can be
used as an alternative to event flags or the two can be used together. Therefore, you can specify
the same AST routine for several directives, each with a different event flag. Thus, when the
Executive passes control to the AST routine, the event flag can determine the action required.

AST service routines must save and restore all registers used. If the registers are not restored
after an AST has occurred, the task’s subsequent execution may be unpredictable.

Although not able to distinguish execution of an SST routine from task execution, the Executive
is aware that a task is executing an AST routine. An AST routine can be interrupted by an SST
routine, but not by another AST routine.

The following notes describe general characteristics and uses of ASTs:

* If an AST occurs while the related task is executing, the task is interrupted so that the AST
service routine can be executed.

* If an AST occurs while another AST is being processed, the Executive queues the latest AST
(first-in/first-out, or FIFO). The task then processes the next AST in the queue when the
current AST routine is complete (unless AST recognition was disabled by the AST service
routine).

Significant Events, System Traps, and Stop-Bit Synchronization 2-7

e If a task is suspended or stopped when an associated AST occurs, the task remains suspended
or stopped after the AST routine has been executed unless it is explicitly resumed or
unstopped either by the AST service routine itself or by another task (the MCR RESUME
or DCL CONTINUE command, for example).

e If an AST occurs while the related task is waiting or stopped for an event flag to be set (a
Wait-for or Stop-for directive), the task continues to wait after execution of the AST service
routine unless the event flag is to be set when the AST exits.

e If an AST occurs for a checkpointed task, the Executive queues the AST (FIFO), brings the
task into memory, and then activates the AST when the task returns to memory.

e The Executive allocates the necessary dynamic memory when an AST is specified. Thus, no
AST condition lacks dynamic memory for data storage when it actually occurs. The AST
reuses the storage allocated for I/O and Mark Time directives. Therefore, no additional
dynamic storage is required.

e Two directives, Disable AST Recognition and Enable AST Recognition, allow a program to
queue ASTs for subsequent execution during critical sections of code. (A critical section
might be one that accesses databases also accessed by AST service routines, for example.) If
ASTs occur while AST recognition is disabled, they are queued (FIFO) and then processed
when AST recognition is enabled.

2.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task’s Wait-for mask word, the DSW, the PS,
and the PC onto the task’s stack. This information saves the state of the task so that the AST
service routine has access to all the available Executive services. The preserved Wait-for mask
word allows the AST routines to establish the conditions necessary to unblock the waiting task.
Depending on the reason for the AST, the stack may also contain additional parameters. Note
that the task’s general-purpose registers RO-R5 and SP are not saved. If the routine makes use
of them, it must save and restore them itself.

On all RSX=11M-PLUS and Micro/RSX systems, the Wait-for mask word comes from the offset
T.EFLM in the task’s Task Control Block (TCB). On systems that do not support those features,
the Wait-for mask word comes from the offset HEEFLM in the task’s header. Its value and the
event-flag range to which it corresponds depend on the last Wait-for or Stop-for directive issued
by the task. For example, if the last such directive issued was Wait for Single Event Flag 42,
the mask word has a value of 10005 and the event flag range is from 33 to 48. Bit 0 of the
mask word represents flag 33, bit 1 represents flag 34, and so on.

The Wait-for mask word is meaningless if the task has not issued any type of Wait-for or
Stop-for directive.

Your code should not attempt to modify the Wait-for mask while in the AST routine. For
example, putting a zero in the Wait-for mask results in an unclearable Wait-for state.

After processing an AST, the task must remove the trap-dependent parameters from its stack.
That is, everything from the top of the stack down to, but not including, the task’s Directive
Status Word must be removed. It must then issue an AST Service Exit directive with the stack
set as indicated in the description of that directive (see Section 5.3). When the AST service
routine exits, it returns control to one of two places: another AST or the original task.

2-8 Significant Events, System Traps, and Stop-Bit Synchronization

There are 14 variations on the format of the task’s stack, as follows:

1. If a task needs to be notified when a Floating Point Processor exception trap occurs, it
issues a Specify Floating Point Processor Exception AST directive. If the task specifies this
directive, an AST will occur when a Floating Point Processor exception trap occurs. The
stack will contain the following values:

SP+12 Event-flag mask word
SP+10 PS of task prior to AST
SP+06 PC of task prior to AST
SP+04 Task’s Directive Status Word
SP+02 Floating exception code
SP+00 Floating exception address

Note

Refer to the appropriate processor handbook for a description of the FPU
exception-code values.

2. If the task needs to be notified of power-failure recoveries, it issues a Specify Power
Recovery AST directive. An AST will occur when the power is restored if the task is not
checkpointed. The stack will contain the following values:

SP+06 Event-flag mask word

SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 Task’s Directive Status Word

3. If a task needs to be notified when it receives either a message or a reference to a common
area, it issues either a Specify Receive Data AST or a Specify Receive By Reference AST
directive. An AST will occur when the message or common reference is sent to the task.
The stack will contain the following values:

SP+06 Event-flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 Task’s Directive Status Word

4. When a task queues an I/O request and specifies an appropriate AST service entry point,
an AST will occur upon completion of the I/O request. The task’s stack will contain the
following values:

SP+10 Event-flag mask word
SP+06 PS of task prior to AST
SP+04 PC of task prior to AST

Significant Events, System Traps, and Stop-Bit Synchronization 2-9

SP+02 Task’s Directive Status Word
SP+00 Address of 1/0 status block for I/0 request (or zero if none was specified)

5. When a task issues a Mark Time directive and specifies an appropriate AST service entry
point, an AST will occur when the indicated time interval has elapsed. The task’s stack will
contain the following values:

SP+10 Event-flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task’s Directive Status Word

SP+00 Event flag number (or zero if none was specified)

6. An offspring task, connected by a Spawn, Connect, or Send, Request, and Connect directive,
returns status to the connected (parent) task or tasks upon exiting by the Exit AST. The
parent task’s stack contains the following values:

SP+10 Event-flag mask word

SP+06 PS of task prior to AST
SP+04 PC of task prior to AST
SP+02 Task’s Directive Status Word
SP+00 Address of exit status block

7 If a command arrives for a CLI, the Command Arrival AST routine is entered. The stack
contains:

SP+10 Event-flag mask word
SP+06 PS of task prior to AST
SP+04 PC of task prior to AST
SP+02 Task’s Directive Status Word
SP+00 Command-buffer address

8. If a parent task issues a Create Virtual Terminal directive, the input and output AST routines
are entered. The task’s stack contains the following values:

SP+14 Event-flag mask word

SP+12 PS of task prior to AST

SP+10 PC of task prior to AST

SP+06 Task’s Directive Status Word

SP+04 Third parameter word (vertical format control - VFC) of the offspring request

SP+02 Byte count of offspring request

2-10 Significant Events, System Traps, and Stop-Bit Synchronization

10.

11.

SP+00

Virtual terminal unit number (low byte); I/O subfunction code of offspring request
(high byte)

If the Attach/Detach AST routine is entered for attaching to a virtual terminal, the task’s
stack contains the following values:

SP+14
SP+12
SP+10
SP+06
SP+04
SP+02
SP+00

Event-flag mask word

PS of task prior to AST

PC of task prior to AST

Task’s Directive Status Word
Second word of offspring task name
First word of offspring task name

Virtual terminal unit number (low byte); I/O subfunction code of offspring request
(high byte)

If the Attach/Detach AST routine is entered for detaching from a virtual terminal, the task’s
stack contains the following values:

SP+14
SP+12
SP+10
SP+06
SP+04
SP+02
SP+00

Event-flag mask word

PS of task prior to AST

PC of task prior to AST

Task’s Directive Status Word

Second word of offspring task name = 0
First word of offspring task name = 0

Virtual terminal unit number (low byte); I/O subfunction code of offspring request
(high byte)

If a task issues a Specify Parity Error AST directive, the parity-error AST service routine is
entered. The task’s stack contains the following values:

SP+62
SP+60
SP+56
SP+54
SP+52
SP+50
SP+46
SP+44
SP+42

Event-flag mask word

PS of task prior to AST

PC of task prior to AST
Task’s Directive Status Word

Significant Events, System Traps, and Stop-Bit Synchronization 2-11

SP+40

SP+36

SP+34

SP+32 Contents of memory-parity CSRs

SP+30 (hardware-dependent information)

SP+26

SP+24

SP+22

SP+20

SP+16

SP+14

SP+12 Contents of cache control register

SP+10 Contents of memory system-error register

SP+06 Contents of high-error-address register

SP+04 Contents of low-error-address register

SP+02 Processor identification (single-processor system=0)
SP+00 Number of bytes to add to SP to clean the stack (52)

12. If a task is aborted by a directive or a DCL or MCR command when the Specify Requested
Exit AST is in effect, the abort AST is entered. The task’s stack contains the following
values:

SP+06 Event-flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 Task’s Directive Status Word

13. If a task is aborted by a directive or a DCL or MCR command when the Extended Specify
Requested Exit AST is in effect, the abort AST is entered. The task’s stack contains the
following values:

SP+12 Event-flag mask word
SP+10 PS of task prior to AST
SP+06 PC of task prior to AST
SP+04 DSW of task prior to AST

2-12 Significant Events, System Traps, and Stop-Bit Synchronization

SP+02 Trap-dependent parameter
SP+00 Number of bytes to add to SP to clean the stack

14. If a task issues a QIO IO.ATA function to the full-duplex terminal driver, unsolicited terminal
input will cause the AST service routine to be entered. Upon entry into the routine, the
task’s stack contains the following values:

SP+10 Event-flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task’s Directive Status Word

SP+00 Unsolicited character in low byte; parameter 2 in high byte

2.4 Stop-Bit Synchronization

Stop-bit synchronization allows tasks to be checkpointed during terminal (buffered) I/0 or while
waiting for an event to occur (for example, an event flag to become set or an Unstop directive
to become issued). You can control synchronization between tasks by the setting of the task’s
Task Control Block (TCB) stop bit.

When the task’s stop bit is set, the task is blocked from further execution, its priority for memory
allocation effectively drops to zero, and it may be checkpointed by any other task in the system
regardless of priority. If checkpointed, the task remains out of memory until its stop bit is
cleared, at which time the task becomes unstopped, its normal priority for memory allocation
becomes restored, and it is considered for memory allocation based on the restored priority.

If the stopped task receives an AST, it becomes unstopped until it exits from the AST routine.
Memory allocation for the task during the AST routine is based on the task’s priority prior to
the stopped state. Note that a task cannot be stopped when an AST is in progress, but the AST
routine can issue either an Unstop or Set Event Flag directive to reference the task. This causes
it to remain unstopped after it issues the AST Service Exit directive.

There are three ways in which a nonprivileged task can become stopped and three corresponding
ways for it to become unstopped. Only one method for stopping a task can be applied at one
time. The methods are as follows:

* A task is stopped whenever it is in a Wait-for state and has outstanding buffered I/0. A
task is unstopped when the buffered 1/O is completed or when the Wait-for condition is
satisfied.

® You can stop a task for event flag or flags by issuing the Stop for Single Event Flag directive
or the Stop for Logical OR of Event Flags directive. In this case, the task can be unstopped
only by setting the specified event flag or flags.

* You can stop a task by issuing the Stop directive, the Receive Data or Stop directive, or the
Get Command for Command Interpreter directive. In this case, the task can be unstopped
only by issuing the Unstop directive or the MCR UNSTOP or DCL START command.

You cannot stop a task when an AST is in progress (AST state). Any directives that cause a
task to become stopped are invalid at the AST state.

Significant Events, System Traps, and Stop-Bit Synchronization 2-13

When a task is stopped for any reason at the task state, it can still receive ASTs. If the task
has been checkpointed, it becomes eligible for entry back into memory when an AST is queued
for it. The task retains its normal priority in memory while it is at the AST state or has ASTs
queued. Once it has exited the AST routine with no other ASTs queued, the task is again
stopped and effectively has zero priority for memory allocation.

You can use the following directives for stop-bit synchronization:

Directive

Function

Stop

Receive Data or Stop and Variable Receive
Data or Stop

Receive by Reference or Stop

Stop for Logical OR of Event Flags

Stop for Single Event Flag

Unstop

Get Command for Command Interpreter

This directive stops the issuing task and cannot
be issued at the AST state.

These directives attempt to dequeue send-data
packets from the specified task (or any task if
none is specified). If there is no such packet to
be dequeued, the issuing task is stopped. These
directives cannot be issued at the AST state.

This directive requests the Executive to dequeue
the next packet in the receive-by-reference queue
of the issuing (receiver) task. The task will stop
if there are no packets in the queue.

This directive stops the issuing task until the
specified flags in the specified group of local event
flags become set. If any of the specified event
flags are already set, the task does not become
stopped. This directive cannot be issued at the
AST state.

This directive stops the issuing task until the
indicated local event flag becomes set. If the
specified event flag is already set, the task does
not become stopped. This directive cannot be
issued at the AST state.

This directive unstops a task that has become
stopped by the Stop or the Receive Data or Stop
directive.

This directive stops a CLI task when there is no
command queued for it. The GC.CST option
must be specified to force the task to stop. This
directive cannot be issued at the AST state.

2-14 Significant Events, System Traps, and Stop-Bit Synchronization

Chapter 3
Memory Management Directives

Within the framework of memory management directives, this chapter discusses extended logical
address space, regions, virtual address windows, and fast mapping.

3.1 Addressing Capabilities of a Task

Without the overlaying of tasks, a task cannot explicitly refer to a location with an address greater
than 177777 (32K words). The 16-bit word size of the PDP-11 imposes this restriction on a
task’s addressing capability. Overlaying a task means that it must first be divided into segments:
a single root segment, which is always in memory, and any number of overlay segments, which
can be loaded into memory as required. Unless a task uses the memory management directives
described in this chapter, the combined size of the task segments concurrently in memory cannot
exceed 32K words.

When resident task segments cannot exceed a total of 32K words, a task requiring large amounts
of data must access data that resides on disk. Data is disk-based not only because of limited
memory space, but also because transmission of large amounts of data between tasks is only
practical by means of disk. An overlaid task, or a task that needs to access or transfer large
amounts of data, incurs a considerable amount of transfer activity over and above that caused
by the task’s function.

Task execution could obviously be faster if all or a greater portion of the task were resident
in memory at run time. A group of memory management directives provide a task with
this capability. The directives overcome the 32K-word addressing restriction by allowing the
task to dynamically change the physical locations that are referred to by a given range of
addresses. With these directives, a task can increase its execution speed by reducing its disk
I/O requirements at the expense of increased physical memory requirements.

On RSX-11M-PLUS operating systems, you can effectively triple the memory available for
tasks on PDP-11 systems that are capable of operating in supervisor mode through the use of
supervisor-mode library routines and separate user-mode instruction space (I-space) and data
space (D-space). Supervisor-mode library routines are instruction-only routines that are mapped
into supervisor-mode I-space (32K words maximum). User task parameters, stack, and any
locations that may be written are mapped into supervisor-mode D-space (32K words maximum).

Memory Management Directives 3-1

3.1.

User tasks that use I- and D-space may consist of up to 32K words of instructions and 32K
words of data.

1 Address Mapping

In a mapped system, you do not need to know where a task resides in physical memory.
Mapping, the process of associating task addresses with available physical memory, is transparent
and is accomplished by the KT11 memory management hardware. (See the appropriate PDP-11
processor handbook for a description of the KT11.) When a task references a location (virtual
address), the KT11 determines the physical address in memory. The memory management
directives use the KT11 to perform address mapping at a level that is visible to and controlled
by you.

3.1.2 Address Space

The following concepts—logical address space and virtual address space—provide a basis for
understanding the functions performed by the memory management directives:

e Logical address space—A task’s logical address space is the total amount of physical memory
to which the task has access rights. This includes various areas called regions (see Section
3.3). Each region occupies a contiguous block of memory.

e Virtual address space—A task’s virtual address space corresponds to the 32K-word address
range imposed by the PDP-11's 16-bit word length. The task can divide its virtual address
space into segments called virtual address windows (see Section 3.2).

If the capabilities supplied by the memory management directives were not available, a task’s
virtual address space and logical address space would directly correspond; a single virtual
address would always point to the same logical location. Both types of address space would
have a maximum size of 32K words. However, the ability of the memory management directives
to assign or map a range of virtual addresses (a window) to different logical areas (regions)
enables you to extend a task’s logical address space beyond 32K words.

3.1.3 Supervisor-Mode Addressing

3-2

RSX-11M-PLUS systems support PDP-11 processors that are capable of operating in supervisor
mode. Supervisor mode is one of three possible modes (user, kernel, and supervisor) in which
these systems can operate. In user mode, eight active page registers (APRs) are available for
address mapping of user tasks. Note that only I-space APRs are employed in user mode for
both instructions and data.

Supervisor-mode support doubles the instruction space available to tasks because 16 APRs (8
user-mode I-space and 8 supervisor-mode I-space) are available for address mapping. The
contents of user-mode D-space APRs (I-space APRs on systems that do not support user data
space) are copied into supervisor-mode D-space APRs to allow supervisor-mode routines to
access user-mode data. (Refer to the appropriate PDP-11 processor handbook for a complete
description of address mapping, memory management, and the various APR registers).

Memory Management Directives

3.1.4 Mapping Structure of |- and D-Space Tasks

RSX-11M-PLUS systems support user-mode I- and D-space. Tasks that do not use D-space
execute with I- and D-space overmapped. However, these tasks may create D-space windows.
This allows tasks to increase the total virtual size without a full implementation of I- and
D-space.

Tasks in which the Task Builder has separated the I-space and D-space structures are mapped
separately (I- and D-space are not overmapped). The overall mapping structure for these tasks
is as follows:

Window 0 Root I-space
Window 1 Task header, stack, and root D-space

Window 2 I-space of the read-only section if a multiuser task; memory-resident overlays if
not a multiuser task

Window 3 D-space of the read-only section if a multiuser task; memory-resident overlays if
not a multiuser task.

Window 4 Memory-resident overlays

The multiuser section of a multiuser task is also separated into I- and D-space areas. Memory-
resident libraries are not separated and are normally mapped by both I- and D-space. Common
regions are also normally mapped through D-space only. The memory management directives
can be used to attach to and map a data common with an explicit D-space window.

3.2 Virtual Address Windows

In order to manipulate the mapping of virtual addresses to various logical areas, you must first
divide a task’s 32K words of virtual address space into segments. These segments are called
virtual address windows. Each window encompasses a contiguous range of virtual addresses,
which must begin on a 4K-word boundary (that is, the first address must be a multiple of 4K).
The number of windows defined by a task can vary from 1 to 23. For all tasks, window 0 is
not available to you. For tasks on RSX-11M-PLUS using I- and D-space, windows 0 and 1 are
not available to you. The size of each window can range from a minimum of 32 words to a
maximum of 32K words.

A task that includes directives to manipulate address windows dynamically must have window
blocks set up in its task header. The Executive uses window blocks to identify and describe
each currently existing window. You specify the required number of additional window blocks
(the number used for windows created by the memory management directives) to be set up
by the Task Builder when linking the task (see the RSX-11M-PLUS and Micro/RSX Task Builder
Manual). The number of blocks that you specify should equal the maximum number of windows
that will exist at any one time when the task is running.

Memory Management Directives 3-3

A window’s identification is a number from 0 to 15y for either user or, on RSX-11M-PLUS,
supervisor windows on systems that support supervisor-mode libraries (0 to 23;¢ for systems
with user and supervisor I- and D-space). The number is an index to the window’s corresponding
window block. The address window identified by 0 is the window that maps the task’s header
and root segment. For tasks on RSX-11M-PLUS using I- and D-space, window 0 maps the
task’s root instruction segment; window 1 maps the task’s header, stack, and root data segment.
On all systems, the Task Builder automatically creates window 0, which is mapped by the
Executive and cannot be specified in any directive.

Figure 3-1 shows the virtual address space of a task divided into four address windows (windows
0, 1, 2, and 3). The shaded areas indicate portions of the address space that are not included in
any window (9K to 12K and 23K to 24K). Addresses that fall within the ranges corresponding
to the shaded areas cannot be used.

Figure 3-1: Virtual Address Windows

VIRTUAL
ADDRESS
SPACE
32K
WINDOW 3 3 (8K) 28K
iy it g
20K
WINDOW 2 2 (11K)
—16K
I
~ 8K
WINDOW 1 1 (5K)
4K
WINDOW 0O 0 (4K)
0K

_ virtual address
~ window

_ unused virtual
" address space

ZK-307-81

When a task uses memory management directives, the Executive views the relationship between
the task’s virtual and logical address space in terms of windows and regions. Unless a virtual

3-4 Memory Management Directives

address is part of an existing address window, reference to that address will cause an illegal
address trap to occur. Similarly, a window can be mapped only to an area that is all or part of
an existing region within the task’s logical address space (see Section 3.3).

Once a task has defined the necessary windows and regions, it can issue memory management
directives to perform operations such as the following:

* Map a window to all or part of a region
* Unmap a window from one region in order to map it to another region

* Unmap a window from one part of a region in order to map it to another part of the same
region

3.3 Regions

3.3.

A region is a portion of physical memory to which a task has (or potentially may have) access.
The current window-to-region mapping context determines that part of a task’s logical address
space that the task can access at one time. A task’s logical address space can consist of various
types of regions, as follows:

* Task region—A contiguous block of memory in which the task runs.

* Static common region—An area, such as a global common area, defined by an operator
at run time or at system-generation time. Static common regions are dynamically loaded
whenever needed.

* Dynamic region—A region created dynamically at run time by issuing the memory
management directives.

* Shareable region—A read-only portion of multiuser tasks that are in shareable regions.

Tasks refer to a region by means of a region ID returned to the task by the Executive. A
region ID from 0 to 23 refers to a task’s static attachment. Region ID 0 always refers to a
task’s task region. On RSX-11M-PLUS and Micro/RSX systems, region ID 1 always refers to
the read-only (pure code) portion of multiuser tasks. All other region IDs are actually addresses
of the attachment descriptor maintained by the Executive in the system dynamic storage region

(pool).

Figure 3-2 shows a sample collection of regions that could make up a task’s logical address
space at some given time. The header and root segment are always part of the task region.
Since a region occupies a contiguous area of memory, each region is shown as a separate block.

Figure 3-3 illustrates a possible mapping relationship between the windows and regions shown
in Figures 3-1 and 3-2.

1 Shared Regions

Address mapping not only extends a task’s logical address space beyond 32K words, it also
allows the space to extend to regions that have not been linked to the task at task-build time.
One result is an increased potential for task interaction by means of shared regions. For example,
a task can create a dynamic region to accommodate large amounts of data. Any number of
tasks can then access that data by mapping to the region. Another result is the ability of tasks
to use a greater number of common routines. Thus, tasks can map to required routines at run
time rather than linking to them at task-build time.

Memory Management Directives 3-5

Figure 3-2: Region Definition Block

LOGICAL
ADDRESS
SPACE

REGION

TASK
REGION -

ZK-308-81

3.3.2 Attaching to Regions

Attaching is the process by which a region becomes part of a task’s logical address space. A
task can map a region that is part of the task’s logical address space only. There are three ways
to attach a task to a region:

e All tasks are automatically attached to regions that are linked to them at task-build time.

e A task can issue a directive to attach itself to a named static common region or a named
dynamic region.

e A task can request the Executive to attach another specified task to any region within the
logical address space of the requesting task.

3-6 Memory Management Directives

Figure 3-3: Mapping Windows to Regions

WINDOW 3

WINDOW 2

WINDOW 1

WINDOW 0

Legend:

LOGICAL
ADDRESS
SPACE

——

———— 5K
N STATIC COMMON
8K REGION
VIRTUAL STATIC COMMON
ADDRESS REGION
SPACE
32K
3 (8K) - 28K
TASK
MODIOOoT 24
- 20K %
2 (11K)
[16K - 11K RE%ION
L 12K /
T _
L 8K
1 (5K)
———————1 4K >,
I 777
0 (4K) —» 4K ‘ TASK'S HEADER
oK

virtual address
window

unused virtual
address space

B 0

pointer to area
mapped by a window

mapped areas of
logical address space

=
[:]=

unmapped portions of
logical address space

ZK-309-81

Memory Management Directives

3-7

Attaching identifies a task as a user of a region and prevents the system from deleting a region
until all user tasks have been detached from it. (It should be noted that fixed tasks do not
automatically become detached from regions upon exiting.)

Note
Each Send By Reference directive issued by a sending task creates a new
attachment descriptor for the receiving task. However, multiple Send By
Reference directives referencing the same region require only one attachment
descriptor. After the receiving task issues a series of Receive By Reference
directives and all pending data requests have been received, the task should
detach from the region in order to return the attachment descriptors to pool.

It is possible to avoid multiple attachment descriptors when sending and
receiving data by reference. Setting the WS.NAT bit in the Window Descriptor
Block (see Section 3.5.2) causes the Executive to create a new attachment
descriptor for that region only if necessary (that is, if the task is currently not
attached to the region).

3.3.3 Region Protection

A task cannot indiscriminately attach to any region. Each region has a protection mask to
prevent unauthorized access. The mask indicates the types of access (read, write, extend, delete)
allowed for each category of user (system, owner, group, world). The Executive checks that the
requesting task’s User Identification Code (UIC) allows it to make the attempted access. The
attempt fails if the protection mask denies that task the access it wants.

To determine when tasks may add to their logical address space by attaching regions, the
following points must be considered (note that all considerations presume there is no protection
violation):

e Any task can attach to a named dynamic region, provided it knows the name. In the case
of an unnamed dynamic region, a task can attach to the region only after receiving a Send
By Reference directive from the task that created the region.

e Any task can issue a Send By Reference directive to attach another task to any region.
The reference sent includes the access rights with which the receiving task attaches to the
region. The sending task can grant only those access rights that it has itself.

* Any task can map to a named static common region.

3.4 Directive Summary

This section briefly describes the function of each memory management directive.

3.4.1 Create Region Directive (CRRGS)

The Create Region directive creates a dynamic region in a designated system-controlled partition
and optionally attaches the issuing task to it.

3-8 Memory Management Directives

3.4.2 Attach Region Directive (ATRGS)
The Attach Region directive attaches the issuing task to a static common region or to a named
dynamic region.

3.4.3 Detach Region Directive (DTRGS)

The Detach Region directive detaches the issuing task from a specified region. Any of the task’s
address windows that are mapped to the region are automatically unmapped.

3.4.4 Create Address Window Directive (CRAWS)

The Create Address Window directive creates an address window, establishes its virtual address
base and size, and optionally maps the window. Any other windows that overlap with the
range of addresses of the new window are first unmapped and then eliminated.

3.4.5 Eliminate Address Window Directive (ELAWS)

The Eliminate Address Window directive eliminates an existing address window, unmapping it
first if necessary.

3.4.6 Map Address Window Directive (MAPS)

The Map Address Window directive maps an existing window to an attached region. The
mapping begins at a specified offset from the start of the region and goes to a specified length.
If the window is already mapped elsewhere, the Executive unmaps it before carrying out the
map assignment described in the directive.

3.4.7 Unmap Address Window Directive (UMAPS)

The Unmap Address Window directive unmaps a specified window. After the window has been
unmapped, its virtual address range cannot be referenced until the task issues another mapping
directive.

3.4.8 Send by Reference Directive (SREFS)

The Send By Reference directive inserts a packet containing a reference to a region into the
receive queue of a specified task. The receiver task is automatically attached to the region
referred to.

3.4.9 Receive by Reference Directive (RREFS)

The Receive By Reference directive requests the Executive to select the next packet from the
receive-by-reference queue of the issuing task and make the information in the packet available
to the task. Optionally, the directive can map a window to the referenced region or cause the
task to exit if the queue does not contain a receive-by-reference packet.

3.4.10 Receive by Reference or Stop Directive (RRSTS)

The Receive By Reference or Stop directive requests the Executive to select the next packet
from the receive-by-reference queue of the issuing task and make the information in the packet
available to the task. The directive can map a window to the referenced region or cause the
task to stop if the queue does not contain a receive-by-reference packet.

Memory Management Directives 3-9

3.4.11 Get Mapping Context Directive (GMCXS)

The Get Mapping Context directive causes the Executive to return to the issuing task a description
of the current window-to-region mapping assignments. The description is in a form that enables
the user to restore the mapping context through a series of Create Address Window directives.

3.4.12 Get Region Parameters Directive (GREGS)

The Get Region Parameters directive causes the Executive to supply the issuing task with
information about either its task region (if no region ID is given) or an explicitly specified
region.

3.5 User Data Structures

Most memory management directives are individually capable of performing a number of
separate actions. For example, a single Create Address Window directive can unmap and
eliminate up to seven conflicting address windows, create a new window, and map the new
window to a specified region. The complexity of the directives requires a special means of
communication between the user task and the Executive. The communication is achieved
through data structures that:

o Allow the task to specify which directive options it wants the Executive to perform

e Permit the Executive to provide the task with details about the outcome of the requested
actions

There are two types of user data structures that correspond to the two key elements (regions
and address windows) manipulated by the directives. The structures are called:

e The Region Definition Block (RDB)
¢ The Window Definition Block (WDB)

Every memory management directive, except Get Region Parameters, uses one of these structures
as its communications area between the task and the Executive. Each directive issued includes
in the Directive Parameter Block (DPB) a pointer to the appropriate definition block. Symbolic
address offset values are assigned by the task, pointing to locations within an RDB or a WDB.
The task can change the contents of these locations to define or modify the directive operation.
After the Executive has carried out the specified operation, it assigns values to various locations
within the block to describe the actions taken and to provide the task with information useful
for subsequent operations.

3.5.1 Region Definition Block

Figure 3-4 illustrates the format of a Region Definition Block (RDB). In addition to the symbolic
offsets defined in the diagram, the region status word R.GSTS contains defined bits that may be
set or cleared by the Executive or the task. (Undefined bits are reserved for future expansion.)
The bits and their definitions follow.

3-10 Memory Management Directives

Figure 3-4: Region Definition Block

Array Symbolic Byte
Element Offset Block Format Offset
0
irdb (1) R.GID REGION ID
2
irdb (2) R.GSiZ SIZE OF REGION (32W BLOCKS)
4
irdb (3}
R.GNAM }— NAME OF REGION (RAD50) - 6
irdb (4)
10
irdb (5)
R.GPAR = REGION'S MAIN PARTITION NAME (RAD50) — 12
irdb (6)
14
irdb (7) R.GSTS REGION STATUS WORD
16
irdb (8) R.GPRO REGION PROTECTION WORD
ZK-310-81
Bit Definition

RS.CRR=100000 Region was created successfully.
RS.UNM=40000 At least one window was unmapped on a detach.

RS.MDL=200 Mark region for deletion on last detach. When a region is created by means
of a CRRG$ directive, it is normally marked for deletion on the last detach.
However, if RS.NDL is set when the CRRG$ directive is executed, the region
is not marked for deletion. Subsequent execution of a DTRG$ directive with
RS.MDL set marks the region for deletion.

RS.NDL=100 Created region is not to be marked for deletion on last detach.
RS.ATT=40 Attach to created region.

RS.NEX=20 Created region is not extendable.

RS.DEL=10 Delete access desired on attach.

RS.EXT=4 Extend access desired on attach.

Memory Management Directives 3-11

Bit Definition

RS.WRT=2 Write access desired on attach.
RS.RED=1 Read access desired on attach.

These symbols are defined by the RDBDF$ macro, as described in Section 3.5.1.1.
The following memory management directives require a pointer to an RDB:

Create Region (CRRG$)
Attach Region (ATRG$)
Detach Region (DTRG$)

When a task issues one of these directives, the Executive clears the four high-order bits in
the region status word of the appropriate RDB. After completing the directive operation, the
Executive sets the RS.CRR or RS.UNM bit to indicate to the task what actions were taken. The
Executive never modifies the other bits.

3.5.1.1 Using Macros to Generate an RDB

RSX-11M-PLUS and Micro/RSX systems provide two macros, RDBDF$ and RDBBKS$, to generate
and define an RDB. RDBDF$ defines the offsets and status word bits for a region definition
block; RDBBK$ then creates the actual region definition block. The format of RDBDF$ is as
follows:

RDBDF$

Because RDBBK$ automatically invokes RDBDF$, you need only specify RDBBK$ in a module
that creates an RDB. The format of the call to RDBBKS$ is as follows:

RDBBKS$ siz,nam,par,sts,pro

Parameters
siz
The region size in 32-word blocks.

nam
The region name (Radix-50).

par
The name (Radix-50) of the partition in which to create the region.

sts
The bit definitions of the region status word.

This argument sets specified bits in the status word R.GSTS. The argument normally has
the following format:

3-12 Memory Management Directives

bit
A defined bit to be set. See Section 3.5.1.

pro
The region’s default protection word.

The argument pro is an octal number. The 16-bit binary equivalent specifies the region’s default
protection as follows:

Bits 15 12 11 87 4 3 0

WORLD GROUP OWNER SYSTEM

Each of these four categories has four bits, with each bit representing a type of access:

Bit 3 2 1 0

DELETE] EXTEND{ WRITE | READ

A bit value of 0 indicates that the specified type of access is to be allowed. A bit value of 1
indicates that the specified type of access is to be denied.

The macro call:
RDBBK$ 102. ,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>, 167000
expands to:

.WORD O

.WORD 102.

.RAD50 /ALPHA/

.RAD50 /GEN/

-WORD O

.WORD RS.NDL!RS.ATT!RS.WRT!RS.RED
.WORD 167000

If a Create Region directive pointed to the RDB defined by this expanded macro call, the
Executive would create a region 1025 32-word blocks in length, named ALPHA, in a partition
named GEN. The defined bits specified in the sts argument tell the Executive:

* Not to mark the region for deletion on the last detach
* To attach region ALPHA to the task issuing the directive macro call

* To grant read and write access to the attached task

Memory Management Directives 3-13

The protection word specified as 1670005 assigns a default protection mask to the region. The
octal number, which has a binary equivalent of 1110 1110 0000 0000, grants access as follows:

World (1110) Read access only
Group (1110) Read access only
Owner (0000) All access
System (0000) All access

If the Create Region directive is successful, the Executive returns to the issuing task a region-ID
value in the location accessed by symbolic offset R.GID and sets the defined bit RS.CRR in the
status word R.GSTS.

3.5.1.2 Using FORTRAN to Generate an RDB

When programming in FORTRAN, you must create an 8-word, single-precision integer array as
the RDB to be supplied in the following subroutine calls:

CALL ATRG (Attach Region directive)
CALL CRRG (Create Region directive)
CALL DTRG (Detach Region directive)

See the PDP-11 FORTRAN IV Language Reference Manual or the PDP-11 FORTRAN-77 Language
Reference Manual for information on the creation of arrays.

An RDB array has the following format:

Word Contents
irdb(1) Region ID
irdb(2) Size of the region in 32-word blocks

irdb(3) Region name (2 words in Radix-50 format)
irdb(4)

irdb(5) Name of the partition that contains the region (2 words in Radix-50 format)
irdb(6)

irdb(7) Region status word (see the paragraph following this list)
irdb(8) Region protection code

You can modify the region status word irdb(7) by setting or clearing the appropriate bits. See
the list in Section 3.5.1 that describes the defined bits. The bit values are listed alongside the
symbolic offsets.

Note that Hollerith text strings can be converted to Radix-50 values by calls to the FORTRAN
library routine IRAD50. (See the appropriate FORTRAN User’s Guide.)

3-14 Memory Management Directives

3.5.2 Window Definition Block

Figure 3-5 illustrates the format of a Window Definition Block (WDB). The block consists of
a number of symbolic address offsets to specific WDB locations. One of the locations is the
window status word W.NSTS, which contains defined bits that can be set or cleared by the
Executive or the task. (All undefined bits are reserved for future expansion.) The bits and their
definitions follow.

Bit Definition

WS.CRW=100000 Address window was created successfully.

WS.UNM=40000 At least one window was unmapped by a Create Address Window, Map
Address Window, or Unmap Address Window directive.

WS.ELW=20000 At least one window was eliminated by a Create Address Window or
Eliminate Address Window directive.

WS.RRF=10000 Reference was received successfully.

WS.NBP=4000 Do not bypass cache for CRAWS$ directives.

WS.BPS=4000 Always bypass cache for MAP$ directives.

WS.RES=2000 Map only if resident.

WS.NAT=1000 Create attachment descriptor only if necessary for Send By Reference
directives.

WS5.64B=400 Define the task’s permitted alignment boundaries: 0 for 256-word (512-
byte) alignment, 1 for 32-word (64-byte) alignment.

WS.MAP=200 Window is to be mapped by a Create Address Window, Receive By
Reference, or Receive By Reference or Stop directive.

WS.RCX=100 Exit if no references to receive.

WS.SIS=40 Create window in supervisor I-space (RSX-11M-PLUS systems only).

WS.UDS=20 Create window in user-mode D-space (RSX-11M-PLUS systems only).

WS.DEL=10 Send with delete access.

WS.EXT=4 Send with extend access.

WS.WRT=2 Send with write access.
lc\)/;ap with write access.

WS.RED=1 Send with read access.

These symbols are defined by the WDBDF$ macro, as described in Section 3.5.2.1.
The following directives require a pointer to a WDB:

Create Address Window (CRAWS$)
Eliminate Address Window (ELAWS)
Map Address Window (MAP$)
Unmap Address Window (UMAP$)

Memory Management Directives 3-15

Figure 3-5: Window Definition Block

Array Symbolic Byte

Element Offset Block Format Offset

0
iwdb (1 WNID BASE APR WIND
iwdb (1) W.NAPR INDOW ID

2
iwdb (2) W.NBAS VIRTUAL BASE ADDRESS (BYTES)

4
iwdb (3) W.NSIZ WINDOW SIZE (32W BLOCKS)

6
iwdb (4) W.NRID REGION ID

10
iwdb (5) W.NOFF OFFSET IN REGION (32W BLOCKS)

12
iwdb (6) W.NLEN LENGTH TO MAP (32 BLOCKS)

14
iwdb (7) W.NSTS WINDOW STATUS WORD

16
iwdb (8) W.NSRB SEND/RECEIVE BUFFER ADDRESS (BYTES)

ZK-311-81

Send By Reference (SREF$)
Receive By Reference (RREF$)
Receive By Reference or Stop (RRST$)

When a task issues one of these directives, the Executive clears the four high-order bits in
the window status word of the appropriate WDB. After completing the directive operation, the
Executive can then set any of these bits to tell the task what actions were taken. The Executive
never modifies the other bits.

3.5.2.1 Using Macros to Generate a WDB

RSX-11M-PLUS and Micro/RSX systems provide two macros, WDBDF$ and WDBBKS$, to
generate and define a WDB. WDBDF$ defines the offsets and status word bits for a window
definition block; WDBBK$ then creates the actual window definition block. The format of
WDBDFS$ is as follows:

WDBDF$

Because WDBBK$ automatically invokes WDBDF$, you need only specify WDBBK$ in a module
that generates a WDB. The format of the call to WDBBKS$ is as follows:

WDBBKS$ apr,siz,rid,off, len,sts,srb

3-16 Memory Management Directives

Parameters

apr
A number from 0 to 7 that specifies the window’s base Active Page Register (APR). The
APR determines the 4K boundary on which the window is to begin. APR 0 corresponds to
virtual address 0, APR 1 to 4K, APR 2 to 8K, and so on.

siz
The size of the window in 32-word blocks.

rid
A region ID.

oft
The offset within the region to be mapped, in 32-word blocks.

len
The length within the region to be mapped, in 32-word blocks (defaults to the value of siz).

sts
The bit definitions of the window status word.

This argument sets specified bits in the status word W.NSTS. The argument normally has
the following format:

bit
A defined bit to be set. See Section 3.5.2.

stb
A send/receive buffer virtual address.
The macro call:

WDBBK$ 5,76.,0,50.,,<WS.64B!WS.MAP!WS.WRT>

expands to:

.BYTE 0,5 (Window ID returned in low-order byte)
.WORD O (Base virtual address returned here)
.WORD 76.

.WORD O

.WORD 50.

.WORD O

.WORD WS.64B!WS.MAP!WS.WRT

.WORD O

If a Create Address Window directive pointed to the WDB defined by the macro call expanded
above, the Executive would perform the following actions:

¢ Create a window 764y blocks long beginning at APR 5 (virtual address 20K or 1200003) and
align the window on a 64-byte boundary (WS.64B)

* Map the window with write access (<KWS.MAP!WS.WRT>) to the issuing task’s task
region (because the macro call specified 0 for the region ID)

Memory Management Directives 3-17

Start the map 50,9 blocks from the base of the region, and map an area either equal to
the length of the window (76 decimal blocks) or to the length remaining in the region,
whichever is smaller (because the macro call defaulted the len argument)

Return values to the symbolic W.NID (the window’s ID) and W.NBAS (the window’s virtual
base address)

3.5.2.2 Using FORTRAN to Generate a WDB

When programming in FORTRAN, you must create an 8-word, single-precision integer array as
the WDB to be supplied in the following subroutine calls:

CALL CRAW (Create Address Window directive)
CALL ELAW (Eliminate Address Window directive)
CALL MAP (Map Address Window directive)

CALL UNMAP (Unmap Address Window directive)
CALL SREF (Send By Reference directive)

CALL RREF (Receive By Reference directive)

CALL RRST (Receive By Reference or Stop directive)

See the PDP-11 FORTRAN IV Language Reference Manual or the PDP-11 FORTRAN-77 Language
Reference Manual for information on the creation of arrays.

A WDB array has the following format:

Word Contents

iwdb(1) Bits 0 through 7 contain the window ID; bits 8 through 15 contain the window’s

base APR

iwdb(2) Base virtual address of the window

iwdb(3) Size of the window in 32-word blocks

iwdb(4) Region ID

iwdb(5) Offset length within the region at which map begins, in 32-word blocks

iwdb(6) Length mapped within the region in 32-word blocks

iwdb(7) Window status word (see the paragraph following this list)
iwdb(8) Address of send/receive buffer

You can modify the window status word iwdb(7) by setting or clearing the appropriate bits.
See the list in Section 3.5.2 that describes the defined bits. The bit values are listed alongside
the symbolic offsets.

Please note the following:

For any directive other than Create Address Window, the contents of bits 8 through 15 of
iwdb(1) must normally be set without destroying the value in bits 0 through 7.

A call to GETADR (see Section 1.5.1.4) can be used to set up the address of the send/receive
buffer. For example:

CALL GETADR(IWDB,,,..... IRCVB)

3-18 Memory Management Directives

This call places the address of buffer IRCVB in array element 8. The remaining elements
are unchanged. The subroutines SREF, RREF, and RRST also set up this value. If you use
these routines, you do not need to use GETADR.

3.5.3 Assighed Values or Settings

The exact values or settings assigned to individual fields within the RDB or the WDB vary
according to each directive. Fields that are not required as input can have any value when the
directive is issued. Chapter 5 describes which offsets and settings are relevant for each memory
management directive. The values assigned by the task are called input parameters, whereas
those assigned by the Executive are called output parameters.

3.6 Privileged Tasks

When a privileged task maps to the Executive and the I/O page, the system normally dedicates
five or six APRs to this mapping. A privileged task can issue memory management directives
to remap any number of these APRs to regions. Take great care when using the directives in
this way because such remapping can cause obscure bugs to occur. When a directive unmaps a
window that formerly mapped the Executive or the 1/O page, the Executive restores the former

mapping.

Note

Tasks should not remap APR 0. If APR 0 is remapped, information such as the
DSW, overlay structures, or language run-time systems will become inaccessible.

3.7 Fast Mapping

The RSX-11M-PLUS and Micro/RSX operating systems provide a special addition to the memory
management facilities called fast mapping. Fast mapping provides a mechanism for executing
a subset of the Map directive at a greatly increased speed. For tasks that use this subset, fast
mapping can be as much as ten to thirty times faster than the Map directive.

However, the fast-mapping facility has the following restrictions:

1. Only the offset to the map field (W.NOFF) and, optionally, the length to the map field
(W.NLEN) may be modified by the fast-mapping facility.

2. The interface to the fast-mapping facility is designed for speed, not for ease of programming.
Debugging a task using fast mapping may be more difficult than using the Map directive.
Specifically, protecting the operating system and its data structures is the only validation of
parameters that is done. For example, specifying a random value for the window ID may
cause a random address window to be modified.

3. The interface uses the IOT instruction. Tasks use IOT instructions for internal communica-
tions and other functions, but tasks that use fast mapping cannot use the IOT instruction
for any purpose other than fast mapping.

4. The interface uses registers for passing arguments rather than using a DPB (saving 200-300
instructions over the Map directive). This means that the MACRO-11 programmer must be
careful about register usage when using fast mapping.

Memory Management Directives 3-19

3.7.

5. Fast mapping increases the size of the task header, which means that fast mapping can be
used only with tasks with external headers. (Most tasks on RSX-11M-PLUS systems have
external headers.)

These restrictions (particularly the first one in number 2) should not deter the use of fast
mapping in high-performance applications. However, it is recommended that you first get the
application running with the Map directive, varying only the W.NOFF and W.NLEN fields, and
then replace the directive with fast mapping.

1 Using Fast Mapping

To use fast mapping, the task must first have an extended header to include the fast-
mapping extension area. This is achieved by using the Task Builder fast map switch (see
the RSX-11M-PLUS and Micro/RSX Task Builder Manual, the RSX-11M-PLUS Command Language
Manual, or the Micro/RSX User’s Guide) or by installing the task with the fast-mapping option (see
the RSX-11IM-PLUS MCR Operations Manual, the RSX-11M-PLUS Command Language Manual,
or the Micro/RSX User's Guide).

Before issuing a fast-mapping call, the task must create and map the window by using the
Create Address Window and Map directives or the CRAW and MAP high-level language calls.

Three parameters are required for the fast-mapping call. The first parameter is a window
identifier, which is a function of the first APR mapped by the window. (It is 10 octal times
the W.NAPR field in the WDB, plus 1003 if the window is in user D-space; see the following
table.) The second parameter is the offset field to map and the third parameter is the length of
the window to map. The ID and offset fields are required; the length is optional. If the length
is to be specified, the high bit of the ID field must be set. Thus, the following values are used
for window IDs (all values are octal):

Starting APR ID if length ID if length
number not set set

User I-space 0 000000 100000
User I-space 1 000010 100010
User I-space 2 000020 100020
User I-space 3 000030 100030
User I-space 4 000040 100040
User I-space 5 000050 100050
User I-space 6 000060 100060
User I-space 7 000070 100070

3-20 Memory Management Directives

Starting APR ID if length ID if length

number not set set

User D-space 0 000100 100100
User D-space 1 000110 100110
User D-space 2 000120 100120
User D-space 3 000130 100130
User D-space 4 000140 100140
User D-space 5 000150 100150
User D-space 6 000160 100160
User D-space 7 000170 100170

The offset field is specified in 32-word blocks, the same as it would be for the W NOFF value
in the Map directive. If the length-to-map field is not specified, it is assumed to be the same
as W.NSIZ. If it is specified (high bit of window ID set), then that length is mapped unless
the value is specified as zero. If it is zero, then either the size (W.NSIZ) or the size of the
region minus the offset field, whichever is smaller, is used. This handling is identical to that
for W.NLEN in the Map directive.

Note that the speed of fast mapping is affected by the parameter values. Not specifying the
length-to-map field is the fastest form, requiring about 25 instructions for a single APR window,
plus a minimum of two additional instructions for each APR. Specifying a fixed length is slower,
and forcing the length calculation is slower still. The fastest form is about thirty times the speed
of the Map directive, the slowest form about ten times that speed.

3.7.2 MACRO-11 Calling Sequence

MACRO-11 programs call the fast-mapping facility by placing the window ID in register 0, the
offset in register 1, and the length in register 2, and then issuing an IOT instruction. RO is
returned as the status (IS.SUC or IE.ALG) and R2 is returned as the length if it was defaulted.
The contents of register 3 are destroyed by the call.

Examples
Changing only the window offset field:

MOV #40,R0 ; Window starts in user-I APR 4

MOV #200,R1 . Offset = 4K words (200 32-word blocks)
I0T ; Issue fast map

TST RO ; Success?

BPL GOOD ; If PL yes

Memory Management Directives 3-21

Changing the window offset field, fixed length specified:

MOV #100150,R0O ; Window starts in user-D APR §

; High bit set to indicate length specified
MOV #100,R1 ; 0ffset = 2K words (100 32-word blocks)
MoV #100,R2 ; Set length to map to 2K words
I0T ; Issue fast map
TST RO ; Success?
BPL GOOD ; If PL yes

Changing the window offset field, defaulted length specified:

MOV #100150,R0 ; Window starts in user-D APR 5
; High bit set to indicate length specified

MOV #100,R1 ; Offset = 2K words (100 32-word blocks)

CLR R2 ; Force calculation to W.NSIZ or remaining size
; of region

I0T ; Issue fast map

TST RO ; Success?

BPL GOOD ; If PL yes

3.7.3 High-Level Language Interface

High-level languages (FORTRAN-77 is used in the following examples) call either the FMAP
or FMAPL interface routines, specifying the three parameters as previously described. Two of
the variables are updated to reflect the directive status and the length (if it was defaulted). All
parameters should be specified as 16-bit integer values.

Unlike other high-level language routines, FMAP and FMAPL do not validate parameters.
Omitting a parameter or specifying a bad value will probably cause a task SST to occur.
Examples

Changing only the window offset field:

INTEGER#2 WINDID , WINDOF ! Force 16-bit integer values

WINDID = '40'0 ! Set fast map window ID for user-I APR 4
WINDOF = '200'0 | Set offset to 4K words (200 32-word blocks)
CALL FMAP (WINDID , WINDOF) ! Do fast map

IF (WINDID .GT. O) ... ! If successful...

3-22 Memory Management Directives

Changing the window offset field, fixed length specified:

INTEGER#2 WINDID , WINDOF ! Force 16-bit integer values
INTEGER*2 WINDLN

WINDID = '100150'0 ! Set fast map window ID for user-D
! APR 5 :
WINDOF = '100'0 ! Set offset to 2K words
! (100 32-word blocks)
WINDLN = '100'0 ! Set length to map to 2K words
CALL FMAP (WINDID , WINDOF , WINDLN) ! Do fast map
IF (WINDID .GT. 0) ... ! If successful ...

Changing the window offset field, defaulted length specified:

INTEGER#2 WINDID , WINDOF ! Force 16-bit integer values
INTEGER*2 WINDLN
WINDID = '100150'0 ! Set fast map window ID for
! user-D APR 5
WINDOF = '100'0 ! Set offset to 2K words
! (100 32-word blocks)
WINDLN = '100'0 ! Set length to map to 2K words
CALL FMAPL (WINDID , WINDOF , WINDLN) ! Do fast map
IF (WINDID .GT. 0) ... ! If successful...

3.7.4 Status Returns

There are two possible status returns from the fast-mapping call:
IS.SUC Operation successful.

IE.ALG The specified mapping parameters are illegal for the region to which the target
window is mapped. This means that the sum of the offset and length fields is greater
than the accessible part of the window. This may also imply that the specified
window ID was not valid.

There is no specific error code for an invalid window ID because the Executive code that checks
for invalid window-offset parameters also traps invalid ID errors. The Executive clears bits 14
through 7 and 2 through 0 of the window ID before it is interpreted. Specifying random values
in the window ID may cause legitimate mapping changes.

Memory Management Directives 3-23

Chapter 4
Parent/Offspring Tasking

4.1 Overview of Parent/Offspring Tasking Support

Parent/offspring tasking has many real-time applications in establishing and controlling complex
interrelationships between tasks. A parent task is one that starts or connects to another task,
called an offspring task. A major application for the parent-offspring task relationship is batch
processing: when running tasks, you can set up task relationships and parameters on line to
control the processing of a batch job (or jobs) that run off line.

Starting (or activating) offspring tasks is called “spawning.” Spawning also includes the ability
to establish task communications; a parent task can be notified when an offspring task exits and
can receive status information from the offspring task. Status returned from an offspring task
to a parent task indicates successful completion of the offspring task or identifies specific error
conditions.

4.2 Directive Summary

This section summarizes the directives for parent/offspring tasking and intertask communication.

4.2.1 Parent/Offspring Tasking Directives
There are two classes of parent/offspring tasking directives:
* Spawning—directives that create a connection between tasks
¢ Chaining—directives that transfer a connection
The following directives can connect a parent task to an offspring task:
* Spawn—This directive requests activation of, and connects to, a specific offspring task.

An offspring task spawned by a parent task has the following three task functions that are
not provided by the Request or Run directives:

— A spawned offspring task can be a command line interpreter (CLI).

— A spawned offspring task on an RSX-11M-PLUS or Micro/RSX system can have a
virtual terminal as its terminal input device (TTI:).

Parent/Offspring Tasking 4-1

— A spawned offspring task can return current status information or exit status information
to a connected parent task or tasks.

The Spawn directive includes the following options:

— Queuing a command line for the offspring task (which may be a command line
interpreter)

— Establishing the offspring task’s TI: as a physical terminal or as a previously created
virtual terminal unit

— For privileged or CLI tasks, designating any terminal as the offspring TI:

Connect—This directive establishes task communications for synchronizing with the exit
status or emit status issued by a task that is already active.

Send, Request, and Connect—This directive sends data to the specified task, requests
activation of the task if it is not already active, and connects to the task.

The following directives allow one task to chain to another task:

Request and Pass Offspring Information—This directive allows an offspring task to pass its
parent connection to another task, thus making the new task the offspring of the original
parent task. The RPOI$ directive offers all the options of the Spawn directive.

Send Data Request and Pass Offspring Control Block—This directive sends a data packet
for a specified task, passes its parent connection to that task, and requests activation of the
task if it is not already active.

A parent task can connect to more than one offspring task using the Spawn and Connect
directives, as appropriate. In addition, the parent task can use the directives in any combination
to make multiple connections to offspring tasks.

An offspring task can be connected to multiple parent tasks. An Offspring Control Block is
produced (in addition to those already present) each time a parent task connects to the offspring
task.

4.2.2 Task Communication Directives

The following directives in an offspring task return status to connected parent tasks:

Exit with Status—This directive in an offspring task causes the offspring task to exit, passing
status words to all connected parent tasks (one or more) that have been previously connected
by a Spawn, Connect, or Send, Request, and Connect directive.

Emit Status—This directive causes the offspring task to pass status words to either the
specified connected task or to all connected parent tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task or tasks no longer remain
connected.

4-2 Parent/Offspring Tasking

The following standard offspring-task status values can be returned to parent tasks:

Status Value Action

EX$WAR 0 Warning - task succeeded, but irregularities are possible
EX$SUC 1 Success - results should be as expected

EX$ERR 2 Error - results are unlikely to be as expected

EX$SEV 4 Severe error - one or more fatal errors detected, or task aborted

These symbols are defined in the file DIRSYM.MAC. They become defined locally when the
EXST$ macro is invoked. However, the exit status may be any 16-bit value.

4.3 Connecting and Passing Status

Offspring-task exit status can be returned to a connected (parent) task or tasks by issuing the
Exit with Status directive. Offspring tasks can return status to one or more connected parent
tasks at any time by issuing the Emit Status directive. Note that only connected parent-offspring
tasks can pass status.

The means by which a task connects to another task are indistinguishable once the connecting
process is complete. For example, Task A can become connected to Task B in one of four ways:

¢ Task A spawned Task B when Task B was inactive.
e Task A connected to Task B when Task B was active.

e Task A issued a Send, Request, and Connect directive to Task B when Task B was either
active or inactive.

® Task A either spawned or connected to Task C, which then chained to Task B by means of
either an RPOI$ directive or an SDRP$ directive.

Regardless of the way in which Task A became connected to Task B, Task B can pass status
information back to Task A, set the event flag specified by Task A, or cause the AST specified
by Task A to occur in any of the following ways (note that once offspring-task status is returned
to one or more parent tasks, the parent tasks become disconnected):

e Task B issues a normal (successful) exit directive. Task A receives a status of EX$SUC.
e Task B is aborted. Task A receives a severe error status of EX$SEV.

e Task B issues an Exit with Status directive, returning status to Task A upon completion of
Task B.

* Task B issues an Emit Status directive specifying Task A. If Task A is multiply connected to
Task B, the OCBs that contain information about these multiple connections are stored in a
FIFO queue. The first OCB is used to determine which event flag, AST address, and exit
status block to use.

® Task B issues an Emit Status directive to all connected tasks (no task name specified).

Parent/Offspring Tasking 4-3

When a task has previously specified another task in a Spawn, Connect, or Send, Request, and
Connect directive and then exits, and if status has not yet been returned, the OCB representing
this connection remains queued. However, the OCB is marked to indicate that the parent task
has exited. When this OCB is subsequently dequeued due to an Emit Status directive, or any
type of exit, no action is taken because the parent task has exited. This procedure is followed
to help a multiply connected task to remain synchronized when parent tasks exit unexpectedly.

The following examples show directives being used for intertask synchronization (the macro
calls for the directives are given). Task A is the parent task and Task B is the offspring task.

Task A Task B Action

SPWN$ EXST$ Task A spawns Task B. Upon Task B’s completion, Task B returns
status to Task A.

CNCT$ EXST$ Task A connects to active Task B. Upon Task B’s completion, Task
B returns status to Task A.

SDRC$ RCVXS$, Task A sends data to Task B, requests Task B if it is presently

EMST$ not active, and connects to Task B. Task B receives the data,

does some processing based on the data, returns status to Task A
(possibly setting an event flag or declaring an AST), and becomes
disconnected from Task A.

SDRCS, RCSTS, Task A sends data to Task B, requests Task B if it is presently not

USTP$ EMST$ active, connects to Task B, and unstops Task B. Task B becomes
unstopped (if Task B previously could not dequeue the data packet),
receives the data, does some processing based on the data, and
returns status to Task A (possibly setting an event flag or declaring
an AST).

SDATS$, RCST$ Task A queues a data packet for Task B and unstops Task B. Task

USTP$ B receives the data.

SPWN$ RPOI$ Task A spawns Task B. Task B chains to Task C by issuing an

SDRP$ RPOI$ or an SDRP$ directive. Task A is now Task C’s parent.

Task A is no longer connected to Task B.

4.4 Spawning System Tasks

One special use of the Spawn directive is to pass a command line to a system task. You may
use the Spawn directive to pass a command line to a command line interpreter or to an installed

utility.

4-4 Parent/Offspring Tasking

4.4.1 Spawnhing a Command Line Interpreter

Command line interpreters can be broken into three classes: MCR, the CLI that is active from
TI: (for example, DCL), and all others.

* To pass a command line to MCR, use the MCR... task name.

®* To pass a command line to the CLI that is currently active from TI:, use the CLIL.. task
name. You can determine which CLI is active from your TI: by issuing the GCII$ directive.

* To pass a command to a specific CLI other than MCR or the CLI active from TI:, simply
use that CLI’s task name in your Spawn directive. The task name of DCL is ...DCL. Check
with your system manager for the task names of any user-written CLIs.

4.4.2 Spawning a Utility

Utilities are generally installed under task names of the form ...tsk. You can pass commands to
a utility in one of two ways. You can spawn the utility directly, using the task name ...tsk, or
you can spawn MCR and pass it a command line that begins with the 3-character task name.

Whenever you spawn a task using a name of the form ...tsk, the Executive activates the task as
tskTnn. (A task with its name in the form ...tsk is considered to be a prototype task. Prototype
tasks cannot be run on the RSX-11M-PLUS and Micro/RSX operating systems.)

4.4.2.1 Passing Command Lines to Utilities

Even when you spawn a utility directly, pass a command line to it that is exactly as you
would type it at the terminal or pass to MCR: include the 3-character task name followed by a
space. This method maintains compatibility with the format used by MCR to pass commands
to utilities. For more information, see the description of the GMCR$ directive in Chapter 5.

Parent /Offspring Tasking 4-5

Chapter 5
Directive Descriptions

The directive descriptions consist of an explanation of the directive’s function and use, the
names of the corresponding macro and FORTRAN calls, the associated parameters, and the
possible return values of the Directive Status Word (DSW). The descriptions generally show the
$ form of the macro call (for instance, QIOS$), although the $C and $S forms are often also
available. Where the $S form of a macro requires less space and performs as fast as a DIR$
macro (because of a small DPB), it is recommended. For these macros, the expansion for the
$S form is shown rather than that for the $ form.

In addition to the directive macros themselves, you can use the DIR$ macro to execute a
directive if the directive has a predefined DPB. See Sections 1.4.1.1 and 1.4.2 for further details.

5.1 Directive Categories

For ease of reference, the directive descriptions are presented alphabetically in Section 5.3
according to the directive macro calls. This section, however, groups the directives by function.
The directives are grouped into the following categories:

e Task execution control directives

¢ Task status control directives

* Informational directives

e Event-associated directives

* Trap-associated directives

* I/O- and intertask communications-related directives
* Memory management directives

* Parent/offspring tasking directives

* System directives

e Command line interpreter (CLI) support directives

Directive Descriptions 5-1

5.1.1 Task Execution Control Directives

The task execution control directives deal principally with starting and stopping tasks. Each of
these directives (except Extend Task) results in a change of the task’s state (unless the task is
already in the state being requested). These directives are:

Macro Directive Name

ABRT$ Abort Task

CSRQ$ Cancel Scheduled Initiation Requests
EXIT$S Task Exit ($S form recommended)
EXTK$ Extend Task

RQST$ Request Task

RSUMS$ Resume Task

RUNS$ Run Task

SPND$S Suspend ($S form recommended)
SWST$ Switch State

5.1.2 Task Status Control Directives

Two task status control directives alter the checkpointable attribute of a task. A third directive
changes the running priority of an active task. These directives are:

Macro Directive Name

ALTP$ Alter Priority

DSCP$S Disable Checkpointing ($S form recommended)
ENCP$S Enable Checkpointing ($S form recommended)

5.1.3 Informational Directives

Several directives provide the issuing task with system information and parameters, such as the
time of day, the task parameters, the console switch settings, and partition or region parameters.
These directives are:

Macro Directive Name

FEAT$ Test for Specified System Feature
GDIR$ Get Default Directory

GINS$ General Information

GPRT$ Get Partition Parameters

5-2 Directive Descriptions

Macro Directive Name

GREG$ Get Region Parameters

GSSW$S Get Sense Switches ($S form recommended)
GTIM$ Get Time Parameters

GTSK$ Get Task Parameters

TFEA$ Test for Specified Task Feature

5.1.4 Event-Associated Directives

The event and event-flag directives provide inter- and intratask synchronization and signaling
and the means to set the system time. You must use these directives carefully because software
faults resulting from erroneous signaling and synchronization are often obscure and difficult to
isolate. The directives are:

Macro Directive Name

CLEF$ Clear Event Flag

CMKT$ Cancel Mark Time Requests

CRGF$ Create Group Global Event Flags

DECL$S Declare Significant Event ($S form recommended)
ELGF$ Eliminate Group Global Event Flags

EXIF$ Exit If

MRKT$% Mark Time

RDAF$ Read All Event Flags

RDXF$ Read Extended Event Flags

SETF$ Set Event Flag

STIM$ Set System Time

STLO$ Stop for Logical OR of Event Flags

STOP$S Stop ($S form recommended)

STSE$ Stop for Single Event Flag

ULGF$S Unlock Group Global Event Flags ($S form recommended)
USTP$ Unstop

WSIG$S Wait for Significant Event ($S form recommended)
WTLO$ Wait for Logical OR of Event Flags

WTSE$ Wait for Single Event Flag

Directive Descriptions 5-3

5.1.5 Trap-Associated Directives

The trap-associated directives provide trap facilities that allow transfer of control (software
interrupts) to the executing tasks. These directives are:

Macro Directive Name

ASTX$S AST Service Exit ($S form recommended)
DSAR$S Disable AST Recognition ($S form recommended)
ENARS$S Enable AST Recognition ($S form recommended)
IHARS$S Inhibit AST Recognition ($S form recommended)
SCAA$ Specify Command Arrival AST

SFPA$% Specify Floating Point Processor Exception AST
SPRA$ Specify Power Recovery AST

SRDA$ Specify Receive Data AST

SREA$ Specify Requested Exit AST

SREX$ Specify Requested Exit AST (extended)

SRRA$ Specify Receive-By-Reference AST

SVDB$ Specify SST Vector Table for Debugging Aid
SVTK$ Specify SST Vector Table for Task

5.1.6 1I/0- and Intertask Communications-Related Directives

The I/O- and intertask communications-related directives allow tasks to access I/O devices at
the driver interface level or interrupt level, to communicate with other tasks in the system, and
to retrieve the MCR command line used to start the task. These directives are:

Macro Directive Name

ALUNS$ Assign LUN

CINT$ Connect to Interrupt Vector
GLUNS$ Get LUN Information
GMCRS$ Get MCR Command Line
QIO$ Queue I/O Request

QIOWS Queue I/O Request and Wait
RCST$ Receive Data or Stop
RCVD$ Receive Data

RCVX$ Receive Data or Exit

5-4 Directive Descriptions

Macro Directive Name

SDAT$ Send Data
SMSG$ Send Message

5.1.7 Memory Management Directives

The memory management directives allow a task to manipulate its virtual and logical address
space, and to set up and control dynamically the window-to-region mapping assignments. The
directives also provide the means by which tasks can share and pass references to data and
routines. These directives are:

Macro Directive Name

ATRG$ Attach Region

CRAWS Create Address Window
CRRG$ Create Region

DTRG$ Detach Region

ELAW$ Eliminate Address Window
GMCX$ Get Mapping Context
MAP$ Map Address Window
RREF$ Receive By Reference
RRST$ Receive By Reference or Stop
SREF$ Send By Reference
UMAP$ Unmap Address Window

5.1.8 Parent/Offspring Tasking Directives

Parent /offspring tasking directives permit tasks to start other tasks and to connect to other tasks
in order to receive status information. These directives are:

Macro Directive Name

CNCT$ Connect

EMST$ Emit Status

EXST$ Exit with Status

RPOI$ Request and Pass Offspring Information
SDRC$ Send, Request, and Connect

Directive Descriptions 5-5

Macro Directive Name

SDRP$ Send Data Request and Pass OCB
SPWN$ Spawn

5.1.9 System Directives

In addition to the directives just l.sted, RSX-11M-PLUS and/or Micro/RSX systems include
directives that support virtual terminals, named directories, logical names, CPU/UNIBUS affinity,
supervisor-mode library routines, variable-length send/receive data buffers, and parity error AST
routine support. These directives are:

Macro Directive Name

ACHNS$ Assign Channel

CLONS$ Create Logical Name

CPCR$ Checkpoint Common Region
CRVT$ Create Virtual Terminal

DLONS$ Delete Logical Name

ELVT$ Eliminate Virtual Terminal

FSS$ File Specification Scanner
MSDS$ Map Supervisor D-Space

MVTS$ Move to/from I/D-Space

PFCS$ Parse FCS (File Control Services)
PRMS$ Parse RMS (Record Management Services)
RDEF$ Read Single Event Flag

RLONS$ Recursive (iterative) Translation of Logical Name
RMAF$S Remove Affinity ($S form only)
SCALS$S Supervisor Call ($S form only)
SDIR$ Set Default Directory

SPEA$ Specify Parity Error AST

SNXC$ Send Next Command

STAF$ Set Affinity

TLONS$ Translate Logical Name

VRCD$ Variable Receive Data

VRCS$ Variable Receive Data or Stop

5-6 Directive Descriptions

5.1.

Macro Directive Name

VRCX$ Variable Receive Data or Exit
VSRC$ Variable Send, Request, and Connect
VSDAS$ Variable Send Data

These functions provide for the dispatching of multiuser tasks and can enhance the interface to
slave tasks.

The dispatching algorithm used by the Executive is identical to the algorithm used by MCR.
Thus, the ability to dispatch copies of multiuser tasks is available at both the MCR command
and Executive directive level. A consistent scheme for communication and synchronization
between multiuser tasks is made available at the Executive level.

Executive-level dispatching uses the same naming scheme as is used in the RSX-11M-PLUS
MCR dispatching algorithm. A single copy of the multiuser task must be installed with a name
of the form ..mmm. When a task issues a directive specifying a task name of the form ..mmm,
the Executive first forms the task name mmmtnn, where t is the first character of the device
name of the TI: of the issuing task and nn is the unit number. The Executive then attempts
to perform the directive as if the task name mmmtnn has been specified. If the directive is
one that could activate the task (Request; Spawn; or Send, Request, and Connect), a TCB may
be dynamically created and filled in from the .. mmm TCB. If the directive is a send user-type
directive and the TCB mmmtnn does not exist, the send packet is queued to the ..mmm TCB
until mmmtnn is activated. At that time, any send packets for mmmtnn that are queued to the
..mmm TCB are moved to the mmmtnn TCB.

This naming scheme allows for the specification of a specific copy of a multiuser task in a
directive whose TI: is different from that of the issuing task. If the TL of the target task is
known, the task’s name can be calculated and explicitly specified in a directive.

10 CLI Support Directives

The CLI support directives allow CLI tasks to get command lines, request and pass offspring
information, get command line interpreter information, and set a specified CLI for a terminal.
These directives are:

Macro Directive Name

GCCI$ Get Command for Command Interpreter
GCII$ Get Command Interpreter Information
SCLI$ Set Command Line Interpreter

5.2 Directive Conventions

When using system directives, observe the following conventions:

e In MACRO-11 programs, unless a number is followed by a decimal point (.), the system
assumes the number is octal.

Directive Descriptions 5-7

In FORTRAN programs, use INTEGER*2 type unless the directive description states
otherwise.

* In MACRO-11 programs, task and partition names can be from one to six characters in
length, and should be represented as two words in Radix-50 form.

In FORTRAN programs, specify task and partition names by a variable of type REAL
(single precision) that contains the task or partition name in Radix-50 form. To establish
Radix-50 representation, either use the DATA statement at compile time, or use the IRAD50
subprogram or RAD50 function at run time.

* Device names are two characters long and are represented by one word of ASCII code.

* Some directive descriptions state that a certain parameter must be provided even though
the system ignores it. Such parameters are included to maintain compatibility between the
RSX-11M, RSX-11M-PLUS, Micro/RSX, IAS, and RSX-11D operating systems.

* In the directive descriptions, square brackets ([]) enclose optional parameters or arguments.
To omit optional items, either use an empty (null) field in the parameter list or omit a
trailing optional parameter.

* Logical unit numbers (LUNSs) can range from 1 through 255,.

* Event flag numbers range from 1 through 96;;. Numbers from 1 to 32;, denote local flags.
Numbers from 33 to 64 denote common flags. Numbers 65 to 96 denote group global event
flags.

Note that the Executive preserves all task registers when a task issues a directive.

5.3 System Directive Descriptions

Each directive description includes most or all of the following elements:

Name
This describes the function of the directive.

FORTRAN Call
This shows the FORTRAN subroutine call and defines each parameter.

Macro Call
This shows the macro call, defines each parameter, and gives the defaults for optional
parameters in parentheses following the definition of the parameter. Since zero is supplied
for most defaulted parameters, only nonzero default values are shown. Parameters ignored
by RSX-11M, RSX-11M-PLUS, and Micro/RSX systems are required for compatibility with
IAS and RSX-11D systems.

Macro Expansion
Most of the directive descriptions expand the $ form of the macro. Where the $S form is
recommended for a directive, the expansion for that form is shown instead. Section 1.4.5
illustrates expansions for all three forms and for the DIR$ macro.

5-8 Directive Descriptions

Definition Block Parameters

Only the memory management directive descriptions include these parameters. This section
describes all the relevant input and output parameters in the Region or Window Definition
Block (see Section 3.5).

Local Symbol Definitions

Macro expansions usually generate local symbol definitions with an assigned value equal to
the byte offset from the start of the DPB to the corresponding DPB element. This section
lists these symbols. The length in bytes of the element pointed to by the symbol appears
in parentheses following the symbol’s description. Thus,

A.BTTN — Task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB. The task name has a
length of four bytes.

DSW Return Code

This section lists valid return codes for the directive. For more information, see Appendix
B, which lists the standard directive error codes.

Notes

The notes presented with some directive descriptions expand on the function, use, and/or
consequences of using the directives. Always read the notes carefully.

Directive Descriptions 5-9

ABRTS

5.4 Abort Task

The Abort Task directive instructs the system to terminate the execution of the indicated task.
ABRTS$ is intended for use as an emergency or fault exit. ABRT$ displays a termination
notification based on the described condition, at one of the following terminals:

* The terminal from which the aborted task was requested
* The originating terminal of the task that requested the aborted task

* The operator’s console (CO:) if the task was started internally from another task by a Run
directive, or by an MCR or DCL RUN command that specified one or more time parameters

On systems without multiuser protection, a task may abort any task, including itself. When a
task is aborted, its state changes from active to dormant. Therefore, to reactivate an aborted
task, a task or an operator must request it.

On systems that support multiuser protection, a task must be privileged to issue the Abort Task
directive (unless it is aborting a task with the same TI:).

FORTRAN Call
CALL ABORT (tskfids])

Parameters
tsk
Name (Radix-50) of the task to be aborted
ids
Directive status
Macro Call
"~ ABRT$ tsk

Parameter

tsk
Name (Radix-50) of the task to be aborted

Macro Expansion

ABRT$ ALPHA
.BYTE 83.,3 ;ABRT$ MACRO DIC, DPB SIZE = 3 WORDS
.RAD50 /ALPHA/ ;TASK "ALPHA"

Local Symbol Definition
ABTTN Task name (4)

5-10 Directive Descriptions

ABRTS

DSW Return Codes

1S.SUC
IE.INS
IE.ACT
IE.PRI
IE.ADP
IE.SDP

Notes

Successful completion.

Task not installed.

Task not active.

Issuing task is not privileged.

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

1. When a task is aborted, the Executive frees all the task’s resources. In particular, the
Executive:

Detaches all attached devices

Flushes the AST queue and despecifies all specified ASTs
Flushes the receive and receive-by-reference queue

Flushes the clock queue for outstanding Mark Time requests for the task
Closes all open files (files open for write access are locked)
Detaches all attached regions, except in the case of a fixed task
Runs down the task’s I/0

Deaccesses the group global event flags for the task’s group
Disconnects from interrupts

Flushes all outstanding CLI command buffers for the task
Breaks the connection with any offspring tasks

Returns a severe error status (EX$SEV) to the parent task when a connected task is
aborted

Marks virtual terminals created by the aborted task for deallocation; the virtual terminals
actually become deallocated when all tasks using the virtual terminal or terminals are
aborted or exit; nonprivileged tasks using virtual terminal units that are marked for
deallocation as TI: are also aborted

Frees the task’s memory if the aborted task was not fixed

2. If the aborted task had a requested exit AST specified, the task will receive that AST instead
of being aborted. No indication that this has occurred is returned to the task that issued

the

abort request.

3. When the aborted task actually exits, the Executive declares a significant event.

Directive Descriptions 5-11

ACHNS

5.5 Assign Channel

The Assign Channel directive performs all of the processing of the file specification required to
find the actual device name and then assigns the LUN to that device. This processing involves
expanding the file specification and using the final device specification to assign the LUN.

FORTRAN Call
CALL ACHN ([mod],[itbmsk],lun,fsbuf,fssz[,idsw])

Parameters

mod
Optional modifier to be matched against the logical name within a table. Ordinarily, no
value will be specified to allow any logical name in table to be found.

itbmsk
Inhibit mask to prevent a logical table from being searched. The following symbol
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

fsbuf
Array containing the file specification buffer

fssz
Size (in bytes) of the file specification buffer

idsw

Integer to receive the Directive Status Word
Macro Call

ACHNS$ [mod],[tbmsk],lun,fsbuf,fssz

Parameters

mod
Optional modifier to be matched against the logical name within a table. Ordinarily, no
value will be specified to allow any logical name in table to be found.

5-12 Directive Descriptions

ACHNS

tbmsk

Inhibit mask to prevent a logical table from being searched. The following symbol
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4

Session (IN.SES) 20

Task (IN.TSK) 1
lun

LUN to be assigned

fsbuf
Address of file specification buffer

fssz
Size (in bytes) of the file specification buffer

Macro Expansion
ACHN$ MOD,TBMSK,LUN,FSBUF ,FSSZ

.BYTE 207..,5 ;ACHN$ MACRO DIC, DPB SIZE = 5 WORDS
.BYTE 6 ;ACHN$ SUBFUNCTION

.BYTE MOD ;MODIFIER

.BYTE LUN ;LUN TO BE ASSIGNED

.BYTE TBMSK ; TABLE MASK

.WORD FSBUF ;ADDRESS OF FILE SPECIFICATION BUFFER
.WORD FSSZ ;LENGTH OF FILE SPECIFICATION

Local Symbol Definitions

ALFUN Subfunction value (1)

ALMOD Logical name modifier (1)

A.LLUN LUN number (1)

A.LTBL Table inhibit mask (1)

A.LSBF Address of file specification buffer (2)

A.LSSZ Size (in bytes) of the file specification buffer (2)

DSW Return Codes

IS.suC Successful completion.
IE.IDU Invalid device or unit.
IEILU Invalid LUN.

IE.LNF Logical translation failed.
IE.LNL LUN in use.

Directive Descriptions 5-13

ACHNS

IE.ADP Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

IE.SDP DIC or DPB size is invalid.

Notes

1. A return code of IE.LNL indicates that the specified LUN cannot be assigned as directed.
Either the LUN is already assigned to a device with a file open for that LUN or the LUN
is currently assigned to a device attached to the task, and the directive attempted to change
the LUN assignment. If a task has a LUN assigned to a device and the task has attached
the device, the LUN can be reassigned, provided that the task has another LUN assigned
to the same device.

2. Physical I/O (output) operations cannot be executed with spooled devices. Output should
be performed using the File Control Services (FCS).

5-14 Directive Descriptions

ALTPS

5.6 Alter Priority

The Alter Priority directive instructs the system to change the running priority of a specified
active task to either a new priority indicated in the directive call or to the task’s default (installed)
priority if the call does not specify a new priority.

The specified task must be installed and active. The Executive resets the task’s priority to its
installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the issuing task.

The Executive reorders any outstanding I/O requests for the task in the I/O queue and reallocates
the task’s partition. The partition reallocation may cause the task to be checkpointed.

On systems that support multiuser protection, a nonprivileged task can issue ALTP$ only for
itself, and only for a priority equal to or lower than its installed priority. A privileged task can
change the priority of any task to any value less than 250;.

FORTRAN Call
CALL ALTPRI ([tsk],[ipri][,ids])

Parameters
tsk
Active task name
ipri
A 1-word integer value equal to the new priority, a number from 1 to 2500

ids
Directive status

Macro Call
ALTP$ [tsk][,pri]

Parameters

tsk
Active task name

pri
New priority, a number from 1 to 25039

Directive Descriptions 5-15

ALTPS

Macro Expansion
ALTP$ ALPHA,75.

.BYTE 9..4 ;ALTP$ MACRO DIC, DPB SIZE = 4 WORDS
.RAD50 /ALPHA/ ;TASK ALPHA
.WORD 75. ;NEW PRIORITY

Local Symbol Definitions
ALTIN Task name (4)
ALLTPR Priority (2)

DSW Return Codes

IS.sUC Successful completion.

IE.INS Task not installed.

IE.ACT Task not active.

IE.PRI Issuing task is not privileged (multiuser protection systems only).
IE.IPR Invalid priority.

IE.RSU Resource (the task’s header) unavailable because task is checkpointed with
outstanding 1/0.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-16 Directive Descriptions

- ALUNS

5.7 Assign LUN

The Assign LUN directive instructs the system to assign a physical device unit to a logical unit
number (LUN). It does not indicate that the task has attached itself to the device.

The actual physical device assigned to the logical unit is dependent on the logical assignment
table (see the description of the ASSIGN command in the RSX-1IM-PLUS MCR Operations
Manual, the RSX-11M-PLUS Command Language Manual, or the Micro/RSX User’s Guide). The
Executive first searches the logical assignment table for a device name match. If it finds a
match, the Executive assigns the physical device unit associated with the matching entry to the
logical unit. Otherwise, the Executive searches the physical device tables and assigns the actual
physical device unit named to the logical unit. In systems that support multiuser protection,
the Executive does not search the logical assignment table if the task has been installed with
the slave option.

When a task reassigns a LUN from one device to another, the Executive cancels all I/O requests
for the issuing task in the previous device queue.

FORTRAN Call
CALL ASNLUN (lun,dev,iunt],ids])

Parameters
lun
Logical unit number

dev
Device name (format: 1A2)

iunt

Device unit number
ids

Directive status
Macro Call

ALUNS$ lun,dev,unt

Parameters

lun
Logical unit number

dev
Device name (two uppercase characters)

unt
Device unit number

Directive Descriptions 5-17

ALUNS

Macro Expansion

ALUN$ 7,TT,0 ;ASSIGN LOGICAL UNIT NUMBER

.BYTE 7.4 ;ALUN$ MACRO DIC, DPB SIZE = 4 WORDS
.WORD 7 ;LOGICAL UNIT NUMBER 7

.ASCII /TT/ ;DEVICE NAME IS TT (TERMINAL)

.WORD O ;DEVICE UNIT NUMBER = O

Local Symbol Definitions

ALLULU Logical unit number (2)
ALLUNA Physical device name (2)
A.LUNU Physical device unit number (2)

DSW Return Codes

IS.SUC Successful completion.

IE.LNL LUN use is interlocked (see Note 1).

IE.IDU Invalid device and/or unit.

IEILU Invalid logical unit number.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. A return code of IE.LNL indicates that the specified LUN cannot be assigned as directed.
Either the LUN is already assigned to a device with a file open for that LUN or the LUN
is currently assigned to a device attached to the task, and the directive attempted to change
the LUN assignment. If a task has a LUN assigned to a device and the task has attached
the device, the LUN can be reassigned, provided that the task has another LUN assigned
to the same device.

2. Physical 1/O (output) operations cannot be executed with spooled devices. Output should
be performed using the File Control Services (FCS).

5-18 Directive Descriptions

ASTXS$S

5.8 AST Service Exit (§S Form Recommended)

The AST Service Exit directive instructs the system to terminate execution of an AST service
routine.

If another AST is queued and ASTs are not disabled, then the Executive immediately effects
the next AST. Otherwise, the Executive restores the task’s pre-AST state. See the Notes.

FORTRAN Call

Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

Macro Call
ASTX$S [err]

Parameter

err
Error-routine address

Macro Expansion

ASTX$S ERR

MOV (PC) +, -(SP) ;PUSH DPB ONTO THE STACK

.BYTE 116.,1 ;ASTX$S MACRO DIC, DPB SIZE = 1 WORD

EMT 377 ;TRAP TO THE EXECUTIVE

JSR PC,ERR ;CALL ROUTINE "ERR" IF DIRECTIVE UNSUCCESSFUL

Local Symbol Definitions

None

DSW Return Codes

IS.5UC Successful completion.

IE.AST Directive not issued from an AST service routine.

IE.ADP Part of the DPB or stack is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. A return to the AST service routine occurs only if the directive is rejected. Therefore, no
Branch on Carry Clear instruction is generated if an error-routine address is given. (The
return occurs only when the Carry bit is set.)

Directive Descriptions 5-19

ASTXS$S

2. When an AST occurs, the Executive pushes, at minimum, the following information onto
the task’s stack:

SP+06 Event flag mask word

SP+04 PS of task prior to AST

SP+02 PC of task prior to AST

SP+00 DSW of task prior to AST

The task stack must be in this state when the AST Service Exit directive is executed.

In addition to the data parameters, the Executive pushes supplemental information onto
the task stack for certain ASTs. For I/O completion, the stack contains the address of
the I/O status block; for Mark Time, the stack contains the Event Flag Number; for a
floating-point-processor exception, the stack contains the exception code and address.

These AST parameters must be removed from the task’s stack prior to issuing an AST exit
directive. The following example shows how to remove AST parameters when a task uses
an AST routine on I/O completion.

Example

; EXAMPLE PROGRAM

; LOCAL DATA

I0SB: .BLKW 2 ;I/0 STATUS DOUBLEWORD
BUFFER: .BLKW 30. ;1/0 BUFFER

; START OF MAIN PROGRAM

START: . ; PROCESS DATA

QIOW$C I0.WvB,2,1,,I10SB,ASTSER,<BUFFER,60.,40>
;PROCESS AND WAIT

EXIT$S ;EXIT TO EXECUTIVE

; AST SERVICE ROUTINE

ASTSER: ;PROCESS AST
TST (sP)+ ;REMOVE ADDRESS OF I/0 STATUS BLOCK
ASTX$S ;AST EXIT

5-20 Directive Descriptions

ASTXSS

The task can alter its return address by manipulating the information on its stack prior to
executing an AST exit directive. For example, to return to task state at an address other than
the pre-AST address indicated on the stack, the task can simply replace the PC word on the
stack. This procedure may be useful in those cases in which error conditions are discovered
in the AST routine, but you should use extreme caution when doing this alteration since
AST service routine problems are difficult to isolate.

Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as the DIR$ macro.

Directive Descriptions 5-21

ATRGS

5.9 Attach Region

The Attach Region directive attaches the issuing task to a static common region or to a named
dynamic region. (No other type of region can be attached to the task by means of this directive.)
The Executive checks the desired access specified in the region status word against the owner
UIC and the protection word of the region. If there is no protection violation, the Executive
grants the desired access. If the region is successfully attached to the task, the Executive returns
a 16-bit region ID (in R.GID), which the task uses in subsequent mapping directives.

You can also use the directive to determine the ID of a region already attached to the task. In
this case, the task specifies the name of the attached region in R.GNAM and clears all four bits
described below in the region status word R.GSTS. When the Executive processes the directive,
it checks that the named region is attached. If the region is attached to the issuing task, the
Executive returns the region ID, as well as the region size, for the task’s first attachment to the
region. You may want to use the Attach Region directive in this way to determine the region
ID of a common block attached to the task at task-build time.

FORTRAN Call
CALL ATRG (irdb],ids])

Parameters
irdb
An 8-word integer array containing a Region Definition Block (see Section 3.5.1.2)

ids
Directive status
Macro Call
ATRGS$ rdb

Parameter

rdb
Region Definition Block address

Macro Expansion

ATRG$ RDBADR
.BYTE 57.,2 ;ATRG$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD RDBADR ;RDB ADDRESS

Region Definition Block Parameters

Input parameters:

5-22 Directive Descriptions

ATRGS

Array

Element Offset Meaning

irdb(3)(4) R.GNAM Name of the region to be attached

irdb(7) R.GSTS Bit settings' in the region status word (specifying desired

access to the region):

Bit Definition
RS.RED 1 if read access is desired
RS.WRT 1 if write access is desired

RS.EXT 1 if extend access is desired
RS.DEL 1 if delete access is desired

Clear all four bits to request the region ID of the named
region if it is already attached to the issuing task.

Ly you are a FORTRAN programmer, refer to Section 3.5.1 to determine the bit values represented by the symbolic names described.

Output parameters:

Array

Element Offset Meaning

irdb(1) R.GID ID assigned to the region

irdb(2) R.GSIZ Size in 32-word blocks of the attached region

Local Symbol Definition
ATRBA Region definition block address (2)

DSW Return Codes

IS.SUC Successful completion.

IEEUPN An attachment descriptor cannot be allocated.

IE.PRI Privilege violation.

IE.NVR Invalid region ID.

IE.PNS Specified region name does not exist. (The specified region is a main partition.)
IEHWR Region had parity error or load failure.

IE.ADP Part of the DPB or RDB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-23

CINTS

5.10 Connect to Interrupt Vector

The Connect to Interrupt Vector directive enables a task to process hardware interrupts through
a specified vector. The Interrupt Service Routine (ISR) is included in the task’s own space. In a
mapped system, the issuing task must be privileged.

The overhead entails the execution of about 10 instructions before entry into the ISR and 10
instructions after exit from the ISR. The Executive provides a mechanism for transfer of control
from the ISR to task-level code, using either an AST or a local event flag.

After a task has connected to an interrupt vector, it can process interrupts on three different
levels: interrupt, fork, and task. The task level may be subdivided into AST level and non-AST
level. The task levels are as follows:

¢ Interrupt Level

When an interrupt occurs, control is transferred, with the Interrupt Transfer Block (ITB) that
has been allocated by the CINT$ directive, to the Executive subroutine $INTSC. From there,
control goes to the ISR specified in the directive.

The ISR processes the interrupt and either dismisses the interrupt directly or enters fork
level through a call to the Executive routine $FORK2.

¢ TFork Level

The fork-level routine executes at priority 0, the lowest processor priority, allowing interrupts
and more time-dependent tasks to be serviced promptly. If required, the fork routine sets
a local event flag for the task and/or queues an AST to an AST routine specified in the
directive.

e Task Level

At task level, entered as the result of a local event flag or an AST, the task does final
interrupt processing and has access to Executive directives.

Typically, the ISR does the minimal processing required for an interrupt and stores information
for the fork routine or task-level routine in a ring buffer. The fork routine is entered after a
number of interrupts have occurred as deemed necessary by the ISR and further condenses the
information. Finally, the fork routine wakes up the task-level code for ultimate processing that
requires access to Executive directives. The fork level may, however, be a transient stage from
ISR to task-level code without doing any processing.

In a mapped system, a task must be built privileged to use the CINT$ directive. However, it is
legal to use the /PR:0 switch to the Task Builder to have “unprivileged mapping,” that is, up to
32K words of virtual address space available. This precludes use of the Executive subroutines
from task-level code; however, the ISR and fork-level routines are always mapped to the
Executive when they are executed. In any case, the Executive symbol table file (RSX11M.STB)
should be included as input to the Task Builder.

However, be aware that including the symbol definition (table) file can cause references to
system subroutines to be resolved from that file instead of from the system library. To avoid
this problem, explicitly include the required library modules before specifying the RSX11M.STB
file. Specifying the /SS switch with the file causes the Task Builder to resolve any symbols that
are still undefined. (Specifying the /SS switch is necessary because it prevents the Task Builder
from trying to use multiply defined symbols.)

5-24 Directive Descriptions

CINTS

As will be described later, in a mapped system special considerations apply to the mapping of
the ISR, fork routine, and enable/disable routine as well as all task data buffers accessed by
these routines.

FORTRAN Cail
Not supported

Macro Call
CINT$ vec,base,isr,edir,pri,ast

Parameters

vec

Interrupt vector address; must be in the range 60g through highest vector specified during
system generation, and must be a multiple of 4

base

Virtual base address for kernel APR 5 mapping of the ISR and enable/disable interrupt
routines. This address is automatically truncated to a 32;p-word boundary. The “base”
argument is ignored in an unmapped system.

isr
Virtual address of the ISR or 0 to disconnect from the interrupt vector

edir
Virtual address of the enable/disable interrupt routine

pri

Initial priority at which the ISR is to execute. This is normally equal to the hard-wired
interrupt priority and is expressed in the form n*40, where n is a number in the range 0-7.
This form puts the value in bits 5-7 of pri. It is recommended that you make use of the
symbols PR4, PR5, PR6, and PR?7 for this purpose. These are implemented by means of the
macro HWDDF$ found in the file [1,1]JEXEMC.MLB. Also, you should take care to specify
the correct value for this parameter. An incorrect initial priority (for example, specifying
PR4 for a device that interrupts at PR5) may result in a system crash.

ast
Virtual address of an AST routine to be entered after the fork-level routine queues an AST

To disconnect from interrupts on a vector, the argument isr is set to 0 and the arguments base,
edir, psw, and ast are ignored.

Directive Descriptions 5-25

CINTS

5-26

Macro

CINT$
.BYTE
.WORD
.WORD
.WORD
.WORD
.BYTE

.WORD

Expansion
420,BADR, TADR , EDADR , PR5 , ASTADR
129..7 ;CINT$ MACRO DIC, DPB SIZE = 7 WORDS
420 : INTERRUPT VECTOR ADDRESS = 420
BADR ;VIRTUAL BASE ADDRESS FOR KERNEL APR
TADR ;VIRTUAL ADDRESS OF THE INTERRUPT SERVICE ROUTINE
EDADR ;VIRTUAL ADDRESS OF THE INTERRUPT ENABLE/DISABLE ROUTINE
PR5,0 ;INITIAL INTERRUPT SERVICE ROUTINE PRIORITY (LOW BYTE).
; (HIGH BYTE = 0.)
ASTADR ;VIRTUAL ADDRESS OF AST ROUTINE

Local Symbol Definitions

C.INVE
C.INBA
C.INIS

C.INDI
C.INPS
C.INAS

Vector address (2)

Base address (2)

ISR address (2)

Enable/disable interrupt routine address (2)
Priority (1)

AST address (2)

DSW Return Codes

IE.UPN
IE.ITS
IE.PRI
IE.RSU
IE.ILV

IE.MAP

IE.ADP
IE.SDP

Notes

An ITB could not be allocated (no pool space).

The function requested is “disconnect” and the task is not the owner of the vector.
Issuing task is not privileged (not applicable in unmapped system).

The specified vector is already in use.

The specified vector is illegal (lower than 60 or higher than highest vector specified
during system generation, or not a multiple of 4).

ISR or enable/disable interrupt routine is not within 4K words from the value (base
address and 177700).

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

1. Checkpointable Tasks

The

following points should be noted only for checkpointable tasks:

When a task connects to an interrupt vector, checkpointing of the task is automatically
disabled.

When a task disconnects from a vector and is not connected to any other vector,
checkpointing of the task is automatically enabled, regardless of its state before the first
connect or any change in state while the task was connected.

Directive Descriptions

CINTS

2. Mapping Considerations

In an unmapped system, the argument “base” is ignored and the arguments “isr,” “edir,”
and “ast” are physical addresses.

In a mapped system, the argument “base,” after being truncated to a 32;9-word boundary,
is the start of a 4K-word area mapped in kernel APR 5. All code and data in the task
that are used by the routines must fall within that area or a fatal error will occur, probably
resulting in a system crash.

Furthermore, the code and data must be either position independent (refer to the PDP-11
MACRO-11 Language Reference Manual for more information on position-independent code)
or coded in such a way that the code can execute in APR 5 mapping. When the routines
execute, the processor is in kernel mode and the virtual address space includes all of the
Executive, the pool, and the I/O page.

References within the task image must be PC-relative or use a special offset defined below.
References outside the task image must be absolute.

The following solutions are possible:
* Write the ISR, enable/disable interrupt routines, and data in position-independent code.

* Include the code and data in a common partition, task build it with absolute addresses
in APR 5 (PAR=ISR:120000:20000), and link the task to the common partition.

* Build the task privileged with APR 5 mapping and use the constant 120000 as argument
“base” in the CINT$ directive.

* When accessing locations within the task image in immediate or absolute addressing
mode, use the following offset:

<120000- <base and 177700> >
(In immediate mode, only relocatable addresses need to use this offset.)
3. ISR

When the ISR is entered, R5 points to the fork block in the Interrupt Transfer Block (ITB),
and R4 is saved and free to be used. Registers RO through R3 must be saved and restored
if used. If one ISR services multiple vectors, the interrupting vector can be identified by the
vector address, which is stored at offset X.VEC in the ITB. The following example loads the
vector address into R4:

MOV X.VEC-X.FORK(R5),R4

The ISR either dismisses the interrupt directly by an RTS PC instruction or calls $FORK?2 if
the fork routine is to be entered. When calling $FORK2, R5 must point to the fork block in
the ITB and the stack must be in the same state as it was upon entry to the ISR. Note that
the call must use absolute addressing: CALL @#$FORK2.

Note

Do not put the ISR in a common. Commons can be checkpointed or shuffled
independently from the task and the Executive disables checkpointing and
shuffling for the task region only.

Directive Descriptions 5-27

CINTS

4. Fork-Level Routine

The fork-level routine starts immediately after the call to $FORK2. On entry, R4 and R5 are
the same as when $FORK2 was called. All registers are free to be used. The first instruction
of the fork routine must be CLR @R3, which declares the fork block free.

The fork-level routine should be entered if servicing the interrupt takes more than 500
microseconds. It must be entered if an AST is to be queued or an event flag is to be set.
(Fork level is discussed in greater detail in the RSX-11M-PLUS and Micro/RSX Guide to
Writing an 1/0 Driver manuals.)

An AST is queued by calling the subroutine $QASTC.

Input: R5 DPointer to fork block in the ITB
Output: If AST successfully queued, Carry bit = 0
If AST was not specified by CINT$, Carry bit = 1
Registers RO, R1, R2, and R3
altered:

An event flag is set by calling the subroutine $SETF.
Input: RO Event flag number

R5 Task Control Block (TCB) address of task for which flag is to be set.
This is usually, but not necessarily, the task that has connected to the
vector. This task’s TCB address is found at offset X.TCB in the ITB.

Output: Specified event flag set
Registers R1 and R2
altered:

Note that absolute addressing must be used when calling these routines (and any other
Executive subroutines) from fork level, as follows:

CALL @#$QASTC
CALL @#$SETF

5. Enable/Disable Interrupt Routine

The purpose of the enable/disable interrupt routine, whose address is included in the
directive call, is to allow you to have a routine automatically called in the following cases:

a. When the directive is successfully executed to connect to an interrupt vector (argument
istr # 0). The routine is called immediately before return to the task.

b. When the directive is successfully executed to disconnect from an interrupt vector
(argument isr=0).

c. When the task is aborted or exits with interrupt vectors still connected.

In case a, the routine is called with the Carry bit cleared; in cases b and c, with the Carry

bit set. In all three cases, R1 is a pointer to the Interrupt Transfer Block (ITB). Registers

RO, R2, and R3 are free to be used; other registers must be returned unmodified. Return is
accomplished by means of an RTS PC instruction.

5-28 Directive Descriptions

CINTS

Typically, the routine dispatches to one of two routines, depending on whether the Carry
bit is cleared or set. One routine sets interrupt enable and performs any other necessary
initialization; the other clears interrupt enable and cleans up.

Note that the ITB contains the vector address, in the event that common code is used for
multiple vectors.

6. AST Routine

The fork routine may queue an AST for the task through a call to the Executive routine
$QASTC as described above. When the AST routine is entered (at task level), the top word
of the stack contains the vector address and must be popped off the stack before AST exit
(ASTX$S).

7. ITB Structure
The following offsets are defined relative to the start of the ITB:
X.LNK Link word

X.JSR Subroutine call to $INTSC
X.PSW PSW for ISR (low-order byte)
X.ISR ISR address (relocated)

X.FORK Start of fork block

X.REL APR 5 relocation (mapped systems only)

X.DSI Address of enable/disable interrupt routine (relocated)
X.TCB TCB address of owning task

X.AST Start of AST block

X.VEC Vector address

X.VPC Saved PC from vector

X.LEN Length in bytes of ITB

The symbols X.LNK through X.TCB are defined locally by the macro ITBDF$, which is
included in the file [1,1]JEXEMC.MLB. All global symbols are defined globally by the file
[1,54]RSX11M.STB.

Example
The following programming example illustrates the use of the CINT$ directive:
.TITLE PUNTSK PUNCH ASCII TEXT ON PAPER TAPE PUNCH
ME R

; THIS TASK WILL PUNCH AN ASCII STRING TO THE PAPER TAPE PUNCH
; USING THE CINT$ DIRECTIVE.

Directive Descriptions 5-29

CINTS

; IT MUST BE BUILT USING THE /PR:0 TASK BUILDER SWITCH.
; NOTE THAT THIS METHOD ALLOWS A TASK TO BE A FULL 32K

. WORDS LONG. IF IT IS NECESSARY TO ACCESS THE I/0 PAGE
; IN OTHER THAN THE ENABLE/DISABLE ROUTINE OR THE ISR

; THE TASK MUST BE LINKED TO A COMMON BLOCK COVERING

; THE CORRECT PART OF THE I/0 PAGE.

; TASK BUILD COMMAND FILE:

;. PUNTSK/MM/PR:0/-FP,PUNTSK/-SP/MA=PUNTSK
; [1,54]RSX11M.STB/SS

i/

; GBLDEF=$VECTR:74

GBLDEF=$DVCSR: 177554

UNITS=1

ASG=TI:1

PAR=GEN : 0:40000

. IT IS POSSIBLE TO HAVE THIS TASK TYPE ON THE CONSOLE TERMINAL
; IF THERE IS NO PAPER TAPE PUNCH AVAILABLE. TO DO THIS THE

: VECTOR FOR THE CONSOLE OUTPUT MUST APPEAR TO BE UNUSED. THIS
: MAY BE DONE BY (ON A TERMINAL OTHER THAN THE CONSOLE!) OPENING

; THE VECTOR LOCATION (64) AND REPLACING ITS CONTENTS WITH

. THE VALUE OF '$NSO' AS OBTAINED FROM A MAP OF THE SYSTEM. BE

: SURE TO REMEMBER THE OLD VALUE OR YOUR CONSOLE WILL BE DEAD

: UNTIL YOU REBOOT THE SYSTEM. NOW TASK BUILD USING THE FOLLOWING
; COMMAND FILE:

. PUNTTY/MM/PR:0,/-FP,PUNTTY/-SP/MA=PUNTSK
; [1,54]RSX11M.STB/SS

i/

; GBLDEF=$VECTR:64

; GBLDEF=$DVCSR: 177564

; UNITS=1

; ASG=TI:1

; PAR=GEN:0:40000

; NOTE THAT IN THE ABOVE TWO TKB COMMAND FILES THE FOLLOWING
; CHANGES MUST BE MADE IN ORDER TO RUN ON AN UNMAPPED SYSTEM:

; 1) /MM SHOULD BE CHANGED TO /-MM
; 2) 'PAR=GEN:0:40000' SHOULD BE CHANGED TO
; 'PAR=GEN : 40000: 40000

: IN ADDITION, PLACE A SEMICOLON IN FRONT OF THE SOURCE LINE
: BELOW THAT DEFINES THE SYMBOL 'M$$MGE'.

_MCALL CINT$, QIOW$, CLEF$S, WTSE$S, EXITS, DIR

; LOCAL SYMBOLS

5-30 Directive Descriptions

LBL:

NAM:

CINT:

LUN.TT
EFN.TT
EFN.WF
M$$MGE

++

CINTS

;LUN FOR TERMINAL I/0

;EFN FOR TERMINAL I/0

;EFN TO WAIT FOR PUNCHING TO COMPLETE
;DEFINE THIS SYMBOL TO RUN ON MAPPED SYSTEM

ON - =

MACRO TO GENERATE AN ASCII STRING AND A QIO TO QUTPUT
THE STRING TO THE TERMINAL.

MESSG NAM,STRING
WHERE :

NAM IS THE NAME OF THE GENERATED QIO DPB
STRING IS THE ASCII STRING TO OUTPUT

.MACRO MESSG NAM,STRING, ?LBL
$CHR=0

-IRPC X,<STRING>

$CHR=$CHR+1

.ENDR

.ENABL LSB

.ASCII /(STRING/

.EVEN

QIOW$ I0.WVB,LUN.TT,EFN.TT,,,,<LBL,$CHR,40>
.DSABL LSB

.ENDM

MESSG HELLO,<CONNECT TO INTERRUPT TEST>
MESSG CINWRK,<CONNECT TO INTERRUPT WORKS--CHECK THE PAPER TAPE PUNCH>

CINT$ $VECTR,$BASE,$PNISR,$PNEDI,PR4

;CONNECT TO INTERRUPT

; VECTOR=$VECTR

; BASE.FOR.MAPPING=$BASE
; ISR=$PNISR

; ENB.DSABL . RTN=$PNEDI

; PRIO=PR4

DISCON: CINT$ $VECTR,0,0 ;DISCONNECT FROM INTERRUPT

++

; VECTOR=74

ENTRY POINT TQO THE PUNCH TASK. THE TASK WILL ANNOUNCE
ITSELF ON THE INITIATING TERMINAL, CONNECT TO THE
SPECIFIED VECTOR, OUTPUT THE ASCII STRING, AND THEN
OUTPUT A MESSAGE THAT IT WAS SUCCESSFUL. IF THE TASK

TERMINATES WITH AN I/0 TRAP THE CONNECT-TO-INTERRUPT
DIRECTIVE FAILED, AND R1 WILL CONTAIN THE DSW RETURNED
IN ORDER TO DIAGNOSE THE ERROR.

Directive Descriptions 5-31

CINTS

BASE:

$PUNTK: :DIR$ #HELLO ;ANNOUNCE THAT WE ARE HERE
DIR$ #CINT ;CONNECT TO THE PUNCH
; THIS CAN BE EITHER THE TERMINAL
; OR THE PAPER TAPE PUNCH.

BCS ERR1 ;IF CS THEN DIRECTIVE ERROR
WTSE$S #EFN.WF ;WAIT FOR PUNCH TO FINISH
DIR$ #DISCON ;DISCONNECT FROM INTERRUPTS
DIR$ #CINWRK ;TELL USER THAT CINT WORKS
EXIT$S
ERR1: MOV #1,RO ;ERROR # 1
MOV $DSW,R1 ;GET THE DSW TO SHOW THE CINT ERROR RETURN
10T ;DUMP REGISTERS

;THIS IS THE BASE OF THE MAPPING USED
;BY THE EXECUTIVE WHEN MAPPING TO THE
;'DRIVER.' THIS MAPPING IS REQUIRED
;ONLY ON MAPPED SYSTEMS; UNMAPPED
;SYSTEMS DO NOT HAVE THIS PROBLEM.

FOLLOWING IS THE ASCII STRING PUNCHED BY THIS TASK.

.NLIST BEX

PUNMSG: .ASCIZ /ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!Q#$% &* () _+-=/<156><12>
.LIST BEX
.EVEN

PUNPTR: .WORD O ;POINTER INTO PUNMSG FOR ISR

TSKTCB: .WORD O ; TCB ADDRESS OF TASK

PUNCSR: .WORD $DVCSR ;PAPER TAPE PUNCH CSR ADDRESS

PUNBUF: .WORD $DVCSR+2 ;PAPER TAPE PUNCH BUFFER ADDRESS

T+

ENABLE/DISABLE ROUTINE.
THIS ROUTINE IS CALLED BY THE EXEC ON EITHER A CONNECT OR DISCONNECT

FROM INTERRUPT VECTOR REQUEST, OR WHEN THE TASK EXITS WITH INTERRUPT
VECTORS STILL CONNECTED.

ENTRY CONDITIONS:

; C-CL!
H C-SE

; $TKT

ACTI

EAR
T

CB

ON:

THIS IS A SUCCESSFUL CONNECT.
THIS IS A DISCONNECT.

THE TCB ADDRESS OF THE CURRENTLY EXECUTING TASK (ME).

; IF THE C-BIT IS SET WE MERELY DISABLE THE PUNCH AND RETURN. IF
; THE C-BIT IS CLEAR WE WILL ENABLE THE PUNCH TO INTERRUPT. THIS
H WILL IMMEDIATELY CAUSE AN INTERRUPT AND THE INTERRUPT SERVICE

; ROUTINE WILL OUTPUT CHARACTERS TO THE PUNCH (ONE PER

5-32 Directive Descriptions

CINTS

; INTERRUPT) UNTIL A ZERO BYTE IS OUTPUT. THE ISR WILL THEN FORK
; AND SET THE LOCAL EVENT FLAG 'EFN.WF.' THIS WILL THEN CAUSE THE
; TASK PORTION OF THIS TASK TO CONTINUE EXECUTING AND EVENTUALLY

H EXIT.
$PNEDI: :BCS 20% ;IF CS THEN DISCONNECT
MOV Q#$TKTCB, TSKTCB ;COPY TASK TCB ADDRESS FOR LATER
;S0 WE CAN SET EFN.
.IFDF M$$MGE ;MAPPED SYSTEM?
MOV #PUNMSG+120000-<$BASE&177700>,PUNPTR ;RELOCATE ADDRESS
;TO APR 5 MAPPING, AND SET UP
;BUFFER POINTER
.IFF M$$MGE ;UNMAPPED SYSTEM?
MoV #PUNMSG,PUNPTR ;SET UP BUFFER POINTER
.ENDC
BIS #100,QPUNCSR ;ALLOW INTERRUPTS
RETURN
;WHEN WE ARE DONE PUNCHING
20$: BIC #100,QPUNCSR ;DISABLE INTERRUPTS
RETURN
D+
; INTERRUPT SERVICE ROUTINE
; THIS IS THE 'BARE-BONES' INTERRUPT SERVICE ROUTINE. THERE IS NO
: ERROR CHECKING. THIS ROUTINE MERELY OUTPUTS THE NEXT CHARACTER
; IN THE STRING. WHEN IT ENCOUNTERS THE ZERO BYTE AT THE END, IT
: WILL CALL $FORK2. THIS CREATES A SYSTEM PROCESS AND WE THEN
; SET THE LOCAL EVENT FLAG 'EFN.WF' TO WAKE UP THE TASK PART OF
; THIS TASK.
; INPUTS:
; RS POINTS TO FORK BLOCK IN THE INTERRUPT TRANSFER BLOCK.
; R4 IS FREE TO USE.
$PNISR: :MOVB QPUNPTR,R4 ;GET THE NEXT CHARACTER IN THE BUFFER
BEQ 20% ;IF EQ THEN END OF STRING
MOVB R4, @PUNBUF ;PUNCH THE CHARACTER
INC PUNPTR ;MOVE THE POINTER
RETURN ;RETURN TO INTERRUPT EXIT CODE

; WE HAVE FINISHED PUNCHING THE STRING. DISABLE INTERRUPTS, FORK, AND
; SET THE LOCAL EVENT FLAG.

Directive Descriptions

5-33

CINTS

208$: BIC #100, @PUNCSR ;DISABLE FURTHER INTERRUPTS
CALL Q#$FORK2 ;CREATE SYSTEM PROCESS
CLR (R3) ;DECLARE THE FORK BLOCK FREE

; IF IT IS DESIRABLE TO QUEUE AN AST FOR THE TASK, THERE ARE TWO
; THINGS THAT MUST BE DONE:

; 1) AN AST ADDRESS MUST HAVE BEEN SPECIFIED IN THE CINT$
; DIRECTIVE (THERE WAS NONE IN THIS CASE).

; 2) THE FOLLOWING CODE MUST BE EXECUTED:

; NOTE - R5 POINTS TO THE FORK BLOCK WITHIN THE
; INTERRUPT TRANSFER BLOCK (THIS IS SET
; UP UPON RECEIPT OF THE INTERRUPT)

; CALL Q#$QASTC ;QUEUE AN AST FOR THE TASK
; IT IS POSSIBLE TGO QUEUE AN AST AND SET AN EVENT FLAG.

; HOWEVER, THIS TASK IS ONLY USING EVENT FLAGS, SO NOW
H WE WILL SET THE EVENT FLAG.

Mov #EFN.WF,RO ;GET EFN NUMBER TO SET

MOV TSKTCB,R5 ;GET TASK TCB ADDRESS FOR $SETF

CALL Q#$SETF ;SET THE LOCAL EVENT FLAG TO AWAKE TASK
RETURN EXIT

.END $PUNTK

5-34 Directive Descriptions

CLEF$

5.11 Clear Event Flag

The Clear Event Flag directive instructs the system to report an indicated event flag’s polarity
and then clear the flag.

FORTRAN Call
CALL CLREF (efn[,ids])

Parameters
efn

Event flag number
ids

Directive status
Macro Call

CLEF$ efn

Parameter

efn
Event flag number

Macro Expansion

CLEF$ 52.
.BYTE 31.,2 ;CLEF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52

Local Symbol Definition
C.LEEF Event flag number (2)

DSW Return Codes
IS.CLR Successful completion; flag was already clear.
IS.SET Successful completion; flag was set.

IE.IEF Invalid event flag number (EFN <1, or EFN> 96 if group global event flags exist
for the task’s group or EFN> 64 if not).

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-35

CLONS, CLOGS

5.12 Create Logical Name

The Create Logical Name directive establishes the relationship between a logical name string
and an equivalence name string. The maximum length for each string is 255, characters. If
you create a logical name string with the same name, the new definition supersedes the old
one.

The CRELON and CLONS$ calls are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
operating systems. The CRELOG and CLOGS$ calls are provided for compatibility with the P/OS
operating system. See the Notes.

FORTRAN Calls

CALL CRELON ([mod],itbnum,Ins, Inssz,iens,ienssz[,idsw])
CALL CRELOG ([mod],itbnum,Ins,Inssz,iens,ienssz[,idsw})

Parameters

mod
Modifier of the logical name within a table; if not specified, the nonzero value reserved by
the system (LB.LOC = 1) is placed in the DPB; if specified, nonzero values must correspond
to the valid symbolic references used by the system (see the Notes)

itbnum
Logical name table number in the lower byte and the status byte in the upper byte, as
follows:

Table number:

System (LT.SYS) 0
Group (LT.GRP) 1
Session (LT.SES) 4
Task (LT.TSK) 3
Status:

LSTRM 1 Terminal status. Iterative translations will not proceed beyond this logical
name.

LS. PRV 2 Privileged status. Only privileged tasks may delete this logical name.

Ins
Character array containing the logical name string

Inssz
Size (in bytes) of the logical name string

iens
Character array containing the equivalence string to be created

ienssz
Size (in bytes) of the data area for the equivalence string

5-36 Directive Descriptions

CLONS, CLOGS

idsw

Integer to receive the Directive Status Word

Macro Calls

CLON$ [mod], <prmlst> ,Ins,Inssz,ens,enssz
CLOG$ [mod], <prmlst> Ins,Insszens,enssz

Parameters

mod

Modifier of the logical name within a table; if not specified, the nonzero value reserved by
the system (LB.LOC = 1) is placed in the DPB. See the Notes.

<prmist >

Ins

<[tbnum][,status]>

(Angle brackets not required if only tbnum is specified.)

tbnum
Logical name table number. The following are the symbolic offsets for the table:

System (LT.SYS) 0
Group (LT.GRP) 1
Session (LT.SES) 4
Task (LT.TSK) 3
status

Logical status definition value. The following are the valid bits for the value:

LSTRM 1 Terminal status. Iterative translations will not proceed beyond this logical
name.

LS.PRV 2 Privileged status. Only privileged tasks may delete this logical name.

Logical name string

Inssz

ens

Size (in bytes) of the logical name string

Equivalence name string

enssz

Size (in bytes) of the equivalence name string

Directive Descriptions 5-37

CLONS, CLOGS

Macro Expansion
.MACRO CLON$ MOD,PRMLST,LNS,LNSSZ,ENS,ENSSZ

.BYTE 207..,7 :CLON$ MACRO DIC, DPB SIZE = 7 WORDS
.BYTE 11. ;SUBFUNCTION (CLOG$ = 0)
.BYTE MOD ;MODIFIER OF LOGICAL NAME
$$$ARG = O
.IRP SYM <PRMLST> ;TABLE NUMBER AND STATUS
.BYTE SYM
$$SARG=$$$ARG+1
.ENDM
.IFF LT 2-$$$ARG, .ERROR
.IF GT 2-$$$ARG
.REPT <2-$$$ARG>
.BYTE 0
.ENDR
.ENDC
.WORD LNS ;ADDRESS OF LOGICAL NAME STRING
.WORD LNSSZ ;SIZE IN BYTES OF LOGICAL NAME STRING
.WORD ENS ;ADDRESS OF EQUIVALENCE NAME STRING
.WORD ENSSZ ;SIZE IN BYTES OF EQUIVALENCE NAME STRING

Local Symbol Definitions

C.LENS Address of equivalence name buffer (2)
C.LESZ Byte count of equivalence name buffer (2)
C.LFUN Subfunction value (1)

C.LLNS Address of logical name string (2)
C.LLSZ Byte count of logical name string (2)
C.LMOD Logical name modifier (1)

C.LSTS Address of status block for LNB (1)
C.LTBL Logical table number (1)

DSW Return Codes

IS.SUC Successful completion.

IS.sUP Previous value of logical name was superseded.
IEITN Invalid table number specified.

IE.ADP Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

IE.SDP DIC or DPB size is invalid.

5-38 Directive Descriptions

CLONS, CLOGS

Notes

1. You may specify any value up to 255 for the logical name modifier. The logical names will
be translated in ascending order. However, the RSX-11M-PLUS and Micro/RSX operating
systems create and display the values of 1 (LB.LOC) and 2 (LB.LOG) only.

2. The CRELON and CLONS$ calls are the preferred calls to use on RSX-11M-PLUS and
Micro/RSX operating systems. The CRELOG and CLOGS$ calls are provided for compatibility
with the P/OS operating system. When you use CRELOG or CLOGS$, the system performs
the following actions:

e If a device name or node name ends with one or more colons, strips off one to two of
the terminating colons.

e If a physical device name string is in the form ddnnn:, compresses any leading zeros.
For example, DR005: becomes DRS5.

Directive Descriptions 5-39

CMKTS$

5.13 Cancel Mark Time Requests
The Cancel Mark Time Requests directive instructs the system to cancel a specific Mark Time
Request or all Mark Time requests that have been made by the issuing task.
FORTRAN Cali
CALL CANMT ([efn][,ids])

Parameters
efn
Event flag number
ids
Directive status
Macro Call
CMKT$ ([[efn],[ast][err]]

Parameters
efn
Event flag number

ast
Mark time AST address

err
Error-routine address

Macro Expansion
CMKT$ 52.,MRKAST,ERR ;NOTE: THERE ARE TWO IGNORED ARGUMENTS

_BYTE 27.,3 ;CMKT$ MACRO DIC, DPB SIZE = 3 WORDS

_WORD 52. ;EVENT FLAG NUMBER 52

_WORD MRKAST ;ADDRESS OF MARK TIME REQUEST AST ROUTINE
Note

The above example will cancel only the Mark Time requests that were specified
with efn 52 or the AST address MRKAST. If no ast or efn parameters are
specified, all Mark Time requests issued by the task are canceled and the DPB
size equals 1.

Local Symbol Definitions

C.MKEF Event flag number (2)

C.MKAE Mark Time Request AST routine address (2)

5-40 Directive Descriptions

CMKTS

DSW Return Codes

IS.suC Successful completion.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. If neither the efn nor ast parameters are specified, all Mark Time Requests issued by the
task are canceled. In addition, the DPB size is one word. (When either the efn and/or ast
parameters are specified, the DPB size is three words.)

2. If both efn and ast parameters are specified (and nonzero), only Mark Time Requests issued
by the task specifying either that event flag or AST address are canceled.

3. If only one efn or ast parameter is specified (and nonzero), only Mark Time Requests issued
by the task specifying the event flag or AST address are canceled.

4. If the specified event flag is a group global, then the use count for the event flag’s group is
run down when a Mark Time request is canceled.

Directive Descriptions 5-41

CNCTS

5.14 Connect

The Connect directive synchronizes the task issuing the directive with the exit or emit status of
another task (offspring) that is already active. Execution of this directive queues an Offspring
Control Block (OCB) to the offspring task and increments the issuing task’s rundown count
(contained in the issuing task’s Task Control Block). The rundown count is maintained to
indicate the combined total number of tasks presently connected as offspring tasks and the
total number of virtual terminals the task has created. The exit AST routine is called when the
offspring exits or emits status with the address of the associated exit status block on the stack.
This directive cannot be issued to connect to command line interpreter (CLI) tasks because it is
illegal to connect to a CLI task.

FORTRAN Call
CALL CNCT (rtname,[iefn) [iast] [iesb],[iparm][,ids])
CALL CNCTN (rtname,[iefn],[iast],[iesb],[iparm][,ids])
Parameters
rtname

Name (Radix-50) of the offspring task to be connected

iefn
Event flag to be set when the offspring task exits or emits status

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL CNCTN)

iesb
Name of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code

Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the iefn parameter above.

iparm
Name of a word to receive the status block address when an AST occurs

ids
Integer to receive the Directive Status Word

5-42 Directive Descriptions

CNCTS

Macro Call
CNCT$ tname,[efn],[east],[esb]

Parameters

tname
Name (Radix-50) of the offspring task to be connected

efn

The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb
Address of an 8-word status block to be written when the offspring task exits or emits
status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code

Words 2-7 Reserved

Note
The exit status block defaults to one word. To use the 8-word exit status block,
you must specify the logical OR of the symbol SP.WX8 and the event flag
number in the efn parameter above.
Macro Expansion
CNCT$ ALPHA,1,CUNAST,STBUF

.BYTE 143.,6 ;CNCT$ MACRO DIC, DPB SIZE = 6 WORDS
.RAD50 ALPHA ; OFFSPRING TASK NAME

.BYTE 1 ;EVENT FLAG NUMBER = 1

.BYTE 16. ;EXIT STATUS BLOCK CONSTANT

.WORD CONAST ;AST ROUTINE ADDRESS

.WORD STBUF ;EXIT STATUS BLOCK ADDRESS

Local Symbol Definitions

C.NCTN Task name (4)

CNCEF Event flag (2)

C.NCEA AST routine address (2)
C.NCES Exit status block address (2)

Directive Descriptions 5-43

CNCTS

DSW Return Codes

IS.SUC
IE.UPN
IE.INS
IE.ACT
IE.IEF

IE.ADP
IE.SDP

Notes

Successful completion.

Insufficient dynamic memory to allocate an Offspring Control Block.
The specified task was a command line interpreter.

The specified task was not active.

Invalid event flag number (EFN <0, or EFN> 96 if group global event flags exist
for the task’s group or EFN> 64 if not).

Part of the DPB or exit status block is not in the issuing task’s address space.
DIC or DPB size is invalid.

1. If the specified event flag is group global, the use count for the event flag’s group is
incremented to prevent premature elimination of the event flags. The use count is run
down when the following events occur:

The connected task returns status.

The issuing task exits before status is returned.

2. Do not change the virtual mapping of the exit status block while the connection is in effect.
Doing so may cause obscure errors because the exit status block is always returned to the
virtual address specified regardless of the physical address to which it is mapped.

5-44 Directive Descriptions

CPCRS

5.15 Checkpoint Common Region

The Checkpoint Common Region directive instructs the system to force the specified read /write
common region to be checkpointed. This directive stops all the tasks that are mapped to the
common region, writes the common region out to the disk, and then unstops the tasks.

Before the common region can be checkpointed with this directive, it must be installed with the
VMR or MCR INSTALL /WB=YES command or the DCL INSTALL /WRITE_BACK command.

The issuing task must be privileged (PR:0) and must be attached to the specified common region.

If the issuing task is mapped to the specified common region, it is blocked. Any task (including
the issuing task) is also blocked if it maps to the common region while the checkpoint is in
progress. If the task was built with the /COMMON= qualifier, the task will be blocked when
it issues this directive. If the task becomes attached by means of the Attach Region directive, it
is not blocked unless it issues a Map directive.

You can use this directive to preserve changes made to a memory-resident common region.
When a region installed with the /WB=YES switch or /WRITE_BACK qualifier is checkpointed,
it is copied to its own image on the disk and not to the checkpoint file. Therefore, any update
to the memory-resident copy of the common region becomes permanent.

FORTRAN Call

CALL CPCR (name[,ids])

Parameters
name
Name (Radix-50) of the common region to be checkpointed

ids
Directive Status
Macro Call
CPCR$ name

Parameter

name
Name of the common region to be checkpointed

Macro Expansion

CPCR$ NAME
.BYTE 205.,3 ;CPCR$ MACRO DIC, DPB SIZE = 3 WORDS
.RAD50 /NAME/

Local Symbol Definition

C.PCNM Name of common region

Directive Descriptions 5-45

CPCRS$

DSW Return Codes

IE.SUC Successful completion.

IE.PRI Privilege violation.

IE.NSP The specified common region does not exist.

IE.ITS I/0 is in progress to the specified region or, if the region is a memory management
(PLAS) common, the common was not installed with the /WB=YES switch or
/WRITE_BACK qualifier.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-46 Directive Descriptions

CRAWS

5.16 Create Address Window

The Create Address Window directive creates a new virtual address window by allocating a
window block from the header of the issuing task and establishing its virtual address base
and size. (Space for the window block has to be reserved at task-build time by means of the
WNDWS keyword. See the RSX-11M-PLUS and Micro/RSX Task Builder Manual) Execution
of this directive unmaps and then eliminates any existing windows that overlap the specified
range of virtual addresses. If the window is created successfully, the Executive returns an 8-bit
window ID to the task.

The 8-bit window ID returned to the task is a number from 1 through 2349, which is an index
to the window block in the task’s header. The window block describes the created address
window.

On RSX-11M-PLUS systems, if WS.SIS in the window status word (W.NSTS) is set, the
Executive creates the window in supervisor-mode I-space. Program control can subsequently be
transferred to supervisor-mode I-space upon issuing a Supervisor Call directive. If WS.UDS in
the window status word is set, the Executive creates the window in user-mode D-space.

If WS.MAP in the window status word is set, the Executive proceeds to map the window
according to the Window Definition Block input parameters.

A task can specify any length for the mapping assignment that is less than or equal to both the
window size specified when the window was created, and the length remaining between the
specified offset within the region and the end of the region.

If W.NLEN is set to 0, the length defaults to either the window size or the length remaining
in the region, whichever is smaller. (Because the Executive returns the actual length mapped
as an output parameter, the task must clear that offset before issuing the directive each time it
wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit WS5.64B in the window
status word, as follows:

s If WS.64B = 0, the offset specified in W.NOFF must represent a multiple of 256 words (512
bytes). Because the value of W.NOFF is expressed in units of 32-word blocks, the value
must be a multiple of 8.

e If WS.64B = 1, the task can align on 32-word boundaries; you can therefore specify any
offset within the region.

Note

Applications dependent on 32-word or 64-byte alignment (WS.64B = 1)
may not be compatible with future RSX emulators. To avoid future
incompatibility, you should write applications adaptable to either alignment
requirement. The bit setting of WS.64B could be a parameter chosen at
assembly time (by means of a prefix file), at task-build time (as input to the
GBLDEF option), or at run time (by means of command input or by means
of the G.TSSY field returned from the GTSK$ directive).

FORTRAN Call
CALL CRAW (iwdb],ids])

Directive Descriptions 5-47

CRAWS

Parameters
iwdb

An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

ids
Directive status

Macro Call
CRAWS wdb

Parameter
wdb

Window Definition Block address

Macro Expansion

CRAW$ WDBADR
.BYTE 117.,2
.WORD WDBADR

;CRAW$ MACRO DIC, DPB SIZE = 2 WORDS
,WDB ADDRESS

Window Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(1), W.NAPR Base APR of the address window to be created.

bits 8-15

iwdb(3) W.NSIZ Desired size, in 32-word blocks, of the address window.

iwdb(4) W.NRID ID of the region to which the new window is to be mapped
or 0 for task region (to be specified only if WS.MAP=1).

iwdb(5) W.NOFF Offset in 32-word blocks from the start of the region at
which the window is to start mapping (to be specified only
if WS.MAP=1). Note that if WS.64B in the window status
word equals 0, the value specified must be a multiple of 8.

iwdb(6) W.NLEN Length in 32-word blocks to be mapped, or 0 if the length
is to default to either the size of the window or the
space remaining in the region, whichever is smaller (to
be specified only if WS.MAP=1).

iwdb(7) W.NSTS Bit settings’ in the window status word:

Bit Definition

WS.MAP 1 if the new window is to be mapped.

Ly you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

5-48 Directive Descriptions

CRAWS

Array
Element Offset Meaning

Bit Definition

WS.WRT 1 if the mapping assignment is to occur with
write access.

WS.64B 0 for 256-word (512-byte) alignment or 1 for
32-word (64-byte) alignment.

WS.NBP Do not bypass the cache (for RSX-11M-PLUS
multiprocessor systems and systems that have
the conditional assembly parameter C$$CBP
defined in RSXMC.MAC; C$$CBP is also in-
cluded in the RL0O2 ID and MICROD pregen-
erated systems).

WS.RES Map only if resident.

WS.NAT Create attachment descriptor only if necessary
(for Send By Reference directives).

WS.MAP Window is to be mapped.
WS.RCX Exit if no references to receive.
WS.SIS Create window in supervisor I-space.

WS.UDS Create window in user D-space (RSX-11M-PLUS
systems only).

WS.DEL Send with delete access.
WS.EXT Send with extend access.

WS.WRT Send with write access or map with write
access.

WS.RED Send with read access.

Output parameters:

Array

Element Offset Meaning

iwdb(1), W.NID ID assigned to the window.

bits 0-7

iwdb(2) W.NBAS Virtual address base of the new window.

iwdb(6) W.NLEN Length, in 32-word blocks, actually mapped by the
window.

iwdb(7) W.NSTS Bit settings! in the window status word:

Ty you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Directive Descriptions 5-49

CRAWS

Array
Element Offset Meaning

Bit Definition (if bit=1)

WS.CRW Address window was created successfully.
WS.UNM At least one window was unmapped.
WS.ELW At least one window was eliminated.

WS.RRF Reference was received successfully.

Local Symbol Definition
C.RABA Window Definition Block address (2)

DSW Return Codes

IS.SUC Successful completion.

IE.EHWR Directive failed in mapping storage because region has incurred a parity error.
IE.PRI Requested access denied at mapping stage.

IE.XNVR Invalid region ID.

1IE.ALG Task specified either an invalid base APR and window size combination or an
invalid region offset and length combination in the mapping assignment, or WS.64B
= 0 and the value of W.NOFF is not a multiple of 8.

IEWOV No window blocks available in task’s header.
IE.ADP Part of the DPB or WDB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-50 Directive Descriptions

CRGF$

5.17 Create Group Global Event Flags

The Create Group Global Event Flags directive creates a Group Global Event Flag Control Block
(GFB) and links it into the GFB list. If a GFB for the specified group is not present when the
directive is issued, the Executive creates the GFB data structure with all event flags initialized to
zero. If a GFB is present when the directive is issued, the Executive uses the present GFB and
the event flags are not initialized. However, if the GFB is marked for deletion (by a previously
issued Eliminate Group Global Event Flags directive), the Executive clears the GS.DEL bit.

If the specified group code matches the group code of the issuing task’s protection UIC
(H.CUIC+1), this directive increments the access count for the event flags. This locks the event
flags so they cannot be eliminated by another task that is sharing them. The issuing task
can explicitly unlock the event flags with an Unlock Group Global Event Flags directive or an
Eliminate Group Global Event Flags directive. The Executive automatically unlocks the event
flags when the task exits if necessary. Note that a task may not lock the event flags more
than once in succession. Any attempt to lock event flags that are already locked will return the
IE.RSU error code.

FORTRAN Call
CALL CRGF ([group][,idsw])

Parameters

group
Group number for the flags to be created. Only privileged tasks can specify group numbers
other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

idsw

Integer to receive the Directive Status Word
Macro Call

CRGF$ [group]

Parameter

group
Group number for the flags to be created. Only privileged tasks can specify group numbers
other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

Directive Descriptions 5-51

CRGF$

Macro Expansion

CRGF$
.BYTE
.WORD

157.,2 ;CRGF$ MACRO DIC, DPB SIZE = 2 WORDS

;GROUP 4 GLOBAL EVENT FLAGS

Local Symbol Definition

C.RGRP

Group number (2)

DSW Return Codes

IS.sUC
IE.UPN
IE.PRI

IE.IUI

IE.RSU
IE.ADP
IE.SDP

Note

Successful completion.

Insufficient dynamic storage.

Privilege violation.

Invalid group.

Event flags already exist or are already locked.

Part of the DPB is out of the issuing task’s address space.

DIC or DPB size is invalid.

A privileged task may specify group numbers other than the group UIC of the issuing task.
However, the task can lock the event flags created for its own group only. This directive does
not return an error if it does not lock the event flags.

5-52 Directive Descriptions

CRRGS

5.18 Create Region

The Create Region directive creates a dynamic region in a system-controlled partition and
optionally attaches it to the issuing task.

If RS.ATT is set in the region status word, the Executive attempts to attach the task to the newly
created region. If no region name has been specified, your program must set RS.ATT (see the
description of the Attach Region directive).

By default, the Executive automatically marks a dynamically created region for deletion when
the last task detaches from it. To override this default condition, set RS.NDL in the region status
word as an input parameter. Be careful if you consider overriding the delete-on-last-detach
option. An error within a program can cause the system to lock by leaving no free space in a
system-controlled partition.

If the region is not given a name, the Executive ignores the state of RS.NDL. All unnamed
regions are deleted when the last task detaches from them.

Named regions are put in the Common Block Directory (CBD). However, memory is not
allocated until the Executive maps a task to the region.

The Executive returns an error if there is not enough space to accommodate the region in the
specified partition. See the Notes.

FORTRAN Call
CALL CRRG (irdbl,ids])

Parameters
irdb
An 8-word integer array containing a Region Definition Block (see Section 3.5.1.2)
ids
Directive status
Macro Call
CRRG$ rdb

Parameter

rdb
Region Definition Block address

Macro Expansion

CRRG$ RDBADR
.BYTE 65.,2 ;CRRG$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD RDBADR ;RDB ADDRESS

Region Definition Block Parameters

Input parameters:

Directive Descriptions 5-53

CRRGS

Array
Element Offset Meaning
irdb(2) R.GSIZ Size, in 32-word blocks, of the region to be created
irdb(3)(4) R.GNAM Name of the region to be created or 0 for no name
irdb(5)(6) R.GPAR Name of the system-controlled partition in which the region
is to be allocated or 0 for the partition in which the task is
running
irdb(7) R.GSTS Bit settings' in the region status word:
Bit Definition (if bit=1)
RS.CRR Region was created successfully.
RSUNM At least one window was unmapped on a
detach.
RS.MDL Mark region for deletion on last detach.
RS.NDL The region should not be deleted on last detach.
RS.ATT Created region should be attached.
RS.NEX Created region is not extendable.
RS.RED Read access is desired on attach.
RS.WRT Wrrite access is desired on attach.
RS.EXT Extend access is desired on attach.
RS.DEL Delete access is desired on attach.
irdb(8) R.GPRO Protection word for the region (DEWR,DEWR,DEWR,DEWR)

Ly you are a FORTRAN programmer, refer to Section 3.5.1 to define the bit values represented by the symbolic names described.

Output parameters:

Array

Element Offset Meaning

irdb(1) R.GID ID assigned to the created region (returned if RS.ATT=1)
irdb(2) R.GSIZ Size in 32-word blocks of the attached region (returned if

5-54 Directive Descriptions

RS.ATT=1)

CRRGS

Array
Element Offset Meaning
irdb(7) R.GSTS Bit settings’ in the region status word:

Bit Definition

RS.CRR 1 if the region was created successfully

1y you are a FORTRAN programmer, refer to Section 3.5.1 to define the bit values represented by the symbolic names described.

Local Symbol Definition
C.RRBA Region Definition Block address (2)

DSW Return Codes
18.5U0C Successful completion.

IE.UPN A Partition Control Block (PCB) or an attachment descriptor could not be allocated,
or the partition was not large enough to accommodate the region, or there is
currently not enough continuous space in the partition to accommodate the region.

IEHWR The directive failed in the attachment stage because a region parity error was
detected.

IE.PRI Attach failed because desired access was not allowed.

IE.PNS Specified partition in which the region was to be allocated does not exist, or no
region name was specified and RS.ATT = 0. The specified region is a main partition.

IE.ADP Part of the DPB or RDB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. The Executive does not return an error if the named region already exists. In this case, the
Executive clears the RS.CRR bit in the status word R.GSTS. If RS.ATT has been set, the
Executive attempts to attach the already existing named region to the issuing task.

2. The protection word (see R.GPRO above) has the same format as that of the file system
protection word. There are four categories and the access for each category is coded into
four bits. From low order to high order, the categories follow this order: system, owner,
group, world. The access code bits within each category are arranged (from low order
to high order) as follows: read, write, extend, delete. A bit that is set indicates that the
corresponding access is denied.

The issuing task’s UIC is the created region’s owner UIC.

In order to prevent the creation of common blocks that are not easily deleted, the system
and owner categories are always forced to have delete access, regardless of the value actually
specified in the protection word.

Directive Descriptions 5-55

CRVTS

5.19 Create Virtual Terminal

The Create Virtual Terminal directive creates a virtual terminal for use by a parent task in
communicating with its offspring tasks. When the offspring task issues a read or write to its TI:
terminal, the request is sent to the parent task through the virtual terminal. For example, when
the batch processor invokes a task, it communicates with that task through a virtual terminal
rather than a physical terminal.

This directive creates a Device Control Block (DCB) and a Unit Control Block (UCB) for each
virtual terminal unit, and links the unit to the device list. Each newly created virtual terminal
unit is assigned the lowest available virtual terminal unit number.

Only a single copy of the Status Control Block (SCB) is required. The data structure for Virtual
Terminal Unit 0 (VT0:) is used as a template for these dynamically created data structures.
Therefore, VTO: is never assigned as a virtual terminal unit number.

On successful completion of this directive, the assigned VT: unit number is returned in the
DSW with the Carry bit clear. The task must save this number if this virtual terminal is to be
referenced in another directive.

A rundown count is maintained in the issuing task’s TCB to indicate the total (current) number
of virtual terminals the task has created and the number of connected offspring tasks. This
count is reduced when an Eliminate Virtual Terminal directive is issued specifying this VT: unit.

The input and output AST routines for the virtual terminal unit are entered with the following
three words on the stack:

SP+04 Third parameter word (VFC) of offspring request
SP+02 Byte count of offspring request

SP+00 Virtual terminal unit number (low byte); I/O subfunction code of offspring request
(high byte)

The attach and detach AST routines are entered with the following three words on the stack:

SP+04 Second word of offspring task name (0 if detach AST)

SP+02 First word of offspring task name (0 if detach AST)

SP+00 Virtual terminal unit number (low byte); I/O subfunction code of offspring request
(high byte)

Note that the detach AST routine is entered with 0 in both task name words on the stack. The
AST routine must remove the three words from the stack before it issues an AST Service Exit
directive.

Parent tasks can service each offspring input or output request with a corresponding output
or input request to the correct virtual device unit. For example, where MACRO-11 has been
activated as an offspring task of the batch processor with a TI: of VT3:, the following actions
occur:

1. MACRO-11 issues an IO.RVB or IO.RLB to TI: for its first input line. The virtual terminal
driver queues the read request internally and effects an AST in the batch processor at the
virtual address “iast” with the unit number 3 and the byte count from MACRO-11’s I/O
request on the stack.

5-56 Directive Descriptions

CRVTS

2. In its AST routine, the batch processor retrieves an input line for MACRO-11 from the
batch stream and specifies this line in a QIO directive to a LUN assigned to VT3: with an
I0.WVB or IO.WLB function, a byte count of the line, and the status to be returned (such
as IS.CR).

3. The virtual terminal driver reads the line from the batch processor’s buffer, writes the line
to MACRO-11’s buffer, and then signals I/O completion for both I/O requests.

4. Similarly, if MACRO-11 needs to print an error message, it does so with an I0.WVB or
IO.WLB to TI.. The virtual terminal driver queues the write request internally and effects
an AST in the batch processor at the virtual address “oast” with the unit number 3, the byte
count, and the VFC from MACRO-11's I/O request on the stack.

5. In its output AST routine, the batch processor issues an I0.RVB or IO.RLB to retrieve the
line by means of the virtual terminal driver. The batch processor may then output this
line to its log file. The third word on the AST stack in the batch output AST routine is
the vertical format character, telling batch what type of carriage control is expected for the
output line. This word would be ignored in the input AST routine.

The virtual terminal driver does not interpret or modify transferred bytes, I/O subfunction
codes, or vertical format characters. However, this driver does automatically truncate offspring
I/0 requests to the maximum byte count specified in the “mlen” parameter, notifying neither the
parent nor offspring task. The actual number of bytes transferred on each request is equal to the
smaller of the byte counts specified in the offspring and parent I/O requests. The total number
of bytes transferred is returned in the corresponding I/O status blocks. Note that offspring tasks
can receive “mlen” in the fourth characteristics word when a Get LUN Information directive is
issued.

Intermediate buffering in secondary pool, when enabled by the parent task, is performed on
offspring input and output requests when the offspring task is checkpointable. Offspring tasks,
therefore, may be stopped and checkpointed. If the parent task is stopped and checkpointed
when the offspring task issues an I/O request, the resulting AST brings the parent task to
an unstopped state from which it may return to memory to service the I/O request. Upon
exit from the AST routine, the parent task is again stopped. This mode of operation allows
the parent and offspring tasks to share the same physical memory, even while the parent task
services the terminal I/O requests for the offspring task. Whenever, for any reason, the virtual
terminal driver determines that it should not use intermediate buffering, offspring tasks are
locked in memory when I/O requests are issued, and transfers occur directly between parent
and offspring buffers.

The intermediate buffering of offspring 1/O requests can normally be enabled and disabled by
the parent task with the IO.STC function, as described below. An exception to this exists for
virtual terminals created with an “mlen” parameter greater than a systemwide maximum specified
at system-generation time. (The system generation procedure does not allow this maximum to
be greater than 512.) If a Create Virtual Terminal directive is specified with an “mlen” parameter
greater than the systemwide maximum, the parameter is accepted, but intermediate buffering for
the created virtual terminal unit is automatically disabled. Furthermore, intermediate buffering
for that unit cannot be enabled by the parent task with the I0.STC function.

Directive Descriptions 5-57

CRVTS

Parent tasks specify the first word of the I/O completion status for the offspring request in the
third word of the QIO DPB. For example, consider an offspring input request for 10 characters
or more that is honored with a write logical of 10 characters and IS.CR in the third parameter
word. The second word of the I/O status would be set to 10 and 10 characters would be
transferred. Another example is when a parent task issues a read request to satisfy a write
request that was issued by the offspring task. To notify the offspring task that its write request
was satisfied, the parent task would specify IS.SUC in the third parameter word.

A special 1/0 function, I0.STC, returns status to an offspring task without a data transfer. The
parameter word format for the IO.STC function is as follows:

* Word 0 with bit 0 set indicates that status is being returned.

e Word 0 with bit 1 clear, if the virtual terminal is in full-duplex mode, indicates that status
is being returned for an offspring read request.

e Word 0 with bit 1 set, if the virtual terminal is in full-duplex mode, indicates that status is
being returned for an offspring write request.

Note
If the virtual terminal is in half-duplex mode, bit 1 is ignored.

e Word 1 is the second word of 1/O return status.
e Word 2 is the first word of I/O return status.

The status words are reversed in order to be similar to the format in which status must be
passed back in a parent read or write function to an offspring task. The I0.STC function must
be used to return status when no transfer is desired because a byte count of 0 is not allowed in
an IO.RLB or I0.WLB (read logical block and write logical block operations, respectively). For
example, IE.EOF (write end-of-file tape mark) would normally be returned with 10.STC.

Note that it is important to specify an I/O completion status for all parent read and write
requests that satisfy corresponding requests from the offspring task. If a return status is not
specified, it defaults to zero. A zero indicates that the I/O is still pending (IS.PND). This causes
the offspring task to hang if it examines the I/O status block to determine whether the I/0 is
completed.

In addition to returning status, the I0.STC function has an additional purpose. It can also
enable or disable intermediate buffering of I/O requests. (Note that a task cannot perform both
I0.STC functions in the same I/O request.) If bit 0 of the first parameter word in I0.STC is
clear, bit 1 in this word is interpreted as a disable buffering flag, as follows:

e If bit 0 is clear and bit 1 is set, intermediate buffering of offspring I/O is disabled.
e If bit 0 is clear and bit 1 is clear, buffering is enabled.

Buffering cannot be enabled on a virtual terminal unit that has been created with an “mlen”
parameter greater than the systemwide maximum specified at system-generation time. An
attempt to do both results in an error return of IE.IFC.

The only tasks that can assign LUNSs to a virtual terminal unit are:
* The task that created the virtual terminal unit

* That task’s offspring task or tasks, whose TI: is the virtual terminal unit

5-58 Directive Descriptions

CRVTS

Attachment of a virtual terminal unit by an offspring task prevents the dequeuing of 1/0O
requests to that unit from other offspring tasks. Parent 1/O requests are always serviced.

Both parent and offspring tasks can specify the I/O functions I0.GTS, SF.GMC, and SF.SMC.
However, SF.GMC and SF.SMC support only a limited number of terminal characteristics for
virtual terminals. Refer to the RSX-11IM-PLUS and Micro/RSX 1/0 Drivers Reference Manual for
a list of valid characteristics.

Note that the parent task is not notified when the offspring issues any of the above directives.

When an offspring task issues a read-with-prompt request (IO.RPR), the virtual terminal driver
separates the request into an IO.WLB request and an IO.RLB request. The parent task cannot
issue an IO.RPR.

When a virtual terminal is in half-duplex mode, the virtual terminal driver handles only one
offspring request at a time. For example, if the offspring task issues a read request and then
issues a write request without waiting for the read to be completed, the driver queues the write
request to be processed when the read is completed.

The parent task may issue an SF.SMC function to set the virtual terminal to full-duplex mode.
In full-duplex mode, the write request in the previous example would be processed even if the
previous read was not yet completed. If the parent task is at AST state, it will not receive
notification of the 1/O request.

Both parent and offspring tasks can issue an SF.GMC request to determine the mode of the
virtual terminal. However, only the parent task can change the mode (using SF.SMC).
FORTRAN Call

CALL CRVT ([iiast],[ioast],[iaast],[imlen],iparm[,idsw])

Parameters

iiast
AST address at which input requests from offspring tasks are serviced

ioast
AST address at which output requests from offspring tasks are serviced

iaast
AST address at which the parent task may be notified of the completion of successful
offspring attach and detach requests to the virtual terminal unit

Note

At least one of the above optional parameters should be specified.
Otherwise, the virtual terminal created is treated as the null device.

imlen
Maximum buffer length allowed for offspring 1/O requests

iparm
Address of 3-word buffer to receive information from the stack when an AST occurs

Directive Descriptions 5-59

CRVTS

idsw :
Integer to receive the Directive Status Word containing the virtual terminal number

Macro Call
CRVT$ [iast],[oast],[aast],[mlen)]

Parameters

iast
AST address at which input requests from offspring tasks are serviced. If iast=0, offspring
input requests are rejected with IE.IFC returned.

oast
AST address at which output requests from offspring tasks are serviced. If oast=0, offspring
output requests are rejected with IE.IFC returned.

aast
AST address at which the parent task may be notified of the completion of successful
offspring attach and detach requests to the virtual terminal unit. If aast=0, no notification
of offspring attach/detach is returned to the parent task.

Note

At least one of the above optional parameters should be specified.
Otherwise, the virtual terminal created is treated as the null device.

mien
Maximum buffer length (in bytes) allowed for offspring 1/O requests (default and maximum
values for this parameter are system generation options)

Macro Expansion
CRVT$ IASTRU,DASTRU,PAST,20.

.BYTE 149.,5 ;CRVT$ MACRO DIC, DPB SIZE = 5 WORDS

.WORD IASTRU ; INPUT REQUEST AST ROUTINE ADDRESS

.WORD OASTRU ; OUTPUT REQUEST AST ROUTINE ADDRESS

.WORD PAST ; SUCCESSFUL VT ATTACH NOTIFICATION AST ROUTINE ADDRESS
.WORD 20. ;MAXIMUM BUFFER LENGTH = 20(10) BYTES

Local Symbol Definitions

C.RVIA Input request AST routine address (2)
C.RVOA Output request AST routine address (2)
C.RVAA VT attach notification AST routine address (2)
C.RVML Maximum buffer length (2)

5-60 Directive Descriptions

CRVTS

DSW Return Codes

unit Successful completion results in the return of the unit number of the created virtual
terminal unit with the Carry bit clear.

IE.UPN Insufficient dynamic memory to allocate the virtual terminal device unit data
structures.

IE.HWR Virtual terminal device driver not resident.
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-61

CSRQS$

5.20 Cancel Scheduled Initiation Requests

The Cancel Scheduled Initiation Requests directive instructs the system to cancel all time-
synchronized initiation requests for a specified task, regardless of the source of each request.
These requests result from a Run directive or from any of the time-synchronized variations of
the MCR or DCL RUN commands.

In a multiuser protection system, a nonprivileged task can cancel scheduled initiation requests
only for a task with the same TI:.
FORTRAN Call

CALL CANALL (tsk[ids}])

Parameters
tsk
Task name
ids
Directive status
Macro Call
CSRQ$ tsk

Parameter

tsk
Scheduled (target) task name

Macro Expansion

CSRQ$ ALPHA
.BYTE 25.,3 ;CSRQ$ MACRO DIC, DPB SIZE = 3 WORDS
.RADS0 /ALPHA/ ;TASK "ALPHA"

Local Symbol Definition
C.SRTN Target task name (4)

DSW Return Codes
Is.suC Successful completion.
IE.INS Task is not installed.

IE.PRI The issuing task is not privileged and is attempting to cancel requests made by
another task.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-62 Directive Descriptions

CSRQ$

Note

If you specify an error-routine address when using the $C or $S macro form, you must include
a null argument for compatibility with RSX-11D systems. For example:

CSRQ$S #TNAME, ,ERR ;CANCEL REQUESTS FOR "ALPHA"

TNAME: .RADSO /ALPHA/

Directive Descriptions 5-63

DECLSS

5.21 Declare Significant Event (§S Form Recommended)

The Declare Significant Event directive instructs the system to declare a significant event.

Declaration of a significant event causes the Executive to scan the Active Task List from the
beginning, searching for the highest-priority task that is ready to run. Use this directive with
discretion to avoid excessive scanning overhead.

FORTRAN Call

CALL DECLAR ([,ids])

Parameter
ids
Directive status
Macro Call
DECL$S [err]

Parameter

err
Error-routine address

Macro Expansion

DECL$S ,ERR ;NOTE: THERE IS ONE IGNORED ARGUMENT
MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 35.,1 ;DECL$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IS.sUC Successful completion.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Note

Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as the DIR$ macro.

5-64 Directive Descriptions

DLONS, DLOGS$

5.22 Delete Logical Name

The Delete Logical Name directive deletes a logical name from a logical name table and returns
the resources used by that logical name to the system. You should delete logical names when
they are no longer needed. If you do not specify a logical name string, DLOG$/DLON$ deletes
all of the logical names within the specified logical name table.

The DELLON and DLONS$ calls are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
operating systems. The DELLOG and DLOGS$ calls are provided for compatibility with the
P/OS operating system. See the Notes.

FORTRAN Calls

CALL DELLON ([mod],itbnum,[Ins],[Inssz][,idsw])
CALL DELLOG ([mod],itbnum,[Ins],[Inssz][,idsw])

Parameters

mod
Modifier of the logical name within a table; if not specified, the nonzero value reserved
by the system (LB.LOC = 1) is placed in the DPB; if specified, any nonzero value must
correspond to the valid symbolic references used by the system (see the Notes)

ltbml.l,':gical name table number. The tables and their corresponding numbers are:
System (LT.SYS) 0
Group (LT.GRP) 1
Session (LT.SES) 4
Task (LT.TSK) 3
Ins

Character array name containing the logical name string

Inssz
Size (in bytes) of the logical name string to delete

idsw
Integer to receive the Directive Status Word

Macro Calls

DLON$ [mod],tbnuml,Ins,Inssz]
DLOG$ [mod),tbnum],Ins,Inssz]

Directive Descriptions 5-65

DLONS, DLOGS

Parameters

mod
Modifier value of the logical name within a table; if not specified, the nonzero value reserved
by the system (LB.LOC = 1) is placed in the DPB; if specified, any nonzero value must
correspond to the valid symbolic references used by the system (see the Notes)

tbnum
Logical name table number. The tables and their corresponding numbers are:

System (LT.SYS) 0

Group (LT.GRP) 1

Session (LT.SES) 4

Task (LT.TSK) 3
Ins

Address of logical name string to be deleted

Inssz
Size (in bytes) of the logical name string

Macro Expansion
.MACRO DLON$ MOD,TBNUM,LNS,LNSSZ

.BYTE 207..,5 ;DLON$ MACRO DIC, DPB SIZE = 5 WORDS
.BYTE 12. ; SUBFUNCTION (DLOG$ = 2)

.BYTE MOD ;MODIFIER OF LOGICAL NAME

.BYTE TBNUM ; TABLE NUMBER

.BYTE 0 ;RESERVED FOR FUTURE USE

.BYTE LNS ;ADDRESS OF LOGICAL NAME STRING
.BYTE LNNSSZ ;BYTE COUNT OF LOGICAL NAME STRING

Local Symbo! Definitions

D.LFUN Subfunction value (1)

D.LLNS Address of logical name string (2)
D.LLSZ Byte count of logical name string (2)
D.LMOD Logical name modifier (1)

D.LTBL Logical table number (1)

DSW Return Codes

I1S.SUC Successful completion.

IEITN Invalid table number specified.

IE.LNF The specified logical name string was not found.

5-66 Directive Descriptions

DLONS, DLOG$

IE.ADP Part of the DPB or user buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. You may specify any value up to 255y for the logical name modifier. The only logical names
that will be deleted are those that match this value exactly. However, the RSX-1 1M-PLUS
and Micro/RSX operating systems create and display the values of 1 (LB.LOC) and 2
(LB.LOG) only.

2. The DELLON and DLONS$ calls are the preferred calls to use on RSX-1 1IM-PLUS and
Micro/RSX operating systems. The DELLOG and DLOGS$ calls are provided for compatibility

with the P/OS operating system. When you use DELLOG or DLOGS$, the system performs
the following actions:

e If a device name or node name ends with one or more colons, strips off one to two of
the terminating colons.

e If a physical device name string is in the form ddnnn:, compresses any leading zeros.
For example, DR005: becomes DR5.

Directive Descriptions 5-67

DSARSS, IHARSS

5.23 Disable (or Inhibit) AST Recognition ($S Form
Recommended)

The Disable (or Inhibit) AST Recognition directive instructs the system to disable recognition of
ASTs for the issuing task. The ASTs are queued as they occur and are effected when the task
reenables AST recognition. There is an implied disable AST recognition directive whenever an
AST service routine is executing. When a task’s execution is started, AST recognition is enabled.
See the Notes.

FORTRAN Call

CALL DSASTR [(ids)]
CALL INASTR [(ids)]

Parameter
ids

Directive status
Macro Call

DSARS$S [err]
IHARSS [err]

Paramdefiist

err
Error-routine address

Macro Expansion

DSAR$S ERR

MOV (PC)+,-(sP) ;PUSH DPB ONTG THE STACK

.BYTE 99.,1 ; DSAR$S/IHAR$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

Is.sUC Successful completion.

IE.ITS AST recognition is already disabled.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-68 Directive Descriptions

DSARSS, IHARSS

Notes

1.

This directive disables only the recognition of ASTs; the Executive still queues the ASTs.
They are queued FIFO and will occur in that order when the task reenables AST recognition.

The FORTRAN calls, DSASTR (or INASTR) and ENASTR exist solely to control the possible
jump to the PWRUP (power-up) routine. FORTRAN is not designed to link to a system’s
trapping mechanism. The PWRUP routine is strictly controlled by the system, which both
accepts the trap and subsequently dismisses it. The FORTRAN program is notified by a
jump to PWRUP, but must use DSASTR (or INASTR) and ENASTR to ensure the integrity
of FORTRAN data structures (most importantly, the stack) during power-up processing.

Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as that of the DIR$
macro.

Directive Descriptions 5-69

DSCP$S

5.24 Disable Checkpointing (§S Form Recommended)

The Disable Checkpointing directive instructs the system to disable the checkpointability of a
task that has been installed as a checkpointable task. Only the affected task can issue this
directive. A task cannot disable the ability of another task to be checkpointed.

FORTRAN Call

CALL DISCKP [(ids)]

Parameter
ids
Directive status
Macro Cali
DSCP$S [err]

Parameter

er
Error-routine address

Macro Expansion

DSCP$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 95.,1 ;DSCP$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

1S.5UC Successful completion.

IE.ITS Task checkpointing is already disabled.

IE.CKP Issuing task is not checkpointable.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-70 Directive Descriptions

DSCP$S

Notes

1. When a checkpointable task’s execution is started, checkpointing is enabled (that is, the task
can be checkpointed).

2. Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as that of the DIR$
macro.

Directive Descriptions 5-71

DTRGS

5.25 Detach Region

The Detach Region directive detaches the issuing task from a specified, previously attached
region. Any of the task’s windows that are currently mapped to the region are automatically
unmapped.

If RS.MDL is set in the region status word when the directive is issued, the task marks the
region for deletion on the last detach. A task must be attached with delete access to mark a
region for deletion.

FORTRAN Call
CALL DTRG (irdb]ids])

Parameters
irdb
An 8-word integer array containing a Region Definition Block (see Section 3.5.1.2)

ids
Directive status

Macro Call
DTRG$ rdb

Parameter

rdb
Region Definition Block address

Macro Expansion

DTRG$ RDBADR
.BYTE 59.,2 ;DTRG$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD RDBADR ;RDB ADDRESS

Region Definition Block Parameters

Input parameters:

Array
Element Offset Meaning
irdb(1) RGID ID of the region to be detached

5-72 Directive Descriptions

DTRGS

Array
Element Offset Meaning
irdb(7) R.GSTS Bit settings' in the region status word:

Bit Definition

RS.MDL 1 if the region should be marked for deletion
when the last task detaches from it

Lyf you are a FORTRAN programmer, refer to Section 3.5.1 to determine the bit values represented by the symbolic names described.

Output parameters:

Array
Element Offset Meaning
irdb(7) R.GSTS Bit settings' in the region status word:

Bit Definition

RS.UNM 1 if any windows were unmapped

1y you are a FORTRAN programmer, refer to Section 3.5.1 to determine the bit values represented by the symbolic names described.

Local Symbol Definition
D.TRBA Region Definition Block address (2)

DSW Return Codes
1S.sUC Successful completion.

IE.PRI The task, which is not attached with delete access, has attempted to mark the region
for deletion on the last detach or the task has outstanding 1/0.

IENVR The task specified an invalid region ID or attempted to detach region 0 (its own
task region).

IE.ADP Part of the DPD or RDB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-73

ELAWS

5.26 Eliminate Address Window

The Eliminate Address Window directive deletes an existing address window, unmapping it first
if necessary. Subsequent use of the eliminated window’s ID is invalid.
FORTRAN Call

CALL ELAW (iwdbl,ids])

Parameters
iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

ids
Directive status

Macro Call
ELAW$ wdb

Parameter

wdb
Window Definition Block address

Macro Expansion

ELAW$ WDBADR
.BYTE 119.,2 ;ELAW$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD WDBADR ;WDB ADDRESS

window Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(1) W.NID ID of the address window to be eliminated
bits 0-7

5-74 Directive Descriptions

ELAWS

Output parameters:

Array
Element Offset Meaning
iwdb(7) W.NSTS Bit settings' in the window status word:

Bit Definition

WS.ELW 1 if the address window was eliminated
successfully

WS.UNM 1 if the address window was unmapped

B you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Local Symbol Definition
E.LABA Window Definition Block address (2)

DSW Return Codes

15.5UC Successful completion.

IENVW Invalid address window ID.

IE.ADP Part of the DPB or WDB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-75

ELGFS

5.27 Eliminate Group Global Event Flags

The Eliminate Group Global Event Flags directive marks group global event flags for deletion.
If no tasks in this group are using the group global event flags (the use count for this group
maintained by the Executive in G.CNT is 0), the Group Global Event Flags Control Block (GFB)
is immediately unlinked and deallocated. If tasks are using flags in this group, the Executive
marks the flags for deletion (GS.DEL is set to 1) and the GFB is eliminated when no remaining
tasks are using the flags in this group. However, if a Create Group Global Event Flags directive
is issued before the flags are eliminated, the Executive clears GS.DEL.

If the specified group code matches the group code of the issuing task’s protection UIC and the
event flags are locked by this task (by a previous Create Group Global Event Flags directive),
this directive unlocks the event flags by decrementing the access count. Note that a task may
not unlock the event flags more than once in succession. Any attempt to unlock event flags
that are already unlocked will return the IE.RSU error code.

FORTRAN Call
CALL ELGF ([group][idsw])

Parameters

group
Group number of flags to be eliminated. Only privileged tasks can specify group numbers
other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

idsw

Integer to receive the Directive Status Word
Macro Call

ELGF$ [group]

Parameter

group
Group number of flags to be eliminated. Only privileged tasks can specify group numbers
other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

Macro Expansion

ELGF$ 303
.BYTE 159.,2 ;ELGF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 303 ;GROUP NUMBER 303 FLAGS

Local Symbol Definition
E.LGRP Group number (2)

5-76 Directive Descriptions

ELGF$

DSW Return Codes

IS.sUC Successful completion.

IE.PRI Privilege violation.

IE.IUI Invalid group (group> 377,).

IE.IEF Group is not found.

IE.RSU Event flags are already marked for deletion.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-77

ELVTS

5.28 Eliminate Virtual Terminal

The Eliminate Virtual Terminal directive causes the specified virtual terminal unit data structures
to be marked for deallocation and eventually to be unlinked from the device list and deallocated.
This directive can be issued only by the task that created the virtual terminal device unit. Any
active nonprivileged tasks are aborted whose TI: device units are the virtual terminal being
deallocated. TKTN messages reporting the abortion of these tasks in this instance are directed
to CO:. Any LUNSs assigned by the issuing task, or by any offspring task being aborted, are
deassigned.

A rundown count is maintained in the TCB of each parent task. This count reflects the total
number of outstanding virtual terminal units the task has created, plus the number of connected
(offspring) tasks. A series of ELVT$ directives are issued when a parent task, which has not
eliminated virtual terminals it has created, exits. The virtual terminal data structures continue to
exist until the last task exits whose TI: is the virtual terminal unit and until all CLI commands
for that unit have been processed.

FORTRAN Call
CALL ELVT (iunum[,idsw])

Parameters
iunum
Virtual terminal unit number

idsw
Integer to receive the Directive Status Word

Macro Cali
ELVT$ unum

Parameter

unum
Unit number of the virtual terminal to be eliminated. The task must provide this parameter
after the virtual terminal is created. (See Note.)

Macro Expansion

ELVT$ O
.BYTE 151.,2 ;ELVT$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD O ; VIRTUAL TERMINAL UNIT NUMBER

Local Symbol Definition
E.LVNM VT unit number (2)

5-78 Directive Descriptions

ELVTS

DSW Return Codes

IS.SUC
IE.IDU

IE.ADP
IE.SDP

Note

Successful completion.

The specified virtual terminal unit does not exist or it was not created by the issuing
task.

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

The actual virtual terminal unit number is not known until after the virtual terminal is actually
created (that is, after successfully completing a Create Virtual Terminal directive). The Create
Virtual Terminal directive DSW contains the actual virtual terminal unit number for use in the
Eliminate Virtual Terminal directive. Thus, the task must save DSWs for all virtual terminals it
creates and later eliminate them using the Eliminate Virtual Terminal directive.

Directive Descriptions 5-79

EMSTS

5.29 Emit Status

The Emit Status directive returns the specified 16-bit quantity to the specified connected task. It
possibly sets an event flag or declares an AST if previously specified by the connected task in a
Send, Request, and Connect, a Spawn, or a Connect directive. If the specified task is multiply
connected to the task issuing this directive, the first (oldest) Offspring Control Block (OCB) in
the queue is used to return status. If no task name is specified, this action is taken for all tasks
that are connected to the issuing task at that time. In any case, whenever status is emitted to
one or more tasks, those tasks no longer remain connected to the task issuing the Emit Status
directive.

FORTRAN Call
CALL EMST ([rtname],status[,idsw])

Parameters
riname
Name of a task connected to the issuing task to which the status is to be emitted

status
A 16-bit quantity to be returned to the connected task

idsw

Integer to receive the Directive Status Word
Macro Call

EMST$ [tname]status

Parameters
thame
Name of a task connected to the issuing task to which the status is to be emitted

status
A 16-bit quantity to be returned to the connected task

Macro Expansion
EMST$ ALPHA,STWD

.BYTE 147..4 ;EMST$ MACRO DIC, DPB SIZE = 4 WORDS
.RADS0 ALPHA ;:NAME OF CONNECTED TASK TO RECEIVE STATUS
.WORD STWD ;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions
EMSTN Task name (4)
E.MSST Status to be returned (2)

5-80 Directive Descriptions

EMSTS

DSW Return Codes

IS.sUC Successful completion.

IE.ITS The specified task is not connected to the issuing task.
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-81

ENARSS

5.30 Enable AST Recognition (S Form Recommended)

The Enable AST Recognition directive instructs the system to recognize ASTs for the issuing
task; that is, the directive nullifies a Disable AST Recognition directive. ASTs that were queued
while recognition was disabled are effected at issuance. When a task’s execution is started, AST
recognition is enabled.

FORTRAN Call

CALL ENASTR [(ids)]

Parameter
ids
Directive status
Macro Call
ENARS$S |[err]

Parameter

err
Error-routine address

Macro Expansion

ENAR$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 101.,1 ;ENAR$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC.ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IS.SUC Successful completion.

IEITS AST recognition is not disabled.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as that of the DIR$
macro.

5-82 Directive Descriptions

ENARSS

The FORTRAN calls DSASTR (or INASTR) and ENASTR exist solely to control the jump to
the PWRUP (power-up) routine. FORTRAN is not designed to link to a system’s trapping
mechanism. The PWRUP routine is strictly controlled by the system. It is the system that
both accepts the trap and subsequently dismisses it. The FORTRAN program is notified by
a jump to PWRUP, but must use DSASTR (or INASTR) and ENASTR to ensure the integrity
of FORTRAN data structures (most importantly, the stack) during power-up processing.

Directive Descriptions 5-83

ENCPS$S

5.31 Enable Checkpointing (§S Form Recommended)

The Enable Checkpointing directive instructs the system to make the issuing task checkpointable
after its checkpointability has been disabled; that is, the directive nullifies a DSCP$S directive.
This directive cannot be used to enable checkpointing of a task that was built noncheckpointable.
FORTRAN Call

CALL ENACKP [(ids)]

Parameter
ids
Directive status
Macro Call
ENCP$S [err]

Parameter

err
Error-routine address

Macro Expansion

ENCP$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 97.,1 ;ENCP$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IS.sUC Successful completion.

IE.ITS Checkpointing is not disabled or task is connected to an interrupt vector.
IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Note

Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as that of the DIR$
macro.

5-84 Directive Descriptions

EXIFS

5.32 Exit If

The Exit If directive instructs the system to terminate the execution of the issuing task only if an
indicated event flag is not set. The Executive returns control to the issuing task if the specified
event flag is set. See the Notes.

FORTRAN Call
CALL EXITIF (efnl,ids])

Parameters
efn

Event flag number
ids

Directive status
Macro Call

EXIF$ efn

Parameter

efn
Event flag number

Macro Expansion

EXIF$ 52.
.BYTE 53.,2 ;EXIF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52

Local Symbol Definition
E.XFEF Event flag number (2)

DSW Return Codes
IS.SET Indicated EFN set; task did not exit.

IE.IEF Invalid event flag number (EFN <1, or EFN> 96 if group global event flags exist
for the task’s group or EFN>> 64 if not).

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-85

EXIFS

Notes

1.

The Exit If directive is useful in avoiding a possible race condition that can occur between
two tasks communicating by means of the Send and Receive directives. The race condition
occurs when one task executes a Receive directive and finds its receive queue empty, but
before the task can exit, the other task sends it a message. The message is lost because the
Executive flushed the receiver task’s receive queue when it decided to exit. This condition
can be avoided if the sending task specifies a common event flag in the Send directive and
the receiving task executes an Exit If directive specifying the same common event flag. If
the event flag is set, the Exit If directive will return control to the issuing task, signaling
that something has been sent.

A FORTRAN program that issues the Exit If call must first close all files by issuing CLOSE
calls. See the VAX FORTRAN User’s Guide or the PDP-11 FORTRAN-77 User’s Guide for
instructions on how to ensure that such files are closed properly if the task exits. To avoid
the time overhead involved in the closing and reopening of files, the task should first issue
the appropriate test or clear event flag directive. If the Directive Status Word indicates that
the flag was not set, then the task can close all files and issue the call to Exit If.

On exit, the Executive frees task resources. In particular, the Executive:
¢ Detaches all attached devices

* Flushes the AST queue and despecifies all specified ASTs

¢ Flushes the receive and receive-by-reference queues

* Flushes the clock queue for any outstanding Mark Time requests for the task
* Closes all open files (files open for write access are locked)

* Detaches all attached regions, except in the case of a fixed task

¢ Runs down the task’s I/O

* Deaccesses the group global event flags for the task’s group

¢ Disconnects from interrupts

* Flushes all outstanding CLI command buffers for the task

® Breaks the connection with any offspring tasks

® Returns a success status (EX$SUC) to any parent tasks

* Marks for deallocation all virtual terminal units the task has created (see the description
of the CRVTS$ directive)

e Frees the task’s memory if the exiting task was not fixed

If the task exits, the Executive declares a significant event.

5-86 Directive Descriptions

EXITSS

5.33 Task Exit (§S Form Recommended)

The Task Exit directive instructs the system to terminate the execution of the issuing task.

FORTRAN Call
CALL EXIT (istat)

Parameter

istat
A 16-bit quantity to be returned to the parent task

See Note 5.

Macro Call
EXIT$S [err]

Parameter

err
Error-routine address

Macro Expansion

EXIT$S ERR

MOV (PC)+,-(sSP) ;PUSH DPB ONTO THE STACK

.BYTE 51.,1 ;EXIT$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

JSR PC,ERR ;CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. A return to the task occurs only if the directive is rejected. Therefore, no Branch on Carry
Clear instruction is generated if an error-routine address-is given because the return occurs
only with Carry set.

2. Exit causes a significant event to be declared.

3. On exit, the Executive frees task resources. In particular, the Executive:
® Detaches all attached devices
* Flushes the AST queue and despecifies all specified ASTs

* Flushes the receive and receive-by-reference queues

Directive Descriptions 5-87

e Flushes the clock queue for any outstanding Mark Time requests for the task
e Closes all open files (files open for write access are locked)

e Detaches all attached regions, except in the case of a fixed task

* Runs down the task’s I/O

e Deaccesses the group global event flags for the task’s group

e Disconnects from interrupts

e Flushes all outstanding CLI command buffers for the task

e Breaks the connection with any offspring tasks

e Returns a success status (EX$SUC) to any parent tasks

e Marks for deallocation all virtual terminal units the task has created (see the description
of the CRVT$ directive)

¢ Frees the task’s memory if the exiting task was not fixed

4. Because this directive requires only a 1-word DPB, the $S form of the macro is recommended.
It requires less space and executes with the same speed as that of the DIR$ macro.

5. You can terminate FORTRAN tasks with the STOP statement or with CALL EXIT. CALL
EXIT is a FORTRAN OTS routine that closes open files and performs other cleanup before it
issues an EXIT$S directive (or a CALL EXST (istat) call in FORTRAN-77). FORTRAN tasks
that terminate with the STOP statement result in a message displayed on the task’s TL.
This message includes the task name (as it appears in the Active Task List), the statement
causing the task to stop, and an optional character string specified in the STOP statement.
Tasks that terminate with CALL EXIT do not display a termination message. For example,
a FORTRAN task containing the following statement:

20 STOP 'THIS FORTRAN TASK'
exits with the following message displayed on the task’s TI: (TT37 in this example):
TT37 -- STOP THIS FORTRAN TASK

5-88 Directive Descriptions

EXSTS

5.34 Exit with Status

The Exit with Status directive causes the issuing task to exit, passing a 16-bit status back to
all connected tasks (by the Spawn, Connect, or Send, Request, and Connect directive). If
the issuing task has no connected tasks, then the directive simply performs a Task Exit. No
format of the status word is enforced by the Executive; format conventions are a function of
the cooperation between parent and offspring tasks. However, if an offspring task aborts for
any reason, a status of EX$SEV is returned to the parent task. This value is interpreted as a
“severe error” by batch processors. Furthermore, if a task performs a normal exit with other
tasks connected to it, a status of EX$SUC (successful completion) is returned to all connected
tasks.

FORTRAN Call
CALL EXST (istat)

Parameter

istat
A 16-bit quantity to be returned to the parent task

Macro Call
EXST$ status

Parameter

status
A 16-bit quantity to be returned to the parent task

Macro Expansion

EXST$ STWD
.BYTE 29.,2 ;EXST$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD STWD ;VALUE OF STATUS TO BE RETURNED

Local Symbol Definition
E.XSTS Value of status to be returned (2)

DSW Return Codes

No status is returned if the directive is successfully completed because the directive causes the
issuing task to exit.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-89

EXSTS

Notes
1. On exit, the Executive frees a task’s resources. In particular, the Executive:
e Detaches all attached devices
¢ Flushes the AST queue and despecifies all specified ASTs
¢ Flushes the receive and receive-by-reference queues
* Flushes the clock queue for any outstanding Mark Time requests for the task
¢ Closes all open files (files open for write access are locked)
¢ Detaches all attached regions, except in the case of a fixed task
* Runs down the task’s I/O
¢ Deaccesses the group global event flags for the task’s group
¢ Disconnects from interrupts
e Flushes all outstanding CLI command buffers for the task
e Breaks the connection with any offspring tasks
e Returns the specified exit status to any parent tasks

e Marks for deallocation all the virtual terminal units that the task has created (see the
description of the CRVT$ directive)

¢ Frees the task’s memory if the exiting task was not fixed

2. If the task exits, the Executive declares a significant event.

5-90 Directive Descriptions

EXTKS

5.35 Extend Task

The Extend Task directive instructs the system to modify the size of the issuing task by a positive
or negative increment of 32-word blocks. If the directive does not specify an increment value
or specifies an increment value of zero, the Executive makes the issuing task’s size equal to its
installed size. The issuing task must be running in a system-controlled partition and cannot
have any outstanding 1/O when it issues the directive. The task must also be checkpointable
to increase its size; if necessary, the Executive checkpoints the task and then returns the task to
memory with its size modified as directed.

In a system that supports the memory management directives, the Executive does not change
any current mapping assignments if the task has memory-resident overlays. However, if the
task does not have memory-resident overlays, the Executive attempts to modify, by the specified
number of 32-word blocks, the mapping of the task to its task region.

If the issuing task is checkpointable but has no preallocated checkpoint space available, a
positive increment may require dynamic memory and extra space in a checkpoint file sufficient
to contain the task.

There are several constraints on the size to which a task can extend itself using the Extend Task
directive. These constraints are as follows:

e No task can extend itself beyond the maximum size set by the MCR SET /MAXEXT or the
DCL SET EXTENSION_LIMIT command or the size of the partition in which it is running.
(See the RSX-11M-PLUS MCR Operations Manual, the RSX-11M-PLUS Command Language
Manual, or the Micro/RSX User’s Guide.)

e A task that does not have memory-resident overlays cannot extend itself beyond 32K minus
32 words.

e A task that has preallocated checkpoint space in its task image file cannot extend itself
beyond its installed size.

* A task that has memory-resident overlays cannot reduce its size below the highest window
in the task partition.

FORTRAN Call
CALL EXTTSK ([inc][ids])

Parameters

inc

A positive or negative number equal to the number of 32-word blocks by which the task
size is to be extended or reduced

ids
Directive status

Macro Call
EXTK$ [inc]

Directive Descriptions 5-91

EXTKS

Parameter

inc

A positive or negative number equal to the number of 32-word blocks by which the task

size

is to be extended or reduced

Macro Expansion

EXTK$
.BYTE
.WORD
.WORD

40

89.,3 ;EXTK$ MACRO DIC, DPB SIZE = 3 WORDS

40 ;EXTEND INCREMENT, 40(8) BLOCKS (1K WORDS)
0 ;RESERVED WORD

Local Symbol Definition

E.XTIN

Extend increment (2)

DSW Return Codes

IS.5UC
IE.UPN
IE.ITS

IE.ALG

IE.RSU
IE.IOP
IE.CKP
IE.NSW

IE.ADP
IE.SDP

Successful completion.
Insufficient dynamic memory or insufficient space in a checkpoint file.
The issuing task is not running in a system-controlled partition.

The issuing task attempted to reduce its size to less than the size of its task header,
or the task tried to increase its size beyond 32K words or beyond the maximum
set by the MCR SET /MAXEXT or DCL SET EXTENSION_LIMIT command, or
the task tried to increase its size to the extent that one virtual address window
would overlap another, or the task has memory-resident overlays and it attempted
to reduce its size below the highest window mapped to the task partition.

Other tasks are attached to this task partition.
I/0O is in progress for this task partition.
The issuing task is not checkpointable and specified a positive integer.

The task attempted to extend itself to larger than the installed size (when checkpoint
space is allocated in the task).

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

5-92 Directive Descriptions

5.36 Test for Specified System Feature

FEATS

The Test for Specified System Feature directive tests for the presence of a specific system
software or hardware option, such as floating-point support or the presence of the Commercial

Instruction Set.

FORTRAN Call
CALL FEAT (isym,idsw)

Parameters
isym
Symbol for the specified system feature

idsw
Integer to receive the Directive Status Word

Macro Call
FEAT$ sym

Parameter

sym

Symbol for the specified system feature (see Table 5-1)

Table 5-1: System Feature Symbols

Symbol Value Meaning

FE$EXT 1 22-bit extended memory support (bit 1)
FE$MUP 2 Multiuser protection support

FE$EXV 3 Executive is supported to 20K words
FE$DRV 4 Loadable driver support

FE$PLA 5 PLAS support

FE$CAL 6 Dynamic checkpoint space allocation
FE$PKT 7 Preallocation of I/O packets

FESEXP 8. Extend Task directive support

FE$LSI 9. Processor is an LSI-11

FE$OFF 10. Parent/offspring tasking support
FE$FDT 11. Full-duplex terminal driver support
FE$X25 12. X.25 CEX is loaded

FE$DYM 13. Dynamic memory allocation supported

Directive Descriptions

5-93

FEATS

Table 5-1 (Cont.): System Feature Symbols

Symbol Value Meaning

FE$CEX 14. Comm Exec is loaded

FE$MXT 15. MCR exit after each command mode
FE$NLG 16. Logins disabled

FE$DAS 17. Kernel data space supported (bit 17.)

FE$LIB 18. Supervisor-mode libraries support

FE$MP 19. System supports multiprocessing

FE$EVT 20. System supports event trace feature

FE$ACN 21. System supports CPU accounting

FE$SDW 22. System su?ports shadow recording

FE$POL 23. System supports secondary pools

FESWND 24. System supports secondary pool file windows
FE$DPR 25. System has a separate directive partition
FE$IRR 26. Install, run, and remove support

FE$GGF 27. Group global event flag support

FE$RAS 28. Receive/send data packet support

FE$AHR 29. Alternate header refresh area support
FE$RBN 30. Round-robin scheduling support

FE$SWP 31. Executive level disk swapping support
FE$STP 32. Event flag mask is in the TCB (1=YES)
FE$CRA 33. System spontaneously crashed (1=YES) (bit 33.)
FE$XCR 34. System crashed from XDT (1=YES)

FES$EIS 35. System requires extended instruction set
FE$STM 36. System has Set System Time directive
FE$UDS 37. System supports user data space

FE$PRO 38. System supports secondary pool prototype TCBs
FE$XHR 39. System supports external task headers
FE$AST 40. System has AST support

FE$11S 41. RSX-11S system

FE$CLI 42. System supports multiple CLIs

5-94 Directive Descriptions

FEATS

Table 5-1 (Cont.): System Feature Symbols
Symbol Value Meaning

FE$TCM 43. System has separate terminal driver pool
FE$PMN 44. System supports pool monitoring

FESWAT 45. System has watchdog timer support

FE$RLK 46. System supports RMS record locking
FE$SHF 47. System supports shuffler task

FE$CXD 49. Comm Exec is deallocated (non-I1/D only) (bit 49.)
FE$XT 50. System is a P/OS system (1=YES)

FE$ERL 51. System supports error logging

FE$PTY 52. System supports parity memory

FE$DVN 53. System supports decimal version numbers
FE$LCD 54. System supports loadable crash drivers
FE$NIM 55. System supports deleted fixed task images
FE$CHE 56. System supports disk data caching

FE$LOG 57. System supports extended logical names
FESNAM 58. System supports named directories

FE$FMP 59. System supports Fast Map directive

FE$DCL 60. DCL is default CLI

FE$DDS 61. Named directory mode is default

FE$ACD 62. System supports ACDs

HF$UBM -1. Processor has UNIBUS map (1=YES) (bit 1)
HF$EIS -2. Processor has extended instruction set
HF$QB -3. Processor has a Q-bus backplane

HF$DSP -4, Processor supports separate 1/D space
HF$CIS -8. Processor supports commercial instruction set
HF$FPP -16. Processor has no floating-point unit (1=YES)
HF$NVR -17. PRO-300 nonvolatile RAM present (1=YES) (bit 17.)
HF$INV -18. Nonvolatile RAM present (1=YES)

HF$CLK -19. PRO-300 clock is present

HF$ITF -20. Invalid time format in nonvolatile RAM

Directive Descriptions 5-95

FEATS

Table 5-1 (Cont.): System Feature Symbols

Symbol Value Meaning

HF$PRO -21. Hardware system is a PRO-3xx
HF$BRG -32. PRO-300 bridge module present

Macro Expansion

FEAT$ FE$DVN
.BYTE 177.,2 ;FEAT$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD FE$DVN ;FEATURE IDENTIFIER

Local Symbol Definition
F.EAF Feature identifier (2)

DSW Return Codes

IS.CLR Successful completion; feature not present.

IS.SET Successful completion; feature present.

IE.ADP Part of the DPB is out of the issuing task’s address space.
[ESDP DIC or DPB size is invalid.

5-96 Directive Descriptions

FSS$

5.37 File Specification Scanner

The File Specification Scanner directive takes a string as input and returns a filled-in parse
block.

FORTRAN Call
CALL FSS (fsbuf,fssz,prsblk,prssz,[reserv][,idsw}])

Parameters

fsbuf
Array containing the file specification buffer

fssz
Size (in bytes) of the file specification buffer

prsblk
Array containing the parse block

prssz
Size (in bytes) of the parse block

reserv
Reserved parameter (must not be specified)

idsw
Integer to receive the Directive Status Word

Macro Call
FSS$ fsbuf,fssz,prsblk,prssz{,reserv]

Parameters

fsbuf
Address of the file specification buffer

fssz
Size (in bytes) of the file specification buffer

prsblk
Address of the parse block

prssz
Size (in bytes) of the parse block

reserv
Reserved parameter (must be blank)

Directive Descriptions 5-97

FSS$

Macro Expansion
FSS$ FSBUF,FSSZ,PRSBLK,PRSSZ,RESERV

.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

207..7 ;FSS$ MACRO DIC, DPB SIZE = 7 WORDS
5 ;FSS$ SUBFUNCTION

0 ; RESERVED

0 ; RESERVED

FSBUF ;FILE SPECIFICATION BUFFER

FSSZ ;FILE SPECIFICATION SIZE

PRSBLK ;PARSE BLOCK ADDRESS

PRSSZ ; PARSE BLOCK SIZE

Local Symbol Definitions

F.LFUN
F.RSV1
F.RSV2
F.LSBF
F.LSSz
F.LPBK
F.LPBZ

Subfunction value (1)

Reserved (1)

Reserved (2)

Address of file specification buffer (2)

Size (in bytes) of the file specification buffer (2)
Address of the parse block (2)

Size (in bytes) of the parse block (2)

DSW Return Codes

IS.SUC
IE.ADP

IE.SDP

Notes

Successful completion.

Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

DIC or DPB size is invalid.

The parse block has the following format:

1. OS$STAT (status word). Indicates the status of the operation. This field is always set to the
value of 1. Any part of the string that could not be successfully parsed is returned in the
trailing string descriptor.

SU$SUC Success

2. OS$FLAG (flag word). The following flags indicate what was found in the file specification:
FS$NOD Node present
FS$DEV Device present

FS$DIR

Directory

FS$QUO Quoted file name present
FS$NAM File name present

5-98 Directive Descriptions

© ® N S 9o W

20.

FSS$

FS$TYP File type present

FS$VER File version present

FS$WCH Wildcard character present
FS$WDI Wild directory

FS$WNA Wild file name

FSSWTY Wild file type

FS$WVE Wild file version

O$NODS: Length of the node specification.
O$NODA: Address of the node specification.
O$DEVS: Length of the device specification.
O$DEVA: Address of the device specification.
O$DIRS: Length of the directory specification.
O$DIRA: Address of the directory specification.
O$NAMS: Length of the file name specification.

. OSNAMA: Address of the file name specification.
11.
12.
13.
14.
15.
16.
17.
18.
19.

O$TYPS: Length of the file type specification.
O$TYPA: Address of the file type specification.
O$VERS: Length of the file version specification.
O$VERA: Address of the file version specification.
O$TRLS: Length of the trailing string.

O$TRLA: Address of the trailing string.

O$ACCS: Length of the access control specification.
O$ACCA: Address of the access control specification.

OS$LTYP (logical type byte). The first element that could be a logical name. This field can
contain the following words:

P.LNON No logical name present

P.LNAM File name may be a logical name
P.LDEV Device name may be a logical name
P.LNOD Node specification may be a logical name
O$PLEN: Length of the parse block.

The above offsets are defined by the macro LNBDF$, not by FSS$.

Although the entire parse block is 20 words long, the size of the parse block specified in the
call (prssz) determines how much of the block is returned.

Directive Descriptions 5-99

GCCI$

5.38 Get Command for Command Interpreter

The Get Command for Command Interpreter directive instructs the system to retrieve a command
buffer for a Command Line Interpreter (CLI) task and copy it to a buffer in the task’s address
space. Information about the issuing terminal can also be returned to the CLI task.

The directive can also return a message from the system to the CLI instead of a command if
the CLI has been initialized with this capability. The offsets G.CCDV and G.CCUN indicate
whether a system message has been returned. See the RSX-11M-PLUS and Micro/RSX System
Management Guide for more information.

Only CLI tasks can issue this directive.

FORTRAN Call
CALL GTCMCI (icbf,icbfl, fiibuf],[iibl],[iaddr],[incp][,idsw])

Parameters

icbf
Name of a byte array to receive the command

icbfl
Integer containing the size of the icbf array in bytes

iibuf
Name of an integer array to receive the optional information buffer

iibfl
Name of an integer containing the length of the optional information buffer. If you specify
a length shorter than the information buffer, as much information as will fit in the specified
length is returned.

iaddr
Name of an integer that contains the address in pool of the command desired. (This address
was obtained by a previous call to GTCMCI with GC.CND specified.)

incp
Name of an integer containing a bit mask indicating the action to take if there is no
command queued, as follows:

Octal
Bit Value Definition
GC.CCS 000 Return with Carry set (default)
GC.CEX 001 Force CLI to exit instead of returning
GC.CST 002 Force CLI to stop instead of returning
GC.CND 200 Copy command into buffer, but do not dequeue it from the list

You must specify these as decimal values in your FORTRAN program.

5-100 Directive Descriptions

GCCI$

idsw

Integer to receive the Directive Status Word
Macro Call

GCCI$ cbuf,cbfl,[ibuf} [ibfl],[addr],[ncp]

Parameters

cbuf
Address of buffer to receive command string

cbft
Length of buffer; maximum buffer size is 26619

ibuf
Address of buffer to receive information on the issuing terminal

ibfl
Length of buffer to receive information

addr
Address of command.

This address is returned in G.CCCA of the information buffer if GC.CND is specified in
the ncp argument. If this argument is nonzero, then only the command with the address
specified by this argument is copied and/or dequeued. Note that this address is filled in
only if the command is not dequeued.

ncp
Action to take if no command buffer present, as follows:

Octal
Bit Value Definition
GC.CCS 000 Return with Carry set (default)
GC.CEX 001 Force CLI to exit instead of returning
GC.CST 002 Force CLI to stop instead of returning
GC.CND 200 Copy command into buffer, but do not dequeue it from the list
Note
GC.CND can be supplied with one of the other options; for example,
GC.CND!GC.CEX.

Directive Descriptions 5-101

GCCIS

Command Buffer Format

G.CCDV If set, the ASCII device name of the issuing terminal; if cleared, a message from the
system has been returned (2)
G.CCUN 8;:tal unit number of the issuing terminal or the code identifying the system message
G.CCCT Number of characters (1)
G.CCCL Number of characters in command line (2)
G.CCTC Terminator (1)
G.CCFL Flags (1)
The values returned in the flag byte G.CCFL are:
Flag Value Definition
GC.CNL 1 Null command line
GC.CTE 2 Prompt from a task exit
GC.CTC 100 Control-C notification packet
G.CCBF Command text in ASCII (256 bytes)

Information Buffer Format

The format of the information buffer in the CLI virtual address space is as follows:

G.CCW2
G.CCPT

G.CCOA
G.CCPU

G.CCCU

G.CCCA

U.CW2 of issuing terminal (2)
Name of parent task (if any) (4)
Address of Offspring Control Block from parent (2)

Protection UIC of issuing task (if possible) (2); otherwise, protection UIC of issuing
terminal

Default UFD of issuing task (if possible) (2); otherwise, default UFD of issuing
terminal

Address of command, if not dequeued (2)

5-102 Directive Descriptions

GCCIS

Macro Expansion
GCCI$ CBUF,CBFL, IBUF, IBFL, ADDR,NCP

.BYTE 127.,7. ;GCCI$ MACRO DIC, DPB SIZE = 7 WORDS
.BYTE NCP ;ACTION TO TAKE IF NO COMMAND QUEUED
.BYTE O

.WORD ADDR ; ADDRESS OF COMMAND

.WORD CBUF ;COMMAND BUFFER ADDRESS

.WORD CBFL ; COMMAND BUFFER LENGTH

.WORD IBUF ; INFORMATION BUFFER ADDRESS

.WORD IBFL ; INFORMATION BUFFER LENGTH

Local Symbol Definitions

G.CCNC
G.CCAD
G.CCBA
G.CCBL
G.CCIA
G.CCIL

Action if no command queued (2)
Address of command to be returned (2)
Address of command buffer (2)

Length of task’s command buffer (2)
Address of optional information buffer (2)

Length of optional information buffer (2)

DSW Return Codes

IE.AST

IE.PRI
IE.RSU

IE.ITS

IS.CLR

IE.ADP

IE.SDP

Notes

The stop-on-no-command option was set and the directive was issued from AST
state.

Task is not a CLI.

The issuing task has a group global context active and the next command to be
received would have caused the task’s protection group to change.

No command was queued for the CLI and the directive was issued with the return-
with-Carry-set option.

Returned with Carry clear when the CLI was unstopped due to command arrival,
after having been stopped by a GCII$ directive with the stop-on-no-command-option
set.

DPB, send buffer, or information buffer was outside the task’s address space, or the
information buffer was shorter than nine bytes.

DIC and DPB size is invalid.

1. The number of characters returned (G.CCCT) could be less than the number of characters
in the command (G.CCCL) if the length of the command buffer in the task, as specified
by the cbfl argument, is smaller than the actual command line. If there is sufficient room,
a carriage return is placed at the end of the command line returned at G.CCBF in the
command buffer inside the task to ease parsing.

Directive Descriptions 5-103

GCCIS

2. If a command is returned successfully, the protection and default UICs for the issuing task
are changed by this directive to match those of the originating task (if possible) or terminal.
These values are returned in words G.CCPU and G.CCCU of the optional information
buffer. If named directories are supported, the task context block pointer is changed to
match the task context block pointer of the originating task (if possible) or to match the
terminal context block pointer of the originating terminal. Note that the context block
contains the default directory string.

5-104 Directive Descriptions

GCIIS

5.39 Get Command Interpreter Information

The Get Command Interpreter Information directive instructs the system to fill a buffer with
information about a specified CLI or the CLI associated with a given terminal. A task must be
privileged in order to issue this directive for any terminal other than its own TI: or for a CLI to
which its TI: is not set.

FORTRAN Call
CALL GETCII (ibuf,ibfl [icli],[idev][iunit][,ids])

Parameters
ibuf
Name of an integer array to receive the CLI information
ibfl
Length in bytes of the integer array to receive the CLI information
icli
Name of a 2-word array element containing the Radix-50 name of the CLI

idev

Name of an integer containing the ASCII name of the terminal (must be the name of a
physical device; default = TIL:)

iunit

Name of an integer containing the octal unit number of the terminal
ids

Directive status
Macro Call

GCII$ buf,bufl,[cli],[dev],[unit]

Parameters

buf
Address of buffer to receive information

bufl
Length of information buffer

cli
Name in Radix-50 of the CLI on which information is requested

dev

ASCII name of terminal whose CLI should be used (must be the name of a physical device;
default = TI:)

Directive Descriptions 5-105

GClIS

unit

Octal unit number of the terminal

Information Buffer Format

G.CICL Name of CLI (4)
G.CICS Bit settings in the CLI status word (2):
Bit Value Definition
CP.NUL 1 Pass empty command lines to CLL
CP.MSG 2 CLI wants system messages.
CP.LGO 4 CLI wants commands from logged-out terminals.
CP.DSB 10 CLI is disabled (note that MCR does not check this bit).
CP.PRV 20 You must be privileged to set terminal to this CLI.
CP.SGL 40 Do not handle continuations.
CP.NIO 100 MCR..., HEL, BYE do no I/O to terminal. HEL and BYE also
do not set CLI, and so forth.
CP.RST 200 geisitricted access; only this CLI task can set a terminal to this
CP.EXT 400 Pass task exit prompt requests to CLI.
CP.CTC 2000 Pass Control-C notification packets.
G.CITK Name of task serving as CLI (4)
G.CIW2 Terminal's U.CW2 (2)
G.CIPU Terminal’s protection UIC (2)
G.CICU Terminal’s current UIC (2)
G.CIDP CLI default prompt string (16-word block; first byte is length of string)

Macro Expansion

GCII$ buf,bufl,cli,dev,unit
;DIC =173(10), DPB SIZE = 7 WORDS
; ADDRESS OF BUFFER

;LENGTH OF BUFFER

;RADIX-50 NAME OF CLI

;ASCII NAME OF TERMINAL

; TERMINAL UNIT NUMBER

.BYTE
-WORD
.WORD
.RADE0O
.ASCII
.WORD

173..,7
buf
bufl
/cli/
/dev/
unit

Local Symbol Definitions

G.CIBF
G.CIBL

5-106 Directive Descriptions

Address of buffer (2)
Length of buffer (2)

GCIIS

G.CICN Radix-50 name of CLI (4)
G.CIDV ASCI name of terminal (2)
G.CIUN Unit number of terminal (1)

DSW Return Codes

IEIMAP Both a terminal and a CLI were specified.

IE.INS Specified CLI does not exist.

IE.IDU Specified device was not a terminal or does not exist.

IE.PRI Nonprivileged task attempted to get information on a CLI other than its own.
IE.ADP Part of the DPB or buffer was out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Notes

1. If the buffer is not long enough to contain all the information, the data that does not fit will
not be supplied. No indication of this is returned to the issuing task. The buffer is filled
from left to right.

2. You may not specify both a CLI and a terminal. If the cli argument is present, the dev and
unit arguments must be zero.

Directive Descriptions 5-107

GDIRS

5.40 Get Default Directory

The Get Default Directory directive retrieves the default directory string, and returns it and the
string length to a user-specified buffer.

FORTRAN Call
CALL GETDDS (mod,iens,ienssz,irsize][,idsw])

Parameters

mod
Modifier for the GDIR$ directive; specify one of the following values:
0 Get task default

GD.LOG Get terminal default

iens
Character array containing the default directory string

ienssz
Size (in bytes) of the default directory string

irsize
Buffer address of the returned default directory string size

idsw
Integer to receive the Directive Status Word

Macro Call

GDIR$ [mod]ens,enssz[rsize]

Parameters

mod
Modifier for the GDIR$ directive; specify one of the following values:
0 Get task default

GD.LOG Get terminal default

ens
Buffer address of the default directory string

enssz
Size (in bytes) of the default directory string buffer

rsize
Buffer address to which the size of the default directory string is returned

5-108 Directive Descriptions

GDIRS

Macro Expansion
GDIR$ MOD,ENS,ENSSZ,RSIZE

.BYTE 207.,6 ;GDIR$ MACRO DIC, DPB SIZE = 6 WORDS

.BYTE 4 ; SUBFUNCTION CODE FOR GET DEFAULT DIRECTORY

.BYTE MOD ;MODIFIER

.WORD © ; RESERVED

.WORD ENS ; BUFFER ADDRESS OF DEFAULT DIRECTORY STRING

.WORD ENSSZ ;BYTE COUNT OF DEFAULT DIRECTORY STRING

.WORD RSIZE ; BUFFER ADDRESS FOR RETURNED DEFAULT DIRECTORY STRING

Local Symbol Definitions

G.DENS
G.DESZ
G.DFUN
G.DMOD
G.DRSZ

Address of default directory string buffer (2)
Byte count of the default directory string (2)
Subfunction code (1)

Modifier (1)

Buffer address for the returned default directory string size (2)

DSW Return Codes

1S.5sUC
IE.RBS
IE.LNF
IE.IBS

IE.ITN
IE.ADP

IE.SDP

Notes

In addition

Successful completion of service.
The resulting default directory string is too large for the buffer to receive it.
Default directory string does not exist.

The length of the default directory string is invalid. The string length must be
greater than 0 but less than 256,,.

Illegal table number. The reserved word in the DPB was not a zero.

Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have proper access to that region.

DIC or DPB size is invalid, or an illegal subfunction code was specified.

to the terminal default directory associated with each logged-in terminal, a default

directory string is associated with each active task. The default directory string (DDS) is stored
in a context block (CTX).

The following rules apply to default directory strings and their context blocks:

* Each logged-in terminal has a default directory string stored in a context block, referred to
as the terminal _CTX. The context block is created by HELLO/LOGIN when you log in and
is deleted by BYE when you log out. You can change the terminal _CTX by using either the
MCR SET /DEF or DCL SET DEFAULT command. The context block is pointed to from
the terminal’s Unit Control Block (UCB).

Directive Descriptions 5-109

GDIRS

® Each active task has associated with it a default directory string referred to as the task_CTX.
Exceptions to this rule are system tasks running from the console terminal (CO:), such as
LDR, F11ACP, SHF, and so on. The task_CTX is pointed to from the Task Control Block
(TCB).

* When a task is activated from a terminal, the terminal _CTX is propagated to the task_CTX.

o When a task issues the GDIR$ directive, the DDS from the task_CTX is returned. If
GD.LOG is specified as a modifier, the DDS is taken from the terminal _CTX.

* When a task spawns an offspring task, the parent’s task_CTX is propagated.

* When an entry is inserted into the clock queue for time-based schedule requests from a task,
the issuing task’s task_CTX is propagated to the clq_CTX (the context block for the clock
queue). When an entry is inserted into the clock queue for time-based schedule requests
from a terminal CLI command, the issuing terminal’s terminal _CTX is propagated to the
clq—CTX. When the time expires and the task is activated, the task_CTX is propagated
from the clq_CTX.

* When a task sends a packet to a slave task, the sender’s task_CTX is propagated to the
packet_CTX (the context block for the packet). When the slave task issues a Receive
Data (RCVDS$) directive to get the packet, the receiver’s task_CTX is propagated from the
packet__CTX.

5-110 Directive Descriptions

GINS

5.41 General Information

The General Information directive provides general information for user tasks. It instructs the
system to perform the function found in the Directive Parameter Block (DPB). The functions
either set parameters or get information. Each function includes a macro call, buffer format,
macro expansion, and Directive Status Word (DSW) return codes.

The following sections describe the functions.

Notes

1. For each of the following functions, you must include a variable for every element in the
macro definition.

2. FORTRAN calls are not supported for the GIN$ functions.

5.41.1 GI.GAS - Get Assighed Device Name

The Get Assigned Device Name (GI.GAS) function searches the assignment list for logical
assignments of the specified terminal. When the specified assignment is found, the name of the
device to which the assignment applies is returned to the task.

Macro Call

GIN$ GILGAS, buf, siz, dev, unt, udev, unum

Parameters

GL.GAS
GINS$ function code (0)

buf
Address of 6-word buffer to receive the LUN information

siz
Buffer size in words

dev
Device name

unt
Device unit number

udev
Device name for which this assignment holds (if blank, get global assignment)

unum
Unit number of terminal for which this assignment holds (if high bit set, get login assignment)

Directive Descriptions 5-111

GINS

Buffer Format

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5

Name of assigned device

Unit number of assigned device and flags byte
First device characteristics word

Second device characteristics word

Third device characteristics word

Fourth device characteristics word

Macro Expansion

GINS

.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

GI.GAS, GABUF, GASIZ, "XQ, O, "TT, O
169.,10

GI.GAS

GABUF

GASIZ

"IQ

0

"TT

0

DSW Return Codes

IS.SUC
IE.ADP
IE.IDU
IE.PRI
IE.SDP
IE.ULN

Note

Successful completion.

Part of DPB is out of task’s address space.

The specified device is not a terminal.

The issuing task is not privileged.

Invalid function code or the DPB size is invalid.

No assignment exists for the logical name.

A task must be privileged to issue this function.

5.41.2 GLUIC - Get System UIC Information

The Get System User Identification Code Information (GI.UIC) function returns the system UIC,
the library UIC, the task’s current and protection UICs, and the issuing terminal (TL:) login UIC.

If more

space is available, the current terminal UIC, terminal command line interpreter (CLI),

system name, network UIC, and system size in 32-word blocks are also returned.

Macro

Call

GIN$ GI.UIC, buf, siz

5-112 Directive Descriptions

GINS

Parameters
GLUIC
GINS$ function code (1)

o Address of 5- or 32-word buffer to receive the information
siz

Buffer size in words
Buffer Format
Word 0 System UIC
Word 1 Library UIC
Word 2 H.DUIC for the requesting task
Word 3 H.CUIC for the requesting task
Word 4 Login UIC
Word 5 (Optional) Current terminal UIC
Word 6 (Optional) Radix-50 CLI name, first half
Word 7 (Optional) Radix-50 CLI name, second half
Word 8 (Optional) ASCII system name, first third
Word 9 (Optional) ASCII system name, middle third
Word 10 (Optional) ASCII system name, last third
Word 11 (Optional) Network UIC
Word 12 (Optional) System size in 32-word blocks

Macro Expansion

GINS GI.UIC, GABUF, GASIZ
.BYTE 169..4
.WORD GI.UIC
.WORD GABUF
.WORD GASIZ

DSW Return Code
IS.sUC Successful completion.

Note

The buffer size must be a minimum of 32 words for the optional information to be received.

Directive Descriptions 5-113

GINS

5.41.3 GI.DEF - Set Task Default UIC

The Set Task Default UIC (GLDEF) function sets the default UIC for the requesting task. If
the task is not privileged, only the default UIC is changed. If the task is privileged, both the
default and protection UICs are modified.

Macro Call
GIN$ GI.DEF, uic

Parameters

GI.DEF
GINS$ function code (2)

uic
User Identification Code

Macro Expansion

GINS GI.DEF, <<<1*400>+54>>
.BYTE 169.,3

.WORD GI.DEF

.WORD <1*400>+54

DSW Return Codes

IS.5UC Successful completion.

IE.ADP Part of DPB is out of task’s address space.
IE.IUI The specified UIC is invalid.

IE.RSU Group global event flags are active for task.
IE.SDP Invalid function code or the DPB size is invalid.
Note

If an immediate expression is used for the UIC, it must be enclosed in double angle brackets
(<< >>)

5.41.4 GI.SPR - Set Task Privilege

The Set Task Privilege (GI.SPR) function requests the setting or clearing of the task privilege bit
(T3.PRV) in the issuing task’s Task Control Block (TCB). The previous state of the bit is saved
in T4.PRV.

Macro Call
GIN$ GILSPR, flg

5-114 Directive Descriptions

GINS

Parameters

GI.SPR
GIN$ function code (7)

fig
New privilege bit in bit 0

Macro Expansion
GINS GI.SPR, O

.BYTE 169.,3
.WORD GI.SPR
.WORD O

DSW Return Codes
Is.suC Successful completion.
IE.ADP Part of DPB is out of task’s address space.

IE.PRI The task was not previously privileged.
IE.SDP Invalid function code or the DPB size is invalid.
Note

The privilege bit may be set only if it was originally set, then cleared.

5.41.5 GLREN - Rename Task

The Rename Task (GLREN) function renames the issuing task to the supplied task name. The
new name is checked for uniqueness and, if unique, the issuing task is renamed.

Macro Call
GIN$ GILREN, naml, nam2

Parameters

GI.REN
GIN$ function code (8)

naml
Radix-50 task name, first half

nam2
Radix-50 task name, second half

Directive Descriptions 5-115

GINS

Macro Expansion
GINS$ GI.REN, <<“RNEW>>, <<“RTSK>>

.BYTE 169.,4
.WORD GI.REN,
.WORD “RNEW
.WORD “RTSK

DSW Return Codes

I5.5UC Successful completion.

IE.ADP Part of DPB is out of task’s address space.
IE.RSU The specified task name is already in use.
IE.SDP Invalid function code or the DPB size is invalid.

Notes

1. If an immediate Radix-50 expression is used for the task name, it must be enclosed in
double angle brackets (< < > >).

2. Tasks may rename to normally invalid task names such as all blanks. This should be
avoided, however, because the CLI directive cannot abort such tasks.

3. Tasks that receive DECnet connections or send data packets should not use this directive.

5.41.6 GI.FMK - Get Feature Mask Words
The Get Feature Mask Words (GLFMK) function returns the system Executive feature mask,

hardware feature mask, system base level, system type, and system version words to the
requesting task.
Macro Call

GIN$ GILFMK, buf, siz

Parameters

GIl.FMK
GIN$ function code (3)

buf
Address of 9-word buffer to receive the information

siz
Buffer size in words

5-116 Directive Descriptions

GINS

Buffer Format

Word 0 First Executive feature mask word
Word 1 Second Executive feature mask word
Word 2 Third Executive feature mask word
Word 3 Fourth Executive feature mask word
Word 4 Hardware feature mask word

Word 5 ASCII system base level, first half
Word 6 ASCII system base level, second half
Word 7 ASCII system version, first half
Word 8 ASCII system version, second half

Words 9-14 ASCII system type

Macro Expansion

GINS GI.FMK, FMBUF, FMSIZ
.BYTE 169.,4
.WORD GI.FMK
.WORD FMBUF
.WORD FMSIZ

DSW Return Codes
IS.sUC Successful completion.

Note

The system type is returned if the buffer is 15,9 words or longer.

5.41.7 Gl.aMC - Queue MCR Command Line

The Queue MCR Command Line (GL.QMC) function queues a command line to the MCR
command line interpreter on the task’s host terminal.

Macro Call

GIN$ GI.QMC, buf, siz

Parameters

Gl.aMC
GIN$ function code (4)

buf
Address of buffer containing the MCR command line

siz
Buffer size in words

Directive Descriptions 5-117

GINS

Buffer Format

Words 00-x Command line characters

Macro Expansion

GINS GI.QMC, MQBUF, MQSIZ
.BYTE 169. .4

.WORD GI.QMC
.WORD MQBUF
.WORD MQSIZ

DSW Return Codes
IS.SUC Successful completion.
IE.ADP Part of DPB is out of task’s address space.

IE.IDU The host terminal is a virtual terminal marked for elimination.
IE.SDP Invalid function code or the DPB size is invalid.

IE.UPN Insufficient pool available to queue command buffer.

Note

The command buffer to be queued should be terminated by a carriage return or escape character.
If the command buffer is not terminated by a carriage return or escape character, the buffer is
copied up to the length of an MCR command buffer. This may cause unpredictable results.

5.41.8 GIl.UAB - Get User Account Block

The Get User Account Block (GIL.UAB) function moves the contents of a User Account Block
(UAB) to a user buffer.

Macro Call
GIN$ GI.UAB, buf, siz, dev, unt

Parameters

GIlL.UAB
GINS$ function code (5)

buf
Address of buffer to receive the UAB information

siz
Buffer size in words

dev
Device name (if blank, use task’s TI:)

unt
Device unit number

5-118 Directive Descriptions

GINS

Buffer Format

The format of this buffer is subject to change. Consult the RSX-11M-PLUS and Micro/RSX Crash
Dump Analyzer Reference Manual or the RSX-11M-PLUS and Micro/RSX Guide to Writing an 1/0
Driver for the ACNDF$ system macro, which defines the format of a UAB.

Macro Expansion
GIN¢ GI.UAB, UABUF, UASIZ, "TT, 1

.BYTE 169.,6
.WORD GI.UAB
.WORD UABUF
.WORD UASIZ
.WORD "TT
.WORD 1

DSW Return Codes
IS.sUC Successful completion.
IE.ADP Part of DPB is out of task’s address space.

[E.IDU The specified device is not a terminal, or no UAB exists.
IE.PRI Nonprivileged user specified a terminal.

IE.SDP Invalid function code or the DPB size is invalid.

Notes

1. The buffer size must be a minimum of <B.ULEN/2> words.

2. The format of the UAB is subject to change. Offsets into the returned buffer should be
defined using the system macro ACNDF$.

5.41.9 GI.DEV - Get Device Information

The Get Device Information (GI.DEV) function returns information about a particular device. The
device on which information is returned is determined by first performing a logical assignment
(if required) and then following any redirection assignments. Device assignments are checked
if the high bit in the flags byte is clear; otherwise, no check of device assignments is made.
Macro Call

GIN$ GIDEV, buf, siz, dev, unt

Parameters

GI.DEV
GIN$ function code (6)

buf
Address of buffer to receive the unit information

siz
Buffer size in words

Directive Descriptions 5-119

GINS

dev
Device name (if blank, use task’s TI:)

unt
Device unit number (if high bit clear, follow assignments)

Buffer Format

Word 0 Device-characteristics word:
Bit 0—A logical assignment was followed
Bit 1-——Unit is allocated
Bit 2—Unit is attached
Bit 3—Unit has a labeled tape
Bit 4—Unit is marked for dismount
Bit 5—Unit is mounted foreign
Bit 6—Unit is not mounted
Bit 7—Unit or controller is off line
Bit 8—Unit is off line
Bit 9—Unit is redirected
Bit 10—Unit is a public device
Bit 11—Unit is attached for diagnostics
Bit 12—Device controller is off line
Bit 13—Unit is allocated by issuing task’s TI:
Bit 14—Unit is attached by issuing task
Bit 15—Device driver is unloaded

Word 1 (Optional) First device-characteristics word

Word 2 (Optional) Unit Control Block (UCB) U.PRM disk size doubleword, first half
Word 3 (Optional) UCB U.PRM+2 disk size doubleword, second half

Word 4 (Optional) ASCII device name

Word 5 (Optional) (Low byte) Device logical unit number
(High byte) LCB L.TYPE logical assignment type

Word 6 (Optional) Radix-50 attaching task name, first half

Word 7 (Optional) Radix-50 attaching task name, second half

Word 8 (Optional) ASCII device name of allocating terminal

Word 9 (Optional) Unit number of allocating terminal

Word 10 (Optional) Radix-50 Ancillary Control Processor (ACP) name, first half
Word 11 (Optional) Radix-50 ACP name, second half

Word 12 (Optional) ASCII volume name, first sixth

Word 13 (Optional) ASCII volume name, second sixth

Word 14 (Optional) ASCII volume name, third sixth

Word 15 (Optional) ASCII volume name, fourth sixth

5-120 Directive Descriptions

Word 16 (Optional) ASCII volume name, fifth sixth
Word 17 (Optional) ASCII volume name, last sixth

Macro Expansion

GINS

.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

GI.DEV, DVBUF, DVS1Z, "IT, 1
169.,6

GI.DEV

DVBUF

DVSIZ

IITT

1

DSW Return Codes

1S.5UC
IE.ADP
IE.IDU

IE.SDP

Notes

Successful completion.

Part of DPB is out of task’s address space.

GINS

The specified device does not exist, or device is a virtual

terminal and issuing task is not parent or offspring.

Invalid function code or the DPB size is invalid.

1. If the task has the “slave” attribute, logical assignments are not checked regardless of the

setting of the high bit in the fourth parameter word.

2. Optional information is returned only if there is room in the buffer and the information is
available.

5.41.10 GI.APR - Get System APRs

The Get System Active Page Registers (GI.APR) function returns information on the contents
of the Page Address Registers (PARs) and Page Description Registers (PDRs) for all modes and
spaces present on the host system.

Macro Call
GIN$ GILAPR, buf, siz

Parameters

GI.APR

GIN$ function code (9)

buf

Address of 97-word buffer to receive the APR information

siz

Buffer size in words

Directive Descriptions 5-121

GINS

Buffer Format

Word 0 Buffer-characteristics word:
Bit 0—Kernel D-space information is present
Bit 1—User D-space information is present
Bit 2—Supervisor mode information is present
Words 01-08 Kernel I-space PAR 0 to PAR 7
Words 09-16 Kernel I-space PDR 0 to PDR 7
Words 17-24 (Optional) Kernel D-space PAR 0 to PAR 7
Words 25-32 (Optional) Kernel D-space PDR 0 to PDR 7
Words 33-40 User I-space PAR 0 to PAR 7
Words 41-48 User I-space PDR 0 to PDR 7
Words 49-56 (Optional) User D-space PAR 0 to PAR 7
Words 57-64 (Optional) User D-space PDR 0 to PDR 7
Words 65-72 (Optional) Supervisor I-space PAR 0 to PAR 7
Words 73-80 (Optional) Supervisor I-space PDR 0 to PDR 7
Words 81-88 (Optional) Supervisor D-space PAR 0 to PAR 7
Words 89-96 (Optional) Supervisor D-space PDR 0 to PDR 7

Macro Expansion

GIN$ GI.APR, APBUF, APSIZ
.BYTE 169. .4
.WORD GI.APR
.WORD APBUF
.WORD APSIZ

DSW Return Code

IS.5UC

Note

Successful completion.

Bits set in the first buffer word indicate that sets of buffer words are valid.

5.41.11 GL.TSK - Find and Return Task Information

The Find and Return Task Information (GL.TSK) function returns information on a task which
may have its Task Control Block (TCB) in secondary or primary pool.

Macro Call
GIN$ GLTSK, buf, siz, nam1, nam2

5-122 Directive Descriptions

Parameters

GI.TSK

GIN$ function code (1040)

buf

Address of buffer to receive the task information

siz

Buffer size in words

nam]

First half of Radix-50 task name

nam2

Second half of Radix-50 task name

Buffer Format

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Radix-50 task name, first half

Radix-50 task name, second half

(Optional) T.STAT TCB task status word

(Optional) T.ST2 TCB task status word

(Optional) T.ST3 TCB task status word

(Optional) T.ST4 TCB task status word

(Optional) Radix-50 task partition name, first half
(Optional) Radix-50 task partition name, second half

Macro Expansion

GINS

.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

GI.TSK, GTBUF, GTSIZ, <<“R...>>, <<"RTSK>>
169.,6
GI.TSK
GTBUF
GTSIZ
“R...
~“RTSK

DSW Return Codes

IS.5UC
IE.ADP
IE.INS

IE.SDP

Successful completion.
Part of DPB is out of task’s address space.
Task is not installed.

Invalid function code or the DPB size is invalid.

GINS

Directive Descriptions 5-123

GINS

Notes

1.

5.

If an immediate Radix-50 expression is used for the task name, it must be enclosed in
double angle brackets (< < > >),

If the task name is in the form ...xxx, the multiuser task xxxTnn is searched. If the task is
not found, the prototype task is searched.

If the task name is of the form xxx$$$, only the prototype task is searched.

If the task name is limited to three characters and a task is not found, an additional search
is made for a multiuser task or prototype task.

Optional information is returned only if there is room in the buffer.

5.41.12 GL.UPD - Update UICs and Default Directory

The Update UICs and Default Directory (GL.UPD) function takes the default UIC and the
protection UIC from the Unit Control Block (UCB) of the terminal and copies them into the
header of the task. If the default directory of the task and the default directory of the terminal

are

different, GL.UPD sets the default of the task directory to the same default as the terminal

directory. Then, it returns the same information as the GI.UIC function.

Macro Call

GIN$ GILUPD, buf, siz

Parameters
GI.UPD

buf

siz

GIN$ function code (1719)

Address of 5- or 32-word buffer to receive the information

Buffer size in words

Buffer Format

Word 0 System UIC

Word 1 Library UIC

Word 2 H.DUIC for the requesting task

Word 3 H.CUIC for the requesting task

Word 4 Login UIC

Word 5 (Optional) Current terminal UIC

Word 6 (Optional) Radix-50 CLI name, first half
Word 7 (Optional) Radix-50 CLI name, second half

5-124 Directive Descriptions

GINS

Word 8 (Optional) ASCII system name, first third
Word 9 (Optional) ASCII system name, middle third
Word 10 (Optional) ASCII system name, last third
Word 11 (Optional) Network UIC

Word 12 (Optional) System size in 32-word blocks

Macro Expansion

GINS GI.UPD, GABUF, GASIZ
.BYTE 169..4
.WORD GI.UPD
.WORD GABUF
.WORD GASIZ

DSW Return Code
IS.sUC Successful completion.

Note

The buffer size must be a minimum of 32 words for the optional information to be received.

Directive Descriptions 5-125

GLUNS

5.42 Get LUN Information

The Get LUN Information directive instructs the system to fill a 6-word buffer with information
about a physical device unit to which a LUN is assigned. If requests to the physical device
unit have been redirected to another unit, the information returned will describe the effective
assignment.

FORTRAN Cali

CALL GETLUN (lun,dat],ids])

Parameters
lun
Logical unit number

dat
A 6-word integer array to receive the LUN information

ids
Directive status
Macro Call
GLUN$ lun,buf

Parameters
lun
Logical unit number

buf

Address of a 6-word buffer that will receive the LUN information
Buffer Format
Word 0 Name of assigned device

Word 1 Unit number of assigned device and flags byte (flags byte equals 200 if the device
driver is resident or 0 if the driver is not loaded)

Word 2 First device-characteristics word:
Bit 0 Record-oriented device (DV.REC,1=yes)[FD.REC]!
Bit 1 Carriage-control device (DV.CCL,1=yes)[FD.CCL]
Bit 2 Terminal device (DV.TTY,1=yes)[FD.TTY]
Bit 3 Directory (file-structured) device (DV.DIR,1=yes)[FD.DIR]
Bit 4 Single-directory device (DV.SDI,1=yes)[FD.SDI]

1Bits with associated symbols defined in FCS have the symbols shown in square brackets. These symbols can be defined for use by a
task by means of the FCSBT$ macro. See the RSX-11M-PLUS and Micro/RSX 1/0 Operations Manual.

5-126 Directive Descriptions

GLUNS

Bit 5 Sequential device (DV.SQD,1=yes)[FD.SQD]

Bit 6 Mass-storage device (DV.MSD, 1=yes)

Bit 7 User-mode diagnostics supported (DV.UMD, 1=yes)

Bit 8 Device supports extended 22-bit UNIBUS controller (DV.EXT,DV.MBC, 1=yes)
Bit 9 Unit software write-locked (DV.SWL,1=yes)

Bit 10 Input spooled device (DV.ISP,1=yes)
Bit 11 Output spooled device (DV.OSP,1=yes)
Bit 12 Pseudo device (DV.PSE,1=yes)
Bit 13 Device mountable as a communications channel (DV.COM, 1=yes)
Bit 14 Device mountable as a Files-11 device (DV.F11,1=yes)
Bit 15 Device mountable (DV.MNT,1=yes)
Word 3 Second device-characteristics word
Word 4 Third device-characteristics word (words 3 and 4 are device driver specific)

Word 5 Fourth device-characteristics word (normally buffer-size as specified in the MCR
SET /BUF or DCL SET TERM/WIDTH command)

Macro Expansion
GLUN$ 7,LUNBUF

.BYTE 5,3 ;GLUN$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD 7 ;LOGICAL UNIT NUMBER 7
.WORD LUNBUF ; ADDRESS OF 6-WORD BUFFER

Local Symbol Definitions

G.LULU Logical unit number (2)

G.LUBA Buffer address (2)

The following offsets are assigned relative to the start of the LUN information buffer:
G.LUNA Device name (2)

G.LUNU Device unit number (1)

G.LUFB Flags byte (1)

G.LUCW Four device-characteristics words (8)

DSW Return Codes

15.5UC Successful completion.
I[E.ULN Unassigned LUN.

IEILU Invalid logical unit number.

Directive Descriptions 5-127

GLUNS

IE.ADP
IE.SDP

Note

Part of the DPB or buffer is out of the issuing task’s address space.
DIC or DPB size is invalid.

If a spooled device is found in the redirection chain and the issuing task is not the despooler,
the LUN information returned by the Executive is as follows:

Word 0
Word 1
Word 2

Word 3
Word 4
Word 5

Name of assigned (spooled) device
Unit number of assigned spooled device and flags byte

Logical OR of the first device-characteristics word for the intermediate device and
the output spool bit (spooled device first characteristics word, bit 11)

Spooled device fourth device-characteristics word
Not defined

Intermediate device standard device buffer size

5-128 Directive Descriptions

GMCRS$

5.43 Get MCR Command Line

The Get MCR Command Line directive instructs the system to transfer an 80-byte command
line to the issuing task.

When a task is installed with a task name of “...tsk” or “tskTn,” where “tsk” consists of three
alphanumeric characters and n is an octal terminal number, the MCR dispatcher requests the
task’s execution when you issue the following command from terminal number n:

> tsk command-line

A task invoked in this manner must execute a call to Get MCR Command Line, which results
in the entire “command line” following the prompt being placed in an 80-byte command-line
buffer. (The MCR dispatcher is described in the R5X-1 1IM-PLUS MCR Operations Manual.)

FORTRAN Call
CALL GETMCR (buf[,ids])

Parameters

buf
An 80-byte array to receive the command line

ids
Directive status

Macro Call
GMCR$

Macro Expansion

GMCR$
.BYTE 127.,41. :GMCR$ MACRO DIC, DPB SIZE = 41(10) WORDS
.BLKW 40. :80(10) ~-CHARACTER MCR COMMAND LINE BUFFER

Local Symbol Definitions
G.MCRB MCR command-line buffer (80)

DSW Return Codes

+n Successful completion; n is the number of data bytes transferred, excluding the
termination character. The termination character is, however, in the buffer. (If the
command line came from a task being spawned, the termination character is the
ESC key (33).)

IE.AST No MCR command line exists for the issuing task; that is, the task was not requested
by a command line as follows:

> tsk command-line

or the task has already issued the Get MCR Command Line directive.

Directive Descriptions 5-129

GMCRS$

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. The GMCRS$S form of the macro is not supplied because the DPB receives the actual
command line.

2. The CLI dispatcher processes all lines to:
* Convert tabs to a single space
* Convert multiple spaces to a single space
* Convert lowercase characters to uppercase
* Remove comments between exclamation points
®* Remove all trailing blanks
The terminator (RET or ESC) is the last character in the line.

3. If the character before the terminator is a hyphen, there is at least one continuation line
present. Therefore, you must issue another GMCRS$ directive to obtain the rest of the
command line.

5-130 Directive Descriptions

GMCXS$

5.44 Get Mapping Context

The Get Mapping Context directive causes the Executive to return a description of the current
window-to-region mapping assignments. The returned description is in a form that enables
you to restore the mapping context through a series of Create Address Window directives. The
macro argument specifies the address of a vector that contains one Window Definition Block
(WDB) for each window block allocated in the task’s header, plus a terminator word.

For each window block in the task’s header, the Executive sets up a WDB in the vector as
follows:

e If the window block is unused (that is, if it does not correspond to an existing address
window), the Executive does not record any information about that block in a WDB. Instead,
the Executive uses the WDB to record information about the first block encountered that
corresponds to an existing window. In this way, unused window blocks are ignored in the
mapping context description returned by the Executive.

e If a window block describes an existing unmapped address window, the Executive fills in
the offsets W.NID, W.NAPR, W.NBAS, and W.NSIZ with information sufficient to re-create
the window. The window status word W.NSTS is cleared.

e If a window block describes an existing mapped window, the Executive fills in the offsets
W.NAPR, W.NBAS, W.NSIZ, W.NRID, W.NOFF, W.NLEN, and W.NSTS with information
sufficient to create and map the address window. WSMAP is set in the status word
(W.NSTS) and, if the window is mapped with write access, the bit WS.WRT is set as well.

Note that in no case does the Executive modify W.NSRB.

The terminator word, which follows the last WDB filled in, is a word equal to the negative of
the total number of window blocks in the task’s header. It is thereby possible to issue a TST
or TSTB instruction to detect the last WDB used in the vector. The terminating word can also
be used to determine the number of window blocks built into the task’s header.

When Create Address Window directives are used to restore the mapping context, there is no
guarantee that the same address window IDs will be used. You must therefore be careful to
use the latest window IDs returned from the Create Address Window directives.

FORTRAN Call
CALL GMCX (imcx[,ids])

Parameters

imex

An integer array to receive the mapping context. The size of the array is 8*n+1, where n is
the number of window blocks in the task’s header. The maximum size is 8+24+1=193.

ids
Directive status

Macro Call
GMCX$ wvec

Directive Descriptions 5-131

GMCXS$

Parameter

wvec
The address of a vector of n Window Definition Blocks, followed by a terminator word; n
is the number of window blocks in the task’s header

Macro Expansion

GMCX$ VECADR
.BYTE 113.,2 ;GMCX$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD VECADR ;WDB VECTOR ADDRESS

Window Definition Block Parameters
Input parameters:
None

Output parameters:

Array

Element Offset Meaning

iwdb(1) W.NID ID of address window

bits 0-7

iwdb(1) W.NAPR Base APR of the window

bits 8-15

iwdb(2) W.NBAS Base virtual address of the window

iwdb(3) W.NSIZ Size, in 32-word blocks, of the window

iwdb(4) W.NRID ID of the mapped region or, if the window is unmapped,

~ no change

iwdb(5) W.NOFF Offset, in 32-word blocks, from the start of the region at
which mapping begins or, if the window is unmapped, no
change

iwdb(6) W.NLEN Length, in 32-word blocks, of the area currently mapped
within the region or, if the window is unmapped, no
change

iwdb(7) W.NSTS Bit settings’ in the window status word (all 0 if the

window is not mapped):

Bit Definition
WS.MAP 1 if the window is mapped
WS.WRT 1 if the window is mapped with write access

B you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

5-132 Directive Descriptions

GMCXS$

Array
Element Offset Meaning
Bit Definition
WS.SIS 1 if the window is mapped in supervisor-
mode instruction space
WS.UDS 1 if the window is mapped in user-mode data
space
WS.NBP 1 if the window was created with cache by-
pass disabled (on RSX-11M-PLUS multipro-
cessor systems only)
WS.RCX 1 if cache bypass has been enabled for

the current mapping of the window (on
RSX-11M-PLUS multiprocessor systems only)

Note that the length mapped (W.NLEN) can be less than the size of the window (W.NSIZ) if
the area from W.NOFF to the end of the partition is smaller than the window size.

Local Symbol Definition

G.MCVA Address of the vector (wvec) containing the Window Definition Blocks and terminator

word (2)

DSW Return Codes

IS.SUC Successful completion.

IE.ADP Address check of the DPB or the vector (wvec) failed.
IE.SDP DIC or DPB size is invalid.

Note

Due to the use of WS.RCX to indicate cache-bypass state, you may need to do additional
manipulation of the WDB before you issue a CRAWS$ or MAP$ directive (on RSX-11M-PLUS

multiprocessor systems only).

Directive Descriptions 5-133

GPRTS

5.45 Get Partition Parameters

The Get Partition Parameters directive instructs the system to fill an indicated 3-word buffer
with partition parameters. If a partition is not specified, the partition of the issuing task is
assumed.

FORTRAN Call

CALL GETPAR ([prt]buf[,ids])

Parameters

prt
Partition name

buf
A 3-word integer array to receive the partition parameters

ids

Directive status
Macro Call

GPRT$ [prt],buf

Parameters

prt
Partition name

buf
Address of a 3-word buffer
Buffer Format

Word 0 Partition physical base address expressed as a multiple of 32 words. (Partitions are
always aligned on 32-word boundaries.) Therefore, a partition starting at 400004
will have 400g returned in this word.

Word 1 Partition size expressed as a multiple of 32 words.

Word 2 Partition flags word. This word is returned equal to 0 to indicate a system-controlled
partition or equal to 1 to indicate a user-controlled partition.

5-134 Directive Descriptions

GPRTS

Macro Expansion
GPRT$ ALPHA,DATBUF

.BYTE 65.,4 ;GPRT$ DIC, DPB SIZE = 4 WORDS
.RAD50 /ALPHA/ ;PARTITION "ALPHA"
.WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions

G.PRPN Partition name (4)

G.PRBA Buffer address (2)

The following offsets are assigned relative to the start of the partition parameters buffer:
G.PRPB Partition physical base address expressed as an absolute 32-word block number (2)
G.PRPS Partition size expressed as a multiple of 32-word blocks (2)

G.PRFW Partition flags word (2)

DSW Return Codes

Successful completion is indicated by a cleared Carry bit and the starting address of the partition
is returned in the DSW. In unmapped systems, the address is physical. In mapped systems,
the returned address is virtual and is always zero if it is not the task partition. Unsuccessful
completion is indicated by a set Carry bit and one of the following codes in the DSW:

IE.INS Specified partition not in system.
IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. For Executives that support the memory management directives, a variation of this directive
exists called Get Region Parameters (see next section). When the first word of the 2-word
partition name is 0, the Executive interprets the second word of the partition name as a
region ID. If the 2-word name is 0,0, it refers to the task region of the issuing task.

2. Omitting the partition-name argument prt returns parameters for the issuing task’s unnamed
subpartition, not for the system-controlled partition.

Directive Descriptions 5-135

GREGS

5.46 Get Region Parameters

The Get Region Parameters directive instructs the Executive to fill an indicated 3-word buffer
with region parameters. If a region is not specified, the task region of the issuing task is
assumed.

This directive is a variation of the Get Partition Parameters directive for Executives that support
the memory management directives.
FORTRAN Call

CALL GETREG ([rid] buff,ids])

Parameters
rid
Region id
buf
A 3-word integer array to receive the region parameters
ids
Directive status
Macro Call
GREG$ [rid],buf

Parameters
rid
Region id
buf
Address of a 3-word buffer

Buffer Format

Word 0 Region base address expressed as a multiple of 32 words. (Regions are always
aligned on 32-word boundaries.) Thus, a region starting at 10003 will have 10g
returned in this word.

Word 1 Region size expressed as a multiple of 32 words.

Word 2 Region flags word. This word is returned. equal to 0 if the region resides in a
system-controlled partition or equal to 1 if the region resides in a user-controlled
partition.

5-136 Directive Descriptions

GREGS

Macro Expansion
GREG$ RID,DATBUF

.BYTE 65.,4 ;GREG$ MACRO DIC, DPB SIZE = 4 WORDS
.WORD O ;WORD THAT DISTINGUISHES GREG$ FROM GPRT$
.WORD RID ;REGION ID

.WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions

G.RGID Region ID (2)

G.RGBA Buffer address (2)

The following offsets are assigned relative to the start of the region parameters buffer:
G.RGRB Region base address expressed as an absolute 32-word block number (2)
G.RGRS Region size expressed as a multiple of 32-word blocks (2)

G.RGFW Region flags word (2)

DSW Return Codes

Successful completion is indicated by a cleared Carry bit and the starting address of the
region is returned in the DSW. In unmapped systems, the returned address is physical. In
mapped systems, the returned address is virtual and is always zero if it is not the task region.
Unsuccessful completion is indicated by a set Carry bit and one of the following codes in the
DSW: :

IENVR Invalid region ID.
IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-137

GSSWS$S

5.47 Get Sense Switches (§S Form Recommended)
The Get Sense Switches directive instructs the system to obtain the contents of the console
switch register and store it in the issuing task’s Directive Status Word.
FORTRAN Call
CALL READSW (isw)

Parameter

isw
Integer to receive the console switch settings

The following FORTRAN call allows a program to read the state of a single switch:

Format
CALL SSWTCH (ibt,ist)
ibt
The switch to be tested (0 to 15)
ist
Test results where:
1 = switch on
2 = switch off
Macro Call
GSSW$S [err]

Parameter

err
Error-routine address

Macro Expansion

GSSW$S ERR

MoV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 125.,1 ;GSSW$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

5-138 Directive Descriptions

GSSWS$S

DSW Return Codes

Successful completion is indicated by a cleared Carry bit and the contents of the console switch
register are returned in the DSW. Unsuccessful completion is indicated by a set Carry bit and
one of the following codes in the DSW:

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. Because this directive requires only a 1-word DPB, using the $S form of the macro is

recommended. It requires less space and executes with the same speed as that of the DIR$
macro.

2. On RSX-11M-PLUS multiprocessor systems, the value returned is that of the virtual switch
register maintained by the MCR SWR command.

Directive Descriptions 5-139

GTIMS$

5.48 Get Time Parameters

The Get Time Parameters directive instructs the system to fill an indicated 8-word buffer with
the current time parameters. All time parameters are delivered as binary numbers. The value
ranges (in decimal) are shown in the table below.

FORTRAN Call

CALL GETTIM (ibfp[,ids])

Parameters
ibfp
An 8-word integer array
ids
Directive status
Macro Call
GTIM$ buf

Parameter
buf
Address of an 8-word buffer
Buffer Format
Word 0 Year (since 1900)
Word 1 Month (1-12)
Word 2 Day (1-31)
Word 3 Hour (0-23)
Word 4 Minute (0-59)
Word 5 Second (0-59)
Word 6 Tick of second (depends on the frequency of the clock)
Word 7 Ticks per second (depends on the frequency of the clock)

Macro Expansion

GTIM$.DATBUF
.BYTE 61.,2 ;GTIM$ DIC, DPB SIZE = 2 WORDS
.WORD DATBUF ; ADDRESS OF 8(10)-WORD BUFFER

Local Symbol Definition
G.TIBA Buffer address (2)

5-140 Directive Descriptions

GTIMS$

The following offsets are assigned relative to the start of the time-parameters buffer:
G.TIYR Year (2)

G.TIMO Month (2)

G.TIDA Day (2)

G.TIHR Hour (2)

G.TIMI Minute (2)

G.TISC Second (2)

G.TICT Clock tick of second (2)

G.TICP Clock ticks per second (2)

DSW Return Codes

IS.sUC Successful completion.

[E.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Note

The format of the time buffer is compatible with that of the buffers used with the Set System
Time directive (STIM$).

Directive Descriptions 5-141

GTSKS

5.49 Get Task Parameters
The Get Task Parameters directive instructs the system to fill an indicated 16-word buffer with
parameters relating to the issuing task.
FORTRAN Call
CALL GETTSK (buf[,ids])

Parameters
buf
A 16-word integer array to receive the task parameters
ids
Directive status
Macro Cali
GTSK$ buf

Parameter
buf

Address of a 16-word buffer
Buffer Format
Word 0 Issuing task’s name (first half) in Radix-50
Word 1
Word 2 Partition name (first half) in Radix-50
Word 3 Partition name (second half) in Radix-50

4

Word Undefined in RSX-11M-PLUS and Micro/RSX systems (this word exists for
compatibility with RSX-11D and IAS systems)

Word 5 Undefined in RSX-11M-PLUS and Micro/RSX systems (this word exists for
compatibility with RSX-11D and IAS systems)

Issuing task’s name (second half) in Radix-50

Word 6 Run priority

Word 7 User Identification Code (UIC) of issuing task (in a multiuser protection system,
the task’s default UIC)!

Word 10 Number of logical I/O units (LUNSs)
Word 11 Processor model number

Word 12 Undefined in RSX-11M-PLUS and Micro/RSX systems (this word exists for
compatibility with RSX-11D and IAS systems)

1See note in RQST$ description on contents of words 07 and 17.

5-142 Directive Descriptions

Word 13
Word 14
Word 15

Word 16

Word 17

GTSKS$

(Address of task SST vector tables)?
(Size of task SST vector table in words)?

Size (in bytes) either of task’s address window 0 in mapped systems or, if a task is
running under I- and D-space, word 15 contains the size of window 1, the D-space
root

System on which task is running:
0 for RSX-11D
for RSX-11M
for RSX-11S
for IAS
for RSTS
for VAX-11 RSX
for RSX-11M-PLUS and Micro/RSX
for RT-11 Single Job Monitor

10 for RT-11 Foreground /Background and
Extended Memory Monitor

11 for P/OS
Protection UIC (in multiuser system, the login UIC)!

N O e W -

Lsee note in RQSTS$ description on contents of words 07 and 17.

ZWords 13 and 14 will contain valid data if word 14 is not zero. If word 14 is zero, the contents of word 13 are meaningless.

Macro Expansion

GTSK$ DATBUF
.BYTE 63.,2 ;GTSK$ MACRO DIC, DPB = 2 WORDS
.WORD DATBUF ;ADDRESS OF 18-WORD BUFFER

Local Symbol Definition

G.TSBA

Buffer address (2)

The following offsets are assigned relative to the task-parameters buffer:

G.TSTN
G.TSPN
G.TSPR
G.TSGC
G.TSPC
G.TSNL

Task name (4)

Partition name (4)

Priority (2)

UIC group code (1)

UIC member code (1)
Number of logical units (2)

Directive Descriptions 5-143

GTSK$

G.TSVA Task’s SST vector address (2)
G.TSVL Task’s SST vector length in words (2)
G.TSTS Task size (2)

G.TSSY System on which task is running (2)
G.TSDU Protection UIC (2)

DSW Return Codes

IS.SUC Successful completion.

IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-144 Directive Descriptions

MAPS

5.50 Map Address Window

The Map Address Window directive maps an existing window to an attached region. The
mapping begins at a specified offset from the start of the region. If the window is already
mapped elsewhere, the Executive unmaps it before carrying out the mapping assignment
described in the directive.

For the mapping assignment, a task can specify any length that is less than or equal to both, as
follows:

* The window size specified when the window was created

® The length remaining between the specified offset within the region and the end of the
region
A task must be attached with write access to a region in order to map to it with write access.

To map to a region with read-only access, the task must be attached with either read or write
access.

If W.NLEN is set to 0, the length defaults to either the window size or the length remaining in
the region, whichever is smaller. (Since the Executive returns the actual length mapped as an
output parameter, the task must clear that parameter in the WDB before issuing the directive
each time it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit WS.64B in the window
status word (W.NSTS), as follows:

e If WS.64B = 0, the offset specified in W.NOFF must represent a multiple of 256 words (512
bytes). Because the value of W.NOFF is expressed in units of 32-word blocks, the value
must be a multiple of 8.

e If WS.64B = 1, the task can align on 32-word boundaries; you can therefore specify any
offset within the region.

Note

Applications dependent on 32-word or 64-byte alignment (WS.64B = 1) may not
be compatible with future implementations of RSX emulators. Therefore, you
should write applications adaptable to either alignment requirement. The bit
setting of WS.64B could be a parameter chosen at assembly time (by means of
a prefix file), at task-build time (as input to the GBLDEF option), or at run time
(by means of command input or by means of the G.TSSY field returned from
the GTSK$ directive).

FORTRAN Call
CALL MAP (iwdbl,ids])

Parameters

iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

ids
Directive status

Directive Descriptions 5-145

MAP$

Macro Call
MAP$ wdb

Parameter
wdb

Window Definition Block address

Macro Expansion

MAP$ WDBADR
.BYTE 121.,2
.WORD WDBADR

;MAP$ MACRO DIC, DPB SIZE = 2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(1) W.NID ID of the window to be mapped.

bits 0-7

iwdb(4) W.NRID ID of the region to which the window is to be mapped or
0 if the task region is to be mapped.

iwdb(5) W.NOFF Offset, in 32-word blocks, within the region at which
mapping is to begin. Note that if WS.64B in the window
status word equals 0, the value specified must be a multiple
of 8.

iwdb(6) W.NLEN Length, in 32-word blocks, within the region to be mapped,
or 0 if the length is to default to either the size of the
window or the space remaining in the region from the
specified offset, whichever is smaller.

iwdb(7) W.NSTS Bit settings! in the window status word:

Bit Definition

WS.BPS Bypass cache unconditional (for RSX-11M-
PLUS multiprocessor systems and systems
that have the conditional assembly parameter
C$$CBP defined in RSXMC.MAC; C$$CBP is
also included in the RL0O2 ID and MICROD
pregenerated systems)

WS.WRT 1 if write access is desired

WS.64B 0 for 256-word (512-byte) alignment or 1 for
32-word (64-byte) alignment

Iy you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

5-146 Directive Descriptions

MAPS

Output parameters:

Array

Element Offset Meaning

iwdb(6) W.NLEN Length of the area within the region actually mapped by
the window

iwdb(7) W.NSTS Bit settings' in the window status word:
Bit Definition

WS.UNM 1 if the window was unmapped first

B you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Local Symbol Definition
M.APBA Window Definition Block address (2)

DSW Return Codes

IS.5UC Successful completion.
IE.PRI Privilege violation.

IE.NVR Invalid region ID.

IENVW Invalid address window ID.

IE.ALG Task specified an invalid region offset and length combination in the Window
Definition Block parameters, or WS.64B = 0 and the value of W.NOFF is not a
multiple of 8.

IEEHWR Region had a parity error or a load failure.

IE.ITS WS.RES was set and region is not resident.

IE.ADP Part of the DPB or WDB is out of the issuing task’s address space.
[E.SDP DIC or DPB size is invalid.

Notes

1. When the Map Address Window directive is issued, the task may be blocked until the
region is loaded.

2. Bit WS.RES in word W.NSTS of the Window Definition Block, when set, specifies that the
region should be mapped only if the region is resident.

Directive Descriptions 5-147

MRKT$

5.51 Mark Time

The Mark Time directive instructs the system to declare a significant event after an indicated
time interval. The interval begins when the task issues the directive; however, task execution
continues during the interval. If an event flag is specified, the flag is cleared when the directive
is issued and set when the significant event occurs. If an AST entry-point address is specified,
an AST (see Section 2.3.3) occurs at the time of the significant event. When the AST occurs,
the task’s PS, PC, directive status, Wait-for mask words, and the event flag number specified
in the directive are pushed onto the issuing task’s stack. If neither an event flag number nor
an AST service entry point is specified, the significant event still occurs after the indicated time
interval. See the Notes.

FORTRAN Calls

Format

CALL MARK (efn,tmg,tnt[,ids])

Parameters

efn
Event flag number

tmg
Time interval magnitude (see Note 5)

tnt

Time interval unit (see Note 5)
ids

Directive status

The ISA standard call for delaying a task for a specified time interval is also provided:

Format
CALL WAIT (tmg,tnt],ids])

Parameters

tmg
Time interval magnitude (see Note 5)

tnt
Time interval unit (see Note 5)

ids
Directive status

Macro Call
MRKT$ [efn]tmg tnt],ast]

5-148 Directive Descriptions

MRKT$

Parameters

efn

Event flag number

tmg

Time interval magnitude (see Note 5)

int

Time interval unit (see Note 5)

ast

AST entry-point address

Macro Expansion

MRKT$ 52.,30.,2,MRKAST

.BYTE 23..,5 :MRKT$ MACRO DIC, DPB SIZE = 5 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52

.WORD 30. ;TIME MAGNITUDE=30(10)

_WORD 2 :TIME UNIT=SECONDS

_WORD MRKAST :ADDRESS OF MARK TIME AST ROUTINE

Local Symbol Definitions

M.KTEF
M.KTMG
M.KTUN
M.KTAE

Event flag (2)
Time magnitude (2)
Time unit (2)

AST entry-point address (2)

DSW Return Codes
For CALL MARK and MRKT$:

IS.sUC
IE.UPN
IE.ITI
IE.IEF

IE.ADP
IE.SDP

Successful completion.
Insufficient dynamic memory.
Invalid time parameter.

Invalid event flag number (EFN <0, or EFN> 96 if group global event flags exist
for the task’s group or EFN>> 64 if not).

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

Directive Descriptions 5-149

MRKTS

For

CALL WAIT:

The following positive error codes are returned for ISA calls:

1 Successful completion
2 Insufficient dynamic storage
3 Specified task not installed
94 Invalid time parameters
98 Invalid event flag number
99 Part of DPB out of task’s range

100 DIC or DPB size invalid

Notes

1. Mark Time requires dynamic memory for the clock queue entry.

2. If an AST entry-point address is specified, the AST service routine is entered with the task’s
stack in the following state:

SP+10 Event-flag mask word!

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 DSW of task prior to AST

SP+00 Event flag number or zero (if none was specified in the Mark Time directive)
lThe event-flag mask word preserves the Wait-for conditions of a task prior to AST entry. A task can, after an AST, return to
a Wait-for state. Because these flags and the other stack data are in the user task, they can be modified. Such modification is
strongly discouraged, however, since the task can easily fault on obscure conditions. For example, clearing the mask word results
in a permanent Wait-for state.

The event flag number must be removed from the task’s stack before an AST Service Exit
directive is executed.

3. If the directive is rejected, the specified event flag is not guaranteed to be cleared or set.
Consequently, if the task indiscriminately executes a Wait-for directive and the Mark Time
directive is rejected, the task may wait indefinitely. Care should always be taken to ensure
that the directive was completed successfully.

4. If a task issues a Mark Time directive that specifies a common or group global event flag
and then exits before the indicated time has elapsed, the event flag is not set.

5. The Executive returns the code IE.ITI (or 94) in the Directive Status Word if the directive

specifies an invalid time parameter. The time parameter consists of two components: the
time interval magnitude and the time interval unit, represented by the arguments tmg and
tnt, respectively.

5-150 Directive Descriptions

MRKTS

A legal magnitude value (tmg) is related to the value assigned to the time interval unit (tnt).
The unit values are encoded as follows:

For an ISA FORTRAN call (CALL WAIT):

0 Ticks. A tick occurs for each clock interrupt and is dependent on the type of clock
installed in the system.

For a line-frequency clock, the tick rate is either 50 or 60 per second, corresponding
to the power-line frequency.

For a programmable clock, a maximum of 1000 ticks per second is available (the
exact rate is determined during system generation).

1 Milliseconds. The subroutine converts the specified magnitude to the equivalent
number of system clock ticks. On systems with line-frequency clocks, millisecond
Mark Time requests can only be approximations.

For all other FORTRAN and macro calls:

1 Ticks. See definition of ticks above.

For both types of FORTRAN calls and all macro calls:
2 Seconds

3 Minutes

4 Hours

The magnitude (tmg) is the number of units to be clocked. The following list describes the
magnitude values that are valid for each type of unit. In no case can the value of tmg
exceed 24 hours. The list applies to both FORTRAN and macro calls:

If tnt = 0, 1, or 2, tmg can be any positive value with a maximum of 15 bits.
If tnt = 3, tmg can have a maximum value of 1440,.
If tnt = 4, tmg can have a maximum value of 24,y.

If the specified event flag is group global, the use count for the event flag’s group is
incremented to prevent premature elimination of event flags. The use count is run down in
the following cases:

o The Mark Time event occurs.
e The Mark Time event is canceled.
¢ The issuing task exits with the Mark Time event still on the clock queue.

The minimum time interval is 1 tick. If you specify a time interval of 0, it will be converted
to 1 tick.

Directive Descriptions 5-151

MSDS$

5.52 Map Supervisor D-Space

(RSX-11M-PLUS systems only.) The Map Supervisor D-Space directive allows the issuing task
to change the mapping of its supervisor-mode D-space APRs. This directive also provides
information about the current mapping of the task’s supervisor-mode D-space APRs.

Tasks that do not use data space execute with instruction and data space overmapped. Tasks
in which the Task Builder has separated instruction and data space are mapped separately
(instruction and data space are not overmapped). The overall mapping structure for these tasks
is as follows:

Window 0 Root I-space
Window 1 Task header, stack, and root D-space

Window 2 I-space of the read-only section if a multiuser task; memory-resident overlays if
not a multiuser task

Window 3 D-space of the read-only section if a multiuser task; memory-resident overlays if
not a multiuser task

Window 4 Memory-resident overlays

When supervisor-mode library code is executing, the supervisor-mode I-space APRs map
supervisor-mode instruction space. However, the supervisor-mode D-space APRs normally
map user-mode data space. Code that resides in a supervisor-mode library can include data
(such as error messages) within its own instruction space. The Map Supervisor D-Space directive
allows such code to use the supervisor-mode D-Space APRs to map locations in supervisor-mode
instruction space that contain data.

The Map Supervisor D-Space directive allows the issuing task to specify a 7-bit mask that
determines the mapping of supervisor-mode D-space APRs. The mask value contains one bit
for each APR, starting with APR 1. The bits control the value stored in the supervisor mapping
control byte in the task header (H.SMAP).

This mask is stored in the high byte of the parameter. The low byte of the parameter is ignored.
Since the high bit of the PSW may be set, the PSW is returned in the low byte. The mask is
returned in the high byte. Note that although there are eight APRs, the mask is only seven
bits because APR 0 cannot be changed. The mask position in the parameter is identical to the
DSW return.

To provide for the case when a supervisor-mode library is being used by some tasks as a
user-mode library, this directive does not change the task’s mapping when it is issued from user
mode. However, the DSW is still returned.

When the directive is successfully executed, the DSW provides information about the task’s
current mapping and mode. Specifying a negative mask value causes the directive to return
information rather than change the mapping.

5-152 Directive Descriptions

MSDS$

FORTRAN Call
Not supported

Macro Call
MSDS$ mask

Parameter

mask
A 7-bit mask with one bit corresponding to each supervisor-mode D-space APR. If the bit is
set, the APR is mapped to supervisor-mode I-space. If the bit is clear, the APR is mapped
to user-mode D-space. The seven bits are specified in bits 8 through 14 of the mask word.

Macro Expansion

MSDS$ mask
.BYTE 201.,2 ;MSDS$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD MASK

DSW Return Codes
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. When including data in a supervisor-mode library, the library may not overmap APR 0
with the supervisor-mode library. The Executive assumes it has access to the task’'s DSW
regardless of the mode from which a directive is issued. Data must therefore be placed near
the end of the library or mapped through a memory-resident overlay to force its mapping
into some APR other than 0. '

2. In the following example, a supervisor-mode library routine changes its mapping in order
to access an error message (which is data):

MESSAG: .ASCIZ / ERROR IN INPUT DATA/

ST (RO) ; CHECK SOME PIECE OF USER DATA

BPL 10$; IF PLUS OK

MSDS$S #100000 ; GET CURRENT STATUS OF MAPPING

MOV $DSW,RO ;

MOV RO, - (SP) ; SAVE CURRENT STATE FOR RESTORE OF MAPPING STATE
BIS #400,RO . UPDATE MASK TO MAP APR1 TO SUPERVISOR MODE
MSDS$S RO ; MAP TO SUPERVISOR I-SPACE

MOV #MESSAG,R1 ; POINT TO ERROR MESSAGE (WHICH IS DATA)

CALL ERROR ; ERROR IS A SUBROUTINE THAT HAS LOCAL ERROR

; MESSAGES IN A SUPERVISOR-MODE LIBRARY

Directive Descriptions 5-153

MSDS$

MOV (SP)+,RO ; GET OLD MAPPING STATUS
MSDS$S RO ; RESTORE OLD MAPPING STATUS
RETURN ; BACK TO USER

5-154 Directive Descriptions

MVTS$

5.53 Move to/from User/Supervisor I/D-Space

The Move to/from User/Supervisor I/D-Space directive instructs the system to fetch data from
a specified location in user-mode or supervisor-mode instruction space or data space, or to write
the specified value in the specified location in the specified type of address space.

This directive allows you to access a single word of I-space as data without creating a D-space
window. This function is primarily intended for use by debugging aids. Use of this directive in
production code is not recommended since the directive is not optimized for performance.

FORTRAN Calil
Not supported

Macro Call

MVTS$ action,addr, Eilff
Parameters
action

One of the following:

MV.TUI = Move to user I-space
MV.TUD Move to user D-space
MV.TSI Move to supervisor I-space
MV.TSD Move to supervisor D-space
MV.FUI = Move from user I-space
MV.FUD Move from user D-space
MV.FSI Move from supervisor I-space

MV.FSD Move from supervisor D-space

addr
Address of the location in the task

val
Value to be stored in the location (for the move-to operations)

buff
Buffer to receive the value fetched (for the move-from operations)

Directive Descriptions 5-155

MVTSS

Macro Expansion
MVTS$ action,addr,val

.BYTE 203..,4 ;MVTS$ MACRO DIC, DPB SIZE = 4 WORDS

.WORD action ;THE OPERATION TO BE PERFORMED

.WORD addr ;ADDRESS OF THE TASK LOCATION

.WORD val ;VALUE TO BE WRITTEN (OR BUFFER IF MOVE-FROM)

Local Symbol Definitions

M.VTAC
M.VTAD

M.VTBF
or
M.VTVA

Action code
Address of location in I- or D-space to be moved to or from

Buffer address
or
Value to be moved

DSW Return Codes

IE.PRI
IE.ADP

IE.SDP

5-156 Directive

The issuing task does not have write access to the target address.

Part of the DPB is out of the issuing task’s address space, the specified address is
not mapped, or the buffer or the target address is not in the issuing task’s address
space.

DIC or DPB size is invalid.

Descriptions

PFCS$

5.54 Parse FCS

The Parse FCS directive takes a File Control Services string and returns a filled-in parse block.

FORTRAN Call

CALL PRSFCS ([mod],[itbmsk],[lun],prbuf,prsz,rsbuf,rssz,[rslen],[prsblk,prssz],[dfnbk,dfnsz],[rsmsk][,idsw])

Parameters
mod
Optional modifier for logical name table entries; allowable symbolic values are:
LB.LOC = 1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

itbmsk

Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

prbuf

Array containing the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

prsz

Size (in bytes) of the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

rsbuf
Array containing the resulting file specification buffer

rssz
Size (in bytes) of the resulting file specification buffer

rslen
Integer to receive the resulting string size

Directive Descriptions 5-157

PFCS$

prsblk
Array containing the parse block

prssz
Size (in bytes) of the parse block

dfnbk
Array containing the default name block; dfnbk and dfnsz must both be specified or both
omitted; if omitted, a comma between their positions must be present unless no other
parameters follow

dfnsz
Size of the default name block; dfnbk and dfnsz must both be specified or both omitted;
if omitted, a comma between their positions must be present unless no other parameters
follow

rsmsk
Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FS$NDF is set, the
device is not defaulted to and the LUN is not assigned. (FS$NDF has no meaning for the
FSS$ directive.)

idsw
Integer to receive the Directive Status Word.

Macro Call
PFCS$ [mod],[tbmsk],[lun],prbuf,prsz,rsbuf,rssz,[rslen],[prsblk],[prssz],[dfnbk] [dfnsz][,rsmsk]

Parameters
mod
Optional modifier for logical name table entries; appropriate values are as follows:
LB.LOC =1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

5-158 Directive Descriptions

PFCSS$

tbmsk

Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

prbouf
Address of the primary file specification buffer

prsz
Size (in bytes) of the primary file specification buffer

rsbuf
Address of the resulting file specification buffer

1ssz
Size (in bytes) of the resulting file specification buffer

rslen
Address of a word to receive the resulting string size

prsblk
Address of the parse block

prssz
Size (in bytes) of the parse block

dfnbk
Address of the default name block

dfnsz
Gize of the default name block

rsmsk
Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FSSNDF is set, the
device is not defaulted to and the LUN is not assigned. (FS$NDF has no meaning for the
FSS$ directive.)

Directive Descriptions 5-159

PFCS$

Macro Expansion
PFCS$ MOD,TBMSK,LUN,PRBUF, PRSZ,RSBUF ,RSSZ,RSLEN, PRSBLK , PRSSZ , DFNBK , DFNSZ , RSMSK

.BYTE 207.,13. ;PFCS$ MACRO DIC, DPB SIZE = 13(10) WORDS
.BYTE 8. ;PFCS$ SUBFUNCTION

.BYTE MOD ;MODIFIER

.BYTE LUN ;LUN TO BE ASSIGNED

.BYTE TBMSK ; INHIBIT MASK

.WORD PRBUF ;PRIMARY FILE SPECIFICATION ADDRESS

-WORD PRSZ ;PRIMARY FILE SPECIFICATION LENGTH

.WORD RSBUF ;RESULTING FILE SPECIFICATION BUFFER ADDRESS
.WORD RSSZ ;RESULTING FILE SPECIFICATION BUFFER SIZE
.WORD RSLEN ;RESULTING FILE SPECIFICATION LENGTH
.WORD PRSBLK ;PARSE BLOCK ADDRESS

.WORD PRSSZ ;PARSE BLOCK LENGTH

.WORD DFNBK ;DEFAULT NAME BLOCK ADDRESS

.WORD DFNSZ ; DEFAULT NAME BLOCK LENGTH

.WORD RSMSK ; SUPPRESSION MASK

Local Symbol Definitions

F.LFUN Subfunction value (1)

FIMOD Logical name modifier (1)

FLLUN LUN number (1)

F.LTBL Table inhibit mask (1)

F.LPBF Address of the primary file specification buffer (2)
E.LPSZ Size of the primary file specification buffer in bytes (2)
F.LRBF Address of the resulting file specification buffer (2)
F.LRSZ Size of the resulting file specification buffer in bytes (2)
FLRLN Length of the resulting file specification (2)

F.LPRS Address of parse block (2)

F.LPRZ Length of parse block (2)

F.LDBF Address of the default name block (2)

F.LDSZ Size of the default name block (2)

FLMSK Resulting string suppression mask (2)

DSW Return Codes

1S.sUC Successful completion.
IE.IDU Invalid device or unit.
IE.ILU Invalid LUN.

5-160 Directive Descriptions

PFCS$

IE.LNF Logical translation failed. The O$STAT word in the parse block contains the subcode
for the failure. (See the description of the FSS$ directive.)

IE.LNL LUN in use.

IE.ADP Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

IE.SDP DIC or DPB size is invalid.

Notes

The parse block has the following format:

1. O$STAT (status word). Indicates the status of the operation. This field can contain the
following values:

SuU$sSuUC
ER$NOD
ER$DEV
ER$DIR
ER$FNM
ER$TYP
ER$VER
ER$ESS
ER$XTR
ER$BEQ
ER$FTB
ER$TRN

Success

Error in node name (or imbalanced nodes for SRENAME)
Bad device or inappropriate device type

Error in directory name

Error in file name

Error in file type

Error in version number

Expanded string area too short

Extraneous file detected during parsing

Bad logical name equivalence string

File specification became too big because of logical names

Too many logical name translations

2. O$FLAG (flag word). The following flags indicate what was found in the file specification:

FS$NOD
FS$DEV
FS$DIR
FS$QUO
FS$NAM
FS$TYP
FS$VER
FS$WCH
FS$WDI

Node present

Device present

Directory

Quoted file name present
File name present

File type present

File version present
Wildcard character present

Wild directory

Directive Descriptions 5-161

PFCS$

FS$WNA Wild file name

FS$WTY Wild file type

FS$WVE Wild file version

O$NODS: Length of the node specification.
O$NODA: Address of the node specification.
O$DEVS: Length of the device specification.
O$DEVA: Address of the device specification.
O$DIRS: Length of the directory specification.
O$DIRA: Address of the directory specification.
O$NAMS: Length of the file name specification.
10. O$NAMA: Address of the file name specification.
11. O$TYPS: Length of the file type specification.

12. O$TYPA: Address of the file type specification.

13. O$VERS: Length of the file version specification.
14. O$VERA: Address of the file version specification.
15. O$TRLS: Length of the trailing string.

16. O$TRLA: Address of the trailing string.

17. O$ACCS: Length of the access control specification.
18. O$ACCA: Address of the access control specification.

19. O$LTYP (logical type byte). The first element that could be a logical name. This field can
contain the following words:

¥ X NI W

P.LNON No logical name present
P.LNAM File name may be a logical name
PLDEV Device name may be a logical name
P.LNOD Node specification may be a logical name
20. O$PLEN: Length of the parse block.
The above offsets are defined by the macro LNBDF$, not by FSS$.

Although the entire parse block is 20 words long, the size of the parse block specified in the
call (prssz) determines how much of the block is returned.

5-162 Directive Descriptions

PRMS$

5.55 Parse RMS

The Parse RMS directive takes an RMS-11 string and returns a filled-in parse block.

FORTRAN Call
CALL PRSRMS ([mod],[itbmsk],[lun],prbuf,prsz,rsbuf,rssz,[rslen},[prsblk,prssz],[dfbuf,dfsz] [rsmsk][,idsw])

Parameters
mod
Modifier for logical name table entries; accepted values are as follows:
LB.LOC =1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

itbmsk

Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4

Session (IN.SES) 20

Task (IN.TSK) 1
lun

LUN to be assigned

prouf
Array containing the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

prsz

Size (in bytes) of the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

rsbut
Array containing the resulting file specification buffer

1ssz
Size (in bytes) of the resulting file specification buffer

rslen
Integer to receive the resulting string size

Directive Descriptions 5-163

PRMSS

prsblk
Array containing the parse block

prssz
Size (in bytes) of the parse block

dfbuf
Address of the default file specification buffer; dfbuf and dfsz must both be specified or
both omitted; if omitted, a comma between their positions must be present unless no other
parameters follow

dfsz
Size of the default file specification buffer; dfbuf and dfsz must both be specified or both
omitted; if omitted, a comma between their positions must be present unless no other
parameters follow

rsmsk
Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FS$NDF is set, the
device and directory are not defaulted to and the LUN is not assigned. (FS$NDF has no
meaning for the FSS$ directive.)

idsw
Integer to receive the Directive Status Word.

Macro Call
PRMS$ [mod],[tbmsk],[lun],prbuf,prsz,rsbuf,rssz,[rslen],[prsblk], [prssz], [dfbuf],[dfsz][,rsmsk]

Parameters
mod
Modifier for logical name table entries; accepted values are as follows:
LB.LOC =1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

5-164 Directive Descriptions

PRMSS

tbmsk

Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

prouf
Address of the primary file specification buffer

prsz
Size (in bytes) of the primary file specification buffer

rsbut
Address of the resulting file specification buffer

rssz
Size (in bytes) of the resulting file specification buffer

rslen
Address of a word to receive the resulting string size

prsblk
Address of the parse block

prssz
Size (in bytes) of the parse block

dfbuf
Address of the default file specification buffer

dfsz
Size (in bytes) of the default file specification buffer

rsmsk
Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FSSNDF is set, the
device and directory are not defaulted to and the LUN is not assigned. (FS$NDF has no
meaning for the FSS$ directive.)

Directive Descriptions 5-165

PRMSS

Macro Expansion
PRMS$ MOD, TBMSK,LUN ,PRBUF, PRSZ, RSBUF , RSSZ ,RSLEN , PRSBLK, PRSSZ , DFBUF , DFSZ , RSMSK

.BYTE 207.,13. ;PRMS$ MACRO DIC, DPB SIZE = 13(10) WORDS
.BYTE 7. ;PRMS$ SUBFUNCTION

.BYTE MOD ;MODIFIER

.BYTE LUN ;LUN TO BE ASSIGNED

.BYTE TBMSK ; INHIBIT MASK

.WORD PRBUF ;PRIMARY FILE SPECIFICATION ADDRESS

.WORD PRSZ ;PRIMARY FILE SPECIFICATION LENGTH

.WORD RSBUF ;RESULTING FILE SPECIFICATION BUFFER ADDRESS
.WORD RSSZ ;RESULTING FILE SPECIFICATION BUFFER SIZE
.WORD RSLEN ;RESULTING FILE SPECIFICATION LENGTH
.WORD PRSBLK ;PARSE BLOCK ADDRESS

.WORD PRSSZ ;PARSE BLOCK LENGTH

.WORD DFBUF ;DEFAULT FILE SPECIFICATION ADDRESS

.WORD DFSZ ;DEFAULT FILE SPECIFICATION LENGTH

.WORD RSMSK ;SUPPRESSION MASK

Local Symbol Definitions

RLFUN Subfunction value (1)

R.LMOD Logical name modifier (1)

RLLUN LUN number (1)

R.LTBL Table inhibit mask (1)

R.LPBF Address of the primary file specification buffer (2)
R.LPSZ Size of the primary file specification buffer in bytes (2)
R.LRBF Address of the resulting file specification buffer (2)
RILRSZ Size of the resulting file specification buffer in bytes (2)
RLLRLN Length of the resulting file specification (2)

R.LPRS Address of parse block (2)

RLPRZ Length of parse block (2)

R.LDBF Address of the default file specification buffer (2)
RLDSZ Size of the default file specification buffer in bytes (2)
R.LMSK Resulting string suppression mask (2)

DSW Return Codes

IS.SUC Successful completion.
IE.IDU Invalid device or unit.
IE.ILU Invalid LUN.

5-166 Directive Descriptions

IE.LNF

IE.LNL
IE.ADP

IE.SDP

Notes

PRMS$

Logical translation failed. The O$STAT word in the parse block contains the subcode
for the failure. (See the description of the FSS$ directive.)

LUN in use.

Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

DIC or DPB size is invalid.

1. The parse block of this directive is the same as that listed for the Parse FCS (PFCSS$)
directive.

2. Although the entire parse block is 20 words long, the size of the parse block specified in
the call (prssz) determines how much of the block is returned.

Directive Descriptions 5-167

QIOS

5.56 Queue I/O Request

The Queue I/O Request directive instructs the system to place an I/O request for an indicated
physical device unit into a queue of priority-ordered requests for that device unit. The physical
device unit is specified as a logical unit number (LUN) assigned to the device.

The Executive declares a significant event when the I/O transfer completes. If the directive call
specifies an event flag, the Executive clears the flag when the request is queued and sets the
flag when the significant event occurs.

The 1/0 status block is also cleared when the request is queued and is set to the final I/O status
when the I/O request is complete. If an AST service routine entry-point address is specified,
the AST occurs upon 1/O completion, and the task’s Wait-for mask word, PS, PC, DSW, and
the address of the I/O status block are pushed onto the task’s stack.

The description below deals solely with the Executive directive. The device-dependent
information can be found in the RSX-11M-PLUS and Micro/RSX 1/0 Drivers Reference Manual.
See the Notes.
FORTRAN Call

CALL QIO (fnc,lun,[efn][pri],[isb].[prl][,ids])

Parameters
fnc
I/0O function code!

lun
Logical unit number

efn
Event flag number

pri
Priority (ignored, but parameter must be present in call)
isb
A 2-word integer array to receive final 1/O status
pri
A 6-word integer array containing device-dependent parameters to be placed in parameter

words 1 through 6 of the DPB. Fill in this array by using the GETADR routine (see Section
1.5.2.4).

ids
Directive status

Macro Call
QIO$ fnc,lun,[efn),[pri] [isb],[ast],[pr]]

1 /O function code definitions are included in the RSX-11M-PLUS and Micro/RSX 1/0O Drivers Reference Manual.

5-168 Directive Descriptions

QIOS$

Parameters
fnc
1/0 function code!

lun
Logical unit number

efn
Event flag number

pri
Priority (ignored, but Q.IOPR byte must be present in DPB)

isb
Address of 1/0 status block

ast
Address of entry point of AST service routine

prl
Parameter list of the form <P1,..P6>

Macro Expansion
QI0$ 10.RVB,7,52., ,I0STAT,I0AST,<IOBUFR,512.>

BYTE 1,12. :QI0$ MACRO DIC, DPB SIZE = 12(10) WORDS
.WORD IO0.RVB ; FUNCTION=READ VIRTUAL BLOCK

LWORD 7 ;LOGICAL UNIT NUMBER 7

.BYTE 52.,0 ;EFN 52(10), PRIORITY IGNORED

_WORD IOSTAT : ADDRESS OF 2-WORD I/0 STATUS BLOCK
_WORD IOAST ; ADDRESS OF I/0 AST ROUTINE

_WORD IOBUFR ;ADDRESS OF DATA BUFFER

.WORD 512. :BYTE COUNT=512(10)

,WORD O ;ADDITIONAL PARAMETERS...

WORD O ;...NOT USED IN...

.,WORD O ;...THIS PARTICULAR. ..

,WORD OINVOCATION OF QUEUE I/0

Local Symbol Definitions
QIOFN I/0 function code (2)
QIOLU Logical unit number (2)
Q.IOEF Event flag number (1)
Q.IOPR Priority (1)

1 1/0 function code definitions are included in the RSX-11M-PLUS and Micro/RSX 1/0 Drivers Reference Manual.

Directive Descriptions 5-169

QIO$

Q.IOSB
Q.IOCAE
Q.IOPL

Address of 1/0 status block (2)
Address of 1/O-done AST entry point (2)

Parameter list (six words) (12)

DSW Return Codes

I5.5UC
IE.UPN
IE.ULN
IE.HWR
IE.PRI
IE.ILU
IE.IEF

IE.ADP
IE.SDP

Notes

Successful completion.

Insufficient dynamic memory.

Unassigned LUN.

Device driver not loaded.

Task other than despooler attempted a write-logical-block operation.
Invalid LUN.

Invalid event flag number (EFN <0, or EFN> 96 if group global event flags exist
for the task’s group or EFN>> 64 if not).

Part of the DPB or I/O status block is out of the issuing task’s address space.
DIC or DPB size is invalid.

1. If the directive call specifies an AST entry-point address, the task enters the AST service
routine with its stack in the following state:

SP+10
SP+06
SP+04
SP+02
SP+00

Event-flag mask word

PS of task prior to AST
PC of task prior to AST
DSW of task prior to AST

Address of 1/0 status block, or zero if none was specified in the QIO directive

The address of the 1/0O status block, which is a trap-dependent parameter, must be removed
from the task’s stack before an AST Service Exit directive is executed.

2. If the directive is rejected, the specified event flag is not guaranteed to be cleared or set.
Consequently, if the task indiscriminately executes a Wait-for or Stop-for directive and the
QIO directive is rejected, the task may wait indefinitely. Care should always be taken to
ensure that the directive was completed successfully.

3. Tasks (or regions) cannot normally be checkpointed with I/O outstanding for the following’

reasons:

* If the QIO directive results in a data transfer, the data transfers directly to or from the
user-specified buffer.

* Ifan I/O status block address is specified, the directive status is returned directly to the
I/0 status block.

5-170 Directive Descriptions

QlOo$

The Executive waits until a task has no outstanding I/O before initiating checkpointing in
all cases except the one described below.

On systems that support buffered 1/O, drivers that buffer 1/O check for the following
conditions for a task:

¢ That the task is checkpointable
¢ That checkpointing is enabled

If these conditions are met, the driver and/or the Executive buffers the I/O request internally
and the task is checkpointable with this outstanding I/0. If the task also entered a Wait-for
state when the I/O was issued (see the QIOW$ directive) or subsequently enters a Wait-for
state, the task is stopped. Any competing task waiting to be loaded into the partition can
checkpoint the stopped task, regardless of priority. If the stopped task is checkpointed,
the Executive does not bring it back into memory until the stopped state is terminated by
completion of buffered I/O or satisfaction of the Wait-for condition.

Not all drivers buffer I/O requests. The terminal driver is an example of one that does.

Any task that is linked to a common (read-only) area can issue QIO write requests from
that area.

If the specified event flag is group global, the use count for the event flag’s group is
incremented to prevent premature elimination of the event flags. The use count is run
down when the following events occur:

* The I/O is completed.

e The I/O is killed by reassigning the specified LUN with the ALUN$ directive.
e The I/0 is killed by issuing the IO.KIL function for the specified LUN.

* The task exits before I/O is completed.

Directive Descriptions 5-171

QIOWS

5.57 Queue I/O Request and Wait

The Queue I/O Request and Wait directive is identical to the Queue I/O Request directive in all
but one aspect: when the Wait variation of the directive specifies an event flag, the Executive
automatically effects a Wait for Single Event Flag directive.

Consult the description of the Queue 1/O Request directive for a definition of the parameters,
the local symbol definitions, the DSW return codes, and explanatory notes.
FORTRAN Call

CALL WTQIO (fnc,lun,efn,[pri],[isb],[prl][,ids])

Parameters
fnc
I/0 function code’

lun
Logical unit number

efn
Event flag number

pri

Priority (ignored, but parameter must be present in call)
isb

A 2-word integer array to receive final I/O status
prl

A 6-word integer array containing device-dependent parameters to be placed in parameter
words 1 through 6 of the DPB

ids
Directive status
Macro Call
QIOWS$ fnc,lun,[efn],[pri],[isb] [ast][,pr]]

Parameters
fnc
I/0 function code!

lun
Logical unit number

efn
Event flag number

1 I/0 function code definitions are included in the RSX-11M-PLUS and Micro/RSX 1/0 Drivers Reference Manual.

5-172 Directive Descriptions

pri

QIOWS

Priority (ignored, but Q.IOPR byte must be present in DPB)

isb

Address of 1/0 status block

ast

Address of entry point of AST service routine

prl

Parameter list of the form <P1,...P6>

Macro Expansion

QIOWS
.BYTE
.WORD

.WORD
.BYTE

.WORD
.WORD
.WORD

.WORD

.WORD
.WORD
.WORD
.WORD

I0.RVB,7,52.,,I0STAT, I0AST,<IOBUFR,512.>

3,12. :QIOW$ MACRO DIC, DPB SIZE = 12(10) WORDS
I0.RVB ;FUNCTION=READ VIRTUAL BLOCK

7 ;LOGICAL UNIT NUMBER 7

52.,0 ;EFN 52(10), PRIORITY IGNORED
IOSTAT ; ADDRESS OF 2-WORD I/0 STATUS BLOCK
I0AST ; ADDRESS OF I/0 AST ROUTINE

IOBUFR ;ADDRESS OF DATA BUFFER

512. ;BYTE COUNT=512(10)

0 ;ADDITIONAL PARAMETERS...

0 ;...NOT USED IN...

0 ;...THIS PARTICULAR. ..

0 ;...INVOCATION OF QUEUE I/0

Directive Descriptions 5-173

RCSTS

5.58 Receive Data or Stop

The Receive Data or Stop directive instructs the system to dequeue a 13-word data block for
the issuing task. The data block was queued for the task with a Send Data directive or a Send,
Request, and Connect directive.

A 2-word task name of the sender (in Radix-50 format) and the 13-word data block are returned
in an indicated 15-word buffer. The task name is contained in the first two words of the buffer.

If no data has been sent, the issuing task is stopped. In this case, the sender task is expected to

~ issue an Unstop directive after sending data. A success status code of IS.SUC indicates that a
packet has been received. A success status code of IS.SET indicates that the task was stopped
and has been unstopped. The directive must be reissued to retrieve the packet.

When a slave task issues the Receive Data or Stop directive, it assumes the UIC (if it has no
outstanding group global event flag context) and TI: of the task that sent the data.
FORTRAN Call

CALL RCST ([rtname],ibuf],idsw])

Parameters
rtname
Sender task name (if not specified, data may be received from any task)

ibuf
Address of a 15-word buffer to receive the sender task name and data

idsw
Integer to receive the Directive Status Word

Macro Call
RCST$ [tname],buf

Parameters

thame
Sender task name (if not specified, data may be received from any task)

buf
Address of a 15-word buffer to receive the sender task name and data

5-174 Directive Descriptions

RCSTS

Macro Expansion
RCST$ ALPHA, TSKBUF

.BYTE 139..,4 ;RCST$ MACRO DIC, DPB SIZE = 4 WORDS
.RADS0 ALPHA ;DATA SENDER TASK NAME
.WORD TSKBUF ;BUFFER ADDRESS

Local Symbol Definitions
R.CSTN Task name (4)
R.CSBF Buffer address (2)

DSW Return Codes
IS.SUC Successful completion.

IS.SET No data was received and the task was stopped. (Note that the task must be
unstopped before it can see this status.)

IE.RSU The issuing task is a slave task with a group global context active, and the next
packet received would have changed the task’s group number.

IE.AST The issuing task is at AST state.
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Note

On all Micro/RSX systems and those RSX-11M-PLUS systems that support variable send
and receive directives (by means of the secondary-pool-support system generation option), the
Receive Data or Stop directive is treated as a 1319-word Variable Receive Data or Stop (VRCS$)
directive.

Directive Descriptions 5-175

RCVDS$

5.59 Receive Data

The Receive Data directive instructs the system to dequeue a 13-word data block for the issuing
task. The data block has been queued (FIFO) for the task by a Send Data directive.

A 2-word task name of the sender (in Radix-50 format) and the 13-word data block are returned
in an indicated 15-word buffer. The task name is contained in the first two words of the buffer.

When a slave task issues the Receive Data directive, it assumes the UIC (if it has no outstanding
group global event flag context) and TI: of the task that sent the data.
FORTRAN Call

CALL RECEIV ([tsk],buf[,,ids])

Parameters
tsk
Sender task name (if not specified, data may be received from any task)

buf
A 15-word integer array for received data

ids
Directive status

Macro Call
RCVD$ [tsk]buf

Parameters
tsk
Sender task name (if not specified, data may be received from any task)

buf
Address of a 15-word buffer

Macro Expansion
RCVD$ ALPHA,DATBUF ;TASK NAME AND BUFFER ADDRESS

.BYTE 75..,4 ;RCVD$ MACRO DIC, DPB SIZE = 4 WORDS
.RADS0 /ALPHA/ ;SENDER TASK NAME
.WORD DATBUF ; ADDRESS OF 15(10)-WORD BUFFER

Local Symbol Definitions
RVDTN Sender task name (4)
R.VDBA Buffer address (2)

5-176 Directive Descriptions

RCVDS$

DSW Return Codes

IS.sUC
IEITS
IE.RSU

IE.ADP
IE.SDP

Notes

Successful completion.
No data currently queued.

The issuing task is a slave task with a group global context active, and the next
packet to be received would have changed the task’s group number.

Part of the DPB or buffer is out of the issuing task’s address space.
DIC or DPB size is invalid.

1. On all Micro/RSX systems and those RSX-11M-PLUS systems that support variable send
and receive directives (by means of the secondary-pool-support system generation option),
the Receive Data directive is treated as a 13,5-word Variable Receive Data (VRCD$) directive.

2. If the sending task specifies a common or group global event flag in the Send Data directive,
the receiving task may use that event flag for synchronization. However, between the time
the receiver issues this directive and then issues its next instruction, the sender can send
data and set the event flag. If the next instruction is an Exit directive, any data sent during
this time will be lost because the Executive flushes the task’s receive list as part of exit
processing. Therefore, use the Exit If directive or the Receive Data or Exit directive in order
to avoid the race condition.

Directive Descriptions 5-177

RCVXS

5.60 Receive Data or Exit

The Receive Data or Exit directive instructs the system to dequeue a 13-word data block for the
issuing task. The data block has been queued (FIFO) for the task by a Send Data directive.

A 2-word task name of the sender (in Radix-50 format) and the 13-word data block are returned
in an indicated 15-word buffer. The task name is contained in the first two words of the buffer.

If no data has been sent, a task exit occurs. To prevent the possible loss of send packets, you
should not rely on I/O rundown to take care of any outstanding I/O or open files. The task
should assume this responsibility.

When a slave task issues the Receive Data or Exit directive, it assumes the UIC (if it has no
outstanding group global event flag context) and TI: of the task that sent the data.
FORTRAN Call

CALL RECOEX ([tsk],buf],,ids])

Parameters
tsk
Sender task name (if not specified, data may be received from any task)

buf
A 15-word integer array for received data

ids
Directive status

Macro Call
RCVX$ [tsk]buf

Parameters
tsk
Sender task name (if not specified, data may be received from any task)

buf
Address of a 15-word buffer

Macro Expansion

RCVX$ ALPHA,DATBUF ;TASK NAME AND BUFFER ADDRESS
.BYTE 77..4 ;RCVX$ MACRO DIC, DPB SIZE = 4 WORDS

5-178 Directive Descriptions

RCVXS

.RADSO /ALPHA/ ;SENDER TASK NAME
.WORD DATBUF ;ADDRESS OF 15(10)-WORD BUFFER

Local Symbol Definitions
R.VXTN Sender task name (4)
R.VXBA Buffer address (2)

DSW Return Codes
IS.sUC Successful completion.

IE.RSU The issuing task is a slave task with a group global context active, and the next

packet to be received would have changed the task’s group number.

IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1.

A FORTRAN program that issues the RECOEX call must first close all files by issuing CLOSE
calls. See the VAX FORTRAN User’s Guide or the PDP-11 FORTRAN-77 User's Guide for
instructions concerning how to ensure that such files are closed properly if the task exits.

To avoid the time overhead involved in the closing and reopening of files, the task should
first issue the RECEIV call. If the directive status indicates that no data was received, then
the task can close all files and issue the call to RECOEX. The following example illustrates
the same overhead saving in MACRO-11:

RCVBUF: .BLKW 15. ; Receive buffer
START: RCVX$C ,RCVBUF ; Attempt to receive message

CALL OPEN ; Call user subroutine to open files
PROC:

Process packet of data

RCVD$C ,RCVBUF ; Attempt to receive another message

BCC PROC ; If CC successful receive

CALL CLOSE ; Call user subroutine to close files
; and prepare for possible task exit

JMP START ; Make one last attempt at receiving

If no data has been sent—that is, if no Send Data directive has been issued—the task
exits. Send packets may be lost if a task exits with outstanding I/O or open files (see third
paragraph of directive description).

The Receive Data or Exit directive is useful in avoiding a possible race condition that can
occur between two tasks communicating by the Send and Receive directives. The race
condition occurs when one task executes a Receive directive and finds its receive queue
empty, but before the task can exit, the other task sends it a message. The message is lost
because the Executive flushes the receiver task’s receive queue when it exits. This condition
can be avoided by the receiving task’s executing a Receive Data or Exit directive. If the

Directive Descriptions 5-179

RCVXS

receive queue is found to be empty, a task exit occurs before the other task can send any
data. Thus, no loss of data can occur.

4. On exit, the Executive frees task resources. In particular, the Executive:
* Detaches all attached devices
* Flushes the AST queue and despecifies all specified ASTs
* Flushes the receive and receive-by-reference queues
* Flushes the clock queue for outstanding Mark Time requests for the task
¢ Closes all open files (files open for write access are locked)
* Detaches all attached regions, except in the case of a fixed task
®* Runs down the task’s I/O
* Deaccesses the group global event flags for the task’s group
* Disconnects from interrupts
* Flushes all outstanding CLI command buffers for the task
® Returns a success status (EX$SUC) to any parent tasks
* Marks for deallocation all virtual terminal units the task has created
® Breaks the connection with any offspring tasks
* TFrees the task’s memory if the exiting task was not fixed
5. If the task exits, the Executive declares a significant event.

6. On all Micro/RSX systems and those RSX-11M-PLUS systems that support variable send
and receive directives (by means of the secondary-pool-support system generation option),
the Receive Data or Exit directive is treated as a 13;p-word Variable Receive Data or Exit
(VRCX$) directive.

5-180 Directive Descriptions

RDAF$

5.61 Read All Event Flags

The Read All Event Flags directive instructs the system to read all 64 event flags for the issuing
task and record their polarity in a 64-bit (4-word) buffer.

Note
This directive does not return group global event flags (event flags 65-96).

FORTRAN Call

A FORTRAN task can read only one event flag. The call is:
CALL READEF (efn[,ids])

Parameters
efn
Event flag number
ids
Directive status
The Executive returns the status codes IS.SET (+02) and IS.CLR (00) for FORTRAN calls in
order to report event-flag polarity.
Macro Call
RDAF$ buf

Parameter
buf

Address of a 4-word buffer
Buffer Format
Word 0 Task local flags 1-16
Word 1 Task local flags 17-32
Word 2 Task common flags 33-48
Word 3 ~ Task common flags 49-64

Macro Expansion

RDAF$ FLGBUF
.BYTE 39.,2 ;RDAF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD FLGBUF ;ADDRESS OF 4-WORD BUFFER

Local Symbol Definition
R.DABA Buffer address (2)

Directive Descriptions 5-181

RDAFS

DSW Return Codes

15.5UC Successful completion.

IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-182 Directive Descriptions

RDEF$

5.62 Read Event Flag

The Read Event Flag directive tests an indicated event flag and reports its polarity in the
Directive Status Word.

FORTRAN Call
CALL READEF (iefn[,ids])

Parameters
iefn
Integer containing an event flag number
ids
Integer variable to receive the Directive Status Word
Macro Call
RDEF$ efn

Parameter

efn
Event flag number

Macro Expansion

RDEF$ 6 ;RDEF$ MACRO DIC, DPB SIZE = 2 WORDS
.BYTE 37.,2 ;VARIABLE TO RECEIVE DSW
.WORD 6

Local Symbol Definitions

The following symbol is defined locally with its assigned value equal to the byte offset from
the start of the DPB to the DPB element:

R.DEEF Event flag number (length - 2 bytes)

DSW Return Codes

IS.CLR Flag was clear.

IS.SET Flag was set.

IE.IEF Invalid event flag number (event flag number <1 or > 96).
IE.ADP Part of DPB is out of issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-183

RDXF$

5.63 Read Extended Event Flags

The Read Extended Event Flags directive instructs the system to read all local, common, and
group global event flags for the issuing task and record their polarity in a 96-bit (6-word) buffer.
FORTRAN Call

A FORTRAN task can read only one event flag. The call is:
CALL READEF (efn[,ids])

Parameters
efn
Event flag number
ids
Directive status
The Executive returns the status codes IS.SET (+02) and IS.CLR (00) for FORTRAN calls in
order to report event-flag polarity.
Macro Cail
RDXF$ buf

Parameter
buf

Address of a 6-word buffer
Buffer Format
Word 0 Task local flags 1-16
Word 1 Task local flags 17-32
Word 2 Task common flags 33-48
Word 3 Task common flags 49-64
Word 4 Task group global flags 65-80
Word 5 Task group global flags 81-96

Macro Expansion

RDXF$ FLGBUF
.BYTE 39.,3 ;RDXF$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD FLGBUF ;ADDRESS OF 6-WORD BUFFER

Local Symbol Definition
R.DABA Buffer address (2)

5-184 Directive Descriptions

DSW Return Codes

1Ss.sUC
IS.CLR
IE.ADP
IE.SDP

Successful completion.

RDXF$

Group global event flags do not exist. Words 4 and 5 of the buffer contain zero.

Part of the DPB or buffer is out of the issuing task’s address space.

DIC or DPB size is invalid.

Directive Descriptions

5-185

RLONS, RLOGS

5.64 Recursive Translation of Logical Name

The Recursive Translation of Logical Name directive returns an equivalent string from a
succession of logical translations of equivalence-name strings for the original user-specified
logical name.

The RCTLON and RLONS calls are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
operating systems. The RCTLOG and RLOGS calls are provided for compatibility with the P/OS
operating system. See the Note.

FORTRAN Calls

CALL RCTLON ([mod],[itbmsk],[status],Ins,Inssz,iens,ienssz,[rsize],[rtbmod][,idsw])
CALL RCTLOG ([mod],[itbmsk] [status],Ins,Inssz,iens,ienssz,[rsize],[rtbmod][,idsw])

Parameters

mod
Optional modifier of the logical name within a table. Ordinarily, no value would be specified
to allow any defined logical name to be found.

itbmsk
Inhibit mask to prevent a logical name table from being searched. The following symbol
bit definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LSPRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

Ins
Character array containing the logical name string

Inssz
Size (in bytes) of the logical name string

iens
Character array buffer to receive the returned equivalence name string

5-186 Directive Descriptions

RLONS, RLOGS

ienssz
Size (in bytes) of the data area for the returned equivalence name string

rsize
Word to receive the size of the equivalence name string

rtbmod

Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

idsw
Integer to receive the Directive Status Word

Macro Calls

RLON$ [mod][tbmsk],[status] Ins,Inssz,ens,enssz,[rsize],[rtbmod]
RLOG$ [mod],[tbmsk],[status]Ins,Insszens,enssz,[rsize],[rtbmod]

Parameters

mod

Optional modifier to be matched against the logical name within a table. Ordinarily, no
value would be specified to allow any logical in table to be found.

tbmsk

Inhibit mask to prevent a logical name table from being searched. The following symbol
bit definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LSPRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

Ins
Character array containing the original logical name string

Inssz
Size (in bytes) of the original logical name string

Directive Descriptions 5-187

RLONS, RLOGS

ens
Character array buffer to receive the returned equivalence name string

enssz
Size (in bytes) of the data area for the returned equivalence name string

rsize
Word to receive the size of the equivalence name string

rtbmod
Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

Macro Expansion
RLON$ MOD,TBMSK,LNS,STATUS,LNSSZ,ENS,ENSSZ,RSIZE,RTBMOD

.BYTE 207.,10. ;RLON$ MACRO DIC, DPB SIZE = 10(10) WORDS

.BYTE 14. ; SUBFUNCTION VALUE (RLOG$ = 10(10))

.BYTE MOD ;LOGICAL NAME MODIFIER

.WORD TBMSK ;LOGICAL NAME TABLE INHIBIT MASK

.WORD LNS ;LOGICAL NAME STRING ARRAY

.WORD STATUS ;LOCATION OF LOGICAL NAME STATUS

.WORD LNSSZ ;SIZE (IN BYTES) OF LOGICAL NAME STRING

-WORD ENS ;RETURNED EQUIVALENCE NAME ARRAY

-WORD ENSSZ ;SIZE (IN BYTES) OF EQUIVALENCE NAME

.WORD RSIZE ;LOCATION OF SIZE FOR RETURNED EQUIVALENCE NAME
.WORD RTBMOD ;LOCATION OF LOGICAL TABLE NUMBER (LOWER BYTE) AND

;MODIFIER VALUE OF LOCATED LOGICAL NAME (HIGHER BYTE)

Local Symbol Definitions

R.LENS Address of buffer for returned equivalence name (2)
R.LESZ Byte count of buffer for returned equivalence name (2)
R.LFUN Subfunction value (1)

R.LLNS Address of logical name string (2)

R.LLSZ Size (in bytes) of specified logical name (2)
R.LMOD Logical name modifier (1)

R.LRSZ Word for returned equivalence name size (2)
R.LRTM Word for returned table number and modifier (2)
R.LSTS Status returned from final logical translation (2)
R.LTBL Table inhibit mask (2)

5-188 Directive Descriptions

RLONS, RLOGS

DSW Return Codes

IS.sUC
IE.ITN

IE.LNF
IE.ADP

IE.SDP

Note

Successful completion.
Invalid table number specified.
The specified logical name string was not found.

Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

DIC or DPB size is invalid.

The RCTLON and RLONS$ calls are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
operating systems. The RCTLOG and RLOGS$ calls are provided for compatibility with the P
/OS operating system. When you use RCTLOG or RLOGS$, the system performs the following

actions:

e If a device name or node name ends with one or more colons, strips off one to two of the
terminating colons.

o If a physical device name string is in the form ddnnn:, compresses any leading zeros. For
example, DR005: becomes DR5.

Directive Descriptions 5-189

RMAFS$S

5.65 Remove Affinity (8S Form Recommended)

(RSX-11M-PLUS multiprocessor systems only.) The Remove Affinity directive removes the
task’s CPU affinity that was previously established by issuing a Set Affinity directive. Note that
only the $S form is available for this directive.

FORTRAN Call

CALL RMAF [(idsw)]

Parameter

idsw
Integer to receive the Directive Status Word

Macro Call
RMAF$S

Macro Expansion

RMAF$S

Mov (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 163.,1 ;RMAF$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO EXECUTIVE

Local Symbol Definitions

None

DSW Return Codes

IS.suC Successful completion.

IEITS Task installed with affinity.

IEAADP Part of the DPB is out of the issuing task’s address space.
[E.SDP DIC or DPB size is invalid.

Note

A task that is installed with task affinity must not issue this directive. Any attempt to do so
results in an IE.ITS error returned.

5-190 Directive Descriptions

RPOIS

5.66 Request and Pass Offspring Information

The Request and Pass Offspring Information directive instructs the system to request the specified
task and to chain to it by passing any or all of the parent connections from the issuing task to
the requested task. Optionally, the directive can pass a command line to the requested task.
Only a privileged or CLI task may specify the UIC and TI: of the requested task.

FORTRAN Call
CALL RPOI (tname,[iugc],[iumc] [iparen], [ibuf],[ibfl],[isc] [idnam]},[iunit],[itask],[ocbad][,idsw])

Parameters

tname

Name of an array containing the actual name (in Radix-50) of the task to be requested and
optionally chained to

iugc
Name of an integer containing the group code number for the UIC of the requested target
chain task

iumc
Name of an integer containing the member code number for the UIC of the requested target
chain task

iparen

Name of an array (or I*4 integer) containing the Radix-50 name of the parent task. This is
returned in the information buffer of the GTCMCI subroutine.

ibuf
Name of an array containing the command line text for the chained task

ibfl
Name of an integer containing the number of bytes in the command in the ibuf array

isc

Flag byte controlling the actions of this directive request when executed. The bit definitions
of this byte (only the low-order byte of the integer specified in the call is ever used) are as

follows:
RP.OEX 128. Force this task to exit on successful execution of the RPOI$ directive.
RP.OAL 1 Pass all of this task’s connections to the requested task (default is pass
none).
Note

You cannot pass all connections if the target

task is a CLI task.
RP.ONX 2 Pass the first connection in the queue, if there is one.

Directive Descriptions 5-191

RPOIS

idnam
Name of an integer containing the ASCII name of the requested task’s TI: (must be the
name of a physical device)

iunit
Name of an integer containing the unit number of the requested task’s TI:

itask
Name of an array containing the Radix-50 name the requested task is to run under.

Any task may specify a new name for the requested task as long as the requested task is
not a CLI task.

The requested task (specified in the tname parameter) must be installed in the ...tsk format.
ocbad
Name of an integer containing the pool address of the parent OCB. This value may be

obtained only in the information buffer of the GTCMCI subroutine, which only a CLI can
issue. Therefore, only a CLI can specify this argument.

idsw
Name of an integer to receive the Directive Status Word

Macro Call
RPOI$ tname,,[ugc],[umc],[parent],[bufadr],[buflen][sc],[dnam],[unit],[task],[ocbad]

Parameters

thame
Name of the task to be chained to

ugc
Group code for the UIC of the requested task

umc
Member code for the UIC of the requested task

parent
Name of issuing task’s parent task whose connection is to be passed

bufadr
Address of buffer to be given to the requested task

bufien
Length of buffer to be given to the requested task

5-192 Directive Descriptions

RPOI$

SC
Flag bits controlling the execution of this directive. The flag bits are defined as follows:

RP.OEX (200) Force issuing task to exit.
RP.OAL (1) Pass all connections (default is pass none).

Note

You cannot pass all connections if the target
task is a CLI task.

RP.ONX 2) Pass the first connection in the queue, if there is one.

dnam
ASCII name for TI: (must be the name of a physical device)

unit
Unit number of task TI:

task
Radix-50 name that the requested task is to run under. Any task may specify a new name
for the requested task as long as the requested task is not a CLI task.

The requested task (specified in the tname parameter) must be installed in the ...tsk format.

ocbad
Address of OCB to pass (CLIs only)
Local Symbol Definitions
R.POTK Radix-50 name of the task to be chained to (4)
R.POUM UIC member code (1)
R.POUG UIC group code
R.POPT Name of parent whose OCB should be passed (4)
R.POOA Address of OCB to pass (CLIs only) (2)
R.POBF Address of command buffer (2)
R.POBL Length of command (2)
R.POUN Unit number of task TI: (1)
R.POSC Flags byte (1)
R.PODV ASCII device name for TI: (2)
R.POTN Radix-50 name of task to be started (4)

Directive Descriptions 5-193

RPOIS

Macro Expansion

RPOI$
.BYTE
.RAD50

.BLKW

.BYTE
.BYTE

.RAD50
.WORD

.WORD
.WORD

.BYTE
.BYTE

.ASCII
.RAD50

tname, , ,ugc,umc,ptsk,buf ,buflen,sc,dev,unit,task, ocbad

11.,16. ;RPOI$ MACRO DIC, DPB SIZE = 16(10) WORDS
/tname/ ;NAME OF TASK TO CHAIN TO

3 ; RESERVED

umc ;UIC MEMBER CODE

ugce ;UIC GROUP CODE

/ptsk/ :NAME OF TASK WHOSE OCB SHOULD BE PASSED
ocbad ;ADDRESS OF 0CB

buf ;ADDRESS OF BUFFER TO SEND

buflen ;LENGTH OF BUFFER

unit ;UNIT NUMBER OF TI: DEVICE

sc ;PASS BUFFER AS SEND PACKET OR COMMAND CODE
/dev/ ;ASCII NAME OF TI: OF REQUESTED TASK
/task/ ;NAME THAT REQUESTED TASK IS TO RUN UNDER

DSW Return Codes

IE.UPN

IE.INS

IE.ACT
IE.IDU

IEITS

IE.NVR
IE.ALG

IE.PNS
IE.ADP

IE.SDP

There was insufficient dynamic memory to allocate an Offspring Control Block,
command-line buffer, Task Control Block, or Partition Control Block.

The specified task was not installed, or it was a CLI but no command line was
specified.

The specified task was already active and it was not a command line interpreter.

The specified virtual terminal unit does not exist or was not created by the issuing
task.

A task that is not a CLI specified a CLI-only parameter or specified passing all
connections to a CLI.

There is no Offspring Control Block from the specified parent task.

A CLI specified a parent name and an Offspring Control Block address that did not
describe the same connection, or either a parent name or an Offspring Control Block
address was specified and the pass-all-connections flag or the pass-next-connection
flag was set.

The Task Control Block cannot be created in the same partition as its prototype.

Part of the DPB, exit status block, or command line is out of the issuing task’s
address space.

DIC or DPB size is invalid.

5-194 Directive Descriptions

RQSTS

5.67 Request Task

The Request Task directive instructs the system to activate a task. The task is activated and
subsequently runs contingent upon priority and memory availability. The Request Task directive
is the basic mechanism used by running tasks to initiate other installed (dormant) tasks. The
Request Task directive is a frequently used subset of the Run directive. See the Notes.

FORTRAN Call
CALL REQUES (tsk,[opt][,ids])

Parameters

tsk
Task name

opt
A 4-word integer array containing the following information:
opt(1) Partition name, first half (ignored, but must be present)
opt(2) Partition name, second half (ignored, but must be present)
opt(3) Priority (ignored, but must be present)
opt(4) User Identification Code

ids
Directive status

Macro Call
RQST$ tsk,[prt]{pri][,ugc,umc]

Parameters

tsk
Task name

prt
Partition name (ignored, but must be present)

pri
Priority (ignored, but must be present)

ugc
UIC group code

umc
UIC member code

Directive Descriptions 5-195

RQSTS

Macro Expansion
RQST$ ALPHA,,,20,10

.BYTE 11.,7 ;RQST$ MACRO DIC, DPB SIZE = 7 WORDS
.RAD50 /ALPHA/ ;TASK "ALPHA"

.WORD 0,0 ;PARTITION IGNORED

.WORD O ;PRIORITY IGNORED

.BYTE 10,20 ;UIC UNDER WHICH TO RUN TASK

Local Symbol Definitions
R.QSTN Task name (4)
R.QSPN Partition name (4)
R.QSPR Priority (2)
R.QSGC UIC group (1)
R.QSPC UIC member (1)

DSW Return Codes
IS.sUC Successful completion.

IEUPN Insufficient dynamic memory.

IE.INS Task is not installed.

IE.ACT Task is already active.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1.
2.

The requested task must be installed in the system.

If the partition in which a requested task is to run is already occupied, the Executive
places the task in a queue of tasks waiting for that partition. The requested task then
runs, depending on priority and resource availability, when the partition is free. Another
possibility is that checkpointing may occur. If the current occupant or occupants of the
partition are checkpointable, have checkpointing enabled, and are of lower priority than the
requested task, they are written to disk when their current outstanding I/O completes; the
requested task is then read into the partition.

Successful completion means that the task has been declared active, not that the task is
actually running,

The requested task acquires the same TI: terminal assignment as that of the requesting task.
The requested task always runs at the priority specified in its task header.

A task that executes in a system-controlled partition requires dynamic memory for the
Partition Control Block used to describe its memory requirements.

5-196 Directive Descriptions

RQSTS

7. On systems that support multiuser protection, each active task has two UICs: a protection
UIC and a default UIC. These are both returned when a task issues a Get Task Parameters
directive (GTSK$). The UICs are used in the following ways:

® The protection UIC determines the task’s access rights for opening files and attaching to
regions. When a task attempts to open a file, the system compares the task’s protection
UIC against the protection mask of the specified UFD. The comparison determines
whether the task is to be considered for system, owner, group, or world access.

® The default UIC is used by the File Control Services (FCS) to determine the default UFD
when a file-open operation does not specify a directory and, on Micro/RSX systems, if
there is no default directory string. (The default UIC has no significance when a task
attaches to a region.)

On multiuser protection systems, each terminal also has a protection UIC and a default
UIC. If a terminal is nonprivileged, the protection UIC is the login UIC and the default UIC
is the UIC specified in the last SET /UIC command issued. If no SET /UIC command has
been issued, the default UIC is equal to the login UIC. If the terminal is privileged, both
the protection and the default UICs are equal either to the UIC specified in the last SET
/UIC command or to the login UIC if a SET /UIC command has not been issued.

The system establishes a task’s UICs when the task is activated. In general, when the
MCR dispatcher or the MCR or DCL RUN command activates a task, the task assumes
the protection and default UICs of the issuing terminal. However, if you specify the /UIC
keyword to the MCR or DCL INSTALL or RUN command, the specified UIC becomes the
default UIC for the activated task; and if the issuing terminal is privileged, the specified
UIC becomes the activated task’s protection UIC as well.

The system establishes UICs in the same manner when one task issues a Request directive
to activate another task. The protection and default UICs of the issuing task generally
become the corresponding UICs of the requested task. However, if a nonprivileged task
specifies a UIC in a Request directive, the specified UIC becomes only the default UIC for
the requested task. If a privileged task specifies a UIC in a Request directive, the specified
UIC becomes both the protection and default UIC for the requested task.

8. On RSX-11M-PLUS systems, if you are using named directory support, the requested task
acquires the same default directory string as that of the requesting task. This string is used
by the File Control Services (FCS) when a file-open operation does not specify a directory.

Directive Descriptions 5-197

RREFS

5.68 Receive By Reference

The Receive By Reference directive requests the Executive to dequeue the next packet in the
receive-by-reference queue of the issuing (receiver) task. Optionally, the task will exit if there
are no packets in the queue. The directive may also specify that the Executive proceed to map
the region referred to.

If successful, the directive declares a significant event.

Each reference in the task’s receive-by-reference queue represents a separate attachment to a
region. If a task has multiple references to a given region, it is attached to that region the
corresponding number of times. Because region attachment requires system dynamic memory,
the receiver task should detach from any region that it was already attached to in order to
prevent depletion of the memory pool. That is, the task needs to be attached to a given region
only once.

If the Executive does not find a packet in the queue and the task has set WS.RCX in the window
status word (W.NSTS), the task exits. If WS.RCX is not set, the Executive returns the DSW
code IE.ITS.

If the Executive finds a packet, it writes the information provided to the corresponding words
in the Window Definition Block. This information provides sufficient information to map
the reference, according to the sender task’s specifications, with a previously created address
window.

If the address of a 10-word receive buffer has been specified (W.NSRB in the Window Definition
Block), then the sender task name and the eight additional words passed by the sender task
(if any) are placed in the specified buffer. If the sender task did not pass on any additional
information, the Executive writes in the sender task name and eight words of zero.

If the WS.MAP bit in the window status word has been set to 1, the Executive transfers control
to the Map Address Window directive to attempt to map the reference.

When a task that has unreceived packets in its receive-by-reference queue exits or is removed,
the Executive removes the packets from the queue and deallocates them. Any related flags are
not set.

FORTRAN Call
CALL RREF (iwdb[istb][,ids])

Parameters
iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

isrb
A 10-word integer array to be used as the receive buffer. If the call omits this parameter,
the contents of iwdb(8) are unchanged.

ids
Directive status

5-198 Directive Descriptions

RREF$

Macro Call
RREF$ wdb

Parameter

wdb
Window Definition Block address

Macro Expansion

RREF$ WDBADR
.BYTE 81.,2 ;RREF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD WDBADR ;WDB ADDRESS

Wwindow Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(1) W.NID ID of an existing window if region is to be mapped
bits 0-7

iwdb(7) W.NSTS Bit settings' in the window status word:

Bit Definition

WS.MAP 1 if received reference is to be mapped

WS.RCX 1 if task exit desired when no packet is found
in the queue

iwdb(8) W.NSRB Optional address of a 10-word buffer to contain the sender
task name and additional information

Ty you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Output parameters:

Array

Element Offset Meaning

iwdb(4) W.NRID Region ID (pointer to attachment description)
iwdb(5) W.NOFF Offset word specified by sender task

Directive Descriptions 5-199

RREFS

Array

Element Offset Meaning

iwdb(6) W.NLEN Length word specified by sender task
iwdb(7) W.NSTS Bit settings! in the window status word:

Bit Definition

WS.RED 1 if attached with read access
WS.WRT 1 if attached with write access
WS.EXT 1 if attached with extend access
WS.DEL 1 if attached with delete access
WS.RRF 1 if receive was successful

The Executive clears the remaining bits.

Ty you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Local Symbol Definition
RREBA Window Definition Block address (2)

DSW Return Codes

IS.SUC Successful completion.

ISSHWR Region has incurred a parity error.

IE.ITS No packet found in the receive-by-reference queue.

IE.ADP Address check of the DPB, WDB, or the receive buffer (W.NSRB) failed.
IE.SDP DIC or DPB size is invalid.

5-200 Directive Descriptions

RRSTS

5.69 Receive By Reference or Stop

The Receive By Reference or Stop directive requests the Executive to dequeue the next packet
in the receive-by-reference queue of the issuing (receiver) task. The task will stop if there are
no packets in the queue. The directive may also specify that the Executive proceed to map the
region referred to.

If successful, the directive declares a significant event.

Each reference in the task’s receive-by-reference queue represents a separate attachment to a
region. If a task has multiple references to a given region, it is attached to that region the
corresponding number of times. Because region attachment requires system dynamic memory,
the receiver task should detach from any region that it was already attached to in order to
prevent depletion of the memory pool. That is, the task needs to be attached to a given region
only once.

If the Executive finds a packet, it writes the information provided to the corresponding words
in the Window Definition Block. This information provides sufficient information to map
the reference, according to the sender task’s specifications, with a previously created address
window.

If the address of a 10-word receive buffer has been specified (W.NSRB in the Window Definition
Block), then the sender task name and the eight additional words passed by the sender task
(if any) are placed in the specified buffer. If the sender task did not pass on any additional
information, the Executive writes in the sender task name and eight words of zero.

If the WS.MAP bit in the window status word has been set to 1, the Executive transfers control
to the Map Address Window directive to attempt to map the reference.

When a task that has unreceived packets in its receive-by-reference queue exits or is removed,
the Executive removes the packets from the queue and deallocates them. Any related flags are
not set.

FORTRAN Call
CALL RRST (iwdb,[isrb]ids])

Parameters
iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

istb

A 10-word integer array to be used as the receive buffer. If the call omits this parameter,
the contents of iwdb(8) are unchanged.

ids
Directive status

Macro Call
RRST$ wdb

Directive Descriptions 5-201

RRSTS

Parameter

wdb
Window Definition Block address

Macro Expansion

RRST$ WDBADR
.BYTE 213.,2 ;RRST$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(1) W.NID ID of an existing window if region is to be mapped
bits 0-7

iwdb(7) W.NSTS Bit setting! in the window status word:

Bit Definition

WS.MAP 1 if received reference is to be mapped

iwdb(8) W.NSRB Optional address of a 10-word buffer to contain the sender
task name and additional information

Lyf you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Output parameters:

Array

Element Offset Meaning

iwbd(4) W.NRID Region ID (pointer to attachment description)
iwdb(5) W.NOFF Offset word specified by sender task

iwdb(6) W.NLEN Length word specified by sender task
iwdb(7) W.NSTS Bit settings! in the window status word:

Bit Definition

WS.RED 1 if attached with read access
WS.WRT 1 if attached with write access
WS.EXT 1 if attached with extend access

B you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

5-202 Directive Descriptions

RRST$

Array
Element Offset Meaning

Bit Definition
WS.DEL 1 if attached with delete access

WS.RRF 1 if receive was successful

The Executive clears the remaining bits.

Local Symbol Definition
RRSBA Window Definition Block address (2)

DSW Return Codes

ISs.suC Successful completion.

ISHWR Region has incurred a parity error.

IE.ADP Address check of the DPB, WDB, or the receive buffer (W.NSRB) failed.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-203

RSUM$

5.70 Resume Task
The Resume Task directive instructs the system to resume the execution of a task that has issued
a Suspend directive.
FORTRAN Call
CALL RESUME (tsk[,ids])

Parameters
tsk
Task name
ids
Directive status
Macro Call
RSUMS$ tsk

Parameter

tsk
Task name

Macro Expansion

RSUM$ ALPHA
.BYTE 47..,3 ;RSUM$ MACRO DIC, DPB SIZE = 3 WORDS
.RAD50 /ALPHA/ ;TASK "ALPHA"

Local Symbol Definition
RSUTN Task name (4)

DSW Return Codes

IS.SUC Successful completion.

IE.INS Task is not installed.

IE.ACT Task is not active.

IE.ITS Task is not suspended.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-204 Directive Descriptions

RSUMS$

Note

Normally, the RSUMS$ directive searches in primary pool for the Task Control Block (TCB) of
the task to be resumed. On RSX-11M-PLUS and Micro/RSX systems, however, the TCB for
the inactive version of a task is kept in secondary pool. RSUM$ does not search secondary
pool when it is looking for the TCB of the specified task because it cannot resume a task that
is not active. Therefore, when the task is not found in primary pool, RSUMS$ returns the error
message, “Task is not installed.”

Directive Descriptions 5-205

RUNS

5.71 Run Task

The Run Task directive causes a task to be requested at a specified future time and, optionally,
to be requested periodically. The schedule time is specified in terms of delta time from issuance.
If the smg, rmg, and mt parameters are omitted, the Run directive is the same as the Request
directive, except for the following:

* Run causes the task to become active 1 clock tick after the directive is issued.
* The system always sets the TI: device for the requested task to CO:.
See the Notes.

FORTRAN Call
CALL RUN (tsk,[opt],smg,snt,[rmg],[rnt][,ids])

Parameters

tsk
Task name

opt
A 4-word integer array:
opt(1) Partition name, first half (ignored, but must be present)
opt(2) Partition name, second half (ignored, but must be present)
opt(3) Priority (ignored, but must be present)
opt(4) User Identification Code

smg

Schedule delta magnitude

snt
Schedule delta unit (either 1, 2, 3, or 4)

rmg
Reschedule interval magnitude

mt
Reschedule interval unit

ids
Directive status

The ISA standard call for initiating a task is also provided:

Format
CALL START (tsk,smg,snt,ids])

5-206 Directive Descriptions

Parameters

tsk
Task name

smg
Schedule delta magnitude

snt
Schedule delta unit (either 0, 1, 2, 3, or 4)

ids
Directive status

Macro Call
RUNS$ tsk,[prt] [pri] [ugc] [umc],smg,snt],rmg,mt]

tsk
Task name

prt
Partition name (ignored, but must be present)

pri
Priority (ignored, but must be present)

ugc
UIC group code

umc
UIC member code

smg
Schedule delta magnitude

snt
Schedule delta unit (either 1, 2, 3, or 4)

rmg
Reschedule interval magnitude

mit
Reschedule interval unit

RUNS

Directive Descriptions 5-207

RUNS

Macro Expansion

RUNS
.BYTE
.RADS0

.WORD
-WORD

.BYTE
.WORD
.WORD

.WORD
.WORD

ALPHA,,,20,10,20.,3,10.,3

17.,11. ;RUN$ MACRO DIC, DPB SIZE = 11(10) WORDS
/ALPHA/ ; TASK "ALPHA"

0,0 ; PARTITION IGNORED

0 ;PRIORITY IGNORED

10,20 ;UIC TO RUN TASK UNDER

20. ; SCHEDULE MAGNITUDE=20(10)

3 ; SCHEDULE DELTA TIME UNIT=MINUTE (=3)
10. ;RESCHEDULE INTERVAL MAGNITUDE=10(10)

3 ;RESCHEDULE INTERVAL UNIT=MINUTE (=3)

Local Symbol Definitions

R.UNTN Task name (4)

R.UNPN Partition name (4)
R.UNPR Priority (2)

R.UNGC UIC group code (1)
R.UNPC UIC member code (1)
R.UNSM Schedule magnitude (2)
R.IUNSU Schedule unit (2)
R.UNRM Reschedule magnitude (2)
R.UNRU Reschedule unit (2)

DSW Return Codes
For CALL RUN and RUNS$:

IS.SUC
IE.UPN
IE.ACT
IE.INS
IE.PRI
IE.ITI
IE.ADP
IE.SDP

Successful completion.

Insufficient dynamic memory.

Multiuser task name specified.

Task is not installed.

Nonprivileged task specified a UIC other than its own.
Invalid time parameter.

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

5-208 Directive Descriptions

For

RUNS

CALL START:

The following positive error codes are returned for ISA calls:

2 Insufficient dynamic storage.
3 Specified task not installed.
94 Invalid time parameter.
98 Invalid event flag number.
99 Part of DPB is out of task’s address space.

100 DIC or DPB size is invalid.

Notes

1. On multiuser protection systems, a nonprivileged task cannot specify a UIC that is not equal
to its own protection UIC. A privileged task can specify any UIC.

2. The target task must be installed in the system.

3. If there is not enough room in the partition in which a requested task is to run, the Executive
places the task in a queue of tasks waiting for that partition. The requested task will then
run, depending on priority and resource availability, when the partition is free. Another
possibility is that checkpointing will occur. If the current occupant or occupants of the
partition are checkpointable, have checkpointing enabled, are of lower priority than the
requested task, or are stopped for terminal input, they will be written to disk when their
current outstanding I/O completes. The requested task will then be read into the partition.

4. Successful completion means the task has been made active. It does not mean that the task
is actually running.

5. Time Intervals

The Executive returns the code IE.ITI in the DSW if the directive specifies an invalid time
parameter. A time parameter consists of two components: the time interval magnitude and
the time interval unit.

A legal magnitude value (smg or rmg) is related to the value assigned to the time interval
unit snt or mt. The unit values are encoded as follows:

For an ISA FORTRAN call (CALL START):
0 Ticks. A tick occurs for each clock interrupt and is dependent on the type of clock
installed in the system.

For a line-frequency clock, the tick rate is either 50 or 60 per second, corresponding
to the power-line frequency.

For a programmable clock, a maximum of 1000 ticks per second is available. (The
exact rate is determined during system generation.)

1 Milliseconds. The subroutine converts the specified magnitude to the equivalent
number of system clock ticks.

Directive Descriptions 5-209

RUNS

For all other FORTRAN and all macro calls:

1 Ticks. See definition of ticks above.

For both types of FORTRAN calls and all macro calls:
2 Seconds

3 Minutes

4 Hours

The magnitude is the number of units to be clocked. The following list describes the
magnitude values that are valid for each type of unit. In no case can the magnitude exceed
24 hours. The list applies to both FORTRAN and macro calls:

If unit = 0, 1, or 2, the magnitude can be any positive value with a maximum of 15 bits.
If unit = 3, the magnitude can have a maximum value of 1440.
If unit = 4, the magnitude can have a maximum value of 24(10).

6. The schedule delta time is the difference in time from the issuance of the RUN$ directive
to the time the task is to be run. This time may be specified in the range from 1 clock tick
to 24 hours.

7. The reschedule interval is the difference in time from task initiation to the time the task is to
be reinitiated. If this time interval elapses and the task is still active, no reinitiation request
is issued. However, a new reschedule interval is started. The Executive will continually try
to start a task, wait for the specified time interval, and then restart the task. This process
continues until a CSRQ$ (Cancel Scheduled Initiation Requests) directive or an MCR or
DCL CANCEL command is issued.

8. Run requires dynamic memory for the clock-queue entry used to start the task after the
specified delta time. If the task is to run in a system-controlled partition, further dynamic
memory is required for the task’s dynamically allocated Partition Control Block (PCB).

9. If optional rescheduling is not desired, then the macro call should omit the arguments rmg
and rnt.

5-210 Directive Descriptions

SCAAS

5.72 Specify Command Arrival AST

The Specify Command Arrival AST directive instructs the system to enable or disable command
arrival ASTs for the issuing CLI task. If command arrival ASTs are enabled, the Executive
transfers control to a specified address when commands have been queued to the CLL

Only CLI tasks can use this AST.

The format of the stack when the AST routine is entered is as follows:
SP+10 Zero since no event flags are involved

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 DSW of task prior to AST

SP+00 Address of command buffer just queued

The AST routine must remove the command buffer address from the stack before issuing an
ASTX$ directive.

The command buffer address may be used when issuing a GCCI$ directive.

FORTRAN Call
Not supported

Macro Call
SCAAS$ [ast]

Parameter

ast

AST service-routine entry point. Omitting this parameter disables command arrival ASTs
for the issuing task until the directive is respecified.

Macro Expansion

SCAA$ ast v
.BYTE 173.,2 ; SCAA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD ast ; ADDRESS OF AST ROUTINE

Local Symbol Definition
S.CAAE Address of AST routine (2)

DSW Return Codes

IE.ITS ASTs are already not desired.
IE.AST Directive issued from AST state.
IE.PRV Issuing task is not a CLI.

Directive Descriptions 5-211

SCAAS

IEUPN Insufficient dynamic memory.
IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

5-212 Directive Descriptions

SCALSS

5.73 Supervisor Call (§S Form Recommended)

(RSX-11M-PLUS systems only.) The Supervisor Call directive is issued by a task in user mode
or supervisor mode to call a supervisor-mode library routine. Returning to the user mode
from supervisor-mode routines entered with the SCALS$S directive (macro form) is effected by a
completion routine that is executed in supervisor mode. Note that only the $S form is available

for this directive.

Note
We strongly suggest using the Task Builder to resolve references to supervisor-
mode routines rather than explicitly using the SCAL$S directive. Doing so
allows you to take advantage of the CSM (Call Supervisor Mode) instruction,
which is used by the Task Builder.
FORTRAN Call

Not supported

Macro Call
SCAL$S saddr,caddr|,err]

Parameters
saddr
Address of the called supervisor-mode routine

caddr
Address of the completion routine for return to the caller

err
Address of error routine (see Section 1.4.3 for more information)

Macro Expansion
SCAL$S SRAD,CRAD,ERR

MOV CRAD, - (SP) ; COMPLETION ROUTINE ADDRESS

MOV SRAD, - (SP) ; SUPERVISOR ROUTINE ADDRESS

MoV (PC)+,-(SP)

.BYTE 155.,3. ;SCAL$ MACRO DIC, DPB SIZE = 3 WORDS
EMT ~0<377>

BCC .+6

CALL ERR

Local Symbol Definitions

None

Directive Descriptions

5-213

SCALSS

DSW Return Codes

IS.SUC Successful completion.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Note

This directive transfers control to the specified routine in supervisor mode with all registers
preserved and with the following stack:

Supervisor stack pointer——s|Completion routine address

PC+2 of Supervisor Call

PS of Supervisor Call

User stack pointer

The stack, as shown, represents the stack content immediately after issuing the Supervisor Call
directive. The user stack pointer is not guaranteed to remain valid.

The supervisor stack is the user stack with three words pushed onto it. It is mapped in
supervisor data space along with the rest of the user-mode mapping. Previous mode bits are
set to the caller’s mode. This is normally user mode, but it may be supervisor mode.

If there is insufficient stack space for the three words, the issuing task is aborted.

5-214 Directive Descriptions

SCLIS

5.74 Set Command Line Interpreter

The Set Command Line Interpreter directive instructs the system to set up the specified CLI as
the CLI for the indicated terminal. The issuing task must be privileged or a CLI.

If the restricted access flag (CP.RST) in the CLI status word is set, the issuing CLI task is the
only CLI task that can set a terminal to that CLL

FORTRAN Call
CALL SETCLI (icli,idev,iunit[,ids])

Parameters

icli
Name of a 2-word array element containing the name of the CLI the terminal is to be set to

idev
Name of an integer containing the ASCII name of the terminal to be set (default = TI:)

iunit
Name of an integer containing the unit number of the terminal

ids

Directive status
Macro Call

SCLI$ cli,[dev][unit]

Parameters

cli
Name of the CLI the terminal is to be set to

dev
ASCII name of the terminal to be set (default = TL)

unit
Unit number of terminal
Local Symbol Definitions
S.CIDV ASCII name of the terminal whose CLI is to be set
S.CIUN Octal unit number of terminal
S.CICN Radix-50 name of the CLI that the terminal is to be set to

Directive Descriptions 5-215

SCLIS

Macro Expansion
SCLI$ cli,dev,unit

.BYTE 173.,5 ;SCLI$ MACRO DIC, DPB SIZE = 5 WORDS
.ASCII /dev/ ;ASCII NAME OF TERMINAL TO BE SET
.WORD unit ;UNIT NUMBER

.RAD50 /cli/ ;CLI NAME

DSW Return Codes

IE.PRI Task not privileged or not a CLI. If CP.RST was set, task was not the CLI itself.
IE.IDU Device not a terminal or does not exist.

IEINS Specified CLI does not exist.

IE.UPN Insufficient dynamic memory.

IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB length is invalid.

5-216 Directive Descriptions

SDATS

5.75 Send Data

The Send Data directive instructs the system to declare a significant event and to queue (FIFO)
a 13-word block of data for a task to receive.

Note
When a local event flag is specified, the flag is set for the sending task.
When a common event flag is specified, the flag is set for all tasks.

When a group global event flag is specified, the flag is set for all tasks within
the specified group.

For all event flags, a significant event is always declared.
FORTRAN Call
CALL SEND (tsk,buf,[efn][,ids])

Parameters

tsk
Task name

buf
A 13-word integer array of data to be sent

efn
Event flag number

ids

Directive status
Macro Call

SDAT$ tsk,buff,efn]

Parameters

tsk
Task name

buf
Address of a 13-word data buffer

efn
Event flag number

Directive Descriptions 5-217

SDATS

Macro Expansion
SDAT$ ALPHA,DATBUF,52.

.BYTE 71.,5 ;SDAT$ MACRO DIC, DPB SIZE = 5 WORDS
-RAD50 /ALPHA/ ;RECEIVER TASK NAME

.WORD DATBUF ; ADDRESS OF 13(10) -WORD BUFFER

.WORD 52. ;EVENT FLAG NUMBER 52(10)

Local Symbol Definitions
S.DATN Task name (4)
S.DABA Buffer address (2)
S.DAEF Event flag number (2)

DSW Return Codes

IS.sUC Successful completion.

IE.INS Receiver task is not installed.
IE.UPN Insufficient dynamic memory.

IE.IEF Invalid event flag number (EFN <0, or EFN> 96 if group global event flags exist
for the task’s group or EFN> 64 if not).

IE.ADP Part of the DPB or data block is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes
1. Send Data requires dynamic memory.

2. If the directive specifies a local event flag, the flag is local to the sender (issuing) task.
RSX-11M-PLUS and Micro/RSX systems do not allow one task to set or clear a flag that is
local to another task.

Normally, the event flag is used to trigger the receiver task into some action. For this
purpose, the event flag must be common (33 through 64) or group global (65 through 96)
rather than local. (Refer to the descriptions of the Receive Data directive and the Exit If
directive.)

3. The Send Data directive is treated as a 13;o-word Variable Send Data (VSDAS$) directive.

5-218 Directive Descriptions

SDIRS

5.76 Set Default Directory

The Set Default Directory directive establishes, modifies, and deletes the default directory string.

FORTRAN Call
CALL SETDDS (mod,iens,ienssz[,idsw])

Parameters

mod
Modifier for the SDIR$ directive; specify one of the following values:
0 Modify task default

SD.LOG Modify terminal default
SD.BYE Delete terminal default
SD.TI Set task default to terminal default

iens
Character array containing the default directory string

ienssz
Size (in bytes) of the default directory string

idsw
Integer to receive the Directive Status Word

Macro Call
mod
SDIR$,ens,enssz {must choose one of these options)
mod,ens,enssz
Parameters
mod

Modifier for the SDIR$ directive (must be selected if ,ens,enssz is not); specify one of the
following values:

0 Modify task default

SD.LOG Modify terminal default

SD.BYE Delete terminal default

SD.TI Set task default to terminal default
ens

Buffer address of the default directory string; if not specified, the default directory string is
deleted (ens and enssz must be selected to modify the default)

Directive Descriptions 5-219

SDIRS

enssz

Size (in bytes) of the default directory string (enssz and ens must be selected to modify the

default)

Macro Expansion
SDIR$ MOD,ENS,ENSSZ

.BYTE 207..5 ;SDIR$ MACRO DIC, DPB SIZE = 5 WORDS

.BYTE 3 ; SUBFUNCTION CODE FOR SET DEFAULT DIRECTORY
.BYTE MOD ;MODIFIER

.WORD O ; RESERVED

.WORD ENS ;BUFFER ADDRESS OF DEFAULT DIRECTORY STRING
.WORD ENSSZ ;BYTE COUNT OF DEFAULT DIRECTORY STRING

Local Symbol Definitions

S.DENS
S.DESZ
S.DFUN
S.DMOD

Address of default directory string buffer (2)
Byte count of the default directory string (2)
Subfunction code (1)

Modifier (1)

DSW Return Codes

IS.sUC
IS.SUP

IE.LNF
IE.IBS

IE.ITN
IE.UPN
IE.ADP

IE.SDP

Notes

Successful completion of service.

Successful completion of service. A new default directory string superseded a
previously specified name string.

Default directory string does not exist.

The length of the default directory string is invalid. The string length must be
greater than 0 but less than 12,,.

Illegal table number. The reserved word in the DPB was not a zero.
Insufficient dynamic storage is available to create the default directory string.

Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have proper access to that region.

DIC or DPB size is invalid, or an illegal subfunction code was specified.

In addition to the terminal default directory associated with each logged-in terminal, a default
directory string is associated with each active task. The default directory string (DDS) is stored
in a context block (CTX).

The following rules apply to default directory strings and their context blocks:

¢ Each logged-in terminal has a default directory string stored in a context block, referred to
as the terminal _CTX. The context block is created by HELLO/LOGIN when you log in and
is deleted by BYE when you log out. You can change the terminal _CTX by using either the

5-220 Directive Descriptions

SDIRS

MCR SET /DEF or DCL SET DEFAULT command. The context block is pointed to from
the terminal’s Unit Control Block (UCB).

Each active task has associated with it a default directory string referred to as the task_CTX.
Exceptions to this rule are system tasks running from the console terminal (CO:), such as
LDR, F11ACP, SHF, and so on. The task_CTX is pointed to from the Task Control Block
(TCB).

When a task is activated from a terminal, the terminal_CTX is propagated to the task__CTX.

When a task issues the SDIR$ directive, the DDS from the task_CTX is modified. For
HELLO/LOGIN and other CLI commands, the SD.LOG modifier should be used to indicate
that the DDS in the terminal _CTX is to be modified. For BYE/LOGOUT, the SD.BYE
modifier should be used to indicate that the terminal _CTX should be deleted. To set the
task_CTX to be the same as the terminal _CTX, the SD.TI modifier should be used.

When a task spawns an offspring task, the parent’s task_CTX is propagated.

When an entry is inserted into the clock queue for time-based schedule requests from a task,
the issuing task’s task_CTX is propagated to the clq_CTX (the context block for the clock
queue). When an entry is inserted into the clock queue for time-based schedule requests
from a terminal CLI command, the issuing terminal’s terminal _CTX is propagated to the
cdlq—CTX. When the time expires and the task is activated, the task_CTX is propagated
from the clq_CTX.

When a task sends a packet to a slave task, the sender’s task_CTX is propagated to the
packet_CTX (the context block for the packet). When the slave task issues a Receive
Data (RCVDS$) directive to get the packet, the receiver’s task_CTX is propagated from the
packet_CTX.

Directive Descriptions 5-221

SDRCS$

5.77 Send, Request, and Connect

The Send, Request, and Connect directive performs a Send Data to the specified task, requests
the task if it is not already active, and then connects to the task. The receiver task normally
returns status by an Emit Status or Exit with Status directive.

FORTRAN Call

CALL SDRC (rtname,ibuf,[iefn],[iast],[iesb],[iparm][,idsw])
CALL SDRCN (rtname,ibuf,[iefn] [iast] [iesb] [iparm][,idsw])

Parameters

rthame
Target task name of the offspring task to be connected

ibuf
Name of a 13-word send buffer

iefn
Event flag to be set when the offspring task exits or emits status

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL SDRCN)

lesb
Name of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code

Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the iefn parameter above.

iparm
Name of a word to receive the status block address when an AST occurs

idsw
Integer to receive the Directive Status Word

Macro Call
SDRC$ tname,buf,[efn][east] [esb]

5-222 Directive Descriptions

SDRC$

Parameters

thame
Target task name of the offspring task to be connected

buf
Address of a 13-word send buffer

efn
The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb
Address of an 8-word status block to be written when the offspring task exits or emits
status:

Word 0 Offspring-task exit status
Word 1 TKTN abort code
Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the efn parameter above.

Macro Expansion
SDRC$ ALPHA,BUFFR,2,SDRCTR,STBLK

.BYTE 141..,7 ;SDRC$ MACRO DIC, DPB SIZE = 7 WORDS
.RAD50 ALPHA ;TARGET TASK NAME

.WORD BUFFR ;SEND BUFFER ADDRESS

.WORD 2 ;EVENT FLAG NUMBER = 2

.WORD SDRCTR ;ADDRESS OF AST ROUTINE

.WORD STBLK ;ADDRESS OF STATUS BLOCK

Local Symbol Definitions
S.DRTN Task name (4)

S.DRBF Buffer address (2)
S.DREF Event flag (2)

S.DREA AST routine address (2)
S.DRES Status block address (2)

Directive Descriptions 5-223

SDRCS$

DSW Return Codes

IS.S5UC
IE.UPN

IE.INS
IE.IEF

IE.ADP
IE.SDP

Notes

Successful completion.

There was insufficient dynamic memory to allocate a send packet, Offspring Control
Block, Task Control Block, or Partition Control Block.

The specified task is an ACP or has the no-send attribute.

An invalid event flag number was specified (EFN <0, or EFN> 96 if group global
event flags exist for the task or EFN> 64 if not).

Part of the DPB or exit status block is not in the issuing task’s address space.
DIC or DPB size is invalid.

1. If the specified event flag is group global, the use count for the event flag’s group is
incremented to prevent premature elimination of the event flags. The use count is run
down when the following events occur:

Status is returned from the connected task.

The issuing task exits before status is returned.

2. The virtual mapping of the exit status block should not be changed while the connection is
in effect. Doing so may result in obscure errors.

3. If the directive is rejected, the state of the specified event flag is indeterminate.

5-224 Directive Descriptions

SDRP$

5.78 Send Data Request and Pass Offspring Control Block

The Send Data Request and Pass Offspring Control Block directive instructs the system to send
a send-data packet for the specified task, chain to the requested task, and request it if it is not
already active.

FORTRAN Call
CALL SDRP (task,ibuf,[ibfl] [iefn] [iflag] [iparen] [iocbad][,idsw])

Parameters

task
Name of an array (REAL,INTEGER,I*4) containing the Radix-50 name of the target task

ibuf
Name of an integer array containing the data to be sent

ibft

Name of an integer containing the number of words (integers) in the array to be sent. This
argument may be in the range of 1 to 255;9. If this argument is not specified, a default
value of 13, is assumed.

iefn
Name of an integer containing the number of the event flag that is to be set when this
directive is executed successfully

iflag
Name of an integer containing the flag bits controlling the execution of this directive. They
are defined as follows:

SD.REX 128. Force this task to exit upon successful execution of this directive.

SD.RAL 1 Pass all connections to the requested task (default is pass none). If you
specify this flag, do not specify the parent task name.

Note
The target task may not be a CLI task.

SD.RNX 2 Pass the first connection in the queue, if there is one, to the requested
task. If you specify this flag, do not specify the parent task name.

iparen

Name of an array containing the Radix-50 name of the parent task whose connection should
be passed to the target task. The name of the parent task was returned in the information
buffer of the GTCMCI subroutine.

iocbad
Name of an integer containing the pool address of the OCB to pass. This value was
returned in the information buffer of the GTCMCI subroutine. Only CLI tasks may specify
this parameter.

Directive Descriptions 5-225

SDRPS$

idsw

Name of an integer to receive the contents of the Directive Status Word
Macro Call

SDRP$ task,bufadr,[buflen] [efn] [flag] [parent} [ocbad]

Parameters
task
Name of the task to be chained to

bufadr
Address of buffer to be given to the requested task

buflen
Length of buffer to be given to the requested task

efn
Event flag number

flag
Flag bits controlling the execution of this directive. The flag bits are defined as follows:
SD.REX (200) Force this task to exit upon successful completion of this directive.
SD.RAL 1) Pass all connections to the requested task (default is pass none). If
you specify this flag, do not specify the parent task name.
Note
The target task may not be a CLI task.
SD.RNX (2) Pass the first connection in the queue, if there is one, to the requested
task. If you specify this flag, do not specify the parent task name.
parent
Name of issuing task’s parent task whose connection is to be passed. If not specified, all
connections or no connections are passed, depending on the flag bit.
ocbad

Address of OCB to pass (CLI tasks only)

Macro Expansion
SDRP$ TASK,BUFADR, [BUFLEN], [EFN], [FLAG] , [PARENT] , [OCBAD]

.BYTE 141..,9. ;SDRP$ MACRO DIC, DPB SIZE = 9(10) WORDS
.RADS0 /TASK/ ;TASK NAME IN RADIX-50

.WORD BUFADR ;BUFFER ADDRESS

.BYTE EFN,FLAG ;EVENT FLAG, FLAGS BYTE

.WORD BUFLEN ;BUFFER LENGTH

5-226 Directive Descriptions

SDRP$

.RADEO /PARENT/ ;PARENT TASK NAME
.WORD OCBAD ; ADDRESS OF 0CB

Local Symbol Definitions

S.DRTK
S.DRAD
S.DREF
S.DRFL
S.DRBL
S.DRPT
S.DROA

Radix-50 name of task to be chained to

Send data buffer address

Event flag

Flag bits (see above)

Length of send-data packet (up to 256,, words)
Name of parent whose OCB should be passed
Address of OCB to pass (CLIs only)

DSW Return Codes

IE.ITS

IE.NVR
IE.ALG

IE.IBS
IE.UPN

IE.INS
IE.IEF

IE.ADP
IE.SDP

Notes

A task that is not a CLI specified a CLI-only parameter or attempted to pass all
connections to a CLL

No Offspring Control Block from specified parent.

A CLI specified a parent name and an Offspring Control Block address that did
not describe the same connection, or either a parent name or an OCB address was
specified and the pass-all-connections flag was set.

Length of send packet is illegal. The send packet may be up to 256,;, words long.

There was insufficient dynamic memory to allocate a send packet, Offspring Control
Block, Task Control Block, or Partition Control Block.

The specified task is an ACP or has the no-send attribute.

An invalid event flag number was specified (EFN <0, or EFN> 96 if group global
event flags exist or EFN> 64 if not).

Part of the DPB or exit status block is out of the issuing task’s address space.
DIC or DPB size is invalid.

1. If the directive is rejected, the state of the specified event flag is indeterminate.

2. If the specified event flag is group global, the use count for the event flag’s group is
incremented to prevent premature elimination of the event flags. The use count is run
down when the following events occur:

e Status is returned from the connected tasks.

* The issuing task exits before status is returned.

Directive Descriptions 5-227

SETF$S

5.79 Set Event Flag

The Set Event Flag directive instructs the system to set an indicated event flag, reporting the
flag’s polarity before setting it.
FORTRAN Cali

CALL SETEF (efn[,ids])

Parameters
efn
Event flag number

ids
Directive status

Macro Call
SETF$ efn

Parameter

efn
Event flag number

Macro Expansion

SETF$ 52.
.BYTE 33.,2 ;SETF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52(10)

Local Symbol Definition
S.ETEF Event flag number (2)

DSW Return Codes
IS.CLR Flag was clear.
IS.SET Flag was already set.

IE.IEF Invalid event flag number (EFN <1, or EEN> 96 if group global event flags exist
for the task’s group or EFN> 64 if not).

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Note

Set Event Flag does not declare a significant event. It merely sets the specified flag.

5-228 Directive Descriptions

SFPAS

5.80 Specify Floating Point Processor Exception AST

The Specify Floating Point Processor Exception AST directive instructs the system to record one
of the following cases:

* Floating Point Processor exception ASTs for the issuing task are desired, and the Executive
is to transfer control to a specified address when such an AST occurs for the task.

* Floating Point Processor exception ASTs for the issuing task are no longer desired.

When an AST service-routine entry-point address is specified, future Floating Point Processor
exception ASTs will occur for the issuing task and control will be transferred to the indicated
location at the time of the AST’s occurrence. When an AST service entry-point address is not
specified, future Floating Point Processor exception ASTs will not occur until the task issues a
directive that specifies an AST entry point. See the Notes.

FORTRAN Call

Not supported

Macro Call
SFPA$ [ast]

Parameter
ast
AST service-routine entry-point address

Macro Expansion

SFPA$ FLTAST
.BYTE 111.,2 ;SFPA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD FLTAST ; ADDRESS OF FLOATING-POINT AST

Local Symbol Definition
S.FPAE AST entry address (2)

DSW Return Codes
IS.sUC Successful completion.
IEUPN Insufficient dynamic memory.

IEITS AST entry-point address is already unspecified or task was built without floating-
point support (/FP switch not specified in Task Builder TSK file specification).

IE.AST Directive was issued from an AST service routine or ASTs are disabled.
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-229

SFPAS

Notes
1. A Specify Floating Point Processor Exception AST requires dynamic memory.

2. The Executive queues Floating Point Processor exception ASTs when a Floating Point
Processor exception trap occurs for the task. No future ASTs of this kind will be queued
for the task until the first one queued has actually been effected (that is, terminated by an
ASTXS$ directive).

3. The Floating Point Processor exception AST service routine is entered with the task stack
in the following state:

SP+12 Event-flag mask word
SP+10 PS of task prior to AST
SP+06 PC of task prior to AST
SP+04 DSW of task prior to AST
SP+02 Floating exception code
SP+00 Floating exception address

The task must remove the floating exception code and address from the task’s stack before
an AST Service Exit directive is executed.

4. This directive cannot be issued either from an AST service routine or when ASTs are
disabled.

5. This directive applies only to the Floating Point Processor.

5-230 Directive Descriptions

SMSG$

5.81 Send Message

The Send Message directive instructs the system to create and send a formatted data packet to
a system-defined target task. The only valid target for the Send Message directive is the Error
Logger, and the formatted data packet must be an error log packet. The task that issues the
SMSGS$ directive must be privileged. The valid system-defined target identifier and its code are

as follows:

TARGET

INDENTIFIER CODE
Error logging SM.SER

FORTRAN Call
CALL SMSG (itgt,ibuf,ibufl,iprm,iprml[,ids}])

Parameters
itgt
The name of the integer containing the target object (currently, only SM.SER is defined)

ibuf
The name of an integer array containing the data to be inserted into the formatted data
packet

ibufl
The name of an integer containing the length of the ibuf array

iprm
The name of an integer array containing any additional parameters

iprmi
The name of an integer containing the number of parameters in the iprm array

ids
The name of an optional integer to receive the directive status

Macro Call
SMSG$ tgt,buf,len, <pri,...prn>

Parameters

tat
Target identifier

buf
Address of the optional data buffer

ien
Length in bytes of the optional data buffer

Directive Descriptions 5-231

SMSGS$

pri,...,prn

Target-specific (for the Error Logger) parameter list:
SMSG$ SM.SER,buf,len, <typ,sub,lun,msk>

typ
Error Logger packet type code

sub
Error Logger packet subtype code

lun
Logical unit number of the device

msk
Control mask word

The directive creates an error log packet of the specified type and subtype codes. If you specify
a LUN, the directive also records information about the device to which the LUN refers. The
control mask word sets flags to zero I/O and error counts on the device specified, as shown
below:

Control-mask-word flag:

SM.ZER Zeroes device I/O and error counts for device specified by LUN

The directive also creates the following subpackets and places them in the error log packet in
the order listed below:

1.

Header subpacket. The header subpacket, which contains the type and subtype codes, the
time-stamp, and the system identification, is always recorded.

Task subpacket. The task subpacket, which identifies the task that issued the directive, is
always recorded.

Device subpacket. The device subpacket, which identifies the device, is recorded if the
directive specifies a LUN argument.

Data subpacket. The data subpacket is recorded if the directive specifies an address and
length of an optional data buffer.

Macro Expansion (with Error Logger target)
SMSG$ SM.SER,DATBUF ,DATLEN, <PR1,PR2,PR3,PR4>

.BYTE 171.,8. ;SMSG$ MACRO DIC, DPB SIZE = 8(10) WORDS
.WORD SM.SER ; TARGET IDENTIFIER - ERROR LOGGING

.WORD DATBUF ;DATA BUFFER ADDRESS

.WORD DATLEN ;DATA BUFFER LENGTH

.WORD PR1 ;PARAMETER 1

.WORD PR2 ;PARAMETER 2

5-232 Directive Descriptions

.WORD PR3
.WORD PR4

;PARAMETER 3
;PARAMETER 4

Local Symbol Definitions

S.MTGT
S.MDBA
S.MDBL
S.MPRL

Target identifier (2)
Buffer address (2)
Buffer length (2)

Parameter list

DSW Return Codes

IS.SUC
IEILU
IE.ULN
IE.UPN
IEINS
IE.ITS
IE.ADP
IE.SDP

Successful completion.

Invalid LUN (error log target only).

SMSGS$

Specified LUN is not assigned to a mass storage device.

Insufficient dynamic memory.
Target task is not installed.

Invalid target identifier or invalid control mask.

Part of the DPB or data buffer is out of the issuing task’s address space.

DIC or DPB size is invalid.

Directive Descriptions

5-233

SNXCS$

5.82 Send Next Command

The Send Next Command directive allows a task that is servicing a CLI command to inform the
system that the command execution is complete. This normally happens automatically when the
task exits. This directive is not necessary if the task will exit when it completes the commiand;
it is intended for tasks that do not exit at this point.

The task of concern here is the final task involved in the command processing. For example,
a CLI that passes the command to another task using the RPOI$ or SDRP$ directive and exits
need not issue an SNXC$ directive. If the CLI were to do all the processing necessary for a
command, not pass it to another task, and go on to the next command, it would have to issue
an SNXC$ directive.

Issuing this directive causes a prompt request to be generated if one would have occurred on
task exit and will cause the terminal driver to send the next command to the dispatcher if the
terminal is in serial-execution mode.

A nonprivileged task may specify only its TI:. A privileged task or a CLI task may specify any
terminal. If no terminal is specified, the default is the issuing task’s TL.
FORTRAN Cali

CALL SNXC ([dnam][,iunit][,idsw])

Parameters
dnam
Device name (ASCII); if not specified, TI: is used
iunit
Unit number of the terminal from which the command is to be sent

idsw
Integer to receive the Directive Status Word

Macro Call
SNXC$ [dnam][,unum]

Parameters

dnam
Device name (ASCII); if not specified, TI: is used

unum
Unit number of the terminal from which the command is to be sent

5-234 Directive Descriptions

SNXC$

Macro Expansion

SNXC$ TT,3

.BYTE 127.,3 ;SNXC$ MACRO DIC, DPB SIZE = 3 WORDS
.ASCITI /TT/ ;ASCII DEVICE NAME

.BYTE 3,0 ;UNIT NUMBER IS 3

Local Symbol Definitions
S.NXDV Device name
S.NXUN Unit number

DSW Return Codes

IEIDU The specified device does not exist or is not a terminal.

IE.PRI A nonprivileged task specified a terminal other than its own TI:.
IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-235

SPEAS

5.83 Specify Parity Error AST

The Specify Parity Error AST directive enables a task to specify an AST service routine to be
entered if a hardware parity error occurs. If an AST address is not specified, any previously
specified parity error AST is canceled. Upon entering the AST service routine, the stack contains
the following information:

SP+62 Event flag mask word

SP+60 PS of task prior to AST
SP+56 PC of task prior to AST
SP+54 Task’s Directive Status Word
SP+52
SP+50
SP+46
SP+44
SP+42
SP+40
SP+36
SP+34 Contents of memory parity CSRs
SP+32 (hardware-dependent information)
SP+30
S5P+26
SP+24
SP+22
SP+20
SP+16
SP+14 |

SP+12 Contents of cache-control register

5P+10 Contents of memory system-error register

SP+06 Contents of high-error-address register

SP+04 Contents of low-error-address register

SP+02 Processor identification (single-processor system = 0)
SP+00 Number of bytes to add to SP to clean the stack (52)

FORTRAN Call
Not supported

5-236 Directive Descriptions

SPEAS

Macro Call
SPEA$ [ast]

Parameter
ast
AST service-routine entry-point address

Macro Expansion

SPEA$ PTYERR
.BYTE 165.,2 :SPEA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD PTYERR ;PARITY ERROR AST ROUTINE ADDRESS

Local Symbol Definition
S.PEAE Parity error AST routine address (2)

DSW Return Codes

15.SUC Successful completion.

IE.UPN Insufficient dynamic storage.

IE.ITS ASTs already not desired.

IE.AST Directive was issued from an AST service routine or ASTs are disabled.
IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-237

SPNDS$S

5.84 Suspend ($S Form Recommended)

The Suspend directive instructs the system to suspend the execution of the issuing task. A task
can suspend only itself, not another task. The task can be restarted either by a Resume directive
or by an MCR RESUME or DCL CONTINUE command.

FORTRAN Call

CALL SUSPND [(ids)]

Parameter
ids
Directive status
Macro Call
SPND$S [err]

Parameter

err
Error-routine address

Macro Expansion

SPND$S ERR

Mov (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 45.,1 ;SPND$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IS.SPD Successful completion (task was suspehded).

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. A suspended task retains control of the system resources allocated to it. The Executive
makes no attempt to free these resources until a task exits.

2. A suspended task is eligible for checkpointing unless it is fixed or declared to be
noncheckpointable.

3. Because this directive requires only a 1-word DPB, the $S form of the macro is recommended.
It requires less space and executes with the same speed as that of the DIR$ macro.

5-238 Directive Descriptions

SPRAS

5.85. Specify Power Recovery AST

The Specify Power Recovery AST directive instructs the system to record one of the following
cases:

* Power recovery ASTs for the issuing task are desired and control is to be transferred when
a powerfail recovery AST occurs.

* Power recovery ASTs for the issuing task are no longer desired.

When an AST service-routine entry-point address is specified, future power recovery ASTs will
occur for the issuing task and control will be transferred to the indicated location at the time of
the AST’s occurrence. When an AST service entry-point address is not specified, future power
recovery ASTs will not occur until an AST entry point is again specified. See the Notes.
FORTRAN Call

To establish an AST:
EXTERNAL sub
CALL PWRUP (sub)

Parameter

sub

Name of a subroutine to be executed upon power recovery. The PWRUP subroutine will
effect the following call:

CALL sub (no arguments)

The subroutine is called as a result of a power recovery AST, and therefore may be controlled
at critical points by using DSASTR (or INASTR) and ENASTR subroutine calls.

To remove an AST:
CALL PWRUP

Macro Call
SPRAS$ [ast]

Parameter

ast
AST service-routine entry-point address

Macro Expansion

SPRA$ PWRAST
.BYTE 109.,2 ; SPRA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD PWRAST ;ADDRESS OF POWER RECOVERY AST

Local Symbol Definition
S.PRAE AST entry address (2)

Directive Descriptions 5-239

SPRAS

DSW Return Codes
IS.sUC Successful completion.

IEUPN Insufficient dynamic memory.

IEITS AST entry-point address is already unspecified.

IE.AST Directive was issued from an AST service routine or ASTs are disabled.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. The Specify Power Recovery AST directive requires dynamic memory.

2. The Executive queues power recovery ASTs when the power-up interrupt occurs following
a power failure. No future powerfail ASTs will be queued for the task until the first one
queued has been effected.

3. The task enters the powerfail AST service routine with the task stack in the following state:
SP+06 Event-flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
5P+00 DSW of task prior to AST
No trap-dependent parameters accompany a power recovery AST. Therefore, the AST
Service Exit directive can be executed with the stack in the same state as when the AST
was entered.

4. This directive cannot be issued either from an AST service routine or when ASTs are
disabled.

5. Refer to Chapter 1 for a list of the restrictions on operations that may be performed in a

FORTRAN AST routine.

5-240 Directive Descriptions

SPWN$

5.86 Spawn

The Spawn directive requests a specified task for execution, optionally queuing a command line
and establishing the task’s TI: as a previously created virtual terminal unit or as a physical
terminal.

When this directive is issued, an Offspring Control Block (OCB) is queued to the offspring TCB
and a rundown count is incremented in the parent task’s TCB. The rundown count is used
to inform the Executive that the task is a parent task and has one or more offspring tasks
and virtual terminals; cleanup is necessary if a parent task exits with active offspring tasks.
The rundown count is decremented when the spawned task exits. The OCB contains the TCB
address as well as sufficient information to effect all of the specified exit events when the
offspring task exits.

If a command line is specified, it is buffered in the Executive pool and queued for the offspring
task for subsequent retrieval by the offspring task with the Get MCR Command Line directive.
The maximum command line length is 255,y characters.

If an AST address is specified, an exit AST routine is effected when the spawned task exits with
the address of the task’s exit status block on the stack. The AST routine must remove this word
from the stack before issuing the AST Service Exit directive.

Special action is taken if the task being spawned is a command line interpreter (CLI), such
as MCR or DCL. In this case, a command line must be specified, and both the OCB and the
command line are queued for the interpreter task. MCR and DCL either handle commands
directly or dispatch them to another task. In the case of direct execution of the command, the
OCB may be used to immediately effect the proper exit conditions and return exit status by
an Executive routine. If MCR or DCL dispatch another task, they simply move the OCB from
their own OCB queue directly to the OCB queue of the dispatched task. They also queue the
command line for the dispatched task as usual. At this point, the situation is exactly the same
as if the SPWNS$ directive had specified the dispatched task directly. No exit conditions occur
until the dispatched task exits.

FORTRAN Call
CALL SPAWN (rtname,[iugc],[iumc],[iefn] [iast],[iesb],[iparm],[icmlin,icmlen],[iunit],[dnam][,idsw])
CALL SPAWNN (rtname,[iugc],[iumc] [iefn] [iast],[iesb],[iparm],[icmlin,icmlen],[iunit],[dnam][,idsw])

Parameters

rthame
Name (Radix-50) of the offspring task to be spawned

iugc
Group code number for the UIC of the offspring task

iumc
Member code number for the UIC of the offspring task

iefn
Event flag to be set when the offspring task exits or emits status

Directive Descriptions 5-241

SPWNS$

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL SPAWNN)

iesb
Name of an 8-word status block to be written when the offspring task exits or emits status,
as follows:
Word 0 Offspring-task exit status
Word 1 TKTN abort code

Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the iefn parameter above.

iparm
Name of a word to receive the status block address when the AST occurs

icmlin
Name of a command line to be queued for the offspring task

icmlen
Length of the command line; maximum length is 2554

iunit
Unit number of terminal to be used as the TI: for the offspring task. If the optional dnam
parameter is not specified, this parameter must be the unit number of a virtual terminal
created by the issuing task. If a value of 0 is specified for the unit number, the TI: of the
issuing task is propagated. A task must be a privileged task or must be a CLI task in order
to specify a TI: other than the parent task’s TI:.

dnam
Device name mnemonic (must be the name of a physical device). On RSX-11M-PLUS and
Micro/RSX systems, if not specified, the virtual terminal specified by iunit is used as TIL.

idsw
Integer to receive the Directive Status Word

Macro Call
SPWNS$ tname,, [ugc],[umc],[efn],[east],[esb],[cmdlin,cmdlen][unum],[dnam]

5-242 Directive Descriptions

SPWNS$

Parameters

tname
Name (Radix-50) of the offspring task to be spawned

ugc
Group code number for the UIC of the offspring task

umc
Member code number for the UIC of the offspring task

efn

The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb
Address of an 8-word status block to be written when the offspring task exits or emits
status, as follows:

Word 0 Offspring-task exit status
Word 1 TKTN abort code
Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the efn parameter above.

cmdlin
Address of a command line to be queued for the offspring task

cmdien
Length of the command line; maximum length is 255;¢

unum
Unit number of terminal to be used as the TI: for the offspring task. If the optional dnam
parameter is not specified, this parameter must be the unit number of a virtual terminal
created by the issuing task. If a value of 0 is specified for the unit number, the TI: of the
issuing task is propagated. A task must be a privileged task or must be a CLI task in order
to specify a TI: other than the parent task’s TL.

dnam
Device name mnemonic (must be the name of a physical device). If not specified, the virtual
terminal specified by unum is used as TL.

Directive Descriptions 5-243

SPWNS$

Macro Expansion
SPWN$ ALPHA,,,3,7,1,ASTRUT,STBLK,CMDLIN,72.,2

.BYTE 11.,13. ;SPWN$ MACRO DIC, DPB SIZE = 13(10) WORDS
.RAD50O ALPHA :NAME OF TASK TO BE SPAWNED
_BLKW 3 ; RESERVED
.BYTE 7.3 ;UMC = 7, UGC = 3
.BYTE 1 ;EVENT FLAG NUMBER = 1
.BYTE 16. :EXIT STATUS BLOCK CONSTANT
.WORD ASTRUT ;AST ROUTINE ADDRESS
_WORD STBLK ;EXIT STATUS BLOCK ADDRESS
.WORD CMDLIN ; ADDRESS OF COMMAND LINE
.WORD 72. ;COMMAND LINE LENGTH = 72(10) CHARACTERS
.WORD 2 ;VIRTUAL TERMINAL UNIT NUMBER = 2
Note

If a virtual terminal is not specified, one additional parameter (device name) can
be added for a hardware terminal name. For example, TT2 (instead of VT2)
would have the same macro expansion shown above, plus the following:

.ASCII /TT/ ;ASCII DEVICE NAME
The DPB size will then be 14,5 words.

Local Symbol Definitions

S.PWTIN Task name (4)

S.PWXX Reserved (6)

S.PWUM User member code (1)
S.PWUG User group code (1)
S.PWEF Event flag number (2)
S.PWEA Exit AST routine address (2)
S.PWES Exit status block address (2)
S.PWCA Command line address (2)
S.PWCL Command line length (2)
S.PWVT Terminal unit number (2)
S.PWDN Device name (2)

DSW Return Codes
1S.SUC Successful completion.

IE.UPN There was insufficient dynamic memory to allocate an Offspring Control Block,
command line buffer, Task Control Block, or Partition Control Block.

5-244 Directive Descriptions

SPWN$

IE.INS The specified task was not installed, or it was a command line interpreter but no

command line was specified.

IE.ACT The specified task was already active and it was not a command line interpreter.

IE.PRI A nonprivileged task attempted to specify an offspring task’s TI: to be different from

its own.

IE.IDU The specified virtual terminal unit does not exist, or it was not created by the issuing

task, or the specified TI: device is not a terminal.

IE.IEF Invalid event flag number (EFN <0, or EFN> 96 if group global event flags exist

for the task’s group or EFN>> 64 if not).

IE.ADP Part of the DPB, exit status block, or command line is out of the issuing task’s

address space, or the command line is too long.

IE.SDP DIC or DPB size is invalid.

Notes

1.

If the UIC is defaulted and the offspring task is not a command line interpreter (CLI), that
task is requested to run under the UIC of the parent task. If the UIC is defaulted and the
offspring task is a CLI and the CLI passes the specified command line to a dispatched task,
the dispatched task will run under the UIC of its TI: terminal. See the notes for the Request
Task (RQST$) directive for more information about task UICs.

If the specified event flag is group global, then the use count for the event flag’s group is
incremented to prevent premature elimination of event flags. The use count is run down
when the following events occur:

® Status is returned from the spawned task.
* The issuing task exits before status is returned.

The virtual mapping of the exit status block should not be changed while the connection is
in effect. Doing so may cause obscure errors.

The types of operations that a FORTRAN AST routine may perform are extremely limited.
Refer to Chapter 1 for a list of the restrictions.

The following program illustrates the use of the FORTRAN-callable SPAWN routine and the
mechanism for handling ASTs from a FORTRAN program:

PROGRAM SPWAST

This program illustrates the use of the FORTRAN-callable
SPAWN routine and the use of a FORTRAN subprogram at AST state.

This example keeps "ITMAX" tasks active at any point in time
without having several copies of each utility installed under
different names. The input file consists of single line commands

of up to 45 characters in length which invoke tasks in the system
library UIC. The first three characters of the input command line

are the name of the task to be invoked (ie, MAC). The output file
consists of a log file containing the command lines and the exit status
of the program invoked.

a0 a0 a0 aaa

Directive Descriptions

5-245

SPWNS$

QOO OO0 OO OO A OO0 OO a0 aaaaaaa aa

5-246

The above is accomplished as follows:

A command is read from the input file "CMDFIL.CMD" which has the
form "NAM COMMAND," where NAM is the name of the task and COMMAND is the
command to be passed to this task. This input command line is transformed
into an MCR RUN command line such as

RUN $MAC/TASK=TSKnn/EST=NO/CMD="command"

where nn is a number assigned by this task so that the target task name
is both known and unique. The MCR dispatcher (MCR...) is spawned with this
transformed command line, which in turn causes the MCR... task to dispatch

a copy of ...MCR under the name MCRTnn to execute this command. When
this copy of ...MCR exits, an exit AST is serviced by this task which
issues a "CONNECT" to the target task TSKnn. This method introduces a timing

window such that the target task could exit before the CONNECT is made. In
this case, an error message is written to the log file indicating that
exit status could not be returned due to a comnect failure.

This nonprivileged FORTRAN IV-PLUS program is compiled and
built as follows:

MCR>F4P SPWAST, SPWAST/-SP=SPWAST
MCR>TKB SPWAST/FP,SPWAST=SPWAST,LB: [1,1]F4P0TS/LB

Define data structures

The following variables are kept on a per active "invoked task" basis.
For lack of a better name, each respective entry is called a task
information block.

IESTAT(8,XXX) IEXSAD (XXX) ISTAT (XXX) ICMDLN (45, XXX)

PARAMETER ITMAX=3

COMMON /KOM1/IESTAT (8, ITMAX) ,IEXSAD(ITMAX) ,ISTAT(ITMAX) , IPARM,RTNAME(2)
COMMON /KOM2/THISTK(16)
COMMON /COMMAN/ICMDLN (45, ITMAX)

INTEGER IESTAT !exit status array for each task

INTEGER IEXSAD !array containing the address of each task's iestat

INTEGER ISTAT !array containing the status (active vs free) of
each task information block

INTEGER IPARM !contains address of IESTAT at AST state
INTEGER RTNAME !contains the Radix-50 name of the target task to be
!connected to at AST state

INTEGER THISTK
BYTE ICMDLN !saved input command line per task

Directive Descriptions

aQaaQa Qo aaa Qaaoa aaaq

aQaaaQ

aaoaa aaoa o

SPWN$

Local input buffer variables
DIMENSION INPCOM(3)
DIMENSION INPBUF (45)
EQUIVALENCE (INPBUF(1),INPCOM(1))
BYTE INPBUF 'INPUT BUFFER
BYTE INPCOM 'COMPONENT NAME FIELD OF INPBUF
Local variables for SPAWN call
EXTERNAL EXTAST !define the name of the AST routine externally
DIMENSION CMDLIN(79) !maximum command line passed to is 79(10) bytes
BYTE CMDLIN tactual command line passed to MCR...
INTEGER*4 DSPNAM Ivariable containing Radix-50 task name of MCR...
DATA DSPNAM/6RMCR.../!fill in name of ...MCR at compile time
Local control variables
INTEGER ITCNT !count of number of free task information blocks
LOGICAL EOF 1flag indicating EOF detected on command input file
Misc. local variables
INTEGER IDSW tinteger to contain directive status
Open files
OPEN (UNIT=1,TYPE='OLD',READONLY,NAME='CMDFIL.CMD')
OPEN (UNIT=2,TYPE='NEW', CARRIAGECONTROL='FORTRAN', 6 NAME='CMDFIL.LOG"')
Initialize Variables

ITCNT=ITMAX+1 'get current count of available task information blocks
EOF=.FALSE. 'reset EOF flag

CALL IRAD50(3,'TSK',RTNAME(1)) !setup first half of target task name
CALL GETTSK(THISTK(1)) !determine this task's name so that
STOPing and UNSTOPing may be done

Initialize the IEXSAD array such that each entry contains the address
of the exit status block that has the corresponding index. This is

necessary so that the correct exit status block may be determined at AST
state.

DO 5 I=1,ITMAX
CALL GETADR(IEXSAD(I),IESTAT(1,I))
CONTINUE

Directive Descriptions 5-247

SPWN$

c
C Read a command line from the input file and initialize a free task information
C block.
c
10 READ (1,900,END=30)I, INPBUF iread input command line
ITCNT=ITCNT-1 lone less free block
DO 20 K=1,ITMAX Isearch for the free block
IF (ISTAT(K) .NE. 0) GOTO 20 'IF NE, block is in use
ISTAT(K)=1 'ELSE found one, mark it in use
DO 156 J=1,I !save command line for output later
ICMDLN(J,K)=INPBUF (J)
15 CONTINUE
DO 16 J=I+1,45 !pad saved command line with spaces
ICMDLN (J,K)="40
16 CONTINUE
GOTO 40 lexit search loop
20 CONTINUE
30 EOF=.TRUE. !set EOF flag
GOTO 55 Icontinue to log exit status of what's currently
C tactive
c
C Comstruct the actual command line specified in the SPAWN call
C
C Write saved command line to TI: so that any MCR RUN error messages
C have context.

40 WRITE(5,710) (ICMDLN(J,K) ,J=1,45)
710 FORMAT (1X,45A1)

ENCODE (I+35,800,CMDLIN) INPCOM,K, (INPBUF (J),J=1,I)

800 FORMAT('RUN $',3A1,'/TASK=TSK',I1,'/EST=NO/CMD=""',45A1)
CMDLIN(I+32)="42 tadd terminating quote
CMDLIN(I+33)="15 land terminator

Spawn MCR... with the command line such as:

RUN $MAC/TASK=TSK1/EST=NO/CMD="MAC TEST1=TEST1"

At this point, the second half of the Radix-50 target task name is calculated
so that the first exit AST may issue a connect after ...MCR exits.

RTNAME (2)=40%40* (30*%+K) !calculate second half of Radix-50 task name

aaQ aaoaaaa

Spawn the MCR dispatcher with the constructed command line. The dispatcher
will then spawn a copy of ...MCR which will in turn process the RUN command.

45 CALL SPAWN(DSPNAM, ,,1,EXTAST,IESTAT(1,K) ,IPARM,CMDLIN,I+33,0,,IDSW)

aQaQ

C An error could be received from the SPAWN call. This could be due to a
C variety of reasons, such as the task file specified was not found or there
C was insufficient system resources at the time the Executive directive

5-248 Directive Descriptions

SPWN$

C was issued. Only the IE.RSU errors will be recovered by waiting for
C a significant event and reissuing the call to SPAWN.

IF (IDSW+1) 50,52,54 icheck directive status returned

c

C Spawn error

C

50 IESTAT(1.K)=5 1if mi, uncorrectable error mark status
IESTAT(2,K)=IDSW !save directive status returned for log
ISTAT(K)=3 tindicate status present
GOTO 60 igo write error to log file and clean up

c

C Spawn error due to insufficient resources

c

52 CALL WFSNE lwait for significant event
GOTO 45 Ireissue SPAWN

c

C Spawn successful, wait till ...MCR exits and first AST has been serviced.

c

54 CALL WAITFR(1) lwait for ...MCR to exit

c

C Do not STOP if connect failed, just process task info block and continue.

c

IF(IESTAT(1,K) .EQ. 6) GOTO 60 l!exit status code of 6 indicates
C connect failure
C

C At this point, a check is made to determine whether this task has
C completed its quest. If there is no more input and all task information
C blocks are free, then exit processing will be performed.

c
55 IF(EOF .AND. (ITCNT .EQ. ITMAX+1)) GOTO 500
c
C Next, if all the task information blocks are being used or if there
¢ is no more input to process, this task is stopped so as to lower its
C priority effectively to zero. This task will once again wake up when
C the connect AST unstops this task.
c
IF(ITCNT .EQ. 1 .OR. (EOF)) CALL STOP
c
C Scan all the task information blocks to process task information blocks
C now waiting for clean up and log-file processing.
c
60 DO 70 K=1,ITMAX tgearch task information blocks for
c the task(s) that exited
IF (ISTAT(X) .NE. 3) GOTO 70 1if eq, then offspring task connect AST
c has not occurred for this task

WRITE (2,901) (ICMDLN(J,K),J=1,45) twrite cmdlin to log file
GOTO (62,63,64,61,65,66,67).(IESTAT(i,K) JAND. "377)+1 !'decode exit status

Directive Descriptions

5-249

SPWNS$

61

63
64
65
66

67
68

70

900
901

902
903

904
905

906
907
908

c

WRITE (2,902) (IESTAT(1,K) .AND. "377) !unknown exit status
GOTO 68

WRITE (2,903) 'EX$WAR -- warning
'or none returned

GOTO 68

WRITE (2,904) 'EX$SUC -- success

GOTO 68

WRITE (2,905) 'EX$ERR -- error

GOTO 68

WRITE (2,906) 'EX$SEV -- severe error

GOTO 68

WRITE (2,907)IESTAT(2,K) !internal -- SPAWN failure

GOTO 68

WRITE (2,908)IESTAT(2,K) !internal -- CONNECT failure
ISTAT(K)=0 !free up task information block
IESTAT(1,K)=0 !initialize exit status
ITCNT=ITCNT+1 ladjust free task info block count
CONTINUE

GOTO 10

FORMAT(Q,45A1)

FORMAT('$',45A1)

FORMAT('+', 'Unknown exit status =',I3)
FORMAT('+','<< Warning')

FORMAT('+', '<< Success')
FORMAT('+','<< Error')

FORMAT('+','<< Severe error')

FORMAT('+','<< Spawn error, DSW =',I3)
FORMAT('+','<< Connect error, DSW =',I3)

C Exit cleanly by closing all files

c
500

CLOSE (UNIT=1) !close input file on LUN 1
CLOSE (UNIT=2) !close output file on LUN 2
CALL EXIT lexit

END

SUBROUTINE EXTAST

PARAMETER ITMAX=3
COMMON /KDMi/IESTAT(8,ITMAX).IEXSAD(ITMAX),ISTAT(ITMAX),IPARM,RTNAME(2)
COMMON /KOM2/THISTK(16)

INTEGER IESTAT !exit status array for each task
INTEGER IEXSAD !array containing the address of each task's IESTAT

INTEGER ISTAT !array containing the status (active vs free) of
'each task information block

5-250 Directive Descriptions

SPWNS$

INTEGER IPARM !contains address of IESTAT at AST state

INTEGER RTNAME !contains the Radix-50 name of the target task to be
C !connected to at AST state

INTEGER THISTK

EXTERNAL TSKEXT
Using IPARM, which contains the address of the exit status block array,
find the task information block by comparing this with the address of each

exit status block array (contained in IEXSAD).

Qo aaaq

DO 10 I=1,ITMAX
IF (IEXSAD(I) .EQ. IPARM) GOTO 20 !found the task info block

10 CONTINUE
GOTO 30

20 ISTAT(I)=2 lindicate ...MCR has exited

C
C Try to connect to the target task:
C
CALL CNCT(RTNAME(1),2,TSKEXT,IESTAT(1,I),IPARM,IDSW)
IF(IDSW .EQ. 1) GOTO 30 !if EQ, then successful connect

IESTAT(1,I)=6 lelse pass connect failed status
IESTAT(2,I)=IDSW

ISTAT(I)=3 tmark task information block as dome

30 RETURN treturn from AST state (returns
1to internal AST handler)
END

SUBROUTINE TSKEXT

PARAMETER ITMAX=3

COMMON /KOM1/IESTAT(8,ITMAX) , IEXSAD(ITMAX), ISTAT(ITMAX) ,IPARM,RTNAME(2)
COMMON /KOM2/THISTK(16)

INTEGER IESTAT l!exit status array for each task
INTEGER IEXSAD 'array containing the address of each task's IESTAT

INTEGER ISTAT !array containing the status (active vs free) of
c teach task information block

INTEGER IPARM !contains address of IESTAT at AST state

INTEGER RTNAME !contains the Radix-50 name of the target task to be
c !connected to at AST state
INTEGER THISTK !this task's name (so that an UNSTOP may be performed)

C
C Find exit status block:
C
DO 10 I=1,ITMAX
IF (IEXSAD(I) .EQ. IPARM) GOTO 20 !'found the task information block
10 CONTINUE

GOTO 30

Directive Descriptions 5-251

SPWNS$

20 ISTAT(I)=3

CALL USTP (THISTK)
30 RETURN

END

5-252 Directive Descriptions

!indicate AST has been serviced
IUNSTOP this task

!return from AST state (returns
'to internal AST handler)

SRDAS

5.87 Specify Receive Data AST

The Specify Receive Data AST directive instructs the system to record one of the following
cases:

e Receive data ASTs for the issuing task are desired, and the Executive transfers control to a
specified address when data has been placed in the task’s receive queue.

* Receive data ASTs for the issuing task are no longer desired.

When the directive specifies an AST service-routine entry point, receive data ASTs for the
task will subsequently occur whenever data has been placed in the task’s receive queue; the
Executive will transfer control to the specified address.

When the directive omits an entry-point address, the Executive disables receive data ASTs for
the issuing task. Receive data ASTs will not occur until the task issues another Specify Receive
Data AST directive that specifies an entry-point address. See the Notes.

FORTRAN Call
Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.
Macro Call
SRDA$ [ast]

Parameter
ast
AST service-routine entry-point address

Macro Expansion

SRDA$ RECAST
.BYTE 107.,2 ;SRDA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD RECAST ;ADDRESS OF RECEIVE AST

Local Symbol Definition
S.RDAE AST entry address (2)

DSW Return Codes

1S.5UC Successful completion.

IEUPN Insufficient dynamic memory.

IEITS AST entry-point address is already unspecified.

IE.AST Directive was issued from an AST service routine or ASTs are disabled.

Directive Descriptions 5-253

SRDAS

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size-is invalid.

Notes
1. The Specify Receive Data AST directive requires dynamic memory.

2. The Executive queues receive data ASTs when a message is sent to the task. No future
receive data ASTs will be queued for the task until the first one queued has been effected.

3. The task enters the receive data AST service routine with the task stack in the following
state:

SP+06 Event-flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 DSW of task prior to AST

No trap-dependent parameters accompany a receive data AST. Therefore, the AST Service
Exit directive must be executed with the stack in the same state as when the AST was
effected.

4. This directive cannot be issued either from an AST service routine or when ASTs are
disabled.

5-254 Directive Descriptions

SREAS, SREXS

5.88 Specify Requested Exit AST

The Specify Requested Exit AST directive allows the task issuing the directive to specify the
AST service routine to be entered if an attempt is made to abort the task by a directive or MCR
or DCL ABORT command. This allows a task to enter a routine for cleanup instead of abruptly
aborting.

If an AST address is not specified, any previously specified exit AST is canceled.

Privileged tasks enter the specified AST routine each time an abort request is issued. However,
subsequent exit ASTs will not be queued until the first exit AST has occurred.

Nonprivileged tasks enter the specified AST routine only once. Subsequent attempts to abort
the task will actually abort the task.

SREXS$ is the preferred form of this directive. The differences are explained in Notes 1 and 2.

FORTRAN Calls
CALL SREA (ast[,idsw])

Parameters
ast
Name of the externally declared AST subroutine

idsw

Name of an optional integer to receive the Directive Status Word
Format

CALL SREX (ast,ipblk,ipblkl,[dummy][,idsw])

Parameters
ast
Name of the externally declared AST subroutine

ipblk
Name of an integer array to receive the trap-dependent parameters

ipblki
Number of parameters to be returned into the ipblk array

dummy
Reserved for future use

idsw
Name of an optional integer to receive the Directive Status Word

Macro Caills

SREA$ [ast]
SREX$ [ast][,dummy]

Directive Descriptions 5-255

SREAS,

SREX$

Parameters

ast

AST service-routine entry-point address

dummy

Reserved for future use

Macro

SREA$
.BYTE
.WORD

SREX$
.BYTE

.WORD
.WORD

Expansions

REQAST

167.,2 :SREA$ MACRO DIC, DPB SIZE = 2 WORDS
REQAST ;EXIT AST ROUTINE ADDRESS

REQAST

167.,3 :SREX$ MACRO DIC, DPB SIZE = 3 WORDS
REQAST ;EXIT AST ROUTINE ADDRESS

0 ;RESERVED FOR FUTURE USE

Note

The DPB length for the SREA$ form of the directive is two words. For the
SREX$ form of the directive, it is three words.

Local Symbol Definition

S.REAE

Exit AST routine address (2)

DSW Return Codes

IS.SUC

IE.UPN
IE.AST

IE.ITS

IE.ADP
IE.SDP

Notes

Successful completion.
Insufficient dynamic storage.
Directive was issued from an AST service routine or ASTs are disabled.

ASTs already not desired, or a nonprivileged task attempted to respecify or cancel
the AST after one had already occurred.

Part of the DPB is out of the issuing task’s address space.
DIC or DPB size is invalid.

1. The SREX$ form of the directive is recommended for tasks that want to handle all privileged
and nonprivileged abortion attempts that do not violate multiuser protection checks. The
issuing task can use the information returned on the stack for this version of the directive
to decide how to handle the abortion attempt.

After specifying a requested exit AST using the SREX$ form of the directive, the issuing
task will enter the AST service routine if any attempt is made to abort the task. On systems
with multiuser protection, nonprivileged abortion attempts must originate from the same TI:
as that of the issuing task.

5-256 Directive Descriptions

SREAS, SREXS

When the AST service routine is entered and the AST has been specified using the SREX$
version of the directive, the task’s stack is in the following state:

SP+12 Event-flag mask word

SP+10 PS of task prior to AST

SP+06 PC of task prior to AST

SP+04 DSW of task prior to AST

SP+02 Trap-dependent parameter

SP+00 Number of bytes to add to SP to clean stack (4)

The trap-dependent parameter is formatted as follows:

Bit 0 = 0 if the abortion attempt was privileged.
=1 if the abortion attempt was nonprivileged.
Bit 1 = 0 if the ABRT$ directive was issued.
=1 if the MCR or DCL ABORT command was used.

Bits 2-15 are reserved for future use.

The task must remove the trap-dependent parameters from the stack before an AST Service
Exit directive is executed. The recommended method is to add the value stored in SP+00 to
SP. This is also the only recommended way to access the non-trap-dependent parameters
on the stack.

The SREA$ form of the directive is recommended for privileged tasks that do not want
abortion attempts from a nonprivileged user’s MCR or DCL ABORT command to be allowed
but do not otherwise care about the nature of the abortion attempt. It is also recommended
for any nonprivileged tasks that simply do not care about the nature of the abortion attempt.

After specifying a requested exit AST using the SREA$ form of the directive, privileged
tasks will enter the AST service routine if any of the following abortion attempts are made:

* Any privileged ABRT$ directive or privileged MCR or DCL. ABORT command

* Any nonprivileged ABRT$ directive from the same TI: on systems with multiuser
protection

Nonprivileged tasks will enter the AST service routine for the abortion attempts listed above,
plus the following:

* Any nonprivileged MCR or DCL ABORT command from the same TI: on systems with
multiuser protection

When the AST service routine is entered, the task’s stack is in the following state:
SP+06 Event-flag mask word
SP+04 PS of task prior to AST

Directive Descriptions 5-257

SREAS, SREXS

SP+02 PC of task prior to AST
SP+00 DSW of task prior to AST

No trap—dependent parameters accompany an AST specified by SREA$. Therefore, the AST
Service Exit directive can be executed with the stack in the same state as when the AST
was entered.

3. The event-flag mask word at the bottom of the stack preserves the Wait-for conditions of
a task prior to AST entry. A task can, after an AST, return to a Wait-for state. Because
these flags and other stack data are in the user task, they can be modified. However,
modifying the stack data may cause unpredictable results. Therefore, such modification is
not recommended.

4. If an SREX$ requested exit AST is not specified for a task, it is impossible to abort a
privileged task from a nonprivileged terminal using either MCR or DCL on systems with
multiuser protection.

5. The two forms of this directive should not be mixed in the same code since the stack format
and the trap-dependent parameters differ. Any mismatch between the form of the directive
and the AST routine will have unpredictable results.

6. See Chapter 1 for a list of restrictions on operations that can be performed in a FORTRAN
AST routine.

5-258 Directive Descriptions

SREF$

5.89 Send By Reference

The Send By Reference directive inserts a packet containing a reference to a region into the
receive-by-reference queue of a specified (receiver) task. The Executive automatically attaches
the receiver task for each Send By Reference directive issued by the task to the specified region
(the region identified in W.NRID of the Window Definition Block). The attachment occurs even
if the receiver task is already attached to the region unless bit WS.NAT in W.NSTS of the
Window Definition Block is set. The successful execution of this directive causes a significant
event to occur.

The send packet contains the following information:

* A pointer to the created attachment descriptor, which becomes the region ID to be used by
the receiver task

® The offset and length words specified in W.NOFF and W.NLEN of the Window Definition
Block (which the Executive passes without checking)

* The receiver task’s permitted access to the region, contained in the window status word
W.NSTS

®* The sender task name

* Optionally, the address of an 8-word buffer that contains additional information (if the
packet does not include a buffer address, the Executive sends eight words of zero)

The receiver task automatically has access to the entire region as specified in W.NSTS. The
sender task must be attached to the region with at least the same types of access. By setting
all the bits in W.NSTS to zero, the receiver task can default the permitted access to that of the
sender task. ;

If the directive specifies an event flag, the Executive sets the flag in the sender task—when the
receiver task acknowledges the reference—by issuing the Receive By Reference or the Receive By
Reference or Stop directive. When the sender task exits, the system searches for any unreceived
references that specify event flags and prevents any invalid attempts to set the flags. The
references themselves remain in the receiver task’s receive-by-reference queues.

FORTRAN Call
CALL SREF (tsk[efn],iwdb,[isrb][,ids])

Parameters

tsk

A single-precision, floating-point variable containing the name of the receiving task in
Radix-50 format

efn
Event flag number

iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

Directive Descriptions 5-259

SREF$

isrb
An 8-word integer array containing additional information (if specified, the address of isrb
is placed in iwdb(8); if isrb is omitted, the contents of iwdb(8) remain unchanged)
ids
Directive status
Macro Call
SREF$ task,wdb[,efn]

Parameters
task
Name of the receiver task

wdb
Window Definition Block address

efn
Event flag number

Macro Expansion
SREF$ ALPHA,WDBADR,48.

.BYTE 69.,5 ;SREF$ MACRO DIC, DPB SIZE = 5 WORDS
.RADS0 /ALPHA/ ;RECEIVER TASK NAME

.WORD 48. ;EVENT FLAG NUMBER

.WORD WDBADR ;WDB ADDRESS

window Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(4) W.NRID ID of the region to be sent by reference

iwdb(5) W.NOFF Offset word, passed without checking

iwdb(6) W.NLEN Length word, passed without checking

iwdb(7) W.NSTS Bit settings' in window status word (the receiver task’s

permitted access):

Bit Definition

WS.RED 1 if read access is permitted
WS.WRT 1 if write access is permitted

BT you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

5-260 Directive Descriptions

SREF$

Array
Element Offset Meaning
Bit Definition
WS.EXT 1 if extend access is permitted
WS.DEL 1 if delete access is permitted
iwdb(8) W.NSRB Optional address of an 8-word buffer containing additional

information

Output parameters:

None

Local Symbol Definitions

S.RETN Receiver task name (4)

S.REBA Window Definition Block base address (2)
S.REEF Event flag number (2)

DSW Return Codes
1S.5UC Successful completion.
IEEUPN A send packet or an attachment descriptor could not be allocated.

IE.INS The sender task attempted to send a reference to an Ancillary Control Processor
(ACP) task, or task not installed.

IE.PRI Specified access not allowed to sender task itself.
IENVR Invalid region ID.

IE.IEF Invalid event flag number (EFEN <0, or EFN>> 96 if group global event flags exist
for the task or EFN> 64 if not).

IEHWR Region had load failure or parity error.
IE.ADP The address check of the DPB, the WDB, or the send buffer failed.
IE.SDP DIC or DPB size is invalid.

Notes

1. For your convenience, the ordering of the SREF$ macro arguments does not directly
correspond to the format of the DPB. The arguments have been arranged so that the
optional argument (efn) is at the end of the macro call. This arrangement is also compatible
with the SDAT$ macro.

2. Because region attachment requires system dynamic memory, the receiver task should
detach from any region to which it was already attached in order to prevent depletion of
the memory pool. That is, the task needs to be attached to a given region only once.

Directive Descriptions 5-261

SREF$

3. If the specified event flag is group global, then the use count for the event flag's group
is incremented to prevent premature elimination of the event flags. The use count is run
down when the following events occur:

* The packet is received.

* The issuing task exits before the packet is received.

5-262 Directive Descriptions

SRRAS

5.90 Specify Receive-By-Reference AST

The Specify Receive-By-Reference AST directive instructs the system to record one of the
following cases:

* Receive-by-reference ASTs for the issuing task are desired, and the Executive transfers
control to a specified address when such an AST occurs.

® Receive-by-reference ASTs for the issuing task are no longer desired.

When the directive specifies an AST service-routine entry point, receive-by-reference ASTs for
the task will occur. The Executive will transfer control to the specified address.

When the directive omits an entry-point address, the Executive stops the occurrence of receive-
by-reference ASTs for the issuing task. Receive-by-reference ASTs will not occur until the task
issues another Specify Receive-By-Reference AST directive that specifies an entry-point address.
See the Notes.

FORTRAN Call
Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.
Macro Call
SRRA$ [ast]

Parameter

ast
AST service-routine entry-point address (0)

Macro Expansion

SRRA$ RECAST
.BYTE 21.,2 ;SRRA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD RECAST ;ADDRESS OF RECEIVE AST

Local Symbol Definition
S.RRAE AST entry address (2)

DSW Return Codes

1S.5UC Successful completion.

IEEUPN Insufficient dynamic memory.

IE.ITS AST entry-point address is already unspecified.

IE.AST Directive was issued from an AST service routine or ASTs are disabled.

Directive Descriptions 5-263

SRRAS

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes
1. The Specify Receive-By-Reference AST directive requires dynamic memory.

2. The Executive queues receive-by-reference ASTs when a message is sent to the task. Future
receive-by-reference ASTs will not be queued for the task until the first one queued has
been effected.

3. The task enters the receive-by-reference AST service routine with the task stack in the
following state:

SP+06 Event-flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+00 DSW of task prior to AST

No trap-dependent parameters accompany a receive-by-reference AST. Therefore, the AST
Service Exit directive must be executed with the stack in the same state as when the AST
was effected.

4. This directive cannot be issued either from an AST service routine or when ASTs are
disabled.

5-264 Directive Descriptions

STAF$

5.91 Set Affinity

(RSX-11M-PLUS multiprocessor systems only.) The Set Affinity directive can be issued by a
task to select which CPU and UNIBUS runs to use during task execution.

Task CPU/UNIBUS affinity enables a task to select which CPU and UNIBUS runs to use for
task execution when running on PDP-11 multiprocessor systems. You must be completely
aware of the particular system hardware configuration in which the task will be executed before
using these directives.

Task CPU/UNIBUS affinity can be established at three possible times, as follows:
* When the task is installed

®* When the task is mapped into a device partition (which must have CPU/UNIBUS run
affinity previously established)

* When set by the Set Affinity directive

When issued, the Set Affinity directive produces an affinity mask word that defines task CPU
/UNIBUS affinity. One bit in the word is set to select one CPU on which the task will be run.
One or more of 12 additional bits can be set to select one or more UNIBUS runs for peripheral
device use during task execution.

Two directives support task affinity, as follows:

* Set Affinity. This directive accepts parameters that define the CPU and UNIBUS run mask
for task execution. At assembly time, a 1-word mask is created consisting of the logical OR
of all the parameters.

® Remove Affinity. This directive removes task CPU/UNIBUS affinity previously established
by a Set Affinity directive.

A 1-word CPU/UNIBUS affinity mask defines directive parameters. Parameters enable
specification of one of 4 (maximum) CPUs and one or more of 12 (maximum) UNIBUS runs.
The affinity mask word consists of the logical OR of all the parameters. Only one parameter
(cp or ub) is required. Directive parameters are assembled to produce the mask-word bit values
shown as follows:

Directive Assembled
Parameter Mask-Word Function Bit Value
CPA Select CPU “A” 1
CPB Select CPU “B” 2
CPC Select CPU “C” 4
CPD Select CPU “D” 10
UBE Select UNIBUS run “E” 20
UBF Select UNIBUS run “F” 40
UBH Select UNIBUS run “H” 100

Directive Descriptions 5-265

STAFS

Directive Assembled
Parameter Mask-Word Function Bit Value
UB]J Select UNIBUS run “J” 200
UBK Select UNIBUS run “K” 400
UBL Select UNIBUS run “L” 1000
UBM Select UNIBUS run “M” 2000
UBN Select UNIBUS run “N” 4000
UBP Select UNIBUS run “P” 10000
UBR Select UNIBUS run “R” 20000
UBS Select UNIBUS run “S” 40000
UBT Select UNIBUS run “T” 100000
FORTRAN Call

CALL STAF (iaff[,idsw])

Parameters
iaff
Affinity mask word

idsw

Integer to receive the Directive Status Word
Macro Call

STAF$ [cplublub...]

Parameters
cp
CPU selected (A through D, as previously listed)

ub
UNIBUS run or runs selected (E through T, as previously listed)

Macro Expansion

STAF$ CPB!UBF!UBJ
.BYTE 161.,2 ;STAF$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 242 ;AFFINITY MASK WORD ('OR' OF PARAMETERS)

Local Symbol Definition
S.AFAF Affinity mask word (2)

5-266 Directive Descriptions

STAF$

DSW Return Codes

IS.sUC Successful completion.

IE.ITS Task installed with affinity.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. A task that is installed with task affinity must not issue this directive. Any attempt to do
so results in an IE.ITS error returned.

2. If this directive is issued with parameters that prevent the task from running, an IE.ITS
error is returned.

Directive Descriptions 5-267

STIMS

5.92 Set System Time

The Set System Time directive instructs the system to set the system’s internal time to the
specified time parameters. Optionally, the Set System Time directive returns the system’s
current internal time to the issuing task before setting it to the specified values.

All time parameters must be specified as binary numbers.
A task must be privileged to issue this directive.

Changing the system time does not affect the time-based entries in the clock queue. Although
the actual system time changes, the time interval after which a time-based entry is to be
dequeued remains the same. This behavior allows the proper time-synchronization of events to
be maintained.

For example, if a task is scheduled to run one hour from the current time, it will still run after
this interval even though the time might be changed from 11:27 to 11:37. The display of the
entry in the clock queue (MCR CLQ or DCL SHOW CLOCK_QUEUE) shows the new time at
which the task will run.

FORTRAN Call

CALL SETTIM (ibufnl,ibufp][,ids])

Parameters
ibufn
An 8-word integer array—new time-specification buffer

ibufp
An 8-word integer array—previous time buffer

ids

Directive status
Macro Call

STIM$ bufn,[bufp]

Parameters

bufn
Address of new 8-word time-specification buffer

bufp
Address of an 8-word buffer to receive the previous system-time parameters

Buffer Format
Word 0 Year (since 1900)
Word 1 Month (1-12)

5-268 Directive Descriptions

STIMS

Word 2 Day (1-n, where n is the highest day possible for the given month and year)
Word 3 Hour (0-23)

Word 4 Minute (0-59)

Word 5 Second (0-59)

Word 6 Tick of second (0-n, where n is the frequency of the system clock minus one); if the
next parameter (ticks per second) is defaulted, this parameter is ignored

Word 7 Ticks per second (must be defaulted or must match the frequency of the system
clock); this parameter is used to verify the intended granularity of the “tick of
second” parameter

Note

If any of the specified new time parameters are defaulted (equal to -1), the
corresponding previous system-time parameters will remain unchanged and will
be substituted for the defaulted parameters during argument validation.

Macro Expansion
STIM$ NEWTIM,OLDTIM

.BYTE 61..,3 ;STIM$ DIC, DPB SIZE = 3 WORDS
.WORD NEWTIM ; ADDRESS OF 8(10)-WORD INPUT BUFFER
.WORD OLDTIM ;ADDRESS OF 8(10)-WORD OUTPUT BUFFER

Local Symbol Definitions

S.TIBA Input buffer address (2)
S.TIBO Output buffer address (2)
The following offsets are assigned relative to the start of each time-parameters buffer:
S.TIYR Year (2)

S.TIMO Month (2)

S.TIDA Day (2)

S.TIHR Hour (2)

S.TIMI Minute (2)

S.TISC Second (2)

S.TICT Clock tick of second (2)
S.TICP Clock ticks per second (2)

DSW Return Codes
IS.SUC Successful completion.
IE.PRI The issuing task is not privileged.

Directive Descriptions 5-269

STIM$

IE.ITI One of the specified time parameters is out of range, or both the tick-of-second

parameter and the ticks-per-second parameter were specified and the ticks-per-
second parameter does not match the system’s clock frequency. The system time
at the moment the directive is issued (returned in the second buffer) can be useful
in determining the cause of the fault if any of the specified time parameters were
defaulted.

IE.ADP Part of the DPB or one of the buffers is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. Execution of this directive generates an error log packet and sends it to the Error Logger.

2. On a system with accounting active, this directive causes an accounting transaction that
records both the old and new times.

3. The highest clock frequency supported by the operating system is 1000 Hz for a
programmable clock. Note that as the clock frequency approaches this value, the maximum
resolution for this directive becomes more time-critical. The accuracy of this directive
depends upon the elapsed time between the moment that a new system time is specified
and the time that the directive actually traps to the Executive.

4. The buffers used in this directive are compatible with those of the Get Time Parameters
(GTIM$) directive.

5. The second buffer (previous time) is filled in only if the directive was successfully executed

or if it was rejected with an error code of IE.ITL

5-270 Directive Descriptions

STLOS

5.93 Stop for Logical OR of Event Flags

The Stop for Logical OR of Event Flags directive instructs the system to stop the issuing task
until the Executive sets one or more of the indicated event flags from one of the following

groups:

GR 0 Local flags 1-16

GR1 Local flags 17-32

GR2 Common flags 33-48
GR3 Common flags 49-64
GR 4 Group global flags 65-80
GR 5 Group global flags 81-96

The task does not stop itself if any of the indicated flags are already set when the task issues
the directive. This directive cannot be issued at AST state. See the Notes.

A task that is stopped for one or more event flags can become unstopped only by setting the
specified event flag. It cannot become unstopped with the Unstop directive or with the MCR
UNSTOP or DCL START command.

FORTRAN Call
CALL STLOR (efl,ef2,ef3...,efn)
CALL STLORS (idsw,efl,ef2,ef3...,efn)

Parameters

efl...efn
List of event flag numbers

idsw
Integer to receive the Directive Status Word

Macro Call
STLO$ grp,msk

Parameters

grp
Desired group of event flags

msk
A 16-bit mask word

Directive Descriptions 5-271

STLOS

Macro Expansion

STLO$ 1,47

.BYTE 137.,3 ;STLO$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD 1 ;GROUP 1 FLAGS (FLAGS 17-32)

.WORD 47 ;MASK WORD = 47 (FLAGS 17, 18, 19, 22)

Local Symbol Definitions
S.TLGR Group flags (2)
S.TLMS Mask word (2)

DSW Return Codes
1S.sUC Successful completion.
IE.AST The issuing task is at AST state.

IE.IEF An event flag group other than 0 through 5 was specified, or the event-flag mask

word is zero.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1.

There is a one-to-one correspondence between bits in the mask word and the event flags
in the specified group. That is, if group 1 were specified (as in the above macro expansion
example), bit 0 in the mask word would correspond to event flag 17, bit 1 to event flag 18,
and so forth.

The Executive does not arbitrarily clear event flags when Stop for Logical OR of Event Flags
conditions are met. Some directives (Queue I/O Request, for example) implicitly clear a
flag. Otherwise, they must be explicitly cleared by a Clear Event Flag directive.

The argument list specified in the FORTRAN or other high-level language call must contain
only those event flag numbers that lie within one event flag group. If event flag numbers
are specified that lie within more than one event flag group or if an invalid event flag is
specified, a task abort is generated with an error code in a register (see Section 1.5.3).

Tasks stopped for event flag conditions cannot be unstopped by issuing the Unstop directive;
tasks stopped in this manner can be unstopped only by meeting other event flag conditions.

The grp operand must always be of the form n regardless of the macro form used. In almost
all other macro calls, numeric or address values for $S form macros have the following
form:

#n
For STLO$S, this form of the grp argument would be as follows:

n

5-272 Directive Descriptions

STLOS

6. If the specified event flag group is group global, the group’s use count is incremented to
prevent premature elimination of the event flags. The use count is run down when the
following events occur:

® The Stop-for condition is satisfied.

* The issuing task exits before the Stop-for condition is satisfied.

Directive Descriptions 5-273

STOPSS

5.94 Stop ($S Form Recommended)

The Stop directive stops the issuing task. This directive cannot be issued at AST state. A task
stopped in this manner can be unstopped only by another task issuing an Unstop directive
directed to the task, the task issuing an Unstop directive at AST state, or with the MCR UNSTOP

or DCL START command.

FORTRAN Call
CALL STOP [(idsw)]

Parameter

idsw
Integer to receive the Directive Status Word

Macro Call
STOP$S

Macro Expansion

STOP$S

MoV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 131.,1 ; STOP$ MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

Local Symbol Definitions

None

DSW Return Codes
IS.SET Successful completion.
IE.AST The issuing task is at AST state.

IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

5-274 Directive Descriptions

STSES

5.95 Stop for Single Event Flag

The Stop for Single Event Flag directive instructs the system to stop the issuing task until the
specified event flag is set. If the flag is set at issuance, the task is not stopped. This directive
cannot be issued at AST state.

A task that is stopped for one or more event flags can become unstopped only by setting
the specified event flag. It cannot become unstopped by the Unstop directive or by the MCR
UNSTOP or DCL START command.

FORTRAN Call

CALL STOPFR (iefn[,idsw])

Parameters
iefn
Event flag number

idsw
Integer to receive the Directive Status Word

Macro Call
STSE$ efn

Parameter

efn
Event flag number

Macro Expansion

STSE$ 7
.BYTE 135.,2 ;STSE$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 7 ;LOCAL EVENT FLAG NUMBER = 7

Local Symbol Definition
S.TSEF Event flag number (2)

DSW Return Codes
IS.sUC Successful completion.
IE.AST The issuing task is at AST state.

IE.IEF Invalid event flag number (EFN <1, or EFN> 96 if group global event flags exist
for the task’s group or EFN>> 64 if not).

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-275

STSES

Note

If the specified event flag is group global, the use count for the event flag’s group is incremented
to preverit premature elimination of event flags. The use count is run down when the following

events occur:
¢ The Stop-for condition is satisfied.

* The issuing task exits before the Stop-for condition is satisfied.

5-276 Directive Descriptions

SVDBS$

5.96 Specify SST Vector Table for Debugging Aid

The Specify SST Vector Table for Debugging Aid directive instructs the system to record the
address of a table of SST service-routine entry points for use by an intratask debugging aid
(ODT, for example).

To deassign the vector table, omit the parameters adr and len from the macro call.

Whenever an SST service-routine entry is specified in both the table used by the task and the
table used by a debugging aid, the trap occurs for the debugging aid, not for the task.

FORTRAN Call

Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

Macro Call
SVDB$ [adr][,len]

Parameters

adr

Address of the SST vector table

len

Length of (that is, number of entries in) the table in words

The vector table has the following format:

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Odd address of nonexistent memory error
Memory protect violation

T-bit trap or execution of a BPT instruction
Execution of an IOT instruction

Execution of a reserved instruction
Execution of a non-RSX EMT instruction
Execution of a TRAP instruction

PDP-11/40 floating-point exception

A zero entry in the table indicates that the task does not want to process the corresponding

SST.

Directive Descriptions 5-277

SVDB$

Macro Expansion
SVDB$ SSTTBL,4

.BYTE 103.,3 ;SVDB$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD SSTTBL ;ADDRESS OF SST TABLE
.WORD 4 ;SST TABLE LENGTH = 4 WORDS

Local Symbol Definitions
S.VDTA Table address (2)
S.VDTL Table length (2)

DSW Return Codes

IS.SUC Successful completion.

IE.ADP Part of the DPB or table is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-278 Directive Descriptions

5.97 Specify SST Vector Table for Task

The Specify SST Vector Table for Task directive instructs the system to record the address of a
table of SST service-routine entry points for use by the issuing task.

SVTKS

To deassign the vector table, omit the parameters adr and len from the macro call.

Whenever an SST service-routine entry is specified in both the table used by the task and the
table used by a debugging aid, the trap occurs for the debugging aid, not for the task.

FORTRAN Call

Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanism. Therefore, this directive is not available to FORTRAN tasks.

Macro Call

SVTKS$

[adr][,len]

Parameters

adr

Address of the SST vector table

len

Length of (that is, number of entries in) the table in words

The vector table has the following format:

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Odd address of nonexistent memory error
Memory protect violation

T-bit trap or execution of a BPT instruction
Execution of an IOT instruction

Execution of a reserved instruction
Execution of a non-RSX EMT instruction
Execution of a TRAP instruction

PDP-11/40 floating-point exception

A zero entry in the table indicates that the task does not want to process the corresponding

SST.

Directive Descriptions

5-279

SVTK$S

Macro Expansion
SVTK$ SSTTBL,4

.BYTE 105.,3 ;SVTK$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD SSTTBL ;ADDRESS OF SST TABLE
.WORD 4 ;SET TABLE LENGTH = 4 WORDS

Local Symbol Definitions
S.VITA Table address (2)
S.VTTL Table length (2)

DSW Return Codes

IS.sUC Successful completion.

IE.ADP Part of the DPB or table is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

5-280 Directive Descriptions

SWSTS

5.98 Switch State

The Switch State directive makes it possible for a privileged task which is not itself mapped
to the Executive to map subroutines that require access to the Executive. For information on
mapping the subroutines, see Notes 3 and 5 for the description of the Connect to Interrupt
(CINTS$) directive.

The directive maps the subroutine through APR 5 (that is, it uses virtual addresses 120000
through 137777;5). Therefore, the subroutine, and all data in the task referenced by the
subroutine, must fall within the limits of 4K words of the base virtual address specified in the
directive. The subroutine itself is executed as part of the SWST$ directive and is, therefore, in
system state during its execution. Local data references must also be within the 4K-word limit.
FORTRAN Call

Not supported

Macro Call
SWST$ base,addr

base
The base virtual address within the task for mapping the subroutine through APR 5

addr
Virtual address of the subroutine to be executed in system state by the directive

Macro Expansion
SWST$ BASE,ADDR

.BYTE 175.,3 ;SWST$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD BASE ;BASE VIRTUAL ADDRESS FOR MAPPING THE
;SUBROUTINE THROUGH APR 5
.WORD ADDR ;VIRTUAL ADDRESS OF THE SUBROUTINE EXECUTED AT SYSTEM STATE

Local Symbol Definitions
S.WBAS Base virtual address for mapping the subroutine through APR 5
S.WADD Virtual address of the subroutine executed at system state

DSW Return Codes

I5.sUC Successful completion of service.

IE.PRI The issuing task is not privileged.

IEEMAP The specified system-state routine is more than 4K words from the specified base.
IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-281

SWSTS

Notes

1.

User-mode register contents are preserved across the execution of the kernel-mode
subroutine. Contents of the user-mode registers are passed into the kernel-mode registers.
Contents of the kernel-mode registers are discarded when the subroutine has completed
execution.

User-mode registers appear at the following octal stack offsets during execution of the
specified subroutine in kernel mode:

User-mode RO at S.WSRO0 (=2) offset on kernel stack
User-mode R1 at S.WSR1 (=4) offset on kernel stack
User-mode R2 at S.WSR2 (=6) offset on kernel stack
User-mode R3 at S.WSR3 (=10) offset on kernel stack
User-mode R4 at S.WSR4 (=12) offset on kernel stack
User-mode R5 at S.WSR5 (=14) offset on kernel stack

If you want to return any register values to the user-mode registers, you must store the
desired values on the stack using the above offsets.

These offset values become valid when the subroutine is called, and remain valid as long as
the stack pointer is not changed. Once the stack pointer changes, the offset values become
invalid.

Virtual address values passed to system state in a register must be realigned through kernel
APR 5. For example, if R5 contains address n and the base virtual address in the DPB is
10005, the value in R5 must be aligned using the following formula:

n+120000+base virtual address
The resulting value is n+121000.

The system-state subroutine should exit by issuing a return instruction. This causes a
successful directive status to be returned as the directive is terminated.

Caution

Keep in mind that the memory management unit rounds the base address
to the nearest 32-word boundary.

5-282 Directive Descriptions

TFEAS

5.99 Test for Specified Task Feature

The Test for Specified Task Feature directive tests for the presence of a specific task software
option, such as fast-mapping support or privilege status.

FORTRAN Call
CALL TFEA (isym,idsw)

Parameters
isym
Symbol for the specified task feature

idsw
Integer to receive the Directive Status Word

Macro Call
TFEA$ sym

Parameter

sym
Symbol for the specified task feature (see Table 5-2)

Table 5-2: Task Feature Symbols

Symbol Value Meaning
T2$WFR 1 Task in Wait-for state (1=YES)

T2$WFA 2 Saved T2$WEFR on AST in progress
T2$SPN 3 Task suspended (1=YES)

T2$SPA 4 Saved T2$SPN on AST in progress
T2$STP 5 Task stopped (1=YES)

T2$STA 6 Saved T2$SPN [STP?] on AST in progress
T2$ABO 7 Task marked for abort (1=YES)

AT2$AFF 9. Task is installed with affinity

T2$SIO 10. Task stopped for buffered 1/0

T2$SEF 12, Task stopped for event flag or flags (1=YES)
T2$REX 13. Requested exit AST specified

T2$CHK 14. Task not checkpointable (1=YES)

T2$DST 15. AST recognition disabled (1=YES)
T2$AST 16. AST in progress (1=YES)

Directive Descriptions 5-283

TFEAS

Table 5-2 (Cont.):

Task Feature Symbols

Symbol Value Meaning

T3$GFL 17. Group global event flag lock

T3$SWS 18. Reserved for use by Software Services

T3$CMD 19. Task is executing a CLI command

T3$MPC 20. Mapping change with outstanding 1/0

T3$NET 21. Network protocol level

T3$ROV 22. Task has resident overlays

T3$CAL 23. Task has checkpoint space in image

T3$NSD 24. Task does not allow Send Data

T3$RST 25. Task is restricted (1=YES)

T3$CLI 26. Task is a command line interpreter

T3$SLV 27. Task is a slave task (1=YES)

T3$MCR 28. Task requested as external MCR function

T3$PRV 29. Task is privileged (1=YES)

T3$REM 30. Remove task on exit (1=YES)

T3$PMD 31. Dump task on synchronous abort (0=YES)

T3$ACP 32. Ancillary Control Processor (1=YES)

T4$SNC 33. Task uses commons for synchronization

T4$DSP 34. Task was built for user I/D space

T4$PRV 35. Task was privileged, but has cleared T3.PRV with GIN$ (may be resent
with GIN$ if T4$PRV set)

T4$PRO 36. TCB is (or should be) a prototype

T4$LDD 37. Task’s load device has been dismounted

T4$MUT 38. Task is a multiuser task

T4$CTC 39. Task has been processed by GIN$ “C abort

T4$FMP 40. Task has fast-mapping header extension

5-284 Directive Descriptions

TFEAS

Macro Expansion

TFEA$ T4$FMP
.BYTE 209.,2 ; TFEA$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD T4$FMP ;FEATURE IDENTIFIER

Local Symbol Definition
F.TEAF Feature identifier (2)

DSW Return Codes

IS.CLR Successful completion; feature not present.

IS.SET Successful completion; feature present.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-285

TLONS, TLOGS

5.100 Translate Logical Name String

The Translate Logical Name String directive returns the equivalence string previously associated
with the specified logical name.

The TRALON and TLONS calls are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
operating systems. The TRALOG and TLOGS$ calls are provided for compatibility with the P/OS
operating system. See the Note.

FORTRAN Calls

CALL TRALON ([mod],[tbmsk],[status]Ins,Inssz,ens,ienssz,[rsize],[rtbmod][,idsw])
CALL TRALOG ([mod],[tbmsk],[status]Ins,Inssz,ens,ienssz,[rsize],[rtbmod][,idsw])

Parameters

mod
Optional modifier of the logical name within a table. Ordinarily, no value would be specified
to allow any defined logical name to be found.

tbmsk
Inhibit mask to prevent a logical name table from being searched. The following symbol
bit definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LSPRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

Ins
Character array containing the logical name string

Inssz
Size (in bytes) of the logical name string

ens
Character array buffer to contain the returned equivalence string

5-286 Directive Descriptions

TLONS, TLOGS

ienssz
Size (in bytes) of the data area for the returned equivalence name string

rsize
Word to receive the size of the returned equivalence name

rtbmod

Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

idsw
Integer to receive the Directive Status Word

Macro Calls

TLON$ [mod],[tbmsk],[status],Ins,Inssz,ens,enssz,[rsize],[rtbmod]
TLOG$ [mod],[tbmsk][status] Ins,Inssz,ens,enssz,[rsize],[rtbmod]

Parameters

mod

Optional modifier to be matched against the logical name within a table. Ordinarily, no
value would be specified to allow any logical name in table to be found.

tbmsk

Inhibit mask to prevent a table from being searched. The following symbol bit definitions,
when set, prevent a particular table from being searched:

System (IN.SYS) 10

Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified, the tables are searched in the following order: task, session, group,
system. The tables are searched in this order for each iteration. The values remain constant
for all iterations of a logical name translation.

status
Word to receive the logical status word:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LS.PRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

Ins
Character array containing the original logical name string

Inssz
Size (in bytes) of the original logical name string

Directive Descriptions 5-287

TLONS, TLOGS

ens
Character array to contain the returned equivalence string

enssz
Size (in bytes) of the data area for the returned equivalence name string

rsize
Word to receive the size of the returned equivalence name; this size is always the actual
size of the equivalence name regardless of the string size specified with enssz

ribmod
Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

Macro Expansion
TLON$ MOD,TBMSK,LNS,STATUS,LNSSZ,ENS,ENSSZ,RSIZE,RTBMOD

.BYTE 207.,10. ;TLON$ MACRO DIC, DPB SIZE = 10(10) WORDS

.BYTE 13. ;SUBFUNCTION VALUE (TLOG$ = 9(10))

.BYTE MOD ;LOGICAL NAME MODIFIER

.WORD TBMSK ;LOGICAL NAME TABLE INHIBIT MASK

.WORD LNS ;LOGICAL NAME STRING ARRAY

.WORD STATUS ;LOCATION OF LOGICAL NAME STATUS

.WORD LNSSZ ;SIZE (IN BYTES) OF LOGICAL NAME STRING

.WORD ENS ;RETURNED EQUIVALENCE NAME ARRAY

.WORD ENSSZ ;SIZE (IN BYTES) OF EQUIVALENCE NAME

.WORD RSIZE ;LOCATION OF SIZE FOR RETURNED EQUIVALENCE NAME
.WORD RTBMOD ;LOCATION OF LOGICAL TABLE NUMBER (LOWER BYTE) AND

;MODIFIER VALUE OF LOCATED LOGICAL NAME (HIGHER BYTE)

Local Symbol Definitions

T.LENS Address of buffer for returned equivalence name (2)
T.LESZ Byte count of buffer for returned equivalence name (2)
T.LFUN Subfunction value (1)

T.LLNS Address of logical name string (2)

T.LLSZ Size (in bytes) of specified logical name (2)
T.LMOD Logical name modifier (1)

T.LRSZ Word for returned equivalence name size (2)
T.LRTM Word for returned table number and modifier (2)
T.LSTS Address of status block for LNB (2)

T.LTBL Table inhibit mask (2)

5-288 Directive Descriptions

TLONS, TLOGS

DSW Return Codes

IS.suC
IEITN

IE.LNF
IE.ADP

IE.SDP

Note

Successful completion.
Invalid table number specified.
The specified logical name string was not found.

Part of the DPB or user buffer is out of the issuing task’s address space, or you do
not have the proper access to that region.

DIC or DPB size is invalid.

The TRALON and TLONS$ calls are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
operating systems. The TRALOG and TLOG$ calls are provided for compatibility with the
P/OS operating system. When you use TRALOG or TLOGS$, the system performs the following

actions:

* If a device name or node name ends with one or more colons, strips off one to two of the
terminating colons.

* If a physical device name string is in the form ddnnn:, compresses any leading zeros. For
example, DR005: becomes DR5.

Directive Descriptions 5-289

ULGF$S

5.101 Unlock Group Global Event Flags ($S Form Recommended)

The Unlock Group Global Event Flags directive instructs the Executive to decrement the use
count of the group global event flags for the issuing task’s protection group UIC (H.CUIC+1).
This unlocks flags that were locked by the Create Group Global Event Flags directive.

A task may unlock the event flags only once before locking them again.
The group global event flags are eliminated if the following conditions are satisfied:

e The use count in the Group Global Event Flag Control Block (GFB) is zero after this directive
is issued.

e The GFB is marked for deletion.

FORTRAN Call
CALL ULGF [(ids)]

Parameter
ids
Directive status
Macro Call
ULGF$S [err]

Parameter

err
Error-routine address

Macro Expansion

ULGF$S ERR

MoV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 159.,1 ;ULGF$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes
IS.5UC Successful completion.
IE.RSU Event flags already unlocked from the issuing task.

5-290 Directive Descriptions

ULGFSS

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-291

UMAPS

5.102 Unmap Address Window

The Unmap Address Window directive unmaps a specified window. After the window has been
unmapped, references to the corresponding virtual addresses are invalid and cause a processor
trap to occur.

FORTRAN Call

CALL UNMAP (iwdbj,ids])

Parameters
iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)
ids
Directive status
Macro Caill
UMAP$ wdb

Parameter

wdb
Window Definition Block address

Macro Expansion

UMAP$ WDBADR
.BYTE 123.,2 ;UMAP$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters

Input parameters:

Array

Element Offset Meaning

iwdb(1) W.NID ID of the window to be unmapped
bits 0-7

5-292 Directive Descriptions

UMAPS

Output parameters:

Array
Element Offset Meaning
iwdb(7) W.NSTS Bit settings1 in the window status word:

Bit Definition

WS.UNM 1 if the window was unmapped successfully

BT you are a FORTRAN programmer, refer to Section 3.5.2 to determine the bit values represented by the symbolic names described.

Local Symbol Definition
UMABA Window Definition Block address (2)

DSW Return Codes

IS.suC Successful completion.

IE.ITS The specified address window is not mapped.
IEENVW Invalid address window ID.

IE.ADP DPB or WDB out of range.

IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-293

USTPS

5.103 Unstop Task

The Unstop Task directive unstops the specified task that has stopped itself by either the Stop,
the Receive by Reference or Stop, or the Receive Data or Stop directive. It does not unstop
tasks stopped for event flags or tasks stopped for buffered 1/0O. If the Unstop directive is issued
to a task previously stopped by means of the Stop or Receive or Stop directive while at task
state and the task is presently at AST state, the task becomes unstopped only when it returns
to task state.

It is considered the responsibility of the unstopped task to determine if it has been unstopped
validly.

The Unstop directive does not cause a significant event.

FORTRAN Call
CALL USTP ([rtname][ids])

Parameters

rthname
Name of the task to be unstopped (if not specified, CALL USTP will use the issuing task as
its default)

ids

Integer to receive directive status information
Macro Call

USTP$ [tname]

Parameter

tname
Name of the task to be unstopped (if not specified, USTP$ will use the issuing task as its
default)

Macro Expansion

USTP$ ALPHA
.BYTE 133.,3 ;USTP$ MACRO DIC, DPB SIZE = 3 WORDS
.RAD50 /ALPHA/ ;NAME OF TASK TO BE UNSTOPPED

Local Symbol Definition
U.STTN Task name (4)

DSW Return Codes
IS.sUC Successful completion.
IE.INS The specified task is not installed in the system.

5-294 Directive Descriptions

USTPS

IE.ACT The specified task is not active.

IE.ITS The specified task is not stopped, or it is stopped for event flags or buffered 1/0.
IE.ADP Part of the DPB is out of the issuing task’s address space.

IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-295

VRCDS

5.104 Variable Receive Data

The Variable Receive Data directive instructs the system to dequeue a variable-length data block
for the issuing task. (The data block has been queued (FIFO) for the task by a Variable Send
Data directive.) When a sender task is specified, only data sent by the specified task is received.

The buffer size can be 256, words maximum. If no buffer size is specified (macro calls only),
the buffer size is 13, words. If a buffer size greater than 256y is specified, an IE.IBS error is
returned.

A 2-word sender task name (in Radix-50 form) and the data block are returned in the specified
buffer, with the task name in the first two words. The two words are added to the buffer size
you specify.

Variable-length data blocks are transferred from the sending task to the receiving task by means
of buffers in secondary pool.
FORTRAN Call

CALL VRCD ([task],bufadr,buflen|,idsw])

Parameters
task
Sender task name

bufadr
Address of the buffer to receive the sender task name and data (must be word-aligned
(INTEGER#2))

bufilen
Length of the buffer

idsw
Integer to receive the Directive Status Word

If the directive was successful, it returns the number of words transferred into the user buffer.
If the directive execution encountered an error, it returns the error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is positive, the value
of the status word is the number of words transferred including the task name. For example,
if you specify a buffer size of 13 in the VRCD$ call, the value returned in the Directive Status
Word is 15 (13 words of data plus the 2 words needed to return the task name).

Macro Call
VRCD$ [task],bufadr[,buflen],[ti]

5-296 Directive Descriptions

VRCDS$

Parameters
task
Sender task name

bufadr
Buffer address

bufien
Buffer size in words

ti
TI: indicator (ignored on RSX systems)

Macro Expansion
VRCD$ SNDTSK,DATBUF,BUFSIZ,0

.BYTE 75..6 ; VRCD$ MACRO DIC, DPB SIZE = 6 WORDS
.RADS0 /SNDTSK/ ; SENDER TASK NAME

.WORD DATBUF ;ADDRESS OF DATA BUFFER

.WORD BUFSIZ ;BUFFER SIZE

.WORD O ;TI: INDICATOR (IGNORED ON RSX SYSTEMS)

Local Symbol Definitions

R.VDTN Sender task name (4)

R.VDBA Buffer address (2)

R.VDBL Buffer length (2)

R.VDTI TL indicator (ignored on RSX systems) (2)

DSW Return Codes

IS.SUC Successful completion.

IE.ITS No data in task’s receive queue or no data from specified task.
IE.RBS Receive buffer is too small.

IE.IBS Invalid buffer size specified (greater than 256,().

IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-297

VRCSS$

5.105 Variable Receive Data or Stop

The Variable Receive Data or Stop directive instructs the system to dequeue a variable-length
data block for the issuing task. (The data block has been queued (FIFO) for the task by a
Variable Send Data directive.) If there is no such packet to be dequeued, the issuing task is
stopped. In this case, another task (the sender task) is expected to issue an Unstop directive
after sending the data. When stopped in this manner, the directive status returned is IS.SET,
indicating that the task was stopped and that no data has been received. However, since the
task must be unstopped in order to see this status, the task can now reissue the Variable Receive
Data or Stop directive to actually receive the data packet.

When a sender task is specified, only data sent by the specified task is received.

The buffer size can be 256,9 words maximum. If no buffer size is specified, the buffer size is
13,0 words. If a buffer size greater than 256,¢ is specified, an IE.IBS error is returned.

A 2-word sender task name (in Radix-50 form) and the data block are returned in the specified
buffer, with the task name in the first two words. The two words are added to the buffer size
you specify.

Variable-length data blocks are transferred from the sending task to the receiving task by means
of buffers in secondary pool.
FORTRAN Cali

CALL VRCS ([task],bufadr,[buflen][,idsw])

Parameters
task
Sender task name

bufadr
Address of the buffer to receive the sender task name and data

buflen
Length of the buffer

idsw
Integer to receive the Directive Status Word

If the directive was successful, it returns the number of words transferred into the user buffer.
If the directive execution encountered an error, it returns the error code in the ids parameter.

Any error return of the form [E.XXX is a negative word value. If the status is positive, the value
of the status word is the number of words transferred including the task name. For example,
if you specify a buffer size of 13 in the VRCS$ call, the value returned in the directive status
word is 15 (13 words of data plus the 2 words needed to return the task name).

Macro Call
VRCS$ [task],bufadr{,buflen],[ti]

5-298 Directive Descriptions

VRCS$

Parameters
task
Sender task name

bufadr
Buffer address

bufien
Buffer size in words

ti
TI: indicator (ignored on RSX systems)

Macro Expansion
VRCS$ SNDTSK,DATBUF ,BUFSIZ,0

.BYTE 139.,6 :VRCS$ MACRO DIC, DPB SIZE = 6 WORDS
.RADSO /SNDTSK/ ; SENDER TASK NAME

-WORD DATBUF ; ADDRESS OF DATA BUFFER

.WORD BUFSIZ ;BUFFER SIZE IN WORDS

.WORD O ;TI: INDICATOR (IGNORED ON RSX SYSTEMS)

Local Symbol Definitions

R.VSTN Sender task name (4)

R.VSBA Buffer address (2)

R.VSBL Buffer size in words (2)

R.VSTI TI: indicator (ignored on RSX systems) (2)

DSW Return Codes

1Ss.sUC Successful completion.

IEITS No data in task’s receive queue or no data from specified task.
IE.RBS Receive buffer is too small.

IE.IBS Invalid buffer size specified (greater than 2564).

IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-299

VRCXS$

5.106 Variable Receive Data or Exit

The Variable Receive Data or Exit directive instructs the system to dequeue a variable-length
data block for the issuing task. (The data block has been queued (FIFO) for the task by a
Variable Send Data directive.) When a sender task is specified, only data sent by the specified
task is received.

A 2-word sender task name (in Radix-50 form) and the data block are returned in the specified
buffer, with the task name in the first two words. The two words are added to the buffer size
you specify.

If no data has been sent, a task exit occurs. To prevent the possible loss of send-data packets,
you should not rely on I/O rundown to take care of any outstanding I/O or open files. The
task should assume this responsibility.

The buffer size can be 25657 words maximum. If no buffer size is specified, the buffer size is
1310 words. If a buffer size greater than 2564 is specified, an IE.IBS error is returned.

Variable-length data blocks are transferred from the sending task to the receiving task by means
of buffers in secondary pool.
FORTRAN Call

CALL VRCX ([task],bufadr,[buflen][,idsw])

Parameters
task
Sender task name

bufadr
Address of the buffer to receive the sender task name and data

buflen
Length of the buffer

idsw
Integer to receive the Directive Status Word

If the directive was successful, it returns the number of words transferred into the user buffer.
If the directive execution encountered an error, it returns the error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is positive, the value
of the status word is the number of words transferred including the task name. For example,
if you specify a buffer size of 13 in the VRCX$ call, the value returned in the directive status
word is 15 (13 words of data plus the 2 words needed to return the task name).

Macro Call

VRCX$ [task],bufadr],buflen],[ti]

5-300 Directive Descriptions

VRCXS$

Parameters
task
Sender task name

bufadr
Buffer address

bufien
Buffer size in words

ti
TL indicator (ignored on RSX systems)

Macro Expansion
VRCX$ SNDTSK,DATBUF,BUFSIZ,0

.BYTE 77..,6 ;VRCX$ MACRO DIC, DPB SIZE = 6 WORDS
.RAD60 /SNDTSK/ ;SENDER TASK NAME

.WORD DATBUF ;ADDRESS OF DATA BUFFER

.WORD BUFSIZ ;BUFFER SIZE IN WORDS

.WORD O ;TI: INDICATOR (IGNORED ON RSX SYSTEMS)

Local Symbol Definitions

R.VXTN Sender task name (4)

R.VXBA Buffer address (2)

R.VXBL Buffer size in words (2)

RVXTI TI indicator (ignored on RSX systems) (2)

DSW Return Codes

IS.sUC Successful completion.

IEITS No data in task’s receive queue or no data from specified task.
IE.RBS Receive buffer is too small.

IE.IBS Invalid buffer size specified (greater than 256,).

IE.ADP Part of the DPB or buffer is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-301

VSDAS

5.107 Variable Send Data

The Variable Send Data directive instructs the system to queue a variable-length data block for
the specified task to receive.

The buffer size can be 256, words maximum. If no buffer size is specified (macro calls only),
the buffer size is 13,y words. If a buffer size greater than 256, is specified, an IE.IBS error is
returned.

When an event flag is specified, a significant event is declared if the directive is executed
successfully. The indicated event flag is set for the sending task.

Variable-length data blocks are transferred from the sending task to the receiving task by buffers
in secondary pool.

FORTRAN Call
CALL VSDA (task,bufadr,[buflen]efn][,idsw])

Parameters
task
Receiver task name

bufadr
Array containing data to be sent (must be word-aligned (INTEGER*2))

bufilen
Length (in words) of the array

efn
Event flag number

idsw
Integer to receive the Directive Status Word

Macro Call
VSDAS$ task,bufadr,[buflen],[efn],[spri] [ti]

Parameters

task
Receiver task name

bufadr
Buffer address

bufilen
Buffer size in words

efn
Event flag number

5-302 Directive Descriptions

spri

Send priority (ignored on RSX systems)

ti

TI: indicator (ignored on RSX systems)

Macro Expansion

VSDA$
.BYTE

.RAD5O
.WORD

.WORD
.WORD

.WORD
.WORD

RECTSK ,DATBUF ,BUFS1Z,4,0,1

VSDAS

71.,8. ;VSDA$ MACRO DIC, DPB SIZE = 8(10) WORDS
/RECTSK/ ;RECEIVER TASK NAME

DATBUF ; ADDRESS OF DATA BUFFER

4 ;EVENT FLAG 4

BUFSIZ ;BUFFER SIZE

0 ;SEND PRIORITY (IGNORED ON RSX SYSTEMS)
1 ;TI: INDICATOR (IGNORED ON RSX SYSTEMS)

Local Symbol Definitions

S.DATN
S.DABA
S.DAEF
S.DABL
S.DASP
S.DATI

Sender task name (4)
Buffer address (2)
Event flag number (2)
Buffer length (2)

Send priority (ignored on RSX systems) (2)
TI: indicator (ignored on RSX systems) (2)

DSW Return Codes

Is.suC
IE.UPN
IE.INS
IE.IBS
IE.IEF
IE.ADP
IE.SDP

Successful completion.
Insufficient dynamic storage.

Specified task not installed.

Invalid buffer size specified (greater than 256,).
Invalid event flag number (EFN <0 or EFN>> 96).

Part of the DPB or buffer is out of the issuing task’s address space.

DIC or DPB size is invalid.

Directive Descriptions

5-303

VSRC$

5.108 Variable Send, Request, and Connect

The Variable Send, Request, and Connect directive performs a Variable Send Data to the
specified task, requests the task if it is not already active, and then connects to the task. The
receiver task normally returns status by the Emit Status or the Exit with Status directive.

The buffer size can be 256;p words maximum. If no buffer size is specified, the buffer size is
13,9 words. If a buffer size greater than 256, is specified, an IE.IBS error is returned.
FORTRAN Call

CALL VSRC (rtname,ibuf,[ibuflen],[iefn] [iast],[iesb] [iparm][,idsw])

CALL VSRCN (rtname,ibuf,[ibuflen] [iefn] [iast],[iesb],[iparm][,idsw])
Parameters
rtname

Target task name of the offspring task to be connected

ibuf
Name of send buffer

ibufilen
Length of the buffer

iefn
Event flag to be set when the offspring task exits or emits status

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL VSRCN)

iesb
Name of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code

Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the iefn parameter above.

iparm
Name of a word to receive the status block address when an AST occurs

idsw
Integer to receive the Directive Status Word

5-304 Directive Descriptions

VSRC$

Macro Cali
VSRC$ tname,buf],buflen],[efn],[east][esb]

Parameters

thame
Target task name of the offspring task to be connected

buf
Address of send buffer

bufien
Length of buffer

efn

The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb

Address of an 8-word status block to be written when the offspring task exits or emits
status:

Word 0 Offspring-task exit status
Word 1 TKTN abort code
Words 2-7 Reserved

Note

The exit status block defaults to one word. To use the 8-word exit status
block, you must specify the logical OR of the symbol SP.WX8 and the event
flag number in the efn parameter above.

Macro Expansion
VSRC$ ALPHA,BUFFR,BUFSIZE,2,SDRCTR,STBLK

.BYTE 141.,8. ; VSRC$ MACRO DIC, DPB SIZE = 8(10) WORDS
.RADS0 /ALPHA/ ; TARGET TASK NAME

.WORD BUFFR ; SEND BUFFER ADDRESS

.BYTE 2 ;EVENT FLAG NUMBER = 2

.BYTE 16. ;EXIT STATUS BLOCK CONSTANT

Directive Descriptions 5-305

VSRCS$

.WORD
.WORD
.WORD

BUFSIZE ;LENGTH OF BUFFER IN WORDS
SDRCTR ;ADDRESS OF AST ROUTINE
STBLK ;ADDRESS OF STATUS BLOCK

Local Symbol Definitions

V.SRTN
V.SRBF
V.SREF
V.SRBL
V.SREA
V.SRES

Task name (4)

Buffer address (2)
Event flag (2)

Buffer length (2)

AST routine address (2)
Status block address (2)

DSW Return Codes

IS.sUC
IE.UPN

IE.INS
IE.IBS
IE.IEF

IE.ADP
IE.SDP

Notes

Successful completion.

There was insufficient dynamic memory to allocate a send packet, Offspring Control
Block, Task Control Block, or Partition Control Block.

The specified task is an ACP or has the no-send attribute.
Invalid buffer size specified (greater than 256,).

An invalid event flag number was specified (EFN <0, or EEN> 96 if group global
event flags exist or EFN>> 64 if not).

Part of the DPB or exit status block is not in the issuing task’s address space.

DIC or DPB size is invalid.

1. If the specified event flag is group global, the use count for the event flag’s group is
incremented to prevent premature elimination of the event flags. The use count is run
down when the following events occur:

e Status is returned from the connected task.

* The issuing task exits before status is returned.

2. Changing the virtual mapping of the exit status block while the connection is in effect may
result in obscure errors.

5-306 Directive Descriptions

WSIGSS

5.109 Wait for Significant Event ($S Form Recommended)

The Wait for Significant Event directive is used to suspend the execution of the issuing task until
the next significant event occurs. It is an especially effective way to block a task that cannot
continue because of a lack of dynamic memory, since significant events occurring throughout the
system often result in the release of dynamic memory. The execution of a Wait for Significant
Event directive does not itself constitute a significant event.

FORTRAN Call

CALL WFSNE

Macro Call
WSIG$S [err]

Parameter

err
Error-routine address

Macro Expansion

WSIG$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 49.,1 ;WSIG$S MACRO DIC, DPB SIZE = 1 WORD
EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ; OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IS.5UC Successful completion.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1. If a directive is rejected for lack of dynamic memory, this directive is the only technique
available for blocking task execution until dynamic memory may again be available.

2. The wait state induced by this directive is satisfied by the first significant event to occur
after the directive has been issued. The significant event that occurs may or may not be
related to the issuing task.

3. Because this directive requires only a 1-word DPB, using the $S form of the macro is
recommended. It requires less space and executes with the same speed as that of the DIR$
macro.

Directive Descriptions 5-307

WSIGSS

4. Significant events include the following:

I/0O completion

Task exit

Execution of a Send Data directive

Execution of a Send Data Request and Pass OCB directive
Execution of a Send, Request, and Connect directive

Execution of a Send By Reference, Receive By Reference, or Receive By Reference or
Stop directive

Execution of an Alter Priority directive

Removal of an entry from the clock queue (for instance, resulting from the execution of
a Mark Time directive or the issuance of a rescheduling request)

Execution of a Declare Significant Event directive

Execution of the round-robin scheduling algorithm at the end of a round-robin scheduling
interval

Execution of an Exit, Exit with Status, or Emit Status directive

5-308 Directive Descriptions

WTLOS

5.110 Wait for Logical OR of Event Flags

The Wait for Logical OR of Event Flags directive instructs the system to block the execution of
the issuing task until the Executive sets one or more of the indicated event flags from one of
the following groups:

GR 0 Local flags 1-16

GR1 Local flags 17-32

GR 2 Common flags 33-48

GR 3 Common flags 49-64
GR 4 Group global flags 65-80
GR 5 Group global flags 81-96

The task does not block itself if any of the indicated flags are already set when the task issues
the directive. See the Notes.

FORTRAN Cail
CALL WFLOR (efl,ef2,ef3...,efn)
CALL WFLORS (idsw,efl,ef2,ef3...,efn)

Parameters
efl..efn
List of event flag numbers

idsw

Integer to receive the Directive Status Word
Macro Cali

WTLO$ grp,msk

Parameters
arp
Desired group of event flags

msk
A 16-bit flag mask word

Macro Expansion
WTLO$ 2,160003

.BYTE 43.,3 ;WTLO$ MACRO DIC, DPB SIZE = 3 WORDS
.WORD 2 ;GROUP 2 FLAGS (FLAGS 33-48)
.WORD 160003 ;EVENT FLAGS 33, 34, 46, 47, AND 48

Local Symbol Definitions

None

Directive Descriptions 5-309

WTLOS

DSW Return Codes
IS.SUC Successful completion.

IE.IEF No event flag specified in the mask word or flag group indicator other than 0, 1, 2,

3, 4, or 5.

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Notes

1.

There is a one-to-one correspondence between bits in the mask word and the event flags in
the specified group. That is, if group 1 were specified, then bit 0 in the mask word would
correspond to event flag 17, bit 1 to event flag 18, and so forth.

The Executive does not arbitrarily clear event flags when Wait-for conditions are met. Some
directives (Queue 1/O Request, for example) implicitly clear a flag. Otherwise, they must
be explicitly cleared by a Clear Event Flag directive.

The grp operand must always be of the form n regardless of the macro form used. In almost
all other macro calls, numeric or address values for $S form macros have the following
form:

#n
For WTLO$S, this form of the grp argument would be as follows:
n

The argument list specified in the FORTRAN or other high-level language call must contain
only those event flag numbers that lie within one event flag group. If event flag numbers
are specified that lie within more than one event flag group or if an invalid event flag is
specified, a task abort is generated with an error code in a register (see Section 1.5.3).

If the issuing task has outstanding buffered 1/O when it enters the Wait-for state, it will
be stopped. When the task is in a stopped state, it can be checkpointed by any other task
regardless of priority. The task is unstopped when the following situations occur:

¢ The outstanding buffered I/O completes.
e The Wait-for condition is satisfied.

If the specified group of event flags is group global, the group’s use count is incremented
to prevent premature elimination of the event flags. The use count is run down when the
following events occur:

e The Wait-for condition is satisfied.

¢ The issuing task exits before the Wait-for condition is satisfied.

5-310 Directive Descriptions

WTSES

5.111 Wait for Single Event Flag

The Wait for Single Event Flag directive instructs the system to block the execution of the
issuing task until the indicated event flag is set. If the flag is set at issuance, task execution is
not blocked.

FORTRAN Call
CALL WAITFR (efn[,ids})

Parameters
efn
Event flag number

ids
Directive status

Macro Call
WTSE$ efn

Parameter

efn
Event flag number

Macro Expansion

WTSE$ 52.
.BYTE 41.,2 ;WISE$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52

Local Symbol Definition
W.TSEF Event flag number (2)

DSW Return Codes
IS.5UC Successful completion.

IE.IEF Invalid event flag number (EFN <1, or EFN> 96 if group global event flags exist
for the task’s group or EFN> 64 if not).

IE.ADP Part of the DPB is out of the issuing task’s address space.
IE.SDP DIC or DPB size is invalid.

Directive Descriptions 5-311

WTSES

Notes

1.

If the issuing task has outstanding buffered I/O when it enters the Wait-for state, it will
be stopped. When the task is in a stopped state, it can be checkpointed by any other task
regardless of priority. The task is unstopped when the following situations occur:

¢ The outstanding buffered I/O completes.
* The Wait-for condition is satisfied.

If the specified event flag is group global, the group’s use count is incremented to prevent
premature elimination of event flags. The use count is run down when the following events
occur:

* The Wait-for condition is satisfied.
¢ The issuing task exits before the Wait-for condition is satisfied.
Be aware of the following situation:

If you have more than one task waiting for the same event flag and the task with the
highest priority clears the event flag first, the remaining tasks will not be able to resume
execution. This behavior is inherent in the way tasks execute by priority. (See Section 1.6.)

5-312 Directive Descriptions

Appendix A
Summary of Directives

Abort Task (ABRT$)
FORTRAN Call
CALL ABORT (tsk{,ids])

tsk
Name (Radix-50) of the task to be aborted

ids
Directive status
Macro Call
ABRT$ tsk

tsk
Name (Radix-50) of the task to be aborted

Assign Channel (ACHNS)
FORTRAN Cali
CALL ACHN ({mod],[itbmsk],lun,fsbuf,fssz[,idsw])

mod

Optional modifier to be matched against the logical name within a table. Ordinarily, no
value will be specified to allow any logical name in table to be found.

Summary of Directives A-1

itbmsk
Inhibit mask to prevent a logical table from being searched. The following symbol
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

fsbuf
Array containing the file specification buffer

fssz
Size (in bytes) of the file specification buffer

idsw

Integer to receive the Directive Status Word
Macro Call

ACHNS$ [mod],[tbmsk] lun,fsbuf,fssz

mod

Optional modifier to be matched against the logical name within a table. Ordinarily, no
value will be specified to allow any logical name in table to be found.

tbmsk
Inhibit mask to prevent a logical table from being searched. The following symbol
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

fsbuf
Address of file specification buffer

fssz
Size (in bytes) of the file specification buffer

A-2 Summary of Directives

Alter Priority (ALTPS)
FORTRAN Call

CALL ALTPRI ([tsk],[ipri][,ids])
tsk

Active task name
ipri

A 1-word integer value equal to the new priority, from 1 to 2504
ids

Directive status
Macro Call

ALTP$ [tsk][,pri]

tsk
Active task name

pri
New priority, from 1 to 250,

Assign LUN (ALUNS)
FORTRAN Call
CALL ASNLUN (lun,dev,unt,ids])

lun
Logical unit number

dev
Device name (format: 1A2)

unt
Device unit number

ids
Directive status

Macro Cali
ALUN$ lun,dev,unt

Summary of Directives A-3

lun
Logical unit number

dev
Device name (two uppercase characters)

unt
Device unit number

AST Service Exit (ASTXS$S; $S form recommended)
FORTRAN Cali

Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

Macro Cali
ASTX$S [err]

err
Error-routine address

Attach Region (ATRGS)
FORTRAN Call
CALL ATRG (irdbl,ids])

irdb
An 8-word integer array containing a Region Definition Block (see Section 3.5.1.2)

ids
Directive status

Macro Call
ATRG$ rdb

rdb
Region Definition Block address

Connect to Interrupt Vector (CINTS)
FORTRAN Call
Not supported

A-4 Summary of Directives

Macro Call
CINT$ vec,base,isr,edir,pri,ast

vec

Interrupt vector address; must be in the range 60g to highest vector specified during system
generation, inclusive, and must be a multiple of 4

base

Virtual base address for kernel APR 5 mapping of the ISR and enable/disable interrupt
routines

isr
Virtual address of the ISR or 0 to disconnect from the interrupt vector

edir
Virtual address of the enable/disable interrupt routine

pri
Initial priority at which the ISR is to execute

ast
Virtual address of an AST routine to be entered after the fork-level routine queues an AST

Clear Event Flag (CLEFS)
FORTRAN Call
CALL CLREF (efn[,ids])

efn
Event flag number

ids
Directive status

Macro Call
CLEF$ efn

efn
Event flag number

Create Logical Name (CLONS, CLOGS)

(CALL CRELON and CLONS are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
systems. CALL CRELOG and CLOGS$ are provided for compatibility with P/OS systems.)

Summary of Directives A-5

FORTRAN Calls

CALL CRELON ([mod],itbnum,Ins,Inssz,iens,ienssz[,idsw])
CALL CRELOG ([mod],itbnum,lns,lnssz,iens,ienssz[,idsw])

mod
Modifier of the logical name within a table; if not specified, the nonzero value reserved by
the system (LB.LOC = 1) is placed in the DPB

itbnum
Logical name table number in the lower byte and the status byte in the upper byte, as
follows:

Table number:

System (LT.SYS) 0
Group (LT.GRP) 1
Session (LT.SES) 4
Task (LT.TSK) 3
Status:

LSTRM 1 Terminal status. Iterative translations will not proceed beyond this logical
name.

LS.PRV 2 Privileged status. Only privileged tasks may delete this logical name.

Ins
Character array containing the logical name string

Inssz
Size (in bytes) of the logical name string

iens
Character array containing the equivalence string to be created

ienssz
Size (in bytes) of the data area for the equivalence string

idsw
Integer to receive the Directive Status Word

Macro Calls

CLON$ [mod], <prmlst> ,Ins,Inssz,ens,enssz
CLOG$ [mod], <prmlst> Ins,Insszens,enssz

A-6 Summary of Directives

mod
Modifier of the logical name within a table; if not specified, the nonzero value reserved by

the system (LB.LOC = 1) is placed in the DPB

<prmist>

Ins

<[tbnum][,status]>

(Angle brackets not required if only tbnum is specified.)

tbnum

Logical name table number. The following are the symbolic offsets for the table:

System (LT.SYS)
Group (LT.GRP)
Session (LT.SES)
Task (LT.TSK)

status

0

1
4
3

Logical status definition value. The following are the valid bits for the value:

LS.TRM 1 Terminal status. Iterative translations will not proceed beyond this logical

name.

LS.PRV 2 Privileged status. Only privileged tasks may delete this logical name.

Logical name string

Inssz

ens

Size (in bytes) of the logical name string

Equivalence name to be associated with logical name

enssz

Cancel Mark Time Requests (CMKTS$)

Size (in bytes) of the equivalence name string

FORTRAN Call

efn

ids

CALL CANMT ([efn][,ids])

Event flag number

Directive status

Summary of Directives A-7

Macro Call
CMKT$ [[efn],[ast] [err]]

efn
Event flag number

ast
Mark time AST address

err
Error-routine address

Connect (CNCT$)

FORTRAN Call
CALL CNCT (rtname,[iefn] [iast],[iesb] [iparm][,ids])
CALL CNCTN (rtname,[iefn] [iast][iesb],[iparm][,ids])

riname
Name (Radix-50) of the offspring task to be connected

iefn
Event flag to be set when the offspring task exits or emits status

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL CNCTN)

iesb
Name of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKIN abort code
Words 2-7 Reserved
iparm
Name of a word to receive the status block address when an AST occurs
ids
Integer to receive the Directive Status Word
Macro Call
CNCT$ tname, [efn][east][esb]

A-8 Summary of Directives

thame
Name (Radix-50) of the offspring task to be connected

efn

The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb

Address of an 8-word status block to be written when the offspring task exits or emits
status:

Word 0 Offspring-task exit status
Word 1 TKTN abort code
Words 2-7 Reserved

Checkpoint Common Region (CPCRS$)
FORTRAN Cali
CALL CPCR (name[,ids])

name
Name (Radix-50) of the common region to be checkpointed

ids
Directive status

Macro Call
CPCR$ name

name
Name of the common region to be checkpointed

Create Address Window (CRAWS)
FORTRAN Call
CALL CRAW (iwdbl,ids])

iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

ids
Directive status

Summary of Directives A-9

Macro Call
CRAW$ wdb

wdb
Window Definition Block address

Create Group Global Event Flags (CRGF$)
FORTRAN Call
CALL CRGF ([group][,ids])
group
Group number for the flags to be created. Only privileged tasks can specify group numbers

other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

ids
Integer to receive the Directive Status Word
Macro Call
CRGF$ [group]
group
Group number for the flags to be created. Only privileged tasks can specify group numbers

other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

Create Region (CRRGS)
FORTRAN Call
CALL CRRG (irdb[,ids])

irdb
An 8-word integer array containing a Region Definition Block (see Section 3.5.1.2)

ids
Directive status

Macro Call
CRRG$ rdb

A-10 Summary of Directives

rdb
Region Definition Block address

Create Virtual Terminal (CRVTS)
FORTRAN Cali
CALL CRVT ([iiast],[ioast],[iaast],[imlen],iparm[,ids])

fiast
AST address at which input requests from offspring tasks are serviced

ioast
AST address at which output requests from offspring tasks are serviced

laast

AST address at which the parent task may be notified of the completion of successful
offspring attach and detach requests to the virtual terminal unit

imlen
Maximum buffer length allowed for offspring 1/0O requests

iparm
Address of 3-word buffer to receive information from the stack when an AST occurs

ids
Integer to receive the Directive Status Word containing the virtual terminal number

Macro Call
CRVT$ [iast],[oast],[aast],[mlen]

last
AST address at which input requests from offspring tasks are serviced; if iast=0, offspring
input requests are rejected with IE.IFC returned

oast

AST address at which output requests from offspring tasks are serviced; if oast=0, offspring
output requests are rejected with IE.IFC returned

aast

AST address at which the parent task may be notified of the completion of successful
offspring attach and detach requests to the virtual terminal unit; if aast=0, no notification of
offspring attach/detach is returned to the parent task

milen

Maximum buffer length (in bytes) allowed for offspring I/0 requests (default and maximum
values for this parameter are system generation options)

Summary of Directives A-11

Cancel Scheduled Initiation Requests (CSRQS$)
FORTRAN Cali
CALL CANALL (tsk[,ids])

tsk
Task name

ids
Directive status
Macro Call
CSRQ$ tsk

tsk
Scheduled (target) task name

Declare Significant Event (DECLSS; $S form recommended)
FORTRAN Call
CALL DECLAR ([ids])
ids
Directive status
Macro Call
DECL$S [err]

err
Error-routine address

Delete Logical Name (DLONS$, DLOGS)

(CALL DELLON and DLONS$ are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
systems. CALL DELLOG and DLOGS$ are provided for compatibility with P/OS systems.)
FORTRAN Calls

CALL DELLON ([mod],itbnum,[Ins],[Inssz][,idsw])
CALL DELLOG ([mod],itbnum,[Ins],[Inssz][,idsw])

A-12 Summary of Directives

mod

Modifier of the logical name within a table; if not specified, the nonzero value reserved by
the system (LB.LOC = 1) is placed in the DPB

Itbm]irc:‘gical name table number. The tables and their corresponding numbers are:
System (LT.SYS) 0
Group (LT.GRP) 1
Session (LT.SES) 4
Task (LT.TSK) 3

Ins
Character array name containing the logical name string

Inssz
Size (in bytes) of the logical name string

idsw

Integer to receive the Directive Status Word
Macro Calis

DLON$ [mod],tbnum,[Ins],[Inssz]

DLOG$ [mod),tbnum,[Ins},[Inssz]

mod

Modifier value of the logical name within a table; if not specified, the nonzero value reserved
by the system (LB.LOC = 1) is placed in the DPB

tbnu[f‘c:gical name table number. The tables and their corresponding numbers are:
System (LT.SYS) 0
Group (LT.GRP) 1
Session (LT.SES) 4
3

Task (LT.TSK)
Ins

Address of logical name string to be deleted
Inssz

Size (in bytes) of the logical name string

Summary of Directives A-13

Disable AST Recognition (DSARSS; $S form recommended)
FORTRAN Call
CALL DSASTR [(ids)]
ids
Directive status
Macro Call
DSARS$S [err]

err
Error-routine address

Disable Checkpointing (DSCP$S; §S form recommended)
FORTRAN Call
CALL DISCKP [(ids)]
ids
Directive status
Macro Call
DSCP$S [err]

err
Error-routine address

Detach Region (DTRGS)
FORTRAN Call
CALL DTRG (irdb],ids])

irdb
An 8-word integer array containing a Region Definition Block (see Section 3.5.1.2)

ids
Directive status

Macro Call
DTRG$ rdb

A-14 Summary of Directives

rdb
Region Definition Block address

Eliminate Address Window (ELAWS)
FORTRAN Call
CALL ELAW (iwdb[,ids])
iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)
ids
Directive status
Macro Cali
ELAW$ wdb

wdb
Window Definition Block address

Eliminate Group Global Event Flags (ELGFS)
FORTRAN Call
CALL ELGF ([group][,ids])
group
Group number of flags to be eliminated. Only privileged tasks can specify group numbers

other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

ids
Integer to receive the Directive Status Word

Macro Call
ELGF$ [group]
group
Group number of flags to be eliminated. Only privileged tasks can specify group numbers

other than the issuing task’s group UIC. If the UIC is not specified, the task’s protection
UIC (H.CUIC+1) in the task’s header is used.

Summary of Directives A-15

Eliminate Virtual Terminal (ELVTS)
FORTRAN Call
CALL ELVT (iunum[,ids])

junum
Virtual terminal unit number

ids
Integer to receive the Directive Status Word
Macro Cail
ELVT$ unum
unum -

Unit number of the virtual terminal to be eliminated. The task must provide this parameter
after the virtual terminal is created.

Emit Status (EMSTS)
FORTRAN Call
CALL EMST ([rtname],status],ids])

rtname
Name of a task connected to the issuing task to which the status is to be emitted

status
A 16-bit quantity to be returned to the connected task

ids

Integer to receive the Directive Status Word

Macro Call
EMST$ [tname]status

tname
Name of a task connected to the issuing task to which the status is to be emitted

status
A 16-bit quantity to be returned to the connected task

Enable AST Recoghnition (ENARSS; $S form recommended)
FORTRAN Call
CALL ENASTR [(ids)]

A-16 Summary of Directives

ids
Directive status
Macro Call
ENAR$S [err]

err
Error-routine address

Enable Checkpointing (ENCP$S; $S form recommended)
FORTRAN Call
CALL ENACKP [(ids)]

ids
Directive status

Macro Call

ENCP$S [err]

err
Error-routine address

Exit If (EXIFS)
FORTRAN Call
CALL EXITIF (efn[,ids])

efn
Event flag number

ids
Directive status

Macro Call
EXIF$ efn

efn
Event flag number

Summary of Directives A-17

Task Exit (EXIT$S; $S form recommended)
FORTRAN Cail

CALL EXIT (istat)
istat

A 16-bit quantity to be returned to the parent task
Macro Call

EXIT$S [err]

err
Error-routine address

Exit with Status (EXSTS)
FORTRAN Call
CALL EXST (istat)
istat
A 16-bit quantity to be returned to the parent task
Macro Call
EXST$ status

status
A 16-bit quantity to be returned to the parent task

Extend Task (EXTKS)

FORTRAN Call
CALL EXTTSK ([inc][,ids])

inc
A positive or negative number equal to the number of 32-word blocks by which the task
size is to be extended or reduced

ids
Directive status

Macro Call
EXTK$ [inc]

A-18 Summary of Directives

inc

A positive or negative number equal to the number of 32-word blocks by which the task is
to be extended or reduced

Test for Specified System Feature (FEATS)
FORTRAN Call
CALL FEAT (isym[,ids])

isym
Symbol for the specified system feature

ids
Directive status

Macro Call
FEAT$ sym

sym
Symbol for the specified system feature

File Specification Scanner (FSS$)
FORTRAN Call
CALL FSS (fsbuf,fssz,prsblk,prssz,[reserv][idsw}])

fsbuf
Array containing the file specification buffer

fssz
Size (in bytes) of the file specification buffer

prsbik
Array containing the parse block

prssz
Size (in bytes) of the parse block

reserv
Reserved parameter (must not be specified)

idsw
Integer to receive the Directive Status Word

Summary of Directives A-19

Macro Call
FSS$ fsbuf, fssz,prsblk,prssz[,reserv]

fsbuf
Address of the file specification buffer

fssz
Size (in bytes) of the file specification buffer

prsblk
Address of the parse block

prssz
Size (in bytes) of the parse block

reserv
Reserved parameter (must be blank)

Get Command for Command Interpreter (GCCI$)
FORTRAN Call
CALL GTCMCI (icbf,icbfl [iibuf] [iibfl] [iaddr] [incp][,ids])

icbf
Name of a byte array to receive the command

icbfl
Integer containing the size of the icbf array in bytes

iibuf
Name of an integer array to receive the optional information buffer

iibfl
Name of an integer containing the length of the optional information buffer. If you specify
a length shorter than the information buffer, as much information as will fit in the specified
length is returned.

iaddr

Name of an integer that contains the address in pool of the command desired. (This address
was obtained by a previous CALL to GTCMCI with GC.CND specified.)

incp
Name of an integer containing a value indicating the action to take if there is no command
queued:

A-20 Summary of Directives

GC.CCS (000) Return with Carry set (default)

GC.CEX (001) Force CLI to exit instead of returning

GC.CST (002) Force CLI to stop instead of returning

GC.CND (200) Copy command into buffer, but do not dequeue it from the list

ids

Integer to receive the Directive Status Word
Macro Call

GCCI$ cbuf,cbfl,[ibuf],[ibfl],[addr],[ncp]

cbuf
Address of buffer to receive command string

cbfi
Length of buffer; maximum buffer size is 2661

ibuf
Address of buffer to receive information on the issuing terminal

ibfl
Length of buffer to receive information

addr
Address of command

ncp
Action to take if no command buffer is present:

GC.CCS (000) Return with Carry set (default)

GC.CEX (001) Force CLI to exit instead of returning

GC.CST (002) Force CLI to stop instead of returning

GC.CND (200) Copy command into buffer, but do not dequeue it from the list

Get Command Interpreter Information (GCII$)
FORTRAN Call
CALL GETCII (ibuf,ibfl [icli],[idev],[iunit]],ids])
ibuf
Name of an integer array to receive the CLI information
ibfl
Length in bytes of the integer array to receive the CLI information

Summary of Directives A-21

icli
Name of a 2-word array element containing the Radix-50 name of the CLI

idev

Name of an integer containing the ASCII name of the terminal (default = TI:)
iunit

Name of an integer containing the octal unit number of the terminal

ids
Directive status
Macro Call
GCII$ buf,bufl,cli[dev],[unit]

buf
Address of buffer to receive information

bufi
Length of information buffer

cli

Name (Radix-50) of the CLI on which information is requested
dev

ASCII name of terminal whose CLI should be used (default = TI:)
unit

Octal unit number of terminal

Get Default Directory (GDIRS)
FORTRAN Call
CALL GETDDS (mod,iens,ienssz,[irsize][,idsw])

mod
Modifier for the GDIR$ directive; specify one of the following values:
0 Get task default

GD.LOG Get terminal default

iens
Character array containing the default directory string

ienssz
Size (in bytes) of the default directory string

A-22 Summary of Directives

Irsize
Buffer address of the returned default directory string size

idsw
Integer to receive the Directive Status Word
Macro Call

GDIR$ [mod]ens,enssz[rsize]

mod
Modifier for the GDIR$ directive; specify one of the following values:
0 Get task default

GD.LOG Get terminal default

ens
Buffer address of the default directory string

enssz
Size (in bytes) of the default directory string buffer

rsize
Buffer address to which the size of the default directory string is returned

General Information (GINS)

The following are the functions of the GIN$ directive:

GIl.GAS - Get Assighed Device Name
Macro Call
GIN$ GI.GAS, buf, siz, dev, unt, udev, unum

Gl.GAS
GINS$ function code (0)

buf
Address of 6-word buffer to receive the LUN information

siz
Buffer size in words

dev
Device name

unt
Device unit number

Summary of Directives A-23

udev
Device name for which this assignment holds (if blank, get global assignment)

unum
Unit number of terminal for which this assignment holds (if high bit set, get login assignment)

GLUIC - Get System UIC Information
Macro Call
GIN$ GIUIC, buf, siz

GlLUIC
GIN$ function code (1)

buf
Address of 5- or 32-word buffer to receive the information

siz
Buffer size in words

G|.DEF - Set Task Default UIC
Macro Call
GIN$ GILDEF, uic

GI.DEF
GIN$ function code (2)

uic
User Identification Code

G\.SPR - Set Task Privilege
Macro Call
GIN$ GLSPR, flg

GIL.SPR
GIN$ function code (7)

fig
New privilege bit in bit 0

A-24 Summary of Directives

GI.REN - Rename Task
Macro Call
GIN$ GIREN, nam1, nam2

GI.REN
GIN$ function code (8)

naml
Radix-50 task name, first half

nam2
Radix-50 task name, second half

GI.FMK - Get Feature Mask Words
Macro Call
GIN$ GI.FMK, buf, siz

GIL.FMK
GIN$ function code (3)

buf
Address of 9-word buffer to receive the information

siz
Buffer size in words

Gl.aMC - Queue MCR Command Line
Macro Cali
GIN$ GI.QMC, buf, siz

Gl.amMC
GINS$ function code (4)

buf

Address of buffer containing the MCR command line
siz

Buffer size in words

Summary of Directives A-25

GIl.UAB - Get User Account Block
Macro Call
GIN$ GILUAB, buf, siz, dev, unt

GI.UAB
GIN$ function code (5)

buf
Address of buffer to receive the UAB information

siz
Buffer size in words

dev
Device name (if blank, use task’s TI:)

unt
Device unit number

GI.DEV - Get Device Information
Macro Call
GIN$ GILDEV, buf, siz, dev, unt

GI.DEV
GIN$ function code (6)

buf
Address of buffer to receive the unit information

siz
Buffer size in words

dev
Device name (if blank, use task’s TI:)

unt
Device unit number (if high bit clear, follow assignments)

GI.APR - Get System APRs
Macro Call
GIN$ GILAPR, buf, siz

A-26 Summary of Directives

GI.APR
GIN$ function code (9)

buf
Address of 97-word buffer to receive the APR information

siz
Buffer size in words

GI.TSK - Find and Return Task Information
Macro Call
GIN$ GITSK, buf, siz, naml, nam2

GI.TSK
GINS$ function code (104¢)

buf
Address of buffer to receive the task information

siz
Buffer size in words

naml
First half of Radix-50 task name

nam2
Second half of Radix-50 task name

GI.UPD - Update UICs and Default Directory
Macro Call
GIN$ GIUPD, buf, siz

GI.UPD
GINS$ function code (17.)

buf
Address of 5- or 32-word buffer to receive the information

siz
Buffer size in words

Summary of Directives A-27

Get LUN Information (GLUNS)
FORTRAN Call
CALL GETLUN (lun,dat,ids])

lun
Logical unit number

dat
A 6-word integer array to receive LUN information

ids
Directive status
Macro Call
GLUN$ lun,buf

lun
Logical unit number

buf
Address of a 6-word buffer that will receive the LUN information

Get MCR Command Line (GMCRS)
FORTRAN Call
CALL GETMCR (buf],ids])

buf
An 80-byte array to receive the command line

ids
Directive status

Macro Call
GMCR$

Get Mapping Context (GMCXS$)
FORTRAN Call
CALL GMCX (imex],ids])

A-28 Summary of Directives

imex
An integer array to receive the mapping context. The size of the array is 8*n+1, where n is
the number of window blocks in the task’s header. (The maximum size is 8*24+1=193.)

ids
Directive status
Macro Call
GMCX$ wvec

wvec

The address of a vector of n Window Definition Blocks, followed by a terminator word; n
is the number of window blocks in the task’s header

Get Partition Parameters (GPRTS)
FORTRAN Call
CALL GETPAR ([prt],buf[,ids])

pri
Partition name

buf
A 3-word integer array to receive the partition parameters

ids

Directive status
Macro Call

GPRT$ [prt],buf

prt
Partition name

buf
Address of a 3-word buffer

Get Region Parameters (GREGS)
FORTRAN Call
CALL GETREG ([rid],buf[,ids])

Summary of Directives A-29

rid
Region id
buf
A 3-word integer array to receive the region parameters
ids
Directive status
Macro Call
GREGS$ [rid], buf
rid
Region id

buf
Address of a 3-word buffer

Get Sense Switches (GSSW$S; $S form recommended)
FORTRAN Call
CALL READSW (isw)
isw
Integer to receive the console switch settings
The following FORTRAN call allows a program to read the state of a single switch:
CALL SWITCH (ibt,ist)
ibt
The switch to be tested (0 to 15)
ist
Test results where:
1 = switch on
2 = switch off
Macro Call
GSSW$S [err]

err
Error-routine address

A-30 Summary of Directives

Get Time Parameters (GTIMS)
FORTRAN Call
CALL GETTIM (ibfp[,ids])

ibfp
An 8-word integer array

ids
Directive status

Macro Call
GTIM$ buf

buf
Address of an 8-word buffer

Get Task Parameters (GTSKS)
FORTRAN Call
CALL GETTSK (buf[,ids])

buf

A 16-word integer array to receive the task parameters

ids
Directive status

Macro Call
GTSK$ buf

buf
Address of a 16-word buffer

Inhibit AST Recognition (IHARSS; $S form recommended)

FORTRAN Call
CALL INASTR [(ids)]

ids
Directive status

Macro Call
IHAR$S [err]

Summary of Directives A-31

err
Error-routine address

Map Address Window (MAPS$)
FORTRAN Call
CALL MAP (iwdbl,ids])
iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)
ids
Directive status
Macro Call
MAP$ wdb

wdb
Window Definition Block address

Mark Time (MRKTS)
FORTRAN Call
CALL MARK (efn,tmg,tnt[,ids])

efn
Event flag number

tmg
Time interval magnitude

tnt
Time interval unit

ids
Directive status

The ISA standard call for delaying a task for a specified time interval is also provided:
CALL WAIT (tmg,tnt,ids)

tmg
Time interval magnitude

tnt
Time interval unit

A-32 Summary of Directives

ids
Directive status
Macro Call
MRKT$ [efn]tmg,tnt],ast]

efn
Event flag number

tmg
Time interval magnitude

tnt
Time interval unit

ast
AST entry-point address

Map Supervisor D-Space (MSDS$; RSX-11M-PLUS)
FORTRAN Call
Not supported

Macro Call
MSDS$ mask

mask

A 7-bit mask with one bit corresponding to each supervisor-mode D-space APR. If the bit is
set, the APR is mapped to supervisor-mode I-space. If the bit is clear, the APR is mapped
to user-mode D-space. The seven bits are specified in bits 8 through 14 of the mask word.

Move to/from User/Supervisor |/D-Space (MVTS$)
FORTRAN Call

Not supported

Macro Call
MVTS$ action,addr,val [or buff]

action
One of the following:

Summary of Directives A-33

MV.TUI Move to user I-space
MV.TUD Move to user D-space
MV.TSI Move to supervisor I-space
MV.TSD Move to supervisor D-space
MV.FUI Move from user I-space
MV.FUD Move from user D-space
MV.FSI Move from supervisor I-space

MV.FSD Move from supervisor D-space

addr
Address of the location in the task

buf
Buffer to receive the value fetched (for the move-from operations)

val
Value to be stored in the location (for the move-to operations)

Parse FCS (PFCS$)
FORTRAN Call
CALL PRSFCS ([mod],[itbmsk],{lun],prbuf,prsz rsbuf, rssz,[rslen],[prsblk,prssz] [dfnbk,dfnsz],[rsmsk][,idsw])

mod
Optional modifier for logical name table entries; allowable symbolic offsets are as follows:
LB.LOC =1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

itbmsk
Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

A-34 Summary of Directives

prbuf
Array containing the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

prsz

Size (in bytes) of the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

rsbuf
Array containing the resulting file specification buffer

rssz
Size (in bytes) of the resulting file specification buffer

rsien
Integer to receive the resulting string size

prsblk
Array containing the parse block

prssz
Size (in bytes) of the parse block

dfnbk
Array containing the default name block; dfnbk and dfnsz must both be specified or both
omitted; if omitted, a comma between their positions must be present unless no other
parameters follow

dfnsz

Size of the default name block; dfnbk and dfnsz must both be specified or both omitted;
if omitted, a comma between their positions must be present unless no other parameters
follow

rsmsk

Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FSSNDF is set, the
device is not defaulted to and the LUN is not assigned. (FS$NDF has no meaning for the
FSS$ directive.)

idsw
Integer to receive the Directive Status Word.

Macro Call
PFCS$ [mod],[tbmsk],[lun],prbuf,prsz,rsbuf,rssz,[rslen],[prsblk] [prssz][dfnbk],[dfnsz][,rsmskK]

Summary of Directives A-35

mod
Optional modifier for logical name table entries; allowable symbolic offsets are as follows:

LB.LOC =1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

tbmsk
Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

prouf
Address of the primary file specification buffer

prsz
Size (in bytes) of the primary file specification buffer

rsbut
Address of the resulting file specification buffer

rssz
Size (in bytes) of the resulting file specification buffer

rslen
Address of a word to receive the resulting string size

prsblk
Address of the parse block

prssz
Size (in bytes) of the parse block

dfnbk
Address of the default name block

dfnsz
Size of the default name block

A-36 Summary of Directives

rsmsk
Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FS$NDF is set, the
device is not defaulted to and the LUN is not assigned. (FS$NDF has no meaning for the
FSS$ directive.)

Parse RMS (PRMS$)
FORTRAN Call
CALL PRSRMS ([mod),[itbmsk],{lun},prbuf,prsz,rsbuf,rssz,[rslen],[prsblk,prssz],[dfbuf,dfsz] [rsmsk][,idsw])

mod
Optional modifier for logical name table entries; allowable symbolic offsets are as follows:
LB.LOC =1
LB.LOG =2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

itbmsk

Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

prbuf
Array containing the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

prsz
Size (in bytes) of the primary file specification buffer; prbuf and prsz must both be specified
or both omitted; if omitted, a comma between their positions must be present unless no
other parameters follow

rsbuf
Array containing the resulting file specification buffer

Summary of Directives A-37

rssz
Size (in bytes) of the resulting file specification buffer

rslen
Integer to receive the resulting string size

prsblk
Array containing the parse block

prssz
Size (in bytes) of the parse block

dfbuf
Address of the default file specification buffer; dfbuf and dfsz must both be specified or
both omitted; if omitted, a comma between their positions must be present unless no other
parameters follow

dfsz ,
Size of the default file specification buffer; dfbuf and dfsz must both be specified or both
omitted; if omitted, a comma between their positions must be present unless no other
parameters follow

rsmsk
Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FS$NDF is set, the
device and directory are not defaulted to and the LUN is not assigned. (FS$NDF has no
meaning for the FSS$ directive.)

idsw
Integer to receive the Directive Status Word.

Macro Call
PRMS$ [mod][tbmsk],[lun],prbuf, prsz,rsbuf,rssz,[rslen] [prsblk],[prssz],[dfbuf] [dfsz],[rsmsk]

mod
Optional modifier for logical name table entries; allowable symbolic offsets are as follows:
LB.LOC =1
LB.LOG = 2

Specifying one of these values indicates that matches in the logical table are based on the
exact value. Not specifying a value indicates that the system will look for the first matching
logical block, regardless of the modifier value.

tbmsk
Inhibit mask to prevent a logical table from being searched. The following symbol bit
definitions, when set, prevent a particular table from being searched:

A-38 Summary of Directives

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

lun
LUN to be assigned

prouf
Address of the primary file specification buffer

prsz
Size (in bytes) of the primary file specification buffer

rsbuf
Address of the resulting file specification buffer

rssz
Size (in bytes) of the resulting file specification buffer

rsien
Address of a word to receive the resulting string size

prsblk
Address of the parse block

prssz
Size (in bytes) of the parse block

dfbuf
Address of the default file specification buffer

dfsz
Size (in bytes) of the default file specification buffer

rsmsk

Mask of fields in the resulting string to suppress before returning the string. The bits
currently defined are the same as those for the flag word in the parse block. The bits are
FSNOD, FSDEV, FSDIR, FSNAM, FS$TYP, and FS$VER. If the bit FS§NDF is set, the
device and directory are not defaulted to and the LUN is not assigned. (FS$NDF has no
meaning for the FSS$ directive.)

Queue I/O Request (QIOS)
FORTRAN Call
CALL QIO (fnc,lun,[efn][pri] [isb] [prl][,ids])

Summary of Directives A-39

fnc
1/0 function code

lun
Logical unit number

efn
Event flag number

pri
Priority (ignored, but parameter must be present in call)
isb
A 2-word integer array to receive final I/O status
pri
A 6-word integer array containing device-dependent parameters to be placed in parameter
words 1 through 6 of the DPB. Fill in this array by using the GETADR routine (see Section
15.2.4).
ids
Directive status
Macro Call
QIO$ fnc,lun,[efn],[pri],[isb],[ast],[pr]]
fnc
I/0O function code
lun
Logical unit number
efn
Event flag number
pri
Priority (ignored, but Q.IOPR byte must be present in DPB)
isb
Address of I/O status block
ast
Address of AST service-routine entry point
prl

Parameter list of the form <P1,..P6>

A-40 Summary of Directives

Queue I/0 Request and Wait (QIOWS)
FORTRAN Call
CALL WTQIO (fnc,lun,efn,[pri] fisb],[pri][,ids])

fnc
I/0 function code

lun
Logical unit number

efn
Event flag number

pri
Priority (ignored, but parameter must be present in call)

isb
A 2-word integer array to receive final 1/O status

prl
A 6-word integer array containing device-dependent parameters to be placed in parameter
words 1 through 6 of the DPB

ids
Directive status
Macro Call
QIOWS$ fnc,lun,[efn],[pri] [isb] [ast][,pr]]

fnc
1/0 function code

lun
Logical unit number

efn
Event flag number

pri
Priority (ignored, but Q.IOPR byte must be present in DPB)

isb
Address of I/0 status block

ast
Address of AST service-routine entry point

prl
Parameter list of the form <P1,..P6>

Summary of Directives A-41

Receive Data or Stop (RCSTS)
FORTRAN Call
CALL RCST ([rtname],ibuf[,ids])

rthame
Sender task name (if not specified, data may be received from any task)

ibuf
Address of a 15-word buffer to receive the sender task name and data

ids
Integer to receive the Directive Status Word

Macro Call
RCST$ [tname),buf

thame
Sender task name (if not specified, data may be received from any task)

buf
Address of a 15-word buffer to receive the sender task name and data

Receive Data (RCVDS)
FORTRAN Call
CALL RECEIV ([tsk],buf], ids])

tsk
Sender task name (if not specified, data may be received from any task)

buf
A 15-word integer array for received data

ids
Directive status

Macro Cali
RCVD$ [tsk]buf

tsk
Sender task name (if not specified, data may be received from any task)

buf
Address of a 15-word buffer

A-42 Summary of Directives

Receive Data or Exit (RCVXS)
FORTRAN Call
CALL RECOEX ([tsk],buf],ids])

tsk
Sender task name (if not specified, data may be received from any task)

buf
A 15-word integer array for received data

ids

Directive status
Macro Call

RCVX$ [tsk]buf

tsk
Sender task name (if not specified, data may be received from any task)

buf
Address of a 15-word buffer

Read All Event Flags (RDAF$)
A FORTRAN task can read only one event flag. The call is:

FORTRAN Call
CALL READEF (efn[,ids])

efn :
Event flag number

ids

Directive status
The Executive returns the status codes IS.SET (+02) and IS.CLR (00) for FORTRAN calls in
order to report event-flag polarity.

Macro Call
RDAF$ buf

Summary of Directives A-43

buf
Address of a 4-word buffer

Read Event Flag (RDEF$)
FORTRAN Call
CALL READEF (iefn[,ids])

iefn
Integer containing an event flag number

ids

Integer variable to receive the Directive Status Word
Macro Call

RDEF$ efn

efn
Event flag number

Read Extended Event Flags (RDXFS$)
A FORTRAN task can read only one event flag. The call is:

FORTRAN Call
CALL READEF (efn[ids])

efn
Event flag number

ids
Directive status
The Executive returns the status codes IS.SET (+02) and IS.CLR (00) for FORTRAN calls in
order to report event-flag polarity.
Macro Call
RDXF$ buf

buf
Address of a 6-word buffer

A-44 Summary of Directives

Recursive Translation of Logical Name (RLONS, RLOGS)
(CALL RCTLON and RLONS$ are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
systems. CALL RCTLOG and RLOGS$ are provided for compatibility with P/OS systems.)
FORTRAN Calls

CALL RCTLON ([mod],[itbmsk] [status],Ins,Inssz,iens,ienssz,[rsize],[rtbmod][,idsw])

CALL RCTLOG ([mod],[itbmsk],[status],Ins,Inssz,iens,ienssz,[rsize],[rtbmod][,idsw1])

mod

Optional modifier of the logical name within a table. Ordinarily, no value would be specified
to allow any defined logical name to be found.

itbmsk

Inhibit mask to prevent a logical name table from being searched. The following symbol
bit definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LS.PRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

ins
Character array containing the logical name string

Inssz
Size (in bytes) of the logical name string

iens
Character array buffer to contain the returned equivalence name string

ienssz
Size (in bytes) of the data area for the returned equivalence name string

rsize
Word to receive the size of the returned equivalence name string

Summary of Directives A-45

rtomod
Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

idsw
Integer to receive the Directive Status Word
Macro Calis

RLONS$ [mod],[tbmsk],[status]Ins,Inssz,ens,enssz,[rsize],[rtbmod]
RLOG$ [mod],[tbmsk],[status] Ins,Inssz,ens,enssz,[rsize], [rtbmod]

mod
Optional modifier to be matched against the logical name within a table. Ordinarily, no
value will be specified to allow any logical name in table to be found.

tbmsk
Inhibit mask to prevent a logical name table from being searched. The following symbol
bit definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LSPRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

Ins
Character array containing the original logical name string

Inssz
Size (in bytes) of the original logical name string

ens
Character array buffer to receive the returned equivalence name string

enssz
Size (in bytes) of the data area for the returned equivalence name string

A-46 Summary of Directives

rsize
Word to receive the size of the equivalence name string

rtbmod

Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

Remove Affinity (RMAFS$S; RSX-11M-PLUS muitiprocessor systems; $S form
recommended)

FORTRAN Call

CALL RMAF |[(ids)]
ids

Integer to receive the Directive Status Word
Macro Call

RMAF$S

Request and Pass Offspring Information (RPOIS)
FORTRAN Call
CALL RPOI (tname,[iugc],[iumc][iparen][ibuf] [ibfl} [isc],[idnam],[iunit] [itask],[ocbad][,ids])

thame
Name of an array containing the actual name (in Radix-50) of the task to be requested and
optionally chained to

iugc
Name of an integer containing the group code number for the UIC of the requested target
chain task

iume
Name of an integer containing the member code number for the UIC of the requested target
chain task

iparen
Name of an array (or I*4 integer) containing the Radix-50 name of the parent task. This is
returned in the information buffer of the GTCMCI subroutine.

ibut
Name of an array containing the command line text for the chained task

ibfl
Name of an integer containing the number of bytes in the command in the ibuf array

Summary of Directives A-47

isc
Flag byte controlling the actions of this directive request when executed. The bit definitions
of this byte (only the low-order byte of the integer specified in the call is ever used) are as
follows:

RP.OEX 128. Force this task to exit on successful execution of the RPOI$ directive.

RP.OAL 1 Pass all of this task’s connections to the requested task. (The default is
none).
RP.ONX 2 Pass the first connection in the queue, if there is one.
idnam

Name of an integer containing the ASCII name of the requested task’s TI: (must be the
name of a physical device)

iunit
Name of an integer containing the unit number of the requested task’s TI:

itask
Name of an array containing the Radix-50 name the requested task is to run under.

Any task may specify a new name for the requested task as long as the requested task is
not a CLI task.

The requested task (specified in the tname parameter) must be installed in the ...tsk format.

ocbad
Name of an integer containing the internal pool address of the parent OCB. This value may
be obtained only in the information buffer of the GTCMCI subroutine, which only a CLI
can issue; therefore, only a CLI can specify this argument.

ids
Integer to receive the Directive Status Word

Macro Call
RPOI$ tname,,, [ugc][umc],[parent],[bufadr] [buflen],[sc][dnam],[unit] [task] [ocbad]

tname
Name of task to be chained to

ugce
Group code for the UIC of the requested task

umc
Member code for the UIC of the requested task

parent
Name of issuing task’s parent task whose connection is to be passed

bufadr
Address of buffer to be given to the requested task

A-48 Summary of Directives

buflen
Length of buffer to be given to the requested task

sc

Flag bits:

RP.OEX (200) Force issuing task to exit.

RP.OAL (1) Pass all connections (default is none.)

RP.ONX (2) Pass the first connection in the queue, if there is one.
dnam

ASCII name for TI: (must be the name of a physical device)

unit
Unit number of task’s TI:

task
Radix-50 name of task to be started.

Any task may specify a new name for the requested task as long as the requested task is
not a CLI task.

The requested task (specified in the tname parameter) must be installed in the ...tsk format.

ocbad
Address of OCB to pass (CLIs only)

Request Task (RQSTS)
FORTRAN Call
CALL REQUES (tsk,[opt][,ids])

tsk
Task name

opt
A 4-word integer array:
opt(1) Partition name, first half (ignored, but must be present)
opt(2) Partition name, second half (ignored, but must be present)
opt(3) Priority (ignored, but must be present)
opt(4) User Identification Code

ids
Directive status

Summary of Directives A-49

Macro Call
RQST$ tsk,[prt],[pri][,ugc,umc]

tsk
Task name

prt
Partition name (ignored, but must be present)

pri
Priority (ignored, but must be present)

ugc
UIC group code

umc
UIC member code

Receive By Reference (RREFS)
FORTRAN Call
CALL RREF (iwdb,[istb][,ids])

iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

isrb
A 10-word integer array to be used as the receive buffer. If the call omits this parameter,
the contents of iwdb(8) are unchanged.

ids
Directive status

Macro Call
RREF$ wdb

wdb
Window Definition Block address

Receive By Reference or Stop (RRSTS)
FORTRAN Call
CALL RRST (iwdb,[isrb][,ids])

A-50 Summary of Directives

iwdb
An 8-word integer array containing a Window Definition Block

isrb

A 10-word integer array to be used as the receive buffer. If the call omits this parameter,
the contents of iwdb(8) are unchanged.

ids
Directive status
Macro Call
RRST$ wdb

wdb
Window Definition Block address

Resume Task (RSUMS)
FORTRAN Call
CALL RESUME (tsk[,ids])

tsk
Task name

ids
Directive status

Macro Call
RSUM$ tsk

tsk
Task name

Run Task (RUN$)
FORTRAN Cali
CALL RUN (tsk,[opt],smg,snt,[rmg],[rmt][,ids])

tsk
Task name

opt
A 4-word integer array:

Summary of Directives A-51

opt(1) Partition name, first half (ignored, but must be present)
opt(2) Partition name, second half (ignored, but must be present)
opt(3) Priority (ignored, but must be present)

opt(4) User Identification Code

smg
Schedule delta magnitude

snt
Schedule delta unit (either 1, 2, 3, or 4)

mg
Reschedule interval magnitude

rnt
Reschedule interval unit

ids
Directive status

The ISA standard call for initiating a task is also provided:
CALL START (tsk,smg,snt[,ids])

tsk
Task name

smg
Schedule delta magnitude

snt
Schedule delta unit (either 0, 1, 2, 3, or 4)

ids
Directive status

Macro Call
RUNS$ tsk/[prt] [pri] [ugc],[umc],smg,snt[,rmg,mt]

tsk
Task name

prt
Partition name (ignored, but must be present)

pri
Priority (ignored, but must be present)

A-52 Summary of Directives

ugc
UIC group code

umc
UIC member code

smg
Schedule delta magnitude

snt
Schedule delta unit (either 1, 2, 3, or 4)

rmg
Reschedule interval magnitude

rnt
Reschedule interval unit

Specify Command Arrival AST (SCAAS)
FORTRAN Call
Not supported

Macro Call
SCAA$ [ast]

ast

AST service-routine entry point. Omitting this parameter disables command arrival ASTs
for the issuing task until the directive is respecified.

supervisor Call (SCALSS; RSX-11M-PLUS systems; $S form recommended)
FORTRAN Call
Not supported

Macro Call
SCAL$S saddr,caddr],err]

saddr
Address of the called supervisor-mode routine

caddr
Address of the completion routine for return to the caller

err
Address of error routine (see Section 1.4.3 for more information)

Summary of Directives A-53

Set Command Line Interpreter (SCLIS)
FORTRAN Call
CALL SETCLI (icli,idev,iunit[,ids])

icli
Name of a 2-word array element containing the name of the CLI to which the terminal is
to be set
idev
Name of an integer containing the ASCII name of the terminal to be set (default = TI:)
iunit
Name of an integer containing the unit number of the terminal
ids
Directive status
Macro Call
SCLI$ cli[dev],[unit]
cli
Name of the CLI to which the terminal is to be set
dev
ASCII name of the terminal to be set (default = TI:)
unit

Unit number of the terminal

Send Data (SDATS)
FORTRAN Call
CALL SEND (tsk,buf,[efn]],ids])

tsk
Task name

but
A 13-word integer array of data to be sent

efn
Event flag number

ids
Directive status

A-54 Summary of Directives

Macro Call
SDAT$ tsk,buff,efn]

tsk
Task name

buf
Address of a 13-word data buffer

efn
Event flag number

Set Default Directory (SDIRS)
FORTRAN Call
CALL SETDDS (mod,iens,ienssz[,idsw])
mod
Modifier for the SDIR$ directive; specify one of the following values:
0 Modify task default
SD.LOG Modify terminal default
SD.BYE Delete terminal default
SD.TI Set task default to terminal default

iens
Character array containing the default directory string

ienssz

Size (in bytes) of the default directory string
idsw

Integer to receive the Directive Status Word

Macro Call
mod
SDIR$ { ,end,enssz } (must choose one of these options)
mod,ens,enssz
mod

Modifier for the SDIR$ directive; specify one of the following values:

Summary of Directives A-55

0 Modify task default

SD.LOG Modify terminal default

SD.BYE Delete terminal default

SD.TI Set task default to terminal default
ens

Buffer address of the default directory string; if not specified, the default directory string is
deleted (ens and enssz must be selected to modify the default)

enssz

Size (in bytes) of the default directory string (enssz and ens must be selected to modify the
default)

Send, Request, and Connect (SDRCS$)

FORTRAN Call
CALL SDRC (rtname,ibuf,[iefn],[iast],[iesb],[iparm][ids])
CALL SDRCN (rtname,ibuf,[iefn] [iast] [iesb] [iparm][,ids])

rtname
Target task name of the offspring task to be connected

ibuf
Name of a 13-word send buffer

iefn
Event flag to be set when the offspring task exits or emits status

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL SDRCN)

'eSbName of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code
Words 2-7 Reserved

iparm :
Name of a word to receive the status block address when an AST occurs

ids
Integer to receive the Directive Status Word

A-56 Summary of Directives

Macro Call
SDRC$ tname,buf,[efn] [east][esb]

thame
Target task name of the offspring task to be connected

buf
Address of a 13-word send buffer

efn
The event flag to be cleared on issuance and when the offspring task exits or emits status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb
Address of an 8-word status block to be written when the offspring task exits or emits
status:
Word 0 Offspring-task exit status

Word 1 TKTN abort code
Words 2-7 Reserved

Send Data Request and Pass Offspring Control Block (SDRP$)
FORTRAN Call
CALL SDRP (task,ibuf,[ibfl] [iefn] [iflag)[iparen] [iocbad][,ids])

task
Name of an array (REAL, INTEGER, [*4) containing the Radix-50 name of the target task

ibuf
Name of an integer array containing data to be sent

ibfl
Name of an integer containing the number of words (integers) in the array to be sent. This
argument may be in the range of 1 to 2555. If this argument is not specified, a default
value of 13, is assumed.

iefn

Name of an integer containing the number of the event flag to be set when this directive is
executed successfully

Summary of Directives A-57

iflag
Name of an integer containing the flag bits controlling the execution of this directive. They
are defined as follows:

SD.REX 128. Force this task to exit upon successful execution of this directive

SD.RAL 1 Pass all connections to the requested task (default is pass none); if you
specify this flag, do not specify the parent task name

SD.RNX 2 Pass the first connection in the queue, if there is one, to the requested
task; if you specify this flag, do not specify the parent task name

iparen
Name of an array containing the Radix-50 name of the parent task whose connection should
be passed to the target task. The name of the parent task was returned in the information
buffer of the GTCMCI subroutine.

iocbad
Name of an integer containing the pool address of the OCB to pass. This value was
returned in the information buffer of the GTCMCI subroutine. Only CLI tasks may specify
this parameter.

ids

Name of an integer to receive the contents of the Directive Status Word
Macro Call

SDRP$ task,bufadr,[buflen],[efn][flag),[parent],[ocbad]

task
Name of task to be chained to

bufadr
Address of buffer to be given to the requested task

bufleh
Length of buffer to be given to the requested task

efn
Event flag number

flag
Flag bits controlling the execution of this directive (see iflag, above, for the definitions of
the bits)

parent
Name of issuing task’s parent task whose connection is to be passed. If not specified, all
connections or no connections are passed, depending on the flag bit.

ocbad
Address of OCB to pass (CLIs only)

A-58 Summary of Directives

Set Event Flag (SETFS)
FORTRAN Caill
CALL SETEF (efn[,ids])

efn
Event flag number

ids
Directive status

Macro Call
SETF$ efn

efn
Event flag number

Specify Floating Point Processor Exception AST (SFPAS)
FORTRAN Call

Not supported

Macro Calil
SFPA$ [ast]

ast
AST service-routine entry-point address

Send Message (SMSGS$)
FORTRAN Caill
CALL SMSG (itgt,ibuf,ibufl,iprm,iprml[,ids])

itgt ,
Name of an integer containing the target object (currently, only SM.SER is defined)

ibuf
Name of an integer array containing the data to be inserted into the formatted data packet

ibufl
Name of an integer containing the length of the ibuf array

iprm
Name of an integer array containing any additional parameters

Summary of Directives A-59

iprml

Name of an integer containing the number of parameters in the iprm array
ids

Name of an optional integer to receive the directive status
Macro Call

SMSG$ tgt,buf,len, <pri,...,prn>

tgt
Target identifier

buf
Address of an optional data buffer

len
Length in bytes of the optional data buffer

pri,...,prn
Target-specific (for the Error Logger) parameter list:
SMSG$ SM.SER,buf,len, <typ,sub,lun,mask>

typ
Error Logger packet code

sub
Error Logger packet subtype code

lun
Logical unit number of the device

msk
Control mask word

Send Next Command (SNXCS$)
FORTRAN Call
CALL SNXC ([dnam][,iunit][,ids])

dnam
Device name (ASCII); if not specified, TI: is used

iunit
Unit number of the terminal from which the command is to be sent

ids
Integer to receive the Directive Status Word

A-60 Summary of Directives

Macro Call
SNXC$ [dnam][,unum]

dnam

Device name (ASCII); if not specified, TI: is used

unum

Unit number of the terminal from which the command is to be sent

Specify Parity Error AST (SPEAS)
FORTRAN Cali
Not supported

Macro Call
SPEA$ [ast]

ast
AST service-routine entry-point address

Suspend (SPNDS$S; $S form recommended)
FORTRAN Call
CALL SUSPND [(ids)]
ids
Directive status
Macro Call
SPND$S [err]

err
Error-routine address

Specify Power Recovery AST (SPRAS)
FORTRAN Caill

To establish an AST:
EXTERNAL sub
CALL PWRUP (sub)

Summary of Directives A-61

sub
Name of a subroutine to be executed upon power recovery. The PWRUP subroutine will
effect the following call:

CALL sub (no arguments)

The subroutine is called as a result of a power recovery AST, and therefore may be controlled
at critical points through the use of DSASTR (or INASTR) and ENASTR subroutine calls.

To remove an AST:

CALL PWRUP

Macro Call
SPRA$ [ast]

ast
AST service-routine entry-point address

Spawn (SPWN$)

FORTRAN Call
CALL SPAWN (rtname,[iugc],[iumc],[iefn],[iast],[iesb] [iparm],[icmlin,icmlen],[iunit],[dnam][,ids])
CALL SPAWNN (rtname,[iugc],[iumc],[iefn] [iast],[iesb] [iparm],[icmlin,icmlen],[iunit),[dnam][,ids])

rtname
Name (Radix-50) of the offspring task to be spawned

iuge
Group code number for the UIC of the offspring task

iumc
Member code number for the UIC of the offspring task

iefn
Event flag to be set when the offspring task exits or emits status

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL SPAWNN)

IeSDName of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code
Words 2-7 Reserved

A-62 Summary of Directives

iparm
Name of a word to receive the status block address when the AST occurs

icmlin
Name of a command line to be queued for the offspring task

icmien
Length of the command line; maximum length is 2551

lunit

Unit number of terminal to be used as the TI: for the offspring task. If the optional dnam
parameter is not specified, this parameter must be the unit number of a virtual terminal
created by the issuing task; if a value of 0 is specified, the TI: of the issuing task is
propagated. A task must be a privileged task or a CLI task in order to specify a TI: other
than the parent task’s TI..

dnam

Device name mnemonic (must be the name of a physical device). If not specified, the virtual
terminal specified by iunit is used as TI:.

ids
Integer to receive the Directive Status Word
Macro Call

SPWN$ tname,, [ugc][umc],[efn] [east],[esb] [cmdlin,cmdlen],[unum],[dnam]

tname
Name (Radix-50) of the offspring task to be spawned

ugc
Group code number for the UIC of the offspring task

umc
Member code number for the UIC of the offspring task

efn

The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

Summary of Directives A-63

esb
Address of an 8-word status block to be written when the offspring task exits or emits

status:
Word 0 Offspring-task exit status
Word 1 TKTN abort code

Words 2-7 Reserved

cmdlin
Address of a command line to be queued for the offspring task

cmdien
Length of the command line; maximum length is 255,

unum
Unit number of terminal to be used as the TI: for the offspring task. If the optional dnam
parameter is not specified, this parameter must be the unit number of a virtual terminal
created by the issuing task; if a value of 0 is specified, the TI: of the issuing task is
propagated. A task must be a privileged task or a CLI task in order to specify a TI: other
than the parent task’s TL.

dnam
Device name mnemonic (must be the name of a physical device). If not specified, the virtual
terminal specified by unum is used as TI..

Specify Receive Data AST (SRDAS)
FORTRAN Call
Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.
Macro Call
SRDA$ [ast]

ast
AST service-routine entry-point address

Specify Requested Exit AST (SREAS; SREXS)
FORTRAN Call
CALL SREA (ast[,ids])

A-64 Summary of Directives

ast
Name of the externally declared AST subroutine

ids

Name of an optional integer to receive the Directive Status Word
Format

CALL SREX (ast,ipblk,ipblkl,[dummy][,ids])

ast
Name of the externally declared AST subroutine

ipblk
Name of an integer array to receive the trap-dependent parameters

ipblki
Number of parameters to be returned into the ipblk array

dummy
Reserved for future use

ids

Name of an optional integer to receive the Directive Status Word
Macro Call

SREA$ [ast]

SREX$ [ast][,dummy]

ast
AST service-routine entry-point address

dummy
Reserved for future use

Send By Reference (SREFS)
FORTRAN Call
CALL SREF (tsk,[efn],iwdb,[isrb][,ids])

tsk

A single-precision, floating-point variable containing the name of the receiving task in
Radix-50 format

efn
Event flag number

Summary of Directives A-65

iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

istb
An 8-word integer array containing additional information (if specified, the address of isrb
is placed in iwdb(8); if isrb is omitted, the contents of iwdb(8) remain unchanged)

ids

Directive status
Macro Call

SREF$ task,wdb],efn]

task
Name of the receiver task

wdb
Window Definition Block address

efn
Event flag number

Specify Receive-By-Reference AST (SRRAS)
FORTRAN Call

Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

Macro Call

SRRA$ [ast]

ast
AST service-routine entry-point address (0)

Set Affinity (STAFS; RSX-11M-PLUS multiprocessor systems)
FORTRAN Call
CALL STAF (iaff[,ids])

iaff
Affinity mask word

ids
Integer to receive the Directive Status Word

A-66 Summary of Directives

Macro Call
STAF$ [cplublub...]

cp
CPU selected (A through D)

ub
UNIBUS run or runs selected (E through T)

Set System Time (STIMS)
FORTRAN Call
CALL SETTIM (ibufn[,ibufp][,ids])

ibufn
An 8-word integer array—new time-specification buffer

ibufp
An 8-word integer array—previous time buffer

ids

Directive status
Macro Call

STIM$ bufn,[bufp]

bufn
Address of the new 8-word time-specification buffer

bufp
Address of the 8-word buffer to receive the previous system-time parameters

Stop for Logical OR of Event Flags (STLOS)
FORTRAN Call

CALL STLOR (efl,ef2,ef3....efn)

CALL STLORS (idsw,efl,ef2,ef3....efn)

idsw
Integer to receive the Directive Status Word

efl..efn
List of event flag numbers

Summary of Directives A-67

Macro Call
STLO$ grp,msk

arp
Desired group of event flags

msk
A 16-bit mask word

Stop (STOP$S; $S form recommended)
FORTRAN Call

CALL STOP [(ids)]
ids

Integer to receive the Directive Status Word
Macro Call

STOP$S

Stop for Single Event Flag (STSES)
FORTRAN Call
CALL STOPFR (iefn[,ids])
iefn
Event flag number
ids
Integer to receive the Directive Status Word
Macro Call
STSE$ efn

efn
Event flag number

Specify SST Vector Table for Debugging Aid (SVDB$)
FORTRAN Call

Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

A-68 Summary of Directives

Macro Call
SVDB$ [adr][,len]

adr
Address of the SST vector table

len
Length of (that is, number of entries in) the table in words

Specify SST Vector Table for Task (SVTK$)
FORTRAN Call
Neither the FORTRAN language nor the ISA standard permits direct linking to system-trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.
Macro Call
SVTK$ [adr]]len]

adr
Address of the SST vector table

len
Length of (that is, number of entries in) the table in words

Switch State (SWSTS)
FORTRAN Cali
Not supported

Macro Call
SWST$ base,addr

base
The base virtual address within the task for mapping the subroutine through APR 5

addr
Virtual address of the subroutine to be executed in system state by the directive

Test for Specified Task Feature (TFEAS)
FORTRAN Call
CALL TFEA (isym,idsw)

Summary of Directives A-69

isym
Symbol for the specified task feature

idsw

Integer to receive the Directive Status Word
Macro Call

TFEA$ sym

sym
Symbol for the specified task feature

Translate Logical Name (TLONS, TLOGS)
(CALL TRALON and TLONS$ are the preferred calls to use on RSX-11M-PLUS and Micro/RSX
systems. CALL TRALOG and TLOGS$ are provided for compatibility with P/OS systems.)
FORTRAN Calls

CALL TRALON ([mod],[tbmsk],[status] Ins,Inssz,ens,ienssz,[rsize], [rtbmod][,idsw])

CALL TRALOG ([mod],[tbmsk] [status] Ins, Inssz,ens, ienssz, [rsize],[rtbmod][,idsw])

mod
Optional modifier of the logical name within a table. Ordinarily, no value would be specified
to allow any defined logical name to be found.

tbmsk
Inhibit mask to prevent a logical name table from being searched. The following symbol
bit definitions, when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LS.PRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

A-70 Summary of Directives

Ins
Character array containing the logical name string

Inssz
Size (in bytes) of the logical name string

ens
Character array buffer to contain the returned equivalence string

ienssz
Size (in bytes) of the data area for the returned equivalence name string

Isize
Word to receive the size of the returned equivalence name

rtbmod

Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

idsw
Integer to receive the Directive Status Word

Macro Calls
TLON$ [mod][tbmsk][status] Ins,Inssz,ens, enssz,[rsize],[rtbmod]
TLOG$ [mod],[tbmsk] [status]Ins,Inssz,ens,enssz,[rsize],[rtbmod]

mod

Optional modifier to be matched against the logical name within a table. Ordinarily, no
value would be specified to allow any logical name in table to be found.

tbmsk

Inhibit mask to prevent a table from being searched. The following symbol bit definitions,
when set, prevent a particular table from being searched:

System (IN.SYS) 10
Group (IN.GRP) 4
Session (IN.SES) 20
Task (IN.TSK) 1

If no mask is specified (or a value of 0 is specified), the tables are searched in the following
order: task, session, group, system. The tables are searched in this order for each iteration.
The values remain constant for all iterations of a logical name translation.

status
Word to receive the logical status associated with the located logical name:

Summary of Directives A-71

LSTRM 1 Terminal status bit. Indicates the last logical name in list required no
further translation.

LS.PRV 2 Privileged status. Last logical name in list can be deleted only by a
privileged task.

Ins
Character array containing the original logical name string

Inssz
Size (in bytes) of the original logical name string

ens
Character array to contain the returned equivalence string

enssz
Size (in bytes) of the data area for the returned equivalence name string

rsize
Word to receive the size of the returned equivalence name; this size is always the actual
size of the equivalence name regardless of the string size specified with enssz

rtbomod
Word to receive, in the lower byte, the table number and, in the higher byte, the modifier
value of the located logical name

Unlock Group Global Event Flags (ULGF$; $S form recommended)
FORTRAN Cali
CALL ULGF {(ids)]
ids
Directive status
Macro Call
ULGF$S [err]

err
Error-routine address

Unmap Address Window (UMAPS)
FORTRAN Call
CALL UNMAP (iwdb],ids])

A-72 Summary of Directives

iwdb
An 8-word integer array containing a Window Definition Block (see Section 3.5.2.2)

ids
Directive status
Macro Call
UMAP$ wdb

wdb
Window Definition Block address

Unstop Task (USTPS)
FORTRAN Call
CALL USTP ([rtnamel][,ids])

rtname

Name of the task to be unstopped (if not specified, CALL USTP will use the issuing task as
its default)

ids

Integer to receive directive status information
Macro Call

USTP$ [tname]

thame

Name of the task to be unstopped (if not specified, USTP$ will use the issuing task as its
default)

Variable Receive Data (VRCD$)
FORTRAN Call
CALL VRCD ([task] bufadr,buflen[,idsw])

task
Sender task name

bufadr

Address of the buffer to receive the sender task name and data (must be word-aligned
(INTEGER+*2))

bufien
Length of the buffer

Summary of Directives A-73

idsw
Integer to receive the Directive Status Word

Macro Call
VRCD$ [task],bufadr|,buflen],[ti]

task
Sender task name

bufadr
Buffer address

bufien
Buffer size in words

ti
TI: indicator (ignored on RSX systems)

variable Receive Data or Stop (VRCS$)
FORTRAN Call
CALL VRCS ([task],bufadr,[buflen][,ids])

task
Sender task name

buf
Address of the buffer to receive the sender task name and data

bufien
Length of the buffer

ids
Integer to receive the Directive Status Word

Macro Call
VRCS$ [task],bufadr|,buflen],[ti]

task
Sender task name

bufadr
Buffer address

bufien
Buffer size in words

A-74 Summary of Directives

ti
TL indicator (ignored on RSX systems)

Variable Receive Data or Exit (VRCX$)
FORTRAN Call
CALL VRCX ([task],bufadr,[buflen][,ids])

task
Sender task name

bufadr
Address of the buffer to receive the sender task name and data

bufien
Length of the buffer

ids

Integer to receive the Directive Status Word
Macro Call

VRCX$ [task],bufadr|,buflen],[ti]

task
Sender task name

bufadr
Buffer address

buflen
Buffer size in words

ti
TI: indicator (ignored on RSX systems)

Variable Send Data (VSDAS$)
FORTRAN Call
CALL VSDA ([task],bufadr,[buflen],[efn][,idsw])

task
Receiver task name

bufadr

Address of the buffer to receive the sender task name and data (must be word-aligned
(INTEGER#2))

Summary of Directives A-75

bufien
Length of the buffer

efn
Event flag number

idsw

Integer to receive the Directive Status Word
Macro Call

VSDAS$ [task],bufadr,[buflen],[efn],[spri],[ti]

task
Receiver task name

bufadr
Buffer address

bufien
Buffer size in words

efn
Event flag number

spri
Send priority (ignored on RSX systems)

ti
TI: indicator (ignored on RSX systems)

Variable Send, Request, and Connect (VSRCS)

FORTRAN Call
CALL VSRC (rtname,ibuf,[ibuflen],[iefn],[iast],[iesb] [iparm][,idsw])
CALL VSRCN (rtname,ibuf,[ibuflen],[iefn] [iast],[iesb], [iparm][,idsw])

rtname
Target task name of the offspring task to be connected

Ibuf
Name of send buffer

ibufilen
Length of the buffer

iefn
Event flag to be set when the offspring task exits or emits status

A-76 Summary of Directives

iast
Name of an AST routine to be called when the offspring task exits or emits status (ignored
for CALL VSRCN)

IesbName of an 8-word status block to be written when the offspring task exits or emits status:
Word 0 Offspring-task exit status
Word 1 TKTIN abort code
Words 2-7 Reserved

iparm
Name of a word to receive the status block address when an AST occurs

idsw

Integer to receive the Directive Status Word
Macro Call

VSRC$ tname,buf,buflen),[efn] [east],[esb]

thame
Target task name of the offspring task to be connected

buf
Address of send buffer

bufien
Length of the buffer

efn

The event flag to be cleared on issuance and set when the offspring task exits or emits
status

east
Address of an AST routine to be called when the offspring task exits or emits status

esb
Address of an 8-word status block to be written when the offspring task exits or emits
status:
- Word 0 Offspring-task exit status

Word 1 TKTN abort code
Words 2-7 Reserved

Summary of Directives A-77

Wait for Significant Event (WSIGS$; $S form recommended)
FORTRAN Call
CALL WFSNE

Macro Call
WSIGS$S [err]

err
Error-routine address

Wait for Logical OR of Event Flags (WTLOS)
FORTRAN Call

CALL WFLOR (efl,ef2,ef3...,efn)

CALL WFLORS (idsw,efl,ef2,ef3...,efn)

efl...efn
List of event flag numbers taken as the set of flags to be specified in the directive

idsw
Integer to receive the Directive Status Word

Macro Call
WTLO$ grp,msk

arp
Desired group of event flags

msk
A 16-bit flag mask word

Wait for Single Event Flag (WTSE$)
FORTRAN Call
CALL WAITFR (efn[,ids])

efn
Event flag number

ids
Directive status

A-78 Summary of Directives

Macro Call
WTSE$ efn

efn
Event flag number

Summary of Directives A-79

Appendix B
Standard Error Codes

The symbols listed below are associated with the directive status codes returned by the
RSX-11M-PLUS and Micro/RSX Executive. They are determined (by default) at task-build
time. To include these in a MACRO-11 program, use the following two lines of code:

.MCALL DRERR$
DRERR$

; Standard error codes returned by directives in the Directive Status
; Word (DSW)

IS.CLR +00 Event flag was clear
Is.su¢ +01 Operation complete, Success
IS.SET +02 Event flag was set

IE.UPN -01. Insufficient dynamic storage
IE.INS -02. Specified task not installed
IE.PTS -03. Partition too small for task

IE.UNS -04. Insufficient dynamic storage for Send
IE.ULN -05. TUnassigned LUN

IE.HWR -086. Device handler not resident

IE.ACT -07. Task not active

IE.ITS -08. Directive inconsistent with task state
IE.FIX -09. Task already fixed/unfixed

IE.CKP -10. Issuing task not checkpointable
IE.TCH -11. Task is checkpointable

IE.RBS -15. Receive buffer is too small

IE.PRI -16. Privilege violation

IE.RSU -17. Resource in use

Standard Error Codes B-1

IE.
1IE.
IE.

IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.
IE.

IE.
IE.
. SDP

IE

.NSw

JILV
CITN
.LNF

AST
MAP
10P

ALG
wov
NVR
NVW
ITP
IBS
LNL
I
IDU
ITI
PNS
IPR
ILU

IEF
ADP

-18.

-19.
-20.
-21.

No swap space available

Illegal vector specified
Invalid table number
Logical name not found

Directive issued/not issued from AST
Illegal mapping specified
Window has I/0 in progress

Alignment error

Address window allocation overflow
Invalid region ID

Invalid address window ID
Invalid TI parameter

Invalid Send buffer size (>255.)
LUN locked in use

Invalid UIC

Invalid device or unit

Invalid time parameters
Partition/region not in system
Invalid priority (>250.)

Invalid LUN

Invalid event flag number (>64.)
Part of DPB out of user's space
DIC or DPB size invalid

B-2 Standard Error Codes

Appendix C
Directive Identification Codes

Directive Identification Codes (DICs) are used to identify each directive. The DIC appears in
the low byte of the first (or only) word in the Directive Parameter Block (DPB). The DPB length
(in words) appears in the high byte of the first DPB word. Thus, both bytes make up the word
format shown below:

First Word
in DPB

DPB Length DIC

(high byte) (low byte)

ZK-312-81

The remainder of this appendix contains a listing of directives arranged in numerical sequence,
according to the octal value for the first DPB word. In addition, the DIC and DPB lengths are
included as decimal values as they appear in Chapter 5.

This list can be used as a software debugging aid to quickly identify directives based on the
octal value of the first word in a DPB. An example for the SDAT$ directive is provided below,
illustrating the manner in which the octal value is obtained:

First Word
in DPB 5(10) 71(10)
Octa! Byte l i
Values 5(8) 107(8)
Binary Word L ‘
Value 101 01 000 111
e —— e
Octal Word
Value 2507 (=SDATS$)

ZK-313-81

Directive Identification Codes C-1

Octal Value

for DPB Directive Decimal Values for
First Word (Macro Call) DIC DPB Length
433 CMKT$ 27. 1.
443 DECL$S 35. 1.
455 SPND$S 45. 1.
461 WSIG$S 49. 1.
463 EXIT$S 51. 1.
537 DSCP$S 95. 1.
541 ENCP$S 97. 1.
543 DSAR$S or IHAR$S 99. 1.
545 ENARS$S 101. 1.
563 ASTX$S 115. 1.
575 GSSW$S 125. 1.
603 STOP$S 131. 1.
637 ULGF$S 159. 1.
643 RMAF$S 163. 1.
1015 STAF$ 13. 2.
1025 SRRA$ 21. 2.
1035 EXST$ 29. 2.
1037 CLEF$ 31. 2.
1041 SETF$ 33. 2.
1045 RDEF$ 37. 2.
1047 RDAF$ 39. 2.
1051 WTSE$ 41. 2.
1065 EXIF$ 53. 2.
1067 CRRG$ 55. 2.
1071 ATRG$ 57. 2.
1073 DTRG$ 59. 2.
1075 GTIM$ 61. 2.
1077 GTSK$ 63. 2.
1121 RREF$ 81. 2.

C-2 Directive Identification Codes

Octal Value

for DPB Directive Decimal Values for
First Word (Macro Call) DIC DPB Length

1153 SRDA$ 107. 2.
1155 SPRAS$ 109. 2.
1157 SFPA$ 111. 2.
1161 GMCX$ 113. 2.
1165 CRAWS 117. 2.
1171 MAP$ 121. 2.
1173 UMAP$ 123. 2.
1207 STSE$ 135. 2.
1227 ELVT$ 151. 2.
1235 CRGF$ 157. 2.
1237 ELGF$ 159. 2.
1241 STAF$ 161. 2.
1245 SPEA$ 165. 2.
1247 SREA$ 167. 2.

- GIN$! 169. -
1255 SCAA$ 173. 2.
1261 FEAT$ 177. 2.
1311 MSDS$ 201. 2.
1321 TFEA$ 209. 2.
1325 RRST$ 213. 2.
1405 GLUN$ 5. 3
1431 CSRQ$ 25. 3.
1433 CMKT$ 27. 3.
1447 RDXF$ 39. 3.
1453 WTLO$ 43. 3.
1457 RSUMS$ 47. 3.
1475 STIM$ 61. 3.
1523 ABRT$ 83. 3.

I The octal value for the DPB first word and the value for the DPB length depend upon the macro expansion for each individual function.

Directive Identification Codes

C-3

Octal Value

for DPB Directive Decimal Values for
First Word (Macro Call) DIC DPB Length
1531 EXTK$ 89. 3.
1547 SVDB$ 103. 3.
1551 SVTK$ 105. 3
1577 SNXC$ 127. 3
1605 USTP$ 133. 3
1611 STLO$ 137. 3
1617 CNCT$ 143. 3
1633 SCAL$S 155, 3
1647 SREX$ 167. 3
1657 SWST$ 175. 3
1715 CPCR$ 205. 3
2007 ALUNS$ 7. 4
2011 ALTP$ 9. 4
2101 GPRT$ or GREG$ 65. 4
2113 RCVD$ 75. 4
2115 RCVX$ 77. 4,
2213 RCST$ 139. 4
2223 EMST$ 147. 4
2313 MVTS$ 203. 4
2427 MRKT$ 23. 5
2505 SREF$ 69. 5
2507 SDAT$ 71. 5
2625 CRVT$ 149. 5
2655 SCLI$ 173. 5
2717 ACHNS$ 207. 5
2717 DLONS$ or DLOG$ 207. 5
2717 SDIR$ 207. 5
3113 VRCD$ 75. 6
3115 VRCX$ 77. 6

C-4 Directive Identification Codes

Octal Value

for DPB Directive Decimal Values for
First Word (Macro Call) DIC DPB Length
3213 VRCS$ 139. 6.
3317 GDIR$ 207. 6.
3413 RQST$ 11. 7.
3577 GCCI$ 127. 7.
3601 CINT$ 129. 7.
3615 SDRC$ 141. 7.
3655 GCII$ 173. 7.
3717 CLONS$ or CLOG$ 207. 7.
3717 FSS$ 207. 7.
4107 VSDAS$ 71. 8.
4215 VSRC$ 141. 8.
4253 SMSG$ 171. 8.
4615 SDRP$ 141. 9.
5317 RLON$ or RLOG$ 207. 10.
5317 TLONS$ or TLOGS$ 207. 10.
5421 RUNS$ 17. 11.
6001 QIO$ 1. 12
6003 QIOW$ 3. 12.
6413 SPWN$ 11. 13.
6717 PFCS$ 207. 13.
6717 PRMS$ 207. 13.
7013 SPWNS$ 11. 14.
10013 RPOI$ 11. 16.
24577 GMCR$ 127. 41.

Directive Identification Codes C-5

Index

A

Abort Task directive, 5-10
ABRT$ directive, 5-10
ACHNS$ directive, 5-12
Active Page Register
See APR
Address mapping, 3-2
Address space
logical, 3-2
virtual, 3-2
Address window
creating, 5-47
deleting, 5-74
mapping to region, 5-145
unmapping, 5-292
virtual, 3-3
Alter Priority directive, 5-15
ALTP$ directive, 5-15
ALUNS directive, 5-17
APR
changing mapping, 5-152
getting information, 5-152
ARGCHA routine, 1-13
Assign Channel directive, 5-12
Assign LUN directive, 5-17
AST, 2-5, 2-7
disabling recognition, 5-68
enabling recognition, 5-82
service routine, 2-8
FORTRAN, 1-19
specifying, 5-236
terminating, 5-19
specifying
Floating Point Processor exception,
5-229
for CLI, 5-211
power recovery, 5-239

AST
specifying (cont’d.)
receive-by-reference, 5-263
receive data, 5-253
requested exit, 5-255
AST Service Exit directive, 5-19
ASTX$S directive, 5-19
Asynchronous System Trap
See AST
ATRG$ directive, 5-22
Attach Region directive, 5-22

C

CALL ABORT, 5-10
CALL ACHN, 5-12
CALL ALTPR], 5-15
CALL ASNLUN, 5-17
CALL ATRG, 5-22
CALL CANALL, 5-62
CALL CANMT, 5-40
CALL CLREF, 5-35
CALL CNCT, 5-42
CALL CNCITN, 5-42
CALL CPCR, 5-45
CALL CRAW, 5-47
CALL CRELOG, 5-36
CALL CRELON, 5-36
CALL CRGEF, 5-51
CALL CRRG, 5-53
CALL CRVT, 5-59
CALL DECLAR, 5-64
CALL DELLOG, 5-65
CALL DELLON, 5-65
CALL DISCKP, 5-70
CALL DSASTR, 5-68
CALL DTRG, 5-72
CALL ELAW, 5-74

Index-1

CALL ELGF, 5-76
CALL ELVT, 5-78
CALL EMST, 5-80
CALL ENACKP, 5-84
CALL ENASTR, 5-82
CALL EXIT, 5-88
CALL EXITIF, 5-85
CALL EXST, 5-89
CALL EXTTSK, 5-91
CALL FEAT, 5-93
CALL FSS, 5-97
CALL GETCII, 5-105
CALL GETDDS, 5-108
CALL GETLUN, 5-126
CALL GETMCR, 5-129
CALL GETPAR, 5-134
CALL GETREG, 5-136
CALL GETTIM, 5-140
CALL GETTSK, 5-142
CALL GMCX, 5-131
CALL GTCMCI, 5-100
CALL INASTR, 5-68
CALL MAP, 5-145
CALL MARK, 5-148
CALL PRSFCS, 5-157
CALL PRSRMS, 5-163
CALL PWRUP, 5-239
CALL QIO, 5-168
CALL RCST, 5-174
CALL RCTLOG, 5-186
CALL RCTLON, 5-186
CALL READEF, 5-181, 5-183, 5-184
CALL READSW, 5-138
CALL RECELV, 5-176
CALL RECOEX, 5-178
CALL REQUES, 5-195
CALL RESUME, 5-204
CALL RMAF, 5-190
CALL RPOI, 5-191
CALL RREF, 5-198
CALL RRST, 5-201
CALL RUN, 5-206
CALL SDRC, 5-222
CALL SDRCN, 5-222
CALL SDRP, 5-225
CALL SEND, 5-217
CALL SETCLI, 5-215
CALL SETDDS, 5-219
CALL SETEF, 5-228
CALL SETTIM, 5-268
CALL SMSG, 5-231
CALL SNXC, 5-234

Index-2

CALL SPAWN, 5-241
CALL SPAWNN, 5-241
CALL SREA, 5-255
CALL SREF, 5-259
CALL SREX, 5-255
CALL STAF, 5-266
CALL START, 5-206
CALL STLOR, 5-271
CALL STLORS, 5-271
CALL STOP, 5-274
CALL STOPFR, 5-275
CALL SUSPND, 5-238
CALL TFEA, 5-283
CALL TRALOG, 5-286
CALL TRALON, 5-286
CALL ULGEF, 5-290
CALL UNMAP, 5-292
CALL USTP, 5-294
CALL VRCD, 5-296
CALL VRCS, 5-298
CALL VRCX, 5-300
CALL VSDA, 5-302
CALL VSRC, 5-304
CALL VSRCN, 5-304
CALL WAIT, 5-148
CALL WAITFR, 5-311
CALL WFLOR, 5-309
CALL WFLORS, 5-309
CALL WFSNE, 5-307
CALL WTQIO, 5-172

Cancel Mark Time Requests directive, 5-40

Cancel Scheduled Initiation Requests
directive, 5-62

Checkpoint Common Region directive, 5-45

CINTS$, 5-24
Clear Event Flag directive, 5-35
CLEFS$ directive, 5-35
CLI
getting information, 5-105
receiving system message, 5-100
retrieving command buffer, 5-100
setting up, 5-215
spawning, 4-5
specifying ASTs, 5-211
CLOGS$ directive, 5-36
CLONS$ directive, 5-36
$C macro form, 1-6
processing errors, 1-7
CMKTS$ directive, 5-40
CNCTS$ directive, 5-42
Command Line Interpreter
See CLI

Common event flag, 2-2
reading, 5-184
Common region
checkpointing, 5-45
Connect directive, 5-42
Connect to Interrupt Vector directive, 5-24
Console switch register
obtaining contents, 5-138
Context block, 5-109, 5-220
CPCR$ directive, 5-45
CPU affinity
removing, 5-190
setting, 5-265
CRAWS directive, 5-48
Create Address Window directive, 5-47
Create Group Global Event Flags directive,
5-51
Create Logical Name directive, 5-36
Create Region directive, 5-53
Create Virtual Terminal directive, 5-56
CRGF$ directive, 5-51
CRRGS$ directive, 5-53
CRVTS$ directive, 5-60
CSRQ$ directive, 5-62

D

Data
sending to task, 5-222, 5-304
Data block
dequeuing, 5-174, 5-176, 5-178, 5-296,
5-298, 5-300
queuing, 5-217, 5-302
Data packet
sending, 5-231
Data space, 3-1
mapping, 3-3
moving data, 5-155
Data structure
memory management directive, 3-10
DDS
See Default directory string
DECLS$S directive, 5-64
Declare Significant Event directive, 5-64
Default directory string, 5-109, 5-220
retrieving, 5-108
setting, 5-219
Delete Logical Name directive, 5-65
Detach Region directive, 5-72
Device
getting information, 5-126
queuing I/O request, 5-168, 5-172

DIC, 1-2
list, C-1
DIR$ macro, 1-7
Directive
conventions, 5-7
DIC list, C-1
macros, 1-4
$C form, 1-6
$ form, 1-5
naming conventions, 1-4
$S form, 1-6
memory management, 3-1
data structures, 3-10
summary, 3-8
processing, 1-2
rejecting, 1-2
summary, A-1
Directive Identification Code
See DIC
Directive Parameter Block
See DPB
Directive status code
list, B-1
Directive Status Word
See DSW
DIRSYM.MAC, 4-3
Disable AST Recognition directive, 5-68
Disable Checkpointing directive, 5-70
DLOGS$ directive, 5-65
DLONS$ directive, 5-65
DPB, 1-2
$DPB$$, 1-6
DSARS$S directive, 5-68
DSCP$S directive, 5-70
$DSW, 1-2
DSW, 1-2
DTRGS$ directive, 5-72
Dynamic region, 3-5
creating, 5-53

E

ELAWS directive, 5-74

ELGF$ directive, 5-76

Eliminate Address Window directive, 5-74

Eliminate Group Global Event Flags
directive, 5-76

Eliminate Virtual Terminal directive, 5-78

ELVT$ directive, 5-78

Emit Status directive, 5-80

EMST$ directive, 5-80

EMT 377 instruction, 1-1

Index-3

Enable AST Recognition directive, 5-82
Enable Checkpointing directive, 5-84
ENARS$S directive, 5-82
ENCP$S directive, 5-84
Error Logger, 5-231
Error return, 1-3
Event flag
setting, 5-228
Event flag, 2-2
clearing polarity, 5-35
common, 2-2
group global, 2-2
creating, 2-4, 5-51
decrementing use count, 5-290
deleting, 2-4, 5-76
displaying, 2-4
eliminating, 5-290
reading, 5-181, 5-184
testing, 2-3, 5-183
Executive-level dispatching, 5-7
EXIF$ directive, 5-85
EXIT$S directive, 5-87
Exit If directive, 5-85
Exit with Status directive, 5-89
EXST$ directive, 5-89
Extend Task directive, 5-91
EXTK$ directive, 5-91

F

Fast mapping, 3-19
high-level language, 3-22
MACRO-11, 3-21
status returns, 3-23

FCS
processing string, 5-157

FEAT$ directive, 5-93

File Control Services
See FCS

File specification
processing, 5-12
scanning, 5-97

File Specification Scanner directive, 5-97

Find and Return Task Information function

(GINS), 5-122

FORTRAN
AST service routine, 1-19

FORTRAN subroutine
integer arguments, 1-12
list, 1-13
unavailable, 1-17

FSS$ directive, 5-97

Index—4

G

GCCI$ directive, 5-101
GClII$ directive, 5-105
GDIRS$ directive, 5-108
General Information directive, 5-111
GETADR subroutine, 1-12
Get Assigned Device Name function (GIN$),
5-111
Get Command for Command Interpreter
directive, 5-100
Get Command Interpreter Information
directive, 5-105
Get Default Directory directive, 5-108
Get Device Information function (GINS$),
5-119
Get Feature Mask Words function (GIN$),
5-116
Get LUN Information directive, 5-126
Get Mapping Context directive, 5-131
Get MCR Command Line directive, 5-129
Get Partition Parameters directive, 5-134
Get Region Parameters directive, 5-136
Get Sense Switches directive, 5-138
Get System APRs function (GIN$), 5-121
Get System UIC Information function
(GIN$), 5-112
Get Task Parameters directive, 5-142
Get Time Parameters directive, 5-140
Get User Account Block function (GIN$),
5-118
GFB, 5-51, 5-76, 5-290
GIN$ directive, 5-111
GI.APR function, 5-121
GI.DEF function, 5-114
GI.DEV function, 5-119
GLFMK function, 5-116
GI.GAS function, 5-111
GL.QMC function, 5-117
GLREN function, 5-115
GIL.SPR function, 5-114
GI.UAB function, 5-118
GI.UIC function, 5-112
GI.UPD function, 5-124
$$$GLB, 1-8
GLUNS$ directive, 5-126
GMCR$ directive, 5-129
GMCX$ directive, 5-131
GPRT$ directive, 5-134
GREGS$ directive, 5-136
Group global event flag, 2-2
creating, 2-4, 5-51

Group global event flag (cont’d.)

decrementing use count, 5-290
deleting, 2-4, 5-76
displaying, 2-4
eliminating, 5-290
reading, 5-184

Group Global Event Flag Control Block
See GFB

GSSW$S directive, 5-138

GTIM$ directive, 5-140

GTSKS$ directive, 5-142

H

Hardware interrupt
processing, 5-24
High-level language
restrictions, 1-10
subroutine, 1-9
error conditions, 1-18
optional arguments, 1-11
specifying task names, 1-11
supported, 1-10

1/0 request
queuing, 5-168, 5-172
IHARS$S directive, 5-68
Inhibit AST Recognition directive, 5-68
Instruction space, 3-1
mapping, 3-3
moving data, 5-155
Interrupt Service Routine
See ISR
ISR, 5-24

L

Local event flag
reading, 5-184
Logical name
creating, 5-36
deleting, 5-65
translating, 5-286
iteratively, 5-186
Logical unit number
See LUN
LUN
assigning, 5-12, 5-17

M

$ macro form, 1-5

MAP$ directive, 5-146
Map Address Window directive, 5-145
Mapping, 3-2
data space, 3-3
instruction space, 3-3
privileged tasks, 3-19
window-to-region
returning current assignment, 5-131
Map Supervisor D-Space directive, 5-152
Mark Time directive, 5-148
Mark time request
canceling, 5-40
.MCALL assembler directive, 1-4
Memory management
directives, 3-1
data structures, 3-10
summary, 3-8
Move to/from User/Supervisor I/D-Space
directive, 5-155
MRKTS$ directive, 5-148
MSDS$ directive, 5-153
MVTS$ directive, 5-155

P

Parent/offspring tasking, 4-1
chaining, 4-2, 5-191, 5-225
connecting, 4-1, 5-304
directives, 4-1
requesting task, 5-241, 5-304
returning status, 4-2, 4-3
sending data, 5-304
sending send-data packet, 5-225
spawning, 4-1, 4-4
synchronizing, 5-42

Parse block
format, 5-98
returning, 5-97, 5-157, 5-163

Parse FCS directive, 5-157

Parse RMS directive, 5-163

Partition
getting parameters, 5-134

PFCS$ directive, 5-157

PRMSS$ directive, 5-163

Processor Status Word
See PSW

PSW, 1-2

Q

QIO$ directive, 5-168
QIOWS directive, 5-172

Index—-5

Queue I/O Request and Wait directive,
5-172

Queue I/O Request directive, 5-168

Queue MCR Command Line function
(GIN$), 5-117

R

RCST$ directive, 5-174
RCVD$ directive, 5-176
RCVX$ directive, 5-178
RDAF$ directive, 5-181
RDB, 3-10
assigning values, 3-19
format, 3-10
generating, 3-12, 3-14
RDBBKS$, 3-12
RDBDF$, 3-12
RDEF$ directive, 5-183
RDXF$ directive, 5-184
Read All Event Flags directive, 5-181
Read Event Flag directive, 5-183
Read Extended Event Flags directive, 5-184
Receive By Reference directive, 5-198
Receive By Reference or Stop directive, 5-201
Receive-by-reference queue packet
dequeuing, 5-198, 5-201
inserting, 5-259
Receive Data directive, 5-176
Receive Data or Exit directive, 5-178
Receive Data or Stop directive, 5-174
Recursive Translation of Logical Name
directive, 5-186
Region, 3-5
attaching, 3-6, 5-22
detaching, 5-72
dynamic, 3-5
creating, 5-53
getting parameters, 5-136
protecting, 3-8
shareable, 3-5
shared, 3-5
static common, 3-5
task, 3-5
Region Definition Block
See RDB
Region ID, 3-5
determining, 5-22
Remove Affinity directive, 5-190
Rename Task function (GIN$), 5-115
Request and Pass Offspring Information
directive, 5-191

Index-6

Request Task directive, 5-195
Resume Task directive, 5-204
RLOG$ directive, 5-186
RLONS$ directive, 5-186
RMAF$S directive, 5-190
RMS-11

processing string, 5-163
RPOI$ directive, 5-192
RQST$ directive, 5-195
RREF$ directive, 5-198
RRST$ directive, 5-201
RSUMS$ directive, 5-204
RSXMAC.SML, 1-4
RUNS$ directive, 5-207
Run Task directive, 5-206

S

SCAAS$ directive, 5-211
SCALS$S directive, 5-213
SCLI$ directive, 5-215
SDATS$ directive, 5-217
SDIR$ directive, 5-219
SDRC$ directive, 5-222
SDRP$ directive, 5-226
Send, Request, and Connect directive, 5-222
Send By Reference directive, 5-259
Send Data directive, 5-217
Send Data Request and Pass Offspring
Control Block directive, 5-225
Send Message directive, 5-231
Send Next Command directive, 5-234
Set Affinity directive, 5-265
Set Command Line Interpreter directive,
5-215
Set Default Directory directive, 5-219
Set Event Flag directive, 5-228
SETF$ directive, 5-228
Set System Time directive, 5-268
Set Task Default UIC function (GINS), 5-114
Set Task Privilege function (GIN$), 5-114
SFPA$ directive, 5-229
Shareable region, 3-5
Shared region, 3-5
Significant event, 2-1
declaring, 5-64, 5-148, 5-217
list, 2-1
$S macro form, 1-6
processing errors, 1-7
SMSGS$ directive, 5-231
SNXC$ directive, 5-234
Spawn directive, 5-241

Spawning, 4-4
SPEAS$ directive, 5-236
Specify Command Arrival AST directive,
5-211
Specify Floating Point Processor Exception
- AST directive, 5-229
Specify Parity Error AST directive, 5-236
Specify Power Recovery AST directive, 5-239
Specify Receive-By-Reference AST directive,
5-263
Specify Receive Data AST directive, 5-253
Specify Requested Exit AST directive, 5-255
Specify SST Vector Table for Debugging Aid
directive, 5-277
Specify SST Vector Table for Task directive,
5-279
SPND$S directive, 5-238
SPRA$ directive, 5-239
SPWN$ directive, 5-241
SRDAS$ directive, 5-253
SREAS$ directive, 5-255
SREF$ directive, 5-260
SREX$ directive, 5-255
SRRAS$ directive, 5-263
SST, 2-5
service routine, 2-6
specifying, 5-277, 5-279
STAF$ directive, 5-266
Static common region, 3-5
STIMS$ directive, 5-268
STLO$ directive, 5-271
STOP$S directive, 5-274
Stop-bit synchronization, 2-13
directives, 2-14
Stop directive, 5-274
Stop for Logical OR of Event Flags directive,
5-271
Stop for Single Event Flag directive, 5-275
STSE$ directive, 5-275
Subroutine
high-level language, 1-9
error conditions, 1-18
optional arguments, 1-11
specifying task names, 1-11
Supervisor Call directive, 5-213
Supervisor mode
library routine, 3-1
calling, 5-213
Suspend directive, 5-238
SVDB$ directive, 5-277
SVTK$ directive, 5-279
Switch State directive, 5-281

SWST$ directive, 5-281
Symbolic offset, 1-8
Synchronous System Trap
See SST
System Macro Library, 1-4
System option
feature symbols, 5-93
testing, 5-93
System task
spawning, 4-4
System time
setting, 5-268
System trap, 2-5

T

Task
aborting, 5-10, 5-255
activating, 5-195
addressing, 3-1
blocking, 5-309, 5-311
canceling time-synchronized requests,
5-62

chaining, 4-2, 5-225
changing

priority, 5-15

size, 5-91

state, 1-20, 1-22
checkpointability

disabling, 5-70

enabling, 5-84
connecting, 4-1, 5-222, 5-304
CPU affinity

removing, 5-190
debugging, 5-277
delaying, 5-148
detaching from region, 5-72
exiting with status, 5-89
getting parameters, 5-142
installed

removing, 1-23
nonprivileged

directive restrictions, 1-23
offspring, 4-1
overlaying, 3-1
parent, 4-1
privileged

mapping, 3-19, 5-281
receiving next CLI command, 5-234
requesting, 5-195, 5-222, 5-225, 5-241,

5-304

resuming, 5-204

Index-7

Task (cont'd.)

returning status, 4-2, 4-3, 5-80
running, 5-206
spawning, 4-1, 4-4
stopping, 5-271, 5-274, 5-275
suspending, 5-238, 5-307, 5-309, 5-311
terminating, 5-85, 5-87
transferring command line, 5-129
unstopping, 5-294
Task Exit directive, 5-87
Task option
list, 5-283
testing, 5-283
Task region, 3-5
Terminal
virtual
creating, 5-56
deallocating, 5-78
Test for Specified System Feature directive,
5-93
Test for Specified Task Feature directive,
5-283
TFEAS$ directive, 5-283
Time
getting parameters, 5-140
setting, 5-268
TLOGS$ directive, 5-286
TLONS$ directive, 5-286
Translate Logical Name String directive,
5-286

U

ULGF$S directive, 5-290

UMAPS$ directive, 5-292

Unlock Group Global Event Flags directive,
5-290

Unmap Address Window directive, 5-292

Unstop Task directive, 5-294

Update UICs and Default Directory function
(GINS), 5-124

USTP$ directive, 5-294

Utility

spawning, 4-5

\%

Variable Receive Data directive, 5-296

Variable Receive Data or Exit directive, 5-300

Variable Receive Data or Stop directive,
5-298

Variable Send, Request, and Connect
directive, 5-304

Index-8

Variable Send Data directive, 5-302
Virtual terminal
creating, 5-56
deallocating, 5-78
VRCD$ directive, 5-296
VRCS$ directive, 5-298
VRCX$ directive, 5-300
VSDAS$ directive, 5-302
VSRC$ directive, 5-304

W

Wait for Logical OR of Event Flags directive,
5-309
Wait for Significant Event directive, 5-307
Wait for Single Event Flag directive, 5-311
WDB, 3-10, 5-131
assigning values, 3-19
format, 3-15
generating, 3-16, 3-18
WDBBKS$, 3-16
WDBDFS$, 3-16
Window Definition Block
See WDB
WSIG$S directive, 5-307
WTLO$ directive, 5-309
WTSES$ directive, 5-311

RSX-11M-PLUS and Micro/RSX
Executive Reference Manual
AA-JS17A-TC

READER’S
COMMENTS

Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? — Programmer — Nonprogrammer

Years of experience as a computer programmer/user:

Name

Date

Organization

Street

City

State — Zip Code

or Country

~—— Do Not Tear - Fold Here and Tape ———————— — e e

clilgliltlall |

-—=— Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

No Postage
Necessary
if Mailed
in the
United States
|
|
I
]
L]
I
L]
|
]
L |

RSX-11M-PLUS and Micro/RSX
Executive Reference Manual
AA-JS17A-TC

READER’S Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
COMMENTS and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? — Programmer — Nonprogrammer

Years of experience as a computer programmer/user:

Name Date.

Organization
Street

City State __ Zip Code
or Country

-—— Do Not Tear - Fold Here and Tape ——————————— e

dlilgliltlall

-—-— Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

No Postage
Necessary
if Mailed
in the
United States
|
L]
|
|
]
]
|
|
I
|

