
EY -0061 E-SG-O 1 0 1

Programming
RSX-llM

in FORTRAN

Volume I

EY -0061 E-SG-O 1 0 1

Programming
RSX-llM

in FORTRAN

Student Workbook
Volume I

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DECUS
UNIBUS

DECsystem-10
DECSYSTEM-20
DIBOL
EDUSYSTEM
VAX
VMS

MASSBUS
OMNIBUS
OS/8
RSTS
RSX
lAS

CONTENTS
Volume I

SG STUDENT GUIDE

• 3 INTRODUCTION •••••
PREREQUISITES. • • • • • • • • • • • • • • • • • 4

• 4 COURSE GOALS AND NONGOALS. • •••
COURSE ORGANIZATION. • • • • • • • • • • 5
COURSE MAP DESCRIPTION • • • •
COURSE MAP • • • • • • • •
COURSE RESOURCES • • • • •

• • • • • • • 5
• • • .• • • 6
• • • • • • • 7

Required References •• • • • • • • • • • • • 7
Optional References. • •• • • • • • • •• • 7

HOW TO TAKE THE COURSE • •
PERSONAL PROGRESS PLOTTER. '. • •

• • • • • • • • • • • 8
• • • •••• 13

1 USING SYSTEM SERVICES

INTRODUCTION • • • • • • • • • • •
OBJECTIVES • • • • • • • • • • • •
RESOURCES. • • • • ••••••••••••••••
WHAT IS A SYSTEM SERVICE? ••••••••••••
WHY SHOULD YOU USE SYSTEM SERVICES? •••••••••

To Extend the Features of Your Programming
Language •••••••••••••••••
To Ease Programming and Maintenance ••
To Increase Performance ••••••••

WHAT SERVICES ARE PROVIDED? •••••••
Sys tern and Ta skIn form at ion. • • • • •
Task Control • • • • • • • • • • • • •
Task Communication and Coordination ••••
I/O to Peripheral Devices. • • • • ••
Memory Use • • • • • • • • • • • •

OTHER SERVICES AVAILABLE • • • • • • •
HOW SERVICES ARE PROVIDED. • • • • • •

Executive Directives • • • • • • • • • • •
Code Inserted into Your Task Image • • ••

AVAILABLE FILE AND RECORD ACCESS SYSTEMS • • • • •
SYSTEM LIBRARIES • • • • • • • • • • • • •

iii

17
17
17
19
19

19
19
20
20
20
21
21
21
22
22
23
23
26
28
28

2 DIRECTIVES

INTRODUCTION •
OBJECTIVES • • • • • • • • • • • • • • • •••••
RESOURCES. • • • • • • • • • • • • ••••
INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK ••

Directive processing • • • • • • • • • • • • • • •
Functions Available Through Executive
Directives •
The Directive Status Word (DSW). • • • •
Sample Program • • • • • • • • • • • • • •
Example Using Other Directives • • • •••
Run Time Conversion Routines •••••••••••

NOTIFYING A TASK WHEN AN EVENT OCCURS. • • • • • • • •
Event Flags ••••••••••••••••••••
Using Event Flags for Synchroni zation ••
Examples of the Use of Event Flags
for Synchronization ••••••••••

ASYNCHRONOUS SYSTEM TRAPS (ASTs) • • •••••

3 USING THE QIO DIRECTIVE'

33
33
33
35
35

36
38
39
42
46
47

. 47
48

49
53

INTRODUCTION • • • • • • • • • • • • • • • • • 63
OBJECTIVES • • • • • • • • • • • • • • 63
RESOURCES. •• 63
OVERVIEW OF QIO DIRECTIVES • • • • • • • • 65
PERFORMING I/O • 65
USING QIO DIRECTIVES IN FORTRAN. • • • • ••• •• 66
I/O FUNCTIONS. • • • • • •..• • • • • • • • •• •• 66
LOGICAL UNIT NUMBERS (LUNs).'. • • • • • • • ••• 68
SYNCHRONOUS AND ASYNCHRONOUS I/O • • • • • •• • • 68
MAKING THE I/O REQUEST • • • • • • • • • • •• 74
THE I/O PARAMETER LIST IN FORTRAN. • • • • • • • • 76
ERROR CHECKING AND THE I/O STATUS BLOCK. • • • •• 76
THE QIO DIRECTIVES • • • • • • • • • • • • • • • • • • 77

Synchronous I/O. • • • • • • • • • • • • • • • •• 77
Asynchronous I/O • • • • • • • • • • • • • • • • • 82

Synchronization With Asynchronous I/O. • • •• 82
TERMINAL I/O • • • • ~ • • • • • • • • • • • • • • • • 86

Device Specific Functions. • • • • • • • • • • •• 86
I/O Status Block and Terminating Characters. • • • 87
Read After Prompt. • • • • • • • • • • • • • • 89
Read No Echo • • • • • • • • •• ••••••• 91
Read With Timeo~t. • • • • • • • • • • • • • • 93
Terminal-Independent Cursor Control. • • • • • • • 96

iv

4 USING DIRECTIVES FOR INTERT ASK COMMUNICATION

INTRODUCTION • • • • • • • • • • • • • • • . • • • • • 103
OBJECTIVES • • • • • • • • • • • • • • • • • • •• 103
RESOURCE • 103
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS. • • • • 105

Directives • • • • • •• • • • •••• 106
SEND/RECEIVE DIRECTIVES. ~ • • • • • • • • • • • • • • 116

General Concepts • • • • • • • • • • • • •• • 116
Directives • 116
Synchronizing Send Requests With
Receive Requests ••••••••••••••••• 117
using Send/Receive Directives
for Synchronization. • • • • • • • •••• 132
Slaving the Receiving Task •••••••••••• 132

PARENT/OFFSPRING TASKING • • • • • • • • •• • •• 133
Directives Issued by a Parent Task • • • • •• 136
Directives Issued by an Offspring Task 145
Chaining of parent/Offspring Relationships • • 146
Other parent/Offspring Considerations ••••••• 153

Retrieving Command .Lines in Spawned Tasks ••• 153
Spawning a Utility or Other MCR
Spawnable Task • • • • • • • • • • • • • • • • 153
Task Abort Status ••••••••••••••• 157

Summary of Various Methods of Data Transfer
Between Tasks. • • • ~ • • • • .'. • • • • • • • • 158
Comparison of Methods of Data Transfer. • •• 158
Other Methods of Transferring or Sharing Data
Between Tasks ••••••••••••••••••• 159

5 MEMORY MANAGEMENT CONCEPTS

INTRODUCTION • • • • • • • • • • • • • • • • • 163
OBJECTIVES • • • • • • • • • • • •
RESOURCES. • • • • • • • • • • •••

• • • . . • . . 163
• • • • • 163

GOALS OF MEMORY MANAGEMENT • • • • •
HARDWARE CONCEPTS. • • • • • • • • •

• • •• • 165
• • •• ••• 165

Mapped Versus Unmapped Systems •
Virtual and Physical Addresses •

. . . • • 165

The KT-ll Memory Management Unit ••
Mode Bits •••••••••••
Active Page Registers (APRs)

Converting Virtual Addresses to Physical
Addresses ••••••••••••••••

SOFTWARE CONCEPTS •••••••
Virtual Address Windows ••
Reg ions. • • • • • • • • •

v

• • • • • 170
• • • • • 173

• • 173
• • • • • 173

• 176
• 178
• 178
• 179

Volume II

6 OVERLAYING TECHNIQUES

INTRODUCTION • • • • • • • • • • • • • 185
OBJECTIVES • • _. • • • • • • • • • • • • • • • • • • • 185
RESOURCE • • •• • • • • • • • • • • • • • • • 185
CONCEPTS • • • • • • • • • • • • • •• 187
OVERLAY STRUCTURE. • • • • • • • •• • 188
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS •••••• 191
THE OVERLAY DESCRIPTOR LANGUAGE (ODL). • • • • • • • • 191

ODL Command Line Format. • • • • • • • • • • • 191
TYPES OF OVERLAYS. • • •••••••••••• 195

Disk-Resident ••••••••••••••••••• 195
Memory-Resident. • • • • • • •• • • • 197

LOADING METHODS. • • • • • • • • • • • • • • • • • • • 201
Autoload • • • • • • • • • • • • • • • • • 201
Manual Load. • • • •••••••• 203
Compar isonof a Task with No Overlays,
With Disk-Resident Overlays, and
Wi th Memory-Resident Overlays. • • • • ••• • 204

LIBRARIES. -. • • • • • • • • • • • • • • • • • •• 211
GLOBAL SYMBOLS IN OVERLA ID TASKS ••••• 21 7

Data References in Overlays. • • • • • • • 219
CO-TREES • • • • • • • • • • •• •• • • • 225

7 STATIC REGIONS

INTRODUCTION • • • • •• •• • • • • • • • 233
OBJECTIVES • 233
RESOURCE. • • • • • • • • • • • .233
TYPES OF STATIC REGIONS. • • • • • • • • • • • • • • • 235
MEMORY ALLOCATION. • • • • • • • • • • • • • • 236
MAPPING. • • • • • • • •
REFERENCES TO A SHARED REGION. • ••
PROCEDURE FOR CREATING SHARED REGIONS

• • 237
• • • • • • • . • 240

AND REFERENCING TASKS. • • • • • • • • • • • • • • •• 241
Creating a Resident Common • • • • • ••• 241
Creating a Referencing Task •••••••••••• 249
Accessing a Region for Read-Only or Read/Write •• 251

CREATING AND REFERENCING A SHARED LIBRARY ••••••• 252
Task-Bui ld ing the Shared Library
and the Re fer enc ing Task • • • • • • • • • 254

DEVICE COMMONS • 257

vi

8 DYNAMIC REGIONS

INTRODUCTION • ••••• • ••••• • • • 261
OBJECTIVES • • • • • • • • •• ••• • • • • • 261
RESOURCE • • • • • ••••• • • • • • 261
SYSTEM FACILITIES. • • • • • • • • • • • • • • 263
REQUIRED DATA STRUCTURES • • • • • • • •• ••• • 265

Reg ion Defini tion Bloc k (RDB). • • • • • • • • • • 265
Creating an RDB in FORTRAN •• ••• • • • 269
Window Definition Block (WDB). • • •• • •• • 270
Creating a WOB in FORTRAN. • • • • • • • • • • 273

CREATING AND ACCESSING A REGION •.••••••••• • 275
Creating a Region.. . . • • 276
Attaching to a Region. • • • •••••• • 279
Creating a virtual Address Window •••• • 280
Ma pping to a Reg ion. • • • • •• •• • • • • • 281

SEND- AND RECEIVE-BY-REFERENCE • • • • • • • • 289
THE MAPPED ARRAY AREA. • • •• ••••• • • • 297

9 FILE 1/0

INTRODUCTION • •••• • • • • • • 305
OBJECTIVES • • • • • • • • 305
RESOURCES. • • • • • • • • 305
OVERVIEW • • •••••• • • 307
TYPES OF DEVICES • • • • • • • • • • • • • • . 307

Record-Oriented Devices. • • • • • • • • • • • 307
File-structured Devices. • 307

Types of File-Structured Devices. • ••• 308
COMMON CONCEPTS OF FILE I/O. • • . • • • • • • • • 310

Common Operations. • ••••••••• 310
Steps of File I/O. • • • • • • • • • • 310

FILES-II • • • • • • • • • • • • • • • • • 311
FILES-II Structure • • •• • • • • 311
Directories. • • • • • • • ••• • • • • • 316
Five Basic System Files.. •••••••••• 319
Functions of the ACP • • • • • • • • • • • 320

OVERVIEW AND COMPARISON OF FCS AND RMS • • • • • • • • 323

FCS
Common Functions •
FEATURES • • • • • • •
File Organizations ••
Supported Record Types •
Record Access Modes ••
F i 1 e Sh a r in g • • • • • •

vii

• • • • • • .-. • • 323
• • • • 325

• . • . • • • • . • 325
• 325

• • • • • • • • • . . • 329
• • . • • • • • • • • • • 331

RMS FEATURES • • . . .
File Organizations ••
Record Fo rmats • • • • • •
Record Access Modes ••
File-Sharing Features.
Summary ••••••••

• • • • • • • • • • • • 332
• • • • • • • • • • • • 332
• • • • • • • • • • • • 334
• • • • • • • • • • • • 334
• • • • • • • • • • • • 336
• • • • • • • • • • • • 337

10 FILE CONTROL SERVICES

INTRODUCTION • • • • • • • • • • • • • • • • • • • 341
OBJECTIVES • • • • • • • • • • • • • ••• • • • • 341
RESOURCE • • • .. • • • • • • • • • • • • • • • • • • • 341
FILE ORGANIZATION VS. RECORD ACCESS. • • • • • • • 343
READ AND WRITE ACCESS TO A FILE. • • • • • • • 344
TYPES OF RECORDS IN A FILE • • • • • • • • 344
FORMATTED AND UNFORMATTED RECORDS. • • • • ••• • 345
DECLARING THE SIZE OF A RECORD • • • • •• • • • • 345
SUMMARY OF KEYWORDS IN THE OPEN STATEMENT. • • • • • • 346

AP APPENDICES

APPENDIX A GLOSSARY · · · · · · · · · · · · 367
APPENDIX B CONVERSION TABLES. · · · · · · · · · · 373
APPENDIX C FORTRAN/MACRO-II INTERFACE · · · · · · · • 375
APPENDIX D PRIVILEGED TASKS . · · · · · · · · · · 377
APPENDIX E TASK BUILDER USE OF PSECT ATTRIBUTES · · · 379
APPENDIX F ADDITIONAL SHARED REGION TOPICS. · · · · · 383
APPENDIX G ADDITIONAL EXAMPLE · · · · · · · • · · · • 397
APPENDIX H LEARNING ACTIVITY ANSWER SHEET · · · · · · 399

v iii

1-1
1-2

1-3

2-1

3-1
3-2
3-3
3-4

4-1
4-2

FIGURES

Using Executive Directives to Service a Task •••
using Exe.cutive Directives to Receive Services
From Other Tasks •••••••••••
Code Inserted into Your Task Image. • ••

AST Sequence.
Execution of a Synchronous I/O Request ••••
Events in Synchronous I/O • • • • • • • • • •
Execution of an Asynchronous I/O Request.
Events in Asynchronous I/O. • • • • • • •

parent/Offspring Communication Facilities •
Spawning Versus Chaining (Request and
Of fspr ing Info rm a tio n). • • • • • • •

24

25
27

55

70
70
73
73

• • 134

147

5-1 Physical Address Space in an Unmapped System. • • • • 167
5-2 Physical Address Space in an l8-Bit Mapped System •• 168
5-3 Physical Address Space in a 22-Bit Mapped System. 169
5-4 Virtual Addresses Versus Physical Addresses

on an Unmapped System. • • • • • • • • • • • •• 171
5-5 Virtual Addresses Versus Physical Addresses

5-6
5-7
5-8

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

on a Mapped System. • • • • • • • • I. • • • •

Page Address Reg isters Used in Mapping a Task •
A Task with Three Windows to Three Regions ••
Task in Figure 5-7 After Attaching to and Mapping
to a Fourth Region ••••••••

172
• 175

• • 181

182

190
190

• • 196

A Memory Allocation Diagram •••••••••
An Overlay Tree • • • • •• •••••• •
An Exampl e of Di sk-Resident Overlays. • • • •
An Example of Memory-Resident Overlays ••
Task Wi th Two Overlay Segments. • • •
Resolution of Global Symbols. • •••••
Task Without Co-Trees ••••••••••••
Use of Co-Trees • • • • • • • • • • •

• • 199
213

• • • • 218
227

• • 228

ix

7-1
7-2
7-3

8-1
8-2
8-3

9-1

9-2

9-3

9-4
9-5
9-6

9-7
9-8
9-9

F-l
F-2
F-3
F-4

F-5
F-6

F-7

SG-l

1-1
1-2

2-1

3-1
3-2
3-3

Tasks Using a position Independent Shared Reg.ion. • • 238
Tasks Us ing an Absol ute Shared Reg ion • • • • • • • • 239
Program Development for Shared Regions •••••••• 243

The Region Definition Block ••••••••••••• 267
The Window Definition Block ••••••••••••• 272
The Mapped Array Area • • • • • • • • • • • • • • • • 298

Example of Virtual Block to Logical Block,
to Physical Location Mapping ••••••••••••• 313
How the Operating System Converts Between
virtual, Log ical, and Physical Blocks •••••••• 314
FILES-II Structures Used to Support
virtual-to-Log ical Block Mapping ••••••••••• 315
Directory and File Organi zation on a Vol ume • • • 317
Locating a File on a FILES-II Volume. • ••••• 318
Flow of Control During the Processing
of an I/O Request • • • •• •• • · . .
Move Mode and Loca te Mode • • • • • • • • •
Sequential Files ••••••••••••
RMS File Organizations ••••••••• · .

• • • 322
• 324

• • • 325
• • • 333

A Shared Region with Memory-Resident OVerlays •••• 384
Referenc ing Two Res ident Librar ies.. • • • • • • 386
Referencing Combined Libraries. • • • • • • •• • 388
Building One Library, Then Building
a Referencing Library • • • • • • • • • • • • •• 390
Revectoring ••••••••••••••••••••• 391
using Revectoring When Referenced Library
Has Overlays. • • • • • • • • • • • • • • • • • • 393
Cluster Libraries •••••••••••••••••• 395

TABLES

Typical Course Sched ules. · · · · · · · · · · · · 12

Standard Libraries. · · . . · · · 29
Resident Libraries. · . . · · · · · · · · · · 30

Types of DirectLves · · . . · · · · · · · · · 37

Common (Standard) I/O Funct"ions · · · · · · · · · 67
I/O Parameter List for Standard I/O Functions · . · · 75
Some Special Terminal Function Codes. · · · · · · · · 88

x

4-1

4-2
4-3

4-4
4-5

4-6
4-7
4-8

4-9
4-10

4-11
4-12

Task Control Directives and Their Use
for Synchronizing Tasks ••••••••••••
Stopping Compared to Suspend ing or Wa i ting. • •

• 107
• 108

Event Flag Directives and Their Use
for Synchronizing Tasks •••••••••
The Send/Receive Data Directive •••••

• • • • 109
• • 117

Methods of Synchronizing a Receiving Task (RECEIV)
with a Sending Task (SEND) •••••••••••••• 118
Standard Exit Status Codes. • • • • • • • • • •• 135
Comparison of Parent Directives. • • • • •• • .136
Directives Used by a Task to Establish138
a parent/Offspring Relationship. • • • • • • •• 138
Directives Which Return Status to a Parent Task • • • 145
Directives Which Pass parent/Offspring Connections
to' Other Tasks. • • • • • • • • • • • • • • • • • • • 148
Task Abort Status Codes • • • • • • • • • • • • • • • 157
Comparison of Methods of Data Transfer
Between Tasks • • • • • • • • • • • • • • • • • • 158

5-1 Mapped Versus Unmapped Systems. • • •• ••••• 166
5-2 APR and Vi r tual Add ress Co rrespondence. • • • •• 174

6-1 Comparison of Overlaying Methods. • • 210

7-1 Types of Static Regions Available on RSX-IIM ••••• 236
7-2 Required Switches and Options for Building

a Shared Region. • • • • • • • ••• • • 244

8-1
8-2
8-3

Memory Management Directives.
Reg ion Sta tus Wo rd • • • •
Window Status Word ••••••

• • • • 264
268

• • 274

9-1 Compar ison of Physical, Log ical and Vi rtual Blocks. • 312
9-2 Examples of Use of FIIACP Functions ••••••• 321
9-3 Comparison of FCS Record Types. • •• •• 328
9-4 Comparison of Sequential Access I/O and

Random Access I/O • • • • • • • •• • • • • • • • 330
9-5 File Organization, Record Formats, and Access Modes. 335
9-6 Compar ison of FCS and RMS • • .. • • • • • • • •• 338

8-1
B-2

Decimal/Octal, Word/Byte/Block Conversions ••
APR/Virtual Addresses/Words Conversions ••

xi

• 373
• 373

2-1
2-2
2-3
2-4
2-5

3-1
3-2

3-3
3-4
3-5
3-6

4-1
4-2
4-3
4-4

4-5
4-6
4-7
4~8

4-9

6-1
6-2
6-3

6-4

6-5
6-6

EXAMPLES

. . Requesting a Task From Another Task •
Using Some Miscellaneous Directives •
Wa i t ing for an Event Fl ag • • • • • •
Setting an Event Flag ••••••••
Using a Requested Exit AST. • • • • •

. 41
44
50

Synchrono us I/O • • • • • • .' • • • •
Asynchronous I/O Using Event Flags
for Synchronization •••••••••••
prompting for Input • • • • • • •
Read No Echo • • • • • • • • • • •
Read Wi th Tim eo ut • • • • • • • • • •
Terminal-Independent Cursor Control •

· . . .
· . . .
· . . .
· . . .

· . . .

52
57

80

84
90
92
94
98

Synchroni zing Tasks Using Suspend and Resume. •• III
Synchronizing Tasks Using Event Flags •••••••• 114
Synchronizing a Receiving Task Using Event Flags ••• 120
A Receiving Task Which Can be Run Before or After
the Sender •••••••••••••••••••••• 124
Synchroni zing a Receiv ing Task using RCDS • • • • • • 129
A Task Which Spawns PIP • • • • • • • • • • • • • • • 140
A Generalized Spawning Task ••••••••••••• 143
An Offspring Task Which 'Chains Its parent/Offspring
Connection to PIP • • • • • • • • • • • • • • 150
A Spawned Task Which Retr ieves a Command Line • • 155

Description of An Overlaid Task ••••••••••• 189
Map File of Example 6-1 Without Overlays ••••••• 205
Map File of Example 6-1 With Disk-Resident
Overlays •••••• • • 207
Map File of Example 6-1 with Memory-Resident
Overlays. • • • • • • • ••••• 209
A Task Wi th Two Overlay Segments. • • • • •• •• 216
Complex Example Using Overlays. • • • • • • • • • • • 221

7-1 Resident Common Referenced wi th FORTRAN COMMON. • 247
7-2 Shared Library •••••••••••••••••••• 255

xii

8-1 Creating a Reg ion . . · · · · · · · · · · · • · · · · 278
8-2 Creating a Reg ion and Placing Data in It. · · · · · · 284
8-3 Attaching to an Existing Reg ion and Read ing Data

From It · · · · · · · · · · · · · · · · 287
8-4 Send-by-Reference • • · · · · · · · · · · 292
8-5 Receive-by-Reference. · · · · · · 295
8-6 Use of the Mapped Array Area. · · • · 300

10-1 Creating a Sequential File With Variable
Length Reco rds. · · · · · · · · · · · · 348

10-2 MACRO Equivalent of Example 10-1. · · · · · · · · 349
10-3 Program to Read a File Created in 10-1. · · · 351
10-4 Creating a File With Sequential, Fixed

Length Records. · · · · · · · · · · · · 353
10-5 Reading a Fixed Length Record · · · · · · · · · · 355
10-6 Creating a Direct Access File · · · · · · · · · · 357
10-7 Creating an Unformatted, Direct Access File · 359
10-8 Creating a Segmented File · · · · · · · · · · · · 361
10-9 Creating a File using Block I/O · . · · · · · · · 362

G-l Read ing the Event Flags (for Exerc i se 1-1) • · · . · · 397

xiii

STUDENT GUIDE

STUDENT GUIDE

INTRODUCTION

Programming RSX-IIM in FORTRAN is intended for FORTRAN programmers
who use services of the RSX-IIM operating system beyond those
provided by the FORTRAN programming language itself. This course
describes the various services and how to use them from a task
which you write.

This course is self-paced, which means that you learn at whatever
rate is comfortable for you.

Instead of a teacher, you have a course administrator and a
subject matter expert. In some cases, the same person can perform
both functions. The course administrator manages the mechanics of
the course and makes sure you have easy access to the system and
the on-line course materials. As you finish modules, slhe records
your progress. The subject matter expert helps you if you have a
technical question. Before you consult the expert, however, read
the course materials and references in an effort to answer the
question yourself.

This Student Guide covers the following topics:

• Course prerequisites

• Course goals (and nongoals)

• Course organization

• Course map description

• Course resources

• How to take the course

• Personal Progress Plotter

3

STUDENT GUIDE

PREREQUISITES
To be prepared for this course, you must have taken the following
DIGITAL courses, or you must have equivalent experience_

1. RSX-IIM Utilities and Commands. Specifically, you must be
able to logon/logoff, edit files, and develop/run/debug
programs under RSX-IIM.

2. Programming in FORTRAN.

COURSE GOALS AND NONGOALS
On completion of this course, you should be able to write tasks
which:

1. Use executive directives

2. Perform intertask communication and coordination

3. Perform synchronous and asynchronous I/O operations

4. Use overlays

5. Use memory management facilities to communicate between
tasks and make more effective use of available memory

This course does not teach the following:

1. The FORTRAN programming language

2. The Digital Command Language (DCL) or Monitor Console
Routine (MCR)

3. The program development cycle.

4

STUDENT GUIDE

COURSE ORGANIZATION
This course is self-paced for independent study. The course
material is structured in modules. Each module is a lesson on one
or more skills required to fulfill the course goals. A module
consists of:

• An introduction to the subject matter of the module

• A list of objectives, which describe what you should
achieve by studying the module

• A list of resources that provide reference materials and
additional reading for the module

• The module text,
tables, examples,
manuals

including explanatory text,
and references to readings

figures,
in the

• Learning activities (for some modules), consisting of
reading assignments or written exercises which are
essential to your learning the material

• Written and/or lab tests/exercises (bound separately)
which you can use to measure your achievement. Solutions
are provided for all exercises.

The course is bound in three volumes. The first two volumes
contain this student guide, the 10 modules (except for their
tests/exercises), and the appendices. The third volume contains
the tests/exercises for each module.

COURSE MAP DESCRIPTION
The course map shows how each module relates to the other modules
and to the course as a whole. Before beginning a specific module,
it is recommended that you first complete all modules with arrows
leading into that module. These prerequisite modules present
material necessary to understanding the module you are about to
study.

If you have no-preference, study the modules in numerical order, 1
through 10.

5

STUDENT GUIDE

COURSE MAP

TK.7749

6

STUDENT GUIDE

COURSE RESOURCES

Required References

1. RSX-llM/M-PLUS Executive Reference Manual (AA~L675A-TC)

2. RSX-llM/M-PLUS I/O Drivers Reference Manual (AA-L677A-TC)

3. RSX-llM/M-PLUS Task Builder Manual (AA-L680A-TC)

Optional References

1. PDP-II Processor Handbook (EB-19402-20/8l)

2. FORTRAN IV User's Guide

3. FORTRAN IV-PLUS User's Guide

4. FORTRAN 77 User's Guide

7

STUDENT GUIDE

HOW TO TAKE THE COURSE

Because this is a self-paced course, you determine how much time
to devote to each subject. You can pass quickly over familiar
topics. You can spend more time on topics which are of interest
to you, or which you can use often in your job, and less time on
topics which have little use in your job.

Each time you are ready to begin a new module, first read the
introduction and the objectives. If you feel that you already
understand the material in the module, you can go immediately to
the tests/exercises for that module. If you don't understand much
of the material, read the module. If you understand some of the
concepts but not others, just look over the program examples for
the concepts you understand. Read the text and study the examples
for concepts you don't understand. The text explains new concepts
and refers you to related readings in'the manuals. The program
examples provide working examples which show you how to apply the
concepts.

Some of the readings in the manuals are required and others are
optional. Required readings are contained in learning activities
and are indented to set them apart from the module text. These
readings are required because they cover material not otherwise
covered in this course. The optional readings are mentioned
within the module text and are designed to help you in two ways.
First, they teach you more about a given topic. Second, they
offer another explanation in case you have trouble understanding
the explanation in this course.

In addition, you will need the manuals to look
involved in invoking the various services.
true for the executive directives.

up the specifics
This is especially

Keep the module objectives in mind. If a skill is listed as an
objective, be sure to master it. Later modules may depend on this
skill.

The module text contains many example programs to show you how to
use the skills you are learning. All of the example programs in
this book should be available on-line. The standard location for
these files is UFD [202,1] on your system disk. Check your system
and if the files are not located there, check with your course
administrator to find out where they are located.

8

STUDENT GUIDE

Do not modify the files in UFD [202,1] or in their original
location. Instead, copy the files you plan to use to your own UFD
and use them there. In that way, the original files in UFD
[202,1] will remain intact for other students.

Each example program contains the following:

• Source code
• A sample run session
• Bulleted items which are described in the text.

The source code contains the name of the file which contains the
code on-line. Following this is a brief description, telling what
the example does. Any special compile and task-build
instructions, and any special install and run instructions follow
this. Only special, nonstandard instructions are included. The
code itself includes line comments plus some additional comments.

The sample run session shows what happens during a typical run of
the task. Any special install and run instructions are shown in
the run session.

The bulleted items match the example notes in the text, which
describe the code in more detail. Study the examples and the
notes that describe them carefully.

In the module on Using File Control Services, many of the examples
create output files. A dump of any created file follows the run
session. The file dumps were created using the DMP utility.

If the examples are available on-line, compile and task-build
them, and then run them. This will help you to understand the
examples better. Many of the tests/exercises ask you to make
minor changes to existing examples, and then run them again. Do
the tests/exercises for a module in the Tests/Exercises book only
after you have done all of the reading and have run the example
programs. If you prefer, you can do them as soon as you cover the
necessary material in the module.

The same Tests/Exercises book is used in this course and the
Programming RSX-IIM in MACRO course. Do all tests/exercises
except those which specifically say "in MACRO". All exercises
have solutions in the Tests/Exercises book. In addition, any
solutions involving programs should be available on-line, in UFD
[202,2]. Compare these solutions to your own.

9

STUDENT GUIDE

If you have mastered the
administrator to record
Plotter. You will then be
haven't yet mastered the
text for further study.

module objectives, ask your course
your progress on your Personal Progress
ready to begin a new module. If you
module objectives, return to the module

With a self-paced course, it is impossible to give a schedule that
applies to all students. The amount of time that students spend
on a module depends on both their experience and their interest in
the topics in that module. Use Table I as a guide when you set
your schedule.

10

STUDENT GUIDE

In addition to the
several appendices.

10 modules,
These are:

Appendix A - Glossary

the

Appendix B - Conversion Tables.
table for converting between
words, bytes, and memory blocks.
for converting from active page
addresses.

Student Workbook contains

This appendix contains a
decimal and octal, and among
It also contains a table
registers (APRs) to virtual

Appendix C FORTRAN/MACRO-II Interface. This appendix
contains an explanation of the techniques which you should
use to write a FORTRAN callable subroutine in MACRO. It also
explains how to call such a subroutine from FORTRAN.

Appendix D - Privileged Tasks. This appendix contains a
description of the various types of privileged tasks
supported under RSX-IIM, and how to create them.

Appendix E - Task Builder Use of Psect Attributes. This
appendix contains a description of the effect of Psect
attributes on how the Task Builder collects together
scattered occurrences of program sections.

Appendix F - Additional Shared Region Topics. This appendix
contains several additional shared region topics. They are:
overlaid shared regions, referencing multiple regions from a
single task, interlibrary calls, and cluster libraries.

Appendix G - Additional Example. This appendix contains the
source code for any program examples which are required for
the Tests/Exercises but are not included elsewhere in the
Student Workbook. These examples should also be available
on-line, under UFD [202,1]. They are included here in case
they are not available on-line on your system.

Appendix H - Learning Activity Answer Sheet. This appendix
contains the solutions to any Learning Activity questions in
this course. After you do a Learning Activity, check your
answers against those provided.

11

STUDENT GUIDE

Table SG-l Typical Course Schedules

Module

1. Using System
Services

2. Directives

3. Using the QIO
Oirective

4. Using Directives
for Intertask
Communication

5. Memory Management
Concepts

6. Overlays

7. Static Regions

8. Dynamic Regions

9. File I/O

10. File Control
Services

Totals

More Experienced
Student

2.0 hours

5.0 hours

4.0 hours

5.0 hours

2.0 hours

5.0 hours

4.5 hours

4.5 hours

2.0 hours

6.0 hours

40.0 hours of
study and lab

12

Less Experienced
Student

3.0 hours

7.5 hours

6.0 hours

7.5 hours

3.0 hours

7.5 hours

7.0 hours

7.0 hours

3.0 hours

9.0 hours

60.5 hours of
study and lab

STUDENT GUIDE

PERSONAL PROGRESS PLOTTER

DATE DATE TIME SIGN-OFF
MODULE STARTED COMPLETED SPENT INITIAL

1. USI NG SYSTEM
SERVICES

2. DIRECTIVES

3. USING THE 010
DIRECTIVE

4. USING DIRECTIVES
FORINTERTASK
COMMUNICATION

5. MEMORY
MANAGEMENT
CONCEPTS

6. OVERLAYS

7. STATIC REGIONS

8. DYNAMIC REGIONS

9. FILE I/O

10. FILE
CONTROL
SERVICES

13

USING SYSTEM SERVICES

USING SYSTEM SERVICES

RSX-IIM provides system services which perform
commonly needed by user-written application
these services can:

INTRODUCTION

many operations
programs. Use of

• Improve the efficiency of your tasks by reducing the size
and execution time

• Decrease the time it takes to code and debug your tasks

• Increase the reliability of your task

• Provide you with controlled access to system features

• Improve the overall performance of your system

This module discusses what services exist and how they are called
from a task.

OBJECTIVES

1. Identify the facilities provided through system services.

2. List the various system libraries and the facilities they
provide.

RESOURCES

1. RSX-IIM/M-PLUS Executive Reference Manual, Chapter 1

2. FORTRAN IV User's Guid~, Appendix B

3. FORTRAN IV-PLUS User's Guide, Appendix D

4. FORTRAN-77 User's Guide, Appendix D

17

USING SYSTEM SERVICES

WHAT IS A SYSTEM SERVICE?

An RSX-IIM system service is a function or service performed for a
running task during the task's execution. The software which
provides the service is either in the Executive or in other system
supplied code.

WHY SHOULD YOU USE SYSTEM SERVICES?

To Extend the Features of Your Programming Language

System services offer you additional features not inherently part
of your programming language. Examples of this are:

• Accessing shared resources in a properly synchronized way

• Coordinating multiple tasks

• Controlling memory allocation and mapping

• Interacting with the Executive

To Ease Programming and Maintenance

DIGITAL provides the code to perform these services, hence less
time is needed for the user to develop working programs. The
supplied code has a well defined modular structure which eases
user design for his programs.

The code for system services is well debugged. This makes it
easier to debug and maintain programs, since there are fewer
potential points of failure and only the user written code needs
to be debugged. When maintenance is required in the code for the
supplied system services, patqhes are released by DIGITAL with
clear-cut installation procedures.

19

USING SYSTEM SERVICES

To Increase Performance

The supplied code to perform system services is generally written
in MACRO-II which assures minimum execution time. It is often
possible to share the code among several different tasks, with
minimal additional overhead. This can result in any or all of the
following performance gains:

• Increase in your task's throughput

• Increase in your system's throughput

• Increase in memory usage efficiency on your system

• Decrease in your task's size

• Increase in available space on mass storage volumes

WHAT SERVICES ARE PROVIDED?

The system services can be divided into a number of classes. For
each, a few examples are mentioned to give you a feeling for the
kinds of services available.

Note that a number of the services provided to tasks parallel
those provided to operators through DCL commands.

System and Task Information

You can obtain information from the system. For example, you can:

• Obtain information about your task
its priority
its logical unit (LUN) assignments

• Obtain information about a partition on the system
its base address
its length

• Obtain the current time and date

20

USING SYSTEM SERVICES

Task Control

You can start up and stop tasks, and alter task states. For
example, you can:

• Request another-task to run
• Abort a task
• Suspend or resume a task
• Alter the running priority of an active task

Task Communication and Coordination

You can create a set of tasks that communicate with one another
and coordinate the interaction of the tasks. For example, you
can:

• Send data from one task to another

• Have one task notify other tasks that an event has
occurred (e.g., that a job has been completed)

• -Have one task pass a command to another task and have it
obtain an indication from the other task about the status
of the execution of the command.

I/O to Peripheral Devices

You can interact with peripheral devices on your system. For
example, you can:

• Perform special I/O functions which cannot be accomplished
by FORTRAN READ or WRITE statements such as reading from a
terminal with the NOECHO feature invoked.

• Attach a device for exclusive use by a task

• Read or set variable characteristics of a device (e.g.,
for a terminal - baudrate or hold screen mode)

21

USING SYSTEM SERVICES

Memory Use

You can use system services to control the amount of memory your
task uses or to permit several tasks to share an area of memory.
For example, you can:

• Run a task in less memory than its total size, by using
overlays to· load pieces of the program at anyone time

• Allocate space in memory for a temporary work buffer, and
then return that space to the system when the task is
finished using it

• Share a data area in memory among several tasks

• Share a single copy, in memory, of a commonly used
,subroutine, among several tasks

OTHER SERVICES AVAILABLE

You can use system services to perform often needed functions.
For example, you can:

• Convert between Radix-50 and ASCII format

• Get the date in dd-mon-yr format or as three integers

These services are generally supplied as subroutines located in
the system object library (LB:[l,l]SYSLIB.OLB).

22

USING SYSTEM SERVICES

HOW SERVICES ARE PROVIDED

When a system service is needed in a task, it is called via the
CALL statement just as for any other subroutine. Services are
provided using two different methods:

1. The Executive is invoked by the task to perform the
service (an executive directive)

2. The code to perform the service is placed directly into
the task

Executive Directives

Figure 1-1 shows how the first method works. The following steps
are involved:

o The user task makes a service request and invokes the
Executive

Ct The Executive takes control and performs the service

e The Executive returns control to the user task, at the
statement following the service request.

Figure 1-2 shows a more complex version of the first method. In
this case task A and task B use a system service to interact
through the Executive.

Task A starts up and at some point needs task B to do some work;
possibly a calculation. Task A sends the data to task B, requests
task B to run, and then waits until task B sends back the answer.
Task B starts running, performs the calculation, and then sends
the answer back to task A. Task B also notifies task A that the
job is finished. Task A then starts up again and uses the answer.
The steps outlined above for method one would actually be used a
number of times in this example.

23

USING SYSTEM SERVICES

EXECUTIVE

OCODETO ~---.F11ACP
SERVICE
EXECUTIVE

I/O I

DRIVERS ~ - -. DIRECTIVE .. - - -.'OTHER TASKS

TASK

OEXECUTIVE DIRECTIVEI----.......
INVOCATION

e RETURN OF
STATUS FROM
EXECUTIVE

TK-7517

Figure 1-1 Using Executive Directives to Service a Task

24

USING SYSTEM SERVICES

EXECUTIVE

CODE TO
SERVICE
DIRECTIVES
r---,
I r, I I

1
I

I DATA FROM TASK A I
- •

TASK A TASKS
• • • • • EXECUTIVE 01 RECTIVES •

H,RESULTS FROMI L....- EXECUTIVE 01 RECTIVES
TASK B

TK-7516

Figure 1-2 using Executive Directives to Receive Services
From Other Tasks

25

USING SYSTEM SERVICES

Code Inserted into Your Task Image

The second method of providing system services is illustrated in
Figure 1-3. The code to perform the service is inserted directly
into the user task. For system subroutines, the subroutine call
results in a transfer of control to the subroutine code, located
in another part of the user task.

certain services must be provided by invoking the Executive. Any
service which involves synchronization or access to shared
resources must be coordinated by the Executive. For example, if a
request activates another task, the Executive must enter the task
in the active task list, which sets the task up to compete for
memory space and then CPU time. It is much easier to have the
Executive coordinate all the tasks, rather than require that each
task check with every other task before using a shared resource.
Also, any activity that involves communication or coordination
among multiple tasks usually must be performed by the Executive.

Placing the code in the user task is appropriate for a service
which is performed independently bya task. For example, if a
task converts an ASCII decimal value which is input at a terminal
to a Radix-50 value for internal use, there is no need for the
Executive to coordinate that activity. It does not affect shared
resources or other tasks.

If a service can be provided without need for the Executive, and
that service is needed often by a number of different tasks, it is
possible to share one copy of the code among several tasks. Using
special . techniques, often used subroutines can be collected and a
single copy of each subroutine can be shared in memory among
several tasks. The procedure for producing and using a shared
collection of subroutines, called a resident library, is discussed
in the Static Regions module of this course.

Some of the services covered in this course are provided by making
special requests when you task-build your task. In some cases,
the Task Builder transparently places code directly in your user
task. In other cases, it sets your task up in a special way to
provide the service. We will discuss the techniques for accessing
services with the Task Builder in later modules.

26

USING SYSTEM SERVICES

FROM SYSTEM OBJECT [
LIBRARY OR FORTRAN
OBJECT TIME SYSTEM
LIBRARY AT TASK-BUILD
TIME

TASK

SUBROUTINE CALL

~--- --
SUBROUTINE ENTRY
POINT
RETURN

~

--

f+-

TK-9387

Figure 1-3 Code Inserted into Your Task Image

27

USING SYSTEM SERVICES

AYAILABLE FILE AND RECORD ACCESS SYSTEMS

There are two file and record access systems available under
RSX-IIM, File Control services (FCS) and Record Management
Services (RMS). Both offer an interface between tasks and the
Files-II structure used to maintain disk directories and files.

FCS is the standard access system supplied with RSX-IIM. Many of
the utilities (e.g., PIP, EDT, and the Task Builder) use FCS for
their file interface. RMS offers all of the Fes functionality
plus additional capabilities not available with FCS, such as
indexed files and more sophisticated file sharing.

While it is transparent to the FORTRAN user, all READ or WRITE
statements ultimately result in calls to various FCS or RMS
subroutines.

SYSTEM LIBRARIES

Table 1-1 contains a list of the libraries which are used during
program development of a task using system services. They are
usually located in LB:[l,l]. SYSLIB.OLB is the system object
library searched by default by the Task Builder.

28

Langages
Using
Library

SYSLIB.OLB

RMSLIB.OLB

FOROTS.OLB

F4POTS.OLB

USING SYSTEM SERVICES

Table 1-1 Standard Libraries

Version of
FORTRAN Using
Library

FORTRAN

FORTRAN
indirectly
used

FORTRAN IV

Contents

Executive directive
calls for FORTRAN

FCS subroutines

Other file access
routines

Command retrieval
and parsing
routines

Assorted conversion
routines, arithmetic
routines, memory
management routines

RMS subroutines

FORTRAN IV Object
Time System (OTS)

Notes

Default object
library for
Task Builder

Optional soft
ware may be
included in
SYSLIB.OLB

FORTRAN IV-PLUS FORTRAN IV-PLUS OTS Optional soft-
FORTRAN-77 FORTRAN-77 OTS ware may be

29

included in
SYSLIB.OLB

USING SYSTEM SERVICES .

One or the other of the last two libraries must be included when
task-building a FORTRAN task unless, as the note states, the
libraries are included in SYSLIB.OLB.

Check with your system manager to determine what additional
software may be included in SYSLIB.OLB at your site.

Table 1-2 contains a list of the shareable resident libraries
which may also be on your system depending upon your installation.
You will learn how to use these resident libraries in Module 7,
the Static Regions module. Check with your system manager to find
out whether the preferred method of including these routines is
through linking the code into your task image or through using the
resident libraries.

Resident
Library

FCSRES.TSK

FORRES.TSK
F4PRES.TSK

RMSRES.TSK

RMSSEQ.TSK

Table 1-2 Resident Libraries

Routines
Extracted From

SYSLIB.OLB

FOROTS.OLB
F4POTS.OLB

RMSLIB.OLB

RMSLIB.OLB

Notes

Generally contains most
FCS routines

May contain all or
some FORTRAN OTS routines

Full-functionality RMS
resident library

RMS resident library for
sequential access only

Now do the Tests/Exercises for this module in the Tests and
Exercises Book. They are all written problems. Check your
answers against those provided in that book.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

30

DIRECTIVES

DIRECTIVES

INTRODUCTION

As stated in the previous module, system services can be placed
into two groups:

• Those which are handled entirely by the user task (via the
subroutine representing the service)

• Those which require the intervention of the Executive

The services in the second group are known as executive directives
(directives). This module discusses the services available as
directives and how to make various directive calls.

OBJECTIVES

1. To write programs in FORTRAN which use directives

2. To use information returned by the Executive to perform
error checking

3. To use event flags and ASTs with directives

RESOURCES

1. RSX-IIM/M-PLUS Executive Reference Manual, Chapters 1 and
2 plus specific directives in Chapter 5

2. FORTRAN IV User's Guide, Appendix B

3. FORTRAN IV-Plus User's Guide, Appendix D

4. FORTRAN 77 User's Guide, Appendix D

33

DIRECTIVES

INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK

Directive Processing

When an executive directive is called from a FORTRAN task, a
standard CALL is generated with an argument list containing each
argument in the CALL. When the Task Builder builds the task, the
code for the subroutine which invokes the directive is placed in
the task. (The subroutines are found in LB:[I,l]SYSLIB.)

At execution time this code generates a Directive Parameter Blo~k
(DPB) and then pushes the DPB onto the stack. The DPB contains
all of the information needed by the Executive to perform the
requested service. This includes a Directive Identification Code
(DIC) which identifies which directive is being requested and the
length of the DPB. The length is included because the length can
vary depending on what directive is being called.

At execution time, the following steps occur:

• The DPB is pushed onto the stack and a trap is made to the
Executive.

• A dispatcher routine (part of the Executive) receives the
DPB and determines which directive has been requested.

• The dispatcher routine enters the Executive at the
appropriate point, depending on the DIC, and the Executive
executes the code for the directive (note that the code for
the directive actually resides in the Executive, not in the
task) •

• The Executive sends a Directive Status Word to the task and
then returns control to the user task.

Most directives pass control back to the user task at completion
of the directive. Certain directives by their nature do not
return to the user task. For instance, the Exit Task directive
causes the task to EXIT. For the Exit Task directive and other
directives of this type, control passes back to the user task only
if an error occurs'in issuing the directive.

35

DIRECTIVES

Functions Available Through Executive Directives

Table 2-1 lists many of the Executive directives which are
available on your system. For a complete list of the directives
under each group, see section 5.1 (on Directive Categories) in the
RSX-llM/M-PLUS Executive Reference Manual.

This module, along with later modules on Using the QIO Directive,
Using Directives for Intertask Communication, and Dynamic Regions
introduce many of the functions which are available. No attempt
is made to go over every executive directive. However, at the end
of this course, you should know how look up any directive in the
manual and invoke it. Each directive is documented individually
in Chapter 5 of the RSX-llM/M-PLUS Executive Reference Manual.
The directives appear there in alphabetical order by MACRO-II
name; the FORTRAN CALL name for directives is similar to the
MACRO-II name and is also included in the list. A condensed list
of the MACRO and FORTRAN directive names also exists in Table 1-1
in section 1.5.2. To find the page reference for a particular
directive, look under "CALL" in the index.

36

Type

Task Execution
Control

Task Status
Control

Informational

Event
Associated

Trap-Associated

I/O and
Intertask
Communications

Memory
Management

Parenti
Offspring
Tasking

DIRECTIVES

Table 2-1 Types of Directives

CALL Name

ABORT
EXIT
REQUES
RESUME
RUN
START
SUSPND
STOP
USTP

ALTPRI
DISCKP
ENACKP

GETPAR
Several

CLREF
CRGF
ELGF
MARK
WAIT
READEF
READEF
SETEF
WAITFR

SREA

ASNLUN
QIO
WTQIO

RECEIV
SEND

CRRG
MAP

EXST
SPAWN

37

Description

Abort task
Exit task
Request task
Resume task
Run task
Run task
Suspend task
Stop task
Unstop task

Alter priority
Disable checkpointing
Enable checkpointing

Get partition parameters
Get time parameters

Clear event flag
Create group global flags
Eliminate group global flags
Mark time
Mark time
Read all event flags
Read extended event flags
Set event flag
Wait for single event flag

Specify requested exit AST

Assign LUN
Queue I/O request
Queue I/O request and wait

Receive data
Send data

Create region
Map address window

Exit with status
Spawn task

DIRECTIVES

The Directive Status Word (DSW)

Upon completion of directive processing, the Executive returns a
code in the Directive Status Word (DSW) which gives the status of
the request. In order to examine the contents of the DSW and
hence determine success or failure, a specific argument must be
included in the CALL for the directive. This argument is always
the last argument in the list. While this argument is optional,
it should always be included since examining the DSW is the only
way to determine the success or failure of a directive. The
system does not look on a directive failure as an error; hence it
is up to the user to check the DSW after a directive CALL. The
variable name "IDSW" is frequently used for the DSW; it must be
an integer variable.

Successful completion is usually indicated by a DSW value of +1.
A negative value indicates an error. Different negative values
correspond to different reasons for errors. These values and
their general meanings appear in Appendix B of the RSX-llM/M-PLUS
Executive Reference Manual and in the RSX-11M/M-PLUS Executive
Reference Manual. Specific error values and any special meanings
are documented with each executive directive call in Chapter 5 of
the RSX-I1M/M-PLUS Executive Reference Manual.

See Example 2-1 for an illustration of how to use the DSW.

38

DIRECTIVES

Sample Program

Example 2-1 illustrates the use of the Request Task and the Exit
Task directives. The directives are given below, along with a
description of their functionality:

The Exit Task Directive

format: CALL EXIT - this CALL has no arguments

used to make a task inactive and to free up the system
resources it uses

The Request Task Directive

format: CALL REQUES(TASKNM"IDSW) where TASKNM is the
name of the task to be requested

used to request the specified installed task

this directive offers the same functionality as the DCL
RUN command for an installed task

Each program example in the course contains the following:

• Source code

• A sample run session

• Bulleted items which are described in the text

See the Student Guide for additional information on how to use the
examples.

39

DIRECTIVES

The following comments are keyed to Example 2-1.

Ct If the appropriate OTS library has been included in
SYSLIB, the reference to the OTS library is dropped.

tt Invoke the Request Task directive. Note that the six
character (or less) task name must be provided in Radix-50
format. This is accomplished by using the R (Radix-50)
data type in the DATA statement. (Radix-50 is a method of
representing a limited set of ASCII characters, such that
three characters can be packed into a single PDP-II word.)
The task name must be the installed name (••• PIP), not
just PIP.

The task is always assumed to be six Radix-50 characters;
hence you should always pad a name of less than six
characters with trailing blanks. For instance, TASKNM
6R/ABC / should be used rather than TASKNM 3R/ABC/.

See Appendix A of the Language Reference Manual for
additional information on Radix-50.

t» The only case in which control will return to the user
task after a CALL EXIT is when an error occurred in
issuing the directive.

o In case of an error, display a message and the DSW value-.

C» A run session is provided for each example program. Note
that the PROGRAM name is REKWST, not REQUES. REQUES
cannot be used because it is the name of a directive.

40

0

o

e
o

r
c
c
c
("

c
c
("

c
("
~

("

("
~

C
C
C
C
C
("

C
("

("

C
C
("
~

C

("

DIRECTIVES

PROGRAM REKWST

FILE REQUES.FTN

This task displays a message, reGuests PIP, and
then exits

Task-build instructions:

If wour LB:[l~lJSYSLIB.OLB does not contain the
FORTRAN Object Time SYstem, then wou must
specifw the appropriate object library

With FORTRAN IV:

LINK/MAP REQUES,LB:[l,lJFOROTS/LIBRARY

With FORTRAN IV-PLUS and FORTRAN-77

)LINK/MAP/CODEIFPP REQUES,LBI[1,lJF4POTS-
-)/LIBRARY
! /CODEIFPP includes space in the task
! header for saving the state of the
! floating point processor.

Data statement for RAD50 task name
DATA TASKNM 16R.+.PIPI

Displaw startup text
WRITE (5,50)

50 FORMAT (' REQUES HAS STARTED AND WILL REQUEST PIP')
C ReGuest PIP

CALL REQUES (TASKNM"IDSW)
(" Check for Directive error

IF (IDSW .NE. 1) GOTO 1000
(" No error, so exit

CALL EXIT
C Error code. Displaw error messa~e and then exit.
1000 WRITE (5,1010) IDSW
1010 FORMAT (' ERROR REQUESTING TASK. IDSW = ',IS)

CALL EXIT
END

Run Session

)RUN REQUES
REQUES HAS STARTED AND WILL REQUEST PIP
PIP>~Z

>

Example 2-1 Requesting a Task From Another Task

41

DIRECTIVES

Example Using Other Directives

The following directives are used in Example 2-2.

Suspend Task (CALL SUSPND)

• Used to suspend the issuing task

• The task can be resumed by another task issuing a resume
tas.k directive or by an operator using the DCL CONTINUE
co'mmand.

Alter Priority (CALL ALTPRI)

• Alters the running priority of an active task.

Disable Checkpointing (CALL DISCKP)

• Disables checkpointing for a checkpointable task,.

Enable Checkpointing (CALL ENACKP)

• Enables checkpointing again after a DISCKP directive.

Extend Task (CALL EXTTSK)

• Modifies the size of the task by an increment or decrement
of 32-word blocks.

42

DIRECTIVES

Example 2-2 shows the use of a variety of directives. See the run
demonstration below the source code. The following comments are
keyed to the example. Items 2,3,5 and 7 refer to the run session
following the program listing.

ct Task suspends itself. This allows the operator to use the
DCL SHOW TASKS/ACTIVE command to examine the task
parameters.

t» Note that the task is loaded at addresses 01123600(8) to
01170100(8). SPN means the task is suspended.

t) The operator must use the DCL CONTINUE command to resume
the task.

ct Suspend again after disabling checkpointing and altering
the running priority.

C» Note the change in PRI (running priority). CKD in the
output from the DCL command SHOW TASKS/ACTIVE indicates
that checkpointing has been disabled.

C) Suspend again after enabling checkpointing, altering the
priority back to 50(10), and extending the task.

__ Note the change in priority. Note also that the task was
checkpointed and is now loaded at addresses 01123600(8) to
01210100(8). This is a task size of 64300(8) bytes,
compared to 44300(8) bytes before. The extend is for
200(8) blocks, where each block is 100(8) bytes long,
meaning 20000(8) bytes extra. See Appendix B for a
conversion table for bytes to blocks and of octal to
decimal.

01170100(8)
-01123600(8)

44300(8)

43

01210100(8)
-01123600(8)

64300(8)

0

o

o

DIRECTIVES

PI~()GRAM MIse
c+
C FILE MISC.FTN

C
(" .,
c
C
G
(" .,
C
c;
c;
C
G
C
C
C
C
C
("

C
C
(".-

("

This task uses some miscellaneous ~xecutive directives
to suspend itself, alter its runninS priorit~, disable
and enable checkpointin~, and extend its task size.

Task-build instructions:

LINK/CHECKPOINT/MAP MISC,LB:[l,lJFOROTS/LIBRARY
since the task must be checkpointable to disable
checkpointin~ and to extend its size.

Install and Run instructions:

Install the task. Then Run it to start it UP.
The task will suspend itself several different
times. Each time, use the command
SHOW TASKS:MISC/ACTIVE/FULL (MCR ATL MISe)
to examine the chan~es. Use the command
CONTINUE MISC (MCR RESUME MISe)
~o resume the task.

INTEGER DSW,DRCTV
CALL SUSPNII (DSW)

IF (DSW.LT.O) GO TO 1010

Suspend to allow check
of s tatl.Js~

Branch on directive
C error
C Make some chan~es and then suspend asain

CALL DISCKP(DSW) ! Disable checkpointins

c

IF (DSW.LT.O) GOTO 1020
CALL ALTPRI(,10,DSW)
IF (DSW.LT.O) GOTO 1030
CALL SUSPND(DSW)

IF (DSW.LT.O) GOTO 1040

Alter runnin~ priorit~

Suspend to allow check
of statl.Jf:>

C Make some other chanSes and then suspend asain
CALL ENACKP(DSW) Reenable checkpointins
IF (DSW.LT.O) GOTO 1050
CALL ALTPRI("DSW) Return priorithl to

C ori~inal

c

IF (DSW.LT.O) GOTO 1060
CALL EXTTSK(·200,DSW)

IF (DSW.LT.O) GOTO 1070
CALL SUSPND(DSW)
IF (DSW.LT.O) GO TO 1080
CALL EXIT

C Error handling
1010 WRITE (5,1015) DSW

Extend task size b~
200(8) blocks

Suspend as,s:i. n

Exit

1015 FORMAT (' ERROR ON 1ST SUSPEND. DSW = ',IS)
GOTO l100

1020 WRITE (5,1025) DSW

Example 2-2 Using Some Miscellaneous Directives (Sheet 1 of 2)

44

DIRECTIVES

1025 FORMAT (' ERROR ON DISABLE CHECKPOINTING. DSW -
1,,15)
GOTO 1100
WRITE (5,1035) DSW 1030

:1.035 FORMAT (' ERROR ON 1ST ALTER PRIORITY. DSW
115)
GO TO :1.1. 00

1040 WRITE (5,1045) DSW
:1.045 FORMAT (I EI:;:F~OR ON 2ND SUSPEND. DSW :::: ',I!:j)

GOTO 11.00
1050 WRITE (5,1055) DSW
1055 FORMAT (' ERROR ON ENABLE CHECKPOINTING. DSW -

1,15)
GCnO 1100

1060 WRITE (5,,1.065) DSW
1065 FORMAT (' ERROR ON 2ND ALTER PRIORITY. DSW -

1 1!5)
GOTO 1100

:1.070 WRITE (5,1075) DSW
:1.075 FORMAT (' ERROR ON EXTEND TASK. DSW - 'IS)

GOTO 1100
1080 WRITE (5,1085) DSW
:1.085 FORMAT (' ERROR ON 3RD SUSPEND. DSW - ',IS)
1100 CALL EXIT

END

Hun Session

)INS MISe
>RUN MIse
>SHOW TASKS/ACTIVE FULL MISC

O [MISC 067250 GEN 070~5:1.0 011.23600-011701.00 PRI·- 50. DPRI - ~)O.
STATUS: SPN -PMD
TI - TTll: IOC - O. BIO - O. EFLG - 000000 000000 PS - 170000
PC - 001640 REGS 0-6 000001 001242 001242 000000 001432 003572 001242 e >CONTINUE MISC

>SHOW TASKS/ACTIVE FULL MISC'

O [M I S C 067250 G E N 070310 01. 12 ~3 6 () 0·-01170100 P R I - 1. 0 • D P R I - 50.
STATUS: CKD SPN -PMD
TI - TT1.1: IOC - O. BIO - O. EFLG - 000000 000000 PS - 170000
PC - 001640 REGS 0-6 003626 001242 001242 000000 001432 003572 001242

>CONTINlJE MISC
>SHOW TASKS/ACTIVE FULL MISC

O [MISC 067250 GEN 070310 01123600-0121.0100 PI:;:I - 50. DPRI - 50.
STATUS: SPN -PMD
TI - TTll: IOC - O. BID - O. EFLG - 000000 000000 PS - 170000
PC - 001640 REGS 0-6 003626 001242 001242 000000 001432 003572 001242

>CONTINlJE MISC
>SHOW TASKS/ACTIVE FULL MISC
ATL -- Task not active

Example 2-2 Using Some Miscellaneous Directives (Sheet 2 of 2)

45

DIRECTIVES

Run Time Conversion Routines

As mentioned earlier, the system maintains task, names, partition
names, and certain other data in Radix-50 format in order to save
space. There are times when conversions between ASCII and
Radix-50 format need to be performed at run time. For example,
you can modify Example 2-1 (REQUES.FTN), so an operator can type
in the task name at run time. This ASCII name would have to be
converted at run time to Radix-50 format. The function RAD50 or
the subroutine IRAD50 is used to perform the conversion. The code
segment shown below illustrates the use of the function RAD50:

DIMENSION TASKNM(2)
READ(5,1)TASKNM

1 FORMAT (2A4)
CALL REQUES(RAD50(TASKNM)"IDSW)

If the Get Task directive (CALL GETTSK) is used to retrieve task
information, the task name and partition name are returned in
Radix-50 format. If you wish to display these,' you need to
convert them to ASCII format. The subroutine R50ASC is provided
for this purpose. The program shown below illustrates the use of
the R50ASC subroutine:

DIMENSION IBUFF(16)
CALL GETTSK(IBUFF)
CALL R50ASC(6,IBUFF(1),TASKNM)
CALL R50ASC(6,IBUFF(3),PARTNM)
WRITE(5,1)TASKNM
WRITE (5, 2) PARTNM

1 FORMAT(' TASK NAME IS ',A6)
2 FORMAT(' PARTITION NAME IS ',A6)

END

46

DIRECTIVES

NOTIFYING A TASK WHEN AN EVENT OCCURS

Often a task needs to know when an event has occurred. The event
may have occurred within another task; for example, when the task
has completed a requested function. The event may instead have
occurred within the system; for example, when a requested I/O
operation is completed. There are two methods for implementing
synchronization, event flags and asynchronous system traps.

Event Flags

There are three types of event flags: local, global (or common),
and group global. Ninety-six event flags are made available to
tasks, each with a unique number (1(10)-96(10».

Local event flags are provided for each task. There are 32(10)
local event flags, numbered 1(10)-32(10). These flags are used to
synchronize a task with an Executive service, such as an I/O
transfer. One task cannot reference another task's local event
flags, so they cannot be used to synchronize tasks with one
another. Local event flags 25(10)-32(10) are reserved for system
use and hence should not be used by a user task.

Global or Common event flags are provided for synchronization
among different tasks. There is one set of 32(10) global event
flags for the system numbered 33(10)-64(10). These flags can be
referenced by any task. Global event flags 57(10)-64(10) are
reserved for system use and should not be used by user tasks.

NOTE
There is no way to protect against other
tasks using global event flags. Great care
must be taken to ensure that global event
flags aren't used at the same time by several
different users. Check with your system
manager before using any global event flag to
insure that it is not used for some other
purpose.

/

47

DIRECTIVES

There are only 32(10) global event flags available system-wide.
If additional event flags are needed, another set of event flags
can be created for synchronization among different tasks. 32(10)
group global event flags, numbered 65(10)-96(10}, can be created
for any UIC group number. These event flags can be referenced by
any task running under the correct group number. Hence, they can
be used to synchronize tasks running under that group number, and
offer an additional advantage in that they cannot be referenced by
tasks running under other group numbers.

Group global event flags are created using the DCL SET GROUPFLAGS
CREATE (FLA JCRE in MCR) command or the Create Group Global Event
Flags (CRGF$) directive. When users in a group don't need them
anymore, the group global event flags can be marked for deletion
using the DCL SET GROUPFLAGS DELETE (FLA jELIM in MCR) command or
the Eliminate Group Global Event Flags (ELGF$) directive. After
that, when all active tasks in the group have finished using them,
the group global event flags are eliminated.

Using Event Flags for Synchronization

LEARNING ACTIVITY 2-1

Read section 2.2 (on Event Flags) in the
RSX-llMjM-PLUS Executive Reference Manual.
Pay particular attention to the examples.
This section covers how event flags can be
used for synchronizing tasks. When you have
finished reading the material, answer the
following questions. The answers are
provided in Appendix G.

Questions:

1. In Example 1 in the reading, how can Task
B do some work while waiting for event
flag 35 to be set by Task A?

2. What would happen in Example 2 if a local
event flag (e.g., 1) were used instead of
a common event flag?

3. Why is a local flag" satisfactory in
Examples 3 and 4?

48

DIRECTIVES

Examples of the Use of Event Flags for Synchronization

Examples 2-3 and 2-4 show the use of event flags to synchronize
two tasks. WFLAG creates the group global event flags for the
group. It then clears event flag 65(10) and waits for that flag
to be set. SFLAG sets event flag 65(10), which unblocks WFLAG.
Run WFLAG first, then run SFLAG.

The following notes are keyed to the examples.
SFLAG; all others are in WFLAG.

Note 5 is in

o

o

Create the group global event flags. The default group
number (used here) is the group number that the task is
running under.

An error is reported if the flags already exist. This
isn't a fatal error, so we check for this condition. If
the flags do exist, print a message and continue.

t) The flag is in an unknown state at startup. Therefore, we
must clear the flag before waiting for it to be set.

o Wai t for the event flag to be set by SFLAG. This causes
WFLAG to be blocked. Now run SFLAG.

e Set event flag 65 in task SFLAG. This allows WFLAG to
become unblocked. SFLAG then exits.

C) When WFLAG is unblocked and it continues executing, it
starts up here. We check for any directive error entering
the Wait For state,print a message, and exit.

In certain programming situations it may be necessary to test one
or more event flags to see if they are currently clear or set.
The CALL READEF directive can be used to read a single flag.
After the flag has been read, the contents of the DSW will
determine the condition of the,flag. If DSW=2, the flag was set;
if DSW=0, the flag was clear.

49

DIRECTIVES

PROGRAM WFLAG
c
C FILE: WFL.AG.FTN
f'
C This task creates the ~roup ~lobal event fla~s, and
C then clears event flas 65. and waits for it to be set.
f' When the flas is set, it writes a messaSe and exits
C
C Install and run instructions:
C
C Run WFLAG, then run SFL.AG. At least one of the
r tasks must be installed, or else the RUN command
C will tr~ to install both tasks under the same
r name (TTnn)
C

WRITE (5,10)
10 FORMAT (' WFLAG IS CREATING THE GROUP GLOBAL EVENT

1 FLAGS') G CALL CRGF (,IDSW)

:1.5
~.~O

30

8IF (IDSW .LT. 0) GOTO 900
WJ:;:ITE (5,20)
FORMAT (' CL.EAR AND THEN WAIT FOR EF 65. TO BE SET') e CALL. CLREF (65"IDSW)
IF (IDSW .LT. 0) GOTO 1100

O CALL WAITFR (65,IDSW)
IF (IDSW .LT. 0) GOTO 1200

A [wrnTE (5,~:SO)
V J··OHMAf (' EF 65. HAS BEEN SE.T. WFLAG WILL NOW EXIT')

CALL EXIT
C Error processin.
C
C Check for code of -17, meanin. fla.s alread~ exist

[

900 IF (IDSW .NE. -17) GOTO 1000

O
C In thc3t c~ase,:" Just disla~ a messc~.e and continue.

WI:;:ITE (5,910)
S):[O FORMAT (' GROUP GLOBAL EVENT FLAGS ALREADY E'XIST')

GOTO 15
C Here for fatal errors, displa~ messaSe and exit
1000 WRITE (5,1010) IDSW
1010 FORMAT (' DIRECTIVE ERROR CREATING GROUP GL.OBAL

lEF"S. DSW = ',15)
CALL EXIT

1100 WRITE (5,,1110) IDSW
1110 FORMAT (' DIRECTIVE ERROR CLEARING EVENT FLAG 65.

1 DSW == '" 15)
CALL EXIT

Example 2-3 Waiting for an Event Flag (Sheet 1 of 2)

50

DIRECTIVES

1200 WRITE (5,1210) IDSW
1210 FORMAT (' DIRECTIVE ERROR WAITING FOR EVENT FLAG

1 65. DSW = ',IS)
CALL EXIT
END

>INS WFLAG
>INS SFLAG
>RUN WFLAG

WFLAG IS CREATING THE GROUP GLOBAL EVENT FLAGS
CLEAR AND THEN WAIT FOR EF 65. TO BE SET
I:~UN SFLAG

EF 65. IS BEING SET. THEN SFLAG WILL EXIT.
EF 65. HAS BEEN 'SET + WFLAG WILL NOW EXIT

Example 2-3 Waiting for an Event Flag (Sheet 2 of 2)

51

DIRECTIVES

F'ROGJ~AM SFLAG
c
C FILE SFLAG.FTN , ...
• J

C This task sets event flas 65. It assumes that the
C Sroup Slobal event flass h~ve alreadw been created.
C
C Install and run instructions:
C
C
G
G
C
C;

1.0 e

Run WFLAG, then run SFLAG. At least one of the
tasks must be installed, or else the RUN command
will trw to install both tasks under the same

WRITE (5,10)
FORMAT (' EF 65. IS BEING SET. THEN SFLAG WILL EXIT')
CALL SETEF (65,IDSW)

C The DSW value returned for SETEF is 2 if it was set
rand 0 if it was clear. A 1 is NOT returned for success

IF (IDSW .LT. 0) GOTO 1000

C ET'r(Jr
1000
:1.01 ()

CALI ... EXIT
code
~JJ:;:ITE (~51110:J.0)

FORMAT (' DIRECTIVE
:1.,:(4)
CALL EXIT
END

ERROR SETTING EF 65. DSW -

Example 2-4 Setting an Event Flag

52

DIRECTIVES

ASYNCHRONOUS SYSTEM TRAPS{ASTs)

Asynchronous System Traps (ASTs) are used to detect events that
occur asynchronously to a task's execution. We say that they
occur asynchronously to a task's execution because they occur at
unpredictable times, depending on conditions which the task cannot
control. By doing some work and then periodically checking an
event flag to .check on an event, a task can do work while waiting
fot an event to occur. However, this means that the task must
periodically stop its work to check the flag.

Using an AST gives the Executive the responsibility for monitoring
the event. The Executive will "interrupt" the task and transfer
control to a special user written routine when the event has
occurred. Using this technique is more efficient because the task
doesn't have to do any periodic checking, and it probably results
in faster notification because the task is notified right after
the event occurs. With periodically reading the flag, it may take
quite a while to notice that the event has occurred if it occurs
immediately after a check.

The only directives which allow the use of ASTs from FORTRAN are
CNCT, PWRUP, SDRC, SDRP, SPAWN, SREA and SREX.

53

DIREtTIVES

Figure 2-1 shows how an AST routine works.
are keyed to the figure.

The following notes

o
o
e

The user specifies an AST routine
Executive sets up for the AST.

in a directive.

The Executive returns control to the user task.

The

When the system determines that the event has occurred
which corresponds to the specified AST routine, the
Executive passes control to the AST routine, executing it
before any other user code in the task. This means that if
the task is executing at the time of the AST, the task is
"interrupted" until the AST routine is executed. The AST
routine is executed even if the task is stopped or blocked.
In that case, the task returns to its stopped or blocked
state after the AST routine is executed, unless the AST
routine or some external event unstops or unblocks the task
in the meantime.

Ct The AST routine is a user written routine contained within
the task.

o The AST routine uses a standard RETURN statement to return
control to the main code via the Executive. However,
before the actual return, the Executive checks to see if
any other ASTs have occurred while the AST routine was
executing. Any such additional ASTs are queued in an AST
pending queue in a first-in-first-out order; these ASTs
are also serviced before the Executive returns to the point
at which the AST interrupt occurred.

For additional information on ASTs, see section 1.5.4 in
Chapter 1 and sections 2.3.3 and 2.3.4 in Chapter 2 of the
RSX-llM/M-PLUS Executive Reference Manual.

54

MAIN
TASK
CODE

AST
SERVICE
CODE

DIRECTIVES

TASK CODE

EXECUTIVE 01 RECTIVE
SPECI FYI NG AST
ROUTINE

ASTX$S

EXECUTIVE CODE

•
• · ---------

SET UP FOR AST

ACTIVATE AST

•
•

RETURN FROM AST

•
•
•

TK-7508

Figure 2-1 AST Sequence

55

DIRECTIVES

Example 2-5 shows the use of ASTs. An AST routine is entered if
an abort request is made by either another task or an operator.

The following notes are keyed too the example.

C» Set up for AST on abort attempt.

tt Loop until abort request comes in.

e Service routine entered on first abort request. For this
particular AST, a nonprivileged task enters this routine
only once and further ASTs are cancelled. If the task is
built as a privileged task, the routine is entered each
time an abort attempt comes in. See Appendix D for an
explanation of privileged tasks.

ct Note that FORTRAN I/O cannot be performed in an AST routine
because the I/O code is not reentrant; therefore any I/O
to be done in an AST routine must be done via QIO
directives. The next module will discuss the QIO directive
in detail.

Another directive, SREX, gives extended capabilities. An entry
passed to the AST routine indicates whether the abort request came
from a privileged or nonprivileged task or user and further,
whether it came from an Abort Task directive or a DCL (or MCR)
command. Each case can be handled differently.

56

DIRECTIVES

PROGRAM ASTEX
c+
C F'ILE ASTEX.FTN
c
C This task sets UP a Specifw ReGuest Exit AST routine.
C It then sits in a loop until someone tries to abort
C it. At that point, it enters the AST routine and sends
C out a messaSe. It won't abort the first time. A second
C abort attempt will succeed because for this particular
CAST, the first AST entrw cancels anw further AST's for
C th:i~; c-?vent
C
C Compile instructions:
C
C The AST routine must be compiled with traceback
C disabled. Since in this case the AST routine source
r is in the same file as the mainline, compile both with
C traceback disabled.
r'
C For FORTRAN IV:
{"'

C FORTRAN/NOLINE_NUMBERS/LIST ASTEX
r
C For FORTRAN IV-PLUS or FORTRAN-77
r'
r FORTRAN[/F4P or IF77J/NOTRACE/LIST ASTEX
C'
C Run notes: Remember to use the name the task is
r installed under when attemptin. to abort the task.
("
,I

INTEGER DSW
EXTE~(NAL. REXAST

O (,'AI_L. ~)'I:;'E_'A (R'I,::_XA~~'T' u rIQW) IS" C ' f E' 't AS"r' _ , _ , _ ,e~ UP ~peCl 'W ~Xl ,

IF (DSW.LT.O) GOTO 1001 ! Branch on error
TYPE *,'ASTEX STARTING UP. WILL WORK UNTIL ABORTED.

_ [{()DO
eo

$(JlTle wo rk •

C ET'ror
1001

DO 20 I~ -32767,32767
CONTINUE
GO TO 1.0
cc)de
TYPE *,'ERROR ON DIRECTIVE, DSW -
CALL.. EXIT
END

, ,DSW

Example 2-5 Using a Requested Exit AST (Sheet 1 of 2)

57

DIRECTIVES

c e SUBROUT INE I~EXAST

CAST service routine
("'

INTEGER PLIST(3),IOWVB
REAL TEXTl(6),TEXT2(7)
DATA IOWVB/ B110001
DATA TEXTi I'TRYI','NG T','D AB',
l/ORT ','ME ','EH? 'I
DATA TEXT2 I'WE W','ON"T',' LET',
l' YOU',' THI','S TI','ME! 'I

C Set UP for aIO dinective
CALL GETADR(PlIST(l),TEXT1(1»
PLlST (2) :::: 2:-S
PL I ST (:~) :::: n 40

rUse aIO directive to displaw text o CALL WTCHO(IOWVB,5,l""PlIST)
r Set UP for 2nd line of text

CALL GETADR(PLIST(l),TEXT2(1»
PLIST(2) :::: 27

r Use ala directive to displaw text
CALL WTQIOCIOWVB,5,l""PlIST)
RETUI~N

END

F~un Session

>INS ASTEX
~>RUN ASTEX

ASTEX STARTING UP. WIll WORK UNTIL ABORTED.
ABORT/TASK ASTEX

TRYING TO ABORT ME, EH?
WE WON'T LET YOU THIS TIME!
ABOF~T ITASK ASTEX
10:57:02 Task BASTEX B terminated

Aborted via directive or ell

Example 2-5 Using a Requested Exit AST (Sheet 2 of 2)

58

DIRECTIVES

Now do the tests/exercises for this module in the tests/exercises
book. They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files, under
UFD [202,2].

You will need the program READF.FTN to do question 1. It should be
available on-line probably under UFD [202,1]. In case it is not
available on-line, the source code is listed in Appendix G.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return to
this module for further study.

59

USING THE 010 DIRECTIV,E

USING THE QIO DIRECTIVE

INTRODUCTION

All Input/Output under RSX-IIM is performed using QIO directives.
In this module, you will learn how to use the QIO directive,
concentrating on its use for input/output to a terminal.

1. To use the QIO directive
non-file-structured device

to perform

OBJECTIVES

I/O to a

2. To choose either synchronous or asynchronous I/O as the
most effective method

3. To perform complete error checking upon I/O completion

RESOURCES

1. RSX-IIM/M-PLUS Executive Reference Manual, Chapter 5 for
specific directives

2. RSX-IIM/M-PLUS I/O Driver's Reference Manual, Chapters 1
and 2

63

USING THE QIO DIRECTIVE

OVERVIEW OF QIO DIRECTIVES

All I/O operations under RSX-IIM are performed using QIO
directives. While transparent to the user, all FORTRAN READ and
WRITE statements are ultimately transformed into QIO directives~
The QIO directive causes an I/O request to be passed to the
appropriate service routine. The service routine is either a
device driver or a system task called an ancillary control
processor (ACP). There is a device driver for each device type on
the system. There are three ACP's provided, FIIACP for FILES-II
structured disks, MTAACP for ANSII magtape, and NETACP for DECNET.

The I/O packet is placed in an I/O queue for the service routine.
The packets are queued in the order of the priority of the issuing
tasks. If there are multiple requests at a given priority, those
requests are queued first-in-first-out (FIFO). The QIO directive
does not perform the I/O operation itself, but simply queues the
request to the appropriate service routine, which performs the
actual I/O transfer. After the I/O request has been queued, the
Executive returns control to the issuing task, unless the task
requests the Executive to place the task in a Wait For state until
the I/O transfer completes.

PERFORMING I/O

QIO directives (are generally used by a programmer for I/O on
non-file-structured devices such as terminals. For file I/O, all
READ and WRITE statments are passed off to the File Control
Services (FCS) or Record Management Services (RMS) , which in turn
issue the appropriate QIOs for you. When using QIOs, you specify
which I/O operation (e.g., Read Virtual Block or Write Virtual
Block) is to be performed by means of an I/O function code.
Specify the device by means of the logical unit number (LUN). You
specify additional information about the I/O operation (e.g., what
buff~: to write and how many characters) by means of an I/O
parameter list (IOPL). All of this information is passed to the
Executive through parameters in the Directive Parameter Block
(DPB) , as it is with all directives.

65

USING THE QIO DIRECTIVE

USING QIO DIRECTIVES IN FORTRAN

There are two basic reasons for using QIO directives in FORTRAN.

• To acheive asynchronous I/O.

All READ and WRITE statements are synchronous; i.e., the
program is put into a Wait For state until the I/O is
complete. If you need to perform asynchronous I/O, it can
only be done via QIO directives.

• To perform I/O functions not possible with READ and WRITE
statements.

Certain I/O functions, particularly to a terminal, cannot
be done by READ and WRITE statements. Some examples are
read with no echo and cursor control on a video terminal.
By using QIO directives, these functions can be done from
FORTRAN~programs.

1/0 FUNCTIONS

Each device type has its own set of legal I/O functions. Certain
functions are called standard or common, since they are available
on all devices. The seven standard I/O functions are listed in
Table 3-1. Logical block transfers (Read Logical Block and write
Logical Block) can usually be performed for any device. For file
structured devices, virtual block transfers can be performed only
if a file is open on the device.

If Virtual Block I/O is requested for a non-file-structured
device, such as a terminal, it is converted to logical block I/O
for you. In addition, devices may have additional device specific
functions, such as Read No Echo at a terminal. Each function
requires its own set of parameters, which are specified in an I/O
parameter list.

66

USING THE QIO DIRECTIVE

Table 3-1 Common (Standard) I/O Functions

Global Symbol Octal Suggested
in MACRO Value Function FORTRAN Name

IO.ATT 001400 Attach device IOATT

IO.DET 002000 Detach device IODET

IO.KIL 000012 Cancel I/O requests IOKIL

IO.RLB 001000 Read Logical Block IORLB

IO.RVB 010400 Read Virtual Block IORVB

IO.WLB 000400 Write Logical Block IOWLB

IO.WVB 011000 Write Virtual Block IOWVB

Throughout the literature you will find I/O function codes given
in the form used by MACRO programmers; for example, IO.ATT and
IO.DET. In MACRO, these codes can be used directly as function
codes in a QIO directive, and the proper octal values will be
inserted. In FORTRAN, you must determine the octal value for the
function and use that value in the CALL QIO or CALL WTQIO. For
instance, to issue an ATTACH, you could use:

CALL QIO("1400""",)

In order to make QIO calls more readable, it is recommended that
you create a DATA statement for any heeded QIO functions using the
suggested variable names shown above. While the actual name is
arbitrary, (but must be an integer variable), a certain degree of
standardization will be achieved by using the MACRO symbol without
the period (IOATT versus IO.ATT). Hence to perform an ATTACH:

DATA IOATT/"1400/
CALL QIO(IOATT""",)

The octal values for all function codes can be found in Appendix B
of the RSX-11M/M-PLUS I/O Driver's Reference Manual.

67

USING THE QIO DIRECTIVE

LOGICAL UNIT NUMBERS (LUNs)

The device for an I/O operation is specified by means of a logical
unit number. The correspondence between logical unit numbers and
physical devices is made initially at task-build time.

The default LUN assignments set up by the Task Builder are as
follows:

LUN #1 - SY:
LUN #2 - SY:
LUN #3 - SY:
LUN #4 - SY:
LUN #5 - TI:
LUN #6 - CL:
LUN #7 - TI:

LUN 7 is typically used for error messages.

These default assignments may be overridden at task-build time by
using the ASG option. Additional LUNs can be created (up to a
total of 250 LUNs) by using the UNITS option.

Once a task is installed, an operator can check the LUN
assignments for the task by uSlng the DCL SHOW LOGICAL UNITS
command (LUN in MCR). The assignments can be changed by an
operator using the DCL ASSIGN/TASK command (REA in MCR). The LUN
assignments can also be checked at run time using the Get LUN
directive (CALL GETLUN), and changed using the Assign LUN
directive (CALL ASNLUN).

SYNCHRONOUS AND ASYNCHRONOUS 1/0

There are two kinds of I/O, synchronous I/O and asynchronous I/O.
With synchronous I/O, the Executive provides sychronization. When
a task issues an I/O request, it doesn't get control back from the
Executive until after the I/O packet is queued, and the I/O
operation (the transfer performed by the service routine itself)
is completed. In other words, the synchronous I/O request asks
the Executive to queue the I/O packet and then place the task in a
"Wait For" state, waiting for the specified event flag to be set,
at which time the actual I/O is complete.

68

USING THE QIO DIRECTIVE

Figure 3-1 shows the flow of instructions during the processing of
a synchronous I/O operation. The task does not execute the
instruction following the QIO directive until after the I/O
transfer itself has completed.

Figure 3-2 shows a time diagram illustrating the same I/O
operation. Note that once the QIO directive is executed at sfep
1, the task doesn't execute again until step 8, after the transfer
has completed. The system handles all synchronization with
synchronous I/O. Use the CALL WTQIO directive to invoke this type
of I/O. (CALL WTQIO is a combination of a QIO and a WAITFR).

Commentary to Figures 3-1 and 3-2:

ct User task executes WTQIO directive.

«t Executive queues the I/O request.

t) Executive calls the driver.

C» Driver begins the I/O transfer.

C) Driver handles I/O transfer as necessary.

C) I/O transfer completes.

~ Driver finishes up and notifies task the I/O is completed.

C» User task continues.

69

USER TASK

8010 01 RECTIVE

o

USING THE QIO DIRECTIVE

EXECUTIVE

010 01 RECTIVE
ROUTINE

o
o

DEVICE DRIVER

o
o
G
o

'------' --C'------')
I/O OUEUE

Figure 3-1 Execution of a Synchronous I/O Request

USER TASK

010 01 RECTIVE

ORIVER

I/O TRANSFER

o
08

TIME

i
01

Figure 3-2 Events in Synchronous I/O

70

o
i
I
I
I

0: ,

TK-7507

TK-7509

USING THE QIO DIRECTIVE

with asynchronous I/O, the Executive still queues the I/O request.
However, when a task issues an asynchronous I/O request, the
Executive passes control back to the task immediately after the
I/O packet is queued to the driver. You must provide
synchronization concerning the completion of the actual I/O
transfer. This could occur at various times, depending upon such
factors as how many other I/O packets are already in the driver's
I/O queue, and the speed of the device itself. The task executes
in parallel while the I/O transfer takes place. In Figure 3-3,
the instruction after the QIO request is executed after the I/O
packet is queued and the driver has. started the transfer, not
after the I/O transfer completes. The task continues executing
unless it chooses to wait. Figure 3-4 shows a time diagram
illustrating asynchronous I/O.

Note that after the QIO directive is executed at I, the task
begins ex~cuting again at step S. In this example, the task
waits for the I/O transfer to complete at step Sa. If you use
asynchronous I/O, you must provide any synchronization yourself,
using event flags or by testing the I/O status block. The task
shown in Figures 3-3 and 3-4 uses a Wait For Event Flag directive
at step Sa. Use the directive CALL QIO to invoke this type of
I/O.

The advantage of asynchronous I/O is that your task can continue
processlng in parallel with the I/O transfer. For example, you
can perform computations while waiting for a read or a write
operation to complete. Of course, if you need the information
from the read before you can do anything else, it is better to use
synchronous I/O.

71

USING THE QIO DIRECTIVE

Commentary to Figures 3-3 and 3-4:

ct User task executes QIO directive.

~ Executive queues I/O request.

t» Executive calls the driver.

C» Driver begins the I/O transfer, and passes control back to
the user task.

o Driver handles I/O transfer as necessary.
executes in parallel with I/O transfer.

o User task waits for I/O operation to complete.

~ I/O transfer completes.

User task

o Driver finishes up and Executive notifies task that I/O is
completed.

C) User task continues.

72

USING THE QIO DIRECTIVE

EXECUTIVE

010 DIRECTIVE
ROUTINE

USER TASK

__ 010 01 RECTIVE -------

0 •
Oa •

e DEVICE DRIVER

0
0 --()
0
0

I/O OUEUE

TK-7518

Figure 3-3 Execution of an Asynchronous I/O Request

0 0 Oa 0
USER TASK i i

I
-eo I I

I I
010 DI RECTIVE I I

I 0: 0-
DRIVER i

I

• 0 O·
I/O TRANSFER I

TIME

TK-7513

Figure 3-4 Events in Asynchronous I/O

73

USING THE QIO DIRECTIVE

MAKING THE I/O REQUEST

Specify the following information in the CALL QIO or CALL WTQIO
when requesting I/O:

• Synchronous or asynchronous I/O, by using the appropriate
directive.

• The I/O function to be performed.

• The LUN to be used for the I/O operation.

• An event flag
synchronization.

number, if any, to be used for
This is required for synchronous I/O.

• The address of an I/O Status Block (IOSB). The IOSB is
used to pass status and other information about the I/O
operation back to the task.

• The I/O parameter list (up to six words) which specifies
information for the particular device and I/O function
requested.

• The Directive Status Word (DSW)

Table 3-2 shows the I/O parameter list arguments which are needed
for each of the standard I/O functions with the full-duplex
terminal driver. Note that for write logical block and write
virtual block, the vertical format control characters are the
standard FORTRAN carriage control characters.

Table 2-3 in section 2.3 of the RSX=IIM/M-PLUS I/O Driver's
Reference Manual lists these standard functions and the other
device-specific functions available with the full-duplex terminal
driver. The device-specific functions will be discussed later in
this module. If your RSX-IlM system has the half-duplex terminal
driver, Table 3-3 in section 3.3 lists the functions available
with that driver. For other devices, there is a corresponding
table in the appropriate chapter of the manual.

74

USING THE QIO DIRECTIVE

Table 3-2 I/O Parameter List for Standard I/O Functions

Function I/O Parameter List

Attach None needed

Detach None needed

Kill None needed

Read Virtual Block
and

Read Logical Block

write Virtual Block
and

Write Logical Block

word 1 - buffer starting address
word 2 - buffer size (in bytes)
word 3 - optional timeout count

(in 10 second intervals)
NOTE: Only used if a special sub

function bit is set. See the
section on Terminal I/O.

words 4, 5, and 6 - unused

word 1 - buffer starting address
word 2 - buffer size (in bytes)
word 3 - vertical format control, as

follows (these are the standard
FORTRAN carriage control char
acters) :

Octal
value

040

060

061

044

053

ASCII
character Meaning

blank single space

o double space

1 form feed

$ prompting output
stay in same
location after
output

+ overprint

null no implied format
control - use
internal control

words 4, 5, and 6 - unused

75

USING THE QIO DIRECTIVE

THE 1/0 PARAMETER LIST IN FORTRAN

The parameter list must refer ,to an integer array declared in a
DIMENSION statement with a dimension of six. When used in a QIO
directive, the parameter list array name is used without a
subscript.

DIMENSION IPAR(6)
CALL QIO("",IPAR,)

Some entries in the parameter list must be the addresses of arrays
or variables. Since FORTRAN does not provide this capability,you
must use a system subroutine called GETADR to g~t the addresses.
(See the RSX-IIM/M PLUS Executive Reference Manual and the
appropriate user's guide for further information. To get the
addresses of two variables IBUFF and JBUFF and place the addresses
in array K, use the following:

DIMENSION K(2)
CALL GETADR(K,IBUFF,JBUFF)

The address of IBUFF will be in K(l) and the address of JBUFF will
be in K(2) at the completion of the CALL GETADR.

ERROR CHECKING AND THE 1/0 STATUS BLOCK

There are two kinds of errors which can be produced by QIO
directives, directive errors and I/O errors. The various
directive and I/O status codes and their meanings are listed in
Appendix B of the RSX-IIM/M-PLUS I/O Drivers'Reference Manual and
also in the RSX-1IM Mini-Reference.

Directive errors are produced due to errors in processing the
directive and getting the I/O packet queued up to the device
driver. As with other directives, QIO directive errors are
indicated by a negative value in the DSW upon return to the task
code. Success is indicated by a positive value (typically +1) in
the DSW. Thus, the directive status indicates the success or
failure of the attempt to queue the I/O packet. Check for
directive errors immediately upon return to the task, after the
QIO directive is issued.

76

USING THE QIO DIRECTIVE

Upon completion of the I/O transfer itself, the Executive returns
status information concerning the I/O transfer to the I/O Status
Block laid out as follows:

Device Dependent I I/O Status word

Actual Number of Bytes Transferred word

The low-order byte of the first word of the I/O Status Block
contains the I/O status code. Note that this is a byte value, not
a word value. A positive I/O status code (usually +1) indicates
success. Negative values indicate various error conditions. The
second word of the I/O status block indicates the number of bytes
actually transferred, which is significant in the case of any read
or of a write which ends after only some of the data is
transferred. The device dependent byte indicates, for reads, the
character which was used as a terminating character «RET>,
CTRL/Z, <ESC>, etc.).

The I/O status byte should be checked only after the I/O transfer
completes. For synchronous I/O, the I/O status should be checked
immediately after checking the DSW, since the I/O transfer itself
also completes before control is returned to you. For
asynchronous I/O, on the other hand, the If,O status should be
checked when the task is notified by the Executive that the
transfer is complete. Synchronization is discussed in the
following section, after an example of synchronous I/O.

THE QIO DIRECTIVES

Synchronous I/O

The format of the CALL WTQIO is:

CALL WTQIO(ifn,lun,efn,pri,iosb,iopl,ids)

where

ifn - I/O function code
lun - Logical unit number
efn - Event flag number (required for synchronous I/O)
pri - priority (not used but must be present)
iosb - I/O status block address
iopl I/O parameter list, integer array up to six elements
ids - Directive status word

77

USING THE QIO DIRECTIVE

An event flag must be specified for synchronous I/O. If one is
not specified, the I/O request is handled as an asynchronous I/O
request. The priority is included to allow compatibility with
RSX-IID. It is not used in RSX-IIM. The I/O parameter list is a
single directive parameter. Hence, the entry must be for an array
of up to six elements. Six words are always placed in the DPB for
the I/O parameter list, whether or not all six words are
specified. It is best to reserve six words. If you do not, you'
may end up with data from the array(s) defined immediately after
the variable defined for the parameter being used in the parameter
list for a QIO.

Example 3-1 shows the use of synchronous QIOs.
notes are keyed to the example.

The following

C» The two-word (four-byte) I/O status block for return of
I/O status and the buffer into which the data will be read
and from which the data will be displayed. rOSB is
declared as a byte array so that the program can examine
the I/O status byte in IOSB(l). The program also needs to
use the byte count of the number of bytes read by the QIO.
This count is found in IOSB(3) and IOSB(4). Since the
program needs this as an integer value, the
EQUIVALENCE(NUM,IOSB(3» is used.

IBUF is the buffer used to hold the characters read by the
WTQIO directive.

~ Issue the read request. We are using LUN 5, event flag 1,
and IOSB which 1S the four-byte (two-word) array to
receive I/O status after the IORVB. The I/O parameter
list is set up as a single parameter (IPAR) which refers
to an integer array. IPAR(l) must contain the address of
IBUFF which is the buffer into which the characters will
be read by the IORVB. Since this is an address, use CALL
GETADR to get the address into IPAR(l). IPAR(2) is the
maximum buffer size for the IORVB. If input is terminated
with a terminating character, such as a carriage return,
before 80 characters are typed, the number of characters
actually read will be returned in the second word of the
status block (IOSB(3». Input will be terminated
automatically after the eightieth character, if 80
characters are typed. In that case, 80 will be returned
in the second word of the status block.

t» Check for directive error
packet.

78

failure to queue the I/O

USING THE QIO DIRECTIVE

C» With synchronous I/O, the I/O operation has completed when
we get control, so also check the I/O status. A value
less than 0 indicates an error in the I/O transfer.

ct The count of characters typed in is in NUM (IOS8(3».
Check on and convert only this many characters. Check
each character to see if it is in the range ASCII A to
ASCII Z. If so, convert to lowercase by adding
32(10)=40(8) to that value, or else continue.

ct Write the buffer BUFF, which has the converted message.
This is a Write Virtual Block. The third argument in the
I/O para~eter list, "40, is for vertical format control.
"40, which is an ASCII space, indicates single line feed
before writing the line.

«t Check for directive error or I/O error.

NOTE
Although both virtual block and logical block
operations are permitted to a terminal, it is
safer to use virtual block operations. If
the I/O is actually performed at a terminal,
the virtual block request gets converted to a
logical block request. If logical block
writes are used and someone reassigns the LUN
to a disk, for example, the write may
overwrite a block on the disk. If, on the
other hand, someone reassigns the LUN and
write virtual blocks are used to a disk, the
write will only be allowed if a file is open
on the disk, which will fail in most cases if
the program is writing to a terminal.

79

USING THE QIO DIRECTIVE

PROGRAM SYNCHC~
("

C FILE SYNCHa~FTN
("

C This proSram reads a line o~ text from the terminal,
C converts ans upper case characters to lower case and
(~ prints the converted ~essas& back at the terminal.
r It uses ssnchronous aIO directives.
C

o BYTE IOSB(4),IBUF(SO)
DIMENSION IPAR(6)
EQUIVALENCE (NUM,IOSB(3»
DATA IOWVB/ u'110001
DATA IORVB/ u l04001
DATA IVFC/"401

f' B(·?t u:·:·' 'v'all . .If:~s for the CUO
IUNIT::::~:5

IPAF((2) ::::80 o IPAI:~(])::::IVFC
C Get the address of the 110 buf~er

CALL GETADR(IPAR(l)pIBUF(l»
r Issue the QIO

CALL WTQIO(IORVB~IUNITvlp,IOSB,IPAR,IDS)
r Check the directive and 110 statuses e IF (IDS .L.T. 0) GO TO 800 OIF (108B(j.) .LT. 0) GO TO 81.0
C Check for uppercase characters and convert

DO 100 I:::::I.,NUM
them to lowercase

[

IF (IBUF(I) .LT. 'A') GO TO 100 o IF (IBUF(I) .crr. 90) GO TO 100
IBUFCI)=IBUFCI)t32

:1.00 CONTINUE

!Z is 90(10)

C Plc~ct~ the number of characters to write in the 110 parameter list
IPAR(2)::::NUM

C WT'i te
0

("' Chf?cl-:.

0

the converted line to the terminal
CALL WTaIO(IOWVB,IUNIT,l~,IOSB,IPAR,IDS)
directive and 110 status
IF (IDS .LT. 0) GO TO 820
IF (IOSB(l) .LT. 0) GO TO 830
GO TO 850

800 WRITE(S,900)IDS
GO TO 850

810 WRITE(5p910)IOSB(1)
GO TO 850

820 WRITE(5,920)IDS
GO TO 8!:)0

Example 3-1 Synchronous I/O (Sheet 1 of 2)

80

USING THE QIO DIRECTIVE

830 WRITE(S,930)IOSB(I)
850 CALL EXIT
900 FORMAT(t DIRECTIVE ERROR ON READ, CODE = t,I4)
910 FORMAT(t 1/0 ERROR ON READ, CODE = ',14)
920 FORMAT(' DIRECTIVE ERROR ON WRITE, CODE = ',14)
930 FORMAT(' lID ERROR ON WRITE, CODE = ',14)

END

Run Session

>RUN SYNCHQ
ABCDEFGHIJklmnoPGrstuvwxyz12345678[]\
abcde~~hiJklmnoPGrstuvwxyz12345678[]\

>

Example 3-1 Synchronous I/O (Sheet 2 of 2)

81

USING THE QIO DIRECTIVE

Asynchronous 1/0

The format of the CALL QIO is:

CALL QIO(ifn,lun,efn,pri,iosb,iopl,idsw)

where

ifn - I/O Function code
lun - Logical Unit Number
efn - Event Flag Number
pri Priority (not used but must be present)
iosb - I/O Status Block Address
iopl - I/O Parameter List (up to 6 words)
idsw - Directive status word

Synchronization With Asynchronous I/O As mentioned earlier,
event flags may be used for synchronization. If an event flag is
specified, the Executive clears the event flag when the I/O packet
is queued and sets the flag again when the I/O transfer completes.
This happ~ns with both synchronous and asynchronous I/O, if an
event flag is specified. With asynchronous I/O, the task can
specify a flag and use it for synchronization using one of the
following techniques:

1. Do some work, then wait for the flag to be set.

2. Work the entire time, periodically checking the flag until
it is set.

A third technique is to monitor the contents of the I/O status
byte of the I/O status block. The entire I/O status block is
cleared when the I/O request is queued to the driver. Later, it
is filled in when the I/O transfer completes. Therefore, the user
task can periodically check the contents of the I/O status byte
for a nonzero value.

82

USING THE QIO DIRECTIVE

Example 3-2 demonstrates the use of asynchronous I/O to perform
the same function performed in Example 3-1. This task can do some
work in parallel with the I/O transfer. The following notes are
keyed to the example.

C» Issue the read via CALL QIO instead of CALL WTQIO. All
arguments are the same as for a CALL QIO. The Executive
will clear event flag I when the I/O packet is queued and
set it when the I/O operation completes.

tt Check for directive errors immediately. Here, we are
checking for an error in queueing the I/O packet.

t» While the I/O transfer itself takes place, we- can do some
work. Here we fill the array at K with the values 64,
128, ••• ,640.

ct When we are finished with our work, we wait for the event
flag specified in the CALL QIO directive. It will be set
when the I/O operation completes.

t» Now that the I/O operation is finished, check for I/O
errors.

C) After converting the message to lowercase, issue the
write.

Ct This time, we wait for the flag to be set right after we
check the directive status. We could do some more work
here. If in fact we are going to just wait, it is simpler
and more efficient to use synchronous I/O (WTQIO).
Synchronous I/O is more efficient because we perform both
functions (QIO and WAIT) in one Executive directive call.

If you use an asynchronous QIO for either reading or writing, you
should not use a FORTRAN READ or WRITE to the same lun until you
are certain that the QIO has completed.

83

USING THE QIO DIRECTIVE

PI~OGl~AM ASYNCC~
c
C FILE ASYNCQ.FTN
f'
C This proSram reads a line of text from the terminal,
r converts anhl upper case characters to lower case and
r prints the converted messaSe back at the terminal.
C It uses assnchronous QIOs and an event flaS for
C synchronization.
(
.,
.,

BYTE IOSB(4),IBUF(80)
DIMENSION IPAR(6),K(10)
EQUIVALENCE (NUMvIOSB(3»
DATA IOWVB/ H 110001
DATA IORVB/"104001
DATA IVFC/"401

C Bet I..I~~ v(3ll .. J(:~s ·r·'or the CHO
IUNIT::::5
IPAR (2) ::::80
IPAI:~ C 3) ::::IVFC

("' G(:~t the addT'ess of the 110 bl.Jffer
CALL GETADRCIPAR(1),IBUFC1»

("' Issue the enD o CALL CnO(IOI~VB, IUNIT,511" 10SB, IPAI~, IDS)
C Check the directive status o IF (InS .LT. 0) GO TO 800
("' Do some work while 110 operatioM is beins performed

A DO 50 I:::::/. ~ 10
V I~ (I) ::::64*1

!50 CONTINUE
c o Wait for 110 to complete

CALL WAITFR(5,1IDS)
("' Check directive status

IF (IDS .LT. 0) GO TO 805
r Check the IIO status o IF (IOSB(l) .LT. 0) GO TO 810
("' ConVf~rt to lowercase

DO :1.00 I:::::L II NUM
IF (IBUF(I) .L.T. "A") GO TO 100
IF (I BUF (I) • GT. H:L 32) GO TO 100
IBUF(I)=IBUF(I)t32

:tOO CONTINUE
C Set UP lID Param~ter List for write

I PAF~ C 2) :::NUM
C Write the converted line to the terminal

(
.,
.,

o CAL.L. cno (IOWVB ~ IUNIT" 5, "IOSB, IPAR ~ IDS)
Check directive status
IF (IDS .L.T. 0) GO TO 820

Example 3-2 Asynchronous I/O Using Event Flags
for Synchronization (Sheet 1 of 2)

84

USING THE QIO DIRECTIVE

r Wait for the I/O to complete o CALI ... WAITFri (5, IDS)
r Check directive status

IF (IDS .LT. 0) GO TO 825
C Check the I/O status

IF (IOSB(l) .LT. 0) GO TO 830
GO TO 8!::;0

800 WRITE(S,900)IDS
GO TO (oJ50

805 WRITE(S,90S)IDS
GO TO 850

810 WRITE(S,910)IOSB(1)
GO TO 8~':;0

820 WRITE(5,920)IDS
GO TO 8!50

825 WRITE(5,92S)IDS
GO TO 8!7jO

830 WRITE(S,930)IOSB(1)
850 CALL EXIT
900 FORMAT(' DIRECTIVE ERROR ON READ, CODE = ',14)
905 FORMATe' DIRECTIVE ERROR ON 1ST WAIT, CODE = ',14)
910 FORMAT(' I/O ERROR ON READ, CODE = ',14)
920 FORMAT(' DIRECTIVE ERROR ON WRITE, CODE = ',14)
925 FORMAT(' DIRECTIVE ERROR ON 2ND WAIT, CODE = ',14)
930 FORMAT(' I/O ERROR ON WRITE, CODE = ',14)

END

RIJI"I Session

>RUN ASYNCO
abcdef~hKJHKJHKHFRTEWGwrwuwiupoZCVcvbvcl"lbMBNM7(8534243-:'
abcdef~hkJhkJhkhfrtewGwrwuwiupozcvcvbvcnbmbnm7(8534243a:,

Example 3-2 Asynchoronous I/O Using Event Flags

for Synchronization (Sheet 2 of 2)

85

USING THE QIO DIRECTIVE

TERMINAL 1/0

Device Specific Functions

In the following discussion, references to function codes and
subfunction codes are made via the global symbols used when
programming in MACRO. This is done because all references in the
literature to these codes use the MACRO symbols. Several examples
of how to use these in FORTRAN programs are shown below.

Some device specific function codes are listed in Table 3-3, shown
below. Table 2-3 in section 2.3 (on the QIO macros) of the
RSX-IIM/M-PLUS I/O Driver's Reference Manual lists all of tbe
available special functions for the full-duplex terminal driver.
As noted, some of these functions are SYSGEN options. Many of the
device-specific functions are selected using subfunction codes.
These codes may be ORed with standard or device-specific function
codes to produce special functions. For instance, the subfunction
TF.TMO (read with timeout) may be ORed with a read function such
as IO.RLB to produce a function of "read logical block with
timeout."

The octal values for IO.RLB and TF.TMO are
respectively; hence the combination of the
represented by the octal value 1200.

This can coded in FORTRAN as follows:

CALL QIO("1200""",)

or, to improve readability:

INTEGER TFTMO
DATA TFTMO/"200/
DATA IORLB/"1000/
CALL QIO(IORLB.OR.TFTMO""",)

1000 and 200,
two functions is

Another way to produce this function which you may find simpler
is:

INTEGER RLBTMO
DATA RLBTMO/"1200/
CALL QIO(RLBTMO""",)

86

USING THE QIO DIRECTIVE

Table 2-4 in Chapter 2 of the I/O Driver's Reference Manual lists
the various combinations which are possible. For example, TF.TMO
(read with timeout) ORed with a read, function (IO.RLB, IO.RPR,
IO.RNE, etc.) terminates the read if the specified time period
goes by between keystrokes. For additional information on the
device-specific function codes, see section 2.3.2 (on
Device-Specific Functions) in the RSX-llM/M-PLUS I/O Drivers
Reference Manual. Examples of the use of Read After Prompt, Read
No Echo, and Read With Timeout are included in this module.

Note that if you use subfunction codes with read or write function
codes, you should use logical operations rather that virtual;
i.e., use IO.RLB and IO.WLB rather than IO.RVB and IO.WVB. The
reason for this is that when a virtual operation is requested on a
terminal, the Executive converts the operation to a logical
operation. In the process, any subfunction codes are lost.

I/O Status Block and Terminating Characters

As for other I/O functions, the low-order byte of the first word
of the I/O status block contains the I/O status byte, indicating
the success or failure of the I/O operation. Also, the second
word contains the count of characters actually transferred. For
reads from a terminal, the high-order byte of the first word of
the I/O status block contains the terminating character in ASCII
«RET), CTRL/C, etc.) for successful reads. Normally, CTRL/Z is
treated as an error. The I/O status byte is set to IE.EOF (-10.)
and the character count contains the count of characters read
before the CTRL/Z.

Example 3-4! which follows, shows how CTRL/Z can be handled
specially 1n a program. Two special function codes, IO.RST and
IO.RTT, allow reads to be successfully terminated by nonstandard
terminating characters. The first allows any non-alphanumeric
character to terminate input; the second allows the user to
specify which character or characters should terminate the read.

87

Global
Symbol

IO.RNE

IO.RPR

IO.RST

IO.RTT

IO.WBT

none

USING THE QIO DIRECTIVE

Table 3-3 Some Special Terminal Function Codes

Octal
Value

001020

004400

001001

005001

000500

001200

Function

Read With No Echo
(Same as IO.RLB!TF.RNE)

Read After Prompt

Read Wi th Any
Special Terminators
(Same as IO.RLB!TF.RST)

Read With Specified
Special Terminators

Write Logical Block,
through ongoing I/O
(Same as IO.WLB!TF.WBT)
Task must be privileged

Read With Timeout
(IO.RLB!TF.TMO)

88

I/O Parameter
List

<stadr,size[,tmo]>

<stadr,size,[tmo],
pradr,prsize,vfc>

<stadr,size[,tmo]>

<stadr,size,[tmo],
table>

<stadr,size,vfc>

<stadr,size,tmo>

USING THE QIO DIRECTIVE

Read After Prompt

The Read After Prompt function allows the combination of a write
of prompting text followed by a read in a single QIO request. The
I/O parameter list contains six parameters, three for the read,
and three for the write. The following notes are keyed to Example
3-3.

o

o
e

WTQIO for Read After Prompt. The function code is IO.RPR
(4400(8». The first three parameters in the I/O
parameter list are for the read, the last three are for
the ,write. The write is performed first, followed by the
read. The 44(8) for the vertical format control causes
the prompt text to appear on the next line, followed
immediately on the same line by the prompt for the read.

Use a normal FORTRAN WRITE to echo the input string.

If the operator types a CTRL/Z, an error status is
returned. In this case, we just wish to exit normally.
Therefore, we must check for this condition and handle it
specially.

The ability to use certain function codes, including Read After
Prompt, is dependent on whether the ~ption was included in the
SYSGEN for your system. Before attempting to use these functions,
check with your system manager to see if they/are available.

89

USING THE QIO DIRECTIVE

PROG/;;AM PROMPT
f'
C File PROMPT.FTN
C
C This task issues a QIO for READ AFTER PROMPT, echo's it
r and prompts a~ain. This continues until a CNTRL/Z is t~ped.
C
C

BYTE PROM(22) Buffer for prompt strin~
BYTE BUFF(80) READ buffer
BYTE I08B(4) I/O status block
INTEGER PARM(6) I/O parameter block
EQUIVALENCE (NCHAR,IOSB(3» ! NCHAR is for I/O

C . ! count

("
("'

C STAr';:T:

DATA PROM ! Fill the prompt buffer
1 /'P','l','e','a','s','e',' ','t','w','p','e',
2 ' ','a','n','w','t','h','i','n','~',':',' '/
DATA IORPR /84400/ Read after prompt

function code

C Set UP params. for QIO
("'

c-.,

C

f'

f' .,

C
f'

0 :lO

C

0
f' .,
:1.5
C

f' .,

100

CALL GETADR(PARM(l),BUFF(l» Pl is the address
of BUFF

CALL GETADR(PARM(4),PROM(1» P4 is the address
()f the P T'C)mpt

PARM(2) - 80 P2 is the lensth of

PARM(5) 22

PAI:':M (6) .. M 36

the bl.Jffer
P5 is the lensth of
the prOITlF,t

P6 :i. 5 th~\ prompt
·format cont rc)l

CALL WTQIOCIORPR,5,l,vIOSB,PARM,IDS) ! Invoke QrO
IF(IDS .LT. 0) GO TO 100 ! Directive error?
IF(IOSB(l) .LT. 0) GO TO 110 ! I/O error?

WI:UTE C5,l~5) CBUFF(I) ,I:::::I.,NCHAR) ! Echo inF'ut
! strins

FORMAT(lX, 'You twped: ',80Al) FORMAT for
echc) lTIet:;sa~e

GO TO 10 Start over

TYPE *,'Directive error on QIO to READ AFTER
IPROMPT. DSW = ',IDS ! Dir error
CALL EXIT

C I/O error. Check for -Z
:1. lOA [I F (10 SB (1) + E Q + ·-1 0) GOT 0 150 ! Bra n c h cm ,., Z

~ TYPE *,'1/0 error on QIO to READ AFTER PROMPT.
1 DSW = ',IOSB(l) ! I/O error

150 CALL EXIT
END

Example 3-3 Prompting for Input (Sheet 1 of 2)

90

USING THE QIO DIRECTIVE

t=~l.Jrl Sess ion

>I~LJN PROMPT
Please type anYthin~: sJkshJHGJHGHFY134435
You typed: sJkshJHGJHGHFY134435
Please type anYthin~: hello there
You twped: hello there
Please type anythin~: MZ
>

Example 3-3 prompting for Input (Sheet 2 of 2)

Read No Echo

Read No Echo is used to override the default of echoing each
character as it is typed. This is used for passwords and other
private information. Example 3-4 uses this function. The
following notes are keyed to the example •

• Write prompting text, then leave cursor at that position
for input. This is done by having '$' as the first
character in the FORMAT.

.. Read No Echo QIO. Standard read parameters except for the
function code. ,

.. As in the previous example, we display the text typed in,
preceded by our own message. Since the Read No Echo
doesn't echo any characters back and hence doesn't move
the cursor on the screen, we precede the text with a
carriage return (15(8» to get the cursor bacik to the
start of the line. Else, the NO LONGER A SECRET WORD
message will begin away from the left-hand margin, after
the: "SECRET WORD:".

91

USING THE QIO DIRECTIVE

PF~D(H~AM NDECHO
("'

C File NDECHO.FTN
("

C This task prompts for input, reads it without echo and
r then skips to the next line and displaws the input
C text and exits.
C
C

BYTE BUFF(80)~IOSB(4),CR(l)

I NTEGER PAr~M (6)

(lATA
(lATA

IOf<NE / u 01 020/
CI~ / H 15/

8 WRITE (~j~ 1)

aIO Read no echo code
CarriaSe return character

1 FORMAT ('$SECRET WORD: ')
write promf,t
Promr-,t strin~j

C Set UP the I/O parameter list

C

CALL GETADR (PARM(l),BUFF(l»
F'AI~M (2) ::= 80
read no echo

bl..Iffe r address
Buffer length

CALL WTaIO (IORNE,5,1"IOSB,F'ARM~IDS)
IF (IDS .LT~ 0) GO TO 100 ! Dir error?
IF (IClSBO.) .L.T. 0) GO TO 110 ! I/O errol'?
WRITE (5,2) CR,(BUFF(I),I=1,IOSB(3» ! Echo input
FORMAT (' ',Al,'NO L.ONGER A SECRET WORD: ',SOAl)
CALL. EXIT

C Error conditions
("'

:1.00

:1.10

TYPE *, 'DIRECTIVE ERROR ON READ. STATUS = ',IDS
CAL.L. EXIT
TYPE *, 'I/O ERROR ON READ. CODE = ',IOSB(l)
CALL EXIT
END

Run Session

>f<UN NOECHO
SECRET WORD:
NO LONGER A SECRET WORD: ADD

Example 3-4 Read No Echo

92

USING THE QIO DIRECTIVE

Read With Timeout

Example 3-5 is a repeat of Example 3-1, but with a timeout on the
read. The following notes are keyed to the example. Note 2 is in
the run session.

~ To invoke the timeout mechanism, TFTMO is ORed with the
read function (IORLB). We must use Read Logical Block
here, because any subfunction bits are stripped off when a
Read Virtual Block is translated to a Read Logical Block
function. In addition, the third parameter in the I/O
parameter list specifies the length of the timeout in
10-second intervals. This timeout occurs if that amount
of time passes between successive keystrokes. If a
timeout occurs, input is terminated, but no error is
reported. Instead, the success code +2 is returned rather
than the standard +1.

4t In the first run, the QIO timed out after KJHKJjjj. In
the second run, the QIO was terminated with a carriage
return before it timed out.

To handle the timeout specially, just check the I/O status
byte for a value of +2 (IS.TMO). Another alternative for
placing a time limit is to use a Mark Time directive (CALL
MARK). The timeout with a Mark Time is for the entire
input, rather than for the next keystroke.

93

USING THE QIO DIRECTIVE

~~'I:::OGI:;:AM CH.OTIM
c+
C FILE QIOTIM.FTN
C;
C This task reads s line of text from the terminal,
C converts all upper case characters to lower case, and
r prints the converted messa~e back at the terminal. It
ruses swnchronous UIOs, with a timeout on the read.
("'-

INTEGER IOSB(2),PLIST(3),DSW,DRCTV
BYTE BUFF(SO),SUCCOD
EQUIVALENCE (SUCCOD,IOSB) Success code is low

r bwte of I/O status
r block
C MNEMONICS

INTEGER IORLB,TFTMO,IOWVB
DATA IORLB,TFTMO,IOWVB/Pl000,P200,Hll000/
CALL GETADR(PLIST,BUFF) ! Fill in buffer address
PLI8T(2) = SO ! Len~th of buffer
PLIST(3) = 1 ! Timeout count o CALL WTCHO (IORLB. OR. TFTMCh 5111" II IOSB" PLIST ,x)SW)

(" ! I ssue read
IF (DSW.LT.O) GOTO 1001 ! Branch on dir error
IF (SUCCOD.LT.O) GOTO 1011 ! Branch on I/O error

DO 10 I=1,108B(2) ! Get count of characters
("' twped in
r Check for uppercase ASCII character; must be between A
C and Z

IF (BUFF(I).LT.'A'.OR.BUFF(I).GT.'Z') GOTO 10
C It is upper case, so convert

BUFF(!) = BUFF(I)+32
:1.0 CONTINUE

PLIST(2) - IOSB(2)
PLIST(3) _ .. "40

Character count and
Format control for

C output
CALL WTQIO(!OWVB,5,1,,,IOSB,PLIST,DSW) ! Output

f' ! resul ts
IF (DSW.LT.O) GO TO 1002 ! Branch on dir error
IF (SUCCOD.LT.O) GOTO 1012 ! Branch on I/O error
CAL.L EXIT

Example 3-5 Read With Timeout (Sheet 1 of 2)

94

o

USING THE QIO DIRECTIVE

c
C Error code
C
1001 DRCTV = 1 Error on 1st QIO

GOTO 1003 Print messa~e and exit
1002
1003
1004.

DRCTV = 2 Error on 2nd aID
TYPE 1004,DRCTV~DSW

FORMAT (' DIRECTIVE ERROR ON DIRECTIVE .',12,',
1 DSW =',16)
CALL EXIT

1011 DRCTV = 1 Error on 1st aID
GO TO 1013 Print messa~e and exit

1012 DRCTV = 2 Error on 2nd aID
1013 TYPE 1014,DRCTV,IOSB(1)
1014 FORMAT (' I/O ERROR ON DIRECTIVE i',I2~', I/O

leODE =',16)
CALL EXIT
END

Run Session

)RUN aIOTIM
KJHKJJJJ

kJhkJJJJ
>RUN aIOTIM
JJJafhkJfiur(RET)
JJJafhkJfiur
)

Example 3-5 Read With Timeout (Sheet 2 of 2)

95

USING THE QIO DIRECTIVE

Terminal-Independent Cursor Control

Terminal-independent cursor control is provided if selected at
SYSGEN time. If this is done, certain I/O requests are
automatically converted for you by the terminal driver for the
particular device for which the I/O request is made. This is
typically done with escape sequences used for positioning the
cursor. This allows a task to move the cursor to any position on
the screen and then write a message~ This also can be done by
imbedding the terminal-specific escape sequences into the write
buffer. The advantage of using terminal-independent cursor
control is that the same program will work at different terminals
(VT-52s and VT-l0~s, for example), without any need for
modification.

To provide cursor control, place the proper value in the vertical
forms control word of the I/O parameter list. If the high-order
byte in the VFC word is nonzero, the word is interpreted as a
cursor position. The high-order byte is the line number, and the
low-order byte is the column number. Home position, the upper
left corner of the screen, is defined as line I, column I. To
start the display at line 10, column 25, place a 10 in the
high-order byte and a 25 in the low-order byte. To do this, use
the expression 10*256.0R.25. In general, X*256.0R.Y corresponds
to position X,Y on the screen. If the high-order bit in the line
number byte is set, the screen is cleared before the cursor is
moved.

96

USING THE QIO DIRECTIVE

Example 3-6 demonstrates the use of terminal-independent cursor
control. The following notes are keyed to the example.

•
e

• •
•

Issue a Mark Time directive. In the CALL MARK(3,1,3,DSW),
the first parameter is EFN 3. The 1 is the time interval
magnitude. The second 3 is the time interval unit. A 3
indicates minutes. Hence the directive will set EFN 3 in
one minute.

Issue the second Mark Time directive. This one will set
event flag 2. It is used as the time interval for
updating the time. When the one second goes by and the
flag is set, we check for one minute gone by and update
the time display again if it has not.

Put the address of TIMMSG into PLIST(l).

Put X (line) in high byte and Y (column) in low byte of
PLIST(3), which is the vertical forms control for a QIO.
When the high-order byte of the VFC is nonzero, the word
is interpreted as a cursor position.

Issue the write. The vertical format control (X*256).OR.Y
places the cursor before the write at line X, column Y.
The TF.RCU subfunction code (TFRCU) instructs the terminal
driver to save the cursor position before moving it and
then to restore it after writing the message. This allows
an operator to continue typing in commands while this task
runs.

Ct Wait for one second to go by.

.. Read event flag 3. If it is set, the one minute is up and
we should exit.

The display will actually appear at line X, column Y on the
screen, and is updated every second.

97

USING THE QIO DIRECTIVE

F'ROGI~AM DATTIM
c+
C FILE DATTIM.FTN
f'
C This task places the date and the time at line X,
C column Y and then updates the display everw Z seconds
C fc)r 1 minl.Jte.
c~~

INTEGER X,Y,Z
DATA X,Y,Z/S,32,1/
INTEGER DSW,IOSB(2),PLIST(3)
BYTE SUCCOD,TIMMSG(18)
EQUIVALENCE (SUCCOD,IOSB) ! Low byte of status

C ! block is success code
INTEGER IOWLB,TFRCU,ISCLR

o CALL MAI~I\ (3 , 1 , :~ , DSW)

IF (DSW.LT.O) GOTO 1001
1.0 0 CALL MAI~I\(2,Z,2,DSW)

o
o

IF (DSW.LT.O) GOTO 1002
CALL DATECTIMMSG)
TIMMSG(10) :::: ' ,

!
CALL TIME(TIMMSG(11» !
CALL GETADR(PLIST,TIMMSG)
'::·L.I£;T(2) _ .. tEJ

PLIST(3) = (X*256).OR.Y
(" Di~;f"la!:~ time

Set UP to exit after
1 minute

Branch on dir error
Set event fla~ 2 after

Z seconds

Get date in bytes 1-9
Insert space between

d<'3te and time
Get time in byte 11-18

o CALL WTCHO (IOWLB + OR. TFI:-':CU" ~j" 1, , IOSB, PLIST, DaW)
IF (DSW.LT.O) GOTO 1003 ! Branch on dir error
IF (SUCCOD.LT.O) GOTO 1004 ! Branch on I/O

o CALL WAITFI:-':(21'DSW)

IF (DSW.LT.O) GOTO 1005
C' Ch~~ck fCJr 1 minl..lte !.:J('.)rH:~ b~~

c
C'
C
C'

o CALL I:-':EADEF (3, DSW)
IF (DSW.LT.O) GOTO 1006
IF (DSW.EQ.ISCLR) GOTO 10

GOTO 1100

error
Wait for mark time to
e~·~p i rE~

Branch on dir error

Check event f 1 a!tt
Branch on dir error

! Check for f1.a~

already clear. If
clear" minute
not UP Yet, update
d:i~spla~ again

Example 3-6 Terminal-Independent Cursor Control (Sheet 1 of 2)

98

USING THE QIO DIRECTIVE

C Error code
1001 WRITE (5,1051) DSW

GOTO 1100
1002 WRITE (5,1052) DSW

GOTO 1100
1003 WRITE (5,1053) DSW

GOTO 1100
1004 WRITE (5,1054) SUCCOD

GOTO 1100
1005 WRITE (5,1055) DSW

GOTO 1100
1006 WRITE (5,1056) DSW

GOTO 1100
1051 FORMAT (' ERROR ON MARK TIME FOR 1 MINUTE. DSW -

1 ',15)
1052 FORMAT (' ERROR ON MARK TIME FOR 1 SECOND. DSW -

1 ',15)
1053 FORMAT (' DIRECTIVE ERROR ON WRITE. DSW = ',IS)
1054 FORMAT (' I/O ERROR ON WRITE. CODE = ',15)
1055 FORMAT (' ERROR ON WAIT FOR. DSW = ',15)
1056 FORMAT (' ERROR ON CLEAR EVENT FLAG. DSW = ',IS)
1100 CALL EXIT

END

Run Session

>RUN DATTIM
12-MAR-82 11:12:54

DISPLAY WILL START AT LINE 5, COLUMN 32

Example 3-6 Terminal-Independent Cursor Control (Sheet 2 of 2)

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

99

USING DIRECTIVES FOR
INTERT ASK COMMUNICATION

USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION

The RSX-llM program development features allow modular development
of programs; the multitasking feature allows a modular approach
to applications.

A system of multiple tasks may require one or more of the
following services provided by executive directives' under RSX-llM.

• First task requests that the second task be run.

• First task is notified of completion of the second task
operation.

• Tasks pass data to each other.

This module explains how to use system directives for this type of
coordination between tasks.

• To use directives which control task
synchronize cooperating tasks

OBJECTIVES

execution to

• To use the send/receive directives to pass data between
tasks

• To write tasks which spawn subtasks using parent/offspring
directives

RESOURCE

• RSX-llM/M-PLUS Executive Reference Manual, Chapters 2 and
4 plus specific directives in Chapter 5

103

USING DIRECTIVES FOR INTERTASK COMMUNICATION

USING TASK CONTROL DIRECTIVES AND EVENT FLAGS

It is generally good programming practice to divide a single
complex task into a number of separate tasks, with each task
performing a distinct logical function. The use of a group of
tasks to perform a complex function frequently makes good sense,
especially where different parts of the process may run at widely
differing speeds, each more or less independent of the others.

Suppose, for instance, that one needs to simulate customer
transactions at a bank. There are, say, five windows and up to 15
customers can physically stand in line at a time, given the size
of the waiting area. One might design a group of tasks, one task
per line, to simulate this complex .system. This approach has the
advantage of simulating the related, but essentially parallel,
processes in a more realistic manner than would a single, serial,
simulation. A further advantage of a multitasking approach to
such a job is that changes in the behavior of the system that are
caused by changes in a single line (e.g., by assigning different
sorts of transactions to different lines) can be easily simulated
merely by modifying the task that simulates that line.

An RSX-IIM programmer typically uses a mix of four multitasking
methods:

• Common or group global event flags, together with
synchronization and task scheduling directives, are used
to synchronize tasks.

• Resident commons are used to share data in memory.

• Memory management directives are used to create and/or
share data areas dynamically at run time.

• File handling routines are used to open disk files for
shared access.

The use of shared regions, memory management directives and files
are covered in later modules.

105

USING DIRECTIVES FOR INTER~ASK COMMUNICATION

Directives

Table 4-1 lists the various task control directives which are
available for task synchronization. Most of them were discussed
in earlier modules. All of the directives are documented
individually in Chapter 5 of the RSX-llM/M-PLUS Executive
Reference Manual.

Table 4-2 shows the differences between suspending and stopping a
task. The major difference is that stopping puts the task into a
stopped state which effectively lowers the task priority to 0,
allowing any active task to checkpoint it if it is checkpointable. '
Suspending or waiting, on the other hand, keeps the task competing
for memory space on the basis of its running priority. This means
that if the task is checkpointable, only tasks of higher priority
can checkpoint it. Waiting for an event flag affects
checkpointability the same way as suspending.

Table 4-3 lists the various event flag directives which are
available for synchronization.

106

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directive

FORTRAN CALL

REQUES
RUN

ABORT

SUSPND
STOP

RESUME
USTP

Table 4-1 Task Control Directives
and Their Use for Synchronizing Tasks

Example of Use for Synchronization

Issuing task activates target task;
target task then performs some operation
for issuing task

Issuing task aborts target task

A task suspends or stops itself to
wait for completion of another
task operation

A task suspends or stops itself
until it is needed by another task

A task resumes or unstops another
task which has suspended or stopped
itself while waiting for it
to complete some operation

A task resumes or unstops another
task when it needs the other task's
services

A task can also be resumed:

- by its own AST routine
- by an operator using a DCL CONTINUE

command (RESUME in MCR)

A task can also be unstopped:

- by its own AST routine
- by an operator using a DCL START

command (UNS in MCR)

107

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-2 Stopping Compared to Suspending or Waiting

Stopping Suspending or Waiting

Priority is effectively
dropped to 0

Task can be checkpointed
by any other task (if
checkpointable)

Likelihood of being
checkpointed increases.

Frees memory for other
tasks

Task response time
increases dramatically
if task is checkpointed

Priority remains unchanged

Task can be checkpointed
only by tasks of higher
priority

Likelihood of being check
pointed remains normal

Continued allocation of
memory can block out lower
priority tasks

No change in task response
time, because no change
in likelihood of being
checkpointed

108

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directive

FORTRAN CALL

CLREF

SETEF

WAITFR
STOPFR

STLOR
WFLOR

READEF

Table 4-3 Event Flag Directives and
Their Use for Synchronizing Tasks

Example of Use for Synchronization

A task clears the event flag, then waits
for it to be set by another task

A task performing an operation for
another task sets an event flag to
signify completion of the operation

A task waits for completion of an
operation by another task by waiting
or stopping for that task to set an
event flag

A task waits or stops for the completion
of the first of some set of operations

A task tests for completion of an
operation by another task, without
waiting or stoppin9 for it

109

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-1 shows the use of the Request Task (REQUES), Suspend
(SUSPND), and Resume (RESUME) directives for synchronization. The
following notes are keyed to the example. Notes 1,2 and 5 are in
TASKA. Notes 3 and 4 are in TASKB.

o TASKA requests TASKB. This means that TASKB must be
installed under the name TASKB. After this, both tasks
are active and compete for memory and CPU time.

o TASKA suspends itself. After this it still compet.es for
memory at its regular priority, but not for CPU time.

t» TASKB types out a message and then resumes TASKA. More
typically, TASKB would perform some service for TASKA
rather than just typing a message. After TASKB resumes
TASKA,they both compete for CPU time again.

o TASKB displays another message and then exits.

ct TASKA, now resumed, displays a message and exits.

Depending on the relative priorities of TASKA and TASKB and on the
particular task scheduling options on your system (e.g., round
robin scheduling, etc.), steps 4 and 5 may be reversed on the
run session.

110

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PROGRAM TASKA
C
C FILE TASKA.FTN
C
C This task reGuests TASKB to run, and then suspends
C itself. TASKB resumes this task and exits.
C
C Install and run instructions: TASKA and TASKB must be
C installed. Just run TASKA.
C

C

o
C

o
c

0
900

910
1000

Example 4-1

INTEGER DSW
DATA TASKB/5RTASKBI

TYPE *,'TASKA BEGINS AND REQUESTS TASKB'
CALL REQUES(TASKB"DSW)
IF (DSW.LT.O) GOTO 900

TYPE *,'TASKA IS SUSPENDING ITSELF'
CALL SUSPND(DSW)
IF (DSW.LT.O) GOTO 910

~rYPE *,'TASKA HAS BEEN RESUMED'
CALL EXIT
TYPE *,'TASKA UNABLE TO REQUEST TASKB.
1,DSW
GOTO 1000

DSW -

TYPE *,'TASKA UNABLE TO SUSPEND. DSW - ',DSW
CALL EXIT
END

Synchronizing Tasks Using Suspend and Resume
(Sheet 1 of 2)

III

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PF<OGliAM TASI\B
c
C FILE TASKB.FTN
c
C This task is activated bw TASKA. It performs its
C operation and resumes TASKA, which has suspended
(" :i.tself.
C

I NTE:GEI~ nsw
DATA TASKA/5RTASKAI

c
C STAFrr:
C Anw operation could be performed here, but in this
C case it's onlw ill twpeout.
("'

~YPE *,'TASKB IS ALIVE AND RUNNING' e LCAL.I. .. RESUME (TASKA, nSW)
IF (DSW~LT.O) GO TO 900

O rTYPE *,'TASI\B HAS RESUMEn TASKA ANn IS EXITING'
LCALL EXIT

900 TYPE *,'TASKB UNABLE TO RESUME TASKA. nsw = ',nsw
CALI ... EXIT
END

I~tlrl Session

>INS TASKA
>INS TASKB
>I~UN TASKA

TASKA BEGINS ANn REQUESTS TASKB
TASKA IS SUSPENDING ITSELF
TASKB IS ALIVE ANn RUNNING
TASKA HAS BEEN RESUMED
TASKB HAS RESUMEn TASKA AND IS EXITING

Example 4-1 Synchronizing Tasks Using Suspend and Resume
(Sheet 2 of 2)

112

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-2 shows the use of event flags for synchronization. In
Module 2, there is a similar example. Here, TASKC requests TASKD,
rather than requiring an operator to start both tasks. Also, Stop
For Single Event Flag is used rather than Wait For Single Event
Flag. The difference between the two is that the first causes the
task to enter a stopped state and the other causes the task to
enter a Wait For (like a suspended) state. The following notes
are keyed to the example. Notes 1,2,3 and 6 are in TASKC. Notes
4 and 5 are in TASKD.

o

0
e
0
e
0

Clear the event flag to initialize it.
is unpredictable, since other tasks
cleared it.

Request TASKD.

It's initial st~te
may have set or

Stop until the event flag is set by TASKD.

TASKD displays a message and sets the event flag.

TASKD displays a message and exits.

TASKC displays a message and exits.

Depending on the relative priorities of the two tasks, significant
events in the system, and other scheduling considerations, the
order of the steps may vary. In particular, steps 3 and 4
above may be reversed, as well as 5 and 6.

The event flag must be a common or group global, and not a local
one. In either case, the users on the system must coordinate to
avoid several users using the same event flag for different
purposes. If a group global event flag is used, the flags for
that group may have to be created using either the Create Group
Global Event Flags directive (CRGF) or the DCL SET
GROUPFLAGS/CREATE (FLA /CRE in MCR) command.

The Executive only scans the Active Task List and schedules tasks
for CPU time after a significant event. Setting an event flag
does not cause a significant event. This means that TASKC
normally won't compete for CPU time until at least the next
significant event in the system. If it is important that TASKC
being executing sooner than that, TASKD should issue the Declare
Significant Event directive (DECLAR), causing the Executive to
reschedule tasks. For a discussion of significant events, see
Chapter 2 of the RSX-IlM/M-PLUS Executive Reference Manual.

113

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PI:;:OGI:;:AM TASI(C
f'
C:: F I I ... F.:: TASI(C. FTN
c
C This task clears an event fla~ and reGuests TASKD to
r run, and then stops until the event flas is set bw
C TASKD
C
C Install and run instructions: TASKD must be installed.
r Just run TASKC.
("

c

c

INTEGER DSW,FLAG
DATA FLAG/331 !MNEMONIC FOR EVENT FLAG
DATA TASKD/SRTASKDI

TYPE *,'TASKC BEGINS AND REQUESTS TASKD'

o CALL CLREF(FLAG"DSW)

o
IF CDSW.LT.O) TYPE *,'TASKC UNABLE TO INITIALIZE
lEVENT FLAG. DSW = ',DSW

CALL REQUESCTASKD",DSW)
IF CDSW.LT.O) TYPE *,'TASKC UNABLE TO REQUEST
lTASKD. DSW = ',DSW

TYPE *,'TASKC IS WAITING FOR EVENT FLAG'
CALL STOPFRCFLAG,DSW)
IF (DSW.LT.O) TYPE *,'TASKC"S WAIT REQUEST
lREJECTED. DSW = ',DSW

~
rYPE *,,'TASKC HAS BEEN UNSTOPPED AND WILL NOW o lEXIT'
CALL EXIT
END

Example 4-2 Synchronizing Tasks Using Event Flags
(Sheet 1 of 2)

114

USING DIRECTIVES FOR INTERTASK COMMUNICATION

("'

C F'ILE TASI\D.FTN
G
C This task is activated b~ TASI\C. It performs its
r operation and sets the fla~ for which TASKC is waitins
C'

r'
C BTAI:~T:

C

INTEGER DSW"FLAG
DATA FLAG/:3:31 !MNEMONIC FOR EVENT FLAG

r Any operation could be performed here, but in this
C case it's only a typeout.
C o frYPE ~~ '~~SI~D IS .~LIVE AND RUNNING'

LCALI,.. ..>ETEJ (F LAG" D .. >W)
IF (DSW.LT.O) TYPE *,'TASKD UNABLE TO SET EVENT
lFLAG. DSW = ',DSW

U
YPE *,,'TASI\D HAS SET THE EVENT FLAG AND IS o l.EXITING'

·'ALL EXIT
END

I:;:un Se~;s:i em

>INS TASKC
>I:;:UN TASKC
TASKC BEGINS AND REQUESTS TASKD
TASKC IS STOPPING FOR EVENT FLAG
TASKD IS ALIVE AND RUNNING
TASKD HAS SET THE EVENT FLAG AND IS EXITING
TASKC HAS BEEN UNSTOPPED AND WILL NOW EXIT

Example 4-2 Synchronizing Tasks Using Event Flags
(Sheet 2 of 2)

115

USING DIRECTIVES FOR INTERTASK COMMUNICATION

SEND/RECEIVE DIRECTIVES

General Concepts

The Send and Receive directives are used to transmit a 13 word
block of data between tasks. The sequence of events is as
follows:

1. A task issues a Send Data request, specifying a receiver
task and a data buffer.

2. The Executive copies the data buffer into a data packet in
the dynamic storage region (DSR or pool).

3. The Executive places
(first-in-first-out) into
specified receiving task.

the
the

data packet FIFO
receive queue of the

4. Later, the receiving task issues a Receive Data request,
specifying a data buffer.

5. The Executi ve copi es the data 'packet into the buffer
specified by the receiving task.

Directives

Table 4-4 lists the Send Data directive and the various Receive
Data directives. The difference among the Receive Data directives
concerns what happens if there are no data packets in the
receiver's receive queue.

All receive directives receive 15(10) words, including the sender
task name (in Radix-50 format) plus the data. If no sender task
is specified in a Receive Data directive, the first packet in the
receive queue is dequeued, regardless of which task sent it. If a
sender task is specified, only a packet sent by that task is
dequeued.

116

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-4 The Send/Receive Data Directive

Directive
Name

Send Data

Receive Data

Receive Data
or Exit

Receive Data
of Stop

Directive
Call

SEND

RECEIV

RECOEX

RCST

Notes

Sends a 13(10) word
buffer to receiver

Event flag (if used)
set when packet queued
to receiver

Error if no data
packets queued

Exit if no data
packets queued

Stop if no data
packets queued

Synchronizing Send Requests With Receive Requests

Event flags can be used for synchronization. The event flag is
specified by the sending task. This event flag is set when the
data packet has been queued to the receiving task. Thus, a global
or group global event flag may be used to unblock a receiving task
which is active and waiting for the event flag to be set.

In addition, the task control directives can be used for
synchronization. Table 4-5 summarizes the various synchronization
techniques which might be used. Keep in mind that a Receive Data
directive (RECEIV) causes an error condition (DSW = -8, IE. ITS;
directive inconsistent with task state)_ if there is no data packet
in the receive queue. Receive Data or Stop (RCST) and Receive
Data or Exit (RECOEX), on the other hand, cause the task to stop
or exit, respectively, if there is no da~a queued. For further
information about possible synchronization problems, see the
writeup on the Receive Data directive (RECEIV) in Chapter 5 of the
RSX-llM/M-PLUS Executive Reference Manual.

117

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-5 Methods of Synchronizing a Receiving Task
(RECEIV) with a Sending Task (SEND)

Method

RECEIV issues a Wait
For or a Stop For
Event Flag directive,
followed by a Receive
directive. SEND uses
that (common or group
global) event flag in
its SEND directive.

RECEIV issues a
Suspend or a Stop
directive followed
by a Receive direc
tive. SEND issues a
Send directive
followed by a Resume
or an Unstop
directive.

RECEIV issues a
Receive Data or Stop
directive. SEND issues
a Send followed by an
Unstop directive.

RECEIV monitors an
event flag periodi
cally. When the
event flag is set,
RECEIV issues the
Receive directive.
SEND specifies that
event flag in its
Send directive.

Advantages

LoW system scheduling
overhead.

Does not require an
event flag.

Low system scheduling
overhead.
Does not require an
event flag.

RECEIV can continue
processing in para
llel with RECEIV.

118

Disadvantages

Requires care in
initializing and
setting flag.
(See Examples 4-3 '
and 4-4.)

possible problems
in sequence of
Suspend or Stop,
and Resume or
Unstop, if the
Resume unstop is
issued before the
receive suspends
or stops.

Possible delay
starting RECEIV
again, if RECEIV
was checkpointed.
(Can· be avoided
if RECEIV is
built non-check
pointable.)

RECEIV must
periodically re
issue a Read
Event Flag or
Clear Event Flag
directive. Requires
care in initiali
zing and setting
the flag.

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Examples 4-3, 4-4, and 4-5 show the use of Send and
directives by a pair of tasks. Examples 4-3 and 4-4 use
flag for synchronization; Example 4-5 uses Receive Data
along with Unstop for synchronization. The following
keyed to Example 4-3. Notes 1, 5, 6 and 7 are in SENDI.
3, 4, 8, 9 and 10 are in RECVl.

Receive
an event
or Stop

notes are
Notes 2,

o RECVl must be run first, or else the event flag will
already be set by SENDI to indicate that a data packet has
been sent. In that case, RECVl will clear the flag and
wait for it to be set again, and won't realize that a data
packet is already queued to it.

o Use a DO loop with "I" as the message counter. We will
receive and display three messages and then exit.

t» Initialize the event flag.

C» Wait for the flag to be set after SENDI sends the data
packet, placing it in RECVl's receive queue.

ct Get the data to be sent.

C» Send the data and set event flag 33 when the data packet
is queued to RECVl.

«t SENDI exits.

ct Receive data from anyone.

C) Display a header and the data sent. We skip the first two
words (four-bytes) of the buffer, which contain the name
of the sender task in Radix-50 format.

CD Go t~rough t~e loop which clears the event flag and
recelves agaln if we have not yet received three messages.
If we have, display a message and exit.

119

USING DIRECTIVES FOR INTERTASK COMMUNICATION

pr~O(3F~AM SENti 1
c
C FILE SENtll.FTN
C
r This task prompts at TI: for a line of text and sends
C the data to RECUl for processin~. S~nchronization is
C handled through a common event flag.
('" .,

[
r Install and run instructions; RECU1 must be installed o (~ and T'un r,rirJr tC) rlJflrdns SEND:L. RECU1 continlJes t,c rl.Jn
C until it receives 3 data packets.
("

BYTE BUFFEI~ (26)
DATA IEFN 1331
tlATA RTASK/6RRECVl 1

! Event flag
! Receiver task

C Prompt for input

O rrYF'E *,' TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS'
U~EAD (5,10) BUFFER ! Read text

A CALL SENti (RTASK,BUFFER, IEFNlI IDSW) ! Send dc~ta
:1.0 ~'OI~MAT (26Al)

V 0 IF (IDSW • LT. 0) GOTO 900 ! Branch on di r er'T'or
CALL EXIT ! E}·d t

C Error cod~?
900 TYPE *,'UNABLE TO QUEUE DATA TO RECU1. DSW = ',IDSW

CALL EXIT
ENtI

Example 4-3 Synchronizing a Receiving Task Using Event Flags
(Sheet 1 of 3)

120

USING DIRECTIVES FOR INTERTASK COMMUNICATION

F'F~OGRAM RECVl
("'

C FIL.E 1:~ECVl.+FTN

C
C This task receives data from an~ sender task (e.~.,

C RECV1). It prints the data on TI:. Then it waits for
r another data packet. It does this until it has received
C 3 messaSes and then exits.
("'

C This task s~nchronizes with its sender throu~h an
C' f.~vent f 1 as.
C
C Install and run instructions: RECV1 must be installed
("' and run before runnins SEND1.
("'

INTEGER RBUFF(1S)
DATA IEFN /33/

Receive buffer
Event fl.a~

O arDO 100 1::::1,3
~~:ALL CLREF (33,IDSW) ! Clear fla~

IF (IDSW .GE. 0) GOTO 10
TYPE *,'ERROR INITIALIZING FLAG. DSW:::: ',IDSW
GOTO 1000

:to 0 Cf~LL WAITFF~ C~~31'IDSW) ! Wait for a S€HH:i

IF (IDSW .EQ. 1) GOTO 20
TYPE *,'WAIT DIRECTIVE FAILED. DSW - 'l'IDSW
GOTO 1000

20 4) CALL J:;:ECEIV (lIRBUFF, 1I IDSW) ! Receive fT'OITI an~:wne
IF (IDSW .EQ. 1) GO TO 30

~55

100

lOOO

TYPE *,1'RECEIVE DIRECTIVE FAILED IN uRECV1-.
l. DSW :::: ',IDSW
GOTO 1000
~YPE *"~ATA RECEIVED BY "RECVI-:'

8 LWJ:;:ITE C!51/35) (RBUFF(K)l'K::::3,IS)
FORMAT (' ',13A2)

CD CONTINUE
TYPE *1""RECV1 H HAS RECEIVED 3 MESSAGES AND WILL
:I. NOW EXIT'
CAL.L EXIT
END

Example 4~3 Synchronizing a Receiving Task Using Event Flags
(Sheet 2 of 3)

121

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

>INS RECV1
>RUN RECV1
>RUN SEND1
TYPE·A LINE OF TEXT, 26 CHARACTERS OR LESS
1111111
DATA RECEIVED BY "RECV1-:
>

1111111
>RUN SEND1
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
2222222222222222
DATA RECEIVED BY "RECVl a :

2222222222222222
>RUN SENDI
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
3333333333333333333333333
DATA RECEIVED BY -RECVI-:

3333333333333333333333333
"RECV1' HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT
>

Example 4-3 Synchronizing a Receiving Task Using Event Flags
(Sheet 3 of 3)

122

USING DIRECTIVES FOR INTERTASK COMMUNICATION

If you wish to run the tasks in Example 4-3 in any order, RECVl
must be modified to receive data packets on startup if SENDI has
already sent data. It gets complicated because SENDI may have
already sent several data packets. It's also possible that event
flag 33. was left set by someone else. In that case the Receive
directive will fail, but we should not abort. Example 4-4 shows
the modifications which must be made to Example 4-3 to allow the
tasks to be run in any order. The following notes are keyed to
Example 4-4.

o

o

o

o

o

o

We use a flag word (IBEF) to distinguish whether we are
working on messages sent before or after RECVl starts up.
Note that RECVlS must be installed as RECVl, since SENDI
sends to RECVl.

Check for event flag set on startup. If it is set, issue
a Receive. If SENDI has been run one or more times, the
Receive will succeed. If SENDI has not been run yet, the
flag was set by another task and the Receive will fail.

If the flag was not set, SENDI hasn't sent any messages
before we started. Clear the IBEF flag, so we know that a
Receive failure after the flag is set again is a real
failure.

In the case of a Receive failure, we check to see if we
are receiving data packets sent before RECVl started up.
If we are, we know we have received all data packets
already queued up before RECVl started executing.

If IBEF is clear, this was a failure after receiving all
data packets sent before RECV2 started up, so display an
error message and exit.

If IBEF is set, we have already received all data packets
which were queued up before RECVl started up. Now clear
IBEF and wait for the flag to be set at 40.

Check to see if we are still receiving data packets
before RECVI started up. If so, Receive again.
receiving until either we get all three packets or we

sent
Keep
get

have
and

a Receive failure. If, on the other hand, we
received a message sent since startup, clear the flag
wait for it to be set again when a new message is sent.

If a task runs and then exits with data packets in its receive
queue, those unreceived data packets are flushed from the queue on
exit. Hence, if SENDI sent four messages before RECVl was run,
the fourth message would be lost.

123

USING DIRECTIVES FOR INTERTASK COMMUNICATION

F'F~OGRAM RECV1S,
c
C FILE RECV1S.FTN
c
C This task and receives data from an~ sender task
r (e.~. SEND1). It prints the data on TIt. Then it
r waits for another data packet. It exits after
r receivinS and displawin~ 3 messaSes.
C'
C This task s~nchronizes with its sender throush an
r event flas. Because of this swnchronization, and the
C' care we take on startup to set messaSes alreadw
C sent, the tasks can be run in an~ order, with an~
C relative priorities.
("'

C Install and r~n instructions: RECV1S must be installed
C under the name RECV1 to work with SEND1.
C o C IBEF :i.s the "before· ·rls£h used tCl keeF' track of whc-?ther
C' we are receivin~ messaSes sent before RECVl started UP.
r If the event flas is set at startup time, keep receivins
C messages until we set a failure. We then wait until the
C' flas is set to receive again. 1 means receivin~ messa~es
C sent before RECV1 started, 0 means finished receivins
C' messages sent before

INTEGER IBEF,IEFN,RBUFF(15),MCNT
DATA IEFN /33/ Event flas
DATA rBEF /1/ Before fla~, assume

c

O
CALL CLREF (I EFN" I [lSW) ~
IATA MCNT /3/ !

IF (IDSW .LT. 0) GO TO 900
IF (rDSW .EQ. 2) GOTO 50

r Here if flas not initiaIl~ set

40

A [I F (I REF • EQ. 0) GOTO 40
V IBEF::::O

CALL WAITFR (33,IDSW)
IF (rDSW .LT. 0) GOTO 910

C Get here when the flaS is set

there are messases
MessaSe cOI.Jnter

Branch on dir error
Branch if flas set

o before fla~
Wait for next messaSe
Branch on dir error

50 CALL RECEIV (,RBUFF",IDSW) ! Receive from anwone
IF (IDSW .EQ~ 1) GOTO 80 ! Branch on directive ok

C Here on failure of Receive directive o IF (IBEF • ECL. 0) GOTO 920 ! Check for failuT'e
C on messages received
r before startup.
C Here if failure after receivinS messa~es alread~ there
C at startur~

IBEF::::O Clear before flas
GOTO 40 Wait for fIaS to be set

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 1 of 3)

124

USING DIRECTIVES FOR INTERTASK COMMUNICATION

C Successful receipt

O
WRITE (::h85) (RBUFF(K) "K::::3,15)

B5 FORMAT (' ',13A2)

BO [TYPE *,' DATA RECEIVED BY R RECVl R : '

MCNT=MCNT-l ! Decrement message counter
IF (MCNT .EQ. 0) GOTO 100 ! Branch back if not done

r Set UP for another receive

c
c
c o

IF (IBEF .NE. 0) GOTO 50 Check for still
receiving messa~es sent
before startup. If so,
receive a!!.fain.

CALL CLREF (33,IDSW) ! If not, clear fla~
IF (IDSW .LT. 0) GOTO 930 ! Branch on dir error
GOTO 40 ! Wait for fla~ set a~ain

C Here when three messaSes received
100 TYPE *,,'RRECV1" HAS RECEIVED 3 MESSAGES AND WILL

l NOW EXIT'
CALL EXIT

C EY'T'or code
900 TYPE I,'ERROR INITIALIZING FLAG. DSW :::: ',IDSW

GOTO lOOO
910 TYPE I,'WAIT DIRECTIVE FAILED. DSW :::: ',IDSW

GO TO 1000
920 [TYPE I,,'RECEIVE DIRECTIVE FAILED IN RRECV1 R

• o 1 :::: " IDSW
GO TO lOOO .

930 TYPE I,,'ERROR RECLEARING FLAG~ DSW:::: '"IDSW
1000 CALL EXIT

END

DSW

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 2 of 3)

125

USING DIRECTIVES FOR INTERTASK COMMUNICATION

/;:'.In Sess i orr

>INS/TASK_NAME:RECVl RECV1S
>I=\:UN SEND:!,
TYPE A LINE OF TEXT, 26 CHARACTEI:::S
l.:L:L 1 :L 1
>F~UN SENII:L
TYPE A LINE OF TEXT, 26 CHAI:::ACTERS
2222222222
>RUN F~ECVl

DATA RECEIVED BY "RECV1-,:
:1.111 11
DATA RECEIVED BY "RECV1-:
2~~22222222
RUN SENDt

OR LESS

OR LESS

TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
3:3:333
:::.
DATA RECEIVED BY -RECV1-:
:'53333
'RECV1- HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 3 of 3)

126

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-5 uses Receive Data or Stop in the Receiver and Send
Data followed by Unstop in the sender. These tasks can be run in
any order. The potential synchronization problems are
considerably easier to deal with when using this technique of
synchronization. We will go through it first for running RECV2
before running SEND2. Then we will discuss the other
possibilities. The following notes are keyed to the example.

o

o

e

o

o

We issue a Receive Data or Stop directive. If there is no
data packet queued, RECV2 stops and must be unstopped by
SENDI. If, on the other hand, there is a data packet
queued, we want to receive it. The DSW equals IS.SET(+2)
if the task was stopped and then unstopped, and equals
IS.SUC(+l) if a data packet was received. If RECV2 is run
first, we stop.

SEND2 gets the data and sends it. We do not need to
specify an event flag in the Send Data directive since we
use Stop/Unstop for synchronization.

Unstop RECV2. In this order, this directive will
successfully unstop RECV2 because RECV2 stopped when it
issued the Receive Data or Stop directive.

There are two directive errors on UNSTOP which are not
errors for this set of tasks. Check for these errors and
if found, assume that everything worked correctly. If
RECV2 is active but not stopped, it must be receiving
another packet. In that case, RECV2 will receive this
packet on the next Receive Data or Stop directive. If
RECV2 is not active, it has not been run yet. The packet
is still in RECV2's receive queue and RECV2 will receive
it when it is activated. The above situation will not
OCGur the first time through if RECV2 is run first.

If the error is not one of the two errors checked
for, display an error message and exit.

Check for whether we stopped and unstopped. If so, we
didn't receive the data packet yet. If not, we did
receive the data. In this case, if RECV2 is run first, we
did stop and unstop.

ct Since we have not yet received the data packet, issue
another Receive.

~ If there is still nothing in the Receive queue, something
is wrong. Display an error message and exit.

127

USING DIRECTIVES FOR INTERTASK COMMUNICATION

After a successful Receive, whether immediately or after
Stop and Unstop, display the received message. In that
case, issue another Receive Data or Stop and loop through
again if we have not yet received three messages. If
there is another data packet queued, we will receive it.
Otherwise, we stop until SEND2 sends data and unstops us
again.

If SEND2 is run once before RECV2, then the Unstop directive at 3
will fail. If in fact RECV2 is not active at all, or is active
but not stopped, it will dequeue the data packet when it issues a
Receive. Hence, we check for these conditions at 4 and just
exit if either condition caused the Unstop error. When we run
RECV2, we do actually receive a data packet at 1. At 5,
DSW = +l(IS.SUC) which means that we received a packet and didn't
stop. Therefore, we display the data and Receive or Stop again.
This time we will stop until SENDI unstops us again.

If SEND2 is run two or three times before RECV2, any data packets
already sent are received and displayed. In the case of two sent,
the third RCDS will cause RECV2 to stop until SEND2 sends a third
packet and unstops it. In the case of three packets already sent,
RECV2 will receive all three and then exit.

As in Example 4-4, if SEND2 sends more than
additional packets will be lost because
flushed when the task exits.

128

three packets, any
the receive queue is

USING DIRECTIVES FOR INTERTASK COMMUNICATION

F'F~OGIi:AM SENIr2
f'
C FILE SENIt2.FTN
C
C This task prompts at TI: for a line of text and sends
r the data to RECV2 for processin~. The receiver will
r continue to run until it receives 3 messa~es.
r Swnchronization is handled throu~h RECV2's stop bit.
r RECV2 and SEND2 may be run in anw order.
c
C Install and run instructions: RECV2 must be installed.
c

10

c-
("

.1

C

f'
("

.1

20

BYTE BUFFEIi: (26)
INTEGEIi: DSW
Ii:EAL.. Ii:ECV2
DATA RECV2/5RRECV21
INTEGER IEITS,IEACT
DATA IEITS,IEACT/-8,-71

! Send buffer

Receivin~ task name
Error mnemonics

~
rYF'E .p'TYF'E A LINE OF TEXT, 26 CHARACTERS OR LESS'
READ (5,5) BUFFER o FORMAT (2f.>Al)
CALI... SENDCRECV2,BUFFER"DSW) ! Send data to RECV2
IF (DSW.EQ.l) GOTO 10
TYPE .,'UNABLE TO QUEUE DATA TO "RECV2". DSW = '
lpDSW e CALL USTF' C RECV2" DSW) Unstc)p RECV2
IF (DSW.EQ.l) GO TO 20 ! Branch on directive ok
IF (DSW~EQ.IEITS) GOTO 20 ! Isn't he stopped?

That's ok, he'll pick
UP data when he
executes RCDS$ o IF CDSW.E(~.IEACT) GOTO 20 ! Is he not activ€~1) If

! not" he'll pick UP

! data when activated
TYPE .,'UNABLE TO UNSTOP uRECV2 u

• DSW = ',DSW

CALL EXIT
ENIt

! An~ other error is bad
! Exit

Example 4-5 Synchronizing a Receiving Task Using RCDS
(Sheet 1 of 3)

129

USING DIRECTIVES FOR INTERTASK COMMUNICATION

f'
C FILE RECV2.FTN·
C
C This task receives data from another task (e.~. SEND2).
C It prints the data, alon~ with a header, on TI:. Then
r it waits for another data packet, continuin~ this
C until it has received 3 messa~es.
C
C This task swnchronizes with its sender usin~ RCST.
C Because of this swnchronization, the tasks can be run
C in anw order, with anw relative priorities.
C
C Install and run instructions: RECV2 must be installed.
C
C

c
C

C

o

INTEGER RBUFF(15)
INTEGER DSW,ISSET
DATA ISSET/21

DO 100, I:::: 1 ,3

Receive buffer

DSW code mnemonic

CALL RCST(,RBUFF,DSW) Receive from anwone
IF (DSW.GE.O) GO TO 50
Twpe *,'RECEIVE DIRECTIVE FAILED IN URECV2-.
1 DSW :::: ',DSW Displaw error messa~e
GOTO 1000 and exit

C Successful receipt or unstopped bw another task. First
C check for unstopped after bein~ stopped, in which case
C we ha"'r to receive the data
50 . IF (DSW.NE.ISSET) GOTO 60 Were we stopped due
C 0 to rio dj~tar~ If not
C (NE), ~e have a
C data packet
C Stoppe~ due to no data: o CALL RECEIV(,I~BUFF, ,DSW) Now set the Ftacket

IF (DSW.EQ.l) GO TO 60

o lUNSTOPPED. DSW :::: ',DSW Displaw error ~
rYPE *,'RECEIVE DIRECTIVE FAILED AFTER nRECV2-

GOTO 1000 messa~e and exit
C Display data
60 ~TYPE 75,(RBUFF(J),J::::3,15)
75 0 FORMAT (' DATA RECEIVED BY -RECV2 u :'/1X,13A2)
:LOO CONTINUE
C Have received 3 messaSes

TYPE *"uRECV2- HAS RECEIVED 3 MESSAGES AND WILL
1 NOW EXIT'

1000 CALL EXIT ! Exit
END

Example 4-5 Synchronizing a Receiving Task Using ReDS
(Sheet 2 of 3)

130

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

! Run RECV2 first, then run SEND2 3 times
>INS RECV2
>RUN RECV2
>RUN SEND2
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
111111111
DATA RECEIVED BY "RECV2":
>

111111111
>RUN SEND2
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
22222
DATA RECEIVED BY "RECV2":
>

22222
>RUN SEND2
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
3333333333333333333333333
DATA RECEIVED BY "RECV2":
>

3333333333333333333333333
"RECV2" HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

! Run SEND2 once first, then run RECV2, and then run SEND2 twice more
>RUN SEND2
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
44444
>RUN RECV2
>

DATA RECEIVED BY "RECV2":
44444
>RUN SEND2
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
55555555
>

DATA RECEIVED BY HRECV2 1
:

55555555
>RUN SEND2
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS
66
>

DATA RECEIVED BY "RECV2":
66
uRECV2· HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

Example 4-5 Synchronizing a Receiving Task Using RCDS
(Sheet 3 of 3)

131

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Using Send/Receive Directives for Synchronization

If it is desirable to pass data as well as notify another task of
the occurrence of an event, the Send/Receive directives can be
used to perform this double function. The advantage of this
approach is that data can be sent in addition to notifying the
other task of the occurrence of the event. The receiving task Cqn
synchronize with the event using any of the techniques listed in
Table 4-5.

Slaving the Receiving Task

Normally, a task runs under the UIC and the TI: of its initiator,
the operator issuing the RUN command, or the task issuing the
Request Task directive (REQUES). A receiver task which is run
from the same terminal as the sender is assigned the same UIC and
TI: as the sender. However, if the receiver is run from another
terminal or by a different user, it's UIC and/or TI: may be
different from that of the sender. Also, a receiver might receive
data from several different tasks initiated at several different
terminals.

If it is desirable to have the receiver task take on the UIC and
the TI: of the sender each time data is received, the receiver
task can be built as a slaved task. The advantages of this
approach are that the receiver then acquires the same privileges
as the sending task and can also do I/O directly to the sending
task's terminal (through TI:). To build a task as a slaved task,
either task-build with the /SLAVE qualifier or install with the
/SLAVE qualifier.

132

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PARENT /OFFSPRING TASKING

In multitasking situations, it is often useful to have one task
activate and monitor other tasks, or monitor already active tasks.
In particular, the requesting task may wish to receive periodic
status reports from the other tasks during execution, or when the
tasks exit.

For example, a task to secure a nuclear reactor in case of
accident activates a pair of subordinate tasks, one task to issue
warnings to personnel and the other to initiate the shutdown
procedure. The task which activates the two subordinate tasks can
receive periodic status reports from each of the other tasks, so
that it can take appropriate action in case of a problem. In
particular, it would want to know about any failure in either
operation. .

Under RSX-IIM, parent/offspring tasking provides a facility for
setting tasks up in the structure described above. As we shall
see, this is easier to program than Send/Receive directives. A
parent task is one which connects to or spawns another task,
called an offspring task.

When a task spawns another task,
establishes a connection to it.
parent task should just connect
shows this relationship. When
also send a command line or data
to the offspring.

it both activates the task and
If the task is already active, a

to the offspring. Figure 4-1
a task spawns another task it can
of up to 79 characters (or bytes)

Once the connection is established using Spawn or Connect, the
offspring can send or emit status by using the Emit Status (EMST)
directive. This allows the offspring to send a one-word status
value to the parent. Upon exi t, a success code (EX$SUC=+l)' is
returned if the standard EXIT is used, or a specified one-word
status can be returned if the Exit with Status directive (EXST) is
used. If the task is aborted, a standard severe warning code
(EX$SEV=+4) is returned. The status is automatically returned in
a status block in the parent task no receive directive is
needed. Synchronization can be handled using event flags or an
AST routine. The flag is set or the AST routine entered when the
status is received. Table 4-6 shows the standard status codes.

133

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PARENT

OFFSPRING

SPAWN OFFSPRING J COMMAND LINE I
I I -

------ EXIT, EXIT
WITH STATUS,

EVENT FLAG AND/OR I I OR EMIT
AST ROUTINE I OFFSPRING STATUS I STATUS

TK-7745

Figure 4-1 Parent/Offspring Communication Facilities

134

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Additional directives are provided for parent/offspring support.
The Send Data, Request, and Connect directive combines the
functions of the three separate directives (Send, Request, and
Connect) into a single directive. This is similar to Spawn, but
sends a 13 word data packet rather than a 79 byte command line.
It also just sends data and connects if the task is already
active. Spawn is rejected if the task is already active, unless
the task is a CLI (Command Line Interpreter).

Two other directives are provided to allow chaining, or passing a
parent/offspring connection from an offspring to another task. We
will discuss chaining in more detail later in this module.

Mnemonic

EX$WAR

EX$SUC

EX$ERR

EX$SEV

Table 4-6 Standard Exit Status Codes

Value

1

2

4

Meaning

Warning -- task succeeded, but
irregularities are possible

Success -- results as expected

Error -- results unlikely to be
as expected

Severe Error -- one or more fatal
errors were detected, or offspring
aborted.

The above symbols could be used in a FORTRAN program by dropping
the $ sign from the symbol and using them as a variable name with
the appropriate values.

135

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directives Issued by a Parent Task

Table 4-7 summarizes the directives which may be issued by a
parent task. Note that parent and offspring are relative terms,
an offspring of one task may be the parent of another.

Table 4-7 Comparison of Parent Directives

Characteristic

Can be used for
offspring which
is not yet active

Can be used with
offspring which
is already active

Can pass data (or
command) to off
spring as part
of directive*

Can be used to
pass commands to
a Command Line
Interpreter (CLI)

Spawn Connect

Yes No

No, except Yes
if offspring
is a Command
Line Inter
preter (CLI)

Yes (up to No
79 bytes)

Yes No

Send, Request
and Connect

Yes

Yes

Yes (13 words)

No

* If a parent/offspring relationship is established via Connect,
the tasks can of course exchan~e data using Send/Receive. The
table above indicates whether the passing of data from parent
to offspring is a capability of the directive in and of itself.

136

USING DIRECTIVES FOR INTERTASK COMMUNICATION

LEARNING ACTIVITY

Chapter 4 of the RSX-llM/M-PLUS Executive
Reference Manual contains a good dlscussion
of the parent/Offspring directives and in
particular it gives a number of possible uses
for them. We will not discuss these various
uses anywhere in this course.

Read Sections
RSX-llM/M-PLUS
a discussion
directives and
applications.

4.1, 4.2, and 4.3 of the
Executive Reference Manual for

of the parent/Offspring
examples of their use in

137

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-8 summarizes the arguments for the Spawn directive, the
Connect directive, and the Send Data, Request, and Connect
directive. For additional information, see the writeup on each
directive in Chapter 5 of the RSX-IIM/M-PLUS Executive Reference
Manual.

Table 4-8 Directives Used by a Task to
Establish a parent/Offspring Relationship

Directive Directive
Name Call

Spawn CALL SPAWN(tsk,grp,mem,efn,ast,esb,param,
cmdlin,cmdlen,unum,dnam,dsw)

Connect CALL CNCT(tsk,efn,ast,esb,param,dsw)

Send, CALL SDRC(tsk,buf,efn,ast,esb,param,dsw)
Request,
and Connect

tsk - offspring task

grp,mem - UIC offspring will run under

efn - event flag to be set when offspring exits or emits
status

ast - AST routine to be entered when offspring exits or
emits status.

esb - exit status block address

param - name of a word to receive the status block address
when the AST. occurs

cmdlin,cmdlen - address of buffer with command line,
length of command line

unum,dnam - device to be TI: for offspring

buf - 13(10) word buffer to be sent

dsw - directive status word

138

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-6 shows a task which spawns PIP to display a directory
at TI:. The following notes are keyed to the example.

o

o
e

o

o

o

The command line to be passed to PIP. We include the
three character command name to be consistent with the way
MCR passes commands if a utility command is typed to MCR.

Display startup message.

Spawn ••• PIP. Event flag 1 will be set when ••• PIP exits
or emits status. EXSTAT is the address of the eight-word
status block (only the first word is used). CMD is the
starting address of the command line and LEN is its
length.

Wait for event flag 1 to be set when ••• PIP exits or emits
status. Notice that this is a local event flag, local to
this task, which is cleared by the Executive when the task
is spawned and set by the Executive when the spawned task
exits or emits status.

The high-order byte of the exit status code may contain
unexpected data. Therefore, clear that byte by specifying
the logical AND of the code and 377(8) before displaying
the code.

On the Run Session The first run session shows a
successful exit by ••• PIP, the second one shows ••• PIP
aborted by an operator. Note the different status codes.

NOTE
On an RSX-llM system, an attempt to spawn
••• PIP will fail if ••• PIP is already active.
This works diffently from initiating PIP from
MCR, where an attempt is made to install the
task ••• PIP under the name PIPTnn if ••• PIP
is already active. A solution to this
problem is to spawn CLI. •• (the current
CLI), ••• DCL (DCL) or MCR ••• (MCR) and send
it the command line. It will in turn start
up the appropriate PIP task under ••• PIP or
PIPTnn, as if the command was typed in by an
operator. See section 4.4 (on Spawning
System Tasks) of the RSX-llM/M-PLUS Executive
Reference Manual for additional information.

139

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PROGRAM SPWN
r
C File SPAWN.FTN
C
C This pro_ram spawns PIP, passes it a command line to
C displa~ a director~ at TI:, waits for it to exit, and
C then displaws its exit status.
C
r Data

o
r Code

15

25

o e
o
e

INTEGER EXSTAT(S),PlIST(3),DSW
BYTE BUFF(SO)
REAL PIP,CMD(3)
DATA PIP/6R ••• PIPI
DATA CMD/'PIP ','*.MA','C/LI'/

WRITE (5,15) ! Write messa~e
FORMAT (' SPAWN IS STARTING AND WILL SPAWN PIP')
CALL SPAWN(PIP",1"EXSTAT"CMD,12",DSW)

Spawn PIP
IF (DSW.LT.O) GOTO 900 Branch on dir error
CALL WAITFR(1,DSW) ! Wait for task to exit
IF (DSW.LT.O) GOTO 910 ! Branch on dir errtir
WRITE (5,25) EXSTAT(1).AND.M377 ! Displa~ low

! b~te of exit status
FORMAT (' SPAWN REPORTING: PIP EXITED, EXIT
lSTATUS WAS ',11,'.')
CALL EXIT ! Exit

C Error handlin. code
900 TYPE *,'ERROR SPAWNING PIP. DSW = ',DSW

GOTO 1000
910 TYPE *,'ERROR WAITING FOR EVENT FLAG. DSW - ',DSW
1000 CALL EXIT

END

Example 4-6 A Task Which Spawns PIP (Sheet 1 of 2)

140

USING DIRECTIVES FOR INTERTASK COMMUNICATION

o

Hun Session

>RUN SPAWN
SPAWN IS STARTING AND WILL SPAWN PIP

Directorw DB1:[305,301J
B···MAR-·B2 12: 15

(~. MAC; 1.
A1.MAC;2
A.MAC;1

BPAWN.MAC;22

1.
1. •
1.

1.

20··MAY···8:L 13:04
09··· DEC··80 16: 58
10-JUN··81 15:21

08-SEP-81 11:20

Total 127./129. blocks in 25. files

SPAWN REPORTING: PIP EXITED. EXIT STATUS WAS 1.
:::.

>RUN SPAWN
SPAWN IS STARTING AND WILL SPAWN PIP

Directorw DB1:[305y301J
B···MAR-82 12: 15

1 •
A1.MAC;2 1.
A.MAC;1 1.

20····MAy··81 13:04
09-DEC-80 16:58
1.0-.JUN-81 15:21

DCL>ABORT/TASK ••• PIP
A9.MAC;12 4. 21-MAY-81
12:15:15 Task H.++Plp n terminated

Aborted via directive or ClI
And with pendins 1/0 reGuests

13:50

SPAWN REPORTING: PIP EXITED. EXIT STATUS WAS 4.

Example 4-6 A Task Which Spawns PIP (Sheet 2 of 2)

141

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-7 is a more generalized spawning task, which prompts for
the name of a task and a command line and then spawns that task,
sending the input command line to it. The following notes are
keyed to the example.

Ct Prompt for and get the task name. The task name must be
entered in all uppercase characters. To allow lowercase
characters, the code must be modified to check for any
lowercase characters and convert them to uppercase •.

t» Convert ASCII task name to Radix-50 format.

t» Prompt for and get command line.

C» Spawp task specified. We are using event flag I for
synchronization. The status will be returned in EXSTAT.

o
o
o

o

Wait for event flag I to be set, indicating that the task
has exited (or emitted status).

Clear high-order byte of the status word and display it.

Note that CLI ••• passes the command line to the current
CLI (DCL) which in turn invokes task DIRTII to display the
directory. (This is task DIR spawned at terminal TIl)

BUFFER(l) and (2) are set to blanks in case a name of less
than six characters is entered. By clearing to blanks, a
short name is assured of having trailing blanks.

142

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PROGI:;:AM GSF'AWN
("'

C FILE GSPAWN.FTN
C
C This task prompts at ti~ for a task name and command
C line, then spawns the specified task and passes it the
r command line. After that it waits until the offsprin.
r task exits and displa~s its exit status.
r
C Run instructions: The name of the task to be spawned
r must be t~ped in usin. all upper case characters.
C'

REAL BUFFER(20),TSKNAM
INTEGER EXSTAT(S)

C' Pad task name buffer with blanks in o DATA BUFFER(1)"BUFFER(2) I'
C

FORMAT (' TASK NAME?')

case name
, , ' , I

:1.50 ~
WRITE (5,15)

READ (5,,25) BUFFER(1),BUFFER(2)
25 FORMAT (2A4)
C Convert task name to Radix-50 format

O CALL IRAD50 (C>" BUFFER, TSI<NAM)
WRITE (5,35)

is ~)hort

3!5 A ~FORMAT (' COMMAND LINE (79 CHAI:;:ACTERS OR LESS)?")
~ READ (5,45) N"BUFFER

45 FORMAT (Q,20A4)
C Spawn task with command line

C

~:55

o CALL SPAWN (TSKNAM"""l"EXSTAT"BUFFER,N",IDSW)
IF (IDSW .LT. 0) GOTO 900 ! Branch on dir error

Wait
0

0

fOT' task to e~·d t
CALL WAITFR (l"IDSW)
IF (IDSW .LT. 0) GOTO 910 ! Branch on dir error

r
WFUTE (5,,55) EXSTAT(l) .AND. "377
FORMAT ('0',10X,'TASK EXITED. STATUS WAS ',12,"."
1/)
GOTO 1000 ! Go to commoh exit

C Error code
900 WRITE (5,905) IDSW
905 FORMAT (" DIRECTIVE ERROR SPAWNING TASK. DSW -

1,14)
GOTO :1.000

9:1.0 WRITE (5,,9:1.5) IDSW
915 FORMAT (" DIRECTIVE ERROR ON WAIT FOR. DSW - '"

114)
1000 CALL EXIT

END

Example 4-7 A Generalized Spawning Task (Sheet 1 of 2)

143

USING DIRECTIVES FOR INTERTASK COMMUNICATION

1~'Jn Sessior,

>I~UN GSF'AWN
TASK NAME?
••• PI P
COMMAND lINE (79 CHARACTERS OR LESS)?
PIP *.DIS/lI

Directorw DB1:C305,301J
B·-SE:.F'--81 15:09

FRIENDS.DIS;2
FRIENDSNl.DIS;2

1.
1.

:L0-AUG·-8l. 11 n.3
31-AUG--81 11: 42

Total of 2./10. blocks in 2. files

TASK EXITED. STATUS WAS 1.

>RUN GSF'I~WN
TASK NAME?
++.DCl
COMMAND lINE (79 CHARACTERS OR LESS)?
n I F~ECTORY *. MAC

Directorw DB1:C305,301J
B·-SEF'-8:L 15:10

W.MAC;l 1. 20-MAY-81 13:04
A1.MAC;2 1. 09-DEC-80 16:58
A.MAC;l 1. 10-JUN-81 15:21
A9.MAC;12 4. 21-MAY-81 13:50
FORMAT.MAC;34 6. 21-AUG-81 11:53
PROGY.MAC;l 1. 30-JAN-81 14:27
PROGZ.MAC;l 1. 30-JAN-81 14:30
RAY.MAC;l 4. 30-JAN-81 14:39
PROGX.MAC;6 1. 30-JAN-81 14:42
C.MAC;5 1. 21-MAY-81 10:01
A2.MAC;2 1. 21-MAY-81 10:04
C2.MAC;1 1. 21-MAY-81 10:04

[

Task -DIRT11- terminated o Aborted via di rective or ClI
And with pendin~ lID reGuests

TASK EXITED. STATUS WAS 4.

Example 4-7 A Generalized Spawning Task (Sheet 2 of 2)

144

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directives Issued by an Offspring Task

Table 4-9 summarizes the directives which can be used by an
·offspring to return status to a parent task. Table 4-6 shows the
standard exit status codes used on the system. An offspring can
also spawn or connect to other tasks as well.

Table 4-9 Directives Which Return Status
to a Parent Task

Directive Effect/Use

CALL EXIT Exits and returns "Success" status
to all current parent tasks.

CALL EXST(status)

CALL EMST
(parent-task,status,dsw)

Special case of CALL EXST

Exits and returns specified one
word status to all current parent
tasks.

Terminates parent/offspring
relationship.

Emit specified status to specified
parent (or to all parents, if
parent task name is omitted).

Terminates the parent/offspring
relationship. The connection Can
be reestablished by the parent,
using the Connect Directive.

NOTE
The Executive returns "Severe Exit" status if
the task is aborted or if a fatal error
occurs.

145

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Chaining of Parenti Offspring Relationships

An offspring can chain or pass its parent/offspring connection on
to another task. In that case the connection between the parent
and the offspring which passes the connection is broken. In its
place, a connection is made between the parent and the new
offspring.

Figure 4-2 shows the difference between an offspring spawning
another task versus chaining its connection to another task. Note
that with spawn, the connection between the parent and the. first
offspring still exists, plus a new connection is established
between the first offspring and the new offspring.

Table 4-10 summarizes the directives which can be used to chain
parent/offspring relationships. Request and Pass Offspring
Information (RPOI) is similar to Spawn in function, in that it
starts up the task and can pass a 79 byte command line. Send
Data, Request, and Pass Offspring Control Block (SDRP) is similar
to Send Data, Request and Connect, in that it sends a 13 word data
packet and it succeeds even if the task is already active.

146

USING DIRECTIVES FOR INTERTASK COMMUNICATION

BEFORE

TASK 1

TASK 2

TASK 2
SPAWNS
TASK 3

AFTER

TASK 1

r

TASK 2

TASK 3

BEFORE

TASK 1

TASK 2

TASK 2 REQUESTS
AND PASSES OFFSPRING
INFORMATION

AFTER

TASK 1

EJ
NOTE: EACH ARROW SHOWS A PARENT/OFFSPRING CONNECTION.
THE ARROW STARTS AT THE PARENT AND POINTS TO THE OFFSPRING.

Figure 4-2 Spawning Versus Chaining
(Request and Pass Offspring Information)

147

TASK 3

TK-7746

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-1~ Directives Which Pass Parent/Offspring
Connections to Other Tasks

Characteristic

Can be used for a
new offspring which
is not yet active

Can be used for a
new offspring which
is already active

Can pass data (or a
command) to a new
offspring

Can be used to pass
commands to a CLI

RPOI SDRP

Yes Yes

No, unless Yes
the offspring
is CLI

Yes (up to Yes (13 words)
79 bytes)

Yes No

148

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-8 shows the use of the Request and Pass Offspring
Information (RPOI) directive. This task is similar to example
4-6, but it uses RPOI instead of SPAWN. Two run sessions are
provided, showing the difference between an offspring passing its
parent/task connection and an offspring spawning another
offspring. In the first run session, GSPAWN spawns PASSIT
(Example 4-8), which starts up PIP, passing its connection
(GSPAWN/PASSIT) on to PIP. In the second run session, GSPAWN
spawns SPAWN (Example 4-6), which spawns PIP. Note that with
PASSIT, ••• PIP returns its exit status directly to GSPAWN. GSPAWN
is no longer connected to PASSIT once the connection is passed on
to PIP. With SPAWN, ••• PIP returns its exit status to SPAWN.
SPAWN displays that status and then exits, sending its own exit
status to GSPAWN.

The following notes are keyed to the example.

o

o

o

Use RPOI instead of SPAWN. No event flag is needed nor is
a status block set up since this task won't receive status
from ••• PIP. The seventh argument in the argument list
(MACRO symbolic name RP.OAL, suggested FORTRAN name RPOAL)
determines what parent (fixed) connections are passed, if
any. If RPOAL has a value of 1, as in the example, all
connections are passed. (In this example there is only
one connection.) A connection is established between the
parent of PASSIT (GSPAWN) and ••• PIP. The connection
between GSPAWN and PASSIT is broken.

Display a message and exit with a status of 10., to make
it easy to tell whether the status is from this task or
from ••• PIP. Note in SPAWN that the CALL EXIT is used,
which results in a Success Code (+1) being sent as the
exit status.

On the First Run Session (GSPAWN spawns PASSIT) - The exit
status from ••• PIP is returned directly to GSPAWN.

On the Second Run Session (GSPAWN spawns SPAWN) - The exit
status from ••• PIP is returned to SPAWN, then SPAWN
returns its own exit status to GSPAWN.

If you wish to chain the connection from only one of several
parents, specify a single task, and do not specify RPOAL in the
RPOI directive call.

If RPOAL is not specified and no task is specified, then no
connections are passed. This might be useful to request a task
and send 79 bytes of data when a connection is not needed.

149

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PI:;:OGRAM PASS I T
c
C File PASSIT.FTN
C"

C This ~ro~ram reGuests PIP, passes it a command line to
C displaw s directorw at TI:, and passes it all of its
C parent connections as well
c
C [lata

C Code

INTEGER PLIST(3),DSW
BYTE BUFF(SO)
REAL PIP, CMD (~~)
DATA PIP/6R ••• PIPI
DATA CMDI'PIP ','*.MA/,/C/LI'I

WRITE (5,15) ! Write messa~e
15 FORMAT (' PASSIT IS STARTING AND WILL REQUEST PIP') o CALL I~POI (PIP", ,CMD, 12, 1"" ,DSW) ! Re('1uest PIP

IF (DSW.LT.O) GOTO 900 ! Branch on dir error

~
WRITE (5,25) ! Write messa~e

25 0 FORMAT (' PASSIT REQUESTErl PIP AND WILL NOW EXIT 1)

CALL EXST (10) ! Exit with status of 10
CError handlin~ code
900 TYPE *,'ERROR REQUESTING PIP. DSW = ',DSW

CALL EXIT
END

Example 4-8 An Offspring Task Which Chains Its
Parent/Offspring Connection to PIP (Sheet 1 of 3)

150

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Sessic)J"f

)OINS PASSIT
>RUN GSPAWN
TASK NAME1
PASSIT
COMMAND lINE (79 CHARACTERS OR LESS)?

PASSIT IS STARTING AND WILL REQUEST PIP
PASSIT HAS REQUESTED PIP AND WILL NOW EXIT

Director~ DB1:r305,301J
l:J'-MAR--82 15: 22

W.MAC;1
Al.MAC;2

1 •
1.

20--MAY"-81 13: 04
09-DEC-80 16:58

BPAWN.MAC;1 08-SEP'-81 13: 32

Total of 13./66. blocks in 15. files

e TASK EXITED. STATUS WAS 1.

>RUN GSPAWN
TASK NAME'?
PASSIT
COMMAND lINE (79 CHARACTERS OR LESS)?

PASSIT IS STARTING AND WILL REQUEST PIP
PASSIT HAS REQUESTED PIP AND WILL NOW EXIT

Directorw DB1:r305,301J
B-'SEP--81 15: 23

W.MAC;1 1.
Al.MAC;2 1.
A.MAC;l 1.
A9.MAC;12 4.
:1.5:24:10 Task • ••• PJp·

20-MAY-81
09-DEC-'80
10-JUN-81
21-MAY-81

terminated
Aborted via directive or ClI
And with pend ins lID reauests

e TASK EXITED. STATUS WAS 4.
:::.

13:04
16:58
15:21
13:50

Example 4-8 An Offspring Task Which Chains Its
Parent/Offspring Connection to PIP (Sheet 2 of 3)

151

USING DIRECTIVES-FOR INTERTASK COMMUNICATION

Hun Session

>INS SPAWN
>I:WN GSPAWN
TASK NAME'!>
SPAWN
COMMAND LINE (79 CHARACTERS OR lESS)?

SPAWN IS STARTING AND WILL SPAWN PIP

Director8 DB1:[305,301J
B'-MAR"-82 1. ~~j: 22

W .MJ~C ~ l
A:I .• MAC;2

1. •
1.

20-MAY-81 13:04
09-'DEC-80 16:58

BPAWN .. MAC;l 4.

Total of 13./66. blocks in 15. files

SPAWN REPORTING: PIP EXITED, EXIT STATUS WAS 1.

o TASK EXITED. STATUS WAS 1.

>I~UN GSPAWN
TASK NAME"~
SPAWN
COMMAND LINE (79 CHARACTERS OR LESS)?

SPAWN IS STARTING AND WILL SPAWN PIP

Director8 D81:[305,30lJ
B·-SI:::P··"8:1. 15: 23

t,J ~ MAC v 1 :L •
~\:L.MAC;2 :I .•
A.MAC;l j ...

nCl>ABORT/TASK ••• PIP
A9. ~1AC; 12 4.

20--MAY-a1
09-DEC-80
:I.0-.JUN-·81

21-·MAY-81
:1.5:24:10 Task H ••• PIp H terminated

Aborted via directive or ClI
And with pendins lID reGuests o [SPAWN r~EPOf~TINf:J: PIP EXITED, EXIT STATUS

TASK EXITED. STATUS WAS 1.
::: ..

13:04
:L6: 58
15:2:L

13:50

WAS 4.

Example 4-8 An Offspring Task Which Chains Its
Parent/Offspring Connection to PIP (Sheet 3 of 3)

152

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Other Parent/Offspring Considerations

Retrieving Command Lines in Spawned Tasks Use the Get MCR
Command Line directive (GETMCR). The passed command is returned
to a buffer specified in the GETMCR call.

Spawning a Utility or Other MeR Spawnable Task Utilities are
generally installed under task names of the form ••• tsk. This
makes them MeR spawnable tasks, which notifies MCR to spawn
multiple copies of the task under names tskTnn if the task is
invoked as an MeR command using the three-character task name
(e.g., PIP /LI). In fact, any task is spawnable, but only tasks
installed under a name of this form are spawned as multiple copy
tasks by MCR. When such a task is invoked by MCR, MCR passes it
the entire command line, including the three-character task name
(e.g., PIP /LI). Even if you spawn a utility directly, you should
pass a command line which includes the three-character task name.
This maintains compatibility with the format- used by MCR to pass
commands to utilities, and avoids potential problems caused when
the utility parses your command line.

On RSX-IIM systems, there is more likelihood of getting a task
already active failure if you spawn a utility directly using the
name ••• tsk than there is if you instead spawn MCR... and pass
the command line which includes the task name. This is due to the
fact that if a task is spawned directly using ••• tsk, the spawn
attempt fails if the task ••• tsk is aready active. No attempt is
made to install the task under the name tskTnn if ••• tsk is
already active, as is the case if you spawn MCR... (MCR) to start
up the utility.

153

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-9 shows a spawned task which retrieves a simple command
line of the form SPW n, where n is a single character. If n=l,
SPW performs a simple addition exercise and displays the answer.
If n=2, SPW performs a simple multiplication exercise instead.
Else, SPW displays the message "NO OTHER OPERATIONS ALLOWED".
This task, like most system utilities, will run correctly whether
spawned directly by a task' (as ••• SPW) , started by MCR as the
result of a command line sent when spawning MCR, or invoked by an
operator using an MCR command.

The following notes are keyed to Example 4-9.

o
o
e

CALL GETMCR to get the command line.

Display the command line as received.

Check the value of n for an ASCII 1, skipping over the
characters SPW and the blank after SPW. Note that in a
real application, the first part of the command line
should be checked as well to see that it really is SPW and
a blank. Branch if not equal.

C» Check n for an ASCII 2. If not branch to error at 7.

t» If n=l, perform a simple addition (2+5).

o If n=2, perform a simple multiplication (2x5).

o If n is neither a I nor a 2, display an error message and
exit with warning status(0).

C» If n was 1 or 2, display a message giving the results of
the computation and then exit with success status (+1).

This run session shows ••• SPW being spawned three times by
MCR, when an operator types an MCR command line.

This run session shows ••• SPW being invoked three times by
running GSPAWN, which in turn spawns ••• SPW.

154

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PI:::OGRAM SPWNED
C
C File SPWNED.FTN
C
C This task uses the GETMCR directive to set a command
C line from either TI: or the parent task. It then
C echoes the command line and does an add or multipl~,
C t~pes out the answer -and emits status on exit
C
C Task-build instructions:
C
C >LINK/MAP SPWNED,LB:[1,1JPROGSUBS/LIBRARY,FOROTS-
C I->LIBRARY
C
C Install and run instructions: To make this task MCR
C spawnable, install it under the name •• ,SPW. Command
C lines should be of the form SPW function - valid
C functions are 1 and 2.
C

C

BYTE INBUFF(SO)
INTEGER 10SB(2),DSW
INTEGER NUM1,NUM2,ANS
DATA NUM1,NUM2/5,21
BYTE OP

o CALL GETMCR(INBUFF,DSW) ! Get command line
IF (DSW.GT.O) GOTO 10

10
C

o TYPE *,'DIDN"T GET COMMAND LINE. DSW ::: ',DSW
TYPE 15,(INBUFF(I),I=1,DSW) ! DisF'la~~ thE~

15 FORMAT (1X,SOA1)
C Check for function 1, branch a IF (I NBUFF (5) + NE. ' 1 ')

~ANS ::: NUMI + NUM2
OP == '+'
GOTO 30

if not
GOTO 20

!
!

C Check for function 2, branch if not

command line

Do addi tj.on
Set operation sisn
D:i.spla~:I results

and e~·d t

20 Q IF (INBUFF(5) .NE. '2') GOTO 40
GANS :::: NUM1 * NUM2 ! Do mu! tiF,l ication

OP = '*' ! Set operation si~n

~
TYPE 35,NUM1,OP,NUM2,ANS ! Displaw results

35 0 FORMAT (lX,Il,lX,A1,I2,' :::',12,'.')
CALL EXST(l) ! Exit with success

! statu~a

30

C
C Displaw no OP messase
40 ~TYPE *,' NO OTHER OPERATIONS ALLOWED' o CALL EXST (0) E~·d. t wi th warnir,s
C status

END

Example 4-9 A Spawned Task Which Retrieves a
Command Line (Sheet 1 of 2)

155

USING DIRECTIVES FOR INTERTASK COMMUNICATION

o

Run Session

)INS/TASK_NAME: ••• SPW SPWNED
>MCR SPW 1
SPW 1
5 + 2 = 7.
>MCR SPW 2
SPW 2
5 * 2 = 10.
)MCR SPW 3
SPW 3

NO OTHER OPERATIONS ALLOWED

>RUN GSPAWN
TASK NAME?
••• SPW
COMMAND LINE (79 CHARACTERS OR LESS)?
rn~w 1
SPW 1
5 + 2 = 7.

TASK EXITED. STATUS WAS 1.
>RUN GSPAWN
TASK NAME?
••• SPW
COMMAND LINE (79 CHARACTERS OR LESS)?
SPW 2
SPW 2
5 * 2 = 10.

TASK EXITED. STATUS WAS 1.
)~UN GSPAWN
TASK NAME?
••• SPW
COMMAND LINE (79 CHARACTERS OR LESS)?
SPW 3
SPW 3

NO OTHER OPERATIONS ALLOWED

TASK EXITED. STATUS WAS o.
>

Example 4-9 A Spawned Task Which Retrieves a
Command Line (Sheet 2 of 2)

156

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Task Abort Status When establishing a parent/offspring
connection, it is possible to request a second word of status when
a task exits. In that case, the second word of the status block
returns the task abort status. This word allows a parent task to
distinguish the different r~asons for return of "Severe Error"
status.

Table 4-11 lists the various task abort status codes. To get the
second status word, place any nonzero value in the high byte of
the event flag argument word. To do this, specify the logical OR
of 256 and the event flag number.

Example:

CALL SPAWN{TASKS"",256.0R.12"STAT,CMD,LCMD)

Mnemonic

S.CEXT
S.COAD
S.CSGF
S,.CBPT
S.CIOT
S.CILI
S.CEMT
S.CTRP
S.CF~T

S.CSST
S.CAST
S.CABO
S.CLRF
S.CCRF
S.IOMG
S.PRTY
S.CPMD
S.CINS

Table 4-11 Task Abort Status Codes

Value

-2(10)
o
2(10)
4(10)
6 (10)
8 (10)
10(10)
12(10)
14(10)
16(10)
18 (10)
20(10)
22(10)
24(10)
26(10)
28(10)
30'{10)
32(10)

,Exit
Status

EX$SUC=l
EX$SEV=4
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV
EX$SEV

Meaning

Task exited normally
Odd address and traps to 4
Segment fault
Break point or trace trap
lOT instruction
Illegal or reserved instruction
Non RSX EMT instruction
Trap instruction
11/40 floating-point exception
SST abort - bad stack
AST abort - bad stack
Abort via directive or CLI command'
Task load request failure
Task checkpoint read failure
Task exit with outstanding I/O
Task memory parity error
Task aborted with PMD request
Task installed in two different
systems

157

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Sum,mary of Various Methods of Data Transfer Between Tasks

Table 4-12 summarizes and compares the various methods of data
transfer between tasks which we have discussed so far.

Comparison of Methods of Dat~ Transfer

Method

Send/
Receive

Spawn
Command
Line

Off
spring
Status

Table 4-12 Comparison of Methods of Data
Transfer Between Tasks

Maximum
Amount

13(10)
words

79 (10)
bytes

1 or 2
words

Direction/
Repetition Pool
Restrictions Requirements

None

Parent to
offspring
only

Offspring
must exit
for parent
to pass
another
command

Offspring
to parent
only

Parent must
reconnect to
offspring to
receive status
again

Data packet
is buffered
in pool

Command line
is buffered
in pool

Offspring
Control Block
(OCB) is
created in
pool

Only OCB
is in pool

158

Notes

Both tasks must
be written to
use Send/Receive
directives

Used with any
task which uses
GETMCR directive
or Get Command
Line (GCML)
routine

No separate
directive
needed in
parent to
receive status

Any exiting task
automatically
returns status

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Other Methods of Transferring or Sharing Data Between Tasks

If large amounts of data are to be transferred between tasks or
shared between tasks, two other techniques are available. Tasks
can use files on mass storage devices. This technique is
advantageous if really quick transfer is not essential and/or if a
permanent copy of the data is desired.

Tasks can also be written to share a data area in memory. This
technique is particularly useful if transfer time is critical and
a permanent copy of the data is either not needed at all or is not
needed until a later time. Both of these techniques are discussed
in later modules.

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

159

MEMORY MANAGEMENT CONCEPTS

MEMORY MANAGEMENT CONCEPTS

INTRODUCTION
The use of memory management hardware in mapped systems permits
the use of more physical memory, task relocation, and the sharing
of data and code. It also offers a memory protection feature.
This module explains how the memory management hardware works and
how the software interacts with the hardware. Later modules
explain the use of memory management for overlays and shared
regions.

OBJECTIVES
1. To list the differences between mapped and unmapped

systems

2. To list the advantages of memory management

3. To use virtual and physical addresses, windows, and
regions to describe the mapping of a task.

RESOURCES
1. RSX-llM/M-PLUS Task Builder Manual, Chapter 2

2. PDP-II Processor Handbook, Chapter 6 (optional)

163

MEMORY MANAGEMENT CONCEPTS

GOALS OF MEMORY MANAGEMENT

The KT-ll memory management unit is a device available on medium
and larger PDP-II's. While the l6-bit addressing structure of the
PDP-II's limits processors without a memory management unit to 32K
words of addressing, processors with a memory management unit can
support up to l28K words, or even as much as 2000K words (2 Meg
words), depending on the model of the processor.

In addition to this extension of the processor's addressing space,
a memory management unit offers other features not otherwise
available. With memory management, tasks can be loaded and
executed at different locations in memory without being modified
in any way. This means that the operating system can load a task
into any available space within a system-controlled partition;
therefore a task need not wait until a specific location is
available. It also means that the Executive can move tasks around
to make better use of available space (shuffling).

Memory management also provides a mechanism for controlling tasks'
access to memory. Memory areas can be protected: unrelated tasks
can reside in memory simultaneously and are normally prevented
from accessing each other's memory. However, tasks which do need
to share memory locations are allowed to do so, under the rules of
memory access built into the Executive.

HARDWARE CONCEPTS.

Mapped Versus Unmapped Systems

A system which has the KT-ll memory management unit installed and
enabled is called a mapped system. Otherwise, it is called an
unmapped system. Small PDP-II's, such as the PDP-Il/03 and
PDP-ll/04 are always unmapped. The KT-ll unit is available as an
option on some medium sized processors, including the PDP-ll/35
and PDP-ll/40. It is a standard feature on large and newer
processors such as the PDP-ll/70, PDP-ll/24, PDP-ll/23-PLUS and
PDP-ll/44.

Table 5-1 shows a comparison of unmapped and mapped systems on
various PDP-II's.

165

MEMORY MANAGEMENT CONCEPTS

Table 5-1 Mapped Versus Unmapped Systems

Memory Other Addressing
System Addressing Size Addressing Limit

Unmapped 16-bit 28K words I/O page 177777
(56K bytes) 4K words 32K words

(8K bytes) (64K bytes)

Mapped 18-bit 124K words I/O page 777777
(248K bytes) 4K words 128K words

(8K bytes) (256K bytes)

Mapped 22-bit 1920K words I/O page 17777777
(3840K bytes) 4K words 2048K words

(8K bytes) (4096K bytes)

UNIBUS map
124K words
(248K bytes)

Figures 5-1 to 5-3 show physical address space on the various
systems. Appendix B contains a conversion chart between decimal
and octal, and between various word and byte values, which may be
helpful as you read this module.

Figure 5-1 shows the layout of an unmapped system. Sixteen-bit
addresses are all that are allowed. This corresponds to an
addressing limit of 32K words or 64K bytes. Of this, 28K words
correspond to actual physical memory and 4K words correspond to
the I/O page. The addresses in the I/O page are assigned to
peripheral devices which are used in performing I/O operations.
On an RSX-11M system, the Executive, including the Dynamic Storage
Region (DSR or POOL), takes up something less than or equal to 20K
words (as little as 8K words). Tasks occupy the area between the
top of the Executive and the top of memory.

Figure 5-2 shows the layout of a mapped system with 18-bit
addressing. Eighteen bits give an addressing limit of 128K words
or 256K bytes. Again, the top 4K words correspond to the I/O
page, leaving 124K words of physical memory. The Executive,
including POOL, usually takes either 16K words or 20K words,
leaving the rest, either 108K words or 104K words, for tasks.

166

MEMORY MANAGEMENT CONCEPTS

Figure 5-3 shows the layout of a mapped system with 22-bit
addressing. Twenty-two bits give an addressing limit of 2048K
words or 4096K bytes. Again, the top 4K words correspond to the
I/O page. 124K words are used for UNIBUS mapping, which is needed
when peripheral devices access memory directly (DMA devices).
UNIBUS mapping is necessary to convert 18-bit UNIBUS addresses,to
22-bit physical memory addresses~ This leaves 1920K words of
physical memory. Again, the Executive, including POOL, usually
takes 16K words or 20K words, leaving 1904K words or 1900K words
for tasks.

28K WORDS
OF
MEMORY

4K WORDS {

(28-N)K WORDS _

N K WORDS {
(N~20)

I/O PAGE

TASK

AREA

DSR -----------
EXECUTIVE

'PHYSICAL
ADDRESSES
(IN OCTAL)

177777

160000
157777

32K WORDS
OF ADDRESSING

o
TK-7747

Figure 5-1 Physical Address Space in an Unmapped System

167

124K WORDS
OF
MEMORY

MEMORY MANAGEMENT CONCEPTS

4K WORDS

108K OR
104K WORDS

16K OR 20K
WORDS

I/O PAGE

TASK

AREA

DSR -- --------
EXECUTIVE

PHYSICAL
ADDRESSES
(IN OCTAL)

777777

760000
757777

128K WORDS
OF ADDRESSING

o
TK-7757

Figure 5-2 Physical Address Space in an 18-Bit Mapped System

168

1920K
WORDSOF
MEMORY

MEMORY MANAGEMENT CONCEPTS

4K WORDS

124K WORDS

1904K OR
1900K WORDS

16K OR 20K
WORDS

I/O PAGE

RESERVED

(UNIBUS MAP)

TASK

AREA

DSR ----------
EXECUTIVE

PHYSICAL
ADDRESSES
(IN OCTAL)

17777777

17760000
17757777

17000000
16777777

o

2048K WORDS
OF ADDRESSING

TK-7758

Figure 5-3 Physical Address Space in a 22-Bit Mapped System

169

MEMORY MANAGEMENT CONCEPTS

Virtual and Physical Addresses

Virtual addresses are used within a task itself. They are always
16-bit addresses in the range 0(8) to 177777(8), or 32K words.
When a task is task-built, virtual addresses are assigned
typically starting at 0(8) at the beginning of the task.

Physical addresses are used in physical memory, the I/O page, and,
with 22-bit systems only, the UNIBUS map. They begin with 0(8) at
the beginning of memory and include all of physical memory, the
UNIBUS map, and the I/O page.

On an unmapped system, no address relocation is performed.
Therefore, virtual addresses match physical addresses. Figure 5-4
shows a task's virtual addresses and the corresponding physical
addresses in an unmapped system. The task is loaded beginning at
physical address 60000(8), and addresses referenced in the task
code reference physical addresses directly.

On a mapped system, the memory management hardware translates or
"maps" a task's virtual addresses to the physical addresses in
physical memory where the task is actually loaded. In the
simplest case, the virtual addresses are offsets from a base
physical address where the task is loaded. If a task is later
relocated to another location in physical memory, the virtual
addresses are then offset from the new base physical address.

Figure 5-5 shows a task loaded at two different locations. As
shown below, at time 1, virtual address 1534(8) in the task is at
the location 425134(8) in physical memory. At time 2, virtual
address 1534(8) in the task is at location 141534(8) in physical
memory. Since all addresses are converted at execution time,
references to location 1534(8) in the task are resolved correctly
regardless of where the task is loaded in physical memory.

243400(8) Base physical address
1534(8) Offset (task virtual address)

425134(8) Actual physical address

140000(8) Base physical address
1534(8) Offset (task virtual Address)

141534(8) Actual physical address

170

MEMORY MANAGEMENT CONCEPTS

On a mapped system, the Task Builder fixes a task's code in
virtual address space, but the actual mapping of virtual addresses
to physical addresses is performed at run time by the memory
management unit. Tasks may be loaded at different physical
addresses and still run correctly. As you will see later, mapping
also allows a task to access several separate pieces of physical
memory.

VIRTUAL
ADDRESSES
(IN OCTAL)

VIRTUAL
MEMORY

137717 --------- - -- - - ---

TASK

8K WORDS

100000 ""-_________________ _

PHYSICAL
MEMORY

TASK

8K WORDS

~ ___ E.S~ ____

EXECUTIVE

16K WORDS

PHYSICAL
ADDRESSES
(IN OCTAL)

140000
137777

100000
77777·

o
TK·7759

Figure 5-4 Virtual Addresses Versus Physical Addresses
on an Unmapped System

171

MEMORY MANAGEMENT CONCEPTS.

X~RDTRUE~~ES VIRTUAL
(IN OCTAL) MEMORY KT-l1

137777...---------_ M.M. _ ---n--TASK
24K WORDS

-- ---

-

0'--_______ -- -

VIRTUAL
MEMORY

TIME 1

KT-l1
137777 ...----------.,r- _ _ M.M.

TASK
24K WORDS -~n---

--- '\. o ~ ________ ~~ '\.

TIME 2

" " " "\

PHYSICAL
MEMORY

TASK
24K WORDS

DSR ---------
EXEC

20K WORDS

PHYSICAL
MEMORY

TASK

24K WORDS

DSR ---------
EXEC

20K WORDS

PHYSICAL
ADDRESSES
(IN OCTAL)

403400
403377

243400
243377

120000
117777

o

PHYSICAL
ADDRESSES
(IN OCTAL)

300000
277777

140000
137777
120000
117777

o

TK-7760

Figure 5-5 Virtual Addresses Versus Physical Addresses
on a Mapped System

172

MEMORY MANAGEMENT CONCEPTS

The KT -11 Memory Management Unit

Mode Bits - Bits 15 and 14 and bits 13 and 12 of the processor
status word (PSW) indicate, respectively, the current and previous
modes of processor operation. The mode may be:

• Kernel mode (00)

• User mode (11)

• Supervisor mode (01). (Supervisor mode is not used on
RSX-IIM, and is available only on 11/45, 11/55, 11/44, and
11/70.)

The purpose of having different processor modes is to provide for
a privileged mode (kernel) where the Executive can execute
privileged instructions (e.g., HALT), and can manipulate
privileged locations (e.g., PSW), and a non-privileged and
protected mode (user) where tasks usually execute.

Active Page Registers (APRs) - The Active Page Registers (APRs) in
the KT-ll memory management unit are used to define the mapping or
correspondence between virtual and physical addresses. On an
RSX-IIM system, one set of eight APRs is used at a time to define
this mapping. There is one set of APR's used for each processor
mode; one is used in user mode and another set is used in kernel
mode.

At any given time, the set of APRs in use is determined by the
mode bits in the processor status word. Each APR in the set in
use maps a specific range of virtual addresses, as shown in Table
5-2. The APR can map zero words, if not in use, up to the full 4K
wordsj always in even multiples of 32 words. In actuality, the
hardware may contain additional sets of APRs, but they are not
used under RSX-lIM.

Each APR consists of two l6-bit registers, a page address register
(PAR) and a page descriptor register (PDR). The page address
register contains a base address used in mapping the appropriate
range of virtual addresses.

173

MEMORY MANAGEMENT CONCEPTS

Table 5-2 APR and Virtual Address Correspondence

APR
Number

7
6
5
4
3
2
1
o

Virtual Address
Range

160000-177777(8)
140000-157777(8)
120000-137777(8)
100000-117777(8)

60000- 77777(8)
40000- 57777(8)
20000- 37777(8)

0- 17777(8)

K Words

28-32K
24-28K
20-24K
16-20K
12-16K

8-12K
4- 8K
0- 4K

Because the page address register contains only 16 bits, but the
actual physical addresses on the larger PDP-II's contain 18 or 22
bits, the 16 bits cannot contain an actual physical address.
Instead, the 16 bits contain a block number, which corresponds to
the high-order 16 bits (12 bits with 18-bit addressing) of the
actual physical address. A block of memory is 32(10) words (=
64(10) bytes = 100(8) bytes) long and starts on a 100(8) boundary.
Therefore, the base physical address 00134200(8) is the start of
block number 001342(8) and the base address 12445700(8) is the
start of block number 124457(8).

To obtain the block number from a physical address which ends in
at least two octal zeros, just strip off the last two zeros from
the actual address. To obtain the physical address from the block
number, append two zeros to the end of the block number in octal.

The page descriptor register (PDR) contains information about the
page of memory in use, such as the length of the page (up to 4K
words) and the access rights (read/write, read-only, etc.). The
fields for length and access rights in the PDR provide the
capability for hardware memory protection. If any reference in a
task is beyond the actual area in use or violates the access
rights, a memory protect violation is reported.

For a more complete description of the PARs and the PDRs, see
Chapter 6 of the PDP-II Processor Handbook.

Figure 5-6 shows the values in the page address registers for an
example task. The main part of the task is 14K words long;
therefore i~ needs four APRs; three APRs (APR 0,1, and 2) mapping
4K words each, and a fourth APR (APR3) mapping the last 2K words.
The base physical address of the task is 00432400(8), which is
obtained by converting the block number 004324(8) to a byte
address.

174

MEMORY MANAGEMENT CONCEPTS

All virtual addresses within the main task area are mapped to
physical addresses beginning at location 00432400(8). This means
in effect that each virtual address corresponds to an offset from
location 00432400(8). The page descriptor registers, not
illustrated, indicate that APRs 0, 1, and 2 map 4K words each, but
that APR 3 maps only 2K words.

VIRTUAL
ADDRESSES
(IN OCTAL)

160000

140000

120000

100000
70000

60000

40000

VIRTUAL
MEMORY PAR

APR VALUE

WORDS 7 015322

6 000000

5 000000

4 000000

3 005124

2 004724

TASK 14K WORDS
1 004524

20000

0 004324
o~ ____________ ~_

..... ----

--- ...

PHYSICAL
MEMORY

RESIDENT COMMON

TASK

AREA

-

-

-

PHYSICAL
ADDRESSES
(IN OCTAL)

1532200

512400

472400

452400

432400

TK-7761

Figure 5-6 Page Address Registers Used in Mapping a Task

175

MEMORY MANAGEMENT CONCEPTS

The task in Figure 5-6 is also mapped to a resident common. APR 7
is used to map this 4K word area"beginning at location 0153200(8)
in physical memory. Therefore, virtual addresses from 160000(8)
to 177777(8) map to physical addresses 01532200(8) to 01732177(8).
Virtual address 1653414(8) corresponds to physical address
01532200(8) + [1653414(8)-160000(8)] = 01605614(8).

Note that a task can be loaded into a minimum of one or a maximum
of eight separate contiguous areas of memory, because each APR
must map to a contiguous area of memory. If a 32K word task is
loaded into one large contiguous area, eight APRs are still used,
but each APR maps only part of the large contiguous area.

Converting Virtual Addresses to Physical Addresses

The following two examples show how the KT-1l memory. management
unit converts virtual addresses to physical addresses for the task
shown in Figure 5-6.

Example 1

The KT-11 unit takes a virtual address and uses the value in the
appropriate APR to convert it to a physical address. The virtual
address range indicates which APR to use (Table 5-2).

Since 053422(8) is in the range 040000-057777, APR 2 is used. Or,
looking at the address in binary, the high-order three bits
indicate which APR to use. Bits 0 through 12 indicate the
displacement or offset from the base physical address of the page.
This is equal to 053422(8) - 040000(8) = 13422(8), the distance of
this virtual address from the base virtual address for this APR.

Active
Page
Field

Displacement
Field

+-------+---------------------------+
053422(8) = I 0 1 0 I 1 0 1 1 1 0 0 0 1 0 0 1 0 I (2)

+-------+---------------------------+
2 13422(8)

APR Offset

176

MEMORY MANAGEMENT CONCEPTS

In easier terms, virtual address 40000(8) will be located at the
base physical address. A virtual address 13422(8) bytes above
that will be l3422(8) bytes above that physical location. The
base physical address is determined by converting the block number
in APR2, 004724(8), to the physical address 00472400(8). (Recall
that a block of memory is 100(8) bytes.) Therefore, address
053422(8) is mapped to the location shown below.

Example 2

00472400(8) Base physical address
+ 13422(8) Displacement

00506022(8) Actual physical address

Convert the virtual address 165275(8)

+-------+---------------------------+
165275(8) = I 1 11 I 0 1 0 1 0 1 0 1 1 1 1 0 1 I (2)

+-------+---------------------------+
7 05275(8)

APR Offset

APR 7 = 015322(8) blocks = 01532200(8) Base physical address
+ 05275(8) Displacement

The memory management unit
and a number of internal
at extremely fast
PDP-II Processor Handbook
more detail.

0l537475(8) Actual physical address

performs this conversion using an adder
registers. The conversion is performed
speeds. Chapter 6 of the
discusses this conversion process in

177

MEMORY MANAGEMENT CONCEPTS

SOFTWARE CONCEPTS

Virtual Address Windows

A virtual address window, or simply a window, is a contiguous
range of virtual addresses within a task. A window is always
mapped as a unit, to a contiguous range of physical locations. A
task which resides in a single contiguous area of physical memory
generally has a single window, called the task window, which is
mapped to the area. An example of this was shown in Figure 5-5,
which has a single window 24K words long. Notice that the window
is the same at time 1 and time 2, but it maps to different
locations in physical memory. On the other hand, a task which
must access two separate pieces of physical memory at the same
time would have two windows (as in Figure 5-6) to map those areas.

Windows are mapped using APRs. A virtual address window always
corresponds to at least one, but possibly more than one, APR (up
to all eight). A window always begins at a 4K word boundary,
corresponding to the lowest address mapped by the first APR used
for the window. Successively higher APRs are then used, until the
entire window is provided for. The Task Builder assigns most
virtual addresses and creates most windows, determining which APRs
will be used during that task's execution.

The task window for a task begins at virtual address 0 (therefore
using APR 0) and extends upward as far as necessary to accommodate
the task's header; stack, main code and data. Other windows can
begin at any 4K word boundary above the high limit of the task
window. Typically, additional windows are assigned from the top
of virtual address space working downwards. For example, if an
additional address window of 4K words or less is needed, it is
assigned a base address of 160000(8), using APR 7.

If, on the
words in
140000(8).
Additional
correspond

other hand, a window is needed between 4K words and 8K
size, the window will be given a base address of

In this case, the window would use APRs 6 and 7.
windows would be assigned lower base addresses that

to other available APRs.

NOTE
Under no circumstance can two windows exist
at the same time within a task using the same
APR or the same virtual addresses.

178

MEMORY MANAGEMENT CONCEPTS

The Task Builder allocates space in the task header for the
windows it has created and records information that specifies how
these windows are to be mapped. This information is used to load
the APRs with appropriate values before the task executes.

Memory management directives can be used to create and initialize
additional windows while a task executes. Space for these
additional windows must be allocated in the task header at
task-build time, using the "WNDWS" option. Memory management
directives and their use are discussed in Module 8 on Dynamib
Regions.

Regions

A region is a contiguous area of physical memory to which a task
may get access rights. A region must be contained completely
within a partition. It can be part of a partition or the entire
partition.

There are three types of regions in an RSX-llM system.

1. Task region - an area in a user-controlled partition or a
system-controlled partition into which a task is loaded
and then executes.

2. Static Common Region - an area in a cbmmon type partition;
e.g., a shared common for data or a shared library for
code.

3. Dynamic Region - an area in a system-controlled partition
which is created dynamically, at run time, using the
memory management directives.

A task gets access rights to a region by "attaching" to the
region. Before the Executive attaches a task to a region, it
checks its needed access against the protection on the region.
Th is iss i mil a r to c he c king f i 1 e pro t e c t ion, be for e allow i ng f i 1 e
access. If the task passes the check on access rights, then the
Executive attaches the task to the region by establishing a
connection between the two. The total amount of physical memory,
made up of regions, to which a task is attached is called a task's
logical address space.

179

MEMORY MANAGEMENT CONCEPTS

After a task is attached to a region, it actually accesses or uses
the region by first "mapping" 'one of its virtual address windows
to a part or to all of the region. During this process, the
Executive uses the window and region information· to fill in the
APRs. After this, references in the task to virtual addresses in
that window map to physical addresses within the region. A region
does not have to be the same size as a window. Generally it is of
equal or larger size than the window.

Attaching and mapping are done automatically by the Executive for
regions linked to at task-build time. Alternatively, a task can
use memory management directives at run time to dynamically create
regions, attach to regions, and map windows to regions.

Figure 5-7 shows a task which has three virtual address windows
mapped to three different regions. Figure 5-8 shows the same task
after it attaches to another region (the work area) and maps to
it. Notice that virtual addiesses beginning at 100000(8) are used
to map this region. For example, this area might be used as a
temporary work buffer. Figure 5-8 does not include the actual PAR
values or the actual physical addresses. This simpler form of
mapping diagram will be used from now on in this course to make
things easier, unless the actual PAR values and physical addresses
are significant to the discussion.

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all written problems. Check your answers against
those provided in that book.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

180

MEMORY MANAGEMENT CONCEPTS

VIRTUAL
ADDRESSES
(IN OCTAL)

WINDOW

2 160000 !
177777

WINDOW 147777
1 140000

WINDOW
o

120000

100000

63777
60000

40000

70000

VIRTUAL
MEMORY

TASK
WINDOW

(13K WORDS)

OL.-_______ ~

PAR
APR VALUE

7 006056

6- 014764

5 000000

4 000000

3 006232 -
2 -006032

1 005632

0 005432

(
II
I

1

/
II

1/
II
i_

/ I
-..

IT!
II ---

r----.

-- --

PHYSICAL
MEMORY

LIBRARY

COMMON

TASK
REGION

PHYSICAL
ADDRESSES
(IN OCTAL)

1476400

605600

543200

TK-7762

Figure 5-7 A Task with Three Windows Mapped to Three Regions

181

WINDOW {

2 160000

WINDOW {
1 140000

~INDOW { 120000

100000

60000

40000
WINDOW
0

20000

0

MEMORY MANAGEMENT CONCEPTS

I

VIRTUAL
MEMORY

/1
/

APR 7

APR 6

APR 5

APR 4

APR 3 '

........
APR 2 TASK

WINDOW

APR 1
(13K WORDS)

APR 0

PHYSICAL
MEMORY

LIBRARY

COMMON

WORK AREA

TASK
REGION

TK-7763

Figure 5-8 Task in Figure 5-7 after Attaching to and Mapping
to a Fourth Region·

182

DigifalEquipmentCorporafion • Bedford, MA 01730
~

