
DECUS PROCEEDINGS

1963
PAPERS AND PRESENTATIONS

of

The Digital EquipIllent COIllputer Users Society

Maynard, Massachusetts

1963
PAPERS AND PRESENTATIONS

of

The Digital Equipment Computer Users Society

Maynard, Massachusetts

Copyright 1964 by Digital Equipment Computer Users Society

ACKNOWLEDGEMENT

On behalf of DECUS I gratefully acknowledge the help of
the Technical Publ ications Department, Digital Equ ipment
Corporation in the preparation of these Proceedings.

Elsa Newman, Editor

ii

President Fredkin

DECUS

March 1961 - October 1962

Charlton M. Walter, President (AFCRL)
John Koude la, Jr. ,Sec retary (DEC)

Committee Chairmen

Edward Fredkin, Programming (then BBN)
Lawrence Buckland, Meetings (then Itek)
William Fletcher, Equipment (BBN)
Elsa Newman (Mrs.), Publications (DEC)

OFFICERS

October 1962 - November 1963

Edward Fredkin, President (1.1.1.)
Elsa Newman, Secretary (DEC)

Committee Chairmen

III

John R. Hayes, Programming (AFCRL)
Eunice Cronin, Meetings (AFCRL)
William Fletcher, Equipment (BBN)
Elsa Newman (Mrs.), Publications (DEC)

PREFACE

DECUS, Digital Equipment Computer Users Society, founded in March

1961 for the purpose of fostering the interchange of information, ideas,

and programming materials of interest to users of Digitalis Programmed

Data Processor - PDP-1, and its successors, published its first Proceed

ings of meetings in March 1963. The volume called, .. DECUS PRO

CEEDI NGS 1962, II comprised papers given at two DECUS meetings

which took place that year.

The present volume, "DECUS PROCEEDINGS 1963," concerns papers

given at the Spring Symposium and the Annual Meeting held in 1963.

The programs of these meetings are given in the Appendix. The twenty

eight papers deal with the PDP-1. Papers on the Programmed Data

Processor - PDP-4, given at a special PDP-4 Symposium held on 24

January, 1964, will be reported in a separate publication.

The sub ject of the 1963 Spring Symposium was TIME SHARI NG. After

papers were presented, the M .1. T • and Bolt Beranek and Newman Time

sharing Systems were .demonstrated. The topic, Time Sharing, continued

to be of interest at the Annual Meeting where a variety of subjects was

covered •

.. DECUS PROCEEDINGS 1963" is a testimonial of the continued growth

of Digital Equipment Computer Users Society and is a tribute to the

authors. DECUS is deeply grateful to all who have contributed to its

substance. We give special thanks to the hosts of our meetings and to

Dr. J.C.R. Licklider for his inspirins address.

Elsa Newman

v

TABLE OF CONTENTS

A USER'S FOREWORD

C. M. Walter. 0
.

ADDRESS

Dr. J 0 C . R. Li ck I ide r ..

Section I TIME SHARING

JUST NINE PACKAGES BETWEEN YOU AND TIME SHARING

S. Boi len and L. Clapp 0 ••

STANFORD TIME-SHARING SYSTEM

J 0 McCarthy ~ •• . 0 • 0 0 0

REPORT ON A LARGE-SCALE TIME-SHARI NG SYSTEM

. J. I. Schwartz . 0 • • • 0 • • • • • •
Mol. T.'S PROJECT MAC: CURRENT STATUS

R. Mills 0 ••••• 0 0 •••••••

Section II UTILITY PROGRAMS AND TECHNIQUES

RECENT IMPROVEMENTS IN DDT

D. J. Edwards and M. Minsky.

AN INVISIBLE DEBUGGING PROGRAM FOR A PDP-1
TIME-SHARING SYSTEM

M. Wolfberg . 0 • • • • • 0 • • • • • • • • ••

MODIFICATION OF A PROGRAM SYMBOLIC AT COMPILE TIME

J. B. Goodenough 0 • '. 0 • • • • 0 • •

A VERSATILE PROGRAMMING SYSTEM FOR LARGE PDP
INSTALLATIONS

T. Strollo.

FLINT 36 A3D

J. Baker and D. Isenberg.

vii

xi

11

13

19

33

41

43

51

57

61

MIDAS ASSEMBLY PROGRAM AND T~E PDP-1

R. Saunders

Section III PROBLEM ORIENTED TECHNIQUES

THE PDP-1 AS A VERSATILE RESEARCH TOOL

W. Fahle and D. Brand•.

TIME SHARING IN THE PROCESSING OF NUCLEAR
RESEARCH DATA

A. J. Ferguson, B. Miles and J. Leng ..•.

PDP-1 SCANNING AND MEASURING OF NUCLEAR
PARTICLE TRACK PHOTOGRAPHS

M. Deutsch • • • • •

PIP: A PHOTO-INTERPRETIVE PROGRAM FOR THE ANALYSIS OF
SPARK-CHAMBER DATA

H. Rudloe

THE DIGIGRAPHIC DISPLAY PROGRAM FOR THE
DX-1 COMPUTER

J. T. Gilmore, Jr. • .

SIGNAL REPRESENTATION AND MEASUREMENT DATA
MANIPULATION IN N-SPACE USING AN ON-LINE PDP SYSTEM

C. M. Walter

STEPS TOWARD COMPUTER SIMULATION OF SMALL
GROUP BEHAVIOR

T. Roby and R. Nickerson ••••.

A HYBRID PDP-l FOR SPEECH RESEARCH

D. L. Hogan and R. J. Scott . .

COMPUTER AIDS TO NUMBER THEORY

M. Pivar

REQUIREMENTS OF A TIME-SHARED COMPUTER SYSTEM
FOR PUBLISHING APPLICATIONS

L. Buck land

THE PDP-l AS A TEACHING AID FOR PROBLEM SOLVING

71

75

83

89

91

107

131

139

183

193

201

W. Feurzeig .. 203

viii

Section IV HARDWARE AND INPUT-OUTPUT TECHNIQUES

HARDWARE PROVISIONS FOR EFFICIENT TIME-SHARING
OPERATION OF A PDP-1

N. Kerllenevich ••••••••••••••••

MICROTAPE: ITS FEATURES AND APPLICATIONS

L. Hantman •••••••••••

ON-LINE INPUT OF GRAPHICAL DATA

W. Fletcher.. • • • • • • • • • • • •

THE HYBRID COMPUTATION FACILITY AT UNITED
AIRCRAFT CORPORATION RESEARCH LABORATORIES

R. Belluardo, R. Gocht and G. Paquette ••

USES FOR THE PDP-1 AT LIVERMORE

N. Hardy.

THE PDP-1 AS A DISPLAY MAINTAINING CONSOLE

A. Kotok.

Section V APPENDIX

SPRING MEETING PROGRAM ••••••

ANNUAL MEETING PROGRAM •••••

ATTENDANCE - SPRING MEETING •••

ATTENDANCE - ANNUAL MEETING ••

.

.
AUTHOR INDEX ••••••••••••••• ' .••

ix

217

221

249

261

271

273

A-l

A-3
A-5

A-7

A-9

A USER I S FORE WORD

Seldom in the rapidly evolving field of computer technology has there been so suc

cinct an expression of key concepts - likely to dominate the shape of thi'1gs to come -

as that outlined by J.C.R. Licklider in the DECUS Annual Meeting keynote

address: COMMAND OF PROCEDURES.

The concept of coherent programming thrusts to the heart of the principal difficulty

which thwarts our advance into the third decade of the first era of electronic infor

mation processing systems. This difficulty is exemplified by the proliferation of pro

grams which are conceived in too narrow a context to mesh in any coherent manner

with other programs. It is unfortunate that this course of action is often forced upon

the user (who must get resu Its in a hurry) by those systems programmers who are out to

write the ultimate utility system, and who show an enormous disdain for all that has

gone before. On!y modest and tentative agreement can be expected on a II genera I"

meta language. Even here, there is much basic disagreement among the theore

ti cians. Under such circumstances, en I ightened pragmatism, and a wi II ingness to

achieve some reasonable degree of coherence, appears the best one can hope for.

The explicit identification by Dr. Licklider of II memory sharing, II rather than "time

sharingl~ as the key to any fundamental advance in information processing systems

places the emphasis where it rightly belongs. The phantom delusion of timesharing

a single central processor - at its fastest, orders of magnitude too slow to simulate

the most elementary filter structure~-like many a tired TV commercial, has been

pushed just a little too far. The utility of central-processor time sharing, for many

routine jobs of an elementary nature, is of undisputed value. Some of the papers in

this volume, and those discussed at the May Symposium, show the value of this kind

of time sharing. The extension of this notion to the lIon-I ine ll solution of a II prob lems ,

with everyone promised a highest priority channel is, however, somewhat questionable.

The concept of numerous, quasi-autonomous processors, sharing a heirarchy of both

private and communal memories, certainly offers the user an important measure of

controloverhis own destiny, and valuable insulation from thedictatorshipofa system

which purports to be all things to all users.

C. M. Walter

XI

ADDRESS

COMMAND OF PROCEDURES

Dr. J. C. R. li c k I ide r

Advanced Research Proiects Agency
Washington, D. C.

The context to be assumed in this discussion is that of a large-scale coherently-programmed,

memory-shared computer system used cooperatively by several or many people. This con

text is appropriate to a DECUS meeting because the PDP-6 seems to be well designed to be

the heart of, and PDP-l, PDP-4, and PDP-5 to fulfill peripheral or utility functions in such

a system and because some of the most important problems that must be solved in the process

of developing such a system are problems of cooperation among users in the preparation and

appl ication of software.

Within the stated context, I should like us to examine an idea that we may call II command

of procedures." If we think of computer programming as being the" preparation of proce

dures," then "command of procedures" has to do with the organization and application of

procedures that have already been prepared. The term has connotations of on-line opera

tion and intimate interaction between the user ("commanderll) and the running program.

Command of procedures depends heavily upon memory sharing and coherent programming.

We should therefore review those two concepts as a prel iminary.

The central idea of memory sharing, of course, is to make available to many users and many

programs 1) essentially continuous read-only access to memory containing a common pool of

procedures and data and 2) intermittent read-write access to memory containing individual

programs and working data -- particu larly to a larger amount of high-echelon memory than

the users could otherwise afford. The central idea of coherent programming is to make it

easy for users and the high level parts of their programs to take advantage of the common

poo I of prepa red procedu res and the common data base.

Memory Sharing

The reason for speaking of II memory sharing" instead of "time sharing" is that, as man y

of us have recognized, it is the sharing of memory, more than the sharing of processor

or of time itself, that is fundamental. Time sharing is presently, indeed, the most

practicable technique with which to achieve memory sharing, and it may achieve some

additional advantages through the sharing of other computer subsystems as well, but it

is nevertheless merely a technique. Memory sharing, on the other hand, is a funda

mental advance toward coordination and mutually faci I itory interaction among the ef

forts of many people, working together either on particular tasks or in the general in

tellectual endeavor of mankind.

Coherent Programming

The other term, IIcoherent programming, II is intended to cover a general approach to

the software problem, almost a philosophy. It is to be contrasted with the approach in

which each user or programmer prepares his programs without regard for the possibi lity

that they might be useful later, either to himself or to others. Coherent programming

emphasizes the generation and/or use of procedure libraries, library indexes, adaptable

routines, general routines·, procedure documentation, communication pools, procedure

calling conventions, etc. It is not opposed to diversity of languages, not strongly op

posed even to diversity within such subc lasses of language as procedure-oriented lan

guage, but it is opposed to the prevailing inter-linguistic incoherence which makes

routines written in one language usually very difficult to link with routines written in

another. The concept of coherent programming includes arrangements for the linking of

subroutines at the time of compi lotion, or at the time of loading into the information

base, or at the time of transfer from one memory echelon or location to another, or at

the time of execution. The latter two are envisioned as being the most useful within the

context we have assumed.

As a final note of introduction, let me try to relate the concept I am here calling "CO

herent programming" to the concept recently dubbed II implicit programming" by Fred

Frick and his associates in a technological forecasting group. II Implicit programmingll

is aimed at the problem of making computers useful to people who need information

processing he Ip on substantive tasks but who are not ski lied in the arts ordinari Iy sub

sumed under computer programming, and it is characterized by its rather definite, in

tegrated approach. An implicity programmed computer is envisioned as having within

it a large executive program--in fact, as being delivered with a large executive pro

gram--that inc ludes: the language faci lities, such as translators, compilers, and inter

preters; the display faci lities, such as display-formatting and display-generating routines;

the information-base management facilities, such as file-handling and list-processing

routines; and an extensive set of algorithms covering the field of application of the sys

tem. "Coherent programming" is intended, also, to solve the substantive-user problem,

and it makes use of all the techniques just mentioned, but it does not insist upon - nor,

2

for that matter, does it wholly re ject - having everything incorporated into a mono

lithic executive program. Coherent programming simply requires coherence among the

component languages, routines, displays, techniques, conventions, and formats of a

large software system no matter whether the system is fully developed before delivery

to the users by a programming organization or whether, after being launched as a fairly

simple II boot-strapping" program, it evolves into mature operational form through co

ordinated efforts of substantive users who program or substantive users who do not program

but have programmers closely associated with them.

In the first decade of electronic digital computing, the development of software was

mainly a matter of analyzing substantive problems and preparing integral programs (what

old aviation enthusiasts might call II monocoque.l' programs) to solve them. In the second

decade, basic algorithms corresponding to the common functions of algebra and analysis

were avai lable as ready-made subroutines, and assembler and compiler languages were

devised to facilitate incorporation of the basic algorithms into ad hoc programs. Typical

programs of the second decade were hierarchal, two or three echelons deep, and about

half library subroutine, half ad hoc programming.

As we look back from the beginning of the third decade, we may well wonder whether

all the conceivable elementary routines have not by now been written in five or ten

different forms. Unfortunately, if they have, most of the routines are of no use to any

one, for it would be easier to rewrite them than to retrieve them and even if they were

in hand they cou Id not be compi led on an avai lable compi ler or run on an available

machine, and even if they could, they probably would not link with other routines.

gathered from other sources .. This widespread - not universal but certainly widespread

fai lure to organize software deve lopment in such a way as to bui Id up a coherent system

of useful procedures, subroutines, macros, and the like, puts software in the same class

as the social sciences in that discomfiting observation, liThe natural scientists of each

new generation stand on tht. shoulders of their predecessors, but the social scientists of

each new generation step in their predecessors' faces. II

Whatever the past, it is feasible now to develop for any specialized problem area a

coherent system of routines that will handle the great majority of substantive operations,

and to create a problem-oriented language that wi II put the substantive operations

obediently under the command of users not ski lied in machine or procedure-oriented

programming. That not only can be done, but of course is being done in several fields.

3

However, most of the problem-oriented systems now being developed CJre being devel

oped in an uncoordinated way by diverse organizations and they are not likely to mesh

together as interlocking subsystems to form a coherent over-all system. Against the

criteria of coherent programming, that unlikelihood is a serious and expensive deficiency.

For the purposes of this part of the discussion, let us nevertheless assume that we hove,

in one large computer, a large, coherent system of compatible, linkah-Ie routines. It

would be easiest for some of us to visualize such a system, I think, if it were strictly

hierarchical, consisting of zercrorder routines that do elementary chores all by them

selves, calling no subroutines, and first order routines that call only routines of zero

order, and second-order routines that call only routines of first ord·er, etc. However,

as long as an .!!th order routine cal Is at least one ~-1 }st order routine, as it must by

, definition, it shou Id be allowed to call routines of any order lower than.!!. Moreover,

it wou Id be wrong to bar recu rsive call ing just to keep the picture simple. The calling

pattern in our hypothetical system of routines, therefore, is perhaps somewhat complex,

but it is not excessive Iy so.

The routines are stored, let us assume, in the procedure part of the computer's informa

tion base. I use the term "information base" to denote an extension of the concept,

data base. A data base contains data. An information base contains any or all kinds

of information, particularly including procedure as well as data. Associated with the

procedure part of the information base (in which the routines are stored), there may be

lists and tables that define the structures of some of the routines. However, the para

meters, flags, etc., that special ize a routine for a particular purpose are stored out

side the information base in a sector of memory associated with the individual use r •

By "command of procedure, II in the context we have been developing, I wish, of course,

to suggest a rough analogy with a military commander's command of forces. Military

command is based in part upon plans (corresponding to prepared routines) care full Y

thought-out, checked, and fi led for use when situations arise to which they are appro

priate. At the same time, mi litary command involves strong elements of ad hoc impro

visation and real-time problem solving. These elements usually manifest themselves in

selection, modification, and rearrangement of existing plans, for the time s c a I e of

battle tends to be shorter than the time scale of detailed planning.

Unti I recently, there was not much opportunity for II command of procedures" in digital

4

computing. The time scale of computer" battle" was so short, relative to the time scale

of selecting or modifying or rearranging programs, that the only feasible mode of opera

tion was to plan everything in advance to the last detai I and then to execute the entire

plan precisely as written. With the coming of on-line operation of computers, and with

the prospect that the gross time scale of processing can be matched economically to the

time scale of human thinking, however, the notion of commanding divisions and battal

ions of computer instructions becomes significant. We have seen the beginning in such

work as Culler and Freed's, Weldon Clark's, and Ivan Sutherland's and in military data

base management or "query" languages. It seems likely that command of procedures

wi II become increasingly important, and possible that, as more and more basic proced

ures are programmed and made available in procedure-oriented languages, command of

prepared procedures wi II displace preparation of new procedures as the focus of soft

ware effort.

Command of procedures is analyzable into several interacting parts. In a direct ex

tension of the schema of conventional programming, one would work out a flow chart

that will fulfill the over-all requirement, identify the various parts of the flow chart

with procedures that are avai lable in the information base, connect the procedures to

gether in an arrangement corresponding to the flow chart, and then execute the entire

arrangement. To command would thus be essentially to prepare the highest echelons of

a system of routines and to count on an executive or monitor to retrieve the lower-eche

lon routines from the information base and to effect the linkages. As suggested, that

is a simple schema, but is almost its only virtue. It would be wanton not to take ad

vantage of the fact that being lion line" lets one neglect possibilities that do not arise.

And for many problem areas and many people there may be languages that are more

natural or more convenient or (even) more powerful than the language of flow charts. It

seems desirable, therefore, to explore more complex schemata in the hope that they

wi II prove more effective and appear simpler to the user.

Aschemathat is attractive to me is based on the use, in the formulation of the over-all

procedure, of some workable compromise between natural (human) language and readi Iy

machine-interpretable language. The commander wou Id call for II tentative processing,"

in which mode the initial state and certain intermediate states would be recorded for

possible use in display and as fall-back positions, and then he would formulate what he

wanted done as far ahead as he could see with reasonable clarity. A "differential com-

5

piler," partly syntax-directed and partly responsive to semantic aspects of the language,

would then try to interpret the sequence of commands. Its objective would be to find

an interpretation that was (1) consistent with the input statements, (2) interpretable as

a pattern of simple operations (such as branching) and subroutine calls, and (3) capable

of providing appropriate arguments for every called subroutine. If the computer found

such an interpretation, it would (a) set in motion the machinery for retrieving the sub

routines, (b) produce the necessary machine code to implement the highest echelons of

the program, (c) link the retrieved subroutine to form the lower echelons, (d) run the

program, (e) display intermediate and terminal results, and (f) await further command

to revise or continue. If the compi ler failed to find a satisfactory interpretation, it

would try to indicate the nature of the difficulty: syntactic trouble, undefined term,

no subroutine available to implement specified operation, subroutine argument out of

bounds, etc. - but with greater diagnostic precision than those terms suggest. If the

compiler found a marginally satisfactory interpretation, or more than one satisfactory

interpretation, it wou Id work backwards from the interpretation(s) and sar, II Do you

mean •••. 1"

By I! differential compiler,!! in the foregoing, I mean a compi ler that keeps track of the

interdependencies among program statements and permits (1) the addition and testing of

increments. without recompilation of the base program and (2) the a Iteration and testing

of statements at any point in the program without recompiling statements not affected by

the alterations. Perlis has developed such a compiler. It makes use of his IIthreaded

losts" in keeping track of interdependencies. Note that the difference between II com

pi ler" and" ;nterpreter" fades when the compi ler operates upon short segments of pro

gram under the user's on-line direction.

Retrieval and I inking of subroutines are not, of course, the whole problem. The lan

guage must permit the user to introduce data (numbers, facts, declaratives) into the

data base and to query the data base. The language must be capable of selecting dis

plays and governing their formats and contents. The language must be capable of "mod

ulating ll the subroutines, of specializing them for particular questions. (This is mainly

a matter of supplying parameter arguments to the subroutines, which we have already

mentioned, but it should be handled subtly. For example, adverbs in the user's state

ments might determine the values of arguments that affect the operation of the subroutine

but do not change its basic structure.) Most importantly, perhaps, as the foregoing

6

discussion of the use of the compi ler and mention of communication with the data base

suggest, the language must be capable of directing the operation of programs upon rou

tines, and even upon entire programs. Thus some of the contents of the information

base would be routines for use as components in constructing programs, some would be

programs for managing the data base and displays, some would be programs for operating

upon programs, and some would be the basic parts of the language mechanism itself.

In the immediately foregoing discussion, I have, for the sake of simpl icity, used II lan

guage ll in the singular. It seems likely that there will be requirements for dialects

within a language and for a multipl icity of languages. If these are to be several lan

guages, then there probably should be a fundamental meta-language or system-control

language. To facilitate their learning and retention, the several languages should be

as compatible, one with another--as coherent in the sense of fitting together in an

over-all design--as is consistent with the requirements placed upon them individually

by their applications.

7

Section I

TIME SHARING

ABSTRACT

JUST NINE PACKAGES BETWEEN YOU AND TIME SHARING?*

S. Boilen and L. C. Clapp

Bolt Beranek and Newman, Inc.
Cambridge I Massachusetts

This paper wi II describe the design and implementation of a time--sharing

system for the PDP-1 computer. The system was designed especially for

simultaneous debugging of programs by five independent users. The system

has been in daily operation for the past several months. A second gen

eration system with many new features is under development and wi II be

operational shortly. These improvements will be discussed in detail.

*This paper was not submitted in time for publ ication.

11

ABSTRACT

STANFORD TIMESHARING SYSTEM

John McCarthy.

Stanford University
Stanford, California

The Stanford Computation Center is developing A Time.8haring System
involving a PDP-I, a twelve station keyboard and CRT Display System
remotely controlled laboratory apparatus, and a directconnection to our
IB M 7090. The system will be used for an experimental teaching machine
laboratory, for debugging programs .on the PDP-I and 7090 and for other
man-machine interaction work. Plans for the system will be described.

INTRODUCTION

I shall describe the time-sharing system that we are building at Stanford University.

The System is like the BBN time-sharing system, but wi II be considerably extended in

both hardware and capabi I ity.

The special hardware will be delivered on March 1, 1964, and the remainder in May,

so we should have the System in some form of operation by June. Services will be avail

able to the users through a number of input-output devices and, of course, as is typical

of a time-sharing system, the users wi II be able to operate independently of each other.

THE SYSTEM

The facilities of the system will include twelve keyboard - scope -- light pen consoles,

which I will describe below. These consoles will be located in the Computation Center

itself, and in addition there will be probably at least five model 33 teletypes which will

be located remotely, in different places on t~e Stanford Campus. Remote experimental

apparatus will be connected also. The present two clients for this arrangement are the

High Energy Physics laboratory and the Genetics Department in the Medical School.

The High Energy Physics Laboratory desires to be able to ask the time-sharing system, at

any time,

1) to read the multi-channel pulse-height analyzer,

2) to do some simple computations,

3) to plot some graphs which will tell how an experiment is 90in9.

13

The laboratory personnel would like to be abJe to do these things in real time. For these

a Calcomp plotter will have to be added to the teletype and the connection to their

apparatus.

The Stanford Computation Center would like eventually to make computation for laboratory

apparatus a sort of a public service. There would be four wires coming out of the wall in

the laboratory, two of which connected to a teletype or similar device. To the other two

wires one could connect any apparatus. To accomplish this the time-sharing system wi II be

arranged so that no matter how the apparatus interacts with these wires, it cannot stop the

time-sharing system or interfere with other users (even if the user puts 110 volts on it, all he

will do is blow a fuse). This is our gool, but so far, the picture of what kind of interaction

a general purpose facility ought ~o provide is not very clear. Therefore, we are providing

services for the immediate users who have made their needs known, and later we will try to

evolve a general purpose system.

Our present system is_ shown in Figure 1 •

THE DISPLAY SYSTEM

The display system is of special interest for it can display approximately 200,000 characters

per second. It writes on one scope at a time, and the displays are maintained by switching,

in sequence, among the twelve scopes. With a total of 200,000 characters per second, each

scope has a capac ity of 1/12 of that, or 17,000 characters per second. If one displayed

forty times a second, 425 characters could be maintained flicker-free on each scope. Our

experience with the PDP-l character generator shows that for programming use flicker-free

displays are not needed and therefore, one could legibly display a considerably large number

of characters on each scope.

The display system receives 18-bit words from the 16K memory - one word every fifteen micro

seconds. The system can be in one of three modes:-

1 • typewriter mode, in which the 18-bit word is interpreted
as three 6-bit characters. The total number of displayable
characters is 114. (The system simulates a typewriter closely
by correctly interpreting such characters as case shift carriage
retum and, of course, an escape character which escapes
into control mode).

2. vector mode, in which the 18-bit words is interpreted as
two 7 vectors, each with sign, using 16 bits. There is a
register in the display unit which represents a position on
the scope and this vector is added to that position, so that

14

a
4)

PI

~
oM
r-i

+

Teletypes

~ PD;El-l COMPUTER

.
12C~ __

IBM 7090

{BM 1301 .\

QISK FI:J
............. _----

Lines to
Laboratories 16K CORE

FIGUR~ 1

15

vector gives a new position. The remaining two bits
are used in the following way: one combination says
that the vector is to be displayed. Another combina
tion says that only the endpoint is to be displayed,
that is, for making dot pictures. A third combination
says that the vector is not to be displayed at all. Thus
we are merely moving the position point on the register.
Then the fourth combination says that it is not actually
a vector, it is positioning. In which case, the leading
6-bits are positioned.

3. control mode. The system can choose to enter one of
the other modes; it can change the brightness of the
characters; it can 'change the size of the characters;
it can add or stop displaying on the scopes or it can
add a scope to those which are displayed.

The PDP-1 uses this system giving a transmission instruction to the 131 display channel.

At the end of the transmission instruction, an interrupt occurs and the program gives the

next transmission instruction for the next display and so forth.

OTHER CONNECTIONS

The next item on the system diogrcm is a connection to the other 131 channel which in

turn contains two two-way connections. One of these two-way connections is the Stan

ford IBM 7090 computer. The other two-way connection is to our IBM 1301 disk fi Ie.

The fourth cross point is the 32 field swapping drum.

During time-sharing, the user program can be at most 4K, and inhabits the 4K memory.

The 16K memory is used for system prograns and for storing the characters which are to

be displayed on the various scopes. As in the BBN system, each user gets a quantum of

time after which his core image goes onto the drum and the next user canes in. Since

this description is not intended to be complete, I shall list only the applications for which

the system is currently intended.

APPLICATIONS

1. The first application is a heuristic programming laboratory which will
use the 7090 for studies in artificial intelligence, especially pro
gramming in LISP.

2. Similarly, there will be a mathematical laboratory whose obiect will be
to make the commonly used operations on formulas, differentiation,
integration, algebraic simplification, etc., available to users di rectly.

16

3.

4.

5.

The third application wi II be as a teaching machine laboratory. This is
one of the maior sources of support for this proiect and six of these twelve
consoles belong to this teaching proiect. They will also have a number
of other gadgets which wi II be· controlled by the PDP-l, such as an audio
system, and a computer controlled slide proiector.

The next application is teaching programming.

A final appl ication is picture processing, i.e. the interpretation of spark
chamber pictures which we hope will serve as a background activity sop
ping up what computer time is not used by the time sharing.

The question,whether the PDP-1 can keep all this going at once - can keep all these balls

in the air - is somewhat an open question. It is a question the BBN time-sharing system

might answer, but because of the fact that the BBN system was never really in production

use, we must still guess.

EDITING TEXT AND FILE HANDLING

The General Input Routine

A final subiect I think I would like to discuss is the question of editing text and fi Ie hand

ling. We can look forward to fairly complicated file facilities because we will have files

in the drum belonging to currently active users, and files on the 1301 disk file which may

be either programs for the PDP-lor programs for the 7090 which will be edited using the

display system.

We are thinking right now about a general purpose editing and input system, and I should

like to mention the general input routine. The general input routine is designed to give

input to the computer over a complete range of appl ications. The applications vary in how

promptly your own program must pay attention to characters which are typed. As one

limiting case assume that you are preparing a fi Ie. Here you would like characters as

you type them to be simply added to a buffer in core and when this buffer gets full, to be

transmitted to a secondary storage. Even then some control characters are needed such as

an equivalent of a back space for erasing an immediately detected error, and an escape

to a control mode in which transmission operations can be dictated. We would like to be

able to enter a cliche, that is, a text that has been predefined.

The other extreme is the use of the keyboard as a control device. Thus, every character

hit on the keyboard goes directly to the program which interprets it and takes some action

based on it. For example, the keyboard control device may change a display.

17

There are intermediate situations where in typing some language action may be desired

to be taken only at break character times. For example, in DDT, if symbols are used,

the system need not take action at every character, but only when a break character

is typed.

The Stanford Computation Center hopes to provide a general routine which will give all

of the faci I ities described. There wi II be a table of all the characters that can be typed

on the keyboard. Each character wi II have a status. One character status is that it

shou Id iust be added to the buffer when typed. A second is that this character is a de-

I imiter and causes all the characters in the buffer to be transmitted to the users program

or to the uti lity program which is currently working for the user. A third is that this

character has an immediate control significance relative to the input itself; for example,

the backspace act ion faci I ity.

18

A REPORT ON A LARGE-SCALE TIME-SHARING SYSTEM

Jules I. Schwartz

System Development Corporation
Santa Monica, California

ABSTRACT: The System Development Corporation, under ARPA sponsorship, has developed
a time-sharing system on the Q-32 computer. Time-sharing, in this case, implies simulta
neous access to the computer by a large number of independent users. The goal of the sys
tem is to provide essentially immediate response to queries from all users. Users have at
their disposal keyboards (primarily teletypes), displays, and other computers. These devices
can be operated from local (within SDC Santa Monica) or remote stations. The system has
been operational since June, 1963. It permits program production and debugging, experi
mentation with human subiects, rapid on-line programming and computation, and other
functions which can benefit from computer-human interaction. This paper discusses the sys
tem as it appears to the user, the general design of the system, and relates some of the ex
perience had in using the system.

INTRODUCTION

Since June 1963, a Time-Sharing System has been operational at the System Development

Corporation in Santa Monica. This system was produced under the sponsorship of ARPA and

has utilized ideas developed at both Massachusetts Institute of Technology and Bolt Beranek

and Newman as well as some original techniques. Time-sharing, in this case, means the

simultaneous access to a computer by a large number of independent (and/or related) users

and programs. The system is also "general purpose, II since there is essentially no restriction

on the kind of program run under the system. The system has been used for compiling and

debugging programs, conducting research, performing calculations, conducting games, and

executing on-line programming using both algebraic and list-processing languages.

Equipment Configuration

The maior computer used by the system executive is the AN/FSQ-32 (manufactured by IBM).

Also used by the system is the PDP-1 (manufactured by Digital Equipment Corp.), * which is

the maior input/output vechicle for the various remote devices.

The remote input/output devices available to users include teletypes, displays, and other

computers. ** These devices can be run from within SOC, and from the outside, with the

exception of displays, which can be operated only a short distance from the computer.

* PDP-1 not operating at this writing, but planned for operation in October.
**The I ine for other computers is to be avai lable in November.

19

Computers which are to be used at remote stations include the CDC 160A, the DEC PDP-1,

and the IBM 1410.

Figure 1 is a description of the systemls remote equipment configuration as it will look

in November 1963.

(At present there are 8 teletypes, 6 displays, and no computers in the network.)

Outside
Teletypes

4.

Inside
Teletypes

. ,r ~r

Outside -- - PDP/l - - Q-32
Computers - - - -

~~

Displays -~

Figure 1

The AN/FSQ-32 computer is a lis-complement, 48-bit-word computer, with (at pres-

ent) 65,536 words of high-speed (2.5 microseconds cycle time minus overlap) memory avail-

able for programs, and an additional 16,384 words of high-speed memory available for data

20

and input/output buffering, the latter memory caUed input memory. The PDP-l also has

access to this input memory. Thus this memory serves as the interface between the two com-

puters. In addition, the Q-32 has an extremely powerful instruction repertoire, including

access to parts of words for loading, storing, and arithmetic, and also an extensive interrupt

system.

figure 2 presents a description of the computer and its immediate input/output devices.

T ypewr iter Reader Punc h

High
Speed

Memory
(65K)

Input
Memory

(16K)

Figure 2

The Time-Sharing System as it looks to the User

".--.......... *
(Disk "'

4,000,000 "
Words / ,---'"

The time-sharing user today communicates with the Time-Sharing System primarily by

means of teletype. He has at his disposal six basic commands to the system:

*Disk is to be installed in the spring of 1964.

21

LOGIN

LOAD

GO

STOP

QUIT

DIAL

Briefly these commands mean:

• LOGIN: The user is beginning a run. With this command he gives his identifica

tion and a II job-number ."

• LOAD: The user requests a program to be loaded (from tape today, eventually,

from disk). Once this command is executed, the program is an "object program"

in the system.

• GO: The user wishes to start the .operation of an object program or restart the oper

ation of an object program that has been stopped. Once the user gives this com

mand, he can send teletype messages to either his obiect program or the time-

shari ng system.

• STOP: The user wishes to stop the operation of an object program.

• QUIT: The user has fin ished a particular job. Upon receipt of the QUIT, the

Time-Sharing System punches a card with certain accounting information on it and

removes the object program from the system.

• DIAL: The user may communicate with other users or the computer operators with

th is command.

In addition to these basic commands, the user has available to him a variety of pro

gram debugging, or checkout, commands. These commands and the basic symbols used for

each one inc I ude :
22

OPEN

MODIFY OPEN REGISTER ADDRESS

INSERT

MASK

MODE

BREAK POINT

DUMP

s = symbol or address

n. = integer
I

51

±/n

V*

n, n2

ForOoriorH

s· ,

5 nl

v = floating, octal, integer, or aJphanumeric value.

Briefly, the functions of these commands are:

• OPEN: Displays the contents of the given memory or machine register and uses

th is as a bose address for other commands.

• MODIFY OPEN REGISTER ADDRESS: Changes the address of the opened register

by the given increment or decrement.

• INSERT: Inserts the given value into the opened register.

• MASK: Inserts values by the given mask.

• MODE: Displays values according to specified mode (floating, decimal, octal,

Hollerith) •

. BREAK POINT: When this point in the program is reached, notifies the user, and

(on options), displays registers, and stops or continues the program. As many as

five break points are allowed simultaneously.

• DUMP: Dumps a given set of registers, either on teletype or tape.

23

Obiect Program Input-Output

As stated before, there is no restriction on the type of obiect program that can run in

the system. Therefore, as much input/output equipment as possible is made available to

obiect programs. Thus, today obiect programs may use tapes, displays, and teletypes for

input and output. In November, other computers will also be treated as input/output de

vices; further, disk storage, when installed, will be made available to obiect programs.

Since, in a system like this, it is impractical to have specific teletypes or tapes referred to

by obiect programs, input/output is done in a general fashion, with all input/output devices

given arbitrary names by the obiect programs and declared to be files used by the obiect

program during its run. Thus only the time-sharing system knows what physical tape drives,

te I etypes, or areas of drums are be ing used.

Additional Tools Available to System Users

The commands and devices mentioned so far have been facilities available to users or

users' obiect programs directly through the Time-Sharing System's Executive. With these

tools one could run and debug programs that exist in a binary form. To make the system

more useful, however, a number of additional devices (called service routines) are avail

able to users. These are themselves run as obiect programs, so it is clear that there is no

I imit to the number of service routines that can eventually be made available. Some of the

more interesting routines that are currently operational are:

FI LE - fi Ie and update on tape

JTS - compile from tape

TINT - interpret on-line JOVIAL programs

IPL-TS - tPL-V interpreter

FRDN - sophisticated desk calculator

24

The functions of these routines are:

· FILE: This program enables one to file away and update large volumes of symbolic

data onto tape either from cord reader or teletype.

· JTS: JTS (JOVIAL for Time-Sharing) is a one-pass JOVIAL-and-machine language

compiler that accepts input from tope and produces binary programs and listings on

tape.

· TINT: This program (Time-Shoring Interpreter) permits on-I ine (teletype) program

ming in a form of JOVIAL. It executes interpretively the coded program either in

parts as it is coded or as a whole. It also permits dynamic input and output of data

via teletype.

· IPL-TS: An interesting IPL-V interpreter exists that accepts inputs from either tape

or teletype. It is strongly oriented to on-line processing and cmtains a number of

unique features for on-I ine checkout of IPL programs.

• FRDN: FRDN is a fancy desk calculator, which permits, in addition to the stand

ard arithmetic operations, exponential and trigooometric functions.

• Other service routines, including a sophisticated text editor, a mathematician's

assistant, and a LISP processor are under development at SOC and elsewhere.

System Ope rat ion

The discussion so far has been primarily on the operation of the system from the user1s

point of view. The following is an attempt to give an over-all description of the system and

describes briefl y how it operates.

Basically, the system operates as follows: All obiect programs are stored on drum, put

there as a result of the LOAD commands. When a program1s time to operate arrives, or

preferabl y ahead of this time, it is brought into high-speed memory. If bringing in a program

25

to its area in memory causes a storage confl ict with another program, the latter must be re

stored to its place on drums. A program's turn will end when it in itiates an input or output

request, a machine or program error is detected, or its time is up, the time allotted being

determined prior to its particular turn. At the completion of its turn, its machine environ

ment (e .g., accumulator, index-registers', etc.) is saved, and it either resides in memory

until its next turn or is written on drums. This mechanism is controlled by the time-sharing

Executive.

The time-sharing Executive in the Q-32 consists of 8 maior components:

INTERRUPT CONTROL

TELETYPE INTERPRETER

DISPATCHER

SCHEDULER

BASIC SEQUENCE

INPUT/OUTPUT

ST ART -UP, CLEAN-UP

DEBUGGER

The maior functions of these components are:

• INTERRUPT CONTROL: Operates as a result of a computer interrupt and, based

on the nature of the interrupt, fires off the next or another Executive module to be

operated.

. TELETYPE INTERPRETER: Determines if input messages are for the Executive system

or for obiect programs. If the message is for the obiect program, it simply sets an

indication that there is a message waiting for the particular program. If the mes

sage is for the Executive system, it either sets an indicator telling what is to be

26

done, or, if it is a II one-shot" action such as required by a LOG I N or QUIT com

mand, performs the task itself.

• DISPATCHER: (This is the biggest part of the system.) The maior functions of the

Dispatcher include the allocation of storage, both internal and peripheral, the

transfer of programs to and from high-speed storage and the sequencing of all input/

output commands.

. SCHEDULER: The Scheduler is a program whose task is simply to determine which

obiect program is to operate. At the completion of every obiect program, the

Scheduler is entered. At its exit it gives three parameters: (1) the program to be

run at this time; (2) the amount of time the program is to be allotted at this time;

and (3) the program to be run next, this parameter to permit reading-in the next

program while the current program is operating. The Scheduler employs several

criteria in making these decisions. Basically, it schedules to give all "active"

programs (e.g., those not waiting for input or output or not stopped) a maximum

response time--currently, this parameter is 2 seconds. In practice, however, most

programs receive much better response time than the maximum, primarily because

most programs don1t use all their allotted time, and the maiority of programs are

not "active."

• BASIC SEQUENCE: The main function of the Basic Sequence is to fire off obiect

programs, and in so doing, to give them any teletype, light pen (display), or com

puter inputs that have been made available to them since their last operation.

· INPUT/OUTPUT: This is a set of routines that actually perform input/output for

the various devices.

· START -UP, CLEAN-UP: These functions begin and end the system.

27

DEBUGGER: This is the program that performs the requested on-line debugging

commands.

The Time-Sharing System1s Q-32 Executive occupies 16,384 words of memory, leaving

the remainder of memory for object programs.

The Executive which exists in the PDP-1 is primarily concerned with maintaining the

flow of information to and from the remote devices. It does relatively little decision-making.

However, it does determine the kind of input/output device concerned, the type of conver

sion necessary (if any), and the particular channel of the device with which it is communi

cating.

Experience with the System

There are some obvious advantages to this kind of system that have been borne out in

practice. There is a large class of problems whose compute time is extremely small in re

lation to the total time the problem is on the computer. This is because a large percentage

of time is taken up by human thought and computer input/output. In fact, the use of a com

puter for this kind of appl ication in a non-time-sharing mode is so inefficient that frequently

it would not be worthwhile to run. There are many examples of this kind of problem. The

one that most programmers are famil iar with is console debugging. Th is means the checkout

of programs with the programmer at the computer--anathema to most computer managers,

but desired by a large number of programmers. These kinds of appl ications have been run

with a high degree of success in the SDC Time-Sharing System, with each person involved

actually feel ing he has the whole computer to himself.

At the other end of the spectrum are those programs that compute for essentially 100%

of the time they are on the computer. If these programs compute for long periods of time,

say a matter of minutes, they will completely usurp their allotted time and thus tend to make

28

the on-I ine user wait for the maximum response period possible. Time-Sharing does not ben··

efit this kind of user, except that this kind of program can be run" in the background" while

other on-I ine interaction programs are idle. In the SOC installation, the percentage of these

long-period computer programs has been small, so that no serious system response time de

lays have been noticed from them.

Questions frequently asked are, "00 people like the system?" "Does it produce better

results than other, more standard techniques?" Both the questions are difficult to answer in

an absolute sense. However, some reasonable observations can be made that apply to -this

system and probably to others of this kind.

(l) Those on-I ine interaction programs that used to run in a non-time-sharing mode

but were converted to time-sharing produce results that are as valid as before but

with greater efficiency in computer operation, since a number of different ones

are run simultaneously.

(2) The on-line debugging capabil ity has proved very valuable. This system of de

bugging gives a feeling of closeness to the computer and control over the program,

so that debugging time is reduced considerably while the efficiency of computer

util ization stays high. Also, although the tools available so far have been rel

atively few and unsophisticated, one can see, however, the advantages to be

gained by giving everyone immediate access and response from a computer.

"Directed" computer runs are the mode of operation. Every step taken is taken

only as a result or verification of the previous step. If things do not go as planned,

alternative paths can be followed immediately. Without time-sharing, the choices

one has had were the "submitting" of a run, followed by an anxious waiting period

which frequently is climaxed by a sigh {or worse} and a resubmitting of the same

29

run, or one man's on-line interaction with the computer, which helps him but causes con

sternation on the part of others who are waiting for computer runs.

Such a system must be made fool-proof. Because of the nature of the system, one must

have a reasonably long time of uninterrupted operation to get satisfactory results. This im

p I ies severa I th i ngs :

(1) The system Executive must be rei iable and able to account for any condition that

may arise, including obiect program and machine errors.

(2) The machine must be rei iable. Although the system must provide the abil ity to

analyze each computer error and isolate and stop only the particular obiect pro

gram or programs affected, frequent or solid computer errors can cause the entire

system and all obiect programs to terminate.

(3) Certain hardware features are essential. These include: Memory protection--the

ability to prevent obiect programs from destroying each other or the Executive

system. High-speed large-storage random-access devices--the maior bottleneck

in a system of this kind is the slow rate at which obiect programs can be moved

in and out of memory. Also, the use of magnetic tapes for such functions as the

permanent storage of programs and data files creates operational and timing prob

lems that can be overcome with the use of large drums or disks. Clock interrupt

capabil ity--the system requires that no single program run for an excessively long

time. Therefore a clock that can be set to interrupt operation at various intervals

is necessary for complete control and the assurance of adequate response time.

Conclusions

When the SOC Time-Sharing System first became operational, it had no memory pro

tection, its Executive was unrel iable, and its computer was beset by a much heavier load

30

than it was used to and reacted accordingly. With these obstacles, the early users were sub

ject to frustrations unl ike many found in the twentieth century. The system's I ife expectancy

was no more than ten minutes. The only remarkable thing about the early months was that

anything useful was accomplished. Interestingly enough, however, some work was accom

plished, primarily through patience on the part of the users. With the passage of time, many

of the problems have been alleviated through both equipment improvements and programming

improvements, and although no exact figures are available, there is strong feel ing that the

presence of the time-sharing system has increased the computer's value considerably.

It is interesting to watch a group of people using a computer simultaneously but solv

ing different problems using different tools. At the computer console itself, one can usually

see all the available tape drives busy, typewriters busy, drum indicators indicating the drums

are busy, the punch punching on occasion, and, the card-reader going at anywhere from

quarter to full speed. If one may iudge the worth of a computer by the amount of equipment

used per second, time-sharing is well worth its investment.

So far, the system at SOC has been developed and used mainly to make computer use

more efficient. Since the system has been under development for a relatively short time (it

was begun in January 1963), the number of existing service routines is still small. However,

one can envision the development of an increasing number of on-line programming aids and

techniques of utilizing keyboards, displays, and groups of computers to make a time-sharing

network a truly powerful device.

It is certainly conceivable that in the not too distant future, many people will have

at their fingertips a device which, at a reasonable cost, enables them to enter an operating

network such as this one. While in this network, they will have access to routines, tech

niques, and computing power unavailable to them by other means. The computing power

will include not only the Executive computer but the other computers that are in the network

as well. Thus, the possibility of large-scale time-sharing networks seems to be one of the more

promising developments in computer technology today.

31

INTRODUCTION

M.1. T .15 PROJECT MAC: CURRENT STATUS

Richard G. Mills

Massachusetts Institute of Technology
Cambridge, Massachusetts

The Massachusetts Institute of Technology has been participating, since Spring 1963, in

a major national program of research on advanced computer systems and their exploitation

sponsored by the Department of Defense. The contract of $2,220,000 to initiate the effort

was awarded by the Office of Naval Research on behalf of the advanced Research Proiects

Agency of the Department of Defense.

The research is being carried out under the project name" MAC, II an acronym derived

from two titles: machine-aided cognition, expressing the broad proiect obiective, and

multiple access computers, describing its major tool. The proiect director is Dr. Robert

M. Fano, Ford Professor of Engineering and Professor of Electrical Communications. The

Project MAC program is being carried out adjacent to the M.1. T. campus in the Tech

nology Square office complex. It occupies the eight and ninth floors of the Beta Bui Iding,

545 Technology Square, Cambridge, Massachusetts.

OBJECTIVES

The broad goal of Project MAC is the experimental investigation of new ways in which

on-line use of computers can aid people in their creative work, whether research, engi

neering, design, management, or education. Thus, an essential part of the project is

the evolutionary development of a large, time-shared computer system that is easily and

independently accessible to a large number of people, and truly responsive to their indi

vidual needs. The keynote is ease of access, both physical and intellectual, which must

apply to the information stored in the computer system as well as to the computerls infor

mation processing capabi I ity. The goal is an intimate collaboration between the human

user and the computer in a real-time dialogue on the solution of a problem, in which the

two parties contribute their best capabilities--for the man, imagination, insight, inspira

tion and judgment; for the computer, enormous computing power, high-speed data re

trieval from a vast store, and the ability to handle the details of very complex logical

processes.

33

Project MAC is capitalizing on a long history of pioneering work on computers and

information processing at M .1. T. and M .1. T. 's Lincoln Laboratory, which includes

such mi lestones as the analog computer of Dr. Vannevar Bush prior to World War II,

Whirlwind I, theSAGE System, and the TX-2 computer. More recently, the research

of the Computation Center on time-sharing systems, and the work of the Computer

Aided Design Project, jointly conducted by the Electronic Systems Laboratory of the

Electrical Engineering Department and the Design Section of the Mechanical Engineer

ing Department, have provided the foundation on which the present MAC system is

built.

FACILITIES

The present MAC computer installation inc ludes a specially modified IBM 7094 compu

ter and a Digital Equipment Corporation PDP-1 computer (see Fig. 1). The IBM 7094

computer is the central part of the time-sharing system. The primary terminals of the

system are, at present, 40 Model 35 Teletypes and 16 IBM 1050 Selectric typewriter

stations. Two of the terminals are located at Lincoln Laboratory in Lexington, the rest

on the M.I. T. campus. Each terminal can dial, through the M.I. T. switching central,

either the MAC computer installation or the similar installation in the M .1. T. Compu

tation Center. The supervisory program of the two computer installations may, inde

pendently, accept or re ject the call.

MAC's large-scale computer is an augmented IBM 7094. It has been modified to oper

ate with two banks of 32K core memory, and it has six data channels, as illustrated in

Figure 1. Modifications in addition to the two-bank core memory include hardware

faci I ities for re location and memory protection. These features, together with an

interrupt clock and a special operating mode in which input-output operations and

certain other instructions result in traps, were nesessary to assure successful operation

of independent programs coexisting in core.

Two basic motivations for adding the second core bank, which is reserved for the super

visor, are 1) to avoid imposing severe memory restrictions on users because of the large

supervisor, and 2) to permit use of existing programs (e.g., FAP) which require all or

most of core.

The Programmed Transmission Control (7750) is a stored-program computer which serves

as the interface between a 7094 data channel and up to 112 telegraph-rate (100 or so

34

32 K
Core

32 K
Core

7094
Central

Processing
Units

Data
Channels

Tapes, Printer, Card Reader,
Card Punch

Direct Data
Connection

File
Control

File
Control

Tapes

nso Programmed
Transmission Control

high-rate connection to)
arbitrary external equip
ment I such as PDP-l

teletypeS)
and other
low-rate
terminals

Figure 1 MAC Time-Sharing Computer Configuration

bits/sec) terminal devices. Alternatively, higher-rate terminals (e.g., 1200 bits/sec)

may be traded for groups of low-rate lines. The 7750 is compatible with Bell System

data sets.

The initial 7750 configuration at Project MAC provides for three 1200-bit tenninals,

24 terminals for Model 35 Teletypes, and 28 terminals for IBM 1050 Selectric type

writer stations, all interconnected throl1gh a dial network. (The Computation Centerls

7750 is identical, except the number of Teletype terminals is 16). An arrangement to

allow the computer to initiate calls wi II be an early addition.

Present plans call for the 1200-bit I ines to be used, through data sets, for intercommuni

cation between the MAC and Computation Center 7094 1s, and also as one means of

connecting the 7094 to some of the other computers at M.I. T. Two PDP-lis and a

1620 will be fitted for this connection. As the experimental program develops, other

uses wi II doubtless arise.

MAC now has installed a 16K PDP-1 with high-speed channel and scope display with

character generator and light pen. Micro tapes wi II be added shortly. This machine

is one of those mentioned above which will be adapted for 1200-bit-per-second con

nection to the 7750. For another class of experiments the same machine wi II be con

nected at a much higher rate through the PDP-1 high-speed channel to the 7094 direct

data connection. The basic role of the MAC PDP-l is that of an extremely flexible,

high quality (i .e., high data-rate) terminal for man-machine interaction.

The M.I. T. Electrical Engineering Department's PDP-1, which is itself time shared,

can also participate, possibly by maintaining several display and typewriter terminals.

In order to provide access from outside M.I. T., the MAC system witl be connected in

the near future to the TWX and Telex networks operated respectively by the American

Telephone and Telegraph Corporation and the Western Union Company. Experiments

are being planned in collaboration with a number of universities participating in the

national program to provide experience with long-distance operation of time-sharing

systems.

MACls initial supervisory operating system is the M.I. T. Compatible Time-Sharing

System (CTSS). An evolving system of programs developed by the M.I. T. Computation

Center, CTSS was first publicly demonstrated in 1961. It includes supervisory, scheduling,

36

debugging, assembler/compiler and input/output facilities. The programming languages

now or soon to be available to the MAC users on CTSS are FORTRAN, FAP, MAD,
oJ

COMIT, LISP, COGO, STRESS, ALGOL, SLIP and SNOBOL. Other languages, and

particularly other common uti lity programs, are planned for future inc lusion.

A typical programming session at a time-sharing terminal from the user's point of view

might go as follows:

The user first must log in to the system, giving his identification. When he is accepted

by the system he may then type in a subroutine, perhaps using the MAD language. He

could then call for a printout of his input, edit it to correct errors, and then call for a

compi lotion of this part of his program. The resulting binary program, together with

other previously compi led programs, could then be loaded and run and the result or

post-mortem data obtained. If necessary, the user may examine the contents of registers

in memory, make corrections to the source program, recompile and so on, repeating the

process as often as necessary. When the user chooses to terminate his work, he may save

the present state of all of his programs with the assurance that they will be ready for

him to pick up the threads at his next session at a terminal, perhaps hours or weeks in

the future. When he logs out of the system, the user receives from the supervisory pro

gram accounting data indicating how much actual computer time he has used.

CTSS allows a conventional batch-processing load to be operated as .. backgrouncl."

Any computer capacity which is not demanded by users at remote terminals is absorbed

by the background load of the system.

Whi Ie te letype or other typewriter-I ike terminals are adequate for many purposes, some

applications demand a much more flexible form of graphical communication. An excel

lent example of graphical communication arose two years ago on the lincoln laboratory

TX-2 computer in connection with the doctoral thesis of Ivan Sutherland. This work,

in the general area of computer-aided design, is directed toward IItightening the loop"

in the design process through use of a computer with appropriate terminal equipment.

Using such a term inal, and aided by the computer, the designer might sketch in a

drawing of a mechanical part using a II light pen" or other tracking device. Working

with his visual display the designer could then modify his drawings as he worked and

then perhaps subiect the partially designed part to simulated testing by indicating at

his display the application of loads and having the computer present the reaction of the

part such as deformation, fai lure, etc. When the designer is satisfied, he might then

37

press a button which causes the computer to produce a tape to control a machine tool

to actua Ily produce the part.

The M.I. T. Electronic Systems Laboratory recently completed a visual-display terminal

with flex ible input-output foci lities for use in such applications as those described

above. The console which ESL has produced includes an oscilloscope display with

character generator and light pen together with some local logical capability to simplify

the task of the computer in maintaining the display. For communication from the

console to the computer the tenninal includes a variety of devices such as knobs, push

buttons, toggle switches and in the near future a typewriter. The meaning of a signal

from one of these input devices is entirely determined by the program in the computer.

There is no "wired in" local significance. Thus, the tenninal is an extremely flexible

device which can be used in many fields of application.

While the time-shared computer system is the most visible part of the proiect at this

time, the research activities which use it constitute a maior part of the MAC effort

and are also well underway. The detai Is of the work are difficult to report at the

present stage, but an indication of the level of activity is given by the heavy demands

made by the research groups on the MAC canputer. To satisfy the project1s needs, the

computer is operated on a five-day per week around-the-c lock basis and wi II go to a

full seven-day week later this month. At present, when the compatible time-sharing

system program (CTSS) is on--which is about 80 per cent of the total MAC computer

time--as many as 24 persons can simultaneously use the machine from various remote

terminals. This number may go as high as 75 when planned improvements to the 7094

and CTSS are completed.

38

Section II

UTILITY PROGRAMS AND TECHNIQUES

ABSTRACT

RECENT IMPROVEMENTS IN DDT

D. J. Edwards and M. L. Minsky

Massachusetts Institute of Technology
Cambridge, Massachusetts

This paper will report new developments and recent improvements to
DDT.

II Window DDT II now will remember undefined symbols and define them
on a later command. Using sequence breaks. it can change the contents
of memory while a program is running. and the contents of memory can
be displayed in symbolic form on the scope.

INTRODUCTION

The distinction between a debugging system and a programming system is not very clear,

especially when the two systems work within the same language. In debugging small

MACRO programs using DDT, one often adds substantially to the volume of the original

program. At least volumetrically, then, he must be programming.

For very small programs it is clearly more efficient, provided access to the computer is

freely available, to write the whole program at the keyboard using DDT, because this

eliminates·a number of preparation phases each of which has a fixed overhead time. With

larger programs, on-line programming with DDT becomes more difficult, because there

is more to keep track of in what is a I ready written, and more planning to do.

We have added a few features to DDT that make more convenient the construction and

debugging of larger programs. Below we describe these new features, and then discuss

what it might take to make a really smooth on-line programming system.

Use of Undefined Symbols

We have added a second symbol table to DDT. This table lists references to symbols

used but not yet defined. When a symbol is defined, the references to it in this table

are fi lied-in and moved over to the regular symbol table. This means that one can refer

forward to data or program elements not yet provided for, thus reducing the need for

advance planning of storage layouts in full detai I. The handling of undefined symbols

is completely automatic and does not requi re any new action on the part of the user.

When an undefined symbol is typed-in, the machine acknowledges it by typing an over

strike bar. A special control signal makes the system I ist the currently undefined symbols;

another makes the system define all currently undefined symbols in a consecutive block

beginning at the currently open location.

The WINDOW Feature

The control signal xxxx causes a listing of the program starting at xxxx to appear on the

41

scope. This I isting has three columns: location, symbol ic contents, octal contents.

A few special switches on our console then allow one to move this "window" up and

down through the program, or "jump" the window to the effective address of an indi

cated instruction, thus following transfer paths. This feature serves many of the func

tions of a complete listing and is quite useful in helping to reduce the amount of men

tal bookkeeping involved in on-line program-construction. It is also very useful in

debugging. The window display runs concurrently with DDT, using sequence-break.

One operates DDT normally whi Ie the window is up, and it indicates changes as they

are made in the program.

Sequence Break DDT Feature

Using single-channel sequence-break, DDT remains avai lable whi Ie the object pro

gram is being run, so that parameters can be changed or patches inserted without stop

ping the program. If the program contains a scope display output, this means that one

can quickly ad just parameters and the I ike without wr iting special provisions for this

into the object program itself. Again, no new actions are required on the operator's

part .

The present version does not allow for object program typewriter input-output.

Discussion

The three features discussed above seem very useful. They do not make DDT into an

ideal machine-language assembly program. We plan to improve the system in a num

ber of respects; the result will be a more-or-Iess complete on-line macro-assembly

system.

a) The programs resu Iting from DDT are not easi Iy relocatable; this makes it

hard to build large programs from separately-written small ones. This is particularly

regrettable since almost all the information required for relocation is available to the

system at input time. If this relocation information is preserved, it can be used not

only to make a r€;locatable program but also to make the system able to provide good

symbolic listings, by suppressing meaningless symbolic interpretations of dataquantities.

b) The system is weak because it does not have macros.

We plan to add non-recursive macro definitions to the system, and have it produce a

relocatable punch-out. Relocation of program blocks during debugging will be per

mitted.

The version of DDT with improvements (1), (2) and (3) above wi II be distributed soon

through DECUS. No date is set on the relocatable-macro DDT.

42

ABSTRACT

AN INVISIBLE DEBUGGING PROGRAM
FOR A PDP-l TIME-SHARING SYSTEM

Michael Wolfberg

Massachusetts Institute of Technology
Cambridge, Massachusetts

An invisible debugging program, fashioned after DDT, is an essential
feature of the M.I. T. PDP-l Time-Sharing System. This paper des
cribes convenient operation for the user and the close connection be
tween the debugging program and the Time-Sharing System Executive
Routine.

INTRODUCTION

The first operating system of the M.I. T. PDP-l Time-Sharing System incorporates

the MACRO assembler, EXPENSIVE TYPEWRITER (for editing source language tapes),

and a debugging routine based on DDT. By Time-Sharing Console and typewriter

control, each user can call for any of these utility programs. The on-line debugging

program aids in quickly detecting program errors, easily correcting them on-line,

and then punching a working object program. Under control of the debugger, the

user may save a protected version of his program and then run his entire program or

sections of it for debugging pu rposes.

TIME SHARING

The Time-Sharing System's design depends on extra hardware appended to the stan

dard PDP-l (4096-word core memory). Hardware provides a basis for operation of

the Time-Shoring Executive Routine, which remains in upper memory in order to

control sequencing of active programs and to buffer most in/out data transfers. A

magnetic drum is used for temporary storage of up to twenty-two 4096-word fields

where uti I ity and users' programs remain except when running in core memory.

A time-sharing interrupt channel causes traps to the Executive Routine whenever a

running program executes an in/out instruction, a holt, illegal instruction, or one

of a set of special time-sharing instructions. In order to insure users' programs not

stopping the system, there is automatic memory protection for references to registers

above a memory bound, which would otherwise interfere with the Executive Routine;

43

such references trap as illegal instructions.

A more detai led description of the structure of the system has been described by

N. Kerllenevich. (2)

DDT

DDT (Dec Debugging Tape) is a symbolic debugging program used under normal

operation of the PDP-l, which occupies the last 2000
8

words of upper memory.

Since DDT coexists in memory with a user1s program, it can only be used to debug

a program which is not so long that it interferes with DDT. In addition to the 2000
8

registers, DDT builds its symbol table down towards lower memory. Its initial table

contains all the initial symbols of the MACRO assembler, i.e., the PDP-l mnemonic

instruction codes. DDT is able to merge a MACRO symbol punch with its table so

that the symbols used in the source language of a user1s program can be used to

make references in the process of debugging. The on-line typewriter serves as a

two-way communication channel between the user and DDT. Lower case characters

are either symbolic or numeric constituents; typed-in upper case characters serve

as action or control characters and cause DDT to perform various operations.

The most commonly used operation with DDT is the examination of a memory

register. Typing a symbolic or numeric address followed by a s lash (II/II) causes

DDT to type a tab (tabu lator stop) and" openll the register by typing out its sym

bolic contents followed by another tab. The user can then modify the contents of

that register by immediately typing the new contents followed by a carriage return,

which II c loses" the register.

There are four control characters in DDT which have the same effect as a carriage

return in that they II c lose" a register, but, in addition, they cause another register

to be lIopened." For example, hitting the IIback-spacell key on the typewriter

causes the currently "opened ll register to be "closed" and "opensll the next sequen

tial register.

Another c lass of operations which DDT performs is the examination of a block of

registers. A search may be made for all words equal to an expression typed before

the control character II W,II and all occurrences of the expression are typed out with

thei r locations . Typing II Ell after an expression causes DDT to search memory for

44

all words having an effective address equal to the expression. This search follows

all indirect addressing chains to a maximum depth of 100
S

'

Another block operation DDT performs is the zeroing of registers. It is common

practice to zero all of memory not occupied by DDT before reading in a program to

be debugged.

DDT performs three operations which are associated with reading of paper tape:

reading a binary tape (program) into memory, merging a MACRO symbol.table into

DDT's table, and verifying or comparing the contents of a binary tape with the con

tents of memory.

There is the provision to punch out binary tapes with DDT in either of two binary

tape formats. Rather than running through another MACRO assembly, it is often

more efficient to modify an incorrectly assembled program in memory by DDT and

then punch out a corrected program on .binary tape.

In order to run the user's program, typing an address followed by "G" causes DDT

to transfer control to that register. The user's program is then in control of the

computer. If the user wishes to return control to DDT, he can use the switches on

the console to II STOP" the computer and then II START" it running again at the entry

point of DDT.

One of DDT's most usefu I features is the implementation of a breakpoint. By speci

fying an address followed by "B, II DDT is conditioned to insert a breakpoint at that

location when DDT passes control to the user's program, as is done by the" Gil

operation and two others which wi II be mentioned below. The breakpoint is an

instruction (viz., ida) which transfers control back into DDT, whereupon DDT pre

serves all necessary registers and indicators, so that upon future return to the user's

program, they can be restored. When a break occurs, DDT types out the locat.ion

where the break occurred and the contents of the accumulator at the time of the

break. The preserved contents of the accumu lator and in-out register are in "All

and" I, II consecutive registers internal to DDT. These registers are equivalent to

program registers for purposes of examination and modification.

Before inserting the special breakpoint instruction in the user's program, DDT saves

45

the instruction at the break location and replaces it whenever control returns to

DDT, as if there had been no breakpoint assigned there.

After a break occurs and the user desires the sequencing of instruction in his pro

gram to continue as if there had not been a break, he can "proceed" by typing a

II p.1I After necessary registers and indicators have been restored, this operation

causes DDT to execute the instruction which was at the break location and then

transfer control back into the user's program at the appropriate location. Before

proceeding, the user may remove the breakpoint assignment by typing II B" alone,

or its location may be altered by typing a new address followed by liB. II In any

case, the proceed operation returns to the instruction which caused the last break.

When an expression is typed preceding the lip," the breakpoint will not cause a

trap for that number of times. This operation is termed "multiple proceeds."

The third action which may cause control to pass to the user's program is the lIexecute"

command. When an expression followed by an II X" is typed, DDT restores necessary

registers and indicators and sets up the breakpoint, and then the expression is exe

cuted as an instruction" If the executed instruction is not some type of jump operation,

then DDT is re-entered, and the necessary registers and indicators are again saved. (1)

A DEBUGGER FOR TIME SHARING

Under the time-sharing system, regular DDT would not operate because the executive

routine occupies upper memory, however, a version occupying registers 40008 through

6000
8

could run as a user's program. Such a DDT, with symbol table, would reduce

avai lable memory for the user's program to approximately 34008 registers. This is

one strong motivation for the incorporation of a debugger which would occupy

essentially no space in the user l s allotted memory more than the few registers nec

essary in the Executive Routine area, and stj II have the fu II capabil ities of the DDT

debugger.

Such an invisible debugger, called "10, II has been written in coniunction with the

Executive Routine, and it has the advantage over DDT in that it cannot be harmed

by a user's program running wi Id. All features of DDT have been incorporated into

ID; however, 10 also adds three maior new features to the debugging process: "savell

and "unsave" operations, "type-in" mode, and multiple breakpoints.

46

The II savell operation allows a user to copy an image of his program from the drum

field on which it is stored by the system onto another field, so that it may be II un

saved ll or restored at a later time. Uti I izing these operations can guarantee a user's

not hav i ng to read ina program more than once.

IIType-in ll mode allows a user to suppress all typeouts in a series of register modifi

cations unti I he types a carriage return. This feature is helpful when using the

debugger to insert a small program into memory (actually the user's drum field).

Breakpoints wi II be discussed below in greater detai I.

Each user of the system is assigned his own 10, which occupies its own drum field

when not in core. The user's program and debugger are never concurrently active.

When 10 is active and operating, it makes references to the user's program on the

drum field where that program is kept by the Executive Routine. When the user

commands 10 to run his program (by IIG,II IIP,II or II XII), 10 is made inactive, and

the user's program becomes active. When the user's program executes an illegal

instruction or a breakpoint instruction, the program is dismissed and made inactive,

whi Ie 10 is assigned to be active.

BREAKPOI NTS

In the Time-Sharing System, a special instruction, bpt, has been included, which

is used as the breakpoint instruction (corresponding to the special ida of OOT)

since it causes a special trap to the executive routine when encountered. With

the absence of some of the indicator lights of the main console under time-shared

operation, extensive use of breakpoints becomes one of the most efficient ways to

debug a program. With this in mind, 10 has been written to allow for four break

points, and can easi Iy be extended to allow for any number of them.

The format used in 10 defines II BII as an internal register which contains the first

breakpoint assignment. Subsequent internal registers through" B+311 allow the user

to specify a total of four breakpoints. A redundant assignment causes 10 to remove

the original assignment, so the user may not have two breakpoint assignments for

the same location. In an examination of one of the registers II B" through II B+311

which does not contain a breakpoint assignment, 10 types out an overbar. The user

inserts an overbar to remove a single breakpoint assignment. Also, the special

47

combination of "BII followed by an overbar removes all breakpoint assignments. To

allow for rapid stepping of breakpoints through a program and to retain compatible

fonnat with DDT conventions, typing an address followed by II B" causes that address

to be inserted into register II B • II

The multiple proceeds counter of 10 is associated only with the breakpoint assigned

in register liB. II

In examining the problems of implementation of multiple breakpoints, a further

restriction to breakpoint placement in DDT was found to be necessary. To avoid

errors, breakpoints cannot be placed at H or ida instructions. The following

example demonstrates such an error:

1 • A breakpoint is assigned to a ~ instruction which calls a subroutine.

2. The program is run, and the breakpoint is encountered.

3. Before proceeding back to the program, the assignment is changed to some

where in the subroutine called by the .i!P command.

4. After proceeding, the breakpoint is encountered, but now the exit of the

subroutine contains the breakpoint-return address somewhere in DDT. Since another

break occurred in the meantime at a location other than the .hE instruction, incorrect

operation resu Its.

The above error cannot occur in 10 since the method of breakpoint service has been

totally changed. There are no longer any necessary restrictions to breakpoint place

ment at ~ or ida instructions. A more thorough discussion of breakpoints in 10 can

be found in the author's B.S. Thesis. (3)

RETURNING CONTROL TO 10

In the initial system, the CALL Button on the user's Time-Sharing Console always

returns control to 10. If the button push interrupts an operation of 10, then that

operation ceases and a carriage return is typed; whereas, if the user's program is

running, a typeout identical to the breakpoint fonnat is perfonned. The user may

then type a II p" to resume running the program as if it had not been interrupted.

Whenever a user's program causes an illegal instruction trap, 10 is brought back

into control, indicating the location of the instruction. Therefore, if the user

remembers the instruction replaced, any number of illegal instructions can be used

as breakpoints.

48

REFERENCES

(1) II DDT, II Memorandum PDP-4-1 and Supplement, PDP-l Computer, M. I. T .

(2) Kerllenevich, Natalio, II Hardware Provisions for Efficient Time-Sharing

Operation of a PD P-1, II Paper presented at DEC US May Symposium, M.I. T.

Published in DECUS PROCEEDINGS 1963.

(3) Wolfberg, Michael, II An Invisible Debugger for a PDP-l Time-Sharing

System, liB. S. Thesis, Department of Electrical Engineering, M.1. T .,

June 1963.

49

ABSTRACT

MODIFICATION OF A PROGRAM SYMBOLIC AT COMPILE TIME

John B. Goodenough

Ai r Force Systems Command
Bedford, Massachusetts

This paper defines two new DECAL compiler operations and shows how
they may be used to provide options for altering a program's symbolic
at compile time. These alterations may be planned so that DECAL, in
effect, compiles only an optimum program for a particular usage or
equipment configuration.

The new operations (called action operators in DECAL language) are
"omit" and "dd? ". "omit", when followed by an octal number N or a
symbol whose value is an octal number N, causes the N lines following
the action operator to be omitted. "dd? II tests whether the symbol pre
ceding "dd?" has been previously defined or not. If so, the rest of the
line is omitted. Using these two action operators and other DECAL
features, it is possible to compile certain lines of a symbolic only when
a particular option has been chosen.

Usage of the action operators will be illustrated for a display package
and the DEC Input-Output Subroutine Pac kage modified to include the
following options: 1) 16 channel, standard, or no sequence break system;
2) automatic or standard multiply; and 3) multicore or single core use.

A method is described here which will facilitate the sharing of programs among pro

grammers whose appl ications and even whose machines differ. Whi Ie the method is

aimed primari Iy at making general purpose programs even more general, it wi II work

with any program in the program library.

Basically the method involves the use of two new action operators in DECAL. Action

operators are small programs executed at compi Ie time whenever the action operator

name is seen. For example, one action operator is "stp" which causes DECAL to

halt. Another is IIdec" which converts the decimal number following" dec" to octal.

The action operators defined to allow editing at compiJe time have been called

"omit" and "typeget." These action operators, which are used in writing the sym

bolic of a program, allow the user at compile time to tell the properties of his ma

chine or application, e.g., whether it has 16 channel sequence break or not, and

if so, what channels are connected to the various in-out devices, or, in the case

of in-out buffers, what size buffer is optimum for the desired use of the program.

DECAL then compiles the program so that it will be compatible with his machine or

use.

51

This is accompl ished as follows: the omit action operator is followed by an octal

number, n, or a symbol whose value is the octal number, n, or a symbol whose

value is the octal number n. It causes the following n "I ines" of the symbol ic to

be ignored at compile time, where a II line" is terminated by a carriage return.

Since DECAL statement terminators are carriage returns and semicolons, several

DECAL statements can be placed on one "Iine." For example if the symbolic reads:
omit 1
lac ai dac b
lac Ci dac d

only the lilac C; dac d" wi II be compi led because carriage return 1 signals DECAL

to execute the omit action operator and carriage return 2 signals the omit program

that one line has been omitted. This coding could also have been written:
omit 1; lac a; dac b
lac Ci dac d

Semicolon 3 signals DECAL to execute the omit action operator program. The omit

program finds carriage return 4 and considers one line omitted.

Probably the bulk of editing desired when implementing options is substituting

several lines of coding in place of an alternate group depending on the option

chosen.
One way to do this is by defining a symbol such as II 16chnsb" to be 1 if compi lation

for a 16 channel sequence break is desi red, and 0 {zero} otherwise.

Then, when there is a point in the program where one group of I ines is to be com

piled if the program is used with the 16 channel system, but a different group is to

be compiled if no sequence break is used, the coding could read as shown in

Figure 1 •

Figure 1

omit 16chnsbi omit 17

178 line of

coding only to be

Inc luded when sequence break is to be used by
the program

omit 16chnsb; omit 1
omit 10

lOs lines of coding
to be included only when sequence
break system is not to be used by the program.

52

If 16chnsb = 1 then the 10 line group will be omitted but the 17 line group will be

compiled. Reversing the value of 16chnsb will cause the 17 lines to be omitted

and the 10 lines to be compiled.

Selection of groups of lines to be compiled depends only on defining the value of

one symbol for each option, no matter how often the situation represented by Fig

ure 1 occurs in the program.

Choosing between two groups of lines is not always the most efficient way to edit

for an option. It is sometimes easier to modify a symbolic by writing in tenns of a

dummy symbol which is defined at compile time in one way when one option is

chosen and a different way when an alternate option is chosen. For example, sup

pose that a program is written which uses multiplication in several places, and it is

desired to provide a choice between the use of automatic or nonautomatic multiply.

Every time mu Itipl ication by the number in the register "operandI! is desired the

programmer should write the dummy statement "mpy operand. lI Then in the case

where automatic multiply is desired, "mpy" is defined as "mul" and the dummy

statement compiles as though "mul operand II had been written. For nonautomatic

multiply, it is necessary to call the tlmpy" subroutine.

In thi,s 'case, "mpy" is defined so that the dummy statement compiles as the calling

sequence for the "mpy" subroutine, namely II ida mpYi lac operand.1I

The method for determining the definition of Umpyll at compi Ie time is illustrated

in figure 2, where the symbol IImulstepll equals zero if automatic multiply is desired,

and 1 for nonautomatic multiply.

Figure 2 - Selecting Dummy Symbol Definitions

om i t mu Istepi mpy ewd mu I

omit mulstepi omit 3
mpy dig* beg 1 vO opl nlc
ida ths
lac 1 lstend

• this defines mpy as the
. • • instruction mu I

If the multiply option had not been implemented by selecting the definition of a

dummy symbol, these more cumbersome lines would have had to be written every

*See last page of this paper for footnote.

53

time mu Itipl ication was desired:

omit mulstep; mul operand; omit 1
ida mpy; lac operand

options involving the use of omit are chosen by defining the values of the para

meters used with omit, i.e., setting mulstep and 16chnsb equal to one or zero, in

the examples above. To obtain these values the action operator "typeget" has been

defined. When" typeget" is followed by a symbol, this symbol is typed out on-line

at compi Ie time and the compi ler then waits for the operator to type in the value

of the symbol. For example, writing t1typeget 16chnsb" would cause II 16chnsbll to

be typed on-line; the user would type a 1 if he wanted to compile for a 16 channel

sequence break system; otherwise a zero. A more se If explanatory message such as

II Do you want to compi Ie for a 16 channel sequence break system: Type 1 if yes,

o if no." could also be typed, at the expense of some space in the symbol table.

The typeget action operator can also be used to achieve a different kind of program

modification, namely determining buffer sizes and sequence break channel assign

ments. Normally space for a buffer is reserved by use of the "Ive" action operator,

which when followed by an octal number n or a symbol whose value is the number n,

reserves n registers in the program. Hence IIlve 100" is equivalent to "Ive buffer-

size" if buffersize has the value lOOS• But since the value of symbols such as

"buffersize" can easily be obtained on-line at compile time through the use of

"typeget, II, one can make variable buffer sizes on option in any program as easi Iy as

making them a fixed size.

The typeget action operator is used similarly to obtain sequence break channel

assignments. For example, if "punchchannel" is given the value 10 by means of

type get , and if all sequence break instructions are phrased in terms of punchchannel,
* i.e., asc punchchannel, isb punchchannel, lio bio* punchchannel, etc., the pro-

gram will compile these instructions with reference to channel 10, i.e., as though

the programmer had written asc 10, isb 10 and lio bio 10.

In summary, this paper has described how the action operators II omit" and 1\ type

get" can be used to provide modification of a symbolic at compi Ie time. Modifica

tions made by this method are limited in that the original programmer must have

anticipated the desired changes. On the other hand, the person who sets the pat

tern of omit action operators which are necessary to impleme •. t a particular option

* * See last page of this paper for footnote.

54

is the person best qualified to do so, namely, the original programmer. In many

cases, the options which can be provided with this method are easi Iy incorporated

into a program symbolic without effort on the programmer1s part. From a library

distribution standpoint one tape can efficiently serve all users despite incompatible

equipment configurations. From a users1s standpoint, the reprogramming of routines

made necessary by equipment changes can be significantly reduced if the possibility

of change was recognized by providing options at the time the programs are written.

For my own part, I would especially like to see programs dealing with the 16 channel

sequence break system at least grant options for channel assignments.

Footnotes

... (dig means define instruction generator. The code following the IIdigll tells DeCAL

what instructions to generate each time mpy is seen. In this example mpy is being

defined so that when mpy is followed by a symbol such as "operand, II the obiect

code produced wi II be II ida mpYi lac operandl!) •

...
... (bio is a DECAL action operator which calculates the address where the in-out

register is preserved for a particular channel, i.e., lio bio 0 is equivalent to lio 2.

This paper is identified as DSL-ALPR-63-10, Decision Sciences Laboratory, Hq.

Electronic Systems Division, Bedford, Massachusetts.

55

APPENDIX

The clcfini tionG of the omi t arid type~ct action operators
follow. These definitions are written for DECAL-DEN of 26 Sept.
1963, and have been checked out. I want to thank Richard
McQuillan of DDN for his help and time given to write these
action operators.

omit

nl
end
xsy n

dao beg
cal-1521
s~a\ jmp 155
cma
dac n
cal 2466
nap
cal JIG)
isp n\ .imp ~ _l~
.jm-p 155
••

••• cal prs ••• process statement
••• ,jmp rml ••• return if negative number

••• store nUT:'lber of lines to be ami tted
••• cal rsy ••• gulp over \ or cr
••• if symbol is number
••• cal com ••• skip over comment

••• jmp rml

num eV/d 100
typegct dao be8

cal 2466, hIt ••• cal rsy
cal 2120 ••• 0al sch
cal 2253 ••• ~~l enter
lac 753 ••• lac mwd
dlp'345 ••• dip'nsd
cal)405 ••• cal tcr
lac 345\ cal 3331 ••• cal tts
cal 3407 ••• cal ttb
dzm num

bl clf 1 -
szf~ 1; jmp ~ -1 ••• get octal number
tyi, cla .-
rcr 6, ~za', Jmp a; rcl 3
110 num, rel J, dio num
jmp b

at lac 351 ••• lac cad
dap' 345--
lac num\ dac'351 ••• store value as word
idx 351 ••• ldx cad
jmp 155 o •• jmp rml

end
xsy num a b

These action operators ~~y be added to DECAL using the pro
cedures described in the manual.

56

ABSTRACT

A VERSATILE PROGRAMMING SYSTEM
FOR LARGE PDP INSTALLATIONS

Theodore R. Strollo

Ai r Force Cambridge Research laboratories
Bedford, Massachusetts

A programming system has been developed for the Dynamic Experimental
Processor at AFCRL which provides users with two new and versatile
programming languages-Amp and Aidex. Amp is an assembler featur-
ing: 1) A powerful Fap-type macro compiler

2) An optional assembly listing
3) Exc eptionally detailed error diagnostic s

Aidex is a compiler featuring:
1) Automatic manipulation of floating point variables
2) Fortran - type statements
3) An optional compilation listing

These languages produce fully relocatable output with symbolic linkage
capabilities. The languages are used in conjunction with a monitoring
system. The monitor automatically selects the appropriate language
for translating user's program from the magnetic system tape. This
system tape also contains a n urn be r of utility routines as well as a
separate file for relocatable, linkable library programs.

INTRODUCTION
* In March of 1963 work was begun at AFCRL on a new programming system for the DX-

1 and other large PDP installations. The system, which would take advantage of the

auxiliary storage and asynchro~ous input-output capabilities of the DX-l, was pro

posed with several objectives in mind:

1. A programming system should be rapid and easy to use to minimize the

time and effort required to get a program from the flow chart to a binary coding and to

encourage symbolic corrections to programs instead of binary patches.

2. Good errordiagnostic communication between the language and the user

must exist to completely describe the type of error involved and to accurately point

out the position in the source program where the error exists.

3. The basic statement format should be kept simple with the more difficult

format specifications attached to the infrequently used options.

4. A large, easily maintained, readily accessible library of useful subrou

tines must be avai lable to take advantage of previous programming efforts.

5. The more significant features of the Decal, Fop, Fortran, Frap, and

Macro programming systems should be avai fable in the proposed system.

The result of the work applied to meet these specifications is a programming system
**

called ASYS (pronounced a ;(s). In order to make ASYS easy to use, a control system,

57

the ASYS MONITOR, was deveioped. The MONITOR is the first record of the ASYS

(magnetic) SYSTEM TAPE.

Simple control statements enable the MONITOR:

1. to call the ASYS languages from the ASYS SYSTEM TAPE

2. to load and link the relocatable binary magnetic tape output of the

ASYS languages.

3. to search and selectively load subroutines from the ASYS LIBRARY (which

is a file on the ASYS SYSTEM TAPE).

4. to call the ASYS debugging system (which has been named ADT because

of its similarity to DDT).

5. to call a number of utility routines (such as Expensive Typewriter, Ex

pensive Desk Calcu lator, etc.) which have been written on the ASYS SYSTEM TAPE.

6. and to select the ASYS EDITOR which performs many useful magnetic

tape control functions (such as write, read, space, search, and copy) and which main

tains the ASYS SYSTEM TAPE itself.

The first language written for ASYS is called AMP.

AMP is a two-pass assembier with pass i from the paper tape reader and pass 2 from

the intermediate, magnetic tape output of pass 1. AMP pass 2 produces relocatable,

linkable obiect programs on magnetic tape. The obiect programs are loaded into core

by the ASYS LINKING LOADER under the control of the ASYS MONITOR. Thus,

the symbolic to binary translation process with AMP involves 2 assembly passes and 1

loader pass, but only 1 pass is from the paper tape reader. Therefore, AMP requires

less handling of paper tape than any present PDP-l language.

A subroutine, when it is fully debugged, may be reclaimed from the magnetic tape in

punched paper tape relocatable binary form for loading with subsequent programs or

for appending it to the ASYS LIBRARY. This eliminates the necessity of assembling a

subroutine each time it is needed by a program.

AMP features a very powerfu I macro-compi ler with capabilities very similar to BELL

Macro-Fap and Midas. Macros may be nested and are capable of the macro-call argu

ment list. Definite as well as indefinite repeats are permitted in macro-expansions.

AMP allows Decal-type indefinite length symbols for program tags as well as macro

names and macro definition dummy argument names. AMP makes avai lable a very

large symbol table to permit the assembly of very long programs.

58

A significant feature of AMP is the optional assembly listing and/or symbol table map.

The assembly listing persents a side by side octal representation of the assembler's out

put with the associated symbolic statement in a format similar to Modern Frap and Fop

listings. The listing is extremely useful both for debugging programs and for presenting

a complete final listing of the programmer's efforts. AMP offers the assembly listing

using the sequence break asynchronous input-output method with several media:

1. the on-I ine typewriter

2. the on-line punch for off-line flexoriter listings

3. a magnetic tape for off-line listings with a 1401 or similar tape to printer

process.

A second language has been proposed for ASYS and would be a compi ler called AIDEX.

AIDEX would be simi lor to Fortran-Mad type compi lers producing relocatable binary

output capable of linkage with AMP assembly programs and ASYS LIBRARY programs.

Unti I AIDEX or another true compi ler is available for ASYS, many useful permanent

macros have been defined for AMP to enable dimensioning of arrays, subscripted vari

ables, and counted iteration loops with compiler-type programming format.

The ASYS debugging routine (ADT) is useful for symbolically examining and changing

selected core registers. ADT permits expressions, using the SYSTEM SYMBOLS from

the ASYS LOADER'S symbol table, to be used in selecting registers and making changes.

Several break points have been provided to interrupt programs at desired points, inter

rogate the contents of certain core or machine registers in symbolic, octal, decimal,

or floating-point, then proceed from the break point.

ASYS has grown from an idea to a functioning, useful experiment at AFCRL. It has

shown us that a small computer system can present all of the programming ease and

capabi I itites of large computer systems whi Ie maintaining an informal, individual user,

man-machine atmosphere.

* AFCRL - Air Force Cambridge Research Center

** The ASYS System consists of:

1. A control monitor and relocating linking loader

2. An assembler" AMP"

3. A compi ler II AIDEX II

These are avai lable from DECUS and may be requested as DECUS Library No. 53.

The System also has a debugging program, DECUS Library No. 54.

59

ABSTRACT

FLINT 36 A3D

DESCRIPTION AND OPERATING PROCEDURES

Jacob M. Baker and David J. Isenberg

Charles W. Adams Associates, Inc.
Bedford, Massachusetts

FLINT is an interpretive routine that permits the Digital Equipment
Corporation PDP-l to perform double-precision floating-point arith
metic, input, output, and elementary function evaluation. Origin
ally written in FRAP for use in lens design work (though nonetheless
a general-purpose program), FLINT has been translated into DECAL
to be compatible with other programs in this language. Arithmetic
and function evaluation are performed interpretively, input and out
put are handled by closed subroutines addressed directly by the user's
programs, and overall format control is left to the user's routines.

INTRODUCTION

Since FLINT, written in FRAP, was released about a year ago by Itek Corporation,

through The Digital Equipment Computer Users Society, there has been considerable

demand for improved documentation and a revised listing. As a service to DE~US,

Adams Associates offered to undertake the conversion and redocumentation of FLI NT,

and has done so with the perm ission and assistance of Itek. The resu Its of its work

are reported in the paper. New FRAP and MACRO listings will be made available

by Adams Associates. Other modifications are being considered. Among these are the

production of a totally relocateable version of FLI NT, the removal of exponent bias,

and the addition of other floating-point instructions such as a floating index.

INSTRUCTION REPERTOIRE

The instructions currently available for the interpreter are listed below:

Function

Deposit floating accumu lator
Floating add
Floating subtract
Load Floating accumulator
Floating square root
Floating sine
Floating cosine
Floating skip
Floating multiply
Floating divide
Floating operate

Floating Operations

61

Mnemonic

fda
fad
fsu
flo
fsr
fsi
fco
fsk
fmu
fdi
fopr

Operation
Code

00
02
04
06
24
26
30
32
54
56
76

Entering Interpreter

Function

Enter interpretive mode
Enter interpretive mode and load floating

accumulator

FORMATS

Mnemonic

cal

cal y

Octal
Code

160000

16yyyy

Floating-point quantities are expressed in the form y • T where the magnitude of y is

less than one. Arithmetic is done using a floating-point accumulator (FLAC) which

consists of four storage registers. The absolute value of y is stored to double-precision

accuracy in the first two registers, the sign of y in the third, and x + 11 in the fourth.

With a bias of +11, the exponent ranges from -42 to +20. This range was selected by

Itek as being most useful for their work.

Operands for floating-point instructions are assumed by the interpreter to be stored in

either two or three consecutive storage registers, depending on whether Program Flag 5

is off or on. In the two-register format (Program Flag 5 of 0, bit 0 (bits being numbered

o to 17 from left to right) of the first register contains the sign of y. As shown in the

diagram below, the first 17 bits of the absolute value of yare stored in bits 1-17 of the

first register, and the remaining 12 in bits 6-17 of the second register. Bits 0-5 of the

second register contain the signed quantity equal to x plus the exponent bias.

I a I bbbbbbbbbbbbbbbbb I I cccccc dddddddddddd

a sign of y
b first 17 bits of y
c x plus exponent bias
d final 12 bits of y

TWO-WORD FORMAT

In the three-register format (Program Flag 5 on), as illustrated below, bit 0 of the first

register contains the sign of y and bits 1-17 are the first 17 bits of the absolute value

of y. Bit 0 of the second register is always zero and bits 1-17 contain the remaining

bits of the absolute value of y. The third register contains the value of the exponent

incremented by the exponent bias. This three-word format is espec ially useful for

62

saving and restoring FLAC and is often used only for that purpose.

a I bbbbbbbbbbbbbbbbb f c I ddddddddddddddddd I
a sign of y
b first 17 bits of y
c zero always
d final 17 bits of y
e x plus exponent bias

THREE-WORD FORMAT

J eeeeeeeeeeeeeeeeee J

Instructions to be processed interpretively are written in the same format as normal

PDP-1 instructions and are assembled with a five-bit operation code, an indirect address

bit, and a twelve-bit address. This address refers to two or three consecutive locations,

depending on the position of Program Flag 5. Thus, in the description below of the

interpreted operations, the symbol C{Y) refers to the contents of locations Y, Y+l, and

optionally Y+2, where Y is the address part {after indirect addressing, if any, has been

performed} of the instruction being interpreted. If Y is zero, the instruction is interpreted

as referring to FLAC itself.

There are eleven floating-point interpretive instructions which, with their overflow and

underflow conditions, are described in detai I later.

When floating-point operations are to be performed, it is necessary to enter the interpretive

portion of FLINT. This is accomplished by the PDP-l instruction cal, which transfers

control to location 101 a with the location of the next instruction to be interpreted in the

accumulator. Since it may often be necessary to enter and leave the interpretive mode,

the cal instruction is interpreted as a floating load {flo} as well as an entry instruction - -
whenever the address of the cal is other than zero. Indirect addressing may not be used

with the cal instruction since this is assembled as a ida instruction; therefore, if indirect

addressing is desired, the correct sequence of instructions would be cal •• ; flo IY;.

The interpreter is so arranged that once the cal instruction is encountered, it wi" re

gard each succeeding instruction as a floating-point instruction until it encounters an

exit instruction. Any instruction with an operation code number of 1 0 through 23, 34

through 47, or 60 through 75 wi" be regarded as an exit instruction with the exception

of 16, the cal instruction.

63

Instructions with these operation code numbers wi II be simultaneously executed and

used as exit instructions when encountered in the interpretive mode. All succeeding

instructions wi II be considered normal machine instructions unti I another cal is en

countered. Thus, such instructions as xor - operation code 06, and - operation code 02,

or dio - operation code 32, may not be used in their normal sense while in the inter

pretive mode. The instructions whose operation codes have thus been pre-empted by

floating instructions were selected because they are unlikely to be used while in float

ing mode. It is important to note that, once in the interpretive mode, instructions not

having the operation codes cited in the preceding paragraph will be interpreted as

floating instructions whether or not they are so intended.

UNFLOATING ROUTINE

The instruction ida unflo enters a subroutine which converts the floating-point number

stored in FLAC to a fixed-point integer. This integer is equal to the value of the con

tents of FLAC divided by the quantity two raised to the power of the contents of loca

tion fixexp. The integer resu Iting from this conversion is stored in the accumulator and

the contents of F LAC are destroyed. (The unflo subroutine truncates rather than rounds

the quotient obtained bydividing two to the appropriate power into C(FLAC). Thus if

FLAC contains 1.48 and fixexp contains 0, ida unflo will put 1 into the accumulator;

if FLAC contains 1 .4
8

and fixexp contains 1, ida unflo will put 0 into the accumulator;

if FLAC contains 1.4
8

and fixexp contains -1, ida unflo will put 3 into the accumulator.)

INPUT ROUTINES

There are three input subroutines which, I ike the output subroutines, are addressed

directly from the main program. The first, entered by the instruction ida reade, reads

translates single characters. The second, entered by the instruction ida readg, handles

groups of characters. Each of these two routines reads from pu,:,ched tape or from the

console typewriter, depending on whether the input control word (icword) contains

~ (for tape) or ~ (for typewriter). FLINT is arranged so that icword contains

taper unless this is altered by the user's routine. Such alteration is accomplished by

writing: lac taper; doc icword; etc.

After a character is read, it is compared with the entries in a table containing the stan

dard FlO-DEC Code for each character as well as a control code that may have one of

eight different values. Code 0 marks characters to be ignored, such as illegal con

figurations which do not correspond to typewriter or Flexowriter symbols. Code 1 marks

64

characters such as space or tab, which serve as delimiters indicating the end of an

alphanumeric word. Code 2 marks the decimal digits 0-9 and Code 3 marks the symbols

used in floating-point numbers, such as a minus sign or a period (used as a decimal

point). Codes 4-7 are assigned to the alphabetic characters; only one bit is tested

and all characters having any of these four codes are treated identically.

The reQdc routine reads a single character, looks it up in the table to find the control

code, and returns to the main program with the concise code (with 20 and 0 reversed)

in bits 12-17 of the accumu lator, which elsewhere is fi lied with zeros and the iotble

entry in 10. If the control code is 0, another character is read and processed in the

same manner before returning to the main program.

The readg routine reads numerical or alphabetic groups and determines which group is

being read by noting the control code of the first character. If the code is 4 through

7, the group is alphabetic; if 2 and 3, it is numeric; if 0 to 1, the character is ignored

and the next character treated as the first.

When reading from paper tape, location buff4 must be set to zero before a call to readg

the first time that this instruction is called, and if successive calls to readg are inter

spersed with calls to any of the other read routines which are also reading from paper tape.

If the group is alphabetic, the characters are translated and their concise codes are

saved unti I either a del imiter (control code 1) is encountered or four characters with

control codes 2 through 7 have been read. Characters with control code 0 are always

ignored.

The concise codes of the one, two or three characters preceding either the delimiter or

the fourth character are then assembled in the accumulator, each occupying six bits

with the first one to the left and the whole group right- justified, with zeros on the left

if necessary. The control and the concise codes of the delimiter or fourth character

are put in 10 bits 0-2 and 12-17, respecti~ely. Program Flag 4 is on if four characters

were read, and off if a del imiter was encountered. Control is then returned to the main

program.

If the group is numeric, characters are read unti I a del imiter or a character with con

trol code 4 through 7 is encountered. A plus or minus sign may, but need not, appear

anywhere in the number, and there may be a maximum of ten decimal digits. {In FLINT,

65

a plus sign is indicated by II (,II a left parenthesis, rather than by "+, II the conventional

plus symbol. If there are two or more minus signs, all but the last are ignored.)

If a decimal point appears, the resulting number is considered to be a floating-point

. integer and is formed in FLAC, Program Flag 4 is turned off, and overflow or underflow

is signalled as in floating add. If two or more decimal points appear, all but the last

are ignored. If no decimal point occurs, the result is considered to be a fixed-point

integer, Program Flag 4 is turned on and, if it exceeds 131,071 in magnitude, Program

Flag 6 is also turned on. The fixed-point integer appears in the accumulator when

control is returned to the main program. Whether the integer is floating-point or fixed

point, the control and the concise codes of the character which served as a delimiter

appear in 10 bits 0-2 and 12-17, respectively, and the previous contents of FLAC are

destroyed.

The third subroutine, entered by the instruction isp buff, brings characters from paper

tape to the 10 register. Before the jsp, the instruction dzm buff4 should be given. The

fi rst succeeding isp buff instruction wi II then read enough characters from paper tape

(45
8

as the buffer length is nO'll set) to fill the buffer and put the Flexowriter code of

the first character into 10 bits 10-17. The next jsp buff instruction places the second

character read from the buffer into 10 bits 10-17, and each such succeeding instruction

brings another character from the buffer into the 10 register unti I all the characters have

been brought in. The next isp buff instruction reads another buffer fu II of characters

from tape, and the entire process is repeated.

OUTPUT ROUTINES

There are three output subroutines, all of which write information on punched tape, the

console typewriter, or both, depending on whether the output control word, location

ocword, contains tapew {tape only}, typew (typewriter only), or bothw (tape and type

writer). There is also the write-IO routine {entered by the instruction ida writio} which

writes on paper tape the eight-bit character contained in bits 10-17 as many times as

specified by the number in 10 bits 0-7. If 10 bits 0-7 are zeros, the eight-bit character

is written once. No look-up or conversion is performed and the character is written on

tape regard less of the contents of the output control word.

The write-character routine, (entered by the instruction ida writc) writes the six-bit

concise code character contained in 10 bits 12-17 as many times as specified by the

66

contents of 10 bits 0-7, using the same convention as the write-IO routine.

The write-integer routine (entered by ida write) writes the integer in the accumulator

converted to decimal form, followed by the character in 10 bits 12-17. The final char

acter may be written repeatedly according to 10 bits 0-7 in the same manner as the write-

10 routine. Insofar as the sign and initial spacing or zero suppression is concerned, the

format is controlled by the value of the format control word, format.

The write-floating routine (entered by ida writf) writes the contents of FLAC converted

to decimal form, followed by the character in 10 bits 12-17 exactly as in the write

integer routine. The contents of FLAC are destroyed after calls to either the write or

the writf routine.

Format control is specified by the contents of location format as follows:

Bits 0-5

Bits 6-11

Bits 12-14

Bits 15-17

The number of digits to the left of the decimal point. If
zero or less than the number of significant digits, all
significant digits will be printed; otherwise spaces or zeros
wi II appear on the left to fi II out the requi red number of
spaces to right- justify the column; this must be 128 or
less for fixed-point numbers.

The number of digits to the right of the de.cima1 point.
This must be zero for fixed-point integers; if zero for
floating-point numbers, no decimal point wit! be printed.

Sign control. If zero, no sign wi II be printed; if 1, 2 or
3, a minus sign will be printed for negative numbers and
nothing, space or plus sign, respectively, for positive
numbers.

Zero control. If zero, spaces are used in place of initial
zeros; if one, initial zeros are printed, this bei'ng useful
for handl ing long integers and fixed-point numbers other
than integers.

The contents of format may be altered by the following sequence of instructions: lac

nf; dac format; etc., where ~ contains the desired contents of format.

Listed below are system symbols declared by FLINT; therefore, they should not be used

by a program which uses FLINT and is assembled with it:

iotble writio ocword taper
fixexp bothw writc icword
unflo tapew readg readc
writf typew buff buff4
write typer format

67

Description of Instructions

flo floating load: Unpack C(Y) from its two- or three-word format into

the four-word format and place in FLAC.

fad floating add: Place the arithmetic sum of C(Y) and C(FLAC) in

FLAC. If the sum is greater than 2131061, the result is incorrect

and Program Flag 6 is turned on. If the result is less than 2-131084,

or if the mantissa of the sum is zero, the mantissa of FLAC will be

positive zero and the exponent of FLAC wi II be -42 upon completion

of the operation. Such astronomical exponents can be obtained only

because an entire 18-bit word is allocated to the exponent in F LAC.

fsu floating subtract: C(Y) is subtracted from C(FLAC) and the difference

is put in FLAC. Overflow and underflow are handled as in floating

add.

fmu floating multiply: The product of C(Y) and C(FLAC) is placed in

FLAC. Overflow and underflow are handled as in floating add.

fdi floating divide: C(FLAC) is divided by C(Y) and the quotient is put

in FLAC. Overflow and underflow are handled as in floating add.

fsr

fsi

floating square root: The square root of C(Y) is put in FLAC if C(Y)

is positive .. Overflow conditions are not possible. If C(Y) is negative,

the contents of FLAC are left undisturbed and Program Flag 4 is

turned on.

floating sine: C(Y) is treated as an angle in radians. The sine of

this angle is put into FLAC. Error conditions are not possible.

fco floatin"g cosine: Cos C(Y) replaces C(FLAC) as in floating sine.

fda floating deposit accumulator: C(FLAC) is packed into the two- or

three-word format dependi ng on the position of Program Flag 5, and

deposited into locations Y, Y+l, and optionally Y+2. With Program

Flag 5 off, if the magnitude is as large as 2
20

, Program Flag 6 is

turned on. If less than 2-43, the quantity deposited has a mantissa

of zero and an exponent of -43. If Program Flag 5 is on (three

word format), no such check is performed.

fsk floating skip: The interpreter clears the 10 register and sets the

sign of the accumulator to the sign of C(FLAC), then loads the most

68

fopr -

significant bits of the mantissa in bits 1-17. It then skips or executes

the next sequential instruction, depending on whether the condition

tested for is true or false.

floating operate: This instruction places the sign of FLAC in the

accumu lator, executes the instruction spec ified by the address part

of the fopr (e.g., fopr 200 - clear accumulator and therefore sign

register) and retu rns the resu It to F LAC.

It is possible that thefopr spec"ified "may not change the accumula

tor (e. g., fopr 15 - set Program Flag 5). In this case the operation

will leave the sign of FLAC unchanged.

In preparing a DECAL symbolic tape which will make use of the

floating skip and floating operate instructions, the required format

is fsk or fopr followed first by the indirect bit if required, and then

by the address of the appropriate skip or operate instruction. Thus

a floating skip on non-zero accumulator would be written as fsk I 100

and a floating complement accumulator as fopr 1000.

Possible Modifications by Users*

Partially relocatable version:

All but the first lOOS instructions for FLINT may be relocated. To do so, the follow

ing changes should be made in the symbolic tape:

1. The instruction immediately before the comment "divide here" should be followed

by "blk" and "finli; this is the end of the fixed part.

2. The instruction immediately after the comment "divide here" should be preceded by

"blk"; this is the beginning of the relocatable part.

3. The following should be declared as system symbols at the beginning of the fixed

part:

norm4
flor
a5
a3
a4
5y
brkpt
fdar

fadr
fsur
fsrr
fsi r
fcor
fskr
fmur
fdh
foprr

*(A Print-out of the Symbolic Tape was omitted in the publication but may be obtained
from DECUS.)

69

These symbols must be located in the relocatable part and their delimiters changed

to II I II (apostrophe).

4. The following should be declared as system symbols at the beginning of the re

locatable part:

q
020

a1
pc

These symbols must be located in the fixed part and their delimiters changed to

II I II (apostrophe).

5. The two parts should be assembled and two loader tapes obtained. The fixed part

must be loaded into locations starting at 1008. The relocatable part may be

loaded into any 20518 consecutive locations.

Expansion of input buffer:

The size of the II read group" buffer area may be altered by changing; first, the number

currently set at buff42 to the desired value; secondly, the number currently set at

buff1+1 to the new value in buff42-1; and, thirdly, the number currently set at buff2a+4

to the new value in buff42.

ACKNOWLEDGMENT

Adams Associates wishes to acknowledge with thanks the substantial contribution made

by Edward J. Radkowski of Itek Corporation to the revision of FLINT. Readers of this

paper are invited not only to request additional copies of it from Adams Associates but

also to forward to the company any suggestions or criticisms. These should be marked

to the attention of David J. Isenberg or Jacob M. Baker.

70

ABSTRACT

THE MIDAS ASSEMBLY PROGRAM AND THE PDP-1 *

Robe rt A. Sau nde rs

Information International Inc.
Maynard, Massachusetts

An advanced assembly program for the PDP-1 is described. The assembler

processes up to 6 character symbols and has a highly sophisticated macro

instruction processor similar to that in Bell System FAP for the IBM 7090.

The source language has been kept compatible with that of MACRO except

for some necessary changes in the format of macro-instruction definitions.

Product and logical syllable combination operators permit greatly increased

flexibility in the source language. Various versions of the assembler are

planned for various machine configuration.

*The Midas Assembly Program wi II be avai lable on request. The editor regrets that there
was not sufficient time to include the 38 pages in this publication.

71

Section III

PROBLEM ORIENTED TECHNIQUES

THE PDP-1 AS A VERSATILE RESEARCH TOOL

ABSTRACT

W. Fah Ie and D. Brand

Systems Research laboratories, Inc.
Dayton, Oh i 0

This paper describes work supported by and in coniunction with the Bio
dynamics and Bionics Division, Biophysics Laboratory, Aerospace Medical
Research Laboratories, Wright-Patterson Air Force Base, Ohio, Contract
AF 33 (616)-8280, and presents the uti lization of the PDP-1 as a laboratory
instrument providing considerable research capabi I ity. The paper briefly
shows how communication barriers among disciplines were ci rcumvented.

Analog to digital conversion and data analysis techniques demonstrate the
use of the PDP-1 as both a valuable analysis tool and a satellite to a large
scale computer faci I ity. Output formats and resu It displays are described to
further emphasize the applications of the computer system.

INTRODUCTION

Work supported by and performed in con;unction with the Biodynamics and Bionics

Division, Biophysics laboratory, Aerospace Medical Research Laboratories, Wright

Patterson Air Force Base, Ohio, (Contract AF 33(616)-8280) is described. The paper

explains the utilization of the PDP-l as a laboratory instrument which provides con

siderable research capability to a mixture of disciplines. The discussion is in the

form of a progress report by Systems Research Laboratories, Inc., Dayton, Ohio. All

but the final phase of a development program designed to integrate a digital computer

into the research efforts conducted by the Biodynamics and Bionics Division is covered.

The computer installation is used both on-I ine and off-I ine by physiologists, neurolo

gists, mathematicians, physicists, and engineers for work in the areas of on-line experi-'

ment monitoring, data conversion and analysis, and IBM satellite applications.

SYSTEM COMPONENTS

Standard and Optional DEC Equipment

The basic PDP-l has a 4K memory, paper tape, a typewriter, and a single channel

Sequence Break System. It is capable of automatic multiply and divide. Additional

equipment includes the Type 23 high speed data channel, the Type 30 precision cathode

ray tube display, the Type 32 light pen, and the Type 50-51 magnetic tape transport and

control. Figure) is a block diagram of the system.

75

Other Components

Complementing the basic equipment are a Raytheon AD-50A converter with a type OM

120 multiplexer. The inputs are Magnacord and Ampex tape recorders, an SRL PPM

ramp decoder, and an analog cochlea. The SRL Model 408 Remote Control Console

has two slave 5-in. cathode- ray tube displays paralleling the digital scope and an

amplitude sampler.

COMPUTER APPLICATIONS

On-Line Applications

The Remote Control Console designed by SRL is a device which may be operated at

several different sites distant from the computer. An effective communication channel

between the remote control console operator and the PDP-1 is maintained using the

sequence break system and special computer input-output options. When the operator

wishes to either check or change machine status, he activates an .. ENTER" switch on

the remote console which triggers the sequence break system. Progran control is trans

ferred (provided the PDP-1 is in the Sequence Break Mode) to storage location 3 where

the monitor begins. The operator has 4 possible operate modes (RUN, CHANGE PRO

GRAM, DISPLAY PARAMETER, and CHANGE PARAMETER), 20 program numbers, 20pora-

meter numbers, and a 3 decimal digit number to use in defining and setting Up.Q program.

Each selection is coded into an 18 bit remote control word and a flag setting as follows:

remote word bits
flag 6 0 1 - 5 6 - 17 meaning

RUN in last
off 0 not used not used program selected

DISPLA Y selected
PARAMETER in
the last program

off 1 parameter no. not used selected

CHANGE value of
selected
PARAMETER in last

parame'ter program selected
on 0 parameter no. value to given value

CHANGE selected
PROGRAM no. to

on 1 program no. not used given value

76

I -
_--~5" CRT

I
I -? I----------I~' C~~;__--....... Analog Stimulus
~ Source

7090 Satellite Applications

I
I
I Data Conversion

I
And Analysis
Applications

I

PPM Ramp
Decoder

PPM Tape
Playback

Figure 1. PDP-l Data Processing Syste.

I
..... -----1----1 Remote Control

Console
(IS-bit word)

I .
MDll-tude

F-pler
I

AM-FM

O'l!b
Tape Playback

Analog Signal
Source

~AnalOg Cochlea

On-line Applications

At the completion of each decoding and monitor function the remote monitor enters a

wait loop for next remote control command. A permanent status log is maintained by

the console typewriter.

The ampl itude sampler is a data collection device controlled at the remote console.

Given a signal and a preset threshhold voltage level, the amplitude sampler may be

interrogated to determine whether the signal has exceeded the threshhold since the last

interrogation. If it has (i .e. a pulse has occurred), bit zero of the 10 is set to one

upon execution of the special amplitude sampler command. No pulse status is indica

ted by a zero bit zero.

The two slave scopes are used to monitor results and digital-analog conversion provided

by the on-line 16" CRT. A programmed function generator is designed to derive modu

lation waveforms on the digital display, which are then used remotely as controlled

stimulus sources administered to animal subjects.

The basic software for the system consists of a remote console interpreter program, a

program monitor, and a basic set of subroutines containing the alpha display, binary

to-bcd conversion subroutines, etc. This basic package remains in core at all times.

When a program change is requested, the program monitor searches magnetic tape for

the desi red program and reads it into the common program store. All the programs may

reference the basic subroutine set, and all are under control of the remote console in

terpreter. In this way many different programs may be used at the same experimental

site, or different experiments at different sites may use the computer without the neces

sity of operation at the site of the computer.

The physicological data processing applications can be described in three categories:

muscle, neuron, and cochlea responses. Located physically apart from the central

processor, the remote control console serves the purpose of assisting (via the PDP-1)

the researcher in conducting an experiment. Manipulation of parameters and programs

gives the physiologist enough flexibi lity to effectively monitor and/or magnify results

being obtained in real time, thus minimizing erroneous data recorded permanently on

ana log tape.

The cat and rabbit musc Ie response program is used to investigate response character

istics under varying stress stimuli. The program parameters include date, run number,

experiment number, subinterval width, number of points, and various scale and input

output options. The analog signal for one stimulus-response relation is immediately

78

displayed then edited whi Ie computations are made to reflect points of interest. The

results are then typed on-line, the response data is written onto tape, and the edited

signal is displayed to the researcher along with experiment identification for photo

graphing. The tape containing digitized response data is then processed on the 7090

and log-log results of Fourier transforms are returned to the PDP-1 for display and photo

graphy purposes.

The neuron response program set is used to examine neural transmission characteristics

evident under repetitive stimuli. Input parameters to these programs include dote, run

number, experiment number, delay time, number of subintervals, subinterval width,

display block, and various scale and input-output options. Several modes of analysis

are provided to the researcher in order to establish fundamental properties of pulse

rate information. The histogram is the basic graphical tool used to exaggerate pulse

response frequency. Variable window widths to identify pulse or no pulse and a slid

ing time base to II fitll an optimum analysis time to the response are controlled remotely

by the researcher. Raw neuron responses are represented as a string of zeros and ones

(developed by the amplitude sampler command) and are written onto digital tape for

reprocessing.

Problems in speech recognition are also accommodated on-line utilizing an electronic

instrument which simulates the mechanics of the basi lar membrane. The analog coch

lea, as it is named, responds to spoken sounds in the same manner as the human coch

lea. The resultant data from the converter is a sequence of samples which outline the

profi Ie of ampl itude over time. The variable intensity feature of the digital display

effectively presents the fading out of a particular pattern as the sound stimulus changes.

In this way, various sound stimulus-response relations are compared.

Data Conversion and Analysis Applications

A vitally important role of the PDP-1 in providing research flexibi lity is that of data

conversion. High speed analog-to-digital conversion is required in practically every

on-line application of the computer.

The conversion system is composed of a Raytheon Model DM 120 Multiplexer and a

Raytheon Model AD 50 A Converter. The multiplexer can accept up to 14 channels of

analog information from a variety of inputs which includes analog tape transports, an

analog cochlea, and several remote signal sources. The converter can sample at many

different rates which may be manually selected to use the high speed channel or may

79

be under program control. An upper bound of 200 KS (ki losamples) is governed by the

5 ~s cyc Ie time of the computer although the converter can effect a 5 MS (megasample)

rate. The 50 ns aperture time of the converter provides excellent resolution with a

bandwidth of 0-20 kc, and baseline drift is negligible. Word packing the 8-bit sam

ples is optional. Continuous sampling and storing over extended time periods is limited

to 10 KS by the data transfer rate between the computer and the Type 50-51 tape

transport and control. Thus far this restriction has not hampered the analysis stage of

waveform reduction since the bandwidth of the raw data, in most cases, does not ex

ceed 5 kc.

Back to back with the conversion system and the associated software is the program set

which is used to further reduce and edit digital data once it is either in memory or on

digital tape. Pattern recognition programs are necessary to isolate characteristics of

waveforms for the purpose of synchronization, deve lopment of recu rsion rates, fi her

ing, etc. Data reduction, in some instances, occurs simultaneously to compress sample

sizes into a sequence of representative quantities relating points of interest, zero

crossings, integrals, periods, etc. One such example isa neuron response represented

by a string of zeros and ones which indicates pulse or no pulse from the amplitude sam

pier. Editing, in most cases, is done with the light pen since decision processes in

volved in determining data validity are usually subiective. The light pen technique

has been extremely useful in smoothing out artifacts in physiological data and, thus,

in preserving the time basis requi red for correlation studies.

The library developed for data analysis was designed to accommodate the needs of the

many research discipl ines and inc ludes programs to derive auto-correlation functions,

power spectra, and Fourier transforms. Most of these analysis programs are used to

accentuate primary and secondary wave components of complex waveforms. An experi

ment to define frequencies at which the brain is "driven" uses the power spectra re

sulting from a Fourier transform of the EEG auto-correlation function. Data is played

back from analog tape, sampled at a rate chosen by the researcher, processed by the

PDP-l, and results are displayed.

Prel iminary statistical computations are made on discrete sample spaces using a gen

eralized statistical program. This program accepts input from paper tape, magnetic

tape, and the analog-digital converter. Typed output consists of sample size, mean,

standard deviation, variance, and frequency distribution whi Ie the latter is displayed

in 0"/8 intervals from the mean to ±3C1. Other statistical evaluations such as regression

80

curves and correlation coefficients, are made using variations of the basic program.

A numerical analysis package of commonly used subroutines is in development and will

be available soon. Simpson's rule integration and Lagrangian interpolation and dif

ferentiation presently comprise the completed part of this effort.

IBM 7090 Satellite Applications

The PDP-1 has been used successfully in satellite applications for the IBM 7090 of

Aeronautical Systems Division at WPAFB. Previous to the installation of the PDP-1,

data were converted manually to cards for input to auto-correlation and power spectra

programs on the IBM 7090. Consequently the requirement for the use of the PDP-1 as

an off-line converter for the larger computer faci lity was imminent.

PDP-1 programs to convert, edit, and write data onto digital tape in the standard IBM

format at low density (200 lines/in.) were prepared. However, both because of the

special binary input tape format required by existing FORTRAN programs and because

of the problem inherent in matching a foreign read-tape program to a FORTRAN pro

gram, an interpreter program written in IOCS (in-out control system) is used on the

7090 as an intermediate stage of processing to prepare a FORTRAN tape from the com

plemented, word-packed PDP-1 tape format. This process runs at tape speed and can

precede the execution of the FORTRAN program set.

The PDP-l is also used effectively in displaying results computed on the 7090 for an

instant evaluation and record. Such work has been done in the examination of Fourier

transforms of cat musc Ie responses.

CONCLUSIONS

To summarize, the PDP-l has been found to be effective in circumventing the com

munication barriers inherent in mixed-discipline research programs by utilizing many

input-output devices (e.g., digital tape, typewriter, and display). In the afore

mentioned areas of application, on-line, data conversion and analysis, and IBM 7090

satell ite, the PDP-l computer installation has served physiologists, mathematic ians,

physicists and engineers in a wide variety of ways. To the physiologist, the computer

is a monitor that assures homogeneity in experimental procedure and describes response

phenomena, both graphically and analytically. To the applied scientist, the computer

is an analyst which can develop meaningful trends and transforms from sampled complex

81

waveforms. It is also a statistician which can accept discrete data points and derive

moments and distribution functions, regression, equations, and tests of hypotheses. To

the engineer, the computer affords a capability of establishing reliability criteria for

instrumentation, filter design, recording-reproduction, etc. Auto-correlation and

power spectra computations magnify frequency response characteristics and suppress

noise levels that occur in raw measurements made under varying conditions.

Naturally, as the familiarity of laboratory personnel with the equipment increases, the

significance of the computer in the role of research support also increases. At the same

time there arises a need for additional system components to accommodate the increased

work load. The addition of another tape unit with a control that will provide more

programming freedom as a result of the addition of automatic block read-write hardware

is anticipated. An expansion of the program library to include more analysis capabil

ity and more on-line programs is necessary and inevitable. Hardware to effect com

puter control of a 6-degree-of-motion experimental device is currently planned in the

digital-to-analog appl ications.

The 24-hr/day computer uti lization schedule anticipated within several months certain

ly speaks for itself and demonstrates conclusively that the PDP-l is a truly versatile

research tool.

82

ABSTRACT

TIME SHARING IN THE PROCESSING OF
NUCLEAR RESEARCH DATA

A. J. Ferguson, B. Miles, J. Leng

Atomic Energy of Canada, Limited
Ontario, Canada

Several independent laboratories carrying 0 u t nuclear research at Chalk
River wi II share a PDP-l computer for data storage and processing. It is
planned to use a 4-core modu Ie system in such a way that: (a) Data wi II be
received by two modules continuously and independently of the computer
control circuits. (b) Transfer of such data to magnetic tape storage will be
effected by high priority sequence breaks. (c) Console operation can pro
ceed at the lowest priority level.

INTRODUCTION

This paper will discuss the problem of using the Chalk River PDP-1 system when the

standard console operation is to be interrupted every ten minutes or so for a few days

at a time by an on-line experiment requiring data transfer and storage. During stan

dard console operation the computer is often stopped, and is rarely in the sequence

break mode. It is hoped that certain modifications will allow this time sharing to be

feasible, and not too restrictive to the operator.

APPLICATIONS AT CHALK RIVER

I will briefly review the present system at Chalk River which is mostly used to process

data read directly from kicksorters (or pulse height analysers) connected to the tandem

accelerator experiments. There are now two memory modules, and the standard input~

output is by typewriter and paper tape. In the near future two more memory modules,

and magnetic tape storage wi II be added. Time sharing has already been tried, where

analogue to digital converters can break into the standard data handling program.

This break is programmed to both transfer the ADC information ar)d then reset it for the

next event. This is a convenient arrangement as the standard program is often typing

out or displaying on the 'scope, two functions that can be interrupted without penalty.

To facilitate inserting these sequence breaks into a program using the standard input

output routines, the one-channel sequence break has been modified. The five status

bits normally connected to this system have been removed, and replaced by the two

coincidence outputs used in this particular experiment. This would not be necessary

with the type 120 sequence break system, where any break channel could be activated

83

or deactivated under programmed control. Eventually all input-output operations

should be in a sequence break system, to give fu II control of one piece of hardware

over another. Practically all programs would have to be rewritten to be sequence

break oriented.

These applications are reasonably conventional and will not be discussed further.

FUTURE PLANS

Eventually two extra memory modules will be used in a somewhat unusual manner.

These memories will be addressable by the computer in the normal way, but wi II also

be avai lable to other equi pment complete Iy independently of the central processor. It

wi II even be possible for separate pieces of equipment to use different memories simul

taneously. Extra hardware is needed to avoid referencing a memory register from more

than one source at anyone time. A switching network has been proposed to route the

operations in separate memories independently. In this scheme it would rarely be nec

essary to use a sequence break when external equ ipment used a computer memory. The

system would handle data transfers in the most efficient manner possible; this would be

true time sharing, not time sequence interruption. Several of the free input-output

commands may have to be used to start and stop these operations, but it has been found

easy to wire in commands as requ ired. Th i scorn pute r memory can prov ide a PHA faci 1-

ity having a versati I ity I imited only by the programming effort involved.

MORE IMMEDIATE PROBLEMS FOR THE CHALK RIVER SYSTEM

To use the sequence break system the computer must be in the IIRun ll state. Obviously

any program with a halt command in it, or one requiring a IIStart ll cannot, in general,

service any sequence break requests from outside equipment. More particularly if an

operator were debugging a program it may be convenient to look at a memory register

by hand, and perhaps to change it. It is not always possible to use debugging programs

such as DDT; the memory requirements could clash, or the debugging program may not

work in the mode the operator requires. To avoid these restrictions the computer time

can be scheduled into two periods, a period for time sharing operations using known

programs deve loped with the sequence break system in mind, and other periods to debug

and use the computer outside the time sharing mode.

At Chalk River there is, however, a time sharing requirement that cannot be met as

easily as this. A laboratory will require the computer to process a small amount of data

84

(say 100 words) at regular intervals of time (about 10 minutes) for a few days on end.

Now a programmer requires frequent short periods on a computer to develop programs

efficiently, progress drops sharply if this is not the case. So it is desirable to be able

to debug programs and also run other programs not normally run during the time sharing

phase. Theoretically it may be possible to rewrite every program ever to be used so

that it is compatible with time sharing operations. These programs wou Id always be in

"Run ll and the Start, Examine and Deposit functions would be handled automatically,

perhaps as in DDT. But this requires maior changes in most programs, many of which

were not written at Chalk River. These would have to be understood in detail before

attempting any changes. This is not a reasonable solution in the circumstances. If

this break, occurring every 10 minutes, is to be serviced, then the following restrictions

must be overcome.

1) The IIbreak program, II or the program entered to service the sequence break,

must be in a part of memory that does not c lash with the operator's program. This also

appl ies to the IIbreak registers ll or the memory used by the automatic break operation.

2) If the computer is stopped for any reason, or the operator is using Start,

Examine, Deposit,or Read In, the sequence Break Request signal must be held. At

present, operating these four switches wi II clear any sequence break request so it is

impossible to use the sequence break through these operations.

• 3) The normal input-output operations in the operator's program must be pre-

served. For paper tape, except for the Read-In Mode, operations are done one at a

time so a break is innocuous. No breaks can be handled during the RIM operation.

Display on the 'scope, use of the light pen and typing out on the typewriter can all be

interrupted by breaks without trouble. But if a series of type-in's is interrupted by a

long break, it is possible to lose some input if a type-in overwrites a previous type-in

waiting to be serviced, but held up by the break program. A system of interrupt prior

ities cou Id make the typewriter break on a higher priority, but this is not the way the

typewriter is used at present. Magnetic tape operation is another operation that can

not be interrupted at random without harming the flow of information.

DISCUSSION OF POSSIBLE SOLUTIONS

I now propose three specific modifications to enable these restrictions to be I if ted, at

least in part. Proposing these modifications does not necessarily mean they will be

easy to engineer. The aim is to service the breaks requ ired and sti II run any program

we I ike. Some operating restrictions are introduced, this is inevitable. It is an ad-

vantage here to have only few programmers using the system, for an establishment where

many departments develop their own programming, any operator restrictions at all might be
85

intolerable. Normal operation is not completely excluded, if the operator can wait

until the on-I ine experiment finishes a run. This is not desirable as a general course

to follow.

1) A change that wi II give com~iderable help to the programmer is to move

the IIsequence break memory II from modu Ie zero to a higher memory dictated by the

size of the installation. This high memory could have both the "break registers" (4

for the standard system, 100 octal for the type 120 system) and all the break programs.

This memory space need never be touched by other programs. As many programs re

quire to work in memory zero (in the Chalk River Machine) and in general it is easy

to get into the habit of loading programs into memory zero, normal operating proced

ure wou Id be retained. Also program changes can be held to a minimum.

2) This modification would hold any Sequence Break Requests through the SC

(or Start Clear) operation. SC is the operation given by II Start, II "Examine, II II Deposit, II

and II Read-In ll and it at present c Jears any sequence break requests that are being held.

With this modification,if the computer were not in II Run, II or the sequence break mode

was off and a sequence break request entered,it would be held but not granted. This

unserviced request wou Id have to be indicated visually (or audibly) to the operator.

The action taken by the operator on noting this request could be quite simple, a

IIStart in Sequence Break Mode" to practically anywhere in the memory. This opera

tion is only reasonable if breaks can be delayed for several seconds before being grant

ed, and these breaks do not occur very often to impede the operator's work. This is

essentially the case in this problem.

The inevitable drawback to this scheme is that the break system must be zeroed by

program at the beginning of the experiment. !he extra programming required is neg

ligible, and perhaps it is better to integrate this operation into a program than to for

get it occurs automatically on II Start. II

3) This change is of more general interest thon in the time sharing context

only. The typewriter keyboard should be locked after every type-in, and unlocked

only when the type-in is serviced by the computer on the tyi command. Otherwise,

with most time-sharing operotions,the type-in operation must be given a very high

priority break to service every input. Having the lock feature there may be no need

to have the type-in on the break system at all. This would be the case if break pro

grams were short compared with typing frequency. But the most valuable result of this

modification I ies outside the time-sharing context. During standard computer operation

information can now be lost during type-in due to bad programs, misuse of programs or the

86

very occasional computer malfunctions. ·This should not be,· other computer systems

have a typewriter locking feature. The typewriter is very usefu I to control program

branching, and all type-in's should be relevant, or at least digested by the program.

Ifcomments, useful only as a printed record, are needed, this can easily be programmed.

A possible scheme is to lock the keyboard when the tyi status bit is lion. II This bit is

cleared when the tyi command services this type-in. With no unserviced type-in's the

type-out is not affected. Another useful modification is to clear the tyi status bit on a

type-out. It is now possible to type-out and sti II leave the tyi status bit lion, II But a

type-out clears any previous type-in. So the tyi status bit remaining lIon li is only of

use if one wants to know, after a type-out, whether or not an unserviced type-in

occurred before this type-out. Sure Iy the time to check this is before the type-out,

not after. This proposal would also ease the situation where someone left the computer

with an unserviced type-in and the next operator is then faced with a locked keyboard.

Generally a program requiring a type-in will give an initial type-out, which would

thus unlock the keyboard. If this is not deemed adequate, a manual unlock fac i I ity

could be provided.

87

ABSTRACT

SCANNING AND MEASURING Of NUCLEAR PARTICLE
TRACK PHOTOGRAPHS WITH THE PDP-l*

Professor Martin Deutsch

Massachusetts Institute of Technology
Cambridge, Massachusetts

The Laboratory of Nuclear Science is engaged in an extensive program of

PDP-l scanning and measuring of Nuclear Particle Track Photographs with

the PDP-l. One proiect, SPASS, is designed for spark chamber photographs

and has been producing data (over 500,000 pictures) since November, 1962.

The other, PEPR, aims at the more difficult bubble chamber problem and is

approaching the stage of operation. A brief discussion of the general methods

in these and simi lor systems wi II be given and a more detailed discussion of

the experience with SPASS wi II be presented.

*This paper was not submitted in time for publication.

89

ABSTRACT

A PHOTO-INTERPRETIVE PROGRAM FOR THE
ANALYSIS OF SPARK-CHAMBER DATA*

Harry Rudloe

Massachusetts Institute of Technology
Cambridge, Massachusetts

An operating computer program that processes photographically re
corded data is described. The input to the program consists of spark
chamber photographs on which tracks of high-energy particles are
recorded. The program automatically scans, measures and performs
the preliminary interpretation of these photographs. In continuous
operation a processing rate of 5,000 photographic frames per hour is
achieved.

INTRODUCTION

It is often natural and convenient to record data photographically. Before such data

can be processed further, however, a data-takeoff stage must be introduced. This stage

customarily involves, visual scanning and measuring of the photographic data by trained

personnel. If the body of data is at all large, this process may be extremely time

consuming, expensive and tedious, so much so, in certain cases, as to render the entire

procedure impractical.

The present paper describes an operating computer program (PIP) which, for a case of

particular interest, allows this process to be performed automatically at high speed.

PIP is designed to perform the analysis of photographed tracks which are generated by

the passage of high-energy partic les through spark chambers. In processing the 270,000

photographic frames obtained in a particular experiment, PIP achieved an average hourly

rate of approximately 3000 frames per hour, including film changes and operator inter

vention. Working on a sma II sample of these photographs, a group of three human scan

ners processed 6000 frames in one week, i. e. about 50 frames per man-hour. During

uninterrupted operation PI P achieves a rate of about 5000 frames per hour.

*The work described in this paper was supported in full under AEC Contract AT(30-1}-
2098 (Laboratory for Nuclear Science, Massachusetts Institute of Technology).

Subsequent to the presentation of this material before the May DECUS Meeting a paper
appeared in the "Communications of the Association for Computing Machinery", Vol. 6,
No.6, June 1963 by H. Rudloe, M. Deutsch and T. Marill.

91

EQUIPMENT

The equipment consists of a PDP-l computer1 augmented by a film-reading mechanism. 2

The computer's CRT Output Display3 is used as an integral part of the film-reading sys

tern. This scope hai the capabi I ity of momentari Iy displaying a point, under program

control, at selected (x,y)-coordinates. Each of the two coordinates of the point is given

as a ten-bit quantity, and arbitrarily located poinh may be displayed at a rate of 20,000

per second.

The fi 1m reader uses the computer scope as a flying-spot scanner. The process is as

follows. A point, that is, a momentary flash of light, is displayed at scope coordinates

(x,y). By suitable optics, an image of this point is proiected onto the film at correspond

ing film coordinates (x', y'). A photomultiplier tube located beyond the film responds to

the momentary flash if an only if the film is transparent at coordinates (x', y'). The re

sponse of the photomultiplier sets a flip-flop (" program flag") in the computer; the state

of this flip-flop may be sensed and altered by the program. By the nature of the equip

ment, only one bit of information (black or white; opaque or transparent) may be obtained

per interrogation of the film. Hence, only high-contrast photographs may be read by the

present technique.

Two separate film-readers are provided to permit the quick successive scanning of two

correlated films and to allow the system to scan one film while the other is being advanced

(see Fig. 1). Both readers operate off the same computer scope but set different flip-

flops in the computer. To scan one film, the program interrogates the state of one of

these flip-flops after having produced a point of light on the scope; to scan the other

film the program behaves identically except for interrogating the state of the other flip

flop.

PHYSICAL EXPERIMENT AND DATA

The data were obtained with the experimental arrangement shown in Figure 2. The devices
.c "

marked chamber are spark chambers consisting of parallel plates to which a high voltage

pu Ise is applied when the counters indicate that an event has occurred. When an ionizing

1 Manufactured by Digital Equipment Corporation, Maynard, Mass.

2Developed at Laboratory for Nuclear Science, M.I. T.

3DEC Type 30.

92

particle, such as a proton, traverses a gap between the plates, a spark strikes at {or near}

the point of passage. The sequence of such sparks forms a track. A gamma ray does not

cause a track, since it does not ionize. It may, however, produce an ionizing electron

in one of the plates. This electron produces further secondary electrons which form tracks

spreading forward from the point of first interaction in a shower. In a favorable case the

tracks in the shower have the appearance of a whisk broom with a short hand Ie. The be

ginning of the handle lies on the line of the gammar ray.

Each chamber is photographed (through mirrors) in two mutually perpendicular views.

Three frames are required to record each event. One frame contains the two views of the

range chamber; a second frame, the two views of each of the two tracking chambers; a

third, the two views of the shower chamber. The (binary-coded) running frame numbers

are recorded with the tracking-chambers and with the shower chamber. Certain additional

digital information is also recorded with the shower chamber. The tracking chambers and

the range chamber are on one strip of film, the shower chamber on another.

The physical information is contained in the averc;Jge coordinates of the tracks in the track

ing chambers, the length (or range} of the track in the range chamber, and the coordinates

of the starting point of the shower in the shower chamber. PIP is required to extract this

information from the photographs, to read the binary-coded data and to perform a variety

of checks to ascertain that the data pertain to a valid event. In the tracking chambers,

a single point, the midpoint of the track, is needed in each view. This point is determined

with an accuracy of ±O. 1 percent of fu" scale. The range is determined (in each view of

the range chamber) by the number of the gap in which the last spark of the track occurs.

In each view of the shower chamber, the coordinates of the initial spark of the shower

are determined.

A sample of the raw data is shown in Figure 3. An explanatory guide to Figure 3 is given

in Figure 4.

GENERAL APPROACH

A possible approach to the problem of reading fi 1m is to scan the entire photograph point

for point and to form in memory a "core image" of the photographic image. With the

equipment at hand, we can select 220 points, which provides the required accuracy; to

scan all 2
20

points, however, takes 50 seconds. Since it is desirable to scan one event

(three frames) in two seconds, a different approach evolved as follows:

93

FIG. 1. Film-reading mechanism

ACCELERATOR) I I

TRACKING
1
..

CHAMBER W'
~AMERAI

TRACKING , ~ RANGE

CHAMBER 2 ;::;/ ~ CHAMBER

COUNTER ~

FIG. 2. Schematic of experimental arrangement

94

.-

-
It .'

I I
• • t .--t I. • -

Tracking Chamber

-I

.1

Range Chamber

. , . .

t • I I .. , ,

Shower Chamber

Fig- 3

I · · ·

.'

Samp'le raw data read by PIP

95

-'

PRIMARY
FIDUCIAL

T2

TI

TOP VIEW SIDE VIEW
---~- SECONDARY

FIDUCIAL

~.,c.+---+---,.-.:+-- BIN A RY - CODE D
INFORMATION

T2

TI

PR I MARY --'----Fr----- .r---+---~ SECONDARY
FIDUCIAL

FI DUCIAL

TRACKING CHAMBERS

TOP VIEW

I
I · · ·

SIDE VIEW -.
~I------..,......- SECON DARY

TRACK-~

III
I · · ·

FIDUCIAL

PR IMARY ~-------+---
FIDUCIAL

RANGE CHAMBER

TOP VIEW

SHOWER--

SIDE VIEW

~-.,.....-- SECONDARY
FIDUCIAL

. .
PRIMARY-~----- -' ~BINARY-CODED
FIDUCIAL I' '''''' .• '" II 'r INFORMATION

SHOWER CHAMBER
Fig.4

96

a) The format of the photograph is arranged so that the objects to be scanned occu-r
in nearly fixed locations on the photograph. For example, the track sparks in
a given chamber view will occur only in the spark chamber gaps for that view
and nowhere else. likewise the position of the number I ights occur in a fixed
positon with respect to the frame. Thus the program will start by searching only
those regions of the film where it expects to find something. This information
is provided in cal ibration tables which are constructed from special cal ibration
photographs prior to scanning.

b) Any data obtained in scanning is reduced as soon as it is acquired. Thus if a
searc~ stroke encounters an object, the objects dimensions are measured
immediately and its center stored if it is found to be acceptable. likewise,
tracks acquired by the tracking routine are immediately tested for acceptability
and discarded if not of interest. Tracks accepted are represented by 2 or 3
numbers which express these essentially physical characteristics and stored in
a table.

c) Whenever possible, the reduced data is used to establish even tighter predictions
of the location of further data on the photograph. In track-following, the pro
gram will use the position of previous sparks acquired to predict the location of
the next spark in line. When the whole track is completed, it may be used to
predict the position of its continuation in a connecting chamber.

CALIBRATION

All cal ibrations for a given version of PIP are kept in a large table which is kept distant

from PIP and generally loaded into another core. This is called the Event Description

Table (E.D. T.) and contains all measurements, calibrations and constants relevant to a

particular experiment. In its overall organization it is divided into sections for view,

chamber, frame and experiment variables. Each of these isin turn divided into sets of data

blocks relevant to a given view, chamber or frame. The most important of these are as

follows:

a) Fiducials

each view has a data block which describes the fiducial for that view. The
description includes its estimated location and the length, number and ori
entation of the search strokes used to find it. The fiducials are used to de
fine the coordinate system of the view. Thus the program must find the fi
ducials before it can find anything else.

b) Gaps

each view has a pair of data blocks which describe its gaps. One gives the
principal V-value for each gap. The other gives corrections which approxi
mate the location of each gap by a set of straight horizontal lines. This is
necessary because straight I ines on the photograph do not necessari Iy map onto
straight horizontal lines on the scope.

c) Ru lers

The ru lers are a set of marker I ights which appear on cal ibration photographs.

97

~ t= r
t' I. I 't

~, 1 .. t
t

TRACKING CHAMBERS
----.: •

T T --3: --

It It

RANGE CHAMBER

t I

I" +-1"' " f

SHOWER CHAMBER

Scan used by PIP in processing data of Fig. 3 - This picture was obtained by photographing
a small repeater scope employed for debugging and calibration; the horizontal and vertical
scales are arbitrary.

Fig. 5

98

The locations of these ru lers are recorded and used to convert scope coordinate
measurements into the coordinate system in which the experiment took place.

d) Binary Coded Information

These are considered frame variables and a data block is provided for each set
of number I ights on the frame (see Fig. 4). These give the locations of the
number lights relative to a given fiducial and the stroke size used in searching
for them.

THE CALIBRATE PROGRAM

The sections of the EDT described above are loaded by means of a cal ibration program

which also performs other hardware checking and diagnostic functions. It is controlled

by a repeater scope (parallel ing the computer output scope which is hidden in the fi 1m

reader), various test word and sense switches, and an on-I ine typewriter.

On command from the typewriter the display scope scans a predetermined area of the

fi 1m and displays the information. A dark point on the fj 1m appears as a bright point on

the scope on redisplay. The density of the scan roster is controlled by sense switch op

tions. The area scanned is indicated on the scope screen by corner brackets which can

be moved by typewriter and their current position typed out on command.

A pointer in the form of a cross is displayed at the same time as the brackets and scan

redisplay. The pointer can be moved on the screen by test word switches. A sense

switch option permits accelerated motion. The pointer can also be set to a predeter

mined position by typing-in the desired coordinates. On command from the typewriter·

the current location of the pointer is entered in a pointer table, either in the lowest

unoccupied location or overwriting a selected previously filled location. On command

the entire pointer table or any selected entry is typed out. The positions of all pointers

entered in the table are continuously displayed. Up to 47 (octal) pointers may be

entered.

Upon typewriter command the program scans the film to the right of any selected pointer

entered in the table or of all pointers in sequence. When a dark object is encountered

before the edge of the scan area is reached, the center of the object is found by a re

peated criss-cross scan and its coordinates are entered in an object table. When a single

line scan is called for, the corresponding object coordinates are typed out immediately.

When the entire table is called a separate command calls the type-out. When no object

is encountered by a scan a - is typed. Repeated object scans and type-outs may be per

formed without changing the pointer table. After type-out of the object table, upon

99

typewriter command the program punches, in read-in format, the lists of pointer co

ordinates, object coordinates and bracket positions together with pointers to the begin

ning and end of the tables. This tape may be used to reset the tables at a later time.

When a set of pointer coordinates is deemed satisfactory it can then be punched out in

a format suitable to direct loading into the EDT.

THE STRUCTURE OF PIP - The Photo-Interpretive Program

The subroutines of PIP are divided into five maior series A, 8, C, 0 and E. The overall

idea in establishing these subroutines was to provide a set of modules with well defined

inputs and outputs which could serve in a variety of spark chamber experiments. Thus

the contents of particular subroutines can be revised easily to suit the requirements of a

particular experiment whi Ie the overall structure remains unchanged. In addition, wher

ever possible, the functions of acquiring a given type of data, and evaluating it are

split into two separate subroutines. Thus one will see one routine for finding obiects and

another for measuring them, one routine for following tracks and another for reducing

them, etc.

The five maior series briefly are described below. Then a detailed outl ine of each series
follows:

A Series

B Series

C Series

o Series

E Series

The first half of this series is composed of the basic obiect search and
measurement. The second half has the basic data handling and infor
mation retrieval subroutines.

The first half is concerned with the overall supervising functions of
PIP. The second half deals with acquiring track origins and the de
tails of track following.

The C series is composed of all the maior tables and temporary storage
of PIP. The C series writeups give details of table formats and how to
modify parameters.

The 0 series worries about finding and evaluating fiducials, rulers and
number lights. It also contains the track evaluation routines.

These routines handle matters relating to interchamber predictions,
stereo recognition and final data reduction and output.

100

A Series

A 1 • xsch xl sch ~ ~earch)

Searches the fi 1m with horizontal line segments.

A2. ysch ylsch (r ~earch)
Searches with vertical line segments.

A3. spmap (!park map)

Determines center and dimensions of an object found by A1 or A2.

A4. xedgehunt

Called by ~to find horizontal edges.

A5. yedgehu nt

Called by ~ to find vertical edges.

A6. dpsetup (~is£lay set up)

Sets spot intensity, program flag connected to photomultiplier, timing of

display loops and various flag sensing 'instructions in PIP Al - A6.

A7. fetchpt, insrtpt (fetch foin.!.! inse!! £oin!)

The basic data tables of PI P are composed of entries with a fixed number of

words per entry which depends ,on the particu lar table. fetchpt wi II fetch a

desired entry from the table specified in its calling sequence. insrtpt will

replace a given entry with a new one.

AS. storept (store £oi n!)

Adds an entry at the end of a given table.

A9. fetch, store, read, write

A set of subroutines which manage communication between PIP and the event

description table. read brings a whole data block into PIp' fetch brings a

particular entry from such a data block. write returns a whole data block to

the E. D. T. from PIP. store is the inverse of fetch.

Al0. clear, ~

Subroutines to clear or zero a table of the sort described in PI P A-7.

All. This subroutine was deleted.

A12. bit manipulation package

Perform a variety of functions on a designated block of registers. These

. incluae inserting or extracting a given 3 bit segment from a block, inserting

or testing single bits, clearing a block or counting the one's in it.

101

B Series

B 1 • super (super-visor)

The supervisory routine for the whole system.

Super cycles through the fromes and controls film advances, output of data,

error checks and starting and stopping of the program.

82. advfi 1m, cksfilm, err, bughlt

advfi 1m states the fi 1m advance.

cksfi 1m checks for completion of a fi 1m advance.

err assembles an error code, when the error is caused by some malfunction of

the fi 1m or equipment.

bughlt a halt location to which many programs escape when one makes

impossib Ie demands of them.

B3. frame

Processes a single frame with reading of the number lights and scanning of

the individual views. Contains sense switch options for single step operation

of the program.

84. view

processes a single view with reading of the fiducials and ruler marks.

Just before quiting it calls the predict subroutine which predicts into

other view on the basis of the view or views just scanned.

85. scnrcv, scntcv (sca~ .!:.ange ~hamber ~iew, ~a!! .!..racking ~hamber !iew)

Subroutines to scan range and tracking chambers views.

86. ~ (sca~ ,:.how ~hanber !iew)

A subroutine to scan shower chambers views.

B7. scnpzt (sca~ E,rediction =.one .!,.able)

A subroutine to scan the area specified by the prediction zone table. If

the predict routine has ascertained that tracks are likely to appear in certain

places in the current view, than a prediction zone table will have been con

structed for the current view. scnpzt takes each entry in such a table and

follows all tracks that occur in the region it specified.

88. scncpz (sca!!. £omplement of £rediction .=ones)

If scnpzt didn't find any good tracks, one may wish to call this routine which

looks every place that scnpzt missed.

102

B9. gapsw, gapsw1, gapsw2, gapsw3 (~sweep, etc.)
gapsw examines a specified segment of a spark chamber gap region and fills

tortable (track origin table) with objects likely to be track origins.

gapsw1 is similar to gapsw but processes an e~tire gap.

gopsw2 calles gapsw1 and then follows out all tracks originating in the

exam ined gap.

gapsw3 is sim i lar to gapsw2, but calls gapsw to establ ish track origins.

B10. trkerl tracker~)

A routine which calls trker (B 11) to follow out a track. If the track is long

enough it enters it in the current track summary table. It tries to ignore

tracks which have "already been fol1owed by checking the gaps immediately

above the tracks origin.

B11. trker (.!!acker)

The basic track following routine. Given a track origin it tries to follow

the track. Various parameters te II it which way to go and when to qu it.

812. cone

A subroutine which trker uses to construct prediction cones from one gap to

the next in the operation of track following. cone calls the sweep routine

to search the base of each cone it constructs and then enters in trktable (the

track element table) whatever spark is closest to the predicted center of the

cone base.

813. line

When ~ has iust finished entering a spark in trktable it calls I ine to con

struct a straight I ine between the first and last sparks in trktable. This

straight line determines the prediction for the next time that cone is called.

In cone, the call to line may be replaced by a call to line1 (08) if a true

least squares approximation is desired.

814. sweep

sweep will search a specified region of a specified gap and enter its findings

in cstable (center of spark table).

103

C Series

C 1 . edt (event description table)

This is an enormous table which sits in core 1 and contains all parameters,

options and calibrations for the experiment. The major categories included

in the E. D. T. are view, chamber, frame and event variables. Under the

category of view variables there wi II be a number of data blocks correspond

ing to each spark chamber view. These may either apply to the system as a

whole, or some specialized function, such as containing locations of gap

zones or ru ler marks. The same appl ies to chamber and frame variables. The

E. D. T. has a tree structure wherein a given data block is located by hunting

through a chain of pointer blocks. Each pointer of a pointer block either

points to the head of a data block or to another pointer block. Data is in

serted or retrieved from the E.D. T. by presenting the routines of PIP A-9

with a string of digits that uniquely locate a desired data block. The virtue

of this scheme is that one may readi Iy rearrange or modify the E. D. T. with

out a minimum of effect upon PIP proper.

C2. Data block addresses

The locations of a I! the data blocks in the E. D. T. are provided on this tape.

Each data block address is a string of instructions which load the AC with the

integer. The string is terminated by a zero. To request a given data block,

the address of the first register in it's data block address is given, by the

calling sequence to the desired routine of PIP-A9.

C3. parameters

This tape defines the location of the current active view, chamber and frame

parameters. Its contents are renewed at the start of each new view, chamber

or frame by reading in the appropriate data blocks from the E.D.T. It is also

used to set up portions of the E. D. T. by locating the parameter locations with

DDT and then writing them in the desired section of the E. D. T. using the

write routine (PI P -A9).

C4. system registers

Defines the location of most of the important system registers, i. e., registers

that handle communications between the major subroutines.

C5. Internal tables

The basic data handling tables for PIP-2. They are as follows:

cstable spark centers and sizes as found by sweep.

104

tortable

trktable

rultab

bcitab

tsto-tst i

potential track origins, set by· gapsw and gapsw 1 •

track elements (of a si ngle track) set by trker.

ruler marks of current view.

each entry is the number I ight readings on a single frame.

one track summary table per view. Each entry contains track

angle, first and last gap, ruler coordinate and stereo recognition

pattern words and tags. i = the number of views in the experiment.

one prediction zone table per view. Each entry contains the

predicted location of a track in a view, including search radius,

and inclination.

D Series

The 0 Series is in charge of fiducials, rulers, number lights and track evaluation.

01. findfd (find .!.!~ucial)

The supervisory routine for fiducial findings. Its functions are to initialize

the fiducial search parameters, call the fiducial search routine, perform

al ignment checks if desi red and dec ide what to do about m issi ng fiduc ials.

02. ffd

Carries out the grubby details of actually finding a fiducial.

03. rnli tead !!umber .!.!ghts)

Reads a single set of number lights.

04. rdbci tea~ ~inary ~oded .!..nformation)

Reads and evaluates and stores all binary coded information on a given frame.

05. rrlm (!.ead ~.!..er !!:larks)

Transfers the estimated ruler locations in the E.O.T. to rultab, with the

option of reading the ru ler marks directly from the film if necessary.

06. convrt and dcnvrt (convert, ~e~onve!!)

convrt is presented with a trackoriginand inclination and proiects the track

onto the ru ler. Its output is the ru ler coordinate of the track. dcnvrt is given

a track's ruler coordinate and inclination and will provide the track's scope

coord i nates for any des i red gap.

105

D7. evaltt, trkout (evaluate .!..rack .!.able, .!..rac~ output)

evaltt extracts the vital information from a track and subjects it to a number

of checks for void conditions. It then constructs a track summary which

trkout releases to the track summary table.

D8. linfit linel

linfit is called by D7 to construct a I ine which is a least squares fit approxi

mation to the track in trktable. A call to line 1 can replace a call to I ine in

PIP-B12 if a slower but more accurate prediction is required in track following.

E Series

E1. predict

The supervisory routine for all interchamber prediction functions, i. e., how

to cope with a future chamber or view on the basis of what occurred inpastones.

E2. prediction arithmetic

Subroutines which handle the computational details of predicting where a

given track wi II enter another chamber.

E3. makptw (make fO.!.tern ~ord)

A routine which will take taktable and construct a pattern word for stereo

recognition purposes, based on spark size information included in the table.

E4. datout (data output)

A routine which takes the track summary tables reduces them and releases

them to the world through some in-out device, usually magnetic or paper tape.

AC KNOWLEDGMENTS

The author is indebted to William E. Fletcher, who
helped in the preliminary planning and contributed
two important fundamental routines; to R. A. Bolt,
who contributed several routines; to D. M. R. Park,
who provided much-needed assistance during the
check-out phase; and to Professor M. Deutsch of
M .1. T. who gave an introduction to this paper at the
DECUS Conference.

106

ABSTRACT

THE DIGIGRAPHIC DISPLAY PROGRAM
FOR THE DX-l COMPUTER SYSTEM

John T. Gi Imore, Jr.

Charles W. Adams Associates, Inc.
Bedford, Massachusetts

The Digigraphic display program for the DX -1 computer system utilizes
a buffered display scope, light pen and push-button panel to provide the
console user with the basic ability to draw charts, diagrams, curves,
etc. on the face of the display scope. The drawings may contain graphi
cal and alphanumeric information, which is reduced to a condensed digi
tal format called an Entity Table. The Table can be operated on by
special-purpose software operators either during the drawing action or
after the drawing is completed.

Certain man-machine programming techniques have been designed to
accelerate the manual task of drawing (or drafting). The console user
may draw points, lines, circles, arcs, and freehand or third-degree
curves. Distances and angles may but need not be specified. Sub draw
ings or their copies may be moved about, rotated or reflected; angles
and distances may be queried, and drawn dimensions can be generated
on the drawing itself.

PROGRAM AND SYSTEM

Function of Program

The Digigraphic Display Program (DDP) was designed to enable a console user to introduce to

a computer graphic and alphanumeric information which can be displayed without flicker and

stored in memory in condensed digital form. The program itself facilitates the preparation

and digitation of all types of charts and drawings. However, the digital description of the

graphical data can be used by other software routines either during or subsequent to the actual

drawing process. DDP is an improved version of a program written by Charles W. Adams

Associates as part of a joint project with the Itek Corporation.

System Components

The DX-l system consists of a standard 4K PDP-l computer, a display scope and four magnetic

tape units with type 52 control (all developed and manufactured by Digital Equipment Corpor

ation); a Bryant magnetic drum; a flicker-free display processor and a fiber optics cable light

107

pen (both developed by Itek Corporation and now being produced by Control Data

Corporation); and a push-button control panel with two foot pedals (suggested by Adams

Associates and Itek Corporation and produced by the DX-l engineering staff).

The computer has an information exchange buffer which permits communication with another

4K PDP-l, the latter having a color display scope and light pen. An additional 4K core

bank as well as the tape units and controls can be attached to either computer. While only

the first computer can presently use the magnetic drum and fI icker-free display processor,

equipment now on order will provide the second computer with access to the drum and a

flicker-free display processor for the color display scope. DDP currently restricts itself to

the first computer (see Figure 1 on page 1(J)but the program will be modified for use by the

second computer and its color scope.

As shown in the figure, the 15 spring-loaded buttons on the control panel, the push button

mounted on the light pen, and the two foot pedals are connected in parallel to the 18-

toggle-switch test word of the first computer.

The flicker-free display processor was described in a paper by Earle W. Pughe, Jr. at the

1962 DECUS meeting. However, to those not present at that meeting the following abstract

of Mr. Pughe's paper may be of interest:

The Itek Flicker Free Display displays line drawings on a
10" x 10" scope 30 times a second with a maximllYl total
line length of 600 inches. The Display is controlled from
a Telex disc through logic which controls the beam. There
are about 20 instructions used to control the display. When
the display is to be changed, new instructions are put on the
disc by a block transfer from the PDP, otherwise the computer
is not needed for the display.

It should be noted that the Telex disc is a Bryant drum in the DX-l system, and that the

four-bit byte instructions referred to by Mr. Pughe are now six-bit bytes stored on the

2O,OOO-byte display track. The change from four-to six-bit byte logic and the longer

drum display track have increased the drawing capacity to approximately 2,000 linear

inches. However, to accommodate extremelycrowded drawings, a new six-bit byte in

struction has been added to permit the use of two display buffer tracks rather than one

whenever necessary. While the reduction of the repetitive cycle in this case to 15 times

a second produces a fl ickering effect, it was done to avoid losing any display information.

108

riSER OPTICS CABLE

15 SPRING
LOADED

PUSH
OUTTONS

TWO
rOOT ...

PEDALS ,

PHOTO
CELL AND

ELECTRONICS

, , , .
TEST WORD IFLAG J

-~UTTON
PUSH ~
~ DtSPLA pop-I

CONSOLE
TYPEWRITER

PAP F.R
TAPE

FUNCH

PAPER
rAPE

READER

~ ~-~-~ COMPUTER -

~
COPE ~ "----(LNrORMATION)----- pop-I G WITH 4K CORE ~ ~

L t HT I--- EXCHANGE COMPUTER
PEN ----,---~I------~-r~

FLAG 4 ~ BUrFER WITH COLOR
t DISPLAY SCOPE

F'LICKER rREE
DISPLAY PROCESSOR

'\ 2 \
DISPLAY

)
TRACK)

I

Figure 1

1

TYPE

52

CONTROL

6
TRACKS

FOR
SUBROU T I NEB
AND DRAWING

DATA

DX-l EQUIPMENT USED BY
THE DIGIGRAPHIC DISPLAY PROGRAM

109

AND FLICKER
FREE PROCESSOR

4

TAPE
UNITS

I

'\ 2

COLOR
DISPLAY

) TRACKS

The drum consists of ten tracks, each containing twenty sectors with 1,000 bytes in every

sector. (A byte is composed of six bits of datu and a drum parity bit.) While reading or

writing is begun at the start of a sector, the length of the block of information transmitted

is variable.

The display scope has a useable area of 10" x 10", the bottom 2" of which are used to

provide numerical display registers and a series of displayed points utilized as control

buttons (called light buttons). A plastic template is used to label the points and regis

ters. The original preference for light buttons over an additional set of push buttons

was influenced by the versatility of the former in changing the number and configur

ation of control buttons. The I ight buttons will be replaced by hardware , however, as

soon as DX-1 users have had sufficient experience to finalize the design.

Geometric Digital Description of Drawing

Drawings are made of different figures combined to effect the desired representation.

DDP can produce standard figures and manipulate them in various ways. To do so,

each item of the drawing/referred to as an entity, is stored internally in digital form

and oriented on a 218
grid, the smallest incremented of which represents 2-5 x 10-

2

or .0003125 paper inches, and the maximum spread of which is 2
13

x 10-
2

or 81.92

paper inches. Since actions are performed in terms of entities, the functions will be

described in these terms.

The types of entities that can be produced are:

Point

Line

Circle

Curve

Arc

Used for reference, centers of circles, etc.

Used as part of the drawing, guide lines, etc.
(Note: DDP distinguishes between horizontal,
vertical and slanting lines, but the user need
not concern himself with this capabil ity.)

Used in various ways.

Third-degree curve or curves defined by a
series of points. (Note: a freehand poly
string of I ines can be replaced by a series
of third-degree curves to produce a smoother
representation.)

Pa rts of ci rcl es

110

Polygon

Dimensions

Remarks

Grid

Regular polygon of three to fifteen sides. (Note: A
polygon entity need not close in the OX -1 system.
In fact, this entity is used in freehand drawing to
represent a series of points connected by straight
I ines, commonly called a freehand polystring of
lines.)

Lines, arrow heads and numbers used to show dimensions.

Text attached to a drawing as a note or explanation,
composed of letters, numbers, punctuation and special
characters.

A matrix of po i nts whose I ocat ion, dens i ty, number,
individual values and maximum time are specified.

As a drawing is prepared, each entity is assigned an identifying subdrawing number,

called a group number. This number can apply to one entity or to a number of entities

which are to be treated in a similar manner. While each entity may have only one group

number assigned to it, the entity may be reassigned if required or desired. The numbers

o to 63 may be used for group numbers.

MAN-MACHINE CONTROL

Push Button Keyboard

There are basically two modes of light-pen operation: using the pen as a pointer, and using

it as a pencil. If the user wants to point at an existing figure on the display scope, there

is no need for tracking the pen. Rather, the light-pen flip-flop is monitored and, when

a light response occurs, the position of the drum display track is queried. DDP is capable

of determining from the track position which graphic entity has been touched by the pen.

If the user wishes to point at a position on the scope where there is no data, he must

guide DDP to the position by using a light-pen tracking cross (developed, as far as the

author knows, by Roland Silver). The tracking cross is also used for continuous pointing,

i.e., using the pen as a writing pencil, and also for showing the movement of a subdrawing.

One of the two foot pedals is used to indicate whether the pen is to be used as a passive

pointer or tracked for writing or moving. The two routines that control these actions are

. called Pick and Sketch, respectively.

111

The spring-loaded push buttons are used to further describe the light-pen action. Since

there are only 15 buttons, an upper- and a lower-case function assignment was adopted.

The Sketch functions are labeled on the top of the buttons and the Pick functions on

the bottom. Each button has a red and a blue light behind it which indicate the function

in use. A diagram of the push-button keyboard is shown in Figure 2 below.

LOCK-ON MOVE REMOVE MOVE MOVE
RELEASE FRAME COpy

PICK A SS I GN ADD IT I aNAL LI NE RELEASE

ARC I fREEHAND I LOCK-ON PROTRACTOR VERTICAL

SMOOTH HEAD PROTRACTOR POINT

B p·o I NT INVERSE HORIZONTAL WRITE COMPASS
SPECIAL I FOO T I CENTER TAN POINT fUNCTION

Figure 2

PUSH BUTTON KEYBOARD

Pi ck Push Buttons

The following pointing capabilities are currently provided by the Pick routine:

Pick a point
Pick an additional point
Pick a center point
Pick an additional center point
Pick a tan point
Pick an additional tan point
Pick a line
Pick an additional line
Pick a center line
Pick an additional center line
Pick the head point of a protractor straight edge angle (This can be the point on any

graphic entityo)

Pick the foot point of a protractor straight edge angle (When the head and foot have

been selected, the protractor straight edge angle will be set according to the angle

112

from the foot point to the head point.)

Pick the protractor straight edge angle of a line (This angle will be set according to

the angle of the I ine and its direction when originatly drawn.)

Pick an entity and assign to it the logical group number displayed in the Group Number

Register •

. The PICK RELEASE push button is used to cancel or change a picking operation. The

SMOOTH and SPECIAL FUNCTION push buttons are not associated with Pick.

Before proceeding, it should be made clear that the push button on the light pen sets a

bit in the test word of the computer which, in effect, provides a logical shutter to the

peno The opening and closing of the shutter is achieved by depressing and releasing the

I ight-pen push button.

In all the Pick functions listed above, the Pick program initializes a picking operation if

any push button or combination of buttons is depressed at the moment the pen shutter is

opened. The monitoring of the I ight pen and the entity being touched continues as long

as the button is depressed. To assure the user that he is pointing at the desired entity,

Pick intensifies the entity by displaying it directly from the computer. If a point is being

picked, the entity being pointed at will be intensified and Pick will choose the point on

that entity which is closest to the center of the aperture of the pen. (The one exception

is that if the point is within a fixed position from the end point of a line, the end point

will be chosen instead.) If the pen shutter is closed, Pick will intensify only the current

point. Reopening the shutter allows the user to choose a different point.

Once a selection has been made of the desired point or I ine (the latter in this case being

a locus of points and either straight or curved), the push button (or buttons) is released

and that point or line will be remembered by the program. In the case of HEAD, FOOT,

PROTRACTOR, and ASSIGN, the actions indicated will be carried out.

To remind the user that a given point or line is currently being remembered by the program,

a temporary symbol is displayed next to the point or line. Each kind of Pick action has

its own symbol. These remembered points and I ines are used by a set of Construct routines

which are described later.

113

Sketch Push Buttons

Except for two situations, lock-on and remove, Sketch assumes that the light pen is to

be tracked if its shutter is open. Whenever the shutter is opened, Sketch will display

the last center point of the aperture of the pen. If the pen is no longer over the point,

Sketch will monitor the shutter and continue to display the point brightly until the user

positions the pen ov~r the spot or closes the shutter •

. Once the pen has been positioned over the previous center point, a Roland Si Iver tracking

cross is used to continually determine the new center position of the aperture. A pen

position prediction routine was not used because, there being only one buffered scope,

there is presently no need to use the computer for anything except tracking. The tracking

cross, moreover, is displayed directly from the computer and cuts out the buffered display

data; consequently a random interval between tracking crosses is required to allow all of

the buffered display to appear on the scope (at the reduced rate of 25 times per second).

Pen tracking currently uses about 15 percent of the computer time, the remainder being idle.

All Sketch tracking operations use a writing-point and a reference-point which are initially

superimposed and displaced 1/411 above and to the left of the center of the tracking cross.

The coordinates of the writing-point are those used to determine the end points and parameters

of an entity. The reference-point is used as a gu ide under certain circumstances.

Since it is desirable to simulate a straight edge, there are three push buttons that provide

constrained tracking horizontally, vertically, and according to a protractor straight edge

setting. This means that the writing-point wi II be constrained whenever one of these

three constraint buttons is depressed. Thus the reference-point and the writing-point

separate from each other, the reference-point remaining in the same relative position

from the tracking cross while the writing-point is constrained to some angle of motion.

During horizontal tracking, as shown in the diagram below, the writing-point will con

tinue to have the same y coordinate that it had at the time the HORIZONTAL push button

was depressed. Its x coordinate will be the same as the x coordinate of the reference

point. The reverse is the case in vertical tracking.

In protractor-constrained tracking, an illustration of which appears at the top of page 11,

the writing-point will be constrained to move along a path whose slope is the same angle

114

Initial
position at Wri t'::'ng-po.int Line of

time ~f ~+.; constraint
~onstralnt r • h Referen,~e-,polnt

. / + Raster point sensed by pen

Motion of the pen

as the protractor straight edge angle and which passes through the original coordinates of

the writing-point at the time the PROTRACTOR push button was depressed .. The writing

point may be positioned on the protractor-constrained path either by a horizontal or ver

tical proiection of the reference-point onto the path line. Since both situations are

desired, the HORIZONTAL and VERTICAL push buttons have an auxiliary function of allow

ing the user to switch from one to the other proiection while keeping the PROTRACTOR

push button depressed.

Vertical
projection of
writing-point

Horizontal
projection of
writing-point Reference'-point

~ Motion of the pen

Protractor stralght edge angle

The reference-point in the two illustrations above greatly reduces the need for gu ide

lines. Furthermore, the ability to interrupt tracking long enough to use the pen as a

pointer for the reference-point provides an effective drawing ability. This is done by

depressing the LOCK-oN push button, which causes the Pick routine to be activated

in choosing an existing point on the drawing.

115

As soon as the LOCK-oN push button is released, Sketch is reactivated, the reference

point is given the new coordinates of the picked point, and the writing-point is reposi

tioned according, first, to the constraints (if any) imposed on it and, second, the coor

dinates of the reference point.

One final note on constrained tracking: when a constraint push button is released, the

reference-point is repositioned to the coordinates of the writing-point, and the tracking

cross is repositioned according to the new position of the reference-point. At times this

snaps the tracking cross out from under the pen and forces the user to reposition his pen.

This is done so that he will begin tracking again from the last mathematical point of the

previous constra int •

Briefly, the functions of the remaining push buttons for Sketch are:

WRITE

POINT

COMPASS

INVERSE COMPASS

ARC

FREEHAND

MOVE
MOVE COpy

REMOVE

MOVE FRAME

To draw all straight lines

To draw points

To draw circles (The initial point is the center
and the last point on the periphery.)

To draw circles (The initial point is on the
periphery and the last point on the center.)

To draw arcs (Two straight lines originating
at the center are used, I ike the hands of a
clock, to specify an arc.)

To draw freehand curves (A string of connected
points, the density of which is proportional to
the tracking speed.) Note: Immediately after
the curve has been drawn, it can be smoothed
by releasing the Sketch foot pedal and then
depressing the SMOOTH push button. The
curve will then be replaced by a series of third
degree curves, thus producing a much smoother
curve. The amount of smoothing required will
depend upon the density of points defining the
curve.

To move entities having a common
group number or a copy of them

To remove an entity, the pen being used as
a pointer

To select a new view of the drawing in the frame,
which can be moved about regardless of size
(When this push button is released, the new view
in the frame is recalculated and displayed.)

116

SKETCH DIMENSIONS

Light Button Display Panel

To permit the user, through the use of the
second foot peda I, to see the I ength and
angle of the I ines being generated in the
Sketch mode (If desirable to restrict the
length of unhooked lines to a specific
tolerance , say, 1/811

, the tolerance is
keyed in and the user will not draw an
unhooked I ine whose fraction is other
than a multiple of an eighth.)

If all push buttons and foot pedals are in the release position and the I ight-pen shutter is

open, the fight-button display panel is turned on and displayed directly from the computer.

The basic philosophy in light-pen operation in this case is that the last I ight-button point

seen by the pen prior to the closing of the penis shutter will be the button to be activated.

The functions of the registers and I ight buttons illustrated in Figure 3 on page 118 are des

cribed briefly below.

Left Half of Panel

MESSAGE Register

PROTRACTOR STRAIGHT
EDGE INDICATOR

ANGLE Register
LENGTH Register
TOLERANCE Register
X-COMPO NENT Register
V-COMPO NENT Register

0-6
OlO

0'0

0'0

0'0

AC-l Register

For pass ing comments to the user; for
example, the word MORE is displayed
if parameter data is insufficient.

Displays a sma II vector I ine in the
circular cut-out of the template to
indicate the angle of the protractor
straight edge.

These are display registers used to show
numerical values. The light buttons to
their left are used to prevent the contents
of these registers from being cleared after an
operation.

These five light buttons, to the right of
the numerical display registers, are used
to transfer the contents of the reg isters
to the selected accumulator, or the con
tents of the latter to the display registers.

These two light buttons, to the

117

MESSAGE

PROTRACTOR 0 STUI'HT EDeE
IIOICAlOR

01 AlGlE

lEleTH 01
TOLUEtH 01

1- COIPOlnl 01
Y - COMPOIE 11 01

lOCI

I

10 61
I 0 l 0

\0 1 0

10 1 0

lOy 0 - -

0
+

0

0

0

0

0

0

IIDEI
UOUP

10.

o
'10 0 0 0 000 0 0 0101

fILL -\

otl
IEsn SAVE IOU 1'011T LlIE SHIfT DUI DII ". Ylfl

0 0 0 0 0 0 0 0 0 0
tiD RESTORE MIDDEI CIRCLE CURVE SHifT SHOI llP HALf AC. COpy l REe. flAiE -
0 0 0 0 0 0 0 0 0 0
H A CElm ARC RGUID ROUTE PSEUDO lEI DOUBLE tEliP

DlAl fRUE

0 0 0 0 0 0 0 0 0 0
+15 filE POL Yeo. CLEU ROlUE PTS REsn 1"1 'IClS COPY flAiE

0 0 0 0 0 0 0 0 0- 0 o
n eUIDE 1110 I£fLECT All S"I 'fill

POIIl cOrY flUE

""UC1 .. LlI£ STUICHT eOlSllteT COpy 01llE151015 VI EI
EME TYPE

Figure 3

LIGHT BUTTON DISPLAY PANEL

118

I~
I A:-2

lOCI

0 0

0 0 0
eLfU

0 0

0 0
P811l

REASSICI
,.OUP TO
10 •• 1 At

0

I CROUP
I .. IU

I
Plein
novp

lunER

J ScotE
SCllE

I DlAIIII
StAlf

ac ..
JUI SCalE

AC-2 Register

o through 9

+

x

CLEAR

POINT

Right half of panel

PROTRACTOR STRAIGHT EDGE:

RESET

SAVE

RESTORE

+90

+A

right of the two accumulators,
are used to prevent the contents
of the accumulators from being
cleared after an operation.
Between the buttons a small nu
meral 1 or 2 is displayed to
show which accumulator is ac
tive. If one numeral is touched
by the pen, the other accumu
lator is activated and its nu
meral will appear.

These ten I ight buttons are
used as a regu lar numerical key- -
board, the values being keyed
into whichever accumulator is
active.

These four I ight buttons are
used to add, subtract, multiply
and divide between the two
accumu lators.

This I ight button clears the
active accumu lator •

This I ight button is used to
indicate that any additional
numerals keyed in will be
placed in the fraction part of
the active accumulator.

Resets the protractor stra ight
edge angle to O.

Saves the current setting of
the protractor stra ight edge
angle.

Restores the previous setting
of the protractor straight edge
angle.

o
Adds 90 to the protractor
stra ight edge ang Ie.

Adds the angle in the Angle
Reg ister to the protractor
straight edge angle.

119

+15

XY

A

LINE TYPE:

o
Adds 15 to the protractor
straight edge angle

Sets the protractor stra ight
edge angle according to the
values in the X- and Y
Component registers.

Reads the protractor stra ight
edge angle into the Angle
Register.

All entities (except Remarks and Dimensions) may be sketched or constructed with any

of the follow ing lines:

Normal

Fine

Hidden

Center

Guide

CONSTRUCT:

The general procedure in the Construct mode is to specify information required for the

construction of an entity. This is done by introducing values into the numerical display

registers and/or by using the pen as a pointer to indicate where the construction is to

occur; and then by touching the appropriate Construct light button. If the data fumished

is insufficient, the word MORE will (as previously stated) appear in the Message Register;

if too much data has been specified, only that necessary will be used. Certain con

structions produce ambiguous situations; for example, where three lines define a circle,

one of the two possible figures is displayed. Touching the Construct CIRCLE light button

a second time will produce the other figure

The following constructions are currently available in the DX-l system:

POINT
LINE
CIRCLE
ARC
POLYGON

The Digigraphic Display Pro
gram presently permits the
expression of a point and a
line in six ways, a circle in
seven, an arc in two, and a

120

ROUND

CURVE

CLEAR PICKS

MID POINT

COPY:

pol ygon in three. However,
since there are numerous ways
of constructing geometric
figures, it would be only a
matter of developing specific
subroutines to expand the pro
gram's construction capabili
ties.

This light button is used to
replace the intersection of
two lines by an arc joining
them. The arc will be drawn
between the two I ines in the
quadrant specified by a point.
The point and the ends of the
line are removed.

Th is I ight button is used to
construct a continuous curve
composed of a series of third
degree curves defined by two
points. The curve is drawn by
picking a series of points,
tangent points, or a combina
tion of both, which define the
various segments of the curve.

This I ight button clears all
picks {since entities, once
picked, cannot be cleared in
dividually} as well as the
AC-l, AC-2, A, L, T, X and
Y registers unless they have
been locked. This button must
also be used following ambigu
ous constructions because in
such cases the picks are not
automatically cleared.

This I ight button is used to
construct a point in the middle
of a picked I ine or midway be
tween two picked points.

The five light buttons described below are available for accurate manipulation of groups

of entities. They provide for moving, rotating and reflecting entities and are similar to

the corresponding functions in the Sketch mode.

121

SHIFT

SHIFT COpy

ROTATE

ROTATE COpy

REFLECT COpy

DIMENSIONS:

Same as MOVE except angle and
distance are specified by hori
zontal and vertical components
or by two picked points.

Same as MO VE CO PY except as
stipulated above.

Rotates a group, specified by
the Picked Group Number Regis
ter, about a picked center point.
The rotation is counter-clockwise
and specified by the value in the
A Register. The picks are not
cleared and the function can be
used repetitively.

Operates in the same manner as
ROTATE, but leaves the original
group undisturbed. This function
is used when draw ing gears or
other figures which are repetitive
in a rotational sense. The copies
are given the group number ap
pearing in the Group Number
Register. When the numbers in
the Group Number and Picked
Group Number registers are the
same, the angle of rotation is
doubled after each rotate oper
ation. If the two registers differ,
the value of the angle is accum
ulated after each rotation.

Creates a mirror image of the
groupspecified by the Picked
Group Number Register. The
copy is generated by reflect-
ing the selected group about a
picked center line. The copy
is given the group number spec
ified by the Group Number
Register and the picks are
cleared.

The three light buttons described below are used for showing dimensions on drawings.

Actual or arbitrary dimensions may be drawn or dimension value may be shown in the

Length Reg ister •
122

DRAW

SHOW L REG

PSEUro DRAW

VIEW:

Used to draw a line dimension
alongside the picked I ine or
between two picked points.

Used to display, in the Length
Register, the numerical value
of the picked I ine or the dis
tance between two picked points.

Used to draw an arbitrary di
mension alongside the picked
I ine or between two picked
points. The arbitrary length
is entered in the Length Reg is
ter prior to th is operation.

DDP provides facilities for erasing, permanently or temporarily, specified portions of a

drawing. When entities are temporarily erased they may be restored later; but when per

manently erased they are not recoverable. To effect any of these operations, entities are

specified by certain characteristics. In addition, it is possible to indicate that either all

entities or only those within a specified group number may be affected. At least two

specifications must be made: classification and type of action, the light buttons involved

in each being:

Classification:

DIM

LTP

REM

PTS

ALL

Only dimension entities will
be affected.

Only entities with the line
type currently selected will
be affected.

Only remark entities will be
affected.

Only point entities will be
affected.

All entities will be affected.
Th is I ight button can be used .
alone or in conjunction with
L TP; for example, all entities
with guide lines.

123

Group Number:

SGPN

Action:

TEMP

RSTR

PERM ERASE

Scale

This light button provides
further classification of enti
ties in that only those belong
ing to the group whose number
appears in the Picked Group
Number Reg ister are affected.
Otherwise, entities in all
groups will be affected by the
action.

The entities specified will be
temporari Iy removed from the
display but retained within
the system.

The entities of the type speci
fied, which have been temporar
i I y erased, will be restored to
the display register. All other
entities will be unaffected.

The entities specified will be
pennanently erased from the
system. Extreme caution
should be used in regard to
this I ight button.

While some types of drawings (such as mechanical or architectural) have a direct

dimensional relationship to the items they represent, many others (such as block and

schematic diagrams) do not. To facilitate the preparation of dimensional drawings,

DDP pennits the use of a drawing scale which, as already mentioned, represents the

ratio of the drawing to reality. The I ight button and register involved in scal ing are

described below:

AC~DRAW SCALE

DRAWING SCALE
Register

124

To set the drawing scale, the
integer specifying the obiect/
draw ing is entered into either
AC Register and the AC-7 DRAW
SCALE I ight button is touched.
The corresponding scale will be
transferred to the Drawing Scale
Register. Nonnally the drawing
scale would be set before a

Magnification and Frame Control

drawing is begun and not changed.
However, the scale may be changed
at any time and the new value will
affect the draw ing on Iy from that
point on.

The scope scale is the ratio of the
scope dimensions of the displayed
information to the paper dimensions
of the drawing {not reality}. A
scope scale of 1:4, for example,
signifies that 1" on the 1 0" x 811

scope display area corresponds to 4"
on a 40" x 32" drawing.

The 10" x 8" drawing area of the scope is bounded by four displayed lines, called a

frame. The buttons and register concerned with magnification and frame manipulation

are as follows:

HALF FRAME

MOVE FRAME

The currently available scope scales are:

10" X 8" Display Area

1:8
1:4
1:2
1: 1
2:1
4: 1
8: 1

16: 1

=
=
=
=

=
=
=
=

125

Any part of the draw ing can be
magnified by touching the HALF
FRAME I ight button and position
ing the frame, now reduced to
half-size, over the desired area
of the draw ing by depress ing the
MOVE FRAME push button in the
Sketch mode. Releasing this but
ton will cause the frame to return
to full scope size and correspond
ingly magnify everything within it.

Paper Draw ing Area

80" X 64"
40" x 321

20" X 16"
10" x 8"
5" X 4"

2-1/2" X 2"
1-1/4" X 1"

5/8" X 1/2"

As this table indicates, the scope-scale-operation can be used for preparing drawings

smaller than 80" x 64" and magnifying portions of a drawing for examination or detail

work. For the former purpose, all work is done at a magnified scale; for instance, a

scope scale of 1: 1 is used for 10" x 811 drawings. For the latter purpose, the frame is

reduced by halving it as many times as desired, thus expanding the frame and its contents

to full scope size. When the detail work is completed, the scope is set to the next desired

scale.

FULL VIEW

RESET FRAME

DOUBLE FRAME

SCOPE SCALE
Register

Group Number Control

To view the entire drawing and
show the relative location and
size of the frame on it, the
FULL VIEW light button is
touched. To reset the frame
to full scope size, the RESET
FRAME I ight button is touched.
The latter does not affect the
scope scale but restores the
frame to 1011 X 8"

Whenever the frame has been re
duced in size by halving, it may
be increased by touching the
DOUBLE FRAME light button,
which will double the size of
the frame. This permits the
user to move back up the scale,
step by step, as well as zoom
down it. The Scope Scale
Register will always display the
scope scale of the current view.
The frame may be doubled be
yond the 10" x 811 scope area
if the scope scale in use is less
than 1:8, thereby allowing the
user to see more of the paper
drawing than he is actually
viewing.

When an entity is generated, it is assigned the group number appearing in the Group Number·

Register. The following registers and light buttons are available for assigning and changing

grou p numbers:

126

GROUP NUMBER
Register

PICKED GROUP
NUMBER Register

AC-i GPN

INDEX GROUP NO.

-1

AC-) PGPN

REASSIGN GROUP
TO NO. IN AC

SPECIAL FUNCTIONS

This register contains the
group number currently being
assigned to entities. It is
arso used for other functions.

This register is used in the
Construct mode to identify
the entities to be used.

This light button is used to
transfer the integer in the
selected accumulator to the
Group Number Register.

This light button is used to
increase the value of the
Group Number Register by one.

This light button is used to
decrease the number in the
Group Number Register by one.

This I ight button is used to
transfer the integer in the
selected accumulator to the
Picked Group Number Register.

This light button permits the
assignment of a new group num-
ber to an entire group of entities.
The group to be changed is spec
ified by the Picked Group Number
Register and the new group number
to be assigned is in the Group Num
ber Register. The new group number
will appear in the Group Number
Register at the completion of the
operation.

DDP has a special-function selection feature which enables the user to extend his con

trol to auxiliary functions. An auxiliary function is called by entering the function

number as an integer into AC-1 and the desired mode number as an integer into AC-2.

Then the SPECIAL FUNCTIO N push button is depressed and released.

127

Alphanumeric Input

Remarks may be added to the drawing by means of the SPECIAL FUNCTIO N push button.

Since they are entities, remarks have group numbers, may be moved about, and possess

all the other properties associated with entities. The basic size of the characters used

is • 12 x .08 inches at a scope scale of 1: 1. The size of the characters will vary with

scope scale and can also be changed by the user.

The procedure for entering remarks is to position the writing-point at the location of the

first desired character, enter a 1 into AC-1, clear AC-2, then depress and release the

SPECIAL FU NCTIO N push button. The typewriter will execute a carriage retum to in

dicate a ready state for accepting alphanumeric information. The remark is entered

through the keyboard and terminated by momentarily depressing the push button on the

light pen. As each character is typed, it is displayed in its proper position on the scope.

The allowable characters are capital letters, digits 0 through 9, and the following symbols:

quotation marks (single and double), brackets (right and left), comma, period, obi ique,

question mark and right arrow; and plus, minus, equal, square root and summation signs.

Twenty-four spaces are reserved for future use. The typewriter keyboard symbolt is

used to specify a change in the size of the characters. Magnification is given relative

to the base size of • 12 x .08 inches. The number entered immediately following the

t symbol specifies the power of magnification; for example 1'3 means that all future

characters will be .36 x .24 inches at a scope sca I e of 1: 1 •

The symbol v specifies a subscript mode and all the characters that follow will be entered

as subscripts relative to the last character before the v. Subscripts can be displayed at

different levels by the successive use of v. The character A specifies superscript mode

relative to the last character before". It is therefore possible to have subscripts and

superscripts at different levels, to have subscript superscripts, and vice versa. To retum

to normal mode, the character rV is entered.

Characters may be deleted by typing <. Each time this is done, the preceding character

is erased from the display. The carriage retum, space bar, back space and tab are used

normally. Tabs are set by SPECIAL FUNCTION ligh~utton operation.

128

Concluding Remarks

The Digigraphic Display Program is a basic graphic drawing program. Except for a few

control routines, it consists of a string of independent routines which can be supplemented

by those of a special-purpose nature that are peculiar to the needs of individual users.

The Entity Table format has been designed for minimum storage space since detailed

graphic drawings can be several thousand words long. Address pointers for common

points, connected groups, etc., have not been included since their use is directed toward

saving computer time for searching. With a completely buffered single display scope,

however, there is abundant time for internal searches.

There are and will continue to be valid reasons advanced for expanding the entity format,

and the DDP is so designed as to permit this to be done with very little program modifi

cation.

129

DX-l CONSOLE CONFIGURATION
FOR DIGIGRAPHIC DISPLAY PROGRAM

130

ABSTRACT

SIGNAL REPRESENTATION AND MEASUREMENT DATA
MANIPULATION IN N-SPACE USING AN ON-LINE PDP SYSTEM

Charlton M. Walter

Ai r Force Cambridge Research Laboratories
Bedford, Massachusetts

The representation of functions and time varying signals as points in an
N -dimensional vector space has proved to be a highly useful nemonic
device for abstractly visualizing the behavior of complex sensor data
processing and pattern recognition schemes. In order to articulate this
capability an on-line programming system is being evolved for the Experi
mental Dynamic Processor DX-l. The present version of this system
permits the user to rapidly specify various two-dimensional sections
through N - space and to project both stored and real-time signal data
onto the specified section as points of light on a CRT, color coded to
exhibit a priori information about the source of the sensor data.

A variety of options permit signal data to be input and displayed in real
time, projected on any plane through N-space, while also being stored
for subsequent examination from different points of view. Stored data,
to which labels have been attached, can be called up and projected on the
given plane, along with the data being input in real-time, for data com
parison and monitoring purposes. Data derived from various sources
can be both labeled and color coded. This type of coding is highly ef
fective as a means for monitoring the pattern discrimination capabilities
of different types of information filtering and pattern recognition systems.

Alternative points-of-view can be specified through such options as the
use of the light pencil to construct new coordinate axes in N-space, or
through the use of stored sample vectors as axes. Means are also pro
vided for analytically generating new coordinates using eigenvector at
tribute extractionandother statistical filtering and smoothing techniques.

Both central processing units (PDP-I's) of the DX-I system are used in
implementing the above system. One 'CPU is used for real-time data
inputing through an A-D converter and for carrying out the data projection
and transformation operation, while the other CPU is primarily used for
display bookkeeping and updating.

INTRODUCTION

The representation of functions and of time-varying signals as points in an N-dimensional

vector space has become an important means for abstractly visualizing the behavior of

various complex sensor data processing and pattern recognition schemes. The dynamic

application of the approach to actual data has heretofore been impeded by the lack

of computational capabi lity coupled in real-time to an effective display medium and

backed by simple means for permitting the investigator to rapidly specify new points-

of view from which he may wish to examine the data.

1
The system to be described involves the use of the Experimental Dynamic Processor, DX-1 ,

131

consisting of two interconnected PDP-1 processors, coupled to a colored oscilloscope fo1'

graphic output, and to A-D conversion equipment for new data inputting. Both on-line

keyboard and I ight pencil were provided for logical and functional communication with

the processing system.

SIGNAL REPRESENTATION IN N-SPACE

In the discussion we sha II consider a signal vector, x, as an ordered N-tuple of II com-

ponent measurements, II (xl x). The component measurements may be samples from
, ••• , n

some continuous process x{t), at discrete intervals of time, e.g., x. = x{t+iAt), i=l, ... , N.
I

or, in other situations, the components of the vector may represent the outcome of a

collection of difference measurements carried out according to a given set of operational

procedures, e. g., the resu Its of a set of psychological and physiological tests carried out

on a specified individual.

The numerical value of the outcome of each measurement may be considered as the distance

out from a fixed origin along a coordinate axis associated with that particular measure

ment procedure. Since the separate measurements may be interrelated in various ways,

both statistically and dynamically, it is convenient to let the angle between pairs of

coordinate axes be specified by some suitable measure of this interrelation. Generally

this is done in such a way that minimum absolute value of the interrelationship, in the

appropriate statistical or dynamical sense, corresponds to orthogonal axes, and maximum

value to parallel axes.

Since it is difficult to visualize more than three coordinates at once, and since, for pur

poses of graphic presentation, it is difficult to handle more than two non-orthogonal co

ordinates at a time, we shall confine our attention to two-dimensional sections through

the N-dimensional space. This is not particu larly unfortunate since the concept of an

individual measurement operation can be viewed as an orthogonal proiection of the signal

vector on the coordinate axis associated with the given measurement procedure. From

considerations of consistency and completeness of the measurement process, it is desirable

to work only with vectors of \I unit length," where length II x a of vector x, and angle

B between vectors x and yare defined,
xy (xl)

II x II = " {xix} as cos Bxy = U x 11 II y II

N
(Yl ... , y), one may write (xly) = ~

n i = 1

in terms of an inner product operation (xly) as

. For orthogonal components (xl' ... ,xn) and

132

In particular, any normalized vectors u,v, etc., in the given N-space may be considered

as measurement - or data fi Itering - procedures, and we may inqui re how the other data

vectors, or basis measurement procedures, are interrelated, when viewed from the pro

cedu res u and v.

The problem now is reduced to determining the proiection of an arbitrary normalized

vector, x, on the plane determined by the vectors u and v. Analytically, this can be

characterized by computing the coordinates u and v , where
x x

u = (xlu),
x

v = (xlv),
x

and observing that, for the u-axis arbitrari Iy taken as horizontal and for a v-axis making

an angle 9 with u, the vertical"scope" coordinate y (cf. Fig. 1) of the proiected vector
x

x will be

9yx = (xlv) - (xlu) (ulv)

./1 - {ulv)2

SIGNAL VECTOR MANIPULATION PROCEDURES

Typical of the kinds of control which are needed in attempting to maneuver in N-space

is the requirement for rough specification of a new measurement or data fi Itering pro

cedure based upon intuition derived from the examination of certain examples of prior

signals, specified in terms of their component representation on a previous basis of measure

ment procedures.

This requirement is hand led by providing the investigator with capabil ity for selecting,

through suitable alpha-numeric descriptors, previously stored vectors and displaying them

on the color oscilloscope in coordinate form, using different colors to identify the different

vectors. The light pencil can then be used to sketch in the structure of new filters, using

intuition based upon the displayed data and a .. feel" for the process under investigation,

as illustrated in Figure 2. All of the relevant signal data can then be called out, through

alpha-numeric category descriptors, and displayed as points proiected on the plane specified

by the new filters, using different colors for the different categories into which the data has

been grouped. This is illustrated in Figure 3, where, in lieu of color, we have utilized

different symbols to distinguish the different types of data.

133

The hand sketch approach to filter investigation is particularly useful for obtaining a

II feel" for which factors are most influential, and roughly to what extent, based upon

various heuristic criteria of uti lity. It is also highly usefu I in obtaining a feel for the

effects of small perturbations about a fi Iter structure which has been designed using some

analytical procedure.

Means for call ing up various statistical fi Iter design procedures have also been incorporated

into the program control. This is at present I imited to the designation of pre-programmed

subroutines, which are called out and executed on demand, and does not yet have in

corporated a capabil ity for the on-I ine synthesis of arbitrary analytical design procedures

using an on-line algebraic translator.

A rather elaborate eigenvector fi Iter design procedure has been implemented, however.

This system [2] has the capability for forming an interaction matrix from designated samples

of stored signal vectors, using any of a variety of different definitions of II interaction. II

The system then procedes to find the orthogonal transformation which diagonalizes the

matrix. Options are available for displaying various intermediate iterations of the first

m eigenvectors and eigenvalues, in order to provide information on the rapidity of con

vergence of the process. Figure 4 illustrates the behavior of the system when operating

on a typical signal data cross-correlation matrix.

Control options are also provided in the main signal representation system for the real-time

inputting, display, and storage of signal data. lim itations on high speed storage and the

absence of a drum buffer, for both data storage and display updating, on the Phase I,

DX-l system, places a serious limitation on the amount of data, and signal data sample

rate, which can currently be handled in the real-time input mode.

Incoming signal data can be both displayed in coordinate form (on the top half of the scope)

and simultaneously projected and accumulated on any specified pair of filter axes (on the

lower half of the scope) as illustrated in Figure 5.

References

1. Walter, C. M., liThe Experimental Dynamic Processor DX-l", 1962 IRE
International Convention Record, Part 9, March 1962.

2. Gagan, R. P., Wisowaty, M.; Walter, C .M., .. An on-line Sub-Program for the
Determination of Eigenvalues and Eigenvectors with Graphic Convergence Moni
toring Features", Scientific Report No.2, AF19(628)-1614, Wolf R&D Corp.,
AFCRL-63-365, September 1963.

134

Figure 2.

v

~x
, X-projection on -.

I (u,v)-pfane
I
I

U
Ux

Fig. 1

Geometry of projection of vector x on plane determined by vectors u and
v.

Fig. 2

Use of light pencil in drawing filter structure. Background reference data
is displayed in different colors.

135

Figure 3.

x)it v

)l)(It

1t o)C
0

0 00
o 0 0 .. 0 .00 .. 0 " •• U

Fig.3

Sketch made from typical colored scope display showing partially clustered
data from different signal sources projected on (u,v) - plane.

Fig. 4

Overlay of fifty iterations of first f i v e eigenvectors and associated
eigenvalues (shown ordered in row presentation on the right and unordered
in column presentation following fifth eigenvector) of typical cross
correlation matrix based on pressure cardiograph data.

136

Fig. 5A

Cardiograph signal input (top) and sets of signal data from three sources
projected (bottom) on an arbitrary set of filters.

5.

Fig. 58

Similar data to that of figure 5a projected on a set of eigenfilters.

137

ABSTRACT

STEPS TOWARD COMPUTER SIMULATION OF
SMALL GROUP BEHAVIOR

Dr. Thornton J. Robyland Raymond S. Nickerson2

This paper will describe the initial phases of an attempt to simu
late on the PDP-l computer several aspects of small group behavio~.

The elements of the model include a stochastic, segmented environ
ment, a set of action agents (both sensors and effectors) which
operate on it, and a decision agent which assigns action agents to
environmental regions in accordance with a variety of rules.

The environment is stochastic in the sense that it is in a state
of continual flux. It is segmented in that different regions may
be changing at different rates.

The locus of interest is the steady state condition of the environ
ment as a function of interaction between such parameters as the
following:

(1) The change characteristic of the environment,
(2) The reliability of the sensing agents,
(3) The precision and activity level of the effector agents,
(4) Information delay within sensor-effector communication

link,
(5) Decision rules with respect to the assignment of sensors

and effectors to environmental regions.

The paper will discuss the conceptual framework within which the
model is developed, outline several substantive problems under in
vestigation, present results obtained to date, consider some pro
gramming problems encountered in the inception and extension of the
model and suggest possible future refinements and elaborations.

Although in its present form the model is cast in the context of
the small group, an attempt has been made to keep it sufficiently
general to be applicable to other information processing systems.

1. Dr. Thornton J. Roby, Tufts University, Medford, Massachusetts
2. Raymond S. Nickerson, Decision Sciences LaboratorY"ESD, AFSe,

Hanscom Air Force Base, Bedford, Massachusetts

139

INTRODUCTION

The general obj ective of the work to be described is to develop a

simulation model to be used for investigating certain a spec~s of the per

formance of man-machine systems. The model will incorporate behavior

and effectiveness of the human component, ordinarily a small group or

team, and other parameters describing important properties of the task

environment. Assuming definite functional relations between these sets of

parameters and speCific numerical values, it will attempt to predict the

criterial performance of the total system.

The particular substantive framework used as a point of departure

for these investigations has been discussed by one of the writers in a

number of earlier reports (Roby and Forgays 1953, Roby and Lanzetta 1956,

195B, Roby 1960). This framework treats a small work group or team as a

special kind of information transducer or input - output mechanism. It

postulates distinct component processes that may take a variety of super-

ficially different forms In various groups but that are functionally equivalent.

'E~amples of these component processes are: vigilance, information storage,

information transmission, and action coordination.

In regard to each of these component processes, it is stressed that

their importance for criterial performance in a task environment can only be

assessed when the specific task demands of that environment are known.

* This is a draft of Technical Documentary Report No. ESD-TDR-63-629. This
work was supported in part by Contract Number AFI9(62B)-2450 with Tufts
University. Further reproduction is authorized to satisfy the needs of the
U. S. Government. The authors wish to acknowledge the assistance of Mr.
Alan Meskil in preparing the figures.

140

Storage, for example, is an extraneous activity if complete, fresh infor

mation on the environmental state is always accessible.

In addition to its emphasis on the critical demands as imposed by

the task, a second feature of this framework is important for the present

simulation effort. This is the fact that the framework suggests description

and analysis of the basic processes at various levels of detail. Thus I

for some purposes it is essential to treat vigilance, storage, transmission

and perhaps coding information each as distinct processes. For other

purposes, however f it is sufficient to represent the net effects of this

whole set of component processes by a single aggregative index -- in this

case an index of overall information "orientation", where orientation is

defined as the correspondence between the group's information state and

the true state of the world. This representation of the net effects of

several component terms in a slngle summary index is similar in spirit to

the use of "lumped circuit constants" in network design.

In practice, then, the projected series of simulation studies will

begin by investigating parametric relations between rather gross indices of

the group or team and the task environment. As these relations are

elaborated, component processes will be shredded out and examined in

greater detail. For example, initial study might concern the effects of overall

group orientation on performance in a specified task environment. Follow-

up studies would then examine the results of producing a fixed amount of

orientation by component processes as described above. The plan is to

proceed step-by-step from the .rather abstract I aggregative parameters to

a detailed simulation model that reproduces, almost literally, the ta sk

beha vi or of 11 ve groups, in the laboratory or field organizations.

1"41

The present report will indicate the tactics to be followedin this

series of investigations and will follow through several illustrative

problems. It will also introduce some of the methodological questions

that beset this approach and describe our present tentative response to

these questions.

System characteristics

The investigation is concerned primarily with a special class of

ta sk environment that can be described in terms of attributes. That is, it

assumes that all relevant conditions can be expressed in terms of the

presence or absence of certain elements. Real life approximations to such

environments are represented by machine maintenance organizations,

machines being functional or non-functional, and inventory systems in

which supply items are considered on hand or exhausted.

Attribute task environments are particularly amenable to treatment

in terms of digital models and hence to computer Simulation. The rules

describing functional interaction among components can be stated very

simply and unequivocally for such models. Finally, although the restriction

to "yes-no" values may not be fully descriptive for most real world

systems, the latter can, in prinCiple, be represented to any desired degree

of fidelity by sufficiently increasing the number of binary variables.

The particular physical system to be investigated is not based

directly on any real world prototypes. It 1s instead an entirely hypothetical

task situation that is simple enough so that the operations involved can

be visualized readily I yet rich enough so that rather complex processes

can ultimately be incorporated. This choice of make-believe task situation

142

detracts from immediate applicability but it also guards against the

intrusion of prejudices about how the system ought to be organized.

The hypothetical ta sk environment consists of a large warehouse

containing a number of lights (attributes) I each controDed by a single

switch. The ideal condition of this environment is one in which all

lights are on. This state is maintained as well as possible by an agent

G who represents the action of a small work group or team. The ideal state

is I however, undermined by a second agent (or set of agents) D representing

a sort of disruptive demon.

This formulation of the problem makes it possible to express all

relevant conditions in terms of three sets of indices. G parameters refer to

the operator characteristics of the" good" agent; D parameters are the

operator effects of the disruptive agent; and W parameters describe the state

of the world as determined by these agents.

It should be noted that D characteristics I though related to a super

imposed demon, may actually be considered properties of the enviconment.

That is, they describe the tendency for the physical system to deteriorate

over time -- the refractoriness of W. In a real life problem, D effects might

be determined by the reliability of machine components, and so forth. Again,

although G parameters primarily concern performance of constructive human

agents they may also be affected in the real world by physical conditions -

e. g. I communication facilities. Finally, W (the dependent variable) might

include, in a real problem, certain conditions concerning th e social state of

the group.

Representa tion

As noted above, the dependent variable of interest in this situation

is si mply the number or proportion of lights" onll at a speCified time. It is

143

most convmient to represent this variable by a vector of the form

(p {I \, P to ~) in which P (1 ~ is the number or proportion of lights

"on" and P t01 is the complementary number or proportion of lights II off" .

The G agent can then be represented as a matrix of the form

(

g(11)

g(Ol)

g(10) \

g(OO))

In this matrix, g{ll) is the probability that the G agent, upon encountering

a light that is on,will leave it on. The cell entry g(lO) is the probability

that G will, incorrectly or inadvertently, turn an initially lion" element

II off" • The sum of g (11) and g (10) must always be unit. The two entries in

the second row, g(01) and g(OO) are the corresponding probabilities that G

will turn an initially "off" element "on" or leave it "off'.

The direct effect of G on the environment is fully described by this

matrix. To illustrate, suppose that a G described by

(

1. 00 . . 00)

.75 .25

acts on an initial environmental state (W) described by (600, 400), 1. e. I

600 lights on and 400 lights off. The top row of the matrix shows that he

will leave all of the 600 initially II on" lights "on", and the second row

says that he will turn 7 5% of the initially "off" elements "on". Thus, after

G has operated once on the warehouse, the new W is described as (900,100).

It will be seen that this new vector is obtained by the conventional

matrix postmult1plication of the initial vector by the G matrix. As will be

demonstrated, much of the important functional behavior of this system can

be represented by suitable vector-matrix operations.

The operational effect of the D agent is represented by a matrix

that is precisely parallel to G. Thus in the matrix

144

(

d(ll)

d(Ol)

d(lO»

d(OO)

the top row describes D's effect on initially "on" elements , and the bottom

row describes his effect on initially "off" elements. The vector multiplica-

tion procedure is identical with that for the G matrix.

In practice it is convenient to consider D and G as taking distinct

turns in operating on the warehouse environment. Beginning with a specified

initial vector I D operates first, and typically produces a somewhat degraded

W (unless it is already at an unfavorable point). Then G operates on the

resulting vector I typically increasing the number of lights lion". This cycle

is repeated for the duration of the hypothetical performance period.

The resulting process can be studied by the matrix techniques intro-

duced above. If W 1 is the initial vector, it becomes WiD after operation by

the D agent, and this in turn becomes (WiD) G after operation by the G agent.

A crucial point here is that this process is associative in the mathematical

senseI that is, the result of applying G to the term (WiD) is identical with

the result of applying the matrix product (DG) to the initial vector, Wi.

This leads to a great simplification of the symbolic operation.

As is well known, matrix products are not generally commutative.

That is, the matrix product taken in one order differs from the product taken

in the opposite order. Thus, if

D = (1~2 1~2) and G = (3/4 1/
4
)

1/2 1/2

the product

DG = (5/8
4/8

3/ 8)whereas GD iS~8
4/8 2/8

5/8)
6/8

145

This means that some care is necessary in studying composite products.

In the present case, however, the fact that D and G always operate in

that order I and that the dependent measure W is taken after a full cycle,

makes it pos sible to treat the product DG a s a composite matrix. This

matrix describes the behavior of the total system during a given epoch, and

it is quite permissable to take powers of this matrix, e. g., (DG) 2 , (DG) 3 ,

etc. , to describe successive operations for several epochs--DG,DG, DG,

DG,DG, etc.

Finally, among a number of aspects of the performance of such

systems that might be investigated, the simplest and perhaps most important

is the point of equilibrium, or II steady-state" that It assumes. For the

present type of system, such steady-state vectors are always unique and

independent of the initial condition of the environment. In simplest terms

it is precisely the vector that is unchanged upon multiplication by the

composite operator DG.

Although the determination of the II characteristic vectors" for general

matrices may be a difficult and tedious problem, the characteristic vectors

corresponding to the steady-states for the 2 x 2 matrices I such as used here,

can be determined by inspection. They simply require that the ratio of

terms in the steady-state vector be equal to the ratio of the terms in the lower

right-hand and upper left-hand cells of the composite matrix.

For the illustrative DG matrix shown above, these terms are, respec-

tively 4/8 and 3/8. The corresponding steady-state vector would be

(4/7 I 3/7). It is readily confirmed that I

(4/7, 3/7) (5/8
4/8

3/8)
4/8

146

= (32/56, 24/56)

= (4/7, 3/7)

It will be observed that this criterion is II favorable" to G -- that is I

it represents the state of the environment at the point in the cycle when

the most lights are on. For some real world systems this might be a realistic

criterial mea sure I but for other systems I the lowest point in the cycle or

the average value would be a more valid criterion.

An estimate of the least number of lights on at steady-state can be

obtained very directly by multiplying the above steady-state vector by D

alone. In this ca se, the result is the vector (2/7 I 5/7) which, it will be

noted, is just the steady-state vector" for the composite operator GD. The

average of the two extreme steady-state vectors -- in this ca se (3/7 I 4/7)-

would give an indication of the mean proportion of lights on during the entire

cycle.

The following sections will build on this general conceptual frame

work to investigate three substantive problems. The first two problems

treat the G agent as a unitary organism and are concerned with the consequences

of a total activity aggregate. The third problem considers explicitly the

division of labor question under special conditions. In each case a mathematical

(analytical) treatment of the problem is possible and will precede the discussion

of the computer study.

The purpose of the analytical discussion in this report is largely to

indicate the nature of the functional relations I and to show why certain effects

are anticipated in the computer study. Actually, it will be evident that the

analytical treatment could be carried considerably farther in each case, It

may be questioned whether this matrix treatment could not be extended to

cover the entire range of problems proj ected for simulation study. This question

is reconsidered in the final discussion section but, for now I it may be

147

remarked that the duplicate approach used here has proved very useful at

this stage of investigation. The analytical and computer programming

operation seem to suggest different lines of attack, and of course the

availability of reciprocally confirmatory results is reassuring.

Problem 1: Precision and Activity Potential

The first problem investigated is one of pervasive relevance, not

only to group performance t but to the performance of individual organisms.

It concerns the extent to which directed, precise, apposite, action can

substitute for sheer brute force activity, and vice versa. The objective of

the investigation is to explore the conditions under which such substitution

is possible and to determine the exact equivalences. The present formulation

of the problem permits a succinct quantitative expression of the intuitively

meaningful but rather vague terms "precisionll and "activity potentialll •

The precision ratiO of group adjustment will here be defined by

the quotient:

g(01)

g(01) + g(10)

As an illustration, the precision ratio for the G agent instanced above is

• 50 = • 67. In general, of course, a higher precision ratio Is associated
• 50 + . 25
with superior performance.

It is immediately clear, however t that a given precision ratio may

characterize a very wide range of operator matrices. For example, the

precision ratio • 67 describes all matrices in which g (0 1) = 2g (10). Thus it

describes the matrix

(

.50

1. 00

.50 \

.00)

148

at one extreme, and the matrix

(

99

.02

.01)

.98

toward the other extreme. The independent parameter that differentiates

between the two matrices is obviously an index of "activity". In some sense,

the first G agent is 50 times as active as the second one. Activity potential

will be defined as the mean of the two probabilities associated with change:

g(01) + g(10)

2

Although precision and activity are meaningful characteristics of the

group, it is clear that they should not be construed as absolute properties.

Rather they are both potentials for performance, whose effect can be

determined only after it is known what kind of environmen t is faced by G.

That is, the actual number of off-to-on and on-to-off changes depends on the

input vector which G encounters on each turn.

By the same token l the 'effectiveness' of an operator is partially

determined by the nature of the environment (in this ca se the D agent) with

which the operator must deal. In gross teems, activity is relatively more

important for control of a rapidly disintegrating state, while precision is

relatively more important for final adjustment of a more quiescent environment.

To take extreme examples I consider the two G agents

(

9

• 2
. 1)
• 8

_(.4
and G2 - .8

.6)
• 2

Here the precision ratio for Gl is • 67 and that for G2 is only 57. On

the other hand, G2 is at least four times as active as Gl.

Suppose first that D is completely inert, 1. e. ,

D =
(1.0 0 \

l 0 1.0 1
149

Then the steady-state for either G agent will be its own characteristic

vector, (667 I 333) and (571, 429) respectivelyo On the other hand,

if the D operator is

(

05 os)
• 5 • 5

The corresponding stead-states are (550,450) and (600 ,400)i that is, the

more active agent is now superior.

The interesting problem in this ca se is to find the D agent for which

these two very different types of G operator are exactly equivalent. Alterna-

tively I we can begin with given D operators and determine familie's of G

agents with varying precision and activity that are exactly equivalent.

The attempt to actually generate useful data from the model forces a

consideration of sampling economics since an exhaustive treatment of 0

and G parameter combinations is clearly prohibitive, Fortunately, the sub-

stantive assumptions of the model impose some restrictions on the types of

G and 0 matrices which should be studied. In the first place, it is assumed

that G's obj ective is to keep the lights on: thus, the range of interesting

G operator matrices is limited to those for which the probability of a "positive"

change, g(Ol), is greater than the probability of a "negative" change, g(10).

Secondly, although 0 is not conceived as necessarily purposive, it is

assumed that his influence is primarily disruptive. A friendly 0 1s ruled out

by the restriction that d (10) must be at lea st as great as d (01).· For purposes

of this report the sampling space is further reduced by restricting attention

150

to two" pure" types of D agent: a neutral D I who turns lights II off" and

"ann with equal probability (d (01) = d (10)) I and a malgn D who only

turns lights" off" (d (Ol) = 0). Actually I since these are the extreme

cases of all possible D's of interest (excluding friendly DI s) I it can be

assumed that intermediate cases will be adequately represented by mixtures

of these operators. The results to be reported were all generated within

these restrictions.

It should be pointed out that the results to be reported here are

included merely for illustrative purposes and -represent rather arbitrary

specific aspects of the general problem areas. As previously mentioned the

independent variable of interest is the steady-state of W as measured

following G's activity. Each data point denoting steady-state on the following

graphs represents the mean per cent of lights on in -W during the 50 final

epochs of activity I. the per cent being determined following G's activity at

each epoch. The time (no. of epochs) required for W to reach steady-state

depends on the activity potential of the agents as well as on the initial

state of W. With most of the activity parameters used to date, ·W reaches

steady-state in relatively few epochs. Unless otherwise specified, all runs

for a given set of data were terminated after the same number of epochs

(either 150 or 250).

Figure 1 represents steady-state as a joint function of g(Ol) andg(lO)

when D is neutral and has an activity potential of • 25. A set of such surfaces

has be~n generated for different activity potentials of D. By imposing on

such a surface lines representing different G precision ratios (PRQ) ,athers

representing different activity potentials (APG) I and still others representing

d1ffe~ent steadystates (SSG), the basis is provided for identifying families of

GI s with varying precision and activity but exactly equivalent with respect

to the resultant steady-state.
151

Examples of such families are included in Figure 2. Each curve

identifies all those combinations of PRG and APG which will produce a given

SSG when working in opposition to the specified D. As would be expected,

losses on either variable may be compensated for by gains on the other,

but not in a one-to-one fashion. In general, if APG is initially high, a large

decrease can be offset by a relatively small increase in PRG; however, if

APG is initially low, further decreases may be offset only with proportionately

greater gain in PRG. The exact trade-offs, of course, vary also with SSG

and the characteristics of D.

Figure 3 shows SSG as a function of the activity of D for a set of Gs,

with equal PR but variable AP. That the malign D has a generally greater

effect on SSG than the neutral D is shown by the greater dispersion of points

in Figure 3b. It will be noted that irrespective of the type of D, when APG > • 5,

SSG varies inversely vvith APD, when APG = • 5, SSG = 667 and APD has no

effect, and when APG > • 5, SSG varies directly with APO. The la 8t point

is somewhat surprising since it appears that the state of affairs improves as a

function of the amount of activity of an essentially blind D.

152

d (0 Il t d (, 01 = .25 1000

1000,--__________ -
_------------------------------------~.T'

.TSr---------------------------~

T50

TSO~---------------J

FIG
Steady State of W as a function of g(Ol) and g(10) with constant D.

(!)

1L.
0

..J
<I

I-
Z
I.LJ
I-

Ot 0
~ a.

>-
I-->
I-
0
<I

FIG 2

SSG 0--0875
___ 750

6---6 625
1.00 ct (01). d(l 0) = .25 d (01) I d (10) = .50 d (01) t d (10) & .75

.90 6
6

. ,
I 6

.80 I:J. , ,
I \

• \
. 70

~ \ 0,

~
, . ,

6 0 ,

f " .60 \
, \ , , , ,

\.
, ,

\ \
,

\
,

\ \, " .50 \,
,

\ \

" " \ \
, \ " \ " " "

, , '0
.40 ~ '\ h "

,
\ '0 h I::t. , ' .. " " .50 \

~ " "-
"- " .2 \. "-

,
~.

...

' ' ''6
~

" . 10 ----. .
"-~

.50 .60 .70 ,80 .90 1.00 .~o .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00

PR EelS ION RATIO OF G

Combinations of APG and PRG which will produce equivalent sfeady states when working against
the specified Ds. Data pOints were read from graphs such as Figure 1.

-01
01

1000

- 800
~

CJ)

CJ) -
LLJ
t
«
t
CJ)

>
o
«
L&J
I
(J')

600

400

200

-'

.,
"..

-,'" " _e"

)f---X

..---.
+----t
0-."'" 0
A A
C----o

/'1-

/

-- ._--.
-----_.... + - +---+ =-- ---+----- -

", - -•• --- 0-" - - - - - - - - -0- ____ _

o

C.... ----0- - - - 0- - - - 0
......

"""0--___ Q
- -- - - "'-- ° w---o--o

.25 .50 .75 1.00

d (01) , d (10)

g(OI)

1.000

.875

. '?SO
.. 500
.250
.125

o

g (10)

.500

.4375

.375
.250
.125

\ ,

.0625

~ , ,
~

.25

" " "-
" Q---

.50
dO (IO)
d{OI)=O

--0 __

D_--D

.75 1.00

FIG 3 Steady state of W as effected by symmetrical (neutral) vs one-Sided (malign) Ds.

Problem 2: Information Lag

The preceding section was concerned with the general importance

of precision of adjustment. In this section, a special problem of informa-

tion loss or degradation will be examined. The particular form studied

is the loss due to the condition that information cannot be applied immediately.

Thus a picture of the environment that is veridical at the time it is obtained

will have If staled" by the time it is used. This is not a difficulty unique to

group performance processes I but it is of increased severity in that Situation.

The fact that group members have to relay and perhaps collate information

before it is used imposes 'an inescapable lag on the application process.

To indicate the theoretical treatment of this topic it is sufficient

to consider a one-interval lag. This means that at epoch t + 1 the G agent

is using a representation of the W vector that was correct at epoch t.

This in turn implies that GI s intended action will still be appropriate only,

for those elements that have remained the same. The effect of GiS action

on elements which are in a different state than that in which he "believes"

them to be depends on the mechanics of the operator. For the moment we

assume that his effect will be exactly opposite of that intended. (See the

program notes in Appendix A for a description of alternative operator mechanics.)

The symbolic treatment is most conveniently shown by a numerical

example:

(:/4 1/4) e/4 1/4)
Suppose D = and G =

1/4 3/4 1/2 1/2 :
'\

so that DG = . (11/16 5/16)and GD = to/16 6/1~
9/16 7/16 ' 8/16 8/16

J

and the steady-state (with no lag) is (643,357). The latter vector then,

describes the state of the environment in gross terms after D and G have

157

each completed a large number of successive turns, say at epoch t.

Suppose that, at this time, a lag is introduced into G S orientation

system. This means that G records, at epoch.!, the exact identity of

o and 1 elements immediately after OS move, but this record is not

s available for use until G move at epoch t + 1.

At epoch..!., G must use the state description that in fact character

ized conditions immediately after OS move at epoch l...::-i. This is a

vector of the form (571,429) describing the steady-state for the operator

GD. However a number of the specific elements will have been changed

by the interviewing GO cycle.

It is convenient to consider this informational vector in two parts:

one conSisting of elements that have remained the same and another con

sisting 'of elements that have been changed to the opposite value. The

former component is estimated by multiplying the vector (571,429) by the

main diagonal (:::~::~; of t(:o~~ operat~: 6)hU:
(356,214)

and this vector indicates the elements on which G will operate appropriately

in spite of the lag. The other component is obtained by multiplying (571,429)

by the counter-diagonal elements of GD.

~B/16 6/:6) =
That is

(571,429) (~15, 215)

G will operate on these elements with a matrix in which the rows and columns

are exactly reversed from the normal matrix.

This means that G s output vector, at epoch t + 1 is given by

(356,214) (3/4 1/4) + (215,215) G/2 1/2)
1/2 1/2 1/4 3/4

= (374,196) + (161,269) = (535,465)

158

Notice that this is much below the no-lag steady-state of (643,357)

after G operation.

In order to compute the new steady-state it is necessary to take

into account the changed effect of the operator GD due to GS information

la'g. This will not be carried out here as it is rather intricate, and does

not add much to an intuitive grasp of the problem.

Perhaps the most interesting problem in connection with this topic

concerns the trade-off between information lag and activity and precision

of a G operator when opposed by a speCific D. Figure 4 shows, for

example that with d(OI) = d(lO) = • 031, and PRG = 1.00, a G with AP of

.063 and lag of 6 is about as efficient as a G with AP of .125 and lag of 5,

or AP of .250 and lag of 4, or AP of .031 and lag of 3, or AP of .016 and

lag of O. From a set of graphs such as Figure 4, one may construct graphs

representing trade-offs between information lag and precision or activity

of G when operating against specific Ds.

As can be seen from Figure' 4, the magnitude of the effect of informa

tion lag is a function of both the precision and activity of G. Low precision

Gs are relatively ineffective even with up to date information, and high

activity potential (4 b) • However, given a high precision level, more active

Gs are more effective when using up-to-date information, but may become

less effective than relatively inactive ones, when operating with old

information (4a).

The intuitively compelling notion that stale information will be more

useful in a relatively quiescent system than in an active one is also borne

out by Figure 5. Here steady-state is shown as a function of information

lag with D and G operators matched with respect to activity potential. It

is apparent from the figure that the more active system (circles) are more

adversely affected by information lag than are the less active ones (triangles).

159

-C!t
en
en -
1IJ
f0-
e
t-
en

~ >-
0
<t
1&J
t-
en

1000

\

1

d (01) = d (10)= .03125

0--- Cli

/l. A
0-.----0

<>---<>

AP
G

.250
. 125
.063
.031

800 ••••. 'G\ PR
G

= 1.00

.016

PR G = .625

700

600

.sao

a

- \ "0_, .,. , ,,-
" " , ,

........ ~......... .~~ ..
X-.. " ---.. x '" -..-- " -- -'~ ... --'.... X

'" --0

2 4 8

I NFO LAG

': '--A
--~ .. ~~ o.)(-- x~ .~~.-o.---

-. - .:Jt.,- -o. -e ~ .. ~
- - ==siii' - .. --

I·

o 2 4 8

FIG 4 Effectiveness of a set of Gs operating with varying infor'mation lags.

CIRCLES: AP. = APD = .250
TRIANGLES: A p. = APD = .062

IJJ
t- SOLID LINES: PR = 1.00
<t • t- .80 DASHED LINES: PR = .75
CJ) •
>-c
c:t
lLI
t-
oo
t-
«
z
0 .70

en
t-
J:
(!) ,....
...J • en

en
LL '""'" 0 \, ~
z \
0 .60 \ \.

t- \ " 0:: \ " 6,
0 \

n. \ '" 0 ~
'/1 ~

a: -..,.
a.. \ -- --, --6

'0,
....... - -. _ SA: • .50

L
0 2 4 8

INFO LAG

Effect of information lag with G and D matched with respect to activity
potential.

161

It is also obvious that the positive relationship between steady-state

and the activity potential of G observed with zero lag becomes negative

with non-zero lag. Differences due to precision ratios of G are maximum

with 0 lags and decrease steadily with increasing lags; however information

several epochs old may be quite useful to a high precision operator in

a relatively inactive environment.

Figure 6 shows the relative effects of symmetrical, i. e. , "neutral"

and one-sided, i. e. , IImalign" Ds with varying lags and a given G.

The information lag, of course, still applies to the G operator. D always

works with 0 lag. As would be expected in this situation, a one-sided D

is more disruptive than a corresponding symmetrical D. In addition, it

can be see that, whereas with symmetrical Ds, all DG combinations

converge to the same steady-state with increasing lags, with one-sided

Ds the system settles to different levels.

Problem 3: Segmented Operators

Preceding sections have treated the group as a unitary organism.

Although the problems considered are particularly severe in group operations,

this might easily pertain to the performance of an individual agent. This

section will examine a problem that applies uniquely to group performance -

that of differential assignment of personnel.

The physical situation visualized here differs from the one formerly

considered in that the warehouse is now divided into a number of compartments,

each infested by a distinct I sub-demon', Di. The various Di may have

different operator characteristics. Similarly, G is divided into a set of group

members, Gi I with differing operator characteristics. The Gi may be as Signed

to compartments according to various policies as described below.

162

0-
CAl

--0
U)

(/) -
IIJ
t-
e(1.00
t-en
>-
0
<[
LaJ
t-
en
t-
el
Z
0

en
t-
Z
(!)

..J

La.
0

z
o
.-

.80

.60

.40

Ir .20
o
a..
o
a:
a..

... ...
"'~

FIG 6

...

(2 -WAY AGENTS)

SYMMETRICAL D

' -..

2 4

I NFO LAG

g (01) a .2"50

g (10) =. 062

0---0 .000
1(. ---l)t • 06 S
a---D .125
6~·2S0

0--0 .sao

6 8

ONE SIDED 0

, , ,
'e

~' , ... ,
,,- ,e __ ''''0 -__

D ~ ---
,,', a...~- -----.

. - x '-A. ---D- __
~ ------0

-"'6-- -- .-A- --- -----/:1
o o

2 4 6 e
IN FO LAG

Effect of information lag with symmetrical vs one-sided D and constant G.

The general principle to be investigated is that, with a given set

of Gi and 0i' the more closely the Gt are matched to the 0i the better

will be the overall performance of the group. The basic notion is that,

* under poor matching, ineffective Gi will not be able to cope with highly

disruptive 011 while more effective Gi will be wasted upon a comparatively

easy assignment. A very simple example will illustrate the general effects

of matching.

Let

= (80

00

.20)

1.00

and

= (90
,00

Here 01 is twice as disruptive as 02- Similarly I let

= (1.00
_ 40

and

(

'.1.00

.20

.00)
_ 60

D2

.10)

1_00

.00\

.80 J
Both these operators have precision ratios of 1.0 I but G1 is twice as active.

'Suppose I first, that Gl is matched against DI and G2 is matched

against D2. This leads to the two compound operators,

= c- 88
.40

.12)

.60

and
D2G2 = (.92

.20

.08)

.80

The steady-state criterion measure with this assignment can be computed

by averaging the steady state of the two separate operators; with 1,000

lights it is (750 ,250).

Now I suppose that G1 is matched with D2 and G2 with D1. This

yields the two operators

=(.84
• 20

. 16)

.80

and

= (.94
.40

.06) .

.60

*Effectiveness ll is used here as a rather loose synonym for IImore precise
and/or more activell • As already noted, precision and activity do not permit
a Simple, unequivocal ordering of G agents, as one condition may be
relatively more or less important than the other, depending on D. To avoid
ambiguity in this section, Gi agents are varied along one of these axes only.

164

Here the steady-s"tate component produced by D2Gl is very high,

but that produced by Dl G2 is quite low. The average is (732,268)

appreciably poorer than for the matched assignment.

A number of assignment procedures are theoretically possible, and

may occur in real world situations. At one extreme there is random

matching in which a Gl agent may be assigned to any Dil either permanently

or epoch-by-epoch. An intermediate assignment procedure is one in which

the Gi are permanently assigned to compartments on the basis of the long

run average conditions in these compartments. An even more exact assign

ment would take into account the conditions at each epoch and reassign Gi

on the basis of the momentary state of each compartment. The feasibility of

these assignments procedures in practice depends on the information

availabl~ to a central executive agency, and the difficulty of transporting

operators.

At the present time data on the segmented operators problem is just

beginning to be collected, and hence is not included in this report.

DISCUSSION

The foregoing results are intended to give a picture of the problems

investigated to date and the approach that has been taken to those problems.

A few examples may serve to indicate the general directions in which these

studies will be extended.

The "information lag ll section assumed only that there was some fixed

delay between the initial recording of a state description of the warehouse

and the ultimate application of that description. The next step is totra nslate

this effect into terms that are more descriptive of actual group behavior.

165

Specifically t it will be assumed that there are distinct" sensor" and

"effector" agents in the group, and that some transmission delay occurs

between these agents because of limited communication. Thus I it may be

the case that each sensor reports to a central agent who in turn relays the

information to the effectors. Alternatively, sensors may contact the effectors

directly in a certain priority order and transmit the current information for

that epoch. The suggested investigation will examine a number of such

procedures, probably with an eye to determining the optimal transmission

procedure for a given set of communication constraints.

A second line of further investigation would carry the "division of

labor r problem several steps further. The present study examined the effects

of compartmentalizing operators I but still treated the attributes as homo

geneous -- for example I a given G i operator 1s capable of turning any light on

or off. A more complex (and also more realistic) condition is one in which

the several distinct G matrices are differentially effective vis a vis various

environmental attributes. A still more complex situation is one in which

several Gi operators must act jointly in order to turn a light on. Studies

incorporating such conditions would build up from the compartmentalization

results now being collected.

In discussing the parallel analytic-simulation approach employed in

this report, the question was raised whether the simulation approach is

necessary. That is, would it not be possible to program a computer to

obtain results more directly (and without sampling error) by numerical

substitution in the relevant matrix formulae? Several considerations suggest

that the Monte-Carlo treatment will be the more fruitful one in the long run.

166

First, it appears that the simulation programs can be built up piece

meal, either adding sub-routines or making minor substitutions. As

opposed to this, the more analytical treatment seems to require a rather

radical overhauling as each new stage of complexity is encountered. The

danger of inadvertently building in unjustified assumptions is considerably

greater in the latter ca se than for the more gradual and continuous

development.

A perhaps more fundamental advantage lies in the highly operational

listic nature of the Monte-Carlo simulation. Processes are depicted by a

very literal representation of possible system behavior and the criterial

performance measure is available in terms of actual state conditions at any

time rather than a s abstract numerical indices. Thus, it should be ea sier to

interpret surprising results in the simulation studies, and to relate the

functional relations to real world systems of interest. It should be added

that the 'two approaches are in no way mutually incompatible and the intention

is to retain both of them if pos sible.

With regard to the simulation effort, there are two maj or problems of

"metaprogramming" that need to be considered: first, a decision policy for

accepting an estimate and for terminating the run; and second, a strategy

for exploring the various parameters in a functional relationship. Considering

first the stopping policy, the present program is based on a fixed number

of runs for each condition. A periodic print-out of the means and standard

deviations insures that the N is sufficient and that the estimates are

reasonably reliable. In addition, comparatively complete coverage of the

values builds in enough redundancy so that no gross discrepancies are

likely. This procedure is adequate for exploratory studies but rather un

economical for a more comprehensive investigation.

167

An ideal scheme would employ a cut-off decision function based

on some sequential testing principles. A fixed standard error of estimate

or a fiducial tolerance would be specified and the computer would stop or

move to a new problem when the estimates were within the specified

tolerance limits. In the present case there are possible hazards in such a

procedure. For example, it appears that although very active systems tend

to reach an asymptotic value more rapidly than less active systems, the

variance about the asymptotic value will tend to be greater for the active

systems. This suggests that parametric statistics may not be entirely

appropriate here -- a variance that would be rea sonable for a lON activity

system may be too stringent for a high activity system.

The general procedure that looks most attractive at present is some

form of sign test. This would be based on the assumption that if the W vector

is at a steady-state, there will tend to be an equal number of data pOints

above and below the mean. Therefore, a program that takes the difference

between successive data points and stops when the increases and decreases

are equal should produce a reasonably good estimate of the true steady-state.

Even this approach may run into trouble at extreme values of the steady-state

vector if the distributions tend to be skewed at extreme values. It is not

clear at this point how serious this difficulty may be.

A second general problem is one of exploring the range of values in

some optimal way. The problem is acute because of the fantastic number of

possible combinations that are generated by even a few system parameters.

There are two aspects of this problem. One is the necessity of guaran

teeing that the exploration is thorough enough so that the important functional

relationships have been studied. In the interest of eoonomy this implies a

scheme in which the variance attaching to changes in various parameters 1s

168

maximized over the choice of parameters. Opposed to this, however,

is the necessity for presenting the results in an orderly way and making

interpretetive sense out of them. One can imagine a It steepest descent"

program, or something of the sort, that explores directions at maximum

variation, but hops around so erratically that the results, however com-

prehensive I are incomprehensible.

Both the problems of setting acceptance levels on estimates I and

of exploring parameters, are now under investigation. Presumably I we

should be able to draw on the simulation procedures in other areas as

well as on theoretical considerations and on our cumulative experience in

this study. At the same time, it appears that the problems mentioned here

should be solved in some satisfactory way before it is feasible to proceed

to more complex substantive studies.

REFERENCES

1. Roby, T. B. & Forgays, D. G. A problem solving model for analysis

of communications in B-29 crews. San Antonio, Texas:

Human Resources Research Center I Lackland AFB, Texas,

August 1953, ~esearch Bulletin 53-30.

2. & Lanzetta, J. T. Work group structure I communication

and group performance. Sociometry 1956, b 105-113.

3. & Lanzetta, J. T. Considerations in the analysis of group

tasks. Psychol. Bull., 1958, ..§..§.., 88-101.

4 Contributions to a theory of group performance I Institute . ----
for Psychological Research, Report No. NR 170-408, Contract

494(15) Tufts University, Medford, Mass., 1960.

169

APPENDIX A

Program Notes -

The work reported here represents the initial phase of what will hope

fully be a continuing effort to simulate various aspects of group behavior.

A series of revisions of the model is anticipated, each expanding on, and

incorporating the better features of, its predecessor. The primary purpose

of each new version will be to increase both the generality of the model and

the degree of correspondence between it and the phenomena it is intended

to describe. Initial versions will necessarily lack generality and will be

more illustrative of an approach than descriptive of phenomena.

Currently the first two versions of the model are programmed. They will

be referred to here Simply as 'WI and ·W2. Both are programmed in DECAL

for the PDP-I single core, no-special-devices, machine.

WI wa s designed speCifically to treat the first two substantive problems

described in this report. The major components of relevance to the model are

a 1000 element environment, W, (lOOO-light warehouse) and the two action

agents D and G, each characterized by variable precision ratios and activity

potentials (as discussed in more detail elsewhere in the report). An epoch

is defined as that period of time during which both agents operate on the

warehouse in the order D, G. Program mechanisms of WI will not be

described in any detail; however I excluding bookkeeping and statistical com

putations the major events of a single epoch are as follows: each agent

operates on each element of W in the sense that it first determines the current

state (off-on) of an element, then effectively tosses a coin with a bias corres

ponding to the particular probabilities associated with its action alternatives

and takes the action indicated by the outcome of the toss. The individual

170

treatment of each element is to be distinguished from the quite different

(though at this point functionally equivalent) procedure of treatingW in the

aggregate, determining how many elements are in each state and reversing

the state of the appropriate proportion of elements.

A principle feature of WI is the facility for introducing an information

lag into the sensor-effector communication link. In effect, an agent

senses Wat each epoch, but the information obtained at epoch t may be

applied as many as 8 epochs later. The obvious consequence of the applica

tion of old information in this context is that the agent will at times be

operating on an off element which it thinks is on and vice versa. VVhat

happens in this situation depends on the mechanisms of the agent. Two

possibilities suggest themselves as representative of "real" situations.

With a two-way operator the decision to take action will result in

a change of state for the element. So, for example, if the operator thinks an

element is off but it is actually' on, the decision to turn it on will actually

turn it off. This is the effect that one would expect when the change from

off to on and from on to off is accomplished by the same maneuver, a s say,

pulling a light cord.

With a one-way operator the decision to take action will result in a

change of state for the element only if the believed state and the actual state

correspond. This is analogous to the situation in which the state of the

element is controlled by a bipolar switch. If the operator believes the

switch is down and it is really up, the attempts to push it up will have no

effect.

With both types of operators the decision to leave an element as it is

does just that I irrespective of whether the believed and actual states

correspond. The program mechanisms of the operator is shown in Figure AL

and A2.

171

The data ip..cluded in this report were generated with two-way operators.

The relative merits of the two types of operators is left for future consideration.

W2 elaborates WI in several ways. The environment, ·W, is partitioned

into 8 regions I each occupied by a different D. G is now a group in the

sense that it includes several agents. Specifically I 8 Ss {sensors} 8 Es

{effectors} and one M (decision maker}.

Each individual agent operates as an individual and mayor may not

have the same characteristi cs as other agents of the same type. The inter

action of Ss and Es is as follows: S observes a region of Wand reports on

the state of each element. The E which is assigned to the same region

takes action on the basis of S' s report. Ss vary with respect to the reliability

of their reports, and unreliable reports may be biased in either direction.

E! s vary with respect to precision and activity potential. (With a completely

reliable S, E is equivalent to G ofWl except for its restricted area of res

ponsibility). MI s function is the assignment of Ss and Es to regions of W

on the basis of a variety of decision rules.

The program structure ofW2 is provided at a fairly gross level in a set

of flow charts below. The structure is intended to facilitate development

and addition of a variety of executive routines implementing different decision

rules for M.

172

WITH IN8P£OTION WOOW) IN 10 I N I TI A LIZ E .--;y ACJOOl WQ ,AWl,. Ie) I X I ,

S£T CTR- -II

e NO. IITI

IN WD)

ROTATE IW
I----~ • AW EACH

8ET CHANGE

LOOP TO CHIANCiIEK----~

ONLY ONES

P (10)> ~ AC

TAILI

~ , G ON E- WAY OPE RAT 0 R

BIT

AW ~ AC

SIT SIGN liT TO
o OR I DEPEND-

ING ON STATI
0, CHG. LOOP

173

lET CHAHal

>----~ LOOP TO CHAN.

ONLY ZIROI

peOI »-) AC

Fie.
A2

WITH INSPECTION WD (lW)IN IY-----.......

I~ • ACTIONWD(AW)IN AC)
INITIALIZ I

IXIT

lET eTR TO-I'

(NO •• ,TS IN

WD.)

ROTATE IW •
0~----)~, AW EACH ONI
\.:..-) II T

p 'I 0) .> A C

NO CHA .. 8'
(CO IN)

+
p '01 ,.> A C

..... --.... AW.) AC

CHANGI TO + ... - C

1-----------+-----------1 CHA ••• TO -

NO YII

174

TWO"WAY OPERATOR

Fie

AI

FLOW

OPERATION OR
SET OF OPERAT
I~S PERFORMED
WlnflN PROG

DIAGRAM LEGEND

175

FIG. W 2 • MA STER
A4

NO

CLEAR ALL
TABLES AND

WAREHOUSE
(DZN8LK)

r;;;:;;\
~

176

INITIALIZE

EXIT

81T EPOC ..

HO.a 0

8.£ T COUltTYIT.
(N O. IN SAt.tPLI -

HO. EPOCHS DIE,on
OUTPUT-I.

'IND IND

0' PUSH
DOWN STORI

liT COHPUTI to

vaTa -(NO. IN

IAMPLI.

DOWN ITORI.
(HO. IN SAUPLI)·

FIG PRO&RAM FOR INITIALIZING BOOK K E E PING. COMPUTING AND OUTPUT' ROUTINEI
A5 (StaINIT)

177

INITIALIZE

EXIT

UPDATE

EPOCH NO.

RESET COUNT
VE T (H O. 1M
'AMPLE-NO
EPOCHS BETWE

OUTPtJTS)

PUSH P.D.
STORE DOWN
t RE'e'STE'R
(PUSHN)

STORE NO. AT

...----- TOP Of PUSH
DOWN STORE

fiG BOOKK E E PI N G. COMP UTI NG, OUTPUT
AS

(B CO)

178

INITIALIZE

EXIT

FIG PRO G RAM F- 0 R OP £ RAT 0 R S C H E 0 U LIN G
A7

179
"

.... ___ .. ~XIT

'PASS)

IN
IF OPERATOR
IS 0

INITI ALI ZE

[XIT

r.1~NI""!!l1~A-L"!"!I Z E PNm!l

PARANETER CODE'
'NSPECTION DLK Q

OTtON ILK 'ORO)

IF OPERATOR
I~ S

INITIALIZE

EXIT

' ... '--.. "'1I"ir~r'~A-Ll-ZE PHr RS.

(f'MAMETER CODE.
mSPECT.ON ILK a

OTtOH GLK FOR S

" lET CTR,.-,

_---...... 'NO. OPERAlOR8

0' EAOH TYPE)

~ 8ET HXT
~~---)~I PARAMETER

CODE

81T NXT

pliO)

8£T NXT

P (01)

GET LOC.

INIPECTIO"
• LtC

I F OPERATOR
II E

INITIALIZE

E X I T

'J/

~
t-II-TI-A-L'-Z'E:~PN~TR~O'"
PARAUETER CODE.
rlOPEOTION ILK.

CTION Due 'OR E)

8E'T L OC.

ACTION

UPDATE
PARAMETER

CODE POINTER

fl G OP ERA TOR CV eLI HG PRO G RAM
A8 (DCYOLI.S CYOLI, ECYCLE)

180

IN
INITIALtZE

EXIT
SET CTR 2=-18 (";\

,.-----~(NO.BITS IN I"<~--'"""i~
ONE REGIS

SET eTR 1= -4 GET NXT
(NO. REGISTERS It~SPECTION
IN ONE REGIONI----....... BIT IN POSIT.

OF W) ----~

p (01) =)AC

CH AN G E

ACTION BIT

UPDATE FNTRS.
(INSPECTION
REGISTER AND

, YES
EX'V~---~

P'IO)=)AC

~---~

FIG. OPERATOR (SENEFF)
A9

181

ABSTRACT

A HYBRID PDP-l SYSTEM FOR SPEECH RESEARCH

Doug I as L. Hogan and Robe rt J. Scott

Department of Defense
Washington, D. C.

A hybrid computer composed of both analog and digital devices is dis
cussed in this paper. We have combined in one system the advantages
inherent in an analog system with those inherent in a digital system.

Speech, being analog in nature and essentially band-limited, is well
suited to analysis by ahybrid processor. Input to the processor is usu
ally a voltage analog of the acoustic signal. An analysis of the power
spectrum is probably the most used investigative procedure. Filtering
techniques are used in spectrum analysis of the input signals by analog
computation. Digital computation involves discrete time -sampling of the
signal. The original signal can conveniently be stored in digital form
in the system with very small quantizing error by using a high sampling
rate and high precision digital coding.

The system is a basic PDP-l with a 16 channel sequence break and three
high speed data channels and controls. The analog computer is a set of
PACE TR-IO' s with an interface to the PDP-I.

The system under PDP-l programmed control provides a high degree of
communication between the analog and digital subsystems.

'The interface has 32 multiplexed analog to digital and digital to analog
channels. States of 18 analogcomparatorsmaybyexaminedbythe PDP-I.

A specific application of the system to a speech research problem is
considered. Vowels are synthesized by approximating the steady state
vowel spectrum with a three pole transfer function. Vowel-like sounds
are obtained by pas sing a pitch signal through the device specified by the
transfer functions. Seven parameters specify the three pole locations,
their bandwidths, and the fundamental pitch or excitation frequency. The
vowel parameters are stored in the PDP-l digital memory and are sup
plied to the TR-lO analog computers which then generate vowel transfer
function. An audible output at the console allows the operator to alter
the parameters to improve the speech-like quality of the synthesizer.

INTRODUCTION

During the past few years a number of groups have demonstrated the utility of computer

simulation in various aspects of speech communication research including speech analysis

and synthesis and psychacoustic testing. Some groups, notably, Bell Telephone Labora

tories, have resorted wholly to digital computer simulation using sampled data signal and

system representations. Others have used special ized analogs of the speech generative

process and controlled these generally by analog function generator techniques. Both of

these techniques have limitations. Fully digital simulations run in many times real time,

whi Ie analog function generators can either produce only short time control functions or

require curve reading devices.

It is convenient in studying speech signals, to consider both frequency domain and time

183

domain representations of these signals. Frequency domain operations, such as fi Itering,

are much more conveniently carried out in an analog computer. On the other hand, time

domain operations can be handled readi Iy using time samples in a digital computer. Con

trol and logic decisions are also more conveniently handled with a digital computer.

The Hybrid System

For these reasons it was felt that a combined analog and digital computing system would

be a usefu I tool for research in speech analysis and synthesis. Since the analog computer

is being used for signal processing as opposed to solving differential equations per se, and

since speech signals have a dynamic range of about 50 db, an accuracy of about 0.1% or

O.2<'k seemed to be adequate throughout the system. The final system is shown in the block

diagram of Figure 1. The analog computer is an expanded TR-10 analog computing system

made by Electronic Associates, Inc. Connected to this there is an analog-digital inter

face and a PDP-1 computer, both made by the Digital Equipment Corporation. The PDP-l

has 16,384 words of high-speed memory a 16 channel sequence break and three high speed

channels. One of these is used with a Type 510 control to operate four IBM 729-VI mag

netic tape drives. Another channel controls input from the A-D section of the interface

and output to a display. The remaining channel controls output to the D-A section of the

interface and input from a spectrum analyzer. Thus A-O and O-A operations may take

place concurrently. The display is a Data Display Type dd26A. It has both point plotting

capabi I ity and automatic character generation for the ten digits and five symbols. No

I ight pen is provided, however, there is a "track-ball" which is a ball riding on rollers

mounted at right angles. These rollers drive potentiometers, thus providing X-V coordin

ates under manual control. The coordinates are read into the computer through the A-D

portion of the interface. Other peripheral equipment includes a line printer, card reader,

and m i c rotape .

The A-D-A interface was designed in a somewhat different manner than any of which w~

are aware. All control and set up is from the digital computer stored program, however,

the analog computer may cause a sequence break, thus giving the analog computer a

measure of control.

A total of 32 data channels are provided in each direction. Going in the analog-digital

direction a multiplexer is used followed by a 10-bit A-D converter which makes the con

version in 6 microseconds. Going in the digital to analog direction 32 separate D-A con

verters are used with each conversion made in 2.5 microseconds and with selection still

being under control of the multiplexers.

The multiplexer operates in two modes, a fixed cycle or addressed random access. Data

184

flow may be A-D only, D-A only, or interleaved operation. The conversion rate is set

from the computer in integral multiples of the basic 5 microsecond memory cycle. A

choice of lO-bit or 9-bit digital representations is available in both directions. When a

9-bit digital representation is used,the samples are stored two to a word as they go into

the core memory and may be retrieved from core in the same manner.

An additional interchange of control signals is provided by two l8-bit registers. One

accepts" comparator outputs" from the analog computer. Each bit represents the state of

a particular control signal which the analog computer may make avai lable. A change in

this register may call for a sequence break. The second register provides control signals

which can set comparators, or initiate analog process under control of the PDP-l. All

64 data channels and the two l8-bit registers are terminated at a plugboard on the console

of the analog computer. This console contains trunks to the individual TR-l0 computers.

To recapitulate, the entire interface is under stored program control while both computers

have the capability of interrupting each other. This flexibility of control combined with

a high data rate has made a useful tool for a variety of problems in speech communication

research.

Speech Producing Mechanism

The speech producing mechanism as shown in Figure (2) consists of the lungs producing the

air pressure, the vocal cords modulating the flow of passing air and the oral and nasal

cavities acting as resonators.

The vocal cords when vibrating produce a sequence of irregularly shaped pulses which

occur as seen in figure (3) at a frequency called the fundamental pitch frequency. The

shape and size of the resonators as well as the pitch frequency are controlled by muscles.

Vocal Characteristics

The vocal tract is acting as a set of fi hers reinforcing certain harmonics of the fundamental

pitch and suppressing others. The three main points of resonance are called the first three

formants. Steady state vowe I sounds are very nearly periodic. The positions of the for

mants are nearly invariant with respect to pitch changes for a given vowel.

The vowel chart in Figure (4) shows the relative position of the tongue for the production

of the various vowel sounds. The hump of the dorsum of the tongue divides the oral cavity

into two regions. The position of the hump with respect to its position back from the front

of the mouth defines the abscissa whi Ie the tongue height defines the ordinate. We may

now superimpose two frequency axes which relate the various vowels to their approximate

formant positions. There is seen a definite relationship between the formant positions and

185

the sizes and shapes of the two oral cavities separated by the tongue hump. The third for

mant seems to have little to do with the identification of vowel sounds and is not included

for that reason.

Vowel Synthesis

If we can simu late the transfer function acti ng on the vocal excitation function by the vocal

tract, we should be able to produce a sound similar to the acoustic signal emitted from the

I ips. Figure (5) illustrates the effect of this transfer function on a periodic pu Ise input. Be

cause of its periodicity, S. (t) can be represented by a Fourier Series. In the same manner
I

S (t) can also be represented by a Fourier Series with the same fundamental frequency. The o
passive transfer function T(w) affects the frequency spectrum or Fourier representation of

S. (t) in some non-linear manner as shown inFigure (6) to produce S (t).
I 0

As previously mentioned we can get reasonable vowel synthesis using just two poles or filter

locations.

Parameter Description

The param~ters required for the synthesis of the first two formants are shown in Figure (6).

For each formant we need ampl itude, bandwidth, and formant center frequency. The analog

computer is used to simulate two band-pass filters which together act as the transfer imped

ance of the voca I tract. Each of the six parameters is controlled by a voltage suppl ied from

the digital computer through the digital to analog converter. Another parameter is the funda

mental pitch frequency. A control voltage from the digital computer can vary an analog de

rived pitch signal or a pitch signal can be synthesized digitally.

Program Description

The program has two parts (1) generati ng the parameter values and (2) vowe I playback. The

track-ball on the data display is used to plot the desired frequency location of each formant

with respect to time. With the coordinates displayed as inFigure (7) on the scope, the track

ball is positioned to the initial first formant center frequency at \,. Typing an liS" begins in

the tracking program. The tracking prog ram cycles through three subprograms (a) A to 0

which inputs track-ball positions (b) computation and storing parameter values (c) computer

to data display giving coordinates and track-ball path information. The bandwidth and am

plitute parameter values are kept constant for a particular vowel synthesis but can be varied

if desired. The pitch is tracked in the same manner as the formants.

The track-ball is moved through the desired formant trajectory until reaching the termination

position at which time as "e" is typed to stop the process. The trajectories are described in

this manner for both formants and the pitch.

The 0 to A converter holds whatever level was given last so that only changes in parameter

186

values need be converted in the program . To reduce the amount of stored parameter data,

we store only the voltage amplitudes when a significant change has occurred and the time

duration since the last significant change. The voltages from the digital computer control

two active fi Iters synthesized on the TR-l a analog computer. The fi Iter output is then

avai lable to the programmer as audio output through a loudspeaker.

187

ex>
ex>

J

Tape
" Control

~729VIJ

~729VI(

~729VI1

~9VI1

Comparator
Registers

J

1
TRlO

'"
,
(

A-D-A Interface

"
32 lines
each way

oJ:"

.Analog Computer
Console

I
TRlO I . .

J

Figure 1

Block Diagram of Final System

I
TRlO

NASAL C AV rrV VELUM

PI-iARVN)(
ORAL CAVITY

TRACH£A VOCAL CORns

\oICr---LUN6S

Figure 2
Speech Producing Mechanism

Figure 3
Speech Pulse of Vibrating Vocal Cords

189

o
8
"

o
~ -

o·
8 -

Figure 4
Vowel Chart of Tongue Position

T(f)

Vocal tract . ouip"t sG(i;)
transfer fen.

Figure 5
Fourier Series - Sl (t)

190

T-

o 1
f, cente,.
.ffl{Uency

)".

u

1 -:&.000 ,000

-f"~"e;tC y cis Fa. center'

f"~Lue1'Cy

Figure 6

~ F: tro jee for), , '"
1~

Figure 1

191

ABSTRACT

COMPUTER AIDS TO NUMBER THEORY

Malcolm Pivar

Information International, Inc.
Maynard, Massachusetts

Th~ on-line use of computers for general purpose number theory calcu
latl~:ms has been greatly facilitated by the development of communir:ation
devlces such as the PDP-l typewriter, scope and light pen. The program
under devel.opme~t disp~ays desired numbers on the scope and allows the
user to de~lve anthmetlc a~? other functions useful in number theory by
use of a hght pen. In addltlon, the program will incorporate a system
for retrieving theorems relevant to number theory problems being studied.

INTRODUCTION

For some years the assistance which computers can give to research mathematicians

has been on the upgrade. The research of Wang in theorem proving, Slagle in the

automation of indefinite integration, the work of Chowla in number theory (des

cribed in the August 1963 issue of Computers and Automation), and others have in

creased the use of computers in mathematics. But the development of aids which,

unlike the above programs, are of an on-line nature, enabling the user to get answers

to a variety of different questions quickly has been much less abundant, and has

awaited the development of communication devices such as the PDP-1 typewriter,

scope and light pen. The low cost of PDP-1 time also has he lped. ,It is noted that

economically feasible on-I ine systems, however, sti II await the development of a

truly large and efficient time-sharing system. This paper describes work now in

progress at Information International Inc. towards the development of a computer

program designed for on-line use to help mathematicians make new discoveries.

The programs in deve lopment are, in fact, being done under a contract whose prin

ciple objective is to bring closer the goal of a practical time-sharing system. The

area of mathematics selected for the project was number theory.

NumberTheory, for those not familiar with the subject, deals with the divisibility

properties of integers, with questions about the sequence of prime numbers (numbers

having no divisors other than themselves and unity such as 2, 3, 5, 7, 11, etc.)

and with the problems of finding solutions to equations like x 2+y2=Z2 where x, y,

193

and z are requ i red to be integers.

The system under development is designed to be used by someone already familiar

with number theory. We don't propose to supplant the classroom or teach beginners.

However, we expect the program to be usefu I depending on the sophistication reached

aft e r taking a one semester undergraduate course in number theory, on through to

the leve I of someone doing frontier research. Of course we already have some ex

perimental evidence from trial programs, that our system is a powerful aid to re

search, but our current concern is to create a program which can give this thesis a

fair examination.

The system wi II have two mai n programs

1. Using the computer to perform calculations, including ordinary arithme

tic and other computations especially useful in number theory.

2. A method of selecting mathematical theorems relevant to the problems

being studied. It is basically the descriptor method used in information

retrieval systems, on Iy tailored to this particu lor appl ication.

We wi II describe now the program which exploits the computer's ability to perform

simple arithmetic more quickly and accurately than any mathematician like Gauss

and Euler, both of whom made extensive use of calculation and inductive study of

the properties of numbers to help them discover some very remarkable relationships

among integers.

As a preparatory step, we wrote a program which used just the typewriter, sense

switches, and the get-decimal-number routine. The size of our numbers was limited

to the range of a PDP-l register which has an upper bound of 131,071. We were

able to compute: remainders upon dividing one integer by another, the greatest

common divisor of two numbers, whether an integer was prime or not, prime fact

orization of an integer, the phi function of an integer (or how many integers less

than a given integer there are which have no common factor with the given integer),

how many primes there are less than a given integer, the sequence of twin primes

(or pairs of primes which differ by two such as 11 and 13, 'l9 and 31); and a func

tion which resulted from a bug, producing, for a given integer, the sum of the ex

ponents in the prime factorization of a number (thus for 135 the function would

compute that 135=51 x 32, and that the sum of the exponents 1 and 3 was 4 and wou Id

therefore print "4").

Whi Ie using this program someone fairly versed in number lore observed for the first

194

time how dense primes actually are in the sequence of integers. Even with numbers

in the hundred thousands, most sets of ten consecutive integers, (such as 120, 470

to 120, 479*) contain at least one prime. We were also surprised by the fact that

if you pick an odd number between 1 and 50 there is about an even chance that it

wi II turn out to be prime. Then we started looking for sets of three consecutive

integers all having the same number of prime factors, such as 33=3Xll, 34=2X17,

and 35=5X7. Would you expect such triplets to become rarer or commoner as one

proceeds up the scale of integers? After checking all integers below 300, and

then looking up around 1000, we discovered, contrary to expectations, that these

triplets occur quite frequently, sometimes close together, almost always with less

than 100 between successive triplets, and that only once did the last number of one

of the sets have 3 as a factor. Another question that struck our fancy was II What

decimal numbers made from just the digits 1 and 0 are prime." In the course of

eXdmining all numbers of this type up to the I imit of a PDP-l register, we found

that all primes up to and including 53 were factors of one or more of these numbers,

except for 29. As this puzzled us we developed a kind of inverted long division

which enabled us to discover a decimal number of about twenty digits, all ones and

zeros, having 29 as a factor. Then continuing to work with the machine, in a few

hours we collected empi rical information on questions about numbers ranging in

difficulty from trivial ities, to doctoral thesis problems, to questions of the type

number theory is famous for, questions that can go unsolved for a hundred years or

even a thousand years (e.g., squaring the circle).

Multi-precision arithmetic: The program we are presently working on will use a

routine capable of doing multi-precision arithmetic with numbers of up to twenty

two decimal digits. Numbers upon which mathematical operations are to be per

formed wi II come in from the typewriter, and immediately be placed on the scope.

Nearly all further control wi II be accompl ished with the I ight pen. The usual

arithmetical operations, and the functions described in the earl ier program, as well

as calculations of special interest to the number theorist such as solution of linear

congruences and linear diophantine equations, will all have their appropriate

symbols on the scope. By touching with the light pen the desired numbers and,

operational symbols, computation wi II be effected and the results displayed. Con

trol options are to include facility for obtaining the results of having the same opera

tion applied to a series of consecutive integers without the user's having to call for

each computation separately. The output from a series of computations may be

*sets of the form 10n to 10n + 9 inclusive

195

punched or prin1ed by touching the appropriate symbols. This covers what we plan

to do in the calculation part of the system. Before proceeding further, however,

we must consider the question of what use this program is to a really serious investi

gator for in its present state, mathematics {even in number theory} deals primarily

with abstractions of such a high order that concrete numbers bear I ittle direct rela

tion to the articles being published in the I€ading journals. In reply we ask two

further questions:

First, what kind of scrawling do we find when we rummage through the wastebasket

of today's mathematician? If we are to believe two of the leading mathematician's

in the United States today, Polya and Ulam, the answer is that, there is a pretty

good chance that you I II see numbers aplenty. Second, wi II a mathematic ian even

bother to ask questions which are difficult to answer by reasoning and which at the

same time involve conjectures impossible to judge the validity of except with in

volved calculation? Or, more precisely, will he bother to ask as many questions

of this type (of which mathematics is fu II) that arouse his curiosity as he would if he

had an easy-to-communicate-with computer at his disposal? Mathematicians as a

rule do 'not like to concern themselves with laborious calculations and the time

alone required for such work would turn him away from pursuing research in certain

directions which would otherwise be quite valid. So we may conclude that such a

device, apart from the aid it may give to current research, wi II permit and en

courage the asking of questions which, might never be asked.

Selective Routine: The second program of this system seeks to mechanize a tech

nique for retrieving and selecting theorems from number theory which are likely to

be of service in solving problems in the field.

Let us suppose you have a definite con jecture in mind, that the numerical examples

examined using the first part of the system have confirmed your hunch, and that you

now wish to find a rigorous proof of its val idity. What you wi II then do in order to

use the program is to single out the main concepts which occur in the wording of the

problem, or which you otherwise believe to be relevant to it. As soon as you type

the names of these concepts in at the console, the computer wi II look through a

large body of theorems in core or on magnetic tape, and for each theorem it looks

at it wi II make a count of how many of the concepts you typed in are contained in

that theorem. The theorems receiving the highest count from this process may then

be displQyed, typed out, or referenced to a nearby book where the proofs and

corollaries may be found, depending on the requirements of the problem. The

196

supposition we are making, of courese, is that the computer wi II select the theorems

which are, in fact, the ones most I ikely to help you solve the problem, and we are

also assuming that it does enough of the right kind of counting to enable it to give

approximately the same results for different users who will have different opinions

as to what concepts are relevant to a given problem. We must point out here, be

fore you begin to imagine that the program is doing something very complicated,

that we have kept matters simple by making our comparison not with the theorems

as actually worded, but with a list, for each theorem, of what are considered to be

its most important concepts. Also, we have avoided the problem of storing a large

number of synonyms by making available, to the user, a list of those names for

concepts which the computer wi II recognize °

For example let us suppose you wish to prove:

1. phi(m) = m(l - lip) (1 - l/q) (1 -l/r)

where m is any integer equal to the product of three distinct primes, p,q, and r <0

looking ~own your I ist of available concepts you note and type i nj II phi, I~ II equal~ II

.. product," and" prime." As soon as you signal that you are finished entering con

cepts, say, by typing "gol1 and a carriage return, comparing and counting wi II

proceed as previously described. The scope wi II then display:

2 ho (e) e e-l h . . • pip =p - P ,wen p IS a prime

The main concepts of 1 above were considered to be; "phi," II prime, II "equal," and

"exponent, II so that the theorem 2 would have been given a count of three, since

that is the number of concepts it had in common with the ones typed in. The scope

will also display the following theorem;

... if several numbers p, q, . 0 • 0 s are relatively prime, then phi of their

product equals phi (p) X phi (q) X . • 0 X phi (s) which was assigned the concepts

.. phi," "equal, II lire lative Iy prime, II (which does not match with II prime") and

II product, II and, therefore, also had a count of three concepts in common with

those we originally assigned to our problem °

Perhaps you are still not sure how to attack the problem using these theorems and

so look up the reference to 2 and see that a corollary is

4. If p is prime, then phi (p) = P - 1

you then real ize that the left hand side of 1 can be rewritten as

5. phi (p) X phi (q) X phi (r), because any two distinct primes are relatively

197

prime and we con apply 3; and now by applying the corollary 4, you can further

rewrite 5 as

6. (p - 1) (q - 1) (r - 1)

Now looking back at the right hand side of 1 your intuition tells you to replace

the II mil by its prime factors. Our equation is then:

7. (p - 1) (q - 1) (r - 1) = pqr(l - lip) (1 - 1/q) (1 - l/r)

And now the proof is easily completed by multiplying through on the right hand

side of 7, the p times (1 - lip) giving (p - 1), and doing the same for q and r

making both sides of 7 identical, Q. E. D.

Several things are immediately evident about the program. The important thing is

selection of the one or two theorems to try fi rst among several dozen that appear

more or less equally relevant. Second, the computer takes a much less vital role

in this part of the system than in the calculation part previously described, the

user being depended upon to make the final selection of which principles to try;

for doing all of the reasoning required; and also for the original assignment of con

cepts to the problem. It is furthermore desirable to have the user decide what he

considers to be the main concepts of theorems stored in computer.

The dependence on people for doing most of the work in using this system was car

ried all the way in some experiments in which people, making no use of the compu

ter, did their own selection of theorems, of main concepts to be associated with the

theorems, and did their own counting, using suitable notation to reduce the paper

work.

Some may have gathered, by this time, that we lack solid experimental evidence

for the effectiveness of this procedure, yet the few people (half dozen) who have

tried it have been amazed by how much their ability to solve problems at the end

of textbook chapters has been enhanced. The results were equally striking when

the same technique was applied to other branches of mathematics, including topo

logy, vector spaces, and other branches of abstract algebra.

The pilot study for this program which is currently in development was a simple

affair which identified concepts and theorems by numbers which the user interpreted

by means of a list telling what number was assigned to what concept and what

198

theorem. The results obtained by people using the computer were about the same

as by those who followed the procedure by hand, except that when the amount of

counting to be done became large, the computer was favored.

Probably one of the reasons the method was found to be useful is that the user is

forced to start making one kind of attack or another upon a problem and, there

fore, will not flounder around as much as he otherwise might. But that it is useful

apart from the well known fact in psychology, that any novelty or change in work

ing conditions may cause improved performance, is indicated by the fact that when

the textbook has given hints with problems, "try such and such a theorem, U then

the theorems suggested have usually been the same ones that were given the high

est relevance count using the program. We are, therefore, of the opinion that

though innumerable factors affect people's problem solving performance, and it is

risky to make strong statements in favor of one method as against another, the

computer, in this program, is making a pretty educated guess as to what would be

a good theorem with which to attack the problem. Even when the program works

badly, that is, lists as relevant things which aren1t, and does not give the impor

tant theorems the highest count, it still seems to give better resu Its than not using

it at all.

Experience has shown that it is best not to have too many concepts which may be

assigned to problems or associated with theorems in the computer. The optimal re

su Its seem to be obtai ned when just those concepts are used which the author of a

text in the field of study has seen fit to define for the reader, sometimes adding a

few that the programmer thinks he ought to define if he hasn't.

There are two devices we shall be using to increase the program1s abi I ity to dis

criminate against theorems which could receive a high count without being the

most useful. One of these devices follows from the well known fact that in most

branches of mathematics a few important theorems carry most of the weight in de

riving the bulk of results in that field. These theorems will be starred or underlined

in the display so that when they occur near the top but not at the top in relevance

the user wi II know that they deserve precedence. The other device arises from the

facts, or we shou Id say, the tautologies, of logic. If what you are trying to prove

is of the form

A implies B

199

then you generai Iy have more use for a theorem of the type

A implies X

which tells you something you can derive from A to help you to "get" to B, than

a theorem of the type

X implies A

telling you one way to derive A which is probably of little use. For similar reasons

a theorem of the form

X implies B

which provides a possible step or route to the desired result, is considered more

usefu I than one of the form

Bimplies X

The exploitation of these facts should now be apparent. Whenever possibte we

separate the concepts associated with hypothesis of the theorem from those wh"ich

are associated with its conc Ius ion . If the user wi II then obi ige by making the same

distinctions, separating the concepts most relevant to hypothesis of his coniecture

from those most relevant to its conclusion, then our counting system will take ad

vantage of the distinction and thereby improve its powers of discrimination.

In addition to the above theoretical points the system will include the usual advan~

tages: facility to enter or delete theorems from the system, facility to alter the

concepts associated with any particu lar theorem, etc.

200

ABSTRACT

REQUIREMENTS OF A TIME-SHARED COMPUTER
SYSTEM FOR PUBLISHING APPLICATIONS *

Lawrence Buck land

Inforonics Inc.
Maynard, Massac husetts

A program of research will be described to develop publishing and
computer processing techniques required for recording useful textual
data in machine form at the time of primary iournal publication.

The approach to this obiective consists of three steps:

1. To develop a system for recording iournal articles in a machine
interpretable form, such that the separate requirements of typograph
ical composition, selective data extraction, and data retrieval are
simultaneously satisfied by one keying.

2. To develop transformation procedures to convert the recorded data
!o a form useful for information retrieval and secondary publication
purposes.

3. To explore the application of existing machines and techniques
such as time-shared computer operation, to the publ ication system
developed and to discuss any new machine characteristics required.

*This paper was not submitted in time for publication.

201

ABSTRACT

THE PDP-1 COMPUTER AS A TEACHING AID
IN PROBlEM-SOlVING*

Wallace Feurzeig

Bolt Beranek and Newman, Inc.
Cambridge, Massachusetts

A novel computer-aided teaching system is described and some
applications wit hit are shown. The computer program states a
problem to a student and engages him in" conversation" whi Ie he
attempts to solve the problem. The student is free to choose his own
line of questioning, using any of the items from a prescribed list of
a possibly extensive vocabu lary. The computer responses may de
pend not only on what has just been said but on everything that went
before. Thus the system can discourse with the student in the manner
of a personal tutor.

This is a report on our experience with a novel computer-aided teaching system that has

been programmed for the PDP-l recently. The initial objectives of our work in this area

date from 1959 but the invention of an adequate program structure was first achieved in

1962. In the present paper some early applications of the system wit! be shown.

The computer program, called the Socratic System, states a problem to a student and

engages him in "conversation" while he attempts to solve the problem. Instruction takes

place at the computer console. The" conversat ion ll is accompl ished through the use of

an electric typewriter connected to and controlled by the computer. The student types a

question or an assertion and the computer types back a response--an answer, a comment

or, possibly, another question.

Before the study session begins the student is given a list specifying the vocabulary for the

problem. During the session the student's questions and declarations must be chosen from

the terms on this I ist. The vocabulary can be extensive. The student is allowed consider

able freedom in his approach to solving the problem--he can specify the information he

wants when he wants it, and he can make assertions as to the solution whenever he wishes.

*Work partially supported by Behavioral Sciences laboratory, 6570th Aerospace Medical

Research laboratories, Wright-Patterson Air Force Base, Dayton, Ohio and by Office of

Naval Research, Personnel and Training Branch, Washington 25, D. C.

203

The system records the information given to the student. It answers each question or

declaration of the student by typing one or more responses from a pre-specified set of

responses. The particu lar responses at any time are determined by the student's knowl

edge at that point. Each computer response may depend not only on what has iust been

said but on everything that went before.

The possibi lity of designing a sophisticated teaching machine was raised in an internal

BBN memorandum {quoted below} by John A. Swets entitled II Some Possible Uses of a

Small Computer as a Teaching Machine, II dated 14 August 1959.

II Let's say we want to make good diagnosticians out of our blossoming M. D. IS. SO we

have losts of cases in a computer. A student comes into the computer room, selects a

card out of a fi Ie, and learns that John Doe has a medical history of thus and so, that

some intern has II worked him Up" on his recent admittance thus and so. What's John's

problem? The student sits down at an avai lable typewriter, and decides what else he

wants to know. He wants to know if John has urea in his urine, so he asks the computer

and the computer te lis him the answer is II yes. II II Aha, then how many white corpusc les

does he have?" Answer: "150. II II Well, II he tells the computer, "this is clearly a case

of mononuc leosis. II

The computer replies: II Donlt you t.hink you ought to know whether John shows a Babinski

reflex before deciding such?" II Yea, II says the student, "I guess so, does he?" Answer:

"Yes." "OK, now I'm sure it's mononucleosis." "But" says the computer, "you are for

getting that John's pulse is normal, which you well know, is inconsistent with your diag

nosis. Etc. Etc."

It seems that such a facility would speed the learning process considerably. Maybe it

also turns out to be a good idea to program case histories of research. II Jonas Salk found

x to be true. What did he do next? No, he considered that possibil ity, but instead per

formed experiment y. Why do you suppose he did that? Yes, that's part of it, but you

see, he also figured that if the result was z, then a and b must necessarily follow. Etc.

Or maybe a budding pathologist comes in to find a certain slide projected on the wall.

He grabs a typewriter and tells the computer that he sees a flim-flam at A6 and wants to

know if that means carcinoma of the epiglottis. The computer tells him that he's a darn

fool, that this is a section of the renal gland, and that wasn't a flim-flam anyhow. The

computer also tells him that if he doesn't look a lot smarter on the next question, that he

has no business tackling Slide 366, and he had better. go back and get checked out at the

200 level.

204

As a matter of fact, students become addicted to this game; they sell their golf clubs,

they drop out of the bowling league, they stop vacationing in Las Vegas. Even when

they become interns and residents, they dash over for a try whenever they have fifteen

minutes free. The word spreads that a Dr. Lahey at Johns Hopkins is the only man alive

to solve case 174 and he did it in just ten exchanges with the computer--worldwide com

petition sets in. Medics allover take on a new hobby--they take a crack at programming

each interesting case that comes along. Staff promotions at a junior level come to depend

on how many cases one solves, and at a senior level on how many one sells. II

THE SOCRATIC SYSTEM

The author became involved in the area of computer-aided teaching toward the end of

1962. After considering the quoted memorandum and surveying the work being done at

BBN and elsewhere, he decided with Swets that a more powerful computer-aided teaching

system could and should be designed. The programming problems were solved early in

1963. The fi rst version of the Socratic System was bui It around Apri I 1963. It was de

bugged on a naive, though very useful problem--a guessing game, aptly designed for this

purpose by Judith Harris of BBN.

In this game, called the Alphabet Guessing Game, the student (or player) tries to guess

a letter of the alphabet by asking questions of the computer. The questions, for the

most part, name simple geometric characteristics of a printed letter, such as the number

of horizontal, vertical, oblique or curved line segments in the standard drawing of the

letter, and so on. The student is provided with a picture of the letters in the standard

drawing.

ILLUSTRATIONS OF THE METHOD

The illustrative computer run that follows shows that the responses of the computer can be

of some interest, even in this rather simple problem situation. In the photocopy shown

here, the student's inputs are indented and capitalized to distinguish them from the compu

ter's responses, which begin from the margin and have normal capitalization. (This con

vention is observed later in another illustrative run.)

Start when ready.

CURVES?

one.

LOOSE ENDS?

205

two.

OBLIQUES?

zero.

C.
You don't have enough information yet to get the right answer. How do you know it

isn't J, for example?

J.
You don't have enough information yet. How do you know it isn't C, for example?

HORIZONTALS?

zero.

That was a wasted question. It did not el iminate any possibil ities.

VERTICALS?

zero.

Good question.

G.
Wrong. Your guess is inconsistent with the information you've been given.

You must have forgotten that the right letter hasn't any HORIZONTAL LI NES.

The letter you guessed can't be right--it has too many LOOSE ENDS.

CURVES?

The answer is still: one.

x.
Wrong . Your guess is inconsistent with the inform~tion you've been given.

I think you only made that guess to see what I would say.

C.
Yes, you've done it. Good work.

If you want to play again, start right in.

Since the letter game was applied, the system has been applied to an electronic trouble

shooting problem and to a problem in medical diagnosis. The medical case was designed

by Dr. Preston K. Munter of the Harvard Health Center. The author was ably assisted by

Myra Breen of BBN in programming that case for the system.

A short, illustrative computer run with the medical problem is shown next. It is pre

ceded by the statement of the problem (the case to be diagnosed) and the vocabulary,

I isting the terms avai lable to the student for communicating with the computer. These

are given to him just prior to the study session with the computer.

206

PREAMBLE - MED ICAl CASE 'I

It is mid-December. late this afternoon, a patient was admitted to the hospital. He is

a well developed, well nourished, 34-year-old Negro coal miner. He was brought in by

his wife who reports that he has had II the grippe ll for about four days. During the past 3

days she has given him fluids and aspirin every six hours with no sign of improvement.

Today he suddenly became much worse. For the past two days he had complained of feel

ing very warm and of pain in his belly. This morning he had a severe shaking chi II that

was so bad his teeth rattled.

You, the admitting physician, are requested to diagnose the case. To obtain the informa

tion you need to make this diagnosis, you are required to perform a methodical physical

examination of the patient and to order all pertinent lab tests. This is done by typing

questions to the computer. The set of questions you may ask is listed in the vocabulary

you have been given. The computer wi II respond to each question with an answer or

comment.

When you have finished the examination and lab tests, type: proceed. At this point the

day II ends. II Before you II go home ll you may take a second series of lab tests during the

night so the results will be ready for you II tomorrow. II It is assumed that the second series

consists of just those tests you think necessary.

Tomorrow morning, results of some of the first lab tests will be returned to you; others

wonlt be available until late in the day. On the basis of information you have been able

to obtain, you will be asked for the diagnosis. If you feel that no conclusive diagnosis

can reasonably be made, you may then perform another full physical exam. Also, reports

from the second series of lab tests may be requested.

You may make a diagnosis at any time you choose by typing the name of one of the diseases

in the vocabulary. At various times the computer will discuss certain diagnostic possibilities

with you. If questions are raised you must answer them by typing a diagnosis or an ap

propriate declaration from the final section of the vocabu lary.

If you make a typing error, press the carriage return key and begin again. Please remem

ber that questions must end with a question mark; everything else must end with a period.

Begin the physical examination as soon as you are ready.

207

VOCABULARY - MEDICAL CASE I

Questions

physical exam?
abdom i na I exam?
chest exam?

auscultation?
localized tenderness?
percussion?
respiratory excursion?

eent exam?
distension of neck veins?
stiff neck?

general appearance?
backache?
contact with bi rds?
cough?

heart exam?
musco lo-ske leta 1 system?

ext rem ities?
neurological exam?
recta I· exam?
vital signs?

blood pressure?
pulse?
resp i ratory rate?
temperatu re?

laboratory reports?
di fferential?
esr?
hemoglobin?
rbc?
wbc?
urine exam?
x-ray?

evidence of fluid?
lateral?

blood cu Iture?
nose and throat smear and culture?
sputum culture?
sputum smear?
urine cu Iture?

Dec larations

acute pyelonephritis.
appendic itis.
fried lander pneumonia.
influenza.
mi Id upper respi ratory infection.
pleural effusion.
pneumococca I pneumon ia •
primary atypical pneumonia.
psittacossis.
pulmonary infarction.
staph pneumonia.
strep pneumonia.
the grippe.
viral pneumonia.

yes.
no.
proceed.

evidence from blood culture.
evidence from abdominal exam.
evidence from blood test analyses.
evidence from chest exam.
evidence from eent exam.
evidence from heart exam.
evidence from ms system.
evidence from neurological exam.
evidence from nose and throat smear

and culture.
evidence from rectal exam.
evidence from sputum smear and culture.
evidence from urine analysis.
evidence from urine cu Iture.
evidence from x-ray findings.
positive evidence of another disease.
positive evidence though inconclusive.
complications.

208

Please type your name, the date and a slash.

DR. SOCRATES 1963 /

GENERAL APPEARANCE?

Acutely prostrated, lying in bed on his right side. Looks acutely ill, sweaty,
apprehensive, but alert. Paroxysmal cough, bringing up a little rusty streake"d
sputum. Breathing with difficulty.

PULSE,?

100 a minute. Occasional extra systole.

TEMPERATURE?

103.

BLOOD PRESSURE?

150/84.

RESPIRATORY RATE?

20 a minute and shallow.

EENT EXAM?

Essentially negative.

CONTACT WITH BIRDS?

None, except patient has pet canary.

RESPIRATORY EXCURSION?

Apparentlyequal. Questionable pain on right side on inspiration.

PERCUSSION?

Normal.

AUSCULTATION?

Normal.

LOCALIZED TENDERNESS?

Questionable, on right.

HEART EXAM'?

Not enlarged to percussion but low grade systolic murmur at apex. Otherwise normal.

ABDOMINAL EXAM'?

209

Diffusely tender, some splinting noticed in lower right quadrant and occasionally
radiating to right flank area.

MUSCULO-SKELETAL SYSTEM?

Essentially negative, except for generalized weakness and aching.

RBC?

A red count wi II be done.

Resu Its wi II be sent to you as soon as possible.

DIFFERENTIAL?

Request noted.

WBC?

The WBC wi II be taken.

URINE EXAM?

The analysis wi II be done.

X-RAY?

X-rays will be taken.

NOSE AND THROAT SMEAR AND CULTURE?

They'll be ordered now.

When youlve requested all the lab reports you want, let me know that you I re
ready to proceed.

PROCEED.

You may want repeats on some of the lab work. Would you like to alert the night
nurse to set up the lab tests you'll want to see tomorrow?

YES.

Good. That will speed things up.

However, there's nothing further that can be done tonight to help the patient. Let's
call it qu j ts for now. Perhaps you'll be in a better position to diagnose the case
tomorrow after the first lab reports come in and you have reexcmined the patient.

Have a good night's sleep and when you're back on duty tell me to II proceed. II

PROCEED.

It's morning and you're making your rounds. You've come to our patient and are
given the night nurse's report:

210

II Temperature remained high but patient spent a reasonably comfortab1e night.
Cough diminished but persists. Occasional traces of blood in sputum. Patient
sti II dyspneic and sti II has pain in abdomen. The second series of lab tests was
initiated. II

Some of the fi rst series of lab reports have just come in.

Urine exam: insufficient fluid for analysis.

RBC: 5 mill ion
WBC: 15500.
Differential: Shift to left.
When the other reports are in you'll be notified.

Before proceeding with the ree)<amination it might be instructive to pause and
consider the diagnostic impl ications of the information at hand. Perhaps you
think it too early to arrive at any definitive conc lusion. On the other hand,
you may be prepared to make the diagnosis now. Are you?

NO.

Fine. Nevertheless, welve got a fair amount of information - at least enough
to raise some, perhaps several, diagnostic possibilities. Have you any in mind?

YES.

Name one.

PNEUMOCOCCAL PNEUMONIA.

Good. The general signs of a pneumonic process are present. Of course, you
haven't isolated the bug. Do you think the belly pain and flank pain reinforce the
case for pneumococcal pneumonia?

NO.

Right. Though the white count is consistent, isn't it?

YES.

I think so too, but a later reading is indicated to confirm this finding.

Welve considered one possibi I ity. Do you have another diagnosis in mind?

NO.

In that case lid like to talk about pulmonary infarction. What I like about that
diagnosis is the presence of high fever, rusty sputum and shaking chills; I don't
like the dyspnea, pleural pain and signs of consolidation - do you agree?

NO.

You· re quite correct. I was just trying to see whether or not you were alert -
and you we re .

211

Some more of yesterday's lab reports have come in.
Nose and throat smear and cu Iture: no growth after 12 hours.

There was some trouble at the x-ray lab. Please excuse the delay.
The x-rays are norma I.

Now let's see how the patient is today. Begin the physical when you're ready.

GENERAL APPEARANCE?

Essentially unchanged since last night.

TEMPERATURE?

103.

PULSE?

105/minute. Still occasional extra systole.

RESPIRATORY RATE?

24/minute and still shallow.

BLOOD PRESSURE?

130/84.

PNEUMOCOCCAL PNEUMONIA.

Yes, I remember you liked this diagnosis before.

Are you absolutely sure?

NO.

What would help you nail down the diagnosis?

EVIDENCE FROM SPUTUM SMEAR AND CULTURE.

Good. Anything else?

EVIDENCE FROM X-RAY FINDINGS.

Good. X-ray shows area of consol idation at right lower lobe, consistent with a
pneumonic process. Lab reports gram positive organisms in the sputum smear and
the presence of pneumococci in the culture.

Had you thought to rule out things like appendicitis and acute pyelonephritis?
Apparently you weren't thrown off by the referred abdominal pain. In any case
you've made the correct diagnosis.

212

CONCLUSIONS

It may be of interest to compare this run with the imagined dialogues in the Swets

memorandum reference in the Introduction, keeping in mind that the system is stj II

quite new and undeveloped, and that this is our first experience in medical case design.

Medical educators have responded favorably to the results obtained thus far and have

encouraged further development of the system for medical applications.

Recently, some success also has been achieved in other applications, noteably in the

area of management problem solving.

In the future the Socratic System wi II be programmed for a large time-shared PDP

computer at BBN.

213

Section IV

HARDWARE AND INPUT-OUTPUT TECHNIQUES

ABSTRACT

HARDWARE PROVISIONS FOR EFFICIENT TIME SHARING
OF A PDP-l COMPUTER

Natalio Kerllenevich

Massachusetts Institute of Technology
Cambridge, Massachusetts

This talk describes the hardware elements used to allow the M.I. T. time
sharing system to handle up to seven typewriters to be used as communica
tions elements between users and their programs. The drum, used as a tem
porary storage, the use and assignment of 1;0 equipment and the typewriter
interface connections are the main features discussed. The memory protec
tion and special instructions implemented for the system, are discussed also.

This paper describes the hardware implementation of a proposed "Time-Sharing System

for a PDP-l Computer. ,,1 The system was implemented under the supervision of Prof.

Jack B~ Dennis on the computer donated by Digital Equipment Corporation to the De

partment of Electrical Engineering of Massachusetts Institute of Technology.

The moin capabi I ities of the time-shari ng system are the assignment and reassignment

of external equipment, and the ability to trap on illegal instructions which are not

allowed to the user or woo Id stop the machine.

The ability of the machine to interrupt programs is accomplished by means of a modi

fied Sequence-Break System. There are two channels in this S8S. The higher priority

channel breaks to register 7000, as explained below. This channel also defines two

modes of operation; (1) Executive Mode (whi Ie servicing a break), and (2) Non

Executive Mode.

In the executive mode, all the executive and IN-OUT instructions are allowed and

executed, on the devices selected by the machine. User programs operate in non

executive mode where these instructions are traps.

The lower priority channel is just a normal SBS for the user to work with.

Breaks can occur for two reasons:

1. Any completion pu Ise from external devices, call button from consoles, or

a counter of drum revolutions that keeps track of running time for each user.

217

This counter is loaded by the executive routine individually for every user.

These breaks are asynchronous with the machine and are called "Interrupts."

The number zero is placed in the AC.

2. Any attempt of execution of an instruction pertaining to a set of so called

executive instructions (used by the executive routine to service users, like set

ting assignment register or loading the counter for the amount of time that his

program runs), any lOT instruction, or any illegal instruction (like hit or ill op).

These also provide a number in the AC that determines the cause of the break,

so that the executive routine can take proper action. These breaks are called

Traps.

During the execution of a user1s program, the occurrence of a trap or interrupt origin

ates a break, as occurs in normal SBS. The AC, PC, and 10 are stored in registers

7000, 7001 and 7002 respectively, and the instruction in register 7003 is executed.

The machine now is in executive mode. Dismiss from this mode is accomplished by

executing a imp i 7001 instruction. Buffer full and Buffer empty flip-flops for each

console determine which 10device has characters to transfer to or from the program.

,Execution Routines on each interrupt services the consoles. Also the time counter is

checked, and in the case of a time out, ER dismisses the running program, and checks

for the next program with a task to perform. If there is one that is not the one already

in core, a swap from the drum is executed, storing the dismissed program and loading

into core the next, which begins its running time. If the dismissed program has more

tasks to perfor~ and no others are waiting, then the dismissed program is restarted.

Finally, if no programs are waiting, ER waits in program active loop. The call button

can constitute another interrupt. If it is pressed for a given console, the debugger

(DDT) is made active for that console.

In the case of traps, the trap number determines the routine to be selected to handle

the instruction that caused the trap. On illegal instruction, a comment is typed and

control returned to the debugger (DDT). On lOT instruction the character to be trans

ferred is stored in the buffer, if it is not fu II, and control is returned to the user. If it

is fu lion a character transfer out or empty on a transfer in, the user is dismissed and

control given to another program. This dismissed user wi II be made active again when

the cause of his dismissal disappears.

218

As a special case the user is allowed to execute three instructions to communicate

with the executive routine: ar9. ~ssignment :..e9.uest), dsm (:!ismiss) and bp,t ~reak

foin.!). These three instructions trap, and their special trap number defines different

operations to be executed.

~ request the assignment of an 10 device, which depends on the number in

the AC at the time of the execution of the arq. If the assignment is successful,

the PC will skip the next instruction; otherwise, it will not skip.

dsm has been designed so that a user can begin a program by means of a con

sole, and afterwards disconnect that program from the console. The console

can be used for other purposes, and eventually the disconnected program can

be addressed by a console by request to the administrative routine. This pro

gram wi II run unti I completion or trap, and then remain stored in the drum.

~ is an instruction that allows the debugger to execute a breakpoint in a

user's program.

Assignment is handled by means of a register, called the Assignment Register, that

holds for each user information concerning the external equipment and memory bound

assigned to him, which is loaded every time that his program runs. The register is

implemented as follows:

Console External
Number Punches Readers

a
t

Memory
Bound

17

These decoded levels define which of the external devices are to be activated on lOT

instructions. The memory bound, which is variable, defines what is the highest regis

ter that the user can address without trapping as an illegal instruction. The contents

of the Assignment register is changed by the administrative routine according to the

needs and requests of the users.

Each console has its own sense switches which are selected with the corresponding

console and are installed in a small board with the console switches.

These console switches serve the following purpose:

ON-OFF--This switch is used to connect the typewriter of the console to the

system; if it is OFF, the system wi II not I isten to the typewriter.

219

CALL--This is a momentary contact button, that calls the debugger when need

ed, interrupting the user's program (like in infinite loop).

DISPLAY LEVER--This is also a momentary contact, which when depressed, a

longer quantum of time is allowed to the user of the corresponding console.

His display instructions will intensify points in the screen of the C .R. T. (other

wise, dpy's are treated as nop's). The longer quantum allows the user to make

observations on the Crt.

STOP PRI NT --This switch stops the typewriter from typing out, permitting

pagination, without interrupting or destroying the normal sequence of the pro

gram.

Levers in the console, and single step or single instruction switch have been disabled.

Hit and ill op code wi II not stop the machine, so that the machine will never stop in

time sharing operation.

Provision .has also been made for external connections to users' equipment. When a

user requests external assignment, a number in the assignment register is decoded into

a leve I that is used to get his in-out external instructions. Several users can use the

same instructions without interfering with each other.

This system has been in operation since June 1963, with two consoles and two other

programs that do not use typewriters. One is spacewar, and the other computes co

ordinate transformations in real time to track celestial bodies with a radio astronomy

antenna. Its computation needs require about seven ms. per minute.

On debugging or editing operations, no difference is noticeable compared with non

time sharing operation, except for the fact that a smaller core memory is avai lable to

the user. (Each one has five drum fields to which he has access.)

1 J. E. Yates, II A Time Sharing System for the PDP-l Computerll' DECUS

PROCEEDI NGS, 1962

220

ABSTRACT

MICROTAPE: ITS FEATURES AND APPLICATIONS

leonard M. Hantman

Digital Equipment Corporation
Maynard, Massachusetts

DEC has recently introduced the Type 550 Microtape Control and the Type

555 Dual Microtape Transport, which have the flexibility, speed and storage capa-

bilities of magnetic tape, but yet maintain the convenience of paper tape. This

paper will describe the distinguishing features of the Microtape system, indicate

what programs are available for their use, some applications that are possible, and

describe some ideas for future systems.

INTRODUCTION

Most people, during their computer experience, have used and have become

familiar with various types of magnetic tape storage. The Microtape system, how

ever, has some features which make it flexible from a programming standpoint, at

the same time produc ing an extremely rei iable method of recording information, and

a convenient system to use physically. Some of the features which will be described

include Manchester type "polarity sensing,H pre-recorded mark and timing tracks,

individually addressable blocks and, in a sense, individually addressable words,

bi-directional reading and writing, non start-stop operation, and the ease of load

ing, unloading and storing tape. In addition the technical characteristics of the

Type 550 Control and some future controls will be discussed so that Microtape as a

system can be more full y understood.

TYPE 555 DUAL MICROT APE TRANSPORT

The Type 555 Transport consists of two logically independent tape drives

capable of handling 260 foot reels of 3/4 inch, 1.0 mil Mylar tape. The bits are

recorded at a density of 375 (±60) bits per track inch and since the tape moves

221

at a speed of 80 inches per second, an effective information transfer rate of 90,000

bits per second is achieved. Individual 18-bit words, which are assembled by the

tape control unit, arrive at the computer approximately every 200 microseconds, and

therefore a block of 256
10

words will be transferred in 53 milliseconds*. Traverse

time for a reel of tape is approximately 40 seconds.

The 3-1/2 inch reels are loaded simply by pressing onto the hub, bringing

the loose end of the tape across the tape head, attach ing it to the take up reel and

spinn ing a few times. Individual controls on the transport enable the user to mani

pu�ate the tape in either direction manually.

There is no capstan or pinch -roller arrangement on the transport, and move

ment of the tape is accomplished by increasing the voltage {and thereby the torque}

on one motor, while decreasing it on the other. Braking is accomplished by applying

a torque pulse to the trailing mf')tor. The stopped condition is maintained by applying

a small, equal, but opposite torque to both motors. As there is a small amount of roll

on stopping or turning around, the units are not used on a start-stop basis, but

rather to transfer fairly large amounts of data. In the present system the roll amounts

to approximately one and one-half blocks. Start and stop time average 0.15 - 0.2

seconds and turn around time takes approximately 0.3 seconds. The reels themselves

have been so designed that the ratio of outside tape diameter to inside tape diameter

is a relatively low 1.3 to 1, thus keeping the torque requirements, and therefore

tape tension, almost constant in either direction throughout the length of the tape.

The smoll size of the reel makes storage or movement of many reels fairly convenient.

*For the purposes of this paper, the term "block" will refer to a record on the tape

consisting of 256
10

eighteen bit words plus associated control words. Note, how

ever, that there is nothing inherent in the present system, or necessarily desirable,

about blocks with the indicated format.

222

The un its can be "dialed" into a particular selection address by means of

a switch on the front of I-he transport. Up to four Dual Transports, i.e., eight

drives, can be connected to one control unit.

All of the read and write circuitry, as well as the block format detection

logic, is contained in the Type 550 Control unit. The transports consist of essen

tially nothing more than the motor drives, tape heads, and relays necessary for

selection, motion control and transfer of information.

Physical dimensions of the unit are given in Appendix C.

RECORDING TECHNIQUE

The Microtape system uses the Manchester type polarity sensed (or phase

modulated) recording technique. This differs from other standard types of-tape

recording, where, for example, a flux reversal might be placed on the tape

every time a .. 1" is desired. In the polarity sensed scheme a flux reversal of a

particular direction indicates a "0" while a flux reversal in the opposite direction

indicates a one. By using a timing track, recorded separately in quadrature phase,

to strobe the data tracks, the polarity of the signal at strobe time indicates the

presence of a zero or one. Using the timing track on the tape as the strobe also

negates the problems caused by variations in the speed of the tape.

One disadvantage to the system is that the control must read double the

number of flux reversals of other systems. However, with this type of recording

one need not worry about the amplitude of the signal but only its polarity, thus

removing some of the signal to noise problems, and allowing the use of read am

plifiers with high uncontrolled gain. It also allows the changing of individual

bits on the tape without changing the adjacent bits.

Reliability is further increased when we see that all five of the informa

tion tracks on the tape are recorded redundantly. This is accomplished by

simply wiring the two heads for each information track in series, and on reading,

the analog sum of the two heads are used to detect the correct value of the bit.

223

Therefore, a bit cannot be misread until the noise on the tape is sufficient to change

the polarity of the sum of the signals being read. Noise which reduces the ampl itude

would simply have no effect. During testing, the tape has actually been read cor

rectly with a piece of paper covering one half of the tape head. Tapes have also

been read without loss of information in cases where the tapes were stopped by hand,

and then released.

One other item affecting reliability should be mentioned, especially in a

system which allows bi -directional transfer of information. That is the problem of

tape skew as it passes over the head. Some tape systems will strobe on the first bit

of a slot that it sees, then impose some arbitrary delay after which all signals pres

ent are then read. This produces problems in that there may be differences in the

two directions. Variations in tape speed between write time and read time would

result in non-compensated changes in the necessary delay. In the Microtape system

the redundant heads are placed in a relationship to each other which, first of all,

eliminates most of the cross-talk between the most important tracks, and second,

places the timing tracks at the edges of the tape so that strobing on the analog sum

of the timing track signals will gIJarantee that the data t racks are read when they

are in the most favorable position. The data tracks are placed in the middle of the

tape where the effect of skew is at a minimum in any case. The actual head arrange

ment is as follows:

Figure 1

Placement of Microtape Tracks

224

The five tracks actually written consist of the timing track (used to

strobe the other tracks), the mark track (used to raise flags in the program,

create sequence breaks, detect block mark numbers, and protect control port ions

of the tape), and three data tracks. An eighteen bit word therefore uses six slots

of three bits each on the tape.

225

100N11'IES
BLOCK tU'BER

PROV I DES :,.II I TE PROT ECT I ()I
. IN REV. OIR. AN) SI'lft'TIIY

LODO~ ,,"Ual .. ITH -0. MI~
:.11,' '~IG F(Ji REv. CHECK SLfI

f'IRST DATA ID!O

SEC(JC) OA TA .olD

SOCCESSIV[OATA IDIOS

MICROTAPE MARK TRACK FORMAT
(ASSlJ£S zso, 0 OATil .olDS PER BLOCK)

("lT1()I (f TAPE

1[\

IF IGtJIE 2

PROTECTS ~APf IN EYfNT

PROVIDES PRClCiIW+[O [RIIG< DETECT l()j
AI() Et-Il (f BLOCK DET~cr I If I

RE(M:ST LOIlO I NIj (f Ci£eK SlJoI AND I t-Il I ClITES
BLOCK Et-Il IF .RiTlt-l. ',iI TH PROOlllrof.EO CCtHROl

ADDITI()lAl DATil ...-G<IlS

IIJTE: Et" f'ARkS II-tICH I CENT IFY TI£ PHYSICAl. EItlS
(f TI£ TAPf. lIRE TI£ Ck Y i'IIIRK$ NOl SIGI/.

[> [>

/ '" ;,:: ,.,:z

~Q: b",
BLOCK t.· ~! BcOCK Nt

~.~

Dr.T~ flAG
lIN[; :lSSO\ I ~TEi' Pl<OGIlAM I NT[RRUPT

~~
iiSi

FLAG RAISING, SEARCH MODE

(

[>

BLOCK N}

I

I
I
~5~
I
I

[>

>«~
~'" BLOCK NQ iiSi

[>

..,1!'
~"" iiSi

> >
.D

><:z
~~

BLOCK l's
::5~

BLOCK Nt> :oi ->:-'
ttl"'

NOTE \.tf:N SEARCHIN(, IN THE REVERSE DIRlCTICl'I. Ht: REVERSE
~'iARK (I.HICH IS f'HY$ICALLI OT THE OPPOSI1E EN() IT 11{
BLOCK) "ILL ROISE THE D~1'A flAG. TI~S B[TIl:£N nAGS
ASStH: bblO DATA Io(JROS PH BLOCK

I

M ~ -(

I I
I

~ IE(0._

I
I AUIWIIIU Till: TO 0W«iE

I
F~ SEARCH TO READ IIUl£

FIRST DATA FlAG IJ BlOCt(lit) I CATES
REVERSE O£tK SIJII HIlS IIE£)t roo

-f

(01)

FLAG RAISING-READ MODE

< MrTIIIf (f TAPE

0,

-p O} 04

(0)

DIITA FLAG
INTERVAL

+-0.2ms-+

~-------------------- 5~
(ASSlJIIlfCi 25b'D DIIlA \oOIDS PER BLOCK)

CATA FlAG lIN)
ASSOCIATED PIItIiII. INTERfIUf'T (NIJIIERS IMR FLNiS IM>ICATE IlMIER

(f oaT A lo0IO JUS1 REIID INTO MIV<II)

BLOCK (It) FUIC. II¢
ASSOC lilTED PIItIiII. I NTEIIIIUP1

F IGlItE 4

I
I
K

0.....)f
I

ALLIWIBLE TIK TO CHIINGE I
FQ READ TO SEMCH IIIQl[

1._
TIll: TO tOT FUIIi IF TAPE I'£MIICS IN 'IUD !IDlE

BlOCK 00 FlAG lit) I CATES THA' F(JI
WIAIl O£CK SlJoI HIlS JUST BEEN READ

NOT£: F~ ARE SYllKTRICAl IF IlEAOINj IN
TIE REVERS(0 IREeT I ~.

-c

I
I
I
~

)

0,

M -G

I I
I I
~0.4ms ~
ALL~BLE TIllE TO QW(jE

FR(JoI SEARCH TO III I TE POlE

FIRST DATA FLAG RE~STS
lDAOlNG IF FIRST DATA IOIIl

(REVERSE O£CK ~ IS IIIITTEH IIUltMITlCAl..L.Y)

<

<

-C ~ -p 03

<0,) (°2)

OATA FLAG
INTERVIIL

+-0.2ms ~

FLAG RAISING-WRITE MODE

KITH .. IF TIII'£

°256

>

J p

(0255)

~

F C -L G oM M

(0250)

I I
I

~~------ 1.. ----~>1
1 ~ILftT~~~~ I
I
I
I
1< 1.flrns

TIllE TO I£XT FlAG IF TIiPE IIEMlINS IN illITE flU:

-G

BLOCK 00 FlAG IIll1C11TES THIIT FIJWIRO O£CK ~
StOJLD BE l.OIIOCD INTO fllllIlII VIA MIWl INSTRII:TI(J(

53ns
(ASSlJ4ING ~O OATil IIR)S PER BUX:K)

~

L

)

r-OlllllFl.A(j1lN)
- ASSOCIIlTED PRC1i1W4 INTERRUPT (tt.MIERS MR FLAIi nlllCllTE tIMIER IF DATil IIR) ~IOIIIlJST BE t..aIIED INTO "1[(11)

r-BLOCK 00 FLAG IIICl
- ASSOCIATED PROliRAM I\llTERRUPT

FIIitJIE 5

IIJTE : FI.JGS lIRE SM£TR I CAL I r WI IT
Illi IN TI£ REVERSE OIRECTI(J(.

r>

C V

I
I(

2 b 3 2 1 0

"OlRk ,RIlCK 0 1 00 , COlO 0' 0 o 10110 011010 001000

CM 1

eM.]

REVERSE '" '"
EN{) ~KSl J

FlJIWIIRD 8Un MllRK (Ii)

K. ItIRK

RK

INC; 811 (JIIOITATi()l IJ 1

MARK AND INFORMATION TRACK BIT FORMAT

(Io1JTII)I Cf TAPE

I

1 0 1 0 1 0 7 0 7 0 7 }

001000 001000 001000 1 1: 000 1 11000 , 1 1 1011

I

5452 I 0

II lOti T'

11.lil4lll2

~I
II

J
i

TIlPE

FICilJI[b

7 } 7 ,
1 110 11 1 11011

7 3

1 ',011

5 1

1 01001

1

I
)j

4 ~

1 0010'

1

tOT
BLOCK
IWtK

2 "
010110

REVERSE LOCK !WII(

CI£CK SII'I!MK

FINAlI'ARK

PRE -f I NAl !WIK

ADO I TI (NlL OATil MARKS

5 5 5 5.-

, 01101 1 01101

t

TAPE FORMAT

The heart of the Microtape system is the pre-recorded timing and mark

track. In the previous section the importance and use of the timing track was

explained. This section will include a complete discussion of the mark track.

First I however I the reader should completely understand the meaning of

the words "pre-recorded." At present I one of the programs provided with the

Microtape system is one wh ich wi II write the tim ing track and block format des

ired for the individual user. The Microtape system includes a programmed mode

of operation called "Write Timing and Mark Track" and a manual switch which

both permits writing on the timing and mark tracks and also activates a clock

wh ich produces the tim ing track and flags for program control. Unless both the

mode and the switch are used simultaneously I it is physically impossible to

write on the mark or tim ing tracks. A red indicator I ight wi II be I ighted on all

transports connected to the appropriate control when the manual switch is in

the "on" position. In this mode only, information channel Irone" (high order

bits 0-5) is also connected to the mark track channel. Therefore, in one pass

of the tape, the timing track, mark track, block format, and block mark numbers

are created. Since part of the data word must be reserved to produce the mark

track I it is impossible to write intell igent data in the information channels at

the same time. For this reason also, only twelve of the eighteen bits are used

for block mark identification, and bits 0-5 must be "anded" out when checking

block mark numbers. (See figure 6 for format of bits on the tape). It is possible

that the tape manufacturer may, in the future, supply tapes which will have the

correct format actually pre-recorded on the tape. Once the format has been

recorded the user is able to use the Microtape system for actual data storage.

The actual mark track wh ich is written on the tape (see figure 2) was

selected after careful consideration and provides many functions not readily

discernible at a casuaJ glance. Some of these are I isted below and will be

discussed fully.

231

a) Program synchronization

b) Block and detection

c) Error checking and prevention

d) Protection of control information

e) Block and word addressabil ity

f) Automatic bi -directional compatibil ity

g) End of tape detect ion

h) Variable block format

i) Inclusion of marks to allow expansion for more automatic systems

of the future

For complete understanding of the questions of program synchronization and

block end :.Ietection, figures 2 through 6 should be studied closely, using the explana

tion which follows to clarify certain main points.

There are three main programmed modes of operation which require that the

user either provide information to the Microtape system, or accept ·information .

from the Microtape system. These are the "Search," "Read,1I and "Write ll modes.

(A fourth mode, IIMOVE,It simply moves the tape without supplying or requesting

information.) In order to indicate to the programmer that the system is ready to

transfer information, certain flags are raised*. When these occur, the programmer

must either load new information to be written, or unload information iust read,

and must do so within a specified time to prevent loss of information and error

indications •

In order to produce these flags, the mark track is read by passing the bits

through an 8-bit "moving window" which shifts bit by bit as the tape moves. A

decoder associated with the window interprets the pattern present, and raises the

*If the program interrupt mode is being used, assume that the raising of any of

the flags mentioned also causes a sequence break in which the individual flags

must be interrogated.

232

appropriate flags, if necessary. An 8-bit window is used, even though each mark

is six bits long, to provide greater reliability, since a mark will not be recognized

as legitimate unless the last two bits of the previous mark were legitimate. This

is one of the reasons requiring ordering of the marks on the tape, the other will be

mentioned later. Note that whether the program is reading or writing, the mark

and timing tracks are always being read.

In Search mode the Data Flag will be raised when, and only when, a Block

Mark mark is read (see figure 3). The program must unload the buffer within

53 ms, and bits 6-17 will contain the block mark number. Bits 0-5 will contain

the mark code.

In Wr ite mode, the Microtape system automatically writes the reverse

check sum and raises Data Flags when it requires information to be written on

the tape (see figure 5). The first data flag requests the first data word of the

block I -and the last data flag requests the last data word of the block; therefore

there are a total of 256 data flags for a 256 word block. Note that the program

loads each data word as the Microtape system is writing the previous one; thus

a flag is raised requesting a data word when it has just passed the place on the

tape two words ahead of where the word is to be written. Compare this with

Read mode discussed below. Time between Data Flags is approximately 200 micro

seconds. When the pre-final mark is detected, a Block End Flag is raised which

accomplishes two th ings. First it i~ a request for the program to load the calculated

check sum (normally the complement of the 18 bit ring sum of the reverse check sum

and the data words), and second, it allows the program to detect the fact that a

block has been completed, without the use of any programmed counters. After

the check sum is written the writers are turned off, to avoid any possible way of

destroying the control portion of the block. Approximately, 1.2 ms is available

to switch to Search mode if a check of the next block mark number is desired.

If the control remains in Write mode the Microtape system will write the next

reverse check sum and raise the next Data Flag after approximately 1 • 6 ms.

In Read mode, the first Data Flag is raised when the reverse check sum

has been read (see figure 4). The reason for this becomes fairly obvious when one

233

remembers that we may read a block in either direction independent of the direction

in which it may have been written. The first word read, therefore, is used to set

the register which the program will use to accumulate the check sum. Each succes

sive Data flag indicates that a data word has been read, and should be unloaded

from the buffer, stored in memory and accumulated in the check sum. When the

check sum mark is detected, a Block End Flag is raised indicating both the end of

the block and the fact that the check sum is in the buffer. This word would normally

be unloaded and added to the accumulated check sum produc ing a total of zero.

Any other result indicates that the tape has been read incorrectly, and the programmer

has the option of continuing in any manner desired. Note that when reading there

are 257 Data Flags for a 256 word block, and that each flag states that the associated

data word is in the buffer. Note also that in the present system, val idity checks

on the data portion of the tape, are done by program control only. As a matter of

fact, if for some reason a check sum is not desired, the check sum word can be

used as simply another data word.

Checking of the mark and timing tracks is accomplished through the hard

ware and the physical characteristics of the mark track itself. One check, i.e. ,

that of checking the last two bits of the previous mark, has already been mentioned,

however another interesting fact emerges if we examine figure 6 and see what happens

as the tape passes by the mark detecting window, bit by bit. Close examination will

show that unless the window is actually looking at a legitimate mark on the tape

(except an End mark) the bits in the window will differ by at least two bits from

any possible legitimate mark. * This guarantees that a one bit error any pjoce on the

mark or timing tracks can not cause an erroneous mark to be detected. It also

allows checking for asynchronous marks. For example, once the window is in

synchronization (normally by passing over a block mark) a Mark Track Error will

*In the rare instance where they are only 1 bit different, the window has been

cleared for other control purposes, so that one bit can make no difference at all.

234

be indicated (and the Error Flag raised), if a leg itimate mark is found in less than

six shifts of the window, or if a legitimate mark is not found after each six shifts

of the window. These combinations of checks makes it virtually impossible to misin

terpret the mark track and thereby destroy information.

Nothing in the system prohibits the changing of modes at any time during

the movement of the tape. Thus it can be seen that, with some limitations* , one

might find a particular block in Search mode, count passed n words in Read mode,

write one word or the rest of the block in Write mode, then switch back to Search

mode to find the next block. Within those limits almost any combination of modes

can be used, and because of the polarity sensed recoding technique, even indi

vidual words can be replaced.

One other unique feature of the mark track is that the six control marks

before the data marks are, what we have chosen to call II complement obverses tr
,

of the six control marks after the data marks. ** The data mark is the complement

obverse of itself. Thus, since when reading in the reverse direction, the flux

reversals on the tape are opposite to those when reading forward, and the bits

are read in the reverse order, the mark track window sees exactly the same thing

in both directions. With one exception, no special logic is required to dis

tinguish the format of the tape in either direction. The one exception involves

the shifting of information into the Microtape buffer. Since the assembling of the

l8-bit word is done by the hardware, it is necessary to shift the buffer in opposite

directions for opposite movement of the tape in order to present words to the

*Some of the things to be careful of include the difference in counting words when

switch ing from read to write or from wr ite to read, the recovery of the read ampl i

fiers after writing (about 2 word times) and the fact that writing in various locations

in the block will invalidate the check sum at end of the block.

** The complement obverse of a word is defined as the complement of a word with the

bits read in the reverse direction, i.e.:

235

010110 (26) and 100101 (45)
001000 (10) and 111011 (73) etc

computer as they were originally written. This means that if a record is read

opposite to the way in which it was written, each la-bit word will appear in

the buffer exactly as it originally appeared in memory; however, the last word

written would be the first one read, etc.

The End marks on either end of the tape illustrate this bi -directional

ability even better. As the End marks are complement obverses of each other,

only that end of tape will be recognized, at which the tape will physically come

off the reel if further movement continues. Thus, here again, no special hard

ware is needed for opposite ends of the tape and there is no harm in coasting

into or turning around in the end zones. Errors will be indicated only if attempt

ing to go further into the end zone. The particular bit structure of the end marks

is a repetitive one so that any sh ift of three bits in the window wi II appear as another

end mark. This makes it virtually impossible to pull the tape off the reel in any of

the normal modes. Sensing of the appropriate End mark will stop the tape and raise

the Error Flag, if the tape is in any of the normal modes. *

It can be seen therefore, that although the blocks are structurally al ike

in terms of the types of marks on the mark track, they need not contain the same

number of data words. Indeed every block on the tape can be of different length,

if such a format was created originally. The system will operate in the manner out

lined no matter what the length of the block. One other feature exists which

*There are only two "abnormal ll modes. One is the Write Timing and Mark Track

mode mentioned previously in which no marks can be detected since they are

being written. The other is the case where a tape has been left moving but not

connected to the control (deselected). In this case, only the marks on the actually

selected tape will be recognized. In only these two circumstances can the tape be

pulled off the reel.

236

may prove useful, especially in future designs. If for any reason the distance

between blocks must be lengthened it can be done simply by adding nOl n codes

between the Reverse Block Mark of block N and the Forward Mark of block

N+ 1 (see figure 6). Since the pattern nOl 0101 01 n already appears at the junc

tion of the two marks, it may be continued indefinitely without harm.

Additional flexibility has been retained for future expansion. For example,

in the future the contents of the Lock Mark might be used to determ ine if the

block is rtfi Ie protectedU
, i.e., cannot be written on. The Final Mark could be

used to request the check sum from the hardware, in a system having automatic

sum check ing, etc.

AVAILABLE PROGRAMMED SUBROUTINES

Three main groups of programmed subroutines are provided with the Micro

tape system for both the PDP-l and the PDP-4. The first is a basic set of sub

routines for search ing, reading and writ ingj the second is a set of maintenance and

diagnostic programs which can accomplish combinations of Microtape functions

using the toggl e switches on the console (MICROTOG); and the third is a simple

routine to save programs or data on Microtape, and allow quick retrieval via

the toggle switches (MICROTRIEVE). Both MICROTOG and MICROTRIEVE use

the basic read, write and search subroutines as provided for the programmer, and are

basically the same for both the PDP-l and PDP-4. There are however, some differ

ences in the basic subroutines which will be described below.

For the PDP-l, the basic subroutines are designed to read or write one

block of information, in either direction, depending on the current position of the

tape and the direction in which the tape must be searched. If the tape is used in

the reverse direction, data will be transferred starting with the end of the block

in core storage; otherwise data will be transferred normally starting with the begin

ning of the block in memory. This allows the direction of reading to be independent

of the direction of writing without destroying the normal order of the words in

237

memory. The search subroutine needs only the appropriate unit, block number, and

an error return as parameters. The read and write subroutines, which require a unit,

block number, starting address and an error return as parameters, automatically enter

the search subroutine to find the block requested. All three subroutines leave the

tape running when completed, to allow additional tape functions if desired. Pro

grams have been written in MACRO for both the single channel and sixteen-

channel sequence break systems. Multi-programming will occur only during search

ing however, as the total machine time is preempted during the actual transfer of

data. Errors are detected, saved in status bits, and indicated by a special return,

at which point the programmer has the option of continuing in any manner desired.

Approximately 200
8

words of core storage are used.

The basic PDP-4 subroutines allow the user to specify the total number

of words to be transferred irrespective of the block format on the tape. Searching

will occur in either direction; however, reading and writing will be done in the

forward direction only. If the number of words spec ified during writing is not a

multiple of the block length, the final" block is completed with words of plus zero

(+0). On reading, only the correct number of words will be stored in memory;

however, reading witt continue until the end of the last block so that the final check

sum can be calculated and checked. The program assumes the use of the program

interrupt. One auto-index register must be defined by the main program, and

"DISMIS" must be defined as a JMP to the instructions which dismiss the interrupt.

Instructions to check the appropriate flags must also be included in the programmer's

interrupt sequence.

The search subroutine, which requires a unit, block number and error

return as parameters, will search for the specified block and either stop, remain

running in the forward direction, or remain running in the reverse direction accord

ing to the subroutine entrance used. As soon as searching is started, a return is

238

made to the" main program to allow simultaneous multi-programming.

The read and write subroutines which require a unit, block number,

starting and ending core addresses, and an error return as parameters, automatically

enter the search subroutine to pos ition the tape. During data transfers no multi

programming is permitted, and when the transfer is completed the tape is stopped.

Errors are detected, coded numerically, saved in status bits and indic~ted by a

special return. The progr~mmer can decode the type of error and continue in any

manner desired. Approximately 3508 words of core storage are used.

MICROTOG for both the PDP-l and PDP-4 is a collection of fairly short

programs which allow the user to perform various Microtape functions using, as

input to the program, only the toggle switches on the console. The programs

available include those which will allow: creation of the mark track and desired

individual block format, reading or writing specified portions of the tape, writing

a Uvirgin IJ tape (tape with known block content for test purposes) in either direction,

sum checking specified portions of the tape in either direction, IIrocking ll the tape

in both directions in specified modes for indicated times or distances, generation

of specified types of data blocks, and exercising the tape by writing, reading and

sum checking in both directions. Errors are completely analyzed and typed out

together with the number of the block causing the error, and the exact status of

the Microtape at the time of the error. Detailed descriptions of the use of the

various sub-programs are currently available.

MICROTRIEVE allows the user to specify via toggle switches the information

necessary for the storing and retrieving of data or programs on a Microtape library

tape. When storing data the program will search for the block indicated, and

write the indicated area of memory on the tape together with an identification

and two control words. A message is typed upon completion which includes the

starting and ending block numbers used for storage and a number indicating the

total check sum of the entire area written. When retrieving the information, only

the unit and block number need be specified, as the control words on the tape will

indicate the starting address and length of the information in memory. A check

239

is made to guarantee that the block specified is actually the start of a storage area.

Upon completion a message is typed which shows the starting and ending block

numbers and the total check sum. This can be checked against the data typed

during writing to insure that the correct information was read. Errors are fully

analyzed and typed as in M ICROTOG •

FUTURE TRENDS

As has been described, the Microtape system for the PDP-l and PDP-4

is basically an la-bit control operating in the program interrupt mode. Since

the introduction of the PDP-5 and PDP-6 which are 12 and 36 bit computers

respectively, much thought has been given to the desirability of making the

tapes produced with the various systems compatible. Therefore it is expected

that a control will be introduced in the future which will allow the assembling

of variable length words which are a multiple of three bits. To achieve this

fiexibil ity certain changes wii i have to be made. For instance, the caiculating

and checking of the check sum will be done automatically, so that no difficulty

arises in checking tapes produced on a machine with different word length.

In addition the data will be placed on the tape in a slightly different manner

so that the length of the word does not affect the order in which the bits are

assembled.

PRESENT SYSTEM PROPOSED SYSTEM

Mark 1 1 1 0 0 0 1 0 0 0

0 3 6 9 12 15

4 7 10 13 16

2 5 a 11 14 17..

Data!
5 4 3 2 0

11 10 9 a 7 6

17161514 13 12

Figure 7

Placement of Bits on Microtape

240

An Additional mode, nWrite all Information Bitsn will permit writing in the informa

tion channels of the control words of the block, allowing a simpler creation of the

block format, and giving additional flexibility to the programmer.

Transfer of information will be in terms of full blocks; however, Data

Flags will still be provided at each word so that in desired cases, the user can

still address individual words of the block.

APPLICATIONS

It is of course, impossible for the writer to list all of the possible applica

tions of the Microtape system. There are certain characteristics of the system,

however, which make it particularly" suitable for certain applications, and these

will be covered briefly. As Microtape is used in the field, additional applica

tions will most certainly suggest themselves and will be reported on.

The first appl ication is simply as a storage device for programs and

data. Since the tape handling is extremely simple, it is easy, and in fact, des

irable to store the programs one needs on Microtape, and simply carry it to the

computer for use when needed. T6 carry the same amount of data on either cards

or paper tape would be unwieldy to say the least. Different I ibrary tapes can be

changed easily if necessary, and retrieval of any portion of the tape is relatively

fast. If modifications to the programs are necessary, the tape need not be

either re-written entirely to preserve the order, or added to at the end. The pro

gram can be read in, modified, and re-written in the same location on the tape,

providing its block length is not changed. Th is indicates also that man y programs

can be written utilizing a minimum number of drives.

On an on-line system, use of individual Microtapes to store infor

mation keyed in by individual users provides a fairly cheap and efficient

way of handling data. The ability to multi-program during searching {which

requires by far, the greatest amount of time} means that more than

one individual can have access to the computer without appreciably af

fecting internal processing, and without causing an inordinate

241

amount of waiting time for the user. An extension of this is discussed in the next

appl ication.

Since the Microtape reel is fairly small, and the system can read or write

in both directions, random access to any point on the reel is relatively fast. A

fairly large amount of data can be stored however and for example, one tape can

hold more than 22 complete 4K memories. In a real-time, multiple-user, random

access system, many tapes can be moving simultaneously even though data can be

transferred on anyone tape at a time. For example, let us imagine a system with

several remote teletypes, each requiring random access to information stored on

several Microtapes. When the first request occurs, the program can place the ap

propriate tape in Search mode and begin searching for the block. If another request

occurs, the program can note the approximate position of the first tape in relation to

the block requested, select the new tape (leaving the old tape moving) and start

searching for the new block. A programmed clocking device or timing loop can be

used to determine when to re-select the first tape, check for the correct block, and

transfer the data. As new inquiries enter the system, a queue can be formed with

the request for the nearest information and the time needed to reach it, at the top

of the queue. As information is found, the clock is reset to the time necessary to

reach the next request and so on. In this way, multiple requests for information

on a single tape can be fairly easily handled, if both records can be found by

searching in the same direction. There will be times, of course, when data will

be reached on more than one tape simultaneously. In this case the tape searching

for the later request can either be stopped before the record is reached, or can be

turned around if the record has been bypassed. In terms of overall time to the user,

very little difference will be noticed. Of course if two separate Microtape controls

are used, data can actually be transferred on more than one tape simultaneously,

providing the program is fast enough to react to the various flags.

A th ird type of appl ication involves the continuous movement of the

tape. There are many instances when it is desirable to store sampled data on a

tape for future analysis by other programs. Memory fills up rapid~y however, and

242

during the time information is transferred onto the tape, sampl ing is usually stopped

to avoid synchronization problems. Thus the information stored usually consists of

data relating to many relatively short samples. With M icrotape, one whole tape

can be written with one command and therefore, an extremely long sample of fairly

rapid data can be achieved. If desired the entire tape can be considered as one

long block of information. Storing of information from an analog-digital converter,

would be a logical use of such a system.

Some thought has been given to the question of sorting and merging using

Microtapes. Though all of the problems have not yet been worked out, it appears

that the continuous motion of the tape, and the ability to read and write in both

directions, may make certain types of sorting very efficient. For example, in an

unbalanced polyphase sort, one could continuously store information on every third

or fourth block on the tape in both directions. Depending on the final position of

the tape, some rewinding would have to be done to re-read the information for the

next pass. However, once the information has been read, new data can be stored

beginning with the current position of the tape. The tape then theoretically be

comes an endless loop, and rewind time is reduced apprec iably. Depending on the

speed of the program, if the tape can remain moving continuously except for turn

around time, there need not be any start-stop time delays from the tape unit. It

is obvious however that the relatively small size of the reels would limit the amount

of data which could be sorted, and the programming necessary to compensate for

the normal roll of the tape, may also become prohibitive.

243

APPENDIX A

MICROTAPE INSTRUCTION LIST

PDP-l PDP-l PDP-4 PDP-4
Mnemonic Binary Mnemonic Binary Function

MRD 720501 MMRD 707512 READ. Clears 10 or AC and
transfers one word from MMIOB to
bits 0-17 of 10 (PDP-l) or AC
PDP-4)

MWR 720601 MMWR 707504 WRITE. Transfers one word from
bits 0-17 of 10 (PDP-1) or AC
(PDP-4) to MMIOB.

MSE 720301 MMSE 707644 SELECT. Connects the unit
designated in bits 2-5 of the 10
(PDP-1) or AC (PDP-4) to the
Microtape Control

MLC 720401 MMlC 707604 LOAD CONTROL. Sets the M icrotape
Control to the proper mode and direc-
tion from bits 12-17 of the 10 (PDP-1)
or AC (PDP-4), as follows:

Bit 12 = Connect (Go)
Bit 13 = Reverse
Bit 14 = Spare
Bits 15 -17 = Mode: 0= Move

1 = Search
2 = Read
3 = Write
4 = Spare

* 5 = Read
through

*
block ends

6 = Write
through
block ends

7 = Write
timing and
mark track

i • e. 42 = Read Forward
62 = Read Reverse
43 = Write Forward
41 = Search Forward
61 = Search Reverse

*Not presently connected
244

MICROT APE INSTRUCTION LIST (CONTINUED)

PDP-l PDP-1 PDP-4 PDP-4
Mnemon ic Binary Mnemonic Binary

MRS 720701 MMRS 707612

MMDF 707501

MMBF 707601

MMEF 707541

Function

READ STATUS. CI ears the 10 or AC and
transfers the Microtape status conditions
into bits 0-8 of the 10 (PDP-l) or AC (PDP-4)
as follows:

Bit 0 = Data Flag
Bit 1 = Block End Flag
Bit 2 = Error Flag
Bit 3 = End of Tape
Bit 4 = Tim ing Error
Bit 5 = Reverse
Bit 6 = Go
Bit 7 = Mark Track Error
Bit 8 = Tape Unable

Skip on Microtape Data Flag
In Search Mode: Block mark number

should be unloaded via (M) MRD instruction
In Read Mode: Data or Reverse Check Sum

should be unloaded via (M) MRD instruction
In Write Mode: Data should be loaded via

(M) MWR instruction

Sk ip on Microtape Block End Flag
In Read Mode: Unload forward Check Sum via

(M) MRD instruction
In Write Mode: Load calculated forward Check

Sum via (M) MWR instruction

Sk ip on Microtape Error Flag
Timing Error, Mark Track Error, End of Tape, or

Tape Unable Condition has occurred. Use (M)
MRS instruction to detect spec ific error.

NOTE: MMSE and MMLC clear the Error Flag and MMSE, MMLC, MMRD, and MMWR
clear the Data and &lock End Flags.

245

FLAG

Data Flag

cleared on

mmrd
mmwr
mmlc
mmse

Th is flag causes
interrupt

Block Flag

cleared on

mmrd
mmwr
mmlc
mmse

Th is flag causes
interrupt

Error Flag

cleared on

mmse
mmlc
(also clears MISS,
END, MTE)

Th is flag causes
interrupt.

APPENDIX B

MICROT APE OPERA nON CHART (PDP-4)

MOVE MODE

No Data Flags raised. Tape motion
is continuous until End marks are
sensed at for end of tape.

Should not occur

Error F lag means that an error
has occurred. An mmrs command
will load AC bits 0-8 with
status information. (END is
only possible error.)
EN D Status bit is set when
tape reaches for end. Error
F lag is ra ised • Tape stops.

SEARCH MODE

Data Flag means that the MMIOB
contains a Block Number.
Write mode may be specified with
in 400 microseconds to transfer
the block. Read mode may be
specified within 600 microseconds. *
Any other mode (including Stop),
may be commanded at any time.
Transfer of Block Number must be
completed in 53 mill iseconds to
avoid a MISS. **

Should not occur

Error Flag means that an error
has occurred. An mmrs command
will load AC bits 0-8 with status
information. (END, and MISS are
only possible errors.) End status
bit is set when tape reaches far end.
Error Flag is raised. Tape Stops.
MISS Status bit is set when a Data
or Block Flag has not been cleared
from previous use.

* All times are nominal for forward direction. In reverse direction add ± 20%.

** MISS indicates a programmed timing error; i.e., information will be lost (missed) because
the rout ine is tak ing too long to transfer data t :lor from the buffer.

246

APPENDIX B

MICROTAPE OPERATION CHART (PDP-4)

FLAG

Data Flag

cleared on

mmrd
mmwr
mmlc
mmse

Th is flag causes
interrupt.

Block Flag

cleared on

mmrd
mmwr
mmlc
mmse

Th is flag causes
Interrupt.

Error Flag

cleared on

mmse
mmlc
(also clears MISS,
END, MTE)

This Flag causes
interrupt.

READ MODE

Data Flag means that MMIOB
contains a data word. P,n mmrd
must be given within 200 micro
seconds for data transfer.
First Data Flag in block indicates
Reverse Check Sum.
Change to other modes poss ible
with in 200 microseconds. If
Wri te mode is desired, a one word
delay occurs after mmwr is given.

Block Flag means that Check Sum
is in MMIOB. First Data Flag of
next block wi II automatically occur
in I. 4 mi" iseconds.
Change to Search mode must be made
in next 800 microseconds in order to
catch next mark. Change to Write
mode must be made with in next 1.2
mill iseconds in order to start new
block (not recommended - Block
Number should be checked by Search
Mode).

WRITE MODE

Data Flag means that MM lOB is
ready for Data wo rei. An mmwr
must be given within 200 micro
seconds for data transfer. In itia I
(-0) Check Sum is written auto
matically. First flag in block is
a request for first Data word.
Change of mode possible within
200 microseconds. Since tape
system is bidirectional the initial
Check Sum written may be placed
at either Forward or Reverse Check
Sum location in block, depending
only on direction commanded.

Block F lag means that Check Sum
shou Id be loaded into MM lOB with
an mmwr.
First Data Flag of next block will
occur in 1.6 milliseconds. Change
of mode commanded at last Data
word (0256) is delayed w:hi Ie Check
Sum is wn ften •
Change to Search mode must be made
within 1.2 milliseconds to read
next Block Number. Preferred method
of stopping is to change to Search
mode, then check succeeding Block
Number for correctness before stopping.

Error F lag means that an error has occurred. An mmrs command will
load AC bits 0-8 with status information. (END, MISS, ,yark Track
Error (MTE) are only possible errors.)
END status bit is set when tape reaches far end. Error Flag is raised.
Tape stops. M ISS status bit is set 'when a Data or Block Flag has not
been cleared from previous use.
Mark Track Error (MTE) Status bit is set upon discovery of certain
Mar~ ... rack and tim ing track Errors.

247

APPENDIX C

PRELIMINARY SPECIFICATIONS

TAPE AND REEL

WORD TRANSFER RATE

SPEED

DENSITY

START TIME

STOP TIME

TURN AROUND TIME

START AND STOP DISTANCE

ACCE LERAT ION

COMMAND SIGNALS

INFORMATION SIGNALS

POWER REQUIREMENTS

WEIGHT OF TRANSPORT

DIMENSIONS OF DUAL
TRANSPORT

260 feet of 3/4 inch tape on a 3 1/2 inch reel. Tape
is 1 .0 mil Mylar.

One 18-bit word each 200 (± 10) microseconds. Bit rate
is constant when moving forward. Although velocity
varies slightly, bit density changes serve to maintain a
constant bit rate due to the constant rate timing 'rack.
In reverse direction the variation in time between words
becomes ± 20% depe~ding on location along the taFe.

Varies according to reel diameter from 70-80 ips.

375 (±60), 3-bit characters per inch. 3 mi II ion bits
per reel.

Less than 0.2 seconds.

less than O. 15 seconds.

Less than 0.3 seconds.

Less than 8 inches.

700 (± 150) inches per second per second

Contact closures: Select, Go, Reverse, and a 10-wire Select
Buss. One Two-wire write interlock loop.
Two connector plugs wired in parallel for easy bussing.

5 shielded triplets. 5 millivolt p-p normal read signal
over 30 feet of cable. 120 ma nominal write current. Phase
or Manchester recording used with reference to timing track
zero cross ing for read and write tim ing •

110 to 120 volts, 60 cps, 400 watts maximum.

65 pounds.

19 inches wide, 16 inches deep, 11 inches high. 1 3/4
inch switch panel. Mounts in 19 inch standard rack.

248

ABSTRACT

ON-LINE INPUT l)F GRAPHICAL DATA

William E. Fletcher

Bolt Beranek and Newman Inc.
los Angeles, California

Immediate input to a computer of data whi.ch exi~ts on p.aper in. g~~p~i
cal form is often desirable but rarely posslble uSlng avallable dlgltlzmg
devices. This paper will discuss a device developed by Bolt, Beranek
and Newman Inc. to facilitate rapid input of graphical data. The tip of
a pen held by the operator is traced over a curve of interest or poin~ed
at discrete spots. A light-weight arm connects .the pen to the d.evlce
which then makes the digitized position of the polnt of the pen avallable
to the computer. Suitable programming allows the construction of a
complete digital representation of graphs, charts, maps, or freehand
sketches in the time that it takes to trace or sketch them byhand. Accu
racy, cost, versitility, ease of use, and applications will be discussed.
This device has been in daily use in conjunction with aPDP-I Computer
at the Los Angeles office of Bolt Beranek and Newman Inc. for more
than six months.

I NTRODUCTI ON

In general the digitizing of data existing in graphical form is accomplished by manually

positioning x and y cursors over the desired points on the data or its projected image by

rotating knobs. This process ties up both hands of the operator and except in the case

of operators with rare skill, must be done sequentially, i.e., position the x cursor,

then the y cursor. In addition, the medium on which the data to be digitized is re

corded is rather restricted. It is usually best if it is on fi 1m. Though it is possible to

project data from opaque surfaces, such as paper, the form of the paper is subject to

restrictions. A page in a book or report, or a large architectural drawing wi II not do.

About a year ago Bolt Beranek and Newman Inc. faced the problem of obtaining a

digital representation of a large body of data which existed in graphical form. In par

ticular, this data consisted of 1/3 octave band (08) and spectrum level acoustic and

vibration curves obtained during a missi Ie research and development program. These

data were processed by three different agents and existed in a multitude of bound and

unbound reports and were printed on various grades and sizes of paper. It was this

situation which led us to develop the device and techniques to be described in this

paper.

249

A GRAPHICAL INPUT DEVICE

To the obvious requirement that the device must be able to accomplish the iob we faced

as outlined above, we added three more:

1. The device should be easy to use, i.e., human engineered.

2. The device should utilize existing special purpose equipment in our

computer laboratory - in particular, a computer controlled A/D con

verter and a computer controlled bank of relays.

3. The device should be usable on-line to facilitate error checking.

With these ends in mind the device shown in Figure 1 was constructed. A precision

power supply appliesaknownvoltage across a rectilinear and an angular potentiometer.

A pen and anti-parallax assembly is attached to the end of the shaft on the rectilinear

potentiometer. The recti I inear potentiometer itself is held in a gimbal mechanism

which allows it to rotate left and right and move up and down. The angular potentio

meter is coupled to that part of the gimbal which moves left and right. The up and

down movement is not detected. It can be seen that the two voltages existing on the

wiper arms of the potentiometers at any particular time wi II uniquely define the position

of the point of the pen if it is in the same plane as the bose of the gimbal mechanism.

The errors caused by the point of the pen moving up and down as much as 1/2 inch are

not significant when compared to other errors in the system. A block diagram of the

device and its connections to a PDP-1 computer is shown in Figure 2.

The first of our additional requirements - human engineering - is well satisfied by the

device shown. After the initial calibration procedure, which will be described lat~r,

the operator need only place the pen at points of interest on the she~t of paper, page

of a book or magazine or report, or large drawing in a manner and with an instrument

which he has been using since age three. lines can be traced or drawn over with the

same ease. The device shown meets the rest of our requirements by omission. It is

simple; therefore the program can be as compl icated and versati Ie as desi red.

PROGRAMMING FOR THE DEVICE

The programs we eventually developed worked for the particular type of data with

which we had to deal. However, the problem of handling graphs of arbitrary sizes was

approached in a very general fashion and the program to do this wi II be described next.

Let us consider the input of points from x-y graphs which will fit on a single sheet of

8-1/2" x 1111 paper. The device may be located with respect to the paper at any place

250

."

G>
C
::0
fTI

""0
I
0
-f
0
G>
::0
l>
""0
I

0
."

"> -; Ot
I
fTI

G>
::0
l>
""0
I
()
l>
r

Z
""0
C
-;

0
fTI
<
()
fTI

POWER

SUPPLY

GIMBAL

SIGNAL SWITCH

Angular pot

Rectilinear

TYPEWRITER

COMPUTOR A I 0
OPERATED ~---~ CONVERTER
RELAYS

PDP - I COMPUTER

FIGURE 2. LAYOUT OF GRAPHICAL INPUT DEVICE CONNECTIONS.

252

x - axis 01 graph

s/ x II sheet 01 poper on
which graph is printed.

~-----------------x ------------------~

Note: 0.O,O show successi~tJ positions 01 pen point durin, cmibrtJf/on.

FIGURE 3. SCHEMATIC SHOWING THE RELATION BETWEEN
THE DEVICE AND A GRAPH DURING CALIBRATION.

253

where the pen can reach all pertinent points on the paper. The device wi II remain in

its position because it is relatively heavy but the paper must be clipped or taped down

to remain motionless. Next, the point of the pen is placed at the following three

positions in order and the computer notified of each position by use of a signal switch.

1 . x minimum, y maximum (upper left corner)

2. x minimum, y minimum (lower left corner)

3. x maximum, y minimum (lower right corner)

At this point the program has six voltages to work with. They are:

1 . A
l
, Bl r, 9 voltages corresponding to x minimum, y maximum.

2. A
2

, B2 r, 9 voltages corresponding to x minimum, y minimum.

3. A3, B3 r, g voltages corresponding to x maximum, y minimum.

In addition the program has the following constants which were determined when the

device was built:

Radians/volt on the angular pot.

Volts from pivot to electrical zero on the rectilinear pot.

Figure 3 shows the situation schematically. With the information in hand it is possible

to calculate the position of the pivot point of the device in the coordinate system of

the graph (xd ' y d) and the length of the x and y axes of the graph (X and Y). With

these values calculated it is simple to convert each subsequent r,g voltage digitized

into x and y re the graph origin. Even more useful is x/X and y/Y giving a percent

age value re the axis as pointed out during the calibration.

The basic program, called xyin, performs the functions outlined above. It accepts the

fi rst three poi nts to defi ne the graph and then converts subsequent poi nts to the cor

responding x/X, y/Y values. Higher level programs can then form digitized repre

sentations of particu lar types of graphs without worrying about the absolute size of the

graph, its aspect ratio, its position relative to the device, or its angle relative to the

device.

In the particular data processing problem we had, the higher level programs accepted

typed input describing the data, the maximum and minimum values of x and y on the

graph being digitized, and scale type (log, linear, dB, etc.) and then produced a

standard digital data element for subsequent processing.

2!i4

ACCURACY

When the device was initially designed the accuracy desired was ± .0211. Since the

device operates over an area of 8-1/1' x 11" this amounts to .20/0 if the graph occupies

nearly the whole area. The calculated error was contributed to by non-I inearity in the

potentiometers (.1%), drift in the power supply (.05%
), mechanical play in the mount

ing system (mostly in the anti-parallax assembly) (.10/0), and A/D conversion error

(.050/0). Carefu I measurement with high qual ity graph paper indicated that the calcu

lated maximum error was realized in actuality but only if the operator was extremely

precise when pointing with the pen. After about 700 graphs were digitized using the

device, we gave our system an end-to-end accuracy check in the following manner.

Nine copies of a particu lar 1/3 octave band curve were produced and three of these

were digitized by each of three individuals. The nine data elements thus produced

were analyzed to determ ine the mean, 1st percenti Ie, and 99th percentile of the set.

The results are plotted in Figure 4. It can be seen that we can expect 98% of the in

puts to be within ± 1/4 dB or ± .360/0. A Gaussian distribution of the errors about the

mean was assumed.

COST

The cost of acquiring and then running a device of this sort must be considered before

discussing other possible uses. We estimate the cost considering design and production

of the device, programm ing, and special computer equipment (A/D converter, relays,

signal device) at about $15,000. The computer time to input a typical 1/3 octave

band graph (36 discrete points) was two minutes, which cost $2.00 at our current

charge-out rate. Considering that this represented the entire cost for translation from

points on a piece of paper to a digital data element ready for processing, it is not too

great. However, we have since realized that the immediate error checking capability

which we had by being on-line is not in all cases worth the cost of being on-line. We

have undertaken to design an off-line unit which will record the position information

on punched paper tape. This system, outlined brieflyin Figure 5, will consist of the

gimbal and pen mechanism, a special purpose keyboard with foot or hand switch, a

single panel of electronics for rack or table mounting and a paper tape punch. The

Data Equipment Company in Santa Ana, California, is presently proceeding with pro

duction of this off-line system. The commercial version is expected to cost about $8,500

and will be available by 1 April 1964. The program xyin will be converted to accept

its input from paper tape and versions of the program prepared for computers other than

the PDP-l.

255

(/)

2
Q;

10

o O~~~--~~~~~~~------~--~~~--~---.~--~~------~

(/)

-'
LU -10
CD -
U
IAJ
o

-20

-30

-40

1st Percentile

50 100 200 400 800 1600 3150
1/3 OCTAVE BAND CENTER FREQUENCY- CPS

FIGURE 4. EXAMPLE OF REPEATABILITY OF GRAPHICAL
DIGITI ZING DEVI CE FOR 1/3 OCTAVE BAND DATA.

256

ELECT RONlCS PUNCH

GIMBAL

KEYBOARD

PEN

FOOT PEDAL

FIGURE 5. SCHEMATIC OF PARTS FOR OFF-LINE DEVICE.

257

SPEED

The system we used could only digitize a maximum of 25 points per second. This re

striction was caused solely by the slow operation of the relays which were used for

commutating our AID converter. The off-line system presently being constructed will

be I imited by the punch to about the same maximum rate. The new system wi II be

capable of a rate of 1000 points per second if it is connected to some device which will

accept data at that rate. The slow rate (25 pps) is sufficient for slowly traci ng by hand

a continuous curve but is not sufficient for recording a freehand sketch. The high rate

(1000 pps) is sufficient for sketches and signatures. It will allow at least .02" accuracy

for movement rates up to 20"/ sec.

APPLICATIONS

There are many areas where the accuracy limitations of the device described here

would preclude its use and it would be necessary to fall back on a system with cursors.

We have, however, used it in a situtation where the accuracy was quite adequate. In

the use described it is unlikely that the data we digitized was plotted in the first place

with as great an accuracy as we achieved while digitizing it and even more unl ikely that

the measurements were anywhere near that accurate.

Before outl ining possible appl ications it is necessary to point out another mode that is

easi Iy possible but has not yet been mentioned. The xyin program as described assumes

that all of the data of interest on a particular graph exists within the 8-1/2" x 11" area

over which the device can move. With relatively minor program changes the device

could be used to digitize strip chart data by starting as with a single graph and then pull

ing the paper to the left through guides until the point which was previously x maximum, y

minimum is at the extreme left. At this time two points are digitized. One is the previous

x maximum, y minimum which is now at the left, and the other is the new x maximum, y

minimum. This procedure could be continued until a chart many feet long was completely

digitized. Another case to consider is that of a large drawing or map. Since the device

is small, relatively lightweight, and designed to work on a desktop without being anchored

down, there is nothing to prevent the physical movement of the device over a large draw

ing and then treating each small area of interest as a separate graph.

The following is a I ist of possible appl ications that have occurred to us. It is by no means

claimed to be complete nor are we sure all the suggestions are really feasible.

258

1. Maps

2. Strip Charts

3. Graphs

4. Photographs

5. Blueprints

6. Pantograph

Extraction of contour information for cut and
fill calculations.

Oscillograph records.

Stock market trends, integration or differentiation
of functions.

Nuclear tracks (bubble, spark, cloud chamber)
point or circle areas of interest for subsequent
more accurate investigation by other means.

Encoding information from mechanical drawings
for programming of automatic machine tools or
production of system drawings from sets of complete
drawings.

Scaling drawings or graphs for publication.

7. Long Distance Communication of Signatures

Bank record checking, signing of checks or
documents.

8. "Spur-of-the-Moment" Sketches and Drawings

CONCLUSION

Battlefield maps, input of curves generated on the
basis of judgement or intuition to be used in a data
processing problem.

The device and techniques described here have worked out quite well for our original

problem. We are presently beginning to use it to input airport layouts, flight paths, and

flight profiles to a program intended to evaluate projected noise levels on the ground around

various airports. We have found it convenient to use and reliable and expect that it will be

useful to others for similar problems of inputting graphical data.

The information contained in this paper is the private property of Bolt Beranek and

Newman Inc. and is suppl ied as restricted information for the DECUS group. The paper

and descriptions of the equipment contained therein is not to be circulated or repro

duced in any form without prior approval of Bolt Beranek and Newman Inc.

259

THE HYBRID COMPUTATION FACILITY AT
UNITED AIRCRAFT CORPORATION RESEARCH LABORATORIES

R. Belluardo, R. Gocht, G. Paquette

United Aircraft Corporation Research Laboratories
. East Hartford, Connecticut

ABSTRACT: This paper presents a description of the hybrid computation facility at United
Aircraft Corporation Research Laboratories. Reasons for adopting a hybrid system are dis
cussed. These include a reduction in time and effort required for large problem set up,' and
improved reliability and repeatabil ity. The possibi lities associated with having a large ran
dom access memory, (large by analog standards), and the logical capabi I ity of a general
purpose digital computer as part of a large analog facility are also discussed.

Hardware contained in this facility includes a general purpose digital computer having
4,096 words of 18 bit core storage (expandable to 64,000 words). The operational speed
of this computer is roughly one half that of an IBM 7090. The analog computer presently
being used in this facility contains 100 operational amplifiers, 20 time division electronic
multipliers, 10 quarter square multipliers, 20 diode function generators, 150 potentiometers
and a Digital Output-Input Translator (DO-IT). Conversion equipment consists of an analog
to digital converter, a 20 channel multiplexer with sample and hold and 10 channels of
digital to analog conversion. The digital computer and conversion gear may be used in con
i!Jnction with the analog either open or closed loop. The performance of this combination
on proiects I isted below is discussed.

Among the systems presently being studied with this facility are complete VTOL aircraft and
advanced aircraft and engine systems. An aircraft simulation is frequently done in real time
since certain studies involve use of a dual cockpit from which realistic inputs can be intro
duced by a human operator. Techniques for using the digital computer to perform static and
initial condition checks on analog circuity contained in the problem are also discussed.
Check voltage values are calculated in the digital computer by means of a special program
(UAC-8). These voltage values are automatically compared with those that exist in the an
alog computer through a special interface between the digital computer and the DO-IT sys
tem on the analog computer.

261

THE HYBRID COMPUTATION FACILITY

AT UNJTED AIRCRAFT CORPORATION RESEARCH LABORATORIES

INTRODUCTION

R. Belluardo, R. Gocht, and G. Paql.lette
United Aircraft Corporation

The hybrid computation facil ity at United Aircraft Corporation Research Laboratories

was installed during the latter part of 1962 as an addition to the analog facility which

then consisted of three large analog consoles and associated equipment.

As part of the analog facil ity, the hybrid system is presently being used to sim

ulate complete VTOL aircraft, advanced aircraft and engines systems. 1 Aircraft simu-

lation is frequently done in real time since certain studies involve the use of a dual

cockpit from which realistic inputs can be introduced by a human operator. All of the

systems involve the simultaneous solution of non-linear algebraic and differential

equations.

The hybrid system was selected to help relieve some of the problems associated

with analog solution of very large systems of equations; namely, time and effort requir-

ed for large problem machine set-up, reliability and repeatability. Performance of the

hybrid facility as compared to all analog simulation of a large problem is given in

Section III A of this paper.

Techniques for using the digital computer to perform static and initial condition

checks on analog circuity contained in the problem are discussed in Section III B.

263

II EQUIPMENT

A} Analog Computer

The analog portion of the system is a standard moderately sized analog com

puter. With the expectation that the digital computer would absorb much of the

algebraic calculations, less emphasis than normal was placed on non-linear equip

ment • Accordingly, this console contains 100 operational amplifiers, 20 time

division electronic multipliers, 10 quarter square multipliers, 20 diode function

generators and 150 potentiometers.

Automatic read-out and set-up features are needed. A Beckman Ease 2133

Analog Computer and DO/IT (Digital Output/Input Translator) was selected for this

application •

B) Digital Computer

The digital computer is of a rather simple design and also moderate in size.

It is a single address, single instruction, stored program machine and has a word

length of 18 bits which is more than coosistent with analog computer accuracy and

dynamic range. In a typical simulation, the digital computer executes the same

sequence of instructions periodically. The digital computer samples analog vari

ables, performs calcul.ations using these variables, and returns answers to the analog

computer. The operating speed of the digital computer is of utmost importance since

all calculations must be performed in some limited time (say 1/50 of a second). A

5 tJ Sec per cycle machine allows 2,000 to 4,000 instructions to be performed in 1/50

second which would indicate that a 4,000 word memory is of adequate capacity for

both instructions, and stored data. Since high-speed arithmetic operations are the

computer's prime concern, high speed multiply and divide capabilities are mandatory.

264

The input/output features of this digital computer are versatile enough to allow

the tie-in of analog-to-digital and digital-to-analog converters and any control logic

required. In addition to this special input/output equipment, a paper tape reader

and punch and a typewriter have to date proven sufficient. The Digital Equipment

Corporation PDP-1 was selected as best meeting the above requirements.

C) The Linkage System

The linkage system can be divided into two distinct parts: the computing link

age and the slower control and set-up linkage.

Digital-to-analog and analog-to-digital converters make up the computing

linkage. The emphasis here was placed on ease of util ity and simplicity of design.

The converters are placed under complete program control.

The digital-to-analog converters (of which there are 10) each have a 14 binary

bit flip-flop buffer storage which can be loaded from the PDP-lis in/out register. A

computer instruction is associated with each digital-to-analog converter. This in

struction will take the contents of the in/out register and load the appropriate flip

flop buffer. The final output voltage appears at the analog patchboard as output of

a decoupling ampl ifier. A full range scale of plus to minus 128 volts was selected.

Analog-to-digital conversion equipment consists of a 20-channel Packard Bell

multiplexer, sample and hold amplifier and a multiverter. A "select channel ll in

struction fa' each of the 20 analog-to-digital channels is provided. Once the pro

gram specified channel is selected the converter is set in operation with a "convert"

instruction. The PDP-1 allows several options with respect to in-out timing. In the

"convert" case one option stops the program sequence until conversion is complete.

265

Another option allows the computer to proceed with instructions that follow. In any

case when it is certain that the proper time has elapsed a "read converter buffer"

instruction loads the computer's in-out register with the converted voltage. Again

full scale was selected to be ± 128.0 volts.

The control I inkage system allows the PDP-l to control analog computer modes.
I

A single instruction corresponds to each of the analog computer modes.

The Beckman Ease analog computer has the Digital Output/Input Translator.

This unit allows typewriter or paper tape control over the analog computer. For

example, through its use the pot settings of an analog computer program can be re-

corded on paper tape. This paper tape can then be used to set the potentiometers

after which digital voltmeter values are read and fed to the digital computer for

checking purposes. Any analog component can be selected and its output voltages

read. Hardware has been provided such that any DO/IT input-output feature can

now be handled by the PDP-l. Actually the system has been designed to provide

control over three separate analog computers.

III SOME EXAMPLES OF HYBRID COMPUTER USES

A) Hybrid Simulation of a Single Rotor Helicopter

An example of hybrid computing appl ication is found in UAC's Single Rotor

Helicopter Simulation. The simulation consists of three basic portions.

1) Total force, 6-degree of freedom fuselage dynamics with virtually unre-

stricted motion.

2) Rigid, hinged blade main rotor dynamics including effects of mach number

and ·stall.

266

3) A fixed base, fl ight simulator including fI ight instruments and a Norden

Conalog three dimensional, television display.

All dynamics and simulator intercommunications are contained in the analog

portion with a minimum of non-linearities. 1

The digital computer provides most of the algebraic and trigonometric opera-

tions and function interpolations. Basically, the digital program includes the

following:

9 Bivariant functions
2 Univariant functions
7 Trigonometric functions
2 Square root
2 Two-dimensional coordinate transformations.

Numerous term calculations.

Functi~ interpolation2 is completely digital using I inear interpolation, a reasonable

replacement for analog diode function generation.

The digital program is time shared between rotor and body data. Outputs occur

at 175 points per second for the rotor and 35 points per second for the body.

The algebraic operations provided by the digital computer have been compared

to an all analog simulation. The digital program corresponds to 150 amplifiers, 250

potentiometers, 110 variable products and 64 function curves of analog equipment.

In the latter, the digital curves include 22 63-segment and 42 31-segment curves

actually requiring 258 11-segment diode function generators for exact substitution.

Set-up time required for this portion of the hybrid program is about two (2) minutes.

In addition to the on-line hybrid system, a digital program is being prepared to

provide rapid parameter modification in both computers. Pot changes on the analog

will be automated using the DO/IT linkage directly from the PDP-l •

267

B) Analog Computer Symbolic Set and Debug

A group of three PDP-l programs provide problem checks for analog computer

users. The program group includes an equation loader, an interpretive mathematical

and logical equation solver, and an output printer or puncher.

The digital program communicates directly with the analog computer to set

potentiometers and read check values by means of the DO/IT linkage. Checks on

the analog and on-line converter values are made by the digital program within user

specified tolerances and error indications are printed.

The user communicates with the analog check program by paper tape or type-

writer using an equation language which defines the components of his computer and

their relations. These equations may be defined directly from the circuit diagram by

technical aide personnel.

Analog computer components are identified by a letter and a four digit address

identifying the component type, console number (up to four consoles may be in-

eluded), and component address. Component types include amplifiers, function

generators, servo multiplier-resolvers, electronic multipliers, trunks, and potenti-

ometers. In addition, dummy codes for switches, relays, test voltage,etc .,not read

by DO/IT are available. All the above components except potentiometers may be

defined by equations relating to other components. Potentiometers can be defined by

numeric value only. In addition to assigning component or test values, numeric

values are used to state gains, references, and function coordinates.

tv\athematical or logical operations permitted include the following:

Addition
Subtraction
Multiplication

268

Division
Square root
Function interpolation or extrapolation
Trigonometric operations sine, cosine, and arctangent
Dead zone, symmetri ca I or not
Limit, symmetrical or not
logical term control by greater or less than test as with

operational relays

In addition, operators are used to signal function coordinate data and non-standard

comparison tolerances.

A looding program is used to enter the equations and data from typewriter or

paper tape. In addition, the loader allows the user to change existing equations or

add to the current check system.

An interpretive equation solving program processes all mathematically defined

components and checks results with analog voltages as solutions are obtained. Equa-

tions to be solved must represent an open loop system, i.e. equations are solved

sequentially, not simultaneously. The order of equations presented is irrelevant as

the program automatically determines the order in which solutions may be obtained.

An output program provides typed solution values with their component codes.

In addition, the output program provides the user with an optional punched or printed

copy of his updated equation language.

REFERENCES

1. Krasnyl, The Functional Design of a Special - Purpose Digital Computer for
Real - Time Flight Simulation Electronic Systems laboratory, Final Report
ESl-R-118, M.I.T., August 1961.

2. Paquette, UAC-10 Fast Bivariate Generator, Digital Equipment Computer
Users Soc iety, Decus No. 34, January 9, 1963.

269

ABSTRACT

USES FOR THE PDP-l AT LlVERMORE*

Norman Hardy

Lawrence Radiation Laboratory
Livermore, Cal ifornia

The PDP-l was bought for serving as a peripherial computer to the LARC.

The machine has magnetic tape, paper tape, and cards. It has a printer,

typewriter and Type 30 and 31 scopes. A large majority of programs which

are run on the machine are for the purpose of transforming information in

one medium to another medium. The ultra precision scope in coniunction

with a photo multiplier is used as a programmed scanner for transparencies.

A number of small simu lotion programs of various types have been written

for the machine. The main reason for this is the accessibility of a fast in

expensive computer with a display.

*This paper was not submitted in time for publ ication.

271

ABSTRACT

THE PDP-l AS A DISPLAY MAINTAINING CONSOLE*

Alan Kotok

Massachusetts Institute of Technology**
Cambridge, Massachusetts

The M.I.T. {E.E.} PDP-l is being connected to the M.I.T. Computation

Center's IBM 7090 via Dataphone. Information specifying the nature of

the display is passed to the PDP-l, and return information regarding the

light pen is sent to the 7090. Since the Dataphone is a low capacity

channel it is necessary to encode the display format. The PDP-l then

continuously displays the required points and can update the display lists

by request from the 7090.

*This paper was not subm itted in time for publ ication.

**Mr. Kotok is presently employed at Digital Equipment Corporation, Maynard,
Massachusetts .

273

Section V

APPENDIX

0900

0920

0930

1 1 30

1 200

1 230

1345

1400

1430

1500

1530

1600

1630

1 700

1900

Registration

SPRING MEETING

P I ace: little Theatre, Kresge Auditorium
Massachusetts Institute of Technology
Cambridge, Massachusetts

Oat e : May 3, 1963

PROGRAM

Greetings - Edward Fredkin, President

The M .1. T. Time-Sharing System - Professor J. B. Dennis, Chai rman

Hardware Provisions for Efficient Time-Sharing Operation of a PDP-1-
Natalio Kerllenevich, M.I. T.

An Invisible Debugging Program for a PDP-1 Timesharing System - Michael
VVolflberg, M.I. T.

The PDP-1 as a Display Maintaining Console - Alan Kotok, M.I. T.

Just Nine Packages Between You and Time Sharing? - S. Boilen, L. Clapp, BBN

Announcements

Lunch at M.I. T. FacultyC lub

PDP-1 Scanning and Measuring of Nuclear Particle Track Photographs -
Dr. Martin Deutsch, M.1. T.

A Photo-Interpretive Program for the Analysis of Spark-Chamber Data -
Harry Rudloe, BBN

Time Sharing in the Processing of Nuclear Research Data - A. J. Ferguson,
B. Miles, J. Leng, Atomic Energy of Canada

Midas Assembly Program and the PDP-1 - R. Saunders, Information International Inc.

The PDP-1 as a Versatile Research Tool - VVilliam Fahle, David Brand, Systems
Research Laboratories, Inc.

Requirements of a Time-Shared Computer System for Publishin.9 Applications -
Lawrence Buckland, Inforonics, Inc.

PDP-l as a Teaching Aid for Problem Solving - VV. Feurzeig, BBN

Dinner

Time-Sharing Demonstrations at M.I. T. and Bolt Beranek and Newman, Inc.

A1

November 18 - Monday

0830

0930

0940

1000

1030

1 100

1 1 30

1300

1330

1400

1500

1520

1600

1645

1700

November 19- Tuesday

0830

0930

ANNUAL MEETING

Place:

Date:

Computation Center
Lawrence Radi at i on Laboratory
Livermore, Cal ifornia

November 18 - 19, 1963

PROGRAM

Registration and Collation

Welcome - Joseph E. Wirsching, Lawrence Radiation Laboratory

Opening of DECUS - Edward Fredkin, President, Information
International Inc,

Address - J. C. R. Licklider, Advanced Research Projects
Agency

Stanford Time-Shari ng System - John McCarthy, Stanford
University

Report on a Large-Scale Time-Sharing System - Jules Schwartz,
System Deve lopment Corporation

Lunch at Lawrence Radiation Laboratory

The Digigraphic Display Program for the DX-l Compuf"er System,
John T. Gilmore, Jr., Charles W. Adams Associates, Inc.

On-Line Input of Graphical Data - William Fletcher, Bolt
Beranek and Newman, Inc.

Recent Improvements in DDT - Marvin Minsky, M .1. T.

Coffee

Computer Aids to Number Theory - Malcolm Pivar, Information
International, Inc.

Signal Representation and Measurement Data Manipulation in
N-Space Using an On-Line PDP System - Charlton M.
Walter, AFCRL

Announcements

Tour of Livermore Computer Area

Registration and Collation

The Hybrid Computation Foe i I ity at Un ited Ai rc raft Corporat i on
Research Laboratories - R. Belluardo, R. Gocht, and
G. Paquette, UAC

A3

1000

1030

1 100

1 1 30

1300

1330

1400

1445

1500

1530

1600

A Hybrid PDP-l for Speech Research - Douglas L. Hogan and
Robert J. Scott, Department of Defense

Uses for the PD P-l at Livermore - Norman Hardy, Lawrence
Rod i at ion Laboratory

M .1. T.'s Project MAC: Current Status - Richard Mi lis, M .1. T.

Lunch

Steps Toward Computer Simulation of Small Group Behavior -
Dr. Thornton Roby, Tufts University and Raymond
Nickerson, AFSC

Modification of a Program Symbol ic at Compi Ie Time -
John B. Goodenough, AFSC

A Versatile Programming System for Large PDP-l Installations
Theodore Strollo, AFCRL

Coffee

Microtape: Its Features and Applications - Leonard Hantman,
Digital Equipment Corporation

Flint 36 A3D - Jacob M. Baker and David J. Isenberg, Charles W.
Adams Associates, Inc.

DECUS Secretary's Report - Elsa Newman

Introduction of New Officers

Lewis Clapp, President (BBN)
Elsa Newman, Secretary (DEC)

Committee Chairmen

Richard McQuillin, Programming (BBN)
Joseph Lundy, Meeti ngs (Inforonics)
William Fletcher, Equipment (BBN)
Elsa Newman (Mrs.), Publications (DEC)

A4

ATTENDANCE

SPRING MEETING

May 3, 1963

Massachusetts Institute of Technology

CHARLES W. ADAMS ASSOCIATES
Bedford, Massac husetts

Charles Gauman
David Isenberg
Allen Rousseau

AIR FORCE CAMBRIDGE RESEARCH LABS.
Bedford, Massachusetts

F. L. Barber
Roger Bove
Eunice Cronin
John Mott-Smith
E. Prange
Theodore R. Strollo
Charlton Walter - D
Weiant Wathen-Dunn..; D

AIR FORCE SYSTEMS COMMAND
(Electronic System Division)
Bedford, Massac husetts

Charles R. Brown - D
Ira Goldstein
John B. Goodenough
John R. Hayes
Raymond S. Nickerson
Robert H. Simmons
Paul Weene
Robert Westfie Id

ATOMIC ENERGY OF CANADA, LIMITED
Chalk River Canada

Brian Mi les - P

BOLT BERANEK & NEWMAN, INC.
Cambridge, Massachusetts
Los Angeles, California

Sheldon Boilen - P
Lewis C. Clapp - P, D
Wallace Feurzeig - P
Richard McQuillin

A5

DEPARTMENT OF DEFENSE
Washington., D. C.

John R. Alexander, Jr.
Edward Benz - D
Robert J. Scott

DIGITAL EQUIPMENT CORP.
Maynard, Massachusetts

Ha r Ian Ande rson
Robert Beckman
Derrick Chin
John Koudela, Jr.
Nick Mazzarese
Robert F. Maxy
Stefan Miku Iski
Elsa Newman
Kenneth Olsen
George Rice

THE FOXBORO COMPANY
Nat i c k, Massac husetts

Saul B. Dinman
Gerald E. Mahoney
David F. McAvinn

HARVARD UNIVERSITY
Cambridge, Massachusetts

A. S. Bregman
George Miller
Donald A. Norman

INFORMATION INTERNATIONAL INC.
Maynard, Massachusetts

Edward Fredkin - D
Malcolm Pivar
Robert Saunders - P
James D. Wood

INFORONICS, INC.
Maynard, Massachusetts

Lawrence Buck land - P
Joseph T. Lundy
William R. Nugent

ITEK CORPORATION
Lex i ngton, Massac husetts

W. Bivona
Charles R. Burgess - 0
T. R. Cullen
Richard Glantz
Richard Hagan
C. Hurlburt
George Mac IIroy
H. P. Peterson
Robert Rizzo

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts

R. E. Butler
Elizabeth Campbell
J. T. Connolly .
John B. Dennis (Professor) - 0
Martin Deutsch (Professor) - 0, P
Tom Eggers
Ri chard Fredman
Dorothy Gerety
Natalio Kerllenevich - P
Alan Kotok - P
Charles Laywine
Sanford Libman
J. P. McKenzie
Lars Monrad-Krohn
Martha Pennell
H. J. Rudloe - P
Michael S. Wolfberg - P
J. S. Wright

MITRE CORPORATION
Bedford, Massachusetts

Joseph A. O' Brien

Notes: 0 - DECUS Delegate

P - Paper or Speaker

A6

PRINCETON-PENN ACCELERATOR
Princeton, New Jersey

Leon Goldberg
Grahme Salmon
A. Richard Zacher

SYSTEMS RESEARCH LABORATORIES
Dayton, Oh i 0

William A. Fahle - P

UNITED AIRCRAFT RESEARCH LABS.
East Hartford, Connecticut

Julian D. Miller
Gerard A. Paquette -0

WOLF RESEARCH & DEVELOPMENT CORP.
West Concord, Massachusetts

Richard P. Gagan
Robert D. Keirn
Sherman P. Shriber

ATTENDANCE

ANNUAL MEETING

November '18-19, 1963

Lawrence Radiation Laboratory

CHARLES W. ADAMS ASSOCIATES
Bedford, Massachusetts

John T. Gilmore, Jr. - P, 0
David Isenberg - P

ADVANCED RESEARCH PROJECTS AGENCY
Washington, D.C.

J.C.R. Licklider (Dr.) -P

AIR FORCE CAMBRIDGE RESEARCH LABS.
Bedford, Massachusetts

Theodore Strollo - P
Charlton M. Walter - P, 0

AIR FORCE SYSTEMS COMMAND
(Electronic System Division)
Bed ford, Massac husetts

John B. Goodenough - P
Raymond S. Nickerson - P

AIR FORCE TECHNICAL APPLICATIONS CENTER
Washington, D. C.

John Davidson

BECKMAN INSTRUMENTS
Fullerton, California

F rank Ingram - D

BOLT BERANEK AND NEWMAN, INC.
Cambridge, Massachusetts
Los Angeles, California

Lewis C. Clapp - D
William E. Fletcher - P, D
Alice K. Hartley

A7

DEPARTMENT OF DEFENSE
Washington, D. C.

Robert J. Scott - P

DIGITAL EQUIPMENT CORPORATION
Mayna rd, Massachusetts

Robert Beckman
Leonard Hantman - P
Kenneth Larsen
Nick Mazzarese
Elsa Newman
Stan ley Olsen

DOUGLAS AIRCRAFT CORPORATION
Santa Monica, Cal ifornia

James A. Fetherlin
James S. Morison

EDGERTON, GERMESHAUSEN & GRIER
Las Vegas, Nevada
Santa Barbara, Cal ifornia

David A. Haas
Brian Glusovich
Thomas Wi Ison
George Woodmansee

INFORMATION INTERNATIONAL INC.
Maynard, Massachusetts

Edward F redkin
Malcolm Pivar - P
Robert Saunders

INTERNATIONAL TELEPHONE &
TELEGRAPH (Information Systems
Division)
Paramus, New Jersey

Albert M. Loshin
Jack Tauber

ITEK CORPORATION
Lex i ngton, Massac husetts

Charles Burgess - D

LAWRENCE RADIATION LABORATORY
Livennore, California

R. P. Abbott
Fraser Bonnell - D
James E. Braley
Donald Cooper
Raymond DeSaussure
David C. Evans
Dr. S. Fernbach
J. V. Franck
Norman Hardy - P
G. D. Hornbuck Ie
Michael G. Hurley
Robe rt M. Lee
W. Wayne Lichtenburger
Rudolph S. Langer
Loyd Mish
Melvin W. Pirtle
Arthur Rosenberg
Stephen R. Russe II
Joseph C. Sharp
Alex Tschekaloff
Donald Waterman
Wi liard H. Wattenburg
Joseph E. Wirsching

Note: D - DECUS Delegate
P - Paper or Speaker AS

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

Cambridge, Massachusetts

Ric ha rd Mill s - P, D
Marvin Minsky (Professor) - P
John E. Ward

STANFORD UNIVERSITY
Stanford, California

John McCarthy (Dr.) - P

SYSTEM DEVELOPMENT CORP.
Santa Monica, California

Clayton E. Fox
Arthur M. Rosenberg
Jules I. Schwartz - P

UNITED AIRCRAFT CORPORATION
East Hartford, Connecticut

Ralph Belluardo - P

WOLF RESEARCH & DEVELOPMENT CORP.
West Concord, Massachusetts

Richard P. Gagan

Baker, J. M.

Be Iluardo, R.

Boi len, S.

Brand, D.

Buck land, L.

Clapp, L. C.

Deutsch, M.

Edwards, D. J.

Fahle, W.

Fe rguson, A. J.

Feurzeig, W.

Fletcher, W. E.

Gil more, J. T., Jr.

Gocht, R.

Goodenough, J. B.

Hantman, L.

Hardy, N.

Hogan, D. L.

Isenberg, D. J.

Kerllenevich, N.

AUTHOR AND SPEAKER INDEX

"Flint 36 A3D" •.........•..........•..........

liThe Hybrid Computation Facility at United
Ai rc raft Corporation Researc h Laboratori es"

II Just Nine Packages Between You and Time
Sharing?" .••..........•.......•..............

liThe PDP-l as a Versatile Research Tool"

II Requ i rements of a Time-Sha red Compute r
System for Publ ishing Appl ications" .•.............

II Just Nine Packages Between You and Time
Sharing?1I•.••......................

II PDP-l Scanning and Measuring of Nuclear
Partic Ie Track Photographs ll

•••••••••••••••••••••

II Recent Improvements in DDT'I•............

liThe PDP-l as a Versatile Research ToollI•....

II Time Sharing in the Processing of Nuclear
Research Data ll ..•.....••..•.•..........•......

II PDP-l Computer as a Teaching Aid for Problem
Solving ll

••••••••••••••••••••••••••••••••••••••

liOn-line Input of Graphical Data" •••...........

II The Digigraphic Display Program for the DX-1
Computer System ll

••••••••••••••••••••••••••••••

II The Hybrid Computation Faci I ity at United
Aircraft Corporation Research Laboratoriesll•...

IIModification of a Program Symbolic at Compile
Time ll

••

"Microtape: Its Features and Applications;;

II Uses for the PD P- 1 at Live rmore ll
••••••••••••••••

II A Hybrid PD P- 1 for Speech Resea rc hll

IIFlint 36 A3D"

"Hardware Provisions for Efficient Time Sharing
of a PDP-1 Computerll

A9

61

261

1 1

75

201

11

89

41

75

83

203

249

107

261

51

22i

271

183

61

217

Kotok, A.

Leng, J.

Licklider, J. C. R.

McCarthy, J.

Miles, B.

Mills, R.

Minsky, M.

Nickerson, R. S.

Paquette, G.

Pivar, M.

Roby, T.

Rudloe, H.

Saunders, R.

Schwartz, J.

Scott, R. J.

Strollo, T.

Walter, C. M.

Wolfberg, M.

"The PDP-l as a Display Maintaining Console" .•....

IITime Sharing in the Processing of Nuclear
Resea rc h Data"•.........

"Command of Procedu res" ••............•..•...•..

Page

273

83

II Stanford Time-Sharing System". • 13

"Time Sharing in the Processing of Nuclear
Research Data" . . . • • • . . • 83

"M.I. T .IS Project MAC: Current Status"........... 33

II Recent Improvements in DDT"....... . • . . . • 41

II Steps Toward Computer Simulation of Small
Group Behavior". . . • • . . . • . • • . • . • • . . . • . . 139

liThe Hybrid Computation Facility at United
Aircraft Corporation Research Laboratories". • . 261

"Computer Aids to Number Theory" . • • . • . • • . . 193

"Steps Toward Computer Simulation of Small
Group Behavior" •••.•••.•.. , • • • . • • • . • • . 139

"PIP: A Photo-Interpretive Program for the Analysis
of Spark-Chamber Data" • • • . • • . . . • . • 91

"The Midas Assemb Iy Program and the PO P-l" . . • 71

II Report on a Large-Scale Time-Sharing System" . . • . . 19

II A Hybrid PDP-1 for Speech Research" . • • • . . • . . • . • . 183

II A Versati Ie Programm ing System for Large
PDP-l Installationsl~............................. 57

II Signa I Representat ion and Measu rement Data
Manipulation in N-Space Using an On-Line
PDP System" .•••••.••••••••.••.••.•.•.•.•...... 131

II An Invisible Debugging Program for a PDP-l
Time-Sharing System" ••••..•.••••.......•....... 43

A10

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	A00
	A01
	A02
	A03
	A04
	A05
	A06
	A07
	A08
	A09
	A10

