
LABORATORY
·INTERFACING

•

HANDBOOK

LABORATORY
INTERFACING
HANDBOOK

Prepared by
Laboratory Data Products Group

1st edition, September 1986
2nd edition, December 1986

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright 1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid USER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital EqUipment Corporation:

DEC EduSystem UNIBUS
DEClCMS lAS VAX
DEClMMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL

MASSBUS
MicroPDP-11
Micro/RSX
PDP
PDT
RSTS

RSX

VAXcluster
VMS
VT

~BmBD~D

This document was prepared using an in-house documentation production system. All
page composition ana make-up was performed by TEX, the typesetting system developed
by Donald E. Knuth at Stanford University. TEX is a registered trademark of the American
Mathematical Society.

Contents
Preface xi

Chapter 1 Introduction To Realtime Computing
In The Lab

1.1 Forms And Sources Of Realtime Data 1-2
1.1.1 Analog Signals 1-2
1.1.2 Discrete Digital Signals 1-3
1.1.3 Time-Interval Measurelnents 1-4

1.2 Intelligent Instruments 1-5
1.2.1 Parallel Digital Interfacing . 1-6
1.2.2 IEEE-48B Interfacing 1-6
1.2.3 Serial Interfacing 1-7

1.3 How To Handle Realtime Data 1-8

iii

Chapter 2 Realtime 1/0 Modules

2.1 Realtime I/O Modules - What Are They? 2-3
2.2 Flow Control 2-7

2.2.1 Device/Module Synchronization 2-7
2.2.2 Module/System Synchronization 2-10

2.3 Hardware Configuration Of Modules 2-12
2.4 Programming Realtime Option Modules. 2-14

2.4.1 Direct Device Control Routines 2-14
2.4.2 Device Drivers 2-15
2.4.3 Subroutine Libraries. 2-17
2.4.4 User-Friendly Interfaces . 2-18

2.5 Intelligent Instruments .. 2-19

Chapter 3 How To Perform Analog Input

3.1 Digital Representation Of Analog Signals 3-3
3.1.1 Digital Representation Of Signal Amplitude 3-4
3.1.2 Digital Representation Of The Time Dinlension 3-7

3.2 Analog Input Modules 3-8
3.3 How To Connect The Signal Source To The Option Module ... 3-11

3.3 .1 Single-Ended Connection . 3-12
3.3.2 Pseudo-Differential Connection 3-13
3.3.3 Differential Connection. 3-15

3.4 How To Control Noise In Analog Transmission 3-16
3.4.1 Common-Mode Noise 3-18
3.4.2 Electrostatic Noise . 3-18
3.4.3 Magnetic Noise. 3-20
3.4.4 Crosstalk Noise '. 3-20
3.4.5 Multiplexer Noise 3-21
3.4.6 Residual Noise . 3-21
3.4.7 Signal Averaging .. 3-21

3.5 How To Select A Gain Factor 3-22
3.5.1 Fixed- And Programmable-Gain Amplifiers. 3-22
3.5.2 Autoranging 3-23

iv

3.6 How To Select A Sampling Rate. 3-26
3.6.1 Time-Domain Analyses . 3-28
3.6.2 Frequency-Domain Analyses 3-29

3.7 How To Select A Trigger Mode . 3-31
3.7.1 Triggers And Gates 3-32
3.7.2 Timebase Triggering 3-33
3.7.3 Common Trigger Modes And When To Use Them ... 3-33
3.7.4 Multichannel Scanning 3-37

Chapter 4 How To Perform Analog Output

4.1 Analog Output Modules . 4-1
4.2 How To Connect The Option Module To The External Device ... 4-3
4.3 How To Select A Trigger Mode . 4-3

Chapter 5 How To Perform Digital 1/0

5.1 Digital 110 Modules . 5-2
5.2 How To Condition Digital Signals 5-4

5.2.1 Properties Of TTL Circuits 5-4
5.2.2 How To Generate TTL Levels From Switch Closures .,. 5-6

5.3 How To Connect Devices To The Digital 110 Module 5-7
5.3.1 Types Of Cables 5-8
5.3.2 How To Control Cross-Talk 5-8
5.3.3 How To Control Ringing 5-9

5.4 How To Perform Discrete Digital 110 5-10
5.4 .1 Event-Driven V s Timebase-Driven Discrete Digital 110 . 5-10
5.4.2 Triggering Discrete Digital 110 , 5-11

5.5 How To Perform Parallel Digital 110 5-12

v

Chapter 6 How To Use The IEEE 488 Instrument
Bus

6.1 Talker, Listener, Controller 6-2
6.1.1 Instrument Addresses. 6-3
6.1.2 Interface 6-6

6.2 How To Communicate With An Instrument 6-8
6.2.1 Messages 6-8
6.2.2 Sending Messages . 6-10
6.2.3 Receiving Messages . 6-10

6.3 How To Test The Status Of An Insttument 6-11
6.3.1 Serial Polls . 6-12
6.3.2 Service Requests 6-12
6.3.3 Parallel Polls. 6-14

6.4 Remote And Local States 6-16
6.5 How To Reset An Instrument 6-17

6.5.1 Clearing Interfaces .. 6-18
6.5.2 Clearing Instruments 6-18

Chapter 7 How To Control Serial Devices

7.1 Serial Data Communication . 7-2
7.2 How To Configure Devices For RS-232 Compatibility 7-3

7.2.1 Selecting A Baud Rate 7-4
7.2.2 Selecting The Numbers Of Start And Stop Bits 7-4
7.2.3 Selecting The Number Of Data Bits 7-5
7.2.4 Selecting The Type Of Parity Used 7-6
7.2.5 Selecting A Method Of Handshaking 7-7

7.2.5.1 Hardware Handshaking 7-8
7.2.5.2 Software Handshaking 7-9
7.2.5.3 Devices Without Any Handshaking 7-9
7.2.5.4 ACK/NAK Protocol. 7-10

7.3 How To Connect Serial Devices .. 7-10
7.3.1 Terminal/Modem Connection 7-11
7.3.2 Computer/Device Connection 7-13

vi

7.3.3 Cable Length 7-15

Chapter 8 How To Use A Clock/Counter Module

8.1 Clock/Counter Internal Operation . 8-2
8.1.1 Registers 8-3
8.1.2 Internal Circuits 8-3
8.1.3 External Connections 8-4
8.1.4 CSR Bit Assignments . 8-5

8.2 Modes Of Operation 8-9
8.2.1 Mode 0 (Single Interval) . 8-9
8.2.2 Mode 2 (Repeated Interval) 8-10
8.2.3 Mode 3 (External Event Timing) 8-10
8.2.4 Mode 4 (External Event Timing From Zero Base) 8-11

Chapter 9 Advanced Realtime Programming
Techniques

9.1 Buffer Management Techniques . 9-2
9.1.1 Ring Buffers . 9-2
9.1.2 Double- And Multi-Buffering Techniques 9-4

9.2 Direct Device Control On Virtual Systems 9-9
9.2.1 Accessing Device Registers In The VAX lIO Page 9-10
9.2.2 Raising And Lowering Processor Priority Level 9-11

9.3 Interrupt Programming On Virtual, Multi-tasking Systems 9-18
9.3.1 The Connect-to-Interrupt User Interface 9-19
9.3.2 Example Code Internals .. 9-20

vii

Chapter 10 Realtime System Performance

10.1 System Bus Structure And Bandwidth 10-2
10.2 CPU Design And Speed 10-3
10.3 Operating System Characteristics 10-4

10.3.1 Task Scheduling 10-5
10.3.2 110 Programming Services. 10-6
10.3.3 Intertask Synchronization And Communication 10-8
10.3.4 User Controls .. 10-9

10.4 110 Controller Speed And Features 10-9
10.4.1 DMA Vs. Programmed 110 10-10
10.4.2 Types Of 110 Supported 10-10
10.4.3 Special Functions 10-11
10.4.4 Buffer Memory .. 10-11

Figures
2-1 Basic Computer Architecture . 2-3
2-2 AXV11-C Control/Status Register 2-6
2-3 Three-Wire Handshaking Protocol 2-9
2-4 DIP Switch Types .. 2-13
2-5 Device Driver 110 2-16
3-1 Output of an Ideal Temperature Transducer 3-2
3-2 A Time-Varying Analog Signal ~ .. 3-3
3-3 Simplified Block Diagram of the ADVII-C Analog Input

Module 3-9
3-4 ADV11-C Control/Status and Data Buffer Registers 3-10
3-5 Single-ended Input Diagram 3-13

viii

3-6 Pseudo-Differential Input Diagram 3.:.14
3-7 Differential Input Diagram 3-15
3-8 Analog Signal with Noise Component 3-17
3-9 Amplified Signal with Noise Component 3-17
3-10 Common-mode Rejection . 3-19
3-11 Effect of Autoranging . 3-25
3-12 Discrete Time-Interval Sampling (Case 1) 3-26
3-13 Discrete Time-Interval Sampling (Case 2) 3-27
3-14 Discrete Time-Interval Sampling (Case 3) 3-27
3-15 Example of a Signal for Time-Domain Analysis 3-28
3-16 The Phenomenon of Aliasing 3-30
3-17 Triggers and Gates. 3-32
3-18 Triggered Timebase Triggering. 3-35
3-19 Alternative AID Triggering Circuit 3-35
5-1 Transistor-Transistor Logic (TTL) Circuit 5-5
5-2 TTL Level from a Switch Closure 5-7
5-3 Ringing in a Digital Signal 5-9
6-1 Computer Receives a Message 6-3
6-2 Computer Sends a Message 6-3
6-3 Sample Address Record . 6-5
6-4 An Instrument's Interface . 6-6
6-5 An Instrument Listens 6-7
6-6 An Instrument Talks 6-8
6-7 An Instrument Accepts Commands from the Computer .. 6-9
6-8 Serial Poll Response 6-13
6-9 Example of a Parallel Poll Response 6-15
6-10 Remote and Local States 6-17
7 -1 A Simple Serial Data Strealn . 7-2
7-2 Serial Data Protocol 7-7
7 -3 DTE and DCE Signal Connections 7 -12
7-4 Null Modem Cable Connections 7-14
8-1 Schmitt Trigger Operation . 8-4
8-2 KWV11-C Control/Status Register Bit Assignments 8-5
9-1 Diagramatic Illustration of a Ring Buffer. 9-3
9-2 The CIN Buffer 9-21

ix

Tables
3-1 Numeric Representation (example) 3-5
3-2 Voltage Resolution 3-6
3-3 Binary Offset and Two's Complement Notation 3-7
3-4 Programmable Gain 3-24
8-1 KWV11-C Control/Status Register Bit Definitions 8-6
10-1 Bus Bandwidth of Digital Systems 10-3

x

Preface

LABORATORY INTERFACING HANDBOOK

In the last five years, computers have made an important transition in
the laboratory environment. Prior to that period, they were an esoteric,
infrequently-used, highly specialized tool for selected lab applications.
Today computers are a standard, almost universally accepted part of
lab instrumentation. The proliferation of personal con1puters and of
small, specialized vendors of data acquisition software and peripherals
has made it possible to buy and use a "turnkey" systeln for many
applications without the need for any con1puter progranuning and with
almost no knowledge of device interfacing beyond how to plug two cables
together.

This turnkey appro{lch has obvious advantages for individuals doing rou
tine repetitive testing who lack the background knowledge to interface
their computers to lab devices. However, it can have major disadvan
tages for the research scientist who Inust adapt to frequently changing
application requirements, and for whom a black-box approach to experi
mentation is counter-productive in the long run. A turnkey approach can
also create serious problems for the volulne-testing laboratory manager
who finds many expensive and often incompatible turnkey systems being
purchased where a single general-purpose system could be programmed
to solve the same combination of problems much Inore efficiently.

The Laboratory Interfacing Handbook is intended to help scientists
evaluate such tradeoffs by providing practical knowledge on the general
problem of interfacing computers to laboratory devices. It is aiIned at:

xi

• Novices who want to understand their turnkey systems in greater
depth

• Beginning programmers who want to modify turnkey software or start
developing their own

• Advanced programmers who have no experience with realtime de
vices or software

For the computer novice, the Handbook is designed to be read in se
quence and in detail. Those who have some knowledge of instrumenta
tion, signals, and interfaces can skim or skip Chapter 1; those with some
knowledge of computers and I/O hardware can skirn or skip Chapter 2.
Chapters 3-8 contain detailed information by type of application, and can
be read individually or in any order.

The emphasis of the Handbook is on problem-solving. There are ample
pre-existing references (see the Bibliography) on the technology and
theory of data acquisition and control systems. The focus here is on
the intelligent application of these systems.

xii

Chapter 1
Introduction To Realtime
Computing In The Lab

When a computer is interfaced to laboratory devices, it performs time
critical operations such as varying control settings during an ongoing
experiment in which test data are captured as .a function of time. In
computer science, such operations are known as "realtime" applications
because the computer must respond to external events within a known
time interval. While time deadlines with human users are typically
flexible, the deadlines are fixed in realtime applications.

The term realtime does not in itself imply high performance; realtime
applications frequently are quite modest in their demands on a computer
system. Whatever work is to be done, however, must be accomplished
within some time limit, or the ~pplication will fail.

Realtime operations are of two main types: data acquisition and control.
Often both are required in a single application.

Data acquisition involves capturing experimental or test data for subse
quent analysis, display, or storage. Typically, each data value must be
labeled implicitly or explicitly with the precise time at which it was cap
tured; such "time-based" data acquisition can be initiated by the user's
program or by an external trigger event. The experiment or test itself can
be controlled by a human operator or by the computer.

Introduction To Realtime Computing In The Lab 1-1

C011trol operations involve not only data capture, but also information
output to manage one or more aspects of the external device's operation.
In many laboratory situations, the control requirements are lhnited to
synchronizing the cOlnputer and instrmnent operations by recognizing
when one test sequence is over and signalling the instrmnent to begin
another. This is essentially an ope11-loop c011trol requirelnent, since the
computer does not affect each test sequence while it is in progress.

In some situations, however, the computer uses inputs to calculate
control outputs that keep the test sequence within predefined liInits.
In such closed-loop control applications~ the entire three-step sequence
of acquire-process-output lnust be perfonned within the relevant time
constraints of the application. Closed-loop control applications are
frequently found in manufacturing and process control applications, as
well as in the scientific laboratory.

1.1 Forms And Sources Of Realtime Data
Hundreds of different types of lab devices can be interfaced to comput
ers, but these devices generate only three lnain fornls of data: analog,
discrete digital, and time-interval. Understanding these forms of data is
the first step in solving the overall lab interfacing problenl.

1.1.1 Analog Signals
In scientific research, the data to be captured are nlost often changes in
duced in physical parameters that lnust be measured during the course of
an experiment. Variables such as temperature, weight, pressure, speed,
acceleration, transmittance, and absorbance are the actual paralneters of
interest. However, such paranleters nlust be lneasured using a device
which converts the value of the paralneter at each point in time to a
corresponding electrical signal. Such devices are called transducers. The
resulting electrical signal is an "analog" of the underlying parameter, and
quantitative nleasures of the analog signal can be converted to quantita
tive measures of the parameter at corresponding points in time.

Temperature is one common paralneter which is lneasured in this fash
ion, and the thermocouple is the lnost frequently used type of tempera
ture transducer. In a thermocouple, two pieces of dissiInilar metal placed
in isothermal contact exhibit a potential difference as a function of tenl
perature. In general, these voltages are small and depend on the metals
employed.

1-2 Introduction To Realtime Computing 111 The Lab

When a thermocouple is used to measure temperature in an experiment,
the result is a continuously varying analog signal. If the thermocouple
output is nearly proportional over the temperature range encountered,
these voltage values can be converted to analogous temperature values
using a linear transformation. (A nonlinear relationship simply involves
a slightly more complex mathematical transformation).

Analog signals are also used as computer outputs to control experiments.
In such instances, the signal is an analog to a control parameter, such as
flow, pressure, or acceleration. In cyclic voltammetry, for example, a
triangular voltage waveform is used to induce oxidation or reduction of
electroactive substances. These reactions are measured via the electric
current they generate. A lab computer can be used both to generate
the required voltage scans and to acquire the reaction data. Plots can
be generated for qualitative analysis, or the data can be reduced for
quantitative determination of peak amplitude, wave slope, reversibility,
etc.

Whether analog signals are inputs or outputs to the computer, they
require special data-conversion options to be acquired or generated.
Today's computers use digital logic (see below and Chapter 2) and cannot
work with analog signals directly. Detailed discussion of analog input and
output issues is provided in Chapters 3 and 4.

1.1.2 Discrete Digital Signals
While analog signals can take on any value within a broad range (and so
are called continuously varying), some parameters can occur in only two
discrete states. Some of these include contact closure (yes/no), switch
position (on/of£), and many variations in which a complex phenomenon
is characterized by a combination of many such status indicators (for
example, the position of a rat in a maze as reflected by proximity switch
positions).

Such parameters are easily represented electrically by assigning binary
values (0 and 1) to two discrete voltage ranges (for example, less than
0.8 V and greater than 2.4 V). Both the meaning of the discrete positions
and the quantitative voltage ranges are completely arbitrary. They serve
merely as conventions to convey logical (Boolean) information.

Discrete digital inputs to a computer are generated by switches activated
in an experimental set-up. Proximity switches or photo detectors can be
used to convey physical position (here/not here) at any given point in
time. Contact closures convey logical status about an experiment or test

Introduction To Realtime Computing In The Lab 1-3

(running/not running or valid/invalid) that can be used in conjunction with
analog inputs to trigger and synchronize data acquisition. For example,
discrete digital outputs to solenoids can be used to turn motors or other
equipment on and off.

Since computers understand digital information, the only data-conversion
problem with discrete digital signals is to ensure that logic level conven
tions are met at both the computer and device ends of the connection.
Each parameter's status involves one signal and one "bit" of information.
Computer interfaces with the capability to handle multiple such signals
(typically 8, 16, or 32) at a time are frequently employed. The detailed
issues involved in discrete digital I/O are covered in Chapter 5.

1.1.3 Time-Interval Measurements
Time-interval data represent a special need in laboratory interfacing
applications. Certain information about real world. phenomena can be
represented in terms of magnitude or state using analog and discrete
digital I/O modules. However, important information is often contained
in the temporal pattern of magnitude or state changes, or in the interval
between external events. In such cases, time intervals, in themselves,
can be viewed as real world phenomena.

Realtime clock modules are used to measure or generate time intervals,
just as other types of modules are used for input or output of analog or
discrete digital data.

When operating in a measurement (input) mode, a realtime clock makes
quantitative determinations of elapsed time between two external events.
An input signal to the clock tells it when to start" ticking"; a second input
tells it when to stop. The elapsed time (represented as the number of
"ticks" that occured) between the two signal events can be obtained by
the user's program from a register on the clock module.

When operating in an timebase generation (output) mode, a realtime
clock produces the signal that triggers data acquisition at precise sampling
intervals selected by the user. At the completion of each sampling
interval, the clock transmits a signal to the analog or digital input/output
device to trigger its next operation.

Since clock modules have on-board circuits to support digital inputs
and to trigger other devices, they often contain Schmitt triggers, as
well. These Schmitt triggers provide a mechanisnl for starting an liD
operation when a threshold voltage level is exceeded. In an analog data
acquisition application, for example, you might wish to ignore data until

1-4 Introduction To Realtime Computing Itt The Lab

the input voltage signal exceeds 6.0 volts. A Schnlitt trigger circuit on
your realtime clock would allow you to select that threshold voltage level
using a reference signal, and then trigger analog data acquisition only
after the input voltage passed through 6.0 volts in the positive direction.

Realtime clock designs can also support other more sophisticated oper
ations, such as "time stamping" input values with the tiIne they were
acquired, counting pulse train inputs, and measuring frequencies as well
as elapsed time. These topics are covered in detail in Chapter 8.

1.2 Intelligent Instruments
Many modern laboratory instruments have built-in lnicroprocessors
which take over some of the realtime computing load in an applica
tion. For example, a chromatograph integrator may perform clocked
AID (onversion on the detector output, characterize peaks in the ac
quired signal, and produce a printed report of the results. In most cases,
the output of these intelligent instruments must be fed into a general
purpose computer for further analysis, report generation, or archival stor
age. Furthermore, many intelligent instruments require some degree of
control (for example, parameter setting) which can be performed by a
general-purpose computer. To move data and control information be
tween a general-purpose computer and an intelligent laboratory instru
ment, some form of communication link between the computer and the
instrument is needed.

The term instrument intelfacing refers to techniques for controlling the
communication link between a computer and an intelligent instrument.
Though an intelligent instrument may solve many of the problems as
sociated with handling raw realtime data (analog, discrete digital, and
time-interval), interfacing the instrument to the COlTtputer may present a
new and equally demanding set of problems. For this reason, this hand
book includes descriptions of the most common types of communication
links used for instrument interfacing.

Introduction To Realtime Computing In The Lab 1-5

1.2.1 Parallel Digital Interfacing
In contrast with discrete digital inputs, where each signal, or bit, repre
sents a distinct and separate physical parameter, parallel digital signals
are used to convey numerical values. The bit pattern simultaneously
present on all lines of a parallel digital interface can be interpreted as a
binary number or as a combination of decimal digits, each represented
in binary form (Binary Coded Decimal). A series of data values can be
transferred between a lab device and a computer using this format. The
two devices employ some form of control signals or "handshaking" to
ensure that each data value is correctly transferred.

The same hardware devices, called general purpose parallel digital in
terfaces, can be used to perform both discrete bit-level operations and
true parallel-encoded data transfers. These devices and both kinds of
applications are reviewed in Chapter 5.

1.2.2 IEEE-488 Interfacing

Various implementations of parallel digital interfaces provide different
numbers of signal lines and a variety of handshaking protocols. These
interfaces are compatible with each other only in the most general sense,
and thus require considerable effort to establish actual data transfers.
However, one type of parallel digital interface has been standardized by
the IEEE for instrument interfacing and offers a much higher degree of
base compatibility.

Defined in IEEE-488, this general purpose instrument bus (GPIB) defines
an 8-bit wide data path, as well as 8 control lines, a communication
protocol, and standards for mechanical designs and connector types.
This makes it possible to connect devices with IEEE-488 interfaces and
have them communicate successfully with minimal effort.

The IEEE-488 standard actually allows up to 15 separate devices to inter
face with, and thus share, the data and control lines. The communica
tion protocol enables a master device to arbitrate among other devices
requesting either service or permission to send or receive data. A com
puter can thus serve as controller of IEEE-488 operations and orchestrate
the activities of up to 14 specialized lab instruments. Details of this type
of operation are discussed in Chapter 6.

1-6 Introduction To Realtime Computing In The Lab

1.2.3 Serial Interfacing
Because parallel digital interfaces require many signal wires, they are
relatively expensive to use for interfacing over distances of more than
a few feet. An alternative is to use one signal wire for conveying data
values encoded "serially" - that is, as a stream of single-bit values. Serial
interfaces can convey information much less expensively over relatively
long distances, but at much lower speeds than parallel interfaces, since
they convey only one bit at a time.

There are two main categories of serial interface - synchronous and
asynchronous. Synchronous interfaces use clocks at both ends of the
connection to syncronize communications. This allows much higher
speeds of data transfer at somewhat higher cost. Asynchronous interfaces
use a handshaking or communication protocol to control data flow
without clock syncronization. This allows widely disparate types of
devices to communicate at a lower cost, but also at lower data rates.

Like parallel digital data, serially transmitted information can represent
a stream of binary values. Often, though, it comprises a special al
phanumeric coding called Serial ASCII (American Standard Code for
Information Interchange), in which uppercase and lowercase letters,
single-digit decimal characters, and commonly used control and punc
tuation characters are represented by a seven- or eight-bit code.

A standard has also evolved for logic levels, control signals, and other
hardware aspects of serial asynchronous interfacing. It is embodied
in the Electronic Industries Association's Recommended Standard 232
(EIA RS-232). RS-232 does not specify all aspects of interfacing; for
example, connector type is left up to the implementor. Many vendors
also implement a subset of the full specification. Thus, RS-232 interfaces
tend to require more effort on the part of the user than IEEE-488.

Serial asynchronous interfaces are used for a wide variety of communi
cation links in addition to lab devices. The same hardware and software
standards support links from computers to display terminals, printers,
plotters, and other computers. They are described further in Chapter 7.

Introduction To Realtime Computing In The Lab 1-7

1.3 How To Handle Realtime Data
Signal types and interfacing methods represent one dimension of the lab
interfacing problem. Other equally important dimensions include:

• Connecting signal sources to modules

• Determining appropriate parameter settings

• Programming the 110 operation (and selecting the right programming
tools)

• Managing and analyzing the incoming data

• Optimizing the application for performance

Chapter 2 of this handbook gives an overview of realtime modules, de
scribing concepts and features that are common to all types of interfacing
techniques. Chapters 3 - 8 present specific information on each inter
facing technique. Information on how to connect the signal sources to
the module, choosing appropriate parameter settings, and programming
the module is presented. Chapter 9 addresses advanced concepts in
realtime programming, including a section on buffer management tech
niques. Chapter 10 presents a discussion of factors affecting realtime
performance. This information can help you in selecting the appropriate
combination of hardware and software for your application, as well as in
optimizing the performance of the selected system.

Only by addressing this combination of related issues can you create an
overall application solution that best meets your needs. Even if you plan
to purchase a turnkey package, understanding these issues can help you
make the best selection. And, if you wish to build a flexible, general
purpose research tool for the lab environment, the information in this
handbook should help you solve most problems that arise.

1-8 Introduction To Realtime Computing In The Lab

Chapter 2
Realtime 1/0 Modules

In order to understand how realtime data is brought into a computer
for subsequent analysis, you should consider the underlying architecture
of computer systelns. Computer systems are fundamentally modular
in design, in that separate components of the system perform specific
functions. . The most basic components of a computer are the central
processing unit (CPU), main memory, mass storage and I/O devices,
and the system bus.

The CPU is the part of the system which actually performs arithmetic
and logical operations on data values. The CPU also coordinates the
operation of other parts of the system so that raw data and analysis results
flow smoothlY back and forth between the various system components.

Main memory is the repository for raw data and results that are being
operated on by the system at any given time. Main memory also
holds the instructions which make up the program being executed. The
CPU fetches each instruction and any associated data values from main
memory, performs the indicated arithmetic or logical operation on the
data values, and returns the results to main memory. Each storage
location in main memory is identified by a unique number, or address.
Memory can be connected to the CPU via the system bus (see below),
or via a high-speed, dedicated bus called a memory interconnect.

Realtime 110 Modules 2-1

Mass storage devices, such as disks or tapes, are used for long-term
storage of data and program instructions. Each mass storage device
consists of a controller module and a physical storage medium. The CPU
instructs the device controller to transfer data or program instructions
between the physical storage medium and main memory. The controller
then performs the transfer and notifies the CPU when the transfer is
complete. The CPU passes instructions to the controller by way of device
registers. Device registers appear to the CPU much like nlemory locations,
in that they are storage locations identified by unique addresses. To
communicate with a device controller, the CPU transfers information to
or from the addresses representing the device's registers.

Input/output (110) devices include terminals, line printers, and other
devices for moving information in and out of the system in alphanumeric
or graphic form. Like mass storage devices, 110 devices are linked to the
system through device controllers. Each 110 device controller has several
registers which appear as addressable storage locations through which
the CPU can control the operation of the device and transfer data. 110
device controllers typically have only one or two registers through which
multiple data values are passed sequentially. Hence, they are sometimes
referred to as data ports.

The system bus is the physical connection between the CPU, main mem
ory, and device controllers by which communication between these parts
of the system is accomplished. The bus consists of about 50 - 100 parallel
digital signal lines. Subsets of bus lines are used to carry the following
information:

• The address of the desired storage location or device register

• The value taken from or to be written to that storage location

• Various signals for control and synchronization of data transfers

The physical and functional relationships between the CPU, main mem
ory, mass storage and 110 devices, and the system bus are illustrated in
Figure 2-1.

2-2 Realtime I/O Modules

Figure 2-1: Basic Computer Architecture

PMI
MEMORY

CPU

MAIN
MEMORY

DISK
CONTROLLER

SYSTEM BUS

TERMINAL
CONTROLLER

MR-0686-0811

2.1 Realtime 1/0 Modules - What Are They?
For realtime data to be analyzed and/or stored by the computer, it must
first be converted from its original form (analog, time interval, etc.) into
a numeric format which is usable by the computer (usually binary). The
data must then be moved into the system's main memory over the bus.
Once in memory, data can be operated on by the program, moved to a

Realtime I/O Modules 2-3

mass storage device, or both. On output, this process operates in reverse;
data internal to the computer must be converted to an external format
and delivered to an external device. Realtime option modules are used
to perform the conversion between internal and external forms and, in
some cases, to actually move the converted data into or out of memory.

Option modules for realtime I/O are similar to mass storage and standard
I/O options in the following respects:

• They reside on the system bus.

• They are controlled by the program via device registers.

• Once activated, they perform their functions somewhat indepen
dently of the CPU.

• When an operation is completed, they can notify the program.

However, realtime option modules differ from mass storage and standard
I/O devices in one iInportant respect: instead of transferring data values
between memory and a mass storage or standard I/O device, realtime
modules transfer data to and from external instruments or devices,
performing a conversion of some sort in the process. Thus, realtime
option modules serve as bridges between the external world and the
computer.

On the external side of this bridge, every realtime option module has
a connector through which the physical link to the external device is
made. This link consists of both data and control signal lines. In
most cases, the connector is mounted directly on the module. The
first step in implementing any application which uses a realtime option
module is to develop a scheme for attaching the external signal lines
to the appropriate pins of the on-board connector. This may be done
using a multiconductor cable with the proper connectors at each end.
If you foresee the necessity of repeatedly reconfiguring the external
connections, you may want to lead the pins of the on-board connector to
a break-out panel having screw, BNC, banana, pin-jack, or other quick
connectl disconnect terminals.

The internal circuitry of a realtime option module performs several
classes 'of functions.

2-4 Realtime I/O Modules

• Data translation. This may involve a complex operation, like con
verting analog voltages to numeric representation; or it may involve
simply converting external logic signal levels to levels which are com
patible with the system bus.

• Signal conditioning. For example, some analog input modules have
a variable gain amplifier to boost the level of the signal before
converting it to numeric form.

• Data buffering. Some of the modules have fairly large (e.g., 1 Kbyte)
first-in/first-out (FIFO) buffers to store data while waiting for the
computer system or external device to become available.

• Flow control. Most modules have circuitry for synchronizing the flow
of data to or from the external device (see Section 2.2).

The internal operation of realtime option modules is dependent on
module type. For example, analog input modules might have internal
amplifiers for on-board signal conditioning, but digital 110 modules
would not. The internal features of realtime option modules vary from
vendor to vendor and even across models produced by any given
vendor. The types of features available on different types of modules
are described in the chapters on each module type. You should look
carefully at what features are available from various vendors and models
when selecting a module for your application.

On the computer side of the bridge, a realtime option module has
various registers through which control information and data are passed.
As described above, these registers appear to the program as storage
locations, each with a unique address. These device register addresses
are all within a prescribed range of the physical address space of the
system, called the I/O page. For example, on MicroVAX IIs the 110 page
comprises the 2000 (hex) addresses beginning at address 20000000 (hex)
in the physical address space of the processor. Device registers are
almost always 16 bits wide. The addresses of the registers are even
numbered, though in some cases it is possible to access the low- and
high-order bytes of a register individually.

Three kinds of registers are typically associated with realtime device
modules:

Realtime I/O Modules 2-5

• Control/status registers (CSRs)

• Buffer registers

• Address registers for direct-memory-access (DMA) operation

A control/status register is the main register through which the program
controls a realtime option module. Individual bits and small groups of
bits in the CSR are used to control such functions as channel selection
or interrupt enabling. Some of the bits of the CSR may be "read-only"
(not writable). When the program moves a new value into the CSR,
the setting of any read-only bits remains unchanged, while the setting
of writable bits changes according to the value written into the register.
Other bits in the CSR may be "write-only" (always read as 0, regardless
of their true value) or "read/write." Figure 2-2 shows the bit assignments
of the CSR of an AXV11-C analog input module.

Figure 2-2: AXV11-C Control/Status Register

1 5 14 13 1 2 11 10 09 08 07 06 05 04 03 02 01 00

170400
(BASE ADDRESS)

ERROR
INT ENA

.
MULTIPLEXER

ADDRESS

EXT
TRIGGER
ENABLE

NOT USED

The kinds of functions which are typically programmable via the CSR are
discussed in the chapters on each module type.

Buffer registers are used for transferring data back and forth between the
program and the option module. For example, if an AID module had
been instructed, via the CSR, to perform an AID conversion, the buffer
register of the module would contain the data value when the conversion
was complete. Similarly, to setthe status of a block of 16 discrete digital
output lines, a single 16-bit binary value might be written into a buffer
register of a digital I/O module.

2-6 Realtime I/O Modules

DMA address registers are used to pass the beginning main memory storage
location and the number of data values to be transferred for a direct
memory access transfer. DMA transfers are discussed in more detail in
Section 2.2.2.

It is not uncommon for a realtime option module to have several sets
of CSRs and buffer registers. This happens when the realtime option
module comprises two or more independent devices. The AXVII-C
nlodule, for example, has a CSR and buffer register for analog input
and two buffer registers for analog output. In these cases, reading or
writing one set of registers has no direct effect on the status of any other
set of registers on the module.

2.2 Flow Control
Synchronization of data flow between the external device and the com
puter is one of the important functions performed by any realtime option
module. This function can be broken down into two somewhat indepen
dent operations: synchronization of data flow between the external de
vice and the module, and synchronization of data flow between the mod
ule and the computer's memory. The basic mechanisms used for both
types of synchronization are common among different types of realtime
option modules. These basic mechanisms are described in this section.
Additional details pertinent to specific module types are presented in
Chapters 3 - 8.

2.2.1 Device/Module Synchronization
Triggering is the simplest form of flow control between an external device
and a realtime option module. A trigger is a signal, usually a brief pulse,
which indicates that data should be transferred. Trigger pulses may be
generated at regular time intervals by some form of clock, or they may
occur at irregular intervals determined by the occurrence of some external
event, for example, the interruption of a photobeam. On input, when
a trigger pulse occurs the realtime module performs a conversion, if
necessary, and latches the data value in an on-board buffer. On output,
data is converted, if necessary, and asserted on the module's output
line(s).

Trigger events may also be generated by the computer system itself. (This
is not to be confused with trigger signals generated by a clock module on
the system bus, but acting somewhat independently of the program; such
trigger signals would be classified as "external" in the present context.)

Realtime I/O Modules 2-7

For example, the program might test the pH of a solution periodically
and "trigger" data output to a solenoid-actuated valve if the pH value
fell outside some prescribed range. In such cases, the occurrence of
the trigger event might or might not be made known externally by
the assertion of an additional output pulse. The important distinction,
though, is that the computer system itself may generate trigger events in
some applications.

A trigger, by its nature, is unidirectional and imperative. That is, when
a trigger event occurs, it indicates to the realtime module that data must
be transferred NOW. There is no mechanism for the realtime module
to indicate that it is ready to transfer data or that data was successfully
transferred following the trigger. Triggered data transfers are often used
with analog input and output modules, and sometimes with discrete
digital 110.

Synchronization techniques which allow both the realtime module and
the external device to signal readiness to transfer data and/or the suc
cessful completion of data transfer are called handshaking protocols.
Handshaking protocols may be implemented using dedicated signal lines
(hardware handshaking), or using the signal lines themselves (software
handshaking) .

Hardware handshaking involves the use of two dedicated signal lines to
synchronize the flow of data. When the output device is ready to send a
data value, it asserts a signal which signifies that a valid new data value is
available for transfer. This signal is usually a brief pulse which is latched
by the receiving device. When the receiving device has successfully
captured the data value, it asserts a second signal which signifies that the
data value has been received. The sending device waits for this return
signal before asserting the next new data value. In this way, both devices
participate in the flow control process. (Note that either the realtime
option module or the external device may function as the "receiving' I
device in this scenario.)

This type of protocol is sometimes called two-wire handshaking since it
involves the use of two dedicated signal lines. Some protocols involve the
use of a third signal which signifies that the receiving device is ready to
receive data. This is called three-wire handshaking. Figure 2-3 illustrates the
flow of information under a three-wire handshaking protocol. A diagram
of two-wire handshaking would be similar, but steps 1 and 2 would be
omitted.

2-8 Realtime I/O Modules

Figure 2-3: Three-Wire Handshaking Protocol

INPUT DEVICE

1. Asserts "ready to receive" signal
(level)

OUTPUT DEVICE

2. Verifies "ready to receive" signal is asserted

3. Asserts data on its output line(s)

4. Asserts "new data ready" signal (pulse)

5. Detects (latched) "new data ready"
signal

6. Translates/latches data

7. Asserts" data received" signal (pulse)

8. Detects (latched) "data received" signal

9 . Loops back to step 2

Two- and three-wire handshaking protocols are used to synchronize
data transfer on a word-by-word (or byte-by-byte) basis. This type of
handshaking is often used by parallel digital communication modules.

A third type of hardware handshaking is sometimes used to synchronize
sending and receiving devices at a coarser level. Basically, this involves
the use of only the "ready to receive" signal line. The receiving device
asserts this signal at a steady level whenever it is in a ready state. When
it is unable to accept new data, for example if its internal buffer is nearly
filled, it deasserts this signal to throttle the sending device. When the
receiving device is once again able to accept input, it asserts the "ready
to receive" signal to signify its readiness. The sending device checks the
status of the "ready to receive" line before sending each data value. This
type of handshaking is often used by serial data communication modules.

Software handshaking is similar to this third type of handshaking, but the
signals used to throttle the flow of data are sent between devices over
the data lines rather than over dedicated signal lines. For example, many
serial devices use the ASCII characters DCl (XON) and DC3 (XOFF)
to signal "ready to receive" and "NOT ready to receive", respectively.

Realtime I/O Modules 2-9

When the receiving device wants to suspend the flow of incoming data,
it sends an XOFF character (hex 13; control-S) to the sending device.
The sending device stops sending data until an XON character (hex
11; control-Q) is received, indicating that the receiving device is able
to accept data once more. This kind of handshaking is often used for
serial data communication.

2.2.2 Module/System Synchronization
The problem of synchronizing data transfers between a realtime option
module and the main memory of the computer system is somewhat
independent of device/module flow control. Once the data has been
converted and latched into the module's buffer it must be moved to
main melnory. There are two general techniques for moving data from
the option module to main memory: programmed I/O (PIa) and direct
memory access (DMA).

Programmed I/O refers to situations in which the program controls the
transfer of each data value from the module to memory through the
execution of processor instructions. On input, whenever a new data value
is present in the buffer register, the module notifies the program. The
program then transfers the data value from the buffer register to a storage
location in the computer's main memory.

Notification that a new data value is ready can be passed to the program
in two ways:

1. When the conversion is complete, one of the bits of the CSR, the
"done" bit, is set. The program must repeatedly test the CSR to
determine whether the done bit is set. When the setting of the
done bit is detected, the program transfers the data value from the
module's buffer register to main memory. To rnaximize realtime
response, a large percentage of CPU time must be devoted to testing
the done bit. This is called polled I/O.

2. When the conversion is complete, the module generates a hardware
interrupt of the system. This causes program control to be transferred
to an "interrupt service routine," which moves the data value from
the module's buffer register to main memory. While the CPU is
waiting for the interrupt to occur, it can be performing other tasks,
such as reduction or transfer to mass storage of previously acquired
data. This mode of operation maximizes the use of the computer's
resources, but may be relatively slow due to the overhead associated

2-10 Realtime I/O Modules

with switching control to the interrupt service routine. This is called
interrupt-driven I/O.

Direct memory access refers to situations in which the option module
transfers data directly between the computer's main memory and the
external device. The program loads the DMA address registers of the
module with the physical memory location at which data storage is
to begin, and loads the number of data values to be transferred into
another device register. The CSR of the module is then loaded with
information specifying various other parameters for data acquisition, and
the acquisition process begins. As the data are collected, data values
are transferred directly from the option module to the designated main
memory storage locations. During this period, the CPU can devote its
attention to other tasks. When all data have been thus transferred, the
module notifies the program.

Both the DMA device and the CPU use the system bus to get information
into or out of main memory. Since both need time to "think" between
memory transfers, sharing the bus is usually not a problem. While the
CPU is performing arithmetic or logical operations on data, the DMA
device can use the bus to transfer data to or from memory. Similarly,
while the DMA device is loading data from the external device into its
internal memory, the CPU can use the bus for memory transfers or
device communication. When both want to use the bus at the same
time, a bus arbitration scheme is used so that neither the CPU nor the
DMA device takes over the bus for an extended period of time to the
exclusion of the other. Since the speed at which the bus operates is
typically much faster than the speed at which either the CPU or the
DMA device runs, sharing the bus usually has little impact on overall
system performance. However, if several DMA devices were running
simultaneously, the speed of the bus might become a limiting factor.

DMA operations are highly efficient in that much of the overhead of
the data acquisition process is off-loaded from the CPU. Typically,
very high data acquisition rates are possible. However, modules which
support a DMA mode of operation are significantly more expensive
(by a factor of 2 to 3) than modules which support only PIO modes.
Furthermore, special programming techniques must be used for efficient
DMA operation, particularly when successive blocks of data are to be
acquired continuously.

Realtime I/O Modules 2-11

2.3 Hardware Configuration Of Modules
As described above, a realtime option module has various registers
which, to the program, look like storage locations. Each register is
assigned an address which uniquely identifies that particular register on
a specific module. If a module has several registers, their addresses are
usually contiguous. For example, the addresses of various registers on
an AXV11-C module might be as follows:

Address (octal) Register

176400 AID Control/Status register

176402 AID Buffer register

176404 DIA Buffer register A

176406 DIA Buffer register B

Since a register's address is like a "name" to which it responds, the
address assigned to each register is an intrinsic characteristic of the
module, rather than being determined by the CPU or some other part of
the system. Thus, when you unpack a new option module, the addresses
of the registers are built into the hardware or firmware of the board.

But what if you wanted to put more than one of the same type of module
in your system? W ouldn' t there be some confusion as to which module
was being addressed when a program sent a data value to storage location
176404, for example? There would be, unless you were to first change
the addresses of the registers on one of the modules to eliminate the
conflict.

Virtually all option modules allow you to change the addresses of module
registers to nonstandard values. For modules with more than one
register, changing the address of the first register causes all other register
addresses to change in parallel. Register addresses are changed by
installing or removing certain connections on the board, called jumpers,
which are designed for easy modification. Jumpers are connectors or
wires running between binding posts or wire-wrap terminals. On some
boards, they must be soldered in or cut out using fine wire-cutters. On
other boards, they can be installed or removed using wire-wrap tools or
needle-nosed pliers. The location of the jumpers and the scheme which
equates jumper configuration to register addresses is documented in the
user's manual for any particular module.

2-12 Realtime I/O Modules

In addition to register addresses, many realtime modules have other
features which can be selected or modified by changing jumpers on
the board. Which features are jumper-configurable depends on the type
and model of module. For example, some AID modules have on-board
amplifiers which boost the incoming signal before it is digitized. The gain
of such amplifiers is often determined by the configuration of jumpers.

In cases where a feature might be changed frequently, some manufactur
ers use banks of tiny switches, called DIP-switches, instead of jumpers
to facilitate reconfiguration. The appearance of DIP-switch packs varies
from one manufacturer to another. Figure 2-4 shows how to set three
representative types of DIP-switches.

Figure 2-4: DIP Switch Types

MR·0686·0B15

When selecting a realtime module, it is advisable to determine which
features are jumper configurable, which are programmable, and which

Realtime I/O Modules 2-13

are not modifiable. Modules which have configurable or programmable
features are more adaptable to changing application needs.

2.4 Programming Realtime Option Modules
Up to this point, the description of realtime option modules has focused
on the internal workings of modules and their functional relationship with
other parts of the computer system. With this knowledge in hand (and
additional information about the operational details of specific module
types to be covered in subsequent chapters), the user must address
the question of how to write programs for controlling realtime option
modules. There are several approaches to module programming which
may be viewed as heirarchically related:

1. Direct program manipulation of device registers

2. System service calls to standard device drivers

3. High-level language subroutine calls

4. User-friendly interfaces

The succeeding sections contain an overview of these different ap
proaches to option module programming.

2.4.1 Direct Device Control Routines
The most basic level at which modules can be programmed is by di
rect manipulation of device registers. To accomplish device control at
this level, the programmer must have a detailed understanding of the
architecture and functionality of the module. In addition, a fairly sophis
ticated understanding of overall system architecture and programming
is required, particularly for multitasking and memory-mapped systems
such as MicroVAX/MicroVMS. Direct device control routines are typi
cally written in assembly language, though FORTRAN or BASIC "peek"
and "poke" utilities can be used for loading and reading device registers.

When programming at the direct control level, the user controls the
operation of the module by setting or clearing bits in the CSR, and
loading addresses or data into the other device registers. The sequence
and timing of device operations can be tightly controlled, within the
hardware limits of the module. The user has maximum opportunity to

2-14 Realtime I/O Modules

interleave other processing steps with discrete module 110 steps. Thus,
programming at this level gives the user the greatest degree of flexibility
and, often, speed.

2.4.2 Device Drivers
Every operating system has services for performing device I/O opera
tions. These services can be viewed as an intermediate software level
between a user's program and blocks of code for controlling devices.
For example, a user program nlight contain the FORTRAN statement:

READ(5,lOO) A, B, C

At run time, the request for input is passed to a block of system service
code. The system service in turn passes control to a block of code which
actually performs the console terminal I/O operation by manipulating the
hardware registers of the console device (logical unit 5 by default). This
bottom level of code is called a device driver. The device driver returns
data values and status information to the system service code which then
passes the data back to the user's program. This process is illustrated in
Figure 2-5.

Realtime I/O Modules 2-15

Figure 2-5: Device Driver 1/0

USER PROGRAM

USER PROGRAM

REQUEST FOR INPUT

I
I

I
I

t
INPUT DATA

I
I
I

I
I
I
I

~
M R-06B6-0B12

This scheme has several advantages. First, the system service can process
I/O requests to or from many devices. If the user program had previously
assigned logical unit number 5 to a disk file, the system service would
use the device driver for the disk rather than the console device driver
(transparently to the user).

Second, the system service can coordinate the I/O request with other
things that might be happening in the system. For example, if another
process were using the same disk at the time the request was received,
the system service might place the current request in a queue for later
processing. Finally, the system service can perform various error checks
and take appropriate action if an error condition occurs.

2-16 Realtime 110 Modules

Just as terminals or mass storage devices can be controlled using this
system service/device driver mechanism, realtime 110 modules can be
controlled in a similar fashion. In order to accomplish this, though, the
user must have a device driver for the given 110 option module. Such a
driver would have to conform to all the conventions used by the operating
system service for argument passing, asynchronous operation, and error
handling. Since these conventions are often complex, the writing of
device drivers can be a tedious programming task. Furthermore, there
may be a significant amount of overhead associated with the system
service. That overhead could be damaging to the requirement for
predictable and fast response to realtime events. In exchange for these
difficulties, the system service/device driver mechanism offers enhanced
safety and convenience.

While the job of writing a device driver may be beyond the capability
of many application programmers, drivers are often supplied by the
realtime module vendor. In that case, the user need only determine
whether the realtime performance limitation imposed by the system
service/device driver is too severe for a given application. Performance
information under a variety of conditions is typically supplied by the
vendor to aid the user in making this determination.

2.4.3 Subroutine Libraries
A third programming technique for controlling realtime I/O devices is to
use special-purpose subroutines for performing common, basic realtime
I/O operations. Device control within realtime subroutines can be based
either on direct device control routines or drivers. Such subroutines can
be used as program modules, linked in with the user's main program
and other user-written or canned subroutines.

Vendors of computer systems or realtime option modules usually supply
their customers with a collection of subroutines for performing common
realtime I/O tasks. Ideally, such packaged subroutines are callable
from several programming languages. User-written direct device control
routines are often in the form of a subroutine.

A subroutine call is relatively easy-to-use, since the end-user need un
derstand only the principles and not the details of module operation.
Furthermore, realtime subroutines usually offer high-level control, com
bining many basic operations in a single call. For example, the FORTRAN
call

CALL FASTAD(ICHAN, IRATE, ICOUNT, IBUFFER, NPTS)

Realtime I/O Modules 2-17

might perform clocked A/D conversions, specifying the channel number
(ICHAN), the dock rate (IRATE, ICOUNT), the buffer address into which
the data values were to be written (IBUFFER), and the number of data
points to convert (NPTS). (A full discussion of these concepts is given in
Chapter 3.)

When using vendor-supplied subroutines for perfonning realtime I/O op
erations, the user may find that the performance or functionality offered
in a subroutine package does not match the needs of the application. The
"match" depends on the demands of the application and the cleverness
of the programmer who wrote the subroutines, assuming that the desired
performance/functionality is within the capacity of the computer system
and the option module. If the demands of the application are not met
using available subroutine packages, the user may find it necessary to
write a specialized direct device control routine.

2.4.4 User-Friendly Interfaces

The highest level of realtime device control is through menu- or icon
driven "programless" interfaces. Such interfaces are standalone pro
grams which guide the user through the selection of various realtime
parameter values (for example, sampling rate and number of channels)
and also allow the specification of postacquisition data handling (graphic
display, analysis, and/or storage).

As with subroutine packages, performance and flexibility are traded off
against ease-of-use. Applications which are basically linear in nature
(collect the data, analyze the data, store the data/results) are often
handled very effectively by user-friendly interfaces. Applications which
demand even simple interconnections between multiple realtime events
may be impossible to implement with a canned interface (for example,
" ... when a threshold temperature is reached, turn off the heater ... ").
Here again, the user may find it necessary to fall back to a lower level of
control in order to perform the application.

2-18 Realtime 110 Modules

2.5 Intelligent Instruments
Realtime option modules, as described in the preceding sections, are
used to handle raw experimental data from laboratory devices: analog,
discrete digital, and time-interval data. Built-in microprocessors, which
perform part of the data acquisition/reduction task, are part of many in
telligent instruments. An intelligent device may be wholly self-sufficient.
Once started, it may regulate various operating parameters, acquire the
raw data, analyze the data, and display the results on a CRT or printer.
Many modern chromatographs and spectrophotometers have this degree
of functionality.

When an intelligent instrument is used to perform some part of an
experiment or analytic procedure, it may be desirable to feed its output
directly into a host computer for additional analysis or data management.
Furthermore, an intelligent instrument may require some degree of
external control - to initialize or regulate operational parameters, for
example. In either case, the instrument must be connected to the
host computer by some form of communication link. Commonly used
communication links are serial (EIA) , parallel digital (BCD, binary), and
IEEE-488 (General Purpose Instrument Bus).

In comparison with realtime option modules, intelligent instruments are
generally easier to interface to a computer, since many of the time-critical
operations can be done by the instrument. Furthermore, the communica
tion links most commonly used are reasonably well standardized with re
spect to signal levels and protocols. Thus, intelligent instrument interfac
ing, regardless of the type of communication link used, is fundamentally
different from interfacing using realtime option modules. However, the
serial or parallel signal, like a raw analog or discrete digital signal, must
be brought into the computer through an option module of some kind.
Despite standardization, the connections and protocols can be frustrat
ingly difficult to follow. For these reasons, chapters covering the most
common forms of communication links to intelligent instruments have
been included in this handbook.

Realtime I/O Modules 2-19

Chapter 3
How To Perform Analog Input

It is common practice in the modern laboratory to represent various
physical, chemical, or physiological properties of a system under study
as electrical signals. Usually, the signal is a voltage level which varies
continuously over some range as the real-world quantity that it repre
sents changes. For example, the diagram below shows the relationship
between temperature and the signal produced by an ideal temperature
transducer.

How To Perform Analog Input 3-1

Figure 3-1: Output of an Ideal Temperature Transducer

10

VOLTS

o~ ____________________________ _
a 100

TEMPERATURE
MR-Q686-Q813

The range of the output is 0 to 10 volts. Within that range, each possible
voltage level corresponds uniquely to some precise value of the quantity
it represents (that is, temperature). In this idealized case, a signal level
of 1 volt represents 10 degrees centigrade; 2 volts represents 20 degrees,
and so on. Since the temperature can be any value between 0 and 100
degrees, the signal can take on any value between 0 and 10 volts.

If the temperature followed some varying pattern over a period of time,
for example, an hour, a plot of temperature against time might look
something like Figure 3-2A. A plot of the corresponding signal produced
by the transducer is shown in Figure 3-2B.

The two shapes are identical. An observer might measure the voltage.
Since the pattern of voltage changes accurately represents temperature
variations in the real world, the voltage readings can be converted to
temperatures, provided of course that the algebraic relationship between
temperature and voltage is known. The signal, therefore, provides a
model, or analog, of some real physical property. Hence, signals of this
type are called analog signals.

3-2 How To Perform Analog Input

Figure 3-2: A Time-Varying Analog Signal

TEMPERATURE VOLTS

TIME TIME

MR-0686-0814

3.1 Digital Representation Of Analog Signals
Practically speaking (quantum theory aside), analog signals and the real
world phenomena they represent are continuous in both amplitude and
time, within experimental bounds. That is, an analog voltage can assume
any of an infinite number of possible levels, and can be measured at
any of an infinite number of points in time. Digital computers are only
capable of processing data in discrete form, though. For this reason,
analog-to-digital conversion necessarily involves transformation of the
continuous analog signal to a numeric form which has discrete, finite
resolution in both the amplitude and time dimensions. In the following
sections, the transformation of analog signals to discrete numerical values
will be discussed, first with regard to amplitude, and then with regard to
time.

How To Peljonn Analog Input 3-3

3.1.1 Digital Representation Of Signal Amplitude
For analog signals to be processed by a computer, voltage levels must
first be converted to numbers in a form which the computer can process.
Though numbers can be represented in many ways in digital computers,
AID converters almost universally convert voltages to integer values in
binary form. For example, an AID converter module might convert volt
ages in the range 0 - 10 V to integer values in the range 0 - 4095. In order
to convert those integer values to real-world equivalents, two algebraic re
lationships must be considered: the relationship between the real-world
parameter value and voltage, and the relationship between voltage and
the intermediate numeric values produced by the AID converter. In this
section, the second of these two relationships will be discussed - that
is, the factors which determine how analog voltages are converted to
numeric values.

On the input side, any AID converter accepts only voltages which fall
within a prescribed range. Voltages which fall outside the input range of
the module will be improperly converted and may damage the module.
Common input ranges of AID modules (in volts) are 0 to + 20, 0 to + 10,
o to + 5, -5 to + 5, and -10 to + 10. These ranges can be characterized
by their absolute magnitude (5, 10, or 20 volts) and by their polarity
(unipolar or bipolar). Many AID modules allow you to select both the
absolute range and the polarity of input voltages using jumpers.

On the output side, the converted values also have a restricted range.
The numeric range of the output is determined by the number of binary
digits, or bits, in the converted values. The most common AID converters
encountered in laboratory applications convert voltages to 12-bit binary
numbers. Since the largest positive number that can be expressed as a
12-bit binary number is 4095 (decimal), the numeric precision of a 12-bit
AID converter is said to be 1 part in 4096 or 1:4096 (remember that the
number 0 is valid, too) .. Both 14- and 16- bit AID converters are also
available for UNIBUS and QBUS systems, having numeric precisions of
1:16384 and 1:65536, respectively.

Even if you select an AID module with the highest available numeric
precision, the resolution of the converted values will still be finite. The
implication of this finite resolution is that each discrete digital value
corresponds to a range of analog signal levels. Taking the case of a
12-bit AID converter with an input voltage range of 0 - 10 volts, Table 3-1
shows the relationship between analog signal levels and nominal numeric
representation.

3-4 How To Perform Analog Input

Table 3-1:

All voltages
greater than:

-00

0.00122

0.00366

0.00610

9.99146

9.99390

9.99634

Numeric Representation (example)

but less than
or equal to:

0.00122

0.00366

0.00610

0.00854

9.99390

9.99634

00

are represented
by the number:

0

1

2

3

4093

4094

4095

In this example, the smallest voltage difference which can be resolved
after conversion is 0.00244 volts or 2.44 millivolts. This is called the
voltage resolution of the AID converter. The voltage resolution of an AID
converter is determined by two parameters: the numeric precision of the
converted values and the input voltage range.

The higher the voltage resolution of the AID converter, the more faith
fully small variations in the amplitude of the analog signal are repre
sented. Table 3-2 gives the voltage resolution for various combinations
of absolute input range and numeric precision.

How To Peliol'm Analog Input 3-5

Table 3-2: Voltage Resolution

If the absolute
input range is:

5 volts

10 volts

20 volts

and the numeric resolution
of the AID is:

12-bit - 1: 4096

14-bit - 1:16384

16-bit - 1 :65536

12-bit - 1: 4096

14-bit - 1:16384

16-bit - 1:65536

12-bit - 1: 4096

14-bit - 1:16384

16-bit - 1:65536

the voltage resolution
of the output will be:

1.22 millivolts

305. microvolts

76. microvolts

2.44 millivolts

610. microvolts

153. microvolts

4.88 millivolts

1.22 millivolts

306. microvolts

A final variation on numeric representation of analog voltages applies to
modules configured for bipolar input. Some modules allow you to select
either offset binary or two's complement notation for the digital output.

With offset binary notation, all voltages, whether positive or negative, are
represented as positive integer values. A negative full-scale voltage is
nominally represented by the number O. A positive full-scale voltage is
nominally represented by the number (2**n)-1 , where n is the number
of bits in the converted value. A voltage of 0 is nonlinally represented
by the number (2**(n-1))-1. Thus, the AID converter behaves as though
an offset equal to the positive full-scale voltage has been added to the
input before conversion.

With two's complement notation, positive voltages are represented by
positive integers; negative voltages are represented by negative (two's
complement) integers, and 0 volts is represented by the number O. Binary
offset and two's complement notation for a l2-bit AID converter with an
input range of + 1- lOV is shown in Table 3-3.

3-6 How To Peljorm Analog Input

Table 3-3: Binary Offset and Two's Complement Notation

Binary offset Two's complement
Input voltage notation: notation:

octal decimal octal decimal

10 V 007777 4095 003777 2047

OV 003777 2047 000000 0

-10 V 000000 0 174000 -2048

In either case, an algebraic transform would ordinarily be applied to
the numeric output to convert to physical units (for example, degrees
centigrade). Since the transform can account for the offset (or lack of
one), the choice between offset binary and two's complement output
notation is somewhat arbitrary. Once you have established a convention,
though, you should select AID modules which follow that convention, or
which are jumper-configurable.

3.1.2 Digital Representation Of The Time Dimension
Often, the relevant information about the real-world phenomenon under
study is contained in the pattern of variation of an analog signal over
time, rather than in a single-point value. For example, if a thermocouple
is implanted in the nasal cavity of an experimental animal, the pattern of
change in the the amplitude of the signal over time reflects the animal's
breathing pattern, as successive inhalations and exhalations cool and
warm the probe. In order to extract information about breathing, as
opposed to the instantaneous temperature of the airstream, it is necessary
to have a record of the thermocouple output voltage over time.

Like the amplitude dimension, the time dimension of an analog signal is
continuous and infinitely divisible. That is, within any given interval, the
amplitude of the signal can be measured at an infinite number of points
in time. Since computers can process only discrete data, the continuous
time dimension of the analog signal must be translated into discrete form.
The time dimension of an analog signal can be represented in two ways:

How To PeljOI'1n Analog Input 3-7

implicitly by position in a data array, or explicitly by timestamping each
data value.

With an implicit time dimension, the amplitude of the signal is determined
at known, usually equally-spaced, points in time. To accomplish this,
successive AID conversions are triggered by some form of clock, often
a separate module on the system bus alongside the AID module. The
resulting values are placed in successive Inemory locations, either under
program control as each conversion is triggered, or in blocks of values
by direct memory access (DMA). Subsequently, the discrete time-point
associated with each value can be determined by reference to the ordinal
position of the value in the memory array.

With timestamping, both the numeric amplitude of the signal and a clock
reading is stored for every sampled point. This is ordinarily done
under program control. The data values and clock readings can be
stored in successive pairs of memory locations or in two separate arrays.
Timestamping is particularly useful in situations where conversions are
triggered at irregular intervals by some external event such as a threshold
crossing of a second signal. However, timestamping entails greater
overhead, in terms of both storage requirements and data acquisition
speed. For this reason, you should use timestamping only when an
implicit time dimension does not meet the application requirements.

3.2 Analog Input Modules
All analog input modules have a control/status register (CSR) and a
data buffer register (DBR) which are addressable as word-length storage
locations in the system 110 page. The DBR and some of the bits in the
CSR are read-only. The CSR is used to control the operation of the
module and to pass status information to the program. The DBR is used
to pass digitized data values to the program.

Figure 3-3 shows a simplified block diagram of the ADVll-C. This
module is typical of non-DMA analog input modules; indeed, the internal
operation of this module is identical to the analog input side of the
AXVll-C.

3-8 How To Pe1iorm Analog Input

Figure 3-3: Simplified Block Diagram of the ADV11-C Analog Input
Module

a::

Q
z
z
8
..J « z
ffi
S

16-CHANNEL
MULTIPLEXER

(S-CHANNEL
DIFFERENTIAL)

I--------f

BUFFER
AMPLIFIER

MUXADDRESS

CLOCK IN

EXTERNAL TRIGGER

CONTROL
LOGIC

AID
CONVERTER

The incoming analog signal lines are led first to a multiplexer (MUX)
circuit. One of the 16 signal lines is passed through to the buffer
amplifier. The program selects the MUX channel by setting a bit-field
in the CSR. Jumpers on the module are used to determine whether the
module is configured for single-ended or differential input (see Section
3.3.1). The output of the buffer amplifier, carrying the analog signal
from the selected channel, is led to a programmable gain amplifier. The
program selects the gain factor by setting a bit-field in the CSR.

A conversion is triggered by an input from the clock or external trigger,
or by the setting of a bit in the CSR under program control. When a
conversion is triggered, the control logic signals the sample-and-hold
amplifier (SHA) to clamp the amplified signal. The function of the SHA
is to hold the signal going to the AID converter at the value which is
asserted at the moment the control logic issues the command to perform
a conversion. When the conversion is complete, the control logic sets a
bit in the CSR and, optionally, requests a Q-bus interrupt. Figure 3-4A
shows the bit assignments in the CSR.

How To Pel10rm Analog Input 3-9

a

b

Figure 3-4: ADV11-C Control/Status and Data Buffer Registers

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

170400
(BASE ADDRESS)

, ,
NOT USED MULTIPLEXER

ADDRESS
ERROR NOT USED

INT ENA

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

170402 I
(BASE ADDRESS +2)

'---------y----'
SIGN MSB AID DATA

LSB

(USED FOR 2'g
COMPLEMENT

NOTATION ONLY)

By writing or reading bits in the CSR, the program is able to control
the functioning of the module and obtain certain status information as
follows:

1. Select the trigger source (bits 4-5) or start a conversion immediately
(bit 0).

2. Select the gain factor (bits 2-3); the ADV11-C and AXV11-C are
capable of gains of lX, 2X, 4X, or 8X.

3. Select the channel on which conversion is to be performed (bits 8-11).

4. Detect the completion of the conversion (bit 7).

5. Detect the occurrence of an error in conversion - for example, trying
to start an AID conversion during multiplexer settling time (bit 15).

6. Enable either or both of the above two status conditions (items 4 and
5) to cause a Q-bus interrupt to be generated (bits 6 and 14).

3-10 How To Perform Analog Input

The converted data value is returned in the DBR. The format of the data is
shown in Figure 3-4B. Note that, though the converted data value is only
12 bits in length (for these particular modules), a full word - 16 bits - is
returned to the program. The high-order bits are used for sign extension
if the module is configured for two's complement notation; that is, the
value of bit 11 is replicated in bits 12-15.

So far, we have discussed the properties of analog signals and given an
overview of the process of analog-to-digital conversion. What remains,
of course, is all the practical details of how to capture an analog signal
for the purpose of extracting the desired information. Briefly, the steps
involved in this process are as follows:

• Connecting the input signal to the AID module

• Controlling noise in the analog signal

• Selecting a gain factor

• Selecting a sampling rate

• Selecting a triggering mode

• Writing a program which sets the relevant parameters, initiates data
acquisition, and stores the data for subsequent analysis

At every step in this process, the information content of the signal must
be preserved. As described above, information may be contained in both
the amplitude and time dimensions of the signal. The remainder of this
chapter deals with the various issues you must address to preserve the
information content of the signal.

3.3 How To Connect The Signal Source To The
Option Module

Devices which produce analog signals generally fall into one of two
categories: grounded-source devices or floating-source devices. The way you
connect the signal to an AID module depends on whether the source
is grounded or floating. A floating-source device has no electrical path
to ground; a grounded-source device has an electrical path to ground.
The ground mayor may not be earth ground. That is, a device might
be grounded to a chassis or other structure which is not earth-grounded.

How To Pelfonn Analog Input 3-11

Some devices are grounded through their power cords; others have a
separate grounding wire connected to a known ground. Note that the
distinction between grounded- and floating-source devices is based on
whether the circuit that generates the signal is grounded, not the chassis.
Some devices have separate leads for grounding the chassis and the
circuit.

An analog voltage is always measured as a voltage difference between
two nodes in a circuit. Thus, when an AID module is used to digitize a
voltage signal, both nodes of the signal source must be connected so that
a circuit through the AID module is completed. This can be accomplished
using several input connection schemes:

• Single-ended inputs

• Pseudo-differential inputs

• Differential inputs

3.3.1 Single-Ended Connection
Single-ended analog inputs have one side of the analog source connected
to the AID converter amplifier and the other side connected to ground. A
single-ended input scheme is used when the signal source is grounded.
The 1/ active" node is connected to one of the inputs of the AID module,
and the signal ground of the device is connected to the signal ground
of the module to complete the circuit. If several signals from the same
device are being measured, only one lead for each signal is needed plus
a single lead for connecting the circuit grounds of the device and the AID
module. Hence, this is called single-ended input. Figure 3-5 illustrates
single-ended input.

The benefit of a single-ended input scheme is that you get twice as many
channels as with a differential input scheme. The disadvantage is the loss
of the common mode rejection that is available with a differential scheme
(see Section 3.4.1). Therefore, a single-ended input scheme should be
used only when the following conditions are met:

3-12 How To Perform Analog Input

Figure 3-5: Single-ended Input Diagram

GENERATING DEVICE r---- -,
I I
I V,

I
I
I
L

"

RECEIVING DEVICE r---,
I I

L
________ J'"\"I _____ ----

'-'" VN

• The input level is higher than 1 V.

• Input cable lengths are less than 15 feet long.

MR·5941

The signal source may be located some distance from the computer,
and a voltage difference may oq:ur between the source ground and the
computer ground. This ground voltage difference is included in the signal
received by the AID converter. To decrease this ground difference, plug
the device into an AC receptacle on the same power circuit and as close
as possible to the receptacle providing power to the computer.

3.3.2 Pseudo-Differential Connection
Pseudo-differential analog input is a variation of single-ended input. A
pseudo-differential input scheme can be used with floating-source sig
nals. To implement this input scheme, configure the AID module
jumpers for single-ended input. Then, connect the return sides of all
inputs to the low side of the AID converter's input. Finally, connect
the common return externally to analog ground through a 1 - 10 kOhm
resistor. Figure 3-6 illustrates pseudo-differential input.

How To Perform Analog Input 3-13

Figure 3-6: Pseudo-Differential Input Diagram

FLOATING SOURCE

BATTERY POWERED
SOURCE

1
T
INSTRUMENT WITH
ISOLATION TRANS
FORMER AND
FLOATING SECONDARY

115 VAC

SIGNAL /''\

RETURN ><
\,./

SIGNAL r'\

"" SIGNAL /'\

SIGNAL /' '\

.------,
I CHAN 0

I CHAN 1

CHAN 2

.--_I;....C,;;.;.H.;..:...A.;.;..;N:....:3~ 16-CHAN
AMPH

+

J1-18

I INPUT
~II-----I MUX

I

AMP L _

P1 P3

SEE NOTE

I CHAN 15
_ (P8

pg
P2 I

,f I p~ ~"""'---'
I
I
I
I
I
I
I
I AMP L
I

~ ANALOG GROUND

L.--T--_...J
COMPUTER
GROUND

MR 5940

Pseudo-differential input provides some degree of common-mode noise
rejection (see Section 3.4.1), without sacrificing the number of input
channels required for differential input. A pseudo-differential input
scheme should be used when the following conditions are met:

3-14 How To Perform Analog Input

• The input level is higher than 100 mV.

• Input cable lengths are less than 25 feet long.

3.3.3 Differential Connection
Differential analog inputs have one side of the signal source connected to
the positive input of an AID channel, and the other side connected to
the negative input of the same AID channel. A differential input scheme
is used when the signal source is floating. To complete a circuit, both
the positive and negative sides of the signal source must be connected to
ungrounded inputs of the AID circuit. The voltage which is digitized is
actually the difference between the voltages at each of the nodes (that is,
each with reference to the source's circuit ground). Hence, this is called
differential analog input. Figure 3-7 illustrates differential input.

Figure 3-7: Differential Input Diagram

GENERATING DEVICE

r- - - ""V,=VS+VN-VN

I
I
I
I
I L- _

RECEIVING DEVICE

MR-5942

The voltage at the negative input is subtracted, in analog fashion, from the
voltage at the positive input before digitization. When the AID converter
is configured for a bipolar input range, the order in which the source
leads are connected to the AID inputs affects only the apparent polarity
of the signal. However, when the AID module is configured for a unipolar

How To Perform Al1alog Input 3-15

input range, improper ordering of the source leads causes the signal to
appear out-of-range (usually 0 volts) at all times.

The benefit of a differential input scheme is that noise voltages appearing
at the same time on both sides of the source are rejected by the AID
input amplifier. The disadvantage is that the number of input channels
is reduced to half of what would be available for single-ended or pseudo
differential inputs. A differential input scheme should be used when the
following conditions are met:

• The input level is lower than 100 mV.

• Input cable lengths are more than 25 feet long.

• Low impedance, twisted-pair, shielded cables are used.

3.4 How To Control Noise In Analog Transmission
Noise is any unwanted component present in the data signal. Digital
transmissions generally are less prone to noise problems than ana
log transmissions. Digital transmission levels are relatively high, and
impedances are low. Analog transmissions, however, often require
high precision and may occur at low voltage levels. Moreover, source
impedances on external analog equipment are often relatively high, and
associated circuits display a correspondingly increased susceptibility to
noise pickup.

Noise usually manifests itself as a distortion of the smooth continuity of
the data signal. For example, a data-producing device might display a
signal such as that shown in Figure 3-8A. By the time the signal reaches
the AID module, however, it may resemble the signal shown in Figure
3-8B. It is clear that much of the information in the original signal has
been lost.

In low-level voltage situations, noise can be an important problem, since
the noise voltage level may be a significant percentage of the data voltage
level. In addition, if the signal is being amplified for greater resolution,
the noise is amplified also. For example, a signal such as that shown in
Figure 3-9A might look like the one in Figure 3-9B after it is amplified.

3-16 How To Peljorm Analog Input

Figure 3-8: Analog Signal with Noise Component

A B

TIME TIME

MR-12818

Figure 3-9: Amplified Signal with Noise Component

A B

TIME TIME
MR-12821

The amount of noise introduced into the signal is often related to the
distance the signal travels before it reaches the AID module. A great deal
of noise can be eliminated by keeping cable lengths to a minimum. Other
techniques for reducing various types of noise in analog transmissions are
described in the following sections.

How To Peljonn Analog Input 3-17

3.4.1 Common-Mode Noise
Common-mode noise refers to noise that is present on both the signal
and return terminals of a measuring device such as an AID module.
Common-mode noise may be due to a slight difference in ground
potential between the signal source and the AID module. Whatever the
cause, an AID module with differential input provides a high level of
common-mode rejection; that is, it is capable of subtracting out any signal
component which is present equally on both the signal and the return
lines of the data circuit. This occurs in the following way.

Generally, a data device has two terminals: one positive terminal which
produces the data representative voltage, and one minus or return
terminal which completes this circuit. Some AID converters take as input
only the positive terminal signal, and measure its potential difference to
ground as data (single-ended input). However, other AID modules take
both sides of the data device's signal as input and measure the difference
between their respective voltages. Theoretically, this eliminates any noise
which is present equally on both signals; that is, common-mode rejection
is achieved. For example, if the AID module is connected as shown in
Figure 3-7, any noise present in the environment can be subtracted out.
Figure 3-10 shows how any noise (here represented as two spikes) present
on both signals is subtracted out. The resulting signal represents the true
data more accurately.

3.4.2 Electrostatic Noise

AC voltage sources, such as power lines, lighting, and digital logic com
ponents, can become capacitively coupled to signal leads to a degree di
rectly proportional to the combined areas of the radiating and receiving
surfaces, and inversely proportional to the distance separating the sur
faces. Whether the noise thus coupled to the signal line is objectionable
or not depends on a number of factors:

• A low-level electrostatic source has less influence than a high-level
one.

• A low-impedance circuit is less influenced by a given level of elec
trostatic interference than a high-impedance circuit.

3-18 How To Perform Analog Input

Figure 3-10: Common-mode Rejection

NOISE SPIKES

TIME

INPUT A

INPUT B

RESULTANT AT
ADC (A-B)

M R -0686-082 1

• An application attempting to make precise measurements of a 1-
millivolt signal is more susceptible to electrostatic noise than one
dealing with a I-volt signal in the same noise environment.

The most effective way of reducing electrostatic noise pickup is to
introduce a grounded barrier between the electrostatic source and the
signal wire(s). This is done most conveniently by means of shielded
leads. Note that shielding is most effective when grounded at only
one end, and that it is generally necessary to make such one-sided
connections to avoid ground loops. The shield is connected at both ends
only when it constitutes the only return path to a floating-source device.

How To PeltOI'm Analog Input 3-19

3.4.3 Magnetic Noise
Whenever an electric current passes through a conductor, it generates a
magnetic field concentric with the conductor. The strength of this field
is directly proportional to the magnitude of the current, and inversely
proportional to the distance between the conductor and any reference
point. Electric motors, generators, solenoids, and similar apparatus
generate magnetic fields of considerable strength.

When any portion of an analog signal wire lies in a magnetic field gener
ated by an alternating current, the field induces an opposing alternating
current in the wire. This current flows through the impedances of the
circuits to which the wire is attached, and generates noise voltages that
are superimposed on whatever signal the circuit normally carries.

The type of shielding that is effective against electrostatic noise has
virtually no effect against magnetic noise. The best defense here is the
use of twisted-pair conductors. Twisting replaces the single loop created
by the signal and return line with a series of small loops. The noise
pickup of any given loop in the series tends to be cancelled out by the
opposing pickup of neighboring loops. The net result is a significant
overall reduction in magnetic noise pickup.

Note that both shielding and twisting can be used simultaneously when
both electrostatic and magnetic influences contribute to noise problems.

3.4.4 Crosstalk Noise
Crosstalk occurs when wires carrying unrelated signals lie within close
proximity to one another (this happens when multiwire cable is used
or when groups of wires are bundled together for some distance.) In
such circumstances, the signal in one wire is sometimes coupled by
electrostatic andlor magnetic effects into an adjacent wire, and becomes
mixed with the signal in the adjacent wire. Crosstalk occurs most
frequently when a wire carrying a low-level andlor high-impedance signal
lies close to a wire carrying a high-level andlor low-impedance signal.

Cures for the crosstalk problem are like those for electrostatic and
magnetic pickup: shielding and twisting either the radiating or the
receiving wires-or both, in extreme cases. It is sometimes simpler
to isolate sensitive wires (that is, those carrying low-level andlor high
impedance signals) from other wires in the interfacing connections
particularly from wires driving power-consuming devices such as relays
or lamps.

3-20 How To Perform Analog Input

3.4.5 Multiplexer Noise
All solid-state multiplexers inject a small amount of charge into their input
lines when changing channels. This causes a transient error voltage that
is discharged by the source impedance of the input signal. To minimize
this problem, it is recommended that all analog signal cables be kept as
short as possible. Also, settling errors can be minimized by increasing
the time between conversions.

3.4.6 Residual Noise
All electrical circuits generate some random electrical noise within them
selves. This inherent noise is called residual noise. The statistically sig
nificant effect of residual noise in the AID module should contribute less
than 0.0015% of the full-scale input range to any conversion. Higher
preamplifier gains increase the error due to residual noise.

3.4.7 Signal Averaging
Signal averaging is another approach to reducing the effects of noise.
Essentially, signal averaging involves performing an application many
times and using the average of all the data received as the signal. Signal
averaging is based upon two assumptions:

• The data signal is synchronized with some external event .

• The noise effects are random.

By running an application many times, it is assumed that a large number
of random noise signals cancel each other out. A positive noise compo
nent on one run will cancel out a negative noise component on another
run. Increasing the number of runs increases the likelihood that random
noise will be cancelled out. In fact, the signal-to-noise ratio of the aver
aged signal is improved by a factor equal to the square root of the number
of runs performed.

Signal averaging is often necessary when the amplitude of the noise
component is equal to or greater than the amplitude of the data signal.

How To Pe1101'1n Analog Input 3-21

3.5 How To Select A Gain Factor
Many AID modules have intrinsic amplifiers which can be used to boost
the input signal, if desired. Such amplifiers are functionally similar to
external amplifiers, in that they apply gain to the signal before it reaches
the AID converter. Thus, intrinsic amplifiers can be viewed as dividing
the input range of the module by a constant factor. For example, a
module configured to accept input signals in the range -10 V to + 10
V would appear to have an input range of -1 V to + 1 V if a gain factor of
10 were selected. Various modules provide a wide diversity of intrinsic
gains, some with very limited range for example, 2X, 4X, and 8X), and
others with relatively wide range (for example, lOX, 100X, and 500X).

This section contains a brief description of the operation of fixed- and
programmable-gain on-board amplifiers, and a discussion of the special
c;ase of autoranging preamplifiers.

3.5.1 Fixed- And Programmable-Gain Amplifiers
The gain of an intrinsic amplifier typically can be set in one of two ways:

• With fixed gain modules, the gain factor is selected by setting jumpers
on the module. For multichannel modules, the selected gain factor is
applied to all channels continuously. To change the gain, the jumper
settings must be reconfigured.

• With programmable gain modules, the gain factor is selected by setting
a bit field in the module's CSR. For multichannel modules, the
selected gain factor is applied to all channels until it is changed under
program control.

The principle advantage of intrinsic amplifiers is ease-of-use. If an instru
ment or transducer produced a raw signal which was low in amplitude,
you might be able to avoid the necessity of adding another piece of equip
ment by amplifying the signal right on the AID module. Furthermore,
programmable gain allows you to customize the apparent input range of
the module to match the output characteristics of multiple signal sources.
This can be done even for individual channels in a multichannel scan,
with appropriate software.

3-22 How To Peliorm Analog Input

The principle disadvantage of intrinsic amplifiers is that they reduce the
speed of conversions, since the amplifier must settle before its output
to the AID circuitry is valid. Thus, when a conversion is triggered, the
module waits some prescribed interval for the amplifier to settle before
beginning the conversion. The length of the settling interval is controlled
by on-board circuitry, and is dependent, in part, on the amount of
amplification performed. In general, the more gain you select, the slower
your conversions will run. Naturally, this factor, like the underlying speed
of the AID converter, is also dependent on the design of the module.
The spec sheet of the module should tell you the settling interval at each
selectable gain.

Fixed- or programmable-gain levels should be selected to optimally
match the input level of the analog signal, while not adversely affecting
the speed at which conversions are performed.

3.5.2 Autoranging
Ideally, the optimal gain factor would be selected on a point-by-point
basis. When the signal level was low, gain would be applied; when it
was high, no gain would be applied. This is exactly what is accomplished
using autoranging. Some AID subsystems can operate in a mode wherein
the programmable-gain setting of the AID converter is automatically
adjusted according to the amplitude of the input signal.

For example, suppose that the signal generated by a chromatograph
detector were being digitized using an AID converter with an input range
of 0 - 10 V. The largest peaks in the signal might be on the order of 8 - 9
V. For these peaks, it would be inappropriate to apply any intrinsic gain,
since a gain of even 2X would boost the signal level beyond the input
range of the AID converter. Small peaks, on the other hand, might be
on the order of 0.1 - 0.2 V. For these peaks, the voltage resolution of the
AID converter could be optimized by applying a gain of SOX.

Let's examine this case in more detail. Suppose further that the AID
module used a l6-bit converter and could apply gains of IX, 4X, l6X,
and 64X. Table 3-4 shows the optimal gain factor for different signal
level ranges and the corresponding voltage resolution of the converted
values.

How To Perform Analog Input 3-23

Table 3-4: Programmable Gain

For signals in the optimal gain yielding a voltage
the range: setting would be: resolution of:

0.000 - 0.156 V 64X 2.4 microvolts

0.156 - 0.624 V 16X 8.6 microvolts

1.250 - 2.500 V 4X 38.4 microvolts

2.500 - 10.00 V lX 153.6 microvolts

An autoranging preamplifier automatically sets the optimal gain factor
depending on the amplitude of the signal at each sample time. In
order to properly interpret the converted values, the system needs
to know what gain factor was applied for each sample point. One
way to accomplish this is by passing an extra byte containing the gain
information to the program. Alternatively, some 12- or 14-bit converters
pass gain information to the program in the high-order bits of each data
value. In either case, when the binary values from the AID converter
are transformed to voltage, the gain information must be decoded and
factored into the transfer function.

Chromatography is typical of a class of applications in which autoranging
is clearly very useful. The dynamic range of the signals is usually very
broad. Low-amplitude peaks near the signal baseline are often of equal
interest to high-amplitude peaks near the top of the amplitude range.
The amplitude resolution of the signal in the low range must be great
enough to adequately characterize these low-amplitude peaks (latency,
peak amplitude, integral, etc.). Figure 3-11 illustrates how autoranging
affects the digitization of chromatograph detector voltage.

The advantage of using an autoranging preamplifier is that the effective
input range of the AID module is automatically adjusted to maximize
the voltage resolution of the system. This can be desirable if the signal
contains both high- and low-amplitude components, or if the amplitude
range of the signal is unspecified.

As with programmable gain, autoranging slows the speed at which con
versions can be performed, because the amplifier settling time becomes
a factor when gain is applied. Furthermore, auto ranging is only useful

3-24 How To Perform Analog Input

w
Cl
:::>
t
::::i
c..
~ «
...J
«
z
(!)

en

Figure 3-11: Effect of Autoranging

GAIN=2X GAIN=lX GAIN=2X

TIME
MR-0786-0833

where the signal has a true zero baseline. If the signal has a DC off
set or if it exhibits DC drift (as is often the case with chromatograph
detector voltages), the "low-amplitude" components of the signal may
fall outside the range within which gain can be automatically applied.
Finally, autoranging imposes the minor programming constraint that the
gain factor applied to each data point must be decoded and applied to
any internal numeric conversion formula. For user-written software, this
is trivial, but it may preclude the use of an autoranging preamplifier with
canned software products not specifically designed with auto ranging in
mind.

How To Pelform Analog Input 3-25

3.6 How To Select A Sampling Rate
As described above (Section 3.1.2), information is often contained in
the pattern of changes in signal amplitude over time. To capture these
temporal patterns, the signal is typically sampled at discrete, uniform
time intervals under the control of a realtime clock. For the digitized
signal to accurately represent this temporal information, the sampling
rate must be greater than the rate at which signif~cant changes in the
amplitude of the analog signal occur. This is illustrated in Figures 3-12 -
3-14.

Figure 3-12: Discrete Time-Interval Sampling (Case 1)

"1,-----· · ._e e

TIME
M A-OGS6-0S01

The dots represent the digitized data values. Thus, the computer
"knows" only those values. The behavior of the signal between sam
ple times is unknown. In fact, the same sample values might have been
generated by the signal shown in Figure 3-13.

In order to accurately represent the signal shown in Figure 3-13, a higher
sampling rate is required, as shown in Figure 3-14.

3-26 How To Perform Analog Input

Figure 3-13: Discrete Time-Interval Sampling (Case 2)

• • • • r 7
.
5

8 7.5 6 1 VOLTS"...

L-___ 4~ ___ ~ ___ ~ ___ ~ ___ ~___ ~ ___ • ___________________________ ____

TIME
MR-Q686-Q8Q2

Figure 3-14: Discrete Time-Interval Sampling (Case 3)

VOL~~ .:. .
•• ••••• • ••••••• •• • •

• •• • • •
TIME

M R-Q686-Q8Q3

The optimal sampling rate is the lowest rate which still preserves the
information content of the signal. Naturally, you can insure that as much
information as possible is retained by always sampling at the highest rate
of which the computer system is capable. In most cases, though, this only
strains the resources of the system, and does not add meaningfully to the
information content of the digitized signal. In the following sections, the
factors which determine the optimal sampling rate are discussed.

How you determine the optimal sampling rate depends on how you
intend to analyze the data. Time-varying signals can be analyzed in either
the time-domain or the frequency-domain.

How To Peljorm Analog Input 3-27

3.6.1 Time-Domain Analyses
In time-domain analyses, one is typically concerned with questions like
"When did a relative maximum occur?," "What was the amplitude at
the maximum?," or "What was the duration of the event?" To insure
that these sorts of information are preserved in a digitized signal, you
must select a sampling rate that provides adequate resolution in the time
domain. How much resolution is required depends on what information
you are trying to extract.

Consider, for example, the signal shown in Figure 3-15. The width of
each pulse is 10 mSec at its base. By digitizing the signal at any sampling
rate greater than 100 Hz, you could be certain that at least one data point
for each pulse was above the baseline. If the goal of your analysis were
to detect simply the presence of voltage transients, a sampling rate of,
say, 110 Hz would suffice. You would be assured of detecting any pulse.

Figure 3-15: Example of a Signal for Time-Domain Analysis

10 MSEC

TIME

If your goal were to count peaks, you would have to set the sampling rate
high enough so that a relative maximum would be apparent for each peak.
Since there is no overlap of peaks in the example shown, a sampling rate
of 200 Hz would suffice to insure that there would be a relative maximum
in the digitized data for each peak in the analog signal.

3-28 How To Pe1101'm Analog Input

If your goal were to determine the time at which each peak occured (peak
latency) the sampling rate should be set according to the required degree
of accuracy. At a sampling rate of 500 Hz, the accuracy would be + /- 1
mSec. The general formula for resolution is:

latency resolution = + /- 1I(2R)

where R is the sampling rate in Hz.

3.6.2 Frequency-Domain Analyses
Many types of frequency-domain analysis are based on Fourier analysis.
The fundamental principle of Fourier analysis is that any signal can be
decomposed into sinusoidal components, each of which is characterized
by its frequency, amplitude, and phase. When the component sinusoids
are algebraically summed, the original waveform is reproduced. If the
signal consists of discrete time samples, as is the case with digitized
data, Fourier theory states that the signal can be characterized by N/2
sinusoidal components, where N is the number of sample points.

Take, for example, the case of a signal digitized at a sampling rate of 100
Hz for 1 second (Hz = samples/sec). By applying the Fourier transform,
the signal could be decomposed into 50 sinusoids with periods which
were integral dividends of the total sampling interval - 1 second. That
is, the sinusoids would have periods of 111, 112, 113, .,. 1149, and 1150
seconds. Each of these frequency components would have an associated
amplitude and phase, The sum of all 50 components would equal the
original signal. The highest of these frequency components, 50 Hz in
this case, is called the Nyquist frequency.

Stated differently, the highest frequency component which can be de
rived from the Fourier transform of a digitized signal is N/2P Hz, where
P is the total sample interval and N is the number of sample points. This
implies that, if you want to use the Fourier transform to evaluate the fre
quency content of a signal, THE SAMPLING RATE MUST BE AT LEAST
TWICE AS FAST AS THE HIGHEST FREQUENCY OF INTEREST IN
THE SIGNAL. If you selected too Iowa sampling rate, the Fourier trans
form of the digitized signal would not contain the information you wanted
to extract. Moreover, if the raw signal contained frequency components
above the Nyquist frequency, those components would be improperly
transformed by virtue of a phenomenon called "aliasing."

How To Peljonn Analog Input 3-29

Figure 3-16 shows the effect of aliasing on digitization of a hypothetical
sinusoidal signal. The raw signal is shown as a solid line. In this example,
the frequency of the signal is 80 Hz (16.7 mSec period), and the sampling
rate is 100 Hz (10.0 mSec sampling interval), yielding a Nyquist frequency
of 50 Hz.

Figure 3-16: The Phenomenon of Aliasing

- TRUE SIGNAL

---- FALSE COMPONENT

SAMPLING INTERVAL = t n-tn_1 = 10 MSEC

SAMPLE TIME

The sampled data points are equally well fit by a 30 Hz sinusoid, shown
as a dotted line. The Fourier transform of the sampled data would
show a power peak at 30 Hz when, in fact, no such component was
present in the raw signal. To avoid this problem, you must insure that
the Nyquist frequency, determined by the sampling rate, is higher than
any major frequency components of the raw signal. If the signal contains
frequency components above the Nyquist frequency which are not of any
experimental interest (Le., noise), you should either raise the sampling
rate to prevent aliasing, or filter those components out of the analog
signal prior to digitizing.

3-30 How To Perform Analog Input

Another constraint of many Fourier transform algorithms is that the
number of data points must be an integral power of 2; 256, 512, 1024,
etc. Though this limitation does not explicitly constrain the sampling rate,
you should consider its implications. If you wanted to achieve a Nyquist
frequency of, say, 500 Hz, you would set the sampling rate at 1000 Hz. In
order to conform to the constraint on sample size, you should then collect
some number of data points that was an integral power of 2, say 2048.
That means that your total sample interval would be 2.048 seconds. When
you applied the Fourier transform to those data, the frequencies of the
component sinusoids would be 112.048, 2/2.048, 3/2.048, ... 1023/2.048,
and 1024/2.048 Hz. It might have been better to select a sampling rate of
1024 Hz, yielding a Nyquist frequency of 512 Hz. You could then meet
the constraint on numbers of data points by collecting data for 2 seconds,
and the Fourier transform would yield frequency components of 112, 2/2,
3/2, 4/2, ... 1023/2, and 1024/2 Hz. Depending on how you intend to
make use of the output of the Fourier transform, it can be desirable to
select a sampling rate to yield frequency components at intervals which
are simple fractions of cycles-per-second.

3.7 How To Select A Trigger Mode
In order for digitized data to be meaningfully interpreted, the sampling
of the analog signal must be synchronized either with some external
event or with a timebase. In some cases, both types of synchronization
are required. For example, in physiology, evoked potentials might be
studied by digitizing the electrical signal coming from a nerve in the arm
at repeated 100 J.lSec intervals following the application of a mild shock
to the hand. Each AID conversion would be synchronized with a 10
kHz timebase while the timebase itself would be synchronized with the
onset of the shock. This process of synchronization is called triggering.
Unfortunately, the term "trigger" is used somewhat loosely to designate
several kinds of events and operations. Before proceeding, then, several
basic concepts will be defined.

How To Pelform Analog Input 3-31

3.7.1 Triggers And Gates
A trigger is an event or signal which causes some sequence of operations
to be initiated. Although trigger signals are often pulses of some finite
duration, conceptually they can be viewed as level transitions or edges.
That is, the duration of a trigger signal is of no interest; only its onset
is meaningful. This is in contrast to the concept of a gate, which is a
signal whose level controls the passage or blockage of trigger signals.
The relationship between trigger and gate signals is illustrated in Figure
3-17.

Figure 3-17: Triggers and Gates

TRIGGER:

GATE:

TRIGGER + GATE:

M R-OGSG-OS' 0

Both trigger and gate signals can originate either internally or externally
with respect to the computer system. Internal trigger or gate signals could
come from a realtime clock module, or be generated by software (that is,
by the setting or clearing of bits in the device's control/status register).
External trigger or gate signals might be derived from switch closures or
sync pulses generated by control logic, oscilloscopes, and the like.

3-32 How To Perform Analog Input

3.7.2 Timebase Triggering
Discrete time-interval sampling, as discussed in Section 3.1.2., involves
triggering AID conversions at repeated, constant intervals. Time intervals
can be generated by either an external oscillator of some kind or a
realtime clock module. Thus, the output of the clock or oscillator serves
as the trigger signal for AID conversions. Each clock pulse triggers a
single sample. The clock or oscillator signal can be led to the AID module
via connectors on the outer edge of the modules or, in the case of a
clock residing on the system bus, via a bus rail. As described in the
preceding section, the clock pulses can be gated by another signal, or
through software.

But what controls the clock? How is its operation synchronized with
external events? The answer is that realtime clocks and oscillators can, in
turn, be controlled by trigger and gate signals. At this point, it becomes
important to discriminate between AID trigger events and clock trigger
events. Like AID triggers and gates, clock triggers and gates can originate
either internally or externally to the computer system.

3.7.3 Common Trigger Modes And When To Use Them

Internal and external gates, triggers, and clocks can be put together in
an astonishing number of configurations. In the following paragraphs,
brief descriptions of some of the most common of these combinations
are given. For the sake of clarity, it is assumed that only one channel is
to be sampled. Triggering of multichannel scans is described in Section
3.7.4.

Software triggering is the simplest form of AID triggering. In this mode,
a single AID conversion is initiated by setting the appropriate bits in
the AID CSR register. Upon completion of the conversion, the single
data value is available in the buffer register of the AID module. The
software sequence for initiating the conversion can be synchronized with
the system clock or with a command entered at the console. This mode is
useful when only very loose synchronization is called for and only a single
data value is needed. Software triggering might be used, for example, to
obtain a temperature reading every five minutes, or periodically at the
operator's discretion.

How To Peljorm Analog Input 3-33

External triggering is like software triggering in that a single sample is
taken on each trigger. In this mode, however, the trigger signal is
generated by some external event - for example, the interruption of a
photobeam. The latency between the onset of the trigger signal and the
time at which the AID conversion begins is typically very short and highly
reproducible, since triggering is handled completely in hardware by the
AID module. Note, though, that the rate at which multiple externally
triggered conversions can be handled by the system is dependent on how
fast the data can be moved into memory, either under program control
or via DMA. This mode of triggering is used where tight synchronization
of AID sampling with an unpredictable external event is desired. It might
be used, for example, in measuring the weight or albedo of parts moving
through an assembly line.

Triggered timebase triggering differs from the preceding two modes in that
the AID conversions are triggered by the output of a clock, either internal
or external. The clock, in turn, is triggered by some external signal.
This mode of operation is analogous to the triggered sweep mode of
an oscilloscope. The external trigger event effectively starts a series of
AID conversions, each of which is triggered by a clock output pulse.
Commonly, clock output signals continue to trigger AID conversions until
either a second clock trigger event shuts off the clock or a predetermined
number of conversions have been performed.

In the latter case, the total sampling interval (that is, the time interval
which encompasses all AID samples) can be determined by multiplying
the clock interval by the number of samples. This mode of triggering
is used when a "time-sweep" of data, synchronized with some external
event, is desired. As described in the preceding sections, time-sweeps of
data are used when information is contained in the temporal variations
of the signal, rather than in the instantaneous signal level. For example,
in an automobile crash test, clocked AID conversions might be triggered
by the breaking of a photobeam several feet from the crash wall.

It should be noted that many clock modules do not produce the first
output pulse until one clock interval after the occurrence of the trigger
event. This is illustrated in Figure 3-18.

3-34 How To Peljorm Analog Input

Figure 3-18: Triggered Timebase Triggering

CLOCK TRIGGER: -.fl'---_____________ _
CLOCK INTERVALS:

CLOCK OUTPUT:

M R -0686 -0809

If you use a clock module which has this feature, the first AID conversion
in a time-sweep will not be triggered at the time of the clock trigger, but
rather at a latency of one clock interval. In most applications, this offset
poses no problem if it is properly accounted for in subsequent analyses.
If your application requires that the first AID conversion be triggered
simultaneously with the triggering of the clock, special circuitry may be
required, as illustrated schematically in Figure 3-19.

Figure 3-19: Alternative AID Triggering Circuit

CLOCK
TRIGGER CLOCK

MODULE

CLOCK
OUTPUT

AID
MODULE

MR-0686-0816

How To Peljorm Analog Input 3-35

Gated timebase triggering can be viewed as a variant of triggered timebase
triggering. As above, each AID conversion is triggered by the output
of a clock which is synchronized with an external event. In this mode,
however, the external event is used as a gate, rather than as a trigger.
Thus, the clock begins generating AID trigger signals when its gate signal
is asserted and continues to run until the gate signal is deasserted. The
underlying clock output can be free-running, or it can be synchronized
with the onset of the gate signal. In the free-running case, the latency
from the assertion of the gate signal to the occurrence of the first AID
trigger is unknown, though it is never more than one clock interval. In
the synchronized case, the latency from the assertion of the gate signal
to the first AID trigger is equal to one clock interval.

This triggering mode is used when the length, as well as the onset of the
sampling interval is to be controlled externally. For example, in liquid
chromatography, it is necessary to sample data on a constant timebase
for the entire period that the pump is on. However, the time required
to elute all the analytes of interest may vary from one run to the next.
By gating clock output with the pump control signaC the desired result
is obtained. This mode of triggering can be used to synchronize an AID
time-sweep with an oscilloscope trace. By using the oscilloscope gate
output to gate the AID timebase, the total sampling interval can adjust
automatically to any changes in the oscilloscope's timebase.

Triggered timebase triggering with prestimulus sampling is used to perform
clocked AID sampling in some period prior to the occurrence of a
trigger event. Obviously, to accomplish this, AID sampling must be
continuously ongoing before the trigger event occurs. Data are stored
in a circular buffer, either on the AID board or in system memory.
When the trigger event occurs, a pointer to the current location within
the circular buffer is saved, and data acquisition continues uninterrupted.
Subsequently, data collected in advance of the pointer can be taken from
the circular buffer and stored, along with data following the pointer, if
desired.

This mode of triggering is used when it is necessary to collect data prior
to the occurrence of some uncontrollable event. For example, the mem
brane potential of a neuron prior to the occurrence of spontaneous spikes
could be studied using this triggering mode. The clock trigger could be
derived from the spike, and data acquired for several milliseconds prior
to spike onset.

3-36 How To Perform Analog Input

Note that this triggering mode imposes considerable overhead on the
system, due to the complicated buffer managelnent scheme required.
This not only slows down the system, but requires additional program
ming effort as well. Thus, this triggering mode should be avoided in
favor of more direct modes, where possible. If the trigger event can be
controlled by the experimenter, it may be possible to implement a circuit
which generates a clock trigger signal prior to the desired synchronizing
event. In the example given above, it might be possible to generate a
clock trigger, followed at some latency by an electrical stimulus to the
neuron which caused it to fire. Though this would be much better for
AID triggering, the spontaneous nature of the neural firings would be
lost.

3.7.4 Multichannel Scanning
Sampling multiple channels on a single trigger is called scanning. Scans
of multiple channels can be triggered in all of the modes described
above. Operationally, the only difference is that several AID conversions,
rather than only one, are performed following each AID trigger. Data
values from all channels sampled on a single trigger are usually, though
not always, treated as having been sampled simultaneously (or nearly
so). That is, there is usually an intent to characterize or analyze the
temporal correlation between activity on the different channels, either
explicitly or implicitly. Some AID modules, particularly DMA modules,
have provision for specifying how many and which channels will be
sampled following each AID trigger. For boards which do not have such
a feature, channel scanning must be implemented in software. In either
case, multiple channels sampled on a single trigger are not sampled truly
simultaneously unless the AID board has sample-and-hold circuitry for
each input channel.

The difference in sampling times between channels is called skew. When
a trigger event occurs, each channel is sampled in sequence at the
maximum rate of which the AID converter is capable. For example, if
a 50 kHz AID board were used to scan 3 channels, the first channel
would be sampled at the time of the AID trigger event, the second
channel would be sampled 200 J,lSecs later, and the third channel would
be sampled 400 J,lSecs after the trigger. In most applications, skew is
either inconsequentially small or else it can be accounted for in analysis.
For example, if four analog signals were being sampled at a rate of 100
Hz with a skew of 200 J,lSecs, the maximum channel skew (600 J,lSecs)
would be 6% of the time base interval. If this degree of inaccuracy were
unacceptable, sample-and-hold circuitry would be called for.

How To Perform Analog Input 3-37

inaccur,acy were unacceptable, sample-and-hold circuitry would be called
for.

The overall rate at which an AID module can function is dependent on
the number of channels being scanned, since the AID converter digitizes
only one channel at a time (even if per-channel sample-and-hold circuitry
is used). For exanlple, an AID module rated at 50 kHz can scan 5 channels
at a rate of 10 kHz, theoretically. The speed of the timebase multiplied
by the number of channels scanned is called the aggregate sampling rate.
In selecting an AID module, it is important to bear in mind that the
rated speed of the board is the maximunl aggregate salnpling rate for
multichannel scanning.

3-38 How To Perform Analog Input

Chapter 4
How To Perform Analog Output

The problem of producing or controlling analog voltage levels with a
digital computer is, in many respects, similar to that of converting analog
signals to digital values. Many of the same concepts apply, such as the
discrete nature of the signal in both the amplitude and time dimensions,
numeric representation of voltage levels, and module configuration for
signal range and polarity. If you have not read the chapter on analog
input, you should do so before reading this chapter.

4.1 Analog Output Modules
Analog output modules differ from analog input modules in one funda
mental respect - the channels are not multiplexed. As described in the
preceding chapter, the following sequence of steps is performed to read
from one channel on an analog input module:

1. The desired channel number is placed in the appropriate bit-field of
the CSR of the AID module.

2. A conversion on that channel is started by setting the GO bit in the
CSR or by the occurrence of a trigger event.

3. When the conversion is complete, the program reads the converted
data value from the module's single AID buffer register.

How To Pe1fol'm A11alog Output 4-1

With multichannel D/A modules, each channel has a dedicated buffer
register. To output an analog voltage on any given channel, the program
simply loads the buffer register for that channel with the desired digital
value. (For DMA modules, the same principle holds, but the output
buffer registers are loaded directly from memory by the module's DMA
controller.) Each output buffer register, in turn, is "hard-wired" to a
dedicated D/A converter.

The reason for this difference between analog input and output modules
is clear when you consider the nature of the two types of conversion. On
input, when a data value is requested, the voltage on the selected channel
is latched before conversion. The converted value represents the voltage
level on that channel at a single moment in time. However, on output,
the converted value (that is, the voltage) is meant to remain asserted until
the program changes it - possibly indefinitely. This can only be achieved
if the digital value to be converted remains valid for the entire duration
of the desired output. Hence, each analog output channel must have its
own dedicated buffer register-D/A converter pair.

An important side effect of this arrangement is that the speed of conver
sion in an analog output module is not limited by multiplexer switching
or settling time. Once the buffer register is loaded, the latency to the ap
pearance of a valid voltage on the associated output line is limited only
by the speed of the D/A circuit. This is typically very fast, relative to the
time required to perform an analog input operation. Note, though, that it
is NOT equivalent to the maximum rate at which you can load the buffer
register with new values. The speed of operation of a D/A converter is
typically expressed in terms of the tinle required for the voltage output to
reach 99.9% of the final level for a full-scale output change. For example,
the AA Vll-D is rated at a settling time of 5 microseconds for a full-scale
step of 10 volts. The settling time for a 100-mvolt step is 1 microsecond.
Thus, the AAVII-D output can theoretically be driven at 200 kHz with
large voltage steps and at approximately 1 MHz with small voltage steps.

Since analog output is intrinsically less complicated than analog input -
no gain is applied, no multiplexing is performed - some analog output
modules have no control/status register. One of the functions of the
CSR on an analog input module is triggering. Analog output on modules
which lack a CSR is "triggered" by simply loading the appropriate output
register. Analog output modules with fuller functionality, particularly
DMA modules such as the AAVII-D, have a CSR through which support
for an external trigger is provided. Modules which support external

4-2 How To Peljorm Analog Output

triggering provide mechanisms for the program to detect the occurrence
of a trigger, either via a status bit in the CSR or via interrupts.

In addition to the analog output channels, some analog output modules
provide several digital output lines which can be used to synchronize
the operation of an external device with the analog output module. For
example, the AAVII-C and AAVII-D modules have four such lines. One
important application for these lines is to control the ancillary functions
of an oscilloscope - blank, unblank, erase, and intensity (z-axis). On the
AAVII-D these bits are controlled by the program through a bit-field in
the CSR. On the AAVII-C, they are controlled through the low-order 4
bits of one of the output buffer registers.

4.2 How To Connect The Option Module To The
External Device

Analog output voltages and digital control signals (if present) leave the
module via an edge connector on the top of the board. Cabinet kits
are available for most modules to lead the signal lines to a bulkhead
connector. Each analog output line has an associated return line for
connecting the signal to devices requiring differential input. For single
ended output, connect the return lines to circuit ground on the external
device. DO NOT strap unused analog output lines to circuit ground, as
this may overload the D/A converter circuits.

4.3 How To Select A Trigger Mode
Any of the triggering modes described in Section 3.5.3 can be used
on analog output, with the exception of triggered timebase triggering
with pre stimulus sampling. On modules which have an external trigger
control, a clock output pulse can be strapped to the external trigger
input to initiate D/A conversion on clock overflow without program
intervention. In this case, the output buffer must be loaded with the
desired value prior to each clock pulse. Modules which do not have
an external trigger input must be "triggered" under software control
by loading a value into the appropriate output buffer for immediate
conversion. In this case, synchronization of analog output with an
external event or timebase must be accomplished by polling or using
interrupts generated by another device, such as a clock/counter module.

How To Peljorm Analog Output 4-3

Commonly, DMA analog output modules support external triggering,
while PIO modules do not. This allows a DMA module to per
form timebase-driven analog output without program intervention. The
AAVll-D also allows the user to perform 2-channel DMA output on ex
ternal trigger. The data values from memory are output on the two chan
nels alternately, one pair of values per trigger event. When operating in
this mode, the user program must interleave the data values for the two
channels in memory to ensure proper operation.

4-4 How To Perform Analog Output

Chapter 5
How To Perform Digital 1/0

Digital signals are used to represent information that is binary in nature.
Examples of binary information are switch position (open or closed),
indicator light status (on or off), and the status of individual bits in
a binary data word (set or clear). Like analog signals, digital signals
represent information in the form of voltage levels. However, only
two discrete voltage levels are needed to represent each unit of binary
information. In contrast, analog signals can assunle any voltage level
within SOlne finite range.

In the most primitive sense, digital information can be represented by
any two voltage levels, as long as the two levels are discriminably differ
ent. In practice, digital information is represented by certain conventional
voltage levels. These conventions define not only the voltage levels cor
responding to the on and off states, but other characteristics of the elec
trical circuits used to produce and sense the voltages as well. Common
digital conventions are transistor-transistor logic (TTL), emitter-coupled
logic (ECL), and CMOS logic. Of these, TTL is by far the most widely
used for digital I/O modules. In the remainder of this chapter, assume
that the digital signals discussed are TTL signals, except where otherwise
noted.

With TTL, signal levels between 0.0 (ground) and + 0.8 volts are consid
ered "low" and signal levels between + 2.4 and + 4.5 volts are consid
ered "high." Some devices can accommodate signal levels outside this
range, for example, interpreting any signal greater than + 2.0 volts to be

How To Peljorm Digital I/O 5-1

high. In general, though, you should avoid using signal levels outside
the standard TTL ranges, if possible.

Though TTL-low and TTL-high levels are reasonably standardized, their
interpretation is not. Some devices interpret TTL-high levels as signalling
an active or asserted state, while others interpret TTL-low levels as as
serted. These interpretations are called positive- and negative-TTL logic,
respectively. Obviously, the informational meaning of a TTL level de
pends on whether the device uses positive or negative logic. In most
cases, troublesome differences between devices in TTL logic polarity can
be accommodated by appropriate program logic. In some cases, how
ever, it may be necessary to build external circuitry to invert the signal
level. In any case, you should be aware of the logic polarity of any device
which uses TTL logic.

5.1 Digital I/O Modules
Like other types of modules, digital 110 modules have one or more
control/status registers and two or more data buffer registers which
appear as storage locations in the computer's 110 page. At a minimum,
there is one control/status register, one data buffer register for input of
data from external devices, and one data buffer register for output of
data. DMA modules also have registers for controlling direct-memory
access transmissions. On the external side of the module, there are
minimally 16 input data lines, 16 output data lines, and 2 handshake
lines for synchronizing data transmissions in each direction (for a total
of 4 handshake lines).

The operation of digital 110 modules differs widely among module types.
For example, the DR11-C has little more than the minimal functionality
described in the preceding paragraph. The DRV11-J has four 16-bit wide
ports, each of which can be configured for either input or output. Both
these modules support programmed 110 only. The DRVI1-WA is a
DMA module which has two 16-bit wide ports, one for input and one
for output. In addition to the minimal handshake lines, the DRV11-WA
has 6 additional device synchronization lines (3 input and 3 output) for
implementing user-defined functions.

In the laboratory, two major classes of applications for digital signals are
found:

5-2 How To Pel10rm Digital I/O

• The term discrete digital is used to describe the use of digital logic
levels to control or detect relatively independent events.

• The term parallel digital is used to describe the use of digital logic
levels to transmit formatted data between two devices.

The use of TTL signals for solenoid control is an example of discrete
digital I/O. For example, 16 digital output lines might be connected to
individual solenoid drivers. Which solenoids were thrown and which
were open at any time would depend on the state (TTL-high or TTL-low)
of each of the 16 signal lines. The state of any given line and its associated
solenoid might be changed asynchronously of the other lines.

Parallel digital I/O is used for formatted data transfers. The major types of
formatted data are 8-bit binary, 16-bit binary, and binary-coded decimal
(BCD). With formatted data, information is contained in the pattern of
TTL-low and TTL-high levels across several lines, rather than in the state
of each individual line . Changes in TTL levels occur synchronously across
all the lines carrying the formatted data.

The distinction between discrete and parallel digital I/O has important
consequences for the programmer. Discrete digital I/O is usually per
formed using programmed I/O (PIO), whereas parallel digital I/O of
ten uses direct memory access (DMA). Discrete digital data is often
II masked" so that only certain lines are controlled or tested at anyone
time, whereas parallel digital data is handled in full bytes or words.
Finally, discrete digital I/O is usually event- or timebase-driven, whereas
parallel digital I/O involves some form of handshaking protocol for de
vice synchronization.

These differences notwithstanding, many factors regarding signal condi
tioning, cabling, and so forth are common to both discrete and parallel
digital I/O. These common factors are discussed in Sections 5.2 and 5.3.
Operational and programming considerations unique to each type of dig
ital I/O are discussed in Sections 5.4 (discrete) and 5.5 (parallel).

How To Pel/arm Digital I/O 5-3

5.2 How To Condition Digital Signals
In this section, the electrical properties of TTL circuits are described in
more detail. TTL conventions constitute a fairly complete definition of
signal levels and the properties of circuits for producing and sensing the
signals. Devices which use standard TTL signals often can be connected
directly to a digital 110 module without the need for any additional signal
conditioning circuitry. If the "device" is a switch, the position of which
must be sensed by the program, the user must generate the signal by
implementing a simple circuit. If the device is a solenoid, additional
circuitry may be needed to convert the TTL signal from the digital 110
module into a higher power signal.

5.2.1 Properties Of TTL Circuits
Any TTL device or circuit, including a port on a digital 110 module,
functions as either a source (transmitter) or as a receiver of TTL signals.
Some circuits can function as both, in the sense that either the transmitter
or the receiver portion of the circuit can be active at any given time. For
example, the ports of the DRVII-J module may be configured as either
output (transmitter) or input (receiver) ports, depending on the setting of
certain bits in the device's CSR.

Figure 5-1A shows a simple TTL transmitter circuit. The transistor can
be thought of as loosely equivalent to a mechanical switch, as shown in
Figure 5-1B. Changing the current applied at the input of the transistor
changes the impedance (resistance) of the path between Vcc and ground.
When the impedance of the transistor is very low, the output is effectively
tied to ground (as though the switch in 5-1B was closed), and the circuit
transmits a TTL-low signal. When the impedance of the transistor is
high, the output is effectively tied to Vcc through the resistor (as though
the path to ground was broken by opening the switch), and the output
transmits a TTL-high signal.

5-4 How To Peljorm Digital I/O

Figure 5-1: Transistor-Transistor Logic (TTL) Circuit

Vee = +5 V

OUTPUT

INPUT

+5V

b
8 1

MR-0686-0817

A TTL receiver circuit can look very much like the transmitter circuit
shown in Figure 5-1A, except that the definitions of the input and output
lines are reversed.

TTL transmitters and receivers are well defined with respect to certain
circuit properties. The TTL convention defines not only the voltage levels
associated with the high and low states, but also the amount of current
that flows in each state. A receiver circuit which draws 40 fJ,A of current
from the transmitter when its input is high, and which delivers 1.6 rnA
of current to ground through the transmitter when its input is low, is said
to constitute one TTL unit load. TTL transmitter circuits are rated in terms
of the number of unit loads they can drive. If more than one receiver is
connected to a single transmitter, the combined (added) unit loads of all
the receivers must not exceed the drive capacity of the transmitter.

How To Pe1form Digital I/O 5-5

Additional circuitry, called line-drivers, must be added if the application
calls for more transmitter drive capacity than is supplied by the device
or digital 110 module. A line-driver circuit can be thought of as simply
another transmitter circuit, perhaps like that shown in Figure 5-lA,
interposed between the original transmitter and the receiver. The receiver
side of a line-driver circuit usually constitutes one TTL unit load, while
the transmitter side usually has a drive capacity of 20 or more unit loads.
TTL line-drivers are commercially available in DIP packages of eight or
more drivers each.

Note
Most TTL line-driver circuits have the effect of inverting the polarity
of the signal, in addition to boosting the current. If line-drivers are
used, this factor must be considered when programming the computer.

Some TTL transmitter circuits can assume not two, but three, operational
states: high, low, and OFF. In the OFF state, the transmitter circuit.
is functionally disconnected from the line (imagine the line physically
disconnected from the circuit) .. TTL circuits capable of this lTIode of
operation are called tri-state drivers. Tri-state drivers are used when
multiple drivers are connected in parallel on each line, as in the case of a
bus. This is necessary because tying the outputs of two active transmitters
together can damage the circuits or cause them to function improperly.
Tri-state drivers are also used in devices which can be configured as
either transmitters or receivers, such as the ports of the DRVll-J. When
the port is a receiver, the transmitter circuits on each line are set in the
OFF state. When the port is a transmitter, the receiver circuit is isolated
from each line (in the OFF state).

5.2.2 How To Generate TTL Levels From Switch Closures

A common use of discrete digital (TTL) signals in the laboratory is to
sense switch closure. The circuit shown in Figure 5-2 can be used
to supply TTL-high or TTL-low signals, depending on the state of a
switch. The capacitor is optional and is used to reduce switch bounce, if
necessary. The capacitor provides a low impedance pathway to ground
for high-frequency components of the signal (that is, switch bounce). This
has the side effect of slightly increasing the latency between the time at
which the switch is closed and the time at which the line assumes the TTL
high state. If you must de-bounce the switch, choose the smallest-valued
capacitor which provides the required effect. This can be determined by
monitoring the signal on an oscilloscope while trying different values of
capacitance.

5-6 How To PeltOI'm Digital I/O

Figure 5-2: TTL Level from a Switch Closure

+5V

50-2000

TO COMPUTER

MR·06B6·0B06

5.3 How To Connect Devices To The Digital 1/0
Module

In theory, the cable connecting two digital devices is merely a passive
channel for signals. In practice, each wire in a cable acts like a low-valued
series capacitor. Cable capacitance is dependent on the gauge of the
conductor wires, and is usually given as one of the specifications by the
cable manufacturer. Furthermore, each conductor of a multiconductor
cable can act as a weak antenna and pick up signf Is being broadcast by
other conductors in the same cable. This section describes some of the
problems that can arise as a result of the active properties of cables, and
presents some possible solutions.

How To Peljorm Digital I/O 5-7

5.3.1 Types Of Cables
The two main classes of multiconductor cables used to lead digital signals
between devices are bundled cables and ribbon cables. In bundled
cables, the conductors are gathered into a round bundle; in ribbon cables,
the conductors are strictly side-by-side, resulting in a flat cable.

Either type of cable may have a shield surrounding all conductors. In
some bundled cables, pairs of conductors are twisted together. Each
twisted pair may be enclosed in a mylar shield. When grounded, the
mylar shield forms a barrier against extrinsic signals of all frequencies.
This type of shield is sometimes called a radio-frequency (RF) shield.

The common shield which encases all the conductors in a bundled cable
is often a braided shield. Braided shields fornl a barrier only to fairly
low-frequency extrinsic signals, including 60-cycle noise. In electrically
noisy environments, you should use RF~shielded cables to exclude high
frequency artifacts caused by sources of electrical noise such as switched
motors (on air conditioners and refrigeration units, for example).

5.3.2 How To Control Cross-Talk
The term cross-talk refers to the tendency for one conductor to pick up
signals broadcast by other conductors in the cable. If you have a problem
of cross-talk, lines that should be read as TTL-low sometimes appear high
(high lines never appear low). In parallel digital transmission, certain bit
patterns may be always transmitted incorrectly because of severe cross
talk between particular combinations of conductors.

Though the antenna properties of the conductors are very weak (if TTL
circuits are used), the fact that the conductors are in close proximity
to each other, often over long distances, exacerbates cross-talk. The
simplest way to control cross-talk is to use the shortest possible cable. If
this is insufficient, or if a long cable is required, the conductors must be
isolated from each other in some way.

By using a ribbon cable, the number of possible sources of cross-talk
for anyone conductor is minimized, since the antenna effect diminishes
rapidly as the distance between conductors increases. This advantage
can be maximized by tying every other conductor in a ribbon cable to
ground so that no conductor is adjacent to another active conductor.

5-8 How To Perform Digital I/O

Cross-talk can be minimized in bundled cables by using individually
shielded twisted-pair cables. By grounding one conductor of each pair,
cross-talk can be virtually eliminated, since each signal line is then
individually enclosed in an RF shield. Unfortunately, this solution is
cumbersome, since such cables are heavy and stiff.

5.3.3 How To Control Ringing

The term ringing refers to the tendency for signal lines to exhibit damped
oscillations in response to a step change in signal level. This effect is
illustrated in Figure 5-3.

Figure 5-3: Ringing in a Digital Signal

THE TRANSMITTER SENDS: THE RECEIVER SEES:

TTL_HIGHU

TTL-LOW

MR-0786-0830

Ringing is caused by a combination of factors, including impedance
mismatching between the cable and the receiver, reflectance of the signal
back through the cable, and cable capacitance. Thus, cable length,
capacitance, and resistance all influence the amplitude and duration of
ringing. If the ringing is severe, improper transmission may result. For
example, following the high-to-Iow transition shown in Figure 5-3, if the
first positive-going swing brought the signal level above 0.8 volts, the
receiver might interpret this as a second TTL-high signal.

How To Peljorm Digital I/O 5-9

Most applications can accommodate some ringing, since the duration of
the oscillations is usually very short in comparison to· the total data cycle
time. However, ringing could be problematic if, for example, the receiver
were connected to a flip-flop whose state changed on each positive-going
transition.

If ringing is a problem, one simple solution is to put a 20 - 50 Ohm resistor
in series with each conductor on the transmitter side of the cable. This
slows the rate at which the cable charges (remember, it's a capacitor).
Too large a resistor may slow the signal down to an unacceptable degree
or cause the signal amplitude to drop too low.

5.4 How To Perform Discrete Digital 1/0
As described in the first section of this chapter, discrete digital I/O
involves the handling of TTL signals to or from devices such as switches,
indicator lamps, photo-beam position detectors, and solenoids. Often,
though not always, each line constitutes a discrete unit of information.
For example, a behavioral testing experiment might entail monitoring
an animal's activity in a maze by sensing· photo-beanl interruptions and
intermittently raising or lowering sliding doors depending on the derived
information about the animal's position in the maze. Indeed, several
mazes might be operated simultaneously by a single computer system.
In this example, the activity on individual lines is largely independent of
activity on other lines.

5.4.1 Event-Driven Vs Timebase-Driven Discrete Digital 1/0
In cases such as the maze-behavior example, the flow of information and,
consequently, the sequence of program execution is event-driven. Each
time a new photo-beam is broken, the program logs the information,
invokes a decision-making algorithm, possibly raises or lowers one or
more doors, then waits for the animal's next move. This sequence is
triggered by an external event - the breaking of a photo-beam - whose
occurrence is largely unpredictable.

In other cases, data acquisition could be triggered on a timebase. For
example, in a testing lab a solenoid-driven piston jig is used to repeatedly
press and release the 105 keys on a computer keyboard. Each key is
connected to a circuit like that shown in Figure 5-2 (without the de
bouncing capacitor). The level of each line is read at 1 msec intervals
for 250 msec following each press. In this way, the duration of switch

5-10 How To PeltoI'm Digital 110

bounce in each key can be determined over a large number of cycles.
This sequence is triggered by pulses produced by a 1-msec clock.

In theory, either event- or timebase-driven discrete digital I/O can be
performed using any of the basic data acquisition modes described
in Section 2.2.2 (polled, interrupt-driven, or DMA). In practice, event
driven digital I/O rarely uses DMA, since each event usually demands
the attention of the program.

5.4.2 Triggering Discrete Digital 1/0

Regardless of the source of the trigger event, the trigger signal - external
event or clock pulse - must be connected appropriately to the digital I/O
module. The options you have for making this connection depend on
the mode of I/O and the functionality of the module.

For polled I/O, the trigger signal can be connected to any of the digital
input lines or to the incoming handshake line used to signal "new data
ready". If data input lines are used, the program can repeatedly read the
input lines. When the trigger signal is detected, the program can take
appropriate action. If handshake lines are used, the program can poll
the appropriate status bit of the module's CSR. All digital I/O modules
have a bit in the CSR which is set when the incoming handshake line is
asserted. In the case of timebase-driven I/O, the clock pulse need not
be connected to the digital I/O module at all, assuming the source of the
clock pulses is a clock/counter module in the same system. The overflow
bit of the clock's CSR can be polled directly.

For interrupt-driven I/O, the trigger signal must be connected to a line
which is capable of generating interrupts when asserted. For many mod
ule types (for example, the DR11-C, the DR11-W, and the DRV11-WA),
this implies that the trigger signal must be connected to the incoming
handshake line. The DRV11-J allows an interrupt to be generated upon
assertion of any of the 16 input data lines of port A, or any of the 4 in
coming handshake lines (one for each of the 4 ports). Furthermore, the
DRV11-J allows the user to select which state (TTL-high or TTL-low) is
interpreted as "asserted" on a trigger line. As with polled I/O, an in
terrupt can also be generated directly by the clock if a system-resident
clock/counter module is used for timebase triggering.

For timebase-driven DMA discrete digital I/O, the clock pulses must be
connected to the incoming handshake line of the digital I/O module.
Each clock pulse can then generate a DMA cycle request. Note that,
though a "handshake" line is used for triggering, a full handshake is not

How To Perform Digital I/O 5-11

implemented. That is, the clock triggers a DMA transfer, but it does not
complete the handshake by waiting for the digital I/O module to signal
that the data have been successfully read. Thus, the user must insure that
the triggering rate is within the performance limits of the module, or data
will be lost. The same consideration applies to polled or interrupt-driven
1/0 triggered via handshake lines.

5.5 How To Perform Parallel Digital 1/0
From a programming perspective, the most important characteristic of
parallel digital I/O is the use of a handshaking protocol to synchronize the
flow of information between the external device and the computer. In its
simplest form, handshaking involves the exchange of two synchronizing
signals each time a word (or byte) is transferred.

The sequence for exchange of a single data value is as follows:

1. The sending device puts a data value on the parallel link by placing
a word or byte value in its output buffer register (or equivalent).

2. The sending device asserts a handshake line to signal that valid new
data is ready.

3. The receiving device detects the II new data ready" signal and moves
a word or byte from its input data buffer register into memory.

4. The receiving device asserts a second handshake line to signal that
the data value was successfully read.

S. The sending device waits until it detects the return handshake signal
before putting the next data value on the link.

Many devices, such as the DR11-C and the DRV11-J, automatically assert
the handshake signals when the program reads or writes its data buffer.
Thus, for example, when a DRV11-J is used as an output device, its "new
data ready" line is asserted for approximately 400 nanoseconds when the
program writes to the output buffer. No other explicit action on the part
of the program is needed to assert the handshake signal. Likewise, the
II data received" line is asserted whenever the input buffer is read in input
mode.

5-12 How To Peljorm Digital I/O

In contrast, a non-DMA sending device must make provision for pro
grammed detection of the "data received" signal from the receiving de
vice. Similarly, a non-DMA receiving device must make provision for
programmed detection of the " new data ready" signal from the sending
device. This can be accomplished by polling status bits in the CSR or by
enabling the module to generate an interrupt when these handshake lines
are asserted. The status bits associated with these handshake signals are
latched; that is, once the external device asserts the handshake line, the
appropriate status bit in the CSR is set and remains set until cleared by
the program. The status bit MUST be cleared as part of the read or write
program sequence to insure proper operation of the handshake.

A common problem encountered when attempting to do parallel digital
I/O is that the amplitude, duration, or polarity of the handshake signals
do not match between the two devices. For this reason, you should
determine these characteristics of the two devices before a final decision
is made about what module to select. As part of this process, the
programming logic for performing the handshake should be worked out
in detail, based on the manufacturers' specifications for the two devices.
If for some reason a match is not possible, external circuitry must be built
to invert, prolong, or boost the handshake signals.

How To Peljorm Digital I/O 5-13

Chapter 6
How To Use The IEEE 488
Instrument Bus

The IEEE 488 bus is a standard method of interconnecting a variety of
analytical instruments, computers, and computer peripherals. The bus
allows computers to control instruments and pass data between them.

The IEEE 488 is particularly useful where a variety of medium- to high
speed instruments from different vendors are involved. As a computer
to-instrument link, the IEEE 488 is faster and easier than RS232 when
more than a few instruments are involved. It is far superior to analog
interfacing in terms of noise immunity, convenience, speed, and reli
ablility.

A typical IEEE 488 system consists of a computer with IEEE 488 interface
option, instruments with built-in IEEE 488 connectors, and IEEE 488
cables to connect the computer to the instruments in a daisy chain.

The cable, the connectors and the electrical characteristics of the cable
are specified by the IEEE standard. The software to control IEEE 488
instruments is not yet covered by a standard.

Up to 15 devices may be configured on one bus. Devices include not
only instruments and computers, but also computer peripherals such as
printers and plotters. The length of the bus is restricted to 15 meters
or 2 meters per device. Data rates across the bus are limited by the
slowest device. Typically, the maximum data rates are between 100,000
to 200,000 bytes (digits) per second.

How To Use The IEEE 488 Instrument Bus 6-1

Most IEEE 488 computer interfaces, such as the VAXlab IEQ11-AD,
are available with both driver and subroutine software. This software
simplifies the programming of IEEE 488 instruments.

The IEEE 488 cable consists of 16 wires, which are called bus lines. These
lines are shared by all instruments and computers on the bus. Eight of
the lines, called data lines, are used to encode the messages sent on the
bus. Three more lines, called the handshake lines, are used to make certain
that each character sent is accurately received. The remaining five lines
are for general bus management.

6.1 Talker, Listener, Controller
Instruments play well-defined roles on the bus. An instrument sending
a message is called a talker. Only one instrument may talk at any
one time. An instrument receiving a message is called a listener. Any
number of instruments can listen to the message being sent by the talker.
Instruments can be talkers only, listeners only, or talkers and listeners.
The user's guides for your instruments will tell you what your instruments
are.

The computer is called the controller of the bus. As such, it tells bus
instruments when to talk and when to listen. No instrument can ever talk
or listen unless told to do so by the computer. The computer controls all
bus activity, and it must be the only controller of the bus. This means
that no other device, not even another computer, can be a controller on
this IEEE bus. The computer can make itself a talker or listener, however,
it listens to all traffic on the bus.

For example, suppose your IEEE bus system consists of a computer, a
multimeter, and a signal generator. You want the computer to receive
from the multimeter a message that reports a voltage reading, and
then send the signal generator a message that causes it to generate a
signal based on the voltage reading. To receive the voltage reading, the
computer tells the multimeter to be the talker, and the computer itself is
the listener. The computer tells the signal generator to neither talk nor
listen, so the signal generator ignores the message that the multimeter
sends to the computer (see Figure 6-1). To send instructions for the signal
output, the computer tells the signal generator to be a listener, and the
computer itself is the talker. The computer tells the multimeter to neither
talk nor listen, so the multimeter ignores the message that the computer
sends to the signal generator (see Figure 6-2).

6-2 How To Use The IEEE 488 Instrument Bus

Figure 6-1: Computer Receives a Message

IEEE Bus
A

U I r
COMPUTER Multimeter

(listener) (talker)

Figure 6-2: Computer Sends a Message

COMPUTER
(talker)

IEEE Bus

II
Multimeter

6.1. 1 Instrument Addresses

I I
Signal Generator

u
Signal Generator

(listener)

MR-2127

MR-2128

Each instrument on the bus has a number between 0 and 30 that the
computer uses to identify the instrument when the computer tells the
instrument to either talk or listen. This number is the instrument's
address and can be set with switches located on the instrument itself.
Before you can use the IEEE routines, you must know the addresses of
the instruments on your IEEE bus. In the previous example, you might
set the multimeter to have an address of 1, and the signal generator to
have an address of 2. An instrument's address is also called its primary
address.

How To Use The IEEE 488 Instrument Bus 6-3

Some bus instruments have different functions or parts that the computer
can specify by using a secondary address in addition to the instrument's pri
mary address. Secondary addresses are in the range 0 to 30, though in
order to distinguish them from primary addresses, they are specified in
IEEE bus routines by numbers in the range 200 to 230. Each instrument's
designer defines the meanings of any secondary addresses the instru
ment recognizes. For example, when you tell the multimeter above to
talk, it might report a voltage reading if you specify secondary address
3, and a resistance reading if you specify secondary address 1.

We suggest that you write down the address of each bus instrumenf,
along with any secondary addresses and what they specify, on a form
such as the one shown in Figure 6-3. Be sure that no two instruments
have the same primary IEEE bus address.

6-4 How To Use The IEEE 488 Instrument Bus

Figure 6-3: Sample Address Record

lEE E Bus Addresses

Instrument Address Secondary Addresses

Multimeter 1 1 resistance

2 amperage

3 voltage

Signal Generator 2 none

MR-2126

How To Use The IEEE 488 Instrument Bus 6-5

6.1.2 Interface
Part of each instrument on the IEEE bus is defined by the IEEE standard
and thus is not instrument-dependent. This part is called the instrument's
interface to the bus. The rest of the instrument is not defined by the
standard, but by the instrument's designer. These parts are illustrated in
Figure 6-4. Because every instrument on the IEEE bus has an interface,
the bus is sometimes called the inteliace bus.

Figure 6-4: An Instrument's Interface

Instrument

IEEE bus cable

Interface
(I nstrument-independent)

Instrument-dependent
part

Defined
by
the
IEEE
standard

Defined
by
the
instrument's
designer

MR-2129

Only an instrument's interface interacts directly with the bus. Messages
are interpreted by the instrument-dependent part of the instrument, but
they are sent and received through the interface. When the computer tells
the instrument to listen, the instrument's interface passes any subsequent
messages sent on the bus to the instrument-dependent part of the
instrument. This is illustrated in Figure 6-5.

When the computer tells the instrument to talk, the instrument's inter
face transmits messages from the instrument-dependent part of the in
strument. This is illustrated in Figure 6-6.

6-6 How To Use The IEEE 488 Instrument Bus

Figure 6-5: An Instrument Listens

IEEE bus

lG
Cl

Interface m
~

accepts
messages

~ "7

E
(1)

E
2
~ I nstru ment -dependent
-= part interprets

messages

MR-2130

The computer controls the bus by sending commands, which are instruc
tions to the interfaces on the bus. This is illustrated in Figure 6-7. Like
messages, commands are sent as characters on the data lines; but, unlike
messages, commands are intercepted and interpreted by the interface,
not passed to the instrument-dependent part of the instrument. The in
terface interprets each command according to the meaning defined for
that command by the IEEE standard. Only the computer can send com
mands. The computer uses commands to tell instruments to talk or listen.

How To Use The IEEE 488 Instrument Bus 6-7

Figure 6-6: An Instrument Talks

IEEE bus

~ ~
<II

~

Interface ~
Q)

transmits :2:

messages

.... c:
Q)

E
2 Instrument-dependent
t: c: part provides

messages

MR-2131

6.2 How To Communicate With An Instrument

6.2.1 Messages
The contents of each message string and the effect it has on the infor
mation it reports are as varied as the types of inshuments on the bus.
The IEEE standard only defines how instruments communicate, not what
they communicate. For this reason, the user's guide for each instrument
is an essential source of informaton when you use the IEEE routines. It
helps you decide what strings to send to that instrument and tells you
what strings you should expect to receive from it.

For example, the multimeter above might send back a reading with these
characters:

V +4.382E+01

6-8 How To Use The IEEE 488 Instrument Bus

Figure 6-7: An Instrument Accepts Commands from the Computer

IEEE bus cable

'" "0
c:
E
E
0 u

Interface

1:
E
2
t;

Instrument-dependent -= part

MR·2132

where the "V" indicates that this was a voltage reading (not an amperage
or resistance reading), and the other characters indicate a measurement
of 43.82 volts. Based on this reading, your program might tell the signal
generator to generate a 43.8 volt at 1250 Hz. The message telling the
signal generator to do this might be:

V43.8F1250

where "V43.8" means 1/43.8 volts" and I/F1250" means "at a frequency
of 1250 Hz."

How To Use The IEEE 488 Instrument Bus 6-9

6.2.2 Sending Messages
When the computer itself is the talker, it sends a message string specified
by your program to the listeners specified by your program. Not all
instruments are able to listen.

Each instrument that can listen has a vocabulary of characters and a syntax
that are meaningful to it. Because vocabularies differ from instrument to
instrument, you usually send each message to only one instrument. The
user's guide for a particular instrument lists the characters the instrument
recognizes and the effect of each character. The message you send to
an instrument depends on the effect you want and which character or
characters cause that effect.

One of the five general management bus lines is known as the End of
Identify (EOI) line. The talker sets the EOI line while sending the last
character of its current message, thus indicating the end of that message
to the listeners. Some instruments do not act on any message characters
until the EO! line is set. The EOI line could also be set by common
terminating characters.

6.2.3 Receiving Messages
When the computer is a listener, it stores the message string sent by the
talker you specify. Not all instruments are able to talk. For example, the
signal generator might be able only to listen.

The meaning and format of the string is deternlined by the instrument's
designer. The user's guide for an instrument tells you what information
the instrument sends and the format of its messages.

The computer knows the message is complete when one of the following
three conditions occurs:

• The talker sets the EOI bus line while sending a character. For
example, the multimeter above might set the EO! line while it sends
the character 1/1".

• The talker sends a terminator, a character the computer recognizes
as an end-of-message indicator. There are two types of terminators,
those recognized by the computer and those recognized by the
instruments. Normally, the computer recognizes a carriage return or
a line feed as a terminator, but you can often change which characters
are terminators. For example, the multimeter might follow the 1/1"

6-10 How To Use The IEEE 488 Instrument Bus

character with a carriage return character. Note that if it did this,
it could not set the EOI line while sending the 1/1". Depending on
how it was designed, an instrument might or might not set the EOI
line while sending the carriage return character. Your instrument
manual will tell you what character your instrument recognizes as a
terminator.

• The number of characters sent in the current message reaches a limit
set by your program. For example, if the multimeter is not designed
to set the EOI line or send a terminator, your program should specify
the number of characters in the string as the maximuln number of
characters in the message.

Note
If the instrument sends more characters than the limit set by the
program, the remaining characters are not lost by the system. Any
further transmissions by the talker are delayed until the program takes
some action to retrieve the remaining characters.

6.3 How To Test The Status Of An Instrument
Any instrument on the IEEE bus can report information about its current
status to the computer. Though the type of status information reported
depends on the particular instrument, the procedures to report status are
part of the IEEE standard, and are the same for all inshuments.

As controller of the IEEE bus, the computer can ask instruments for their
status by conducting either a serial poll or a parallel poll. In a serial
poll, instruments report status information, one at a time, on the data
lines of the bus. Since the bus has eight data lines, each instrument
can report up to eight bits of status information. In a parallel poll, up
to eight instruments can simultGineously report status information on the
data lines. Each instrument can use only one data line, and can thus
report only one bit of status information. The bit of information reported
in a parallel poll is not necessarily related to any of the information
reported in a serial poll. A particular instrument could respond to one,
both, or neither of these types of polls. The user's guide for a particular
instrument tells you which polls that instrument can respond to, and what
status information it reports.

How To Use The IEEE 488 Instrument Bus 6-11

There is one type of status information an instrument can tell the com
puter without having to wait to be polled. It can tell the computer that it
needs service. It issues this service request by setting a bus line reserved
for this purpose, the SRQ (service request) bus line. If your program
ignores the service request, the instrument can take no further initiative.
Setting the SRQ line is the only action on the IEEE bus that instruments
can initiate independently of the computer.

Since bus lines are shared by all instruments, the cOlnputer doesn't know
which instrument is setting the SRQ line. One function of a serial poll
is to give the controller a way to find out which instrument is requesting
service. As part of the informaton in its serial poll response, each
instrument must report whether or not it is requesting service. Any
instrument that can request service must be able to respond to serial
polls.

6.3.1 Serial Polls
If more than one instrument is to be polled, the computer polls the
instruments one after the other.

Each instrument polled has eight bits of status information in its interface;
this group of bits is called the instrument's status byte. Each bit of the
status byte is set (1) or clear (0) to report specific infonnation about
the instrument. When the computer serially polls the instrument, the
instrument reports the state of each of these bits by setting or clearing
the corresponding data line on the bus.

As shown in Figure 6-8, data line 6 contains the same type of information
for all instruments. An instrument sets this line in response to a serial
poll if it is requesting service from the computer. This line is different
from the SRQ line, which is not one of the data lines. If an instrument has
set the SRQ line, however, it must also set data line 6 when it is serially
polled. Each instrument's designer determines the type of informaton
that the instrument reports on each of the other data lines.

6.3.2 Service Requests
Your program can detect a service request in either of two different ways.
Which you choose will depend on how you wish to perform the detection
operation itself and how you wish subsequent serial polls to be initiated.

6-12 How To Use The IEEE 488 Instrument Bus

Figure 6-8: Serial Poll Response

Data Line Meaning

7 Meaning is instrument-dependent
6 Set if the instrument is setting the SRQ line
5 Meaning is instrument-dependent
4 Meaning is instrument-dependent
3 Meaning is instrument-dependent
2 Meaning is instrument-dependent
1 Meaning is instrument-dependent
o Meaning is instrument-dependent

MA-2123

One way to detect a service request is to designate a service subroutine.
In this case, the IEEE 488 device driver assumes the resonsibility of
detecting a subsequent service request and initiating a serial poll. This
procedure is identified as a "driver-initiated" serial poll.

A second way to detect a service request is to test the state of the SRQ
line and, when the line is found to be asserted, to perform a serial poll.
This allows your program to retain the responsibility of detecting service
requests. This procedure is identified as a "user-initiated" serial poll.

Driver-initiated handling of service requests begins with detection of the
SRQ-asserted condition. Once this occurs, the driver serially polls the list
of devices capable of generating service requests. When a device is found
to be requesting service, the service subroutine is called by the driver.
This subroutine is user-written and has as its purpose the servicing of
instruments requiring sevice.

When a service request is detected, your program receives the instrument
address of the device which asserted the SRQ line. The variable which
receives this information is used by your service subroutine to determine
which instrument requested service and therefore the type of service to
be rendered.

How To Use The IEEE 488 Instrument Bus 6-13

The action required when an instrument requests selvice depends on the
characteristics of the particular instrument. For example, one instrument
on your IEEE bus might request service when it has new data; your
program would then ask it for the data. Another instrument might request
service when it is out of paper; your program would type a warning on
the terminal.

6.3.3 Parallel Polls
Parallel poll capability allows instruments to quickly notify the controller
of their status. Every instrument that can do so responds to the poll. Each
instrument polled has in its interface a bit of status information called the
status hit. The meaning of each instrument's status bit is determined by
the manufacturer and is described in the user's guide for the instrument.

An instrument can respond to a parallel poll only if it is designed to
respond and if its response has been enabled. Any instrument that can
respond to a parallel poll must be able to have its response enabled
either by local controls or by the computer, but not by both. The method
of local poll enabling is not part of the IEEE standard, but is determined
by the instrument's designer.

An instrument can respond to parallel polls until its parallel poll response
is disabled. If the response was enabled locally, it is also disabled locally.

Enabling an instrument's parallel poll response assigns the instrument
one of the bus's data lines and a condition. The instrument sets the data
line during a parallel poll if the status bit in its interface is in the assigned
condition. If the condition assigned to it is 0, the instrument sets the data
line if its status bit is ° at the time of poll. If the condition assigned to it
is 1, the instrument sets the data line if its status bit is 1 at the time of
poll.

For example, suppose your program enables instrument 17 with data
line 5 and condition 0, and enables instrument 15 with data line 2 and
conditon 1. When your program conducts a parallel poll, the data lines
have the values shown in Figure 6-9.

6-14 How To Use The IEEE 488 Instrument Bus

Figure 6-9:

Data Line

7
6

5

4
3

2

1
a

Data Line

a
1
2
3
4
5
6
7

Example of a Parallel Poll Response

Value

a
a

fa if instrument 17's status bit is 1
\1 if instrument 17's status bit is a
a
a

[0 if instrument 15's status bit is a
l1 if instrument 15's status bit is 1

a
a

Associated Value

1
2
4
8

16
32
64

128

MR-2125

MR-2124

More than one instrument can be assigned to a single data line. However,
this is not usually done, because your program could not detemine which
instrument set the line, if it were set during a parallel poll. Each of the
eight data lines is clear in a parallel poll unless one or more instruments
sets it.

How To Use The IEEE 488 Instrument Bus 6-15

Note
When more than eight instruments must be polled, two or more
instruments may be assigned the same data line for their poll reply
signal. If this is done, a logical one on the data line would signify that

at least one of the associated instruments had replied to the poll. A
logical zero would signify that none of those instruments had replied.

6.4 Remote And Local States
An instrument on the IEEE bus can use input information either from the
bus or from Inanual controls on the instrunlent itself. When messages
from the IEEE bus are the source of input information, the instrument is
said to be in the remote state. When the manual controls on the instrument
are the source of input information, the instrument is said to be in the
local state. This section discusses how your program can control which
state each instrument is in. These controls are summarized in Figure 6-
10. A heavy arrow in this figure represents a transition between the local
and remote state. A light arrow represents a statement that enables or
disables the transition that the arrow points to.

No instrument can be in the remote state unless the remote enable (REN)
bus line is set. When you start the computer, this line is clear, so all
instruments on the bus are in the local state. The first IEEE bus routine
to execute after the computer is started sets the REN line automatically.
This line remains set while the computer communicates with instruments
on the bus. An instrument enters the relnote state when the computer
tells it to listen while the REN bus line is set.

Some instruments have a return-to-Iocal button, which can be used to
put the instrument in the local state. The user's guide for a particular
instrument tells you whether or not that instrument has a return-to-Iocal
button and, if so, where it is.

The instrument designer determines how the instrulnent behaves under
local control and under remote control. When going from local to remote
control, an instrument can either use its current local settings until they
are overridden by remote input or use remote input that was previously
received. In either case, the instrument must ignore future use of its local
controls and become responsive to remote input. Some instruments,
however, have functions that are always controlled locally, even in the
remote state. When going from remote to local control, an instrument can
either use input from its local controls immediately, or continue to use
the last input from the bus until that input is overridden by subsequent
local control settings. In either case, the instrument must ignore future
remote input and respond to future use of its local controls. It can still
talk and listen while in the local state.

6-16 How To Use The IEEE 488 Instrument Bus

Figure 6-10: Remote and Local States

REMOTE
STATE

a:
I-
(/)

z
l
..J
«
U
0

IEEE Bus

.---_....JJ l~_.....,
Interface

1-----11 '....----1
I nstrument
dependent

part 1----------
Local Controls

j ~ U.J
I-
0 ... :::lE c: U.J CIl

E a:
2 I

U.J ti ..J
.£ III «

(/)

l3
.S2

$ c:

~ g
... :::l
~.o

..J ENABLE_REMOTE disables C enables
enables , 1 ,

IEEE Bus

~_--,J L~_--,

Interface

Instrument's
power ___ '.OCAL
turned on L..:

STATE

... Instrument-
lii dependent
§ part

~---.{r- ---
Local Controls

6.5 How To Reset An Instrument

LOCA L_LOCKOUT
disables

MR-2122

Your program can separately clear, or reset, either the instrument's
interface to the bus or its instrument-dependent part.

How To Use The IEEE 488 Instrument Bus 6-17

6.5.1 Clearing Interfaces
The bus and every instrument's interface to the bus can be cleared by
setting the interface clear bus line (IFC), a line reserved for this purpose
by the standard. Setting this line clears only the interfaces, not the
instrument-dependent parts of instruments. Each interface returns to the
clear state defined by the IEEE standard. Setting the IFC line has the
following effects:

• All return-to-Iocal buttons of bus instruments become operative.

• The REN bus line is cleared and then set.

• All instruments enter the local state. However, because the REN bus
line is set each instrument enters the remote state when it is told to
listen.

• Any condition set by a message is not affected by this routine.

You can use an interface clear command at the beginning of your program
to undo any effect that previous IEEE bus routines have had on the
interfaces.

6.5.2 Clearing Instruments
Instrument clear routines clear the instrument-dependent parts of instru
ments on the bus. These routines do not clear the instrument's inter
faces. Each instrument cleared returns to a clear state defined by that
instrument's. nlanufacturer; this is usually the state the instrument is in
after its power is turned on. Refer to the user's guide for the particular
instrument for the properties of this state.

You can use these routines at the beginning of your program to undo the
effects of prevous message routines.

CAUTION
Never turn on an instrument's power while the computer is running!

6-18 How To Use The IEEE 488 Instrument Bus

Chapter 7
How To Control Serial Devices

In the modern laboratory, many instruments have built-in "intelligent"
controllers. These controllers are microprocessors which do nluch of the
work that might otherwise have to be done by a general-purpose com
puter, such as digitization of analog signals, control of solenoids using
discrete digital signals, setting control voltage levels, and various forms
of data reduction. For example, many chromatographs and spectrome
ters have integral microprocessors which digitize the detector voltages,
analyze the results, and output peak parameters via a serial data port
either to a printer or to a host computer.

In order to interface such instruments to either printers or lab computers,
it may be necessary to build customized cables, reconfigure the serial
ports, or write specialized programs to handle the data interchange.
Before presenting a detailed discussion of each of these topics, an
overview of serial data transmission is given.

How To Control Serial Devices 7-1

7.1 Serial Data Communication
The term serial data communication refers generally to any scheme in which
digital data is transferred bit-by-bit. For example, if an eight-bit byte
were transferred serially, the bits would be sent one after the other, in
sequence. Since each bit could be either a 1 or a 0, the state of each
bit is represented as a voltage level, much as in parallel digital data
communication. Thus, the byte 01101000 (binary) could be represented
by the following sequence of voltage levels: 5, .1, .1, 5, .1, 5, 5, 5, where
5 volts represented a binary 0 and .1 volts represented a binary 1. This
is shown diagramatically in Figure 7-1.

Figure 7-1: A Simple Serial Data Stream

o o o o o BINARY VALUE

5.0 VOLTS

SERIAL SIGNAL

0.1 VOLTS

MR-0786-0832

This seems fairly simple, until one considers several important questions:

• What are the voltages used to represent binary 1s and Os?

• How long is each bit's representative voltage held at a steady level;
that is, how rapidly does the pattern change?

• How is the beginning of a byte pattern signalled?

• How does the transmitting device know whether or not the receiving
device is ready?

• How are messages - strings of bytes - delimited?

7-2 How To Control Serial Devices

In order for two devices to communicate via a serial data link, some
agreement regarding these and other details is necessary. Many of the
elements of a standardized protocol for serial data communication are
contained in the EIA RS-232 standard. Though the RS-232 standard de
fines many of the parameters of the protocol very rigidly, some may vary
from one implementation to another, depending on the requirements of
the application. Furthermore, many manufacturers adhere very loosely
to the standard, inventing seemingly endless variations. For these rea
sons, it is often quite difficult to get two "standard" RS-232 devices to
communicate with each other.

One reason for this confusion is that the RS-232 standard was devel
oped before the advent of the microprocessor. Intelligent instruments,
microcomputers, and, for that matter, serial printers were unknown in
their present forms. The standard was developed to regulate commu
nication between teletype terminals over telephone lines via modems.
Thus, many of the concepts implicit in the RS-232 standard are based on
modem/phone line properties rather than on the properties of modern
intelligent instruments and peripherals.

The sections below outline the major issues one must address to suc
cessfully establish a serial data communication link between two RS-232
devices, be they intelligent instruments, computers, printers, or CRT ter
minals.

7.2 How To Configure Devices For RS-232
Compatibility

Serial communication is performed by the computer using an 110 op
tion module which is, in many ways, like an analog or parallel digital
module. Such modules are sometimes referred to as serial line units, or
SLUs. Like other types of modules, they are usually configurable using
jumpers or switch packs. More sophisticated serial option modules are
software configurable - that is, the most important parameters can be
set by writing appropriate values into the module's registers. Similarly,
the serial port of an intelligent laboratory instrument or a printer is fre
quently configurable, rather than having set characteristics. The following
characteristics of the serial port are commonly settable:

• The baud rate

• The number of start and/or stop bits

How To Control Serial Devices 7-3

• The number of data bits

• The type of parity used

• The type of handshaking used

7.2.1 Selecting A Baud Rate
The term baud rate refers to the rate at which data is transmitted, ex
pressed in bits-per-second. Within any given byte pattern, the timing of
pulses representing each binary digit is synchronous; that is, each bit
pulse occurs at a set time following the onset of the byte pattern. Since
nothing distinguishes one bit from another, other than their timing, it is
important that both sender and receiver agree on the baud rate.

Common rates used in the U.S. are 300, 1200, 2400, 4800, and 9600
baud. Obviously, the baud rate affects the overall rate of data transfer.
Since a byte is 8 bits, one might presume that the data rate in bytes-per
second might be computed as the baud rate/8. However, since all RS-232
protocols include at least one start bit and one stop bit, the proper rule-of
thumb formula for computing the theoretical maximum data rate is baud
rate/lO. This rate frequently is not achievable in practice (see Section
7.2.5). Ordinarily, though, optimal throughput is attained by configuring
both devices for the maximum baud rate of which BOTH are capable.

7.2.2 Selecting The Numbers Of Start And Stop Bits
Under the RS-232 standard, byte patterns always begin with a low-level
(1) pulse and end with a high-level (0) pulse. These are called the start and
stop bits, respectively. Thus, each byte always begins with a high-to-Iow
transition - that is, the transition between the stop bit of the preceding
byte and the start bit of the current byte. These bits have no information
content; they are used only as synchronizing signals.

Though start and stop bits are always present, their durations can vary
from one device to another. The durations of the start and stop bits are
expressed in terms of the number of each, since the duration of a single
bit is determined by the baud rate. Furthermore, the numbers of start
and stop bits can be nonintegral. For example, many devices use 1.5
stop bits. This implies that following the last data bit (or parity bit, if
present), the signal is guaranteed to be high for at least 1.5 times the
duration determined by the baud rate.

7-4 How To Control Serial Devices

The receiving device interprets the signal level as representing successive
binary digits beginning NS/baud seconds following the onset of the first
start bit, where NS is the agreed-upon number of start bits. Thus, both
devices must agree on the number of start bits.

However, stop bits are a different story. The receiving device interprets
any low signal level between the end of the last data (or parity) bit and
the end of the last stop bit as an error in transmission, called a framing
error. If the receiving device were set for one stop bit and the sending
device were set for 1.5 or 2 stop bits, the protocol would work properly.
The receiving device would assume only that the sending device was a
little slow, as might be the case when it was too busy to send each byte
immediately following the last.

For maximum efficiency, configure both devices for the minimum num
ber of start and stop bits that BOTH devices will accept. If it is not possi
ble to match the number of stop bits, the next best thing is to configure
the receiving device for fewer stop bits than the sending device. (Note
that this assumes that data flows in one direction only. Note also that
XON and XOFF characters may be sent from the receiver to the sender
even when there is only one-way data transmission.)

7.2.3 Selecting The Number Of Data Bits

The RS-232 standard applies to serial data transmission in bit-synchronous
bytes. Ordinarily, a byte is considered to be 8 bits wide. However, if the
data are exclusively ASCII characters, only 7 bits are used; the top bit
is always O. Since it takes less time to send 7 data bits per byte than 8,
many devices either require or allow that only 7 bits be transmitted.

If either device is exclusively an ASCII device, configure both for 7 -btt
transmission, if possible. If the data being transmitted is binary, that is,
if the data stream contains byte values in the range 127-255 (decimal),
set both devices for 8-bit transmission. Both devices MUST be similarly
configured.

How To Control Serial Devices 7-5

7.2.4 Selecting The Type Of Parity Used
In electrically noisy environments, false positive or negative signals can
interfere with the accurate transmission of data over a serial line. To
insure against this, many devices implement a strategy for testing each
byte of data to verify that it has been properly received. An extra bit,
called a parity bit, is added to each byte pattern, between the last data
bit and the stop bit. The sending device counts the number of 1s in each
byte and then appends a parity bit whose value is either 1 or 0, so that the
total number of 1 bits (excluding the start and stop bits) is either an odd
number (odd parity) or an even number (even parity). The receiving device
counts the number of 1 bits in each byte and signals an error condition
if the sum does not match the parity (even or odd).

Many devices are configurable for even parity, odd parity, or no parity
(parity disabled). Since the parity bit is one more bit added to each
byte, the overall speed of transmission is reduced when parity is used.
In environments in which noise is not a problenl, disable parity, if
possible. If the transmission line is electrically noisy, as is the case with
modems, for example, select odd or even parity. Either will do as long
as it is the same on both ends. It may also be advisable to determine
whether the hardware and/or software can correct parity errors by forcing
retransmission. If not, enabling parity only allows you to detect errors in
transmission, not correct them.

At this point, all the major variations in the format of serial data have been
covered. Figure 7-2 illustrates that format diagramatically and describes
its possible variations.

7-6 How To Control Serial Devices

Figure 7-2: Serial Data Protocol

LOGICAL-'

LINE STATE-'

POSSIBLE
PARITY

BIT RETURN TO

IDLE STATE • 7 OR 8 DATA BITS" + Ir IDLE STATE

1 --y---;--~---;---'---i--i---'--JLf----- OR
I I I • I I •
• • I • I • I

o ------------------------ t t
START BIT 1-2 STOP BITS NEXT START BIT

7.2.5 Selecting A Method Of Handshaking
By setting the baud rate, parity, and number of start and stop bits, you
can insure that the sending and receiving devices are synchronized with
respect to the transluission of each data byte. However, you may still
need to synchronize the two devices at the byte-stream level. Suppose,
for example, that a computer was trying to send control information to an
intelligent instrument through a 9600-baud serial port. Theoretically, data
could flow at a rate of about 1000 bytes/sec. But what if the instrument's
processor needed to attend to some other task while information was
being sent? This could occur if the information being sent was a series
of instructions, each of which was executed by the insttument before
the next was accepted. How could you be sure that bytes of information
were not lost while the instrument's processor was inattentive to the serial
port?

One way, of course, would be for the serial port device to buffer incoming
data in its own internal memory. Such memory buffers are found in
many serial port devices. Commonly, the buffer is set up as a FIFO
(first-in/first-out buffer), into which data bytes are placed as they arrive
and from which the processor removes bytes when it is ready to read
from the serial port. However, serial FIFOs, when they are implemented
at all, often have very limited storage capacity. Four bytes is a common
FIFO capacity. Whatever the capacity of the FIFO, it only provides a
finite margin of safety. Once it is filled, the processor must remove a

How To Control Serial Devices 7-7

byte before another can be received. If a byte is transmitted while the
FIFO is full, data is lost, and the SLU signals an error condition by setting
a bit in its CSR.

Whether or not the serial device has a FIFO, it is desirable for the
receiving device to be able to inform the sending device that it (the
receiver) is unable to accept more data. Methods for accomplishing this
are called handshaking protocols. A handshake is basically a message
that goes between the devices that says "I can't take more data now." or
"OK. I'm able to take more data now." There are two ways of performing
handshaking in serial data communication:

• By using a "hardware" signal whose level indicates the readiness of
the receiver

• By using "software" signals - special ASCII characters transmitted
over the data lines

7.2.5.1 Hardware Handshaking

Hardware handshaking in serial data transmission is implemented using
dedicated signal lines in addition to the lines on which the serial data are
transmitted. When a device is ready and able to accept data, it asserts
the line which indicates "I am ready" to the other device. The sending
device checks this signal before transmitting each data byte. The sender
will wait until this signal is asserted before sending new data. Once
the transmission of a data byte is begun, transmission completes even
if the receiver deasserts the "I am ready" signal during transmission.
Thus, the receiving device ordinarily deasserts this signal whenever its
FIFO is filled to within one byte of capacity (or less, in some cases). As
soon as more space becomes available in the FIFO (that is, when data
are transferred out of the FIFO to main memory), the receiving device
reasserts its "I am ready" signal and the sender resumes transmission.

7-8 How To Control Serial Devices

7.2.5.2 Software Handshaking

Software handshaking is conceptually like hardware handshaking; but,
instead of using dedicated signal lines for the "I anl ready" signals, the
data lines are used. When the receiving device's FIFO is filled to within
one byte of capacity (or less), the receiver sends a single character to
the sender - the ASCII character DC3 (hex 13, also called XOFF). When
more room becomes available in its FIFO, the receiver sends the ASCII
character DCl (hex 11, also called XON) to the sending device to indicate
that transmission can be resumed.

Whereas the hardware handshaking protocol is handled entirely by the
SLU, transparently to the computer, software handshaking must be
handled by the programs which control the serial ports on both devices.
In the case of an intelligent instrument or peripheral device, software
handshaking is performed by the firmware of the device. In the case of
a computer system, it is usually done in the device driver for the SLU.
When connecting two serial devices, you must determine what form of
handshaking both devices can use (hardware or software). Then, set
whatever jumpers or switches are necessary on both the SLU and the
external device to select the type of handshaking desired. Given a choice,
you should select hardware handshaking, since it involves less overhead
on the part of the CPU.

7.2.5.3 Devices Without Any Handshaking

SOlne serial devices do not use any form of handshaking. This situation
is most often found in "send only" devices like digitizing tablets. In
these cases, the serial link becomes a true realtime data stream, in that
the receiving device must be able to process received characters at some
minimal speed, or data will be lost. To insure that no data is lost, the
speed of transmission should be set to a low baud rate. Also, the speed
of transmission can be lowered by increasing the nunlber of start, stop,
parity, and data bits in each byte, as described in the preceding sections.

How To Control Serial Devices 7-9

7.2.5.4 ACK/NAK Protocol

The hardware and software handshaking techniques described above can
be used to insure that the sending and receiving devices are synchronized
at the byte-stream level. Some intelligent instruments implement an even
higher-order protocol for insuring that any errors in data transmission
(due to noisy lines, for example) are detected and corrected. Briefly, this
is accomplished as follows.

1. The sending device computes a checksum which it appends to the
end of each message. In the present context, a message is a string
of bytes constituting a unit of information, often a line of ASCII
characters delimited by a carriage return.

2. The receiving device computes the checksum based on the data
alone, and compares what it computes with the checksum from the
sender.

3. If the two checksums match, indicating valid transmission of the
message, the receiver sends an ASCII ACK (acknowledge) character
to the sender. If the two checksums do not agree, the receiver sends
back a NAK (negative acknowledge) character.

4. The sender waits for either an ACK or a NAK character in response
to each message transmitted. If the sender gets an ACK, it sends the
next message. If the sender gets a NAK, it retransmits the preceding
message and continues to do so until the receiver returns an ACK.

7.3 How To Connect Serial Devices
In order for two devices to communicate via an RS-232 serial link, the
data and handshaking lines must be properly connected. The RS-232
standard defines names, functions, and even connector pin numbers
for many different signal and handshaking lines. The discussion of
connections begins with a description of a terminal/modem linkage since
the functions of the various lines are much more easily understood in
their original context. In subsequent sections, the implementation of the
RS-232 standard for computer/instrument linkages is discussed.

7-10 How To Control Serial Devices

7.3.1 Terminal/Modem Connection
The full RS-232 standard defines many handshake and status lines, as
well as both primary and secondary data paths. In practice, only a subset
of these lines is used in most implementations. For present purposes,
only two data lines and six handshake lines need be described.

Each line, whether it carries data or handshaking signals, is controlled
by one device (terminal or modem) and "read" by the other device.
That is to say, all lines are unidirectional. The cable connecting the
terminal with the modem is a "straight-through" cable with a 25-pin "D"
connector at each end. For example, pin 2 of each connector is defined
as the pin on which data originating in the terminal is carried. This
arrangement implies that pin 2 on the bulkhead of the terminal is wired
to a transmitting circuit within the terminal, while pin 2 on the bulkhead
of the modem is wired to a receiving circuit within the modem. This
same principle applies to all data and handshaking lines. Thus, the circuit
connections of the bulkhead connector on the terminal are different from
the circuit connections of the bulkhead connector on the modem. To
discriminate between the two, the bulkhead connector of the terminal
is referred to as a data terminal equipment, or DTE, connector and the
bulkhead connector of the modem is referred to as a data communication
equipment, or DCE, connector.

Figure 7-3 shows how DTE and DCE connectors are wired together. The
names and directions of each signal are indicated.

Protective Ground is the chassis ground of the two devices and is also
connected to the cable shield.

Transmitted Data carries data originating in the terminal to the modem.

Received Data carries data originating in the remote device passed via the
modem to the terminal.

Request to Send (RTS) is asserted by the terminal when it is ready to
transmit a data byte.

Clear to Send (CTS) is asserted by the modem when it is ready to pass a
data byte on to the remote device.

Data Set Ready (DSR) is asserted by the modem when it is powered up
and in an active state (as opposed to a test state).

Signal Ground (GND) is the circuit ground for all data and handshake
lines.

How To Control Serial Devices 7-11

Figure 7-3: DTE and DCE Signal Connections

TERMINAL (DTE) MODEM (DCE)
PIN NUMBER SIGNAL NAME PIN NUMBER

PROTECTIVE GROUND
III •

TRANSMITTED DATA
2 ~ 2

RECEIVED DATA
3 III 3

REQUEST TO SEND
4 ~ 4

CLEAR TO SEND
5 4 5

DATA SET READY
6 4 6

SIGNAL GROUND
7 4 •

CARRIER DETECT
8 4 8

DATA TERMINAL READY
20 • 20

RING INDICATOR
22 4 22

M R-0686-0818

Carrier Detect (CD) is asserted by the modem when it is receiving a carrier
signal from the remote modem. That is, CD indicates that the local
modem has a live connection to its remote counterpart. This line is also
called the Received Line Signal Detector (LSD).

Data Terminal Ready (DTR) is asserted by the terminal when it is powered
up and in an active state (as opposed to a test state).

Ring Indicator (RI) is asserted by the modem when a ring signal is being
received on the telephone link to the remote modem.

7-12 How To Control Serial Devices

When a key is pressed on the terminal, a data byte becomes available to
be transmitted to the remote device via the modem. First, the terminal
asserts RTS. If CTS, DSR, and CD are all asserted, the terminal sends the
data byte to the modem. It then deasserts RTS and pauses until another
key is pressed.

When a character is received by the modem from the remote device,
the modem sends the character immediately to the terminal, if DTR is
asserted.

7.3.2 Computer/Device Connection
When two RS-232 devices, such as an SLU module and an intelligent
lab instrument, are connected directly to each other, some subset of the
RS-232 lines is usually implemented. Which lines are used and how
their function is defined depends on the design of the device's serial
port interface and the design of the SLU. If no hardware handshaking is
implemented, the minimal number of lines that must be connected for
bidirectional communication are Transmitted Data, Received Data, and
Signal Ground. If hardware handshaking is used, the handshake lines
must also be connected.

Since neither the computer nor the intelligent instrument is a modem,
both are often configured as DTE. Then, the connections between the
SLU and the instrument must be crossed to accommodate the direction
ality of each line. This has the effect of tricking each device into thinking
that it is connected to a modem. Hence, a cable in which the data and
handshake lines are crossed is called a null modem cable. The wiring
diagram for a standard null modem cable is shown in Figure 7-4.

Note that some of the lines are jumpered on each end. RTS and
CTS are jumpered so that whenever either device asserts RTS, it sees
CTS asserted instantaneously and concurrently. This indicates that the
"modem" (that is, the null modem cable) is ready to pass data to the
remote device. By comparing the null modem connections with the
functions of the lines described above, it should be possible to infer
how the null modem cable imitates a true modem.

Unfortunately, this relatively simple plan is seldom followed by instru
ment manufacturers. Minimally, each device must be capable of sig
nalling the other when it is able to receive data. Thus, each device must
have dedicated lines which serve the following handshake functions:

How To Control Serial Devices 7-13

Figure 7-4: Null Modem Cable Connections

LEAD PIN NUMBERS LEAD

RING INDICATOR 220:::.:1_ _'-::0 2- 2------

DATA TERM READY 20 I -~<: l 20 ________ ~~-r -D~-------
I I

CARRIER DETECT 8 I 8
-------....... 0. I I fJ-------

'" I " REFERENCE GROUND 7 0- +~ -,,4" -o~7 ______ _

I "" I
DATA SET READY 6 ...J "Y, L 6 --------0- ,," ", -o~------

" " _C_L_E_A_R_TO_S_EN_D __ ~5~/ "~_5 ______ _

REQUEST TO SEND 46 6_4 ______ _
RECEIVED DATA 3 3 0. ______ _ -J:)>---------

TRANSMITIEDDATA 20---- -----0 2 ______ _

PROTECTIVE GROUND 1
--------0- - - - - -0-------

M R -0686-0805

• an output line which is asserted when the device's FIFO has room
for more data

• an input line which it tests before sending data to the other device

These two lines must cross in the cable (assuming both devices are DTE).
The problem is that no two devices seem to use the same pair of lines
for this minimal handshake.

Based on the descriptions of the different handshaking lines given above,
it may seem that the most likely pair for a minimal handshake is DTR and
DSR. In fact, many intelligent instruments use this pair for handshaking.
However, some instrument manufacturers apply the interpretation that
Clear to Send should signal the readiness of the FIFO to accept data.
They therefore instruct the user to build a cable in which, for example,
CTS and RTS are crossed. Note that, in such a case, a standard null
modem cable will not work.

7-14 How To Control Serial Devices

Fortunately, most manufacturers are explicit in explaining how to set up
hardware handshaking to their instruments. The user's manual will offer
advice such as II ••• the signal on pin 4 is asserted when the Ajax Model
1040 is able to accept data ... " or " ... pin 3 should be wired to the signal
line which the computer asserts when it is able to receive data ... "

But what if the computer's SLU did not support hardware handshaking
but the instrument's serial port did, for example? In this case, the signal
lines which the instrument's serial port reads to detect the readiness
of the computer to accept data should be tied to the instrument's
Signal Ground line. This effectively disables handshaking by constantly
II asserting" the handshake line. (Remember that when handshaking is
disabled, the serial port becomes a realtime device!)

7 .3.3 Cable Length
The line driver circuits in any serial device are only capable of supporting
signal transmission over a finite distance. The allowable cable length
depends on a number of factors, including the characteristics of the line
driver circuits, the speed of transmission (that is, the baud rate), the
gauge of wire used in the cable, and whether the cable is shielded or
not. As a conservative rule of thumb, cables should be kept to under
3000 feet at 110 - 1200 baud and to under 250 feet at 2400 - 9600 baud.

If it is necessary to run a serial line farther than this, either a standard
"acoustic" modem or a "short haul modem" can be used. Standard
modems communicate over telephone lines, and. thus can be used
between any two locations with telephone service. Even over short
distances, however, telephone lines may be noisy, causing errors in
transmission. Short haul modems communicate via dedicated phone
cables over distances of up to several miles (maxinlum distance differs
among manufacturers).

How To Control Serial Devices 7-15

Chapter 8
How To Use A Clock/Counter
Module

A realtime cIock/counter, as the name implies, is a multifunction module
which can be used to measure time intervals or count signal pulses.
Most cIock/counter modules perform both timing and counting functions
in a variety of modes. As examples, a single cIock/counter module
might be capable of performing each of the following functions (not
simultaneously) :

• Every 100th occurrence of a pulse, trigger an A/D converter.

• When a pulse occurs, wait 20 msec, then trigger an A/D converter.

• Measure the elapsed time between two pulses.

• When a pulse occurs, begin triggering A/D conversions at 2-msec
intervals.

• Count the number of pulses on one channel between successive
pulses on a second channel.

The mode of operation of a cIock/counter module is determined by three
mutually independent parameters: the source of the input signal, the
nature of the output, and the mechanism for onset and termination of
operation.

How To Use A Clock/Counter Module 8-1

The source of the input signal determines whether the module is function
ing as an interval timer or as a counter. Interval timing is accomplished by
counting pulses from a constant frequency oscillator. When functioning
as a counter, the module counts pulses from an external source. Thus,
the only difference between the interval timing function and the pulse
counting function is the source of the pulses being counted.

The output of a dock/counter module can take one of two forms:

• When a predetermined interval has elapsed or a predetermined count
is exceeded, the dock/ counter generates a signal which can be used
to trigger another device directly or to interrupt the system.

• The elapsed time or number of pulses which occurred since the
module was last reset can be read as a data value.

In the first case, the dock/counter is used to signal an event - the passage
of a given amount of time or the occurrence of a given number of
pulses. In the second case, the module is used to record the length
of an indeterminate time interval or the number of pulses occurring in
an interval.

Finally, the onset and termination of dock/counter operation can be con
trolled either by software (setting or dearing a bit in the CSR) or by an
external trigger signal.

This chapter describes the operation and programming of Digital's
KWVII-C dock/ counter module. This particular module is widely used
on Digital Q-bus systems and is similar in functionality to the KWll
(UNIBUS) and MNCKW (MIN C) modules.

8.1 Clock/Counter Internal Operation
Like other realtime option modules, any dock/counter module has reg
isters on the computer side which appear as storage locations in the I/O
page and various signal pathways on the external side. In addition, these
modules have various internal registers, oscillators, and other circuitry
for conditioning external signals. The following sections describe these
features and present an overview of the ways in which they work together
in various operational modes.

8-2 How To Use A Clock/Counter Module

8.1.1 Registers
The KWVII-C has two registers in the I/O page: a buffer/preset and a
CSR register. The CSR is used to control the operational status of the
module. The buffer/preset register is used to pass counts back and forth
between the system and the counter.

The counter is an internal register which is not directly addressable; that
is, it does not appear as a storage location in the I/O page. It can only
be written to or read from indirectly through the buffer/preset register
(see Section 8.2). The counter counts pulses originating either from the
internal oscillator or an external source. Since it is a 16-bit register, it
can hold values up to 65536 (unsigned). When that limit is exceeded,
the counter overflows. On counter overflow, a flag bit in the CSR is
set; an output pulse is generated; and several other things may happen,
depending on the mode in which the module is operating. Thus, the
counter register is central to the operation of the module.

8.1.2 Internal Circuits

The KWV11-C has two on-board Schmitt triggers - STI and ST2. A Schmitt
trigger is a circuit which detects threshold crossings in analog signals (see
Figure 8-1). When the input voltage crosses a set threshold, a single,
brief pulse is output. Both the threshold level and the direction of
threshold crossing can be controlled, either by configuring jumpers and
potentiometers on the module or through external connections.

The two Schmitt triggers are used in different ways. STI can be an
external timebase input or an external input for signals to be counted.
ST2 can be used to start the counter, to set a flag in the CSR, or to
generate an interrupt to the CPU.

In addition, the KWVI1-C has an internal oscillator circuit. This circuit
produces pulses, or "ticks," at regular time intervals. The interval
between ticks is selectable by setting certain bits in the CSR. Internal
oscillator rates of 1 MHz, 100 kHz, 10 kHz, 1 kHz, or 100 Hz can be
selected.

Either the internal oscillator or ST1 output pulses can be used as input
to the counter register, depending on the setting of bits in the CSR.

How To Use A Clock/Counter Module 8-3

Figure 8-1: Schmitt Trigger Operation

INPUT WAVEFORM SEE NOTE UPPER THRESHOLD

,., SCHMITT TR I GG E R 1ST, - - - = = L = = = = = - ---- - --- - -- - ---£r -':YSTERESIS
- - - - '-::::. _ - 0.5 V

LOWER THRESHOLD

OUTPUT ----u ,.-------
--ll-- 500 ns*

NOTE:
ST IS TRIGGERED AGAIN ONLY AFTER THE INPUT
WAVEFORM DROPS BELOW THE LOWER THRESHOLD
AND EXCEEDS THE UPPER THRESHOLD.

(a) POSITIVE SLOPE SELECTION (SLOPE SWITCHED ON)

SEE NOTE UPPER THRESHOLD

(-) SCHMITT TRIGGER (ST) - -
-- - - - - - - - - ~':YSTERESIS

_ _ _ _ ______ , ___ '-::::. _ - 0.5 V

: LOWER THRESHOLD

OUTPUT ------iUr-----------1l!-
--l \.- 500 ns* --II- 500 ns'

NOTE:
ST IS TRIGGERED AGAIN ONLY AFTER THE INPUT
WAVEFORM EXCEEDS THE UPPER THRESHOLD
AND DROPS BELOW THE LOWER THRESHOLD.

(b) NEGATIVE SLOPE SELECTION (SLOPE SWITCHED OFF)

*400 ns MINIMUM

8. 1.3 External Connections
Externally, the KWVII-C has the following connections:

• Input and output connectors for each Schmitt trigger

• Slope control connectors for each Schmitt trigger

MR·534Q
,'·4549

• External threshold level control connectors for each Schmitt trigger

• A clock overflow output (CLK OVF)

• A signal ground connection

8-4 How To Use A Clock/Counter Module

Note that, in addition to input and output connections for the two Schmitt
triggers, there are connections for setting the trigger slope and threshold
levels. There are also various jumpers and potentiometers on the module
itself for controlling the trigger slopes and thresholds. By setting jumpers
on the module, you can select either this internal circuitry or external
circuitry for Schmitt trigger control.

The clock overflow output can be led via the supplied external connector
to a corresponding input connector on another module (analog or digital
110 or another clock module). In this way, the clock overflow signal can
be used like an "external" trigger or clock input to other modules.

8.1.4 CSR Bit Assignments
The mode of operation of the KWVll-C is determined by the setting
of various bits and bit-fields in the CSR. Figure 8-2 shows the bit
assignments in the CSR. Each bit can be written or read under program
control; however, certain bits have special programming considerations:

• The maintenance bits (8, 9, and 10) always read O.

• The flags (7, 12, and 15) cannot be set by the program.

• The go bits (0, 13) can be cleared by more than one method.

Table 8-1 defines the function of each bit.

Figure 8-2: KWV11-C Control/Status Register Bit Assignments

ST2 ST2 010 MAINT OVFLO RATE RATE MODE
FLG GO ENA ST2 FLG 2 0 0

INT 2 FOR MAl NT MAl NT INT OV RATE MODE GO
OSC STl 1

MR·6163

How To Use A Clock/Counter Module 8-5

Table 8-1: KWV11-C Control/Status Register Bit Definitions

Bit

o

1,2

3-5

6

Name

GO

MODE

RATE

INTOV
(Interrupt on
Overflow)

Function

Read/Write - Setting this bit
starts the counter at a rate de
termined by the rate bits 3-5.

Read/Write
2 1 Mode
o 0 Mode 0
o 1 Mode 1
1 0 Mode 2
1 1 Mode 3

Read/Write - These bits se
lect the clock rate or counting
source for the counter.
5 4 3 Rate
o 0 0 Stop
o 0 1 1 MHz
o 1 0 100 kHz
o 1 110kHz
1 0 0 1 kHz
1 0 1 100 Hz
1 1 0 STI external input
1 1 1 Line (50/60 Hz)

Read/Write - When this bit is
set, the assertion of OVFLO
FLAG generates an interrupt.
Interrupt is also generated if
bit 6 is set while OVFLO FLAG
is set.

8-6 How To Use A Clock/Counter Module

Set By/Cleared By

The GO bit is set and cleared
under program control. In
modes 1,2, and 3, this bit
remains set until cleared by
the program. In mode 0 this
bit is cleared automatically
when the counter overflows.
Clearing bit 0 or a BUS INIT
resets the counter and stops
the counting.

The mode is set and cleared
under program control and
by BUS INIT.

The rate is set and cleared
under program control and
by BUS INIT.

This bit is set and cleared
under program control. If
either bit 6 or 7 is cleared
while an overflow interrupt
request to the processor is
pending, the request is can
celled.

Table 8-1 (Cont.): KWV11-C Control/Status Register Bit Definitions

Bit

7

8

9

10

11

Name

OVFLO FLAG

MAINT ST1

MAINT ST2

MAINT OSC

DIO
(Disable Internal
Oscillator)

Function

Read/Write to 0 - If bit 6
is set, setting bit 7 generates
an interrupt. Bit 7 must be
cleared after the interrupt has
been serviced to enable fur
ther overflow interrupts. If
two enabled interrupts are re
quested at the same time by
bits 7 and 15, bit 7 has the
higher priority.

Write Only - Setting this bit
simulates the firing of STl.
All functions started by S Tl
can be exercised under pro
gram control by using this bit.

Write Only - Setting this bit
simulates the firing of Schmitt
Trigger 2. All functions started
by S T2 can be exercised under
program control by using this
bit.

Write Only - For maintenance
purposes, setting this bit sim
ulates one cycle of the internal
crystal oscillator used to incre
ment the clock counter. (Bit 11
must be set.)

Read/Write - For maintenance
purposes, this bit prevents the
internal crystal oscillator from
incrementing the clock counter.
This bit is used with bit 10.

Set By/Cleared By

This flag is set each time
the counter overflows. It is
cleared under program con
trol' or at the low-to-high
transition of the GO bit, or
by BUS INIT.

This bit is set under pro
gram control. Clearing is
not needed. It is always read
as a O.

This bit is set under pro
gram control. Clearing is
not needed. It is always read
as a O.

This bit is set under pro
gram control. Clearing is
not needed. It is always read
as a O.

This bit is set and cleared
under program control.

How To Use A Clock/Counter Module 8-7

Table 8-1 (Cont.): KWV11-C Control/Status Register Bit Definitions

Bit

12

13

14

15

Name

FOR

ST2GO
ENABLE

INT 2

ST2 FLAG

Function

Read/Write - Flag Overrun pro
vides the programmer with an
indication that the hardware
is being asked to operate at a
speed higher than is compati
ble with the software.

Read/Write - When set, the as
sertion of ST2 FLAG sets the
GO bit and clears the ST2 GO
ENABLE bit.

Read/Write - When set, the as
sertion of ST2 FLAG (bit 15)
causes an interrupt. If set
while ST2 FLAG is set, an in
terrupt request is generated.

Read/Write to 0 - Setting this
flag starts an interrupt request
if bit 14 is set. Bit 15 must be
cleared after servicing an ST2
interrupt to enable further in
terrupts.

If two enabled interrupts are
requested at the same time by
bits 7 and 15, bit 7 has the
higher priority.

Set By/Cleared By

This flag is set when an over
flow occurs and the OVFLO
FLAG (bit 7) is still set from a
previous occurrence, or when
ST2 fires and the ST2 FLAG
(bit 15) has been previously
set. Bit 12 is cleared under
program control, or at the
low-to-high transition of the
GO bit, or by BUS INIT.

The ST2 GO ENABLE bit is
cleared under program con
trol, or at the low-to-high
transition of the GO bit, or
by BUS INIT.

The bit is set and cleared un
der program control and by
BUS IN IT . When either bit
14 or 15 is cleared, any pend
ing ST2 interrupt request is
cancelled.

The ST2 FLAG is set by the
firing of Schmitt Trigger 2
or the setting of the MAINT
ST2 bit (in any mode) while
the GO bit or the ST2 GO
ENABLE bit is set. The
ST2 FLAG is cleared under
program control or at the
low-to-high transition of the
GO bit unless the ST2 GO
ENABLE bit has previously
been set. This bit is also
cleared by BUS INIT.

Note that the same bit-field used to select the base clock rate is also used
to select the source of pulses which drive the counter register.

8-8 How To Use A Clock/Counter Module

8.2 Modes Of Operation
The setting of the mode bits (1 and 2) determines the basic operational
mode of the module. The basic mode is like a theme on which many
variations can be superimposed, depending on the setting of the other
bits in the CSR. The following paragraphs give a brief description of each
mode.

8.2.1 Mode 0 (Single Interval)
This mode of operation is used to generate a fixed count or a fixed interval
for applications such as creating delay intervals.

1. The program loads the CSR with mode 0 (bits 1 and 2 both cleared),
the clock rate, and interrupt enable (INTO V) , if needed.

2. The program loads the buffer/preset register with the 2's complement
(negative value) of the number of external events to be counted (when
RATE = ST1), or the number of clock pulses needed to generate the
time delay at the selected clock rate.

3. The program sets the GO bit (bit 0), or it sets the ST2 GO EN A bit
(bit 13) and waits for an external event to set the GO bit.

4. When the GO bit is set, the counter is loaded with the contents of
the buffer/preset register and starts counting.

5. The counter increments until it overflows, at which time it clears the
GO bit and stops counting.

6. The overflow causes the OVFLO FLAG (bit 7) to be set in the CSR.
If the INTOV bit was set, an interrupt occurs. If not, the KWV11-C
waits for another program command.

7. The program either responds to the interrupt, or it checks the OVFLO
FLAG (bit 7) to determine that the count or interval has been reached.

8. The program clears the OVFLO flag and, if no counting or mode
changes are needed, sets the GO bit (or the ST2 GO ENA bit) to start
again at step 4 above.

How To Use A Clock/Counter Module 8-9

8.2.2 Mode 2 (Repeated Interval)
In this mode, the user can generate repeated intervals or counts. This
mode is identical to Mode 0, with the following exceptions:

• When the OVFLO FLAG bit is set (step 6 above), the counter is
automatically reloaded from the buffer/preset register, and counting
continues without any additional program commands.

• If the counter overflows a second time before the program clears the
OVFLO FLAG bit, the FOR bit (bit 12) is set to indicate a possible
error condition. The counter is reloaded from the buffer/preset, and
counting continues, as above.

Mode 2 is commonly used to generate a constant-frequency timebase.

8.2.3 Mode 3 (External Event Timing)
In this mode, the user can record the time of occurrence of external
events, or count external events. Two external events can be monitored
with respect to each other.

1. The program loads the CSR with mode 2 (bit 1 cleared, bit 2 set), the
clock rate/source, and interrupt enable (INTOV or INT2), if needed.

2. The program sets the GO bit, or it sets the ST2 GO ENA bit and waits
for an external event to set the GO bit. (NOTE: If both ST2 GO ENA
and INT2 are set by a single program instruction, a race condition
can occur, resulting in unpredictable operation).

3. When the GO bit is set, the counter is cleared, and starts counting.

4. When an ST2 pulse occurs, the contents of the counter are placed in
the buffer/preset register and the ST2 FLAG bit is set. If INT2 was
set, an interrupt occurs. Otherwise, the program can poll the ST2
FLAG bit to detect the occurrence of an ST2 pulse. The GO bit is not
cleared.

8-10 How To Use A Clock/Counter Module

5. The program can then read the buffer/preset register to determine the
latency of the ST2 pulse or the number of STl pulses which occurred
prior to the ST2 pulse (depending on the setting of the rate/source
bits). The ST2 FLAG bit must be cleared after reading the buffer
/preset to enable repeated operation.

6. If ST2 does not occur, the counter continues to increment even after
an overflow. The overflow sets the OVFLO flag and generates an
interrupt if INTOV is set.

7. Each successive ST2 pulse causes the contents of the counter to be
placed in the buffer/preset register. If the ST2 FLAG is cleared when
the ST2 pulse occurs, the ST2 FLAG bit is set. If the INT 2 bit is set,
the setting of the ST2 FLAG bit causes an interrupt to be generated.

8. The counter continues to operate in this mode until the program
clears the GO bit.

8.2.4 Mode 4 (External Event Timing From Zero Base)

This mode is identical to Mode 3 except that the counter is automatically
cleared after every ST2 pulse (step 4 above). Thus, Mode 3 provides
cumulative time/count information, whereas Mode 4 provides zero-based
time/count information.

How To Use A Clock/Counter Module 8-11

Chapter 9
Advanced Realtime
Programming Techniques

Once you have successfully built the interface between your computer
system and the real world, you face the job of programming the com
puter to perform the application. This chapter describes several pro
gramming techniques that you will find useful in programming realtime
applications. Specifically, the following techniques are discussed:

• Buffer management techniques

• Direct device control on virtual systems

• Programming interrupts on virtual, multi-tasking systems

Advanced Realtime Programming Techniques 9-1

9.1 Buffer Management Techniques
Like many of the terms used in computer science, the word "buffer"
can mean different things in different contexts. Originally, the term was
applied to certain kinds of operations for controlling the flow of data in
a system. For example, realtime data might be delivered to the system
at a constant rate, while the CPU could process the incoming data only
in spurts. During periods when the CPU was unavailable for processing,
incoming data would have to be stored temporarily or it would be lost.

Consider the analogy of a pipeline carrying oil froDl a field of wells into
a refinery. The wells pump oil out of the ground at a fairly constant rate,
but the refinery processes the oil in spurts. To manage the flow of oil,
a tank is used to hold the output of the wells until the refinery is ready
to process it. At times, oil is removed from the tank for processing at a
much faster rate than the rate at which the wells are pumping. At other
times, the removal of oil from the tank is suspended completely. As long
as the average rate at which oil is removed from the tank for processing
is equal to the rate at which the wells are pumping, the system functions
properly. The holding tank is analogous to a temporary storage area, or
buffer, for data in a realtime computer system.

More generally, the term buffer can be applied to any temporary storage
area for data, even when the temporal regulation of data flow is not a
primary goal. For exalnple, in a structured progranuning environlnent,
you may want to handle data in functional blocks which are passed, back
and forth among program. modules or processes.

This section presents information on basic concepts and techniques for
storing data in buffers and for managing sets of buffers in realtime
applications.

9.1.1 Ring Buffers

A ring buffer is a group of storage locations (that is, an array) into which
data values are placed sequentially. After the last storage location is used,
the next data value is placed in the first position in the array, and then the
second, and so forth. Thus, the storage locations are continually reused.
A pointer or index is used to keep track of the next element in the array
into which data will be placed. Each time a new data value is stored in
the array, the index is incremented. When the index becomes larger (by
one) than the size of the buffer, it is reset to point to the first location in
the array. This is shown diagramatically in Figure 9-1.

9-2 Advanced Realtime Programming Techniques

Figure 9-1: Diagramatic Illustration of a Ring Buffer

REMOVE: = RING + 14:

M R-0786-0831

The program must remove data from the ring buffer before it is overwrit
ten by newer data. In some cases, a second pointer is nlaintained which
points to the next array element from which data is to be removed. Each
time a data value is removed, this pointer is incremented and, like the
input pointer, reset to point to the first element of the array when it
exceeds the buffer size.

It is often convenient to use ring buffers whose length is an integral power
of 2, since the pointers can be reset by merely zeroing the high-order bits
after each input or output operation. This is shown in the code fragment
shown in Example 9-1.

Advanced Realtime Programming Techniques 9-3

Example 9-1:

SUBROUTINE INSERT (VALUE)
INTEGER VALUE, POINTER, RING(1024)
COMMON IRINGBUFFI RING
DATA POINTER 101
POINTER = POINTER + 1
RING(POINTER) = VALUE
POINTER = POINTER .AND. 1023
RETURN
END

The constant 1023 (decimal) is equal to the binary value 0000001111111111.
By logically ANDing the pointer with this constant each time it is incre
mented, the pointer is made to reset to 0 when it reaches 1024. Of course,
this can also be accomplished by executing the FORTRAN statement:

IF (POINTER .EQ. 1024) POINTER = 0

However, the former method is more efficient, particularly when coding
in assembly language.

9.1.2 Double- And Multi-Buffering Techniques
In many realtime applications, data can be processed in blocks, rather
than on a point-by-point basis. Furthermore, each processing step often
requires considerably less CPU time than the elapsed time needed to
capture a block of data. In such cases, the use of two or more buffers to
manage data can improve program efficiency dram.atically.

Consider the example of an application in which 4 channels of analog
data are continuously captured on a 100 Hz timebase (aggregate rate of
400 Hz) and written to a disk file. Assuming that no special processing
of the data needs to be done in realtime, data can be handled in blocks
of 400 data points. Each block represents 1 second of data. This example
application can be decomposed into two discrete processing steps - a
data-capture step and a disk-write step.

The application program must perform these two steps repeatedly and
in sequence in such a way that no data are lost.

9-4 Advanced Realtime Programming Techniques

The code fragment in Example 9-2 illustrates a "brute force" approach
to programlning this example application.

Example 9-2:

INTEGER*2 IBUFF(400)

SECONDS = 1
DO WHILE (SECONDS .LE. 100)

CALL GETDATA_S (IBUFF, 400)
WRITE (1 I REC1) IBUFF
SECONDS = SECONDS + 1

END WHILE

The routine GETDATA_S is assumed to execute synchronously. That is,
once it is called, control does not return to the main program until 400
data values have been captured and stored in the buffer (IBUFF).

The code sequence shown in Example 9-2 is logically valid, but it would
fail to produce the desired result. This is because the disk-write and loop
control operations Inust be executed in the realtime interval between two
successive sample times. At a clock rat~ of 100 Hz, this interval is less
than 10 msec. If the system could not write the buffer to disk and loop
back to call the sampling routine (GETDATA_S) in less than 10 msec,
data would be lost. Stated differently, this technique would work for
very low data acquisition rates, but not for even modestly high rates.

Double-buffering of data can improve the efficiency (and, thus, the per
formance) of realtime data acquisition applications. The following para
graphs describe how double-buffering could be used to perform the same
application shown in Exanlple 9-2.

If an asynchronous (interrupt-driven or DMA) data acquisition routine
were used, the amount of CPU time required to capture 400 data values
would undoubtedly be much less than 1 second. In that case, the left-over
CPU time could be used to write a second block of data out to disk. The
disk-write operation also is performed asynchronously by the disk driver.
Since both of the required operations, data-capture and disk-write, can
be executed asynchronously using less than 1 second of CPU time, the
two can be superilnposed as shown in Example 9-3.

Advanced Realtime Programming Techniques 9-5

Example 9-3:

INTEGER*2 IBUFF1(400) , IBUFF2(400) , FLAG 1 , FLAG2

FLAG1 = 0
FLAG2 = 0
CALL GETDATA_A (IBUFF1, 400, FLAG1)
SECONDS = 1
DO WHILE (SECONDS .LE. 100)

111 IF (FLAGl .EQ. 0) GO TO 111
CALL GETDATA_A (IBUFF2, 400, FLAG2)
WRITE (1'IREC1) IBUFFl
FLAGl = 0
SECONDS = SECONDS + 1

222 IF (FLAG2 .EQ. 0) GO TO 222
CALL GETDATA_A (IBUFF1, 400, FLAG1)
WRITE (1'IREC1) IBUFF2
FLAG2 = 0
SECONDS = SECONDS + 1

END WHILE

The routine GETDATA_A is assumed to execute asynchronously. That
is, when it is called, asynchronous data acquisition is enabled, and
control returns to the main program. When data acquisition is complete,
GETDATA_A sets the value of the third argument (FLAG1 or FLAG2) to
1.

The code sequence shown in Example 9-3 is very efficient in that it does
not require a disk-write operation between the completion of one data
capture operation and the beginning of another. As soon as routine
GETD AT A_ A signals that one buffer has been filled with data, the pro
gram starts data acquisition into a second buffer by calling GETDATA_
A again. While GETDATA_A is filling one buffer with data, the buffer
which was filled by the preceding call to GETDATA_A can be written out
to disk. The system has a full second in which to write out a data buffer
before the buffer is needed again for data acquisition.

9-6 Advanced Realtime Programming Techniques

Of course, the system must still satisfy the requirement that each succes
sive call to GETDATA_A can reenable data acquisition within 10 msec of
the completion of the previous data-capture operation. However, this is
much more reasonable than having to perform the disk-write operation
in that amount of time, as well.

The term buffer chaining is used to describe the operation of starting data
acquisition into a new buffer when the previous buffer is filled. The
present example application could be performed even n10re efficiently
if buffer chaining were performed within the interrupt service routine
which underlay the data-capture routine. To do this, the main program
would have to pass the starting addresses of both buffers (IBUFF1 and
IBUFF2) as well as the addresses of the two completion flags (IFLAG1
and IFLAG2) to the data-capture routine.

Another way to handle buffer chaining would be for the interrupt service
routine to place data into an SOO-word ring buffer. As the ring buffer was
repeatedly filled, the interrupt service routine could set a flag at each 400-
word boundary which signalled the main program to write out a block
of data to disk. A technique similar to this is used in the programming
example shown in Section 9.3 below.

Multibuffering of data can be used to achieve additional performance
improvements under some circumstances. In the example application
described above, suppose that the disk was heavily loaded due to some
other activity on the system. Most of the time, the system might still be
able to write a 400-word buffer of data out to the disk in under 1 second.
Occasionally, though, it might take longer than 1 second to write out a
buffer because of the overall loading of the disk. If only two buffers were
used, the application would fail when that happened.

As long as the AVERAGE time required to write out a buffer of data is less
than 1 second, the application can be successfully performed by using
multiple buffers. A technique for performing the example application
using multiple buffers is shown in Example 9-4.

Advanced Realtime Programming Techniques 9-7

Example 9-4:

INTEGER*2 IBUFF(4,400)
INTEGER*2 FLAG(4) , BUFFN
DATA FLAG /4*0/

CALL GETDATA_M (IBUFF, 4, 400, FLAG)
BUFFN = 1
INDEX = 1
SECONDS = 1
DO WHILE (SECONDS .LE. 100)

111 IF (FLAG(BUFFN) .EQ. 0) GO TO 111
WRITE (1 I IREC1) (IBUFF(J). J = INDEX. INDEX+399)
FLAG(BUFFN) = 0
SECONDS = SECONDS + 1
BUFFN = BUFFN + 1
INDEX = INDEX + 400
IF (BUFFN .EQ. 6) BUFFN = 1
IF (INDEX .EQ. 1201) INDEX = 1

END WHILE

The routine GETDATA_M is assumed to execute asynchronously. The
main program passes arguments to GETDATA_M indicating the starting
address of the data buffer (IBUFF), the number and length of subbuffers
(4, 400), and the address of the flag array (FLAG). As each subbuffer is
filled, GETD AT A_ M chains the next subbuffer in sequence and sets the
value of the appropriate completion flag to 1. The main program tests
each completion flag in sequence and writes the appropriate subbuffer
of data out to disk when it finds a flag set.

The code sequence shown in Example 9-4 allows the system to perform
the application even if, occasionally, a subbuffer cannot be written out
to disk in under 1 second. As long as the maximum time required to
write out 4 subbuffers of data is less than 4 seconds, the application will
succeed.

9-8 Advanced Realtime Programmin.g Techn.iques

9.2 Direct Device Control On Virtual Systems
The most basic level at which realtime devices can be controlled is by
direct manipulation of the contents of device registers. Direct control of
device registers is relatively simple in PDP-II systems and, in fact, is a
common programming technique for certain kinds of realtime applica
tions. For example, the following MACRO-II code fragment illustrates
the acquisition of a single data value from an A/D device.

ADCSR = 770400 ;Address of device CSR
ADBUF = ADCSR+2 ;Address of device buffer
MTPS #340 ;Set processor priority level to 7
MOV #l.ADCSR ;Set the GO bit to start a conversion

LOOP: BIT #200.ADCSR ;Test the AID DONE bit
BEQ LOOP ;If clear. test again
MOV ADBUF.RO ;If set. move the data value

into register 0
MTPS #0 ;Drop priority level back to 0

In this example, the processor priority level is first raised to 7. This in
sures that the processor will execute the subsequent instructions without
interruption. An A/D conversion is then initiated by setting bit 0 of the
device control/status register (CSR). When the conversion is complete,
bit 7 of the CSR is set by the device. The program repeatedly tests this
bit until it finds the bit to be set, then moves the data value from the
device's buffer register into a general-purpose processor register (or into
a storage location in main memory). This technique is called "polled
I/O".

Since many polled I/O operations require that the processor be totally
dedicated to the polling loop, this technique has not been widely used on
virtual, multiuser systems, such as VAX/VMS. However, the increasing
use of Micro V AX systems for dedicated realtime processing has brought
about a demand for direct device control routines. This section describes
techniques for implementing direct device control routines on virtual,
multi-tasking, multiuser systems using MicroVAX/MicroVMS as an ex
ample.

Note
As with RT-ll based PDP-ll systems, improper manipulation of
device registers in the MicroVAX I/O page can lead to undesirable
consequences. Generally speaking, direct device control techniques
should be used to manipulate only process-dedicated realtime option
module registers. Inadvertently changing other device register contents
may cause a system crash or the corruption of a mass storage volume.
Be sure to have a secure backup copy of the system whenever debugging
direct device control routines.

Advanced Realtime Programming Techniques 9-9

To develop polled 110 (or other direct device control routines) under
MicroVMS, two special programming techniques are called for:

• Addressing device registers in the 110 page

• Raising and lowering the processor priority level

This section illustrates the techniques used to accomplish these opera
tions in the context of programs for performing single-channel clocked
analog input using an AXVII-C analog module and a KWVII-C clock
module.

9.2.1 Accessing Device Registers In The VAX 1/0 Page
On PDP-II systems running the RT-ll Single-Job monitor, accessing
addresses in the I/O page involves nothing more than supplying a 16-bit
address in the range 160000 - 177776 (octal). Those addresses correspond
to the portion of the physical address space within which device registers
are defined - the 110 page. As with PDP-II systems, the VAX architecture
reserves a region of the physical address space for device registers. For
MicroVAXes (1 and II) the 110 page starts at address 20000000 (hex), and
is 2000 (hex) bytes in length.

Under MicroVMS, the 32-bit virtual address space of the system is
mapped into physical memory, so that a user-supplied address does not
ordinarily correspond to any particular physical address. The problem,
then, is to establish a means of addressing a particular range of physical
addresses - that is, the MicroVAX 110 page.

This is accomplished by mapping the physical addresses which constitute
the I/O page into a portion of the process's virtual address space. The
VMS $CRMPSC system service is used. The following paralneters are
passed to the $CRMPSC service:

• The starting and ending virtual addresses into which the section is to
be mapped. This virtual address block should be 8K bytes long and
page-aligned.

9-10 Advanced Realtime Programming Techniques

• The starting page frame number of the section to be mapped (a page
frame is a 512-byte block of physical memory). This is computed as
< 110 page starting physical address> /512.

• The number of pages in the section (16 in this case).

In addition, the $CRMPSC system service accepts a flag mask specifying
the type of section to be created, as well as its characteristics. In the
present context, the essential flags are SEC$M_ PFNMAP and SEC$M_
WRT, which define the section as a page frame section with the read
/write attribute.

Finally, the call to the $CRMPSC system service must specify stor
age locations into which the starting and ending virtual pages actually
mapped, and the channel number assigned by the system to the section.
Ordinarily, these data are not used by the programmer and need not be
discussed further here. For a fuller discussion of the $CRMPSC system
service, see the VAX/VMS System Services Reference Manual.

Once the mapped section has been created, instructions which address
locations within that virtual address block effectively address the corre
sponding locations in the 110 page. To compute the virtual address of a
particular device register in the I/O page, the absolute offset in the I/O
page of the register is added to the base address of the virtual address
block. This yields a virtual address which corresponds to the desired
physical address.

9.2.2 Raising And Lowering Processor Priority Level
VAX architecture defines 32 interrupt priority levels (IPL 0 - IPL 31). At
any point in time, the processor operates at some particular IPL, usually
o during execution of user code. Device interrupts occur at IPL 20 -
23, corresponding to bus request levels 4 - 7. On MicroVAXes, driver
code executes at IPL 23, regardless of the level at which the device
interrupted. For example, a device interrupt on BR 4 is not granted
until the processor priority falls below 20. However, when the request is
granted, the processor priority is set to IPL 23, thus blocking ALL device
interrupts until the driver lowers the IPL. The system timer interrupts at
IPL 22, and is granted at the same level.

Advan.ced Realtime Programming Techniques 9-11

When the processor is executing code at a low IPL, device, timer, or
software intenupts at a higher IPL can pre-empt the system. When this
happens, the processor saves the context of the currently executing image
(program counter, processor status longword) and transfers control to the
interrupt service routine (ISR). When the ISR completes, the context of
the pre-empted image is restored and continues executing where it left
off (assuming no new interrupts are pending). Thus, an image executing
at a low IPL can be suspended for various periods of time due to the
occurrence of interrupts.

When performing polled I/O, you may want the processor to respond
as quickly as possible to the availability of data from the device being
polled. To prevent interrupts from distracting the processor from the
polling operation, the polling code must be executed at an IPL above
that of any device which might generate a pre-emptive interrupt. To
accomplish this, the code raises the IPL to 30 using the DSBINT system
macro. The value of 30 is chosen to enable a power-fail interrupt (IPL
31) to be processed, should one occur. This is advisable since allowing
the power-fail ISR to execute could prevent corruption of the system
device. Besides, blocking the power-fail ISR will probably not salvage
the application.

VAX processor design imposes the restriction that IPL cannot be raised
except while the processor is operating in kernel mode. The $CHMKNL
system service must be invoked to change mode to kernel before ex
ecuting the DSBINT macro. The polling code then executes in kernel
mode. Whenever the processor is executing above IPL 2, page faults
are fatal (the system will crash). Thus, before entering kernel mode, the
$LCKP AG system service must be called to lock any data areas that are
addressed in the polling routine into physical memory. When the polling
routine completes, the program should restore the original IPL (usually
0), return to user mode, and, optionally, unlock the pages addressed in
the polling routine.

In summary, the sequence of program steps in performing polled 110 at
elevated IPL is as follows:

1. The I/O page is mapped into process virtual address space using the
$CRMPSC system service.

2. Any required device initialization is performed at IPL 0, user mode.

9-12 Advanced Realtime Programming Techniques

3. Any pages addressed in the polling routine are locked into physical
memory using the $LCKPAG system service.

4. The processor mode is changed to kernel using the $CHMKNL
system service.

5. In kernel mode, the IPL is raised to 30.

6. The polling code executes and data is moved into a process buffer
which has been locked into memory (step 3, above).

7. When data transfer is complete, the IPL is returned to its prior value
(usually 0).

8. The processor mode is changed back to user mode by exiting the
kernel mode routine.

9. The device is reset, if necessary.

10. Optionally, the pages addressed in kernel mode are unlocked using
the $ULKP AG system service.

11. Post-processing of the acquired data is performed in user mode at
IPL O.

The following FORTRAN and MACRO-32 modules illustrate this se
quence for single-channel clocked analog input using AXV11-C and
KWV11-C modules (see Example 9-5).

Advanced Realtime Programming Techniques 9-13

Example 9-5:

To execute:

$ FORTRAN POLLED_AD
$ MACRO FASTAD32
$ LINK POLLED_AD,FASTAD32
$ SET PROCESS/PRIV=(CMKRNL,PSWAPM,PFNMAP) !Required privileges
$ RUN .POLLED_AD

==

PROGRAM POLLED_AD

INCLUDE '($SYSSRVNAM),

lNTEGER*2 10FF, IVAL, IBUF(60000)
INTEGER*4 I STATUS , MAPlOP, NPNTS, LOCKS(2)

c Use the $LCKPAG system service to lock the input buffer into physical
c memory.

LOCKS(1)=%LOC(IBUF(1»
LOCKS(2)=%LOC(IBUF(60000»
ISTATUS=SYS$LCKPAG(LOCKS, ,)
IF(.NOT.ISTATUS) CALL EXIT(ISTATUS)

c Call routine MAPlOP to map the I/O page in virtual address space.

ISTATUS=MAPlOP()
IF(.NOT.ISTATUS) CALL EXIT(ISTATUS)

c Input/initialize data acquisition parameters.

TYPE 9060
9060 FORMAT('$Base clock rate, clock preset, number of samples? ')

ACCEPT *, IRATE, KOUNT, NPNTS
ICHAN = 0
MODE = 0

c Call the sampling routine. Control will return to the main program
c only after I/O is complete.

CALL FASTAD32(ICHAN,KOUNT,IRATE,IBUF,NPNTS,MODE,ISTATUS)

c Output data, return status (residual AXV CSR)

TYPE 9130, (J, IBUF(J),J=1,NPNTS)
9130 FORMAT(1X,2110)

TYPE 9140,ISTATUS
9140 FORMAT(/' ISTATUS =',010)

END
==

(Continued on next page)

9-14 Advanced Realtime Programming Techniques

Example 9-5 (Cont.):

.TITLE FASTAD32

.LIBRARY /SYS$LIBRARY:LIB.MLB/

.PSECT MAPIOP_MAIN RD,WRT,PAGE

NOTE: all subsequent MACRO-32 code in this example is contained in this
.PSECT.

VIOP: .BLKB 8192 The virtual pages to which the
VIOP_END: I/O page will be mapped
PIOPAGE: .LONG VIOP Starting and ending virtual page

. LONG VIOP_END addresses
RETPAGE: .BLKL 2 Starting and ending page addrs

used (should be the same)
SECNAME: .ASCID /IOPAG_GLSEC/ Name of the section to be created
IOPAGECHAN: .LONG Channel # to be associated with

the created section
PFNUM: .LONG ~X100000 Page frame number of the I/O page

(20000000 hex) / (200 hex)
;++
; Routine to map the I/O page into process virtual address space
. --,

;++

.ENTRY NAPIOP,~M<>

$CRMPSC_S-

RET

INADR=PIOPAGE,
RETADR=RETPAGE,
FLAGS=#SEC$M_PFNMAP+SEC$M_WRT,
GSDNAM=SECNAME,
CHAN=IOPAGECHAN,-
PAGCNT=#16.,-
VBN=PFNUM

FASTAD32 - Performs single-channel, polled I/O using AXV11-C and
KWV11-C modules.

The FORTRAN calling interface is:

CALL FASTAD32(ichan,kount,irate,ibuf,npnts,mode,istatus)

where:
ichan
kount
irate

AXV11-C A/D channel number
KWV11-C preset value
clock rate:

1 = 1 MHz
2 = 100 kHz

(Continued on next page)

Advanced Realtime Programming Techniques 9-15

Example 9-5 (Cont.):

ibuf
npnts
mode

istatus =

3 = 10 kHz
4 = 1 kHz
6 = 100 Hz

array to store data
number of elements in ibuf
if 0 then start immediately;
if<>O then start on ST2
return status; if<O then error

This routine should be in the same .PSECT as the MAPIOP routine.

The ClK OVFl pin on the KWV is strapped to the RTC IN pin on the AXV.

ADCSR
ADBUF
KWCSR
KWPRE

= VIOP+-Ol0400 ;address ofAXV11-C A/D CSR
= ADCSR+2 ;address ofAXVll-C A/D BUFFER
= VIOP+-010420 ;address of KWV11-C CSR
= KWCSR+2 ;address of KWV11-C BUFFER/PRESET

; Argument pointer offsets

ICHAN 4
KOUNT 8
IRATE 12
IBUF 16
NPNTS 20
MODE 24
ISTATUS = 28

. ENTRY FASTAD32,-M<R6,R7,R8,R9,R10>

Note that all instructions which address the I/O page are WORD MODE.

TSTW
MOVZWl
ASHl
BISB
MOVW

MOVZWl
BICl
ASHL
MOVW

ID#ADBUF
IDICHAN(AP),R6
#8,R6,R6
#-040,R6
R6,ID#ADCSR

IDlRATE(AP),R6
#-0177770,R6
#3,R6,R6
R6,ID#KWCSR

;clear A/D DONE flag
;channel # to sample
;move channel # to byte 2 of R6
;enable clock driven
;load A/D CSR

;clock rate in R6
;clear excess bits
;shift rate to bits 3 - 6
;load KW CSR

(Continued on next page)

9-16 Advanced Realtime Programming Techniques

Example 9-5 (Cont.):

LCKPAG:

LCKRET:

MNEGW OKOUNT(AP), -
O#KWPRE

MOVL IBUF(AP),R6
MOVZWL ONPNTS(AP),R7
MOVL #ADCSR,R8
MOVL #ADBUF,R9
MOVZWL OMODE(AP),Rl0

$LCKPAG_S -
.INADR=LCKPAG, -
RETADR=LCKRET

$CMKRNL_S POLL

CLRW
MOVZWL

CLRW

RET

.LONG

. LONG

.BLKL

O#KWCSR
(R8) , -
OISTATUS(AP)
(R8)

POLL
POLL_END
2

;load KW preset register

;load address of IBUF into R6
;load NPNTS into R7
;R8 points to AID CSR
;use R9 as pointer to AID bufter reg
;pass MODE arg to POLL in Rl0

;lock polling code into memory

;execute routine POLL in kernel mode

;zero KWCSR - turns clock off
;return status is residual AXV CSR

;clear AID CSR

;return to Fortran

. ENTRY POLL,~M<R6,R7,R8,R9,Rl0>

DSBINT
TSTW
BEQL
BISW
BRB

1$: BISW

2$: BBC
MOVW
SOBGTR

ENBINT
POLL_END:

RET

. END

#30
Rl0
1$
#20002,O#KWCSR
2$
#3,O#KWCSR

#7, (R8) ,2$
(R9),(R6)+
R7,2$

;disable all interrupts (except powerfail)
;test mode
;it 0 then trigger immediately
;set clock to wait for ST2
;and skip over next instruction
;trigger immediately

;is conversion done?
; store AID value
;decrement NPNTS; it not zero, loop again

;restore IPL to prior value

(Continued on next page)

Advanced Realtime Programming Techniques 9-17

Example 9-5 (Cant.):

;++
These routines are not used in the present example. They are provided
only tor general reterence.

FORTRAN calling intertace:

CALL IPEEK32 OFFSET, VALUE)

CALL IPOKE32 OFFSET, VALUE)

where:

OFFSET = integer*2 ottset in the I/O page

VALUE = integer*2 value trom/tor the register addressed

These routines should be in the same .PSECT as the MAPIOP routine.

'--,
.ENTRY IPEEK32,~M<R6>

MOVZWL 04(AP),R6
MOVW L~VIOP(R6),08(AP)

RET

.ENTRY IPOKE32,~M<R6>

MOVZWL 04(AP),R6
MOVW 08(AP),L~VIOP(R6)

RET

;put OFFSET in R6
;put value trom iopage in VALUE

;put OFFSET in R6
;put VALUE into iopage

9.3 Interrupt Programming On Virtual,
Multi-tasking Systems

Interrupt service routines on unmapped, single-tasking systems, such as
PDP-lls running RT -11 are fairly straightforward. An interrupt occurs
and control is transferred directly to the interrupt service routine (ISR).
This involves saving the current program counter (PC) and processor
status word (PSW) and replacing them with the PC and PSW stored at
the vector address for the interrupting device. When 110 is complete, a
completion flag can be set to notify the mainline program that the data
have been stored (or output), The interrupt service routine returns control

9-18 Advanced Realtime Programming Techniques

to the mainline program by executing an RTI instruction which restores
the saved PC and PSW registers. The mainline program may test the
completion flag to detect 110 completion.

The virtual, multi-tasking, multiuser nature of VAX/VMS makes interrupt
handling more complicated. Since the process which requested the 110
might not be current at the time an interrupt occurred, the ISR code and
data must reside in system virtual address space and must execute in
system context. If this were not the case, a context switch to that of the
requesting process might be needed before the interrupt could be ser
viced. This would impose too great a penalty in response time. Similarly,
notification of 110 completion must be handled asynchronously. Finally,
the sharing of 110 resources among multiple, possibly noncooperating
processes imposes additional architectural demands.

VMS resolves these issues through the implementation of an elegant,
though complex, 110 subsystem. All VMS device drivers must interface
to the 110 subsystem to insure the orderly flow of information between
the various users' processes and shareable 110 devices. However, most
realtime application programmers would prefer to avoid writing a full
VMS device driver for controlling realtime 110 modules. This is particu
larly true in light of the fact that realtime devices generally need not be
shareable among noncooperating processes, whereas device shareability
is one of the sources of complexity in the 110 subsystem. The connect-to
interrupt driver enables users to program interrupt service routines and
asynchronous 110 completion routines without having to write a full VMS
device driver.

9.3.1 The Connect-to-Interrupt User Interface
The connect-to-interrupt driver (CONINTERR or CIN) is a template VMS
device driver into which blocks of user-supplied code and data can be
linked. The user-supplied code and data are contained in a single .PSECT
hereafter referred to as the "CIN buffer". The CIN buffer is compiled
and linked as part of the application program. The linkages between the
CIN driver and the user-supplied CIN buffer are formed at run time by
the $QIO system service. As a part of the process of building these links,
the CIN buffer is mapped into system virtual address space (SO), while
preserving the mapping in process virtual address space (PO). The result
is that the CIN buffer is doubly-mapped in SO and PO virtual address
space. Thus, code and data in the CIN buffer are accessible in both
system and process context.

Advanced Realtime Programming Techniques 9-19

The CIN buffer comprises five sections:

1. A data area containing all data structures to be addressed during the
execution of user-supplied CIN code.

2. A device initialization routine which is executed during recovery from
a power failure.

3. A start lIO routine which is executed at the time the $QIO is issued.

4. An interrupt service routine which is executed in response to a device
interrupt.

5. A cancel lIO routine which is executed when the user process issues
a cancel lIO request.

In addition, the user can specify an AST routine to be executed in
process context on I/O completion (or partial completion). Note that
any user-supplied code in the CIN buffer can only address data and
code contained within the CIN buffer. Code which executes in process
context, including the user-specified AST routine, can also address data
and code in the CIN buffer and, of course, in any other portion of process
virtual address space. The sections of the user-supplied CIN buffer are
illustrated in Figure 9-2.

This application note is intended to provide an overview of CONINTERR
concepts for intermediate to advanced programmers who want to get
started using this facility. Many of the details of CONINTERR functional
ity and internals have been omitted, though what is presented is sufficient
for many applications. For a more detailed description of CONINTERR,
see the manual Writing a Device Driver for VAXNMS, Appendix H.

9.3.2 Example Code Internals
The following example program performs continuous interrupt-driven
analog input to a process buffer using a KWV11-C clock module and an
AXV11-C analog module for timebase generation. Data are sampled into
a 4096-word ring buffer with two subbuffers. The ring buffer is contained
in the CIN buffer, and is therefore doubly mapped in SO and PO. When
a subbuffer is filled, an AST is delivered to the calling process. The AST
routine moves the data from the subbuffer to a process buffer (singly
mapped in PO virtual address space). The AST routine then checks to
determine whether 110 is complete - that is, whether the process buffer
has received all the data requested. If it has, the AST issues a $CANCEL

9-20 Advanced Realtime Programming Techniques

Figure 9-2: The CI N Buffer

.PSECT CIN_USER PIC. USR. CON. REL. LCL. NOSHR. EXE. RD. WRT

DATA BUFFERS

INIT ROUTINE
EXECUTED AFTER POWERFAIL

START ROUTINE
EXECUTED BY $010

INT ROUTINE
EXECUTED ON DEVICE INTERRUPT

CANCEL ROUTINE
EXECUTED BY $CANCEL

M R·0686·0804

system seIVice call to terminate 110, and sets a completion flag to notify
the calling program of I/O completion.

Advanced Realtime Programming Techniques 9-21

SYSTEM SETUP FOR CONNECT-TO-INTERRUPT

1. Log in to SYSTEM account.

2. Insert the following line in the file SYS$SYSTEM:MODPARAMS.DAT

REALTIME_SPTS = 20

3. Enter:

• OSYS$UPDATE:AUTOGEN SAVPARAMS REBOOT

(system reboots)

4. Log in to SYSTEM account or other privileged account and enter:

$ MCR SYSGEN
SYSGEN> CONNECT AXAO:/ADA=0/CSR=Y.0770400/VEC=Y.0400/DRIVER=CONINTERR
SYSGEN> EXIT

• MACRO AXV
$ FORTRAN CALL_AXV
• LINK CALL_AXV,AXV
$ SET PROC/PRIV=(PSWAPM, CMKRNL)
$ SET PROCESS/PRIORITY=17
• RUN CALL_AXV

===

System page table entries for double-mapping of CONINTERR buffers
are drawn from a pre-allocated pool. In steps 1 - 3, above, the size of
this pool is set by modifying the SYSGEN parameter REALTIME_SPTS.
The number of page table entries allocated must be sufficient to map the
user buffers (data and code) of all CONINTERR-driven devices which
are connected at any given time. In the present example, 20 page table
entries are allocated, sufficient to map 5120 words of data and code.
This step needs to be taken only when additional REAL TIME_ SPTS are
required for mapping CONINTERR buffers.

In step 4, above, the device is connected to the system. In this case, the
device is given the name 1/ AXAO"; this is the name used in the $ASSIGN
system service call. Switches are used to designate the adapter number
(always 0 on MicroVAXes), the CSR and vector addresses of the module,
and the driver name (CONINTERR). This step needs to be taken each
time the system is booted. The commands can be inserted into the file
SYS$MANAGER:SYCONFIG. COM, if desired.

9-22 Advanced Realtime Programming Techniques

Example 9-6:

PROGRAM CALL_AXV

INCLUDE I ($SYSSRVNAM) I

!Calling program for AXV_SAMPLE

BYTE ICMPF
INTEGER*2 PBUFF(30000)
INTEGER*4 ISTATUS. ICHAN. IPRESET. ICOUNT
INTEGER*4 LOCKS(2)
INTEGER*4 AXV_SAMPLE

COMMON /PROCESS_DATA/ PBUFF. ICMPF

c Lock the process buffer into the working set. This is not essential.
c but it helps to avoid page faulting in the AST routine.

LOCKS(l) = y'LOC(PBUFF(l»
LOCKS(2) = y'LOC(PBUFF(30000»
ISTATUS = SYS$LCKPAG (LOCKS .•)
IF(.NOT.ISTATUS) CALL EXIT (ISTATUS)

c Assign a channel number for the AXV

ISTATUS = SYS$ASSIGN ('_AXAO:' .ICHAN ..)
IF(.NOT.ISTATUS) CALL EXIT (ISTATUS)

c Input/initialize arguments to be passed to the calling routine

TYPE *. 'KWV preset. sample count? I
ACCEPT *. IPRESET. ICOUNT

c Routine AXV_SAMPLE handles all of the details of setting up and
c executing the I/O operations. When the process buffer is filled.
c the completion flag is set.

ICMPF = 0 ! Clear the completion flag
ISTATUS = AXV_SAMPLE (ICHAN. IPRESET. ICOUNT)
IF(.NOT.ISTATUS) CALL EXIT (ISTATUS)

c By looping on the completion flag. the process is insured of remaining
c computable throughout the I/O operation.

100 IF(ICMPF.EQ.O) GO TO 100

c For the sake of simplicity in this example. only a few of the acquired
c data values are output. In a real application. the following step could
c be replaced with file/graphic output.

TYPE 9000. (J.PBUFF(J).J=1.1000.100)
9000 FORMAT (21 10)

END

<Continued on next page)

Advanced Realtime Programming Techniques 9-23

Example 9-6 (Cant.):

;++

. TITLE AXV

.LIBRARY /SYS$LIBRARY:LIB.MLB/

$IDBDEF
$UCBDEF
$IODEF
$CINDEF
.CRBDEF
$VECDEF

.PSECT PROCESS_ROUTINES

Definition for I/O drivers
Data structurs
I/O function codes
Connect-to-interrupt
CRB stuff
more

PIC,USR,CON,REL,LCL,NOSHR,EXE,RD,WRT

This example routine issues the QIO to connect to the AXV interrupts.
It takes care of the internals associated with the connect-to-interrupt
QIO.

FORTRAN calling sequence:

STATUS = AXV_SAMPLE (CHAN, PRESET, COUNT)

where:

CHAN longword channel # for device _AXAO

PRESET

COUNT

longword preset value for KWV
(positive value <= 32K)

longword # of samples

STATUS = longword return status of $QIO call

In this example, the AXV and KWV CSRs are "firm-wired" for the
following characteristics:

AXV - gain=1, RTC ENABLE, DONE INT ENABLE, channel=O

KWV - GO, mode=1, rate=1 (1 MHz)

Ordinarily, they would be configured according to arguments passed
to this routine from the calling program.

The CLK OVFL pin on the KWV is strapped to the RTC IN pin on the AXV.

(Continued on next page)

9-24 Advanced Realtime Programming Techniques

Example 9-6 (Cant.):

. ENTRY AXV_SAMPLE,-M<>

These values are stored in process address space for use in the AST
routine

MOVL
MOVL

G4(AP),AXV_CHAN
G12(AP) ,POINT_COUNT

; Channel # for $CANCEL
; Point count

These values are stored in system address space for use in the CIN user
start routine.

MOVW
MOVW
MNEGW

$QIO_S

#-013,KWV_CSR_VALUE
#-0140,AXV_CSR_VALUE
G8(AP),KWV_PRESET_VALUE

CHAN=G4(AP),
FUNC=#IO$_CONINTWRITE,
IOSB=AXV_CIN_IOSB,
P1=AXV_CIN_BUF_DESC,
P2=#AXV_CIN_ENTRY,
P3=#AXV_CIN_MASK,
P4=#USER_AST,-
P6=#10

RET

AXV_CIN_BUF_DESC:
. LONG USER_END - RINGBUF
. LONG RINGBUF

AXV_CIN_ENTRY:
. LONG
. LONG
.LONG
.LONG

AXV_CIN_IOSB:
.LONG
.LONG

USER_INIT - RINGBUF
USER_START - RINGBUF
USER_INT - RINGBUF
USER_CNCL - RINGBUF

o
o

GO, MODE=l, 1MHz
RTC ENABLE, DONE IN! ENABLE
Negated KWV preset value

; Channel
;Allow writing to the data buffer
;I/O status Block
;Buffer descriptor
;Entry list
;Status bits,etc
;AST service routine
;preallocate some AST control
; blocks
;Return to calling routine

;Butter descriptor for CIN

;Init code
;Start code
;Interrupt service routine
;I/O cancel routine

; I/O Status Block

Control mask - see VMS Release Notes, Appendix C for explication

AXV_CIN_MASK = CIN$M_REPEATICIN$M_STARTICIN$M_ISRICIN$M_CANCEL

(Continued on next page)

Advanced Realtime Programming Techniques 9-25

Example 9-6 (Cont.):

.SBTTL USER_AST, User AST routine

;++
This routine is invoked when I/O completion is signaled by the USER_IN!
routine. It is queued to the user's process in the access mode ot the
$QIO which initiated the I/O. It executes in process context at
IPL$_ASTDEL (IPL 2).

I/O completion is signalled by loading SS$_NORMAL (1) into RO on exiting
the USER_INT routine. In the present example, this does not signal tull
completion ot the I/O, since the CIN$N_REPEAT tlag was set in the $QIO
call.

10$:

20$:

. ENTRY

NaVAL
NOVZWL
BBS
ADD
NaVAL
ADDL
MOVC3
ADDL
SUBL2
BGTR
JNP
MOVZWL
RET

USER_AST,~N<R2,R3,R4,R6>

RINGBUF,R2
RINGBUF_INDEX,R3
#l1,R3,10$
#4096,R2
PBUFF,R4
PBUFF_INDEX,R4
#4096, (R2) , (R4)
#4096,PBUFF_INDEX
#2048 ,POINT_COUNT
20$
ALL_DONE
#SS$_NORMAL,RO

ALL_DONE:
$CANCEL_S -

CHAN=AXV_CHAN
CLRL PBUFF_INDEX
MOVB #l,ICNPF
MOVZWL #SS$_NORMAL,RO
RET

PBUFF_INDEX:
.LONG 0

POINT_COUNT:
.LONG 0

AXV_CHAN:
. LONG 0

Get CIN butter address
Get butter index
Is bit 11 set?
No, xter the top halt
Get process butter base addr
Add index
Nove data (trashes RO-R6)
Update process butter index
Update point count
Have we moved all the data?
Yes - Finish up
Set return status
And return

Cancel the I/O request

Reset index into PBUFF
Set the completion tlag
Set return status
And return

(Continued on next page)

9-26 Advanced Realtime Programming Techniques

Example 9-6 (Cant.):

.PSECT PROCESS_DATA PlC,OVR,REL,GBL,SHR,NOEXE,RD,WRT,LONG

;++
; This is the FORTRAN common block /PROCESS_DATA/
'--,

PBUFF:

lCMPF:

;++

.BLKW

. BYTE

30000

o
PlC,USR,CON,REL,LCL,NOSHR,EXE,RD,WRT

; This is the ClN butter. In the present example, it is contained in
; the same source code module as the process routines shown above .

. SBTTL DATA STRUCTURES

DATA_BUF_SIZE 4096

RINGBUF:
RINGBUF_END:
RINGBUF_INDEX:

AXV_CSR_VALUE:
KWV_CSR_VALUE:
KWV_PRESET_VALUE:

.BLKW

. WORD

. WORD

. WORD

. WORD

In the CIN user routines, the system virtual address ot the CSR ot the
device is supplied. Other addresses in the I/O page used by the code
must be handled as ottsets trom the device CSR.

AXV_ADDRESS
KWV_ADDRESS
KWV_OFFSET
PRESET_OFFSET
DBR_OFFSET

.SBTT

;++

= ~0170400
= ~0170420
= KWV_ADDRESS-AXV_ADDRESS
= KWV_OFFSET+2
=2

;Address ot AXV
;Address ot KWV
;Ottset tor KWV CSR
;Ottset tor KWV SPR
;Ottset tor AXV DBR

Dummy dev intialization routine

This routine is invoked atter power recovery. It executes in system
context at IPL$_POWER (IPL 31).

This routine is not implemented in the present example. However, the
entry point must be detined and included in the entry list ot the
$QIO (P2).

See VAX/VMS Release Notes, Appendix C tor inputs.

'--,

(Continued on next page)

Advanced Realtime Programming Techniques 9-27

Example 9-6 (Cant.):

USER_INIT: :
RSB

.SBTTL USER_START, Start I/O routine

;++
This routine is invoked by the $QIO system service. It executes in
system context at IPL$_QUEUEAST (IPL 6).

On entry:

0(R2) - arg count of 4
4(R2) - Address of the process buffer (system mapped)
12(R2) - Address of the device's CSR

See VAX/VNS Release Notes, Appendix C for other inputs.

The routine must preserve all registers except RO-R4.

USER_START: :

;++

CLRW
NOVL
TSTW

NOW
NOVW

NOW

NOVZWL
RSB

.SBTTL

Argument list offset of CSR addr
(only valid in USER_START and USER_INT)

RINGBUF_INDEX
CSR_ADD(R2),RO
DBR_OFFSET(RO)

AXV_CSR_VALUE,(RO)
KWV_PRESET_VALUE, -
PRESET_OFFSET (RO)
KWV_CSR_VALUE, -
KWV_OFFSET(RO)
#SS$_NORNAL,RO

Clear ring buffer index
Get address of the AXV CSR
Clear AD DONE bit, if set,

by reading AXV DBR
Set up the AXV
Set KWV preset

Set KWV CSR

Load a success code into RO.
Return

USER_INTERRUPT, Interrupt service routine

This routine is invoked on device interrupt. It executes in system
context at IPL$_DIPL (IPL 23 in NicroVNS).

(Continued on next page)

9-28 Advanced Realtime Programming Techniques

Example 9-6 (Cont.):

On entry:

0(R2) - arg count ot 6
4(R2) - Address ot the process butter
8(R2) - Address ot the AST parameter
12(R2) - Address ot the device's CSR

See VAX/VMS Release Notes, Appendix C tor other inputs.

The routine must preserve all registers except RO-R4

USER_INT: :
MOVL
NaVAL
NOVZWL
NOW
INCW
BICW

NOVW
CLRL
Blew

BNEQ

CSR_ADD(R2),RO
RINGBUF,Rl
RINGBUF_INDEX,R3
DBR_OFFSET(RO) ,(Rl) [R3]
R3
#~0170000,R3

R3,RINGBUF_INDEX
RO
#~0174000,R3

10$

Get AXV CSR address
Get CIN butter address
Get butfer index
Read data (assume no error)
Increment butter index
Clear all but bottom 12 bits ot

(ring) buffer index
Put updated index in storage
Clear return status
Now test bottom 11 bits of

butfer index
Skip AST if not zero

The user AST will be queued it the LSB of RO is set on return

6$:
10$:

;++

MOVZWL
RSB

.SBTTL

; Queue the AST

USER_CANCEL, Cancel I/O routine

This routine is invoked by the $CANCEL system service. It executes in
system context at IPL$_QUEUEAST (IPL 6).

On entry:

JSB intertace:

R3 - Addr of current IRP
R4 - Addr of PCB ot cancelling process
R6 - Addr of the UCB

(Continued on next page)

Advanced Realtime Programming Techniques 9-29

Example 9-6 (Cant.):

CALL interface:

O(AP)
S(AP)
12(AP)
16(AP)

Arg count 4
Addr of IRP
Addr of PCB
Addr of UCB

See VAX/VMS Release Notes, Appendix C for other inputs.

The routine must preserve all registers except RO and RS.

USER_CNCL: :
MOVL
MOVL
MOVL
CLRW
TSTW
CLRW
MOVZWL
RSB

UCB$L_CRB(R6),RO ; Get Address of the CRB
CRB$L_INTD+VEC$L_IDB(RO),RO Address of the IDB
IDB$L_CSR(RO),RO Get addr of AX V
KWV_OFFSET(RO) Stop clock
DBR_OFFSET(RO) Clear AD DONE bit
(RO) Clear AXV CSR
#SS$_NORMAL,RO Load return status

And return

Label that marks the end of the module

USER_END:
.LONG

.END

9-30 Advanced Realtime Programming Techniques

Last location in module

Chapter 10
Realtime System Performance

Performance in realtime applications is usually characterized by through
put - the number of operations performed per unit time - and response
time - the interval required for the system to respond to an external
event. Optimizing throughput or response time can be quite complex,
particularly when very high performance relative to system capabilities
is required. Selecting a system and peripherals with adequate realtime
features can drastically simplify application development.

System realtime performance is determined predominately by the fol
lowing factors:

• System bus structure and aggregate bandwidth

• CPU design and speed

• Operating system characteristics

• 110 controller speed and features

The relative importance of each of these factors depends heavily on
the requirements of the specific application. Understanding how these
factors interact to determine performance can help in selecting the best
system and options for your realtime application.

Realtime System Pelformance 10-1

10.1 System Bus Structure And Bandwidth
Most computers have a system bus servicing the CPU and Inain memory.
In smaller computers, this is typically the only bus, and it supports all
I/O operations. More powerful systems provide separate I/O buses that
can be configured to channel I/O operations, rather than having external
devices connected directly to the systeln bus.

The system bus determines maximum aggregate throughput for the com
puter, and has a rated or estimated total bandwidth. If your application's
throughput requirements exceed the systeln's bandwidth, then you can
not perform the application. However, even if the rated system band
width is in excess of your application requirements, you must recognize
that this bandwidth is NOT all available for I/O to realtinle devices. Part
of the system bandwidth is used to service system operations (for ex
ample, context switching, paging) and non-realtime devices. You must
therefore evaluate these loads on the system as well as realtime loads to
determine if the system has adequate bandwidth. Even if the system is
to be totally dedicated to realtime operations, you should assume that
only 50-75% of the rated bandwidth can be achieved in practice, unless
you have specific knowledge or experience to the contrary.

Once you have selected a system with adequate bandwidth, use I/O buses
to optimize data flows into or out of the system. On a VAX-111785,
for example, you can configure a high-speed input device on a separate
Unibus Adaptor from mass storage devices that store the inputs in real
time. If necessary, another Unibus Adaptor can be used for terminal 110,
printing, or networking operations. This approach allows you to access
as much of the VAX-11/785's system bandwidth as you require for your
application.

Table 10-1 sumlnarizes the bus structure and bandwidth of Digital com
puters available today. Please note that the rated bus bandwidths are
calculated taking into account overhead operations for bus protocol, and
are approximate values only. The aggregate bandwidth reflects the max
imum potential throughput on the bus from all operations concurrently.
The single device value indicates the maximum sustainable rate from one
device on the bus.

10-2 Realtime System Performance

Table 10-1: Bus Bandwidth of Digital Systems

Maximum
I/O Bus Computers Address Lines Data Lines Data Rate

UNIBUS VAX 8600, 8650 18 16 1.5MB Is
PDP-1l/24
PDP-l1/44
PDP-l1/84

Q-Bus MicroVAX 22 16 (multiplexed 3.3MB/s
MicroPDP-ll address lines)

eTI Professional 22 16 (multiplexed 2.3MB/s
300 Series address lines)

VAXBI VAX 8200, 8300 30 32 13.3MB/s
8500,8550
8700,8800

When do you need another 110 bus? Once the devices on the bus
generate an 110 load equal to approximately 50% of the rated bandwidth,
adding another bus adaptor will probably increase overall performance
or simplify the work required to reach a given level of performance.

On smaller systems, the same loading rules of thumb apply, but no
110 buses are typically available. You connect devices directly to the
system bus. If your planned realtime operations approach 50% of the
rated bandwidth of the system, you should consider purchasing a higher
performance system. This will probably be less expensive in the long run
than trying to achieve the same level of performance in a smaller system
through special programming or 110 options.

10.2 CPU Design And Speed
CPU design and speed are critical if your application involves program
controlled 110 or realtime processing. In program-controlled 110, the
CPU moves every word of data into or out of memory. You can poll
the device (Le., check the status of a bit or bits) to determine when each
word is ready to be moved into or out of memory; or, if the processor
design allows vectored interrupts, you can use them to let the processor
know when each word is ready for input or output. The speed of the
processor and its interrupt-handling logic determine (along with other
application-dependent software factors) how fast data can be moved in
this fashion.

Realtime System Pelj01'111al1Ce 10-3

If your application uses Direct Memory Access (DMA), then CPU speed
is much less critical for 110 operations, since the CPU is involved only
during arbitration for the bus by the DMA device. During data transfers,
the DMA controller actually moves blocks of data while the CPU is free
to perform other tasks.

If your application requires processing of incoming data in real time,
however, then CPU performance is likely to be the factor constraining
overall throughput. Simple processing operations (limit testing, summa
tion, etc.) can be accomplished quickly. But, if you must perform a series
of operations, then processing time is likely to be much longer than 1/0
time. A higher speed CPU, possibly coupled with a special purpose ac
celerator (for example, floating-point, array processor) may be necessary
to meet your needs.

To determine processing throughput, you can either calculate the total
time taken by a CPU to perform the specific operations, or you can run a
benchmark and measure the elapsed time empirically. Direct calculation
is practical only if your processing operation is very simple. For example,
if you are polling a device to acquire data, your program might be limited
to checking the status bit, moving the word, checking for a termination
condition, incrementing a counter, and looping back to the status check.
In such circumstances, you can actually add the instruction execution
times of the few instructions required to estimate the cycle time per word
of 110. For more complex programs or programs written in a high-level
language, however, benchmarks are usually necessary.

10.3 Operating System Characteristics
Operating. system characteristics play a major role in determining real
time performance. By providing high-level services - such as multiple
task scheduling, software priority levels, and I/O request management -
the operating system can make inherently complex realtime tasks sim
ple to program. However, these features and services involve operations
that may not be necessary for your application - exception handling, er
ror checking, allocation and verification of system resources, and the
like. Services that you don't need are "overhead," and you may want to
bypass them in the interests of optimized performance.

Four aspects of operating system design affect realtime programming
most significantly:

10-4 Realtime System Performance

• Task scheduling

• I/O programming services

• Intertask communication and synchronization

• User controls for optimizing performance

10.3.1 Task Scheduling
The number of users and tasks an operating systenl is required to handle
concurrent~y plays a major role in determining the responsiveness and,
in some cases, the throughput of the system. Single-user, single-task
operating systems can be extremely small and sinlple; they require very
little overhead. Digital's RT -11 is a premier example of such a small,
simple, and efficient operating system.

If your application involves multiple events or processes occurring in
parallel, however, you need a multi-tasking operating system to avoid
complex systems programming. The operating system should allow you
to set relative priorities among the tasks to detennine when they will
execute, rather than offering only the round-robin scheduling associated
with multiuser timesharing systems. Without priority scheduling, your
most time-critical tasks can fail to execute when they are needed. The
system must also be able to respond to external events based on their
priorities.

Multi-tasking operating systems inevitably impose lTIOre "overhead" on
a single task, even if it is given the highest available priority. When it
executes, the system scheduler uses resources that could be available
to the application if no scheduling were required. Thus, in general,
program-controlled 110 operations execute faster under a single-task
operating system than a multi-tasking one. When multiple tasks are
contending for the system, context-switching and related operations slow
down both throughput and response times in a multi-tasking system.
Compensating for this overhead, however, is the capability to handle
many tasks and/or users concurrently.

While priority-driven multi-tasking systems can concurrently handle both
realtime device interactions and interactions with llluitiple human users
under appropriate circumstances, the potential conflicts should be rec
ognized and anticipated. If, periodically, a direct conflict occurs between

Realtime System Pe1iormal1ce 10-5

time-critical device interaction and time-flexible user interactions, the hu
man users must wait. This may cause disappointment or frustration,
but the time-critical operation can be successfully completed. When this
problem occurs, the only alternative is to use separate systems for the
two types of interaction. This tends to be more expensive and ,in many
situations, more cumbersome.

10.3.2 1/0 Programming Services
The 110 programming services provided by an operating system deter
mine how easily and efficiently 110 operations can be requested and ex
ecuted. There is no single "right" approach, but rather several levels
of programming and several modes of 110 operation that meet differing
application needs.

110 operations can be either synchronous or asynchronous with respect
to the calling task. In synchronous I/O, the pro grant requests an 110 op
eration and then waits for that operation to complete before it continues.
This is appropriate if the program requires the results of the operation in
order to proceed. Otherwise, synchronous 110 introduces substantial in
efficiencies, since the 110 operation typically does not fully utilize system
resources. In asynchronous I/O, the program requests an 110 operation
and then continues to execute while the I/O operation is performed in
parallel. This makes better use of the system resources by supporting
more than one concurrent task. Asynchronous I/O also greatly facilitates
vital operations such as realtime graphics or data processing by allow
ing the CPU to work on data as they are acquired rather than after the
110 operation is over. All Digital's realtime operating systems support
both modes of 110, even the RT -11 Single-Job Monitor - a single-task
environment.

110 programming level here refers to the degree of generality and sim
plicity involved in requesting an operation. The top level is generally a
device-independent service providing access to system resources from
high-level languages and database managers. Such device-independent
services an~ often file- or record- oriented (rather than byte-oriented), and
use standard formats to manage data. These services are easiest to use
since they manage many aspects of data access and modification trans
parently. However, they incur excess overhead for users who do not
need all the features they provide. All Digital operating systems have
one or more device-independent file managers. The Record Management
Service (RMS) package is also available for compatible I/O programming
across the Professional Series, PDP-11s, and VAX/VMS systems.

10-6 Realtime System Performance

At the next lower level is the I/O request manager that actually posts
requests for I/O operations to device drivers and signals completion
when the operation finishes. Higher level services - both file managers
and other layered user interfaces such as subroutine libraries - typically
make use of this request manager to perform their work as well. Several
different services may be offered, depending on the modes of I/O
supported (see Section 10.4, below). This level can include many
precoded operations - for example, error checking, exception handling,
and verification of requested resources - to simplify the user's job. Such
operations prevent user mistakes from hanging or crashing the system,
but also create latency periods after a request is issued from a user
task until lIO actually starts. Thus, they impose overhead on the I/O
operation.

The Queue I/O system service handles the I/O request manager function
under VMS, RSX-11, and PIOS on Digital systems. RT-11 has its own I/O
request manager. Using these services directly is a bit more difficult than
working with RMS or a high-level subroutine calling interface, but it can
be done from most high-level languages and does not involve detailed
knowledge of the system or the 110 device.

The next level down is the actual device driver or handler itself. Many
realtime devices are highly specialized and may not have device drivers
available. Also, many users prefer to write their own device drivers to op
timize performance by omitting nonessential operations which a general
purpose driver should have. (Sophisticated error-handling routines and
multiple termination condition checking are good examples.) Specialized
drivers can thus reduce overhead in the I/O operation itself, but they still
involve the Queue 110 system service overhead described above.

All of Digital's realtime operating systems allow users to write and install
their own device drivers. All of the documentation sets include explicit
instructions for designing and building such programs. This usually
involves programming in assembly language (although not in VAX/ELN
or MicroPower/PASCAL), and thus requires user knowledge of the CPU
instruction set as well as the liD device's detailed design.

The lowest level of I/O programming service is direct access to the
device itself. The user sets and clears bits in the device's CSRs and
moves data into or out of memory as required by the device design.
This level involves the minimum amount of operating system overhead,
because the user is controlling all aspects of the 110 operation and
need not incur delays from unwanted activities. Depending on how
the approach is implemented, however, and what operating system is

Realtime System Performance 10-7

employed, some overhead can still be present. You tnay have greater or
lesser amounts of difficulty in accessing device registers and preventing
unwanted operations.

10.3.3 Intertask Synchronization And Communication
Tasks that are executing concurrently must be able to communicate or
synchronize with each other to provide maximum benefit. For example,
a processing or graphics task must be able to recognize when data are
ready in an input buffer; a disk-writing task must recognize when the
processing task is complete and results are ready to be stored, etc. Four
major methods are used for intertask communication:

• Asynchronous system traps

• Event flags

• Message systems

• Shared memory/disk areas

Asynchronous system traps (ASTs) respond to an external event that gener
ates an interrupt by halting the executing task and executing a user-written
service routine. They provide high-speed response to external events.

Event flags can be used to signal asynchronous as well as synchronous
events. A task can set an event flag to signal conlpletion to another task,
or it can wait for a flag to be set before proceeding. Some operating
systems also allow tasks to recognize events involving a combination of
flags, such as logical ANDs or ORs. Event flags are handled with standard
operating system services and have slower response times than ASTs.

Message systems can be managed by the operating system or by the user.
In VMS, for example, mailboxes provide a message service managed by
the system; while in RSX and RT -11, messages from one task to another
are supported, but must be managed to a greater extent by the user.

Shared memory or files allow tasks to receive information from a common
data base in memory or on disk. They can be read-only as in RSX, or
read/write as in VMS. Access typically requires synchronization using
event flags, lock management, or other tools.

10-8 Realtime System Peljormance

10.3.4 User Controls
Optimizing realtime performance on any computer system is ultimately
a matter of user control over system resources. No operating system
meets all user needs completely; performance monitoring and system
tuning are often essential.

All of Digital's realtime operating systems provide complete control over
system resources. You can select high-level services that are useful in
certain areas, and eliminate services in other areas that impose overhead.
For example, VMS need not be a virtual operating system. You can lock
tasks into memory and eliminate paging altogether, or lock some tasks in
memory while allowing others to swap. Thus, you can have the benefits
of virtual addressing while eliminating most of the potential overhead.

Often, the need for such control will influence your decision to program
the application or the system at a low level. This is a fundamental trade
off; the only way to eliminate overhead may be to do without a service.
Yet the ability to bypass services is not always provided, and many so
called realtime operating systems do not provide the services to begin
with.

Digital's realtime operating systems give you a wide range of choices in
the services available and also let you bypass those you don't need.

10.4 1/0 Controller Speed And Features
Once you have selected a system with a CPU and buses which are
adequate for your needs, the specific features of the 110 controller you
use will have the greatest impact on realtime performance. The four key
aspects of controller design that you should consider are:

• Choice of DMA or programmed 110

• Types of 110 supported

• Special functions of the module

• Buffer memory

Realtime System Peljormance 10-9

10.4.1 DMA Vs. Programmed 1/0
I/O controllers with DMA capabilities can provide dramatic increases in
throughput over programmed I/O (PIO) devices, as well as off-loading
the CPU for other operations. Maximum data rates using PIO usually
range from 1 to 20 kHz depending on CPU speed, operating system,
and application characteristics. With DMA, the salne CPU and operating
system can support data rates from ten to several hundred kHz.

However, DMA operations can offer such performance enhancements
only if the application involves transfers of relatively large blocks of
data either into or out of the system. For applications that involve only
one or two words per transfer, or require mixed inputs and outputs
of a few words per operation, DMA offers little or no advantage over
program-controlled I/O. Moreover, the hardware to support DMA can
be expensive and may not be required for your application.

10.4.2 Types Of 1/0 Supported
The types of I/O operations supported by a peripheral can determine its
maximum performance regardless of the system on which it is used.
For example, very high resolution or wide dynamic range analog-to
digital conversion cannot be performed at the same speed as lower
resolution conversion without paying a significant dollar premium for
such performance. If your application requires an inherently lower-speed
form of I/O, then you can probably perform it with a less expensive
system and 110 controller than a higher-speed application.

Some 110 controllers support multiple types of devices concurrently. For
example, the AXV-IIC performs both analog input and outputs. In such
cases, you should be careful to investigate whether the controller sup
ports all types of operations concurrently, and what impact concurrent
operations will have on aggregate throughput. The throughput when per
forming multiple types of I/O is nearly always lower than when perform
ing a single type of 110 because of software overhead.

The individual I/O ports of a controller or peripheral device usually
have speed or throughput specifications that reflect hardware limitations.
These specifications do not reflect software constraints, and may not be
achievable easily, if at all. For example, the ADVII-C AID converter is
specified to have a maximum conversion rate of 25 kHz. However, since
it is a program-controlled device, achievable data rates without special
assembly language programming are in the 1 to 5 kHz range. Unless the

10-10 Realtime System Performance

device specifications explicitly account for software factors, you cannot
assume that the maximum hardware speeds are applicable.

10.4.3 Special Functions
Your application may require some combination of I/O and processing
functions that is best performed by a specialized device with appropri
ate hardware, including a microprocessor. Such applications can usually
be performed by general purpose hardware and the system CPU, but at
much lower speeds. For example, the ORE-II supports alternate buffer
ing of input data, allowing you to avoid software buffer management
operations that would be required with the ORII-W. The DR780 and
DR750 VAX interfaces will fetch commands from a list and perform the
requested operations in microcode without interrupting the VAX proces
sor. Matching these kinds of features to your own specific application
requirements is the best way to ensure adequate performance.

10.4.4 Buffer Memory

Buffer memory in the I/O interface is a special feature with very wide
applicability to high performance realtime tasks. Such memory, usually
in the form of first-in/first-out (FIFO) buffers, often makes the crucial
difference in sustaining high-speed input operations. The FIFO is used
temporarily to capture and store incoming data, while the system bus or
CPU is unavailable to service the operation. Without buffering, it is often
impossible to sustain maximum data rates for more than short bursts.
Options that feature FIFO buffering include the OR780 and DR750.

Realtime System Performance 10-11

Chapter 1
Bibliography

1.0.1 Bibliography

1. Artwick, B. A. Microcomputer Interfacing. Englewood Cliffs: Prentice
Hall, 1980.

Comprehensive treatment of analog and digital interfacing topics.
(Intermediate)

2. Benedict, R. P. Fundamentals of Temperature, Pressure, and Flow
Measurements. New York, Wiley, 1984.

Theory and practice of transducer design. (Advanced)

3. Garrett, P. H. Analog Systems for Microprocessors and Minicomputers.
Reston: Reston, 1978.

Transduction, conditioning, acquisition, and transmission of analog
signals. (Advanced)

4. IEEE Standard 488-1978. Digital Inteljace for Programmable Instrumentation.
New York: IEEE, 1978.

Bibliography 1-1

Comprehensive description of the General-Purpose Instrument Bus
(GPIB). For copies, contact The IEEE, Inc., 345 East 47th St., New
York, NY. (Intermediate)

5. Loriferne, B. Analog-Digital and Digital-Analog Conversion. London:
Heyden, 1982.

Principles and design of analog interfaces. (Advanced)

6. McNamara, J. E. Technical Aspects of Data Communication. Bedford:
Digital Press, 1982.

Synchronous and asynchronous serial data communication. (Intermediate)

7. Mellichamp, D., ed., Real-Time Computing - With Applications to Data
Acquisition and Control. New York: Van Nostrand Reinhold, 1983.

Comprehensive overview of realtime computing. (Intermediate)

8. Morrison, R. Grounding and Shielding Techniques in Instrumentation.
New York: Wiley, 1977.

Comprehensive treatment of noise and shielding in electrical sys
tems. (Advanced)

9. Sheingold, D. H. Tmnsducer Inteljacing Handbook. Norwood: Analog
Devices, 1980.

Temperature, force, pressure, flow, and level transducers - theory
and applications. (Intermediate I Advanced)

10. Sheingold, D. H. Analog-Digital Conversion Notes. Norwood: Analog
Devices, 1980.

Theory and applications of AID converters. (Intermediate)

11. Taylor, J. L. Computer-Based Data Acquisition Systems - Design Techniques.
Research Triangle Park: Instrument Society of America, 1986.

Measurement error and sampling theory in data acquisition systems.
(Advanced)

1-2 Bibliography

Index

A
ACKINAK protocol, 7-10
Aliasing, 3-29
Analog signals, 3-1 to 3-8

digital representation, 3-3 to 3-8
gain selection, 3-22 to 3-25
noise in, 3-16 to 3-21
sampling rate, 3-26 to 3-31

Autoranging, 3-23

B
Baud rate, 7-4
Buffer chaining, 9-7, 10-11
Buffer management, 9-2 to 9-8
Buffer register, 2-6, 3-8, 5-2
Buffer request, 4-2
Buffers, ring, 9-2 to 9-4
Bus, IEEE 488, 6-6 to 6-7
Bus, system, 10-2 to 10-3
Bus bandwidth, 10-2 to 10-3

c
Cable capacitance, 5-7
Cables

for digital 110, 5-7 to 5-10
for IEEE 488 interfacing, 6-2
for serial interfacing, 7-15

CONINTERR (Connect-to-interrupt),
9-19 to 9-30

Connect-to-interrupt (CONINTERR),
9-19 to 9-30

Controllstatus register, 3-8, 5-2, 8-5
Controllstatus register (CSR), 2-6
Controller, IEEE 488, 6-2
$CRMPSC system service, 9-10 to 9-11
Cross-talk, 5-8

D
Data bits, serial, 7-5
Data communication equipment (DTE),

7-11
Data terminal equipment (DTE), 7-11
Data types, 1-2 to 1-5

analog, 1-2 to 1-3
discrete digital, 1-3 to 1-4
time-interval, 1-4 to 1-5

Device control, direct, 9-9 to 9-18
Device drivers, 2-15
Differential analog input, 3-15
Digital 1/0

discrete, 5-2 to 5-3, 5-10 to 5-12
parallel, 5-2 to 5-3, 5-12 to 5-13
signal conditioning, 5-4 to 5-6

DIP-switch, 2-13
Direct device control, 9-9 to 9-18

Index-l

Direct memory access (DMA), 2-11, 5-11,
10-10

DMA register, 2-7
Double buffering, 9-5 to 9-7
Drivers, device, 2-15
DTE (data communication equipment),

7-11
DTE (data terminal equipment), 7-11

F
Floating-source devices, 3-11
Fourier analysis, 3-29
Frequency domain, 3-29 to 3-31

G
Gate, 3-32
General Purpose Instrument Bus (GPIB)

See IEEE 488
GPIB (General Purpose Instrument Bus)

See IEEE 488
Grounded-source devices, 3-11

H
Handshaking, 2-8 to 2-10

hardware, 2-8, 5-2, 5-12 to 5-13, 7-8,
7-10 to 7-15

in serial interfacing, 7-7 to 7-10
software, 2-9, 7-9

lIO page, 2-5, 9-10 to 9-11
lIO programming services, 10-6 to 10-8
lIO throughput, 10-2 to 10-3
IEEE 4888 interfacing, 6-1
IEEE 488 devices, 6-1
IEEE 488 interfacing, 6-18

bus, 6-6 to 6-7
device addressing, 6-3 to 6-4
device status, 6-11 to 6-16
messages, 6-8 to 6-11
par aIlel polling, 6-14 to 6-16

Il1dex-2

IEEE 488 interfacing (cont'd.)

remote and local states, 6-16
resetting an instrument, 6-17 to 6-18
serial polling, 6-12
service requests, 6-12 to 6-14

Instrument interfacing, 1-5 to 1-7, 2-19
IEEE 488 (GPIB), 1-6, 6-1 to 6-18
parallel digital, 1-6, 5-2 to 5-3, 5-12 to

5-13
serial, 1-7, 7-1 to 7-15

Interrupt-driven lIO, 2-10, 5-11, 9-18 to
9-30

Intertask synchronization and
communication, 10-8

J
Jumpers, 2-12

L
Listener, IEEE 488, 6-2

M
Modem connections, 7-11
Modules, real-time option

See Option modules, realtime
Multibuffering, 9-7 to 9-8
Multichannel scanning (analog), 3-37
Multiplexer circuit, 3-9

N
Noise

in analog signals, 3-16 to 3-21
Null modem cable, 7-13
Nyquist frequency, 3-29

o
Operating systems, realtime factors, 10-4

to 10-9
Operating systems, user controls, 10-9
Option modules, analog input, 3-8 to

3-11

Option modules, analog input (cont'd.)

autoranging, 3-23
external connections, 3-11 to 3-16
fixed-gain, 3-22
multiplexer circuit, 3-9
numeric precision, 3-4
offset binary notation, 3-6
programmable-gain, 3-22
sample-and-hold amplifier, 3-9
trigger modes, 3-31 to 3-38
two's complement notation, 3-6
voltage resolution, 3-5

Option modules, analog output, 4-1 to
4-4

external connections, 4-3
trigger modes, 4-3 to 4-4

Option modules, dock/counter, 8-1 to
8-11

external connections, 8-4 to 8-5
internal oscillator, 8-3
modes of operation, 8-1 to 8-2, 8-9 to

8-11
registers, 8-3
Schmitt triggers, 8-3

Option modules, digital I/O, 5-2 to 5-3
discrete vs parallel applications, 5-2

to 5-3
external connections, 5-7 to 5-10
flow control, 5-10 to 5-13
registers, 5-2

Option modules, realtime, 2-3 to 2-18
configuring, 2-12 to 2-14

p

data buffers, 10-11
external connections, 2-4
flow control, 2-7 to 2-11
functions of, 2-4 to 2-5
programming, 2-14 to 2-18
registers, 2-5 to 2-7
speed and features, 10-9 to 10-11

Parity bits, 7-6
Polled I/O, 2-10, 5-11, 9-9
Priority, processor, 9-11 to 9-12

Processor priority, 9-11 to 9-12
Programmed I/O (PIO), 2-10, 10-10
Pseudo-differential analog input, 3-13

R
Real-time option modules

See Option modules, realtime
Register, buffer, 2-6, 3-8, 5-2
Register, control/status, 2-6, 3-8, 5-2, 8-5
Register, DMA, 2-7
Request, buffer, 4-2
Response time, factors affecting, 10-3 to

10-4
Ring buffers, 9-2 to 9-4
Ringing, 5-9
RS-232 standard, 7-3, 7-4, 7-5, 7-10 to

7-15

s
Sample-and-hold amplifier, 3-9
Serial data, 7-2 to 7-3
Serial interfacing, 7-1 to 7-15

connecting devices, 7-10 to 7-15
device configuration, 7-3 to 7-10

Signals
analog, 3-1 to 3-8
digital, 5-1 to 5-2, 5-4 to 5-6, 5-10

Single-ended analog input, 3-12
Start bits, 7-4 to 7-5
status register, control, 2-6, 3-8, 5-2, 8-5
Stop bits, 7-4 to 7-5
Subroutines, 2-17

T
Talker, IEEE 488, 6-2
Task scheduling, effect on realtime

performance, 10-5 to 10-6
Throughput, I/O, 10-2 to 10-3
Timebase generation, 8-10
Time domain, 3-28 to 3-29

digital representation, 3-7 to 3-8
Timestamping, 3-8

Index-3

Transistor-transistor logic

see TTL
Trigger, 2-7, 3-32, 5-10, 5-11 to 5-12
TTL signals, 5-1, 5-4 to 5-6, 5-10

v
Virtual address space, 9-10

I11dex-4

' 6-29499-61

Digital Equipment Corporation. Marlboro, MA 01752

