
Media Recovery with Time�Split

B�trees

David Lomet Betty Salzberg

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� October ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

Media Recovery with Time�Split

B�trees

David Lomet Betty Salzberg �

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� October ��� ����

Abstract

Modern database systems provide media recovery by taking periodic back�
ups and applying a transaction log to the backup to bring the data up�to�date�
A multi�versioned database is one that retains and provides access to histor�
ical versions of data� This paper shows how a history database� supported
by the Time�Split B�tree� can be used to also provide the backup function of
media recovery� Thus� the same versions used for database history are used
for database backup� The cost of taking a backup is comparable to the cost
of a good di�erential backup method� where only changed data is backed up�
The media recovery cost� especially when the media failure is only partial�
e�g� a single disk page� will usually be lower�

Keywords� media recovery� multiversioned data� access methods
c�Digital Equipment Corporation and Betty Salzberg ���	� All rights re�
served�

�College of Computer Science� Northeastern University� Boston MA� This work

was partially supported by NSF grant IRI��������� and IRI�����	�	��

�

� Introduction

��� Background

Traditionally� database systems take periodic backups to insure against media

disk� failures� The backup re�ects the state of the data at a previous time�
If a media failure occurs� the backup and the transaction log are used to
recover the current
lost� database�

In ����� we describe a partitioned temporal database accessible by a com�
mon index� We call this the time�split B�tree or TSB�tree� The database
has two components� a history database and a current database� The his�
tory database is kept in a separate random access medium� this could be a
WORM device or simply another magnetic disk drive� A failure in the current
database will not a�ect the history database� since it is stored separately�

The history database contains the same kind of information found in a
backup� information that describes a previous state of the database� If media
failure occurs in the current database� we want to use the history database
as the backup� What we propose here can be viewed in either of two ways�

�� Database backups are organized so as to permit their use as a history
database�

�� A history database� with appropriate protocols� is used for database
backup�

In any event� the history nodes of the TSB�tree serve two purposes�

��� Overview

Media failure recovery is essentially redo recovery in which actions on the
log that might not be re�ected in an available stable version of data
in the
backup� are applied to that version to bring it up�to�date� This paper shows
how to modify the TSB�tree so that the history database has at least one copy
of each version created by a given time� This permits the history database
of the TSB�tree to be used as a backup for the current database� This is
accomplished with very little overhead beyond that needed for traditional
backup�

� � INTRODUCTION

The transaction log contains a record of the changes since the backup was
made� These changes are applied to the backup state to recreate the state of
the database at the time of the failure� The log is scanned� starting at some
safe point where it is known that all updates logged before the safe point
are in the backup� It is important that the redo safe point for media recovery
be controllable by the backup process� This requires that all updates logged
prior to a proposed new safe point be stably recorded by the backup process�

The backup process is one of installing data current as of the time of
the backup into a separate stable version of the database� in our case� the
history database accessible through the TSB�tree� We �sweep� through the
current database and ensure that all updates not yet in the history database
are written to it� A sweep cursor is used to keep track of the progress of
the backup�

A Backup Status Block is stably maintained so that the informa�
tion needed for media recovery�the location of the last history root� for
example�can always be found�

Normal database activity is concurrent with the backup process� so that
what is described constitutes a �fuzzy� backup for media failure ��� That is�
the history database that results does not represent a transaction consistent
view of the database in that some updates from some transactions may only
be partially installed in the history database�

Originally� TSB�tree nodes were only split when they became full� When
using a TSB�tree for backups�
potentially non�full� nodes may also be time�
split to assure that the required versions of data are in history nodes of the
tree� An entire recently changed current node is copied� no matter what
split time is chosen� This is what enables us to set the safe point� It assures
that all changes to the database that precede the redo safe point are in the
backup�

We are careful to ensure that all data structures used by the backup
process can be reconstructed from the log and the history database so as
to permit backup to resume after a crash� Recovery from system crashes is
almost entirely conventional� Should backup be in progress when the system
crashes� a small amount of additional work is needed to permit backup to
resume�

��� Optimizing Backup and Recovery �

��� Optimizing Backup and Recovery

We have made a considerable and detailed e�ort to make backup and recovery
e�cient� Below� we describe the optimizations that we exploit�

����� Writing to the History Database

Over time� multiple backups are performed so as to shorten media recovery
time by advancing the redo safe point� We maintain access to prior backups
via the TSB�tree� indeed treating the backup as a history database� When
backup begins� we sweep through the current database and time�split only
nodes updated since the last backup� These newly time�split nodes� together
with the prior time�split nodes in the history database� placed there during
either normal time�splitting activity or previous backups� include a complete
copy of all current data as of the time of the redo safe point�

A bit vector� called the Node Change Vector
ncv�� is maintained to
assure that only those data nodes which have changed since the last backup
are written to the history database in the current backup�

The history database is written sequentially� with backed up nodes being
written in large groups� These large sequential writes are very important for
both the execution path length and the elapsed time of the backup�

����� Writing to the Log and the Current Database

Normally� when a node is time�split� versions of data are removed from the
current node� These are the versions whose period of existence precedes the
time chosen for the split� But because we wish to make our backup process
as e�cient as possible� we do not remove these versions from the current
data nodes� Hence� current data nodes are not written during backup� Since
current data nodes are not changed� no log records are needed to record their
changes�

Only index nodes in the current database are changed during backup�
which is required to make the backup usable as a history database� During
our backup sweep of the current database� the order in which the nodes are
backed up�key order with all children before the parent
in binary trees�
this would be called �post order���enables the index posting to be batched�
That is� all index terms for one index node are posted before proceeding to

� � INTRODUCTION

the next index node� This clustering of index updates reduces the I�O cost
of performing them�

The only log records produced by backup describe this updating of the in�
dex� Versions of data are never logged� In particular� we do not log changes
to the history database� The ordering of the splitting process�
�� write
history node
�� log the split
�� post index term�is what enables us to
minimize the amount of backup�induced logging activity� Further� the writ�
ing of log records describing the index changes can be batched� permitting
e�cient sequential I�Os� While the WAL protocol must be followed� the
backup process is not transactional� and hence few log forces are required�

����� Index Maintenance

Every backup is incorporated into the history database� All this data needs
to be indexed in some coherent way in order for the backups to be usable as an
integrated history� This all contributes to a potentially large expansion in the
size of the index needed to access not only history data but also the current
data� both of which are indexed in the same tree structure� Reducing index
growth constitutes but a minor space saving� but is extremely important in
order to minimize the access path to data�

TSB�tree index growth is minimized by exploiting the redundancy inher�
ent in the backup process to purge unneeded index terms from the index
nodes� By not removing data or index terms from current nodes during
backup� we encourages the possibility that an index term created by the
current backup �covers� a previous index term� By �covers�� we mean that
all the data accessible via the covered index term� pointing to one node� is
available through the covering index term in the node that it points to� In
this case� the covered index term can be replaced with the covering term�
This limits the amount of backup�induced index growth�

Finally� the index nodes themselves must be backed up� To do this e�ec�
tively requires that the split time chosen be as recent as possible� We can�
without re�writing nodes� advance the split time associated with unchanged
nodes so as to facilitate this e�ective split of the index nodes that refers to
them� Without this� di�erential backup would be very di�cult to achieve�

��� Organization of Paper �

����� Media Recovery

To make the media recovery e�cient� we exploit sequential reading and writ�
ing whenever possible� We take advantage of the proximity on the backup
disk of the most recent backup records to do some of the reconstruction
with sequential scanning� We can then write the restored nodes sequentially
on the new current database if we use a Relocation Table to locate the
recovered nodes�

��� Organization of Paper

In section �� the TSB�tree is reviewed� The update process for records in a
TSB�tree
as it relates to backup� is described in section �� Included here
are the steps that must be taken in order to prepare for backup� Section
� shows how to modify TSB�tree node data node splitting to accommodate
backup so that backup cost is minimized� In section �� how to handle the
index during backup is described� and� in particular� how to minimize the
increase in index size that results from backup� Section � describes the the
details of the backup�induced splitting� showing the particular steps and their
order� Section � describes the overall backup process� and how it is possible
to optimize the node splitting costs because backup is a �batch� operation�
Section � outlines media recovery� how one can �nd the backup copies of
nodes and how the log is applied� We end with a brief discussion of our
results and their range of applicability�

� The TSB�tree

��� Overview

The TSB�tree is a two dimensional search structure� Each node of the TSB�
tree describes a rectangle in time�key space� This space must be searched to
�nd appropriate records� and it must be partitioned to adjust to changing
numbers of entries� The TSB�tree search algorithm and its split algorithms
for index and data nodes� as originally presented in ��� are described be�
low� Using the TSB�tree for backup requires di�erent splitting algorithms�
Backup�induced splitting algorithms are described in subsequent sections�

� � THE TSB�TREE

��� TSB�tree Searching

The TSB�tree index entries are triples consisting of time� key� and pointer to
lower�level tree node� Time and key respectively indicate the low time value
and the low key value for the rectangular region of time�key space covered
by the associated lower�level node� A search for a record with a given key
valid during a given time proceeds as follows�

One begins at the root of the tree� All index entries with times later than
the search time are ignored� Within a node� look for the largest key smaller
than or equal to the search key� Find the most recent entry with that key

among the non�ignored entries with time not later than the search time��
Follow the associated address pointer� Repeat this algorithm at each level
of the tree until a leaf is reached� At the leaf� look for an exact match on
key when doing a point search� For a range search� look for the smallest key
larger than or equal to the search key� now playing the role of lower bound
on the key range� Searching is illustrated in Figure ��

��� TSB�tree Node Splitting

A node of the TSB�tree can be split by time or by key� Deciding whether to
split by time� or by key� or by both time and key� impacts the characteristics
of the resulting TSB�tree� The implications of splitting policy are explored
in depth in ��� Here we describe only the mechanics of the splitting process�
A sequence of splits is illustrated in Figure �� which is Figure � from ���

����� Time Splits

If a node is split by time T � all entries with time less than T go in the history
node� All entries with time greater than or equal to T go in the current node�
For each key
of a record in a data node or an entry in an index node�� the
entry with the largest time smaller than or equal to T must be in the current
node� Thus records which are valid both strictly before and strictly after T
have copies in both nodes� A record whose start time is exactly the split time
will be found only in the current node� For index nodes� entries referring to
lower level nodes whose regions span T are copied to both the history index
node and the current index node�

Any time after the begin time for a data node can be used for a data node

��� TSB�tree Node Splitting �

50 T=1 100 T=1 50 T=8 80 T=8

60 Joe T= 1 90 Pete T=5

T= 7 110 Sue T=11

60 Ron T=8 70 Bill T=10

80 Mary T=9 90 Pete T=5

120 Alice

now

key

time

100

 80

 50

1 8

Index Page

Data Pages

Figure �� Each index entry is the lower key and earliest time for the time�
space rectangle spanned by its child� To �nd a record with key �	� valid at
time �� ignore all entries in the index with time greater than �� Find the
largest key � �	 with the largest time� This is the index entry
�	 T����
The record
�	 Joe T��� satis�es the search� It is valid until the next version

�	 Ron T����
�	 Pete T��� is in two data pages because it is valid across
the split time
T����

� � THE TSB�TREE

50 T=1

60 Joe T=1 90 Pete T=5 120 Alice T=7

Add 110 Sue and do a key split:

100 T=1

60 Joe T=1 90 Pete T=5

120 Alice T=7 110 Sue T=8

50 T=1

50 T=1

Now add 60 Ron and 90 Joan and do a time split:

100 T=150 T=1 50 T=8

60 Joe T=1 90 Pete T=5

120 Alice T=7 110 Sue T=8

60 Ron T=8 90 Joan T=8

Now add 80 Mary and 70 Bill and do a key split:

100 T=150 T=1 50 T=8

60 Joe T=1 90 Pete T=5

120 Alice T=7 110 Sue T=8

60 Ron T=8 70 Bill T=10

80 T=8

80 Mary T=9 90 Joan T=8

Now do a keyspace index split (duplicate needed to locate Pete)

 80 T=150 T=1

 50 T=850 T=1

100 T=150 T=1 80 T=8

keys

time

100

 50

time

100

 8
keys 50

time

100

 8
keys 50

 80

time

100

 8
keys 50

 80

Figure �� Illustrated is a sequence of splits ending in a key split for an index
node�

��� TSB�tree Node Splitting �

time split� For an index node time split� the split time cannot be later than
the begin time for any current child node to insure that history index nodes
do not refer to current nodes� Hence� index entries are posted to only one
node� History nodes� which do not split� may have several parents� Current
nodes have only one parent�

����� Key Splits

Data records correspond to a line segment
one key value� in the time�key
space� If a data node is split by key� the split is exactly the same as in a
B��tree� All the records with key greater than or equal to the split value
go in the new node and the records with key value less than the split value
remain in the old node�

Key splitting for index nodes is a little di�erent since the elements referred
to by the index entries are rectangles in time�key space� To split an index
node� a key value from one of the index entries is chosen as the split value�
References to lower level nodes whose key range upper bound is less than or
equal to the split value stay in the old node� Those whose lower bounds are
greater than or equal to the split value go in the new node
higher keys��
Any lower level node whose key range strictly contains the split value must
be copied to both nodes
see Figure ��� Note that because the key space
is re�ned over time� any entry which is copied to both the new and the old
node must be a reference to a history node�

����� Concurrent Node Splitting

We are faced with the usual concurrent B�tree update problem� That is�
how do we keep the TSB�tree consistent when there are concurrent tree
modi�cations
node splits� such that the index term for a node may need to
be in another index node by the time that the node split is complete� This can
be accomplished with a form of B�link�tree technique ��������� This involves
lazily posting index terms to index pages sometime after a lower level node
split� Search capability is preserved by leaving a forwarding address for the
new� split�generated node in the original node�

We describe a concurrent node splitting method� which copes with sys�
tem failures as well� for very general index tree structures in ��� TSB�trees
are among the structures handled� For the TSB�tree� forwarding addresses

�	 � THE UPDATING PROCESS

inserted with time splits form a linked list from the most recent node in the
key range backwards in time� This implies that
�� searches for all versions
of a given record will be fast and
�� a history node whose index term is not
yet posted can be reached via sibling pointers from a more recent node in
the same key range� For key�splits� the lower key range node will contain a
pointer to the higher key range sibling� forming a linked list of current nodes
from lowest key to highest key�

An additional complication arises when using B�links with the TSB�tree�
If there is a time split� the �new� split�generated node is a history node�
which cannot be updated� If a time split of the parent node occurs between
the time a child node is split and its index term is posted� it is possible� but
very rare� that the index term belongs in the new history index node� In this
case� since history nodes are not updated� we do not post the index term�
This requires that a forwarding address be used permanently to access the
node�

Since we constrain the split time for an index node to be before the begin
time of any current child node
so that the new history index node does not
refer to current children�� this anomaly only occurs when a second time split
is made on a current child node before the index term for its �rst time split
is posted� This unusual sequence of events is illustrated in Figure �� Note
that the search
following child and sibling pointers� will still be correct�

� The Updating Process

We describe here the elements of the updating of data in a TSB�tree that
are particularly relevant to the backup of a database� It is during updates
to the database that we must prepare for database backup�

��� Timestamping

Timestamps distinguish the versions of data and enable the TSB�tree to
readily support AS�OF queries� We explore brie�y how data is timestamped
below�

��� Timestamping ��

A

D E
GF

(B)

B has split from A, but the index is not yet posted

A

D E

GF

(B) C

The index term for C is posted; C contains a pointer
B. A time split is made on the index node at the
begin time of the oldest current child.

key

time

key

time

(B) C

D

F

 C A

D

(a)

(b)

A history node is created that can not be updated with (c)
an index term for node B.

key

time
G

E

Figure �� A time when the index term is not posted before the index node
splits�

�� � THE UPDATING PROCESS

����� Concurrency Control Considerations

Choosing a time for a transaction at its start has the advantage that it can
be easily propagated to all transaction cohorts and is available at the time
that updates to the database are being made� Nonetheless� early choice of
time excessively constrains serialization order� leading to more transaction
aborts than is desirable�

We delay the choice of time until a transaction is committing� Choosing
the time then permits it to re�ect the serialization order actually experienced
by the transaction� However� changed data must be visited twice� On �rst
visit� the data changed by a transaction is stamped with the transaction�s
identi�er
TID�� In a second visit� after commit� the TID is replaced with
the time chosen for the transaction� Thus� all stamped data is committed
data� but not the converse�

����� Two�phase commit

With distributed systems� cohorts of a distributed transaction must negotiate
the transaction time and this timemust be distributed to cohorts so that they
can stamp their changed data� Two phase commit
�PC�� or some variant�
must be executed to guarantee atomicity of distributed transactions� The
�PC protocol messages can be augmented so that cohorts can agree not only
on whether to commit a transaction� but also on transaction time ��� In this
augmented protocol� the transaction coordinator chooses the transaction time
based on the times voted by cohorts and distributes this chosen time along
with the commit message�

Two�phase commit has an �in�doubt� phase� where a participant in a
transaction has declared itself ready to commit� but has not received the
commit message from the coordinator� Therefore� there may be records in
TSB�tree nodes whose transaction time is earlier than the current time� i�e��
the time has already been chosen� but the information has not been received
by the cohort� This impacts the time�splitting of nodes� We exploit the fact
that the time chosen by the coordinator is not earlier than the times voted
by cohorts�

��� Marking Nodes for Backup ��

����� Timestamping of versions

Since timestamping goes on AFTER a transaction has committed� the as�
sociation between a transaction and its time must be stably stored� This
permits timestamping to be completed across system crashes� Storing the
transaction time in the commit record for the transaction on the recovery log
is one e�ective way of accomplishing this� However� this is not convenient for
looking up the transaction commit time given the TID� Thus a TID�TIME
table is kept in addition in volatile memory� to make the look�up more e��
cient� The TID�TIME table can be periodically written to disk� for example
in log checkpoint records� to make it stable� Then after a system crash it
can be reconstructed in memory from the stable version and the log records
since the checkpoint�

All versions in a history node that can be encountered via TSB�tree search
must be stamped with their transaction times� not their TIDs� If the times�
tamping has not been completed for versions in the current node when the
node is being time split� it must be completed during the split� This is
important for two reasons�

�� Choosing an appropriate split time requires this knowledge�

�� We do not update history nodes
they may be on WORM devices� so
this is our last chance to timestamp the history data�

To facilitate dealing with prepared transactions� whose commit time is not
known� it is useful to also include in the TID�TIME table prepared transac�
tions and their time of prepare� Thus� this table contains the attributes
i�
TID�
ii� TIME� either transaction time or time voted during prepare� and

iii� STATUS� either committed or prepared�

To reduce the space overhead involved in keeping TID�TIME table entries�
we expect to garbage�collect entries for transactions when all the records they
have updated have been timestamped� This is discussed in �	��

��� Marking Nodes for Backup

It is not necessary to copy all current data nodes to history nodes� Only data
nodes that have changed since the last backup� plus the index nodes need
be backed up and split� Copies of the other data nodes are already in the
history database via a previous backup�

�� � THE UPDATING PROCESS

To avoid having to read data nodes to determine whether they have been
updated since the last backup� we use a Node Change Vector or NCV�
which is a bit vector with one bit for each data node in the TSB�tree� We
associate a NCV with each backup sweep� During a backup� conceptually�
there will be both a current NCV and the start of a next NCV for the next
backup� The bits corresponding to nodes which have already been visited
in
key order� are in the new NCV and the bits corresponding to nodes which
have not been visited are in the current NCV� The NCV is ordered by physical
position of the nodes on the disk� Thus an index is not necessary to �nd the
bit corresponding to a given node� To change a bit� the backup process
or
an ongoing transaction� must hold a latch on the node� The backup process
always holds share latches� Updating transactions hold exclusive latches�

When a data node is changed� its need for backup is indicated by setting
its designated bit to one� This bit is cleared after a node is split for backup�
if there are no records in the node from uncommitted
prepared or active�
transactions�

Nodes which contain records whose transactions may commit before the
next backup time must be read and copied in the next backup even if there
is no change made in the node� This will enable the next backup pass to
write the timestamped data in the correct time interval in the backup�

Current nodes with records which are not timestamped� but whose trans�
actions have committed� may have their NCV bit cleared during the backup
process� since the current backup already contains the correct timestamped
version�

Other nodes with no changes in them are not read in the next backup�
but their index terms will be moved forward� indicating that the historical
version is still accurate at a later time� This is illustrated in Figure ��

To summarize the cases�

�� A new version is entered in a current data node� At this time� its NCV
bit for the next backup is set to ��

�� A data node is backed up and all its timestamping is complete in the
backup� Its NCV bit is cleared by the backup�

�� A data node is backed up� but some of the record versions are from
uncommitted transactions whose timestamp cannot be entered in the

��

Q

D E

GF

 A

time

key

Figure �� The current child node Q has not been changed since the last
backup� All Q�s records have timestamps � the start time in its index entry�
The records in A� valid at the previous backup time
previous start time
for Q�� are still valid at the new backup time� Thus the start time in Q�s
index entry
which is the end time for A� can be moved forward to the new
backup time� This enables the index node to split at a later time than would
otherwise be possible�

backup� Its NCV bit is not cleared� this data node must be processed
again in the next backup�

�� A data node with a 	 NCV bit is not copied to the backup� but its
index term time is moved forward�

When a backup occurs� all data nodes whose bits are one are read and
backed up� Other data nodes are not accessed� Instead of a read�all sweep of
the TSB�tree� we consult the NCV to determine which nodes need backup�
Conceptually� all updates before we visit a node during backup are before
the backup and go in the �old� NCV� Nodes updated after our visit are after
the backup and go in the �new� NCV that determines what is backed up
during the next cycle�

� Backup Splitting of Data Nodes

New considerations govern the details of data node splitting for backup�
In particular� we wish to ensure that all changes since the last backup are

�� � BACKUP SPLITTING OF DATA NODES

successfully placed in the history database� and we wish to avoid writing into
the current database� How data nodes are time split during backup so as to
accomplish these aims are discussed below�

��� Entire Current Node as History Node

Previously����� we minimized redundancy in the history database� or made
sure that increased redundancy led to reduced overall storage costs� For
backup� we want to exploit redundancy� Backup requires that versions of
data that are only in the current database be redundantly stored in the
history database�

Thus� during backup� the entire current node is written to the history
database� This ensures that all updates logged prior to the backup safe point
in the log will be present in the backup copy of the database represented by
the history nodes� This may involve writing data to history nodes from active

unprepared� transactions or from transactions which have prepared but not
committed
in�doubt transactions�� It does not cause a problem because the
split times chosen for the index terms direct us to the current node when
this data is desired� Such data in history nodes is harmless with respect to
searches and useful with respect to backup and recovery�

We call any data which is not within the time�space region described by
the index term referring to it Search Invisible or SI� Data copied from
current nodes during backup which is not valid at the split time posted in
the index
because their creating transactions have not committed by that
time� is SI data�

If there are records in the current node which are not timestamped� but
whose creating transactions have committed� we replace the TIDs with the
transaction timestamp in the backup history node� The copy of the record in
the current database still needs to be stamped as the current database is not
written during the backup process� If e�ciency of the backup process is not
a priority� the backup can be modi�ed to update the current database in this
case� Then� the entries in the TID�TIME table for transactions committing
before the backup process begins can be erased at the end of the backup� In
the rest of this paper� we assume that current nodes are not changed� even
if they need timestamping�

��� No Change to the Current Node ��

��� No Change to the Current Node

Backup�induced time�splits do not remove data from current data nodes�
Hence� current data nodes do not require re�writing� Backup makes no
changes to the current database except for the posting of appropriate in�
dex terms that refer to the new history nodes�

Hence like a history node� a current node can contain SI versions of data�
The SI versions in the current node are versions which are no longer valid
at the new start time for the current node indicated in the index� These
SI versions have been superceded by more recent versions at
or before� the
start time in the index term�

When normally inserting new versions of data into a current node� the SI
versions left by backup�induced time�splitting can be removed if their space
is needed� However� it is desirable to NOT remove SI versions UNLESS
their space is needed� The presence of SI versions means that a current node
continues to include all versions that were in its last backup history node�
Once SI versions are removed� this �covering� ceases� This redundancy can
be used to reduce the number of index terms� See section ����

To detect SI versions� a START time is kept in each current node�
START is the earliest time covered by data in the node� The current node
includes all data versions in its key interval from START until the current
time� START indicates the last time used in removing versions from the
node� When this time is earlier than the start time in the index term for the
node� SI versions may be present�

The start time for a current node posted with an index term resulting
from a backup induced time�split will not match START in the node since
the current node is not written during backup� This indicates that some
cleanup is possible in which the too�old
SI� entries can be eliminated to
make room for new versions�

��� Choosing a Split Time

The choice of a split time determines the start time that is posted with the
index term that describes the split� How the index is handled is discussed
in the next section� Here we discuss how the split time is chosen for data
nodes�

In the absence of records of prepared
in�doubt� transactions� whose com�

�� � BACKUP SPLITTING OF DATA NODES

mit status and transaction time are unknown� current time can serve as the
split time� This is the choice made for the WOB�tree��� and which we have
referred to as the WOB�policy����� It is the ideal choice as it maximizes the
number of SI versions in the current node� This choice is possible even when
there are versions from active transactions in the node� These transactions
will commit
if they commit� after the current time� and hence their versions
are never encountered in a search where the speci�ed time is before or at the
split time�

When there is a record in the node from an in�doubt transaction� we do
not know whether its transaction time is before or after the current time� We
can know� however� at what time the transaction was prepared locally� and
what the local cohort voted as an earliest acceptable time� This voted time
is found in the TID�TIME table� We choose as split time the earliest prepare
time of any such record� This choice ensures that all searches for unstamped
versions go to the current node� where they will eventually be stamped with
their transaction time� The copies of these versions in the history database
will be uncommitted as of the split time� Hence� in the history database�
they are SI versions�

There is some chance that the earliest prepare time for a data node will
be before the start time of the backup� This will limit the choice of split time
for the index node which is its parent� and hence the backup split times of
other ancestors� We o�er two suggestions to deal with this problem�

�� Choose a backup time which is older than the oldest vote time for the
system� Do not make a backup if there are in�doubt transactions with
very old vote times�

or

�� Mark in�doubt data in the backup history node as �possibly commit�
ted� if the split time is after the earliest vote time for the current node�
More recent nodes in the same key range will contain the commit time
if there is one� This will require some further search to answer AS�OF
queries� Including the vote time with the data will reduce the frequency
of these searches�

��

� Handling the Index During Backup

��� Unique Properties of the Index

Index nodes are treated di�erently from data nodes because

�� Index terms for the backup�induced new history nodes must be posted
to the correct index node� Thus� the index is changed by the backup
process� The posting of these terms is done in the same basic way
that index terms are usually posted in a TSB�tree� However� there are
unique considerations� which we discuss below�

�� The split time chosen for index nodes is never later than the start time
of the oldest current index entry� This time re�ects the oldest
earliest�
time any current descendent node could split� All subsequent splits of
the current children will be posted to the current index node�
We
note one exception below�� This is important because� like historical
data nodes� we do not want historical index nodes to be updated� The
way in which backup produces history nodes for the entire TSB�tree
permits the split time for index nodes to be after
or at� the time at
which the backup started
see section �����

��� Index Term Covering

The number of new index terms generated by the backup process is trouble�
some� If these are simply posted to TSB�tree index nodes� they will cause
the index to grow substantially larger than would be the case if backup were
not being done� And the cost of each additional backup would be yet an�
other substantial increase in index size� While this is somewhat unfortunate
in the increased access path length to historical data� it is a very serious
performance degradation for current data� Fortunately� many of the backup
induced index terms are� or can be made� redundant� And redundant index
terms can be dropped�

Redundant index terms are those that are said to be covered by other
index terms� In a TSB�tree� index nodes as well as data nodes describe
rectangles in time�key space� Index terms within an index node refer to that
portion of the child�s rectangle which intersects its parent�s rectangle� Often�
this is the whole child space� but as we see in Figure �� part of the child�s

�	 � HANDLING THE INDEX DURING BACKUP

space may lie outside the boundaries of the parent� We shall say that an
index term T� covers another index term T� if the space
a subset of the
index node space� to which T� refers includes the space referred to by T��

Readers do not care whether they read data from the node referred to by
the covered index term or from the node referred to by the covering index
term� Both contain the same data for the given rectangle� Thus� we can
systematically eliminate covered index terms from index nodes� The node
whose reference is erased in this index node may become inaccessible� but no
information is lost�

��� Calculating Child Boundaries in the TSB�tree

����� Index Terms and Index Nodes Terms

To take advantage of covering� each TSB�tree index node must contain suf�
�cient information so that the key and time boundaries
within the space of
the index node� of each referenced child node can be determined� START
and END times and LOWKEY and HIGHKEY for each must be available

or derivable� so that we can detect when index terms for a newly posted
split cover index terms already present� A TSB�tree index entry� however�
only lists LOWKEY and START� In this section we show how to derive
HIGHKEY and END for each index entry�

The index�splitting algorithms for the TSB�tree imply that the union of
the time�space rectangles described by the children of a node may be larger
than the time�space rectangle of the parent index node� Time splits which
create a new history index node allow the current node to refer to children
whose START is before the split time
START for the current node�� This
is illustrated in Figure �
a��

Key splits can cause a history child to have two parents� In this case� one
parent refers to a history child whose LOWKEY is lower than the parent�s
LOWKEY� The other parent refers to a history child whose HIGHKEY is
higher than the parent�s HIGHKEY� This is illustrated in Figure �
b��

����� Boundaries for Index Terms

For current children of an index node� HIGHKEY is the next highest LOWKEY
in the index node� The HIGHKEY of the entry with the highest LOWKEY

��� Calculating Child Boundaries in the TSB�tree ��

A
B
C
D

(a) A time split occurs before the earliest begin time of any current child

A
B

C
D

B

C
D

A

(b) The current index node refers to history nodes whose begin time
 is before the begin time of the index node. A key split is made
 of the current index node.

A
B

P1

B
C
D

P2

(c) After the key split the new current nodes have a history child (B)
 with lower (P1) and (respectively) higher (P2) key boundaries than
 nodes P1 and P2 have themselves.

Figure ��

�� � HANDLING THE INDEX DURING BACKUP

is the HIGHKEY of the parent� This is true because the key space is re�ned
over time� Old key divisions are not lost and the current nodes re�ect the
�nest partition of the key space� END for all current children is �now�� A
current child can be recognized as such because there is no more recent entry
in the index node with the same LOWKEY�

Calculation of END and HIGHKEY for history children of current index
nodes is more subtle� Suppose LOWKEY of a child is K� and START is T �
END will be the earliest START after T of the smallest LOWKEY greater
than or equal to K� Except when K is the smallest LOWKEY in the parent
node and is less than LOWKEY of the parent
as is Figure �
b� with child B
in parent P��� there will always be a more recent entry with LOWKEY K�
END for history child nodes can always be calculated from the information
in the index node�

HIGHKEY of a history child will be LOWKEY of the entry with low�
est LOWKEY greater than K and START before END for the child unless
HIGHKEY of the child is greater than or equal to HIGHKEY for the parent�

See Figure �
b� with child B in parent P� or with child A in parent P���
One cannot calculate HIGHKEY for a history child which covers the highest
key range for its time range� However� even in this case� the intersection
of the child�s space with the parents space can be calculated�
HIGHKEY
of the intersected space is the HIGHKEY of the parent�� This is all that is
needed to detect whether a newly posted index term covers or is covered by
previously posted terms�

����� A Rare Case

When new index terms are posted� as long as they are posted in the order of
creation� one can always tell from the information in the index node whether
any covering occurs� However� our concurrent index posting algorithm ��
does not guarantee that the terms will be posted in order as we have seen in
Figure �� This can result in some of the boundary information being missing�
The consequence of this is that a child appears to cover a larger space than
it actually contains� To eliminate redundant index terms� where the directly
contained space of one covers the directly contained space of the other� we
need more information�

There are two possible responses to this di�culty� One is to ignore it
and forsake the ability to eliminate a covered index term in such cases� The

��� Cases Encountered During Backup ��

other is to supply the missing information when posting an out�of�order index
term� We assume that the full boundaries of the index term being posted
are known� When these boundaries are smaller than those that result from
our previous calculations� we can record those boundaries in the index term
posted�

��� Cases Encountered During Backup

The index�term covering optimization is important for both data and index
nodes because of the frequency of one index term covering another as a result
of backups� There are several possibilities for the node referenced by an index
term�

No change� The node has not changed� The index term �covers� itself� We
can advance the time demarcating the most recent history node and the
current node to the current time without writing a new history node�
These are the nodes which have a zero bit in the NCV
see Figure ���

Only added versions� The node was changed between backups� but did
not split� Nor were �SI versions� removed� The new backup�induced
history node index term covers the prior history node index term gen�
erated at the last backup�

Versions removed� The node has had versions removed as a result of a time
split or because SI versions were removed� The history node index term
generated during backup will not cover a previous history node index
term� Hence� its index posting results in an additional index term�

Key split without versions removed� The union of two
or more� index
terms resulting from a key split and then a back�up could cover one
previous history index term
if no SI versions have been removed��
The key range of the previous history term could be reduced as each
new back�up index term is posted� The previous history term can be
eliminated when the last back�up index term in its key range is posted�

This is not an unusual case� Current nodes may contain only current
data� When new data is to be inserted� there are no SI versions to be
removed� If more space is required� a key split must be made��

�� � STEPS IN BACKUP SPLITTING

Covering normal node� A �normal� time split has occurred after the backup
node is written� but before its index entry is posted� If this �normal�
history node index term covers the backup index term� the backup in�
dex entry will not be posted� The �normal� history node index term
covers this period of history� instead�
This case is rare��

��� Index Node Time Splitting

The reduction in number of index terms� brought about by exploiting index�
term covering� greatly reduces the frequency with which index nodes split�
Because only splits of index nodes reduce their time�key space� backup of
index nodes should frequently result in index�term covering at the next higher
level in the TSB�tree� That is� index nodes can frequently be instances of
Only added versions� SI versions of index terms should not be removed
from the current index node during a backup so as to enhance the frequency
with which this occurs� However� SI versions can be removed should the
space be needed�

It is always possible to advance START for a current index node� The
backup process guarantees that START for each index term for a current
node is advanced by the backup process� Even when no backup of a node is
required
NCV bit is zero�� START for the index term for the current node
is advanced� START is never older than the oldest prepared transaction in
the data node at the time that it is backed up� Hence� a current index node
can be time�split� generating its new backup history node� using the time of
the oldest prepared transaction whose versions are in the subtree spanned by
the index node�

� Steps in Backup Splitting

��� The Steps in Backup�Induced Splitting

In order to make our backup process as e�cient as conventional backup�
we need to exercise care to minimize data contention and the amount of
data placed on the system recovery logs� Also� backup must work correctly�
leaving a well structured TSB�tree� should a failure occur at any arbitrary
time during the execution of the backup process�

��� Special Treatment for History Nodes ��

Essentially� a backup�induced time�split requires that three steps be ac�
complished� As usual for the permanence of an activity� the activity must be
logged stably� We require the following three steps to be made stable in the
order given below� The subsequent subsections explain how these steps are
accomplished and why the ordering is important�

Writing the History Node� The current node is copied to form the his�
tory node� which is force written to the stable history database� Should
the history database be on a WORM device� the space used is perma�
nently consumed� A �ag identi�es the history node as a backup node�

Logging the Split� That a backup�induced time�split is done for a node is
logged so that the split is durable� This log record describes the update
to the parent index node�

Writing of the Index Node� The parent index node of the split node is
updated to make the new history node accessible�

��� Special Treatment for History Nodes

Recovery for nodes of the history database is handled di�erently from recov�
ery for nodes of the current database� This is true for both media failure
recovery and crash recovery�

Media failure� We do not discuss history node media failure� The method
described here does not support such recovery� though enough infor�
mation may persist to recover from some failures�

System crash� Once history nodes are created� they undergo no further
changes and hence� they need no further crash recovery support� The
redo recovery process need not be aware of history nodes� Redo is
applied solely to the nodes of the current database�

To assure crash recovery for history node creation� the history node is
force written to the stable history database prior to recording stably any
other information about the time�split that generated it� This di�ers from
current nodes� whose write to stable storage can be extensively delayed� The
early forced write of the history node means that creation of the history

�� � STEPS IN BACKUP SPLITTING

node will never need redoing when log records documenting the time�split
are encountered during redo recovery� Hence we do not have to log the initial
contents of history nodes� This is a signi�cant performance enhancement�
The size of the log is often a problem in transaction processing systems�

��� Logging the Backup Split

We wish to provide independent redo recovery ����� for current nodes� In�
dependent recovery permits each node�s recovery to be done by applying its
log records to its previous states� independent of the log records and states of
any other nodes� Hence� we need separate log records for each current node
changed by a split�

Three log records are needed for a key split� One lists the records that
are placed in the newly created node� The second describes the removal of
records from the original node� The third describes the update to the parent
index node� All changes to the structure of the index tree must leave the tree
well�formed� even in the presence of system crashes� Ensuring this requires
enforcing an appropriate unit of atomicity� which can be non�trivial�
In ���
we describe how this can be done e�ciently and with high concurrency��

For a backup�induced time split� much less needs to be logged� First� the
current
original� node is unchanged� Second� by force writing the history
node �rst� its creation never needs redoing� Neither of these nodes needs a
log record� Hence� a backup split needs only a single log record describing the
posting of the index term for the split� Hence� backup�induced time�splits
are trivially atomic� If the log record is not present� the split has not been
done� If the log record is present� the split has been done and is durable�
The log never contains a partial backup�induced time�split which might have
required undo recovery� This simpli�es crash recovery�

The log information describing the posting of the index term for a backup�
induced time�split includes the following�

NODE� index node being updated�

OPERATION� the fact that this is the posting of index terms for a
backup�induced time�split�

LOWKEY� the low key for the range of keys in the split nodes�

��� Node Backup ��

HIGHKEY the high key for the range of keys in the split nodes�

HSTART� start time for versions in the history node�

CSTART� start time for versions in the current node� This is the end time
for the history node�
The current node contains SI versions between
HSTART and CSTART��

CURRENT� location of the current node being split�

HISTORY� location of the history node� The history node is either a pre�
existing node
when a new index term is posted for a node whose NCV
bit was zero� or a new node�

��� Node Backup

����� Data Nodes

Backup of a changed current data node can be done atomically� The node
is share�latched by the bu�er manager to assure read consistency while it
is copied to the history database bu�er to become the history node� This
latch can be dropped as soon as the copy is complete� making for minimum
interference with ongoing transactions� The necessary timestamping for the
history node can be done after the copy�

Once the history node is stably written� the parent index node is updated�
This requires an exclusive latch on the index node� The split is durable when
the log record is stable� The write�ahead log protocol is observed to ensure
that the log record describing the updated index node is stable by the time
the index node itself is stable� Index node updating during backup may
require that the index node be split� This complication is dealt with in the
next subsection�

����� Index Nodes

Index node backup is more complex than data node backup because backup
itself updates index nodes� It is essential to capture these updates in the
backup induced history index node so that this node will correctly reference
all backup nodes for its descendents� Thus� an index node is backed up only
after the completion of backup for all its descendents� the writing of the

�� � STEPS IN BACKUP SPLITTING

history nodes� the posting of the index terms� and the logging of each split�
After this� the ordering steps described in section ��� work correctly for the
backup of index nodes�

An index node is updated by the backup of its descendents over a rela�
tively extended period of time� Each update is only protected by a short�term
exclusive latch on the node so that ongoing transactions can make updates
to an index node interleaved with the updates caused by the backup process�
Index node backup needs to deal with both forms of update� It is the posting
of index terms for backup history nodes that makes these nodes available as
history nodes in the multiversioned database�

Prior to backing up an index node� we back up the subtree of which it is
a root� Backup sweeps through an index node� backing up descendent nodes�
For index nodes whose children are themselves index nodes� all children re�
quire new history nodes to be created� For the lowest level index node� only
the data nodes indicated in the NCV as having changed result in new history
nodes� The descendent node backup is complete when the parent index node
is updated to re�ect its backup� In e�ect� above the leaf
data� level� we
create an entirely new subtree in the history database� This subtree shares

history� data nodes that haven�t changed with the previous subtree�

Should an index node time�split during its backup� no special measures are
required� Time splitting does not remove current versions� Hence current
index terms needed for the backup of the index node continue to be present
in the changed index node�

The biggest complication involves the key splitting of an index node dur�
ing its backup� There are two cases�

�� Our backup sweep has already �nished with the index terms in one
of the nodes resulting from the split� In this case� immediately per�
form backup on this completed node� and continue the sweep of the
incompletely processed node�

�� We have not completed a sweep of either of the resulting nodes� Proceed
as if the split hadn�t occurred� and backup the index node that we are
currently working in
after the split� when we complete its sweep�

��� Handling the Root ��

��� Handling the Root

Backing up the root of a TSB�tree needs to be handled somewhat di�erently
than the backup of an ordinary index node� There is no index node above
the root into which to store the index terms describing the backup�induced
time�split of the root� Normal B�tree splits of a root cause the creation of a
new root� but this new root� of necessity� is in the current database� hence
requiring backup itself� We must break this recursion�

When the backup copy of the root is made� we place a reference to it and
to the split time into stable storage as part of our backup status information�
We call this information the Backup Status Block
BSB�� It is described in
section ���� We also log this update to the BSB� making the information
recoverable from the log�

� The Backup Process

We wish to make the backup process as inexpensive as possible� comparable
to the cost of ordinary backup as done in non�versioned databases� For that
reason� we take pains to minimize the number of nodes read and written�
and also perform batch writes of the information that backup needs to store
stably� This is described below�

��� TSB�tree Traversal for Backup Sweep

The time�splits needed to provide database backup are performed in a tree
traversal of the TSB�tree� The backup is done in key order� nodes with
lower keys being backed up before nodes with higher keys
or consistently
the reverse�� This has two desirable results�

�� An index node is backed up immediately after its descendents� This
assures that the backup version of the index node references the new
backup versions of all descendent nodes� Upon backup completion� all
backup versions are accessible from the root of the history tree� It is
this property that ensures a new log safe point for media recovery�

�� An index node will most likely remain in cache and available while its
descendents are being split� Hence� the e�ect is to batch the updates
to the index node�

�	 � THE BACKUP PROCESS

Since we use sibling pointers so as to permit lazy posting of index terms to
index nodes in the TSB�tree� it is possible that some changed nodes that need
backup do not have index terms posted� The sibling from which they were
split has been updated in the process of performing the split and appears
as an updated node in the NCV� In the process of backing up this node� we
need also to be sure to back up any new siblings that have been produced as
results of node splitting� Further� since we wish that all backed up nodes be
recorded in the backup for the index node� we insist on posting these index
terms during the backup process� This ensures that only updated nodes� as
marked in the NCV� ever have unposted siblings�

��� Batch Writing of Backup Data

Aside from posting index terms to current index nodes
discussed above��
the writing done by backup consists of logging the index posting and writing
the history nodes� Both of these can be done in sequential batches�

Because of this sequential allocation of history �le space� we can write
the backup history nodes as part of large sequential writes� During backup�
as soon as a node is split� we place its history node in the output history
bu�er� which serves as an output queue� This gives it a location and causes
it be written in location order when we perform sequential writes� Nodes
are entered into the output history bu�er before their ancestor nodes� The
ancestor nodes are backed up as soon as we have �nished with all their
descendents� Hence they will be written after their descendents�

A history node must be written prior to the log record that describes
the split� To enforce this protocol AND batch the writing of history nodes
and log records suggests that several history nodes be written prior to the
posting of their index terms� Then� the index node can be updated with a
group of backup�induced index terms� producing log records for these updates
in a batch as well� Thus� batch writing of history nodes and log records is
feasible while observing the ordering requirements for correct concurrency
and recovery�

��� Backup Data Structures

Backup maintains two data structures� the Sweep Cursor and the Backup
Status Block� These are described below�

��� Backup Data Structures ��

	���� The Sweep Cursor

The Sweep Cursor encapsulates the instantaneous state of the backup�
Its information permits the ordering requirements of backup to be enforced�
Its restoration after a system crash permits an interrupted backup to be
resumed� The Sweep Cursor contains the following information�

Log Key� the key for the last node whose backup is recorded stably in the
log�

History Key� the key for the last node whose history node has been
written stably to the history database�

Last Key� the key for the last node whose backup has been completed and
whose elements exists in volatile memory� This includes the posting of
the index entry in volatile memory�

Unposted Terms� Associated with each history node that has been writ�
ten but whose corresponding index term has not yet been posted� a
record is entered here of the form of the index term to be posted�

To enforce the writing of the history node prior to the logging of the split�
we require History Key � Log Key� The log cannot be written to stable
storage� updating Log Key� until su�cient history nodes have been written�
The History Key can get arbitrarily far ahead of the Log Key� should that
be convenient� e�g�� to facilitate batch writing of the history database�

Since parent index nodes are not updated until history nodes are stable�
Last Key � History Key� The write�ahead log rule implies Log Key � Last
Key� The Sweep Cursor is illustrated in Figure ��

After batch writing a group of history nodes� the backup process posts
the Unposted Terms recorded in the Sweep Cursor in a batch�

	���� The Backup Status Block

TheBackup Status Block
BSB� provides a durable repository in a known
location for information related to backup� This information is of two types�

i� information needed to quickly initiate recovery from media failures� and

ii� information that assists in making the resumption of backup fast should
the system crash during backup� While much of the information is present

�� � THE BACKUP PROCESS

80 90

110 120

Pending Terms: Log records

Log Buffer
SI: 1005

Data Cache
SI: 1005

8070

index node

History Node Cache
not written in log cache.

110 120100

Volatile Memory

70 8060
90 100

Stable History Database

60 70

Stable Log

Key Log: 70 (last stable log record)
History Key: 100 (last stable history record)
Last Key: 90 (last value posted in index page in volatile memory)

Unposted Terms: 100 (History node written stably, but term
not posted)

90

Figure �� The Sweep Cursor� The unposted term �		 can be entered into
the log bu�er and posted to the index node in volatile memory� Once the log
bu�er is �ushed to the stable log� the index page can be copied to the stable
current database�

��� Continuing Backup Across System Crashes ��

redundantly on the log as well� having it in the BSB avoids the scanning of
most of the log to recover it� The BSB contains the following�

BACKUP ROOT� the location of the history root of the last complete
backup� This determines where media recovery �nds the backup that
should be restored�

SAFE POINT LSN� the redo safe point LSN associated with the last
complete backup� This determines where media recovery should start
its redo scan of the log�

NCV LSN� the LSN of the last checkpointed copy of the NCV� During
normal processing� we checkpoint the NCV to the log whenever a crash
recovery log checkpoint is performed�

NEW SAFE LSN� the redo safe point LSN associated with the in�progress
backup� This will become the SAFE POINT LSN when the current
backup is complete� It is NIL when backup is not in progress�

The BSB may contain other information relevant to backup� such as when
the next backup is scheduled�

The BSB is forced whenever a transaction recovery checkpoint is taken�
This assures that its information can be fully brought up�to�date by scans
that involve only the crash recovery log� Backup resumption is treated below�
Media recovery is the subject of section ��

��� Continuing Backup Across System Crashes

It is unacceptable to undo backup to its start following a crash� Indeed� once
history nodes have been written to a WORM device� it is not possible to
completely undo the backup� Rather� we want to resume backup from the
point that was reached thus far�

Backup produces stable testable state that allows it to be resumed across
system crashes� The history nodes written are stable� as are the log records
describing the updating of index nodes� The nodes changed since the last
checkpoint are all recorded on the crash recovery log� Hence� the NCV can be
recovered� The BSB redundantly contains recent backup state information
that makes resumption fast�

�� 	 MEDIA RECOVERY PROCESS

First� normal database recovery is performed� bringing all nodes up to the
state as of the time of failure� Recall that TSB�tree backup splits are never
undone� and hence all such splits will be redone where necessary� Normal
database activity can resume at this point� BSB updates are described via
log records� Hence� the BSB is restored as a result of database recovery� The
NCV is also restored during database recovery�

If backup was in progress when the crash occurred� we need to restore
the Sweep Cursor� The crash recovery log is searched back from its end� The
�rst backup log record encountered indicates the last completed backup and
its HIGHKEY provides the value for Log Key and for Last Key�

To determine the value for History Key� the history database is scanned
from the location of the history node stored as the HISTORY attribute in
the log record above to history database end� The high key of the last
backup node encountered in this scan becomes the History Key attribute of
the Sweep Cursor� The Unposted Terms are re�created during this scan by
examining the key and time attributes of the history nodes� Once the Sweep
Cursor is re�generated in its entirety� normal backup resumes�

� Media Recovery Process

	�� Fundamentals

When there is a media failure� the �rst step is to restore all damaged current
nodes that have backups from the most recent accessible history nodes� After
this restore step is completed� and prior to applying the log� failed nodes that
existed at the time of the last backup all have been restored with valid past
states�

With independent redo for current nodes� each of the restored nodes can
be rolled forward based solely on their log records and their restored state�
The log will also contain su�cient information to regenerate all nodes that do
not have backup copies in the history database� These were created only via
key splitting� Their initial contents have been stored in the log and they can
be re�created without access to backup versions� Applying the media recovery
log proceeds exactly like ordinary redo recovery after a system crash� The
only di�erence is that the media failure redo scan starts at the media safe
point� stored in the BSB� as opposed to the crash recovery safe point�

	�� Full Database Media Recovery ��

What we consider next is how the history database is accessed to deal
with di�erent types of failures� The important issue that we need to deal with
is how to minimize the number of I�O accesses� We want to minimize
i� the
read accesses to the history database� which might be stored on a WORM
device with a slow access rate�
ii� the write accesses needed to restore the
backups to the current database� and
iii� the read accesses to the media log
when rolling the restored database forward�

	�� Full Database Media Recovery

����� Minimizing Accesses to the Archival Medium

Recall that a backup is generated via a TSB�tree traversal� For a full restora�
tion� traversing the history tree� starting at the history root has the advantage
of encountering substantial clustering of history nodes needed for database
restoration� For each index node� the backup history nodes for its descen�
dents are clustered into a set of regions of almost contiguous backup nodes
on the medium in which the history database resides� There will be one
such region for each backup sweep whose history nodes are among the still
relevant backup set for the current database�

History nodes from the most recent backup will exist at very high density
in their region because only occasional ongoing activity during the backup
will break the sequence of backup history nodes� As the regions associated
with increasingly older backups are accessed� the density of occurrence of
still relevant history nodes declines� This is because more and more of the
history nodes written by these backups will have been superceded by more
recent backups� This is illustrated in Figure ��

Despite the only approximate nature of the contiguity of backup history
nodes� we can use this locality to minimize the number of accesses required
to read the backup nodes� We can identify regions of backup storage space
where the density of nodes that need to be read for restoration exceeds some
threshold� e�g� �	 �� We can read these regions in large sequential reads�
spending some data transfer in order to save the access times� Further�
performing access such that nodes from each backup sweep are processed
together results in small disk arm movements�

Should the backup medium be a WORM device� it will frequently be the
case that all data for nodes written in a given backup is on a small number

�� 	 MEDIA RECOVERY PROCESS

History data base

Backup root

Backup index nodes

Most recent backup data nodes

Other data nodes

Figure �� Many of the nodes needed for media recovery are clustered together
in the area of the most recent backup� This includes the entire backup index
and those data nodes that were in the last backup�

of tracks� Since adjacent tracks can be reached without arm movement by
pivoting the mirror at the head� all such data can be accessed without moving
the access arm� Thus� even without a large sequential read� we can take
advantage of the proximity introduced by the backup process to minimize
costly arm movement during database restore�

The same strategy used here for a full database restore can be used to
restore an entire subtree of the TSB�tree� The only di�erence is that the
root of the subtree is found by searching the current database for the index
term that refers to the damaged subtree� Then� the most recent history node
associated with that index node becomes the �root� of the history time slice
traversed�

����� Sequentially Writing the Restored Database

A restored database� or substantial part thereof� needs to be relocated to
new stable
disk� storage during the restoration step� When the recovery log
is applied to the backup database� we translate the old locations of current
nodes� as recorded in the log� to the relocated locations of the restored backup

	�� Full Database Media Recovery ��

versions� and apply the log records to the relocated nodes�
Of course� one could do the above translation in a trivial manner by

organizing the restored database so that �relative addresses� within some
storage area are preserved� This makes the size of the translation information
very small� However� to minimize access arm movement when writing the
current database� it would be better to build a RELOCATION TABLE while
traversing the history database�

As the backup tree is read� subtrees of the current database are recon�
structed in memory and written to the disk in the same order as the backup
is done� i�e� the children of an index node are written prior to the index node
itself� The writing of the restored database can then require a very small
number of large sequential writes� This is essentially the suggestion in ���
for log�structured �les� which are written sequentially in new locations after
update� rather than being randomly written to do update�in�place� Here also
an index must be kept to locate the moved pages�

Thus� the current database is restored by copying the backup data nodes
to a new sequential area and rebuilding the current index nodes based on the
historical index nodes� but updated with the new locations of their restored
child nodes� The RELOCATION TABLE is used to provide this translation�

The RELOCATION TABLE is also needed to permit the log to be suc�
cessfully applied to the restored database� Log records refer to the pre�failure
locations of the data� and need to be translated so as to correctly update the
restored nodes� Further� node addresses for the pre�failure nodes that appear
in index term log records need to be translated so that these addresses refer
to the restored nodes�

The RELOCATION TABLE is built in main memory as database restora�
tion proceeds� The write�optimized RELOCATION TABLE requires an en�
try per node to be restored� When recovery is complete we write the reloca�
tion table to our archive and post an entry to the BSB that references it� The
RELOCATION TABLE will be used to permit restoration of the relocated

restored� data should there be a second failure before the next backup is
taken�

����� Applying the Log

As with conventional media recovery� the media recovery log can be peri�
odically processed so as to optimize the roll forward of the database� This

�� 	 MEDIA RECOVERY PROCESS

involves what is called �change accumulation� ��� The log is sorted by node
and within node by time� The result is that the part of the log relevant to the
rolling forward of a node is stored contiguously� This minimizes the number
of times a restored node needs to be visited during the roll forward process�
If the RELOCATION TABLE approach is taken� it is useful to sort the log
by the relocated addresses of the restored database� This permits a single
sequential scan of the restored database for this step� at the cost of the log
pre�processing�

The bottom line is that there need be only a modest number of access
arm movements to read the backup nodes from the backup medium� a few
per backup that is still re�ected within an index node� Writing the backup
nodes to a restored current database can be done nearly sequentially� Hence�
restoration after media failure can be done with high performance�

	�� Single Node Restoration

Media failure may involve only a single node� For these localized media
failures� using the TSB�tree�s history nodes as the source of the backup is a
substantial advantage� The TSB�tree�s index� which is available to us in the
current database� can be used to locate the backup node�

If we know the key range of data in the corrupted node� we can readily �nd
a backup version in the history database� We use the key range information
to search the TSB�tree for the most recent history node with that range� We
use this history node to restore the corrupted current node� This node is
then rolled forward by applying the recovery log� If the corrupted current
node does not have a history node� then it was produced as a result of a key
split� Such a node can be restored fully solely from the recovery log�

If a corrupted node is encountered in such a way that its key range is not
known� then more extensive searching is required� The locations of current
nodes that have backups are all in history index nodes of the TSB�tree� With
an index node fan�out of around �		� the TSB�tree index represents about
	���
�		�� of the database� Even scanning all the current entries in the
most recent history index for the failed node requires only a small fraction of
the I�Os needed were we to search the entire backup database� And usually�
some information is available about the possible range of keys�

��

	 Discussion

�� Impact on TSB�tree Attributes

Our backup process has been designed to have performance competitive with
conventional database backup while permitting the backup to also be used
as a history database� We want to emphasize here that doing this has not
compromised the performance of the TSB�tree in its usual role of accessing
multiple versions of data�

�� Single version current utilization
the proportion of the current database
space occupied by current versions of data� is not adversely impacted
since current data node contents are not changed�

�� The height of the TSB�tree index should not be much a�ected because
of the systematic replacement of redundant history node index terms
with history node index terms that �cover� them� This should be very
e�ective in avoiding tree growth� Index�term covering should occur
with high frequency�

�� Index node time�splitting has enhanced e�ectiveness� Backup permits
the time chosen for the splitting of an index node to advance because
the oldest current index term is only as old
approximately� as the last
backup� The splitting of index nodes permits history index terms to
be removed from the index nodes� which works to keep the height of
the current tree small�

�� Multiversion total utilization
the proportion of the entire�historical
and current�database occupied by current versions of data� should be
comparable to that achieved by using WOB splitting� i�e� the splitting
regime of the WOB�tree�� in which the entire current node becomes
the history node� when the nodes whose index terms are covered are
ignored� Thus� utilization� in its impact on search performance and on
the nodes encountered in a search� is not adversely a�ected� Of course�
the existence of these nodes means that additional history space is
consumed�
Even if the backup is not on a WORM device� the space
consumed cannot be reclaimed if the sibling pointers in the nodes are
needed� For example� in Figure �� the only pointer to B in the TSB�tree

�	
 DISCUSSION

is in C� Even if the index term for C is covered� the space for C cannot
be reclaimed� for then B would be inaccessible��

�� Physically Organized Backup

The process that we have described organizes the backup process by subtree�
That is� nodes that share close ancestors are written close to each other
physically in the history database� Media failures are more likely to corrupt
physically contiguous parts of the current database than logically close nodes
in the TSB�tree�

It is possible to organize the backup process to deal with this� The cost
of the backup is likely to be higher so as to make recovery faster� One can
backup entire contiguous storage areas� Then one can update the TSB�tree
index to re�ect that this backing up has been done� This requires �nding the
logical nodes that correspond to the physical space� Usually� this is written
into the nodes themselves� More data will probably be written to the history
database because nodes that haven�t changed will be written as part of the
storage area�

One caveat here is that this technique should probably be limited to the
data nodes� The index nodes must be written after their descendents if they
are to reference the backup versions of their descendents� Storing the index
in a separate storage area helps to accomplish this�

At recovery time� the entire storage can be restored via a single or a
small number of sequential reads� Hence� recovery can be done very rapidly�
Relocating the storage area is also simpli�ed since the new origin of the
restored storage area can serve to relocate all nodes in the storage area�

�� TSB�trees for Pinned Record History

Frequently� a database system stores the bulk of its data in an entry�ordered
�le and accesses that data via record identi�ers
RIDs�� The RIDs typically
have two parts� a page identi�er
PID� and slot identi�er within the page

SID�� Thus an RID is a pair �PID�SID�� This organization is called a
�pinned record� organization as the records are always located by going to
the PID named page and looking at the SID slot� The record itself can move�
but it must be accessed via its slot�

�� TSB�trees for Pinned Record History ��

A TSB�tree can be used as a history database for a current database of
the pinned record form� The key used in this TSB�tree is the PID� The TSB�
tree locates history versions of records via their PID and the time of interest�
The current database is accessed directly via the PID�

Such a tree is built gradually as current database pages time�split� The
time�splitting of a page causes its entry into the TSB�tree with an appropriate
time� This page can be written directly to the backup medium
e�g� a WORM
device� since it is not further updated� This process is entirely conventional
for the TSB�tree for time splits� Key splits never occur in data pages�

Having used the TSB�tree to gain access to history versions of pinned
records� it now becomes possible to use the TSB�tree for backup purposes
as well� In this case� there is the added advantage that physical and logical
locality are synonymous� Thus� the tree traversal and the storage area ap�
proach come together� Backup remains fast and recovery speed is enhanced�

Bibliography

�� Bernstein� P�� Hadzilacos� V�� and Goodman� N� Concurrency Control
and Recovery in Database Systems� Addison Wesley� Reading MA�
�����

�� Easton� M� Key�sequence data sets on indelible storage� IBM J� of R�D�
�	��
May ����� ��	�����

�� Gray� J� Notes on database operating systems� Research Report RJ����

Feb� ������ IBM Research Division� San Jose� CA�

�� Lehman� P� and Yao� S�B� E�cient locking for concurrent operations on
B�trees� ACM Trans� on Database Systs� ���
Dec ����� ��	���	�

�� Lomet� D� Consistent timestamping for transactions in distributed sys�
tems� Digital Equipment Corp� Technical Report CRL�	��� Cam�
bridge Research Laboratory� Cambridge� MA
Sept� ���	�

�� Lomet� D� Recovery for shared disk systems using multiple redo logs�
Digital Equipment Corp� Technical Report CRL�	��� Cambridge Re�
search Laboratory� Cambridge� MA
Oct� ���	�

�� Lomet� D� and Salzberg� B� Access methods for multiversion data� Proc�
ACM SIGMOD Conference� Portland� OR
June ����� ��������

��
 DISCUSSION

�� Lomet� D� and Salzberg� B� The performance of a multiversion access
method� Proc� ACM SIGMOD Conference� Atlantic City� NJ
June
���	� ��������

�� Lomet� D� and Salzberg� B� Concurrency and recovery for index trees�
DEC TR CRL ����
August ����� Cambridge Research Lab� Cam�
bridge Ma�

�	� Lomet� D� and Salzberg� B� Managing Timestamping in a Multiversion
Database�
In preparation��

��� Mohan� C�� Haderle� D�� Lindsay� B�� Pirahesh� H� and Schwarz� P�
ARIES� a transaction recoverymethod supporting �ne�granularity lock�
ing and partial rollbacks using write�ahead logging� Research Report
RJ����
Jan ����� IBM Almaden Research Center� San Jose� CA and
ACM Trans� on Database Systs�
to appear��

��� Rosenblum� M� and Ousterhout� J� The Design and Implementation of
a Log�Structured File System� ��th ACM Symposium on Operating
Systems Principles� ���� and Transactions on Computer Systems
to
appear��

��� Sagiv� Y� Concurrent operations on B�trees with overtaking� Proc�
ACM SIGACT�SIGMOD PODS Conference� Portland� OR
June �����
������

��� Salzberg� B� Restructuring the Lehman�Yao tree� Northeastern U�
Technical Report �����
������

��� Stonebraker� M� The design of the Postgres storage system� Proc� ��th
VLDB Conf�� Brighton� UK
Sept ����� �����		�

