
Micro/RSX
Guide to Advanced
Programming
Order No. AA-AB43C-TC

Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, December 1983
Revised, July 1985
Revised, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1983, 1985, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS lAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP
DECUS PDT
DECwriter RSTS ~urnUll~D
DIBOL RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO * CANADA

Digital Equipment Corporation Digital Equipment
of Canada Ltd.

P.O Box CS2008 100 Herzberg Road
Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.
*

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7570).

ZK3069

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment Corporation, Westminster,
Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by Ti?<, the typesetting system developed by Donald E. Knuth at Stanford University. Ti?< is a trademark of the
American Mathematical Society.

Contents

Preface ix

Summary of Technical Changes xiii

Chapter 1 The Program Development Environment

1.1 Software Tools ... 1-1
1.1.1 DIGITAL Command Language 1-3
1.1.2 EDT Text Editor . 1-3
1.1.3 PDP-II MACRO-II 1-3

1.1.3.1 Source Input ... 1-4
1.1.3.2 Source File Directives 1-4
1.1.3.3 How the Assembler Works 1-5

1.1.4 Task Creation ... 1-5
1.1.5 Debugging Aids . 1-6

1.1.5.1 On-Line Debugging Tool 1-6
1.1.5.2 Postmortem Dump 1-7
1.1.5.3 Snapshot Dump 1-7

1.1.6 General Utilities .. 1-7
1.1.6.1 Cross-Reference Processor 1-8
1.1.6.2 Library Operations 1-8

1.2 System Software ... 1-8
1.2.1 System Directives-Macro Libraries 1-8
1.2.2 System Subroutines-Object Libraries . 1-9

1.3 Hardware ... 1-10
1.3.1 Disks .. 1-11
1.3.2 Terminals ... 1-11
1.3.3 Printers .. 1-11

1.4 Overview of the Program Development Process 1-12

iii

Chapter 2 Creating MACRO- 11 Source Files

2.1 MACRO-II Skeleton Source File Format 2-1
2.2 Creating a Source File from a Skeleton File 2-9

2.2.1 Performing the Initial Input 2-10
2.2.2 Inserting Blank Lines in Text 2-10
2.2.3 Exiting from EDT .. 2-10
2.2.4 Creating a Source File from the Skeleton 2-12

Chapter 3 Assembling and Correcting a Program Module

3.1 Performing a Diagnostic Run on a Source File 3-1
3.2 Errors Encountered During Assembly 3-2

3.2.1 MACRO-II Error Code A 3-2
3.2.2 MACRO-II Error Code U ' 3-3
3.2.3 MACRO-II Error Code Q 3-3
3.2.4 MACRO-II Error Code E 3-3

3.3 Generating a Program Module and a Listing 3-4
3.4 Examining a Listing at the Terminal 3-5
3.5 Generating a Cross-Reference Listing 3-5
3.6 Printing a Copy of Listings ... 3-6
3.7 Cleaning Up the Disk Directory. .. 3-6

Chapter 4 Building and Testing a Task

4.1 Creating a Task Image. 4-1
4.1.1 Supplying a Single Object Module 4-1
4.1.2 Supplying Multiple Object Modules 4-2

4.2 Task Builder Defaults .. 4-3
4.3 Generating a Map and a Global Cross-Reference Listing . 4-3

4.3.1 Requesting a Map and a Global Cross-Reference Listing 4-4
4.3.2 Examining the Map at the Terminal 4-4
4.3.3 Requesting a Full Map. .. 4-4

4.4 Running the Task and Correcting Typical Errors 4-5

iv

Chapter 5 Using Debugging Aids

5.1 Using the On-Line Debugging Tool 5-1
5.1.1 Including ODT in a Task 5-2
5.1.2 Preparing to Use ODT 5-2
5.1.3 Setting Up the Task 5-2
5.1.4 Relocation Registers 5-2
5.1.5 Examining Locations 5-4
5.1.6 Setting Breakpoints Within the Task 5-6
5.1.7 Changing the Contents of Locations with ODT 5-7
5.1.8 Error Conditions and Terminating Task Execution 5-8

5.2 Using the Postmortem Dump .. 5-9
5.3 Using the Snapshot Dump ... 5-9

Chapter 6 Creating and Using Program Libraries

6.1 Creating and Using a Macro Source Library 6-1
6.1.1 Creating the Macro Library. 6-1
6.1.2 Using the Macro Definitions from the Library 6-3

6.2 Creating and Using an Object Module Library 6-3
6.2.1 Creating the Object Module Library 6-3
6.2.2 Using the Object Modules from the Library 6-4
6.2.3 Using the Library to Resolve Undefined Global Symbols. 6-5
6.2.4 Dual Use of the Library 6-6

6.3 Maintaining User Libraries ... 6-6
6.3.1 Adding Modules to a Library 6-6
6.3.2 Replacing a Module in a Library , ... 6-7
6.3.3 Obtaining Information About a Library 6-7

Chapter 7 Using Logical Name Commands

7.1 Logical Names ... 7-1
7.1.1 Logical Name Tables 7-2
7.1.2 Displaying Logical Name Table Entries 7-2
7.1.3 How to Create and Delete Logical Names 7-3
7.1.4 Logical Name Translation 7-4
7.1.5 Iterative Translation 7-4

7.2 ASSIGN Command ... 7-5
7.3 DEASSIGN Command. 7-9
7.4 DEFINE Command ... 7-12
7.5 SHOW ASSIGNMENTS and SHOW LOGICALS Commands 7-15

v

Chapter 8 Guidelines for Creating an Optional Software
Package

8.1 Preparing to Create a Diskette Package 8-2
8.1.1 Determining Required Number of Diskettes 8-3
8.1.2 Grouping Optional Software Files 8-3
8.1.3 Setting Up Files . 8-3
8.1.4 Creating the INSTALL.DAT File 8-3

8.1.4.1 INSTALL.DAT File Statements 8-4
8.1.4.2 INSTALL.DAT File Examples 8-5

8.1.5 Creating the INS File 8-6
8.1.5.1 INS File Statements 8-7
8.1.5.2 Conditionals in INS File Statements 8-12
8.1.5.3 INS File Examples 8-13

8.1.6 Creating a Diskette Kit 8-21
8.1.6.1 Copying Single Volume Files 8-22
8.1.6.2 Copying Multivolume Files 8-24

8.2 Preparing to Create a Tape Package 8-25
8.2.1 Creating the Template INS File 8-26
8.2.2 Optimizing Your Template INS File 8-27

8.2.2.1 Merging BACKUP_SET Statements 8-28
8.2.2.2 Separating BACKUP_SET Statements 8-28

8.2.3 Editing INSTALL.DAT and Template INS Files 8-29
8.2.4 Organizing the Optional Software Files 8-29

8.2.4.1 Organizing Files Using Diskettes 8-29
8.2.4.2 Organizing Files on the Fixed Disk 8-31

8.2.5 Creating the Tape Kit 8-31
8.2.5.1 Copying Files from Diskettes to Tape 8-31
8.2.5.2 Copying Files from Fixed Disk to Tape 8-33

8.3 Documenting the Installation Procedure 8-34
8.4 Error Messages ... 8-35

Appendix A The MACRO Command

A.l MACRO .. A-I

vi

Appendix B Prototype Installation Guide for a Diskette Kit

B.1 Introduction to MicrojRSX <PRODUCT_NAME> Installation B-1
B.2 Checking Required Software . B-1
B.3 Installing the <PRODUCT-NAME> Software B-3
BA Correcting Possible Errors ... B-5
B.5 Logging in to Micro jRSX . B-8

Appendix C Prototype Installation Guide for a Tape Kit

C.1 Introduction to MicrojRSX <PRODUCT_NAME> Installation. C-1
C.2 Checking Required Software. .. C-1
C.3 Installing the <PRODUCT-NAME> SOFTWARE C-2
CA Correcting Possible Errors .. C-4
C.5 Logging in to MicrojRSX ... C-6

Appendix D Micro/RSX Reference and Customization Files

Index

Examples
2-1 Sample Skeleton Source File 2-5
2-2 Creating the Skeleton File SKEL.MAC 2-11
2-3 Source Code for FILE.MAC 2-13
2-4 Source Code for FILEA.MAC 2-15
2-5 Source Code for FILEB.MAC 2-17
5-1 Memory Allocation Synopsis from Task BUG Map 5-3
5-2 Portion of Assembly Usting for NUMA 5-4
6-1 MACRO-11 Library Source Definitions 6-2
8-1 Using COPY=YES with One Diskette 8-5
8-2 Using COPY=NO with Two Diskettes 8-6
8-3 Using COPY=YES with Three Diskettes. 8-6
8-4 Creating an Option on a Single Diskette 8-14
8-5 Creating an Option on Multiple Diskettes 8-15
8-6 Using Conditionals in an INS File 8-16
8-7 Using Conditionals and Multivolume Files . 8-18
8-8 Inserting Modules into SYSLIB 8-20

vii

Figures
1-1 The Program Development Process 1-13
2-1 MACRO-11 Source File Format 2-3
2-2 MACRO-11 Source Statement Format 2-4

Tables
1-1 DIGITAL-Supplied Macro Libraries 1-8
1-2 DIGITAL-Supplied Object Libraries 1-10
3-1 Terminal Output Control Commands 3-5
8-1 Angle Bracket Symbols . 8-34
A-1 The Arguments to the jENABLE and jDISABLE Qwlifiers

Assembly Functions Disa~d by Default A-3
A-2 The Arguments to the jSHOW and jNOSHOW Qualifiers

Listing Functions Disabled by Default A-5

viii

Preface

Manual Objectives
The Micro /RSX Guide to Advanced Programming introduces you to the program development
environment used on a Micro /RSX operating system. It provides a synopsis of the information
immediately useful to get started in the program development process. This manual also
includes guidelines for program design and for producing an optional software package.

Intended Audience
This manual is intended for the programmer who is already familiar with the basic operations
of a Micro /RSX operating system: gaining access to the system, using the terminal and
related devices, and requesting simple Executive services through the DIGITAL Command
Language (DCL) command interface. The Micro jRSX Guide to Advanced Programming
addresses assembly language programming because that language is the one provided with
the Advanced Programmer's Kit. However, most of the topics covered for the assembly
language programmer-using a text editor, creating an executable image, and using library
facilities-apply to programmers using any computer language.

Structure of This Document
This manual is meant to be read as you use the system. For this reason, the examples
are presented in an order that you can follow at the terminal. Rather than demonstrate
the complexity of the system, these examples are designed to demonstrate practical program
development operations.

Chapter 1 introduces the software and hardware on which you develop programs.

Chapter 2 describes how to create an assembly language source program using a skeleton file
and text editor.

Chapter 3 describes how to use the PDP-II MACRO-II assembler to generate an object module.

Chapter 4 describes how to use the Task Builder (TKB) to link object modules to create a
loadable task image.

Chapter 5 introduces debugging aids and discusses how to use them.

ix

Chapter 6 describes how to create and maintain a library of macro source statements and a
library of object module subroutines.

Chapter 7 describes how to use logical name commands.

Chapter 8 describes how to create an optional diskette and tape package.

Appendix A describes how to use the MACRO command to assemble a program.

Appendix B provides a prototype installation guide for documenting the installation procedure
for an optional software diskette kit.

Appendix C provides a prototype installation guide for documenting the installation procedure
for an optional software tape kit.

Appendix D describes the files used to customize a Micro/RSX operating system.

Associated Documents
Because the MicrojRSX operating system is a subset of the RSX-11M-PLUS operating system,
most of the manuals provided with the Advanced Programmer's Kit are RSX-11M-PLUS
operating system manuals. However, the information in these manuals also applies to
Micro/RSX systems (differences are clearly distinguished and noted). Before using the
documentation, please read the Micro /RSX Release Notes to orient yourself with the manuals
provided in the Advanced Programmer's Kit. Refer to the Micro/RSX User's Guide, Volume 1 and
Micro/RSX User's Guide, Volume 2 for the information you need to gain access to the services
provided with the Micro /RSX operating system.

Refer to the PDP-ll MACRO-ll Language Reference Manual if you need more information on
developing MACRO-11 programs.

Conventions Used in This Document
The following conventions are observed in this manual.

Convention

"print"
"type"

$

red ink

Meaning

A 1- to 3-character key symbol. For example, \ESC\ indicates the ESCAPE key,
[Eill indicates the RETURN key, and [IT] indicates the LINE FEED key..

A symbol that indicates the CTRL key; it must be held down while another
key is pressed. For example, I CTRL/C I means to hold down the CTRL key while
typing C.

A circumflex represents the system response on some terminals to receiving a
control character such as ICTRL/AI. For example, when you type CTRLjZ while
running certain system tasks on some terminals, the system echoes "Z.

As these words are used in the text, the system prints and the user types.

The DIGITAL Command Language (DCL) prompting character.

Color of ink used to show all user-entered commands in examples.

x

Convention

black ink

Meaning

Base color of ink used throughout manual. In examples, however, black ink
has a special meaning: All output lines and prompting characters that the
system prints or displays are shown in black ink.

A comma separates parameters in commands.

A period separates the file name from the file type in a file specification.

A semicolon separates the file type from the file version number in a file
specification.

xi

Summary of Technical Changes

This revision of the Micro jRSX Guide to Advanced Programming contains technical features and
documentation changes included in MicrojRSX operating system Version 4.0.

Information Moved to Other Manuals

The following chapters have been moved from the Micro jRSX Guide to Advanced Programming
to the manuals listed:

• Loadable Crash Dump Support is now included in the RSX-IIM-PLUS and MicrojRSX Crash
Dump Analyzer Reference Manual.

• The Executive Debugging Tool (XDT) is now included in the RSX-IIM-PLUS and MicrojRSX
XDT Reference Manual.

• Terminal ~mulation and File Transfer With Other Systems is now included in the
RSX-IIM-PLUS and MicrojRSX System Management Guide.

Creating an Optional Software Package

The following sections have changes:

• Creating a Diskette Package

The section on creating a diskette package has been revised to reflect a new INSTALL.DAT
statement, as follows:

SYSTEMVERSION=vrsn

• Creating a Tape Package

The sections concerned with creating a tape package have been revised to reflect changes
made in the guidelines.

The sections describing how to create an optional software tape kit refer to using two
input devices for a group of files to be copied to a backup set on the tape. The Backup
and Restore Utility (BRU) will only accept two or more input devices if they contain a
multivolume backup set on disk or tape.

xiii

Chapter 1
The Program Development Environment

This chapter introduces the software and hardware that you need to develop programs using
the PDP-II MACRO-II assembler on a MicrojRSX multiuser system. The remaining chapters
in the guide further describe and illustrate how to use the tools and facilities introduced in the
following sections.

1 . 1 Software Tools
The Micro jRSX system makes software tools available as executable programs called system
tasks. The system tasks include the DIGITAL Standard Editor (EDT), the PDP-II MACRO-II
Assembler (MAC), the Task Builder (TKB), several aids to debugging, and a number of utility
tasks. These tasks combine to form the program development environment. Some of these
tasks, like EDT, are already part of your software environment as a result of installing the
Micro jRSX Base Kit. The other software necessary for doing MACRO-II programming, like
the PDP-II MACRO-II assembler, is included in your MicrojRSX Advanced Programmer's Kit.
The Advanced Programmer's Kit includes the following software options:

• Advanced MACRO-II Program Development

PDP-II MACRO-II assembler MACRES.TSK

File Dump Utility

File Compare Utility

Resource Monitoring Display

File Structure Verification Utility

Postmortem Dump Utility

System Macro Library

DMPRES.TSK

CMPRES.TSK

RMD.TSK

VFYRES.TSK

PMDRES.TSK

RSXMAC.SML

The Program Development Environment 1-1

RMS-ll macro library RMSMAC.MLB

File control system subroutines NOANSLIB.OLB

Virtual memory subroutines VMLIB.OLB

On-Line Debugging Tool (DDT) ODT.OBJ and ODTID.OBJ

Sample indirect command files INDSYS.CLB

• Privileged Program Development

Loadable Executive Debugging Tool (XDT) XDT.TSK

Loadable RL02 crash driver DLCRSH.TSK

Loadable DU-type device crash driver DUCRSH.TSK

Crash Dump Analyzer (CDA) CDARES.TSK

Error log compiler CFLRES.TSK

Error logging auxiliary ERRLOGETC.ULB

Control File Language source file DEVSM1.CNF

Executive macro library EXEMC.MLB

Executive object library EXELIB.OLB

Executive prefix assembly file RSXMC.MAC

Executive map file RSXIIM.MAP

Magnetic tape template INS file procedure TAPEINS.CMD

• File Transfer and Terminal Emulation Support

Micro /RSX File Transfer Utility MFT.TSK

Data Terminal Emulator Utility DTE.TSK

• Magnetic Tape Software Support

Loadable MS-type device crash driver MSCRSH.TSK

Loadable MU-type device crash driver MUCRSH.TSK

RMS-ll File Backup Utility RMSBCK.TSK

RMS-l1 Restoration Utility RMSRST.TSK

Magnetic tape Ancillary Control Processor (ACP) MTAACP.TSK

Magnetic tape ACP message facility FIIMSG.TSK

Magnetic tape control processing task MAG.TSK

File Transfer Utility Program FLXRES.TSK

1-2 The Program Development Environment

1. 1. 1 DIGITAL Command Language

The command language used on Micro /RSX systems is the DIGITAL Command Language
(DCL). This command language is used to communicate with the system and to invoke system
services.

You are not required to use the full form of DCL commands. Usually, you need type only
the command elements required to form a unique command. For clarity, most examples in
this manual appear in full format. You can always shorten any command or qualifier to four
characters. Most commands and qualifiers can be entered with even fewer characters.

DCL prompts you for all required command elements. If you do not understand a prompt,
type a question mark (?). DCL will print HELP text explaining the format and function of the
command, and then prompt you for required input.

See the Micro/RSX User's Guide, Volume 1 and Micro/RSX User's Guide, Volume 2 for a complete
description of how to use DCL.

1.1.2 EDT Text Editor

The Micro/RSX system includes the text editor, EDT, which you use to create a source code
file. This editor is an interactive editor that enables you to enter American Standard Code for
Information Interchange (ASCII) text at a terminal and store the text in a disk file. It also lets
you access text in a disk file; examine, delete, and change text; and insert new text. The disk
file is then used as input to other tasks involved in the program development process.

See the Micro/RSX User's Guide, Volume 1 and Micro/RSX User's Guide, Volume 2 for a complete
description of EDT.

1. 1.3 PDP-11 MACRO-11

The programming language distributed with the Advanced Programmer's Kit is the PDP -11
assembly language, MACRO-11.

MAC is the task that assembles MACRO-11 language files. It accepts a disk source input file in
ASCII format and can create a relocatable object module and a listing file of the source language.
The object module contains all the object records and relocation information needed to link
with other object modules. All symbol definition done by the assembler has a base address
of O. The allocation of virtual addresses and relocation is left for the task-building process.

You invoke MAC with the MACRO command. Chapter 3 provides a basic explanation of how
to assemble a program module using the MACRO command. Appendix A provides a detailed
description of all the optional command qualifiers for the MACRO commmand. The following
subsections provide an overview of PDP-11 MACRO-11.

The Program Development Environment 1-3

1. 1.3. 1 Source Input

Source input to MACRO-II consists of free-format statements; each line of input contains
a single statement. Input statements are either PDP-II instructions, MACRO-II assembler
directives, macro calls, or direct assignments. Statements can contain labels that allow control
to change locally (within the module) or that enable control to be passed between modules
(globally).

Source input usually contains user-defined symbols, which are either local or global. A local
symbol is defined in the current source file and is referenced only within the current file. A
global symbol is defined in one source file but can be referenced in one or more other source
files.

The assembler allows you to use both local and global symbols as labels for statements. When
a global symbol appears as a label, the related statement is referred to as an entry point (that is,
a point at which other modules can transfer control to the current object module). You can use
local symbols as statement labels to define points to whi,ch control transfers within an object
module.

The assembler evaluates all local symbol definitions in a source file. Any symbols remaining
undefined are classified as global. Thus, after an assembly, all local symbols are assigned relative
locations, but the module may contain references for which definitions must be supplied from
outside that module. The resolution of these references is left for the task-building process.

1.1.3.2 Source File Directives

Assembler directives in a source file allow you to perform operations such as the following:

Program sectioning
Allows code or data within an object module to be overlaid by, or concatenated with, code
or data in other object modules or in noncontiguous locations within the same module.
Program sectioning is especially useful when convenient physical ordering differs from
logical reference ordering (for example, in table-generating macro statements).

Listing control
Enables documentation features that generate headings, page formats, and a table of contents.

Conditional assembly
Allows optional omission or inclusion of lines of code or user-defined symbols.

Data storage
Controls the size and content of data areas.

Special statements called macro directives allow you to reference a predefined symbol that
causes the assembler to expand a single line source statement into multiple lines of code or data
and insert the assembled result in the object module. Such macro symbols are typically used
for recurring coding sequences. The insertion of the code sequence occurs at each point where
you refer to the macro symbol. Definitions for such macro symbols can occur in the source file
itself or can reside in a macro library. Generally, you place infrequently used macro definitions
in the source file that invokes them, and you store frequently used macro definitions in a macro

1-4 The Program Development Environment

library. The Executive and file-processing services are made available to the program through
macro symbols that are defined in a DIGITAL-supplied macro library.

1. 1.3.3 How the Assembler Works

MACRO-II is a two-pass assembler. During the first pass, the assembler classifies all the
symbols into local and global groups, performs statement generation, locates all macro symbols,
and, if necessary, reads the macro definitions from libraries. At the end of the first pass, the
assembler must have processed all local references (such as all undefined global symbols) that
are to be resolved by TKB.

During the second pass, the assembler actually generates the object module and listing files,
flagging with an error code in the listing file those source statements containing errors. If
you requested a cross-reference listing of symbols, the assembler also generates a request for
the Cross-Reference Processor (CRF) to create the proper information. (CRF is explained in
Section 1.1. 6.1.)

The MACRO-II listing file provides documentation for the module and serves as a tool for
debugging the code. As a reference aid, the assembler generates and includes line numbers in
the listing for each statement in the source file. In addition, the listing includes a symbol table
showing symbols, their attributes, and their values (if known at assembly time).

As a debugging aid, the listing also provides a current location counter for each program section
defined in the source file. The location counter value is important in debugging because it
provides the offsets into the module for each program section. An offset, combined with the
base load address for a program section (from the TKB map), allows you to access locations in
the memory-resident task image during debugging.

1 . 1.4 Task Creation

The Micro/RSX Task Builder (TKB) is a multipurpose tool that you invoke using the DCL
command LINK. TKB allows you to create a loadable program (called a task image), define and
structure a shared area of memory (called a resident common), and arrange shareable routines
to reside in memory (called resident libraries). Although TKB has many complex aspects, this
guide introduces only TKB's most common use: building a task image. (See the RSX-11M-PLUS
and Micro/RSX Task Builder Manual for more information on TKB.)

To build a task image, TKB accepts, as basic input, the output of a language processor: an object
module or modules. TKB can optionally generate a file of executable code (the task image), a
file of memory allocation information (a map), and a special file of symbol definitions used in
constructing the task (the symbol definition file). The task image, residing on disk, is in a format
suitable to be loaded into memory and executed. If you generate a cross-reference listing, the
listing itself contains only global symbols and is appended to the map file.

In creating a task image, TKB's primary functions are linking, address binding, and building
system data structures. Linking involves resolving global references in all object modules and
resolving program section references among all object modules. Address binding is assigning
virtual address space within the task. Building system data structures involves creating elements
that the system requires to load the task image into memory and to execute the task. To resolve
global symbols that are not defined in any of the input object modules, TKB searches any object
libraries you specify and, as a default condition, searches the system object library.

The Program Development Environment 1-5

Because a PDP-II processor can address only 32K words (the address limit of 16 bits) at any
one time, a task cannot reference more than 32K words at a time. However, if you use certain
advanced programming techniques, TKB allows a task to access more code or data than can fit
within the address limits. Techniques to overcome the addressing limits include the following:

• Overlaying segments of a task with either disk-resident or memory-resident code

• Mapping to different regions of memory outside the physical limits of the current task space

For more information on these techniques, refer to the RSX-llM-PLUS and Micro/RSX Task
Builder Manual.

The memory allocation information, or map, produced by TKB shows you how program sections
are arranged in task memory (their starting virtual addresses and extents on mapped systems
and physical addresses and extents on unmapped systems), what contributions are in a program
section, any undefined symbols, and the optional cross-reference listing of global symbols.
You can use the starting virtual addresses, combined with the current location counter values
(provided by the assembler), as offsets to access locations within the memory-resident task
during debugging.

1. 1.5 Debugging Aids

This section introduces the debugging aids described in this guide and provided with Micro /RSX
operating systems to assist in identifying faulty code.

1. 1.5. lOn-line Debugging Tool

The On-Line Debugging Tool (ODT) allows interactive control of task execution. You specify to
TKB that you want a debugging aid included in a task. TKB inserts the module LB:[1,l]ODT.aBJ
into the task.

When you run a task that includes aDT, execution begins at the aDT transfer address rather
than,at the task starting address. Therefore, aDT gains control and allo:ws you to type special
commands that establish base addresses and that set breakpoint locations within the task. After
you tell aDT to begin task execution, aDT saves the instructions at the breakpoint locations
you specified and replaces them with PDP-II BPT instructions. Upon encountering a BPT
instruction in the task, the Executive passes control to aDT at its breakpoint routine. aDT
saves task registers in special locations, restores instructions to the breakpoint locations, and
transfers control to the user task terminal. By typing aDT commands, you can examine and
alter any instructions or data within task memory.

aDT also enables the BPT synchronous system trap (SST) entry point in the task. If a task
generates an SST error, aDT gains control at its SST entry point, prints a notice at the user
terminal, and passes control to the terminal. You can use the ODT commands to discover the
cause of the error, correct it, and perhaps continue executing the task.

To successfully modify instructions, you must have a thorough understanding of the PDP-II
instruction set. If you are programming in a high-level language, you should avoid interactive
debugging whenever possible. Refer to Chapter 5 for more information about aDT.

1-6 The Program Development Environment

1. 1.5.2 Postmortem Dump

The Postmortem Dump (PMD) is an installed task that is directed by the Executive to extract
run-time-related data about a terminated task, format it, and request a printed listing. Normally,
when a task generates an SST, such as that caused by an improper reference to an odd address
or a reference to a nonexistent memory location, the Executive tries to transfer control to an
SST entry point defined by the task. If the task does not have an SST routine defined for the
particular type of trap, the Executive aborts the task.

To terminate the task, the Executive performs an abort operation and notifies the Task
Termination Notification program (TKTN), which displays, on the user terminal, the reason
for the termination and the contents of the task registers. Without PMD, you can acquire
no further information about the task. Commands do exist that allow you to fix a task in
memory and physically examine the contents of the task image. However, this is a complicated
procedure and beyond the scope of this book.

By enabling a PMD for a task that itself does not handle SSTs, you tell the Executive to supply
more data at abnormal task termination. That is, the Executive follows the abort procedure
and, in addition, creates a request for PMD to create the dump. PMD examines system and
task structures to preserve status and run-time data, reads the task image from memory, and
writes it to disk in a readable format. PMD then queues a request to print the file containing
the dump data, after which the Executive completes the task abort procedure.

1. 1.5.3 Snapshot Dump

The snapshot dump ($SNAP), also using PMD, generates an edited dump of a running task.
Because the $SNAP requires you to insert special code (for example, the $SNAP macro call) in
a task, it is more difficult to use than PMD. However, by inserting the snapshot dump code in
the task, you can choose the location at which the dump is created and select the extent and
format of the dump. In addition, you can generate the dump from more than one location and,
therefore, as many times as needed during task execution.

It is often useful to include debugging facilities such as $SNAP in your task based on defining a
conditional variable. To include the facility while you are debugging, simply define the variable.
You can then omit the facility by reassembling the code with the conditional variable undefined.

Refer to the following manuals for more information on debugging aids:

• RSX-11M-PLUS and Micro/RSX Debugging Reference Manual

• RSX-11M-PLUS and Micro/RSX Crash Dump Analyzer Reference Manual

1. 1.6 General Utilities

This section introduces the general-purpose utility programs that are discussed in this guide.

The Program Development Environment 1-7

1.1.6.1 Cross-Reference Processor

The Cross-Reference Processor (CRF) is an installed task that receives requests from the
MACRO-11 assembler and TKB to generate cross-reference listings of symbols. CRF generates a
specially formatted file containing the cross-reference data and appends that file to the assembler
listing or the task map file. Therefore, if you request a cross-reference listing of symbols, it
always appears at the end of a listing or map file.

A request for the services of the CRF is included in your command line to the PDP-II
MACRO-II assembler and TKB; use the /CROSS_REFERENCE qualifier to the MACRO and
LINK commands. (For a technical description of CRF see the RSX-11M-PLUS Utilities Manual.)

1. 1.6.2 Library Operations

The LIBRARY command creates and maintains specially formatted library files on disk: one for
macro call definitions and one for object module subroutines. The LIBRARY command can also
create a universal library file to contain any file type you prefer.

The PDP-II MACRO-II assembler and TKB can access the macro and object library files,
respectively, and extract the proper code from them. Libraries are convenient to use because
they encourage sharing of code, provide faster access to multiple modules (only one file need
be opened and closed), occupy less space than the equivalent number of separate modules, and
impose a coding standard. The library files you create using the LIBRARY command are in the
same format as those that DIGITAL supplies with the Micro /RSX operating system.

1.2 System Software
DIGITAL supplies system software in two standard library formats: macro call definitions and
object module subroutines. You use macro libraries as input to the assembler and object libraries
as input to TKB. The following two sections describe these system libraries.

1.2. 1 System Directives-Macro Libraries
DIGITAL makes available system directives and system-related features through calls; definitions
for these calls reside in macro libraries. The libraries are stored in a predefined file area known
as the system directory. The system directory is [1,1] ori the system library device (referenced
explicitly by the device-independent designation LB). Table 1-1 summarizes the macro libraries
that DIGITAL supplies.

Table 1-1: DIGITAL-Supplied Macro Libraries

File Name and Type Description of Contents

RSXMAC.SML System Macro Library. Contains the macro definitions for all system
directives and File Control Services (FCS) file-processing calls. Default
library for the assembler.

EXEMC.MLB Executive Macro Library. Contains the symbol and offset definitions
for the Executive data structures.

RMSMAC.MLB PDP-II Record Management Services (RMS-11) Library. Contains the
definitions for RMS-II calls for sequential, indexed, and relative file
I/O.

1-8 The Program Development Environment

To use these libraries, you should follow the specific procedures described in the system
documentation. Typically, you supply in the source code the appropriate names of the modules
as parameters of a .MCALL MACRO-II directive. This action tells the assembler to generate
an entry for that call in its macro symbol table and to search the appropriate library for the
definition of the macro symbol.

In translating source code, the assembler first checks for macro symbols. When the assembler
finds an operator on a source line, it searches its macro symbol table to see whether the
operator is a macro symbol. An operator is any PDP-II operation code, MACRO-II assembler
directive, or macro symbol. If the operator is a macro symbol, the assembler applies the local
definition for the macro symbol or extracts the definition from a library you specified or from
the system library. By searching the user-supplied library first, the assembler allows you to
tailor the definitions of system macro calls or PDP-II instructions. MACRO-II assembles the
macro definition with any accompanying parameters and includes the assembled code in the
object module. As a result, the proper code is included from a library.

The System Macro Library, RSXMAC.SML, provides you with the code that enables a task to
issue system directives and to obtain File Control Services (FCS). These services enable a task
to obtain run-time and system information, perform I/O functions, communicate with other
tasks, manipulate logical and virtual address space, control execution, and properly exit. In
general, most system features are made available to a task through macro calls to the System
Macro Library. For the System Macro Library RSXMAC.SML, you need not designate the library
name to the assembler. As a default condition, the assembler automatically searches the System
Macro Library.

The Executive macro library, EXEMC.MLB, provides you with code to allow software to refer
to offsets within the Executive and system definitions of the Executive data structures. This
library is provided for assembling privileged tasks and for incorporating specially written device
drivers onto the system. This topic is covered fully in the RSX-llM-PLUS and Micro/RSX Guide
to Writing an I/O Driver.

The Record Management Services library, RMSMAC.MLB, is provided to support file and record
access to RMS-11 data. RMS-11 is an upward-compatible extension of FCS and offers more
functions, such as indexed sequential (keyed) access to data. You include the RMS-11 macro
symbols in the source code and supply to the assembler the name of the RMS-11 library to
use. The assembler extracts the definitions from the library and includes the RMS-11 code in
the object module.

1.2.2 System Subroutines-Object Libraries
System object libraries provide general utility functions and special-purpose Executive features.
These libraries, like the macro libraries, reside in system directory [1,1] on the system library
device (LB). Table 1-2 lists and describes the object libraries that DIGITAL supplies.

The Program Development Environment 1-9

Table 1-2: DIGITAL-Supplied Object Libraries

File Name and Type Description of Contents

SYSLIB.OLB System Library. Contains register handling, arithmetic functions, data
conversion, and output formatting. Default library for TKB.

VMLIB.OLB Virtual Memory Management Library. Contains dynamic memory, core
allocation, virtual memory, and page management subroutines.

EXELIB.OLB Executive Library. Contains the definitions of the Executive symbols.

NOANSLIB.OLB Another version of SYSLIB. Contains FCS, which include big buffering
support and command line processing subroutines.

RMSLIB.OLB Record Management Services Library. Contains the routines for
sequential, relative, and indexed I/O.

You include system object subroutines in a task by specifying the subroutine name as the
operand of a CALL macro or Jump to Subroutine (JSR) instruction in the source code. The
language processor, at the point of the reference, generates the instructions to transfer control
to the external subroutine. The name of the subroutine is left as an externally defined global
symbol for TKB to resolve.

To ensure that subroutines are placed in the task image, TKB (as a default operation) searches
the library SYSLIB.OLB for subroutine names that remain undefined after the search of any
user-specified libraries. TKB attempts to match the undefined global reference (the subroutine
name in a module) with an entry point name in the SYSLIB.OLB library. When it finds a
match, TKB extracts a copy of the module defining the symbol from SYSLIB.OLB and inserts
the subroutine in the task image. Any further references to that symbol in the task are defined
by the subroutine, and TKB need not add any code to resolve further references.

If a module references subroutines that are in an object library other than SYSLIB.OLB, you
must specify that library when you build the task. TKB performs the same search operations on
user-supplied libraries as it does on the default search of SYSLIB.OLB. TKB also searches any
user-specified libraries, in the order in which you specify them, before it searches the system
library. If you intend to build FCS into the task, you must use the NOANSLIB.OLB library
intead of SYSLIB.OLB.

1.3 Hardware
You need the following three types of devices for program development:

• Disks

• Terminals

• Printers

This section briefly introduces these devices and tells where you can find further information. In
general, each hardware unit on the system is delivered with relevant hardware documentation
that provides programming information in addition to operational instructions. Your installation
should have a library of such hardware documentation. If you are not writing any specially

1-10 The Program Development Environment

tailored software for these devices, the system software handles them transparently through
such mechanisms as the print spooler and DCL commands.

1.3.1 Disks
Disks are the main storage media on MicrojRSX systems. The minimum hardware configuration
for a MicroPDP-ll running the MicrojRSX operating system includes a disk storage subsystem
that combines a fixed disk drive with a dual diskette drive. The fixed drive is an RD51-A fixed
disk with 10 megabytes (Mb) of storage, and the diskette drive is an RX50-AA that provides
two access slots for single-sided 400-kilobyte (Kb) 5.25 flexible diskettes. The RD51 serves as
the system disk, and the RX50s are used for data devices and backup.

This disk configuration is a basic application tool and not a recommended storage solution
for doing serious program development work, such as designing and developing application
programs. To use MicrojRSX for program development you should increase disk storage
capacity by adding on another RD51; an RL02, which gives an additional 10 Mb to 40 Mb of
storage that is also removable (you can have up to four RL02 drives on a controller); an RD52;
or an RD53 drive.

1.3.2 Terminals
Terminals are the means by which you communicate with the system. Some DIGITAL terminals
handle 7-bit ASCII characters (system software usually ignores any eighth, or parity, bit). The
VT200-Series terminals handle 8-bit ASCII characters. You perform input to the system through a
typewriter-like keyboard; the system returns output to you either on a screen at a video-display
terminal or on paper at a hardcopy terminal. Video-display terminals are more convenient
because they typically operate at faster rates than hardcopy devices. Hardcopy terminals,
however, have the advantage of providing a record of what transpired during a session on the
system.

Terminals are connected to the computer through either a direct line or a modem unit over
a dial-up telephone line. If you are not familiar with using a terminal, you should read the
MicrojRSX User's Guide, Volume 1 and MicrojRSX User's Guide, Volume 2. These manuals
explain how to access the system and basic system functions using DCL.

1.3.3 Printers
Printers provide hardcopy output of data. In Micro jRSX, you communicate with the printer
through the Queue Manager (QMG) subsystem by using the DCL command PRINT (see the
MicrojRSX User's Guide, Volume 1 and MicrojRSX User's Guide, Volume 2 for more information
on the QMG). All systems have a terminal or other output device serving as a line printer. All
listings from the PDP-II MACRO-II Assembler or TKB are queued to the system line printer.

The Program Development Environment 1-11

1.4 Overview of the Program Development Process
Figure 1-1 illustrates the steps in the program development process. The figure and the
following paragraphs briefly describe these steps, which are treated in greater detail in
Chapters 2 to 7.

The steps normally taken to prepare a program to run on the system are as follows:

1. Create a source program in a file on disk.

2. Submit the source file to the PDP-II MACRO-II assembler to produce an object module.

3. Submit the file (or files) containing the object modules to TKB to create a file containing a
loadable task image.

4. Request the Executive to execute the task.

You use a text editor to create the source file. This guide suggests a skeleton format for source
files and shows how to replicate and modify the skeleton file. The skeleton file becomes a
common base from which you create each new source file.

The assembler creates the file of relocatable obje,ct code and also accesses the System Macro
Library to include code for system directives in the object file.

TKB creates the file of load able code, assuming certain default conditions about the run-time
environment and building these characteristics into the task. TKB also accesses system and
user-specified libraries to resolve references in the task.

Once you have a task image, you request the Executive to run the program. If any errors are
encountered, you must edit the source file, reassemble or recompile, build a new task image
file, and try again.

1-12 The Program Development Environment

Figure 1-1: The Program Development Process

Correct
Source

File Yes

Apply Source
Corrections
As Needed

Text
Editor (EDT)

Run and
Debug

Source
File (MAC)

Dump
File (PMD)
In UFO [1,4]

Task Image
File (TSK)

Macro
Library File

(Default=RSXMAC.SML)

Object
Library File

(Default=SYSLlB.OLB)

Symbol Definition
File (STB)

Creating and
Formatting
MACRO-11

Source
Files

}

Assembhng
and

Correcting
a Program

Module

BUilding
and

Testing a
Task

}

Running
and

Debugging
a Task

ZK-1415-83

The Program Development Environment 1-13

Chapter 2

Creating MACRO-l 1 Source Files

Your first step in program development is. to create a file that contains MACRO-II source
statements. One way to do this is to create a skeleton source file that you can use as a
framework for all your source programs. This chapter des~ribes a source file format that you
can use as a guideline to create your own skeleton file, presents MACRO-II statements to
include in the file, and explains elementary editing commands that you can use to create and
modify source files.

DIGITAL has established a coding standard to enhance the readability and maintainability of
its MACRO-II source programs. That standard is outlined in the PDP-II MACRO-ll Language
Reference Manual.

2.1 MACRO-ll Skeleton Source File Format
This section presents the skeleton and source statement formats and discusses each of the
elements in the skeleton. Figure 2-1 illustrates the basic elements of the skeleton: a preface,
definitions, functional descriptions, and the code itself.

The source file preface, or preamble, should be on the first page. The preface does the following:

• Describes the code

• States its ownership

• Identifies the author

• Defines the changes to the code

• Provides a brief description of the module's function

The details of the code should follow the preface of the module. Declarations, such as local
symbol, macro, and data definitions, should appear toward the front of the code to make reading
the code easier. Before each routine in the module, you should place detailed information that
does the following:

• Describes the function of the routine

• Defines the required input to the routine

Creating MACRO-ll Source Files 2-1

• Describes the product of the routine

• Describes the effect of the routine upon execution

Each statement line in a source file should follow a consistent format. To create readable,
consistent code that is easy to trace, it is recommended that you format your statements
according to the following definitions:

Label
A user-defined symbol that identifies a reference location in the code.

Operator
A PDP-II operation code, MACRO-II assembler directive, or macro symbol.

Operand
An argument (or arguments) or parameter (or parameters) of an operator.

comments
Information you provide to describe what effect you desire from the execution of the
instruction. Comments do not affect program execution; the assembler merely transfers
them to the listing file produced during the assembly.

Figure 2-1 illustrates the format of a MACRO-II source file. Figure 2-2 illustrates the format
of a MACRO-II source statement.

2-2 Creating MACRO-ll Source Files

Figure 2-1: MACRO-11 Source File Format

Title
Identification

Statement of Ownership

Authorship

Change History

Module Function
(General)

Local Symbol Definitions

Local Macro Definitions

Local Data Blocks

Module Function
(Detailed)

I nputs, Outputs,
and

Side Effects

Module Code

Module Preface
on First Page

ZK-320-81

Creating MACRO-II Source Files 2-3

Figure 2-2: MACRO-ll Source Statement Format

Label: Operator Operand(s) ; Comments

Tab Position 0
Column 1

Tab Position 1

Column 9
Tab Position 2

Column 17
Tab Position 4

Column 33
ZK-321-81

Comments, accompanied by selected MACRO-II assembler directives, constitute the source file
skeleton. This skeleton provides the structure on which you build the source file. Directives
in the source file skeleton identify the code and control the format of the listing. Example 2-1
shows a sample skeleton. Detailed descriptions of the parts of the source file skeleton follow
the example.

2-4 Creating MACRO-II Source Files

Example 2-1: Sample Skeleton Source File

.TITLE SKELTN SOURCE FILE SKELETON t)

.IDENT /01/ 8

AUTHOR: Z •

CHANGES: e

MODULE FUNCTION GENERAL: ~

. PAGE ; BREAK PAGE FOR PREFACE 0

.SBTTL SYMBOL. MACRO. DATA DEFINITIONS ~

.LIST TTM 6)

.NLIST BEX

.MCALL EXIT$S

LOCAL SYMBOL DEFINITIONS: ~

LOCAL MACROS: 4B

LOCAL DATA BLOCKS: OD

.PSECT DATA.D.RW GD

MODULE FUNCTION DETAILED: ~

INPUTS:

OUTPUTS:

SIDE EFFECTS:

START CODE HERE

. PAGE

.SBTTL

.PSECT
START:
END: EXIT$S

. END

;SUPPRESS BIN EXTENSION ~
;EXEC'S EXIT MACRO G)

;EXIT CLEANLY TO EXEC
;TELL ASSEMBLER END OF CODE ~

Creating MACRO-ll Source Files 2-5

Notes on Example 2-1:

o . TITLE Directive

The . TITLE directive allows you to name the module. The assembler takes the first six
nonblank (alphanumeric) characters, up to the first blank or horizontal tab character, as the
module name. Following the name in the . TITLE directive, you can use up to 24 characters
to describe the function of the module. The name and the description appear as the first
entry in the header line of each page in the assembly listing. For example, consider the
following .TITLE directive:

.TITLE SKELTN SOURCE FILE SKELETON

The assembler takes the characters SKEL TN as the module name. The remaining characters
up to the 30th character are taken as the description. Any remaining characters after the
30th character would be discarded.

The assembler does not relate the name you specify in the .TITLE directive to the name
you specify for the source or object files. To minimize confusion, however, it is helpful to
apply the name specified in the .TITLE directive to the source file. (Note that the sample
code and commands shown in this guide use different names to help you distinguish their
usage.)

The name the assembler extracts from the .TITLE directive is also important in subsequent
steps of program development. The Task Builder (TKB) lists this name in its memory
allocation synopsis to show which object modules made contributions to each program
section in the task image. In addition, if the LIBRARY command is used to insert the object
module in an object library, this name is kept in the directory of the library to refer to the
object module.

• .IDENT Directive

The .IDENT directive records the version of the module. You can establish your own version
identification conventions. The identification follows the module into the task image and is
displayed in the map. Knowing whether the correct version of the module was linked into
the task image helps in the debugging and maintenance process.

• Author Line

The author line identifies the originator of the code.

e Changes

This section of the source file describes any modifications that have been made to the
module. You can develop a convention whereby the author's initials and a number can
indicate a change. The author of the modification can identify the change in this section
and flag each line of code with an additional comment, such as the following:

; TOM JONES
; TJOOl

8-AUG-86 1.01
ADD STATE TAX TO TOTAL

A changed or added line in the code can be flagged with the notation TJOOI as follows:

ADD A,B ;TOTAL WITH TAX ;TJOOl

This procedure helps the author recall what changes were made to the module and assists
others in determining the extent of changes.

2-6 Creating MACRO-II Source Files

o Module Function General

In the module function part of the source file, you can describe the general processing
operations that the code performs. This description can include how the module relates to
the system or specific application, that is, what type of processing precedes and follows the
execution of this module.

o .P AGE Directive

The .PAGE general-purpose directive causes a page break in the assembly listing. It appears
as shown to keep the preamble alone on the first page of the listing (after the table of
contents). You can use the .PAGE directive throughout the module to generate page breaks
for different subroutines.

o .SBTTL Directive

The .SBTTL general-purpose directive creates an entry for the assembly listing table of
contents printed at the front of the listing. A table of contents is helpful in summarizing
the subroutines in a large module. Therefore, the text you supply with the directive should
describe what the related subroutine does. In addition to appearing in the table of contents,
the text appears on the second line of the heading at the top of each listing page. If your
modules typically contain only a small number of subroutines, you probably will not find
the table of contents feature very useful.

CD .LIST TTM Directive

The .LIST TTM general-purpose directive creates a listing formatted more conveniently for
output on a terminal. (Chapter 3 of this guide shows how to display a listing at a terminal.)
You can include the directive during the early stages of program development and later
remove it from the stabilized code.

@) .NLIST BEX Directive

The .NLIST BEX general-purpose directive suppresses the binary extension of statements
beyond what can fit on one source statement line. Using this directive saves excess printing
in the assembly listing. For example, only the binary value of the first characters of an
ASCII string would appear in the listing. The directive simply makes the listing more
readable and saves paper.

~ .MCALL Directive

The .MCALL general-purpose directive is the means by which you tell the assembler the
names of the externally defined macro calls that appear in the source file. The directive
causes the assembler to create entries in its macro symbol table for the macro names and to
look up the definitions of the related calls in either a user or a System Macro Library. The
assembler includes the definitions from the library in the module where the calls themselves
appear. 1 The EXIT$S directive (shown in the .MCALL statement) should be in every user
program for a clean exit. It is the last statement the program (task) executes before it returns
control to the Executive. (The EXIT$S directive performs important system housekeeping
operations for the task.) The related definition for EXIT$S resides in the file RSXMAC.SML
in system directory [1,1] on the library device (LB). DIGITAL recommends that user tasks

1 If you do not include the directive .LIST ME (list macro expansions) or .LIST MEB (list macro expansion lines that generate object code) in
the source file, the assembler does not insert in the listing the expanded source code of the macros it assembles.

Creating MACRO-II Source Files 2-7

exit by using the EXIT$S directive. (An alternative form of exiting allows a task to exit and
post status.)

If a call for an externally defined macro statement appears in the source file but is not
preceded by a .MCALL directive and the macro name, the assembler treats the unrecognized
macro call as an implicit .WORD data storage directive. (If the macro call has parameters,
the assembler may generate an error because of illegal syntax for a .WORD directive.) Later,
when you build the task with the related object module and the macro name is not a
valid symbol, TKB flags the name as an undefined reference. Thus, without the .MCALL
directive, the assembler does not know that it must search libraries to resolve the macro
symbol.

(J) Local Symbol Definitions

In this section of your source file, you collect symbols in direct assignment statements.
Because symbols in MACRO-1l can be defined as expressions of other symbols, having the
definitions in one place is an advantage. In addition, good programming practice encourages
using symbols instead of simply supplying a numeric constant.

For example, in defining a 10-byte buffer, the best method is to define a symbol and then
use the symbol in the buffer definition, as follows:

; LOCAL DEFINITIONS

SIZB = 10.

LOCAL DATA BLOCKS

BUFB: .BLKB SIZB

This method has the following advantages:

• If a single constant that is referred to in numerous places in the code must be altered,
you need perform only one edit (to the symbol definition) to effect the change.

• If all the symbols are gathered in one place in alphabetical order, reading the code is
simplified.

• You can find all references to a symbol in a cross-reference listing. The cross-reference
capability allows you to examine all the references to a symbol and confidently assess
the effects of altering the symbol definition.

These advantages are lost if you use constants. Thus, the symbol list would contain such
local symbol definitions as SIZB = 10. The symbols themselves would appear in the module
code.

CD Local Macro Definitions

The definition of a macro statement can appear anywhere in the source file as long as
the definition appears before the first occurrence of the macro statement. It is better
programming practice to place all macro definitions in a standard place near the front of
the source file.

2-8 Creating MACRO-ll Source Files

G) Local Data Blocks

This section of the source file defines such data as buffers, status words, and status bytes.
Generally, it describes the local storage that the module references. It is good programming
practice to use a separate .PSECT directive for data.

4D .PSECT Directive

The .PSECT directive establishes a name and attributes for a program section. A program
section is a unit allocation of memory reserved for either code or data. For example, you
can establish a program section to contain data for your program as follows:

.PSECT DATA,D,RW

The .PSECT directive creates the program section named DATA with the attributes data
(D) and read/write (RW). You may give a program section for data either the read-only
(RO) or the read/write (RW) attribute. (The assembler applies other default attributes not
relevant to this discussion.) Consult the RSX-llM-PLUS and Micro/RSX Task Builder Manual
for a discussion of program section allocation in multiuser tasks.

The three most important aspects of the .PSECT directive are as follows:

• Contributions defined for a specific program section can be in separate places in a source
file or in separate source files.

• Attributes of the program section are passed to TKB.

• Contributions for a specific program section with the same attributes are collected in
one continuous allocation of memory space by TKB.

In the skeleton file, it is useful to define one program section to contain the data elements
referenced in the task and to define another program section to contain the code.

~ Module Function Detailed

This section of· the source file can be as general or specific as necessary to describe the
functions of the module. A complex module should have a lengthy discussion; a simple
module need not have as much. At the minimum, this section should state the register
usage on input to and output from the module.

4D .END Directive

The .END directive in a module signals the logical end of source input and optionally
specifies the task transfer address. The transfer address is the location at which program
execution begins. Although each source file should contain a .END directive, only one
source file should define the transfer address. The assembler does not process lines beyond
the one on which the .END directive appears.

2.2 Creating a Source File from a Skeleton File
This section describes how to use the EDT text editor to create a skeleton file and then to create
a source file from the skeleton. For more detailed information on using EDT, see the Micro/RSX
User's Guide, Volume 1 and Micro/RSX User's Guide, Volume 2.

Creating MACRO-ll Source Files 2-9

2.2.1 Performing the Initial Input

To create the skeleton file, type EDT and the specification of a new file, that is, one that is not
in your directory.

Example

$ EDIT IBm
File? SKEL.MAC IBm
Input file does not exist
[EOB]

*c IBm

Runs the editor, determines that the file does not exist, creates the file, and enables keypad
editing.

Type the input according to Example 2-2. Leave any typographical errors until after you
have become familiar with the editing commands described in the Micro/RSX User's Guide,
Volume 1 and Micro/RSX User's Guide, Volume 2. The notation conventions appearing in
Example 2-2 are described in the Preface at the front of this guide.

2.2.2 Inserting Blank Lines in text

To insert a blank line in the source file, as shown- in Example 2-2, press the space bar or the
TAB key on a new line followed by the RETURN key. Thus, to enter a blank line, you need
press only one nonprinting character, such as the TAB key, on a new line.

2.2.3 Exiting from EDT

To exit from EDT, first press the GOLD key and then the COMMAND function key. Type EXIT
after the prompt and press the ENTER function key. EDT saves the file that you have typed.

When EDT exits, it prints the file specification and returns control to the operating system. The
dollar sign prompt ($) indicates that DeL is ready to accept a new command.

2-10 Creating MACRO-ll Source Files

Example 2-2: Creating the Skeleton File SKEL.MAC

$ EDT SKEL. MAC !BIT]
Input file does not exist
[EOB]
*c !BIT]
ITABI . TITLE ITABI SKELTN SOURCE FILE SKELETON !BIT]
ITABI . IDENT ITABI /01/ !BIT]
; !BIT]
; !BIT]
; AUTHOR: Z !BIT]
; !BIT]
ITABI !BIT]
; !BIT]
; CHANGES: !BIT]
; !BIT]
ITABI !BIT]
; !BIT]
; MODULE FUNCTION GENERAL: !BIT]
; !BIT]
ITABI !BIT]
; !BIT]
ITABI .PAGE lTABI ITABI ITABI ; BREAK PAGE FOR PREFACE !BIT]
ITABI . SBTTL ITABI ITABI lTABI ; SYMBOL, MACRO, DATA DEFINITIONS !BIT]
ITABI . LIST ITABI TTM ITABI ITABI ; TERMINAL LISTING MODE !BIT]
ITABI . NLIST ITABI BEX ITABIITABI ; SUPPRESS BIN EXTENSION !BIT]
ITABI . MCALL ITABI EXIT$S ITABIITABI ; EXEC'S EXIT MACRO !BIT]
ITABI !BIT]
; !BIT]
; LOCAL SYMBOL DEFINITIONS: !BIT]
; !BIT]
ITABI !BIT]
; !BIT]
; LOCAL MACROS: !BIT]
; !BIT]
ITABI !BIT]
; !BIT]
; LOCAL DATA BLOCKS: !BIT]
; !BIT]
I TAB I . PSECT IT AB I DATA, D , RW !BIT]
ITABI !BIT]
; !BIT]
; MODULE FUNCTION DETAILED: !BIT]
ITABI !BIT]

!BIT]
I TAB I INPUTS: !BIT]
!BIT]
I TAB I OUTPUTS: !BIT]
!BIT]
ITABI SIDE EFFECTS: !BIT]

; !BIT]
ITABI !BIT]
ITABI . PAGE !BIT]
IT AB I . SBTTL !BIT]
IT AB I . PSECT !BIT]

(Continued on next page)

Creating MACRO-ll Source Files 2-11

Example 2-2 (Cont.): Creating the Skeleton File SKEL.MAC

; START CODE HERE mTIl
START: [8TI]
ITABI [8TI]

END: ITABI EXIT$S nABI ITABI ITABI
I TAB I . END I TAB I I TAB I I TAB I
[8TI]
I GOLD II COMMAND I

Command: EXIT I ENTER I
$

; EXIT CLEANLY TO EXEC [8TI]
; TELL ASSEMBLER END OF CODE [8TI]

2.2.4 Creating a Soufce File from the Skeleton

After you create the skeleton file, you can use it many times to create different source files by
running the EDT editor again as described in Section 2.2.1.

Example

$ EDIT [8TI]
File? SKEL. MAC [8TI]

1
*c [8TI]

Finds the file you just created, reads it into memory, and enables keypad editing at the beginning
of the file.

The EXIT command with a file specification creates a new file having that name and containing
all of the text in your skeleton. For example, you can first press the GOLD key at the prompt
and then press the COMMAND function key, as follows:

I GOLD I I COMMAND I
Command: EXIT FILE. MAC [8TI]

EDT creates either the new file FILE.MAC;1 in your directory or, if the file already exists, a new
version of the file. It retains the input file SKEL.MAC. You can repeat this process to create as
many new source files as you need.

At this point, the contents of SKEL.MAC and your new file are exactly the same-typographical
errors and all. Now you must use editing commands to change your new file to make it unique.

By using the same skeleton file each time you want to create a new source file, you save typing
time and have a better chance of creating consistent, easily readable, and well-documented
programs. Use EDT and the skeleton file (SKEL.MAC) to create the example source modules
shown in Examples 2-3, 2-4, and 2-5. These modules are used in Chapters 3 and 4.

The MicroPDP-11 instructions used in the programming examples in this manual are listed in
the PDP-II Programming Card.

2-12 Creating MACRO-ll Source Files

Example 2-3: Source Code for FILE.MAC

A:

.TITLE NUMA

.IDENT /01/
COUNT NUMBER OF A'S

; IDENTIFY MODULE VERSION

AUTHOR: Z

CHANGES:

MODULE FUNCTION GENERAL:
THIS MODULE LOADS BUFFER,
COUNTS THE NUMBER OF A'S (UPPER
CASE ONLY) IN THE BUFFER, CONVERTS
THE NUMBER TO OCTAL, AND REPORTS
THE NUMBER OF A'S FOUND.

. PAGE

.SBTTL

.LIST

.NLIST

. MCALL

; BREAK PAGE FOR PREFACE
SYMBOL, MACRO, DATA DEFINITIONS
TTM TERMINAL LISTING MODE
BEX SUPPRESS BIN EXTENSION
EXIT$S EXEC'S EXIT MACRO

LOCAL SYMBOL DEFINITIONS:
MSGLEN = NUMEND-MSG
SIZ = 80.
SIZA = 6.

LOCAL MACROS: NONE

LOCAL DATA BLOCKS:

.PSECT DATA,D,RW

/A/ ; DEFINE AN A
BUFl :

. ASCII

.BLKB

. ASCII

.BLKB

SIZ ; DEFINE BUFFER
MSG:
NUMA:
NUMEND

NUMC:

/THE NUMBER OF A'S IS /
SIZA DEFINE OCTAL COUNT

END OF MESSAGE
. EVEN
.BLKW 1 NUMBER OF CHARS TYPED

MODULE FUNCTION DETAILED:
INPUTS:

BUFl IS LOADED WITH CHARACTERS

(Continued on next page)

Creating MACRO-ll Source Files 2-13

Example 2-3 (Cont .): Source Code for FILE.MAC

OUTPUTS:
NUMA HOLDS THE NUMBER OF A'S

SIDE EFFECTS: NONE

START CODE HERE

. PAGE

START:

10$:

20$:

30$:

END:

.SBTTL ROUTINE TO COUNT A'S

.PSECT

MOV #BUF1,RO LOAD BUFFER ADDR
MOV #SIZ,Rl LOAD BUFFER SIZE
CALL READ READ FROM TTY
TST R2 ANY CHARS IN BUFFER?
BEQ END IF NONE, FINISH UP
CLR R1 INIT # OF A'S COUNTER
MOV R2,NUMC SAVE # OF CHARS TYPED

CMPB (RO)+,A IS CHAR = A?
BNE 20$ IF NO, BET NEXT CHAR
INC Rl COUNT AN A

DEC R2 ONE LESS CHAR
BNE 10$ IF MORE, COMPARE NEXT
. PAGE
.SBTTL TRANSLATE COUNT TO OCTAL
MOV #NUMA+6,RO SET PTR TO OCTAL #
MOV #5,R2 SET COUNT OF DIGITS

MOV Rl,-(SP) STACK IS TEMP AREA
BIC #177770,(QSP STRIP LOW 3 BITS
ADD #60,(QSP MAKE OCTAL DIGIT
MOVB (SP)+,-(RO) STORE OCTAL DIGIT
ASR R1 SHIFT TO
ASR Rl NEXT
ASR R1 3 BITS
DEC R2 ONE LESS DIGIT
BNE 30$ IF MORE, REPEAT
MOV #MSG,RO LOAD ADDR OF BUFFER
MOV #MSGLEN,Rl LOAD SIZ OF MESSAGE
CALL WRITE REPORT THE RESULTS
EXIT$S EXIT CLEANLY TO EXEC
. END TELL ASSEMBLER END OF CODE

After you have typed in the code, use the techniques described in Sections 2.2.1 to 2.2.3 to
create two new source files, FILEA.MAC and FILEB.MAC, from the skeleton file. The code for
these two files is shown in Examples 2-4 and 2-5. These two files and the file FILE.MAC will
be used in Chapter 4 to build and test a task. You may want to edit the skeleton file before
you create the two new source files.

2-14 Creating MACRO-II Source Files

Example 2-4: Source Code for FILEA.MAC

.TITLE TTREAD TERMINAL READ SUBROUTINE

.IDENT /01/

AUTHOR: DEF 8-AUG-86

CHANGES: NONE

MODULE FUNCTION GENERAL:
THIS MODULE READS A LINE FROM A
TERMINAL INTO A BUFFER

. PAGE ; BREAK PAGE FOR PREFACE

.SBTTL SYMBOL, MACRO, DATA DEFINITIONS

.LIST TTM TERMINAL LISTING MODE

.NLIST BEX ; SUPPRESS BIN EXTENSION

.MCALL QIO$S,WTSE$S

LOCAL SYMBOL DEFINITIONS:
EFN1 = 1
LUN5 = 5

LOCAL MACROS: NONE

LOCAL DATA BLOCKS:

.PSECT DATA,D,RW
lOST: .BLKW 2

MODULE FUNCTION DETAILED:

DEF 10 STATUS WDS

INPUTS: RO = ADDRESS OF BUFFER TO LOAD
R1 = LENGTH IN BYTES OF BUFFER

OUTPUTS: R2 = NUMBER OF CHARS (BYTES) READ

SIDE EFFECTS: lOT IF ERROR

. PAGE

.SBTTL START OF CODE

.PSECT
(Continued on next page)

Creating MACRO-11 Source Files 2-15

Example 2-4 (Cont.): Source Code for FILEA.MAC

; START CODE HERE:
READ: :

QIO$S
; DEFINE ENTRY POINT

#IO.RLB,#LUN5,#EFN1, ,#IOST, ,<RO,Rl>

10$:

BCS
WTSE$S
TSTB
BLT
MOV
RETIJRN

MOV
MOVB
lOT
. END

10$
#EFNl
lOST
10$
IOST+2,R2

$DSW,RO
lOST ,Rl

2-16 Creating MACRO-II Source Files

QIO DIR PARAMETERS:
RLB IS READ LOG BLOCK
LUN5 = TKB DEFAULT
EFNl IS EVENT FLAG #1
lOST = STATUS AREA
<> = PARAMETER LIST

RO = START OF BUFFER
Rl = SIZE OF BUFFER

IF SET, DIR ACCEPT ERROR
WAIT FOR 10 COMPLETE,EF 1
CHECK 10 STATUS
IF LT, 10 ERROR
SAVE # OF BYTES READ
GO BACK TO CALLER

SAVE DIR STAT WD
SAVE 10 STAT BYTE
FORCE SST EXIT
TELL ASSEMBLER END OF CODE

Example 2-5: Source Code for FILEB.MAC

.TITLE TTWRIT TERMINAL WRITE SUBROUTINE

.IDENT /01/

AUTHOR: DEF 8-AUG-86

CHANGES: NONE

MODULE FUNCTION GENERAL:

THIS MODULE WRITES A
LINE FROM A BUFFER TO
A TERMINAL

. PAGE

.SBTTL

.LIST

.NLIST

. MCALL

; BREAK PAGE FOR PREFACE
SYMBOL, MACRO, DATA DEFINITIONS
TTM TERMINAL LISTING MODE
BEX ; SUPPRESS BIN EXTENSION
QIO$S,WTSE$S

LOCAL SYMBOL DEFINITIONS:
EFNl = 1
LUN5 = 5

LOCAL MACROS: NONE

LOCAL DATA BLOCKS:

lOST:
.PSECT DATA,D,RW
.BLKW 2 DEF IO STATUS WDS

MODULE FUNCTION DETAILED:

INPUTS:

RO = ADDR OF BUFFER TO WRITE
Rl = LENGTH IN BYTES OF BUFFER

OUTPUTS:

SUCCESS IN lOST
SIDE EFFECTS: lOT IF ERROR

(Continued on next page)

Creating MACRO-II Source Files 2-17

Example 2-5 (Cont.): Source Code for FILEB.MAC

. PAGE-

.SBTTL START OF CODE

.PSECT
START CODE HERE

WRITE: : ; DEF ENTRY POINT
#IO.WLB,#LUN5,#EFN1,,#IOST,,<RO,R1,#40> QIO$S

10$:

BCS 10$
WTSE$S #EFN1
TSTB lOST
BLT 10$
RETURN

MOV
MOVB
lOT
. END

$DSW,RO
IOST,R1

2-18 Creating MACRO-ll Source Files

QIO$S PARAMETERS:
IO.WLB FUNCTION CODE
LUN5 (TKB DEFAULT)
EFN1 IS EVENT FLAG 1
STATUS AREA = lOST
PARAMETER LIST <>

RO = START OF BUFFER
R1 = # OF CHARS TO WRITE
40 = OUTPUT <C~>,<LF>

IF SET, DIR ACCEPT ERROR
WAIT FOR 10 COMPLETE
CHECK 10 STATUS
IF LT, 10 ERROR
GO BACK TO CALLER

SAVE DIR STAT WD
SAVE 10 STAT VALUE
SST DUMPS TASK REGS
TELL ASSEMBLER END OF CODE

Chapter 3
Assembling and Correcting a Program Module

This chapter describes uses of the MACRO-II assembler, common types of coding errors, ways
to uncover and correct errors, and the way to generate a cross-reference listing. For a detailed
description of the options available while assembling a program, refer to Appendix A for an
explanation of the MACRO command.

The material in this chapter assumes that you have created the three source files described in
Chapter 2.

3. 1 Performing a Diagnostic Run on a Source File
Your first use of the MACRO-II assembler on a source file should be to perform a diagnostic
run. You run the assembler only to check for general errors, not to produce an object module
or a listing file.

To perform a diagnostic run from a DCL terminal, type the following command line:

$ MACRO/NOOBJECT/DISABLE:GLOBAL FILE ~

(any error messages appear)

$

The source file is named FILE.MAC, but because the MACRO command defaults to a file type
of MAC, the file type need not be specified. Normally, the MACRO command is used to create
an object module, making the /NOOBJECT qualifier necessary if you want to override this
standard function. The MACRO command does not produce a listing file unless you request
one with the /LIST qualifier. When you do not make a listing file, any errors that result from
assembly are listed directly on your terminal.

The /DISABLE:GLOBAL qualifier causes the MACRO-1I assembler to disable the setting of
undefined symbols to global and external. Ordinarily, when the MACRO-II assembler finds
a symbol that is not defined in the source file, it assumes that the reference is to a symbol
defined externally, that is, in another module. By disabling this feature for your diagnostic run,
you tell the assembler to flag any potential global references as an undefined symbol error.
Because you already know which symbols in your source file are global, this disabling method
is a convenient way to catch typographical errors in other symbol names.

Assembling and Correcting a Program Module 3-1

The appearance of MACRO-11 messages at the terminal during the diagnostic run indicates
that your module contains errors. If the assembler does not find any errors, it simply returns
control to the Executive, and DCL prints the dollar sign prompt ($). Errors in the assembly are
denoted by single-letter codes printed at the beginning of the faulty statement. These errors are
summarized in the PDP-II MACRO-ll Language Reference Manual.

The only errors that should appear from the diagnostic run are the following:

U 71 000010 004767
U 99 000110 004767
ERRORS DETECTED: 2
/DS:GBL=FILE

CALL
CALL

READ
WRITE

READ FROM TTY
; REPORT THE RESULTS

The two undefined symbols READ and WRITE are the entry points defined in the source files
FILEA.MAC and FILEB.MAC. These symbols are to be resolved by TKB. (Note that this example
was generated by the command MACRO jDISABLE:GLOBAL FILE.)

3.2 Errors Encountered During Assembly
Four error codes cover the majority of errors made in an assembly language source file. The
following sections describe some of the most common conditions that generate these error codes.

3.2.1 MACRO-ll Error Code A

Error code A indicates a general assembly error. Most of these errors are caused by typing
mistakes such as the following:

• Omitting the semicolon (;) from a comment

The semicolon separates your comment from the portion of the statement that the assembler
evaluates. If you omit the semicolon, MACRO-11 attempts to evaluate your comment as
part of the rest of the statement line.

• Omitting the period (.) from a MACRO-11 directive

The leading period in the operator field tells the assembler that the statement contains a
MACRO-11 directive. If you forget to include the period on a directive, the assembler cannot
evaluate the operator as a directive. As a result, error code A is generated, the directive
and its arguments are given a value of 0, and they are designated as global symbols.

• Misspelling a PDP-11 instruction mnemonic

If you misspelled a PDP-11 instruction mnemonic (for example, MOVE instead of MOV),
the assembler can evaluate the operands but not the operator. The PDP-II MACRO-ll
Language Reference Manual lists all the mnemonics alphabetically. These mnemonics make
up the permanent symbol table (PST). The PDP-ll Programming Card also contains all th
instruction mnemonics.

• Forming an illegal symbol

The first character of a symbol must not be a numeral.

3-2 Assembling and Correcting a Program Module

• Delimiting a directive argument improperly

Many MACRO-II directives require a character or argument string to begin and end with a
certain delimiting character. If you use the wrong character, or omit one of the delimiters, the
assembler cannot properly match the delimiters and therefore cannot evaluate the directive.
For example, the .ASCII directive requires the character string to begin and end with the
same delimiting character.

Another type of general assembly error involves addressing errors. The typical addressing
error occurs when you exceed the range of a branch instruction (that is, branching more than
128 words backward or 127 words forward). To correct this type of error, replace the branch
instruction with the following:

• Code that tests the proper condition

• The JMP instruction (to transfer control)

Illegal forward references are also common as general assembly errors. If you define a symbol
based on another symbol that is defined by a forward reference, the assembler cannot evaluate
the reference. Note the following example:

A = B + 10.
C = A + 10.

The assembler cannot evaluate the symbol A because B is not yet defined.

3.2.2 MACRO-ll Error Code U

Error code U signals an undefined symbol error. This error usually occurs for one of the
following reasons:

• A symbol name on the .MCALL directive was misspelled.

• A reference was made to a local label that does not exist in the current local symbol block.

3.2.3 MACRO-ll Error Code Q

Error code Q indicates questionable syntax. This error usually results from one of the following:

• Including too many (or too few) arguments in a directive

• Specifying an incorrect number of operands in an instruction

• Omitting the semicolon from a comment, causing the assembler to attempt to evaluate the
comment as part of the statement

3.2.4 MACRO-ll Error Code E

Error code E means that you have omitted the .END directive from the assembly language
source file. If the assembler does not find the .END directive, it generates error code E with a
line number of 0 after the last statement in the listing file.

Error code E also may indicate an expression overflow. If the assembler encounters a nested
expression that is too complex, it generates error code E and denotes the point of the overflow
with a question mark (?). To clear the error condition, either simplify the expression or ask
your system manager to build the MACRO-II assembler with a larger stack.

Assembling and Correcting a Program Module 3-3

3.3 Generating a Program Module and a Listing
After you correct the errors uncovered in the diagnostic run, you are ready to produce an object
module and a listing file. The following DCL command line produces an object module and a
listing file:

$ MACRO FILE/LIST rnm
(error summary printed)

$

This command line, like the command line for the diagnostic run, assumes default file types for
the object file and the listing file. The assembler creates an object module called FILE.OBJ. The
ILIST qualifier causes the assembler to create a file called FILE.LST. It is good programming
practice to use the assembler defaults for file types and file names. Using the defaults helps
you to differentiate file types and to group associated files under the same name. If you wish
to use other file names and file types, you can override the defaults by supplying complete file
specifications as arguments to the ILIST and IOBJECT qualifiers.

Note that the ILIST qualifier is added to the file specification rather than to the MACRO
command in the example. This placement of the qualifier causes a listing file to be created in
your directory, but the file is not printed on the line printer. The following MACRO command
line causes the listing file FILE.LST to be created in your directory, but the file is also printed
on your system's line printer:

$ MACRO/LIST FILE rnm
(error summary printed)

$

For the time being, you should use the ILIST qualifier as a file specification qualifier, to keep
from printing too many copies. During the program development cycle, you create many files
for which you do not need a permanent copy. It is easier and less wasteful to examine a
listing file at your terminal than to generate numerous printed copies of listing files that must
be discarded because of minor errors. After you attain an error-free assembly, you can print a
copy of the latest version of the listing file.

When you request a listing file, the errors are printed in the file, not on your terminal. All
you see on your terminal is a message giving the total number of errors found. If no message
appears, there are no errors. Note, however, that freedom from assembly errors does not
guarantee that the program will run properly.

You can issue the following command lines to assemble the two other source files, FILEA.MAC
and FILEB.MAC, which you created using the procedures described in Chapter 2:

$ MACRO FILEA/LIST rnrn
$ MACRO FILEB/LIST rnrn
These two command lines create the object modules, FILEA.OBJ and FILEB.OBJ, that you will
need to link into your task in Chapter 4.

3-4 Assembling and Correcting a Program Module

3.4 Examining a Listing at the Terminal
Use the TYPE command to display the listing file at your terminal, as shown:

$ TYPE FILE. LST [Bill

(file appears on screen)

$

You can use control commands to temporarily stop and restart the display, and to alternately
suppress and resume the output request. The commands are summarized in Table 3-1.

Table 3-1: Terminal Output Control Commands

Command

CTRL/S

CTRL/Q

CTRL/O

Effect

Temporarily stops the display.

Restarts the display stopped by CTRL/S.

Alternately suppresses and resumes the output to the terminal.

The CTRL/S and CTRL/Q commands are used together to freeze the display on the screen and
to request more lines to be displayed. While the CTRL/S command is in effect, you can read
what is on the screen. The CTRL/Q command directs the system to restart the display where
it left off when it detected the CTRL/S command. The NO SCROLL or HOLD SCREEN key can
be used to accomplish the same thing.

The CTRL/O command is used to suppress unwanted output. The command directs the system
to stop sending characters to the terminal. The program, however, continues processing but
simply omits displaying the output. (While the CTRL/O command is in effect, the system
disables keyboard input and does not echo any characters typed at the terminal.) By typing
CTRL/O again, you direct the system to resume output to the terminal. By typing successive
CTRL/Os, you can skip unnecessary portions of the output until the program reaches the correct
part. If the program finishes processing the output request while the CTRL/O command is
in effect, the system automatically reenables keyboard input and the dollar sign prompt ($)
appears on the terminal.

3.5 Generating a Cross-Reference Listing
Symbol and macro cross-reference listings are worthwhile additions to the assembly listing.
These listings give, in alphabetical order, each symbol and macro name defined or referred to
and the number of the page and line in the listing where the definition or reference occurs.
Type the following command line to obtain cross-reference listings:

$ MACRO/NOOBJECT FILE/CROSS_REFERENCE [Bill

(any errors cause total number to be printed)

$

Note that the command line does not include the /LIST qualifier. The jCROSS_REFERENCE
qualifier implies the /LIST qualifier because the cross-reference listing is attached to the assembly
listing. If you want to have the listing printed, use the /CROSS_REFERENCE qualifier as a
command qualifier instead of as a file qualifier.

Assembling and Correcting a Program Module 3-5

Remember, you do not need to type the full form of the command unless you are keeping a
record of terminal activity. The following command line has the same effect as the previous
one:

$ MAC/NOOB FILE/CRO [Bill

The CRF task appends the cross-reference listing to the end of the listing file, denoting the
cross-references by the titles SYMBOL CROSS REFERENCE and MACRO CROSS REFERENCE.

3.6 Printing a Copy of Listings
Once you have developed an error-free assembly, you can obtain a hard copy of the listing for
reference. From your terminal, type the following command line:

$ PRINT FILE. LST [BIT]

$

The command line creates a request to the spooling task to print the file you specify. (You can
specify more than one file at a time by listing more than one file specification in the command
line, separating each with a comma.) Your request is placed in a queue with other requests.

3.7 Cleaning Up the Disk Directory
After you edit and reassemble the source files several times, your directory becomes cluttered
with multiple versions of the same files. A DIRECTORY command is provided for listing
information about files. The following command lists all the files in your directory:

$ DIRECTORY [Bill

(the directory listing appears)

$

You will notice in the directory a number of files with the same file name and file type, but
different version numbers. Use this command to purge all but the most recent version of these
files as follows:

$ PURGE *. MAC. * . LST • * . OBJ [Bill

3-6 Assembling and Correcting a Program Module

Chapter 4
Building and Testing a Task>

This chapter describes ways to use the Task Builder (TKB) to create a task image from program
object modules. The procedures described in this chapter assume that you have created three
error-free object modules, as described in Chapter 3.

4. 1 Creating a Task Image
TKB creates a task image file that can be loaded into memory. You can supply as input to
TKB either a single object module or multiple object modules. In most cases, however, your
programs will consist of multiple object modules. The following sections describe the procedures
and the way TKB reports error conditions.

4. 1. 1 Supplying a Single Object Module
Use the DCL command LINK to invoke TKB and create a task image file from a single object
module, as follows:

$ LINK FILE lliill
(any error messages appear)

$

Once again, all defaults are applied automatically. The LINK command defaults to an object
module in a file named FILE.OBJ and causes TKB to produce a file named FILE.T5K containing
the task image.

TKB tries to resolve all global references in the object module. If there are undefined references
after the module has been processed, TKB searches the system object library 5Y5LIB.OLB in
system directory [1,1] on the library device (LB). If no errors are encountered in the process,
TKB exits and the dollar sign prompt ($) appears.

If TKB detects an error during processing, it prints a message in one of the following forms:

LINK -- *DIAG* - error message

or

LINK -- *FATAL* - error message

Building and Testing a Task 4-1

TKB error messages are summarized in the RSX-IIM-PLUS and MicrojRSX Task Builder Manual.

If an error message appears and the error condition described is not operational (for example,
lack of 'Space for the task image file) or is not a fatal error, TKB creates the task image file
anyway. Depending on the error condition, you may have to remove the cause of the error from
the source file, reassemble the source file, and repeat the TKB procedure. In some instances,
the diagnostic condition is merely a warning and has no ill effect when the task runs. (For
guidelines on correcting error conditions, see Section 4.4.)

When you create the task image from the single object module FILE.OBJ, TKB prints the
following error message:

TKB -- *DIAG-*2 Undefined symbols segment FILE

READ
WRITE

The undefined symbols READ and WRITE are the entry points of the two routine~ defined
by the object modules FILEA.OBJ and FILEB.OBJ. TKB, searches the system object library to
resolve global references left undefined in your input. Because TKB failed to find modules that
defined these symbols, it reported the error condition. You can eliminate the error condition by
following the procedures described in Section 4.1.2.

4. 1.2 Supplying Multiple Object Modules
TKB accepts multiple object modules as input to the LINK command. At your terminal, type
the names of the object files, separated by commas, as shown:

$ LINK FILE, FILEA, FILEB [Bill

(any error messages appear)

$

The LINK command defaults to the file type OBJ for the three input files. The resulting task
image file is named FILE. TSK. The LINK command defaults to the name of the first object file
named to derive the name of the TSK file.

TKB performs the same actions as those described in Section 4.1.1 for one object module. Only
one of the object modules specified must have been assembled with a .END directive that gives
the starting address of the task. If none of the modules contains the starting address, TKB
assigns the default transfer address of I, which causes an error when you run the task. Refer
to Section 4.4 for more information on running the task and correcting errors.

TKB can also use a concatenated object module as input, which is merely a file containing
multiple object modules. To create a concatenated file, use the DCL command COPY, as
shown:

$ COpy [Bill
From? FILE. OBJ , FILEA, FILEB [Bill
To? FILCON. OBJ [Bill
$

or

$ COPY FILE.OBJ,FILEA,FILEB FILCON.OBJ [Bill
$

4-2 Building and Testing a Task

The response to the From? prompt lists the files to be concatenated. Note that you need
specify the file type only on the first file listed. This file type becomes the default file type
for subsequent files. The COpy command automatically concatenates these files into a single
output file.

The single concatenated object file can then be the sole input to the LINK command, as shown
in the following command line:

$ LINK/TASK: FILE FILCON [BIT]

(any error messages appear)

$

This operation saves file processing overhead for TKB. As a result, building a task from a
concatenated file is possibly 40 percent faster than listing the object modules separately.

4.2 Task Builder Defaults
When you build a task image, TKB applies certain default conditions to your program, including
the partition in which your task runs, the host system memory management characteristics, the
task's checkpointability, and the number of logical units your task can access. If your program
does not use the default conditions, the process of building a task becomes more complex.
You can consult the RSX-llM-PLUS and MicrojRSX Task Builder Manual for the procedures that
override the default conditions.

TKB assigns your program to be run in the default partition, called GEN. If you are building a
task to run in another partition, you can either supply the correct partition name at run time or
rebuild the task and specify the correct partition name then (refer to the description of the PAR
option in the RSX-llM-PLUS and MicrojRSX Task Builder Manual).

Using TKB memory management characteristics, TKB allocates memory starting at virtual
address 0 and assumes that the task will be relocated by memory management hardware.
As a result, the task can be run in any partition large enough to contain the image. TKB also
assumes that the task is not checkpointable and, therefore, uses the Floating Point Processor.

TKB establishes the maximum number of logical units (six) the task can access and supplies
the assignments for these logical units. The default assignments are the following: logical units
1 to 4 are assigned to the system device (SY); unit 5 is the task-initiating terminal (TI); and
unit 6 is the console listing device (CL).

4.3 Generating a Map and a Global Cross-Reference Listing
Before you run the task and correct simple errors, you can produce a memory allocation file
(called a map) and a cross-reference listing of global symbols. The map and global cross
reference file are useful in later stages of program development and for program documentation.

Building and Testing a Task 4-3

4.3. 1 Requesting a Map and a Global Cross-Reference Listing
In most situations, you need a standard map and a global cross-reference listing for debugging
a task. To create a map with a global cross-reference listing, type the following command line:

$ LINK/CROSS_REFERENCE/NOWIDE/NOTASK FILE,FILEA,FILEB ~
$

The jNOTASK qualifier suppresses the creation of a task image file. You request a cross
reference listing with the jCROSS_REFERENCE qualifier. The jNOWIDE qualifier reduces
the width of the listing from 132 columns to 80 columns for display on a terminal. Because
jCROSS_REFERENCE implies a map, you do not have to specify the jMAP qualifier.

If you wish to create both the task image file and the map with the cross-reference listing at
the same time, use the following command line:

$ LINK/CROSS/NOWIDE FILE,FILEA,FILEB ~
$

TKB creates both FILE.TSK and FILE.MAP. The map includes a cross-reference listing.

4.3.2 Examining the Map at the Terminal
Use the TYPE command to examine the map at your terminal. The command line is as follows:

$ TYPE FILE. MAP ~

(file appears on screen)

$

Use the control commands CTRLjS, CTRLjQ (or NO SCROLL and HOLD SCREEN), and
CTRLjO (all summarized in Table 3-1) to control the terminal output.

4.3.3 Requesting a Full Map
The map file produced, as described in Section 4.3.1, is a short form of the map that contains
most of the information needed for debugging tasks. To generate a full form of the map, use
the following command line:

$ LINK/LONG/MAP:FULL/CRO/SYSTEM_LIBRARY_DISPLAY/NOTASK FILE,FILEA,FILE ~
$

The JLONG qualifier indicates that you want the long form of the map and causes TKB to add a
file contents section to the map. The JLONG qualifier implies the jMAP qualifier; however, the
jMAP qualifier is used here to give the map file the name FULL.MAP so you can distinguish
the different maps you have made during this demonstration session. The JCRO qualifier is the
abbreviated form of the jCROSS_REFERENCE qualifier. The jSYSTEM_LIBRARY_DISPLAY
qualifier (usually abbreviated jSYS) instructs TKB to include system library contributions to the
task in the file contents section of the map. (System symbols are also included in the global
cross-reference listing.)

4-4 Building and Testing a Task

4.4 Running the Task and Correcting Typical Errors
You execute your task by using the RUN command and the name of the task image file.

Example

$ RUN FILE [BTI]

Because the task FILE is not installed on the system, the RUN command searches your User
File Directory (UFD) on device SY for a file named FILE.TSK. RUN, installs it temporarily, and
runs it immediately. (The task will be automatically removed when the task exits.) To run
task FILE, the Executive transfers control to the task starting, or transfer, address. If your task
encounters an error condition, the Executive must decide whether to abort the task.

Errors that can cause the Executive to abort a task are either hardware related or software
related. If the error is hardware related, such as a memory parity error or a load failure, the
Executive begins aborting the task. In contrast, a synchronous system trap (SST) error condition
(software related), such as an illegal instruction, causes the Executive to attempt to transfer
control to an SST routine. An SST routine is a routine within a task that services a particular
type of SST condition. If your task defines a routine to service the type of trap, the Executive
transfers control to it. If your task does not have the routine defined, the Executive aborts the
task.

Aborting a task forces an orderly termination of the task. Included in the termination is a
request for the Task Termination and Notification task (TKTN) to display a message on your
terminal. The program display includes the cause of the abort and a list of the task registers
and Processor Status Word (PSW), for example:

$

14:16:26 Task "TT30 "terminated
Reserved inst execution
RO=001401
R1=100076
R2=OOOOOO
R3=140130
R4=OOOOOO
R5=OOOOOO
SP=001254
PC=001262
PS=170001

The information can help you ascertain the cause of the abort. If the cause of the error is
hardware related, report the occurrence to your system manager, who can consult the error
logging data to find where the problem originated. If the cause of the error was an SST
(software related) condition, you can use the data displayed by TKTN to find the problem.

The value of the program counter (PC), minus 2, shown in the display tells you the address
of the instruction that was being executed when the error was encountered. In the example
shown above, the PC is at the address 001262.

To correct any errors in your task, you must edit the source file or files concerned, reassemble
the corrected files, and rebuild the task.

Building and Testing a Task 4-5

Chapter 5
Using Debugging Aids

This chapter introduces the following three debugging aids that are helpful in the program
development process:

• The On-Line Debugging Tool (ODT)

• The Postmortem Dump (PMD)

• The snapshot dump ($SNAP)

There is also another debugging tool called the Executive Debugging Tool (XDT) that is used for
debugging privileged code. Refer to the RSX-11M-PLUS and Micro/RSX XDr Reference Manual
for a complete description of XDT.

5. 1 Using the On-Line Debugging Tool
The On-Line Debugging Tool (ODT) is special code that you include in your task image to assist
you during debugging. ODT gives you interactive control of task execution, and allows you
to set breakpoints and to examine and change data or instructions within the memory-resident
task. The ODT module is linked into your task image, thereby increasing the size of the task
image. Therefore, you remove ODT from your task when you finish debugging, by rebuilding
the task and omitting the ODT module.

ODT commands differ from commands in other utility programs. Most programs have
multicharacter commands that require a line terminator before they are executed. ODT
commands, however, are single characters and require no line terminator. That is, ODT
interprets input on a character-by-character basis rather than on a line-by-line basis. Therefore,
as soon as you type a character that ODT recognizes as a command, ODT interprets it and
performs the specified function. This difference in commands means that you must be careful
when you are debugging your task with ODT.

Using Debugging Aids 5-1

5. 1. 1 Including ODT in a Task

The /DEBUG qualifier to the LINK command is used to include ODT in a task. An example
follows:

$ LINK/DEBUG/TASK:BUG/MAP:BUG/CROSS_REFERENCE FILE,FILEA,FILEB ffi[O
$

The /DEBUG qualifier specifies that you want to include ODT in the task. The /TASK:BUG
qualifier specifies that you want the task image file to be named BUG.TSK. The /MAP:BUG
qualifier specifies that you want the map to be named BUG.MAP. In this way, you can tell the
difference between the versions of the task-built file with ODT and without. The Task Builder
(TKB) accesses the file LB:[l,l]ODT.OBJ and links it into the task. The /CROSS_REFERENCE
qualifier implies a /MAP qualifier. An accurate map of the task is necessary for use with ODT.

On systems that support instruction and data space, the file LB:[l,l]ODTID.OBJ will be refer
enced. If the task is built with separate instruction and data space, the file LB:[l,l]ODTID.OBJ
will be inserted in the task.

5.1.2 Preparing to Use ODT

Before you run a task containing ODT, ensure that accurate listings of the assembled source
files are available. These listings show the offsets into the modules in your task. The map of
the task and the assembled source listings provide the data you need to set breakpoints and
examine locations within the task.

5.1.3 Setting Up the Task

When you run a task containing ODT, ODT gains control, identifies itself (and the task it
controls), and prints its command prompt. The following lines show the sequence:

$ RUN BUG ffi[O
ODT:TT5

The notation TT5 is the name that the system dispatcher assigned to the task. Such a name
consists of the letters TT followed by the unit number of the terminal that requested the task.
(The task shown here was run from terminal number 58.)

The underline character (_) is ODT's prompt. It indicates that ODT is ready to accept
commands.

5. 1.4 Relocation Registers

To access locations within the task, you should establish one or more relocation registers. This
set of eight registers, numbered $RO to $R7, allows you to specify locations within the task in
terms of offsets from the start of modules in the task image.

To establish the proper addressing using offsets, you must first consult the location information
in the task map. On the map listing, the portion titled Memory Allocation Synopsis contains
the location information for each program section and for each contribution to the program
sections from different modules. A sample of the relevant portion of the map for the program
BUG is shown in Example 5-1.

5-2 Using Debugging Aids

Example 5-1: Memory Allocation Synopsis from Task BUG Map

Memory allocation synopsis:
Section

. BLK. : (RW,I,LCL,REL,CON)

DATA : (RW,D,LCL,REL,CON)

$$$ODT:(RW,I,GBL,REL,OVR)

Title Ident File

001202 000340 00224.
001202 000122 00082. NUMA 01
001324 000110 00072. TTREAD 01
001434 000106 00070. TTWRIT 01
001542 000166 00118.
001542 000156 00110. NUMA 01
001720 000004 00004. TTREAD 01
001724 000004 00004. TTWRIT 01
001730 005654 02988.
001730 005654 02988. ODTRSX M06

FILCON.OBJ;l
FILCON.OBJ;l
FILCON.OBJ;l

FILCON.OBJ;l
FILCON.OBJ;l
FILCON.OBJ;l

ODT.OBJ;121

The location information for a program section is the octal starting address of the program
section and its extent in bytes (both octal and decimal values). For example, for the blank
program section, the starting location is 12028 and the extent is 3408, or 22410, bytes. The octal
starting addresses and extents (in bytes) for the contributions from each object module are listed
under the program section location information. For example, the contribution from TTREAD
in the blank program section starts at location 1324 and extends for 1108, or 7210 , bytes.

The following example shows how to place the starting addresses of the modules in relocation
registers:

_1202;OR
_1324;lR
_1434;2R
_1542;3R
_1720;4R
_1724;5R

The R commands place the addresses in relocation registers 0 to 5. (The addresses are octal; ODT
accepts only octal numbers.) As soon as you type the R in the command line, ODT generates
line-feed and carriage return operations and prints another prompt. This action indicates that
ODT has executed the command as soon as it was typed. Therefore, before typing the R (or
any command), make sure that the command line is correct.

If you notice a typographical error in the line before you type the command itself, simply type
CTRLjU, type the number 8 or 9, or press the DELETE key, as shown in the following example:

_1272;08?

ODT considers the decimal number 8 an illegal character. It discards the input line, displays a
question mark (?) to signal an error, and prints the prompt on a new line. You must retype
the entire line. If you do enter an incorrect address in the relocation register, simply retype the
command, as follows:

_1272;OR
_1202;OR

ODT stores the most recently entered value in the register. To access a location within a task
most conveniently, you must create an address made up of the values stored in the relocation
register and a value showing the distance of the location from the relocation register value.

Using Debugging Aids 5-3

The relocation register provides the base address of a module; the location counter value supplies
an offset to the location within the program section for the module. The command 1202;OR
places the starting address of the NUMA contribution to the blank program section in relocation
register O. Location counter value 20 in the assembly listing for NUMA is 20 bytes from the
start of the address in relocation register O. You use the two values to form the address of the
location. The address is formed by typing the number of the relocation register, a comma (,),
and the octal offset value. For example:

0,20

aDT adds the base value in relocation register 0 (1202 in this case) and the offset typed after
the comma (20). This creates an effective address of 12228• You use this syntax with various
aDT commands to access locations within the task address space.

Example 5-2 shows a portion of the assembly listing for the blank program section in the
module NUMA.

Example 5-2: Portion of Assembly Listing for NUMA

NUMA COUNT NUMBER OF A'S MACRO M1200 8-AUG-86 12:39 PAGE 3
ROUTINE TO COUNT A'S

66 .SBTTL ROUTINE TO COUNT A'S
67 000000 .PSECT
68 000000 START:
69 000000 012700 MOV #BUF1,RO LOAD BUFFER ADDR
70 000004 012701 MOV #SIZ,R1 LOAD BUFFER SIZE
71 000010 004767 CALL READ READ FROM TTY
72 000014 005702 TST R2 ANY CHARS IN BUFFER?
73 000016 001436 BEQ END IF NONE, FINISH UP
74 000020 005001 CLR R1 INIT # OF A'S COUNTER
75 000022 010267 MOV R2,NUMC SAVE # OF CHARS TYPED
76 000026 10$:
77 000026 122067 CMPB (RO)+,A IS CHAR = A?
78 000032 001001 BNE 20$ IF NO, BET NEXT CHAR
79 000034 005201 INC R1 COUNT AN A
80 000036 20$:
81 000036 005302 DEC R2 ONE LESS CHAR
82 000040 001372 BNE 10$ IF MORE, COMPARE NEXT

5. 1.5 Examining Locations

To examine words within a module, type the address followed by the slash (/) character, as
follows:

_0,20/005001

The slash character causes aDT to open the designated location as a word and display its
contents. To close the currently open location, press either the RETURN key or the LINE FEED
key. The RETURN key closes the location, as shown in the following example:

_ 0 , 20/005001 [Bffi

aDT closes the location and prints its prompt on a new line.

5-4 Using Debugging Aids

ance you have opened a location, pressing the LINE FEED key enables you to examine successive
words in the task image. The following example shows the procedure:

_0,32/001001 [IT]
0,000034 /005201 @ill

In response to the LINE FEED key, aDT closes the current location, opens the next sequential
location in the task image, and displays the address of the location, a space, the slash character,
and the contents of the location. The slash character signals that the location is open as a word.

Note
You can change the contents of the currently open location to n by pressing
the octal number n before pressing the RETURN or LINE FEED key. See
Section 5.1. 7.

To examine bytes within a task instead of words, type the address followed by the backslash
(\) character, as follows:

_0,32\001

The backslash character causes aDT to open the designated location as a byte and display its
contents. You can examine successive bytes by pressing the LINE FEED key, after which aDT
closes the currently open byte location, opens the next sequential byte location, and displays its
contents. For example:

32\001 [IT]
0,000033 \002 @ill

The backslash character preceding the contents signals that the location is open as a byte.

Before you proceed in the debugging session, you should verify the relocation register values
by examining a location in each module and comparing its contents with the values shown in
the assembly listing. The following sequence shows the procedure:

1 , 66/002403 lliffi
- 2 , 72/000207 lliffi
- 3,121 \124 @ill
- 4 , ° /000000 lliffi
= 5 , ° / 000000 lliffi

As you examine each location, compare the contents aDT displays with the assembly listing.
If the values do not match, either you have an incorrect listing or the relocation register value
is wrong.

Using Debugging Aids 5-5

5. 1.6 Setting Breakpoints Within the Task

To allow you to stop (or break) task execution, ODT provides eight registers called breakpoint
registers. These registers, numbered $BO to $B7, let you specify locations of instructions at
which execution should stop.

To establish breakpoints in the task, specify the location of the instruction with the B (BREAK)
command shown next.

Format

Example

_O,10;OB
_1,74; 1B

Places the designated addresses in breakpoint registers 0 and 1.

Note
When specifying the address of an instruction, make sure that the location is
the first word of the instruction.

As soon as you type the B in the command line, ODT generates the carriage return and line
feed operations and prints a prompt. (Changing a breakpoint register is the same as changing
a relocation register; simply retype the command line and give the altered contents.)

After setting up the breakpoint registers, you can issue the G (GO) command to begin task
execution. For example:

_G
OB:O,000010

When you type the G command, ODT swaps a BPT instruction into each breakpoint location.
(The eight breakpoint instruction registers, with register names $10 to $17, contain the actual
instructions during task execution.) ODT passes control to the starting address of the task. The
task executes until it reaches a BPT instruction, at which point ODT regains control. When
ODT regains control, the task has not yet executed the instruction at the location where the
breakpoint is set. ODT swaps the instructions back into the locations at which breakpoints are
set, and it prints a message that supplies the following information:

• The breakpoint register designation

• The relocation address at which execution stopped

In the previous example, the message shows breakpoint register 0 and its contents (offset 10
from the base address in relocation register 0).

5-6 Using Debugging Aids

5. 1.7 Changing the Contents of Locations with ODT

When execution stops at a breakpoint, you can examine and change data within the task image
address space. When execution stops at a breakpoint location, the task's general registers are
stored in ODT locations accessed by the names $0 to $7. The following sequence shows how
to display general registers 0, I, and 2:

_ $0/ 001543 [ill

$1 /000120 [ill

$2 /135600 [BIT]

The slash (/) character opens the general register as a word location and prints its contents.
Pressing the LINE FEED key closes the current location and opens the next sequential location.

To change data, simply type a new value while the current location is open. The following
sequence shows how you can change register 2:

_ $2/ 135600 100 [ill

$3 /140130 [BIT]

While the location (register 2) is open, you can type the new value to replace the current
contents. ODT writes the new value 1008 into the currently open location before closing it and
opening the next sequential location.

Any locations within the task can be examined and changed. The following sequence shows
how to open a location as a byte and change its contents:

_ 3.0\101 102 [BIT]
_ 3.0\102 101 [BIT]

The backslash (\) character opens the specified address as a byte location. The new value 1028

is written to the open location as a byte value. Pressing the RETURN key closes the location.
The next command line examines offset 0 to verify that it contains 1028 and then changes the
contents back to 101.

After you examine and change locations, resume execution with the P (PROCEED) command,
as follows:

_ P ABCABCABAB [BIT]
lB:l.000074

The P command causes ODT to swap in the BPT instructions, restore the task general registers,
and continue with the instruction at which the break occurred.

Note
ODT does not supply a carriage return and line feed after you type the P.
Therefore, the data that you type in response to the READ routine will follow
the P on the same line.

Execution stops at the location contained in breakpoint register 1.

Using Debugging Aids 5-7

The G command is used to transfer control to another address and continue execution. For
example:

_l,76G

ODT transfers control to offset 76 and continues execution there. This command purposely
tranfers control to the error routine to show what occurs when an error is encountered. See
Section 5.1.8.

5.1.8 Error Conditions and Terminating Task Execution

If the task generates an error condition, the Executive handles the processing as a synchronous
system trap (SST). Control is passed to ODT, which prints a message similar to the following:

10:2,000000

This message gives a code describing the reasons for the trap and tells the address following the
location that generated the trap. In the previous message, 10 means the lOT instruction. If you
can discover the cause of the trap, make the appropriate changes in the task and proceed. If
you cannot isolate the cause of the trap, you should exit from ODT and start a new debugging
session.

To help determine the cause of the trap, you can examine the task registers and stack before you
start a new debugging session. Use the register name-the dollar sign ($) character followed
by the register number-to access the task registers, as described in Section 5.1.7. To examine
the stack, examine register 6 (the stack pointer) and use the at sign (@) character to open the
location pointed to by the stack pointer. For example:

_$6/001200 (Q
001200 / 001216 [8[f]

The slash character opens the stack pointer as a word and displays the address at the top of the
stack. The at sign character takes the contents of the currently open location (that is, the stack
pointer) as the address of the next location to be opened, opens it, and displays its contents,
which is the top word on the stack.

To examine the stack, press the LINE FEED key to open and display each successive word on
the stack. You can determine what the highest address of the stack can be by checking the line
labeled Stack Limits in the task attributes section of the map. The line gives the following four
numbers:

• Low address of the stack area

• High address of the stack area

• Octal extent of the stack area

• Decimal extent of the stack area

The high address tells you the last available location (that is, the bottom) of the stack. After
you have examined the highest address, you have looked at all the items on the stack and can
press the RETURN key to close the last available location.

5-8 Using Debugging Aids

To exit from the task using ODT, use the X (EXIT) command as follows:

x

ODT performs the exit task directive and returns control to the Executive.

5.2 Using the Postmortem Dump
Another debugging aid is the Postmortem Dump (PMD). It requires no special code in your
program. The example shows how to enable PMD for your task using the /POSTMORTEM
qualifier. This qualifier sets a bit in the task flag word that causes a PMD whenever the task
exits unexpectedly.

To enable PMD, type the following command line:

$ LINK/MAP/POSTMORTEM FILE,FILEA,FILEB ~
$

TKB is instructed to set a bit in the task flag word. This does not necessarily have to be done
at the time you build the task. Postmortem dumps can also be specified as part of the RUN,
INSTALL, and ABORT commands. (You can tell whether a task includes PMD by inspecting the
task attributes section of the map. A line item called Task Attributes will have the designation
PM.) When PMD is in effect for a task, the occurrence of an error that generates an SST causes
the Executive to handle the termination of your task in a special manner. (This discussion
assumes that the task does not handle SSTs through the SVTK$ directive and specially coded
routines.) Instead of simply aborting the task, the Executive generates a request for PMD to
create a formatted disk file showing the task image context. When a task generates an SST, the
Executive initiates the normal task termination procedure (the printing of an error message and
general register contents at the terminal) and, in addition, generates the request for PMD. To
inform you that a dump is in effect, the Executive causes the following message to appear at
the terminal:

Postmortem dump will be generated

PMD receives the request, creates a file in directory [1,4] on the library device, and generates a
request to the spooler to print the file. The file has the name of the task and a type of PMD.
The print spooler automatically deletes a file with the file type PMD after it is printed.

5.3 Using the Snapshot Dump
The snapshot dump ($SNAP) capability is a subset of PMD but requires special code in the task.
Whereas PMD generates a dump of an entire task, the snapshot dump can produce a dump
of only a portion of the task. Also, PMD generates a dump only when the task terminates
abnormally, but the snapshot code can produce a dump at any place in the task execution.
You include the necessary snapshot code in the task by editing the source file and inserting
the snapshot macro calls where you want to produce a dump. (The snapshot macro calls
the PMD task as described in the RSX-llM-PLUS and Micro/RSX Task Builder Manual). After
you reassemble the modules containing the snapshot calls, you rebuild the task and substitute
the reassembled modules. When you use snapshot macro calls, you do not need any special
switches or options for TKB.

Using Debugging Aids 5-9

When you run the task and that section containing the special code is executed, a snapshot
dump is taken. The special code generates a request for the PMD task. No special messages
are printed at the terminal. To hold the dump, PMD creates a file with the name of the task
and a file type of PMD in the directory that is the same as the User Identification Code (UIC)
under which the task is running. PMD then generates a request for the spooling task to print
and delete the file.

5-10 Using Debugging Aids

Chapter 6
Creating and Using Program Libraries

This chapter describes the procedures that create and maintain a library of macro source
statements and a library of object module subroutines. It also shows how to include in your
task image the macro call definitions and the object subroutines from user-created libraries.

The decision about whether to implement specific code as a macro call or as an object module
subroutine is left to the designer. In general, the difference between implementations is in
the tradeoff between assembly time and linking time and, secondarily, between convenience
and size: Each time your source file invokes a specific macro call, the assembler must include
the macro expansion in the object module. However, when your program calls an external
subroutine, the resolution of the call is done during linking. Moreover, using the macro call
to generate online code is convenient, but each invocation of the call increases the size of the
resulting task image. However, if your program calls a specific external subroutine more than
once, the subsequent invocations do not include that code in the task.

6.1, Creating and Using a Macro Source Library
The LIBRARY command creates and maintains library files that can contain macro definitions,
object modules, or other elements. This section discusses creating a library file of macro
definitions. Such a file has the default file type MLB and contains only macro definitions.

6. 1. 1 Creating the Macro Library

Use the LIBRARY/CREATE command to create a macro library from one input file of source
definitions as follows:

$ LIBRARY/CREATE: (BLOCKS:25.MODULES:128)/MACRO ~
Li brary? USRMAC ~
Module (8)? USRMAC ~
$

or

$ LIBRARY/CREATE: (BLOCKS:25.MODULES:128)/MACRO USRMAC USRMAC ~
$

Creating and Using Program Libraries 6-1

The /CREATE qualifier produces a library file named USRMAC.MLB. The file or files specified
after the Module(s)? prompt are input to the library file. In Example 6-1, the input file is
USRMAC.MAC.

Example 6-1: MACRO-11 Library Source Definitions

SAVE - STORES REGISTER ON STACK

. MACRO SAVE,REG PUSH REG ONTO STACK
MOV REG,-(SP)
. EN OM

RESTOR - POPS REGISTER VALUE OFF STACK

.MACRO RESTOR,REG
MOV (SP)+,REG POP REG OFF STACK
.ENOM
. END

The arguments to the /CREATE qualifier specify features of the library you are creating.
Because there is more than one argument, each is enclosed in parentheses and separated by
commas (,). The argument BLOCKS:25 gives the length in blocks for the library file. (DCL
uses the decimal value automatically for all LIBRARY command arguments.) If you omit this
argument, a file 100 blocks long is created by default. The argument MODULES:128 indicates
the number of module name table (MNT) entries to allocate for this library. (Each macro
definition in the library requires an entry in the MNT.)

The /MACRO qualifier identifies the type of library you wish to create. The default type is the
/OBJECT qualifier (to create an object module library).

The Library? prompt requests that you name the library to be created. For macro libraries, the
default file type is MLB. The Module(s)? prompt requests you to name the file or files containing
the macro definitions. The default file type for this parameter is MAC. (If you do not name a
file here, an empty file is created.)

When the macro library is created, the requested amount of contiguous file space is allocated.
If sufficient contiguous space is not available, an "Open failure" error is generated and library
creation terminates. To have the library created, you must either free up some space on the
volume or try a smaller library size.

When the library file is created, an attempt is made to insert the macro definitions from the
input file into the library. The input file is searched for .MACRO and .ENDM directives. If the
macro definitions are nested, only the outermost directives are directly callable from the library.
The name is extracted from each macro definition, and an entry is created in the MNT. The
entry in the MNT is the means by which the assembler finds the associated macro definition
in the library. Any code or comments outside the directives are discarded and all trailing blank
and tab characters, blank lines, and comments are eliminated from the macro text itself. (This
action, called squeezing, conserves memory for the assembler and reduces the space required to
hold the macro definitions.) Errors occurring during the insertion of definitions usually indicate
improper definitions, such as a missing .ENDM directive.

6-2 Creating and Using Program Libraries

6. 1.2 Using the Macro Definitions from the Library

Once the macro definitions are in the library, you need perform only three actions to have the
assembler include the macro expansions in your code:

1. Include the name of the macro in a .MCALL directive in your program source file.

2. Invoke the macro call within the source file.

3. Specify the name of the library file in the command line to the assembler.

Thus, to invoke the two macro library definitions SAVE and RESTOR in your program, precede
the macro calls themselves with a statement such as the following:

. MCALL SAVE.RESTOR ; CALL DEFINITIONS FROM USRMAC

This statement should occur at the start of the source file. When you assemble a source file that
refers to a library file, you must name both files in your MACRO command line, as follows:

$ MACRO USRMAC/LIBRARY. USRTST/LIST rnm
The name of the macro library can appear anywhere but last in the list of input files and
must be marked with the /LIBRARY qualifier. The next file named is the first source file. To
process the macro calls in the source file, the assembler uses the names given in the .MCALL
directive to generate symbols for the macro symbol table. If you omit the name of the macro
call from the .MCALL directive, the assembler cannot recognize the call itself in the code. (A
corresponding entry is not in its macro symbol table.) It treats an unrecognized macro call as
an implicit .WORD directive. If the macro name is not a valid symbol, its usage is flagged as
an undefined reference by TKB. To expand the macro calls not defined in the source file, the
assembler searches the library you specified before it searches the system default macro library.
The MACRO-II assembler does not search the system macro library for definitions that are
found in the user library file. .

6.2 Creating and Using an Object Module Library
The LIBRARY command may be used to create a library file containing object modules. Such a
file has the file type OLB (object library) as a default and can contain only object modules.

6.2.1 Creating the Object Module Library

To create an object module library, you must have a file or files that contain the object modules
to be inserted into the library. The following command lines create the object library and insert
the modules FILEA.OBJ and FILEB.OBJ:

$ LIBRARY/CREATE: (BLOCKS: 25.GLOBALS: 128.MODULES:64)/OBJECT rnm
Library? USROBJ rnm
Module(s)? FILEA.FILEB rnm
$

or

$ LIBR/CRE: (BLO:25.GLOB:128.MOD:64)/OBJ USROBJ FILEA.FILEB rnm
$

Creating and Using Program Libraries 6-3

The jOB}ECT qualifier is not required because it is the default, but it is a good idea to include
it. The default file type for an object module library is OLB. The default file type for the object
module files is OB}. The arguments to the jCREATE qualifier are the same as those used in
creating a macro library, with the addition of the GLOBALS argument (which applies to object
libraries only). The GLOBALS argument specifies the number of entry point table (EPT) slots
to reserve. (An entry point is any global symbol in a module by which your program refers
to the associated module.) If you do not supply a value, the default is GLOBALS:5I2. If you
supply a value of 0, you can maintain modules with duplicate entry points in the same library.
The names of the modules must still be unique. When building a library with GLOBALS:O,
you must specify the correct module names to the Task Builder (TKB) when you build your
task (see Section 6.2.2.). A good estimate for the number of EPT slots is twice the number of
modules the library will contain. The value should be a multiple of 64. If not, the number is
raised to the next multiple of 64. Again, all these numbers are decimal numbers in DCL.

When creating the object library file, the requested amount of contiguous space is allocated. You
can estimate the number of contiguous blocks required by using the DIRECTORY command.
Request a directory listing of all the files to be inserted in the library and use the total number of
blocks displayed by the DIRECTORY command. If sufficient contiguous space is not available,
an "Open failure" error is generated and library creation terminates. To have the library created,
you must either free up some space on the volume or try to build a smaller object library.

When the object library is created, an attempt is made to insert, in the library, the object
modules from the input file or files. The object library arranges the entries in the MNT in
alphabetical order by module name. The module name used is the one you specified in the
.TITLE directive when you assembled the object module. The module names and entry points
must be unique. The global symbols in each object module are entered in the EPT. If a module
name or an entry point is found that duplicates one already used, an error message is printed
and processing stops.

If you suppress including entry points in the library EPT, you can insert, in the library, object
modules having duplicate entry points. This feature enables you to maintain slightly different
modules of the same general type in the same library. You select the correct module by
specifying the unique module name to TKB when you build your task.

If an error "is found, no modules are inserted in the library from the file containing the error.
You must eliminate the error condition and insert the modules from the corrected file again. If
no errors are found, all the modules are entered in the library. To ascertain what modules were
inserted, obtain a listing of the library, as described in Section 6.3.3.

6.2.2 Using the Object Modules from the Library

When the object modules are in the library, you need perform only two actions to have TKB
include the routines in your task.

1. Include the CALL x statement in the calling module (where x is an entry point to the
called module). (It is assumed that the called module has a global statement to define the
entry point.) CALL is a macro statement that is a permanent symbol in the MACRO-II
assembler. It standardizes subroutine calling conventions. CALL x translates to }SR PC,x
(Jump to Subroutine program counter), where x is the subroutine entry point.

2. Specify the name of the library file and the names of the called modules in the command
line to TKB.

6-4 Creating and Using Program Libraries

Thus, to invoke subroutines from the library, ensure that the CALL statements are in your
program. When you build a task, use a LINK command line similar to the following:

$ LINK/TASK:SUPLIB/MAP:SUPLIB ffi[D
File(s)? FILE.USROBJ/INCLUDE:(TTREAD.TTWRIT) ffi[B
$

or

$ LINK/TA:SUPLIB/MAP:SUPLIB FILE. USROBJ/INC: (TTREAD.TTWRIT) mfD
$

By including file specifications as arguments to the /TASK and /MAP qualifiers, you caus'e the
outfiles from the LINK command to be named SUPLIB.TSK and 5UPLIB.MAP, respectively. The
/INCLUDE qualifier identifies the file USROBJ.OBJ as an object library. The names appearing
in parentheses, after the /INCLUDE qualifier, are the names of the modules to be extracted
from the library and placed in the task. (Remember that these module names are derived from
the names given in the . TITLE directive in the macro source files, and not from the file from
which these modules were assembled.)

This method of specifying an object library search is more direct and faster than the method
described in Section 6.2.3. If you are using a large library, TKB need only search the MNT
for those object modules you specify. The disadvantage is that you have the responsibility to
specify the names of all the modules that your task requires. If, however, you are using a
library with zero entry points, the /INCLUDE qualifier is the only method of telling TKB which
modules to include from that library.

6.2.3 Using the Library to Resolve Undefined Global Symbols

Often, the modules in a task refer to global symbols that are defined in other modules. If
the modules that define the global symbols reside in a library, you can have TKB search
the library. The /LIBRARY qualifier, specified with an input file specification for a LINK
command, indicates that the entire library is to be searched. The /LIBRARY qualifier replaces
the /INCLUDE qualifier as follows:

$ LINK/TASK:LB/MAP:LB FILE. USROBJ/LIBRARY ffi[D
$

The /LIBRARY qualifier instructs TKB to search the library EPT for symbols that are referred to
but not defined. When TKB finds a symbol in the table that is unresolved in the task, it extracts
the defining module and places it in the task. If any symbols remain unresolved after the user
library search, TKB searches the system library. This method requires less effort on your part
than when you use the /INCLUDE qualifier. Note that if you are using a large library, the task
build may take considerable time.

Creating and Using Program Libraries 6-5

6.2.4 Dual Use of the Library
Under certain circumstances, you may want TKB to include specific modules from the library
and also to search the same library to resolve any undefined references that may occur. For
example, you may have conditional code in the main part of a task and not know what global
symbols are referenced. TKB allows you to specify the ~o forms of the library search. This
can be done by combining the /INCLUDE and /LIBRARY qualifiers in the same command line
as follows:

$ LINK/TASK: LBOPT /MAP : LBOPT mm
File(s)? FILE, USROBJ/INCLUDE:TTREAD, USROBJ/LIBRARY ffi[U
$

or

$ LINK/TASK:LBOPT/MAP:LBOPT FILE, USROBJ/INC:TTREAD, USROBJ/LIB mm
$

Once again, the arguments to the /TASK and /MAP qualifiers change the names of the
associated output files. The /INCLUDE qualifier on the file specification for USROBJ.OLB
instructs TKB to extract the named module. Notice that because only one module is named, the
parentheses are not necessary. The /LIBRARY qualifier in the file specification for USROBJ.OLB
instructs TKB to search that library for any unresolved global symbols. TKB includes in the
task any modules from the library that are unresolved at that point in the task build. If any
unresolved symbols remain after the search of the user library, TKB searches the system library.

6.3 Maintaining User Libraries
This section decribes the following three simple operations used to maintain a user library:

• Adding modules to a library

• Replacing a module in a library

• Obtaining information about a library

This is done using the LIBRARY/INSERT, LIBRARY/REPLACE, and LIBRARY/LIST commands.

6.3.1 Adding Modules to a Library
Modules can be added to it library with the LIBRARY/INSERT command as follows:

$ LIBRARY /INSERT lliITl
Library? USRMAC. MLB mm
Module (s)? MAC1, MAC2 lliITl
$

or

$ LIBRARY/INSERT USRMAC.MLB MAC1,MAC2 ffi[U
$

Type the name and type of the library in response to the Library? prompt. At the Module(s)?
prompt, type in the names of the files containing the library modules. The default file type for
files containing library modules is the same as the library type you specified.

6-6 Creating and Using Program Libraries

You cannot add modules to a library that has no remaining entries in the MNT. (If you are
creating an object module library, there must be sufficient EPT slots as well.) When a module
is inserted in a library, a check is made to be sure that a module of the same name does not
currently reside in the library. If such a module is found, an error is reported and nothing is
done. (For inserting object modules, a check is also made for duplicate entry point names.)
To add modules with duplication, see the discussion of LIBRARY/REPLACE command in
Section 6.3.2.

6.3.2 Replacing a Module in a Library
After you create a library, you will need to change and update modules in the library from time
to time. Because a module of the same name (and, for object modules, the same entry points)
already exists, you must perform a replace operation. This is done with the LIBRARY/REPLACE
command as follows:

$ LIBRARY/REPLACE rnrn
Li brary? USROBJ rnrn
Module (8)? FILEA rnrn
Module "TTREAO" replaced

$

or

$ LIBRARY/REPLACE USROBJ FILEA rnrn
Module "TTREAO" replaced

$

This command line logically deletes the module TTREAD and all associated entry points for
that name from USROBJ.OLB. The new version of module TTREAD is inserted from FILEA.OBJ
and a message is printed. If a module to be replaced is not found in the library, an insertion is
performed but no message is printed.

Note that LIBRARY/REPLACE command causes a logical deletion and does not reclaim the
space occupied by the module you replace. To reclaim this lost space, you should occasionally
use the LIBRARY/COMPRESS command. (See the Micro/RSX User's Guide, Volume 1 and
Micro/RSX User's Guide, Volume 2 for information about the LIBRARY command.)

6.3.3 Obtaining Information About a Library
To obtain information about a library, type a LIBRARY/LIST command in the following format:

$ LIBRARY/LIST:LBLIST/NAMES/FULL rnrn
Li brary? 00. OLB rnrn
$

or

$ LIB/LIS:LBLIST/NAMES/FULL OO.OLB rnrn
$

This command line accesses the library file DD.OLB. The list appears in the file in your directory
called LBLIST.LST. The /FULL qualifier lists entry points and full information (size, date of
creation, and, for object modules, identification).

Creating and Using Program Libraries 6-7

To list the information on the terminal instead of a file, use the LIBRARY/LIST command
without a file specification argument to the /LIST qualifier as follows:

$ LIBRARY/LIST/FULL USRMAC. MLB [BIT]

(Information listed)
$

6-8 Creating and Using Program Libraries

Chapter 7
Using Logical Name Commands

7. 1 logical Names
This chapter provides information on using logical name commands. The syntax of the following
commands is given in detail:

• ASSIGN

• DEASSIGN

• DEFINE

• SHOW ASSIGNMENTS and SHOW LOGICALS

A logical name is a user- or system-defined name for an equivalence name, which can be the
following:

• All or part of a file specification-This keeps your programs and command procedures
independent of physical file specifications.

• A physical device-You can assign logical names to devices such as magnetic tape drives,
terminals, and line printers. The system manager can assign logical names to public disk
volumes so that users do not have to be concerned with the physical location of these
volumes.

• Anything created by the DEFINE command (see Section 7.4 for more information).

To reduce typing, you can use logical names as a shorthand way of specifying files or directories
that you refer to frequently. For example, you might assign the logical name HOME to your
default disk and directory, or the logical name DIARY to a file in which you keep a log of your
daily activities. You can also use logical names in file specifications to keep your programs and
command procedures independent of physical file specifications.

Using Logical Name Commands 7-1

7. 1. 1 Logical Name Tables
The system maintains logical name and equivalence name pairs in the following four logical
name tables:

Task logical name table
Contains logical name entries that are created for an individual task using the Create
Logical (CLOG$jCLON$) directive. These entries remain in the table for only as long as
the task is running. When either the task has completed execution or the Delete Logical
(DLOG$jDLON$) directive has been issued, the logical names are removed from the table.
(See the RSX-llM-PLUS and MicrojRSX Executive Reference Manual for more information on
the CLOG$jCLON$ and the DLOG$jDLON$ directives.)

User logical name table
Contains logical name entries that are local to a particular user or terminal session. By
default, the DEFINE and ASSIGN commands and login assignments place a logical name
in the session logical name table.

Group logical name table
Contains logical name entries that are qualified by a group number. These entries can be
accessed only by tasks that execute with the same group number in their User Identification
Codes (UICs) as the user that assigned the logical name. You must use the jGROUP
qualifier to make an entry in the group logical name table.

System logical name table
Contains entries that can be accessed by any task in the system. You must use the jSYSTEM
or jGLOBAL qualifier to make an entry in the system logical name table.

You must be privileged to place entries in the group and system logical name tables.

7.1.2 Displaying Logical Name Table Entries
The SHOW LOGICALS and SHOW ASSIGNMENTS commands display current entries in the
logical name tables.

To display the contents of the session logical name table, enter the SHOW LOGICALS or
SHOW ASSIGNMENTS command, without any qualifiers or parameters as follows:

$ SHOW LOGICALS lliffi

or

$ SHOW ASSIGNMENTS ffiffi

These commands produce a display of the current logical names in the session logical name
table and their equivalence.

7-2 Using Logical Name Commands

You can request the system to display all entries in the specific logical name table. For example:

$ SHOW LOGICALS/SYSTEM mm
$ SHOW LOGICALS/GLOBAL mm
$ SHOW LOGICALS/GROUP: g mm
$ SHOW LOGICALS/LOCAL mTIJ
$ SHOW LOGICALS/LOGIN mm
$ SHOW LOGICALS/ALL mm
$ SHOW LOGICALS/TERMINAL:ttnn: mm
The SHOW LOGICALSjSYSTEM and the SHOW LOGICALSjGLOBAL commands display all
the global logical assignments in the system.

The SHOW LOGICALSjGROUP command displays the logical names accessible to users with
the same group number. The argument g allows you to specify a specific group number. (This
is a privileged command.)

The SHOW LOGICALS jLOCAL command displays the local and login logical assignments.

The SHOW LOGICALSjLOGIN command displays only the login logical assignments.

The SHOW LOGICALSj ALL command displays the system, your group, locat and login logical
assignments.

The SHOW LOGICALSjTERMINAL:ttnn: command displays local and login logical assignments
for the specified terminal (ttnn). The jTERMINAL qualifier may be used in conjunction with
the jLOCAL, jLOGIN, and j ALL qualifiers.

7. 1.3 How to Create and Delete Logical Names
Logical names and equivalence name strings can each have a maximum of 255 characters, and
they can be used to form all or part of a file specification. If only part of a file specification
is a logical name, it must be the leftmost component of the file specification. You can then
specify the logical name in place of the device (or device and directory name) in subsequent file
specifications, terminated by a colon (:).

When you specify an equivalence name for the ASSIGN command, you must specify it using
the proper punctuation marks (colons, brackets, periods). If you specify only a device name,
you must terminate the equivalence name parameter with a colon; if you specify a device and
directory name, or a full file specification, do not terminate the equivalence name with a colon.

You can optionally terminate a logical name with a colon. If you do this, the ASSIGN
command removes the colon before placing the logical name in the logical name table. The
DEFINE command, on the other hand, does not remove the colon before placing the logical
name in the logical name table. However, if you specify a colon at the end of the logical name,
and if you want the colon as part of the logical name, use the DEFINE command to create the
logical name.

To delete a logical name, use the DEASSIGN command. Generally, to delete a logical name
created by the DEFINE command, you should put quotation marks (") on both sides of the
logical name in the DEASSIGN command line. For example, to delete the logical name TASK
(created by the DEFINE command), use the following command line:

$ DEASSIGN "TASK:" mm

Using Logical Name Commands 7-3

You do not need the quotation marks to delete any logical names created by the ASSIGN
command.

7. 1.4 Logical Name Translation

For logical names created using the ASSIGN command, if the system finds a logical name, it
substitutes the equivalence name for the logical name in the file specification. This is called
logical name translation.

When the system translates logical names, it searches the task, user, group, and system tables
(in that order), and uses the first match it finds.

If you are not sure about the equivalence name assigned to a logical name, use either the SHOW
LOGICALS or SHOW ASSIGNMENTS command.

7. 1.5 Iterative Translation

When the system translates logical names in file specifications, the logical name translation can
be iterative. This means that after the system translates a logical name in a file specification,
it repeats the process of translating the file specification. For example, consider the following
logical name table entries made with the ASSIGN commands:

$ ASSIGN LB: [3.54] RANDOM m:rn
$ ASS I GN RANDOM: VMR . TSK TASK lliill

The first ASSIGN command equates the logical name RANDOM to the device and directory
specification LB:[3,54]. The second ASSIGN command equates the logical name TASK to the
equivalence string RANDOM:VMR.TSK. In subsequent commands, or in programs you execute,
you can refer to the logical name TASK. For example:

$ RUN TASK m:rn
When the system translates the logical name TASK, it finds the equivalence string
RANDOM:VMR.TSK. The system then checks to see if the portion to the left of the colon
(if there is a colon) in the equivalence name is a logical name. If it is a logical name (as
RANDOM is in this example), the system translates that logical name also. When the logical
name translation is complete, the translated device and file specification is LB:[3,S4]VMR.TSK.

Note
The system limits logical name translation to 10 levels. If you define more than
10 levels or create a circular definition, an error occurs when the logical name
is used.

You can control the translation of logical names by using the jFINAL qualifier on either the
ASSIGN or DEFINE command. For example, you assign three levels of logical names in the
following manner:

$ ASSIGN DBO: [TSTSYS] TEST5: m:rn
$ ASSIGN/FINAL TEST5: LAST: ffi[U
$ ASSIGN LAST: DISK: ffi[U

Without the jFINAL qualifier on the second assignment, the logical name DISK would eventually
be translated into the equivalence name DBO:[TSTSYS]. Because you applied the jFINAL qualifier
to the second assignment, the translation stops at the equivalence name TESTS. The task is less
hardware dependent when you use this qualifier. If for some reason, DBO is no longer available

7-4 Using Logical Name Commands

for use, you can assign TESTS to point to another disk drive (when the task is not running)
without having to change the task itself. However, at some point, you (or the task) have to refer
to the logical name TESTS (for example, spawning another task, or issuing a ACHN$ directive)
in order for the translation from DISK to DBO:[TSTSYS] to work. For more information on the
ACHN$ directive, see the RSX-IIM-PLUS and Micro/RSX Executive Reference Manual.

7.2 ASSIGN Command
The ASSIGN command equates a logical name to a Files-II physical device name, to all or part
of a Files-II file specification, or to another logical name. All references to the logical name are
resolved by the operating system.

Formats

or

$ ASSIGN
Logical name equivalent? equivalence_name
Logical name? logical_name

$ ASSIGN[!qualifier[s]] equivalence_name logical_name

Command Qualifiers
/FINAL
/GLOBAL
/GROUP[:g]
/LOCAL
/LOGIN
/SYSTEM
/TERMINAL:ttnn:
/TRANSLATION:FINAL

Parameters

equivalence_name
Specifies the Files-11 device or file specification that you have defined as the substitution
for the logical name. The equivalence name can also be another logical name that will be
iteratively invoked.

The ASSIGN command checks the syntax of an equivalence name that is a device or file
specification. When you specify an equivalence name that will be used as a file specification,
you must include the punctuation marks (colons, brackets, periods) that would be required
if the equivalence name were used directly as a file specification. Therefore, if you specify a
device name as an equivalence name, terminate the device name with a colon. The ASSIGN
command will not remove the terminating colon. If you did not correctly specify the device
or file, the ASSIGN command fails. Also, if you specify quotation marks (1/) around the
equivalence name, the ASSIGN command retains the quotation marks. (This differs from
the DEFINE command, which removes the quotation marks.)

logicaLname
Specifies the name you selected that you want to give the device or file specification.

Using Logical Name Commands 7-5

If you terminate the logical name with one colon (:) or two colons (::), the system removes
the colons before placing the name in the logical name table. (This differs from the DEFINE
command, which retains the colons.) The ASSIGN command removes the colons because
FCS-11 and RMS-l1 file access methods do not consider the terminating colons to be part
of the logical name that either file access method attempts to process.

A logical name may contain the following ASCII characters: the 26 letters A to Z; the
numbers 0 to 9; and the characters underscore (_), colon (:), and dollar sign ($).

The length of the logical name is limited by the legal length of a command line, which is
255 characters. For example, if the length of the ASSIGN command plus qualifiers plus the
equivalence name plus spaces is 24 characters, the logical name cannot be more than 231
characters long.

The ASSIGN command will do complete logical translation of the equivalence string and
create the logical with the jFINAL qualifier. The logical name and equivalence name consist
of a device in ddnn format. The physical device specified in the equivalence name must
exist in the system. These guidelines provide compatibility with previous logical name
capability.

The ASSIGN command will also do zero compression on the logical and equivalence names.

Command Qualifiers

/GlOBAl
/SYSTEM

Specifies that the assignment is to be a system table assignment. The jSYSTEM and
jGLOBAL qualifiers are synonyms and are privileged qualifiers. System assignments apply
to all tasks running on the system.

/GROUP[:g]
Specifies that the assignment is to be a group assignment.

The argument g is the UIC group number of the users who share the logical name. If you
do not specify a group number, the default is your own group number, which is taken from
your current protection UIC. If you are nonprivileged, the group number is same as the
UIC that is assigned to you when you log in.

/lOCAl
Specifies that the assignment is to be a local assignment. This is the default qualifier, so
you do not need to specify it.

Commands and tasks initiated from your terminal can access devices or files through the
logical names assigned to them. Note that no automatic de assignment occurs if you dismount
a device after assigning a logical name to it.

You can define your own set of local assignments for your terminal. These local logical
names exist only for your terminal.

/LOGIN
Specifies that the assignment is to be a login assignment. This is a privileged qualifier.

7-6 Using Logical Name Commands

Login assignments are usually established through ACNT, the Account File Maintenance
Program. However, the ASSIGN/LOGIN command does not alter the account file. These
logical names exist for your account, and they are available to you regardless of the terminal
on which you log in.

When a user issues a LOGIN command to log in to the system, the system automatically
assigns the logical name SYS$LOGIN to the user's default device and directory, which is
the device and directory that contains the user's files.

/TERMINAL:ttnn:
Specifies that the requested local assignment be applied to another terminal. Only a
privileged user may make assignments to other terminals. Note that the target terminal
must be logged in before the assignment can be made.

/FINAL
/TRANSLATION:FINAL

Specifies that the equivalence name string should not be translated iteratively; that is,
the logical name translation should terminate with the current equivalence string. See
Section 7.1.4 for more information on the iterative translation of logical names. The
/TRANSLATION:FlNAL qualifier is a synonym for the /FINAL qualifier, which is included
for VMS compatibility.

Examples

$ ASSIGN @ill
Logical name equivalent? DU1: @ill
Logical name? TP1: @ill

Assigns the logical name TP1 to the physical device DU1. The user may now issue commands
referring to device TP1 (in any command that accepts a device specification) and DU1 will be
substituted for it.

$ ASSIGN LBO: RR2: @ill

Assigns the logical name RR2 to the pseudo device LBO. This logical name exists for your
terminal only.

$ ASSIGN/GROUP:303 DUO: [1,1]SYSLIB.OLB;3 SYS$LIB @ill

Assigns the logical name SYS$LIB to file SYSLIB.OLB;3, which is located on device DUO in
directory [1,1]. This logical name exists for users whose UIC group number is 303.

$ ASSIGN/TERMINAL:TT4: DU2: [TEST] A: @ill
$ SHOW ASSIGNMENTS/TERMINAL:TT4: @ill
A = DU2: [TEST] (Local, TT4:)

Assigns the logical name A to the directory [TEST], which i~_ located on device DU2 for all
commands and tasks initiated from TT4. The user then issues a SHOW ASSIGNMENTS
command to display the logical name. These commands must be issued from a privileged
terminal. Also, the terminal TT4 must be logged in before the assignment can be made.

Using Logical Name Commands 7-7

$ ASSIGN/GLOBAL DL1: XX1: ~

Assigns the logical name XXI to the physical device DLl. All users and tasks on the system
can refer to XXI when they initiate commands and tasks. This command must be issued from
a privileged terminal. The string DLI can also be used to reference the physical device DLl.

$ ASSIGN DUl DQ ~
$ SHOW ASSIGNMENTS ~
DQ = DU1: (Local, TT:)

Assigns the logical name DQ to the physical device DUI. Although the user did not terminate
the equivalence name (DUl) with a colon, DCL recognizes that the equivalence name resembles
the former ASSIGN command device format (ddnn). Because the ASSIGN command line is in
this format, DCL automatically terminates the equivalence name string with a colon, as shown
when the user issued the SHOW ASSIGNMENTS command.

$ ASSIGN DUO: [TSTSYS] TEST5: ~
$ ASSIGN/FINAL TEST5: LAST: ~
$ ASSIGN LAST FIRST ~

Shows three assignments. First, the user assigns logical name TESTS: to the equivalent name
DU:[TSTSYS]. Second, the user then assigns the logical name LAST to the equivalent name
TESTS: with the /FINAL qualifier. Third, the user assigns the logical name FIRST to the
equivalent name LAST. When a task (for example) refers to the logical name FIRST, the
translation is carried only as far as the equivalent name TESTS: and then stops.

Notes

1. The order of precedence in logical names, from highest to lowest, is: task, local, login,
group, and global. This means that if the logical name DEV has a global assignment of
DUI but a local assignment of DU2, the operating system interprets DEV to be DU2 for
your terminal.

2. The ASSIGN command is counteracted by the DEASSIGN command.

3. You can display current assignments with either the SHOW ASSIGNMENTS or SHOW
LOGICALS command.

4. The logical name SYO can be assigned only to, a device.

S. The ASSIGN/REDIRECT command is described in the Micro/RSX User's Guide, Volume 1
and the Micro /RSX User's Guide, Volume 2.

6. The ASSIGN/TASK command is described in the Micro /RSX User's Guide, Volume 1 and
the Micro /RSX User's Guide, Volume 2.

7. The ASSIGN/QUEUE command is described in the RSX-11M-PLUS and Micro/RSX System
Management Guide and the Micro /RSX User's Guide, Volume 1.

7-8 Using Logical Name Commands

Error Messages

ASS-Device not in system

Explanation: The specified equivalence device name does not exist in the system.

User Action: Specify a device that is recognized by the system and reenter the command
line.

ASS-Device not terminal

Explanation: You did not specify a terminal when you issued the ASSIGN/TERMINAL
command.

User Action: Specify a terminal and reenter the command line.

ASS-Terminal not logged in

Explanation: The terminal you attempted to make a logical assignment to is not logged in.

User Action: Log in the terminal you want to make the assignment for and reenter the
command line.

ASS-Octal grol$ number expected

Explanation: You did not specify an octal group number value when you issued the
DEFINE/GROUP command.

User Action: Check the group number that you want and reenter the command.

7.3 DEASSIGN Command
DEASSIGN cancels logical name assignments made by the ASSIGN and DEFINE commands.

Format

$ DEASSIGN[/qualifier[s]] logical_name

Command Qualifiers
/ALL
/GLOBAL
/SYSTEM
/GROUP[:g]
/LOCAL
/LOGIN
/TERMINAL:ttnn:

Parameter

logicaLname
Specifies the logical name assignment that you want to delete. This parameter is required
with all qualifiers except the / ALL qualifier.

Using Logical Name Commands 7-9

If you terminate the logical name parameter with one colon (:) or two colons (::), the
command interpreter removes the colons. (Note that the ASSIGN command, also, removes
trailing colons, if present, from a logical name before placing the name in the logical name
table.) If a colon is present at the end of the actual logical name, you must place quotation
marks (") around the logical name parameter for the DEASSIGN command (for example,
DEASSIGN "file:").

A logical name can contain any ASCII characters. However, if a logical name includes
characters other than the 26 letters A to Z; the numbers 0 to 9; and the characters
underscore (_), colon (:), or the dollar sign ($); you must place a quotation mark on each
side of the logical name. For example, the logical name INFILE does not require quotation
marks, but you must specify the logical name C3_PO in the command line as "C3_PO".
Generally, any logical name created by the DEFINE command should have the quotation
marks placed on either side of the logical name in the DEASSIGN command line.

For systems without extended logical name support, logical_name specifies the logical device
name. This is a required parameter except with the / ALL qualifier. Logical device names
have the same format as all other device names, a two-letter mnemonic followed by an
octal number terminated by a colon.

Command Qualifiers

Any other qualifier can be used with the / ALL qualifier. The /TERMINAL qualifier can be
used with the /LOGIN or /LOCAL qualifier.

/All
Deletes all logical name assignments for a particular table.

If you use the / ALL qualifier with another qualifier, all assignments of the type specified
by the other qualifier are deleted.

Because the / ALL qualifier deletes all the logical name assignments in a given category,
you do not specify the logical name parameter in the command line.

/GlOBAl
/SYSTEM

Deletes a global logical name assignment in the system logical name table. This deassignment
applies to all tasks running in the system. The /SYSTEM and /GLOBAL qualifiers are
synonyms and are privileged qualifiers. You cannot specify the /TERMINAL qualifier with
the /GLOBAL qualifier.

/GROUP[:g]
Deletes a group logical name assignment in the group logical name table. The argument g
identifies the User Identification Code (UIC) group number for which the logical name exists.
If you do not specify a UIC group number, the default is your own group number, which
is taken from your current protection UIC. If you are nonprivileged, the group number is
same as the UIC that is assigned to you when you log in.

/lOCAl
Deletes a local logical name assignment in the group logical name table. The /LOCAL
qualifier is the default.

7-10 Using Logical Name Commands

/LOGIN
Deletes a login logical name assignment. The /LOGIN qualifier is privileged.

/TERMINAL:ttnn:
Allows you to delete a logical name assignment of another terminal. You cannot specify the
/TERMINAL qualifier with the /GLOBAL qualifier. Only privileged terminals can delete
assignments made from other terminals.

Examples

$ DEASSIGN TPO: @[B

Deletes the local assignment of logical name TP to a device. The DEASSIGN command ignores
the terminating colon.

$ DEASSIGN/ALL @[B

Deletes all local logical name assignments.

$ DEAS/LOCAL/ALL rnrB
Provides the same results as the previous example. The /LOCAL qualifier is the default.

$ DEAS/LOCAL/ALL/TERMINAL:TT4: ~

Deletes all local assignments for terminal TT4. This command must be issued from a privileged
terminal.

$ DEASSIGN "XY:" @IT]

Deletes the logical name XY (created with the DEFINE command).

Notes

1. The DEASSIGN command counteracts ASSIGN and DEFINE commands.

2. You must type at least the first four characters of the DEASSIGN command.

3. Login assignments are normally established through the Account File Maintenance Program
(ACNT).

4. You can display assignments with either the SHOW ASSIGNMENTS or SHOW LOGICALS
command.

5. All local assignments are deassigned when you either log out or log in.

6. The DISMOUNT command does not delete logical name assignments.

7. The DEASSIGN/QUEUE command is described in the Micro/RSX User's Guide, Volume 1.

Error Messages

OEA-Oevice not terminal

Explanation: The /TERMINAL qualifier named a device that is not a terminal.

User Action: Retype command after checking for proper syntax.

Using Logical Name Commands 7-11

DEA-Octal group number expected

Explanation: You did not specify an octal group number value when you issued the
DEFINE/GROUP command.

User Action: Check the group number that you want and reenter the command.

7.4 DEFINE Command
The DEFINE command equates a logical name to an explicit ASCII text string (for example,
I/$_TESTFILE @@6") or to another logical name. All references to the logical name are resolved
by the operating system.

Note that the DEFINE command does not perform validity checks for node names, device
names, User File Directory (UFD) specifications, or file specifications. If you intend to use a
logical name as part of a Files-11 file specification, you should use the ASSIGN command to
create the logical name. The ASSIGN command performs several validity checks to ensure that
the logical name will be recognized by the system.

Formats

$ DEFINE
Logical name? logical_name
Equivalent name string? equivalence_name

or
DEFINE[/ qualifier[s]] logical_name equivalence_name

Command Qualifiers
/GLOBAL
/SYSTEM
/GROUP[:g]
/LOGIN
/LOCAL
/TERMIN AL:ttnn:
/FINAL
/TRANSLATION:FINAL

Parameters

logical_name
Specifies the selected name to give the device or file specification.

A logical name can contain any ASCII characters. However, if a logical name includes
characters other than the 26 letters A to Z; the numbers 0 to 9; or the characters underscore
(_), or colon (:), or the dollar sign ($); you must place quotation marks (II) on each side of
the logical name. For example, although the logical name INFILE does not require quotation
marks, you must specify the logical name C4PO* in the command line as IIC4PO*". Unlike
the ASSIGN command, the leading and trailing quotation marks are stripped off when the
logical assignment occurs.

7-12 Using Logical N arne Commands

If you specify a colon at the end of the logical name, the DEFINE command saves the
colon as part of the logical name. (This is in contrast to the ASSIGN command, which
removes the colon before placing the name in the logical name table.) Note, however,
that the system will ignore all logical names terminating with a colon when processing file
specifications.

The length of the logical name is limited by the legal length of a command line, which
is 255 characters. For example, if the length of the DEFINE command plus qualifiers plus
the equivalence name plus spaces is 24 characters, the logical name cannot be more than
231 characters long.

equivalence_name
Specifies an ASCII string (for example, any user-specified text) that you have defined as the
substitution for the logical name. The equivalence name can also reference another logical
name or a text string.

Command Qualifiers

/GLOBAL
/SYSTEM

Specifies the assignment is to be a system table assignment. The /SYSTEM and /GLOBAL
qualifiers are synonyms and are privileged commands. System assignments apply to all
tasks running in the system.

/GROUP[:g]
Specifies that the assignment is to a group assignment.

The argument g is the User Identification Code (UIC) group number of the users who share
the logical name. If you do not specify a group number, the default is your own group
number, which is taken from your current protection UIC. If you are nonprivileged, the
group number is same as the UIC that is assigned to you when you log in.

/LOCAL
Specifies that the assignment is to be a login assignment. This is the default qualifier, so
you do not need to specify it.

Commands and tasks initiated from your terminal can access devices and files through
the logical names defined for them. Note that no automatic deassignment occurs if you
dismount a device after defining a logical name for it.

You can define your set of logical name assignments for your own terminal. Those local
logical names exist only for your terminal.

/LOGIN
Specifies that the logical definition is to be displayed as a login definition. This is a
privileged qualifier.

You can establish login definitions any time during an individual user session. These
definitions remain in effect until you log out of the system or you specifically delete the
definition by using the DEASSIGN/LOGIN command.

Using Logical Name Commands 7-13

Normally, you place login definitions in your login command file, LOGIN.CMD, or the
system manager places them in the system login file, SYSLOGIN.CMD. Having the logical
definitions in either of these login command files saves you having to define those logicals
each time you log in. For more information on the SYSLOGIN.CMD file, see the MicrolRSX
System Manager's Guide.

/TERMINAL:ttnn:
Specifies that the requested local assignment be applied to another terminal. Only a
privileged user may make assignments to other terminals. Note that the target terminal
must be logged in before the assignment can be made.

/FINAL
/TRANSLATION:FINAL

Specifies that the equivalence name string should not be translated iteratively; that is,
the logical name translation should terminate with the current equivalence string. See
Section 7.1.4 for more information on the iterative translation of logical names. The
ITRANSLATION:FINAL qualifier is a synonym for the IFINAL qualifier, which is included
for VMS compatibility.

Examples

$ DEFINE @ill
Logical name? "TOM'S TEST" @ill
Equivalent name string? "BLEW UP" @ill
$ SHOW LOGICALS @ill
TOM'S TEST = BLEW UP (local. TTO:)

Defines the logical name TOM'S TEST to the equivalent string BLEW UP. The user issued
a SHOW LOGICALS command to verify that the assignment had been made. The DEFINE
command removes the quotation marks from the logical name.

$ DEFINE "TOM' S TEST" "BLEW UP" @ill

Provides the same results as the previous example.

Notes

1. The order of precedence in logical names, from highest to lowest, is: task, local, login,
group, and global. This means that, if the logical name BIG RIVER @ BEND has a global
assignment of RUNS SLOWLY, but a local assignment of RUNS QUICKLY, the operating
system interprets BIG RIVER @ BEND to be RUNS QUICKLY for your terminal.

2. You can counteract the DEFINE command by using the .DEASSIGN command or by
redefining the logical name.

3. You can display current assignments with either the SHOW ASSIGNMENTS or the SHOW
LOGICALS command.

7-14 Using Logical Name Commands

Error Messages

DEF-Device not terminal

Explanation: You did not specify a terminal when you issued the ASSIGN/TERMINAL
command.

User Action: Specify a terminal and reenter the command line.

DEF-Function requires logical name support

Explanation: Your system does not support extended logical name support.

User Action: None.

DEF-Octal group number expected

Explanation: You did not specify an octal group number value when you issued the
DEFINE/GROUP command.

User Action: Check the group number that you want and reenter the command.

DEF-Terminal not logged in

Explanation: The terminal you attempted to make a logical assignment to is not logged in.

User Action: Log in the terminal you want to make the assignment for and reenter the
command line.

7.5 SHOW ASSIGNMENTS and SHOW LOGICALS Commands
The SHOW ASSIGNMENTS and SHOW LOGICALS commands display, at your terminal, all
local and login logical assignments. Privileged users can display assignments for other terminals
as well as all assignments in the operating system.

Logical assignments are established by the ASSIGN, DEFINE, and SET DEFAULT commands,
and by ACNT. See the RSX-11M-PLUS and Micro/RSX System Management Guide for more
information on ACNT.

Formats

SHOW ASSIGNMENTS[jqualifier]

or
SHOW LOGICALS[j qualifier]

Command Qualifiers
/ALL
/GLOBAL
/SYSTEM
/GROUP[:g]
/LOCAL
/LOGIN
/TERMINAL:ttnn:

Using Logical Name Commands 7-15

Command Qualifiers

/ALL
Displays all of your local, login, and group logical name assignments, as well as all global
assignments.

You can also use this qualifier with the /TERMINAL:ttnn: qualifier to see the local, login,
and group logical names for terminal ttnn displayed on your terminal.

/GLOBAL
/SYSTEM

Specifies that all global logical assignments in the operating system are to be displayed on
your terminal. The /SYSTEM and /GLOBAL qualifiers are synonyms and are privileged
commands. System assignments apply to all tasks running in the system.

/GROUP[:g]

Displays the group logical assignments for users with the specified User Identification Code
(UIC) group number, g.

Nonprivileged users can see the group logical assignments of their own group. In this case,
you can either specify the /GROUP qualifier without an argument or use your own group
number as the argument.

Only privileged users can see the logical assignments of other groups.

/LOCAL

Specifies that login logical assignments for your terminal are to be displayed on your
terminal. This qualifier is the default.

/LOGIN

Specifies that local and login logical assignments for your terminal are to be displayed on
your terminal. The /LOGIN qualifier is privileged.

/TERMINAL:ttnn:

Specifies that local and login logical assignments for terminal ttnn are to be displayed on
your terminal. This is a privileged qualifier.

You can also use this qualifier with the / ALL qualifier to see all of the logical assignments
for terminal ttnn.

Examples

$ SHOW @ill
Function? ASSIGNMENTS @ill
LP = DU1: (Local, TT:)
INFILE = DUO: [DANIEL]ADDRESS.TXT (Local, TT:)
R3D2 = A Robot (Login, TT:)
SYS$LOGIN = DU: [SAMUEL] (Login, Final, TT:)

Displays your local and login logical assignments. The logical name is displayed first, followed
by the equivalence name. Finally, the type of assignment and your terminal number are given.

7-16 Using Logical Name Commands

You can use these logical names in place of device and file specifications. References to LP
will actually go to DUL The file ADDRESS.TXT, which is located on device DU in directory
[DANIEL], is an input file for a task that specifies the logical name INFILE. In addition, the
string "A Robot" is the translation of the logical name R3D2. Finally, the user has the login
assignment of SYS$LOGIN to the device DU and directory [SAMUEL].

$ SHOW ASSIGNMENTS/LOCAL ~

Provides the same results as the previous example.

$ SHOW ASSIGNMENTS/ALL ~
WK = LB: (Global, Final)
TEXT = DU: [SYSTST]LOGIN.TXT (Local, TT:)
SYS$LOGIN = DU: [QUERY] (Login, Final, TT:)

Displays all the logical assignments (local, login, global, and system) for your terminal. The
system has given the global logical name WK to the pseudo device, LB, and the login logical
name SYS$LOGIN to the directory, DU:[QUERY]. The user has given the local logical name
TEXT to the file specification, DU:[SYSTST]LOGIN.TXT.

$ SHOW ASSIGNMENTS/TERMINAL:TT3: ~
MP = SY: (Local, TT3:)

Displays the logical assignments for terminal TT3 and requires a privileged terminal and a
terminal (TT3) that is logged in. This user has given the local logical name MP to the pseudo
device, SY.

$ SHOW ASSIGNMENTS/GLOBAL ~
WK = LB: (Global, Final)
IN = SY: (Global, Final)
EX = SY: (Global, Final)

Displays all global logical names and requires a privileged terminal.

Using Logical Name Commands 7-17

Chapter 8
Guidelines for Creating an Optional Software
Package

This chapter explains how to create an optional software diskette or tape package that a user can
install on a Micro /RSX operating system. The first step in producing your package is to create
your optional software kit on diskette. (To create an optional software kit on tape, you must
still create the diskette kit first). A complete optional software package includes an installation
guide for the user.

The information in this chapter is intended for programmers who are developing and/or
packaging optional software for Micro /RSX systems and who are familiar with Micro /RSX
concepts. Programmers creating optional software kits should also be experienced in the
following areas:

• Developing Micro /RSX software applications

• Using EDT

• Using the following DCL Commands:

ANALYZE/MEDIA

INITIALIZE

COpy

BACKUP

In this chapter, these terms are used as follows:

Optional software
Refers to one or more of the following:

• An optional component of Micro /RSX

• A DIGITAL-supplied layered product

• A third-party software application

Guidelines for Creating an Optional Software Package 8-1

Kit

This chapter uses FORTRAN-77 examples to create the optional software kit. However,
by using the guidelines presented in this chapter and the prompts requesting option or file
names, you can create any option.

Caution
The FORTRAN -77 examples in this chapter are for illustration purposes
only and do not represent the DIGITAL product MicrojRSX FORTRAN-77.

Specifies a set of diskettes or tapes, which contains one or more options to be installed.

User
Specifies the person installing the diskette or tape kit at the installation site.

Install
Specifies the procedure that physically includes on the fixed disk all the files necessary to
support an option, run task images, execute commands, or invoke an indirect command file.
The install procedure is invoked by the user.

Remove
Specifies the procedure that disables a previously installed option. These steps include
deleting a set of files copied to the fixed disk during installation, deleting unnecessary
files created by the option, deleting task images from the system, or invoking an indirect
command file. The remove procedure is invoked by the user.

Package
Specifies the complete software option that includes the diskette or tape kit and installation
guide.

8.1 Preparing to Create a Diskette Package
This section describes the resources you need and the steps you must follow to create an
optional software diskette kit (which combined with your documentation completes the diskette
package). The resources you need are as follows:

• A MicrojRSX Version 4.0 operating system

• A copy of the optional software files

• Blank RXSO diskettes

Once you have the necessary resources, you must perform the following steps to create the
optional software diskette package:

1. Determine how many diskettes you need.

2. Determine how you will group the optional software files to form your diskette kit.

3. Set up the INSTALL.DAT file and the option INS file.

4. Create the INSTALL.DAT file.

5. Create the option INS file.

8-2 Guidelines for Creating an Optional Software Package

6. Create the diskette kit.

7. Document the installation procedure.

The following sections describe each step in detail, beginning with Section 8.1.1.

8. 1. 1 Determining Required Number of Diskettes

Before you create your kit, determine how many diskettes you need by listing the files to be
included on the optional software kit and the directories in which they reside. You will need
one diskette for every 770 blocks of information.

8. 1.2 Grouping Optional Software Files

If you need more than one diskette, you should determine how you will group your files before
you create the kit. Grouping the files by function makes it easier to create the kit. For example,
if you have a language option, you can place the compiler on one diskette and the Object Time
System (OTS) on another.

If your optional software uses conditional sets of files, you can place each conditional set of
files on a separate diskette. Again, using the language option as an example, you could place
a compiler and the OTS for systems that have floating-point support on one diskette and place
the second set of files for systems without floating-point support on another diskette.

8. 1.3 Setting Up Files

You must set up two files before you create an optional software diskette kit: the INSTALL.DAT
file and the INS file. The INSTALL.DAT file contains statements that control how the optional
software is copied to the fixed disk. The INS file contains the conditional or nonconditional
statements for installing and setting up the optional software.

The formatting requirements for setting up the INSTALL.DAT file and the option INS file are
as follows:

• Statements in the file must begin in the first column.

• A space must appear after the statement. For INS file statements, a space must also be
placed before its argument. Make sure you use the space bar and not the TAB key to insert
your spaces.

• Comments must appear on a line that is separate from the statement.

If you do not meet these formatting requirements, an error will occur when the user attempts to
install the optional software kit. The following sections explain how to create the INSTALL.DAT
and INS files.

8.1.4 Creating the INSTALL.DAT File

The first diskette for each kit must contain a file named INSTALL.DAT, residing in
directory [0,0]. The INSTALL.DAT file contains a minimum of three statements that describe
the kit media, the method of copying the kit files, and the option INS file name and location.

Guidelines for Creating an Optional Software Package 8-3

8. 1.4. 1 INSTALL.DAT File Statements

The INSTALL.DAT file contains the following statements (the first three statements are required):

• DISKETTES=n

• COPY=YES
or
COPY=NO

• OPTION=OPTDESC,[UFD]OPTNAME.lNS

• SYSTEM_ VERSION=vrsn (optional statement)

These statements are defined as follows:

DISKETTE5=n
Specifies the total number, n, of diskettes in the kit you are creating.

COPY=YES
or
COPY=NO

Specifies how the files are copied from the kit onto the fixed disk. You can copy all of the
files or you can copy specific files.

The Yes argument specifies that all of the files on the kit are to be copied. You cannot
use the Yes argument with FILE and/or BACKUP_SET statements in the option INS file
described in Section 8.1.5.

If you are using multiple diskettes with the COPY=YES statement (refer to Example 8-3),
you must specify the OPTNAME argument and the sequential number of the diskette in
the kit as the volume label for each diskette. This volume label format is necessary because
the installation procedure checks each volume label before copying the contents of each
diskette to the fixed disk.

The No argument specifies that only selected files are to be copied. You must use the No
argument with the FILE and/or BACKUP_SET statements in the option INS file described
in Section 8.1.5.

OPTION=OPTDESC,[dlrectory]OPTNAME.INS
Specifies the description of the option to be installed and the complete file specification of
the option INS file. You must specify a unique and separate OPTION statement for each
software option in the kit. An INSTALL.DAT file may include an unlimited number of
OPTION statements.

The OPTDESC argument is the description of the option to be installed. This description
can include spaces and any alphanumeric characters. The comma (,) in this statement
indicates the end of the option description.

The [directory]OPTNAME.INS argument specifies the directory and the option INS file name
on the diskette.

SYSTEM_ VERSION=vrsn
Specifies the vrsn argument as the earliest version of the Micro /RSX operating system on
which the user can install the option. This is an optional statement.

8-4 Guidelines for Creating an Optional Software Package

For diskette kits, the presence of the SYSTEM_ VERSION=vrsn statement and the COPY=YES
statement in INSTALL.DAT determines if the diskette volume labels will be verified during
installation.

• If both the SYSTEM_ VERSION=vrsn and COPY=YES statements are present, each
diskette volume label will be verified during installation.

• If only the COPY=YES statement is present, the diskette volume labels will not be
verified during installation. This allows optional diskette kits that were developed for
previous versions of Micro/RSX to install on Micro/RSX Version 4.0.

For tape kits, the SYSTEM_ VERSION=vrsn statement does not affect the copying method
for optional software kits. Tape kits using the COPY=YES statement must conform to the
conditions described in Section 8.2.

8.1.4.2 INSTALl.DAT File Examples

This section provides the following annotated examples of INSTALL.DAT files. These examples
illustrate how to utilize the different statements INSTALL.DAT files may include.

• Example 8-1 illustrates a FORTRAN-77 option with the COPY=YES statement, using one
diskette.

• Example 8-2 illustrates a FORTRAN-77 option with the COPY=NO statement, using two
diskettes.

• Example 8-3 illustrates a FORTRAN-77 option with the COPY=YES statement, using three
diskettes.

Example 8-1: Using COPY=YES with One Diskette

DISKETTES=1 0
COPY=YES •
OPTION=FORTRAN SEVENTY-SEVEN. [1.2]F77.INS ~
SYSTEM_VERSION=4.0 ~

Notes on Example 8-1:

o This statement specifies that this kit contains one diskette.

• This statement specifies that all the files in the kit are to be copied. Because both the
SYSTEM_ VERSION=vrsn and COPY=YES statements are present, the diskette volume label
will be verified during installation.

~ This statement specifies the option description (FORTRAN SEVENTY -SEVEN) and the
complete file specification of the INS file ([l,2]F77.1NS).

~ This statement specifies that Version 4.0 is the earliest version of the Micro/RSX operating
system on which the user can install the option.

Guidelines for Creating an Optional Software Package 8-5

Example 8-2: Using COPY=NO with Two Diskettes

DISKETTES=2 0
COPY=NO 8
OPTION=FORTRAN SEVENTY-SEVEN, [1,2]F77.INS tt
SYSTEM_VERSION=3.1 ~

Notes on Example 8-2:

o This statement specifies that this kit contains two diskettes.

8 This statement specifies that only files specified in the INS file are to be copied.

tt This statement specifies the option description (FORTRAN SEVENTY -SEVEN) and the
complete file specification of the INS file ([l,2]F77.INS).

~ This statement specifies that Version 3.1 is the earliest yersion of the Micro/RSX operating
system on which the user can install the option.

Example 8-3: Using COPY=YES with Three Diskettes

DISKETTES=3 0
COPY=YES 8
OPTION=FORTRAN SEVENTY-SEVEN,[1,2]F77.INS tt
Notes on Example 8-3:

o This statement specifies that this kit contains three diskettes.

8 This statement specifies that all the files in the kit are to be copied. Because the SYSTEM_
VERSION=vrsn statement is not specified, the diskette volume labels will not be verified
during installation. This will allow optional diskette kits that were developed for Micro jRSX
Version 1.0 to install on Micro/RSX Version 4.0.

• This statement specifies the option description (FORTRAN SEVENTY -SEVEN) and the
complete file specification of the INS file ([l,2]F77.INS).

8. 1.5 Creating the INS File
For each software option in a kit, there must be one file with the file type of INS. The INS
file contains the statements necessary to copy, install, delete, and remove files. The INS file is
referenced each time an option is installed or removed, and during subsequent system startups.

The statements in the INS file can be conditional or nonconditional. You use conditional
statements to test for specific system features such as floating-point support. The result
of the conditional test determines if the statement is executed. Nonconditional statements
execute automatically. The following subsections describe the available INS file statements
and conditionals.

8-6 Guidelines for Creating an Optional Software Package

8. 1.5. 1 INS File Statements

A list of statements, with their corresponding arguments and qualifiers, that can be used in the
option INS file is as follows:

• ! text

• ABORT taskname

• BACKUP_SET volname

• COMMAND cmd

• DELETE filename

• ERROR - errmsg

• FILE filename/KEEP
/DELETE

• INSTALL filename/TASK
/LIBRARY
/COMMON/[NO]WRITEBACK

• INSTALL -PROCEDURE filename

• INSTALL_VERIFICATION filename'

• LIBRARY_INSERT filename

• LIBRARY_DELETE modname 1 :modname2: ... modname8

• OPTION _VERSION vrsn

• REMOVE taskname

• REMOVE_PROCEDURE filename

• RUN_IMMEDIATE taskname

• RUN _SYSTEM taskname

• RUN_WAIT taskname

• STARTUP-PROCEDURE filename

• SYSTEM_VERSION vrsn (required statement)

A description of each INS file statement follows.

! text

Indicates that the text immediately following the exclamation point (!) is a comment.
Placing an exclamation point as the first character on a line in the file allows you to include
comments. An exclamation point with no text following it allows you to insert blank lines.

ABORT taskname

Causes the specified task to be aborted if it is active when the user invokes the OPTION
command procedure to remove the option

The taskname argument specifies the active task you want to abort.

Guidelines for Creating an Optional Software Package 8-7

BACKUP_SET volname

Works in direct conjunction with the COPY=NO statement in the INSTALL.DAT file. It
allows you to copy a complete multivolume file to the fixed disk. When you use this
statement with diskettes, individual files that are larger than a single diskette (such as a
file c,ontaining a large compiler) must be created by backing up the multivolume file to
the appropriate number of diskettes, using the BACKUP command. A single diskette holds
approximately 770 blocks of information. (Refer to the Micro /RSX System Manager's Guide
for more details on creating multivolume files.)

The volname argument specifies the volume name of the first diskette in the multivolume
set.

COMMAND cmd

Allows you to execute DCL commands during the installation procedure and during
subsequent system startups. For example, the LOAD xx: command can be executed to
load a device driver. This DCL command is executed after the files are copied from the kit
and the tasks are installed, but before a startup procedure command file is invoked.

The cmd argument specifies the DCL command to be executed.

DELETE filename

Causes the specified file to be deleted from the fixed disk when the option is removed. This
statement can be used for deleting files that are copied during the installation procedure
with the COPY=YES or BACKUP_SET statements; or for deleting files that were not copied
to the fixed disk during installation, but which must be deleted when an option is removed
from the fixed disk.

The filename argument specifies the name of the file to be deleted when an option is
removed from the fixed disk.

ERROR - errmsg

Allows you to create a message that indicates rejection of the installation of an option under
certain conditions. For example, in the following statement, the absence of the Floating
Point Processor (FPP) causes an error message to be generated on the user's terminal:

?NOFPP ERROR - F77 requires a floating pOint processor

The syntax of this statement requires you to insert the space-hyphen-space between the
ERROR statement and the error message text.

The errmsg argument specifies the text of the error message. Refer to Section 8.1.5.2 for
information on conditionals in INS file statements.

FILE filename/KEEP
/DELETE

Works in conjunction with the COPY=NO statement in the INSTALL.DAT file. It specifies
which file to copy during the installation of an option. The statement must be respecified
for each additional file.

8-8 Guidelines for Creating an Optional Software Package

The filename argument specifies the directory and file name for the file you want copied at
installation time. If the file resides on a diskette volume other than the one on which the
INSTALL.DAT and option INS files reside, you must supply the volume name as the device
name in the file specification. For example:

FOROTS: [l.1]F77RMS.TSK

Do not specify the volume name if the file resides on the first diskette in the kit (that is,
the diskette containing the option INS file).

The installation procedure requests each diskette in sequential order. The procedure also
sorts and copies all of the specified files on each diskette.

The file mayor may not be deleted when the option is removed from the fixed disk,
depending on the qualifier that you supplied with the statement. If you do not specify
either qualifier, the file will be deleted by default.

The /KEEP qualifier specifies that the file not be deleted when the option is removed from
the fixed disk. This qualifier is useful when the option creates data files that should be
retained.

The /DELETE qualifier specifies that the file be deleted from the fixed disk when the option
is removed. If you specify the /DELETE qualifier, or you do not specify either qualifier,
you need not specify the DELETE statement for that file in the option INS file.

INSTALL filename/TASK
/LiBRARY
/COMMON/[NO]WRITEBACK

Specifies the name of the file you want to be installed in the running system. The argument
specifies the file directory and file name. Qualifiers specify whether the file being installed
is a task image, a read-only common (that is, a library), or a read-write common data area.

When the user invokes the OPTION command procedure to remove an option (for instance,
to replace it with a new version), the command procedure issues the DCL command
REMOVE for every INSTALL statement that it reads in the INS file.

The filename argument specifies the complete file specification of the file to be installed.

The /TASK qualifier specifies that the file to be installed is a task image.

The /LIBRARY qualifier specifies that the file to be installed is a read-only common (a
library).

The /COMMON qualifier specifies that the file to be installed is a read-write common data
area. The /NOWRITEBACK qualifier specifies that the common is checkpointed to the
system checkpoint file. The /NOWRITEBACK qualifier is the default for the /COMMON
qualifier. The /WRITEBACK qualifier specifies that the common is checkpointed to the task
image file. Refer to the INSTALL and REMOVE commands in the Micro/RSX User's Guide,
Volume 1 and Micro/RSX User's Guide, Volume 2.

INSTALLPROCEDURE filename

Enables the installation procedure to execute a specified indirect command file when the
option is installed. You may need to use this statement to customize your software
environment. An example of this would be to include an indirect command file that creates

Guidelines for Creating an Optional Software Package 8-9

device-specific files in your software. The command file is invoked after all files have been
copied to the fixed disk, and before any tasks or libraries have been installed. The user
may invoke the co~mand file again as a part of the installation procedure after the option
has been installed.

The filename argument specifies the directory and file name of the indirect command file to
be invoked.

The following global symbols are defined when the installation procedure invokes the
command file:

$$CIS Set to true if the system includes the Commercial Instruction Set (CIS)

$$FCS Set to true if File Control Services (FCS) support has been specified

$$FCSD Set to true if you include the FCS version of the OTS modules in the system
library ([l,l]SYSLIB.OLB) as the default

$$FPP Set to true if the system includes a Floating Point Processor (FPP)

$$ID Set to true if the system includes a separate instruction and data space option

$$RMS Set to true if Record Management System (RMS-ll) support has been specified
for this option

$$RMSD Set to true if you include the RMS-ll version of the OTS modules in the system
library as the default

$$SLB Set to true if you include OTS modules for the option in the system library

$$SUPR Set to true if the system includes supervisor-mode libraries

INSTALL VERIFICATION filename
Causes the installation procedure to invoke the specified Installation Verification Procedure
(IVP) indirect command file after all other steps in the installation are complete. Entry
parameters, such as predefined global variables, are the same as those specified for the
installation command file.

When the IVP has completed operation, it should exit with a status indicating success, error,
warning, or severe error. (Refer to the exit status codes documented for Indirect in the
Micro/RSX User's Guide, Volume 1.)

The filename argument specifies the directory and file name for the IVP procedure.

LIBRARY_INSERT filename
Allows you to insert specific object modules into the system library. This statement is
helpful with options that have OTS modules (such as FORTRAN-77).

The Librarian Utility Program (LBR) is used to insert the modules into SYSLIB. The object
library specified must be in the standard DB] format.

The filename argument specifies the directory and file name of the object library containing
the modules to be inserted into SYSLIB.

Note
DIGITAL recommends that, when possible, you provide each option with a
memory-resident OTS library, and avoid inserting modules into SYSLIB.

8-10 Guidelines for Creating an Optional Software Package

LIBRARY_DELETE modname 1 :modname2: ... modname8
Specifies that when an O,ptiO,n is remO,ved, the specified o'bject mo'duies are to' be deleted
frO,m the system library.

The mo'dname argument specifies the name O,f the mo'duie that is to' be deleted frO,m the
system library whenever the O,ptiO,n is remo'ved. YO,u can specify a maximum O,f eight
mo'duies with each LIBRARY_DELETE statement.

OPTION_VERSION vrsn
Specifies the versiO,n number O,f the O,ptiO,nal sO,ftware kit yO,u create.

The vrsn argument specifies the versiO,n number O,f the kit.

REMOVE taskname
Specifies the task to' remO,ve when an O,ptiO,n is remO,ved frO,m the fixed disk. YO,u must
use the REMOVE statement in the INS file to' remO,ve a task, when the file name in the
INSTALL statement is different frO,m the installed task name.

If yO,u refer to' Example 8-4 yO,u will nO,te that the installed task name fO,r F77.TSK is
1/ ••• F77". In this case, yO,u need the REMOVE statement in the O,ptiO,n INS file because
the file name used with the INSTALL statement (F77) is different frO,m the name O,f the
installed task (... F77).

The taskname argument specifies the name O,f the installed task yO,u want to' remO,ve.

REMOVE_PROCEDURE filename
Enables the installatio'n prO,cedure to' execute a specified indirect cO,mmand file when the
O,ptiO,n is remo'ved. YO,u can use this statement to' disable o'ptio'ns. The installatio'n prO,cedure
invo'kes the cO,mmand file befO,re any tasks are remO,ved and files are deleted.

Entry parameters, such as glo'bai variables predefined by the installatio'n procedure, are the
same as thO,se specified fO,r the installatio'n cO,mmand file.

The filename argument specifies the directO,ry and file name O,f the cO,mmand file yO,u want
to'invo'ke.

RUN_IMMEDIATE taskname
AllO,ws the installatio'n prO,cedure to' run an installed task to' create the initial enviro'nment fO,r
the O,ptiO,n at installatio'n time and to' create the same enviro'nment during subsequent system
startups. The installatio'n prO,cedure dO,es nO,t wait for the task to' exit befO,re co'ntinuing (see
the RUN_WAIT statement).

The taskname argument specifies the name of the task to' be run.

RUN_SYSTEM taskname
AllO,ws the installatio'n prO,cedure to' run an installed task at installatio'n time and during
subsequent system startups. It is useful fO,r message handlers O,r despO,O,ler tasks that must
be active (but nO,t asso'ciated with a specific user terminal) when an O,ptiO,n is in use.

The taskname argument specifies the name of the task to' be run.

Guidelines for Creating an Optional Software Package 8-11

RUN_WAIT taskname
Allows the installation procedure to run an installed task to create the initial environment
for the option at installation time and to create the same environment during subsequent
system startups. The installation procedure will wait for the task to exit or return status
before continuing (see RUN _IMMEDIATE).

The taskname argument specifies the name of the task to be run.

STARTUP_PROCEDURE filename
Allows the installation procedure to invoke a specified indirect command file at installation
time and during subsequent system startups that create the initial environment for the
option. This command file will be invoked by the installation procedure after the files are
copied from the kit and the tasks are installed.

Entry parameters, such as global variables predefined by the installation procedure, are the
same as those specified for the installation command file.

The filename argument specifies the directory and file name of the command file you want
to invoke.

SYSTEM_VERSION vrsn
Specifies the earliest version of the Micro /RSX operating system on which the user can
install an option.

The vrsn argument specifies the earliest version number.

Note
This is the only required statement and must be included in every option
INS file.

8. 1.5.2 Conditionals in INS File Statements

It is sometimes necessary for you to make the installation of some options conditional. For
example, an option may be dependent on the presence of the floating-point hardware in order
to execute. You can include statements in the option INS file to test for specific system features.
For example, the following statement tests for the presence of floating-point hardware before
copying the file F77FPP. TSK from the volume F770TS:

?FPP FILE F770TS: [1.1]F77FPP.TSK

You can also negate conditionals, as in the following example:

?NOFPP FILE F770TS: [1.1]F77NOFPP.TSK

You can combine conditionals on the same line, as in the following example:

?NOFPP?NOCIS FILE F770TS: [1.1]F77NFPCIS.TSK

When an INS file includes conditionals, the installation procedure creates a parameter file. The
file name of the parameter file includes the name of your INS file with the file type of PRM.
For example, if the name of your INS file is F77.1NS, your parameter file name is F77.PRM.
The parameter file contains the definitions for the conditionals (such as FeS NO, SYSLIB YES,
and so on). The installation procedure uses the parameter file (if there is one) at system-startup

8-12 Guidelines for Creating an Optional Software Package

time to perform any conditional installations or to conditionally delete files when an option is
removed.

The following conditionals are valid in option INS file statements:

CIS Tests for the presence of the Commercial Instruction Set.

FCS Used with options that support both RMS-l1 and FCS to test for FCS support. If
you want to specify a record access method, you can instruct the user to invoke the
OPTION.CMD command procedure and use the /FULL qualifier to specify the type
of support.

FCSDEF Specifies whether the option's OTS routines included in SYSLIB are an FCS version
by default.

FPP Tests for the presence of the Floating Point Processor (FPP).

ID Tests for the presence of separate instruction and data space.

RMS Tests for RMS-ll support. (See FCS.)

RMSDEF Specifies whether the option's OTS routines included in SYSLIB are an RMS-ll
version by default.

SUPER Tests for the presence of supervisor-mode library support.

SYSLIB Prompts the user to specify whether or not to include OTS routines (or other object
library routines) supporting the option in the default system library (SYSLIB). The
user's response determines the value for the conditional.

8.1.5.3 INS File Examples

This section provides the following five annotated examples of INS files. They illustrate how
to utilize INS file statements and qualifiers frequently specified.

• Example 8-4 illustrates how to set up your files and nonconditional file statements on a
single diskette.

• Example 8-5 illustrates how to set up your files and non conditional file statements on two
diskettes.

• Example 8-6 illustrates how to set up your files and conditional and non conditional file
statements on two diskettes.

• Example 8-7 illustrates how to set up your files and conditional file and BACKUP_SET
statements on four diskettes.

• Example 8-8 illustrates how to set up your files and conditional file statements for inserting
OTS modules into the system library on two diskettes. (Note that this is not a recom
mended procedure. For more information refer to the LIBRARY_INSERT statement in
Section 8.1.5.1.)

Guidelines for Creating an Optional Software Package 8-13

Example 8-4: Creating an Option on a Single Diskette

First Diskette - Labeled II FORTRAN-77 1 of i"
Volume Name: F77

[0,0]
INSTALL. OAT

DISKETTES=1 }
COPY=YES Ct
OPTION=FORTRAN-77,[1,2]F77.INS
SYSTEM_VERSION=4.0

[1,1]
F770TS.STB
F770TS.TSK

[1,2]
F77.INS

! FORTRAN-77 option parameter file
!
INSTALL [3,54] F77/TASK } •
INSTALL [1,1]F770TS/LIBRARY

REMOVE ... F77 •

DELETE [1,1]F77*.* }
DELETE [1,2]F77COM.MSG,FORTRAN.HLP ~
DELETE [3,54]F77.TSK

SYSTEM_VERSION 4.0 ~
FORTRAN.HLP
F77COM.MSG

[3,54]
F77.TSK

Notes on Example 8-4:

Ct The first three statements must be specified in the INSTALL.DAT file.

• These statements specify the task image files installed on the running system when the user
installs the option.

• This statement specifies the task image file removed from the running system when the
user removes the option from the fixed disk.

~ These statements specify the files deleted when the user removes the option from the fixed
disk.

~ This statement specifies the earliest version of the MicrojRSX operating system on which
the user can install the F77 option.

8-14 Guidelines for Creating an Optional Software Package

Example 8-5: Creating an Option on Multiple Diskettes

First Diskette - Labeled "FORTRAN-77 1 of 2"
Volume Name: F77

[0,0]
INSTALL.DAT

DISKETTES=2 }
COPY=NO t)
OPTION=FORTRAN-77, [l,2]F77.INS
SYSTEM_VERSION=l.l

[1,2]
F77.Il':1S

! FORTRAN-77 option installation file
!
FILE [3,54]F77.TSK/DELETE }
FILE F770TS: [1,1] F770TS. */DELETE @
FILE [l,2]F77COM.MSG
!
FILE [l,2]FORTRAN.HLP/KEEP @)
!
INSTALL [3,54] F77/TASK } e
INSTALL [l,l]F770TS/LIBRARY
!
REMOVE ... F77 CD

SYSTEM_VERSION 1.1 ~

FORTRAN.HLP
F77COM.MSG

[3,54]
F77.TSK

Second Diskette - Labeled "FORTRAN-77 2 of 2"
Volume Name: F770TS

[1, 1]
F770TS.STB
F770TS.TSK

Notes on Example 8-5:

t) The first three statements must be specified in the INSTALL.DAT file.

@ These statements specify the files that are copied to the fixed disk when the user installs
the option, and which are deleted when the user removes the option from the disk.

@) This statement specifies the file that is copied to the fixed disk when the user installs the
option, and which is saved when the user removes the option from the disk.

e These statements specify the task image files installed on the running system when the user
installs the option.

Guidelines for Creating an Optional Software Package 8-15

CD This statement specifies the task image file removed from the running system when the
user removes the option from the fixed disk.

o This statement specifies the earliest version of the Micro /RSX operating system on which
the user can install the F77 option.

Example 8-6: Using Conditionals in an INS File

First Diskette - Labeled "FORTRAN-77 1 of 2"
Volume Name: F77

[0,0]
INSTALL.DAT

DISKETTES=2 }
COPY=NO 0
OPTION=FORTRAN-77, [l,2]F77.INS
SYSTEM_VERSION=4.0

[1,2]
F77.INS

! FORTRAN-77 option installation file
!
FILE [3,54] F77 . TSK/DELETE }
FILE [l,2]F77COM.MSG ~
FILE [l,2]FORTRAN.HLP
!
?FCS FILE F770TS: [l,l]F77Fcs.TSK/DELETE}
?FCS FILE F770TS: [l,l]F77FCS.STB/DELETE t)
?RMS FILE F770TS: [l,l]F77RMS.TSK/DELETE
?RMS FILE F770TS: [1, 1] F77RMS. STB/DELETE

INSTALL [3,54]F77/TASK
?FCS INSTALL [1,1] F77FCS/LIBRARY} 0
?RMS INSTALL [l,l]F77RMS/LIBRARY

REMOVE ... F77 } CD
REMOVE F770TS
!
SYSTEM_VERSION 4.0 0

FORTRAN.HLP
F77COM.MSG

[3,54]
F77.TSK

Second Diskette - Labeled " FORTRAN-77 2 of 2"
Volume Name: F770TS

[1,1]
F77FCS.STB
F77FCS.TSK
F77RMS.STB
F77RMS.TSK

8-16 Guidelines for Creating an Optional Software Package

Notes on Example 8-6:

o The first three statements must be specified in the INSTALL.DAT file.

• These statements specify the files that are copied to the fixed disk when the user installs
the option, and which are deleted when the user removes the option from the disk.

6) These conditional statements specify the files that are copied to the fixed disk when the
user installs the option, and which are deleted when the user removes the option from the
disk.

e These conditional statements specify the task image files installed on the running system
when the user installs the option.

o These statements specify the task images removed from the running system when user
removes the option from the fixed disk.

CD This statement specifies the earliest version of the Micro jRSX operating system on which
the user can install the F77 option.

Guidelines for Creating an Optional Software Package 8-17

Example 8-7: Using Conditionals and Multivolume Files

First Diskette - Labeled "FORTRAN-77 1 of 4"
Volume Name: F77

[0.0]
INSTALL.DAT

DISKETTES=2 }
COPY=NO 0
OPTION=FORTRAN-77. [1.2]F77.INS
SYSTEM_VERSION=1.1

[1.2]
F77.INS

! FORTRAN-77 installation parameter file
!
?FCS BACKUP_SET F77CMPFCS}~
?RMS BACKUP_SET F77CMPRMS

FILE [1.2] F77COM. MSG } e
FILE [1.2]FORTRAN.HLP

?FCS FILE F770TS:F77Fcs.TSK/DELETE}
?FCS FILE F770TS:F77FCS.STB/DELETE C)
?RMS FILE F770TS:F77RMS.TSK/DELETE
?RMS FILE F770TS:F77RMS.STB/DELETE

INSTALL [3.54]F77/TASK
?FCS INSTALL [1.1] F77FCS/LIBRARY} 0
?RMS INSTALL [1.1]F77RMS/LIBRARY

DELETE [3.54]F77.TSK ~

REMOVE ... F77} 0
REMOVE F770TS
!
SYSTEM_VERSION 1.1 ~

FORTRAN.HLP
F77COM.MSG

Second Diskette - Labeled "FORTRAN-77 2 of 4"
Volume name: F770TS

[1.1]
F77FCS.STB
F77FCS.TSK
F77RMS.STB
F77RMS.TSK

8-18 Guidelines for Creating an Optional Software Package

(Continued on next page)

Example 8-7 (Cont.): Using Conditionals and Multivolume Files

Third Diskette - Labeled II FORTRAN-77 3 of 4"
Volume Name: F77CMPFCS

[O,O]BACKUP.SYS
[3,54]F77.TSK

Fourth Diskette - Labeled "FORTRAN-77 4 of 4"
Volume Name: F77CMPRMS

[O,O]BACKUP.SYS
[3,54]F77.TSK

Notes on Example 8-7:

o The first three statements must be specified in the INSTALL.DAT file.

• These conditional statements specify the backup set copied to the fixed disk when the user
installs the option.

@) These statements specify the files that are copied to the fixed disk when the user installs
the option, and which are deleted when the user removes the option from the disk.

o These conditional statements specify the files that are copied to the fixed disk when the user
installs the option, and which are deleted when the user removes option from the disk.

o These conditional statements specify the task image files installed on the running system
when the user installs the option.

o This statement specifies the name of the backup set deleted when the user removes the
option from the fixed disk.

o These statements specify the task images removed from the running system when the user
removes the option from the fixed disk.

G This statement specifies the earliest version of the Micro jRSX operating system on which
the user can install the F77 option.

Guidelines for Creating an Optional Software Package 8-19

Example 8-8: Inserting Modules into SYSLIB

First Diskette - Labeled "FORTRAN-77 1 of 2"
Volume Name: F77

[0.0]
INSTALL.DAT

DISKETTES=2 }
COPY=NO 0
OPTION=FORTRAN-77. [1.2]F77.INS
SYSTEM_VERSION=4.0

[1.2]
F77.INS

! FORTRAN-77 installation parameter file
!
FILE [1.2]F77*.*/DELETE }
FILE [3.54]F77.TSK/DELETE ~

?SYSLIB FILE F770TS: [11.36]F770TS.OBJ/DELETE
?NOSYSLIB FILE F770TS: [1.1]F770TS.OLB/DELETE

?FCSDEF FILE F770TS: [11.36]F770TSFCS.OBJ/DELETE
?NOSYSLIB?FCS FILE F770TS: [1.1]F770TSFCS.OLB/DELETE

?RMSDEF FILE F770TS: [11.36]F770TSFCS.OBJ/DELETE
?NOSYSLIB?RMS FILE F770TS: [1. 1] F770TSRMS. OLB/DELETE
!
?SYSLIB LIBRARY_INSERT [11.36]F770TS.OBJ }
?FCSDEF LIBRARY_INSERT [11.36]F770TSFCS.OBJ C)
?RMSDEF LIBRARY_INSERT [11.36]F770TSRMS.OBJ
!
LIBRARY_DELETE F770TS ~

INSTALL [3.54]F77 ~
!
REMOVE ... F77 f)

SYSTEM_VERSION 4.0 ~
FORTRAN.HLP
F77COM.MSG

[3.54]
F77.TSK

[11.36]
F77TST.FTN

8-20 Guidelines for Creating an Optional Software Package

(Continued on next page)

Example 8-8 (Cont.): Inserting Modules into SYSLIB

Second Diskette - Labeled II FORTRAN-77 2 of 2"
Volume name: F770TS

[1,1]
F770TS.OLB
F770TSFCS.OLB
F770TSRMS.OLB

[11,36]
F770TS.OBJ
F770TSFCS.OBJ
F770TSRMS.OBJ

Notes on Example 8-8:

o The first three statements must be specified in the INSTALL.DAT file.

• These statements specify the files that are copied to the fixed disk when the user installs
the option, and which are deleted when the user removes the option from the disk.

8 These conditional statements specify the files that are copied to the fixed disk when the
user installs the option, and which are deleted when the user removes the option from the
disk.

e These conditional statements specify the modules inserted into the system library when the
user installs the option.

o This statement specifies the module deleted from the system library when the user removes
the option from the fixed disk.

o This statement specifies the task image file installed on the running system when the user
installs the option.

• This statement specifies the task image removed from the running system when the user
removes the option from the fixed disk.

CD This statement specifies the earliest version of the MicrojRSX operating system on which
the user can install the F77 option.

8. 1.6 Creating a Diskette Kit
To create a diskette kit, you copy your files from your diskettes or from the fixed disk to blank
diskettes. If you have single volume and multivolume files, it is recommended that you copy
your single volume files before you copy your multivolume files.

• For information on copying single volume files to diskettes, refer to Section 8.1.6.1.

• For information on copying multivolume files, refer to Section 8.1.6.2.

Guidelines for Creating an Optional Software Package 8-21

8. 1.6. 1 Copying Single Volume Files

This section provides the steps you should follow to copy single volume files to diskettes.

1. Insert a blank diskette in DUI and allocate that device. Type the following:

$ ALLOCATE DU1:

2. Mount DUI and specify the jFOREIGN qualifier. Type the following:

$ MOUNT DU1:/FOREIGN

3. Analyze the blank diskette in DUI to create a bad block file on the diskette. Type the
following:

$ ANALYZE/MEDIA DU1:

4. Initialize the blank diskette in DUI and specify the volume label for your option. Type the
following:

$ INITIALIZE DU1:volumelabel

5. Dismount DUI. Then, remount DUI and specify the new volume label. Type the following:

$ DISMOUNT DU1:
$ MOUNT DU1:volumelabel

• If your optional software files are on the fixed disk, proceed to step 8.

• If your optional software files are on diskettes, continue with step 6.

6. Insert the diskette in DU2 and allocate that device. Then, mount DU2 and specify the
volume label for your diskette. Type the following:

$ ALLOCATE DU2:
$ MOUNT DU2:volumelabel

7. Set your default directory and create the directory on the diskette in DUL Then, copy the
files from the diskette in DU2 to the diskette in DUI. Type the following:

$ SET DEFAULT [directory]
$ CREATE/DIRECTORY DU1: [directory]
$ COPY DU2: [directory] files DU1: [directory]

Parameters

directory

files

Specifies the directory containing the optional software files.

Specifies the wildcard specification or the list of file names you want to copy from the
diskette in DU2 to the diskette in DUL

8-22 Guidelines for Creating an Optional Software Package

Repeat this step for each directory you want to copy to the diskette in DU1. When you
have copied all the directories, proceed to step 9.

8. If your optional software files are on the fixed disk, set your default directory and create the
directory on the diskette in DU1. Then, copy the files from DUO to the diskette in DU1.
Type the following:

$ SET DEFAULT [directory]
$ CREATE/DIRECTORY DU1: [directory]
$ COpy DUO: [directory] files DU1: [directory]

Parameters

directory

files

Specifies the directory containing the optional software files.

Specifies the wildcard specification or the list of file names you want to copy from DUO
to the diskette in DUl.

Repeat this step for each directory you want to copy to the diskette in DU1.

9. Dismount DU1 and remove the diskette from that device. Type the following:

$ DISMOUNT DU1:

If your optional software files were on diskettes, it is necessary to dismount DU2 and
remove the diskette from that device. Type the following:

$ DISMOUNT DU2:

Repeat steps 2 to 9 for each diskette containing single volume files in your optional software
kit.

10. Deallocate DUl. Type the following:

$ DEALLOCATE DU1:

If your optional software files were on diskettes, it is necessary to deallocate DU2. Type
the following:

$ DEALLOCATE DU2:

Now that you have copied all your single volume files to diskettes, proceed as follows:

• If you must copy multivolume files to complete your diskette kit, proceed to Section 8.1.6.2.

•

•

If your diskette kit is complete (you do not have multivolume files to copy) and you are not
creating a tape package, proceed to Section 8.3 to complete your diskette package.

If your diskette kit is complete (you do not have multivolume files to copy) and you are
creating a tape package, proceed to Section 8.2.

Guidelines for Creating an Optional Software Package 8-23

8. 1.6.2 Copying Multivolume Files

This section provides the steps you should follow to copy multivolume files from the fixed disk
to diskettes.

1. Insert a blank diskette in DUl and allocate that device. Type the following:

$ ALLOCATE DU1:

2. Mount DUl and specify the /FOREIGN qualifier. Type the following:

$ MOUNT DU1:/FOREIGN

3. Analyze the blank diskette in DUl to create a bad block file on the diskette. Type the
following:

$ ANALYZE/MEDIA DU1:

4. Dismount DUl and remove the diskette from that device. Type the following:

$ DISMOUNT DU1:

Repeat steps 2 to 4 for each diskette in the multivolume backup sets.

5. Insert an analyzed blank diskette in DUl, remount that device, and specify the /FOREIGN
qualifier. Type the following:

$ MOUNT DU1:/FOREIGN

6. Using the BACKUP command and specifying the /SAVE and /VERIFY qualifiers, copy the
multivolume file from DUO to the diskette in DU1. Type the following:

$ BACKUP/SAVE:name/VERIFY DUO:file DU1:

Parameters

name

file

Specifies the name used in the option INS file BACKUP_SET statement.

Specifies the directory and file name of the multivolume file on DUO that you want to
copy to the diskette in DU1.

Repeat this step for each additional multivolume file in your kit to copy from the fixed disk
to diskettes.

7. Dismount DUl and deallocate that device. Then, remove the diskette from DU1. Type the
following:

$ DISMOUNT DU1:
$ DEALLOCATE DU1:

Now that you have copied all your multivolume files and completed your diskette kit, proceed
as follows:

• If your diskette kit is complete arid you are creating a tape package, proceed to Section 8.2.

• If your diskette kit is complete and you are not creating a tape package, proceed to
Section 8.3 to complete your diskette package.

8-24 Guidelines for Creating an Optional Software Package

8.2 Preparing to Create a Tape Package
This section describes the resources you need and the steps you must follow to create an optional
software tape kit (which combined with your documentation completes the tape package). The
resources you need are as follows:

• A Micro/RSX Version 4.0 operating system

• A copy of the optional software kit on the fixed disk or on RX50 diskettes

• A TK50 tape drive

• A TK50 tape cartridge

If you are using a MicroPDP-11 with two RX50 diskette drives, you also need blank RX50
diskettes.

Note
You must create the optional software kit on diskette (refer to Section 8.1) before
you can begin creating the tape package.

Once you have the necessary resources, you must complete the following steps to create an
optional software tape package:

1. Create the template INS file.

2. Optimize the template INS file.

3. Edit the INSTALL.DAT file and the template INS file.

4. Organize the optional software files.

5. Create the tape kit by copying the files from diskette or diskettes or the fixed disk.

6. Document the installation procedure (refer to Section 8.3).

The following sections describe each step in detail, beginning with Section 8.2.1.

If the corresponding optional software diskette kit INSTALL.DAT file contains the COPY=YES
statement and the OPTION.INS file does not contain FILE or BACKUP_SET statements, you
do not need to create a template tape OPTION.INS file with the TAPEINS.CMD procedure.
TAPEINS.CMD will return an error message if the input diskette OPTION.INS file does not
contain FILE or BACKUP_SET statements.

To create an optional software tape kit that uses the COPY=YES statement, you must copy the
INSTALL.DAT and OPTION.INS files to a backup set named INSTALL. All other kit files must
be copied to one backup set named after the file name portion of the OPTION.INS file.

Guidelines for Creating an Optional Software Package 8-25

8.2.1 Creating the Template INS File

The following procedure organizes the FILE and BACKUP_SET statements in the diskette option
INS file, based on the conditional status of these statements. This enables you to copy your files
into the correct backup sets on the tape kit. The following procedure also creates the template
INS file you will use as a guide when you complete the tape kit. A message on your terminal
tells you when you have completed the procedure. If a problem occurs during the procedure,
refer to Section 8.4 for corrective action.

Note
This procedure assumes you are using a valid diskette option INS file as input.
No syntax checks are made by this procedure. All FILE and BACKUP_SET
statements must be placed before other option INS file statements.

• If your INS file is on a diskette, follow steps 1 to 8 to create the template INS file.

• If your INS file is on the fixed disk, follow steps 3 to 8 to create the template INS file.

1. Insert in DUl the first diskette of the kit; this diskette contains the diskette option INS file.

2. Allocate DUl, mount the diskette in DUl, and specify the volume label for your optional
software. Type the following:

$ ALLOCATE DU1:
$ MOUNT DU1:volumelabel

3. Invoke the indirect command file by typing the following:

$ <OTAPEINS

The indirect command file displays the following message and prompt:

* This command procedure accepts as input a valid
* Micro/RSX Optional Software diskette option .INS
* file and creates a template tape option .INS file.
* This template .INS file is used as guide in producing
* a Micro/RSX Optional Software Tape Kit.

*
*
*

DD-MMM-YY HH:MM:SS

* Enter the file name and type of the input diskette
* option .INS file. Include the device and directory
* if different from the current default.

*
$* Diskette option .INS file?[s]:

4. Type the file name and file type of the input file; that is, the diskette option INS file.
Include the device and directory if different from your current default device and directory.
Your response should be similar to the following:

DU1: [1.2]F77.INS

8-26 Guidelines for Creating an Optional Software Package

The indirect command file then displays the following prompt:

* Enter the device and directory to create the
* template tape option .INS file on.
* Press only the RETURN key to create the file on the
* default device and in the default directory.

*
$* Device and directory of the tape option .INS file?[s] :

5. Press only the RETURN key if you want to create the output file on your default device
and in your default directory. If you want to create the output file on a different device
and directory, specify this device and directory first and then press the RETURN key. The
TAPEINS.CMD procedure determines the output file name and file type. Your response
should be similar to the following:

DUO: [USER]

The indirect command file reads the diskette option INS file (F77.1NS) statements and
creates a template tape option INS file (TF77.1NS). Messages similar to the following are
displayed:

* Reading FILE and BACKUP_SET statements from
* DU1: [1.2]F77.INS.

* * Writing new BACKUP_SET and DELETE statements to
* DUO: [USER]TF77.INS.

* * Copying the remaining statements from
* DU1: [1.2]F77.INS to DUO: [USER]TF77.INS.

After all the INS file statements have been processed successfully, a message similar to the
following appears:

* The TAPEINS.CMD procedure completed successfully.

* * Your template tape option .INS file is
* DUO: [USER]TF77.INS.

*
* DD-MMM-YY HH:MM:SS

When the TAPEINS.CMD procedure completes successfully, it creates a template INS file. Use
this file as a guide when you create the tape option INS file. Proceed to the following section
to determine if you can optimize the template INS file.

8.2.2 Optimizing Your Template INS File

You can optimize your template INS file by merging and/or separating your BACKUP_SET
statements. Merging your BACKUP_SET statements allows the user to install the tape kit in
less time.

Note
You must separate your BACKUP_SET statements if any BACKUP_SET state
ment references more than 16 file specifications (the maximum number allowed
by the BACKUP command). You may use wildcards in the directory, file
name, or file type in your file specification. Using wildcards reduces the file
specifications referenced by your BACKUP_SET statelnent.

Guidelines for Creating an Optional Software Package 8-27

Examine your template INS file to determine if you can optimize it. If your template INS file
meets either of the conditions, proceed to the specified section or sections, as follows:

• If the template INS file contains more than one BACKUP_SET statement with the same
conditional status, proceed to Section 8.2.2.1.

• If a BACKUP_SET statement references more than 16 file specifications, proceed to
Section 8.2.2.2.

If you determine that it is not necessary to optimize your template INS file, proceed to
Section 8.2.3.

8.2.2.1 Merging BACKUP_SET Statements

This section describes how you merge BACKUP_SET statements. The following procedure is
recommended if you have two or more BACKUP_SET statements in your template INS file that
contain the same conditional status:

1. If your files are on diskettes, use the COPY command to copy all the files listed in the
backup sets to diskette or diskettes. Each diskette of files will later be copied to a backup
set on the tape.

2. If your files are on the fixed disk, print a hardcopy list of the file arrangement in the
template INS file. Combine the file list from each group of BACKUP_SET statements that
contain the same conditional status. Use this list as a guide when you copy your files to
the tape.

3. Edit the template INS file. Delete the BACKUP_SET statements with the same conditional
status, and replace the statements with one BACKUP_SET statement that has the same
conditional status for each group of files to be copied to a backup set on the tape.

If you must also separate your BACKUP_SET statements, proceed to Section 8.2.2.2; otherwise,
proceed to Section 8.2.3.

8.2.2.2 Separating BACKUP_SET Statements

This section describes how to separate BACKUP_SET statements in the template INS file. You
must separate a BACKUP_SET statement if the BACKUP_SET statement references more than
16 file specifications on the fixed disk or more than 770 blocks on the diskette.

If your files are on diskettes, follow steps 1 to 4 to separate your BACKUP_SET statements.

If your files are on the fixed disk, print a hardcopy list of the files contained in each group to
be copied to a backup set on the tape. Separate the files referenced in the backup set list into
groups of 16 file specifications. Proceed to step 4 to edit the template INS file.

1. Identify the total number of file specifications with the same conditional status from the
files listed in the template INS file.

2. Use the COpy command to copy these files to a blank diskette.

3. If you cannot fit the balance of your files on one diskette, you must repeat step 2 to
create an additional group of files on another diskette to copy to the tape as a separate
backup set.. Each additional group of files requires a unique backup set name and
BACKUP_SET statement.

8-28 Guidelines for Creating an Optional Software Package

4. Edit the template INS file to create BACKUP_SET statements that reference the new groups
of files on diskettes or fixed disk. Each BACKUP_SET statement and the files referenced by
the statement must have the same conditional status.

When you complete this procedure, proceed to Section 8.2.3 to edit your files.

8.2.3 Editing INSTALL.DAT and Template INS Files

'You must edit the INSTALL.DAT file before continuing to create your tape kit. The template
INS file has several sections you may also need to edit. Using EDT to edit your files, refer to
the following list for editing instructions:

1. Delete the statement DISKETTE=n in the INSTALL.DAT file and replace it with the statement
TAPE=1.

2. Edit the INSTALL.DAT file if you must copy more than one diskette option to the
tape kit. Include the OPTION=OPTDESC,[directory]OPTNAME.lNS statement from the
INSTALL.DAT file of each option you must copy to the tape kit.

3. Delete unnecessary comments created by the TAPEINS command procedure in the template
INS file. You may replace these comments with others that are appropriate for your specific
optional software.

4. Replace generic backup set names created by the TAPEINS command procedure in the
template INS file with names that specify your optional software.

5. Rename the template INS file and replace it with the correct name by using the RENAME
command. For example, TF77.1NS would become F77.1NS.

When your editing is complete, proceed to Section 8.2.4 to organize your files.

8.2.4 Organizing the Optiqnal Software Files

You can organize files that have not been optimized before you copy the files to tape. The lists
of files in the template INS file specify how your files are to be copied to tape.

• If your files are on diskettes, proceed to Section 8.2.4.1.

• If your files are on the fixed disk, proceed to Section 8.2.4.2.

8.2.4. 1 Organizing Files Using Diskettes

Follow these steps to organize your files on blank diskettes:

1. Insert a blank diskette in DUI and allocate that device. Type the following:

$ ALLOCATE DU1:

2. Insert the diskette containing your new INSTALL.DAT and option INS files in DU2 and
allocate that device. Type the following:

$ ALLOCATE DU2:

3. Mount DU2 and specify the volume label for the diskette. Then, mount DUI and specify
the /FOREIGN qualifier. Type the following:

$ MOUNT DU2:volumelabel
$ MOUNT DU1:/FOREIGN

Guidelines for Creating an Optional Software Package 8-29

4. Analyze the blank diskette in DU1 to create a bad block file on the diskette. Type the
following:

$ ANALYZE/MEDIA DU1:

5. Initialize the diskette in DU1 and specify the volume label INSTALL. Dismount DUl. Then,
remount DU1 and specify the volume label INSTALL. Type the following:

$ INITIALIZE DU1:INSTALL
$ DISMOUNT DU1:
$ MOUNT DU1:INSTALL

6. If the directory of the option INS files are not on the diskette with the volume label INSTALL
in DU1, type the following to create this directory:

$ CREATE/DIRECTORY DU1: [directory]

7. Copy the INSTALL.DAT file and the option INS file, created in Section 8.2.3, from the
diskette in DU2 to the diskette (with the volume label INSTALL) in DU1. Type the
following:

$ COpy DU2: [O,O]INSTALL.DAT DU1: [O,O]INSTALL.DAT
$ COpy DU2:filespec DU:filespec

Parameter

filespec
Specifies the directory and file name of the option INS file.

8. Dismount DU2 and remove the diskette from that device. Type the following:

$ DISMOUNT DU2:

• If you are copying only one diskette kit to the tape kit, proceed to step 12.

• If you are copying more than one diskette kit to the tape kit, you must complete
steps 9 to 11 before proceeding to step 12.

9. Insert and mount the first diskette for each diskette kit in DU2.

$ MOUNT DU2:volumelabel

10. Copy the option INS file from the diskette in DU2 to the diskette (with the volume label
INSTALL) in DU1. Type the following:

$ COpy DU2:filespec DU1:filespec

Parameter

filespec
Specifies the directory and file name of the option INS file.

8-30 Guidelines for Creating an Optional Software Package

11. Dismount DU2 and remove the diskette from that device. Type the following:

$ DISMOUNT DU1:

Repeat steps 9 to 11 for each diskette kit you want to copy to the tape kit.

12. Dismount DUI and remove the diskette (with the volume label INSTALL) from that device.
Type the following:

$ DISMOUNT DU1:

13. Using the COpy command, copy each group of your optional software files to diskettes
according to the tape INS file backup set lists.

14. Deallocate DU2 and DU1. Type the following:

$ DEALLOCATE DU2:
$ DEALLOCATE DU1:

Once you have completed the previous steps for each of your options, proceed to
Section 8.2.5 for the steps you must follow to copy your files to tape.

8.2.4.2 Organizing Files on the Fixed Disk

This section describes how to organize your files on the fixed disk. You must complete the
following procedure for any files you did not previously optimize.

1. Print a hardcopy list of the template INS file.

2. Determine which files are located in each backup set by referencing the file arrangement in
the template INS file BACKUP_SET statements. Use the list as a guide when you copy the
files to tape.

When you complete this procedure for each option, you must copy to tape. Proceed to
Section 8.2.5 to copy your optional software files to tape.

8.2.5 Creating the Tape Kit

The physical location of each group of files referenced by your BACKUP_SET statements will
determine how you copy these files to the tape kit.

• To copy a group of files from diskettes to tape, proceed to Section 8.2.5.1.

• To copy a group of files from fixed disk to tape, proceed to Section 8.2.5.2.

8.2.5. 1 Copying Files from Diskettes to Tape

If you have a MicroPDP-ll with two RX50 diskette drives, your option files should be organized
on diskettes. To copy each group of option files on diskettes to tape, use the following steps:

1. Insert in DU2 the diskette with the volume label INSTALL. Allocate DU2. Then, mount
DU2 and specify the /FOREIGN qualifier. Type the following:

$ ALLOCATE DU2:
$ MOUNT DU2:/FOREIGN

Guidelines for Creating an Optional Software Package 8-31

2. Load the TK5D tape cartridge in MUD and allocate that device. Then, mount MUD specifying
the /FOREIGN qualifier. Type the following:

$ ALLOCATE MUO:
$ MOUNT MUO:/FOREIGN

3. Copy the diskette with the volume label INSTALL from DU2 to the INSTALL backup set
on MUD. Type the following:

$ BACKUP/REWIND/VERIFY/SAVE:INSTALL DU2: MUO:

4. Dismount DU2 and remove the diskette with the volume label INSTALL from that device.
Type the following:

$ DISMOUNT DU2:

5. Insert the diskette containing the first set of option kit files in DU2. Mount DU2 and specify
the /FOREIGN qualifier. Type the following:

$ MOUNT DU2:/FOREIGN

6. Copy the files from the diskette in DU2 to MUD. Type the following:

$ BACKUP/APPEND/VERIFY/SAVE:name DU2: MUO:

Parameter

name
Specifies the name in the option INS file for the BACKUP_SET statement.

7. Dismount DU2 and remove the diskette from that device. Type the following:

$ DISMOUNT DU2:

Repeat steps 5 to 7 for each set of files on diskette that you must copy to a backup set on
the tape kit. Then proceed to step 8.

8. Dismount MUD, deallocate MUD, and remove the tape from MUD. Type the following:

$ DISMOUNT MUO:
$ DEALLOCATE MUO:

9. Deallocate DU2. Type the following:

$ DEALLOCATE DU2:

•

•

If additional groups of backup set files are contained on the fixed disk, proceed to
Section 8.2.5.2 to complete copying your files to the tape.

If you have no other groups of backup set files to copy, proceed to Section 8.3 to
document your tape package.

8-32 Guidelines for Creating an Optional Software Package

8.2.5.2 Copying Files from Fixed Disk to Tape

If you have a MicroPDP-11 without RX5D diskette drives, your option kit files should be
organized on the fixed disk. Use the following steps to copy each set of files from the fixed
disk to tape:

1. Load the TK5D tape in MUD and allocate that device. Then, mount MUD and specify the
/FOREIGN qualifier. Type the following:

$ ALLOCATE MUO:
$ MOUNT MUO:/FOREIGN

2. Copy the INSTALL.DAT file and the option INS file or files from DUD to MUD, and specify
INSTALL as the name of the backup set. Type the following:

$ BAC/REW/VER/SAV:INSTALL/MOU DUO: [O,O]INSTALL.DAT,files MUO:

Parameter

files
Indicates the wildcard specification or the option INS file names on DUD you want to
copy into the backup set on tape.

3. For the first set of files in the kit, copy the files from DUD to MUD. Type the following:

$ BACKUP/APPEND/VERIFY/SAVE:name/MOUNT DUO:files MUO:

Parameters

name

files

Specifies the name used in the option INS file for the corresponding BACKUP_SET
statement.

Indicates the wildcard specification or the file names on DUD you want to copy into the
specified backup set.

Repeat this step for each set of files you want to copy from the fixed disk to a backup set
on the tape.

4. Dismount and deallocate MUD. Then, remove the tape from MUD. Type the following:

$ DISMOUNT MUO:
$ DEALLOCATE MUO:

• If additional groups of backup set files are contained on diskettes, return to Section 8.2.5.1
. to complete copying your files to the tape.

• If you have no other groups of backup set files to copy, proceed to Section 8.3 to document
your tape package.

Guidelines for Creating an Optional Software Package 8-33

8.3 Documenting the Installation Procedure
A complete diskette or tape package includes the software kit and installation documentation.
You can complete your package by using the appropriate prototype installation guides included
in this manual. Appendix B contains the prototype installation guide for installing a diskette
kit. Appendix C contains the prototype installation guide for installing a tape kit. By inserting
option-specific information, these guides can be used for the installation procedure for an
optional software kit.

Micro /RSX software installation guides use these prototypes to document the installation
procedure. (Refer to the Micro /RSX Advanced Programmer's Kit Installation Guide for Diskettes
for an example of documentation produced using the prototype in Appendix B. Refer to the
Micro /RSX Advanced Programmer's Kit Installation Guide for Tape for an example of documentation
produced using the prototype in Appendix C.) These prototypes provide a brief introduction
to the installation procedure, describe the required software, give step-by-step installation
instructions, and provide troubleshooting information.

To produce your installation guide you must insert into the prototype information specific to
your optional software kit. Symbols enclosed in angle brackets (< >) indicate where you
should make these insertions within the prototype. When you produce your installation guide,
make sure you delete these angle bracket symbols as you insert your option-specific information.
Refer to Table 8-1 for descriptions of the angle bracket symbols used in the prototypes.

Table 8-1: Angle Bracket Symbols

Symbol

<PRODUCT_NAME>

<LABEL_NAME>

<BOX_LABEL>

< SENTENCE_DESCRIBING
_CONTENTS_OF_DISKETTE>

<SENTENCE_DESCRIBING
_CONTENTS_OF_TAPE>

<MANUAL_TITLE>

Description

Specifies the product name of the software being
installed.

Specifies the number of minutes required to install
the software.

Specifies the number of diskettes used to install the
software.

Specifies the number of tapes used to install the
software.

Specifies the label name of the diskette or tape.

Specifies the label name of the box containing the
tape or tapes.

Describes the contents of the diskette used to install
the software.

Describes the contents of the tape used to install the
software.

Specifies the title of a manual that will direct the user
to more information on the software.

8-34 Guidelines for Creating an Optional Software Package

Table 8-1 (Cont .): Angle Bracket Symbols

Symbol

< IVP_MESSAGE >

<ACCOUNT>

<FILE>

<DESCRIPTION>

<PARA_DESCRIBING
_CONDITIONALS_IF-APPLICABLE>

8.4 Error Messages

Description

Specifies the message produced upon successful com
pletion of the Installation Verification Procedure
(IVP).

Specifies the location of the file copied to the fixed
disk during the installation of the software.

Specifies the file copied to the fixed disk during the
installation of the software.

Specifies the description of the file copied to the fixed
disk during the installation of the software.

Describes conditionalizing the option during the
installation of the software.

This section lists the error messages produced by the indirect command procedure in
Section 8.2.1. Explanations and suggested user action accompany each error message. Refer
to the MicrojRSX User's Guide, Volume 1 and MicrojRSX User's Guide, Volume 2 for corrective
action on other messages produced during the development procedure of your optional diskette
or tape kit.

Following is a list of error messages returned by the TAPEINS.CMD indirect command file:

* An error occurred while opening the input file, filename. INS.
* The FCS or I/O status error code is nn.

* * The TAPEINS.CMD procedure did not create a template
* tape option .INS file for you.

*
* DD-MMM-YY HH:MM

Explanation: The TAPEINS.CMD procedure cannot open the specified input INS file.

User Action: Refer to the description of <FILERR> in the MicrojRSX User's Guide,
Volume 1 to determine the status of your error code and the necessary corrective action.
Repeat the TAPEINS.CMD procedure.

* An error occurred while opening the output file, filename.INS.
* The FCS or I/O status error code is nn.

* * The TAPEINS.CMD procedure did not create a valid template
* tape option .INS file for you.

*
* DD-MMM-YY HH:MM

Explanation: The TAPEINS.CMD procedure cannot open your output INS file.

Guidelines for Creating an Optional Software Package 8-35

User Action: Refer to the description of <FILERR> in the Micro /RSX User's Guide,
Volume 1 to determine the status of your error code and the necessary corrective action.
Delete the invalid template INS file and repeat the TAPEINS.CMD procedure.

* An error occurred while reading from the input file, filename. INS.
* The FCS or I/O status error code is nn.

* * The TAPEINS.CMD procedure did not create a valid template
* tape option .INS file for you.

*
* DD-MMM-YY HH:MM

Explanation: The TAPEINS.CMD procedure cannot read from the specified input INS file.

User Action: Refer to the description of <FILERR> in the Micro/RSX User's Guide,
Volume 1 to determine the status of your error code and the necessary corrective action.
Delete the invalid template INS file and repeat the TAPEINS.CMD procedure.

* The TAPEINS.CMD procedure did not complete successfully due to
* the misplacement of at least one FILE or BACKUP __ SET statement
* in the diskette option .INS file.

* * Refer to your template tape option .INS file, Tfilename.INS,
* to identify the misplaced statement(s) and the action you must
* take before running the TAPEINS.CMD procedure again.

*
* DD-MMM-YY HH:MM:SS

Explanation: Your input INS file contains a misplaced FILE or BACKUP_SET statement.

User Action: Refer to the invalid template tape option INS file for identification of the misplaced
statement. Follow the procedure stated in the template INS file for corrective action. Delete the
template INS file and repeat the TAPEINS.CMD procedure.

8-36 Guidelines for Creating an Optional Software Package

Appendix A
The MACRO Command

A.l MACRO
MACRO invokes the MACRO-11 assembler. The MACRO-11 assembler then assembles one or
more MACRO-11 source files into a single relocatable object module suitable for processing by
the Task Builder.

Format

MACR 0[/ qualifier ...] filespec[/ qualifier ...] [,filespec, ...]

Command Qualifiers
j[NO]CROSS-REFERENCE
jDISABLE:argument

ABSOLUTE
BINARY
CARDJ'ORMAT
GLOBAL
LOCAL
LOWERCASE
REGISTER_DEFINITIONS
TRUNCATION

jENABLE:argument
ABSOLUTE
BINARY
CARD_FORMAT
GLOBAL
LOCAL
LOWERCASE
REGISTER_DEFINITIONS
TRUNCATION

j[NO]LIST[:filespec]
j[NO]OBJECT[:filespec]
/[NO]SHOW[: argument]

The MACRO Command A-I

BINARY
CALLS
COMMENTS
CONDITIONALS
CONTENTS
COUNTER
DEFINITIONS
EXPANSIONS
EXTENSIONS
LISTING _DIRECTIVES
OBJECT_BINARY
SEQUENCE_NUMBERS
SOURCE
SYMBOLS

I[NO]WIDE

File Qualifiers
ILIBRARY
IPASS:n

Parameter

filespec
Specifies input files for the MACRO-II assembler. These input files must contain MACRO-
11 source code. Multiple file specifications must be separated by commas. File specifications
must include a file name. If no file type is given, the default file type MAC is applied. If
the ILIBRARY file qualifier is used, MLB is the default file type. No wildcards are accepted
by MACRO.

Note
The MACRO-II assembler uses the name of the last file named in the
command as the default name for output files. The last file named cannot
be a library. All other language commands, and the LINK command, use
the first file named in the command as the default name for output files.

Command Qualifiers

I[NO]CROSS_REFERENCE

Specifies whether a cross-reference listing should be generated and appended to the assembly
listing. The default is the INOCROSS_REFERENCE qualifier.

The cross-reference listing locates all user-defined and MACRO symbols that appear in the
source program.

When you specify this qualifier, you are also specifying the ILIST qualifier by implication.
An assembly listing is generated. It appears in your directory and is also printed on the
line printer. If you want to change the name of the listing file, you must use the ILIST
qualifier with a file specification in addition to the ICROSS_REFERENCE qualifier.

A-2 The MACRO Command

The /CROSS_REFERENCE qualifier as a command qualifier causes the file to be printed on
the line printer; the /CROSS_REFERENCE qualifier as a file specification qualifier prevents
the listing file from being printed. See the examples and the discussion under the /LIST
qualifier.

/DISABLE:argument
/ENABLE :argument

These qualifiers override the .DSABL and .ENABL assembler directives included in the
source program being assembled. The .DSABL and .ENABL directives invoke or inhibit
various aspects of the assembly. Table A-I summarizes the arguments to the /DISABLE
and /ENABLE qualifiers and gives their MACRO-I1 equivalents. There is a default setting
for each of these directives, even if you do not specify them in your program or command
line.

These qualifiers affect the entire assembly. If, for example, your MACRO command includes
the /ENABLE:LOWER_CASE qualifier, the assembler does not convert any lowercase source
text to uppercase, regardless of any .DSABL LC or .ENABL LC directives in the source code.
The same applies for the /DISABLE:LOWER_CASE qualifier. All .ENABL LC or .DISABL
LC directives are ignored.

If you specify only one argument to the /ENABLE or /DISABLE qualifier, you need not
include the parentheses, but if you have more than one argument, they must be separated
by commas and enclosed in parentheses.

Table A-l: The Arguments to the /ENABLE and /DISABLE Qualifiers
Assembly Functions Disabled by Default

Argument

ABSOLUTE

BINARY

CARDJORMAT

GLOBAL

LOCAL

LOWERCASE

MACRO-II
Equivalent Description

AMA Enabling this function causes relative mode ad
dresses (mode 67) to be assembled as absolute ad
dresses (mode 37).

ABS Enabling this function produces absolute binary
output in Files-II format.

CDR Enabling this function causes source columns 73 and
greater to be treated as a comment.

GBL Disabling this function causes MACRO-II to treat all
symbol references that are undefined at the end of
assembly pass 1 as undefined symbols. The default
is to treat all such symbols as global symbols.

LSB Enabling this function permits the disabling or
enabling of a local symbol block.

LC Enabling this function causes MACRO-II to accept
lowercase ASCII input. The default is to convert it
to uppercase.

The MACRO Command A-3

Table A-l (Cont.): The Arguments to the /ENABLE and /DISABLE Qualifiers
Assembly Functions Disabled by Default

MACRO-II
Argument Equivalent Description

REGISTER_DEFINITIONS REG Disabling this function inhibits the normal
MACRO-II default register definitions. The default
is RO=%O, RI=%I ... SP=%6, PC=%7. Under
most circumstances, you should use these defaults.

TRUNCATION

I[NO]LlST[:fllespec]

FPT Enabling this function causes floating-point trunca
tion. The default is floating-point rounding.

Specifies whether an assembly listing should be generated. The default is the INOLIST
qualifier, meaning no assembly listing is generated.

If you do not supply a file specification for this qualifier, the listing has a file name derived
from the name of the last source file in the MACRO command with the file type LST. If
you want the listing to have a different name, supply the name as an argument to the
ILIST qualifier. If you do supply a name, the listing file appears in your directory but is
not printed on the line printer.

The ILIST qualifier behaves in a different manner depending on whether it is given as
a command qualifier or a file specification qualifier. If the ILIST qualifier is used as a
command qualifier, the listing file is placed in your directory and printed on the line printer.
If the ILIST qualifier is used as a file specification qualifier, the listing file appears in your
directory but is not printed on the line printer.

If your command line includes the ICROSS-REFERENCE qualifier, the ILIST qualifier
is implied and need not be specified. The ICROSS_REFERENCE qualifier as a command
qualifier causes the file to be printed on the line printer; the ICROSS_REFERENCE qualifier
as a file specification qualifier prevents the listing file from being printed.

If your command line includes listing-control arguments to either the ISHOW or INOSHOW
qualifier, the ILIST qualifier is implied and need not be specified. The I[NO]SHOW qualifier
as a command qualifier causes the file to be printed on the line printer; the I[NO]SHOW
qualifier as a file specification qualifier prevents the listing file from being printed.

The only time you need to use the ILIST qualifier with the ICROSS_REFERENCE or
I[NO]SHOW qualifier is when you want to give the listing file a file specification other
than the default. In such cases, the position of the qualifiers in the command line has no
effect; the listing file appears in your directory but is not printed on the line printer. (See
the examples at the end of this section.)

I[NO]OBJECT[:fllespec]

Specifies whether an object module should be generated. The default is the IOBJECT
qualifier, meaning an object module is generated. If you do not supply a file specification,
the object file has a name derived from the name of the last source file and the file type

A-4 The MACRO Command

OBJ. If you want the object file to have a different name, give the name as an argument to
the jOBJECT qualifier.

You can name the object file after any of the source files listed in the MACRO command
by using the jOBJECT qualifier as a file specification qualifier. If used as a file specification
qualifier, the jOBJECT qualifier cannot take a file specification argument.

The jNOOBJECT qualifier specifies that no object module is generated. You can use this
qualifier if you want to use other facilities of the assembler, to get an assembly listing, for
instance, without doing the assembly.

I[NO]SHOW[:argument]
These qualifiers override the .LIST and .NLIST assembler directives included in the source
program being assembled. The .LIST and .NLIST directives control the content and format of
the assembly listing. Table A-2 summarizes the arguments to the jSHOW and jNOSHOW
qualifiers and gives their MACRO-II equivalents. There is a default setting for each of
these directives, even if you do not specify them in your code or command line.

These qualifiers affect the entire assembly. If, for example, your MACRO command includes
the jSHOW:COMMENTS qualifier, the assembly listing includes all comments, regardless
of any .NLIST COM or .LIST COM directives in the source code. The same goes for the
jNOSHOW:COMMENTS qualifier. All.LIST COM or .DISABL COM directives are ignored.

If you specify only one argument to the jSHOW or jNOSHOW qualifier, you need not
include the parentheses, but if you have more than one argument, they must be separated
by commas and enclosed in parentheses.

The jSHOW qualifier implies the jLIST qualifier, but if you want the listing file to have a
name other than the default, you must still use the JLIST qualifier.

The jSHOW qualifier as a command qualifier causes the file to be printed on the line
printer; the jSHOW qualifier as a file specification qualifier prevents the listing file from
being printed. See the example and the discussion under the jLIST qualifier.

Table A-2: The Arguments to the jSHOW and jNOSHOW Qualifiers
Listing Functions Disabled by Default

Argument

BINARY

CALLS

COMMENTS

CONDITIONALS

MACRO-tt
Equivalent Description

MEB Enabling this function causes MACRO-II to list only
those macro expansions that generate binary code.
This is a subset of EXPANSIONS.

MC Disabling this function suppresses the listing of macro
calls and repeat range expansions.

COM Disabling this function suppresses the listing of
comments. This is a subset of SOURCE.

CND Disabling this function suppresses the listing of
unsatisfied conditional coding.

The MACRO Command A-5

Table A-2 (Cont.): The Arguments to the jSHOW and jNOSHOW Qualifiers
Listing Functions Disabled by Default

Argument

CONTENTS

COUNTER

DEFINITIONS

EXPANSIONS

EXTENSIONS

LISTING _DIRECTIVES

OBJECT_BINARY

SEQUENCE_NUMBERS

SOURCE

SYMBOLS

/[NO]WIDE

MACRO-11
Equivalent

TOC

LOC

MD

ME

BEX

LD

BIN

SEQ

SRC

SYM

Description

Disabling this function suppresses the listing of table
of contents during assembly pass 1. The full assembly
listing is still prepared during assembly pass 2.

Disabling this function suppresses the location
counter field and does not replace it with a tab.

Disabling this function suppresses the listing of macro
definitions and repeat range expansions.

Enabling this function causes MACRO-II to include
all macro expansions in the listing.

Disabling this function suppresses the listing of binary
extensions, that is, all binary code that will not fit on
the first line. This is a subset of OBJECT_BINARY.

Enabling this function causes MACRO-II to list all
listing control directives without arguments, that is,
those listing directives that alter the listing level count.

Disabling this function suppresses the listing of
generated binary code and does not replace it with a
tab.

Disabling this function suppresses the inclusion of
sequence numbers in the listing. Sequence numbers
are replaced by tabs.

Disabling this function suppresses the listing of source
lines.

Disabling this function suppresses the listing of the
symbol table resulting from the assembly.

Specifies whether you want the assembly listing in wide or narrow format. The default can
be set by your system manager. As supplied, the default is the jWIDE qualifier, also called
line printer format. The jNOWIDE qualifier is sometimes called teleprinter format.

This qualifier overrides any .LIST TTM or .NLIST TTM directives included in your
source program.

A-6 The MACRO Command

File Qualifiers

/LiBRARY
Specifies that the file is a macro library. The default file type is MLB. A user macro library
file must be specified in the command line before any source files that use the macros
defined in the library. A library may not be the last file named in the command line.
Remember that the system macro library has the file type SML. If you are referencing this
library, you must explicitly state the type.

/PASS:n

Specifies that the file is to be assembled only during the pass specified. The assembler
makes two passes; n can be either 1 or 2.

Examples

$ MACRO @ffi
File? FILEA @ffi
Assembles the source file FILEA.MAC into a relocatable object module named FILEA.OBJ.

$ MACRO FILEA ~

Provides the same results as the previous example.

$ MACRO FILEA,FILEB,FILEC @ffi
Assembles the source files FILEA.MAC, FILEB.MAC, and FILEC.MAC into a relocatable object
module named FILEC.OBJ.

$ MACRO/LIST FILEA @ffi
Assembles the source file FILEA.MAC into the object file FILEA.OBJ, and also produces an
assembly listing, FILEA.LST. The assembly listing appears in your directory and is also printed
on the line printer.

$ MACRO/LIST:MYFILE FILEA @ffi
Assembles the source file FILEA.MAC into the object file FILEA.OBJ, and also produces an
assembly listing named MYFILE.LST. The assembly listing appears in your directory and is
printed on the line printer.

The MACRO Command A-7

$ MAC/LIST:TI:#FILEA ~

FILEA MACRO M1113 08-AUG-86 11:41 PAGE 1

1
2
3
4
5
6
7

.LIST TTM

.NLIST BEX

MACRO LIBRARY CALLS

.TITLE FILEA

8
9

.MCALL EXIT$S,QIOW$,DIR$

Assembles the source file FILEA.MAC into the object file FILEA.OBJ and types the assembly
listing on your terminal. No permanent copy of the listing file is retained, nor does the listing
appear on the line printer.

$ MAC/OBJECT:FILED ~

Produces an object file with the name FILED.OBJ.

$ MACRO FILEA/LIBRARY,FILED,FILEF,FILEG ~

Assembles a concatenated object file named FILEG.OBJ from the source files FILEA.MLB,
FILED.MAC, FILEF.MAC, and FILEG.MAC.

$ MACRO/NOSHOW:COMMENTS/WIDE FILEA ~

Produces an object module and an assembly listing. Any .LIST or .NLIST directives with TTM
or COM as arguments are ignored. The directives themselves appear in the listing, but they
have had no effect. The listing produced by this command includes no comments and is in wide
format. The listing is printed on the line printer and appears in your directory as FILEA.LST.

$ MACRO/NOSHOW: (COMMENTS, OBJECT_BINARY)/SHOW:EXPANSIONS FILEH ~

Produces an object module and an assembly listing. Any .LIST or .NLIST directives with COM,
BIN, or ME arguments are ignored. The listing includes no comments and no binary code, but
it does include macro expansions. Observe the use of parentheses where two arguments are
given for the /NOSHOW qualifier and the lack of parentheses where only one argument is
given for the /SHOW qualifier.

A-8 The MACRO Command

Appendix B
Prototype Installation Guide for a Diskette Kit

This appendix contains the prototype installation guide for the optional software created in
Chapter 8. To produce your installation guide, you must insert into the prototype information
specific to your optional software kit. For example, you would replace the symbol <PRODUCT_
NAME> with the name of the optional software. If you created a FORTRAN-77 kit,
FORTRAN-77 replaces the symbol. Refer to Section 8.3 for more details on the symbols
used in this prototype.

B.1 Introduction to MicrojRSX < PRODUCT_NAME> Installation
This guide tells you how to install the Micro/RSX <PRODUCT_NAME> software on your
MicroPDP-ll computer. Before you install this software, the Micro/RSX operating system must
be installed and working properly. (See the Micro /RSX Base Kit Installation Guide for Diskettes
for instructions.)

The <PRODUCT-NAME> installation takes only <NUMBER_OF-MINUTES> minutes.
Begin by following the instructions in this guide. After you have followed the preliminary
instructions in this guide, you follow instructions from your terminal to complete the installation.

A message on your terminal tells you when you have completed the installation.

If you make a mistake or a problem occurs during the installation, see Section B.4.

B.2 Checking Required Software
The Micro/RSX <PRODUCT_NAME> software is distributed on RXSO diskettes. A set of
<NUMBER_OF_DISKETTES> diskettes is provided. Check the software box to make sure it

contains all <NUMBER_OF_DISKETTES> diskettes.

The set of software consists of the following:

• One diskette labeled <LABEL-NAME>

< SENTENCE_DESCRIBING _CONTENTS_OF_DISKETTE >

• One diskette labeled <LABEL-NAME>

< SENTENCE_DESCRIBING_CONTENTS_OF_DISKETTE >

Prototype Installation Guide for a Diskette Kit B-1

• One diskette labeled <LABEL_NAME>

< SENTENCE_DESCRIBING _CONTENTS_OF_DISKETTE >

• One diskette labeled <LABEL_NAME>

< SENTENCE_DESCRIBING_CONTENTS_OF_DISKETTE >

For more information about the <PRODUCT_NAME> software, see the following manuals:

• <MANUAL_TITLE>

• <MANUAL_TITLE>

Remember
Never open a drive door or remove a diskette from its drive, unless both active
drive lights are off and both drives are quiet. If a drive door is opened or a
diskette removed when the drive lights are on, see Section B.4.

Never turn the power off, unless both active drive lights are off and both
drives are quiet. If the power is turned off when the drive lights are on, see
Section B.4.

Turn off the power to both the computer and the terminal if you will not be
using the system for several hours. The operating system and optional software
are saved on the fixed disk when the power is off. You do not have to reinstall
them when you turn the power back on.

If you remove a diskette from its drive during the installation procedure-for
example, to check that it is inserted properly-you must begin the installation
again, going back to step 2 described in Section B.3.

Do not press the RESTART button on the MicroPDP-ll if you make an error.

If the <PRODUCT_NAME> option is already installed on your system, you
must remove it before you can install it again.

Replace diskettes in their protective envelopes when not in use.

When the installation is complete, remove the diskette from the drive, replace
all diskettes in their protective envelopes, and store them safely.

Store this guide with your diskettes.

B-2 Prototype Installation Guide for a Diskette Kit

B.3 Installing the < PRODUCT_NAME> Software
Before you install the <PRODUCT-NAME> software, make sure the terminal is turned on,
the MicroPDP -11 is functional, and the Micro /RSX operating system is installed. See the
Micro /RSX Base Kit Installation Guide for Diskettes for more information about any of these three
items.

If you have more than one terminal, you can use anyone for the installation.

Note
If you are using this procedure to replace an option that is already installed, you
must remove the installed option first and then install the replacement option.
To remove an option, type R and press the RETURN key when the menu appears
on your terminal. If you are not sure whether an option is installed, type Land
press the RETURN key for a list of installed options.

Convention
The symbol @ill means that you press the RETURN key.

Follow these steps to install the software:

1. Log in to a privileged account. If you have already done so, do not log in again.

If you are not sure how to log in, see Section B.S. After you have logged in, proceed to
step 2.

2. Insert the diskette labeled <LABEL-NAME>. You can use either drive.

3. Type:

$ (QOPTION [BIT]

EXPERIENCED Micro/RSX USERS: You have the option of installing the <PRODUCT_
NAME> software on a disk other than the system disk (LB), for example, an optional fixed
disk. The installation procedure will ask you for the name of the device you are going to
use. To do this, type the following:

$ (QOPTION /DISK [BIT]

NOTE TO OPTIONAL SOFTWARE DEVELOPERS: If the user can specify whether he
will use the File Control Services (FCS) or Record Management Services (RMS) record-access
method, include the following:

EXPERIENCED <PRODUCT_NAME> USERS: You have the option of condition
alizing <PRODUCT_NAME> during the installation procedure. To do this, simply
type:

$ (QOPTION /FULL [BIT]

See the <MANUAL_TITLE> for more information on the conditionalization that the
/FULL qualifier allows.

< PARA_DESCRIBING _CONDITIONALS_IF-APPLICABLE >

Prototype Installation Guide for a Diskette Kit B-3

NOTE TO OPTIONAL SOFTWARE DEVELOPERS: If you are putting more than one
software option on a kit, and if any of the options contain any conditionalization, include
the following:

Caution
You cannot choose to install ALL the software options 011 vrmT kit at one
time. You must install each software option separately.

Note
If you are not an experienced user, you should use the standard installation
procedure.

4. Look at your terminal.

A menu appears on your terminal. Type I and press the RETURN key to indicate that you
want to install software.

From this point, you follow instructions from your terminal. For example, you type 0, for
diskette, in response to the question about what type of installation kit you have.

After <PRODUCT_NAME> is installed, an Installation Verification Procedure (IVP) runs
automatically to ensure that the software was installed properly. The IVP ends with the
following message:

< IVP_MESSAGE>

Upon successful completion of the installation procedure, the following message appears on
your terminal:

Procedure successfully completed.

Your <PRODUCT_NAME> software option is now fully installed and ready for use. Be sure
to remove the diskette from the drive.

The <PRODUCT_NAME> installation procedure copied the following files, (which you need
to use this software) onto the fixed disk. Do not delete these files.

Account File N arne

<ACCOUNT> <FILE>

<ACCOUNT> <FILE>

<ACCOUNT> <FILE>

<ACCOUNT> <FILE>

Description

<DESCRIPTION>

<DESCRIPTION>

<DESCRIPTION>

<DESCRIPTION>

B-4 Prototype Installation Guide for a Diskette Kit

8.4 Correcting Possible Errors
This section provides instructions for correcting errors that may occur during the software
installation.

In some cases, the installation software can detect when an error has occurred. In these cases,
a message on the terminal provides instructions to help you correct the problem.

Retrying the Installation

To retry the installation, type the following:

$ (CaPTION IBIfI

When the menu reappears, type I and press the RETURN key to indicate that you want to install
software. Make sure that the first or only diskette for the option is in a drive. Do not log in
again. Do not press the RESTART button on the MicroPDP-l1.

Retrying the Installation Using the Other Drive

Using the other drive and retrying the installation simply means that if the diskette is in the
left (top) drive, you should put it in the right (bottom) drive. Or, if the diskette is in the right
(bottom) drive, you should put it in the left (top) drive.

Then, to retry the installation, type the following:

$ (CaPTION IBIfI

When the-menu reappears, type I and press the RETURN key to indicate that you want to install
software. Make sure that the first or only diskette for the option is in a drive. Do not log in
again. Do not press the RESTART button on the MicroPDP-ll.

Correcting Kit, System Disk, and Installation Procedure Errors

During the <PRODUCT_NAME> installation, a message may appear on your screen,
indicating that something is wrong with either your <PRODUCT_NAME> software, your
system disk, or the installation procedure.

The following subsections describe how to correct many of the kit, system disk, and installation
procedure errors.

Correcting Kit Errors

Condition: The wrong diskette is in the drive.
Possible Correction: Locate the correct diskette and, when asked, insert it in the drive.

Condition: You have problems with the drive.
Possible Correction: Try the installation using the other drive. If this doesn't work, look up
the error message and its suggested correction in the MicrojRSX System Manager's Guide.

Prototype Installation Guide for a Diskette Kit B-5

Correcting System Disk Errors

Condition: There are undetected bad blocks on the system disk.
Possible Correction: Backup the existing system and then use the ANALYZE/MEDIA
command to locate all bad blocks. Using ANALYZE/MEDIA destroys all the data on the
disk, so you will have to use the latest backup to restore the disk. If there are no backups of
the disk, reinstall the Micro /RSX operating system.

Condition: You have problems with the drive.
Possible Correction: Look up the error message and its suggested correction in the Micro/RSX
System Manager's Guide.

Condition: There is not enough contiguous or free space on the fixed disk to install the
software option.
Possible Correction: You will have to delete files until you have sufficient space to install the
option. To find out how much space is available on the fixed disk, type DIR/FREE in response
to the dollar sign prompt ($).

Condition: Logical device LB is not assigned to the correct device.
Possible Correction: Assign LB to the correct device.

Correcting Installation Procedure Errors

Condition: Status of the system disk or the drive being used to install the <PRODUCT_
NAME> software is not as expected.
Possible Correction: Use the SHOW DEVICES command to check that the drive you are
using is on line, deallocated, and dismounted and to check that the system drive is mounted
public.

Condition: BACKUP utility was aborted.
Possible Correction: Restart the installation procedure.

Correcting Other Possible Errors

Condition: The terminal display does not change.
Possible Correction: Type CTRL/Q by pressing the CTRL key and holding it down while you
press Q. If this fails to correct the condition, check to be sure that the terminal is installed
properly.

Note
For more information about the terminal and computer setup, see the
MicroPDP-ll System Unpacking and Installation Guide that came with your
hardware.

Condition: Nothing appears on the terminal, or unexpected characters appear on the terminal.
Possible Correction: Ensure that the terminal is plugged in and turned on. Make sure the
baud rates on both the MicroPDP-ll computer and the terminal are set to the same speed
(typically, 9600). Ensure that the communication cable is firmly connected to the terminal. Turn
the terminal off and then back on. Retry the installation beginning with step 1 (logging in).

B-6 Prototype Installation Guide for a Diskette Kit

Condition: Nothing happens when you turn the computer on. (There should be a low whirring
noise when the computer is on.)
Possible Correction: Make sure the terminal is plugged in. Make sure the baud rate on the
computer is set to the same speed as the terminal (typically, 9600) and that all the hardware is
set up and working properly. Retry the installation beginning with step 1 (logging in).

Condition: You opened the door to the drive containing the diskette when the active drive
light was on, or you removed the diskette from the drive.
Possible Correction: Reinsert the diskette in the drive, close the drive door, and retry the
installation beginning with step 1 (logging in).

Condition: You turned the power off during the installation, or the power failed.
Possible Correction: Remove the diskette from its drive (if a diskette is in one of the drives),
turn the power back on, and retry the installation beginning with step 1 (logging in).

Condition: You made an error when typing information at the terminal.
Possible Correction: If you typed an incorrect character, but have not pressed the RETURN
key at the end of the line, simply press the DELETE key as many times as necessary to delete
the line back to the incorrect character. Then, retype the character correctly and continue. If
you have already pressed the RETURN key, you will get an error message. Simply type the
information again, making sure that everything is typed correctly. You can always retype a
command line or reenter a response to a question.

Note
Do not press the BACKSPACE key to try to delete characters.

Condition: You inserted the diskette incorrectly.
Possil§lle Correction: The installation software can detect this error. When this occurs, a
message appears on the terminal instructing you to check to be sure that the diskette is inserted
properly. After you check, you can press the RETURN key and continue; or you can remove the
diskette, reinsert it properly, and then retry the installation beginning with step 1 (logging in).

Condition: Numerals and the at sign (@) character appear on the terminal.
Possible Correction: An error in the installation procedure has occurred. If a diskette is in
one of the drives, remove it from its drive, reboot, and retry the instal~tion beginning with
step 1 (logging in).

Condition: One of the following messages appears on your terminal:

COP -- Allocation failure -- no contiguous space
COP -- Allocation failure on output file
COP -- Allocation failure -- no space available

Possible Correction: Not enough space is available on the fixed disk to install the software
option. You will have to delete files until there is sufficient space to install the option. To find
out how much space is available on the fixed disk, type DIRjFREE in response to the dollar
sign prompt ($).

Prototype Installation Guide for a Diskette Kit B-7

Condition: The following message appears on your terminal:

XXX. INS not found

Possible Correction: You do n9t have the file necessary to complete the installation procedure.

Note
For detailed instructions on properly inserting diskettes in the drives, see the
Micro jRSX Base Kit Installation Guide for Diskettes.

8.5 Logging in to MicrojRSX
Logging in gives you access to the system. The system identifies the people who have access
to it-its users-by means of accounts.

Before you log in, look at your terminal. If the terminal and computer are on, and the operating
system is properly installed, you will see a dollar sign prompt. This is the system prompt and
indicates that the operating system is ready to accept commands that you type. If you do not
see a dollar sign, press the RETURN key; the dollar sign prompt should appear.

The following example of how to log in uses a name and password for a privileged account that
is already set up when the MicrojRSX operating system is installed. If your system has been
installed for some time, the name and password for this account should have been changed.
(See your system manager.)

1. To log in, type LOGIN and press the RETURN key.

2. In response to this command, the system asks for your account or name. Type MICRO and
press the RETURN key.

3. Finally, the system asks for your password. Type RSX and press the RETURN key. Note
that the password does not appear on your terminal when you type it.

The entire login sequence looks like this:

$ LOGIN lBTIJ
Account or name: MICRO lBTIJ
Password:

The system allows 1 minute for logging in. If you do not complete the login sequence within
1 minute, the following message will appear on your terminal:

HEL -- Timeout on response

This is nothing to be concerned about. Simply begin the login sequence again by typing LOGIN
and pressing the RETURN key.

When you have logged in, you see several messages on the terminal, including the following:

Welcome to Micro/RSX
Version 4.0

The messages are followed by the dollar sign prompt. Now you are ready to use the system or
to install any optional software you may have purchased.

See the Introduction to MicrojRSX for information about the login procedure. See the MicrojRSX
System Manager's Guide for information about user accounts and managing a Micro jRSX system.

B-8 Prototype Installation Guide for a Diskette Kit

Appendix C
Prototype Installation Guide for a Tape Kit

This appendix contains the prototype installation guide for the optional software created in
Chapter 8. To produce your installation guide, you must insert into the prototype information
specific to your optional software kit. For example, you would replace the symbol <PRODUCT_
NAME> with the name of the optional software. If you created a FORTRAN-77 kit,
FORTRAN-77 replaces the symbol. Refer to Section 8.3 for more details on the symbols
used in this prototype.

C.l Introduction to MicrojRSX < PRODUCT_NAME> Installation
This guide tells you how to install the MicrojRSX <PRODUCT_NAME> software on your
MicroPDP -11 computer. Before you install this software, the Micro jRSX operating system must
be installed and working properly. (See the Micro jRSX Base Kit Installation Guide for Tape for
instructions.)

The <PRODUCT_NAME> installation takes only <NUMBER_OF-MINUTES> minutes.
Begin by following the instructions in this guide. After you have followed the preliminary
instructions in this guide, you follow instructions from your terminal to complete the installation.

A message on your terminal tells you when you have completed the installation.

If you make a mistake or a problem occurs during the installation, see Section C.4.

C.2 Checking Required Software
The MicrojRSX <PRODUCT--NAME> software is distributed on a TKSO tape. The box
containing the tape is labeled <BOX_LABEL>. The tape itself is labeled as follows:

<LABEL--NAME>

Store the tape in a safe place. Do not modify the contents. For more information about the
<PRODUCT--NAME> software, see the following manuals:

• <MANUAL_TITLE>

Prototype Installation Guide for a Tape Kit C-l

• <MANUAL_TITLE>

Remember
Turn off the power to both the computer and the terminal if the system will
not be used for several hours. The operating system and optional software are
saved on the fixed disk when the power is off. You do not have to reinstall
them when you turn the power back on.

Do not press the RESTART button on the MicroPDP-ll if you make an error.

If <PRODUCT_NAME> is already installed on your system, you must remove
it before you can install it again.

C.3 Installing the < PRODUCT_NAME> SOFTWARE
Before you install the <PRODUCT_NAME> software, make sure the terminal is turned on,
the MicroPDP-l1 is functional, and the Micro /RSX operating system is installed. See the
Micro /RSX Base Kit Installation Guide for Tape for more information about any of these three
items.

If you have more than one terminal, you can use anyone for the installation.

Note
If you are using this procedure to replace an option that is already installed, you
must remove the installed option first and then install the replacement option.
To remove an option, type R and press the RETURN key when the menu appears
on your terminal. If you are not sure whether an option is installed, type Land
press the RETURN key for a list of installed options.

Convention
The symbollBITJ means that you press the the RETURN key.

Follow these steps to install the software:

1. Log in to a privileged account. If you have already done so, do not log in again.

If you are not sure how to log in, see the section entitled Logging in to Micro /RSX. After
you have logged in, proceed to the next step in this section.

2. Insert the tape labeled <LABEL_NAME>.

3. Press the LOAD button. Wait until the light in the LOAD button stops blinking slowly
(about 15 seconds).

4. Type:

$ (QOPTION !BITl

EXPERIENCED Micro/RSX USERS: You have the option of installing the <PRODUCT_
NAME> software on a disk other than the system disk (LB), for example, an optional fixed
disk. The installation procedure will ask you for the name of the device you are going to
use. To do this, type the follo~ing:

$ (QOPTION /DISK [gill

C-2 Prototype Installation Guide for a Tape Kit

NOTE TO OPTIONAL SOFTWARE DEVELOPERS: If the user can specify whether he
will use the File Control Services (FCS) or Record Management Services (RMS) record-access
method, include the following:

EXPERIENCED <PRODUCT_NAME> USERS: You have the option of condition
alizing <PRODUCT_NAME> during the installation procedure. To do this, simply
type:

$ (QOPTION /FULL [RIT]

See the <MANUAL_TITLE> for more information on the conditionalization that the
jFULL qualifier allows.

<PARA_DESCRIBING_CONDITIONALS_IF-APPLICABLE>

NOTE TO OPTIONAL SOFTWARE DEVELOPERS: If you are putting more than one
software option on a kit, and if any of the options contain any conditionalization, include
the following:

Caution
You cannot choose to install ALL the software options on your kit at one
time. You must install each software option separately.

Note
If you are not an experienced user, you should use the standard installation
procedure.

5. Look at your terminal.

A menu appears on your terminal. Type I and press the RETURN key to indicate that you
want to install software.

From this point, you follow instructions from your terminal. For example, you type T, for
tape, in response to the question about what type of installation kit you have.

After <PRODUCT_NAME> is installed, an Installation Verification Procedure (IVP) runs
automatically to ensure that the software was installed properly. The IVP ends with the
following message:

<IVP_MESSAGE>

Upon successful completion of the installation procedure, the following message appears on
your terminal:

Procedure successfully completed.

Your <PRODUCT_NAME> software option is now fully installed and ready for use. Be sure
to unload the tape and remove the tape cartridge from the drive.

The <PRODUCT_NAME> installation procedure copied the following files (which you need
to use this software) onto the fixed disk. Do not delete these files.

Prototype Installation Guide for a Tape Kit C-3

Account File N arne

<ACCOUNT> <FILE>

<ACCOUNT> <FILE>

<ACCOUNT> <FILE>

<ACCOUNT> <FILE>

Description

<DESCRIPTION>

<DESCRIPTION>

<DESCRIPTION>

<DESCRIPTION>

C.4 Correcting Possible Errors
This section provides instructions for correcting errors that may occur during the software
installation.

In some cases, the installation software can detect when an error has occurred. In these cases,
a message on the terminal provides instructions to help you correct the problem.

Retrying the Installation

To retry the installation, type the following:

$ (CaPTION mTIJ

When the menu reappears, type I and press the RETURN key to indicate that you want to install
software. Make sure that the tape cartridge is in the drive and that it has been unloaded and
reloaded. Do not log in again. Do not press the RESTART button on the MicroPDP-l1.

Correcting Kit, System Disk, and Installation Procedure Errors

During the <PRODUCT_NAME> installation, a message may appear on your screen,
indicating that something is wrong with either your <PRODUCT-NAME> software, your
system disk, or the installation procedure.

The following subsections describe how to correct many of the kit, system disk, and installation
procedure errors.

Correcting Kit Errors

Condition: The wrong tape is in the drive.
Possible Correction: Locate the correct tape, dismount the incorrect tape, and mount the
correct tape.

Condition: You have problems with the drive.
Possible Correction: Look up the error message and its suggested correction in the Micro jRSX
System Manager's Guide.

C-4 Prototype Installation Guide for a Tape Kit

Correcting System Disk Errors

Condition: There are undetected bad blocks on the system disk.
Possible Correction: Backup the existing system, then use the ANALYZE/MEDIA command
to locate all bad blocks. Using ANALYZE/MEDIA destroys all the data on the disk, so you will
have to use ~he latest backup to restore the disk. If there are no backups of the disk, reinstall
the Micro /RSX operating system.

Condition: There is not enough contiguous or free space on the fixed disk to install the
software option.
Possible Correction: You will have to delete files until you have sufficient space to install the
option. To find out how much space is available on the fixed disk, type DIR/FREE in response
to the dollar sign prompt ($).

Condition: Logical device LB is not assigned to the correct device.
Possible Correction: Assign LB to the correct device.

Correcting Installation Procedure Errors

Condition: Status of the system disk or the drive being used to install the <PRODUCT_
NAME> software is not as expected.
Possible Correction: Use the SHOW DEVICES command to check that the drive you are
using is on line, deallocated, and dismounted, and to check that the system drive is mounted
public.

Condition: BACKUP utility was aborted. .
Possible Correction: Restart the installation procedure.

Correcting Other Possible Errors

Condition: The terminal display does not change.
Possible Correction: Type CTRL/Q by pressing the CTRL key and holding it down while
you type Q. If this fails to correct the condition, check to be sure that the terminal is installed
properly.

Note
For more information about the terminal and computer setup, see the
MicroPDP-ll System Unpacking and Installation Guide that came with your
hardware.

Condition: Nothing appears on the terminal, or unexpected characters appear on the terminal.
Possible Correction: Ensure that the terminal is plugged in and turned on. Make sure the
baud rates on both the MicroPDP-ll computer and the terminal are set to the same speed
(typically, 9600). Ensure that the communication cable is firmly connected to the terminal. Turn
the terminal off and then on. Retry the installation as described previously.

Condition: Nothing happens when you turn the computer on. (There should be a low whirring
noise when the computer is on.)
Possible Correction: Make sure the terminal is plugged in. Make sure the baud rate on the
computer is set to the same speed as the terminal (typically, 9600) and that all the hardware is
set up and working properly. Retry the installation beginning with step 1 (logging in).

Prototype Installation Guide for a Tape Kit c-s

Condition: You turned the power off during the installation, or the power failed.
Possible Correction: Unload the tape and remove it from the drive (if it is in the drive), turn
the power back on, and retry the installation beginning with step 1 (logging in).

Condition: You made an error when typing information at the terminal.
Possible Correction: If you typed an incorrect character, but have not pressed the RETURN
key at the end of the line, simply press the DELETE key as many times as necessary to delete
the line back to the incorrect character. Then, retype the character correctly and continue. If
you have already pressed the RETURN key, you will get an error message. Simply type the
information again, making sure that everything is typed correctly. You can always retype a
command line or reenter a response to a question.

Note
Do not press the BACKSPACE key to try to delete characters.

Condition: Numerals and the at sign (@) character appear on the terminal.
Possible Correction: An error in the installation procedure has occurred. If the tape is in the
drive, unload it, remove it, reboot, and retry the installation beginning with step 1 (logging in).

Condition: One of the following messages appears on your terminal:

COP -- Allocation failure -- no contiguous space
COP -- Allocation failure on output file
COP -- Allocation failure -- no space available

Possible Correction: Not enough space is available on the fixed disk to install the software
option. You will have to delete files until there is sufficient space to install the option. To find
out how much space is available on the fixed disk, type DIR/FREE in response to the dollar
sign prompt.

Condition: The following message appears on your terminal:

XXX. INS not found

Possible Correction: You do not have the file necessary to complete the installation procedure.

Note
For detailed instructions on properly inserting a tape cartridge in the drive, see
the Micro/RSX Base Kit Installation Guide for Tape.

c.s Logging in to MicrojRSX
Logging in gives you access to the system. The system identifies the people who have access
to it-its users-by means of accounts.

Before you log in, look at your terminal. If the terminal and computer are on, and the operating
system is properly installed, you will see a dollar sign ($). This is the system prompt and
indicates that the operating system is ready to accept commands that you type. If you do not
see a dollar sign, press the RETURN key; the dollar sign should appear.

The following example of how to log in uses a name and password for a privileged account that
is already set up when the Micro /RSX operating system is installed. If your system has been
installed for some time, the name and password for this account should have been changed.
(See your system manager.)

C-6 Prototype Installation Guide for a Tape Kit

1. To log in, type LOGIN and press the RETURN key.

2. In response to this command, the system asks for your account or name. Type MICRO and
press the RETURN key.

3. Finally, the system asks for your password. Type RSX and press the RETURN key. Note
that the password does not appear on your terminal when you type it.

The entire login sequence looks like this:

$ LOGIN lliITl
Account or name: MICRO lliITl
Password:

The system allows 1 minute for logging in. If you do not complete the login sequence within
1 minute, the following message appears on your terminal:

HEL -- Timeout on response

This is nothing to be concerned about. Simply begin the login sequence again by typing LOGIN
and pressing the RETURN key

When you have logged in, you see several messages on the terminal, including the following:

Welcome to Micro/RSX
Version 4.0

The messages are followed by the dollar sign prompt. Now you are ready to use the system or
to install any optional software you may have purchased.

See the Introduction to Micro /RSX for information about the login procedure. See the Micro /RSX
System Manager's Guide for information about user accounts and managing a Micro/RSX system.

Prototype Installation Guide for a Tape Kit C-7

Appendix D
Micro /RSX Reference and Customization Files

The Advanced Programmer Kit provides the files listed below on the diskette labeled
REFERENCE AND CUSTOMIZATION FILES (RX50 distribution) or the backup set labeled
REFERENCE (TK50 distribution). These files can be used by a knowledgeable system
programmer to customize a Micro jRSX operating system. The files are separated into three
major groups. The file specifications and descriptions for each group are as follows:

1. Executive Maps (for reference)

File Name

[1,54]NOIDEXEC.MAP

[1,54]IDEXEC.MAP

Description

Map of the Executive for the overlapped instruction and data
space Micro jRSX system.

Map of the Executive for the separated instruction and data
space Micro jRSX system.

Note
These two files are usually called RSX11M.MAP. They have been renamed
for ease of identification.

2. National Replacement Character set (NRC) terminal support customization

File Name

[12,1 O]TRANSACD .MAC
[12,10]VTMNC.MAC
[12, 1 O]VTMNCI.MAC
[12,10]VTW.MAC
[12,10]VTMNCIG.MAC
[12,10]VTMNIF.MAC

[12,1 O]ACDBLD. CMD

Description

Template source files for NRC translation Ancillary Control
Drivers (ACDs). Refer to the INSTALL command in the
Micro jRSX User's Guide, Volume 2 for details on modifying
these files.

Task-build command file for NRC translation ACDs.

MicrojRSX Reference and Customization Files D-l

3. File Control Services (FCS) customization

File Name

[l,l]FCS.OBS

[1,1]FCSNOLOG.OBS

[l,l]FCSNOANS.OBS

Note

Description

This file contains concatenated FCS object modules. Insert
these modules in [l,l]NOANSLIB.OLB (located on the
Micro/RSX Base Kit) to obtain an FCS object
module with full functionality, including logical name and
American National Standards Institute (ANSI) tape support.
(DIGITAL recommends that you rename [1,l]NOANSLIB.OLB
to [l,l]ANSLIB.OLB, to accurately reflect its contents.) The
resulting object library can be modified with the files
[1,1]FCSNOLOG.OBS and [1,1]FCSNOANS.OBS to create an
FCS object module with other combinations of extended logical
name and ANSI tape support.

This file contains concatenated FCS object modules. Replacing
the modules contained in [l,l]NOANSLIB.OLB with these
modules creates an FCS object module without logical name
support. This file can also be combined with FCSNOANS.OBS
to create an FCS object module without extended logical name
and ANSI tape support.

This file contains concatenated FCS object modules. Replacing
the modules contained in [l,l]NOANSLIB.OLB with these
modules creates an FCS object module without tape support.
This file can also be combined with FCSNOLOG.OBS to create
an FCS object module without extended logical name and ANSI
tape support.

The diskette labeled REFERENCE AND CUSTOMIZATION FILES and the backup set labeled
REFERENCE cannot be installed as an application. If you attempt this, the Optional Software
Installation procedure returns an error message.

• For RX50 distribution, files can be copied from the diskette by issuing the following
commands (in this example the system disk is DUO and the diskette is in drive DU1):

$ MOUNT/NOSHARE DU1: REFERENCE
$ CREATE/DIRECTORY DUO: [directory]
$ COPY/OWN DU1: [directory] file DUO: [directory]

Parameter

[directory]f1le, ...

Indicates that more than one file and/or directory can be specified.

• For the TK50 distribution, files can be copied by issuing the following commands (in this
example the system disk is DUO):

$ MOUNT/NOSHARE/FOREIGN MUO:
$ BACKUP/NOINIT/DIR/SAVE_SET:REFERENCE MUO: [directory]file, ... DUO:

Parameter

,[directory]f1le, ...

Indicates that more than one file and/or directory can be specified.

D-2 Micro /RSX Reference and Customization Files

Index

A
Advanced kit

software options
file transfer, 1-2
magnetic tape software support, 1-2
program development

advanced MACRO-II, 1-1
priviledged, 1-2

terminal emulation, 1-2
/ ALL qualifier

DEASSIGN command, 7-9
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

Assembly
conditional, 1-4
language, 1-3

See also MACRO-II
listing

examining at a terminal, 3-5
formatting, 2-7
generating, 3-4
page break, 2-7
printing, 3-6
spooling, 3-6
table of contents, 2-7
terminal format, 2-7

ASSIGN command, 7-3, 7-4, 7-5
error message, 7-9
example, 7-7
qualifiers

/FINAL, 7-4, 7-5
/GLOBAL, 7-5
/GROUP, 7-5
/LOCAL,7-5
/LOGIN,7-5
/SYSTEM, 7-5
/TERMINAL, 7-5

ASSIGN command
qualifiers (cont' d.)

/TRANSLATION:FINAL, 7-5
At sign (@)

ODT, 5-8

B
BACK_UP SET statement

merging, 8-28
separating, 8-28

Backslash operator, 5-5
B command

ODT,5-6
Breakpoint .

setting in a task, 5-6
Breakpoint register, 5-6

C
Calling module, 6-4
/COMPRESS qualifier

LIBRARY command, 6-7
Conditional INS File Statements, 8-12
COpy command, 4-2
Create Logical directive, 7-2
/ CREATE qualifier

LIBRARY command, 6-1 to 6-2, 6-3
CRF utility, 1-8

assembly cross-reference, 3-5 to 3-6
global cross-reference, 4-4

jCRO qualifier
See jCROSS_REFERENCE qualifier

/CROSS-REFERENCE qualifier
LINK command, 1-8, 4-4, 5-2
MACRO command, 1-8, 3-5

Cross-reference listing
assembly, 3-5 to 3-6
global, 4-4

Index-l

Cross-Reference Processor
See CRF

CTRL/O command, 3-5
CTRL/Q command, 3-5
CTRL/S command, 3-5
CTRL/U command, 5-3

D
Data block

local, 2-9
Data storage

control in assembly language, 1-4
directive, 1-4
MACRO-II definition, 2-9
program section, 2-9

DCL, 1-3
commands

ASSIGN, 7-3, 7-5
COPY, 4-2
DEASSIGN, 7-3, 7-9
DEFINE, 7-1, 7-12
DIRECTORY, 3-6, 6-4
LIBRARY, 1-8, 6-1
LINK, 1-5, 4-1, 5-2, 5-9, 6-4
MACRO, 3-1, 6-3
PRINT, I-II, 3-6
PURGE,3-6
SHOW ASSIGNMENTS, 7-2, 7-15
SHOW LOGICALS, 7-2, 7-15
TYPE, 3-5, 4-4

DEASSIGN command, 7-3, 7-9
error message, 7-11
example, 7-11
qualifiers

/ALL,7-9
/GLOBAL, 7-9
/GROUP, 7-9
/LOCAL,7-9
/LOGIN,7-9
/SYSTEM, 7-9
/TERMINAL, 7-9

Debugging
MACRO-II source file, 3-2, 3-3
ODT, 1-6
PMD task, 1-7
$SNAP, 1-7
task, 4-5, 5-1
tool

See ODT
using map, 5-2, 5-8

Index-2

/DEBUG qualifier
LINK command, 5-2

DEC standard editor
See EDT

Default
file type

MACRO-II, 3-4
TKB, 4-1

system library search
MACRO-II, 2-7
TKB, 1-10, 4-1

transfer (starting) address, 4-5
DEFINE command, 7-1, 7-3, 7-12

error message, 7-15
example, 7-14
qualifiers

/FINAL, 7-4, 7-12
/GLOBAL, 7-12
/GROUP, 7-12
/LOCAL, 7-12
/LOGIN, 7-12
/SYSTEM, 7-12
/TERMINAL, 7-12
/TRANSLATION:FINAL, 7-12

Delete Logical directive, 7-2
Device

logical, 7-5, 7-9, 7-15
Diagnostic run

MACRO-II source file, 3-1 to 3-2
DIGITAL Command Language

See DCL
Directive

Create Logical, 7-2
data storage, 1-4
Delete Logical, 7-2
.END, 2-9, 4-2, 4-5
EXIT$S, 2-7
general-purpose, 2-7 to 2-8
.IDE NT, 2-6
.LIST TTM, 2-7
Macro, 1-4
.MCALL, 1-9, 2-7, 6-3
.NLIST, 2-7
.PAGE,2-7
.PSECT,2-9
.SBTTL, 2-7
system, 1-8
.TITLE, 2-6, 6-4

Directory
listing, 3-6
purging, 3-6

DIRECTORY command, 3-6, 6-4

/DISABLE:GLOBAL qualifier
MACRO command, 3-1

Diskette kit
copying

multivolume files, 8-24
single volume files, 8-22

creating, 8-2
INS file, 8-6
INSTALL.DAT file, 8-3

grouping files, 8-3
INS file example, 8-13
INSTALL.DAT file example, 8-5
INSTALL.DAT file statement, 8-4
number of diskettes, 8-3
setting up files, 8-3

Dollar sign ($)
ODT, 5-7, 5-8

E
EDT, 1-3
.END directive, 2-9, 3-3, 4-2, 4-5
Entry point, 6-3

table, 6-3, 6-6
zero entry points, 6-4

EPT
See entry point

Error codes
See Macro-II

Error message
MACRO-II, 3-4
ODT,5-3
TAPEINS.CMD file, 8-35
TKB, 4-1
TKTN,4-5

Executive library, 1-10
Executive macro library, 1-8, 1-9
EXELIB.OLB file, 1-10
EXEMC.MLB file, 1-8, 1-9
EXIT$S directive, 2-7

F
FILE.MAC source code, 2-13
Files

copying multivolume, 8-24
copying single volume, 8-22
directory listing, 3-6
listing, 3-5
printing, 3-6
purging, 3-6
source

creating, 2-9

Files
source (cont'd.)

editing, 2-10
File type

LST, 3-4, 6-7
MAC, 3-1
MAP, 4-4
MLB,6-1
OBJ, 3-4
PMD,5-9
TSK, 4-1

/FINAL qualifier
ASSIGN command, 7-4, 7-5
DEFINE command, 7-4, 7-12

Format
MACRO-II

source file, 2-1 to 2-4
skeleton, 2-4

statement, 2-1 to 2-4
/FULL qualifier

LIBRARY command, 6-7

G
G command

OOT, 5-6, 5-7
general-purpose directive, 2-7 to 2-8
Global cross-reference

listing, 4-4
Global default

disabling in MACRO-II, 3-1 to 3-2
/GLOBAL qualifier

ASSIGN command, 7-5
DEASSIGN command, 7-9
DEFINE command, 7-12
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

Global symbol, 1-4
entry point, 1-4, 6-3, 6-6
resolution, 4-1, 6-6
undefined

library resolution, 6-5
using library to resolve undefined, 6-6

/GROUP qualifier
ASSIGN command, 7-5
DEASSIGN command, 7-9
DEFINE command, 7-12
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

Index-3

H
Hardware

disks, 1-11
printers, 1-11
program development, 1-10
terminals, 1-11

.IDE NT directive, 2-6
/INCLUDE qualifier

LINK command, 6-4, 6-5, 6-6
/INSERT qualifier

LIBRARY command, 6-6
inserting modules, 6-6

INS file
creating, 8-6
example, 8-13

inserting modules, 8-19
multiple diskette option, 8-14
single diskette option, 8-13
using conditionals, 8-16
using conditionals and multivolume

files, 8-17
statement, 8-7

ABORT taskname, 8-7
BACKUP_SET volname, 8-8
COMMAND cmd, 8-8
DELETE filename, 8-8
ERROR - errmsg, 8-8
FILE filename /DELETE, 8-8
FILE filename /KEEP, 8-8
INSTALL JROCEDURE filename,

8-9
INSTALL_VERIFICATION filename,

8-10
INSTALL filename /COMMON, 8-9
INSTALL filename /LIBRARY, 8-9
INSTALL filename /TASK, 8-9
LIBRARY_DELETE modname1, 8-11
LIBRARY_INSERT filename, 8-10
OPTION _VERSION vrsn, 8-11
REMOVEJROCEDURE filename,

8-11
REMOVE taskname, 8-11
RUN-IMMEDIATE taskname, 8-11
RUN _SYSTEM taskname, 8-11
RUN_WAIT taskname, 8-12
STARTUPJROCEDURE filename,

8-12
SYSTEM":"" VERSION vrsn, 8-12

Index-4

INS file
statement (cont'd.)

! text, 8-7
valid conditionals, 8-13
with conditionals, 8-12

template, 8-26
editing, 8-29
optimizing, 8-27

INSTALL.DAT file
creating, 8-3
editing, 8-29
example, 8-5
statement, 8-4

COPY=NO, 8-4
COPY=YES, 8-4
DISKETTES=n, 8-4
OPTION=OPTDESC,

[directory]OPTNAME.lNS, 8-4
SYSTEM_ VERSION=vrsn, 8-4

Installation

K

documenting, 8-34
producing package, 8-1
prototype installation guide, 8-34

Kit
packaging, 8-1

L
/LB qualifier

LINK command, 6-5
Library

default search of system
TKB, 4-1

executive, 1-10
executive macro, 1-8
macro, 1-8, 6-1 to 6-2
maintenance, 6-7
modules

inserting, 6-3
object, 1-9, 6-3

designating in LINK, 6-6
designating in TKB, 6-4, 6-5
resolving undefined global symbols,

6-5
RMS-11, 1-8, 1-10
search

MACRO-11,2-7
TKB, 1-10

squeezing, 6-2
system, 1-10

Library (cont'd.)
virtual memory management, 1-10

LIBRARY command, 1-8, 6-1
adding a module to a library, 6-6
efficiency, 1-8
inserting modules in a library, 6-6
qualifiers

/COMPRESS, 6-7
/CREATE, 6-1, 6-3
/FULL,6-7
/INSERT, 6-6
/LIST, 6-6, 6-7
/MACRO, 6-2
/NAMES, 6-7
/OBJECT, 6-3
/REPLACE, 6-6, 6-7

/LIBRARY qualifier
LINK command, 6-5, 6-6

LINE FEED key
closing location

ODT,5-7
ODT

closing location, 5-4
displaying word on stack, 5-8
opening location, 5-4

opening location
ODT,5-7

LINK
generating

map
full, 4-4
standard, 4-4

qualifiers
/CROSS-REFERENCE, 5-2
/DEBUG,5-2
/LONG,4-4
/MAP, 4-4, 5-2, 5-9
/POSTMORTEM, 5-9
/SYSTEM_LIBRARY_DISPLAY, 4-4
/TASK, 5-2

LINK command, 1-5, 4-1, 5-2, 5-9, 6-4
See also TKB
object library

use, 6-6
PMD task, 5-9
qualifiers

/CROSS_REFERENCE, 1-8, 4-4
/INCLUDE, 6-4, 6-5, 6-6
/LB, 6-5
/LIBRARY, 6-5, 6-6
/MAP, 6-4, 6-6
MAP, 4-4

LINK command
qualifiers (con t' d.)

Listing

NOTASK,4-4
NOWIDE,4-4
/POSTMORTEM, 5-9
/TASK, 6-4, 6-6

assembly, 3-4
control, 1-4, 2-7
directory, 3-6
examining at a terminal, 3-5
global cross-reference, 4-4
printing, 3-6
use in debugging, 5-4

/LIST qualifier
LIBRARY command, 6-6, 6-7
MACRO command, 3-1,3-4

.LIST TTM directive, 2-7
Local data block, 2-9
Local macro definitions, 2-8
/LOCAL qualifier

ASSIGN command, 7-5
DEASSIGN command, 7-9
DEFINE command, 7-12
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

Local symbol definitions, 2-8
Location counter, 1-5

use in debugging, 5-3, 5-4
Logical device, 7-9, 7-15
Logical name

device, 7-5, 7-9
displaying, 7-2, 7-15
format, 7-3, 7-6
introduction, 7-1
table, 7-2
text, 7-12
translation, 7-4

iterative, 7-4
Logical unit number

See LUN
/LOGIN qualifier

ASSIGN command, 7-5
DEASSIGN command, 7-9
DEFINE command, 7-12
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

/LONG qualifier, 4-4
LST file type, 3-4, 6-7
LUN

default by TKB, 4-3

Index-5

M
Macro

call
cross-reference of symbols, 3-5 to 3-6
resolution, 1-4, 2-7
unrecognized, 2-7

directive, 1-4
library

adding modules, 6-6
creating, 6-1
definitions, 6-3
listing information, 6-7
replacing modules, 6-7
search of system, 1-9, 2-7

symbol
definition, 1-9, 2-7, 6-3

MACRO-II
assembling source file, 3-1 to 3-2
assembly language, 1-3
cross-reference listing, 1-5, 3-5 to 3-6
data storage

definition, 2-9
default search of system library, 2-7
defining local symbols, 2-8
directives, 1-4
disabling global default, 3-1
error code

A,3-2
E, 3-3
Q,3-3
V,3-3

error message, 3-1
listing, 3-4

generating, 3-4
location counter, 1-5
macro

cross-reference, 3-5 to 3-6
library usage, 6-3
symbol, 1-4, 2-7, 6-3

MACRO command, 1-3, 3-1, 3-4, 6-3
qualifiers

/CROSS_REFERENCE, 1-8, 3-5
to 3-6

/DISABLE:GLOBAL, 3-1
/LIBRARY, 6-3
/LIST, 3-1, 3-4, 3-5
/NOOBJECT, 3-1
/OBJECT, 3-4

object module, 3-4
Programming language, 1-3
source file, 2-1 to 2-4

Index-6

MACRO-II
source file (cont'd.)

format, 2-1 to 2-4
skeleton, 2-4

source input, 1-4
statement

format, 2-1 to 2-4
symbol

cross-reference, 3-5 to 3-6
evaluation, 1-4, 3-1, 6-3

table of contents generation, 2-7
MACRO command

See MACRO-II
Macro libraries, 1-8
/MACRO qualifier

LIBRARY command, 6-2
MAC task, 1-3

See MACRO-II
Magnetic tape software support

See Advanced kit
Map

examining at terminal, 4-4
full, 4-4
generating, 4-4
reducing width, 4-4
stack limits, 5-8
standard, 4-4

MAP file type, 4-4
/MAP qualifier, 4-4, 5-9

LINK command, 4-4, 5-2, 6-4, 6-6
.MCALL directive, 1-9, 2-7, 3-3

using with user macro library, 6-3
Memory allocation file

See Map
MLB file type, 6-1
Module name, 2-6, 6-3, 6-4

table, 6-6
macro library, 6-2
object library, 6-3, 6-4

Module version, 2-6

N
/NAMES qualifier

LIBRARY command, 6-7
.NLIST BEX directive, 2-7
NOANSLIB.OLB file, 1-10
/NOOBJECT qualifier

MACRO command; 3-1
/NOTASK qualifier

LINK command, 4-4

/NOWIDE qualifier
LINK command, 4-4

o
Object library, 1-9

adding modules, 6-6
creating, 6-3
creating a user, 6-3
default search of system, 1-9, 4-1
DIGITAL-supplied, 1-9
dual use, 6-6
listing information, 6-7
resolving undefined global symbols, 6-5

Object module
concatenated, 4-2 to 4-3
input to TKB, 4-1
MACRO-II, 1-4, 3-4

/OBJECT qualifier, 3-4
LIBRARY command, 6-3

OBJ file type, 3-4
ODT, 1-6, 5-1

at sign (@), 5-8
backslash (\) operator, 5-5
B command, 5-6
breakpoint register, 5-6
changing location contents, 5-7
correcting input, 5-3
dollar sign ($), 5-6, 5-8
error conditions in task, 5-8
examining locations, 5-4, 5-5
forming address, 5-4
G command, 5-6, 5-7
including in a task, 5-1, 5-2
LINE FEED key, 5-5, 5-7, 5-8
P command, 5-7
question mark, 5-3
R command, 5-3
relocation register, 5-2, 5-4
RETURN key, 5-8
setting breakpoints, 5-6
slash (/), 5-4
source listing use, 5-4
SST, 1-6
SST within, 5-8
task control, 1-6
terminating task execution, 5-8
underline prompt, 5-2
X command, 5-8

On-Line Debugging Tool
See ODT

Option
producing package, 8-1
software

See Advanced kit
Optional software files

copying

p

from diskettes, 8-31
from fixed disk, 8-33

organizing
on the fixed disk, 8-31
using diskettes, 8-29

Packaging guidelines, 8-1
.PAGE directive, 2-7
PC

value, 4-5
P command

ODT,5-7
PDP-II Processor

address limit, 1-6
PMD file type, 5-9

See also PMD task
PMD task, 1-7, 5-9

enabling with TKB, 5-9
Postmortem Dump

See PMD task
/POSTMORTEM qualifier, 5-9

LINK command, 5-9
PRINT command, I-II, 3-6
Program

sectioning, 1-4, 2-6, 2-9
user

breakpoints
setting, 5-6

library, 6-1
macro symbol, 6-3
module

name, 2-6
version, 2-6

object library routines, 6-4
overview of development, 1-12 to

1-14
section definiton, 2-9
system subroutines, 1-10

Program counter
See PC

Programming language, 1-3
See also MACRO-II

.PSECT directive, 2-9
PURGE command, 3-6

Index-7

Q

QMG, 1-11
Question mark symbol (?)

ODT,5-3
Queue Manager

See QMG

R
R command, 5-3
Record Management Services

See RMS-11
Register

breakpoint, 5-6
relocation, 5-2, 5-4

/REPLACE qualifier
LIBRARY command, 6-6, 6-7

RETURN key
closing location

ODT,5-8
ODT

closing location, 5-4
RMS-11 library, 1-8,1-9,1-10
RMSLIB.OLB file, 1-10
RMSMAC.MLB file, 1-8, 1-9
RSXMAC.SML file, 1-8, 1-9, 2-7
RUN command, 4-5, 5-2

s
.SBTTL directive, 2-7
SHOW ASSIGNMENTS command, 7-2,7-15

example, 7-16
qualifiers

/ ALL, 7-3, 7-15
/GLOBAL, 7-3, 7-15
/GROUP, 7-3, 7-15
/LOCAL, 7-3, 7-15
/LOGIN, 7-3, 7-15
/SYSTEM, 7-3, 7-15
/TERMINAL, 7-3, 7-15

SHOW LOGICALS command, 7-2, 7-15
example, 7-16
qualifiers

/ ALL, 7-15
/GLOBAL, 7-15
/GROUP, 7-15
/LOCAL, 7-15
/LOGIN, 7-15
/SYSTEM, 7-15
/TERMINAL, 7-15

Index-8

Skeleton source file
MACRO-II, 2-4

Slash (/) operator
single

ODT,5-4
$SNAP, 1-7, 5-9

subset of PMD task, 5-9
Snapshot dump

See $SNAP
Software options

See Advanced kit
Source file

creating, 2-12
file type MAC, 3-1
MACRO-II

SST

assembling, 3-1
error, 3-2, 3-3
format, 2-1 to 2-4

skeleton, 2-4
introduction to, 2-1
listing, 3-4
macro library call, 6-3

ODT, 1-6, 5-8
PMD task, 1-7
role in task termination, 4-5

Statement
MACRO-II, 1-4

format, 2-1 to 2-4
Symbol

cross-reference, 3-5 to 3-6
global

entry point, 1-4
resolution, 1-4, 4-1

local, 1-4, 2-8
definition, 2-8
evaluation, 1-4

macro
definition, 1-4, 1-9, 2-7, 6-3

MACRO-II evaluation, 1-4, 3-1
SYSLIB.OLB file, 1-10
/SYSTEM_LIBRARY_DISPLAY qualifier

LINK command, 4-4
System directive, 1-8
System library, 1-10

contributions (in map), 4-4
macro, 1-8, 1-9

search, 2-7
object, 1-10

search, 4-1

/SYSTEM qualifier
ASSIGN command, 7-5
DEASSIGN command, 7-9
DEFINE command, 7-12
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

System task, 1-1

T
TAPEINS.CMD file

error messages, 8-35
procedure, 8-26

Tape kit
copying files

from diskettes, 8-31
from fixed disk, 8-33

creating, 8-31
INSTALL.DAT file

editing, 8-29
requirements, 8-25
template INS file

creating, 8-26
editing, 8-29
optimizing, 8-27

Task
aborting, 4-5
breakpoints

setting, 5-6
building, 4-1
create, 1-5 to 1-6
CRF, 1-8
debugging, 4-5
MAC, 1-3
macro calls, 6-3
map, 4-3, 4-4

full, 4-4
standard, 4-4

object library routines, 6-4
PMD,I-7
running, 4-5
system, 1-1
system library contributions, 4-4
termination, 4-5
TKB default conditions, 4-3
transfer (starting) address

default, 4-2, 4-5
defining, 2-9

Task Builder
See TKB

Task image, 1-5, 4-1
creating, 4-1

/TASK qualifier
LINK command, 5-2, 6-4, 6-6

Task termination and notification
See TKTN

Terminal
controlling output, 3-5
examining a listing, 3-5
types, 1-11

/TERMINAL qualifier
ASSIGN command, 7-5
DEASSIGN command, 7-9
DEFINE command, 7-12
SHOW ASSIGNMENTS command, 7-15
SHOW LOGICALS command, 7-15

Text editor
See EDT

Third-party software
packaging, 8-1

.TITLE directive, 2-6, 6-4
TKB, 1-5

default system library, 1-10
error, 4-1, 4-5
functions, 1-5
generating

cross-reference listing, 4-4
map

full, 4-4
standard, 4-4

input, 1-5
LINK command, 1-5, 4-1, 5-2, 5-9, 6-4
object library

designation, 6-3
output, 1-5
qualifier

/CROSS_REFERENCE, 1-8
symbol

undefined, 4-1
task default conditions, 4-3
transfer (starting) address

default, 4-2
TKTN

abort message, 4-5
using with PMD task, 1-7

Transfer (starting) address
defining, 2-9
system treatment of default, 4-2, 4-5

/TRANSLATION:FINAL qualifier
ASSIGN command, 7-5
DEFINE command, 7-12

TSK file type, 4-1
TYPE command, 3-5, 4-4

Index-9

v
Virtual memory management library, 1-10
VMLIB.OLB file, 1-10

X
X command

ODT,5-8

Index-l0

READER'S
COMMENTS

Micro/RSX
Guide to Advanced

Programming
AA-AB43C-TC

Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? __ Programmer __ Nonprogrammer

Years of experience as a computer programmer/user:

Name _______________________ Date: _________ _

Organization ________________________________ __

Street ___________________________________ _

City____________________ State ____ Zip Code ___ _
or Country

-- Do Not Tear - Fold Here and Tape ------------------~lllr---------------,
No Postage I

~DmDDmDTM ~;::::~y i

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

11111.1111.1111 •• 1111 •• 1.11.1111.1111 •• 1.1 ••• 1.11111

in the !

United States

-- Do Not Tear - Fold Here --

READER'S
COMMENTS

Micro/RSX
Guide to Advanced

Programming
AA-AB43C-TC

Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? __ Programmer __ Nonprogrammer

Years of experience as a computer programmer/user:

Name _________________________________ Date ____________ _

Organization ___ __

Srreet __ _

City_____________________ State ____ Zip Code ___ _
or Country

-- Do Not Tear - Fold Here and Tape -------------------~lllr--------------
No Postage

~B·BD·Dm ~~~ ~ ~ ~ .fMalied

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111.111111.1111 •• 1111111.11.1111.1111111.1.111.11111

in the
United States

--- Do Not Tear - Fold Here --

I
I
I
I
I
I

